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CHAPTER 1

Introduction

As the Bayesian approach to data analysis becomes more popular, a common question is

what can be gained over traditional methods. One important advantage is that Bayesian

analysis allows users to take advantage of previous knowledge about the range and dis-

tribution of the parameter values in the model and, therefore, may be advantageous when

compared to methods that only take into account the current data set (van de Schoot et al.,

2021). Other advantages are a more intuitive interpretation of results and applicability to

smaller samples (McNeish, 2016). However, Bayesian methods may be more computation-

ally intensive and are not as widely used, so computational tools can be harder to find or

apply. Comparisons of Bayesian and frequentist methods on real data sets can offer addi-

tional insights into the benefits and drawbacks of each. This analysis focuses on applying

Bayesian survival modeling to a large observational data set obtained from electronic health

records (EHR). Utilizing EHR data also brings rewards and challenges (Casey et al., 2016).

The large number of covariates present and large sample sizes offer a lot of information

but can create computational challenges, and the presence of protected health information

limits the type of resources that can be used safely.

Generally, Bayesian statistics assumes that model parameters have an unknown dis-

tribution rather than one true value and uses Bayes’ Rule to incorporate prior knowledge

about this distribution (van de Schoot et al., 2021). The posterior probability is often of

interest and is an updated probability that allows the combination of prior knowledge and

the likelihood. The influence that the prior has on the posterior depends on how informa-

tive it is. In practice, this prior knowledge may come from clinical expertise or previous

trials. If there have been many studies and we are confident about the value for that a pa-

rameter of interest may take, a highly informative prior with a small variance can be used.
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It will not be heavily influenced by new data that is added from the likelihood, and the

posterior distribution will strongly resemble the prior distribution. On the other hand, we

may be relatively unsure about the values a parameter is most likely to take on and use

a less informative or even a non-informative prior. This prior distribution would have a

larger variance, and the posterior may be influenced to a greater degree by the new infor-

mation. The posterior distribution will tend to resemble the likelihood rather than the prior

distribution.

In addition to incorporating prior information, Bayesian statistics allows for a more in-

tuitive summary of the result than frequentist methods (Hespanhol et al., 2019). Frequentist

confidence intervals are often misunderstood, perhaps because their interpretation depends

on hypothetical repeats of the experiment. For example, consider a study that finds that

cigarette smokers are 20% more likely to develop pancreatic cancer than nonsmokers, with

a 95% confidence interval of 10% to 30%. This means that if the study were conducted 100

times, on average, the confidence interval in 95 of the studies would include the true value.

However, because this is never done in real life, it may not be as meaningful or as easy to

interpret. Instead of a confidence interval, Bayesian credible intervals offer a very intuitive

interpretation: there is a 95% chance that the true value lies within the interval.

The Bayesian posterior predictive distribution is another benefit, as it defines the dis-

tribution of future or unobserved values and allows for the prediction of measures that are

easily interpreted. For example, in survival analysis, one might be interested in a predicted

interval of restricted mean survival time. In the same way that a credible interval is a subset

of the parameter space, such that there is a probability α that the parameter is inside the

interval, a prediction interval is a subset of the sampling space of the posterior predictive

distribution such that there is a probability γ that the value of a future observation is inside

the interval. A posterior predictive distribution uses the posterior and considers uncertainty

about parameter values, thereby giving an interval that is wider than a confidence interval.

However, it is often a more accurate estimate of the range (Lynch and Western, 2004).
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This analysis aims to apply Bayesian survival modeling to a large observational data

set obtained from electronic health records. The Bayesian approach allows us to incorpo-

rate information from previous studies and obtain credible intervals, allowing us to make

probability statements when discussing the parameters of interest. To address the lack of

randomization, we will implement propensity score matching using the nearest-neighbor

approach and a caliper, as it is simple to implement before beginning the Bayesian work-

flow. We will compare the results of the traditional Cox proportional hazards model to a

Bayesian approach using three different priors: one with an uninformative prior, one with

a prior derived from a meta-analysis of previous trials, and one with a prior having a small

variance. We will compare results by looking at common estimates of interest, including

the survival function, hazard ratio, and restricted mean survival time. By comparing these

models, we aim to show the effects of various priors and explore the potential benefits of a

Bayesian survival analysis approach.
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CHAPTER 2

Methods

2.1 Overview

This project extends the analysis done by Richardson et al. in 2023 by considering a

Bayesian appreach and incorporating information from other studies. In this new analysis,

we perform both the traditional Cox proportional hazards regression analysis and a time-

to-event analysis using a Bayesian approach. Sodium-glucose cotransporter-2 inhibitors

(SGLT2) and dipeptidyl peptidase 4 inhibitors (DPP4) are classes of diabetes drugs com-

monly prescribed as add-on therapies to other treatments including metformin, sulfony-

lurea, and insulin. Their association with major adverse cardiovascular events (MACE) is

not well described, especially in populations without pre-existing cardiovascular disease.

In this retrospective cohort study of US veterans from 2001-2019, patients were followed

from a new prescription fill of a drug in the SGLT2 or DPP4 class until a MACE event,

treatment change, loss to follow-up, non-cardiovascular death, or study end (December

2019) (Richardson et al., 2023). A MACE composite outcome was used, consisting of

acute myocardial infarction, stroke, heart failure hospitalization, or cardiovascular death.

The cohort includes veterans aged 18 years or older with diabetes who were using met-

formin, sulfonylurea, or insulin alone or in combination. The study focuses on a cohort

of diabetes patients without a history of cardiovascular disease. Data was obtained from

EHRs and includes inpatient and outpatient VHA encounters, medication fills, and data

linkage to Medicare, Medicaid and National Death Index databases. An episode of use was

defined with the index date being a prescription of a DPP4 or SGLT2 drug without use of a

medication in that class in the prior 180 days, or any other new medication class in the prior

90 days. This wash out period allowed for evaluation of the drug without contamination

from a new medication or withdrawal of a different medication (Richardson et al., 2023).
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Using this inclusion criteria, the study cohort may include multiple episodes for a single

patient.

We consider time-to-event models to model the risk of a MACE event comparing DPP4

and SGLT2. The analysis compares the results from the Cox proportional hazards model,

which is a very common frequentist approach to survival analysis, with a Bayesian model

estimated using three different priors: one with an uninformative prior that allows the likeli-

hood to have more influence, one with an informative prior that gives strong weight to data

from previous studies, and one with an informative prior with small variance to illustrate

the strong influence a prior can have on the posterior distribution.

2.2 EHR Studies

The use of data from EHRs has grown quickly over the past decade and provides a low-

cost way to utilize valuable longitudinal data on large populations (Casey et al., 2016).

In 2009, only 12% of hospitals in the United States reported using EHRs, but this number

increased quickly to 76% in 2014 (Charles et al., 2015). This rapid transition has opened up

many research possibilities despite EHRs being designed for clinical encounters rather than

research needs. Unlike prospective cohort studies which are designed to follow subjects

for a given period of time and collect specific variables, EHR studies are limited to what

has been collected in the subject’s medical records. Even something as simple as cohort

definition can be made challenging by the fact that diagnostic codes may be missing or

misused. Another challenge is whether conclusions drawn from the EHR population can

be generalized to other populations (Hagar et al., 2014). The wealth of data in EHRs makes

it worth addressing these challenges. Chart reviews and validation studies can help with

improving use of diagnostic codes in the medical record. For example, one study using

VHA data to identify fractures found that a modified algorithm increased PPV from 73.5%

to 90.1% (Horton et al., 2023). Multiple imputation is often used to address missingness,

while propensity score matching can help overcome selection bias inherent in retrospective
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cohort studies using EHRs. Weighting to known populations can also be used to address

generalizability (Pfeffermann, 1993).

2.3 Propensity Score Matching and Weighting

Because there cannot be randomization in retrospective EHR studies, a crucial part of any

observational study is minimizing the selection bias that may be present. Propensity score

matching and weighting are two ways to account for differences in observed baseline co-

variates that may exist between the treatment groups (Benedetto et al., 2018). The propen-

sity score is the conditional probability of assignment to a treatment given a set of covari-

ates (Rosenbaum and Rubin, 1983). Because treatments are not randomly assigned as they

would be in a clinical trial, specific characteristics, for example, age, blood pressure, or

heart disease, often influence a patient’s treatment. While we might not have access to data

on all of the factors that determined the treatment, we would like to make use of all of

the information available to us. The propensity score is often calculated using a logistic

regression model.

e(X) = P(Z = 1|X)

where e(X) is the propensity score, Z is the exposure with 1 being exposed and 0 being

unexposed, and X is a set of observed baseline characteristics (Johnson et al., 2018). Once

propensity scores are calculated, there are different ways to use them to balance across

treatment groups to minimize confounding, including matching, stratification, inverse prob-

ability of treatment weighting (IPTW), and covariate adjustment using the propensity score

(Austin, 2011) (Austin and Stuart, 2015).

Propensity score matching is when patients assigned the treatment of interest are matched

with a patient in the control group with a similar propensity score. Patients may be matched

1:1 or m:1 between control and treatment groups and also may be matched with or with-

out replacement. In the most commonly used method, nearest neighbor matching, treated
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subjects are ordered randomly and are matched one at a time to the control subject with

the closest propensity score (Ho et al., 2011). Once a pair is matched, they are removed

from the matching pool. Matching continues until all treated subjects are matched or no

acceptable matches can be made. Determining whether a match is acceptable is optional

and can be specified by setting a maximum difference for the two propensity scores, known

as a caliper.

Propensity score weighting, such as inverse probability of treatment weighting (IPTW),

has the advantage of including all patients, which usually cannot be achieved with match-

ing. Rather than matching a patient in the treatment group to a patient in the control group,

each patient is weighted to create a pseudopopulation in which observed confounders are

equally distributed across exposure groups. For example, when using IPTW, each patient

in the treatment group is weighted so that patients with a higher probability of receiving

treatment have a smaller weight and patients with a lower probability of receiving treatment

have a higher weight.

In our analysis, we implemented propensity score matching using the nearest-neighbor

approach and a caliper, as it was simple to implement before the Bayesian workflow and ad-

equately balanced the groups. Study covariates included age, sex, race, fiscal year, a surro-

gate for diabetes duration, diabetes co-therapies, physiologic variables, estimated glomeru-

lar filtration rate, summaries of healthcare utilization, smoking, selected comorbidities, and

selected medications. After performing mean imputation on missing covariates and adding

missingness indicators, 1:1 nearest-neighbor propensity score matching without replace-

ment was used to pair subjects in the treatment (SGLT2) and reference (DPP4) groups.

Matching was done using propensity scores estimated using logistic regression with the

MatchIt package (Ho et al., 2011). All analysis was done using R and RStudio (R Core

Team, 2021) (RStudio Team, 2020)
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2.4 Survival Analysis

When the primary outcome is the amount of time until an event of interest occurs, many

types of statistical analysis are inappropriate because the event will not occur for some,

or perhaps even a majority, of the subjects during the observation period. This leaves us

with an unknown time to event. Another feature of this type of data is that it is usually

not normally distributed, but rather, events often occur early and then taper off. Several

common survival modeling approaches include Kaplan-Meier curves, the log-rank test,

Cox proportional hazards regression, and accelerated failure time models (Soodejani et al.,

2021).

Kaplan-Meier curves are a non-parametric way to visualize survival data and estimate

the survival function. They allow a comparison of the probability of survival at different

points in time in the different treatment groups. They are plotted using a non-parametric

statistic that estimates the survival function. The probability of surviving longer than time

t is given by

Ŝ(t) = ∏
i:ti≤t

(1− di

ni
),

where ti is any time with at least one event, di is the number of events at ti, and ni is the

number of individuals surviving to time ti. As the sample size increases, this estimator

approaches the true survival function (Efron, 1988).

The log-rank test uses a test statistic involving the observed and expected events in each

group that can be used to test the null hypothesis that the difference between survival times

in the treatment groups is zero. The log-rank statistic as follows has a standard normal

distribution:

Z =
∑

k
j=1(O j −E j)√

∑
k
j=1Vj

∼ N(0,1)

where O j is the observed number of events at time t j, E j is the expected number of events
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if there is no difference between groups, and Vj is the variance of the observed number of

events (Wellek, 1993).

Cox proportional hazards regression is beneficial when more data is available, as it

directly adjusts for covariates in the hazard function. The hazard is the instantaneous event

rate given that a subject has survived to time t. This can help determine the treatment effect

while considering factors like age or sex, which is not possible with the basic log-rank test.

The Cox model is expressed by the following hazard function,

h(t) = h0(t)exp(β0 +β1x1 +β2x2 + ...+βnxn)

where t is the survival time, x1,x2, ...,xn is a set of n covariates, and β1,β2, ...,βn are the

coefficients of the covariates where exp(βz) is the hazard ratio (HR) of the zth covariate.

It can be interpreted such that an HR less than one represents a reduced hazard, and an

HR greater than one represents an increased hazard for that covariate. The Cox model

is considered semi-parametric because there are no assumptions about the shape of the

baseline hazard (Cox, 1972).

Finally, accelerated failure time models are parametric models, commonly based on

Weibull or exponential distributions, that explain the effect of covariates as accelerating or

decelerating the time-to-event. They also allow for adjustment of covariates, but instead

of covariates acting as multipliers of the hazard like in proportional hazards, they act as

accelerators or decelerators of the life course of a disease (Wei, 1992).

2.5 Bayesian Survival Modeling

Like the Cox proportional hazards model, the proposed Bayesian approach also uses a

hazard model with direct covariate adjustment. We assume the following hazard function

for episode p

hp(t) = h0(t)exp(ηp)
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where h0(t) is estimated using M-splines for their ability to adapt to changes in the shape

of the hazard function. The linear predictor ηp is expressed as

ηp = β0 +β1xp

where xp is a treatment indicator taking a value of 0 if the episode is in the control group

and a value of 1 if the episode is in the treatment group. β1 is the treatment coefficient

where, like the Cox model, exp(β1) is the hazard ratio of the treatment. Bayesian modeling

was performed using the rstanarm R package (Goodrich et al., 2024).

2.5.1 M-splines

M-splines, short for monotone splines, are splines that are non-increasing or non-decreasing

functions. In general, a spline is a piecewise polynomial defined on an interval with speci-

fied continuity constraints (Ramsay, 1988). The interval is partitioned into subintervals by

a knot sequence, k. There is a suitable set of basis splines associated with k, which can be

linearly combined to create any other spline associated with this knot sequence (Ramsay,

1988). These monotone piecewise polynomials are useful in capturing a non-linear but

monotonic relationship, meaning that the hazard is either non-increasing or non-decreasing

with the predictor variable. They are very flexible and allow approximation of complex

functions by piecing together simpler polynomial functions in a smooth and continuous

manner. In terms of the baseline hazard, the M-splines model can be expressed in the

following way:

hp(t) =
L

∑
l=1

γlMl(t;k,δ )exp(ηp)

where Ml(t;k,δ ) denotes the lth basis term for a degree δ M-spline function evaluated

at a vector of knot locations k = {k1, ...,kJ} and γl is the lth M-spline coefficient (Brilleman

et al., 2020). Denote the M-spline for the baseline hazard ∑
L
l=1 γlMl(t;k,δ ) as M(t;γ,k,δ ).
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The I-spline evaluated using the same degree δ , knot locations k, and coefficients γ is

the integral of the M-spline and is denoted as I(t;γ,k,δ ) (Wang and Yan, 2018). The

parameterizations of the hazard function, cumulative hazard function, survival function,

and cumulative incidence function (CIF) are as follows (Brilleman et al., 2020).

hp(Tp) = M(Tp;γ,k,δ )exp(ηp)

Hp(Tp) = I(Tp;γ,k,δ )exp(ηp)

Sp(Tp) = exp(−I(Tp;γ,k,δ )exp(ηp))

CIFp(Tp) = 1− exp(−I(Tp;γ,k,δ )exp(ηp))

The hazard function defines the instantaneous rate of the event at time Tp given that an

individual has survived up to that time, and the cumulative hazard function is the integral

of the hazard function, which represents the total hazard experienced up to time Tp. The

survival function represents the probability that an individual survives past time Tp, while

the CIF is the complement of the survival function and defines the probability that the event

time is less than Tp.

2.5.2 Specification of Priors

When information is known about the location or scale of the hazard ratio, a prior can be

placed on the corresponding β of the linear predictor, ηp, defined in section 2.5. While

many different distributions can be specified, the normal distribution is a straightforward

way to add existing information about the mean and standard deviation where the mean is

the log of the known HR.

2.5.3 Posterior Distribution

The posterior is proportional to the likelihood times the prior and often does not have a

closed-form expression. Markov chain Monte Carlo (MCMC) methods provide a way to
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sample from the posterior without requiring it to have an explicit form. To simplify greatly,

a Markov chain is a sequence of parameter values where each value is generated based on

the previous one, and the chain eventually converges to the desired posterior distribution

(Roberts and Rosenthal, 2004). Hamiltonian Monte Carlo (HMC) is an MCMC algorithm

that integrates concepts from Hamiltonian mechanics to guide the exploration of the target

distribution (Hoffman and Gelman, 2014). HMC takes into account the underlying ge-

ometry of the distribution to make exploration of the parameter space more efficient and

also results in faster convergence compared to traditional random-walk MCMC methods

because it tends to produce less correlated samples (Almond, 2014).

2.5.4 Estimates of Interest

In time-to-event studies, values of interest include the hazard ratio and the restricted mean

survival time. Hazard ratios compare the instantaneous probability that an individual ex-

periences the event in the treatment group versus the control group (Spruance et al., 2004).

For example, a hazard ratio less than one means that in a group of subjects who have not

experienced the event, a subject in the treatment group is less likely to have an event in the

next time period compared to a control. The posterior for the HR associated with coefficient

xi can be found by exponentiating posterior draws from the posterior for βi. However, the

HR alone does not determine treatment benefit, as the shape of the underlying probability

distribution also plays a role. There are cases in which a hazard ratio far from one does

not result in a large change in survival time. The restricted mean survival time gives us

another way to look at treatment benefit, as it represents the average survival time during

a defined time period. It is a helpful way to translate the results to a metric that is easy

to understand. As an example, to determine the RMST at 5 years, we would integrate the

area under the survival curve for each treatment up to the 5-year mark. If treatment A has

an RMST of 3.8 years while treatment B has an RMST of 4.6 years, it would suggest that

treatment B is associated with better survival outcomes within the 5-year time frame. This
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provides a straightforward measure of treatment benefit over a specific time interval. The

RMST is found using the posterior predictive distribution for the survival function using an

established R function (Elçi and Brilleman, 2019).
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CHAPTER 3

Results

3.1 Propensity Score Matching

In the retrospective cohort, 129,834 episodes of DPP4 and SGLT2 use meet the inclu-

sion criteria. Of the 129,834 episodes, 23,107 used an SGLT2 (treatment) drug, while

106,727 used a DPP4 (reference) drug. After matching using a caliper value of 0.05, 21,821

episodes from the treatment group were matched, and 1,286 were dropped. After matching,

all standardized mean differences of observed baseline covariates were below the accept-

able threshold of 0.1. The patient characteristics of the matched cohort are summarized in

Table 3.1 and Table 3.2.

3.2 Survival Analysis

The methods we compare are a Cox proportional hazards model (Cox PH), a Bayesian sur-

vival model with an uninformative prior (Uninformative prior), a Bayesian survival model

with small variance (Small variance prior), and a Bayesian survival model with a prior

derived from a Zelniker et al. meta-analysis that combined data from three cardiovas-

cular outcome trials (Zelniker prior), finding a hazard ratio of 0.86 (0.80-0.93) (Zelniker

et al., 2019). This was implemented using a normal (log(0.86), 0.0385) prior on the treat-

ment coefficient. Although the populations represented in the meta-analysis differ from our

population in that subjects had cardiovascular disease, it represents many clinicians’ prior

belief that there is a protective effect of SGLT2 on MACE outcomes. The small variance

prior is meant to show what happens to our estimates and their credible intervals when the

prior is very strong. We call the uninformative prior as such because of its relatively flat

shape, although it is actually a normal distribution with a large variance. Its shape and

small amount of influence on the posterior can be compared to the Zelniker prior in Figure

3.1.
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Figure 3.1: The posterior distribution plotted in red with its prior distribution plotted in
black for two of the Bayesian survival models

3.2.1 Posterior distributions

The influence of the three different prior distributions can be seen in the location and shape

of the posteriors of the β on the treatment variable (Figure 3.2). The posterior resulting

from the uninformative prior is relatively wide, and its location was not highly influenced

by the prior. In contrast, the posterior distribution using the Zelniker prior was pulled

toward the location of the prior and also had a smaller range. Finally, the posterior using the

small variance prior is completely centered on the location of the prior with an extremely

small range.

3.2.2 Hazard Ratio

We estimate the hazard ratio for SGLT2 with DPP4 as the reference group for each model

(Section 2.5.4). The Bayesian model with uninformative prior resulted in a hazard ratio

15



Figure 3.2: Comparison of posterior distributions of the treatment coefficient using 3 dif-
ferent priors with the estimate of the treatment coefficient marked with a dashed line

estimate of 0.787 and 95% credible interval of (0.651 - 0.946), which is very similar to the

Cox proportional hazards model estimate of 0.784 with 95% confidence interval (0.652 -

0.943) (Table 3.4). The 95% credible interval is found using the 0.025 and 0.975 percentile

of the posterior distribution and is an equal-tailed interval. The 95% credible interval for

the Bayesian analysis using an uninformative prior was also very similar to the confidence

interval of the Cox PH model. Using the Zelniker prior, the hazard ratio is estimated to be

0.849 with a 95% probability of being between 0.791 and 0.912. The HR increased toward

the mean of the prior, and the credible interval was also much narrower compared to the

model with the uninformative prior. The small variance prior pulls the HR estimate up

to the mean of the prior distribution with an HR estimate of 0.90 and creates an extremely

narrow credible interval of 0.898 to 0.902. All models estimate a protective effect of SGLT2

on MACE outcomes.
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3.2.3 Survival Function

We estimate the survival function for SGLT2 versus DPP4 using the three Bayesian sur-

vival models (uninformative, Zelniker, and small-variance). The survival plot of the unin-

formative prior with the hazard ratio estimate farthest from one has the largest separation

between survival curves in the two groups (Figure 3.3). There is some overlap of the credi-

ble intervals, especially after about 2.5 years. The model using the Zelniker prior has more

overlap of the pointwise credible intervals. Finally, the model with a small-variance prior

estimates the hazard ratio closest to one out of the three models and its survival functions

and pointwise credible intervals strongly overlap.

Figure 3.3: Survival functions of three Bayesian survival models

3.2.4 Restricted Mean Survival Time

There is a similar pattern to the survival functions when comparing restricted mean sur-

vival time at three years found using the frequentist approach and the Bayesian survival

model with specified priors (Figure 3.4). Starting with the uninformative prior with the

lowest hazard ratio estimate, the difference in estimated RMST is about 0.016 years be-

tween treatment groups (Table 3.5). This is similar to the RMST derived from the Kaplan

Meier estimate of the survival function, which had a difference in estimated RMST of 0.015
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years. Moving to the model with the Zelniker prior, the hazard ratio estimate increases, and

the difference in estimated RMST decreases to 0.011 years. Lastly, the model with the

small variance prior has a difference in estimated RMST of 0.007 years between treatment

groups. As expected, when the model estimates less difference between treatments, predic-

tions like restricted mean survival time also become closer together. Like the KM function,

all three Bayesian models estimate a larger RMST for SGLT2 users, though the credible

intervals overlap, so no strong conclusions can be drawn about the difference in RMST

between the two treatment groups (Table 3.5).

Figure 3.4: Comparison of the distributions of the restricted mean survival time (in years)
at 3 years using three Bayesian models
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DPP4 SGLT2 SMD
n 21822 21822
Age (mean (SD)) 65.29 (11.00) 65.12 (9.68) 0.017
Male, N (%) 20536 (94.1) 20572 (94.3) 0.007
Race, N (%) 0.003

Other 808 ( 3.9) 799 ( 3.9)
Black or African American 4553 (22.0) 4567 (22.1)
White 15310 (74.1) 15342 (74.1)

Race Missing (%) 1151 ( 5.3) 1114 ( 5.1) 0.008
VISN (%) 0.037

1 900 ( 4.1) 917 ( 4.2)
2 673 ( 3.1) 686 ( 3.1)
3 67 ( 0.3) 64 ( 0.3)
4 1080 ( 4.9) 1059 ( 4.9)
5 1019 ( 4.7) 1075 ( 4.9)
6 1275 ( 5.8) 1287 ( 5.9)
7 1701 ( 7.8) 1701 ( 7.8)
8 1864 ( 8.5) 1916 ( 8.8)
9 885 ( 4.1) 860 ( 3.9)
10 1489 ( 6.8) 1495 ( 6.9)
11 88 ( 0.4) 99 ( 0.5)
12 640 ( 2.9) 654 ( 3.0)
15 1146 ( 5.3) 1075 ( 4.9)
16 1656 ( 7.6) 1601 ( 7.3)
17 2136 ( 9.8) 2156 ( 9.9)
18 145 ( 0.7) 156 ( 0.7)
19 1234 ( 5.7) 1125 ( 5.2)
20 1136 ( 5.2) 1153 ( 5.3)
21 732 ( 3.4) 720 ( 3.3)
22 1095 ( 5.0) 1110 ( 5.1)
23 861 ( 3.9) 913 ( 4.2)

Date (mean (SD)) 17717.84 (460.30) 17716.38 (486.89) 0.003
Diabetes medication start to index date (mean (SD)) 3463.43 (1850.18) 3474.01 (1831.25) 0.006
Height (mean (SD)) 69.55 (3.11) 69.60 (3.08) 0.015
Height Missing (%) 4690 (21.5) 4631 (21.2) 0.007
Weight (mean (SD)) 232.01 (51.08) 232.67 (48.21) 0.013
Weight Missing (%) 453 ( 2.1) 431 ( 2.0) 0.007
BMI (mean (SD)) 33.70 (6.85) 33.76 (6.41) 0.010
BMI Missing (%) 4966 (22.8) 4895 (22.4) 0.008
Systolic blood pressure, mm/Hg (mean (SD)) 134.29 (16.54) 134.22 (16.33) 0.005
Diastolic blood pressure mm/Hg (mean (SD)) 76.43 (9.90) 76.46 (9.78) 0.003
Blood pressure measure missing (%) 417 ( 1.9) 391 ( 1.8) 0.009
Hemoglobin, g/dL (mean (SD)) 14.24 (2.06) 14.24 (1.62) 0.002
Hemoglobin Missing (%) 1906 ( 8.7) 1862 ( 8.5) 0.007
Estimated glomerular filtration rate, ml/min (mean (SD)) 80.72 (20.98) 80.79 (18.61) 0.003
eGFR missing (%) 1278 ( 5.9) 1222 ( 5.6) 0.011
Low density lipoprotein (mean (SD)) 86.88 (34.88) 86.67 (34.94) 0.006
ow density lipoprotein missing (%) 1269 (5.8) 1222 (5.6) 0.009
HbA1c (mean (SD)) 8.70 (1.63) 8.71 (1.54) 0.007
HbA1c missing (%) 1648 ( 7.6) 1574 ( 7.2) 0.013
Urine protein on urinalysis (%) 0.016

Null unknown or Negative 8965 (41.1) 9132 (41.8)
Trace or 1+ 2113 ( 9.7) 2100 ( 9.6)
2+ 1201 ( 5.5) 1185 ( 5.4)
3+/4+/trace to 4+ 241 ( 1.1) 239 ( 1.1)
Missing 9302 (42.6) 9166 (42.0)

Microalbumin to creatine ratio (%) 0.011
A1 and unknown but tested 9416 (43.1) 9421 (43.2)
A2 4102 (18.8) 4186 (19.2)
A3 and positive 1414 ( 6.5) 1405 ( 6.4)
Missing 6890 (31.6) 6810 (31.2)

Table 3.1: Baseline covariates in the matched sample: Demographics and lab values, with
standardized mean difference (SMD)
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DPP4 SGLT2 SMD
n 21822 21822
Malignancy (%) 2220 (10.2) 2187 (10.0) 0.005
Liver disease (%) 1174 ( 5.4) 1180 ( 5.4) 0.001
HIV (%) 95 ( 0.4) 103 ( 0.5) 0.005
Congestive heart failure (%) 1034 ( 4.7) 1077 ( 4.9) 0.009
Serious mental illness (%) 6443 (29.5) 6471 (29.7) 0.003
Smoking (%) 1832 ( 8.4) 1873 ( 8.6) 0.007
Chronic obstructive pulmonary disease (%) 2811 (12.9) 2773 (12.7) 0.005
History of respiratory failure (%) 490 ( 2.2) 499 ( 2.3) 0.003
History of kidney disease (%) 0 ( 0.0) 1 ( 0.0) 0.010
History of sepsis (%) 268 ( 1.2) 271 ( 1.2) 0.001
History of pneumonia (%) 303 ( 1.4) 325 ( 1.5) 0.008
Arrhythmias (%) 992 ( 4.5) 982 ( 4.5) 0.002
Cardiac valve disease (%) 358 ( 1.6) 340 ( 1.6) 0.007
Parkinson’s (%) 161 ( 0.7) 149 ( 0.7) 0.007
Urinary tract infection (%) 648 ( 3.0) 636 ( 2.9) 0.003
Osteomyelitis (%) 115 ( 0.5) 104 ( 0.5) 0.007
Osteoporosis (%) 109 ( 0.5) 134 ( 0.6) 0.015
Falls (%) 179 ( 0.8) 200 ( 0.9) 0.010
Fractures (%) 328 ( 1.5) 322 ( 1.5) 0.002
Amputation (%) 59 ( 0.3) 61 ( 0.3) 0.002
Retinopathy (%) 2287 (10.5) 2366 (10.8) 0.012
ACE inhibitors (%) 11413 (52.3) 11383 (52.2) 0.003
Angiotensin receptor blockers (%) 5130 (23.5) 5111 (23.4) 0.002
Beta blockers (%) 7998 (36.7) 8035 (36.8) 0.004
Calcium channel blockers (%) 6633 (30.4) 6614 (30.3) 0.002
Thiazide/potassium sparing diuretics (%) 7158 (32.8) 7195 (33.0) 0.004
Loop diuretics (%) 2400 (11.0) 2397 (11.0) <0.001
Other hypertensives (%) 5655 (25.9) 5631 (25.8) 0.003
Lipid-lowering statins (%) 17235 (79.0) 17253 (79.1) 0.002
Non-statin lipid-lowering agents (%) 3067 (14.1) 3105 (14.2) 0.005
Anti-arrhythmic digoxin and inotropes (%) 1257 ( 5.8) 1222 ( 5.6) 0.007
Anticoagulants (%) 1814 ( 8.3) 1772 ( 8.1) 0.007
Nitrates (%) 679 ( 3.1) 660 ( 3.0) 0.005
Aspirin (%) 4381 (20.1) 4420 (20.3) 0.004
Platelet inhibitors (%) 931 ( 4.3) 907 ( 4.2) 0.005
Antipsychotics (%) 1317 ( 6.0) 1317 ( 6.0) <0.001
Oral glucocorticoids (%) 2069 ( 9.5) 1979 ( 9.1) 0.014
Hospitalization within year (Veterans Health) (%) 1274 ( 5.8) 1336 ( 6.1) 0.012
Hospitalization within 30 days (Veterans Health) (%) 208 ( 1.0) 224 ( 1.0) 0.007
Hospitalization within year (Medicaid/Medicare) (%) 634 ( 2.9) 649 ( 3.0) 0.004
Hospitalization within 30 days (Medicaid/Medicare) (%) 72 ( 0.3) 75 ( 0.3) 0.002
Medicaid insurance use in last year 248 ( 1.1) 255 ( 1.2) 0.003
Medicare insurance use in last year 8586 (39.3) 8178 (37.5) 0.038
Medicare advantage use 0.01 (0.11) 0.01 (0.12) 0.004
Nursing home encounters 48 ( 0.2) 50 ( 0.2) 0.002
Cotherapy (%) 0.022

Insulin 2982 (13.7) 2980 (13.7)
Metformin 3662 (16.8) 3569 (16.4)
Metformin + Insulin 6407 (29.4) 6603 (30.3)
Metformin + Sulfonylurea 6827 (31.3) 6719 (30.8)
Sulfonylurea 1177 ( 5.4) 1170 ( 5.4)
Sulfonylurea + Insulin 767 ( 3.5) 781 ( 3.6)

Ejection fraction at baseline 0.017
Indeterminate 535 (10.6) 535 (10.5)
Missing/Unknown 41 ( 0.8) 42 ( 0.8)
Normal/Inc 3908 (77.7) 3916 (77.2)
Reduced/Severe 548 (10.9) 579 (11.4)

Ejection fraction at baseline missing 16790 (76.9) 16750 (76.8) 0.004
Outpatient visits in last year (mean (SD)) 6.95 (6.33) 7.09 (6.51) 0.022
Number of medications 4.56 (2.40) 4.56 (2.35) 0.001

Table 3.2: Baseline covariates in the matched ssample: Comorbidities and prescriptions,
with standardized mean difference (SMD)
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Method Coefficient
Estimate Lower Upper

Cox PH 1 -0.243 -0.429 -0.057
Uninformative prior 2 -0.239 -0.430 -0.055
Zelniker prior 2 -0.163 -0.235 -0.095
Small variance prior 2 -0.105 -0.107 -0.103

Table 3.3: A comparison of treatment coefficient estimates using Cox PH and Bayesian
survival model with uninformative prior, Zelniker prior, and small variance prior

1Interval shown is a 95% confidence interval
2 Interval shown is a 95% credible interval.

Method HR Estimate Lower Upper
Cox PH 1 0.784 0.652 0.943
Uninformative prior 2 0.787 0.651 0.946
Zelniker prior 2 0.849 0.791 0.912
Small variance prior 2 0.900 0.898 0.902

Table 3.4: A comparison of hazard ratio estimates using a Cox proportional hazards
method, Bayesian survival model with uninformative prior, and Bayesian survival model
with Zelniker prior

1Interval shown is a 95% confidence interval
2 Interval shown is a 95% credible interval.

Method Treatment RMST Lower Upper

Cox PH 1
DPP4 2.926 2.916 2.935
SGLT2 2.941 2.931 2.950
Difference 0.015 0.001 0.028

Uninformative prior 2
DPP4 2.926 2.916 2.934
SGLT2 2.942 2.933 2.950
Difference 0.016 0.004 0.028

Zelniker prior 2
DPP4 2.928 2.920 2.935
SGLT2 2.939 2.932 2.945
Difference 0.011 0.006 0.016

Small variance prior 2
DPP4 2.930 2.923 2.936
SGLT2 2.937 2.930 2.943
Difference 0.007 0.006 0.008

Table 3.5: A comparison of restricted mean survival time (in years) at 3 years.
1RMST estimated using Kaplan Meier estimate for the survival function; interval shown is a 95%

confidence interval.
2 Interval shown is a 95% credible interval.
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CHAPTER 4

Discussion

The results from all of the Bayesian models considered suggest a potential protective effect

of SGLT2 on MACE outcomes. In addition to using an uninformative prior, as is used for

many Bayesian models, the Bayesian survival model allowed us to incorporate information

from previous studies using informative priors. The Zelniker prior is an example of incor-

porating information about the hazard ratio of 0.80-0.93 found in other studies, although the

population in the Zelniker meta-analysis differs in that the population had existing cardio-

vascular disease. The relatively small confidence interval on the Zelniker estimate brings

the Bayesian HR estimate much closer to the prior and makes the credible interval smaller.

Given the differences in populations, one could also consider a prior weighting to a HR of

0.86, but with a larger variance. The small variance prior illustrates just how influential a

prior can be, as the posterior distribution essentially follows the prior distribution. Clearly,

the choice of variance in the prior is important to consider when determining how much

influence to give the prior information, and caution should be used when implementing

normal priors with small variance. Overall, the finding of a protective SGLT2 treatment

effect is important as many existing studies use populations with existing cardiovascular

disease, while fewer studies have been published on those without CVD. The Bayesian

approach allowed us to utilize the large amount of information in the EHR data set and

include information from other randomized trials.

While there are challenges when using data from retrospective studies and EHRs, there

are well-developed methods like propensity score matching, imputation of missing values,

and careful data validation to help address them. We incorporated propensity score match-

ing with Bayesian models to help adjust for the lack of randomization in EHR studies,

although we are limited to adjusting for observed baseline covariates. Using data from the
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Veterans Health Administration adds another potential drawback because it tends to have

an over-representation of White and male subjects as compared to the U.S. population.

However, VHA data is especially rich, with information on demographics, diagnostics, and

procedures, as well as linkage to Medicare and Medicaid prescription data that makes it a

useful source of information despite its lack of generalizability to certain patient popula-

tions.

It is possible for multiple episodes in the study cohort to be from the same patient

(Richardson et al., 2023). The current Bayesian approach does not account for the cor-

relation between multiple episodes from the same patient. However, the estimate for the

uninformative hazard ratio is very similar to the result in the Richardson 2023 analysis that

incorporates this correlation into the model. An approach using weighting, as opposed to

propensity score matching, can include an adjustment for multiple episodes in the weights.

Given the similarities in the HR estimate between the traditional Cox proportional haz-

ards model and the Bayesian survival model with an uninformative prior, the question arises

of when to use a Bayesian approach. Even without prior clinical knowledge, a Bayesian

model with an uninformative prior is useful when credible intervals or predictive distribu-

tions are desired. The addition of clinical information or estimates from previous trials adds

another benefit with the ability to incorporate that knowledge using informative priors. Al-

though Bayesian methods can be computationally intensive, several packages now exist that

make the analysis relatively straightforward and worthwhile. We found Bayesian survival

models with PS matching to be a useful tool for incorporating information from previous

trials into our EHR study. Possible next steps include utilizing propensity score weighting,

performing data-driven variable selection for propensity score and outcome models, and

the development of more efficient algorithms for large EHR data sets.
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