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CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1   Introduction to ROC Curves 

 

Receiver operating characteristic (ROC) curves are commonly used to evaluate the quality of 

diagnostic tests. The most widespread uses of ROC curves in medical scenarios involve 

evaluating tests based on continuous outcome measures that classify a patient as positive or 

negative for some disease at some sensible numerical cutoff in the range of test results (without 

loss of generality, we can suppose any values below such a cutoff would represent a “positive” 

test, while others represent a “negative” test). At any given cutoff point, we can calculate the 

test’s sensitivity (i.e., true positive rate) and the specificity (i.e., true negative rate). Different 

cutoff points across the range of the test results can yield different values for the sensitivity and 

specificity. At a given cutoff point, the sensitivity can be estimated as the proportion of the 

diseased individuals in the data that are correctly categorized as positive; the specificity can be 

estimated as the proportion of healthy individuals correctly classified as negative. The ROC 

curve is derived by acknowledging all possible cutoff points, with the estimated false positive 

rate (FPR, which is one minus the specificity) on the x-axis and estimated sensitivity on the y-

axis. There are two fundamental points that are featured on every empirical ROC curve, 

described as follows under the convention that lower values are less desirable: selecting a cutoff 

point lower than the minimum test result (i.e., classifying each result as negative), which 

corresponds to an estimated sensitivity of zero, and an estimated specificity of one; and selecting 

a cutoff point exceeding the maximum test result, which corresponds to an estimated sensitivity 

of one and an estimated specificity of zero. The area under the curve (AUC) provides a 
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convenient way of summarizing the sensitivity and specificity of a test across all possible cutoff 

points with a single number (that is, it is a function of the ROC curve). 

 

 

1.2   ROC Regression 

 

Regression methods for continuous outcomes (e.g. height, weight, GDP, etc.) or binary outcomes 

(sick/healthy, dead/alive) are widely used. If one is willing to embed certain assumptions into 

these models (namely, linearity structures), linear combinations of coefficients can be used to 

identify key contrasts such as mean differences and odds ratios). ROC regression, on the other 

hand, is a less frequently utilized regression method in which we can evaluate the effect of a 

covariate on the discriminating capacity of a diagnostic test (more broadly, stochastic ordering). 

There are several variants of ROC regression modeling described in the literature: for instance, 

parametric modeling of the ROC function or non-parametric estimation of its AUC. While the 

coefficients originating from such models do not possess known straightforward interpretations 

absent parametric assumptions, tests of these coefficients can inform us as to how useful a 

biomarker is as a classifier across different subgroups. 

 

1.3   Background on SARS-CoV-2 Vaccination in Solid Organ Transplant Recipients 

 

The COVID-19 pandemic was declared in March of 2020, and vaccines were undergoing 

preliminary approval later that year. COVID-19 refers to the disease caused by the SARS-CoV-2 

virus, which is considered very contagious. An observational vaccine immunogenicity study was 

previously conducted by Yanis et. al, which enrolled solid organ transplant (SOT) recipients and 

healthy controls (HCs) from December 18th, 2020 to March 7th, 2021 [1]. As SOT recipients are 
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typically on immunosuppressive regimens, it is of interest to compare vaccine immunogenicity 

in this more vulnerable population to that of HCs. 

 

Study participants were required to be eligible to receive two doses of the BNT162b2 SARS-

CoV-2 vaccine at the Vanderbilt University Medical Center (VUMC). Exclusion criteria 

included age younger than 55 years, as well as a positive test for COVID-19 prior to the study’s 

start.  

 

To collect data, the research group scheduled three visits with both HCs and SOT recipients. The 

first visit took place 0 to 2 days before the first vaccine dose, the second visit took place 21-42 

days after the first vaccine dose, and the final visit for collection took place 21-42 days after the 

second vaccine dose. At each visit, blood samples were taken from each participant, and immune 

response is measured by enzyme linked immunosorbent assay (ELISA) [8]. This technique was 

used to measure three forms of immune response; immunoglobulin G (IgG) to SARS-CoV-2 

spike receptor-binding domain (RBD), spike extracellular domain (ECD), and nucleocapsid 

protein (N). We make use of a simulated version of this data set to protect patient information; 

the data were simulated in a way such that the overall patterns reflect the actual study results 

reasonably closely. 

 

Importantly, RBD and ECD are specifically targeted by the vaccine; the hypothesis—at least 

among HCs—is that IgG to RBD and ECD would meaningfully rise following vaccinations, but 

not IgG to N [8]. The anticipated rise in IgG to RBD and ECD levels among SOT recipients is 

less clear. However, unlike RBD and ECD, N is not a specific target of the vaccine, so elevated 
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IgG to N may be indicative of SARS-CoV-2 exposure. For example, if high levels of N are 

present at baseline (before any vaccination), this may suggest immune response (possibly from 

asymptomatic infection) prior to the start of the study that is unrelated to the administration of 

the vaccine. To determine if this was a significant issue in this dataset, the baseline IgG to N was 

evaluated for the 80 patients included in the study. Figure 1.1 shows a histogram of baseline IgG 

to N in the simulated data set. 

 

Figure 1.1: Histogram of IgG to N at baseline.  

 

 

From visual evaluation of the histogram, we note three observations that have high IgG levels to 

nucleocapsid before vaccination. These observations were excluded from the main study but 

included as a sensitivity analysis in which the fundamental conclusions did not change. We elect 

to include these observations in our exploration of the simulated data. 
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A key finding of this study was that both healthy controls and the SOT recipients exhibited an 

increased mean humoral response after both vaccine doses. Between the two groups, SOT 

recipients showed lower mean antibody response compared to HCs, particularly after the first 

dose. Among SOT recipients, there was a significant association between the antibody response 

and the patient’s immunosuppressant regimen. 

 

The analyses conducted in the original study primarily involved assessment of mean differences. 

We seek to explore an alternative contrast—namely, one of stochastic ordering—using ROC 

methods as a way of investigating the degree to which the antibody responses differ between 

SOT recipients and HCs. We focus specifically on IgG to RBD following the second vaccine 

dose, which we will notate for the rest of the report as RBD2. The distribution of RBD2 is shown 

in Figure 1.2 for SOT recipients and HCs. 

 

Figure 1.2: Histogram of RBD2 among HCs and SOT recipients. 
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Regression of the ROC curve will allow us to quantify how effective RBD2 is as a classifier 

depending, as an example, on time post-transplant. When fitting the model, note that time post-

transplant is a fact that applies only to SOT recipients. Our modeling approach will take this into 

account. 

 

In addition, a crucial fact that we will elaborate on later is that in many cases, higher values of a 

biomarker indicate a worse health outcome. Such examples include hemoglobin A1c percentage, 

systolic blood pressure, and prostate-specific antigen. Many existing presentations of ROC 

methods operate under this convention. In contrast, antibody levels are such that higher values 

signify stronger immune response (so that lower values are less desirable). Our presentation of 

the methodology follows the latter convention without loss of generality. 
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CHAPTER 2 

 

ROC Estimation Techniques 

 

 

2.1   The ROC Curve as a Function of the FPR 

 

In this section, we define the mathematical framework more thoroughly, using the SOT-COVID 

data as an anchoring example. Note that the sensitivity of a test is a function of the FPR. 

Therefore, we can index the ROC curve as a function of 𝑝, the FPR, such that the corresponding 

sensitivity is denoted as ROC(𝑝). Let 𝐹1(𝑐) = 𝑃(𝑌1 < 𝑐) denote the cumulative distribution 

function (CDF) associated with the SOT recipients; following the convention that higher values 

are more desirable, this is simply the sensitivity of a test based on a cutoff of 𝑐. Now, a cutoff 

point can be conceptualized as some quantile of the distribution among HCs. That is to say that 

the cutoff point function is given as 𝐹0
−1(𝑝), where 𝐹0

−1 represents the inverse CDF (i.e., quantile 

function) for the HCs. Putting this together, the ROC function can be recognized as the following 

composition of functions [2]: 

ROC(𝑝) = 𝐹1(𝐹0
−1(𝑝)). 

 

In the sections that follow, we elaborate on different modeling strategies for the ROC curve. The 

simplest, and most widely used approach for estimation of the ROC curve is an empirical 

estimate (i.e., one that does not assume either group to conform to an underlying distribution 

having a specific parametric form), which is formed by computing the estimated specificity and 

sensitivity values at each unique cutoff point as simple proportions, and representing these values 

derived from the data graphically. Other approaches include parametric and semiparametric 

modeling, all of which will be discussed in this section. 
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2.2   Empirical ROC Estimation 

 

The empirical ROC curve, as previously stated, does not invoke assumptions regarding the 

underlying distributions of the test results among HCs or SOT recipients; rather, it is estimated 

by estimating the sensitivity and specificity at each possible cutoff point. Owing to the finite 

sample, this curve will be reflected by a step function. The number of “upward” steps (starting 

from the origin) for the empirical method of estimation cannot exceed the number of SOT 

recipients, and the number of “rightward” steps (starting from the origin) cannot exceed the 

number of HCs. Figure 2.1 presents the empirical ROC curve for RBD2 in the SOT-COVID 

study. 

 

Figure 2.1: Empirical ROC curve comparing HCs to SOT recipients, the central reference line of y=x represents the 

scenario of a so-called “useless” diagnostic test in which the sensitivity equals the false positive rate at all points 

(AUC=0.5). 
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In this empirical example, the AUC is 0.89, which is generally understood to mean that the 

measure is quite successful as a classifier for HCs and SOT recipients in this dataset. We note 

that classification isn’t necessarily the goal of this work, although ROC curves are often used for 

classification purposes.  

 

2.3   Parametric Methods: The Exponential ROC Curve 

 

In this section, we will consider an exponential model, whereby we parametrically model the 

RBD2 distribution in each group (i.e., the HCs and SOT recipients) as exponential. Note that this 

example is purely for the purposes of illustration rather than a reflection of an assumption we 

believe to hold. Recall that the exponential CDF is given as 𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 for some 𝜆 > 0. 

Under this model, the quantile function for the HCs is given by 𝐹0
−1(𝑝) = 𝜆0

−1log(1 − 𝑝). The 

ROC function is therefore given by ROC(𝑝) = 𝐹1(𝐹0
−1(𝑝)) = 1 − (1 − 𝑝)𝜆1/𝜆0. When applying 

this function to the SOT COVID data, we can use maximum likelihood estimation to estimate 

both 𝜆0 and 𝜆1. In our example, the probability density function of the exponential distribution is 

parameterized as follows: 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 . Under this parameterization, it is straightforward to 

show that �̂�0 = 1/�̅�0 and �̂�1 = 1/�̅�1, where 𝑌0 represents the sample mean test result from the 

HCs (of which there are 𝑛0) and 𝑌1 represents the sample mean for the SOT recipients (of which 

there are 𝑛1). The derivation for the maximum likelihood estimator is shown below for a general 

𝜆 estimated under a sample size of 𝑛: 

 

Step 1: Express log-likelihood function:   ℓ(𝑦|𝜆) = 𝑛 log(𝜆) − 𝜆 ∑ 𝑦𝑖
𝑛
𝑖=1  

Step 2: Determine score equation:     
𝑑

𝑑𝜆
ℓ(𝑦|𝜆) =

𝑛

𝜆
−∑ 𝑦𝑖

𝑛
𝑖=1 = 0 

Step 3: Solve score equation for 𝜆:   �̂� =
𝑛

∑ 𝑦𝑖
𝑛
𝑖=1

=
1

�̿�
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Standard likelihood theory provides insights into the asymptotic behavior of �̂�0 and �̂�1; for �̂�0 in 

particular, √𝑛0(�̂�0 − 𝜆0) →𝑑 𝒩(0, 𝜆0
2). Log-transformation serves as a variance-stabilizing 

function under this model [5]. In particular, √𝑛0(log �̂�0 − log 𝜆0) →𝑑 𝒩(0,1), such that 

Var(log �̂�1 − log �̂�0) = 𝑛0
−1 + 𝑛1

−1. It is therefore readily shown that: 

log [
log(1 − ROC(𝑝))

log(1 − 𝑝)
] = log 𝜆1 − log 𝜆0, 

which lends itself to the following (asymptotically justified) confidence band for ROC(𝑝): 

𝒢 = {(𝑝, 1 − (1 − 𝑝)
exp((log𝜆1−log 𝜆0)±𝑧1−𝛼/2√𝑛0

−1+𝑛1
−1)

) ∶ 𝑝 ∈ [0,1]} 

The ROC curve with 95% confidence intervals included are shown in Figure 2.3. 

 

Figure 2.2: The exponential model of the ROC curve as estimated by maximum likelihood (�̂�0 = 0.453; �̂�1= 1.26), 

with the accompanying 95% confidence interval (using the variance stabilization method above). The dashed line 

serves as a reference for a “useless” test, and the empirical ROC curve is also shown for reference in gray. 
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The parametric fit to the ROC curve produces differs meaningfully from the empirical fit, which 

may be a reflection of the fact that the exponential distribution poorly describes the RBD2 among 

the HCs (see Figure 1.2). 

 

2.4   Parametric Methods: The Binormal ROC Curve 

 

Another parametric method to estimate an ROC curve would be to assume normally distributed 

data in each group (i.e., 𝑌0 ∼ 𝒩(𝜇0, 𝜎0
2) and 𝑌1 ∼ 𝒩(𝜇1, 𝜎1

2)). For ease of notation, we will 

denote the standard normal CDF as , so that 𝐹1(𝑦) = Φ((𝑦 −𝜇1)/𝜎1) represents the CDF for 

the SOT recipients and 𝐹0
−1(𝑝) = 𝜎0Φ

−1(𝑝) + 𝜇0 represents the quantile function for the HCs. 

It follows readily that the ROC function takes the following form: 

ROC(𝑝) = Φ(
𝜎0Φ

−1(𝑝) + (𝜇0 − 𝜇1)

𝜎1
) 

Note that this parameterization of the ROC curve is referred to as the binormal form; it is so 

named because it arises from the setting in which both groups are presumed to adhere to a 

normal distribution. As we will later see, this form will be useful in semiparametric model. 

Parameters can be estimated using maximum likelihood, although it is typical to use the 

corresponding unbiased estimators for 𝜎0
2 and 𝜎1

2: 

𝑆0
2 =

1

𝑛0 − 1
∑(𝑌0𝑖 − 𝑌0)

2
𝑛

𝑖

 

The corresponding (asymptotically valid) pointwise confidence interval is given as: 

𝒢 = {(𝑝,Φ(
(𝑌0 − 𝑌1) ± 𝑡1−𝛼/2,df√𝑆0

2𝑛0
−1 + 𝑆1

2𝑛1
−1 + 𝑆0Φ

−1(𝑝)

𝑆1
)) ∶ 𝑝 ∈ [0,1]}, 
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where “df” denotes the Welch-Satterthwaite approximation to degrees of freedom when the 

variances are not presumed equal. Figure 2.3 presents the estimated ROC curve along with 

corresponding 95% confidence intervals. 

 

Figure 2.3: The parametric binormal model estimate of the ROC curve, along with confidence bands (�̅�0 = 2.21, 

�̅�1 = 0.80, �̂�0 = 0.38, �̂�1 = 0.84). The dashed line serves as a reference for a “useless” test, and the empirical ROC 

curve is also shown for reference in gray. 

 

The parametric binormal model fit appears more closely (although certainly far from perfectly) 

aligned with the empirical data as compared to the exponential model. The improved 

performance of the binormal approach may be partly explained by the greater flexibility 

associated with more degrees of freedom (the normal model has two degrees of freedom where 

the exponential model has only one). Importantly, we must treat this heuristic interpretation with 

caution as the models are not nested. 
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2.5   The Binormal ROC Family 

 

The family of binormal curves is quite flexible in that it captures a range of possible ROC curve 

shapes. To illustrate this, consider the following parametrization of the binormal ROC function, 

representing the mean difference, 𝜇0 − 𝜇1, by 𝛿: 

ROC(𝑝) = Φ(
𝜎0Φ

−1(𝑝) + 𝛿

𝜎1
). 

By changing the form of the ROC function and reducing the number of parameters by one, we 

can more easily display the different shapes the binormal curve can take. Figure 2.4 shows how 

changes in the values of 𝛿, 𝜎0, and 𝜎1 impact the shape of the binormal ROC model. 

 

Figure 2.4: Shapes of binormal ROC curves. Left: standard deviations of healthy and SOT are equal. Center: the 

standard deviation of the healthy group is larger than the SOT group. Right: standard deviation in SOT group is 

higher than that of the healthy group. The major factor that separates the latter two examples is the direction of the 

concavity change across values of the FPR. 

 

Given 𝜎0 and 𝜎1, fluctuations in the value of 𝛿 are associated with overall predictive ability. 

Given 𝛿, the ratio 𝑟 = 𝜎0/𝜎1 controls the shape of the ROC curve, with the inverse of that ratio 

corresponding to a curve that is a reflection about the line 𝑦 = 1 − 𝑥. Note that 𝛿 = 0 

corresponds to an AUC of 0.5, making this ROC curve as (in)effective as classifying the two 

groups purely randomly. 
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2.6   Induced Binormal ROC Curve Estimation 

 

In this section, we illustrate how the binormal curve can be “induced” given a parametric form 

for either 𝑌0 or 𝑌1. Under the binormal model, ROC(𝑝) = Φ(𝛼0 +𝛼1Φ
−1(𝑝)), so that, up to the 

link function Φ(⋅) and the transformation Φ−1(𝑝), the ROC curve is linear in its target 

parameters. Suppose that RBD2 follows an exponential distribution among SOT recipients (see 

Figure 1.2). We can then solve for the distribution function among HCs such that the ROC curve 

takes the binormal form. Under exponentially distributed RBD2 for the SOT recipients (that is, 

under the assumption that 𝐹1(𝑝) = 1 − exp(−𝜆1𝑡)), it is straightforward to derive the quantile 

function for the HCs such that 𝐹1(𝐹0
−1(𝑝)) = ROC(𝑝) = Φ(𝛼0 + 𝛼1Φ

−1(𝑝)). Specifically, we 

have that 𝐹0
−1(𝑝) = −𝜆0 log (1 − Φ(𝛼0 + 𝛼1Φ

−1(𝑝))). To estimate 𝜽 = (𝜆, 𝛼0, 𝛼1) by 

maximum likelihood requires an expression for the joint density of the data: 

ℒ(𝜽; 𝐲0, 𝐲1) = (∏𝑓0(𝑦0𝑖)

𝑛0

𝑖=1

)(∏𝑓1(𝑦1𝑗)

𝑛1

𝑗=1

). 

Since the quantile function for the HCs does not correspond to a known/named distribution, we 

determine the density function, 𝑓0(⋅) as follows: 

𝑓0(𝑦; 𝜽) = 𝜙 (
Φ−1(1 − exp(−𝜆𝑦) − 𝛼0)

𝛼0
)
1

𝛼1

𝜆exp(−𝜆𝑦)

𝜙(Φ−1(1 − exp(−𝜆𝑦)))
, 

 

where 𝜙(⋅) denotes the standard normal density function. The log-likelihood is readily 

determined and can be maximized computationally in R using the optim function (see Appendix 

I). To obtain a 95% confidence interval, note that the optim function supplies the observed 

information for 𝜽 (by way of the Hessian matrix). Since the ROC curve takes the form of a 

GLM, it is straightforward to determine a confidence interval on the scale of the linear predictor. 

Note that while 𝜆 is included as a parameter in the likelihood, the binormal form of the ROC 
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curve depends only upon 𝛼0 and 𝛼1. Let 𝐚 = [01Φ−1(𝑝)]𝑇 so that 𝐚𝑇𝜽 = 𝛼0 + 𝛼1Φ
−1(𝑝). 

We have that Var(𝐚𝑇𝜽) = 𝐚𝑇Cov(𝜽)𝐚. An asymptotically justified pointwise confidence interval 

on the scale of the ROC curve takes the following form: 

𝒢 = {(𝑝,Φ(�̂�0 + �̂�1Φ
−1(𝑝) ± 𝑧1−𝛼/2√Var̂(𝐚𝑇�̂�))) ∶ 𝑝 ∈ [0,1]} 

Figure 2.5 shows the 95% confidence bands plotted with the induced binormal ROC function: 

 

Figure 2.5: Estimated ROC curve under the induced exponential-induced binormal model (�̂� =1.256, �̂�0 =1.522, 

�̂�1 =0.238). The dashed line serves as a reference for a “useless” test, and the empirical ROC curve is also shown 

for reference in gray. 
 

 

This parametric choice provides a fit that matches the empirical fit reasonably well, particularly 

as compared to the model assuming the data emerged from an exponential distribution in each 

group. 
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CHAPTER 3 

Semiparametric ROC Estimation and Regression 

 

3.1   Semiparametric ROC Estimation  

 

Our prior examples relied on distributional assumptions. We’ve previously noted the flexibility 

associated with the binormal family, and we’ve illustrated how it can emerge from non-normal 

data. We now present and implement a method for estimating the parameters of a binormal ROC 

semiparametrically (that is, without imposing assumptions directly on the individual groups 

beyond the form of the overall ROC curve). To that end, let 𝑈𝑖𝑗 = 1(𝑌1𝑗 ≤ 𝑌0𝑖) denote the 

indicator of the 𝑗th SOT recipient having an RBD2 value no higher than the RBD2 value of the 𝑖th 

HC [6]. Note that our motivating dataset comprises 𝑛0 = 26 HCs and 𝑛1 = 54 SOT recipients 

for a total sample size of 𝑛 = 𝑛0 + 𝑛1 = 80. On the other hand, the variable 𝑈𝑖𝑗 includes each 

SOT-HC pair, of which there are 𝑁 = 𝑛0 × 𝑛1 = 1404 values that cannot be presumed 

independent. Conveniently, we have the following result: E[𝑈𝑖𝑗|𝐹0(𝑌0𝑖) = 𝑝] = ROC(𝑝), which 

can be shown as follows:  

E[𝑈𝑖𝑗|𝐹0(𝑌0𝑖) = 𝑝] = P(𝑌1𝑗 ≤ 𝑌0𝑖|𝐹0(𝑌0𝑖) = 𝑝) 

= P (𝑌1𝑗 ≤ 𝑌0𝑖|𝑌0𝑖 = 𝐹0
−1(𝑝)) 

                    = P(𝑌1𝑗 ≤ 𝐹0
−1(𝑝)) 

= 𝐹1(𝐹0
−1(𝑝)) 

= ROC(𝑝). 

Typically, the structure imposed on the ROC curve is that of the binormal form [7]: 

E[𝑈𝑖𝑗|𝐹0(𝑌0𝑖) = 𝑝] = ROC(𝑝) = Φ(𝛼0 + 𝛼1Φ
−1(𝑝)). 
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The parameters can be estimated by via GLM for binary outcomes under a probit link. The 

standard errors associated with the glm function in R arise from an assumption of independence 

and are therefore inappropriate. A nonparametric bootstrap procedure can be implemented in 

order to estimate a variance-covariance matrix for (�̂�0, �̂�1), from which a confidence interval can 

be formed (see Section 2.6; further see Appendix II for sample code). Figure 3.1 presents the 

estimated curve and 95% confidence interval under this semiparametric estimation procedure. 

 

Figure 3.1: Estimated ROC curve under the semiparametric method (�̂�0 = 1.30, �̂�1 =0.433). The dashed line serves 

as a reference for a “useless” test, and the empirical ROC curve is also shown for reference in gray. 

 

 

Notably, the semiparametric fit to the data is closely calibrated to the empirical ROC curve. The 

confidence band is wider as compared to those shown in previous approaches (note that 

semiparametric models are sometimes less efficient as compared to parametric approaches). 
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3.2 Subgroup Comparison Using ROC Regression 

 

We now aim to illustrate how the ROC curve varies across groups differing in some baseline 

covariate. There are two classes of covariates: those that apply to both the HCs and SOT 

recipients (e.g., age), and those that apply to SOT recipients only (e.g., time post-transplant). 

Although ROC regression methodology accommodates both forms of covariates, we restrict our 

attention to the latter, as the former requires a more in-depth discussion of quantile regression 

techniques that are outside the scope of this work. [4] A semiparametric regression model that 

includes some variable, 𝑋, in the model (i.e., one that only applies to SOT recipients) could be 

parameterized as follows: 

E[𝑈𝑖𝑗|𝐹0(𝑌0𝑖) = 𝑝, 𝑋𝑗 = 𝑥𝑗] = Φ(𝛼0 + 𝛼1Φ
−1(𝑝) + 𝛼2𝑥𝑗), 

Including an additional coefficient into the semiparametric model allows us to compare 

subgroups and test whether the distribution of RBD2 effectively classifies HCs and SOT 

recipients differentially by 𝑋. The estimation procedure is analogous to that described in Section 

3.1 (i.e., using GLM machinery). 

 

 

3.3 ROC Regression of RBD2 on Time Post-transplant 

 

As an example, we consider ROC regression of RBD2 on time-post transplant, 𝑇. 

E[𝑈𝑖𝑗|𝐹0(𝑌0𝑖) = 𝑝, 𝑇𝑗 = 𝑡𝑗] = Φ(𝛼0 + 𝛼1Φ
−1(𝑝) + 𝛼2𝑡𝑗), 

The median time post-transplant among SOT recipients was 7 months (IQR: [3, 13]); a 

histogram of time post-transplant is presented in Figure 3.2. We hypothesize that the ROC curve 

will better discriminate between HCs and SOT recipients having shorter time post-transplant. 

Namely, we hypothesize that 𝛼2 < 0 (recall the interpretation of parameters in the binormal 

model discussed in Section 2.5). Largely, the rationale for this hypothesis is that, although SOT 
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recipients are typically on immunosuppressants for the remainder of their life following 

transplantation to mitigate risks of antibody and cellular rejection, the early post-transplant 

period is typically associated with a higher degree of suppression. In turn, a patient in the earlier 

post-transplant period is likely less able to mount an immune response to antigen suppled in 

vaccines. This would make it easier, we suspect, to differentiate between the immunogenic 

vaccine response of HCs and recent SOT recipients than it would be to differentiate between 

HCs and SOT recipients having undergone transplantation long ago. 

 

Figure 3.2: Histogram of time post-transplant among SOT recipients. 

 

The results of the GLM fit are shown in Table 3.1. Our model fit confirms our pre-specified 

hypothesis that time post-transplant determines the predictive capacity of RBD2 in comparing 

HCs and SOT recipients (with the distribution of responses among SOT recipients being more 

comparable to those of HCs when later post-transplant. 
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Table 3.1: Results of ROC regression with covariate months post-transplant 

Coefficient Estimate 95% CI p-value 

0 1.97 [1.13, 2.82] <0.001 

1 0.490 [0.21, 0.77] <0.001 

2 -0.058 [-0.11, -0.006] 0.037 

 

Figure 3.3 further illustrates the estimated ROC curves in specific groups defined by their 

continuous time post-transplant. Confidence bands could also be obtained for these specific 

subgroups according to similar procedures as those previously described/implemented. 

 

Figure 3.3: Estimated ROC curves displaying the results of the regression analysis on time post-transplant. Briefly, 

the longer the duration since transplantation, the more similar the distribution of RBD2 is between HCs and SOT 

recipients. 
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CHAPTER 4 

DISCUSSION 

 

In this thesis, we presented and discussed a variety of ways to estimate the ROC curve beyond 

the traditionally implemented empirical/non-parametric approach. Our presentation of the 

empirical method serves as a reasonable benchmark to which to compare the other competing 

approaches, in the sense that the degree of alignment between the estimated model-based ROC 

curve and the empirical curve speaks in part to the reasonableness of assumptions put forth by 

that model. 

 

The first parametric estimation methods we explored were the exponential model, in which both 

healthy and SOT groups are both assumed to follow an exponential distribution. This modeling 

approach provided the poorest fit of the empirical ROC curve of any of the methods we 

explored, at least visually. The reason for this poor fit is elucidated upon examining the empirical 

distribution of RBD2 among HCs in particular. While the SOT recipients have an RBD2 

distribution that could be reasonably approximated by an exponential distribution, the HCs 

clearly do not. The parametric binormal method suffers, in some sense, from the reverse 

problem, in which the normal distribution is clearly a very poor representation of the distribution 

of RBD2 among SOT recipients (though not as poor a representation of HCs). The fact that this 

model provides a fit more closely resembling the empirical ROC curve may be at least in part 

attributable to the higher degree of model complexity (there are two parameters per group rather 

than one—namely, the mean and the variance). However, this heuristic explanation comes with 

the important caveat that the exponential and binormal models are not nested, so a direct 
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comparison of model complexity as an explanation for this phenomenon may not be fully 

appropriate. 

 

Our exploration of the induced-binormal method is, in some sense, a logical pathway toward the 

semiparametric approach. Just as a form for the ROC curve emerges from suppositions 

surrounding the distribution of data in each group, one can impose a structure on the ROC curve 

and exactly one of the two comparator groups; from this, the parametric form of the other group 

is implied. Based upon visual inspection, we elected to model the SOT group using an 

exponential distribution (the RBD2 distribution among SOT recipients is clearly similarly right-

skewed) and determine the induced form for the HCs that would produce an ROC curve of the 

binormal family. Had we done the reverse, the resulting binormal curve would have been a poor 

fit to the data (results not depicted). 

 

The semiparametric approach to ROC analysis offers the most flexibility of the approaches we 

considered. The binormal family—which, as shown in one of our key examples, can emerge 

from non-normally distributed data—offers a diversity of shapes for the ROC curve. 

Heuristically, it is “easier” to index a class of monotone-increasing functions 𝑓 ∶ [0, 1] → [0, 1] 

than it is to parametrically model the underlying distributions of two groups. We found that the 

estimated ROC curve based on the semiparametric approach was most closely aligned with the 

empirical ROC curve. Of note, this may have come at the cost of variability, partly evidenced by 

the fact that the confidence intervals associated with the semiparametric approach were fairly 

wide. 
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The semiparametric estimation procedure served as the basis for our exploration of ROC 

regression. Notably, there are parametric ROC regression approaches, though we did not explore 

them in this work. Our primary example made use of time post-transplant as a key variable, 

although we could also examine the effect of variables that are directly measurable in both the 

SOT and HC groups (e.g., age). Modeling variables common to both SOT recipients and HCs 

would require quantile regression techniques that were not within the scope of this work. 

 

Notably, Yanis et al. performed regression-based analyses based on contrasts in the mean. 

Methods to compare mean differences are already semiparametric in nature; part of the novelty 

of this work lies in the fact that we’re exploring measures of stochastic ordering rather than 

measures of central tendency. Ultimately, we identified time post-transplant as a significant 

determinant of ROC curve performance, which supported our pre-specified hypothesis that 

vaccine-induced immune response in an SOT recipient is better among individuals who are 

further out from their time of transplantation. As evidenced by Figure 3.2, the model suggests 

that the vaccine-induced immunogenicity among SOT recipients more closely resembles the 

immunogenicity of HCs among those whose transplantation occurred a longer time ago from the 

time of study; this is intuitive from a clinical standpoint, as the intensity of immunosuppressants 

is higher in the early post-transplant period. 

 

It is important to also acknowledge some of the limitations of the study upon which our example 

was based. There was a notable age gap between SOT recipients and healthy controls, with the 

SOT recipients being significantly older. This discrepancy was not accounted for in our 

regression analysis, though older age is highly unlikely to explain the substantial degree of 
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between SOT recipients and HCs. Another study limitation includes its inability to fully explore 

factors among the SOT group contributing to their collective lower immune response, though we 

used time post-transplantation as a proxy for such factors. A more rigorous analysis involving 

immunosuppressive regimen would require a larger sample than what was available. 

 

Our work has broader applicability than to our motivating example of vaccine-induced immune 

responses. ROC-based methodology is most frequently used when seeking to determine the 

value of a diagnostic test. ROC estimation methods and regression can offer medical 

professionals a better idea of which factors may influence the effectiveness of a diagnostic test. 

Knowing what factors a patient may exhibit can allow for a more personalized form of care, 

knowing the most effective way to implement a diagnostic test, based on the patient’s personal 

characteristics. 
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APPENDIX I 
 

R Code: Estimation of Induced Binormal ROC Curve 

 
# Extract salient data 
Y0 <- sot[which(sot$sot == 0),9] 
Y1 <- sot[which(sot$sot == 1),9] 
 
# Negative log-likelihood function 
negative_ll <- function(theta, y0, y1){ 
  lambda <- theta[1] 
  alpha0 <- theta[2] 
  alpha1 <- theta[3] 
   
  tmp1 <- dexp(y1,lambda) 
  loglik1 <- log(tmp1) 
   
  exp1 <- dnorm((qnorm(1-exp(-(lambda*y0)))-alpha0)/alpha1) 
  exp2 <- 1/alpha1*lambda*exp(-lambda*y0) 
  exp3 <- dnorm(qnorm(1-exp(-lambda*y0))) 
  expr <- exp1*(exp2/exp3) 
  negloglik <- -1*(sum(log(expr)) + sum(loglik1)) 
  return(negloglik)  
} 
 
# Optimization procedure 
ROC_induced <- optim(c(0.8,0.5,0.8), 
                     negative_ll, 
                     y0=Y0, y1 = Y1, 
                     hessian=TRUE) 
 
# Extract estimates 
a0 <- ROC_induced$par[2] 
a1 <- ROC_induced$par[3] 
 
 
# Variance estimation (point-wise) 
p <- seq(0,1, length.out = 500) 
CovHat <- solve(ROC_induced$hessian[1:3,1:3]) 
C <- cbind(0, 1, qnorm(p)) 
Vhat <- diag(C %*% CovHat %*% t(C)) 
 
# Plot ROC curve with confidence band 
plot(p, pnorm(a0 + a1*qnorm(x)), 
        col = "blue", type = "l", lty = 1, 
        ylab = "Sensitivity", xlab = "1 - Specificity") 
 
for (j in 1:length(p)) 
{ 
  segments(p[j], pnorm(a0 + a1*qnorm(p[j]) - qnorm(0.975) * sqrt(Vhat)[j]), 
           p[j], pnorm(a0 + a1*qnorm(p[j]) + qnorm(0.975) * sqrt(Vhat)[j]), 
           col = rgb(0,0,1,0.1)) 
} 
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APPENDIX II 
 

R Code: ROC Regression on Time Post-transplant 

 
# Extract salient data 
Y0 <- sot[which(sot$sot == 0),9] 
Y1 <- sot[which(sot$sot == 1),9] 
 
# Sample sizes 
n0 <- length(Y0) 
n1 <- length(Y1) 
 
nboot <- 10000 
Bres0 <- data.frame(matrix(nrow = nboot, ncol = 2)) 
 
## Create U outcome and estimate S0(c|X) 
 for (b in 1:nboot) 
  { 
    ## Re-sample with replacement 
    b0 <- sample(1:n0, replace = TRUE) 
    b1 <- sample(1:n1, replace = TRUE) 
    y0 <- Y0[b0] 
    y1 <- Y1[b1] 
     
    ## Create U outcome and estimate F0(c|X) 
    U <- as.numeric(t(outer(y1, y0, "<="))) 
    #Use leq bc CDF 
    Pij <- matrix(colMeans(outer(y0, y0, "<=")), nrow = n0, ncol = n1) 
    P <- matrix(Pij, ncol = 1) 
    Q <- qnorm(P) 
    Q[P == 0] <- min(Q[P != 0]) 
    Q[P == 1] <- max(Q[P != 1]) 
     
    ## Run ROC-GLM 
    zz <- glm(U ~ Q, family = binomial(link = "probit")) 
    Bres0[b,] <- as.numeric(coef(zz)) 
 } 


