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CHAPTER 1

Introduction

The structure of the brain plays an integral role in determining the behavioral phenotype of a person. For

instance, variations in brain structure like different amounts of gray matter volume can influence cognitive

functions and social behaviors. The association between the brain and these behaviors is of interest in neu-

rocognitive and neuropsychiatric research. Brain-wide association studies (BWAS) use noninvasive magnetic

resonance imaging (MRI) to identify these associations of brain structure and function with psychometric

measurements Marek et al. (2022). After characterizing how differences in brain structure and function

are associated with inter-individual differences in cognition or psychiatric symptoms, we can identify how

neurological differences may serve as markers for diagnosis that precede formation of persistent and severe

symptoms of a disorder. These associations can inform us of illness trajectories, neural mechanisms, and dif-

ferences between individuals. For instance, the heterogeneity in autism spectrum disorder (ASD) presents a

considerable challenge to diagnosis and precision treatment. Neuroimaging analysis can address the issue of

heterogeneity by showing how different ASD clinical subtypes such as Asperger’s, PDD-NOS (pervasive de-

velopmental disorder-not otherwise specified) and Autistic are linked to unique brain systems and subdomain

symptoms Qi et al. (2020).

Conducting group-level neuroimaging analysis can help us to identify these brain-behavior associations

through hypothesis testing. Neuroimaging inference focuses almost exclusively on hypothesis testing, to

detect significantly active regions of the brain Friston et al. (1994) Friston et al. (1996). The most widely

used methods include inference on individual voxels of an image, and on clusters of voxels in an image.

Voxel-wise inference requires conducting hypothesis testing for each voxel in an image, which can amount

up to 100,000s of data points, combined with high-dimensional behavioral data. Cluster extent inference

can address this problem by identifying statistically significant clusters of voxels. These two methods are

discussed in more detail in section 1.2. The reliance of these methods in reporting p-values for statistical

inference is an issue due to its reliance on sample size, as even minuscule effects can be determined as

significant with a large enough sample size Wasserstein and Lazar (2016). Methods that generate inferences

based on effect sizes have been shown to address these limitations from p-values.

This research aims to create a general, established method for using confidence sets to conduct effect

size-based inference.
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1.1 Neuroimaging group-level analysis notation

Let Yi(v) denote the outcome vector image for each subject i = 1,2, . . . ,n, which measures brain activation.

All images are indexed by the voxel location, v ∈ B ⊂ R3, where B denotes the bounded space of the brain.

We fit the model

Yi(v) = Xi0α(v)+Xi1β (v)+Ei(v)

= Xiζ (v)+Ei(v)
(1.1)

where Xi0 ∈ Rm0 is a row vector of nuisance covariates including the intercept, Xi1 ∈ Rm1 is a row vector of

diagnostic variables of interest, m = m0 +m1, and Xi = [Xi0,Xi1] ∈ Rm; α(v) and β (v) are parameter image

vectors that take values in Rm0 and Rm1 , respectively, and ζ (v) = [α(v)T ,β (v)T ]T ∈Rm; Ei(v) is an error term

vector with mean zero and spatial covariance matrix Σi(v,w) = Cov{Ei(v),Ei(w)} for any two voxels v and

w. This covariance describes the dependence between repeated imaging measurements and spatially within

the image. The multilevel and spatial aspects of the data make analyses susceptible to unknown multivariate

heteroscedasticity: Σi(v,w) ̸= Σ j(v,w) for i ̸= j.

1.2 Hypothesis testing in neuroimaging

Cluster extent inference (CEI), also termed spatial extent inference (SEI), is one of the most common in-

ference procedures in neuroimaging used to identify how functional and anatomical networks are associated

with a covariate such as diagnosis or acute symptomology Woo et al. (2014). After fitting the linear model 1.1,

we can use CEI to conduct hypothesis testing on β (v), the quantification of group differences in activation

related to cognitive demand at location v. We first specify a null hypothesis for the entire image,

H0(v) : β (v) = 0,∀v ∈ B. (1.2)

Let Z(v) denote the Chi-squared statistical image (Figure 1.1a) for the test of (1.2) and associated p-value

image p(v). The statistical image Z(v) is then thresholded (Figure 1.1b) at a cluster forming threshold (CFT),

p0, which denotes an uncorrected p-value threshold. For example, if p0 = 0.01, then the Chi-squared statistical

image Z(v) is thresholded at Φ
−1
1 (1−0.01) = 6.63, where Φ

−1
1 denotes the quantile function of a Chi-squared

distribution, so that locations v where the observed image Z(v) > 6.63 have p(v) < 0.01. This thresholding

thus identifies spatially contiguous suprathreshold clusters, which are binarized (Figure 1.1c) and the spatial

extent (number of voxels within each cluster) can be obtained (Figure 1.1d). Finally, CEI will compute a

p-value for each cluster based on the image null hypothesis 1.2.

However, for any sample size, CEI only indicates regions where a null hypothesis can be rejected, without

providing any notion of spatial uncertainty about the activation. For instance, we can only conclude that brain
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Figure 1.1: This is a 2-dimensional illustration of how CEI is performed. (b) illustrates the statistical image of
the brain (a) after being thresholded. (c) shows the statistical image after the clusters from (b) are binarized,
and tabulated in (d), ordered by decreasing number of voxels.

activation has occured somewhere inside a given cluster because the significance of specific voxels cannot be

determined. Additionally, if a cluster covered multiple anatomical regions of the brain, we can not pinpoint

the precise source of activation. The larger a cluster gets, the spatial specificity of the inference will diminish.

CEI also lacks information on spatial variability. If we were to repeat a study multiple times with different

groups of people, there will be variation in the sizes and shapes of the final activation clusters, but CEI can

not convey this. Bowring et al. (2019)

The focus on detection of non-zero signal or signal change is a problem that is exacerbated for large scale

studies, where the ”null hypothesis fallacy” can cause even trivial effects to be determined as significant. This

is because statistical models conventionally assume mean-zero noise, but in reality, there will always be some

non-zero signal everywhere because all sources of noise can never completely cancel. Bowring et al. (2021)

Thus, with increasing sample size, the smallest of effects will eventually become statistically significant.

1.2.1 Voxel-wise inference

In contrast to conducting inference on regions of the brain, we can focus inference to the voxels of an image

of the brain. To account for the large amount of tests needed to be done for each voxel, we can control the

familywise error rate (FWER) or false discovery rate (FDR), through selecting some effect size threshold so

that the probability of at least one null hypothesis being falsely rejected is less than or equal to some specified

α Vandekar et al. (2018).

Parametric methods for imaging analyses have been shown to fail, yielding conservative FWERs for vox-

elwise inference and invalid FWERs for CEI. To account for this inflation of false-positive rates, there have

been transitions towards use of the nonparametric permutation test and bootstrapping to perform inference

instead Eklund et al. (2016).
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1.3 Confidence set approaches

To address the issue of spatial uncertainty from CEI, spatial confidence sets (CSs) can be developed on

clusters found in thresholded Cohen’s d effect size images Bowring et al. (2021), illustrated in Figure 1.2.

This is an improvement from typical hypothesis testing, where the only the null, i.e. a raw effect size of

zero, can be rejected. From a non-zero threshold, the constructed upper (target) and lower (null) CS can give

statements on where effect sizes exceed or fall short of the threshold, respectively. Bowring et al. (2019) This

method can go beyond statistical hypothesis testing as we can make inference not only on regions of the brain

that have responded to a task, but also on regions that did not respond to a task. Note that test statistics are

not suitable to create CSs as they do not estimate population quantities.

Figure 1.2: This is a 2-dimensional illustration to help visualize how confidence sets are formed for an image
of the brain. Here, the red voxels indicate our target set, where we have 95% confidence that all voxels in this
area have a true effect size greater than a prespecified threshold. This is a subset of the yellow voxels, which
is the point estimate set. Finally, the red and yellow voxels are a subset of the blue voxels (outer set); we have
95% confidence that all voxels outside of the blue have a true effect size less than the threshold. Adapted
from Bowring et al. (2021).

The issue with using effect sizes such as Cohen’s d is that they parameter specific, model specific, and

rely on the model being completely accurate. Cohen’s d = µ0−µ1
σ

, where µ0 and µ1 denote the population

means for each group and σ denotes their shared standard deviation. This shared standard deviation σ makes

the assumption that the variance is equal across groups and does not explicitly allow for covariates.

Additionally, these CS methods have been heavily focused on functional and continuous data, such as

imaging data. Thus, there is a need to make these CS methods generally defined for all types of statistics.

Methods have been developed to derive confidence sets from simultaneous confidence intervals (SCIs)

Ren et al. (2023). SCIs differ from confidence intervals (CIs) in that they are able to capture every parameter

at a prespecified confidence level. For instance, if we have ten parameters of interest with a prespecified

confidence level of 0.95, we can have 95% confidence that the SCIs capture all ten parameters at the same
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time, while traditional CIs are not guaranteed to capture all ten simultaneously. We can expect the width of

SCIs to be wider than traditional confidence intervals because of this additional requirement to capture every

single parameter. Thus, we aim to develop a general methods to obtain CSs for effect sizes through the use

of SCIs. A simple 1-dimensional illustration of this procedure is shown in Figure 1.3.

Figure 1.3: This graph displays a 1-dimensional example of how confidence sets can be derived from SCIs,
where α = 0.05. The location in the 1-D image is shown on the x-axis, and the value of the effect size is shown
on the y-axis, thresholded at three different values 0, 0.2, and 0.8. The grey area is the 95% simultaneous
confidence band (SCB) formed by the upper and lower SCI, and the solid black line is the true effect size.
Regions of the image outlined by the red horizontal lines are contained in the target set, where we have 95%
confidence that the true effect size is greater than the given threshold. This is a subset of the green lines, which
are the point estimate set. The red and green are a subset of the blue lines, indicating the outer set, where we
have 95% confidence that regions outside the blue have a true effect size below the threshold. Adapted from
Ren et al. (2023).

1.4 Robust effect size index

Although the use of confidence sets has been developed for effect sizes, these methods are not able to be

generalized to all statistics. A recently developed framework for effect size-based inference uses a robust

effect size index (RESI), which is generally defined across many different types of models. It is termed as

”robust” because its estimator is consistent under model misspecification when estimated with a robust test

statistic Vandekar et al. (2020).

The RESI is generally defined across many different types of models because an estimator can be com-
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puted from any test statistic, and can be used in a framework for effect-size based inference Jones et al. (2023).

We use this RESI framework to develop a general approach to effect size-based inference using confidence

sets.

1.4.1 RESI definition

Let W = {W1, ...,Wn} denote the full dataset of independent observations, and let θ = (α,β ) be a vector of

parameters as defined in 1.1. The RESI is defined from the test statistic for the null hypothesis H0 : β = β0,

where β0 is a vector-valued reference value that is usually zero Vandekar and Stephens (2021). The typical

Wald-style statistic for the test of the null hypothesis follows a Chi-squared distribution with m1 degrees of

freedom,

T 2
n,m1

= n(β̂ −β0)
T

Σ
−1
β
(θ)(β̂ −β0)∼ χ

2
m1
{n(β −β0)

T
Σ
−1
β
(θ)(β −β0)}, (1.3)

where Σβ (θ) is the asymptotic covariance matrix of
√

n(β̂ −β ) and β̂ is the estimated value of β Kang et al.

(2023). The RESI is defined as the square root of the component of the noncentrality parameter that does not

depend on the sample size,

Sβ =
√
(β −β0)T Σ

−1
β
(β −β0). (1.4)
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CHAPTER 2

Methods

2.1 Effect Size Estimation

To estimate the true effect size

S(v) =

√
β (v)2

Var(
√

nβ̂ (v))
, (2.1)

where

Var(
√

nβ̂ (v)) =
1

p(1− p)
, (2.2)

we use the estimator

S̃(v) =
√

S̃2(v) =
√

T 2(v)/n, (2.3)

where T 2(v) is the Chi-squared statistical image. This is different than our usual estimator for S(v),

Ŝ(v) =
√

max{(T 2(v)−d)/n,0}, (2.4)

where d is the degrees of freedom of T . We use S̃2(v) instead of Ŝ(v) because it is linear in the Chi-squared

or F statistic, so it is easier to calculate its variance.

2.1.1 Algorithm

To obtain the SCIs for the effect sizes of each voxel, we implement a non-parametric bootstrap.

The bootstrap procedure, modified from Ren et al. (2023), is as follows:

1. For each bootstrap:

(a) Obtain Y (v)b from the non-parametric bootstrap, and then estimate the effect size, S̃(v)b. We also

obtain σ̂(v), which is defined below in step 4.

(b) Normalize the test statistic by subtracting by the RESI estimate computed in the observed data,

S̃(v), and dividing by the standard deviation of S̃(v)b, σ̂(v)b.

(c) Take the maximum and minimum element of S̃(v)b−S̃(v)
σ̂(v)b

and append them to vectors wmax and

wmin, respectively.

2. Denote the upper quantile, cu, as the 1− α

2 quantile of wmax.
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3. Denote the lower quantile, cl, as the α

2−α
quantile of the subset of wmin, at the indices where wmax ≤ cu.

Gao et al. (2021)

4.

SCI = (S̃(v)− cu∗ σ̂(v), S̃(v)− cl ∗ σ̂(v)), (2.5)

where σ̂(v)) is the standard deviation of the RESI estimate computed in the observed data. This formula

of the SCI was derived from Hall (2013).

2.2 Normalization Methods

We consider two different methods of normalizing the test statistic. Assuming the test statistic is F-distributed,

we approximate the standard deviation of S̃(v) using the variance of
√

nS̃(v). Assuming the data are normally

distributed, the asymptotic variance of S̃(v) is

Var{S̃(v)}= Var{
√

S̃2(v)}= (S2(v)/2+1)/n. (2.6)

Thus, the standard deviation of
√

nS̃(v) is
√

S2(v)/2+1. This will be termed as the parametric method.

In the case of no normalization, we assume the standard deviation of S̃(v) is 1. This does not account for

the sampling heterogeneity caused by estimating the variance of the effect size statistic, but still yields a valid

bootstrap estimator for the SCIs. We will call this the ”none” method.

2.3 Simulation Scenarios

To evaluate the proposed bootstrap procedure, we conduct a basic simulation with 1000 bootstraps and 1000

simulations for a two-sample test at each location in a 1-dimensional image with independent voxels. We first

generate X ∈ Rn according to a Bernoulli random variable with parameter p, and the true effect size S(v) as

an independent uniform variable outside of the simulation. We set

β (v) = S(v)× 1√
p(1− p)

. (2.7)

This value of β (v) was selected so that the true effect size index was equal to S(v), the true effect size. We

then set our outcome

Y (v) = Xβ (v)+ ε(v), (2.8)

where ε(v)∼ N(0,1). We also consider the case where ε(v)∼ Gamma(1,1), to evaluate the method’s ability

to perform under a skewed distribution.
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The sample sizes n we consider are 50, 175, 300, 400, and 500. We also consider two cases of different

amounts of voxels, V = 100 and V = 500, to evaluate the method’s performance for larger images. Finally,

we consider both cases of robustness of the standard error (SE) and RESI estimates computed, where robust

(sandwich) SEs are used, and where they are not used. All combinations of these different scenarios are

shown in table 2.1.

Voxel amount Error distribution Robust Method

100 Normal T None
500 Normal T None
100 Gamma T None
500 Gamma T None
100 Normal F None
500 Normal F None
100 Gamma F None
500 Gamma F None
100 Normal T Parametric
500 Normal T Parametric
100 Gamma T Parametric
500 Gamma T Parametric
100 Normal F Parametric
500 Normal F Parametric
100 Gamma F Parametric
500 Gamma F Parametric

Table 2.1: This table illustrates the 16 different simulation scenarios we evaluated, under each sample size n.

2.4 Results

From Figure 2.1, we can see that there is not a clear difference between both normalization methods. There

also does not seem to be a difference between both robustness cases. Comparing the normal vs gamma

error terms, it seems that when the error term is skewed, the method performs poorly at low sample sizes

(n = 50), but when the error term is normally distributed, the target coverage rate is achieved. Comparing

voxel amount, there is no clear difference for the normal error term, but it causes the gamma error case to have

much lower coverage at n = 50 when increasing to 500 voxels. Interestingly, the case of V = 500, n = 50, no

robustness, and gamma error term, the coverage is lowest, at 0.892. Overall, as n approaches 500, all cases

appear to converge to the target coverage rate. We do note that the coverage does appear to be high, seeming

to increase above the target rate with sample size.

From Figure 2.2, we can see that across all cases, the parametric method creates SCIs with shorter widths

compared to the ”none” method. This may be because the parametric method accounts for the sampling

heterogeneity that is caused by estimating the variance of the effect size statistic. The use of robust SEs has

no effect on the width. The use of a gamma distributed error creates wider SCIs compared to the normal

9



Figure 2.1: Plots of the coverage of the SCIs for values of n ranging from 50 to 500, for both cases of the
error term, gamma or normally distributed, and both cases of the amount of voxels, 100 and 500. For each
plot, both normalization methods are shown; the parametric method is shown in blue and the ”none” method
is shown in red. The case where robust SEs are used is shown with the solid line, and the dashed lines indicate
non-robust SEs. The solid black line indicates the target coverage rate, 0.95.

case. Additionally, increasing the amount of voxels causes the SCIs to be wider. These trends make sense as

the width of the SCIs need to increase to accommodate for the skewedness and to capture the true effect size

for more voxels. The differences we see are more prominent at lower sample sizes, but they diminish as the

sample size increases. This decrease in difference appears to occur slower for the case of V = 100 and normal

error term, and slowest for the case of V = 500 and gamma error term.

Although the coverage rates for the ”none” and parametric methods were similar, the mean width of the

”none” method was higher than the parametric method. Combining the results from both graphs, we can

conclude that the proposed method performs well across different image sizes, but the performance slightly

decreases with increase in skewedness. The robustness may not be very influential here.

Based on the results, the best choice of method would be the parametric method with the robust SEs,

because although the coverage is similar with the ”none” method, the width of the SCIs is narrower using

the parametric normalization. Even though the robust SEs did not appear to affect the width or coverage,

it would still be safest to use due to its robustness. The weakest choice would consequently be the ”none”

method with non-robust SEs, as this method yielded the wider SCIs. Additionally, the use of non-robust SEs

would make the SCIs susceptible to heteroscedasticity.
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Figure 2.2: Plots of the mean width of the SCIs for values of n ranging from 50 to 500, for both cases of the
error term, gamma or normally distributed, and both cases of the amount of voxels, 100 and 500. For each
plot, both normalization methods are shown; the parametric method is shown in blue and the ”none” method
is shown in red. The case where robust SEs are used is shown with the solid line, and the dashed lines indicate
non-robust SEs.

11



CHAPTER 3

Discussion

3.1 Application

The simulation scenarios show that the proposed method creates SCIs that achieve the target coverage rate

under many different conditions such as parametric/no SE normalization, normally/gamma distributed error

terms, use of robust and non-robust SEs, and different voxel amounts. This study is the first step in creating

an established method of using confidence sets for effect size-based inference. This method is generally

defined for different types of statistics, but can still be extended to functional data and areas that focus on

multivariate outcomes, such as genomics and imaging. Based on this general approach, we can also use this

for noncontinuous terms like factor variables and nonlinear terms such as cubic splines in multiple regression.

3.2 Future Directions

Our next steps involve integrating this method into the RESI R package and developing a visualization func-

tion to display SCIs. This will aid users in interpreting regions of the image that exceed or fall short of the

effect size threshold at a specified confidence level. Additionally, we plan to evaluate this new procedure

under 2-dimensional and 3-dimensional images, to assess its performance in real-world applications.

Furthermore, we aim to extend this procedure to longitudinal data analysis by running additional simula-

tion scenarios that include different working covariances. Thus, the covariance of Y (v) will need to include

spatial as well as temporal covariance. We will evaluate the efficiency of the different covariances while also

maintaining key metrics such as SCI coverage and width. In conclusion, this general approach addresses

the need of an alternative to hypothesis testing for neuroimaging inference, but can also be applied to areas

outside of neuroimaging.
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