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INTRODUCTION 

A common noninvasive technique used to measure neuronal activity is blood oxygen level dependent 

functional magnetic resonance imaging (BOLD-fMRI) [1]. It measures the spontaneous hemodynamic responses in 

blood, where an increase in blood to a neuron in a brain region, indicates an increase in neuronal activity [1][2]. 

Resting state BOLD-fMRI is used to investigate default functional signals while the brain is not subjected to any 

external stimuli [3]. Commonly, in resting state scans only grey matter is investigated and used to create functional 

mappings of the brain [3]. This functional mapping is important for understanding aging effects and diseases, such 

as Alzheimer’s Disease [4][5].  

Commonly, grey matter is much more voluminous and has a larger BOLD signal at resting state compared 

to white matter BOLD signals. As a result of these large differences in signal, the white matter BOLD signals are 

discounted or considered noise and regressed out with the global signal in preprocessing [6][7]. However, there is 

growing evidence these white matter signals can provide insight into functional brain regions [7]. Recent literature 

has begun investigating the significance of resting state white matter signals and found that the hemodynamic 

responses of white matter and grey matter are similar in shape, and only the magnitude of the hemodynamic 

response in white matter differ [7][8].  

To quantify the correlations in white matter, recent studies have begun clustering the signals to identify 

similar correlations, or networks, within the brain. To cluster, previous work has used k-means clustering techniques 

only and has revealed clusters that have relative stability within a small subject population [9][10]. When 

performing clustering with more subjects, there are also clear spatial patterns that are revealed for each dataset. As a 

result, it is hypothesized that white matter signals are reproducible across different subject populations at different 

acquisition sites or datasets (Figure 1). This work leverages hierarchical clustering to investigate clustering on 

BOLD-fMRI white matter correlations using three different large subject population datasets. 
 

 

Figure 1 White Matter Clusters Across Datasets. Spatially organized white matter networks in resting state BOLD-

fMRI are identified through hierarchical clustering of the average voxel wise correlations within a dataset. These white 

matter networks exhibit spatial patterns within a dataset that are not generated by chance (P<0.001). In this study, it 

is hypothesized that the white matter networks are reproducible across subject populations that are acquired at different 

acquisition sites. 
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METHODS 

Datasets 

Three different databases, Open Access Series of Imaging Studies-3 (OASIS) database [11], 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [12], and Baltimore Longitudinal Study of 

Aging (BLSA) database [13], with different subject populations in each site are used. All subjects are 

cognitively normal (clinical dementia rating = 0), scanned in a single session, and there are approximately 

an equal number of males and females. Also, all data were deidentified. From the OASIS database 734 

subjects and 734 resting state fMRI scans (acquired at 4mm x 4mm x 4mm resolution with a time to 

echo=0.027 S and repetition time=2.2 S) with ages between 47.5 and 95.3 years old were used. Many 

individuals provide longitudinal data and most subjects were scanned twice in a given session, but only 

the first scan from the first session was used for this analysis. Images were acquired every second over a 

164 second interval [11].  

From the ADNI database*, 333 subjects and 485 resting state fMRI scans (acquired at 3mm x 

3mm x 3.973mm resolution with a time to echo=0.03 S and repetition time=2 S) with ages between 65.3 

and 91.5 years old were used. Like in the OASIS dataset, subjects provide longitudinal data and within 

the first session multiple scans were acquired. Here the first two scans from the first session were used 

because there were fewer subjects in ADNI compared to the other two datasets. The subject does not 

leave the scanner between the first and second scan, and it is assumed that both scans are providing 

resting state data reflecting the subjects brain activity at the given point in longitudinal time and should 

not be changing between the two scans. Images were acquired every second, and the length of each image 

acquisition varied for each scan ranging being 140 to 976 seconds [12]. 

From the BLSA database, 876 subjects and 876 resting state fMRI scans (acquired at 3.4375mm x 

3.4375mm x 3.4mm resolution with a time to echo=0.0320 S and repetition time=3 S) with ages between 

22.4 and 103 years old were used. Only the first scan from the first session for each subject was used. The 

length of image acquisition was 187 seconds, with images being acquired in one second intervals [13]. 

 

Image Processing 

Scans from all three databases were processed using a customized white matter pipeline, 

specifically made to capture the small quantitative white matter BOLD signal changes [14]. Briefly, slice 

timing and head motion were removed from the volumes. Then, the mean cerebrospinal fluid signal and 

24 motion-related parameters were modeled as covariates and regressed out from the BOLD signals. The 

data were detrended and passed through a temporal filter with a passband frequency between 0.01 and 0.1 

Hz. These procedures were completed in the white matter pipeline using a customized version of the 

DPABI toolbox [14] [15]. All subject scans were spatially normalized into MNI space (voxel size equal to 

3x3x3mm3) using SPM12 [16]. Lastly, grey matter, white matter, and cerebrospinal fluid tissues were 

segmented using the Computational Anatomy Toolbox [17]. The segmentation was completed based on 

the tissue probability maps derived from each subject’s T1-weighted image. Lastly, all images were 

subjected to quality assurance. The criteria included (1) all preprocessed results are successfully 

generated; (2) the maximum head motion translation is 2 mm and maximum head motion rotation is 2 

deg; (3) the mean frame-wise displacement is less than 0.5 mm; (4) the spatial normalization was 

acceptable by visual inspection [14][18].  

For analysis, a dataset level average subject white matter mask and a total across dataset average 

subject white matter mask was created. For each subject, a white matter mask is derived from the subject 

specific white matter tissue probability map.  

 
*Data used in preparation of this article were derived from BIOCARD study data, supported by grant U19 –

AG033655 from the National Institute on Aging. The BIOCARD study team did not participate in the analysis or 

writing of this report, however, they contributed to the design and implementation of the study. A listing of 

BIOCARD investigators may be accessed at: https://www.biocard-se.org/public/Core%20Groups.html   



3 

 

All subject white matter masks are overlaid, and a threshold is applied to create an average white matter 

mask. A threshold of 0.8 was used because it was the smallest value to produce a clean white matter mask, 

while maintaining most of the important white matter structures, such as the internal and external 

capsules, that are variable between individuals [14]. To create the dataset level white matter mask only 

subjects within that dataset are used, and to create the cross dataset white matter mask all subjects are 

used.  All images were masked and spatially smoothed using a 4mm half maximum Gaussian kernel to 

increase the signal to noise ratio and improve across subject analyses. 
 

Voxel-Wise Correlations 

Each 4D image was reshaped in 2D (spatial coordinates x timeseries). The first 10 seconds of 

each image were removed to ensure scanner magnetization reached steady state. A voxel level Pearson 

correlation coefficient was calculated for each scan using the mean time series signal at each volume for 

each scan. All scan correlations were then averaged across all subjects within a dataset. 

Clustering 

The white matter voxel correlations underwent hierarchical clustering using MATLAB’s pdist, 

linkage, and clusterdata functions [19] [20]. The difference in the voxel correlations were measured using 

the metric one minus the Pearson correlation coefficient where the Pearson correlation coefficient is the 

correlation between two voxel correlations. These differences were then clustered by minimizing the 

unweighted averages of the difference. Clustering was performed on hierarchical levels of 2 through 50 to 

create parcellations. The number of clusters in a parcellation is equal to the hierarchical level. 

Clustering was investigated within each dataset and between datasets. To evaluate the stability of 

clustering within a dataset, the dataset specific white matter mask was applied. Five-fold cross validation 

was used where each subject and all the scans associated with that subject were randomly assigned into 

one of 5 folds. Clustering was performed independently within each fold. The clusters were compared to 

each other using the mean of Dice Coefficients between paired clusters. Since cluster labels are assigned 

arbitrarily to each cluster, to compare clusters the corresponding clusters must be matched. All clusters in 

one parcellation were compared to all clusters in another parcellation. The pair of clusters with the largest 

Dice Coefficient is considered a match and removed from future possible pairings. This process was 

repeated until all clusters were matched. The stability of two parcellations is measured as the mean Dice 

Coefficient.  

Permutation testing was performed on each dataset to evaluate if the clusters are exchangeable 

(H0: defined clusters are exchangeable). Using 5-fold cross validation, clusters in each fold were 

randomly permuted 1000 times and the observed mean Dice Coefficients from the random parcellations 

were compared to the observed mean Dice Coefficients from the original 5-fold validation in each dataset.  

Likewise, to evaluate the reproducibility of the clustering across datasets, the cross dataset white 

matter mask was applied. Clustering was completed independently in a dataset using all the subjects from 

that dataset. The stability between the parcellations was compared using the mean Dice Coefficient. To 

identify clusters which are similar across datasets, the number of times a cluster appears within both 

datasets, as well as the mean Dice Coefficient between the clusters is recorded. The clusters that appear 

most frequently in multiple datasets are investigated. These frequent and similar clusters are then 

compared with regions defined by the JHU-DTI-SS Type 1 Atlas [21] and the Brodmann Atlas [22] [23] 

using the same Dice Coefficient pairing scheme. 
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Figure 2 Experimental Design. The experimental design to assess the reproducibility of hierarchical clustering 

resting state white matter. Three different datasets, ADNI, BLSA, and OASIS, from different data collection sites were 

used. Hierarchical clustering with hierarchical levels from 2 to 50 was performed independently within each dataset. 

To compare within dataset clustering, 5-fold cross validation by subject populations was used with the stability being 

the mean Dice Coefficient. To compare the similarity of the clustering between two different datasets the number of 

times clusters appear in more than one dataset is recorded and the similarity between datasets is measured as the mean 

Dice Coefficient. Additionally, the most similar clusters are compared to the JHU-SS-DTI Type 1 Atlas and Brodmann 

Atlas. 

 

RESULTS 

Clustering Stability Within Dataset  

Investigating the stability of the clustering within each dataset from the 5-fold cross validation 

resulted in hierarchical levels that have local maximum mean Dice Coefficients. At these local 

maximums, the clustered regions are more similarly clustered, or more stable, across the validation sets. 

The more stable levels differ across the datasets; however, in each dataset there is a more stable 

parcellation at a lower, middle, and larger hierarchical level (Figure 3). The ANDI and OASIS datasets 

cluster symmetrically, with the mean Dice Coefficients between regions in the left and right hemispheres 

all greater than 0.85. The BLSA dataset is not symmetric in clustering. Permutation testing of the clusters 

in each dataset suggests that the clusters are not exchangeable at any hierarchical level (P < 0.001), 

suggesting the clustering parcellation is unique to the data.  

Investigating the smaller parcellations, in the ADNI dataset the major lobe regions- frontal, 

occipital, temporal, and parietal- are defined. In the OASIS dataset, the lobe regions are not as clearly 

defined, but the clusters are still exhibiting a cluster in each lobe. As the number of parcellations 

increases, more clusters appear within the frontal and temporal lobes in both the OASIS and ADNI 

datasets. The frontal and temporal lobes are responsible for memory, sensory, and language processing, 

which are all expected to be activated during resting state scans. The frontal lobe is also responsible for 

fine motor movement, which includes tongue and eye movements most likely still occurring in resting 

state scans. In the larger parcellations for the OASIS and ANDI datasets, the brainstem is identified and 

clusters within the midbrain are more defined. In BLSA, the brainstem is defined in the lower 

parcellations. As the parcellations increase, the frontal lobe and midbrain have more clusters, while the 
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temporal lobe has fewer clusters. However, the midbrain region should also be activated during resting 

state, so clusters within the midbrain are not unexpected (Figure 4). 

 

 

 

Figure 3 Within Dataset Cluster Stability. As hierarchical level increases, the parcellations become relatively stable 

in each dataset. For each dataset, there are hierarchical levels which have local larger mean Dice Coefficients, 

indicating more stable clusters. Each of the datasets has more stable clusters at similar hierarchical levels                

(ADNI n = 5, 8, 12, 15, 18, 24, 26, 35; BLSA n = 5, 9, 14, 17, 26, 36; OASIS n = 3, 8, 11, 14, 17, 26, 30), suggesting 

that the parcellations are capturing similar white matter signals. 
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Figure 4. Visualization of Stable Clusters. Visualization of the more stable parcellations at different parcellation 

levels shows there are clear differences between each of the datasets. ADNI and OASIS are symmetric and as the 

parcellation number increases, more regions in the frontal and temporal lobe are defined. BLSA is not symmetric 

and identifies the brainstem at smaller parcellations. In larger parcellations regions of OASIS and ADNI, the frontal 

and temporal lobe become more clustered, while in BLSA the frontal lobe and midbrain become more clustered.  

 

Cluster Reproducibility Across Datasets 

Investigating the reproducibility of the clustering across the datasets results in relatively low 

mean Dice Coefficients. However, there are parcellations with local maximum mean Dice Coefficients, 

indicating more similarities between the two datasets being compared at that hierarchical level (Figure 5). 

When comparing the clusters within a dataset that have more similar cluster parcellations between 

datasets, there are specific similar clusters that consistently appear across different hierarchical levels. 

ADNI and OASIS parcellations have regions of the brain with much larger similarities (Dice Coefficient 

greater than 0.80) compared to the cluster similarities between ADNI and BLSA or OASIS and BLSA.  

Looking specifically at the similarities between OASIS and BLSA, there is a cluster in the 

parietal lobe region and deep in the temporal lobe region. These clusters are also found when comparing 

ANDI and BLSA clusters. Likewise, investigations into the similarities between OASIS and ADNI finds 

that the midbrain region is similarly defined. The midbrain is also defined when comparing clusters 

between ADNI and BLSA. All comparisons have the brainstem identified well (larger mean Dice 

Coefficient), and all comparisons identify a cluster in the posterior region of the brain across the left and 

right hemispheres. Additional similar regions identified between clusters are all located in the frontal and 

temporal lobes, which are the lobes most likely to be activated during resting state scans. The similarities 
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between the datasets indicate that specific white matter parcellations may have specific clusters that 

provide meaningful information that is reproducible across datasets (Figure 6). 

 

 

Figure 5. Cluster Similarity Between Datasets. The mean Dice Coefficient measuring the similarity of the clustering 

between datasets is low, suggesting hierarchical clustering differs between each dataset. There are regions of local 

maximum mean Dice Coefficients, indicating there are parcellations that have regions that are more similar between 

datasets. 
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Figure 6. Visualization of Similar Clusters. There are clustered regions that when comparing datasets, have larger 

Dice Coefficients and appear consistently across hierarchical levels. Many of the regions appear in the temporal lobe, 

which is expected to be activated during resting state. The brainstem is identified in all datasets. A cluster in the 

posterior region of the brain across the two hemispheres of the brain is also identified across all datasets. These 

similarities across the datasets suggest that specific clusters of white matter voxels provide meaningful information 

that is reproducible across datasets. 

 

Comparison to Atlases 

The identified similar clusters, or networks, have low Dice Coefficients when comparws to the 

Brodmann Atlas. This suggests that the white matter functional parcellations are different than the cellular 

based regions defined by the Brodmann Atlas. The functional networks compared to the structural regions 

in the JHU-DTI-SS Type 1 Atlas, find that the internal capsules and middle fronto-orbital gyrus are 

captured well by a cluster. Also, the corpus callosum and medulla are captured across all three datasets. 

These regions are responsible for sensory processing and transmitting information across brain regions 

and will remain active during resting state scans. Although all resting state white matter clusters are not 

reproducible, regions of the brain which may be active during resting state scans cluster similarly between 

subject populations and different acquisition sites, suggesting there are meaningful specific white matter 

signal correlations in BOLD-fMRI resting state scans (Figure 7). 
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Figure 7. Comparison to Cellular and Structural Atlases. Comparing the identified networks to the Brodmann 

Atlas (top) the Dice Coefficients are low. Comparing to the JHU-DTI-SS Type 1 Atlas (bottom) all regions between 

datasets capture a portion of the corpus callosum and medulla which should be activated during resting state. The 

internal capsules and middle fronto-orbital gyrus are captured well by the intersection of certain dataset regions. Brain 

regions that may be activated during rest cluster similarly across datasets. 

 

DISCUSSION 

In this work, hierarchical clustering of white matter BOLD signals produces similar cluster 

patterns across different subject populations and different image acquisition sites. Although white matter 

clusters are not truly reproducible, the most stable parcellations within each dataset occur at similar 

hierarchical levels, suggesting there are specific organizations of the white matter signals that better 

define the white matter correlations compared to other white matter signal organizations. Additionally, 

clustering revealed specific clusters that are similarly defined across subject populations and acquisition 

sites which are consistent with expected resting state white matter activation.  

Comparing to the Brodmann Atlas and JHU-DTI-SS Type 1 Atlas indicates that the functional 

parcellations differ from the structural and cellular based regions. However, the most similar regions 

within the JHU-DTI-SS Type 1 Atlas are regions of the brain that would be activated during resting state 

scans. This suggests that the white matter signal clusters, which are similar across datasets, may provide 

unique information that is similar in all datasets, creating a ‘default white matter network’, in a similar 

manner to the default grey matter network. This work is limited to resting state white matter scans only. 

Future work should investigate the clustering of white matter using different clustering methods and 

compare to task based white matter signals.  
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