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CHAPTER 1

Introduction

Distributed ledger technology, particularly blockchain, has solved the complex problem of creating a mech-

anism by which entities can coordinate and communicate in a trustless and permissionless manner. The key

innovation was the integration of distributed consensus mechanisms with economic incentives for validators,

creating a system in which validators are incentivized to act honestly and in the network’s best interest.

Ethereum has emerged as one of the most widely adopted blockchain platforms, supporting a global com-

puting infrastructure through a decentralized network of nodes. At its core, Ethereum relies on a novel con-

sensus protocol called Gasper, which combines the LMD-GHOST fork choice rule with the Casper Friendly

Finality Gadget (FFG) overlay for the probabilistic finality of transactions. Combined with a proof-of-stake

collateralization requirement for validators, these rules have created a robust system that satisfies both secu-

rity and liveness.

While this construction has proven effective, limitations exist in guaranteeing fast transaction finality. The

current model requires a confirmation time of 64 to 95 blocks, approximately 15 minutes, before Casper final-

izes a block. This delay impacts user experience and exposes the network to short-term chain reorganizations,

potentially allowing transaction censorship or manipulation by validators with no severe penalties. With the

recent emphasis on a rollup-centric roadmap as the path for scaling Ethereum, faster finality would also allow

for cross-layer and inter-rollup communication to take place significantly faster, as rollups would no longer

have to wait an extended period for finality before approving a deposit. Furthermore, other blockchains and

their respective consensus mechanisms are capable of faster finality, in some cases instantaneous finality, be-

cause of innovations over prior solutions and tradeoffs in liveness or decentralization. Achieving single slot

finality (SSF), where transactions are proposed and finalized within the same slot, has emerged as a path to

expand the capabilities of Ethereum.

The organization of this work follows a structured narrative that progressively builds upon the founda-

tional concepts to explore advanced topics in consensus mechanism design and SSF realization. Chapter

2 explains the requisite background knowledge to understand distributed consensus and single slot finality.

Chapter 3 explores the desired properties of Ethereum for SSF. Chapter 4 explores pragmatic mechanisms for

achieving SSF in Ethereum via quantum signatures, core consensus-level changes, application-layer exten-

sions, and sacrificing some level of economic security. This analysis explores fundamental tradeoffs between

Ethereum’s current properties and those desired for SSF. This thesis then systematically studies fast finality

protocols through three families – Propose-Vote-Merge, PBFT-inspired, and Total Order Broadcast/Graded
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Agreement. Their capabilities and limitations vis-à-vis Gasper are critically analyzed in Chapter 5. Addition-

ally, Chapter 6 assesses the integrations and alternations necessary in D’Amato and Zanolini’s recent work on

a single vote TOB to cement SSF or similarly fast finality. The discourse culminates in the documentation of

cumulative finality constructions and approaches in Chapter 7 to fortify the network’s security. Conclusions

and recommendations for future work are elucidated in Chapter 8.

By assessing myriad approaches holistically, this thesis contributes vital groundwork, principles, and

recommendations to guide the Ethereum protocol in prudently furthering SSF objectives. The suggested

focus areas constitute an incremental research blueprint for decentralized consensus as blockchains scale.
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CHAPTER 2

Background Knowledge

In order to understand the current state of distributed consensus mechanisms, it is beneficial to have a histor-

ical background of prior works and concepts related to achieving distributed consensus.

2.1 State Machine Replication

A state machine is a computational model that encapsulates the dynamic behavior of a system (Nayak and

Abraham, 2019). It maintains a system state and, when receiving inputs, transitions between states deter-

ministically, producing an output. These transitions are reproducible, as the same protocol rules govern all

transitions. This concept is pivotal to blockchains, whose ledger can be considered a state machine spread

across multiple nodes.

State machine replication (SMR) is a foundational technique in distributed systems computing to ensure

consistency, availability, and fault tolerance (Schneider, 1990). The idea is to replicate the same state machine

across multiple nodes or servers, traditionally called replicas, and ensure that every replica processes the same

series of inputs in the same order. It is primarily concerned with handling non-malicious failures like crashes

or network issues.

A critical challenge of SMR is to ensure that all replicas process inputs and state transitions in the same

order. The deterministic nature of state machines is critical, as all nodes who receive the same input, given

a common state, must transition to the same output to ensure consistency. A common approach is to use a

consensus mechanism. Specifically, to protect against both crash failures and Byzantine failures, Byzantine

Fault Tolerant consensus mechanisms are employed.

2.2 Byzantine Fault Tolerance

Byzantine Fault Tolerance (BFT) is a term used to describe consensus mechanisms that allow a distributed

system to come to an agreement in the presence of malicious, or Byzantine, nodes. The term comes from the

Byzantine Generals Problem, a thought experiment postulating how multiple divisions of an army, each with

its own general, could communicate about agreeing on a time to attack a city (Lamport et al., 1982). Com-

munication can only occur via messengers; traitorous generals may send conflicting or inaccurate messages.

Analogously, distributed systems and their numerous nodes may experience a failure or be compromised

by malicious actors. Ensuring a distributed system’s correct and continuous function, even in the presence of

these Byzantine nodes, is essential for security and reliability.
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Two fundamental requirements for a BFT protocol are safety and liveness (Castro, 1999). Safety means

that the honest nodes will not reach a wrong or conflicting consensus and satisfies linearizability, meaning the

system’s overall behavior is indistinguishable from a single, reliable, sequentially consistent system. Liveness

is the ability to continue functioning and progressing the network state in the presence of Byzantine nodes

instead of halting.

Both safety and liveness can only be guaranteed when there is an upper bound on the number of Byzantine

nodes in the system. Historically, less than 1/3 of Byzantine nodes are tolerated in a system to achieve both

properties simultaneously in the partially synchronous or asynchronous setting (Fischer et al., 1986).

Without this bound, messages from faulty or malicious nodes could outnumber honest nodes and control

the network state.

2.3 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) was published in 1999 and was the first state-machine replica-

tion protocol capable of surviving Byzantine faults, i.e., satisfying safety, in asynchronous networks (Castro,

1999). Before this work, the BFT problem was mainly theoretical due to high communication and compu-

tational overhead. An asynchronous network means there are no bounds on message delivery times in the

network, and some messages may never be delivered. An assumption of synchrony is required for liveness,

meaning the delay between message sending and receiving does not grow indefinitely. Otherwise, the proto-

col would provide safety and liveness in an asynchronous environment, which violates the availability-finality

dilemma, an extension of the CAP theorem (Lewis-Pye and Roughgarden, 2020).

As long as less than 1/3 of nodes, or replicas as they are called in the paper, are faulty, the protocol

functions as intended and provides both safety and liveness.

Nodes move through a series of states called views. In each view, one node is primary and the others

are backups. A view change occurs when the primary node appears unresponsive. The significance of this

feature is that it allows progress to be made continuously in the case of one node appearing faulty, with only

a slight delay and no manual intervention needed.

Briefly, the system’s basic structure involves a client requesting an operation to the primary node, that

node multicasting the request to the backup nodes, the request being executed, and the response sent to the

client. The client waits for f +1 replies with the same result, where f is the number of potentially malicious

or faulty nodes.

As discussed in Castro (1999), pre-prepare, prepare, and commit phases order requests across nodes. In

the pre-prepare phase, a client request is assigned a number and is sent to the backups to accept. At this point,

the backups multicast the prepare message; if they do not accept, which could happen if another request
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already has the same number, they do nothing.

After a node receives 2 f prepare messages from backups, the functional and honest replicas are guaran-

teed to agree on a total ordering for the requests within a view. A node then multicasts a commit message,

and a variable representing if a given node commits to a message, the committed-local property, becomes

true once a node gets 2 f + 1 commits. This phase and local commitments ensure that nodes agree on the

numbering of requests, even if they occur in different views for each node. In blockchain-based SMR proto-

cols, this prevents the concept of a double-spend, where one client can send the same transaction twice and

get two separate results.

After committed-local is true, nodes execute the client’s requested operation and send a result directly to

the client.

Messages in this system are authenticated using cryptographic digital signatures to ensure that messages

are arriving from their stated sender.

PBFT laid the groundwork for practical distributed systems that would one day become the basis for

blockchain-based consensus mechanisms like Tendermint and HotStuff (Zhang et al., 2020).

2.4 Synchrony, Partial Synchrony, and Asynchrony

A network’s message delivery timing assumptions are critical when creating and analyzing consensus proto-

cols. Different synchrony models lead to different safety/liveness guarantees and impossibility results.

A synchronous network assumes a known upper bound on message delivery time for all time. Since

messages must be delivered within a specific time frame, this model is generally the easiest to reason about

and can help determine which nodes are online and offline. In practice, a fully synchronous environment is a

strict assumption and rarely holds in real-world networks where delays are inevitable and variable.

Asynchronous networks make no timing assumptions, meaning messages may be delayed or never deliv-

ered. As formalized in the FLP Impossibility, protocols can only achieve two out of three of fault tolerance,

liveness, and safety properties in the asynchronous model (Fischer et al., 1985).

Dwork et al. (1988) introduced partial synchrony, which lies between these two extremes. It assumes an

unknown Global Stabilization Time (GST). Before GST, the network is in an asynchronous-esque state where

messages may be delayed arbitrarily. After GST, messages are delivered in a fixed time bound, as they are in

synchronous environments. A GST of 0 means the network is always synchronous. Conversely, a GST of ∞

means the network is always asynchronous. By considering this model, protocols must tolerate both periods

of asynchrony and synchrony - a realistic approach to proving both safety and liveness and one commonly

employed in consensus protocols.
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2.5 Nakamoto Consensus/Bitcoin

Bitcoin, released in 2008, was the first implementation of a blockchain and the Byzantine Fault Tolerant

consensus mechanism now colloquially known as Nakamoto Consensus (Nakamoto, 2008).

This model varies from the direction of traditional BFT research and introduces the notion of dynamic

participation. In previous mechanisms like PBFT, nodes were assumed to be continuously available and

involved in consensus. On the contrary, the Nakamoto Consensus model allows nodes to join and leave the

network an arbitrary amount at an arbitrary time without being considered adversarial to the network. This

dynamic availability better mirrors real-world scenarios where network nodes are subject to unpredictable

downtimes, maintenance, or other outages. Consequently, the robustness of the Nakamoto Consensus in

accommodating such real-world irregularities makes Bitcoin’s blockchain a more resilient and adaptable

system.

In blockchains, transactions are bundled in increments called ”blocks,” which link to the previous bundle

through a hash, creating a chain of blocks. Bitcoin uses a process called proof of work (PoW) for consensus.

Miners are nodes in the network that compete to solve a cryptographic puzzle by brute force, generating a

hash with a certain number of zeroes for every block. Each block has a header that contains information

about the previous block hash, the Merkle root of transactions, the block timestamp, and the nonce. Miners

increment the nonce to create different hashes. The protocol adjusts the puzzle’s difficulty after every 2016

blocks, or approximately every two weeks, to maintain a stable network with new blocks approximately every

10 minutes, even as the total computation power of miners changes (Lamiri et al., 2019). The difficulty is

adjusted by varying the leading zeroes required in the SHA-256 hash of the block’s header.

When a miner finds the correct nonce and thus a valid hash for the block, it broadcasts this block to all

other miners, who only accept it if the transactions adhere to the protocol rules, such as not transferring more

Bitcoin than one owns. If accepted, the miners then begin attempting to create the next block in the chain

and use the hash of this new block as the previous hash. By adding a new block, a miner receives a block

reward in the form of new Bitcoins that come from built-in protocol inflation that decreases over time and

transaction fees from the transactions included in the block. This economic incentive and the opportunity

cost of the mining hardware and its operation encourage miners to act honestly.

If two different miners find a solution to the same block simultaneously, the network will adhere to

whichever block becomes part of the longest chain. In practice, this looks like one-half of the network

working to create a block using the previous block hash from miner A and the other half using the previous

block hash from miner B. One of these groups will eventually find a solution and broadcast it to the whole

network, at which point all miners switch to this longest chain.
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To bolster the network’s resistance against potential vulnerabilities and transaction reversals because of

a switch in the longest chain, Bitcoin clients and recipients have adopted the κ-deep confirmation rule. This

rule necessitates waiting for a transaction to be embedded κ blocks deep in the blockchain before confirming

it. Six confirmations, meaning six blocks deep, are typically awaited before recognizing a transaction as

irreversible. From a safety perspective, the deeper the transaction is in the chain, the more computationally

challenging and economically infeasible it becomes for an adversary to alter or reverse it. However, even with

the 6-deep confirmation rule, an adversary controlling 30% of the mining power still has an attack success

probability of 17.74%, meaning there is a 17.74% chance the attacker could double-spend coins (Nakamoto,

2008).

With only probabilistic finality, Nakamoto Consensus carries a potential vulnerability: the 51% at-

tack (Pan, 2018). Suppose a miner, or a cabal of miners, controls over 51% of the network’s computational

power. In that case, they will have the highest probability of finding new blocks, leading to a monopoly on

the blockchain’s growth and transaction proliferation, bringing the possibility of a double-spend attack. To

start the attack, they will secretly mine blocks and not broadcast them to the rest of the network. While doing

this, they will send a transaction using their Bitcoins on the current longest chain. Once the transaction has

received the standard six confirmations, the malicious miner reveals their secret fork, where the transaction

has not occurred. Since this malicious actor holds the majority of the computing power, it will eventually

catch up to and surpass the length of the longest chain, leading all other miners to adhere to it going forward.

Now, in the canonical view of the chain, the miner’s transaction never happened, and they still have their

coins. However, the transaction recipient may have already provided a good or service in exchange, allowing

the miner to double-spend the same coins more than once.

Nakamoto Consensus represented a groundbreaking shift in distributed systems and consensus algo-

rithms. Future works on blockchain-based BFT consensus mechanisms, many of which will be covered

in this work, have built upon the concept of dynamic participation and achieved stronger finality guarantees.

2.6 Sleepy Model

One of the most transformative aspects of Nakamoto Consensus was its inherent support for dynamic partici-

pation, e.g., allowing nodes to freely join and leave the network without penalties or predefined commitments.

This concept was refined and formalized in the Sleepy Model (Pass and Shi, 2017). It defines the construction

of protocols where the central assumption is that a majority of online nodes are honest, instead of a majority

of all nodes.

Nodes are allowed to unpredictably ”sleep,” or go offline, and subsequently ”wake up,” coming back

online. Unlike previous consensus models, where offline nodes were considered faulty or malicious, the
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sleepy model accepts these dynamics as expected behavior in large decentralized networks. This model

provides a much more realistic view of distributed systems.

The sleepy model also removes the need for proof of work. However, its analysis in Pass and Shi (2017)

takes place in the permissioned setting instead of the permissionless setting, meaning there is a fixed set of

participants instead of anyone being able to join. Future works adapted the sleepy model to the permissionless

setting using proof of stake (D’Amato and Zanolini, 2023a).In short, the adaptation uses a random oracle,

typically a pseudorandom function like a hash function, and uses a node’s cryptographic identification infor-

mation and the block-time as inputs. The nodes that produce a hash lower than a set baseline become leaders

for that block proposal.

2.7 Quorum Certificates

Quorum Certificates (QCs) prove that a certain fraction of validators in a distributed system have sent the

same message about a value or state, typically attesting or agreeing to its validity (Abraham et al., 2020).

Some protocols require a QC before a value is committed or finalized. To create a QC, validators must first

gather signatures. Once they have collected enough signatures, these can be combined and compiled into a

QC.

Compared to elementary message sending, QCs provide greater efficiency by removing the need for nodes

to communicate messages across the entire network. However, they traditionally require a static participation

group, as the participation threshold is based on the number of active validators, and a dynamic participation

model may result in each validator having a different view of who is awake.

2.8 Availability-Finality Dilemma and Ebb-and-Flow Protocols

Recall that a dynamically available protocol can preserve safety and liveness as long as the majority of online

validators are honest. As is implicit in the construction of Nakamoto Consensus, these protocols are not

tolerant to network partitions. For example, suppose the Bitcoin network splits due to a network or latency

issue. In that case, nodes on both sides will continue per usual under the assumption that the other nodes are

simply offline, and there will be two chains, each claiming to be the longest until they can communicate with

each other.

There is no risk of network partition in a permissioned environment, where the number of nodes is fixed

and dynamic participation is not tolerated. Instead, if over a certain number of nodes appear offline, the

protocol will halt as it cannot reach a consensus without a quorum of online users. This problem relates to

the distributed computing CAP theorem, which states that a distributed data store can provide, at most, two

of the three guarantees of consistency, availability, and partition tolerance (Brewer, 2000). This theorem was
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brought to blockchain consensus and analogized consistency to security and liveness to availability (Lewis-

Pye and Roughgarden, 2020). This availability-finality dilemma, as it was called, means that no one ledger

can provide both dynamic participation and deterministic, irreversible finality - a choice must be made be-

tween dynamic participation and liveness or safety and network partition resilience.

Consequently, Neu et al. (2021) considered the case where individual clients may want different safety and

liveness tradeoffs. They proposed a formalization of the design seen in Ethereum’s current Gasper protocol,

where there are two ledgers: one for liveness and dynamic availability, and another, a prefix of the first,

for safety and finality under network partitions. These ebb-and-flow protocols allow for a consistently live

protocol to always be making progress. At the same time, another ledger with stronger safety guarantees can

give deterministic finality instead of Nakamoto-style probabilistic finality.

This idea was also expanded into the snap-and-chat protocols, which achieve ebb-and-flow properties

while having the optimal tolerance for both safety and liveness (Neu et al., 2020). Less than 50% of validators

can be malicious to guarantee liveness and less than 33% for safety. This construction is achieved by requiring

nodes to execute both protocols simultaneously, with the safe ledger taking occasional snapshots from the

available ledger for finalization.

Clients can choose the safety-liveness tradeoff they want to make according to their use and risk tolerance.

2.9 Gasper

Ethereum’s current consensus protocol, Gasper, is in this ebb-and-flow family of protocols (Buterin et al.,

2020). Its dynamically available chain follows the output rule of the LMD-GHOST fork choice rule, and the

Casper Friendly Finality Gadget (FFG) manages the finalized chain.

Unlike Nakamoto consensus, Ethereum utilizes proof of stake, where a node or validator’s network in-

fluence is proportional to their bonded stake in the system. To become a validator eligible for proposing

and attesting blocks, 32 ETH, the native cryptocurrency of the Ethereum blockchain, is staked or put up as

collateral (Grandjean et al., 2023). If a validator acts malicious and violates one of two slashing conditions by

attempting to double-vote or change the organization of blocks, their stake is destroyed. On the other hand,

honest participation and block proposal rewards a validator with native inflation and transaction fees. This

system creates economic incentives to validate honestly, similar to Nakamoto consensus, without requiring

powerful computing hardware and operating costs.

Gasper proceeds in slots and epochs. During each slot, a block is proposed by a randomly picked validator.

There are 32 slots per epoch. The validators are partitioned into committees in each slot, with one committee

per slot and no validators in more than one committee per epoch. During each slot, validators have one of

two roles:
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1. Propose a new block to be appended to the LMD-GHOST chain

2. Vote for the canonical chain that aligns with their view of the LMD-GHOST fork choice, and vote for

FFG Casper to justify and finalize the latest epoch boundary pairs.

These messages and proposals get broadcasted over a peer-to-peer network.

2.9.1 LMD-GHOST

Latest Message Driven Greediest Heaviest Observed SubTree, or LMD-GHOST, is a greedy algorithm fork-

choice rule that allows nodes or validators to attest to a block and make decisions about the current canonical

available chain (Buterin et al., 2020). This fork choice method allows validators to choose chains based on

the votes, or weight, of its subtree. At any given time, validators will conclude that the subtree of blocks

with the heaviest weight is the correct canonical tree. The ”LMD” in LMD-GHOST signifies that only the

most recent set of attestations from each validator is regarded in the fork choice, ensuring that only the most

updated state is considered by validators. These properties allow it to preserve dynamic participation and

liveness.

An LMD-GHOST chain is only capable of probabilistic finality at best, meaning it could be the victim

of several different attack vectors that result in a chain reorganization and a double spend. For example, a

short-range attack could occur, where a malicious actor uses previous voting power to create an alternate

chain history that appears to be the preferred option with the most weight to new nodes (Schwarz-Schilling

et al., 2021). This attack vector is mitigated in longer periods by having a finality gadget like Casper and by

having new nodes join the network from a weak subjectivity checkpoint. Still, the ability to use this attack on

yet-to-be-finalized blocks remains.

Another is the balancing attack, wherein an adversarial block proposer could produce two conflicting

blocks revealed to equal-sized subsets in the voting committee (Neu et al., 2022a). Then, in the next slot,

it could release the withheld votes from the previous slot to split the following committee’s voters into two

subsets, each with a different view of which chain is leading and voting for that one. This process, if repeated

indefinitely, causes liveness to crumble. Ethereum’s version of LMD-GHOST attempted to patch this vulner-

ability by introducing weights on proposals, but Neu et al. (2022b) demonstrated that the balancing attack is

still possible.

Ethereum’s implementation of LMD-GHOST uses subsampling, meaning only a portion of the entire

validator set votes on each block as part of their committee during an epoch. A significant vulnerability

under this model is the ex-ante reorg attack, which becomes feasible under certain conditions (Neuder et al.,

2021). This attack scenario begins when an adversary, controlling a β fraction of validators and including
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the proposer for slot t + 1, secretly creates a block B′ atop the existing block for slot t, B. If this adversary

controls roughly β of the validators chosen to vote at slot t + 1, these validators can covertly vote for B′.

Meanwhile, honest voters, unaware of B′’s existence, cast their votes for B. In the subsequent slot, t + 2,

an honest proposer, basing their actions on B, releases another block, B′′. Assuming they are honest, the

validators of this slot will naturally vote for B′′, giving it a weight of (1−β )Wc.

The attack unfolds further when the adversary reveals B′ alongside the votes accumulated during slots

t +1 and t +2. With this revelation, B′ attains an approximate weight of 2βWc. This weight becomes crucial

as, if β exceeds 1/3, B′ usurps B′′’s position as the canonical block. The attack’s potency is amplified if

an adversary controls k consecutive slots, a scenario with a probability of β k. In such a case, the adversary

can withhold votes from these slots, only to reveal them after an honest slot intervenes. This strategy can

accumulate a weight of (k+1)βWc for an adversarial block. A reorganization of the honestly proposed block

occurs if β is greater than 1/(k+2).

The role of subsampling in this attack cannot be overstated. It is the mechanism that allows the adversary

to accumulate votes from controlled validators across k committees. In its absence, votes from the last slot

would merely overwrite the previous ones, courtesy of the latest message rule. Moreover, without subsam-

pling, an adversary’s capacity to exceed the weight of all honest validators voting collectively in a single slot

is significantly hindered, given the majority of honest validators in the overall set.

2.9.2 Casper FFG

Casper the Friendly Finality Gadget (Casper FFG) is an overlay designed to add finality guarantees to any

blockchain (Buterin and Griffith, 2017). Inspired by PBFT, it has justification and finalization steps analogous

to PBFT’s prepare and commit phases.

Since it is a finality overlay, there is no notion of block proposers, and it justifies and finalizes the proposal

mechanism’s block tree.

Every block has a height, representing its distance from the genesis block. Checkpoint blocks are those

whose height is a multiple of a constant value. Casper’s role is to justify and finalize these checkpoint blocks

and create a ”checkpoint tree.” These checkpoints are aligned with the beginning and ends of epochs and

denoted as epoch boundary blocks. More specifically, Casper considers epoch boundary pairs, which are

pairs of a block B and epoch j, denoted (B,j). This consideration clarifies situations where B is an epoch

boundary block in some chains but not others due to forks.

Let LJ(α) represent the latest justified pair of attestation α , the highest attestation epoch justified pair in

the view of the latest epoch boundary block. Similarly, let LE(α) be the last epoch boundary pair of α .

In each slot, validators publish an attestation with LJ(α)→ LE(α).
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In a validator’s view, epoch boundary pair (B,j) is justified by (A,j’) if at least 2/3 of the total validator

stake has voted for an attestation of (A,j’) → (B,j). When a 2/3 majority votes for an attestation, it is known as

a supermajority link. Epoch boundary pair (A,j’) is finalized if it is justified, (A,j’) → (B,j) is a supermajority

link, and B is the epoch boundary pair immediately after A.

Casper FFG validators can have their stake slashed if they violate one of two conditions. The first is if

they vote for two checkpoints at the same block height. The second is if a validator surround votes, meaning

they have votes A → B and C → D, but C.timestamp < A.timestamp < B.timestamp < D.timestamp.

During every epoch, validators run the fork choice rule and make an attestation. Once a block is finalized,

it is secure regardless of network latency or temporary asynchrony. To reorganize finalized blocks, over 1/3

of validators would have to collude in a way that would destroy their stake, equivalent to 1/3 of the network’s

stake. This gives Casper, therefore Gasper, the property of accountable safety and economic finality. Addi-

tionally, as long as the underlying consensus protocol creates blocks, new checkpoints can be justified and

finalized, giving the protocol plausible liveness.
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CHAPTER 3

Desired Properties for Single Slot Finality on Ethereum

In the current Gasper architecture, Casper FFG does not confirm blocks until between 64 and 95 blocks,

approximately 15 minutes after they appear in the LMD-GHOST chain (D’Amato and Zanolini, 2023b).

Single slot finality (SSF) is the concept of blocks being proposed and finalized in the same slot. There are

several reasons for this to be a desired trait, namely:

• Faster confirmations: The user experience is greatly improved by having transactions almost immedi-

ately confirmed instead of requiring a 15-minute wait.

• Reorg resilience: With immediate finality, there is no risk of a short-term block reorganization, which

could happen if validators are attempting to censor a specific block or extracting value from transaction

ordering (MEV) (Konstantopoulos and Buterin, 2021).

• Stronger security guarantees: After a block is proposed and finalized, removing that block from the

network would require 1/3 of the staked ETH to be slashed. Additionally, since achieving SSF would

likely require replacing LMD-GHOST, it would mitigate LMD-GHOST’s attack vectors like ex-ante

reorgs and balancing attacks.

Though consensus mechanisms like PBFT have previously been modified to achieve instantaneous finality

on a blockchain (e.g., Tendermint), specific desired characteristics for an LMD-GHOST replacement make

these alternates insufficient (Buchman et al., 2018).

3.1 Drop-in Replacement for LMD-GHOST

Given that Ethereum is already a live, highly-adopted network, making the transition between consensus

mechanisms should be as seamless as possible. The new SSF-compatible consensus mechanism or fork

choice rule should be compatible with the existing Ethereum architecture. Namely, it should be similar to

LMD-GHOST, compatible with Casper FFG, and simple enough not to require burdensome computational

overhead. Additionally, its round latency should not be significantly higher than the current ∼ 12 seconds, as

otherwise, some of the benefits of SSF are lost.

3.2 Subsampling

Similarly, the protocol would ideally be compatible with validator subsampling. Currently, each epoch has

distinct sets of 32 committees, one per slot, further divided into 64 subcommittees (Buterin, 2021b). As-
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suming there are 219 validators, each subcommittee has about 256 validators. Each committee has sixteen

committee aggregators, which are chosen by the network and are responsible for combining as many signa-

tures from the committee as possible into a single signature and publishing it to the main peer-to-peer subnet.

The block proposer chooses the aggregated signature with the most participants by stake-weighted balance.

Since Casper FFG finalization requires attestations from 2/3 of the staked validators, achieving this level

of voter participation will likely require efficient aggregation and no subsampling. Research is currently being

conducted to find a better aggregation scheme, which may include adding another layer of subcommittee

aggregation or zero knowledge aggregation techniques (Kadianakis et al., 2023). Any more complicated

scheme would require longer slot times to account for extra latency and involve more complexity. However,

it may be worth the benefits of simple, economically secure single slot finality and the entire set of validators

voting in each slot. Section 4.4 will discuss the possibility of accepting fewer signatures and its consequences.

3.3 Asynchrony Resilience/Dynamic Availability

For our protocol to handle the uncertainties of real-world scenarios, it must have some level of temporary

asynchrony resilience. Otherwise, a temporary stall in liveness could compromise the chain and all previous

finalizations. As we know from the CAP Theorem and the availability-finality dilemma, a protocol cannot

be both safe under dynamic participation and live under network partitions or temporary asynchrony (Lewis-

Pye and Roughgarden, 2020). At the same time, we would like dynamic availability - for both safety and

liveness to be guaranteed while dynamic participation is possible. Ebb-and-flow protocols, like Gasper with

its available and safe chain, are used to counter this problem (Neu et al., 2021). Given that we are only

interested in replacing LMD-GHOST, not Casper FFG, the safe chain requirement will be inherently satisfied,

and we are concerned with providing the mechanism by which transactions can be finalized in the slot in

which they were proposed.
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CHAPTER 4

Methods to Achieve Single Slot Finality

Various methods exist to introduce single-slot finality into the Ethereum blockchain, ranging from the pro-

tocol to the application level. This section will investigate and evaluate the available options based on their

feasibility and complexity.

4.1 One-Shot Quantum Signatures

Recent advances in quantum cryptography have led to the introduction of a new type of digital signature

called a one-shot signature (Amos et al., 2020). These signatures use quantum physics to create private keys

that can only sign a single message. The keys exist as quantum states, meaning they cannot be copied or

cloned due to the quantum no-cloning theorem (Park, 1970) (Ben-David and Sattath, 2023).

In quantum physics, particles do not have singular defined properties, like position, prior to measurement.

Instead, they exist in a superposition of multiple probable states. The act of measuring forces the quantum

state to ”collapse” into a single definite value. Analogously, the private keys existing as quantum states exist

in a superposition of many different signature keys. There is no singular key to copy, hence the no-cloning

theorem.

Producing a signature using the key forces the superposition to collapse into a single signature key, which

is useless for anything else. The key cannot be reused because the superposition is destroyed.

One-shot signatures may allow for provable single-slot finality in Ethereum. The idea is to have validators

create chains of one-shot signatures (Drake, 2024). A validator will generate the quantum public-private

keypair, sign a message, and include in the message the public key that will be used in the following signature.

These signature chains could also enforce specific rules, such as requiring an epoch counter to be strictly

increasing. Equivocation could be prevented by including source and target epoch counters and requiring that

the source never decreases and the target always increases.

Once a block achieves a majority (51%) of attestations from validator one-shot signature chains, fork-

free finality is cryptographically guaranteed. No future block can accumulate enough signatures to finalize

an alternative fork. This method allows for incredibly strong cryptographic single-slot finality secured by the

principles of quantum physics.

Unfortunately, one-shot signatures are still purely theoretical and likely decades away from an implemen-

tation that could work in this setting. Validators would require access to a quantum computer - a massive

obstacle to overcome.
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4.2 Core Consensus Change

The most likely path to long-term single slot finality is through a change to the Ethereum fork-choice rule,

LMD-GHOST. With a different fork-choice rule that supports fast confirmations, ideally within the same

block, single-slot finality could be achieved.

The main downside to this approach is that it will likely take a few years for a replacement to be decided

upon, rigorously tested and developed on Ethereum’s numerous clients, and introduced via hard fork after

gaining user agreement through multiple rounds of voting. Though this process ensures that the ultimate

implementation is safe and agreed upon by the community of validators, it also means that Ethereum will

be using an out-of-date fork choice rule that is difficult to perform a proper security analysis on, creating an

opportunity for other blockchains to capture more significant market share.

4.3 EigenLayer Actively Validated Service

EigenLayer is an Ethereum restaking framework that enables validators to pool security across different

blockchain modules, protocols, and applications (EigenLayer Team, 2023). Validators that opt to re-stake

ETH into EigenLayer can provide validation services to Actively Validated Services (AVS) and earn addi-

tional returns beyond consensus rewards. In exchange, restakers are subject to slashing conditions imposed

by the AVS modules they opt to serve. This pooled security model allows protocols and services to leverage

Ethereum’s crypto-economic guarantees, robust security, and decentralization.

One possible application of EigenLayer is providing single slot finality for transactions or blocks. Under

a basic SSF model, a set of validators re-staked on an EigenLayer AVS module could attest that they will

never vote for a chain that reverses or excludes a block after it has been proposed. Validators restaking to this

AVS would finalize the block in a single slot rather than waiting for probabilistic finality. However, several

challenges exist with this approach:

First, a majority of Ethereum validators would need to re-stake into this EigenLayer SSF module for the

guarantees to be meaningful. Otherwise, in the case of a reorg, the minority SSF validators may be forced to

violate their attestations or face inactivity penalties from the Ethereum base layer for failing to build on the

canonical chain. Reaching this threshold for a new opt-in module presents difficulties.

Second, bolting SSF onto Ethereum in a minority way risks creating coordination failures, chain splits,

or breaking consensus incentives if the minority SSF validators clash with the majority. Careful crypto-

economic protections are needed to align incentives.

Third, providing SSF at the transaction level via tips or fees faces challenges around fairly compensating

SSF restakers and block proposers without enabling MEV manipulation or requiring non-EigenLayer stakers

to opt-in to some extra rule or client upgrade. Preventing oligopolistic behavior is also tricky in a minority
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SSF system.

While EigenLayer’s pooled security model offers intriguing possibilities, implementing strong SSF guar-

antees for Ethereum without majority adoption or base layer modifications remains challenging. A bet-

ter pathway may be using EigenLayer to facilitate fast finality sidechains, which is currently being devel-

oped (NEAR Foundation, 2023). If EigenLayer reaches a supermajority of validators, an SSF AVS could be

enabled, and SSF could be implemented much more quickly and without changing the core protocol. This

system could provide valuable data while limiting disruption risks to Ethereum’s core consensus. It could be

replaced with a proper SSF solution at the protocol level later.

4.4 Sacrifice Full Sampling - A Philosophical Modification to SSF

Buterin (2023) discussed the possibility of sacrificing the current finalization process, which requires 2/3

of the validator set to cast FFG votes, in favor of a more efficient but less secure alternative. Reducing the

requirement to 8192 signatures mitigates some of the signature aggregation issues previously discussed. It

ensures that Ethereum can future-proof its operation regardless of future validator set size or the need for a

quantum-resistant signature aggregation mechanism.

Buterin proposed three approaches that sacrifice Ethereum’s current high cost for equivocation and mali-

cious behavior in favor of efficiency. The most likely feasible approach is to create accountable committees,

with 4096 validators per slot with various amounts of ETH staked.

At a certain variable level of stake M, a validator would be guaranteed inclusion in the validator set, and

all other validators would have an N/M chance to validate for a given slot. One attractive characteristic of

this model is that rewards and consensus weight do not have to be proportional, allowing finality breakage to

require more ETH to be malicious than individual actors.

The elegance of this approach comes from its ability to provide a variable amount of ETH staked per

validator while still maintaining stringent slashing rules and appropriately rewarding and selecting validators.

If implemented, it would make the primary obstacle to the implementation of SSF a consensus-related matter.

Though this approach would be beneficial in an ideal scenario, it remains to be seen if there would be

enough incentive for validators with significant stake to centralize it into one validator. They may continue

running several validator clients with smaller stakes to mitigate potential issues like downtime leading to

inactivity leaks caused by more than one-third of the network being offline for an extended period - a formula

currently based on a quadratic model (Edgington, 2023). The issue then becomes how to incentivize valida-

tors with lots of ETH to stake from one validator while still incentivizing general validator decentralization.

One possible way to solve this issue would be with non-linear penalty scaling for inactivity leaks. The

main benefit of running one validator as opposed to several, besides the general maintenance and logistical
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simplification, is reducing the operational cost of running several nodes. Though simplification and validator

cost savings could act as an incentive to run one validator instead of several for the time being, this will be

mitigated as Ethereum further advances toward its goal of SNARKifying the EVM and making it possible to

run validators on mobile phones (Retford and Drake, 2023). By making the inactivity leak penalty smaller

for larger nodes or monetarily equivalent to other sized nodes, the penalty of running one large node would

be mitigated and, in fact, incentivized due to the lower operational costs. In practice, this could be done by

weighing the inactivity score by the validator’s stake or changing the penalty formula for the larger validators

to have their inactivity leak follow the distribution of smaller validators. By integrating this mechanism, a

single large entity could run one validator with all of its stake and be subject to the same inactivity leak as if

one of many minimal-stake validators became inactive.

It may so happen that validators are comfortable with staking more ETH and taking on the risk of inactiv-

ity leaks for higher guarantees of inclusion in the validation process and reducing the capital cost of running

multiple validators. The formal analysis and economics of modifying the inactivity leak for larger stakers are

left to future work.

Another approach would be to add an incentive for being a large staker, possibly around more frequent

block proposals. However, this may cause the unintended effect of pricing smaller stakers out of the market

and creating large staker cabals that engage in censorship.

Ultimately, scaling down signatures causes a decrease in economic finality on Ethereum, sacrificing some

of the system’s security for an increase in operational efficiency. The community must decide upon a change

of this philosophical magnitude, and it may be a contentious issue over the coming months and years.
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CHAPTER 5

Protocol Overviews

This section will explore several blockchain consensus mechanisms with various constructions. Some are

considered potential replacements for Ethereum’s LMD-GHOST implementation. In contrast, others are

actively used in different blockchains and boast a form of single slot or instantaneous finality. These con-

structions were chosen for analysis to assist in understanding the current state of distributed mechanisms and

what techniques could be utilized in an LMD-GHOST replacement. The overviews provided here focus on

conveying these protocols’ conceptual frameworks and operational characteristics rather than restating their

formal proofs and algorithms.

Each protocol’s summary is an original interpretation intended for comparative analysis, and extensive ci-

tations to their respective original sources are included. Unless stated otherwise, these sources contain the full

technical details and formal proofs of safety and liveness—the two main requirements for a secure and usable

consensus mechanism. In line with academic integrity, this document upholds rigorous standards of citation

and attribution to ensure that the ideas and contributions of original works are appropriately acknowledged.

The critical evaluation and synthesis of these protocols within the context of SSF for Ethereum are a unique

contribution of this thesis, aimed at contributing to the ongoing development and refinement of distributed

consensus mechanisms.

5.1 Organization of Consensus Mechanism Families

The consensus mechanisms explored in this thesis are categorized into families based on lineage and structural

similarities. This organizational approach facilitates a systematic and coherent study of each family’s unique

attributes and the individual mechanisms within them. The following families are central to our discussion:

• Propose-Vote-Merge Family: This family, first characterized in D’Amato and Zanolini (2023a) en-

compasses fork choice protocols that primarily follow a propose-vote-merge pattern. Protocols in this

category are characterized by their stages of a leader proposing blocks, active validators voting, and

finally, validators using the view-merge synchronization technique to align with the proposer’s chain

view for the next slot. Since they are fork choice protocols, they are easily portable into the ebb-and-

flow architecture of Ethereum and Casper FFG. Examples include the Goldfish and RLMD-GHOST

protocols, each discussed in its dedicated subsection.

• PBFT-inspired Family: Protocols in this family derive from the Practical Byzantine Fault Tolerance
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(PBFT) algorithm, known for its early application and implementation in distributed computing (Cas-

tro, 1999). They are designed to offer immediate finality and typically involve a sequence of pre-

prepare, prepare, and commit stages to reach consensus. This family includes adaptations like Tender-

mint and HotStuff, which have modified the original PBFT to suit blockchain environments (Buchman

et al., 2018) (Yin et al., 2019). Like PBFT, they typically operate with a fixed set of validators and

no dynamic participation, but some have modifications to enable some level of participant joining and

leaving. With little to no support for dynamic participation, if there are not enough validators to reach

a quorum, the mechanism may halt, preserving safety over liveness. Partly as a consequence of this

tradeoff, these protocols are generally able to provide instant finality.

• Total-Order-Broadcast/Graded Agreement Family: Total-Order-Broadcast (TOB) and Graded Agree-

ment (GA) protocols focus on achieving a total order across distributed processes in the presence

of Byzantine faults. Graded agreements are a weak form of consensus used as a building block for

complete consensus protocols (Feldman and Micali, 1988). They are key for ensuring that partici-

pants achieve consensus on the order of messages, even with Byzantine faults, by enabling a struc-

tured decision-making process where validators assign grades to proposals based on their support

level from other validators. Protocols like Momose-Ren and D’Amato-Zanolini, which aim to re-

fine and build upon the fundamental concepts of TOB and GA, fall into this family (Momose and Ren,

2022) (D’Amato and Zanolini, 2023c).

Following this overview that outlines its general principles and significance in the broader context of

distributed consensus, subsections dedicated to individual protocols will delve into their operational details,

highlighting how they address the challenges of safety, liveness, and finality. The analysis will also consider

their applicability to Ethereum’s vision of SSF, scrutinizing the potential each has to enhance or replace the

current LMD-GHOST protocol. Unless otherwise stated, ∆ is an upper bound on network delay used to

explain the latency of some protocols.

5.2 Propose-Vote-Merge Family

5.2.1 Goldfish

D’Amato et al. (2023b) authored Goldfish as a potential replacement for Ethereum’s LMD-GHOST. Its in-

novative use of message buffering is its pivotal contribution to single slot finality consensus mechanisms.

The idea of precisely timing the inclusion of network votes into the external pool through message buffering

ensures that all honest validators view a slot proposer’s perspective as both complete and valid, compelling

them to vote in favor of the proposer’s block. This timing is achieved by allowing the proposer to be the last
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to update its message buffer and guiding other validators to synchronize their local views with the proposer’s.

This concept, termed as view-merge, is integral to achieving reorg resilience and preventing exploits like

balancing attacks.

Goldfish operates in a time-divided manner, with slots extended to 3∆ to ensure synchronous operation.

Supporting subsampling, each slot is divided into a committee of active validators, and does not require the

entire set of validators to vote every slot.

5.2.1.1 Protocol Phases

Goldfish consensus is segmented into three phases:

1. Propose Phase:

• At the outset of a slot, the proposer chosen by the verifiable random function integrates its buffer

with its block-vote tree (bvtree).

• The proposer then runs its fork choice rule and proposes a new block at the tip of the chain.

2. Vote Phase:

• Validators synchronize their bvtree with the proposer’s view, ensuring uniformity in view across

the network.

• Post-synchronization, validators eligible to vote in that slot cast their votes based on the fork-

choice function and last slot’s votes.

3. Confirm Phase:

• Validators consolidate their buffers into their bvtree.

• Validators identify the tip of the chain using votes from the current slot and output as the con-

firmed ledger the transactions from slots κ-deep in time.

The view-merge ensures that all honest validators have a unified view of the state of the network, thereby

achieving reorg resilience, meaning that blocks submitted by honest validators are eventually guaranteed

inclusion in the blockchain.

5.2.1.2 Features and Observations

5.2.1.2.1 Vote Expiry

Unlike LMD-GHOST, where votes have no expiration and many different attacks are possible, Goldfish

employs a strict 1-slot vote expiry period, meaning that only the last round’s votes are considered in the fork
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choice function for finding the current canonical chain. This rule leads to the reorg resilience property and the

impossibility of ex-ante reorgs under synchrony. If all honest voters in one slot voted for a particular subtree,

the next slot will also vote on the same subtree.

5.2.1.2.2 Fast Confirmation

Goldfish also supports the inclusion of an additional fourth phase, fast-confirm, that allows for constant ex-

pected confirmation latency regardless of security level under high participation and an honest supermajority.

Going between the vote and confirm phase, fast-confirm involves the validator merging its buffer into its

bvtree and marking a block as confirmed if the number of votes for block B in the current slot is greater than

or equal to 3n
4 + εn

2 for some ε > 0. The confirm phase will output the higher of the fast-confirm chain and

the κ-deep prefix.

5.2.1.2.3 Compatibility with Finality Gadget

Goldfish is meant to replace LMD-GHOST in Ethereum and is the dynamically available chain in the ebb-

and-flow construction, where Casper provides the accountably safe chain. Like the current construction, the

Casper chain would be a prefix of the Goldfish chain and, as input, would take confirmed blocks and subtrees.

5.2.1.2.4 Temporary Asynchrony

Due to Goldfish’s strict 1-slot vote expiry, any temporary asynchrony could be catastrophic to the protocol’s

safety (D’Amato et al., 2023b). For example, after the 1-slot expiry, any votes previously cast for block B

will no longer be valid, and the reorg resilience property is completely lost. In practice, this makes Goldfish

unacceptable as a replacement for LMD-GHOST.

5.2.1.3 Remarks

Though Goldfish marks a significant step towards an SSF-compatible fork-choice mechanism for Ethereum,

its vote expiry proves too strict to operate in a real-world environment. The risk of temporary asynchrony is

far too great to justify the 1-slot expiry.

5.2.2 RLMD-GHOST

RLMD-GHOST is a consensus protocol designed to support dynamic participation while allowing for a

bounded tolerance of temporary asynchrony (D’Amato and Zanolini, 2023a). Building upon the techniques

of the Goldfish protocol, it modifies the strict 1-slot vote expiry to provide greater safety and flexibility in

environments with temporary asynchrony while still retaining support for view-merge and some level of reorg

resilience.
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Operating within the partially synchronous model, RLMD-GHOST divides time into slots of length 3∆.

The protocol does not utilize committees to prevent possible ex-ante reorgs that could occur with votes accu-

mulating from multiple committees over time, meaning that every awake validator votes in every slot.

5.2.2.1 Protocol Phases

RLMD-GHOST progresses through cycles of Propose, Vote, and Merge phases:

1. Propose Phase: At the start of a slot, the proposer merges its view with its buffer and broadcasts the

proposed block.

2. Vote Phase: Validators synchronize with the proposer’s view and broadcast their votes for the local

chain head.

3. Merge Phase: Validators merge their views and buffers, solidifying the chain state.

5.2.2.2 Features and Observations

5.2.2.2.1 Vote Expiry

A pivotal innovation in RLMD-GHOST is the introduction of the vote expiry period parameter η . Contrasting

with Goldfish’s 1-slot vote expiry, RLMD-GHOST considers only votes from the most recent η slots as valid

within the fork choice function. This adaptation ensures a balance between fast finality and resilience to

network asynchronies.

5.2.2.2.2 Generalized Sleepy Model

The generalized sleepy model, in which RLMD-GHOST operates, extends the standard sleepy model by

introducing a parameter τ that signifies the ”sleepiness” coefficient (D’Amato and Zanolini, 2023a). A pro-

tocol is τ-dynamically available if it upholds safety and liveness under the τ-sleepy model, where the honest

validator set from slots t − τ to t −1 outweighs adversarial validators in slot t.

RLMD-GHOST maintains η-dynamic availability for any η ≤ τ , underpinning its asynchrony resilience.

This capacity ensures safety continuity when the honest validators from η slots prior overpower current

adversaries and inactive validators.

5.2.2.2.3 Fast Confirmation Phase

In addition to the standard phases, RLMD-GHOST also introduces a fast confirmation phase for rapid block

finalization under optimal conditions. This phase occurs between the Vote and Merge phases and aims to

achieve confirmation latencies akin to those of traditional BFT protocols. A validator can note a block as

24



confirmed as soon as it receives votes from 2/3 of validators instead of waiting for the latency timeout.

This does require the optimistic assumption that 2/3 honest validators are awake. When this is not the case,

RLMD-GHOST reverts to the slower κ-deep confirmation rule that is live under dynamic participation.

5.2.2.2.4 Single Slot Finality Protocol

D’Amato and Zanolini (2023b) builds upon RLMD-GHOST to introduce modifications aimed at making

RLMD-GHOST suitable as the fork choice mechanism capable of providing single slot finality on Ethereum.

To achieve this goal, an additional phase, FFG-vote, is added after the fast confirm phase and before the

merge, wherein validators cast a vote from the latest justified checkpoint to the target checkpoint. When the

optimistic fast confirmation rule is viable, this results in a protocol where blocks are confirmed, immediately

become Casper’s target checkpoint, and are then voted on to become the latest justified checkpoint.

Though this solution finalizes a block in every slot, it does not yet finalize a block in the same slot it is

proposed. To achieve this without increasing latency to 5∆ rounds per slot, which would be computationally

and bandwidth-intensive, a new type of message is introduced – the acknowledgment (D’Amato and Zanolini,

2023b). The acknowledgement acts as a message that can be ignored during the actual consensus process,

but any participant who desires single slot finality can collect these messages and consider a block finalized

once they receive messages from 2/3 of validators – a supermajority acknowledgment.

5.2.2.2.5 Streamlining Fast Finality

D’Amato (2023) creates an additional modification to RLMD-GHOST that sacrifices single slot finality for 3-

slot finality with a lower latency protocol and stronger confirmation guarantees. A mechanism for streamlined

fast finality with a single proposal and voting phase per slot, instead of having both a fork choice vote and

a FFG vote, was introduced. While providing bandwidth and latency improvements, its key contribution is

introducing the notion of strong confirmation, allowing for the first η slots to be reorg resilient, unless δ − 1
2

of the stake becomes slashable (say δ = 2
3 ). Additionally, it allows for a proposal at slot n to be justified at

slot n+2 as long as n and n+1 have honest proposers.

In the voting round, validators cast votes for both the tip of the available chain and FFG votes. The source

for the FFG vote is the latest justified block, and the target is the latest confirmed block. In this scenario,

the latest justified block is strongly confirmed. The view-merge process is also simplified through the use of

δ -quorums, which are similar to graded agreements in that they allow validators to have a succinct proof of

votes from other validators.
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5.2.2.3 Remarks

RLMD-GHOST offers a nuanced approach to vote expiry and asynchrony tolerance, intending to be a suitable

replacement for LMD-GHOST in Ethereum’s consensus mechanism. With its η-parameterized vote expira-

tion model, RLMD-GHOST is a leading candidate for achieving single slot finality in conjunction with final-

ity gadgets like Casper. One potential area of improvement is its latency. Streamlining the process improves

latency, but comes with the tradeoff of 3-slot finality. The primary bottleneck is the view-merge process,

which requires additional time in each slot that may not be necessary to achieve similar safety and liveness

guarantees. Additionally, without support for subsampling, RLMD-GHOST may require longer round times

and novel signature aggregation techniques capable of supporting hundreds of thousands of validators voting

in each slot – a non-trivial task.

5.3 PBFT-Inspired Family

5.3.1 Tendermint

Tendermint refines classical PBFT consensus protocols for enhanced scalability and liveness in blockchain

systems (Buchman et al., 2018). It is designed for systems with many mutually distrusting nodes communi-

cating over a gossip-based peer-to-peer network. It is the core consensus mechanism in the Cosmos network

and Cosmos SDK-based blockchains (Interchain Foundation, 2021).

Tendermint modernizes PBFT by relying solely on gossip-based networking rather than point-to-point

connections between each node. This system allows the protocol to scale to hundreds if not thousands of

validators. Tendermint also introduces a novel termination mechanism to ensure liveness without additional

communication overhead.

Tendermint assumes a partially synchronous system model. The protocol tolerates up to N/3 Byzantine

faults, where N is the number of validators.

5.3.1.1 Protocol Phases

The protocol proceeds in a series of rounds, each with a dedicated proposer selected in a weighted round-robin

fashion based on validator voting power. There are three steps per round:

1. Proposal Phase: The proposer selects a block and broadcasts a proposal message containing the entire

block at the start of the round.

2. Prevote Phase: Validators broadcast prevote messages for the proposed block hash if they find the

proposal acceptable. This vote is sent to all validators through gossip. Otherwise, validators prevote a

nil value.
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3. Precommit Phase: If a validator receives 2N/3 prevotes for the proposal, it broadcasts a precommit

message for the proposed block. Again, this is diffused to all nodes through gossip.

A validator keeps track of several local variables, including its current round, locked value, and valid

value – the latest proposed block that received 2N/3 prevotes. If the proposer is honest and the network

synchronous, a block can be committed in a single round of the above three steps.

Commit Rule: A validator commits a block if it receives 2N/3 precommits for that block in a round.

Otherwise, timeouts trigger moving to the next round to elect a new proposer. The timeout mechanism

ensures liveness.

5.3.1.2 Features and Observations

5.3.1.2.1 Gossip Network

Nodes participate in a peer-to-peer gossip network rather than relying on direct connections (Demers et al.,

1987). This network is modeled via a ”gossip communication” property, which states that any message sent

or received by an honest node will be received by all other honest nodes within the ∆ delay bound after GST.

5.3.1.2.2 Finality

Tendermint’s novel termination mechanism, responsible for completing the consensus process for a particular

block, ensures liveness without additional communication overhead. This mechanism is accomplished by

tracking the latest valid value. The valid value and its associated round number are updated whenever a node

observes such a value, and this information is attached to proposals.

After GST, the gossip protocol ensures that locked or valid values propagate to all honest nodes before

the round ends. This gossip enables proposers to eventually propose an acceptable block that all nodes will

prevote for, ensuring termination/liveness. This mechanism requires no additional messages beyond those in

PBFT’s standard case, providing termination guarantees with minimal overhead.

A key property of the Tendermint consensus algorithm is instant finality - forks are never created as long

as less than one-third of validators are malicious or faulty. When a validator commits a block after receiving

2N/3 precommit votes in a round, that block is considered finalized instantly.

Tendermint’s instant finality results from a tradeoff - set validator sizes and no dynamic participation

support (Buchman et al., 2022). The protocol requires a known, fixed set of validators, and there is no concept

of dynamically joining or leaving consensus rounds. It is considered Byzantine behavior if a validator misses

proposing or voting in a round. Implementations of Tendermint, such as in the Cosmos SDK, define how the

validator set is updated at the application level (Buchman et al., 2022).

27



Additionally, if more than 1/3 of validators are offline or malicious, the network may halt, and liveness

cannot be guaranteed. Compared to LMD-GHOST or other Nakamoto Consensus-based mechanisms, Ten-

dermint prioritizes instant finality and safety over liveness.

5.3.1.3 Remarks

Tendermint advances PBFT for scalability across a partially synchronous gossip network. The novel termi-

nation approach minimizes overhead while providing eventual liveness when less than 1/3 of the validator

set is malicious or offline. Though it achieves instant finality, the potential for liveness halts and the lack of

dynamic participation are less-than-ideal tradeoffs for a single slot finality mechanism on Ethereum.

5.3.2 HotStuff and HotStuff-2

Introduced by Yin et al. (2019), HotStuff is a leader-based BFT consensus protocol that improves upon earlier

PBFT models, including Tendermint. It operates in the partially synchronous network model, tolerating up

to 1/3 Byzantine faults from nodes.

HotStuff is characterized by a three-phase commit structure within a view, optimistic responsiveness, and

a linear view change mechanism. The Prepare-Precommit-Commit structure enables linear leader replace-

ment while retaining efficiency during regular operation. Optimistic responsiveness allows leaders to drive

consensus at the speed of actual network delay rather than waiting for known upper bounds on delay. The

linear view change means that replacing leaders requires only O(n) messages versus O(n3) for protocols like

PBFT.

5.3.2.1 Protocol Phases

The HotStuff protocol proceeds in a sequence of numbered views, each with a designated leader. The leader

aims to extend the blockchain by proposing new blocks and driving consensus on them within the view. To

commit a block, the leader steps through three voting phases:

1. Prepare Phase: The leader selects the highest quorum certificate it knows, representing a previous

round of consensus that satisfied the quorum requirement, and extends it with a new proposal. This is

broadcast in a prepare message to all validators.

2. Precommit Phase: Upon receiving the prepare message and verifying its validity, validators respond

with a vote for the proposed block. If the leader receives 2 f +1 prepare votes, where f is the number of

faulty or malicious nodes, i.e., votes from 2/3 of validators, it forms a PrepareQC, a quorum certificate

that proves the protocol’s acceptance. The leader then enters the Precommit Phase and broadcasts the

PrepareQC to validators, who will respond with precommit votes.
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3. Commit Phase: If the leader gets 2 f + 1 precommit votes, it forms a PrecommitQC and enters this

phase. It broadcasts the PrecommitQC and collects commit votes. Once the leader has 2 f +1 commit

votes, it forms a final CommitQC that commits the proposal and broadcasts it in a decide message.

Validators that receive a decide message consider the proposal in CommitQC as final.

The three communication phases allow HotStuff to safely change leaders with only linear message com-

plexity, a significant advantage over PBFT. The commit rule provides safety based on previous quorum cer-

tificates tracking progress.

5.3.2.2 Features and Observations

Compared to protocols like PBFT and Tendermint, HotStuff simultaneously achieves responsiveness and

linear view change complexity. PBFT has responsiveness but quadratic view change, while Tendermint is

linear but not responsive.

5.3.2.2.1 Pacemaker for Liveness

The HotStuff protocol’s safety is decoupled from liveness considerations. Safety follows from the voting

rules and commit protocol outlined above. However, a separate component called a pacemaker is required

to provide liveness guarantees. The pacemaker is responsible for view synchronization - bringing honest

validators to the leader’s view so progress can occur.

5.3.2.2.2 Enabling Responsiveness

The critical technique HotStuff uses to retain responsiveness with linear view change is adding a third phase

of votes before committing. This consideration provides an extra step where information about the highest

locked value propagates to other replicas.

The key difference compared to HotStuff is that Tendermint rounds are coordinated by timeouts rather

than Quorum Certificates. Thus, there exists a need to wait for O(∆) time for every block. Tendermint also

uses two phases of communication and voting compared to HotStuff’s three.

5.3.2.2.3 Optimizations in HotStuff-2

The primary optimization introduced in HotStuff-2 is reducing the number of phases required to commit a

block from three down to two (Malkhi and Nayak, 2023). This improvement is achieved by reusing votes

across heights in a ”chained” structure.

Specifically, HotStuff-2 has the following phased commit structure:
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1. Prepare Phase: The leader proposes a new block B extending the highest QC it knows. This prepare

message is sent to replicas.

2. Precommit Phase: If replicas find the proposal safe, they respond to the following view’s leader with

precommit votes for block B.

Once the following view’s leader assembles 2 f + 1 precommit votes for block B, it forms a CommitQC

that commits block B.

Since precommit votes are sent to the leader of the following view instead of the current view, they can

serve two purposes:

• Precommit block B

• Prepare block B+1 in the next view

This pipelining reduces average case commit latency by 1/3 compared to the original HotStuff protocol.

In the optimal case of an honest leader, commitment requires just two communication steps. The two-phase

approach does not impact HotStuff’s view change procedure. The linear complexity of leader replacement is

retained. However, for a stable leader, the steady-state latency is reduced.

5.3.2.3 Remarks

HotStuff is seen as the ”golden standard” (Malkhi and Yin, 2023) thanks to its optimal communication com-

plexity, instant finality with no reorganizations, simple design, and foundational role in many in-production

mechanisms like DiemBFT (Team, 2021), Jolteon and Ditto (Gelashvili et al., 2023), Flow (Hentschel et al.,

2020), and Narwhal-HotStuff (Danezis et al., 2022). However, their fixed validator set and lack of asynchrony

tolerance, tradeoffs of many PBFT-based mechanisms, pose challenges for implementation as a single slot

finality mechanism on Ethereum, as dynamic participation is a unique feature contributing greatly to overall

decentralization.

5.3.3 Algorand and BA*

Algorand is a permissionless, proof-of-stake blockchain protocol that utilizes the novel BA* (Byzantine

Agreement) consensus mechanism to achieve fast finality, high transaction throughput, and minimal fork-

ing (Gilad et al., 2017a). It aims to address the performance limitations of previous blockchain consensus

models like proof-of-work and Classical BFT.

Algorand organizes time into asynchronous rounds, where users agree on a new block to extend the chain

in each round while preventing forks. A randomly selected committee of users is chosen to run the BA*
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protocol, which operates sequentially, coordinating the committee to irrevocably commit to a new block in

constant expected time. The sortition process, based on verifiable random functions (VRFs), is crucial for

randomness, fairness, and unpredictability in the committee composition. These random committees are

critical for providing attack resistance, as adversaries are unable to target participants in advance and their

attack would be useless post-committee participation.

Simulations have demonstrated that Algorand can achieve one-minute finality with a throughput signifi-

cantly higher than Bitcoin, demonstrating minimal performance impact from scaling and a robust tolerance

to malicious attacks as long as greater than 2/3 of validators are honest (Gilad et al., 2017b).

5.3.3.1 Protocol Phases

The BA* protocol progresses through a series of timed steps, synchronized across users:

1. Sortition: Users are randomly selected for the round’s committee via a cryptographic sortition mech-

anism.

2. Proposal: A subset of users propose blocks to be added to the blockchain.

3. Reduction: The committee runs a two-phase reduction to converge on a single block option.

4. Binary Agreement: A binary voting procedure is executed until a consensus is reached.

5. Finality Check: The block is considered finalized if a supermajority is reached in the first binary step.

Otherwise, it is tentatively confirmed, and later rounds will build on this block and, with overwhelming

probability, finalize this round.

Blocks are propagated through a gossip protocol.

5.3.3.2 Features and Observations

5.3.3.2.1 Handling Asynchrony and Dynamic Participation

Algorand safely makes progress even under intermittent asynchrony using techniques such as step timeouts

and a recovery protocol. Users are weighted by their stake, supporting open participation while maintaining

security. Committee selection is limited to users active in recent blocks, which helps mitigate potential

security risks from dormant accounts.

5.3.3.2.2 Low Latency Finality

In the common case, BA* finalizes blocks in just a single voting step. Under synchrony assumptions, safety

and finality are reached in a small constant expected number of steps.
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5.3.3.2.3 Lack of Slashing Penalty

Unlike other proof of stake protocols, Algorand does not have slashing penalties for maliciously-behaving

block proposers or participants. Instead, if a malicious event is detected, the assumption is made that the

honest supermajority will not support these actions, and with high probability the following round will have

an honest randomly-selected committee to continue building the chain.

5.3.3.3 Remarks

Algorand’s BA* consensus design offers fast block finality, fork resistance, high throughput, and resilience

to targeted attacks and periods of asynchrony. Since it operates as a complete protocol, not just a consensus

layer, adapting its design to fit Ethereum’s architecture and addressing potential liveness halts could present

challenges. Additionally, even though probability supports the decision to not have a slashing penalty, the

addition of one may be beneficial in providing further incentives against acting maliciously in the network.

5.4 Total Order Broadcast/Graded Agreement Family

5.4.1 Momose-Ren

The Momose-Ren (MR) protocol is a recent attempt at solving the open problem of achieving both optimal

Byzantine fault tolerance and low latency in a model that allows for the dynamic participation of nodes (Mo-

mose and Ren, 2022). A pivotal novelty of MR is its introduction of the time-shifted quorum technique to

make quorum certificates transferable across nodes with different perceived participation levels. This tech-

nique and restoring the transferability of quorum certificates are the core technical contributions of the MR

protocol.

In MR’s GA protocol, each node starts with an input value. At the end, every node outputs values, each

tagged with a grade of 0 or 1. The critical properties satisfied are:

• Graded consistency: If an honest node outputs a value v with grade 1, all honest nodes output v with

at least grade 0.

• Integrity: If an honest node outputs a value v, some honest node must have input v.

• Validity: All honest nodes output the highest common input value with grade 1.

The grade of an output value essentially signifies how many nodes have agreed on it so far. Grade 1

outputs reflect global agreement.
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5.4.1.1 Protocol Phases

MR follows the classic view-by-view paradigm adopted by prior BFT protocols. The protocol progresses

through iterations called views, each of a fixed duration. The key steps within each view are:

1. Leader election: Nodes run a verifiable random function lottery to probabilistically elect a leader for

the view.

2. Propose: The elected leader proposes a new block extending the current candidate block.

3. Graded agreements: Nodes run five sequential graded agreement instances on the proposed block:

• GA1 and GA2 are used to notarize the block to confirm its uniqueness in the view. These GAs

prevent conflicting blocks from being notarized in the same view.

• GA3 sets the candidate block for the next view based on its output.

• GA4 sets the lock for the next view based on its output.

• GA5 finally decides upon the proposed block if it has an output grade of 1.

5.4.1.2 Features and Observations

5.4.1.2.1 Time-Shifted Quorum Certificates

In traditional quorum-based protocols for static networks, a quorum certificate (e.g., a threshold number of

votes) certified by one node would be recognized by all other nodes as a valid certificate.

However, this certificate transferability breaks down in the dynamic sleepy model where different nodes

can have divergent views of the current participation level at any time. This is because an adversary can

selectively announce to subsets of nodes to manipulate their perceived participation.

To address this challenge, MR introduces the concept of time-shifted quorums. The fundamental insight is

that while nodes may differ in their current local view of participation, honest nodes can agree on an absolute

notion of participation at any past time.

Concretely, the time-shifted quorum certificate construction has nodes broadcast awake messages at two

separate times in a 4-round algorithm:

1. In Round 1, nodes send ”awake” and ”echo” messages with a value.

2. In Round 2, nodes tally the number of echo messages received for each value b.

3. In Round 3, nodes send another awake message, create another tally of echoes up to that point, and

tally M1 for the number of awake broadcasts they have received
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• Let E(b) be the number of entities from which a party has received a conflict-free echo message

for b. Let m1 be the number of entities from which a party has received awake messages in round

1. If E(b)> m1/2, nodes vote for that value.

4. After Round 3, nodes re-tally M1 and make grade 1 decisions based on the E(b) from round 2. If E(b)

is still above the majority of awake nodes as determined by M1, a validator knows that all honest parties

awake in round 3 voted for b.

• They also tally the number of votes for b and M3, the number of nodes from which they have

received the third-round awake message.

• If V (B)> M3/2, where V (B) be the number of entities from which a party has received votes for

b, nodes output the graded agreement for b with grade 0.

Through this technique, MR can create quorum certificates that all nodes will recognize despite differ-

ences in perceived participation. This missing piece enabled the translation of classic quorum-based tech-

niques to the dynamic sleepy model.

5.4.1.3 Remarks

See section 5.4.2.3 for remarks on both MR and its successor, Malkhi-Momose-Ren.

5.4.2 Malkhi-Momose-Ren

The Malkhi-Momose-Ren (MMR) protocol builds on the Momose-Ren breakthrough to further improve effi-

ciency, security guarantees, and practicality (Malkhi et al., 2022).

5.4.2.1 Protocol Phases

Like MR, MMR operates in repeated views with graded agreements. The key differences within each view

are:

1. Graded Proposal Election (GPE): A single round election that replaces MR’s leader election + pro-

pose steps.

2. Two Graded Agreements: GA’ and GA run sequentially rather than requiring 5 GAs like in MR.

3. Early decide: If GPE outputs grade 1, immediately decide that block after just GPE (in 4∆ time).
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5.4.2.2 Features and Observations

5.4.2.2.1 Enhancements Over Momose-Ren

The key advantages of MMR over MR include:

• Lower latency: MMR reduces the best-case latency from 16∆ in MR down to just 4∆, comparable to

classic non-sleepy protocols, by optimizing the per-view construction.

• No eventual stability: MMR eliminates MR’s need for an eventual stable participation assumption

for liveness through a novel ”median of tallies” technique during voting. This technique modifies the

voting in GA to remove the need for eventual stable participation by estimating the echo count for each

value.

• Growing corrupt nodes: MMR allows the number of corrupt nodes to grow proportionally to the

overall participation over time, unlike MR, which could only cap corrupt nodes to the minimum par-

ticipation level.

• Shorter reviewed history: Only messages from the immediate last round impact the current round,

streamlining the decision-making process.

• Efficient recovery: Nodes can recover by fetching messages only from the last few views rather than

the unbounded past, facilitating quicker integration into the consensus process.

5.4.2.2.2 Improved Graded Agreement Protocol

A key innovation is the modified GA protocol, which provides graded consistency, integrity, and validity like

the GA in MR, and includes two additional properties:

• Uniqueness: Only one log can be output with grade 1.

• Bounded divergence: Nodes output at most two conflicting logs.

These new properties are achieved using a single round of voting, simplifying the GA process and reduc-

ing the latency.

5.4.2.2.3 Lower Fault Threshold

MMR simplifies its GA into a single voting round by weakening the fault tolerance from 1/2 in MR to 1/3,

meaning the protocol guarantees safety if less than 1/3 of participants are faulty at any given time. This

tradeoff sacrifices security for timing improvements but still achieves a level of security comparable with the

previously discussed protocols.
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5.4.2.3 Remarks on MR and MMR

Though MR and MMR offer novel consensus approaches through the innovative time-shifted quorum certifi-

cate, they are not ideal drop-in replacements for LMD-GHOST in Ethereum due to limitations such as the

lack of subsampling support and safety under asynchrony. Further research is needed to explore potential

integrations and modifications.

5.4.3 D’Amato-Zanolini

Existing dynamically available Total Order Broadcast (TOB) protocols like MR and MMR enable fluctuating

validator participation while retaining safety and liveness using the time-shifted quorum technique. However,

MR’s multiple voting rounds per decision hamper efficiency, incentivization, and scalability in practice, and

MMR sacrifices some fault tolerance for a single voting round.

D’Amato and Zanolini (2023c) introduce a novel TOB protocol, hereafter referred to as the D’Amato-

Zanolini mechanism, that achieves optimal 1/2 adversarial fault tolerance with just a single voting round

per decision. This marks valuable progress towards dynamic consensus mechanisms suitable for large-scale,

real-world blockchain networks.

5.4.3.1 Protocol Phases

The TOB protocol operates in views spanning 4∆ time each. The key innovation is structuring each view v

around a Graded Agreement (GA) instance GAv with grades 0, 1, and 2 encapsulating an entire proposal-

vote-decision cycle. Candidates, votes, and locks are terms used to reference varying levels of support for

blocks.

Propose (tv):

• Output phase for grade 0 of GAv−1.

• Leader proposes extension of GAv−1 grade 0 candidate block.

Vote (tv +∆):

• Input phase of GAv.

• Grade 1 output phase of GAv−1.

• Logs with grade 1 treated as locks.

• Input to GAv restricted to lock or block extending lock.

Decide (tv +2∆):
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• Output phase for grade 2 of GAv−1.

• GAv−1 grade 2 logs are decided.

5.4.3.2 Features and Observations

5.4.3.2.1 Novel GA Primitive

A novel GA primitive is introduced satisfying consistency, graded delivery, validity, integrity, and uniqueness

while supporting dynamic participation.

D’Amato and Zanolini join MMR in modifying the GA protocol of Momose and Ren to satisfy the

uniqueness property and appropriately treat equivocations. This characteristic is crucial to streamlining the

overlaying TOB protocol. Since decided logs are guaranteed to extend locked logs that extend candidate logs,

the TOB can encapsulate an entire proposal-vote-decision cycle within one GA instance per view.

5.4.3.2.2 GA Algorithm

The full GA algorithm driving each view is as follows, where:

• VΛ = Logs extending Λ

• S = Input senders

• Time thresholds enforce graded delivery

Input (t = 0): Broadcast input log Λ

Store (t = ∆): Store all received logs in V∆

Store (t = 2∆): Store all received logs in V2∆

Output Grade 0 (t = 3∆): If |VΛ|> |S|/2, output (Λ,0)

Output Grade 1 (t = 4∆): If |V2∆Λ ∩VΛ|> |S|/2, output (Λ,1)

Output Grade 2 (t = 5∆): If |V∆Λ ∩VΛ|> |S|/2, output (Λ,2)

The time-shifted quorum technique is essential for supporting dynamic participation. By aligning output

thresholds to participation levels across grade transitions, honesty is ensured under fluctuating involvement.

D’Amato and Zanolini uniquely apply time-shifted quorums twice in a nested manner. An outer application

from t = ∆ to t = 5∆ guarantees graded delivery between grades 1 and 2, while an inner application from

t = 2∆ to t = 4∆ does so for grades 0 and 1. This nested double use of time-shifted quorums is pivotal to

reducing the number of voting rounds per decision.
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5.4.3.2.3 Single Voting Round

The single voting round per decision enhances efficiency, incentives, and scalability versus previous protocols

requiring multiple rounds. With expected uniform votes per round, vote aggregation is also better supported

in large networks.

There is a 2∆ stability requirement for validators, which aligns with practical state recovery limitations

upon rejoining while upholding security. This reasonable tradeoff is warranted for such substantial efficiency

gains.

5.4.3.2.4 Asynchrony Resilience

In their paper, D’Amato and Zanolini showcase how their TOB protocol can be augmented to withstand

bounded periods of asynchrony using techniques adapted from their prior work on RLMD-GHOST (D’Amato

and Zanolini, 2023a).

This is achieved by adding an expiration period η for votes and modifying the GA to utilize latest mes-

sages from the previous η instances in determining outputs. The paper’s appendix provides proof that this

does not break this mechanism’s other properties.

5.4.3.3 Remarks

By streamlining dynamic TOB, D’Amato and Zanolini further the practicality of highly participatory con-

sensus protocols suitable for real-world decentralized blockchains. Their innovations mark valuable progress

towards robust and efficient large-scale dynamic consensus mechanisms. With 1/2 tolerance to adversaries

and only one voting round, this mechanism is a promising candidate for adoption as an LMD-GHOST re-

placement in Ethereum.
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CHAPTER 6

Single Slot and Fast Finality with D’Amato-Zanolini

6.1 RLMD-GHOST SSF/fast finality accomplishments

As explored in D’Amato and Zanolini (2023b) and section 5.2.2.2.4 of this work, RLMD-GHOST is capable

of providing the basis for a single slot finality mechanism. This is accomplished through the use of an

additional FFG voting round, mimicking the 2-phase voting system seen in traditional instant finality BFT

protocols. With a head-vote fast confirmation round followed by an FFG-voting round, a proposal can be

justified within its proposal slot, and be considered finalized either through an additional voting round or

informally through an acknowledgment gossiped among sub-networks interested in benefitting from SSF. It

is also possible to streamline the head vote and FFG vote in the same round, and get better latency at the cost

of 3-slot finality (D’Amato, 2023).

6.2 Motivation for further research

Though these area an elegant solution, room for improvement remains. Namely, the process of view syn-

chronization through view-merge has high bandwidth and latency requirements, and it would be ideal if the

validators could come to the same conclusion without having to first synchronize their views. In D’Amato

and Zanolini (2023c), a new mechanism was proposed that uses time-shifted quorums to create a Graded

Agreement-based total order broadcast protocol with 1/2 resistance to adversarial participants, reorg re-

silience, a single instance of GA, and a single voting round. This mechanism can also be augmented with

a vote expiry period (similar to RLMD-GHOST) to induce resistance to temporary asynchrony, using tech-

niques from D’Amato et al. (2023a). With this protocol as our basis, we can explore modifications analogous

to those for RLMD-GHOST that give it single slot finality or streamlined fast finality, each with its respective

trade-offs that must be considered before the implementation of one of these systems can take place.

The rest of this section will be organized as follows:

• Step-by-step of GA-based SSF, including adding the fast-confirm and FFG-vote rounds.

• Streamlined GA-based consensus with strong confirmations.

6.3 Constructing GA-based SSF

6.3.1 GA-Based TOB

Starting with the D’Amato-Zanolini mechanism described in section 5.4.3 as a basis, we can introduce similar

concepts as those in D’Amato and Zanolini (2023b) to achieve SSF, albeit at the cost of added complexity
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and latency. First, this section will provide a brief overview of the total order broadcast protocol leveraging

graded agreements that is capable of instant decisions. We’ll then introduce an SSF-enabled mechanism

informally proposed in D’Amato (2024). Finally, we will propose a mechanism for streamlined fast finality.

This TOB protocol proceeds in slots of four rounds each, for a total of 4∆ time per slot. The GA lasts 5∆,

and each slot’s GA bleeds into the first round of the following slot.

6.3.2 Explicit specification without the GA black box

1. Propose (t = ts): Leader proposes a block extending the current candidate, meaning the highest block

such that it has more than 1/2 of the votes.

2. Vote (t = ts +∆): Vote for proposal extending the lock, the highest block that has votes from ts −∆

AND the current round from more than half of the current perceived participation.

3. Decision (t = ts + 2∆): Decide on the block that has votes from ts − 2∆ AND the current round for

more than half of the current perceived participation.

(a) Store the current vote count for use in 4∆ rounds from now.

4. (t = ts +3∆): Store the current vote count for use in 2∆ rounds from now.

6.3.3 Adding SSF

In the previous construction, decisions about a block in slot s are made, in the best-case scenario, in slot s+1.

For single slot finality, blocks naturally need to be proposed, justified, and finalized within the same slot.

As a part of accomplishing SSF in an efficient manner, it first makes sense to remove the grade 2 GA

from the protocols, sacrificing deterministic safety for probabilistic safety. This not only reduces the number

of rounds in the GA but allows for the inclusion of a fast confirmation rule that can be included in the same

slot. The previous decision rule could be kept, but the only advantage would be support for low participation

environments, where finality may not be of greatest concern.

6.3.3.1 2-grade Graded Agreement

1. (t = 0): Input block

2. (t = ∆): Store the current voting level as V

3. (t = 2∆): Output GA with grade 0 if current voting level minus equivocating votes is greater than half

participation
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4. (t = 3∆): Output GA with grade 1 if voting level from round 2 minus current equivocating voters is

greater than half current participation

Note that in the TOB protocol from section 5.4.3.1, the decision phase is only concerned with the grade 2

output, which is no longer a part of this new GA. Thus, we can remove this phase and create a more succinct

TOB protocol only using grades 0 and 1.

6.3.3.2 TOB protocol with probabilistic safety, 3∆ rounds

1. Propose (t = ts): Leader proposes a block extending the highest block output with grade 0 from the

previous GA.

2. Vote (t = ts +∆): This round’s GA starts, and a block that extends the lock (grade 1 output) from the

previous round is input to the current GA.

3. (t = ts +2∆): Store current voting level for the GA protocol.

This protocol still provides the guarantee that candidates extend locks. Therefore, honest votes are given

to honest proposals. It also provides reorg resilience with probabilistic safety for the κ-deep confirmation

rule.

6.3.3.3 Adding Fast-Confirms

With this probabilistically-safe protocol developed, the next step is to include a fast confirmation rule that will

instantly confirm a block whose subtree, in the current slot, has received 2/3 votes from the whole validator

set. With instant confirmation, we will then be able to direct an FFG vote towards a block in the same slot in

which it was proposed.

• Between the second round (∆) of slot s and the second round of slot s+1, validators keep track of bC:

the highest block with 2/3 votes from slot s.

• They also track the corresponding quorum certificate that succinctly proves the 2/3 votes for the subtree

of bC.

• Since these blocks have more than the required votes, we must modify the voting rule to acknowledge

their candidacy for fast confirmation. This gives us safety for our confirmation rule.

6.3.3.4 Fast-confirm TOB Protocol

• In Propose (t = ts), the leader proposes a block, b′, that has bC as its prefix, where bC has over 1/2

support in the current view of votes and voters. It also includes bC and QC, a valid certificate for bC.
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– If there’s no block satisfying these properties, then the leader proposes one that simply extends

bC.

• In Vote (t = ts +∆), if a valid proposal is received and the proposed block bp
C has b′C, the block that

the voter currently sees as most recent, as a prefix, then the voter updates their view of the most recent

block, labeled as b′C, to bp
C.

– Let the slot s lock Ls be the highest block that has this new b′C as a prefix and has over half support

from the union of votes now and in the previous round of voting, at time ts −∆ (equivalently,

ts−1 +3∆).

– If no such block exists with the required support to be considered, set Ls to b′C, meaning the lock

is the newly-proposed block bp
C.

– Vote for a proposal extending s’s lock, or the lock itself if no such proposal exists.

• Fast confirm (t=ts + 2∆): confirm the block proposed and received sufficient support in the current

round. For the leader, this is b′, and for voters this is bp
C they received and accepted as b′C.

• ts +3∆: Perform actions required by the GA.

– Store current voter support V as V ′.

– Set b′C = bC.

6.3.3.5 Adding FFG-Vote

Now, there is a protocol that’s able to confirm blocks in the slot in which they’re proposed with a 2/3 majority.

If we add an FFG-vote phase, this will be sufficient to follow a similar model to RLMD-GHOST and have

FFG votes be cast with the current slot as the target slot.

To do so, we add an FFG-vote phase directly after the fast-confirm. In it, the validator casts a vote using

the latest justified block, with the target being the highest confirmed descendant of the latest justified block.

In the optimistic case, the latest justified block should be from slot n-1, and the highest confirmed descendent

from the current slot n. In our proposals and votes, we also include checkpoints, which are pairs of blocks

and justification slots (b,s). Validators store the set of justified checkpoints J, specifically taking note of the

latest justified checkpoint LJ. We also modify the definition of bC to be the highest block that has bLJ as

a prefix with a quorum certificate from slot s, if there is one, and bC = bLJ otherwise. Proposals now also

include LJ.
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6.3.3.6 TOB with FFG Vote (SSF-capable)

• Propose (t = ts): Leader p proposes a block b′ that has bC as its prefix with over half support in the

current view of votes and voters, also including bC,QC,LJ in the proposal.

– If no block satisfies these properties, then the leader proposes one that simply extends bC.

• Vote (t = ts +∆): if a valid proposal is received:

– First, if the proposed block’s latest justified checkpoint LJp is in the voter’s set of justified check-

points, and its slot is more recent than their current latest justified LJ′, update LJ′ to LJp.

– If b′C is a prefix of the proposed bp
C, set b′C = bp

C.

– Let the slot s lock Ls be the highest block that has this new b′C as a prefix and has over half support

from the union of votes now and at time ts −∆ (ts−1 +3∆).

* If no such block exists with the necessary support to be Ls, then set Ls to the current b′C,

which now is the newly updated block bp
C.

– Vote for a proposal extending Ls, or the lock itself if no such proposal exists.

• Fast confirm and FFG-vote (t=ts + 2∆): confirm the block that was proposed in this slot, bC. Cast

FFG vote from source LJ′ → (bC,s).

• (ts +3∆): Perform actions required by the GA.

– Store the latest justified checkpoint as LJ′.

– Store current voter support V as V ′.

– Set b′C = bC.

Under optimistic conditions, this protocol justifies a block within the slot in which it is proposed. This

provides for 2-slot finality, but single-slot remains elusive. As a solution, consider the adoption of the ac-

knowledgment message from D’Amato and Zanolini (2023b). After the FFG-Vote, a validator broadcasts

an acknowledgment if the target was justified in the current slot. Then, add a slashing condition that says a

validator will not do an FFG vote for a slot less than the most recent where it voted. These acknowledges

provide a form of opt-in single slot finality without the overhead of an additional round.

6.4 Streamlined Fast Finality

Instead of adopting single slot finality, one alternative would be accept multi-slot finality with lower latency,

which may provide sufficient economic finality guarantees while also reducing latency by streamlining the
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consensus procedure. We can remove one round by merging the head vote round with the FFG vote, similar

to the approach taken in D’Amato (2023) for RLMD-GHOST.

A simplified explanation of how the protocol would operate is as follows:

• Propose (t = ts): Leader p proposes a block b′ that has bC as its prefix with over half support in the

current view of votes and voters, also including bC,QC,LJ in the proposal.

– If no block satisfies these properties, then the leader proposes one that simply extends bC.

• Vote (t = ts +∆): if a valid proposal is received:

– First, if the proposed block’s latest justified checkpoint LJp is in the voter’s set of justified check-

points, and its slot is more recent than their current latest justified LJ′, update LJ′ to LJp.

– If b′C is a prefix of the proposed bp
C, set b′C = bp

C.

– Let the slot s lock Ls be the highest block that has this new b′C as a prefix and has over half support

from the union of votes now and at time ts −∆ (ts−1 +3∆).

* If no such block exists with the necessary support to be Ls, then set Ls to the current b′C,

which now is the newly updated block bp
C.

– Vote for a proposal extending Ls, or the lock itself if no such proposal exists.

– Cast FFG vote from source LJ′ → (bC,s), the latest confirmed block.

• (ts +2∆): Perform actions required by the GA.

– Store the latest justified checkpoint as LJ′.

– Store current voter support V as V ′.

– Set b′C = bC.

In this protocol, if slots s and s+1 have honest proposers, in the best case, a block proposed in slot s will

be the latest confirmed in slot s+ 1, and will be the latest justified in s+ 2. This approach provides finality

three slots after a block is proposed, which is still significantly better than Gasper’s current 64-slot minimum

and saves an additional ∆ in time per slot.
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CHAPTER 7

Cumulative Finality

Thus far, finality has been considered as a binary option - either a block is finalized or it is not. However,

finality can have different levels and build up over time. This concept is known as cumulative finality.

The two most likely candidates for replacing LMD-GHOST, namely RLMD-GHOST and D’Amato-

Zanolini, provide a specific type of finality called economic finality. As mentioned in section 4.1, perfect

cryptographic finality is the only irreversible type, while economic finality can be undone as long as malicious

actors have access to and are willing to burn enough stake.

In the binary economic finality model, where something is either finalized or it is not, there is no additional

penalty or difficulty when attempting to break finality at different levels of depth, e.g., at 64 blocks back or

256 blocks back. That being said, the farther back a block resides, the longer it will take for new blocks to be

proposed and built to catch up to the current longest chain and ultimately become the longest – this κ-deep

confirmation rule provides the basis of security in Nakamoto consensus.

In a single-slot finality protocol using 2/3 of validator signatures per slot, cumulative finality is not nec-

essary, as this system already provides strong guarantees with a supermajority approving each block and

consequently requiring 2/3 of staked ETH to be burned to reverse this decision. However, if single slot fi-

nality were achieved by sacrificing full sampling, as mentioned in section 4.4, the strength of the economic

finality would also suffer. In particular, for a rotating participation approach, early calculations demonstrate

that the attack cost would be about 1/32 of the entire staked ETH (Buterin, 2023).

Implementing cumulative finality could increase this number each time a committee is selected, and

validators could both attest to the previous finalized blocks and the latest justified block. As more committees

with unique ETH vote, the cost of reorging older finalized blocks increases. Once 2/3 of staked ETH attests

to a block over several committees, reorging that block would have the same cost as in the current consensus

mechanism.

Buterin (2021a) has previously proposed a cumulative committee-based finality design, but approach 3

in his most recent model, hereafter referred to as the rotating participation approach, has some modifications

from this design (Buterin, 2023). Rotating participation’s key contribution is creating committees with much

more staked ETH, leading to greater economic security per slot. Along with allowing for variable amounts of

stake, rotating participation permits validators with more than a certain variable quantity of ETH to participate

in the committee during every slot, and validators with less than this quantity have a chance of participating

proportional to their stake. In a cumulative economic finality system, a validator participating in a finalization
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vote for a block more than once, such as if it was in back-to-back slots, would result in a ”double-attest” where

the same ETH would be twice counted towards a block’s economic finality. Say that this validator votes for

the finalization of block A in slot n then is on the committee in slot n + 1 and votes for a block building on A.

In the cumulative model, if this validator later decides to act maliciously and equivocate in slot n, it should

be slashed for twice its value since it has committed to the cumulative finality twice. However, Ethereum

slashing penalties grow in magnitude as the number of malicious actors in a given time frame increases, so if

a large coordinated slashing event occurs the validator may not have enough at stake to be properly penalized

for their actions.

Modifying the rotating participation approach to work with cumulative finality requires more technical

complexity but provides stronger security guarantees. Specifically, something must be done to solve the

double-attest problem while allowing for variable amounts of staked ETH. The primitive solution to this

problem is to ensure that no validator is involved in a cumulative finalization decision more than once and

can only become eligible for validation after a block’s cumulative economic finality is fully saturated. This is

reminiscent of the current Gasper model, wherein each validator is active once and only once in each 32-block

epoch.

Three primitive modifications allowing for cumulative finality in approach 3 are proposed:

1. Revert the proposal that validators over a certain amount of stake are always included.

2. For validators with more than M ETH, split their stake among several slots so they are always validating

and always contributing to finality.

3. Keep track of which validators have already contributed to cumulative stake and prevent their vote from

counting towards previously-attested blocks while still allowing them to vote in every slot.

Modification 1, while simple, neglects to properly align validator and protocol incentives. The point

of staking larger amounts is to be chosen for votes and proposals more often, thus earning greater staking

rewards. Compared to the binary economic security approach, each individual validator’s stake would likely

be lower. This scenario may offer fewer rewards for stakers than the current model since users would be

chosen at most for 1 of every 32 blocks. Additional work must be done to ensure that the validators with the

highest probability of being chosen would not always be chosen early into the 32-block period and instead

properly spaced out to prevent potential coordinated attacks.

Modification 2 has as a consequence that validators’ large stakes, which they are willing to put as collateral

towards one block in one slot, are split up, resulting in lower economic security on a per-block basis. Though

finality would consistently accumulate every slot, the attack cost would be significantly lower after the first
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few slots than in the native rotating participation approach, and would take dozens of slots to get to this

minimum threshold. Say that a validator is contributing to every slot. Then, their stake must be split over at

least as many slots as it takes for a block to become cumulatively finalized. By taking the assumptions from

Buterin’s initial post, where the top 512 validators with greater than M stake account for 2,359,296 ETH and

the rest of the randomly sampled stakes in each slot committee accounting for 262,144 ETH, it would take

significantly longer to achieve meaningful cumulative finality than in the other models (Buterin, 2023). For

example, using 32 slots, the top validators contribute 73,728 ETH per slot and the rest at 262,144 ETH, the

result is 10,747,904 ETH staked in support of a block by the end. Though this is quite high, the attack cost

after one block is around 100,000 ETH - not strong enough to offer meaningful guarantees.

Modification 3 would result in a system with the same per-block guarantees as the native rotating partici-

pation approach but also leads to a slow increase in cumulative finality, primarily driven by small solo stalkers

who are randomly chosen and don’t have the stake to contribute consistently. After a block is proposed, con-

firmed, and finalized, the large stakers involved in every slot and the committee-specific randomly chosen

smaller stakers would attest to this block with all of their stake, which would be recorded. At this point,

the attack cost would be the same as in the binary economic finality approach with subsampling – namely

900k ETH. In future rounds, their previous participation towards a block’s finality would prevent them from

double-attesting. Instead, any new validators in the slot’s committee would contribute towards accumulating

more finality. Given that the rotating smaller validators are responsible for a minority portion of the stake in

any given slot, this mechanism would result in a slower time-to-saturated finality and greater technical com-

plexity to account for which stakers have already attested to a specific slot. The primary question to consider

is if the technical complexity would be worth it – would there be meaningful cumulative finality built up over

time from solo stakers alone? Given that the randomly sampled smaller stake would add up to approximately

262,144 ETH per slot per initial calculations in Buterin (2023), every slot of completely new validators would

result in an additional 90,000 ETH in attack cost for a given block.

There are additional technical constraints that must be considered for these approaches. Particularly,

how would a validator’s support of a block be tracked and proliferated across the network? The primary

reason for reducing the number of validators per slot was to alleviate the burden of signature aggregation, and

having validators attest to every block, even a fraction per slot, could reintroduce these problems. Another

option might be to modify the finalization vote to state that if a validator votes for any block, they are also

cumulatively adding to the support that block’s ancestors up to the last one it recorded a finalization vote

for. It is left to future work to determine the practical implementation of a system like the one proposed in

Modification 3.
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CHAPTER 8

Conclusion

This thesis systematically evaluated consensus protocols and mechanisms for achieving single slot finality

(SSF) in Ethereum. Motivated by limitations in Ethereum’s current Gasper protocol, which relies on the

vulnerable LMD-GHOST fork choice rule and Casper FFG overlay for economic finality, the goal was to

assess alternative consensus mechanisms and protocol designs capable of faster finality.

After providing an overview of useful background information, an LMD-GHOST replacement’s desired

traits were outlined – namely, drop-in compatibility with Ethereum’s architecture, accommodation of valida-

tor subsampling, and resistance to temporary asynchrony. A thorough study of prominent consensus protocol

families was subsequently undertaken, scrutinizing individual mechanisms based on their liveness guarantees,

finality capabilities, and suitability for Ethereum’s vision.

This thesis explored several pathways to introducing single slot finality into Ethereum, spanning the pro-

tocol and application layers. Leveraging emergent cryptographic primitives like one-shot signatures could

enable provable SSF by having validators create unforgeable block attestations. However, quantum comput-

ing barriers currently render this technique aspirational. Modifying the core consensus mechanism proves

most viable but also time-intensive regarding rigorous testing and coordination. As a bridge, the EigenLayer

framework’s actively validated services model offers clever workarounds before a fork materializes. Still,

challenges around incentive alignment with non-participating validators and protocol rules persist.

Propose-vote-merge protocols like RLMD-GHOST demonstrate promise in replacing LMD-GHOST thanks

to carved epochs, fork choice on block weight, and configurable vote expiry periods that balance responsive-

ness with asynchrony tolerance. However, computational overhead from view synchronization remains a

barrier. Among PBFT-inspired designs, the classic tradeoff between dynamic participation and instant fi-

nality persists, rendering protocols like Tendermint and HotStuff inapplicable without modification. The

single-vote efficiency of D’Amato-Zanolini’s TOB mechanism stands out as an appealing foundation for SSF

on Ethereum.

With D’Amato-Zanolini selected as the base consensus mechanism and potential LMD-GHOST replace-

ment, this thesis simulated SSF by incorporating fast confirmation and FFG voting rounds, following the

model conceived for RLMD-GHOST. In an alternative approach, latency and bandwidth refinements were

achieved via modifications for a streamlined voting structure that retains 3-slot finality. Additionally, a

framework was established for constructing cumulative finality atop committee-based approaches to enhance

probabilistic guarantees.
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In totality, this thesis puts forth actionable insights, recommendations, and parameters for advancing

single slot finality objectives on Ethereum. The discourse covers the expanse of existing protocols, identifies

salient tradeoffs, and plots a course towards augmentations that preserve decentralization without sacrificing

security or efficiency.

8.1 Future Work

With the foundational groundwork laid through this thesis, several promising directions emerge for furthering

research on SSF-suitable consensus mechanisms and their ultimate adoption in the Ethereum protocol:

Formal specification of streamlined D’Amato-Zanolini: While the operational logic has been con-

veyed, formally specifying safety and liveness proofs would reinforce the suitability of the optimizations

presented in Chapter 6. Cryptographic formalisms would lend mathematical rigor.

Economic modeling and simulations: Quantiative analysis of factors like staker reward dynamics and

attack costs given finality subsampling would enable an informed selection of parameters that create favorable

conditions for cumulative finality constructions and elucidate the consequences of allowing different degrees

of subsampling.

Client implementation and benchmarks: Realizing variants of the studied protocols on various Ethereum

clients and benchmarking performance against Gasper on metrics like transactions per second, latency, band-

width overhead, and fault tolerance would provide vital data on the feasibility and practical implications of a

fork choice rule change.
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