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segment and on the right of three line segments. Credit: Xinxuan Lu. . . . . . . . . . . . 64

5.4 PIoU score versus iteration for (left) 4-sided simulated polygons and (right) 8-sided unre-
stricted simulated polygons. Credit: Xinxuan Lu. . . . . . . . . . . . . . . . . . . . . . . 65

xii



5.5 Predicted (red) and ground truth (green) 3D bounding boxes from the train/val split of
KITTI dataset from MonoCon object detection model trained with L1 loss (left) and
PIoU+L1 loss (right). Top images show the predicted bounding boxes in 3D space, and
bottom images show the corresponding predicted footprints in a birds-eye view. Credit:
Xinxuan Lu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 Example annotated (green boxes) frames from each camera field of view for one scene
of the I24-3D Dataset. The approximate field of view for each camera is shown on the
overhead roadway diagram below (some cameras shown in unique colors as examples).
Regions outside of the considered field of view for each camera are blurred for this visu-
alization. Cameras provide coverage of 2000 feet of Interstate-24 near Nashville, TN. . . 71

6.2 Example single annotation. The annotation is stored in roadway coordinates (left) but can
be projected into cameras 5 and 6 on pole 1 (p1c5 and p1c6). . . . . . . . . . . . . . . . 72

6.3 Example vehicles and vehicle class annotation counts for the I24-3D dataset. . . . . . . . 72
6.4 Time-space diagrams (object x-position vs time) for each lane for Dual3D +KIOU+TF

pipeline on Scene 3 (Lane 4 is rightmost lane in direction of travel). False negatives
(yellow), false positives (red) and true positives (blue) shown. In this case, most false
positives are closely paired with a false negative, indicating that an object was tracked
below the IOU threshold. Lanes farthest from cameras (EB lane 1 and WB lane 4) have
the more false negatives in general, likely due to smaller object size and greater object
occlusion. In some cases, a predicted object that falls below the IOU threshold with a
ground truth object results in a parallel false positive and false negative track. . . . . . . . 75

7.1 Example fields of view from each of the 234 cameras included in the I24V dataset. Each
camera is recorded in 1920 × 1080 resolution and at 30 frames per second. Scene infor-
mation is provided for each roadway direction of travel in each camera. . . . . . . . . . . 77

7.2 (top) Graphical overview of the I-24 MOTION system. Each blue dot represents a camera
pole with 6 cameras. Red dot indicates a camera pole outage (Pole 25). (orange) drone
image showing 8 of the 40 system camera poles. (purple) Typical 6 camera per pole
coverage layout. Best viewed zoomed-in. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Typical homography error dynamic and the representation of the Sunflower Effect: (a.)
uncorrected displacement of image points showing the magnitude of error (in feet) that
using the original homography without accounting for drift would cause. The red polygon
area represents the camera FOV, (b.) The displacement error of a typical camera over
the day. Gray vertical line indicates the time instant shown in (a). (c.) Mean average
displacement of all the cameras for the westbound roadway side, sorted by magnitude of
error. (Credit: Gergely Zachár.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Camera fields of view (a and b) are related to (c) state plane coordinates, a rectilinear coor-
dinate system, via perspective transforms. State plane coordinates are related to curvilinear
roadway coordinates (d) via straightforward mathematical equations. . . . . . . . . . . . 81

7.5 (left) GPS tracks (lines) and corresponding manual annotations (circles) for westbound
(top) and eastbound (bottom) roadway directions of travel. One GPS trajectory is high-
lighted in green. (right) Detail for highlighted trajectory, showing relative x-position
(top) and y-position (bottom) of nearby object detections (black dots), manual annota-
tions (green circles), and the uncorrected corresponding GPS track. Deviations of over
20ft x / 12ft y position can be seen. Detections closely matching corrected GPS track
shown in red. (Detections for every 30th frame are plotted for clarity.) . . . . . . . . . . 82

7.6 (left) Intersection-over-union histogram between GPS and closest automatically detected
object position, before (black, mean 0.083) and after (green, mean 0.445) manual correc-
tion. (right) Examples of corrected (green) and uncorrected (black) GPS positions in a
camera field of view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiii



7.7 Longitudinal (X) position versus time for all detections on the westbound side. Each
colored pixel (a total of 123,768,540 though with some overlaps for vehicles in different
lanes but the same X position at the same time) represents a detected vehicle in a particular
location and time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.8 Longitudinal (X) position versus time for all detections on the eastbound side. Each col-
ored pixel (a total of 123,768,540 though with some overlaps for vehicles in different lanes
but the same X position at the same time) represents a detected vehicle in a particular lo-
cation and time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.9 (a.) Typical homography fitness for a single camera, (b.) error dynamics for a single
camera over time with each homography re-estimation methods, (c.) Remaining error
for each camera after (black) SIFT-FLANN feature-matching, (orange) one-day best fit
homography re-estimation, and (red) dynamic homography re-estimation methods relative
to orignal reference homography baseline (blue). Cameras are grouped by position on pole
(see Figure 7.2) and by side of roadway (westbound homographies on top, eastbound on
bottom). (Credit: Gergely Zachár.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.10 (left) A single trajectory (green) and all SORT [5] matched to this trajectory at least once
(other colors). Manual annotations shown as green circles. (right) A close-up showing
the LCSS matched to this trajectory (blue line), lasting ∼32 seconds. . . . . . . . . . . . 86

8.1 (left) The fleet of instrumented vehicles used to execute control strategies during the CIR-
CLES 2022 experiment. (right) Software-controlled instrumented vehicles (green) are
visible on the roadway, and their positional data is recorded by I-24 MOTION cameras.
(Drone imagery courtesy of Said ElSaid). . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2 (top) Time-space diagram (y-axis is distance, 4.2 mi, and x-axis is time, 3 hours in total)
showing data from instrumented vehicles (white) during the CIRCLES 2022 experiment
superimposed over trajectory from I-24 MOTION. (bottom) An inset showing approxi-
mately 4000 feet and 20 minutes of data in more detail. Each vehicle trajectory can be
traced through several stop-and-go waves during this period. (Credit: Gergely Zachár and
Derek Gloudemans.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 XY-roadway coordinate histogram for recorded vehicle positions during the I24-Video
dataset recording duration (see Chapter 7). (top) before homography correction and (bot-
tom) after homography correction. Best viewed in browser, zoomed in. (Credit: Gergely
Zachár and Derek Gloudemans). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.4 Cameras in operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.1 Map for I-24 MOTION infrastructure locations . . . . . . . . . . . . . . . . . . . . . . . 94
D.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
D.2 Additional time-space diagrams for I-24 westbound during morning rush hours on Novem-

ber (a)-(e) 21-25 and (f)-(j) November 28-December 2. (Credit: Gergely Zachár and Derek
Gloudemans.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

E.3 Distribution of inter-vehicle gaps for westbound traffic during 6:00-10:00AM on Monday,
November 21, 2022. Credit: Yanbing Wang. . . . . . . . . . . . . . . . . . . . . . . . . 98

F.4 Top: the speed time-series sampled from MM61.2 on Tuesday, Nov 29 2022. Bottom:
a scaleogram produced by continuous wavelet transform of the speed signal. The color
represents log-scale of the power distribution across both frequency and time domain of
the signal. Credit: Yanbing Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

I.5 (Left) Before curvature correction, lines in the x-direction (blue) with equal y deviate sig-
nificantly from roadway direction (white and yellow painted lines on roadway) at distances
far from points used to fit local camera homography. (Right) After curvature correction,
roadway lines in image have equal y-coordinate. . . . . . . . . . . . . . . . . . . . . . . 106

J.6 Multiple-camera timing issues. a.) Frames from different cameras are out of phase. b.)
Different cameras report the same event (pink) as occurring at different times. c.) Camera
time (blue) is quantized to a lower precision (red) before being reported. d.) Cameras
report the same frame twice or skip frames (dash box). . . . . . . . . . . . . . . . . . . . 107

xiv



J.7 Example of phase and clock offset error. Closest reported timestamps from cameras are
unequal (phase), and the positions of vehicles in camera p1c5 suggest this frame was
recorded later than p1c5 (clock offset). . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

J.8 Coarse 2Hz (red) and fine 5Hz (blue) rotors shown for two frames of lab test video. The
position of each rotor along with a total rotor revolution count can be used to determine
the time since the start of the video sequence and the time delta between two consecutive
frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

J.9 Time deltas between frames according to camera frame timestamps (black), coarse (red)
and fine (blue) rotor clocks, compared to nominal framerate (green). Reported clock times-
tamps fluctuate between 0.03 and 0.04 s (with occasional skipped or doubled frames re-
sulting in anomalous deltas). Rotor clock times show that the actual recording times for
each frame adhere much more closely to nominal framerate. . . . . . . . . . . . . . . . . 108

J.10 Example of a doubled frame. Frame indices 453 and 454 for camera p1c2 in sequence 0
display identical frames and timestamps. The following frames shows object positional
changes (red arrows) consistent with a larger time delta than is indicated by frame times-
tamps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

M.11 Precision versus recall curves for each detector at IOU thresholds of 0.7 (solid), 0.5 (dash)
and 0.3 (dot), generated as in [6]. Overall AP score for each model at each threshold is
listed in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

M.12 Detection accuracy, Association accuracy, and HOTA as defined for Dual3D + KIOU
pipeline (Solid) and Dual3D + KIOU + TF (dotted). . . . . . . . . . . . . . . . . . . . . 118

O.13 Correspondence points (blue) and fields of view (shaded polygons) for each roadway di-
rection of travel, labeled in a single camera field of view (P27C01). Around 100 corre-
spondence points are visible for each side of the roadway. . . . . . . . . . . . . . . . . . 127

O.14 Correspondence points (green for WB red for EB) labeled in camera imagery for all cam-
eras on one pole (P17). Fields of view (blue for WB and orange for EB) and a mask
denoting relevant portions of the image for tracking (dotted red polygon) are also shown.
Similar plots are included in a separate file for all cameras. Credit: Gergely Zachar. . . . 127

O.15 Correspondence points labeled in aerial imagery using the GIS tool for a very small subset
(∼500 feet) of roadway, for one direction of travel only. . . . . . . . . . . . . . . . . . . 128

O.16 (a) correspondence points labeled in aerial imagery (yellow and black) and in individual
camera fields of view (blue) are projected into the roadway coordinate system. (b) A close-
up detailing a type of artifact visible in the coordinate system as a result of misalignment
in the aerial imagery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

P.17 Homography goodness of fit and uncorrected drift between reference homography and true
scene homography according to two metrics (Sub Drift and Full Drift) for a single typi-
cal camera. Horizontal grey dashes show the two time instances for Figure P.18.(Credit:
Gergely Zachár). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

P.18 Full drift for the same camera at two time instances. For a given error value X , this
indicates that the original reference homography and the true homography for the scene
map the same image coordinate to points in the state plane X feet apart. The westbound
field of view (i.e. the most important portion of the image) is shown as a red polygon.
Credit: Gergely Zachar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

P.19 An example of SIFT-FLANN based seed points from step 6 (red dots), detected contours
(purple outlines) and re-detected dash corner points (yellow dots) for a 1-minute average
frame. Because traffic at this time instance was partially stopped, some vehicle artifacts
are visible in the averaged frame. A few dashes are not successfully rediscovered. Credit:
Gergely Zachar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Q.20 (Repeated from Section 7.2.2.1.) Goodness of fit and uncorrected drift between reference
homography and true scene homography according to two metrics (Sub Drift and Full
Drift) for a single typical camera. Horizontal grey dashes show the two time instances for
Figure P.18. Credit: Gergely Zachar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Q.21 Mean averaged SubDrift and FullDrift calculated for all westbound cameras in the system,
sorted by error magnitude. Credit: Gergely Zachar. . . . . . . . . . . . . . . . . . . . . . 138

xv



Q.22 Mean averaged SubDrift and FullDrift calculated for all eastbound cameras in the system,
sorted by error magnitude. Credit: Gergely Zachar. . . . . . . . . . . . . . . . . . . . . . 138

Q.23 Error dynamics for two cameras over time with each homography re-estimation methods.
Long field of view cameras e.g. Q.23a have more pronounced errors over down-looking
cameras, e.g. Q.23b. Credit: Gergely Zachar. . . . . . . . . . . . . . . . . . . . . . . . . 139

Q.24 Remaining SubDrift and FullDrift errors for each camera after (black) SIFT-FLANN feature-
matching, (orange) one-day best fit homography re-estimation, and (red) dynamic homog-
raphy re-estimation methods relative to original reference homography baseline (blue).
Cameras are grouped by position on pole (see Figure 2 in main text.) and by side of
roadway (westbound homographies on top, eastbound on bottom).) Credit: Gergely Zachar. 139

R.25 Plots for 4 individual GPS trajectories. In each sub-figure, (top left) shows westbound
X-position and (bottom left) shows eastbound X-position for the whole scene duration.
(top right) shows nearby (in relative X-coordinates) and (bottom right) shows nearby (in
Y-coordinates) detections, manual annotations, and uncorrected GPS trajectory, relative to
the corrected GPS trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

T.26 Example license plate from this dataset before redaction. License plate information is
unrecoverable; for reference, the orange numbers on the rear window of the vehicle are
about 5 times as large as license plate text and are barely discernible. (The pictured vehicle
is part of the GPS instrumented vehicle fleet and does not belong to an individual). . . . . 143

T.27 Example redacted regions (red outline, blurred) for one camera field of view . . . . . . . 144
U.28 “Sawtooth” artifact in uncorrected GPS trajectories (lines). Circles depict corresponding

manually annotated vehicle positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xvi



Foreword
You, regrettably, are a bad driver. I asked your friends and they told me the cold, harsh truth. But more
importantly, (and more accurately), data can prove it. And in fact, as traffic scientists will delight to inform
you, the only “good” drivers around are, in fact, traffic scientists! Or more precisely, the vehicle controllers
designed by traffic scientists.

Now before I risk alienating possibly one of the only 10 people who will ever lay eyes on this disserta-
tion, let’s take a moment to dissect what is meant by “good” and “bad” drivers. Traffic is a set of complex
phenomena caused by the interaction of numerous individual drivers at scale. That is, individual behaviors
can result in emergent phenomena visible in macro-scale properties of traffic such as vehicular density, flow,
and speed through a section of roadway. One such traffic phenomenon is traffic hysteresis, or “stop and go
waves”, which result when small perturbations in driver behaviors are amplified cause rippling, amplifying
downstream effects [7, 8]. Recent years have brought on a large host of research utilizing intelligent trans-
portation systems (ITS) built on new technologies to mitigate these negative emergent phenomena, increasing
safety and mobility. For instance, it has been shown that a modest number of well-designed autonomous vehi-
cles (“good” drivers) can effectively dampen stop-and-go waves caused by “bad” human drivers [9], reducing
congestion and drastically reducing overall energy usage on the roadway [10]. Studies in a similar vein [11]
have showed that platooning or grouping trucks together on highways has a positive influence on traffic flow
near merging and diverging areas, and [12, 13] demonstrated that energy-saving control strategies could be
deployed on commercially available vehicles with little additional hardware needed. By comparison to these
carefully designed control algorithms, most human drivers are “bad” in terms of their effects on the flow
of traffic around them (at least in some traffic regimes), A well-informed driver could approximate or even
outperform one of these isolated control strategies, but newer generations of connected autonomous vehi-
cle control strategies [14, 15] share information across vehicles throughout a traffic flow, providing valuable
information for control and decision-making that even the best human drivers do not have access to.

On the other hand, the simple fact that ITS is used does not a good driver make. Many existing adap-
tive cruise controllers themselves contribute to amplifying traffic waves [16], and the same study on truck
platooning above [11] also found that truck platoons made it more difficult for merging vehicles enter the
flow of traffic. Great care is required when selecting algorithms to deploy on real roadways, especially when
they will be deployed across tens of thousands of vehicles. How are we to know which control algorithms
benefit traffic as a whole, and which strategies are having unintended repercussions? What’s a traffic control
designer to do?!

I’m glad you asked!1 By recording precise positional data for all vehicles in a traffic flow at fine-grained
intervals (called trajectory data), researchers can analyze how various deployed technologies affect the flow
of traffic around them, both at a local scale (e.g. an aggressive merge strategy caused the following driver to
undergo an unsafe deceleration to avoid a collision) and at a global scale (the deceleration caused a wave of
deceleration to propagate backwards from the initial incident for half a mile). This allows them to separate
the good (stabilizing, flow-increasing) controllers from the bad (unsafe, flow-reducing, wave-causing). His-
torically, this data has been extremely difficult to obtain, as it requires observing every vehicle (which one
cannot hope to accomplish with GPS sensors alone) at fine-grained time intervals and over long distances
(individual fixed sensors such as cameras or radar units do not provide enough coverage).

This thesis presents a new instrument for obtaining vehicle trajectory data at a scale previously impossible.
Interstate-24 MOTION is a 4.2 mile stretch of roadway near Nashville, Tennessee, densely instrumented such
that every vehicle’s position is precisely recorded for the entire roadway segment. This instrument enables a
new paradigm of traffic research where researchers can develop a ITS technologies to benefit traffic and then
deploy them on a real roadway to gather empirical data supporting or disproving their theoretical claim. Who
knows, one day data from Interstate-24 MOTION may even validate your status as a “good” driver! (Just
kidding, I-24 MOTION trajectories are anonymous, so we’d never know it was you). In any case, this new
observational technology offers new abilities to design the next generation of vehicular autonomy; control
algorithms that not only move people from point A to point B, but also improve safety, fuel efficiency, and
even travel times for the entire flow of traffic along the way.

1implicitly, by not skipping the foreword.
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1. Introduction
Nearly 100 years ago, Bruce Greenshields strode into a grassy field along US Highway 23 near Dele-
ware, Ohio, armed with a video camera. Greenshields sought to develop models for understanding traffic
based on empirical data, inspiring a flourishing field of macroscopic traffic research in his wake. At the
macroscopic level, traffic phenomena are often observed and described with three quantities of interest,
i.e., flow, speed, and density [17]. Fundamental diagrams [18] like the Greenshields and Greenberg mod-
els [19, 20] relate the traffic quantities while models such as the Lighthill-Whitham-Richards (LWR) [21]
and the Aw–Rascle–Zhang (ARZ) [22] are developed to describe the spatio-temporal evolution of traffic.
Leveraging state of the art technologies of the day, researchers worked to validate these models with data col-
lected from radar-based devices and loop detectors [23]. Large-scale macroscopic data monitoring systems
such as the freeway performance measurement system (PeMS) [24] in the United States; the A5 freeway near
Frankfurt [25] in Germany; and the M42 highway [26] in England; and later floating-vehicle measurement-
based on cell phone carrier data [27] or GNSS positional data [28] have enabled research on macroscopic
traffic flow dynamics [29–33]. A challenge is that the data typically must be interpolated spatially (in the
case of inductive loops), or scaled up across all vehicles (in the case of probe data) to gain a complete spatio-
temporal picture 1

Unlike the accumulated average macroscopic data and models, microscopic traffic models give attention
to the interactions between individual vehicles. Since the early car-following experiments [35] conducted
by physically connecting vehicles to measure space gap, many emerging in-vehicle technologies including
on-board radar detectors [36], cameras [37], laser sensors [38] and GNSS devices [39, 40] have been applied
to measure vehicle spacing, speed and relative speed.

Some traffic phenomena benefit from observation of traffic across the micro and macroscopic scales. For
example, traffic waves observable at the macroscopic scale can result from instabilities and disturbances in
the flow at the level of individual vehicles [7, 8]. Macroscopic data, frequently used for traffic wave studies,
can cover a great spatiotemporal scale that reveals the dynamics of traffic waves on road networks, but it is
unable to provide insight into why the wave is generated and how it is propagated. Macro-microscopic vehicle
trajectory data can help provide these insights [33, 41, 42] by providing precise positional and derivative
data for every vehicle in a traffic flow, when available with adequate spatio-temporal coverage. Trajectory
data with the complete information for specific road segments supported a range of efforts including the
development, calibration and validation of car-following models [43, 44], lane-change modeling, trajectory
prediction [45, 46], and traffic oscillation analysis [47]. Figure 1.1

However, historically this vehicle trajectory data data was tremendously labor-intensive to collect, re-
quiring manual annotation of vehicle positions in recorded videos of traffic [8], approximation with spare

1Parts of this introduction are adapted from [34].

Figure 1.1: Example vehicle trajectory data produced in this work. Each vehicle is plotted as a line colored
according to its instantaneous speed. x-axis: time of day (HH:MM); y-axis: roadway postmile (mi). Postmile
decreases for travelers in the westbound direction. A typical congestion pattern is shown with frequent
oscillatory traffic observed; and recurring waves travel upstream relative to the direction of traffic at 12-13
mph.The figure inset shows a zoomed in portion of the data which is 0.25 mi in length and 4 min in duration.
(Credit: Gergely Zachár and Derek Gloudemans.)
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instrumented vehicles [48], or semi-automatic analysis and subsequent manual correction [49, 50]. As a re-
sult, there are still many open questions on the nature of the traffic wave, such as the general growth and
propagation pattern of traffic wave [42, 51, 52], and the relationship between individual instability and the
macroscopic traffic wave [53]. Hence, abundant trajectory datasets, as highlighted in the article [54], can
enable traffic research at both the macroscopic and microscopic scales, aiding in understanding traffic phe-
nomena like jam clusters and state transition dynamics [25, 31, 55]. It can also capture the complex interaction
within multiple-class traffic participants for heterogeneous traffic flow [56–58].

A few recent trends have lowered the barrier to creating new trajectory data. First, significant research
has been devoted to the computer vision tasks of object detection (locating relevant objects within an image)
and object tracking (associating distinct objects in video frames across time). Especially in the past 10 years,
rapid progress has been made in the use of modern hardware [59], neural network architectures [60–63],
and massive-scale image datasets [64, 65] to fit accurate object detection algorithms. Second, HD traffic
cameras and aerial drones have become increasingly prevalent. Equipped with these technologies, recent
research efforts have revisited the task of vehicle trajectory extraction and made marked advancements to
the state of the art. The HighD, [66], ExiD [67], AUTOMATUM [68], and HIGH-SIM [69] datasets all
utilize aerial imagery shot from either drone or helicopter-mounted cameras to produce complete highway
vehicle trajectory data semi-automatically, and the Third Generation Simulation (TGSIM) [70] is a similar
in-progress effort designed to capture trajectory data containing deployed automated vehicle technologies.
Similarly, the pNEUMA [71], inD [72], rounD [73], OpenDD [74], Interaction [75] and CitySim [76] datasets
utilize drones or swarms of drones to study complex urban vehicle and pedestrian interactions in more detail.
High aerial fields of view make modern image segmentation algorithms [77] well posed for vehicle tracking
in these contexts. Unfortunately, these methods are temporally limited by the relatively short battery life of
drones (generally under an hour) and the requirement for human pilots, and spatially limited by the relatively
small field of view of a single drone.

A different vein of research aims to revisit the approach of NGSIM with updated technology, utilizing
fixed cameras (or other sensors) to produce vehicle trajectories for longer durations. Work on the Minnesota
Traffic Observatory [78] and more recently on the Lower Saxony Testbed [79] and Zen Traffic Roadways [80]
follow this approach. Even so, fixed infrastructure deployment have been stymied by the inherent challenges
of vehicle trajectory observation in this regime, namely: i.) vehicles can be significantly occluded by taller
vehicles and by roadway infrastructure ii.) there are few datasets on which to train precise 3D vehicle tracking
algorithms, and iii.) high performing tracking and detection methods still run below 30 frames per second
on a GPU for frames of modest size (e.g., 960×540 [1], 1392×512 [81], and 1920×1080 [82]. Thus, a
continuous source of publicly available trajectory data, to the best of our knowledge, does not yet exist.

Today a confluence of developments promises to bring about paradigm-shift transportation science. On
the one hand, new technologies within the past decade have enabled trajectory data gathering at scales that
were previously infeasible. On the other hand, increasingly automated vehicles are being developed and
deployed on roadways, changing the fundamental physics of traffic flow. Even a small number of automated
vehicles can have a direct impact on the macroscopic behavior of traffic flow [10, 83]. Thus, there is at once
a capability and a great need to monitor and observe traffic flows across microscopic and macroscopic scales.

This dissertation sits in the space created by this technological confluence, answering the following ques-
tion: How can we create a large-scale traffic observation instrument for accurate and persistent vehicle
trajectory generation using computer vision techniques? Work to answer this question falls into three major
categories. First, a cutting-edge traffic instrument for rich data collection is proposed, designed, developed,
and implemented. To extend the state of the art trajectory datasets which are limited on-off efforts with limited
temporal and spatial scope, this work requires an infrastructure sensor-based approach. This in turn requires
aggregating vehicle trajectories across a large set of sensors to allow for suitably dense coverage over a large
spatial range, and introduces the challenge of vehicle occlusion by other vehicles and by overpasses. Second,
computationally efficient algorithms for object detection and tracking are developed that utilize context from
the object tracking problem to address these tasks jointly. Fast object tracking is continued challenge within
the field because conventional approaches are computationally intensive and are ill-suited to leverage object
priors or object patterns within a scene to speed object detection and tracking. This method is then further
extended by incorporating information from multiple cameras to and the traffic monitoring domain, yielding
a state-of-the-art and production-ready algorithm for trajectory generation. The multi-camera nature of this
task is difficult because of the need for precise positional information of cameras with respect to the roadway
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in the face of non-trivial camera motion over time. Third, several first-in-kind datasets are released. A novel
dataset enabling vehicle tracking in 3D space across a multiple-camera network is produced, allowing eval-
uative benchmarking and improvements of existing algorithms and development of new ones for this task.
Each of these datasets must recon with the tremendous manual cost of producing perfect ground truth vehicle
annotations for a large set of vehicles, over long distances, and at fine-grained time intervals. Additionally, a
vehicle trajectory dataset of massive scale is released as the end data product of the proposed instrument.

1.1 Contributions

The primary contribution of this dissertation is the development of a physical traffic observation instrument
and accompany software system that enable the persistent collection of vehicle trajectory data along a 4-mile
stretch of 4-lane interstate roadway. The work enabling this is divided into three categories:

• A Large-Scale Traffic Instrument for Trajectory Data Collection
Motivated by the above needs, this dissertation proposes, designs, tests and implements the I-24 Mo-
bility Technology Interstate Observation Network (MOTION), a densely instrumented freeway that
enables continuous, ongoing coverage of a roadway at the fine-grained vehicle trajectory level. The
instrument is also the product of continued collaboration with the Tennessee Department of Transporta-
tion and industry partners. MOTION consists of a network of 296 traffic pole-mounted 4K resolution
cameras recording video data over a 4.2-mile stretch of freeway in its entirety. The raw video data
stream exceeds 24 TB/day of traffic data footage that must be processed in real-time to extract pre-
cise vehicle locations, trajectories, and other relevant information from the entire monitored portion of
roadway. The design of such a large-scale instrument necessarily requires integration of available state-
of-the-art algorithm capabilities into every part of the design process. This work discusses motivating
design considerations, proposes a cost-effective physical sensor configuration to enable the data extrac-
tion requirements, presents preliminary experiments assessing the feasibility of the system, conducted
as part of the first phase of the MOTION deployment, and provides a reference for the I-24 MOTION
system as built. The main result of this work is the operational traffic instrument itself, and details on
this system are published in a conference workshop paper [84], a conference paper [85], a Concept
of Operations document submitted to the Tennessee Department of Transportation detailing the goals,
requirements, and design considerations of this instrument, and finally a journal paper detailing the full
system as initially completed in November 2022 [34].

• Algorithms
– Multiple Object Tracking. A novel multiple object tracking method is proposed, utilizing the

core intuition that predictable object motion yields strong object location priors before objects are
detected at a given time. Prior works have utilized this tracking-contextual information to improve
the accuracy of MOT methods [86–90]. Conversely, the proposed approach leverages the strong
prior intuition to reduce the required computation to detect and track objects by cropping small
image portions known to contain object priors and ignoring the rest of each frame. The MOT task
is reformulated as a parallel single object tracking task, and a framework is provided to convert an
arbitrary existing object detector and online multiple object tracking method easily into a single
object tracker to solve this parallel task. Experimental results show i.) the crop-based method
increases both the speed and accuracy of an existing object tracker, ii.) the method achieves a
new state of the art on the preeminent vehicle tracking benchmark [1], and iii.) the method yields
a best result of 150% speedup with no decrease in accuracy. The main result of this work is
published in a conference paper [91].

– Vehicle Turning Movement Counting. Based on the crop-based tracking method proposed, a
novel intersection turning movement counting algorithm is proposed. Relative to the previous
work, the primary contribution of this work is to introduce a new method for object initialization.
The previous work relied on periodic detection of full frames to initialize new objects. In this
work, leveraging the turning-movement problem context where only objects that pass through
certain ”source” and ”sink” regions of the image are relevant for movement counting, source
region initialization is proposed. Each manually identified source region is cropped at each frame
and also processed by the same object detector as cropped objects, allowing for the detection of
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new objects without ever performing object detection on a whole frame. Experimentally, this
method achieves competitive performance against other turning movement counting algorithms,
and moreover increases speed by 57% relative to an otherwise identical method instead relying on
full frame detections. The main result of this work is published in a CVPR workshop paper [92].

– Multiple Camera 3D Tracking. The crop-based single camera tracking is extended to solve the
multiple camera tracking problem. Relative to the previous work, the primary contribution of this
work is to further reduce the image area that needs to be processed at each frame by leveraging the
redundancy of overlapping camera views. This work proposes to score each camera view of each
object, and query only the camera with the best view of each object. Secondly, this work pro-
poses a unified curvilinear coordinate system closely fit to the roadway lane markings capable of
providing vehicle positional accuracy on the order of 2 feet across cameras while simultaneously
aligning vehicle roadway motion along the primary coordinate system axis. These contributions
are included in the supplement of a submitted conference paper [93]. Thirdly, this work proposes
a new IOU-based loss formulation for 3D object detection from arbitrary viewpoints. Preliminary
results show state of the art performance on relevant multiple-camera 3D datasets, and show that
the new loss formulation is able to better and faster converge to the optimal parameter values.
This work is submitted as a conference paper [94].

• Datasets
– Multiple Object Tracking Dataset. This work proposes a new dataset that provides multiple

object tracking labels in a shared 3D space, across multiple camera fields of view. Relative to
existing works, this dataset is the first to enable the development of 3D vehicle tracking methods
in a traffic monitoring context. Moreover, the dataset has more synchronized camera views, more
3D vehicle bounding boxes, and more annotated frames than any other multiple camera multiple
object tracking or traffic monitoring dataset. The dataset furthermore combines the richest at-
tributes of each existing class of datasets, enabling research into new tracking tasks. Subsequent
analysis is performed to identify primary sources of error in the dataset arising from the difficult
of tight spatio-temporal camera synchronization. This work proposes initial solutions to address
these sources of error and refine annotated labels to improve trajectory attributes without sacrific-
ing in annotation quality, moving closer to the goal of a fully unified trajectory and image space
annotation set. Finally, this work benchmarks a number of existing multi-camera multiple-object
tracking approaches on the dataset, showing the implemented methods fall short of desirable per-
formance especially in occluded and dense scenes. This dataset is necessary for the development
of fast and accurate multiple-camera 3D vehicle tracking methods as described above. The main
result of this work is published in a conference paper [95].

– Large Scale Vehicle Tracking Dataset. This work proposes a new dataset designed to allow
the benchmarking of object tracking algorithms for extremely long term tracking performance.
It consists of a single scene of video data, 1 hour in duration, simultaneously recorded from
234 overlapping cameras covering 4.2 miles of interstate roadway. A set 270 GPS trajectories
recorded over 100 instrumented vehicles on the roadway during the recording duration is manu-
ally corrected to ensure positional accuracy. The annotated trajectories persist for an average of
6.6 minutes (11880 frames average at 30 frames per second (FPS)) and in general the scene has
high object density (>500 object typically visible across the scene). This annotation set is suitable
for assessing object tracking algorithms along recall-oriented metrics. Initial experiments show
that existing high-performing trackers fall well short of acceptable tracking performance on data
of this scale, and further work is needed to develop suitable algorithms for long-term tracking
tasks. Moreover, we take considerable care to make the data useful for computer vision applica-
tions, developing new techniques for keeping camera homographies more accurately aligned than
existing stabilization methods allow. This work is submitted as a conference paper [93].

– Vehicle Trajectory Dataset. 2 weeks of vehicle trajectory data are released with the original I-24
MOTION system paper [34]. Additionally, as of September 2023, the proposed I-24 MOTION
system produces vehicle trajectory data during morning rush hour (6:00AM to 10:00AM) each
day. The resulting trajectory data is made publicly available for research purposes. Any given day
of trajectory data is larger than all existing trajectory datasets (in terms of observation area length,
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duration of data recording and number of vehicles) and over time the I-24 MOTION trajectory
data will be the only publicly available, continuous vehicle trajectory dataset except possibly
among private entities.

1.2 Dissertation Organization

The remainder of this disertation is organized as follows: Chapter 2 provides a review of related works,
situating this work among existing literature. Chapter 3 describes the I-24 MOTION instrument, start-
ing with the initial feasibility tests performed to assess the concept of a large-scale video-based tra-
jectory generation testbed, and ending with a description of the I-24 MOTION system as constructed
and an overview of the first trajectory dataset released from the instrument. Chapter 4 details the
fast single-camera object tracking methods developed to enable efficient processing of video from the
I-24 MOTION camera system. Chapter 5 describes the extensions proposed to make this method suit-
able for tracking objects across multiple cameras in 3D space. Chapter 6 describes a ground-truth
3D multi-camera dataset developed using video data from I-24 MOTION for purposes of training
and benchmarking object detection and tracking algorithms. Chapter 7 describes a much larger video
dataset with sparse vehicle annotations developed to allow for extremely long term object tracking
performance benchmarking. Finally, Chapter 7.5 concludes the dissertation with perspectives on the
future of the I-24 MOTION instrument and on trajectory data efforts more generally. Lastly, don’t miss
the Appendices! They provide numerous mathematical formulations, derivations, additional results,
painstakingly thorough analyses of error modalities for various forms of data, discussions of privacy
considerations, and experimental details.
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2. Related Work
This literature review explores existing works in similar domains to this dissertation. Namely, it provides

an overview of existing traffic observation testbeds and datasets including vehicle trajectory data in Sections
2.1 and 2.1.1. The core contributions of the dissertation work rely on joint object detection and object track-
ing methods. Approaches to each constituent problem are briefly discussed in Sections 2.2 and 2.3, and a
comprehensive overview of online joint object detection and tracking methods is conducted in Section 2.4.
Tracking based solutions for the traffic task of vehicle turning movement counting are explored in Section
2.5. Approaches to multiple camera tracking are reviewed in Section 2.6. Lastly, existing single and multiple
camera multiple object tracking datasets are reviewed and summarized in Section 2.7 and Section 2.8.
2.1 Existing vehicle testbeds

A vehicle testbed consists of a section of roadway equipped with sensors that collect data on the vehicular
traffic through that portion of roadway. These sensors generally provide a richer set of data than is obtainable
on an un-instrumented section of roadway. Common sensors utilized include cameras, Light Detection and
Ranging LIDAR sensors, radar (speed estimation) units, and Dedicated Short Range Communication (DSRC)
devices allowing vehicle-to-vehicle and vehicle-to-infrastructure communication. The collection of this data
allows for finer-grained analysis of vehicles and traffic than could otherwise be obtained. Existing closed
course and open road testbeds already address some critical emerging research needs [96]. Closed course
testbeds, such as the American Center for Mobility [97], MCity [98], GoMentum Station [99], and Suntrax
[100], have the distinct advantage of being capable of hosting experiments and data collection for cutting
edge technologies and techniques including those under active research and development. By testing in
highly controlled settings, they can assure safety and eliminate external factors such as unpredictable drivers
and road conditions that can confound experiments. Because of the motivating objectives of closed course
testbeds, they can be limited in their ability to test in real traffic conditions with regular drivers encountered
on public roads. Open road testbeds exist in many forms on a variety of road types; examples include the
Minnesota Traffic Observatory [101], The Ray [102], the California Connected Vehicle Test Bed [103], Ann
Arbor Connected Vehicle Test Environment [104], and Providentia [105]. Table 2.1 summarizes existing
vehicle testbeds and the uses their data enables.

Testbed Location Sensors Open Road? Use

ACTION [106] Tuscaloosa, AL DSRC, Cameras Open road CV, V2I
M-City [107] Ann Arbor, MI DSRC, Cameras Closed course AV
The Ray [108] Interstate 85, GA DSRC Open road CV, V2I
California CV Testbed [109] Palo Alto, CA DSRC Open road CV, V2I
Gomentum [99] Concord, CA LIDAR, DSRC, Cameras Closed course AV, CV
ACM Proving Grounds [110] Ypsilanti, MI DSRC Closed course AV
SunTrax [111] Orlando, FL DSRC Open road V2I
AACTVE [112] Ann Arbor, MI DSRC Open road V2I
Providentia [105] Munich, DE Radar,Cameras Open road Trajectories
Minnesota Traffic Observatory [101] Minneapolis, MN Radar Open road Trajectories
Lower Saxony Testbed [79] Braunschweig, DE LIDAR, DSRC, Cameras Open road Trajectories, CV
Zen Traffic Roadways [80] Osaka, JP Cameras Open road Trajectories, CV, AV

Table 2.1: Existing vehicle testbeds. CV indicates connected vehicle technology testing, V2I indicates vehicle
to infrastructure communication testing, AV indicates autonomous vehicle testing, and Trajectories indicates
the testbed produces speeds and positional data for vehicles on the roadway.

2.1.1 Vehicle Trajectory Data
Vehicle trajectory data and consists of vehicle positional data for each vehicle within a traffic stream. Gener-
ally, positional accuracy on the order of 1-foot is required to allow accurate calculation of derivative quantities
such as velocity, acceleration and steering angle. Figure 2.1 shows an example of vehicle trajectory data. This
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Figure 2.1: Vehicle Trajectory Data. (left) A single vehicle trajectory. (right) Vehicle trajectories for every
vehicle in one lane of traffic.

data contrasts with traditional traffic sensing approaches in that it is at once macroscopic (i.e. contains in-
formation about the global traffic flow such as throughput, vehicle density and latency) and also microscopic
(i.e. contains the precise positional and derivative data for each vehicle). Such data is required for myriad
traffic analysis and modeling applications, yet sources are limited. Of existing vehicle testbeds (see Table
2.1, only the Minnesota Traffic Observatory [101], Providentia [105], the Lower Saxony Testbed [79], and
Zen Traffic Roadways [80] are capable of producing vehicle trajectory data. The first two report average po-
sitional errors (RMSE) of over 3 meters, so only the latter two Lower Saxony Testbed provides fine-grained
vehicle trajectories. However, data from [79] is not currently made publicly available, so the testbed use in
research is limited and the quality of the data cannot be assessed. Given this data shortage, much research
requiring vehicle trajectory data relies on the NGSIM dataset [49], collected almost 2 decades ago and known
to contain large vehicle positional errors [50].

2.1.2 Emerging Observation Technologies
In a parallel thread, significant research has been devoted to the computer vision tasks of object detection
(locating relevant objects within an image) and object tracking (associating distinct objects in video frames
across time). Especially in the past 10 years, rapid progress has been made in the use of modern hardware
[59], neural network architectures [60–63], and massive-scale image datasets [64, 65] to fit accurate object
detection algorithms. Approaches for extracting vehicle trajectory data utilizing these techniques have been
proposed. For example, the work [113] proposes a method to detect vehicle 3D rectangular prism bounding
boxes using background subtraction and blob segmentation, relying on automatic parameter extraction of
the scene homography proposed in [114]. The work [115] uses this data to train a convolutional neural
network (CNN) to produce the same data without the need for scene-wide calibration. In [116], 2D object
detectors are used to estimate vehicle positions on the road plane (the ambiguity of vehicle position within a
2D bounding box is not fully addressed). [117] uses ground plane projection of vehicle pixels from multiple
cameras to estimate the vehicle’s position, validating with turning movement counts. Other solutions rely
on re-identification of 2D tracked objects, without addressing 2D annotation position ambiguity [118, 119].
Other methods utilize instance segmentation networks [77, 120] on traffic scenes with little occlusion. A few
approaches [121, 122] avoid object detection by measuring object presence in longitudinal scanlines along
each roadway lane, but occlusion and lane changes pose difficult challenges in this problem formulation. In
theory, such methods promise to address the shortage of trajectory data.

These advances, along with the increasing prevalence of aerial drones, have enabled recent research ef-
forts to revisit the task of vehicle trajectory extraction and make marked advancements to the state of the art.
The HighD, [66], ExiD [67], AUTOMATUM [68], and HIGH-SIM [69] datasets all utilize aerial imagery
shot from either drone or helicopter-mounted cameras to produce complete highway vehicle trajectory data,
and the Third Generation Simulation (TGSIM) [70] is a similar in-progress effort designed to capture tra-
jectory data containing deployed automated vehicle technologies. Similarly, the pNEUMA [71], inD [72],
rounD [73], OpenDD [74], Interaction [75] and CitySim [76] datasets utilize drones or swarms of drones to
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study complex urban vehicle and pedestrian interactions in more detail. High aerial fields of view make mod-
ern image segmentation algorithms [77] well posed for vehicle tracking in these contexts, but these methods
are temporally limited by the relatively short battery life of drones (generally under an hour) and the re-
quirement for human pilots. Some additional works utilize sensor-equipped vehicles [123, 124] or GPS data
[125, 126] to collect vehicle trajectories, but these technologies do not provide data for non-instrumented
vehicles. A persistent shortage of trajectory data in many cases requires that researchers rely on models such
as TransModeler [127, 128] or SUMO [129] to simulate the interactions between drivers at scale, which only
approximate human driver behavior.

2.2 Object detection

Nearly all top-performing object detection methods rely on convolutional neural networks (CNNs) for fea-
ture extraction from an image [59]. Each of these networks consists of a backbone that extracts a meaningful,
lower-dimensional set of features useful for the derivative task of object detection from the extremely high-
dimensional set of inputs for the object detection task (pixel intensity values), and one or more heads that use
this feature set to produce the desired outputs (namely object positions as 2D bounding boxes and per-class
confidences). The backbone is composed of convolutional neural network layers, pooling layers which ag-
gregate information to reduce the representation dimension, and custom architecture-specific layers designed
to increase task performance. Almost universally, CNN architectures designed for object classification such
as [60] are used as the backbone because these models can be pre-trained on huge datasets for object classi-
fication [64] and empirically, features useful for classification are also useful for detection.

A few common structures exist for the detection and classification heads. Anchor-based methods explic-
itly assign an output to each region and potential object size in an image, and backbone features for that image
are mapped to these outputs by either fully connected or convolutional neural network layers. Anchor-free
methods instead map backbone features to a heatmap of object locations with convolutional neural network
layers and regress object sizes from this heatmap. These methods generally require custom pooling layers
within the backbone architecture that better convey keypoint information about objects through convolutional
layers. Within both anchor-based and anchor-free methods, a distinction exists between one-stage and two-
stage detection methods. In one-stage methods, the final outputs are directly regressed as offsets from the
anchors. One-stage anchor-based methods include YOLO [61] and its various derivatives [130], [131], Reti-
nanet [132], and SSD [133], and one stage anchor-free methods include CornerNet [134] and CenterNet [63].
In two-stage methods, region proposals or keypoint proposals are first regressed. These proposals are used
to crop local features from the associated portions of the image, and each region is subsequently processed
by a second regression head to output the final object detections and classifications. Two-stage anchor-based
methods include Faster-RCNN [135] and Evolving Boxes [136]. Recent object detection works have utilized
additional architectures for detection and classification heads. Segmentation models such as Mask-RCNN
[77, 137] have also been adapted to perform bounding box-based detection as they provide a richer output
from which the object detection outputs can be trivially obtained. Attention networks [138] or transformer
networks [139, 140] have also been proposed for object detection. Additionally, object detection approaches
have also been bolstered by adding additional awareness of foreground and background [141], by use of a De-
tection models are generally designed such that they can process (640×480 pixel) frames from benchmarking
datasets such as COCO [65] quickly, but speed often degrades to or below 30 frames per second on a GPU
for the best-performing object detection methods for frames of modest size (e.g., 960×540 [1], 1392×512
[81], and 1920×1080 [82]).

2.2.1 Monocular 3D object detection
Monocular 3D detection methods seek to generate a set of 3D bounding boxes in 3D space based on a single
camera image. One early work is Mono3D [142], which generates rich 3D proposals with the assumption that
vehicles locate on the ground plane and then scores the boxes with contextual information and size, location,
and shape priors. Likewise, [143] generates 3D proposals and ensures that feature map computations are
orthographic such that objects further away and occupying fewer pixels do not occupy less of the final feature
map space. In [144], detection and object tracking are accomplished by directly regressing 3D coordinates,
but anchor boxes are generated in 2D image-space (thus the scene homography is implicitly learned during
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training).

2.2.2 Viewpoint-Agnostic Monocular 3D Detection
Viewpoint agnostic monocular methods can roughly be divided into two categories: i.) methods that regress
2D bounding boxes or segmentations along with augmenting outputs and utilize homography constraints to
subsequently predict 3D outputs, and ii.) methods that regress 3D projections of keypoints or bounding box
corner points.

In the first category, Deep3DBox [145] predicts a 2D bounding box, the observation angle, 3D object
size, and object 3D center position (in the image) from the features enclosed by the 2D bounding boxes, as
the bounding box can subsequently be fit by the constraint that its 2D projection falls within the 2D bounding
box. Shift R-CNN [146] and Cascade Geometric Constraint [147] leverage the fact that 4 vertices of the 3D
bounding box must lie on the 2D bounding box. The main drawback of these models is that they rely on
accurate predictions of 2D bounding boxes. Errors in 2D bounding boxes compound in the 3D prediction.
Likewise, [148] utilizes a 2D bounding box and manipulates a simplified 3D vehicle model to optimize
the 3D object position within the bounding box. 3D-RCNN [149] takes additional segmentation inputs and
generates a compact 3D representation of the scenes. It exploits class-specific shape priors by learning a
low-dimensional shape-space from collections of CAD models.

Most recent methods fall in the latter category, representing vehicles as polyhedrons or 3D bounding
boxes. Mono3D++ [150] represents a vehicle as 14 keypoints and learns the 2D keypoints using EM-Gaussian
method. MonoRCNN [151] is built upon Faster R-CNN and adds 3D attribute and distance heads to recover
3D bounding boxes. The heatmap concepts proposed by CenterNet [63] inspired many monocular 3D de-
tection models because this model’s structure is well-suited to keypoint regression. RTM3D [152] uses
CenterNet-based structures to regress nine keypoints of the 3D bounding box corresponding to the eight cor-
ners and the center of the 3D cuboids. RTM3D also regresses distance, 3D box dimension, and orientation of
vehicles, then solves an optimization for the best-fitting bounding box in 3D space for each object. Likewise,
Monocon [153] and Monoflex [154] are built upon CenterNet. Monoflex directly predicts 3D dimensions
and orientations and incorporates multiple depth estimation methods to increase accuracy. In [155], no scene
information is ever used, and instead the vanishing points and, thus, scene homography are directly computed
from output 3D bounding boxes (albeit in a traffic monitoring context).

2.2.3 IoU Loss in Object Detection
L1 and L2 losses are widely used in object detection models but ignore the shape of bounding boxes and
are easily influenced by the scales of boxes. Conversely, IoU encodes the shape properties of objects and is
invariant to the scale. Thus, IoU-based loss formulations have achieved good performance in object detec-
tion. In [3], Generalized Intersection over Union (GIoU) loss is proposed to provide better convergence for
non-overlapping bounding boxes. The authors incorporate GIoU loss into YOLO v3 [130], Faster R-CNN
[156], and Mask R-CNN [77] and show a consistent improvement in their performance on popular object de-
tection benchmarks such as PASCAL VOC and MS COCO. [157] similarly incorporates the distance between
bounding boxes to aid convergence in non-overlapping cases. In [158], the authors introduce Complete-IoU
(CIoU) loss to consider three geometric factors: overlap area, normalized central point distance, and aspect
ratio. CIoU loss is used in YOLOv4 [131] and leads to notable gains of average precision (AP) and average
recall (AR). In [4] and [159], IoU loss is defined for two rotated bounding boxes into several 3D object de-
tection frameworks. which leads to consistent improvements for both bird-eye-view 2D detection and point
cloud 3D detection on the public KITTI benchmark [160].

While promising, these IoU loss variants are not suitable for the keypoints of 3D bounding boxes projected
to the image plane. No work yet analyzes the performance of incorporating IoU loss into viewpoint-agnostic
monocular 3D detection frameworks.

2.3 Multiple object tracking

The multiple object tracking task seeks to produce the position and unique identity for each distinct object
appearing across a sequence of images or video. The vast majority of approaches consider this task given an
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input set of object detections for each video frame from any arbitrary object detection algorithm, known as
the tracking by detection paradigm. Figure 2.2 provides a graphical summary of this task.

Figure 2.2: Multiple Object Tracking Problem. Detections (circles) are assigned unique IDs (colors). Missing
detections (dashed circles) must be imputed, and detection false positives (red X) must be removed.

Multiple object tracking has been comprehensively reviewed [161–163]. In this review, we provide a
breakdown of popular methods along 3 informative lines: the online or offline nature of the method, the fun-
damental problem formulation solved, and the auxiliary models of object information that are incorporated.
Each is discussed in the following subsections.

2.3.1 MOT processing mode
Online multiple object tracking methods including [5, 60, 86, 89, 164–173] do not make use of future infor-
mation when predicting the set of object states at any time. That is, the predicted set of objects is output for
frame n after seeing detections from frames 0, ...,n but before seeing detections for frame n+ 1, ...,N. By
contrast, offline methods [174–185] make use of information from the entire set of object detections for all
N frames to produce tracked objects for each frame in the sequence. A third category, called near-online
methods [186–189], consider only information from frames 0, ...,n+k to produce object tracking outputs for
frame n, where the lag k is relatively small relative to the overall number of frames N.

2.3.2 MOT problem formulation
As noted in [161], it is difficult to comprehensively and precisely categorize the corpus of MOT problem
formulations into a distinct and meaningful taxonomy. However, the vast majority of algorithms can roughly
be described as either graph-based methods, energy-based methods, or probabilistic representation methods.

2.3.2.1 Graph-based MOT methods
The MOT problem is well-formulated as a graph-based data association problem [190]. In this formulation,
each detection is represented by a node, and edges are assigned to associate detections into object tracklets.
The MOT problem has been formulated as a maximum weight minimum-cost flow problem [174, 176, 187–
189] subject to exclusion and unit flow constraints (a maximum of one edge into and out of a node, each with
unit flow), a maximum weight independent set problem [175, 177, 186] (maximizing edge weights between
detection nodes belonging to the same object / set), a conditional random field graph problem [178, 185] asso-
ciating small object tracklets with one another, and, most often, a bipartite matching problem [5, 60, 89, 166–
169], where the optimal matching of existing tracked objects to new detections is selected on the basis of
edge weights. These graph problems can be solved optimally with existing algorithms [5, 166, 176], with
proposed efficient optimization algorithms that efficiently explore the space of possible solutions [178, 188]
or with greedy approaches [87, 187]. Importantly, each graph-based method relies on defining meaningful
edge weights (alternately referred to as the cost or affinity) between pairs of objects or detections. Such
weights are generally defined as a combination of various information sources about the detections, includ-
ing geometry/position, appearance, physical dynamics, etc. Methods may ensemble combine these various
sources of information analytically [87, 89, 170, 181, 191–194] or else utilize additional convolutional lay-
ers [195, 196], recurrent neural networks such as LSTMs [186, 197–201] or graph neural networks (GNNs)
[168, 169, 189, 197, 202, 203] to predict affinity by modeling the interactions between these various sources
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of information across co-occurring objects and across time. These various sources of information are dis-
cussed in more detail in Section 2.3.3.

2.3.2.2 Energy-based MOT methods
Energy-based methods consider an exhaustive state space of continuous object positions and discrete object
identity assignments [180–185]. Each state within this space is scored according to its energy, which is
generally defined according to some combination of information sources discussed in section 2.3.3. Then,
the optimal state is determined by optimization / minimization of this energy term. In practice, the search
space is highly non-convex, so efficient algorithms are proposed to explore this space and converge to an
optimal solution more quickly.

2.3.2.3 Probabilistic representation MOT methods
Probabilistic methods maintain a probabilistic distribution of possible object positions for a given time, rather
than a deterministic representation. This distribution may consist either of a ”search tree” of discrete pos-
sible object assignment sets, as in multiple-hypothesis trackers [164, 165, 186], or a continuous distribution
of object locations and likelihoods, as in filtering-based methods [172, 173]. Note that while energy-based
methods explore a space of possible hypotheses, they solve an optimization to finally represent object posi-
tions deterministically and generally in an offline or semi-online manner, whereas probabilistic methods are
online or near-online and maintain a non-deterministic representation of each object during tracking. In each
case, a necessary step to produce object tracking outputs is the determination of the maximum likelihood
estimate of object positions from the distribution of possible states.

2.3.3 Incorporation of information into MOT problem
A number of sources of information can be incorporated into multiple-object tracking. Major categories of
information are briefly discussed here:

1. Position/Geometry - Object representational geometry such as object center [5] or bounding box over-
lap [166] are used to compare existing objects and detections.

2. Appearance Information - Object appearance is encoded as a vector or set of features generated from
constituent image pixels. These features are sometimes generated with manually designed feature
extractors such as color or object contour shape extractors [181, 185, 204]. Most recent approaches use
CNN-based appearance embeddings learned to minimize embedding distance between embeddings
of the same object and maximize embedding distance between embeddings of different objects [60,
89, 167, 171, 193, 205, 206]. This distance is generally calculated as cosine distance between the
embedding vectors.

3. Physical Dynamics - Object motion is modeled, often with a constant velocity assumption [86, 88, 194,
207], or with higher order dynamics considered [185, 208]. Filtering methods are also used to optimally
combine motion models with object measurements (detections) [5, 60, 202]. Optical flow prediction,
[90], Long-Short term memory networks (LSTMs) [186, 198, 199, 202], and velocity regression during
detection [86, 87] have also been used to model object motion implicitly with neural networks.

4. Interaction Models - for instance, individuals moving in a group should maintain the same approxi-
mate configuration. [161] provides a more comprehensive overview of interaction models.

5. Exclusion Models - the same objects should not be associated with the same or very similar detections
[181], and should not occupy the same physical space at the same time [209].

6. Occlusion Models - a variety of methods are considered for gracefully handling instances where ob-
jects are temporarily obscured. Common approaches include propagating object locations into the
future using motion models [5, 86], or using appearance embeddings to re-match objects to with a set
of disappeared objects when they become visible again [194, 210]. Methods may additionally model
when objects are occluded and exclude these objects from appearance and position updating [209, 211–
213], or stitch tracklets for the same object together with a single object tracker post-processing step
[214].
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2.3.4 Multiple object tracking evaluation
Much work has been done to create evaluative metrics for multiple object tracking that richly capture the
performance of tracking algorithms in terms of a variety of desired qualities [215–218]. From among these
metrics, Multiple Object Tracking Accuracy (MOTA) is overwhelmingly the most often used aggregate metric
to assess tracking accuracy. Adopting the notation from the proposing work [216], MOTA weighs 3 intuitive
types of tracking errors: false positives ( f p), in which a predicted object position in a frame cannot be
matched to a suitably similar ground truth object position in that frame, false negatives or misses (m), in
which a ground truth object position for a frame cannot be matched to a suitably similar predicted object
position in that frame, and mismatches (mme), in which the predicted identity matched to a ground truth
object trajectory changes (either because the object was lost and re-tracked as a new object, or because two
tracked objects switched identities). The aggregate metric compares the total of these errors relative to the
total number of ground truth object positions g for a frame, and is calculated over all frames (indexed by n)
as:

MOTA = 1− ∑n mn + f pn +mmen

gn
. (2.1)

Recently, the Higher Order Tracking Accuracy (HOTA) metric has been proposed and gained popularity
because it expresses localization accuracy, detection precision and recall, and association accuracy in a single
score [218].

2.4 Joint Detection and Tracking

The previous section discussed methods for object detection and object tracking, respectively. Generally,
object detection is tracking-agnositc; that is, object detection is performed without regard for how the outputs
will be used during tracking and without using any information which might be gained from the tracking
context. However, recent works aimed at tracking objects through video have proposed joint approaches
that do utilize the tracking context in various ways. This approach has a strong intuitive basis; generic
object detectors assume that the output distributions for consecutively processed images are independent
of one another, but in reality the positions of objects within closely consecutive video frames are highly
correlated. Joint detection and tracking methods seek to leverage this additional information to increase
tracking performance (generally in terms of accuracy). Figure 2.3 provides an overview of the joint tracking
and detection framework.

The following subsection provides an overview of notable approaches to the joint detection and tracking
problem, broken down into four primary categories of tracking information utilization. Note that despite this
categorization, some methods use multiple categorical techniques for combining the detection and tracking
tasks. Unless otherwise noted, each joint method is online. This is because the information from previous
frames output tracklets is explicitly required for future frames. Within the online framework, the vast majority
of approaches use bipartite matching formulation, but some solve other graph-based problem formulations.

2.4.1 I.) Additional object detection outputs
Methods in this category are weakly joint; the sequential nature of video frames is not utilized to improve
object detection performance; however, these methods extend object detection models to produce additional
outputs that are useful for the object detection task; thus they incorporate the object tracking task into object
detection. Primarily, methods output object appearance embeddings for subsequent appearance-based affinity
computation as well as object bounding boxes in a multi-task learning framework [167, 170, 192, 193, 202,
205, 219]. By producing these outputs in the same model (as opposed to computing appearance features after
object positions and classes as in previous works), information from each task can be utilized to improve
performance on the other.

A number of other tracking-specific output heads are added to object detectors in other works. (Note that
these outputs are accompanied by additional usages of the tracking context, so these works are described in
more detail in following subsections. Some methods output rasterized heatmaps of object location likelihoods
[87, 167, 220, 221], and others output object displacements (predicted motion) in lieu of an explicit motion
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Figure 2.3: The joint detection and tracking paradigm. Items in green are unique to the joint paradigm and
are not present in the tracking-by-detection paradigm. The joint paradigm utilizes tracking information in one
or more of four distinct ways: I.) Object detectors output additional information useful for tracking problem
formulations (i.e. data association). II.) Single object detection and tracking methods are utilized in parallel to
perform multiple object tracking. III.) Additional tracking-specific information is input to the object detector.
IV.) The object detector is re-architected specifically for joint detection and object tracking.

model [87, 220, 222, 223]. Finally, transformer-based joint methods output ”queries” or latent representations
of object appearances for recursive usage by the transformer model on the following frame [212, 224, 225].

Lastly, a few methods output practically no new information at all, but opt to output all object detector
outputs rather than thresholding these values based on predicted object confidence. Generally, only detections
with confidence higher than some threshold are saved as outputs, and furthermore overlapping detections are
pruned. In [226] and [227], all detections are saved, and existing tracked object information is used to select
from this complete set of detection outputs rather than only the high-confidence subset.

2.4.2 II.) Formulation as parallel single object tracking problem
A large number of existing works such as [228–232] explore the task of detecting and tracking a single object
in video, usually with the object of interest manually identified on the first frame. Recent joint detection and
multiple object tracking works have made use of highly accurate single object trackers (SOTs) for multiple
object tracking, and can be roughly divided into three sets of methods.

The first set of SOT methods utilizes multiple single object trackers in parallel [210, 233, 234]. These
methods make use of object detectors to initialize new objects at each frame or at the beginning of the video
sequence [234], and subsequently uses a single object tracker to track each unique object.

A second set of SOT methods ensembles the results from single object trackers and object detectors at
each frame, selecting the best outputs to match to each tracked object [209, 211, 223, 235]. In a similar vein,
[214] runs a tracking by detection framework but subsequently revisits each frame with single object trackers
to stitch together fragmented trajectories [214].

Finally, a third set of SOT methods compute shared features on a frame, and then utilize custom neural
network heads that explicitly associate their outputs with a single object each. In [212], a separate attention
head is added for each object, which outputs a detection and a query that is input to that object head at the
next frame (sharing appearance and positional information across frames). [86, 90] map each object prior
to a single region proposal or anchor box, and the resulting regressed bounding boxes are then implicitly
associated with the corresponding objects. Transformer-based methods [224, 225] pass a query per object to
the object detector, and the corresponding outputs for each query are likewise implicitly associated with the
corresponding objects.
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2.4.3 III.) Additional inputs to object detector
Methods in this category are trained with additional or alternate inputs that are not available in a pure object
detection context, but are available in a tracking context. Trained object detectors make use of the additional
information offered by these inputs (especially with respect to localizing objects in motion, maintaining object
persistence across frames, and gracefully handling temporary object occlusions) to boost output detection
performance. Additional inputs to object detection networks in joint methods generally fall into two classes.

In the first class, two [87, 89, 194, 207, 220–222] or more [192, 203, 208, 234] consecutive frames are
passed as inputs to the detector.

In the second class, predicted existing object locations or priors are passed as inputs to the object detector.
In [87] and inspired works [89, 220, 221], priors are input as a heatmap image of object center locations.
In transformer-based approaches such as [224, 225, 236], objects embedding vectors or search queries are
passed into the network.

2.4.4 IV.) Object detector architecture reformulation
The previous class of methods utilized tracking information in the detection context with additional inputs
to off-the-shelf object detectors. In contrast, this class of methods uses a different formulation of the object
detector architecture to explicitly utilize tracking information. There are three major sets of approaches in
this class.

First, some methods use object priors to select the best matching anchor box from among one-stage
detector anchor boxes [90] or to explicitly add region proposals linked to each active object in a two-stage
detector network [86, 223]. Similarly, [171] weights each region proposal both based on predicted confidence
(as in normal two-stage detectors) but also based on overlap with object priors.

Second, other methods consider sets of anchor boxes or region proposals spanning multiple frames (i.e.
a region proposal includes a bounding box for an object in each frame). These methods necessarily also take
multiple frames as input. Some methods consider anchors spanning pairs of frames [207, 222] while other
consider longer object ”tubes” spanning arbitrarily many frames [88, 203].

Lastly, some methods utilize 3D convolutional neural networks, treating a set of consecutive frames as a
3D volume and learning neural network features spanning multiple frames. [88] and [213] combine this 3D
convolutional structure with 3D (across multiple frames) region ”tube” proposals (and subsequently utilize
3D tube intersection for bipartite matching affinity) , while [203] and [234] opt for 3D convolutions but single
frame region proposals.

Table 2.2 provides a summary of the four discussed classes of joint tracking methods, as well as the major
sets of approaches within each class.

2.5 Turning movement counting

One common derivative usage of multiple object tracking methods in the domain of traffic monitoring is for
vehicle turning movement counting at roadway intersections. Each turning movement is describable by an
origin roadway segment and a destination roadway segment, and vehicle tracking associates an origin and
destination with that vehicle. General approaches to this problem can be categorized into single movement
and multiple movement vehicle counting.

2.5.1 Single movement vehicle counting
The task of single movement vehicle counting or counting of vehicles passing a fixed line generally requires
object detection, as well as object tracking to avoid double-counting the same vehicle in multiple frames. As
noted in [237], single movement vehicle counting is still a challenging task in cases where camera field of
view creates extremely high overlap between vehicles. In [238], an early algorithm for object counting is
proposed utilizing background subtraction, blob fitting to cluster pixels into objects, and Kalman filtering to
track vehicles across frames. [239] utilises Gaussian Mixture models for clustering background-subtracted
pixels and compares each resulting cluster’s convex hull area to its contained bright pixel area to explicitly
predict object occlusion. [240, 241] use CNN-based object detectors and the Kanade-Lucas-Tomasi feature
tracker to track and count objects. Similarly, [242, 243] utilize CNN object detectors and Kalman filtering
for object tracking through the movement of interest, and [244] combines a cascade feature-based CNN
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Joint Context Works

I.) Additional Detector Outputs
Re-identification Embeddings [170], [167], [205], [89], [193], [194],[219],

[192],[202]
Object Displacement Map [223],[222]
Object Predicted Motion Offsets [87], [220]
Heatmap of object locations [87],[89],[221],[220]
Object Latent States [212]
Future object positions [86]
All (un-thresholded) detector outputs [227], [226]

II.) Parallel Single Object Tracking
Separate Tracker per Object [210],[209],[233]
Shared CNN Features [212],[224] ,[86], [90],
Ensemble of Detector and Single Object Trackers [214], [211], [235], [234], [223]

III.) Additional Inputs to Detector
Multiple Frames [170], [89], [222], [207], [87], [192], [208], [203],

[234], [88] [194],[221],[220]
Object Prior Heatmaps [89], [87],[221],[220]
Object Embeddings as Queries [236], [224], [225]

IV.) Modified Detector Formulation
Anchors/ Proposals Across Multiple Frames [207], [222], [208], [88]
Anchor / Proposal Selection using Object Prior [86, 90, 171, 223]
3D Convolutional Neural Network [203, 234]

Table 2.2: Joint Tracking Methods by Usage of Tracking Context.

with IOU tracking [166]. [245] also utilizes a weakly defined homography transformation into real-world
coordinates to estimate each tracked vehicles length and inform vehicle classification. [246] makes use of
foreground and background information to drastically reduce the feature space relative to image pixel-space
before regressing object locations. [247] does not track objects, but instead maintains occupancy counts for
several regions with the frame to logically determine when a vehicle should be counted.

2.5.2 Multiple turning movement counting
The task of multiple turning movement counting is distinct from single-movement vehicle counting in that a
movement uniquely defined by an object’s origin and destination must be predicted for each counted object.
As with single movement counting, multi-movement vehicle counting is still a challenging task especially
when realtime performance is required. [248] utilizes a neural network to predict multiple vehicle turning
movement counts at intersections given only aggregate approach traffic volume, which could effectively turn
single-movement algorithms into multiple-movement counting algorithms, but this approach is not widely
used. Nearly all algorithms for vehicle turning-movement follow the detect-track-count paradigm, where ob-
jects are detected in each frame, tracked across frames, and tracklets are subsequently categorized into turning
movements, though [249] instead utilizes a joint tracking and detection method, Tracktor [86], and [250] in-
stead directly regresses vehicle counts from an input video using a Long-Short Term Memory (LSTM) neural
network to incorporate temporal information into the task. Most approaches for counting vehicle movements
from trajectories utilize trajectory passage through unique sets of regions with the camera field of view to
uniquely identify the relevant turning movement [249, 251–255], directly compare trajectories to canoni-
cal turning movements from each possible movement category [245, 256–258], or do some combination of
the two [259, 260]. While many approaches in the first category require only a source and sink region to
uniquely define a movement, some methods utilize larger sequences of regions to help distinguish between
turning movements that occupy similar areas within a camera field of view [252, 254]. In the second cate-
gory, the longest common subset (LCSS) shared by object trajectories and canonical turning movements is
often used to assign turning movements to trajectories [256], but K-nearest neighbors clustering [257], scale-
normalized trajectory similarity [258] and Hausdorff distance [245] are also used. [258] also scores each
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turning movement in terms of stability, completeness, and proximity to each object’s trajectory, and smooths
out anomalous points in each trajectory. [260] performs segmentation on trajectories and compares segments
to known turning movement segments.

2.6 Multiple camera, multiple object tracking

Multiple camera multiple object tracking (MCT) seeks to associate objects tracked in a set of individual
camera views with one another, or else to output tracked objects detected in the set of cameras natively in
a shared space (e.g real-world ground plane). The vast majority of these methods can be separated into 2
classes: methods that perform single camera tracking followed by multi-camera clustering of trajectories,
and methods that perform single camera detection, cluster detections across cameras, and track in a unified
space.

2.6.1 Input fusion
These methods performs object detection utilizing frames from all cameras simultaneously [261–264], sub-
sequently perform object tracking on the single set of detections output.

2.6.2 Single camera tracking, multi-camera trajectory clustering
Generally, these methods formulate cross-camera trajectory clustering as a graph-based problem such as
maximum weight clique [265, 266], or else solve the problem by greedy approximation [118, 267–273]. The
affinity between two trajectories is generally computed as a combination of vehicle appearance embeddings
and spatio-temporal similarity (based on 3D space distance in two cameras at the same time) [266, 267,
269, 271–273]. [118] also uses license plate recognition features when possible to aid in trajectory linking.
Some methods identify shared spatial zones across multiple cameras and require that clustered trajectories
visit the same sequence of zones [271], or else utilize a camera link model which specifies a limited set of
possible object paths through a set of camera views [267, 269, 270, 272, 273]. [268] also notes that matched
trajectories must both cross a line shared between both cameras at the same time, using this information to
reduce the matching search space. [274] formulates the trajectory linking problem as a multiple hypothesis
tracking problem, using trajectory appearance and motion to estimate a hypothesis’ likelihood. Lastly, [275]
tracks objects in single camera views at a time with Kalman Filter representations and ”hands off” objects
between cameras when they near the extents of camera fields of view.

2.6.3 Single camera detection, detection clustering, and shared-space tracking
Several methods in this category detect objects by background subtraction, and project the detected pixel
blobs into a unified space where they can be concatenated by mixture of Gaussian methods [276, 277]. The
resulting shared-space detections are then tracked with simple methods such as in [5] or else by probabilistic
hypothesis density filtering [277]. [278] uses a similar approach specifically for pedestrian tracking but
searches for human head shapes on a plane offset from the ground plane. Other approaches rely on off-
the-shelf object detectors, combining detections using hierarchical clustering methods that utilize appearance
and location information [279, 280]. [281] uses a Bayesian belief network to assign new detections to shared
space tracked objects modeled with Kalman filters.

2.7 Multiple object tracking datasets

This section briefly reviews existing datasets for multiple object tracking. The representation of objects (2D
or 3D) and the context of each dataset is noted.

2.7.1 Single Camera MOT Datasets
The task of single camera 2D multiple object tracking (MOT) is well-studied in varied contexts, including
pedestrian and vehicle tracking from stationary and moving cameras (MOT16, 17 and 20) [82, 217], tracking
from drone footage (VISDRONE) [282], and traffic monitoring (UA-DETRAC) [215], as well as arbitarary
object class tracking [283]. 3D single camera (or stereo camera for depth) multiple object tracking is also
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well-addressed within the domain of autonomous vehicle (AV) or ego-vehicle data (KITTI, Waymo Open-
Drive, and NuScenes) [124, 284, 285]. Data annotation in this context is aided by rich LIDAR data from
on-vehicle sensors. As a result, effective methods for 3D tracking in this context have been proposed, repre-
senting vehicles as 3D rectangular prisms in 3D space [286] or image space [152], 3D voxel patterns [287],
or CAD-derived shape models [148].

Rich 3D data in the traffic monitoring (overhead traffic camera) domain is sparse, in part because LI-
DAR sensors are not collocated with cameras to aid in annotation. Only the BoxCars116k dataset [115]
provides (automatically generated) 3D monocular bounding boxes. Thus, research on 3D vehicle tracking
from overhead cameras must use simulated or partially synthetic data [288–290].

2.8 Multi-camera MOT datasets

Few multiple camera multiple object tracking datasets exist, mostly in the context of pedestrian tracking.
The Duke-MTMC dataset [291] and CamNeT [265] each associate 2D object tracklets for pedestrians across
8 cameras, and the PETS dataset [292], EPFL Terrace [293], EPFL-RLC [294], and WILDTRACK [295]
synchronize up to 8 cameras for pedestrian multi-camera tracking [293], The latter set provides annotations
in a unified ground plane, with pedestrians represented as points [295] or grid cell occupants [294] on the
ground plane. In a vehicle context, the CityFlow dataset [296] associates 2D MOT data in a traffic monitoring
context across multiple cameras throughout a city, with an average of 4 cameras covering scenes, but object
dimensions and a shared tracking space are not modeled. NuScenes contains multiple frontal, side and
rear-facing, frame-capture synchronized cameras enabling 3D multiple-camera tracking in an AV context.
The pNEUMA Vision dataset [297] provides up to 10 drone-mounted camera views and scenes of up to 13
minutes in duration, though has known annotation shortcomings. Synthehicle [298] contains synthetic 3-
minute scenes with up to 7 cameras in a traffic monitoring context, totalling over 17 hours of video footage.
Crucially, there is no multi-camera dataset with a high object density (over 100), long object durations (5+
minutes), and more than 25 overlapping cameras. Moreover, to the best of our knowledge, no dataset with
multiple overlapping traffic videos from real traffic cameras for tracking with 3D vehicle representations
exists. Table 2.3 summarizes the listed datasets.

Dataset Context Imagery ReID Detection MOT MCT Trajectories

2D 3D 2D 3D 2D 3D

WILDTRACK [295] Pedestrian ✓ ✓ ✓ ✓ ✓ ✓
EPFL [293, 294] Pedestrian ✓ ✓ ✓ ✓ ✓ ✓
PETS [292] Pedestrian ✓ ✓ ✓ ✓ ✓
Duke MCMT [291] Pedestrian ✓ ✓ ✓ ✓
MOT [82, 217] Ped/AV ✓ ✓ ✓ ✓
KITTI [284] AV ✓ ✓ ✓ ✓ ✓ ✓
NuScenes [285] AV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Waymo [124] AV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
VisDrone [282] Aerial ✓ ✓ ✓ ✓
TAO [283] Various ✓ ✓ ✓ ✓
NGSIM [49] Trajectory ✓ ✓
HighD/InD [66][72] Trajectory ✓
BoxCars116k [115] Traffic ✓ ✓ ✓ ✓
UA-DETRAC [215] Traffic ✓ ✓ ✓ ✓
CityFlow [296] Traffic ✓ ✓ ✓ ✓ ✓
pNEUMA Vision [297] Aerial ✓ ✓ ✓ ✓ ✓ ✓
Synthehicle [298] Traffic ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2.3: Existing Multiple Object Tracking and Vehicle Trajectory Datasets. Imagery indicates that video
data is publicly available for the dataset.MOT indicates multiple object tracking (in 2D or 3D), MCT indicates
multiple camera tracking (with 3D tracking requiring a unified space in which objects are tracked), and
Trajectories indicates that the dataset provides fine-grained data suitable for traffic analysis.
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3. The I-24 MOTION Open-Road Testbed
Transportation science is undergoing a digital transformation in which increasingly automated vehicles are
being developed and deployed on roadways, changing the fundamental physics of traffic flow. Even a small
number of automated vehicles can have a direct impact on the macroscopic behavior of traffic flow, highlight-
ing the need to monitor and observe traffic flows across microscopic and macroscopic scales.

The main challenge in understanding broad system-level properties in mobility such as overall energy
efficiency, safety, or flow stability is that these properties depend on the driving characteristics of all vehicles
in a traffic stream, and each vehicle must be analyzed to a very fine level of detail. Trajectory data, or absolute
positions of each vehicle at regular time intervals, is considered the gold standard for data collection. High-
quality vehicle trajectory datasets support research on traffic flow theory [299], driver behavior modeling
[300], and many other topics [301]. Unfortunately, such datasets are hard to come by and are limited both
in length and duration. For this reason, developing reliable, extensive methods for collection of trajectory
data is viewed as one of the largest challenges for continuing traffic flow research [299]. Recognizing the
impact of freeway trajectory data collection efforts such as NGSIM [49] and HighD [66] (see also Table 3.1),
and emerging urban datasets exemplified by pNEUMA [71], and at the same time the limited availability of
sources for trajectory data, we embarked on a 5-year effort to instrument a section of freeway that could help
enable the next wave of empirical traffic science that depends on abundant trajectory datasets. Figure 3.1
details the rough timeline of conceptualization, design, testing, and construction we laid out to achieve this
goal. This chapter presents the outcome of that effort, resulting in an instrument known as I-24 MOTION.

The primary contribution of this chapter is to introduce a new traffic instrument to address the challenge
of reliably producing vehicle trajectory data at a large spatial-temporal scale. The Interstate 24 MObility
Technology Interstate Observation Network (I-24 MOTION) is a new traffic sensing instrument and testbed
to provide continuous, complete vehicle trajectory data in a long-term, ongoing manner. The system consists
of 294 4K traffic cameras mounted on 40 traffic mast poles along 4.1 miles of 4-5 lane interstate roadway near
Nashville, Tennessee. Cameras are positioned such that every foot of approximately 4.5 miles of roadway is
visible in at least one camera field of view. The resulting video data is transferred via a dedicated fiber optic
network to a centralized compute cluster for processing and anonymous vehicle trajectory generation. Rela-
tive to existing drone-based vehicle trajectory datasets, the task of producing trajectory data from relatively
lower infrastructure-mounted cameras poses non-trivial computer vision challenges, most notably significant
object occlusion and a requirement for tightly calibrated camera homography information.

The rest of this chapter is organized as follows: Chapter 3.1 lays out the early conception of needs the
system was designed to meet. Chapter 3.2 describes the initial design considerations culminating in a one-
week, 6-camera test to assess the feasibility of this idea in 2018-2019. Chapter 3.3 describes a scaled-up
validation system completed in 2020 comprised of 3 poles and 18 cameras, and the corresponding hardware
and software design this system enabled. Chapter 3.4 briefly describes considerations in scaling findings
from the validation system to the larger full system. Chapter 3.5 describes the full I-24 MOTION system,
completed in November 2022. Lastly, Chapter 3.6 describes some initial data analyses illustrating the utility
of the data both in corroborating existing findings and enabling new discoveries.

Dataset Location Context Year Cameras Time Scale Spatial Scale Vehicles

NGSIM US-101[49] Los Angeles, CA 5-6 lane highway 2005 8 0.75 hr 0.64 km 9,206
HighD [66] Cologne, GE 2-3 lane highway 2018 1 16.5 hr 0.42 km 110,500
ExiD [67] Aachen and Cologne, GE 2-4 lane interchanges 2021 1 16.1 hr 0.42 km 69,172
Automatum [68] GE 2-4 lane highway 2021 1 30 hr 0.66 km 60,000
HIGH-SIM [69] I-75, FL 3-4 lane highway 2021 3 2 hr 2.44 km -
Zen Traffic Dataset [80] Osaka, JP 2 lane highways 2018 - 5 hr ∼2 km -

I24-MOTION (released) Nashville, TN 4-5 lane highway 2022 276 47 hr 6.75 km ∼600,000
I24-MOTION (planned) Nashville, TN 4-5 lane highway 2023 276 daylight 6.75 km ∼150,000/day

Table 3.1: Comparison of existing highway complete vehicle trajectory datasets. “∼” indicates approximate
value. “-” indicates data is not available.
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Figure 3.1: Broad timeline of testbed conceptualization, design, and construction.

3.1 Identification of System Needs and Benefits

This section defines the needs that the testbed fulfills laid out in the early project conceptualization phase,
related to operations, research, and development. The overall design of the system as a dense network of
cameras, arose specifically to meet these needs. The needs met by the testbed span operations, development
and research. 1

Need 1 – Operations: The I-24 corridor is a major limited access facility within Tennessee for commuters
and freight. This corridor was selected for the state’s first Integrated Corridor Management (ICM) project,
called the I-24 SMART Corridor, which operates on the route between Nashville and Murfreesboro. The
corridor includes Interstate 24, the parallel arterial route SR 1, and connector routes between I-24 and SR 1.
The ICM project has deployed an upgraded communications network and Intelligent Transportation System
(ITS) devices for increased operational management of the corridor. High resolution sensing provided by the
testbed in this area will allow TDOT to better leverage the existing ICM infrastructure investments for re-
fining operational strategies beyond the limited-fidelity decision making capabilities using aggregate sensing
technologies.
Need 2 – Development: Currently, most test facilities used by industry for vehicle and vehicle technologies
development are closed-course environments that enable safe testing of experimental technologies. Due to the
intended purpose of the closed course testbeds, it is however very challenging to understand how the proven
technologies will operate and interact in real world environments. The variability of traffic conditions and the
unique human driver behavior inherent to a real roadway are challenging conditions for new technologies,
but necessary barriers to overcome. This project will be a novel testing facility that will allow TDOT and
third-parties the ability to gather data on new transportation technologies through real world testing. The
capabilities of the testbed provide the unique ability to collect data from every vehicle on the roadway to
evaluate direct and indirect effects amongst the entire traffic stream.
Need 3 – Research: Producing vehicle trajectory data allows features of traffic flow related to individual
vehicle behavior to be explained. Such data at the level of individual vehicles is more important than ever
due to increasing autonomy on individual vehicles, which are beginning to influence traffic flow via their
interactions with conventional vehicles. The testbed’s 6-mile length allows for observing complex multi-
vehicle interactions such as the creation of phantom traffic jams. The testbed will generate over 200,000,000
vehicle-miles of trajectory data annually, assuming an 80% uptime. The testbed location exhibits a wide
range of traffic conditions from free-flow to heavy congestion and bottlenecks.

3.2 6-Camera Feasibility Study

To enable the the above needs, this section describes the initial design considerations and feasibility study
carried out to gauge how effective a multi-camera based vehicle tracking system would be for trajectory
extraction. 2

3.2.1 System Architecture
We discuss major decisions and motivating factors in the design of I-24 MOTION with respect to the type
and number of sensors deployed, the computing regime (central versus edge), and the processing pipeline

1This section is adapted from [85] with permission from authors William Barbour, Meredith Cebelak, Brad Freeze, and Daniel B.
Work.

2This work was published in and is adapted from [84].
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Figure 3.2: I-24 MOTION system overview.

used to convert sensor readings into trajectory data. Figure 3.2 provides a high level overview of the sys-
tem networking, hardware and storage components in the preliminary design. A video ingest in the central
processing hub stores video in a rolling buffer while computation nodes process the data stream in real time.

3.2.1.1 Sensor Components
Sensors for vehicle trajectory data collection were selected according to spatial and temporal resolution as
well as ruggedness. Sufficient spatial resolution was required to localize a vehicle within approximately one
foot of its absolute position to provide high-quality trajectories. A temporal resolution of 10 Hz was required
to capture high-speed changes in traffic conditions such as extreme braking events, as defined based on [49].
Sensors were also required to be rugged enough to withstand normal and severe weather conditions such as
heat, ice, and water for an expected operating lifetime of five years. Based on these constraints, two main
categories of sensors were considered for I-24 MOTION:

• Light Detection and Ranging (LIDAR) Scanners - Laser distance scans are used to capture geometric
information about a scene with high resolution. Current models provide readings at 15 Hz and capture
information at 0.1deg intervals.

• Cameras - Current 4K resolution sensors capture complete visual information from a scene at 30 Hz
and at 0.028deg intervals (2160 pixels over a 60-degree field of view).

Cameras were ultimately selected for I-24 MOTION. At selection time, LIDAR units were an order of
magnitude more expensive than 4K resolution cameras suitable for traffic monitoring. Cameras preserve color
and lighting information, which aids in vehicle re-identification and other data analyses besides trajectory
extraction; LIDAR does not. Cameras provide higher resolution than current LIDAR models and cover
roadway at greater distances with sufficient resolution. Lastly, cameras have been used in traffic operations for
over 20 years, so are well-proven as a traffic monitoring solution, whereas LIDAR units are not traditionally
used for long-term fixed traffic monitoring installations. Unlike LIDAR, which has good performance in day
and night time conditions, a challenge for cameras is that the performance can deteriorate in low lighting
conditions.

3.2.1.2 Infrastructure Components
The precise placement of camera poles along the roadway will greatly impact the resolution and completeness
of the data collected. Ideally, poles should be tall enough to provide an un-disrupted viewpoint of the roadway.
However, logistical and cost considerations limit the pole height to 110 feet, and all poles must be located on
one side of the freeway. Thus, four main considerations informed camera placement:
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Figure 3.3: Parallel occlusion and resolution limit diagrams.

• Perpendicular Occlusion - Vehicles in a lane closer to the camera can occlude, or block, vehicles in
lanes farther from the camera. This type of occlusion occurs perpendicular to the roadway, in which
direction vehicles are spaced approximately 12 feet apart on center in standard width lanes.

• Parallel Occlusion - Tall vehicles sufficiently far from the camera can occlude short vehicles travelling
in front of them. This type of occlusion happens in sight-lines roughly parallel to the roadway, in which
direction vehicles may be closely spaced in slow-moving traffic.

• Resolution - Cameras and LIDAR sensors both provide constant angular resolution, but this angular
resolution covers an increasingly large distance along the roadway at locations farther from the sensor.
To enable both accurate vehicle detection as well as to enable a variety of other use cases, a minimum
resolution of 2 pixels per foot along the roadway is required. This means that a section of road from
d to d + 1 feet from the camera must have at least 2 pixels covering it in the direction parallel to the
roadway.

• Field of View - A sufficient number of cameras must be placed such that their fields of view cover the
entire roadway and also overlap.

Though some state-of-the-art object detection algorithms provide sub-pixel accuracy, a larger margin of
error was added to account for algorithm inaccuracies and detection difficulties for I-24 MOTION. Camera
placements were calculated to provide a minimum 2 pixels per foot along the roadway using a straightforward
calculation. Perpendicular and parallel occlusion limits were calculated to determine whether all lanes will be
free from perpendicular occlusion and at what distance parallel occlusion will become a limitation. Standard
vehicle dimensions and spacings were used, and vehicles less than 50% visible were considered occluded. For
calculations, we assumed a de-rated pole height of 100 ft to account for varying terrain elevations adjacent
to the roadway. From these constraints, we found that a 4K (3840 x 2160 pixel) resolution camera could
provide 2 pixels per foot along the roadway up to 305 feet from the pole. Based on resolution and occlusion
constraints (resolution governs as seen in Figure 3.3), a conservative coverage radius of 250 feet was selected
for each pole.

Field of view calculations were carried out along the freeway via a 3D model to ensure sufficient cameras
are mounted at each location to provide complete coverage of the entire radius of coverage along the roadway.
Based on the roadway width for the I-24 MOTION, it was determined that at least five cameras per pole
were necessary to provide sufficient coverage of the radius of coverage. Figure 3.4 shows the resulting
configuration.
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Figure 3.4: Camera field of view alignments for complete roadway coverage based on preliminary design
calculations.

3.2.1.3 Computing Regime
To extract trajectories from the video data, we considered both a centralized processing approach and an edge
computing approach. Recently, edge computing has been a popular choice for IoT mobility sensor appli-
cations [302, 303]. I-24 MOTION will have roughly 400 4K cameras when completed. Using H.264 com-
pression, a conservative estimate for the network bandwidth requirement is 15 gigabits per second (GBps).
Edge processing reduces network bandwidth requirements, which can be favorable if the network bandwidth
is limited (for example on a cellular network). If raw data contains personally identifiable information (PII),
edge computing can be used to strip the data of PII. Moreover, decentralized approaches can improve system
robustness by eliminating single points of failure of the computing resources.

Despite these advantages, most edge computing solutions are limited in terms of graphics processing
unit (GPU) computation performance compared to centralized computing solutions. The object detection
algorithms in I-24 MOTION will ideally be near real-time speed (at the rate at which data is produced by
cameras). It is possible that specialized edge compute resources can maintain high frame-rates at lower reso-
lutions and when there are few objects in the frame [302], or by intelligently sharing on and off-edge compute
resources as in [304]. Thus, in I-24 MOTION we adopted a centralized computing paradigm. Moreover, co-
locating all of the computational resources allows us to dynamically reallocate compute resources to manage
workload and scale the computing needs as more algorithms are deployed to extract additional information
from the videos. I-24 MOTION is located concurrently with a pre-existing optical fiber network installed by
the Tennessee Department of Transportation for intelligent transportation system applications which supports
40 GBps of traffic, a suitable private network for data transfer.

3.2.2 Software Components
The software processing pipeline must reliably and accurately convert camera data into vehicle location data.
Object detection, tracking, and trajectory conversion algorithms must run in real-time with respect to the
input rate to enable the camera network to operate continuously for a long-term deployment. We assume that
small inaccuracies and fluctuations in readings, as well as temporary losses of a vehicle’s location, can be
smoothed and corrected in post-processing steps.

3.2.2.1 Vehicle Detection Algorithm
For I-24 MOTION, object detection algorithms are used to extract vehicle positions from camera image data.
The task of object detection is well explored, and mature algorithms exist for efficiently detecting objects. For
example, YOLO-v3 [130] and Faster R-CNN [156], are two state of the art object detection algorithms. Both
algorithms are based on the use of convolutional neural networks for extraction of high-level information
from image pixels; the main difference is that Faster-RCNN relies on a two-stage detection framework in
which rough detections are first output, and then this set of detections is used to create a second, more refined
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set of final predicted object locations. YOLO, on the other hand, relies on a single prediction stage, making
it faster but slightly less accurate. In this work a pre-trained YOLO-v3 model was used for object detection.

3.2.2.2 Tracking
Object tracking is the task of locating the same objects in consecutive frames of video data. For I-24 MO-
TION, a tracking by detection approach is employed, in which object detection is performed on every frame,
and subsequently detected objects are matched between frames. Several accurate algorithms for object track-
ing exist based on modeling object types and behavior [305], filtering [5], and direct output from neural
networks [229]. The Simple Online Realtime Tracking (SORT) algorithm [5] was used for tracking for its
low computational overhead and high accuracy. It uses a Kalman filter to predict and correct the positions of
each vehicle over time [306].

To implement SORT, the state of each vehicle:

xn = [xn,yn,sn,rn, ẋn, ẏn, ṡn]
T , (3.1)

is expressed as a 7-dimensional state vector where x and y denote the bounding box center coordinates, s is
the width of the bounding box, r is the width-to-height ratio of the bounding box, and ẋ, ẏ, and ṡ denote the
rate of change of x and y. A constant velocity model is assumed resulting in a state space model (presented
here for a single vehicle) of the form:

xn+1 = Fxn +wn , yn = Hxn + vn, (3.2)

where xn denotes the state at timestep n, wn ∼N (0,Σw) is the process noise, yn is the measurement at timestep
n and vn ∼ N (0,Σv) is the measurement noise. The dynamical model F and the observation model H are
written explicitly as:

F =



0 0 0 0 ∆t 0 0
0 0 0 0 0 ∆t 0
0 0 0 0 0 0 ∆t
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, H =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(3.3)

where ∆t is the time between consecutive video frames. The system is observable and thus can be accurately
estimated with a Kalman filter according to the update and measurement equations 3.2. Other state spaces
and model dynamics were also considered but were found to perform worse.

An important detail in the tracking problem is the assignment of detected objects to the correct vehicle in
the state space. This is done by matching the predicted positions in the model prediction step of the Kalman
filter to the actual detected objects from the object detector, using the Hungarian algorithm for bipartite
matching [307]. Once the assignment is known, a standard Kalman update can be performed to correct
the predicted state based on the measurement. Figure 3.5 shows the use of this method for tracking object
trajectories through consecutive frames of video from a test of I-24 MOTION.

3.2.2.3 Trajectory Conversion
To be useful for intelligent mobility applications, tracked object trajectories must be expressed in absolute
coordinates, rather that image space coordinates. Assuming that the ground plane is flat, there exists a per-
spective transform expressible as a 3x3 homography matrix that maps points from the image plane to the
ground plane while preserving straight lines. If four points in image space and their corresponding ground
plane points are known, a straightforward system of linear equations can be solved to determine the 8 param-
eters of the transform a11, · · · ,a32 (by convention the last parameter is always 1). Then, an arbitrary image
plane point (xn,yn) can be mapped to its corresponding ground plane point (x′,y′) via:
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Figure 3.5: Vehicles tracked with YOLO and SORT. Red boxes denote cars, Blue boxes denote trucks. Point
trails denote the position of the associated vehicle in prior frames.

 i
j
k

=

a11 a12 a13
a21 a22 a23
a31 a32 1

x
y
1

 (3.4)

x′ = i/k and y′ = j/k, (3.5)

where k denotes a scaling coefficient.

3.2.3 System Resilience
I-24 MOTION provides robustness to hardware and software failures by way of redundancy:

• Single Camera Failure - Cameras are pan-tilt-zoom enabled and six cameras are mounted per pole for
redundancy. In case of a camera failure, five cameras can be re-positioned to seamlessly cover the area
of observation.

• Single Pole (Networking Hardware) Failure - Cameras on neighboring poles have overlapping fields of
view and can cover the area of the failed pole (with possible occlusion).

• Single Compute Node Failure - Load balancing can redistribute computational load to other compute
nodes. If available compute resources cannot keep up with data influx, the frame resolution can be
reduced to speed up the computationally expensive object detection step.

• Storage Failure - Data is stored at multiple locations and can be restored to failed location after the
failure is addressed.

3.2.4 Feasibility experiments
Preliminary experiments were carried out to verify the feasibility of the proposed sensors, physical infras-
tructure, and computational pipeline. Data was collected from a single six-camera pole for one week from
August 9-16, 2019. This data was then processed with the pipeline described above to produce a trajectory
dataset. To enable tests with six cameras per pole, a custom mounting bracket and associated networking
hardware was also designed, prototyped, and tested (Figure 3.6). This prototype serveed as a feasibility
analysis for larger-scale deployment of such a multi-camera mount. Code and videos from the test can be
found at http://github.com/DerekGloudemans/I24-MOTION-examples. Figure 3.7 provides an overview of
the feasibility experiment.
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Figure 3.6: Multi-camera mount is raised onto 110 ft pole.

Figure 3.7: I-24 MOTION feasibility test installation. Multiple overlapping 4K cameras enable tracking
vehicles seamlessly along the roadway.Of the six cameras mounted on the pole, four are shown here for
simplicity.

3.3 18 Camera Camera Validation System

Based on the success of the feasibility experiment, in collaboration with the Tennessee Department of Trans-
portation, a three-pole system was constructed that demonstrated the concept and design of the system in
operation. This section describes the validation system hardware and design decisions made for the testbed.
Chapter 3.4 lays out additional considerations and plans for expanding from the current validation system to
the full testbed build out. 3

As discussed in the previous section, camera-based sensing is advantageous for observing the entire road-
way; and a dense deployment of cameras, such that their views overlap and observe vehicles continuously, is
necessary for providing end-to-end coverage through the testbed. Installing this infrastructure in a permanent
capacity provides the temporal coverage of data that is needed for many research applications, and provides
a location that is always available for testing technologies or running experiments. For instance, multiple
camera poles allows for experiments into the efficacy of tracking objects across cameras and maintaining
tight camera time synchronization using existing approaches.

In 2020, TDOT and partners set out to study the feasibility of this dense camera infrastructure approach

3This section is adapted from [85] with permission from William Barbour, Brad Freeze, Meredith Cebelak, and Daniel B. Work.
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Figure 3.8: Validation system construction. Left: 110-foot poles are raised adjacent to the freeway; middle:
Multi-camera mount holds 6 4K PTZ cameras; right: cameras are elevated to the top of the pole.

on I-24. A 3-pole, 18-camera system was designed, constructed, and commissioned (Figure 3.9, Figure 3.8).
As is intended with the full testbed, cameras were connected via fiber to a hub building that houses servers
for real time trajectory extraction. The prototype was strategically sized to inform meaningful scalability
and design considerations, thereby determining if the full testbed scope was attainable with the same design
strategy.

The following describe design elements of the 3-pole validation system, effectively allowing us to pilot
each technology and strategy for inclusion in the full system.

• Pole & foundation design. The validation system has cameras mounted on 110-foot tall poles (Fig-
ure 3.8 Left). To observe all vehicles on the roadway with minimize occlusion, the poles are signif-
icantly taller than the standard 30-50 ft poles used on many other CCTV systems. New poles and
corresponding foundations were designed and built with total deflection of less than 1.5 inches in 30
mph wind.

• Fiber network. The poles are connected on a fiber backbone to a hub building capable of hosting
compute and storage equipment. As part of a larger infrastructure and technology upgrade by TDOT
known as the I-24 SMART Corridor, the freeway fiber network is complete and has dark fiber available
for use by the testbed.

• Camera lowering device. The camera lowering device is a critical component of all traffic monitoring
cameras in Tennessee (Figure 3.8 right). It allows the camera cluster to be safely lowered to the ground
for routine cleaning and maintenance using a winch at the base of the pole. The validation system
confirmed that the new-generation lowering device is also able to transmit data from six 4K resolution
video cameras through the lowering device and down the pole where it is tied into the existing TDOT
fiber network.

• Cameras and camera mounting bracket. The system uses a custom, 6-camera mount (Figure 3.8
middle) attached to a lowering device. Camera pan/tile/zoom capabilities allow remote alignment to
achieve the necessary 180-degree overlapping field of view across cameras on each pole and between
camera poles. Deploying multiple cameras to each pole extends coverage of the testbed by reducing
the number of poles needed. The weather tight camera mount holds a network switch responsible for
making data streams transmittable through the lowering device.

• Hub building access. The landing point for video data from the camera network is the TDOT network
hub building. At this point the fiber optic cables are connected to a network switch that connects the
computational and data servers responsible for buffering video data, computing vehicle trajectories,
and storing resultant data.
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Figure 3.9: Testbed overview. Poles spaced approximately 500-600 ft host multiple 4K resolution cameras to
capture an overlapping and continuous field of view of the roadway. Video is streamed to a hub facility for
data processing, where the video is converted to trajectory data for analysis.

• Video ingestion. Camera streams are mapped to individual servers tasked with handling the raw net-
work stream and producing decoded video frames for processing. This ingestion required a custom
data pipeline to be written in GStreamer, which the team completed in consultation with experts at
Nvidia and RidgeRun. The resulting pipeline can dynamically route and buffer video streams, archive
video snapshots of interesting segments, and monitor the integrity of incoming video. Each camera
clock is set by a centralized network time server. Synchronizing at camera capture time rather than
server receive time allows precise synchronization across cameras. The pipeline serves as the interface
point at which computer vision tracking algorithms take decoded video frames as input for processing.

• Trajectory generation. The core of trajectory processing is a custom multi-object tracking algorithm
called crop-based tracking (CBT) [92] (see Chapter 4). The algorithm is based on existing open-
source components – a deep neural network image detector [60, 132] and the Kalman Intersection Over
Union (K-IOU) tracker [166, 214] – along with enhancements we have made for increasing speed and
accuracy. The primary improvement in CBT over existing K-IOU is that it exploits the motion model of
the Kalman filter to replace computationally expensive detection steps with a cheaper vehicle localizer.
The Kalman filter makes a prediction of the vehicle location in the next frame based on its most recent
position and the vehicle’s individual motion model. The vehicle localizer detects the position of the
vehicle within a small region extracted from the full image that is centered around the Kalman filter
predicted location. In this manner, a smaller portion of each image is ultimately processed compared
to running detection on the entire image. Particularly in sparse or free-flow traffic, most of the image
space will not contain vehicles so CBT can be very efficient. The results enable faster tracking without
sacrificing accuracy: at least a 250% speedup over tracking by detection using K-IOU, compared on
a single offline camera video stream using an Nvidia RTX6000 GPU [91]. We retrained the object
detector on 10,000 vehicles to improve performance given the non-standard overhead field of view.
Synchronized overlapping cameras enable trajectory stitching in 3D coordinates across the instrument.

• Uptime. Frame delivery statistics are tracked from each camera to the servers hosted in the hub build-
ing. Initially the system delivered 95% of frames from cameras. This frame loss is shown for six of the
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(a) Early reliability issue with video frame delivery.

(b) Frame delivery issue fixed with hardware change.

Figure 3.10: Video frames delivered per 10-minute interval, tracked over time for uptime statistics. (Credit:
William Barbour.)

cameras in Figure 3.10; the number of frames delivered across ten-minute intervals is tracked for each
camera over 48 hours. Cameras exhibited a simultaneous and dramatic decrease in number of frames
delivered – degrading down to a 4% loss rate in this particular case. It was discovered that an upgraded
ethernet surge arrester was needed for this application and the upgrade resulted in 99.95% of all frames
received; the frame delivery tracking is shown after the upgrade in Figure 3.10. Frame counts now
exhibit very little variability, save for a small momentary drop experienced by one of the cameras.

3.4 Full System Build-out

Design and construction of the full-length testbed primarily replicated the successful strategy of the valida-
tion system. Modifications to accommodate the larger scale focused mostly on the cyber infrastructure. The
detailed timeline for full system design, construction, and commissioning phases is given in Table 1; comple-
tion of construction is scheduled for Q3 2022, with all functions of the fully-commissioned testbed scheduled
to be online in Q2 2023. We detail the major considerations for the full system here.

Location
The physical assets of the testbed (e.g., poles, fiber, cameras) are located on I-24 between the interchanges of
Bell Rd. (approximate westernmost extent), to Waldron Rd. (easternmost extent); see Figure 3.11. The stretch
includes a major recurring bottleneck, approximately 13% truck traffic, and more than 150,000 vehicles a day
that pass through the roadway. This will effectively extend the testbed in the direction of Nashville from the
site of the validation system. Placement of camera poles in the testbed area will continue the strategy of
minimizing occlusion by using the same 110 ft tall poles, placing them directly adjacent to the roadway
shoulder, and spacing poles 500-600 ft apart.
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Figure 3.11: Overview of the selected full testbed location in Nashville, TN. (Credit: William Barbour.)

Cameras, poles, and physical infrastructure
Cameras, poles, network switches, lowering devices, etc., will follow the same design as the 18-camera
validation system, including only minor changes that were informed during the construction and testing
process. For example a wider field of view camera may eliminate the need for one camera per pole.

Computational infrastructure and networking
The video data streams from the camera network require dedicated hardware and software to ingest, process,
and store the large volumes of data. Computational servers are built around graphics processing units (GPUs),
which are efficient processors of neural network computations underlying trajectory generation algorithms.
Each compute server hosts eight GPUs and the number of required servers is based on tracking algorithm
performance on the validation system. This performance will dictate the ultimate size of the computational
array for the full testbed.

Processed vehicle trajectory data resulting from the camera network will be made available to the research
community by bundling and hosting in a data repository. Trajectory data will be segmented temporally,
with recent data available in small segments and older data available as compressed bulk downloads. A
data hosting server will automate this rolling process as new data is constantly generated, and also host a
dashboard informing users of the data and system status.
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Table 3.2: Full testbed design, construction, and commissioning timeline.

Cyber infrastructure Physical infrastructure Project management

Design Phase

Q3 2021 Finalize software and hard-
ware architecture.

Locate 1.5 mi. instrument
site. ROW plans.

Form executive board for in-
strument dev. and ops.

Q4 2021 Develop server specifications
and place order.

Develop and submit con-
struction plans.

Executive board reviews
plans with stakeholders.

Q1 2022 Server hardware, OS, and
network configuration.

Construction field review;
bid documents and letting.

Develop business and long
term funding plans.

Construction Phase

Q2 2022 Finalize trajectory extraction
software package.

Begin construction (major
component sourcing).

Write data dissemination and
privacy policies.

Q3 2022 Software integration and unit
testing.

Construction continues. Write experimental plan and
safety procedures.

Commissioning Phase

Q4 2022 Full system testing of new
construction.

Construction completion, in-
spection, integration.

Develop infrastructure main-
tenance schedule.

Q1 2023 Burn-in testing. Preparation
of first dataset.

Burn-in testing, reporting,
constr. contract close-out.

Review results of tests for
contract release.

Q2 2023 Implement automated data
hosting and dissemination.

Review validation results of
vehicle trajectories.

3.5 The I-24 MOTION Testbed

This section describes the final Interstate 24 MObility Technology Interstate Observation Network (I-24 MO-
TION), a camera-based trajectory generation system located on I-24 near Nashville, TN. The instrument
consists of 276 4K resolution video cameras mounted on 40 poles ranging from 110 ft to 135 ft above the
freeway. The cameras are positioned with overlapping fields of view and are connected by a fiber optic net-
work to a compute facility where the videos are converted to vehicle trajectories. The instrument captures
approximately 230 million vehicle-miles of travel annually, and experiences regular recurring congestion. 4

Figure 3.12 illustrates the data captured by I-24 MOTION, showing a time-space diagram spanning 4.2
miles of I-24 westbound traffic during 4 hours of morning congestion starting at 6:00AM. The image is
created by plotting all westbound vehicle trajectories and color-coding the points based on the speed of the
vehicle. Vehicle lengths, widths, heights, and lateral positions are also measured but not shown. The waves
visible in the image propagate at approximately 12-13 miles per hour.

The main contribution of this section is the creation of the I-24 MOTION instrument, which generates
large-scale vehicle trajectory datasets. The section provides the description of key elements of the instrument,
including the road network geometry and features, the features of the cyber-physical assets that compose the
instrument, and the general data processing steps. These elements are critical to understand the uses and
limitations of the current and future datasets. For example, as we explain in Chapter 3.5, the cameras are
pole-mounted. The height of the poles are selected to minimize occlusion (excellent for generating accurate
vehicle trajectories), but the height can allow sway in strong winds (bad for generating accurate vehicle
trajectories). Thus, the physical design directly influences the types of artifacts that can be introduced. The
datasets released by I-24 MOTION will be provisioned with a digital object identifier and change logs as new
data processing algorithms are deployed and as artifacts are removed.

We also provide a preliminary description of the datasets, the known artifacts today, and our plans to
improve them over time. It is clear that at a macroscopic scale, the data in the initial release can already

4This section is adapted from [34].
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support novel macroscopic analysis and insight, since no interpolation is required - all 4 miles are observed.
At the same time, we describe known issues (e.g., fragmented trajectories due to tracking failures; fragmented
trajectories due to a vehicle crash which damaged hardware on one pole, etc.). Some of these issues will be
resolved through instrument maintenance cycles; while others will be resolved with the advancement of
better automated data generation methods. As individual datasets mature, and new datasets are introduced,
this article will serve as the reference point for users of all future datasets generated by the instrument.

Figure 3.12: Time-space diagram for four hours of I-24 W morning rush hour traffic on Nov 25, 2022,
generated from I-24 MOTION vehicle trajectories. x-axis: time of day (HH:MM); y-axis roadway postmile
(mi). Postmile decreases for travelers in the westbound direction. A typical congestion pattern is shown with
frequent oscillatory traffic observed; and recurring waves travel upstream relative to the direction of traffic at
12-13 mph. The names of interchanges and overpasses appear on the right. The figure inset shows a zoomed
in portion of the data which is 0.25 mi in length and 4 min in duration. (Credit: Gergely Zachár and Derek
Gloudemans.)

The remainder of this section describes the I-24 MOTION instrument, detailing the physical infrastruc-
ture, network and compute hardware, and core algorithms required to provide accurate and complete vehicle
trajectory data across a large spatial and temporal scale. The system is still in active development, and contin-
ual improvements to improve the reliability, accuracy, and processing speed of the system will be made over
the following years. (Chapter 3.6 describes the data produced in more detail, including the recorded quan-
tities, coordinate system, and a comparison in spatio-temporal scale to existing vehicle trajectory dataset,
and also provides some preliminary analysis of the data including a characterization of the wave propagation
speeds observed in the datasets.)

3.5.1 Physical Infrastructure
The I-24 MOTION instrument provides a continuous field of view of 4.2 miles (6.75 km) on the 4-5 lanes
(each direction) I-24 freeway, southeast of Nashville, Tennessee, USA. Pole mounted cameras are connected
via a fiber network to a data center, as shown in Figure 3.13, where computer vision tracking and trajectory
processing takes place. A total of 276 4K resolution cameras are mounted on 40 poles, each 110-135 feet
tall, spaced every 500-600 feet along the freeway. Thirty-four of the 40 poles house 6 cameras each, while
6 poles adjacent to interchanges instead house 12 cameras to provide expanded coverage. The poles provide
an overhead vantage point of the road to reduce occlusion, and to provide overlapping fields of view. (A
separate 3-pole, 18 camera validation system [85] is located about 0.75 miles eastbound on I-24 from the
primary instrument and was used for technology testing and system planning).

3.5.1.1 Location
The location for I-24 MOTION was selected based on traffic conditions, constructability factors, and co-
location with other Tennessee Department of Transportation (TDOT) initiatives. The four mile section of
Interstate 24 is located ten miles southeast of Downtown Nashville and exhibits an annual average daily
traffic (AADT) of approximately 150,000 vehicles per day across its length [308]. Morning and afternoon
rush hour traffic exhibits reliably heavy congestion in opposite directions, frequently reaching stop-and-go
conditions, with easily-observable traffic waves on a typical day. I-24 near Nashville is a heavy commuter
and freight corridor (10-15% of the vehicle traffic are heavy trucks): it links smaller cities of Murfreesboro,
La Vergne, and Smryna with Nashville, and serves as a major shipping and industrial transportation route for
Middle Tennessee and the southeast United States.
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A single
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Figure 3.13: Overview of I-24 MOTION site showing location relative to Nashville, TN. The major TDOT
fiber network elements and their connection to Vanderbilt University, which houses the trajectory generation
algorithms that operate on the live video feeds, are also shown on the map. (Credit: William Barbour.)
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Figure 3.14: TOP: Diagram of the I-24 MOTION instrument, spanning from Mill Creek (postmile 58.8) to
milemarker 62.8. Camera poles (blue circles) are spaced at roughly 550-foot intervals and are shown in the
image relative to other key infrastructure elements. The system spans three overpasses and one underpass,
as well as three interchanges with 13 entrance/exit ramps. Relative positions of all elements are correct but
diagram is not drawn to scale. Bottom: Elevation and road grade along the freeway. Grade is measured in
the eastbound (diagram left to right) direction and was determined by differentiating the best-fit second-order
piecewise polynomial elevation function. (Credit: William Barbour.)

There are three highway interchanges in this section of I-24: Bell Road, Hickory Hollow Parkway, and
Old Hickory Boulevard. Figure 3.14 shows these three interchanges, their on/off ramps, and lane configu-
ration; it also shows the placement of the forty poles with respect to these interchanges and other notable
features on the roadway. The roadway elevation and grade is imposed below the roadway diagram in Fig-
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ure 3.14. The elevation and grade data was processed from aerial-based lidar measurements, conducted and
published by the State of Tennessee (https://lidar.tn.gov). The processing of this data involved
finding the best-fit piecewise second-order polynomial for the elevation data, then differentiating this polyno-
mial to attain the piecewise linear grade function. This approach is consistent with the road design constraint
for this roadway of allowing only constant or linear grade in the roadway profile. The elevation and grade
data is included as metadata alongside the trajectory dataset.

This section of the I-24 corridor was also selected for the state’s first Integrated Corridor Management
(ICM) project, called the I-24 SMART Corridor, which operates on the 28-mile route between Nashville and
Murfreesboro. The ICM project includes Interstate 24, the parallel arterial route SR 1, and connector routes
between I-24 and SR 1. The ICM project has deployed an upgraded communications network and Intelligent
Transportation System (ITS) devices, such as variable speed limit control, lane control, and ramp metering,
for increased operational management of the corridor. This collocation will eventually allow the study of
a variety of implemented ITS solutions associated with the I-24 SMART Corridor using I-24 MOTION
[309, 310], when the active traffic management systems are enabled.

3.5.1.2 Camera poles
The 40 I-24 MOTION camera poles are each composed of a steel pole structure, ground-level communica-
tions and power cabinet, camera lowering device at the top of the pole, and custom camera cluster assembly,
each detailed below. Figure 3.15 shows select system components. Camera pole locations, as well as various
other landmarks of interest, are included in Appendix B.

As discussed earlier in this chapter,The camera pole system was prototyped across three years at existing
pole locations on the TDOT network and with a purpose-built three-pole validation system constructed in
2020 [84, 85]. Valuable lessons from the tvalidation system regarding camera selection, camera cluster
mounting position, and pole-to-pole spacing were incorporated in the full system design. The details of the
pole components are as follows:

a) b) c) d)

Figure 3.15: Testbed components: a) view of a camera pole base showing the electrical disconnect, trans-
former, and ground cabinet; b) camera cluster in the process of lowering to the ground with the CLD; c) view
of camera cluster at the top of a pole; d) fiber optic junction at network hub building and GNSS network time
servers.

• Steel pole structure: To observe all vehicles on the roadway with minimal occlusion, the poles are
significantly taller than standard 30-50 ft poles used on many other CCTV systems. New poles and
corresponding foundations were designed and built to a standard that the total deflection at the top of
the pole is less than 1.5 inches in a 30 mph wind. Average pole-to-pole spacing is 550 feet across the in-
strument, with a minimum of 425ft and a maximum of 625ft due to roadside obstacles and entrance/exit
ramps.

• Ground-level cabinet: A pole-mounted cabinet (shown in Figure 3.15a) houses a network switch for
the fiber optic network, a fiber patch panel, and two power supplies. Power supplies in the cabinet
provide DC power to the fiber network switch in the cabinet (65W supply) and to the camera cluster
at the top of the pole (240W supply). A fiber communications backbone is present throughout the
instrument and links each pole to a communications hub building (shown in Figure 3.15d) and the rest
of the TDOT network. Each pole maintains a one gigabit per second network link to an aggregation
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network switch in a star network topology. This network topology helps simplify configuration and
troubleshooting and has additional resilience in the case of some physical damage scenarios.

• Camera lowering device: The camera lowering device (CLD) is a critical component of all traffic
monitoring cameras in the instrument. It allows the camera cluster to be safely lowered to the ground
(see Figure 3.15b) for routine cleaning and maintenance using a winch at the base of the pole. While
typically configured for only a single camera on a CLD, manufacturer collaboration and internal bench
testing confirmed that the lowering device could support simultaneous data transmission from six 4K
resolution video cameras to the ground-level cabinet where it ties into the fiber network. The CLD also
contains redundant ethernet and power connections that can be utilized without the need for physical
access to the top of the pole in case of a connector failure. The CLD is mounted to the top of the pole
with a 54-inch extension arm and angled support strut (shown in Figure 3.15c) for added rigidity.

• Camera cluster assembly: Mounted on each pole is a custom, 6-camera mount attached to the cam-
era lowering device (shown in Figure 3.15c). The orientation of the camera cluster is orthogonal to
the roadway direction(s) of travel. The weather-tight camera mount holds a network switch which
aggregates six video data streams to transmit them through a single gigabit ethernet connection on the
CLD. The network switch receives DC power from the pole cabinet and supplies power over ethernet
(PoE+) to each of the six cameras at 25.5W. On the six poles adjacent to the three interchanges within
the instrument, a second camera cluster assembly is mounted in an orientation pointing towards the
under/overpass; in the future these cameras will support trajectory generation for vehicles as they enter
and exit the highway.

3.5.1.3 Video cameras
The cameras on the instrument are a 4K resolution pan/tilt/zoom (PTZ) network IP model, powered by power
over ethernet. The PTZ capabilities allow remote alignment to achieve the necessary 180-degree overlapping
field of view across cameras on each pole, as seen in Figure 3.16, and between camera poles. Deploying
multiple cameras to each pole extends coverage of the instrument and reduces the number of poles needed.
While cameras with wider image field of view exist, these suffered in testing from distortion at the edges of
the image that could not easily be corrected to the accuracy needed for coordinate localization.

A critical technical consideration with network IP cameras is time synchronization across cameras and
true frame capture time reporting. Cameras are synchronized over network time protocol (NTP) to a primary
and secondary stratum 1 GNSS-based time servers on the local network (in the network hub building) and
frequently re-synchronize (roughly every 15 minutes). The camera firmware provides timestamps associated
with video frames corresponding at about 10 microsecond accuracy relative to the camera clock time. Cam-
eras capture up to 4K resolution video at 30 frames per second. Frame-to-frame timing is typically observed
to be uniform (33.3 ms), but in some cases non-negligible time differences result from duplicated or skipped
frames (an artifact of camera exposure requirements as implemented in camera firmware.) Although the
camera clocks are are precisely synchronized and the exact frame capture times are different for all devices,

Figure 3.16: Example camera fields of view for a single 6-camera pole. Each portion of the roadway is
covered by at least one camera, with overlaps long enough to allow objects to be tracked between cameras.
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accurate time-stamping of each frame allows processing algorithms to compensate for the relative time offsets
for each camera.

3.5.2 Network and Compute Hardware Architecture
All video data feeds are received from the TDOT network into a Vanderbilt data center for processing across a
dedicated 40 gigabit fiber network connection. Centralized computing in a data center provides the computing
hardware with dedicated, long-term support and infrastructure, in addition to future expansion possibilities.
Two network switches support the cluster of servers: a data layer switch with two 25 gigabit connections
to each server and a management layer switch for 1 gigabit user connectivity, control, and IPMI. A system
control server directs the processing functions of the cluster across ten or more servers/nodes. It hosts a
control interface where system managers dispatch processing jobs and propagates job configurations to each
node. Nine processing nodes are dedicated to computer vision tracking and the initial trajectory construction.
Each node contains eight graphics processing units (GPUs) that decode incoming video and perform object
detection and tracking tasks. The nodes track vehicles across cameras, but each node operates independently
with statically-assigned cameras. A vehicle traversing the entire instrument will generate a partial trajectory
fragment on each of the (nine) processing nodes. Incoming video is buffered on its respective compute node
and discarded after processing. Following initial trajectory generation, a post-processing server performs
the complete trajectory assembly and reconciliation tasks. The cluster contains two data storage arrays re-
sponsible for storing the resulting trajectories – both initial trajectory fragments and post-processed complete
trajectories – as well as log messages, monitoring data, algorithm training data, and instrument experiment
data. Additionally, two servers within the cluster serve as a development and testing environment for new
software versions and one server performs ancillary tasks such as large-scale visualization and traffic analysis.

3.5.3 Software Architecture
A prototype software architecture comprises of three main modules: video ingest, vehicle detection and
tracking, and trajectory post-processing and reconstruction, managed by the system control server. Before a
run session starts, related configuration files and metadata are registered and stored in database for record-
keeping or re-processing.

3.5.3.1 Video ingestion and recording
The cameras produce a H.264 encoded video, currently at 1080p resolution and 30 frames per second to
reduce the data size. The streams are split into 10 minute chunks and recorded into a Matroska (MKV)
container. The timestamps, corresponding to the exact exposure moment of each frame (streamed separately
in a custom field) which are incorporated into the PTS (Presentation timestamp) metadata during recording.
This field is mandatory for video files, thus providing a standardized method for frame timing information,
and enables interoperability with any conforming software. The video stream, with the current configuration
and all 276 cameras, occupies ∼1 TB for each recorded hour at 1080p resolution.

3.5.3.2 Vehicle Detection and Tracking
Vehicle detection and tracking is performed using Crop-based Tracking, a joint detection and tracking method
[91]. This method processes only cropped portions of each overall image, drastically reducing detection
inference time relative to processing each frame fully. Implicit in the use of this method is an accurate
object motion model; object priors from this motion model are used to produce cropping boxes for each
object, and only crops are processed by the object detector on most frames. We use a Retinanet (ResNet-
50 backbone) object detector [132] to detect car and truck classes as listed in Table III. Motorcycles are
not currently detected but may be added in future work. For the motion model, a Kalman filter with linear
dynamics is used (see Appendix G. Objects are assumed to travel with constant velocity along the primary
direction of roadway travel, and are assumed to have zero velocity perpendicular to the primary roadway
direction (note that this motion constraint is relaxed during data postprocessing and is only used during initial
object tracking). The intersection-over-union metric is used to compute affinity between object positions
and new detections [166]. IOU is computed based on vehicle footprints in space rather than bounding box
coordinates within an image, which allows detections from multiple cameras with distinct fields of view to be
incorporated provided accurate homography information is available for each camera (for more information
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Figure 3.17: Vehicles are represented as 3D rectangular prism objects (various colors above) using object
detection algorithms within each camera frame. The resulting detected objects are transformed into roadway
coordinates shared among all cameras, and tracked in this unified coordinate system. Each blue rectangle in
the projected 2D birds-eye view represents a vehicle position.

on camera homographies and data coordinate system, see Chapter 7. The multi-camera tracking problem is
solved by detection fusion (as in [277, 279]) rather than trajectory fusion (as in [266]) to reduce redundant
tracking of the same object in multiple fields of view. Figure 3.17 shows the result of object detection and
tracking within image coordinates, and the corresponding roadway coordinate object positions obtained using
image homography. The tracking algorithm is discussed in more detail in Chapter 5.

The complete set of 276 camera fields of view is subdivided across multiple processing nodes. On each
node, all cameras are processed together (that is, roughly one frame from each camera is processed at a
time, subject to some frame skips to keep cameras tightly time-synchronized). Processing nodes are not
synchronized, so a single object traveling through the full instrument extents will be tracked as a separate
vehicle with a unique ID on each processing node. This decouples the computation and allows the system to
scale gracefully with a large number of cameras.

3.5.3.3 Trajectory Post-processing
Although raw trajectory data from dense deployment of cameras and CV algorithms can achieve complete
spatial and temporal coverage of a roadway segment, such data contains inaccuracies from camera errors
(dropped, doubled, and corrupted frames) network errors (data packet drops), object detection and track-
ing (fragmentations, ID swaps, false negatives and false positives [216]) often caused by object-object or
infrastructure-object occlusions, timestamp quantization errors, homography assumption errors, and infeasi-
ble derivative quantities resulting from finite difference approximation over very short timescales. Treatments
for specific sources of errors that rely on multiple iterations of rectification or require manual fine-tuning are
not viable for longer term streaming datasets the I-24 MOTION is designed to produce. For small datasets,
data cleaning and rectification with some manual involvement can address many common errors created in
vehicular datasets [50].

I-24 MOTION uses an automatic data post-processing pipeline [311] which will be continuously im-
proved to automate as much of the data cleaning steps as possible. Currently, it consists of a) an online
data association algorithm to solve a min-cost flow problem, which consequently matches fragments that
belong to the same object, and b) a trajectory reconciliation algorithm, which is formulated as a quadratic
program. This algorithm reconstructs realistic vehicle dynamics from disturbed detection data with trajectory
derivative smoothing and outlier correction while minimally perturbing the original vehicle detections. The
resulting trajectories automatically satisfy the internal consistency (differentiation of trajectories with speeds
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and accelerations). Future post-processing development will consider conflict resolution along with trajec-
tory smoothing to produce feasible inter-vehicular distances for accurate microscopic traffic studies, and may
be able to leverage complementary efforts in trajectory prediction [312].

3.6 Trajectory Data

This section provides an overview of the data created by the I-24 MOTION system: its attributes, scale,
conventions and coordinate system, known artifacts in the data, and a preliminary analysis of data accuracy.

3.6.1 Data Description
One single continuous recording session on the I-24 MOTION instrument processed through the software
pipeline (from Chapter 3.5.3) results in a vehicle trajectory dataset. Each dataset produced by the system
consists of a collection of individual vehicle trajectories. An individual vehicle trajectory consists of vehicle
attributes as well as motion information (see Table 3.3). Trajectory positions record the 2D footprint of the
back center of each car, and are re-sampled at a frequency of 25 Hz to allow exact timestamp-based indexing.
Derivative quantities such as velocity, acceleration and steering angle can be directly computed with position
information via, for example, finite difference. An example vehicle trajectory is included in Appendix C.

Attribute Type Unit Description

id 12-byte BSON − vehicle identifier unique across all I-24 MOTION data
vehicle class int − 0: sedan, 1: midsize, 2: pickup, 3: van, 4: semi, 5: truck, 6: motorcycle
first timestamp float s minimum unix timestamp for this trajectory
last timestamp float s maximum unix timestamp for this trajectory
timestamp [float] s array of times at which vehicle positions are recorded
x position [float] ft array of longitudinal positions on roadway corresponding to each timestamp
y position [float] ft array of lateral positions on roadway corresponding to each timestamp
starting x float ft longitudinal position on roadway at first timestamp
ending x float ft longitudinal position on roadway at last timestamp
length float ft vehicle length
width float ft vehicle width
height float ft vehicle height
direction int − -1 if westbound, 1 if eastbound
configuration ID int − identifier linking data to a unique metadata indicating trajectory generation algorithm settings

Table 3.3: Data attributes for a single vehicle trajectory. Square brackets indicate an array of values.

Accompanying this work, 10 days of trajectory data are released from weekday morning traffic. Each
dataset spans typically 4 hours, from 6:00 AM to 10:00 AM, covering morning rush hour conditions. (Data
from Friday, November 25th instead covers 11 hours.) A variety of traffic conditions are present throughout
the various days of data, including at least three crash-induced bottlenecks, one debris-induced bottleneck,
high-traffic conditions with travelling waves, and free-flow traffic conditions. Table 3.4 summarizes the data
released with this work. Additional metrics, statistics, time-space diagrams, and useful information can be
found with the data release, as this information will change as the data is updated in future versions. Time-
space diagrams for the westbound portion of the roadway on each day of trajectory data are included in
Appendix D. Details on the data release are included in Chapter 3.6.5. Weather data for the days of this
data release can be obtained from the the National Weather Service (NWS) at https://www.weather.gov/wrh/
Climate?wfo=ohx or National Oceanic and Atmospheric Administration (NOAA) at https://data.noaa.gov/
onestop/.

3.6.2 Data Coordinate System
Data is provided natively in a curvilinear 2D roadway coordinate system, with the primary (x) axis aligned
along the interstate roadway median and the secondary (y) axis defined locally perpendicular to the primary
axis (see Appendix O). This means that x is roughly equivalent to station or mile marker along the roadway,
while y gives lateral or lane-position data. A second-order spline defines the x-axis in global (state plane)
coordinates. (Control points for the center-line in state plane coordinates are included in metadata). This
allows for the direct conversion of roadway coordinates into state plane coordinates, with a trivial conversion
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Date Day ID Start time (AM) Duration (hours) Notes

Nov 21, 2022 Monday 637b023440527bf2daa5932f 6:00 4 crash, debris induced bottleneck
Nov 22, 2022 Tuesday 637c399add50d54aa5af0cf4 6:00 4 −
Nov 23, 2022 Wednesday 637d8ea678f0cb97981425dd 6:00 4 crash
Nov 24, 2022 Thursday 637f0d5f78f0cb97981425de 6:00 4 low traffic volume (holiday)
Nov 25, 2022 Friday 6380728cdd50d54aa5af0cf5 6:00 11 low traffic volume (holiday)

Nov 28, 2022 Monday 638450a3dd50d54aa5af0cf6 6:00 4 stopped vehicles induced slowdown
Nov 29, 2022 Tuesday 63858a2cfb3ff533c12df166 6:00 4 −
Nov 30, 2022 Wednesday 6386d89efb3ff533c12df167 6:00 4 −
Dec 1, 2022 Thursday 63882be478f0cb97981425df 6:00 4 merge induced slowdown
Dec 2, 2022 Friday 63898d48d430891009401330 6:00 4 crash

Table 3.4: Details of the released dataset. “ID” indicates the unique dataset identifier used to associate all
data and metadata for this dataset. Additional summary and statistic information is included with the data
release.

from state plane coordinates to GNSS WGS84 coordinates. Both coordinate directions are stored natively
in feet. The positive x-direction is defined in the eastbound direction (direction of increasing post-mile as
defined by the Interstate 24 mile markers), and x-coordinates are offset such that the x-coordinate for post-
mile 60 corresponds exactly to 5280× 60 = 316800 ft. (Other postmiles are approximately but not exactly
located in this way (e.g. post-mile 61 ≈ 5280×61 = 322080 ft.) Adopting the left-hand rule convention, the
y-coordinate is positive on the eastbound side of the roadway (vehicle is moving in increasing x-direction).
Figure 3.18 illustrates the coordinate system.

Figure 3.18: Spline-curvilinear x-axis (green) and locally perpendicular y-axis (red) for roadway coordinates.
State plane coordinates are shown in black for comparison. Position of the vehicle can be expressed either in
state plane coordinates (black dashes) or roadway coordinates (white dots).

The primary advantages of a curvilinear coordinate system are twofold: i.) The coordinate system aligns
lateral (lane position) information along the y-axis, while accounting for the longitudinal curvature of the
roadway and aligning the direction of travel with the x-axis. ii.) A perpendicular slice of the roadway has a
uniform x-coordinate.

While definition of the y-axis as locally perpendicular to the x-axis does allow for the same point to have
multiple (x,y) locations, for reasonable roadway curvatures these points occur suitably far from the roadway
surface where the coordinate system is relevant. This coordinate system also slightly underestimates the
distance travelled (and therefore the instantaneous speed) of vehicles on the exterior of a curve, relative to
vehicles on the interior of a curve. the magnitude of this effect is no more than the ratio of roadway width
to radius of curvature, which tends to be small (less than 5%) on typical roadways. Exact distances travelled
and speeds can instead be calculated by converting positions into state plane coordinates followed by finite
difference calculation. Precise roadway geometry including lane marking coordinates will be made publicly
available in a future work.
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3.6.3 Positional Accuracy
To assess the accuracy and suitability of I-24 MOTION trajectory data for micro-scale traffic analysis, output
trajectory data is compared against an internal, manually labeled ground truth trajectory dataset, and onboard
GNSS information from instrumented vehicles traveling on the roadway.

3.6.3.1 Manually Labeled Ground Truth
Manual labeling of vehicles as 3D rectangular prism bounding boxes within videos from a subset of 18
cameras was performed for two scenarios: a free-flow traffic scenario and a highly congested (one side of
roadway) scenario. In total, over 600,000 individual vehicle positions were labeled manually. This data is
described in more detail in Chapter 6. The resulting vehicle trajectories were compared against the trajectory
data output by running the I-24 MOTION trajectory generation algorithms on the same video data. For com-
parison, object positions were matched to ground truth (GT) object positions as in [174] at each timestep. A
minimum intersection-over-union (IOU) between the detected and ground truth vehicle position was required
to consider the detected vehicle position a match for that ground truth object. Table 3.5 reports a number of
multiple object tracking metrics for each scenario, as well as some metrics indicating the physical feasibility
of the output trajectories. 97-98% of ground truth objects have at least one detected trajectory assigned to
them (GT Match Rate) and for ground truth objects, on average 91-95% of the overall trajectory is covered by
matching detected vehicle positions (Per GT Recall). Moreover, all vehicle accelerations produced by I-24
MOTION are physically feasible (< 10 f t/s2), only 0-2% of vehicle observations have infeasible heading
angles, and only 0-2% of vehicle trajectories overlap with another trajectory at some point.

Metric (1.0 best) Congested Free-flow Description

MOTA 0.93 0.93 Aggregate object tracking metric
MOTP (IOU) 0.73 0.72 Average precision (IOU) of matched object positions
Precision 0.98 0.97 Proportion of detected object positions matched to a ground truth position
Recall 0.95 0.96 Proportion of ground truth object positions matched to a detected object position
GT Match Rate 0.97 0.98 Proportion of ground truth trajectories matched to at least one detected trajectory
Pred Match Rate 0.99 0.76 Proportion of detected trajectories matched to at least one ground truth trajectory
Per GT Recall 0.91 0.95 Average proportion of a ground truth trajectory with correctly matched detected object positions
Per Pred Precision 0.98 0.74 Average proportion of detected trajectory correctly matched to a ground truth object
Feas. Accel. 1.00 1.00 Proportion of finite difference accelerations that are feasible (< 10 f t/s2)
Feas. Heading Angle 0.98 1.00 Proportion of finite difference heading angles that are feasible (< 30◦)
Feas. Direction 0.99 1.00 Proportion of finite difference velocities with correct magnitude (no backwards movement)
Feas. Overlapping 0.98 1.00 Proportion of detected trajectories that never overlap with another trajectory

Table 3.5: Multiple object tracking and trajectory feasibility metrics for two ground truth scenarios (congested
and free flow).

For matched vehicle positions, Figure 3.19 shows the relative error between the detected and ground truth
vehicle position. 84% of detected vehicle positions fall within 3 feet of the ground truth position, and 36%
fall within 1 foot of the corresponding ground truth. Table 3.6 reports the relative error between the detected
and ground truth vehicle dimensions. All dimensions have a mean absolute error of less than 1.2 feet.

Quantity Mean Error (ft) Standard Deviation(ft) Mean Absolute Error (ft)

Longitudinal (X) Position 0.2 2.6 1.7
Lateral (Y) Position -0.3 0.6 0.6
Length -0.6 2.5 1.2
Width 0.1 0.5 0.3
Height 0.5 0.8 0.7

Table 3.6: I-24 MOTION vehicle position and dimension errors relative to matched ground truth vehicles.

3.6.3.2 GNSS Data
Trajectory data was compared against onboard vehicle GNSS sensor data, a commonly used sensor modality
for obtaining single vehicle trajectories. GNSS-equipped vehicles were driven in eastbound and westbound
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Figure 3.19: Positional error histogram for trajectory data relative to ground truth trajectories. Contours
show the proportion of data is contained within, and are at intervals of 0.1 unless otherwise indicated. Single
positional errors are shown as black dots. A red circle shows the proportion of data with less than 1-meter
positional error (0.87) and an orange circle shows the proportion of data with less than 1-foot positional error
(0.36).

lanes of traffic on the I-24 MOTION instrument [13]. Over 600 vehicle runs through the instrument extents
were conducted. Regular (1 sec) positional data for each vehicle run was recorded. The reported circular
error probable (CEP) for the sensor was 2.5 meters. Figure 3.20 shows a histogram of lateral positional data
for each sensor modality (I-24 MOTION and GNSS data), aggregated for several longitudinal slices along
the instrument. The I-24 MOTION data shows strong lateral peaks corresponding to vehicle presence in a
specific lane of travel, whereas the GNSS lateral positional data does not show this characteristic. This is
a strong indicator that I-24 MOTION yields strong lane-positional data, whereas this data is not necessarily
available from an onboard GNSS sensor without heavy filtering. Due to this noisy lateral GNSS sensor data
and the relatively high GNSS device error (2.5m CEP), we prefer the manually labeled vehicle trajectories
over GNSS sensor data for validating the quality of I-24 MOTION trajectory accuracy.

Figure 3.20: Lateral position histogram aggregated over several 1000-foot longitudinal slices, for I-24 MO-
TION camera trajectory data (blue-green) and onboard GNSS data (pink-red). Strong peaks I-24 MOTION
camera positional data correspond to lanes of travel. Data produced during AM rush-hour (higher traffic
volume on westbound, negative lateral position, side of roadway).
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3.6.4 Data Artifacts
Relative to previous complete vehicle trajectory datasets, the data and instrument proposed in this work offer
new challenges to perfect the data. Previous works were conducted in areas of sufficiently small spatio-
temporal scale that physical occlusions could mostly be avoided (by overhead vantage point and careful
roadway segment selection). Moreover, they were of sufficiently small temporal scale that errors remaining in
the data after trajectory generation could be removed with manual efforts [50]). This approach is not scalable
to the I-24 MOTION data, and some errors will always remain in the final data regardless of the algorithm
employed. Enumerated here are a number of known errors in the initial data release that are artifacts of system
hardware and software errors. We intend to partially or fully address each of these artifacts; moreover, open
communication with I-24 MOTION data users will be maintained such that systematic errors in data creation
can be addressed and data quality can be iteratively improved over time.

Figure 3.21 shows time-space data with each type of data artifact present. Known data artifacts include:

• Missing Pole: Data from a single pole is occasionally missing from one of two sources. Brief outages
can occur due to network communication issues. or to physical hardware damage (a camera pole was
hit by a car in the week prior to most of the data in this work being generated). This manifests as
a horizontal band on the time-space diagram (a contiguous spatial range of data missing across all
recording time). Such issues are rare because poles are protected by guardrails, but these issues cannot
be eliminated entirely.

• Overpass Occlusion: Overpass occlusion results in lost tracked vehicles, which also manifests as a
contiguous spatial range of data missing across all recording time. This artifact will be addressed
with an intelligent data processing step that matches objects disappearing under bridges with objects
reappearing on the other side.

• Static Homography Errors: Initially, homographies for each camera were statically defined. How-
ever, pole deflection due to temperature and sunlight cause subtle shifts in camera positions. This
manifests in very narrow (a few feet wide) horizontal bands on the time-space diagram that contain
missing or doubled trajectory positional data. This issue will be corrected by periodically accounting
for subtle camera motion by re-defining homographies.

• Packet Drops / Frame Corruptions: Network bandwidth limitations (especially near night-time hours
when low light conditions create noisier and therefore larger video data) result in occasional packet
drops or frame corruptions, which manifest as a band of missing positional data for a contiguous region
of space and time. This issue will be mostly addressed by IP camera stream profile optimization and
network connectivity improvements.

• Fragmentations: Ideally, each vehicle passing through the instrument is represented by a single
recorded trajectory. In practice though, vehicles are often represented by several trajectory fragments,
which are often the product of the above artifacts or other tracking or post-processing failures. Frag-
mentations manifest as discontinuous chunks of trajectory corresponding to a single vehicle. Frag-
mentations will be iteratively decreased over time as the above artifacts and other tracking issues are
removed.

3.6.5 Data Availability
I-24 MOTION is made available on the project website located at https://i24motion.org/data. Data will be
associated with a DOI for permanent referencing, and new versions of data will be assigned new DOIs
according to standard DOI issuing guidelines. A README file contains information relevant to downloading,
formatting, and using the data. Each processed day of data (a JSON set of JSON-like trajectories) is made
available for download, as well as additional metadata including: scene homography for the data, trajectory
extraction algorithm settings, and in-depth descriptions of data attributes. Data is initially released “as is”,
recognizing over time the data will be reprocessed and improved as the instrument matures. New versions of
this dataset will be updated as notable changes occur. Additional datasets (e.g., detailed lane markings) will
be documented and released at the project website at https://i24motion.org/data) as they become available.
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Figure 3.21: Example artifacts. For all figures, horizontal scale = 4 min. and vertical scale = 0.4 mi. a.)
Missing pole causes a wide band of missing data. b.) Overpass causes a narrow band of missing data.
In some cases post-processing can successfully stitch trajectories through this occlusion. c.) Homography
error causes multiple trajectories corresponding to the same vehicle, or else results in a narrow band with
no coverage. d.) Packet drops cause bands of missing trajectory data with a discrete start and end. Post-
processing only partially fills in this data.

Video data is in general not persistently recorded or made available with trajectory data. This is because
the raw video data potentially contains personally identifiable information. The instrument and data process-
ing was designed to avoid collecting PII but it is difficult to guarantee no information was collected for all but
very small subsets of data. We also note that the size of raw video files from the entire instrument is too large
for easy distribution. For example the initial data release corresponds to approximately 47TB of video files.
Depending on research community needs and IRB considerations, it is possible this may be reconsidered in
the future. Moreover, two special-case datasets are released and detailed in chapters 6 and 7.

3.7 Preliminary Data Analysis

This section provides some initial analysis of the datasets that are publicly released. We generate the time-
space diagrams of all of the published datasets, as well as illustrations of the type of analysis that can be
conducted on the current data.

3.7.1 Traffic wave properties
Traffic oscillations are characterized by regular acceleration/deceleration cycles in congested traffic, and is
shown to have negative impact on the overall traffic efficiency and energy consumption [10, 25]. In this
subsection we provide a few examples of macroscopic observations from a dataset captured by the I-24
MOTION system during the morning rush hours of two weekdays (Nov. 21 and Nov. 23, 2022) containing
muiltiple events. The time space diagrams for these days are shown in Figure 3.22) including a variety of
traffic patterns, such as free-flow, congested and stop-and-go traffic as well as bottlenecks caused by various
incidents.

We select three signature events from these days (termed as Events A-C, see Table 3.7), which are
incident-induced bottlenecks. Specifically, Event A is a severe rear-end crash on the HOV lane that was
immediately followed by an onset of upstream queuing on lane 1 and lane 2. The congestion lasted for about
1.5 hrs before the crash was cleared. Event B is a slowdown on lane 3 caused by a large object falling out of a
pickup truck. The roadway was cleared about 2.5 minutes later. Event C is a sideswipe crash due to a vehicle
changing from lane 1 to lane 2 that caused a collision with another car travelling in lane 2. These events are
summarized in Table 3.7.

Characteristics of the waves upstream of the selected events are calculated and also summarized in Ta-
ble 3.7, including the wave propagation speed, period (time it takes to experience a complete slowdown and
speedup cycle at a fixed location), and amplitude (or fluctuation range). Here the wave property calcula-
tions are based on visual inspections combined with various well-known techniques such as wavelet trans-
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(a) Monday Nov. 21 2022

(b) Wednesday Nov. 23 2022

Figure 3.22: Velocity field in (mph) obtained from the westbound (decreasing milemarkers) trajectory data
on (a) Nov. 21 and (b) Nov. 23, 2022. Each plot depicts traffic velocity evolution during the morning rush
hours on the 4-mile of I-24 MOTION main corridor. The velocity field is aggregated into small bins from
trajectory data according to Edie’s definitions [2] with grid size of ∆t = 30s and ∆x = 100ft, respectively. The
window sizes are selected to preserve fine-scale traffic wave properties. (Credit: Yanbing Wang)
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Figure 3.23: Examples of data phenomena difficult to observe in fixed-point or sparse GNSS floating vehicle
sensing schemes. For all figures, horizontal scale = 4 min. and vertical scale = 0.4 mi. a.) Vehicle collision
and resulting small-scale bottleneck. b.) Low-wavelength (≈ 30 sec) traffic waves in high-density flow. c.) A
stopped vehicle on side of roadway. d.) Off-ramp queuing during otherwise free-flow conditions.

form [313] and cross-correlation [314]. We direct interested readers to common references such as [33, 314]
for details.

Figure 3.22 shows that perturbations in different times and locations all propagate upstream. Although
the periodicity and magnitude of the waves vary, depending on factors such as the severity of the bottleneck,
road geometry, and heterogeneity of driver-vehicle units [314], they generally travel against the direction
of traffic at a constant characteristic speed of approximately 13 mph (see also [31, 315, 316]). We observe
that oscillations with longer periods are often accompanied by larger amplitudes. For example, Event A has
prominent waves with period 2.1 min and a speed range of 14.8 mph, Event B with period 5 min and a speed
range of 34 mph, and Event C with period 1.8 min and a speed range of 10.8 mph, although the severity and
the traffic conditions vary. The strong correlation between traffic wave period and amplitude is also discussed
in [317].

Even in the present form, data from I-24 MOTION already suitable to study traffic waves and other
macroscopic quantities. This allows I-24 MOTION data to be used for speed analysis directly without needing
to extrapolate long distances between fixed sensors (data cleaning is, however still required). Moreover, the
camera-based sensors yield useful insight into the initial causes of bottlenecks not visible in any other sensing
modality (e.g., debris on the roadway). Figure 3.23 shows other example traffic phenomena not easily visible
in traditional traffic sensing regimes.

3.7.2 Fundamental diagrams (FDs)
The empirical data from I-24 MOTION provides high resolution spatial-temporal evolution of traffic, which
allows us to investigate more closely the changes of traffic properties on a finer scale. It also provides the
possibility of computing fundamental diagrams at arbitrary locations around incidents.

Event Information Upstream Wave Properties

Index Date Duration Nearest
Milemarker

Description Blocked
Lanes

Propagation
Speed (mph)

Period
(min)

Fluctuation
range (mph)

A Nov 21 6:14-7:43AM MM59.7 Severe rear-end accident 1,2 and left shoulder 12.6 2.1 0-14.8
B Nov 21 7:40-7:44AM MM58.8 Debris in lane 3 12.5 5.0 8.4-42.5
C Nov 23 7:35-7:45AM MM59.2 Sideswipe accident 1 & 2 13.1 1.8 8.7-19.5

Table 3.7: Approximate traffic wave properties in the upstream segment of selected events. The wave prop-
erties are obtained by a combination of wavelet transform and visual inspection (see Appendix F). Almost
all waves appear to be “quasi-periodic” and non-stationary and therefore only the most prominent values are
reported.
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Figure 3.24: Flow, density and speed of west bound traffic at MM59.7 before and during event A on Monday
Nov 21. (Credit: Yanbing Wang).

Figure 3.25: Flow, density and speed of west bound traffic at MM59.2 during and after event C on Wednesday
Nov 23. (Credit: Yanbing Wang).

For example, Figure 3.24-3.25 show the flow, density and speed relationship at approximately 1000 ft
upstream of event A and C, respectively, where there is 4 lanes of traffic. Specifically, the grey points in
Figure 3.24 show all the traffic data at MM 59.7 during the 4-hr recording period from 6:00-10:00AM; the
blue points correspond to the traffic data at the same location from 6:00AM to 6:15AM, immediately before
the crash event A; the orange points show the most congested 15 minutes during the incident. Similarly, the
blue points in Figure 3.25 represent the traffic data from 7:45AM to 8:00AM at MM59.2 during event C,
the orange color corresponds to a 15-minute interval after the congestion is cleared, and the grey points are
all the traffic data at MM59.2. The points are computed from the trajectory data using Edie’s definitions.
This illustrates a capability that is possible to explore precisely because the complete roadway is monitored,
allowing us to analyze the data around each event location.

3.7.3 Lane-level wave analysis
The data from I-24 MOTION allows us to explore how waves propagate lane by lane. In Figure 3.26, we
show the time space diagrams associated with the traffic conditions recorded on November 30, 2022. The
data is shown by lane. Lane 1 is a high occupancy vehicle lane and is furthest from the freeway merges and
diverges. Lanes increase in number from left to right where Lane 4 handles all vehicles merging into the
freeway or exiting from the freeway. The images are colored on a red-green color-scale to better highlight
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the wave structure, with red associated with the slow moving traffic and green associated with fast traffic.
Comparing Lane 1 data (Fig. 3.26(a)) to Lane 4 data (Fig. 3.26(d)), it can be seen that the waves tend to

be disrupted in Lane 4. In Lane 1, waves travel without disruption the full length of the roadway after they
are formed. In contrast, waves in Lane 4 are disrupted and reform at multiple locations. As more data is
collected, it will be interesting to determine if these patterns are repeated and if the mechanism to explain
these patterns can be identified.

(a) Lane 1 (HOV Lane)

(b) Lane 2

(c) Lane 3

(d) Lane 4

Figure 3.26: Wednesday, Nov 30 2022, 6:00-10:00 AM traffic waves by lane visible in time space diagrams.
Figure (a) Lane 1 (High Occupancy Vehicle lane); (b) Lane 2; (c) Lane 3; (d) Lane 4 (closest to entrance and
exit ramps). Traffic speeds are shaded green (fastest) to red (slowest). Lane positions are roughly approxi-
mated as constant lateral ranges, estimated by averaging the lateral coordinates of all lane markings for each
lane. Comparing the waves in Lane 1 (a) to Lane 4 (d), the waves appear to travel the further and without
interruption in Lane 1. (Credit: Gergely Zachar).

The current illustrations provided here are not comprehensive but are rather designed to show that the
data in its current form can already be used to support different research questions. As the datasets continue
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to improve, it will allow further investigations that bridge microscopic and macroscopic scales. It may also
allow labeling of vehicle trajectories under level 1 automated vehicle velocity control, for example using
unsupervised methods [318]. Many of the best selling vehicles in the US have adaptive cruise control as a
standard or optional feature now for several years, and consequently they are likely already in the datasets
contained in this work. Labeling these vehicles could further aid understanding of the interactions between
automated vehicles and human piloted ones.

3.8 Conclusion

This Chapter introduced the I-24 MOTION instrument, a system capable of producing large scale trajectory
datasets to support new directions in traffic science and traffic flow theory research. We also provide our
initial datasets that will be improved and maintained as the instrument software continues to mature. Next,
Chapters 4 and 5 detail the unique algorithms developed for this demanding application.
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4. Single-Camera Crop-based Tracking
4.1 Introduction

This chapter describes Crop-based Tracking, a novel method of detecting objects in small crops from overall
video frames rather than processing each frame in its entirety. 1

This work addresses the task of multiple object tracking (MOT) from raw video sequences in a traffic
monitoring context. The goal of this task is to accurately localize and classify each object within a scene at
each frame in the video, and to associate these bounding boxes across frames to provide matched identities
for each unique object across time. In particular it considers fixed traffic cameras with overhead fields of
view (as in the UA-DETRAC dataset [215]), which is important but distinct from the self-driving car context
(e.g., the KITTI dataset [81]) in which the camera moves and is taken from a vehicle-centric field of view.
The real-time performance of object detection and tracking is paramount for a number of tasks in traffic
modeling (a shortage of vehicle trajectory data is a persistent problem [49, 66]) and to enable intelligent
transportation systems (ITS) that dynamically respond to real-time demand to better accommodate traffic
[319, 320]. Moreover, this task is strongly motivated by the needs of the I-24 MOTION system described in
Chapter 3, which can only produce data on a recurring basis if the tracking algorithms implemented are able
to process video data in realtime or near-realtime.

The vast majority of algorithms for multiple object tracking decompose the problem into two distinct
tasks: First, the object detection task locates relevant objects within a frame. Second, the object association
(commonly referred to simply as object tracking) task associates or matches objects in the current frame with
the same objects in the previous frame such that each object is uniquely identified across the entire video
sequence. A variety of recent methods [86–88, 90, 170, 207, 213, 222] have sought to leverage the generic
tracking context to provide additional information for the object detection task, performing detection and
tracking jointly rather than separately. These methods make use of the the relationship between objects in
consecutive frames to boost object detection and tracking accuracy. Even so, most existing multiple object
tracking methods are not well-posed to provide tracking data in real-time as they cannot on a single GPU
process frames of modest size (e.g., 960×540 [1], 1392×512 [81], and 1920×1080 [82] in real-time .

In this work, a method is proposed to leverage the tracking context to further increase the speed of object
detection and tracking. Especially in the traffic monitoring domain, objects have predictable motion, mean-
ing that extremely strong priors for object locations within a video frame are available before that frame is
processed. Generalized object tracking methods [5, 86–90, 166, 170, 181, 191, 206, 207, 211–214, 222, 321–
323] cannot take advantage of object priors to reduce their object search space because they are intended to
also track in contexts where camera and object motion is unpredictable.

4.1.1 Problem Formulation
The goal of object detection and tracking is to accurately localize and classify each object within a scene at
each frame in the video, and to associate these bounding boxes across frames to provide matched identities
for each unique object across time. The formulation and method of evaluation for this problem are detailed.
Formulation. The well-studied computer vision task of multiple object tracking (MOT) is formulated as
follows. Let O = {o0,o1, ...,om} denote the set of all m objects of interest visible within a video with frames
indexed by n in the range [0,F ]. A single object annotation oi = [oi,0,oi,1, ...,oi,t ] consists of annotations
for that object for each discrete time at which that object is visible within the frame. Each object-time
annotation oi,n = [xi,n,yi,n,wi,n,hi,n,classi] consists of a 2D rectangular bounding box parameterized by box
center coordinate (x,y), box width w and height h, and an object class (e.g. car, bus, truck) constant for all
annotations of object i. Object annotations need not be recorded for frames at which that object is outside of
the frame. The goal of multiple-camera multiple object task is to predict O.
Evaluation. Next, let P = {p0, p1, ..., pn} be the set of predicted objects with the same formulation. Predicted
outputs P are evaluated against true objects O on a per-frame basis. That is, for a frame n, the set of predicted
objects for frame n are assigned to ground-truth objects for frame n (according to bounding box overlap),

1This chapter is adapted from [91].
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then evaluated according to a number of metrics. These MOT metrics are described extensively in [216]. For
simplicity, the de facto aggregate performance metric MOTA (PR-MOTA) is utilized as the primary indicator
of tracking performance in this work.

4.1.2 Algorithm

Figure 4.1: Overview of Tracking with Crop-based Detection (proposed). (a) Tracklet a priori locations
(solid boxes) are used to (b). crop (dashed boxes) around likely object locations. (c). Detection is performed
on crops and (d) the best detector output is selected for each crop.(e) The resulting bounding boxes (solid
boxes) are then transformed back into the frame coordinate system, producing final object detections for each
tracklet.

Figure 4.1 summarizes the proposed algorithmic approach. Consider an arbitrary object detector which
takes an image as input and outputs a set of object detections for that image, and an arbitrary object tracker
which assigns these detections to existing or new tracked objects. The proposed method, Crop-based Track-
ing, extends this detector-tracker pair by reformulating the task as a set of object detections performed on
a set of images, each cropped (Figure 4.1 (b)) from the original frame (a) based on the location of tracked
object priors with locations estimated utilizing previous frame information. (c) The object detector is used
to detect possible objects in each crop (d) For each crop, the corresponding object prior is utilized to weight
each output before removing any outputs from consideration as would be done in existing methods (with non-
maximal suppression (NMS) or soft NMS [324]). The selected object bounding box for each crop is then (e)
converted into their corresponding locations within the overall frame. Thus, on most frames, no association
step is needed to process detections. Each step is explained in more detail for an arbitrary frame n next.
(a) Obtain inputs The method takes as input for frame n object priors computed with information from
frames 0, ...,n−1, as well as frame n itself.
(b) Crop frame. Generate a square cropping box centered on each a priori object location in frame n. To
ensure that the full object is contained within the crop, expand the crop to be larger than the a priori object
estimate.

More precisely, let P := {1, · · · , i, · · · , pmax} be the set of all (predicted) tracked objects, indexed by i. The
a priori (denoted by tilde) bounding box for object i in global (frame) coordinates is defined by the center
x-coordinate x̃g

i , the center y-coordinate ỹg
i , the width w̃g

i and height h̃g
i . Let bõxg

i := [x̃g
i , ỹ

g
i , w̃

g
i , h̃

g
i ]. Similarly,

we define the corresponding square crop for object i as cropi := [x̃g
i , ỹ

g
i ,si], where si is the scale. The scale is

computed as:
si = max{w̃g

i , h̃
g
i }×β , (4.1)

where β is a box expansion ratio (a parameter) used to ensure the full object is within the crop. Figure 4.2
shows a graphical representation of crop generation for a single object. By construction, cropi is of size
(si × si) pixels. Before detection, each crop re-scaled to a size (C×C) pixels, where C is a constant across all
crops.
(c) Detect in Crops. All image crops corresponding to a priori object locations are processed by the detector,
which produces bounding boxes that estimate the location of the object within each crop. Given cropi, the
detector returns lmax bounding boxes indexed by j in the local crop coordinates. Each output is an estimated
location of object i within the crop, defined by the object center, box width, and box height. The j-th bounding
box output of the detector corresponding to cropi is written as boxl

i, j := [xl
i, j,y

l
i, j,w

l
i, j,h

l
i, j,confi, j], where

confi, j ∈ [0,1] is the confidence of the j-th detector output associated with cropi.
(d) Select outputs. Each box is scored with a weighted combination of detection confidence and IOU over-
lap with the object prior (IOU+Conf), thus incorporating information from the prior before removing any
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Figure 4.2: a priori object i location in global (frame) coordinates, bõxg
i = [x̃g

i , ỹ
g
i , w̃

g
i , h̃

g
i ] (red), is made square

(yellow solid) and expanded by a factor of β to produce cropi := [x̃g
i , ỹ

g
i ,si] (yellow dash) before being passed

to the detector. Expansion helps to ensure the tracked object will be contained within the crop area.

candidate boxes. Section 4.1.3.2 describes the motivation for this choice. Each candidate bounding boxes is
scored according to this IOU+Conf metric defined as:

score(boxl
i, j,bõxl

i) =W × confi, j +(1−W )×Φ(boxl
i, j,bõxl

i), (4.2)

where Φ is the IOU similarity function between two boxes and W is a scalar used to balance the two terms.
The bounding box with the highest score is selected as the detected boxl

i for object i.
The best detector output corresponding to cropi is written as boxl

i := [xl
i ,y

l
i ,w

l
i ,h

l
i ], in coordinates local to

the crop. Since the set of detection outputs for a crop are compared to the single a priori object i’s location,
output selection across all objects is O(omax × lmax) in complexity, where omax is the total number of tracked
objects and lmax is the total number of detection outputs per crop. This operation is significantly less complex
than a O(o3

max) global min-cost matching problem in Step 3 of the base tracker [325]. Moreover it avoids
object association errors that can occur in Step 3.
(e) Local to global transformation. The best detection boxl

i for each crop i is converted back into global
coordinates, where it can be used to update the i-th tracklet. Any additional steps of the base tracking method
are then performed (e.g. object book-keeping, prior prediction for next frame, etc.).
New Object Initialization The detector outputs for each crop a detection explicitly associated with an exist-
ing object, so inherently does not detect new objects. To initialize new objects, a second mode of operation
called full-frame detection is added. Periodically, a full frame is processed by the detector rather than a set of
crops. On these frames, the outputs are associated to existing objects or used to initialize new objects using
the formulation of the base tracking method. All other frames are processed in the crop-detection mode.

Figure 4.3: Expected increase false negative rate due to new undetected objects appearing between detection
steps based on average object longevities for UA-DETRAC training and testing datasets. If every d frames is
fully detected, on average a new object is missed in d

2 frames after it initially enters the field of view.

Because detection is not run on every full frame, there is a potential to increase the number of false
negatives due to missed detections when objects first appear. However, Figure 4.3 shows that the expected
increase in the false negative rate is small for real-world datasets. Moreover, we show in Section 4.1.3 that
crop-based tracking improves overall tracking performance because of a dramatic reduction in false positives
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that appear when performing detection on every frame.

4.1.3 Experiments
This section briefly describes experiments conducted to assess the efficacy of Crop-based Tracking at boosting
object detection and tracking speed. Section 4.1.3.1 describes experimental preliminaries. Section 4.1.3.2
describes experimental comparison of proposed versus existing detection thresholding and selection methods.
Section 4.1.4 describes experimental analysis of Crop-based Tracking at different numbers of frames between
full-frame detections. Section 4.1.4.1 details comparison of the proposed method against the state of the art.
Section 4.1.4.2 describes the combination of Crop-based tracking with an existing tracking speedup method
(frame-skipping).

4.1.3.1 Experimental Preliminaries
Base Algorithms. All subsequent experiments utilize an existing well-performing object detector (Retinanet)
[132]. Two instances of the detector are trained, one for full frames and one for cropped frames, to account
for differences in mean object sizes in the two modes of operation. A popular bipartite matching-based object
tracker Kalman-Filter enhanced Intersection-over-Union Tracker (KIOU) [166] is used for the object tracker.
KIOU estimates the position of each object with a Kalman filter (formulation described in Appendix G) and
matches detections to existing objects by bipartite matching in terms of the overlapping area between the
detection and object prior. The Crop-based Tracking extension of KIOU is referred to here as Crop-KIOU.
Dataset. All experiments are a performed on the UA-DETRAC dataset The UA-DETRAC Benchmark Suite,
a traffic monitoring MOT dataset [215]. Training data is divided into training and validation partitions for
internal experiments, and testing data is utilized only for final algorithm comparison against state of the art
methods.

4.1.3.2 Evaluation of bounding box selection method
We test three strategies for selecting from amongst output bounding boxes for each frame. 1.) Perform
non-maximal suppression (NMS) and subsequently select the remaining box with the highest IOU with the
object prior location, evaluated at multiple threshold overlaps Nt . 2.) Same as 1, but use Soft-NMS instead
of NMS, evaluated at several Gaussian factors σ [324]. 3.) The proposed IOU+Conf box-scoring described
in Section 4.1.2 evaluated at several weighting parameters W . Figure 4.4 shows the resulting performance of
each method over a variety of parameter values.

Figure 4.4: Mean IOU of ground truth and bounding box selected with each method, given object priors that
overlap with ground truth by a.) 0.85, b.) 0.75, and c.) 0.60 on average. θ is a stand-in variable for the
changeable parameter for each method (Nt for NMS, σ for soft NMS, and W for IOU+Conf).

The proposed IOU+conf approach outperforms both NMS and soft NMS at all tested levels of object
prior accuracy. The best overall output IOU (0.81,0.76, and 0.70 respectively) is achieved using IOU+Conf
for each object prior accuracy condition. Moreover, IOU+Conf performs reasonably well over a wide range
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of parameter W settings, indicating some robustness to suboptimal parameter assignment. IOU+Conf shows
promise over NMS and Soft-NMS in constrained tracking contexts because the prior is incorporated earlier
into the box selection process before any candidate boxes are deleted.

4.1.4 Crop-KIOU versus KIOU baseline
Crop-KIOU is evaluated for multiple object tracking on the UA-DETRAC training and validation partitions
with varying numbers of frames between detection d. Tracking is performed at d = 0,1,3,7,15 and 31
frames. Note that d = 0 is the baseline (KIOU) because detection is performed on every full frame. Results
are reported in Table 4.1.

d Hz ↑ PR-MOTA ↑ PR-MOTP ↑ PR-MT ↑ PR-ML ↓ PR-IDS/id ↓ PR-FM/id ↓ PR-FP/obj ↓ PR-FN/obj ↓
0 22.7 / 22.9 66.4 / 55.8 77.5 / 70.7 87.7% / 72.0% 3.9% / 8.6% 0.27 / 0.45 0.27 / 0.69 0.192 / 0.220 0.121 / 0.189
1 26.4 / 26.7 69.4 / 59.7 79.9 / 76.8 73.4% / 53.7% 6.7% / 14.3% 0.51 / 0.64 0.90 / 1.35 0.093 / 0.090 0.190 / 0.275
3 28.5 / 29.1 67.2 / 58.0 78.1 / 75.7 70.0% / 50.7% 7.3% / 14.9% 0.43 / 0.53 1.13 / 1.39 0.095 / 0.094 0.208 / 0.287
7 31.3 / 31.9 63.9 / 56.6 76.6 / 75.4 63.3% / 44.4% 8.4% / 16.5% 0.35 / 0.39 0.95 / 1.15 0.098 / 0.092 0.236 / 0.306
15 32.5 / 33.1 60.7 / 53.6 76.0 / 74.9 52.2% / 34.9% 10.9% / 20.6% 0.20 / 0.23 0.67 / 0.85 0.096 / 0.089 0.272 / 0.338
31 34.6 / 35.7 55.6 / 47.6 75.7 / 74.2 36.8% / 25.2% 17.5% / 28.1% 0.10 / 0.12 0.49 / 0.65 0.088 / 0.084 0.337 / 0.397

Table 4.1: Tracking metrics (training/validation) for KIOU (d = 0) and Crop-KIOU on UA Detrac dataset.
Best results for each metric are shown in bold. When applicable, metrics are normalized by number of unique
objects (id), or number of unique object occurrences (obj)

As seen in Table 4.1, Crop-KIOU achieves increased accuracy (PR-MOTA) and increased frame-rate
relative to the base tracker. When the number of frames between detection is small (d = 1 and d = 3), Crop-
based Detection increases the overall accuracy (PR-MOTA) of KIOU by drastically reducing the number
of false positives (PR-FP). Average tracking precision (PR-MOTP) is also increased, meaning more tracklets
output by the tracker correspond to ground truth objects. Most importantly, Crop-based Detection also results
in a speedup relative to the base tracker. At d = 3, a 25%/27% (train/validation) speedup relative to baseline
is achieved in addition to an increase in accuracy. When d = 7 a 38%/39% speedup is achieved for a -
2.5%/+0.8% change in PR-MOTA relative to the base tracker. This increase in speed does come at a slight
penalty: False Negative rate (PR-FN), fragmentations (PR-FM), and identity switches (PR-IDS) all at first
increase with increasing d. However, these types of errors are more desirable than false positives in a traffic
monitoring context. Since object motion is fairly regular, missing object positions can often be imputed
during post-processing, whereas false positive tracked objects that persist for several frames are more difficult
to identify as anomalous.

4.1.4.1 UA-DETRAC testing results
Crop-KIOU (with d = 7) is compared to state of the art methods for the UA-DETRAC Benchmark test
dataset as reported in [1]. Table 4.2 shows that Crop-KIOU outperforms all existing methods both on overall
accuracy (PR-MOTA) and tracking precision (PR-MOTP). Additionally, Crop-KIOU performs best overall in
terms of mostly tracked objects (50.1% and 41.1% PR-MT on beginner and advanced subsets, respectively.)
Notably, Crop-KIOU has the lowest rate of false negatives (PR-FN) of any tracker on the advanced test
dataset partition, and the second lowest PR-FN rate on the beginner partition. This means that, despite
missing some new objects as they appear, Crop-KIOU tracks known objects accurately enough to produce
very few false negatives, more than making up for missed new objects. Using Crop-based Detection to extend
KIOU establishes a new state-of-the-art for this benchmark.

4.1.4.2 Comparison to frame skipping
Lastly, Crop-based Tracking is combined with frame skipping, the main existing method for speeding up
object trackers. Frame skipping means performing object detection only every s frames and imputing tracked
object locations between these frames. Combinations of crop-based tracking and frame-skipping with a
variety of parameter settings for d and s are evaluated on the UA-DETRAC dataset in terms of framerate and
MOTA, the aggregate MOT metric. Results are shown in Figure 4.5.

Crop-based Detection (green) extends the pareto-frontier of the accuracy-speed tradeoff for this traffic
monitoring dataset. While frame-skipping (red) results in large speedups but exclusively reduces accuracy
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Tracker PR-MOTA ↑ PR-MOTP ↑ PR-MT ↑ PR-ML ↓ PR-IDs* ↓ PR-FM* ↓ PR-FP*↓ PR-FN*↓
GOG 23.9 / 11.7 47.4 / 34.4 20.5% / 10.8% 21.0% / 21.1% 0.0158 / 0.0124 0.0148 / 0.0119 0.119 / 0.123 0.70 / 0.70
IOUT 34.0 / 16.4 37.8 / 26.7 27.9% / 14.8% 20.4% / 18.2% 0.0109 / 0.0084 0.0115 / 0.0089 0.031 / 0.061 0.64 / 0.66
JTEGCTD 28.4 / 14.2 47.1 / 34.4 23.1% / 13.5% 18.3% / 18.7% 0.0013 / 0.0020 0.0050 / 0.0065 0.096 / 0.127 0.63 / 0.65
JDTIF - / 28.0 - / 41.8 - / 34.2% - / 20.9% - / 0.0034 - / 0.0166 - / 0.270 - / 0.73
MFOMOT 34.6 / 14.8 46.6 / 35.6 30.2% / 11.9% 12.0% / 20.8% 0.0040 / 0.0042 0.0091 / 0.0098 0.073 / 0.103 0.52 / 0.73
KIOU 40.1 / 31.0 49.8 / 49.9 42.3% / 37.4% 5.8% / 10.4% 0.0021 / 0.0035 0.0024 / 0.0048 0.165 / 0.253 0.25 / 0.46
V-IOU 37.9 / 29.0 41.7 / 35.8 38.1% / 30.1% 24.7% / 22.2% 0.0004 / 0.0007 0.0008 / 0.0012 0.073 / 0.069 0.66 / 0.70
DMC - / 14.6 - / 34.1 - / 11.6% - / 20.6% - / 0.0044 - / 0.0062 - / 0.078 - / 0.68
GMMA - / 12.3 - / 34.3 - / 10.8% - / 21.0% - / 0.0030 - / 0.0117 - / 0.124 - / 0.70
SCTrack-3L 25.9 / 12.1 47.2 / 35.0 15.0% / 7.7% 20.6% / 24.8% 0.0017 / 0.0018 0.0062 / 0.0046 0.047 / 0.040 0.74 / 0.79

Crop-KIOU (Ours) 64.5 / 46.4 79.3 / 69.5 50.1% / 41.1% 8.2% / 16.3% 0.0028 / 0.0051 0.0091 / 0.0186 0.061 / 0.113 0.26 / 0.44

Table 4.2: Tracking metrics for UA-DETRAC Test Data (Beginner/Advanced) partitions. − indicates the
result is not available. Results taken from [1].

* PR-IDs, PR-Frag, PR-FP and PR-FN are normalized by the total number of ground truth object detections.

Figure 4.5: Fast Tracking method comparison. Each point represents tracking results at a single parameter
setting. Crop-based Detection (green) and Crop-based Detection + Skipping (blue) extend the state of the art
(Frame Skipping, red) in terms of the tradeoff between accuracy and speed (Hz).

relative to the base tracker, Crop-based Detection increases accuracy considerably (50.3 to 55.6 MOTA) while
also increasing speed by 21% relative to the baseline tracker, or increases speed by 57% without decreasing
accuracy. Furthermore, the combination of Crop-based Detection and frame-skipping (blue) results in even
larger speedups (21.0 to 52.4 fps or 149%) without a decrease in overall accuracy relative to the KIOU
baseline. This above real-time performance allows for multiple traffic cameras to be processed simultaneously
on the same device in real-time.

4.2 Contribution: Vehicle Turning-Movement Counting with Crop-based Tracking
without Detection

This section describes Vehicle Turning-Movement Counting with Crop-based Tracking, which proposes a
novel extension of Crop-based Tracking that initializes new objects without full-frame detections and extends
the method to the task of vehicle turning movement counting. 2

4.2.1 Overview
Vehicle turning-movement counting is an essential tool for transportation planning. Accurate vehicle counts
are necessary to determine roadway utilization, identify areas of congestion, and optimally allocate funding
to maximally increase transportation quality of service within a constrained budget. Historically, these vehi-
cle counts were performed manually using handheld electronic devices. The nexus of three key trends in the

2This section is adapted from [92].

53



past 10 years make vehicle turning-movement counting a problem of renewed interest, as seen by this task’s
presence in the 2020 and 2021 AI City Challenges [326]. First, the development of accurate CNN-based
image processing methods [59] allow for video data to be reliably used to provide information in transporta-
tion contexts. Second, state and federal transportation organizations have become increasingly interested in
intelligent transportation systems (ITS) that both utilize and incorporate traffic data to allocate resources and
even make transportation decisions in real-time. [327]. Lastly, edge computing devices continue to become
cheaper, more computationally powerful, and more ubiquitous such that they now provide a feasible tool
by which to study traffic in many cities provided lightweight and accurate algorithms for counting can be
developed [328, 329].

Existing algorithms rely on slow, full frame object detection [245, 248, 251–260]. This work proposes
to leverage Crop-based Tracking to avoid slow detection steps during tracking [91]. The main contribution
of this work is to utilize object source regions within a camera field of view and process these regions with
the localizer at every frame such that detection is never performed on a full frame, yet new object tracklets
can still be initialized at every frame. To the best of our knowledge, this proposed approach is the first traffic
counting algorithm to explicitly avoid performing object detection on whole frames.

4.2.2 Problem Formulation
For a video sequence with frames indexed by n, the goal of the multiple turning movement counting task is to
predict a set of vehicle turning movements T = {t1, t2, ..., tm}. Each turning movement ti = [movement,n] is
a specific turning movement (e.g. eastbound -¿ southbound left turn) selected from a discrete set of possible
turning movements for a particular camera field of view, at a particular frame n.

4.2.3 Algorithm
The proposed method, Crop-Count, utilizes Crop-based Tracking method Crop-KIOU described in Section
4.1 as a base detection and tracking method, with 3 novel extensions:
i.) Source Region Crops for New Object Initialization Since cameras for traffic monitoring or on edge-
equipped devices are relatively static, new vehicles appear in a few, well-known regions within each camera
field of view. These source regions are manually labeled per field of view call the regions where new objects
appear source regions. Source regions are manually identified once for each camera field of view. Figure
4.6 shows example source regions for a few camera fields of view. In addition to cropped regions based on
existing object tracklets, each source region is also cropped to localize potential new vehicles. All crops are
resized to square images of a standard size cs pixels. The purpose of these source region crops is to allow the
initialization of new objects without full-frame detection.

In each crop, regions containing visual information likely to mislead the crop-detector and reduce track-
ing accuracy are blacked out. These can include regions that are always misleading (e.g. parking lots and
street-parked vehicles) and regions that are only misleading when initializing new objects (e.g. traffic on the
opposing side of a highway). Regions of the former type are blacked out in all image crops, whereas regions
of the latter type are blacked out only in crops corresponding to source regions such that existing objects can
still be tracked through these regions. Figure 4.6 shows examples of each type of ignored region.
ii). New Object Initialization After detection, outputs for object-prior crops are parsed to select the best
bounding box as in Crop-based Tracking [91]. Detector outputs corresponding to source region crops are
parsed differently. Instead, the outputs for each source are parsed using the following logic:

1. All output bounding boxes with confidence lower than σmin (a tuned parameter) or with a predicted
class not in {car, truck} are removed.

2. Non-maximal suppression is performed on all remaining bounding boxes.
3. All remaining bounding boxes with confidence lower than σnew (a tuned parameter) are removed.
4. Any item that overlaps with an existing object by more than φnew (a tuned parameter) in terms of

intersection-over-union metric is removed.
5. All remaining bounding boxes are used to initialize new object tracklets, and the source region from

which each object was initialized is recorded. The new object’s speed is initialized in the Kalman filter
as the estimated average speed of objects originating from the same source.

iii). Movement Counting Just as objects tend to enter a frame at a few source regions, objects also exit the
frame in a few, well-known sink regions within each camera field of view. These sink regions are manually
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Figure 4.6: Examples of vehicle source regions (green), sink regions (red), regions that are blacked out in
source crops only (dark blue) and regions that are blacked out in all crops (light blue) for several camera
fields of view. Source regions are cropped and searched for new objects at each frame (Steps 2-3). Detected
vehicles are tracked until they have travelled from a source region to a sink region, and the unique source-sink
combination defines the vehicle’s unique turning movement (Step 6).

labeled once for each camera field of view. After Step 5, each object is compared to each sink region. If the
center of that object’s bounding box falls within a sink region, that object is no longer tracked. Each unique
source-sink combination identifies a vehicle turning movement of interest, so this corresponding vehicle
movement is output by the algorithm. Example sink regions are shown for several camera fields of view in
Figure 4.6.

Lastly, logical limits are imposed on the frequency with which specific vehicle movements can occur. The
minimum number of frames between movements fmove is set per vehicle movement, per camera view, and
only source-sink combinations corresponding to valid vehicle movements are recorded. This helps to avoid
double-counting vehicles in the event that multiple object tracklets correspond to a single real vehicle or that
a tracklet from one source mistakenly begins tracking a vehicle from another source.

4.2.4 Experiments
This section briefly describes experiments conducted to assess the efficacy of the propose Crop-Count al-
gorithm for vehicle turning movement counting. at boosting object detection and tracking speed. Section
4.2.4.1 describes experimental preliminaries. Section 4.2.4.2 describes algorithm results on a turning move-
ment counting challenge, and Section 4.1.4.1 explores the speedup of Crop-Count relative to a tracking-by-
detection counting algorithm based on KIOU rather than Crop-KIOU.

4.2.4.1 Experimental Preliminaries
Dataset. The proposed method is evaluated on the 2021 AI City Challenge turning movement counting
challenge, which requires multi-class, multi-movement vehicle counting on video sequences at intersections
and along roadways. Thirty-one sequences from 20 distinct camera views are included, comprising about 9
hours of total video data all of which has resolution of at least 1280×960. Each camera field of view contains
several vehicle movements of interest.
Evaluation. To motivate the design of algorithms that can be evaluated in real-time on edge compute devices,
the computational efficiency of vehicle counting algorithms are taken into account in addition to counting
accuracy for this challenge. Algorithms are scored both on accuracy, and on processing speed (efficiency).

4.2.4.2 AI City Challenge Results
The proposed algorithm places 7th out of 17 algorithms and the proposed work processes video at an average
of 72.6 frames per second on a single GPU and 2 CPU cores. Figure 4.7 shows the path of each object that
was counted as a valid vehicle movement for several sequences, with object paths of each vehicle movement
colored uniquely. There are very few anomalous paths indicating that few objects experience identity switches
and generally tracking is quite accurate, even on sequences with many distinct turning movements.

4.2.4.3 Speed Comparison to Tracking by Detection
Lastly, to benchmark the impact of using crop-based tracking rather than tracking-by-detection (TBD) for the
object detection and tracking portions of our counting method, a detect-track-count algorithm based on KIOU
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Figure 4.7: Vehicle paths for counted vehicle movements. Each movement is shown in a unique color per
sequence. Faint green and red boxes denote source and sink regions, respectively.

object tracking [166, 322] is implemented. The speed of each method is measured when a measurement step
is performed at every frame. The same network structure is used for the crop detector for the crop-based
method and the full-frame detector in TBD.

The proposed algorithm is 52% faster than the detect-track-count (TBD) approach overall (20 fps vs 13.2
fps average), is faster than TBD on 29 of 31 available test sequences, and achieves at least a 100% speedup on
19 of 31 sequences. The speedup of the proposed method is somewhat correlated to the number of crops (the
sum of the number of tracked objects and the number of source regions for a camera field of view), as each
cropped region requires additional computation to localize vehicles within it. Sequences with fewer than 19
crops per frame on average exclusively experience an increase in speed.

Per-scene results and competition results from the 2021 AI City Challenge Turning Movement Count
Track are given in Appendix H.

4.3 Conclusion

This section proposed a fast method for single-camera multiple object tracking and demonstrated its utility
on a traffic monitoring dataset. In Chapter 5, a variety of techniques are proposed to extend this method to be
suitable for multi-camera multiple object tracking.
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5. Crop-based Multi-Camera 3D Tracking
This chapter describes Multi-camera Crop-based Tracking, which proposes a novel method for tracking ob-
jects across multiple cameras by limiting camera queries per object to increase tracking speed relative to
Crop-based Tracking (described in Chapter 4) and state-of-the-art baselines. A novel loss function for 3D
object detection, polygon intersection-over-union loss, is also introduced as an extension to this work.

5.1 Overview

Tracking objects precisely in a space viewed by multiple cameras introduces new challenges not present in
the single-camera MOT task. First, a 3D representation of each object that uniquely captures its position
is required (2D bounding boxes are insufficient as the position of the object in 3D space is ambiguous,
depending on the viewpoint of the object). A 3D rectangular prism bounding box is widely adopted for
vehicle representation [81, 124, 285]. While positionally precise, 3D bounding boxes are more difficult to
predict because of the inherent ambiguity in mapping from a 2D space (image plane) to a 3D space. Existing
approaches either predict bounding box corner coordinates natively in 2D image space [115, 148, 152], or
predict objects on the ground plane in 3D space [286, 330, 331], which allows for the intelligent incorporation
of physical constraints such as expected object sizes, but requires an explicit or implicitly learned homography
transform and sacrifices generalizable object detection in other viewpoints.

The second challenge introduced by multiple-camera tracking is the requirement of a method to match
views of the same tracked object across multiple cameras. Existing approaches solve this either by i.) unifying
all input frames before performing object detection [261–264], unifying detections across all camera views
before tracking objects [276, 277, 279, 280], or else by performing object tracking independently in each
camera view and clustering trajectories from all camera views afterwards [118, 267–273]. The former set are
online methods, while the latter are not.

In addition to these challenges, the multi-camera detection and tracking task introduces new contextual
information that can aid in the tracking task. First, real-world physical information can be utilized to constrain
predicted object tracklets to reasonable vehicle dimensions, speeds and accelerations [332]. Second, multiple
views of the same object yield redundant or corroborating information on each vehicle’s position. Existing
works utilize this information by combining multiple measurements into a single refined estimate of an ob-
ject’s position [277]. Third, object persistence across overlapping camera views provides information about
when and where new objects can appear and disappear within the overall shared space. Existing approaches
utilize this information only very weakly to perform object hand-offs between camera views [275].

In this work, a new approach is proposed that tackles the multi-camera problems addressed above and
utilizes each source of new contextual information to track objects more accurately and efficiently. This
approach trains a 3D object detector in 2D image space to preserve generalizability across many camera
views, and integrates information from multiple cameras by only utilizing information from a single camera,
per object. This method is based off of the Crop-based Tracking proposed in Chapter 4 but utilizes multiple-
view redundancy to further reduce computation.

5.1.1 Problem Formulation
Formulation. The multi-camera, multiple object tracking problem is similar in formulation to the MOT
formulation described in Chapter 4. Let O = {o0,o1, ...,om} denote the set of all m objects of interest across
all c camera views indexed by k, viewed at discrete times indexed by t in the range [0,T ]. A single object
annotation oi = [oi,0,oi,1, ...,oi,T ] consists of annotations for that object for each discrete time at which that
object is visible within the field of view of any camera. Each object-time annotation oi,t = [x,y,θ , l,w,h,class]
is parameterized by a 3D-rectangular prism bounding box, located on the shared ground plane with center
coordinates (x,y) (in feet), orientation (heading angle) θ , vehicle dimensional length, width, and height
[l,w,h] (in feet), and vehicle class class. The goal of multiple-camera multiple object task is to predict O.
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5.2 Approach: Multi-camera Crop-based Tracking

The proposed approach is an extension of the algorithm described in Chapter 4. A novel camera query
selection step and a coordinate conversion step, are added to the original algorithm and are described in more
detail next, yielding the overall formulation:

1. Load Frames and Object Priors - the set of frames at a fixed time t for all camera views is taken as
input.

2. Select query camera per object - an object may be visible in multiple cameras; assign a single camera
to each object to query for a measurement.

3. Crop selected regions from overall frames - each region corresponds to an object prior visible within
the selected camera’s field of view.

4. Detect objects in crops - crops from all camera frames can be processed simultaneous (i.e. as a batch).
5. Convert objects from image space to shared 3D space - utilizing scene homography.
6. Select best detection for each crop - based on Conf+IOU metric from Chapter 4.
7. Bookkeeping - Update filter measurement update, add and remove objects, etc.

5.2.1 Load Frames and Object Priors
Frame selection and prior location estimation is mostly straightforward, except for two details that make it
not at all straightforward, namely: i.) frames from each camera are recorded “out of phase” (see Appendix
J) meaning that for a given time t we can only hope to achieve a frame synchronization of t ± 1

2 f , where f
is the time between consecutive frames from a single camera. A nominal framerate is selected and at each
processing time-step, the target time t is advanced exactly according to the nominal framerate. Then, for each
camera frames are skipped until a frame with a timestamp less than 1

2 f behind t is reached.
This causes ii.) for a nominal time t, the time ∆o between the last known position of each object o

and each frame to be distinct. To use a filter-based motion model such as a Kalman filter for object prior
state predictions, we violate the assumption of constant time between measurements. Thus, the filter must
be modified to account for the propagation in state uncertainty over varying time durations. Consider two
cases: i.) Perfectly time-correlated noise, where state covariance scales exactly linearly with time, and ii.)
Perfectly uncorrelated “white” noise, where uncertainty scales with the square of ∆o. This result is derived
in Appendix G.3. Case ii applies for an ideal Kalman filter, so we use this assumption in the state covariance
update step. (Full model dynamics and state formulations are given in Appendix G.2.)

5.2.2 Selection of Query Camera
Rather than cropping each object from every camera frame in which that object is visible, this work proposes
to crop only one region from one camera frame per object. In other words, we select a single camera to
“query” for a measurement for each object. Let Qi,k denote a query score for tracked object i, camera k pair.
The query score is computed as:

Qi,k = Fi,k ∗Tk ∗
1

Di,k
∗Pk (5.1)

where Fi,k is 0 if object i is not within the field of view of camera k, and is 1 otherwise; Di,k is the real-
world distance between the base of the camera pole for camera k and object i, Tk is 1 if the current frame
from camera k has a valid timestamp (indicating successful frame decoding) and is 0 otherwise; and Pk is a
priority score for camera k, set to 1000 for interior cameras (C03andC04) 100 for intermediate cameras (C02
and C05) and 1 for exterior cameras (C01 and C06) meant to prioritize cameras with top-down views of an
object over cameras that view an object from a long field-of view (with greater occlusion and longitudinal
position uncertainty).

For each object i, the query score is computed for all cameras and the camera with the highest overall
query score is selected. Succinctly, this equation is summarized as: select the camera with a successfully
decoded frame that is closest to object i and has an un-occluded view, prioritizing an un-occluded view over
distance from object.
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Figure 5.1: Bounding box rectangular prism parameterization. Anchor box (purple) reference coordinate
system denoted as (x,y) and global frame (blue) reference coordinate system denoted as (X,Y). Angle of h is
exaggerated to show sub-components xh and yh.

5.2.3 Detect objects in Crops
This step is similar to the analogous step from Chapter 4, with the exception that the object detector must
be parameterized to produce 3D rectangular prism bounding boxes rather than 2D rectangular bounding
boxes. Object detections are produced by a Retinanet object detector with Resnet-50 FPN backbone [132].
We extend the first convolutional layer of this network to allow two input frames (the current and a rolling
average frame). This network has two output heads: a classification head and a regression head, each of
which outputs a set of outputs per anchor box. The shape of the classification head output C is [n,c] where n
is the number of anchor boxes in the network and c is the number of classes. For an anchor box i, the final
output object class and object confidence are taken as:

classi = argmax
c

(C[i, :]) (5.2)

confidencei = max(C[i, :]) (5.3)

The shape of the regression head output R is [n,8]. Let Ai parameterize a single anchor box i according
to:

A[i, :] = [xa,ya,wa,ha] (5.4)

denoting the x-coordinate,y-coordinate,width and height of the anchor box, respectively. The regression
output corresponding to that anchor box R[i, :] parameterizes a rectangular prism (ignoring the effects of
perspective foreshortening) according to:

R[i, :] = [xc,yc,xl ,yl ,xw,yw,xh,yh] (5.5)

where (xc,yc) indicates the center of the rectangular prism relative to the anchor box top left corner, xl
and yl indicate the x-pixel and y-pixel components of the rectangular prism’s length, xw and yw indicate the
x-pixel and y-pixel components of the rectangular prism’s width, and xh and yh indicate the x-pixel and y-
pixel components of the rectangular prism’s height. All components (e.g. xl ,yl) are relative to the anchor box
dimensions (in this case wa and ha). By convention, each dimension is directional and is measured relative to
the rear bottom left corner. Figure 5.1 provides a visual overview of each component.

The (X,Y) pixel coordinates for back bottom left coordinate (xrbl ,yrbl within the overall image can then
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be written as:

xbbl = xa +(xc − xl/2− xw/2+ xh/2)∗wa (5.6)
ybbl = ya +(yc − yl/2− yw/2+ yh/2)∗ha

The 7 other corner coordinates can be similarly written. The resulting rectangular prism can then be con-
verted into state plane and roadway coordinates via the methods discussed in Appendix O. Readers familiar
with 3D detection in the autonomous vehicle context will likely question the use of 3D bounding boxes pro-
duced explicitly in state space, as in e.g. [143, 144]. In these contexts, a single camera is statically mapped
to the world coordinate plane (i.e. the same pixel within an image always corresponds to the same point on
the ground plane in world space). This is not the case in our application, in which a single CNN is desired to
produce object detections for frames from all 234 cameras. Thus, a viewpoint agnostic anchor box / bounding
box formulation such as the one used here is required. We also consider the direct regression of 3D bounding
box corner coordinates as in [152] but empirically this results in poor performance.

5.2.3.1 Object Detector Training
We train the above object detector on the I24-3D dataset [95], described in more detail in Chapter 6. We use
the following loss formulation:

Loss = Loss2D +β ×Loss3D +Losscls + γLossvp (5.7)

where:

• Loss2D is intersection-over-union loss [333] for the minimum enclosing 2D bounding boxes for each
of the predicted and target bounding box

• Loss3D is MSE loss computed between the target and predicted bounding box corners

• Losscls is classification focal loss [132]

• β is a weighting coefficient, here set to 2.

• γ is a weighting coefficient, here set to 1/3

and Lossvp is a term designed to enforce the length, width, and height components of the predicted
rectangular prism to align closely to the corresponding vanishing points by penalizing the angle between these
vectors and the vanishing point directions (relative to the center of the predicted bounding box). Succinctly,
Lossvp is 0 when each bounding box is perfectly axis-aligned relative to the vanishing points, and is 1
when the axes of the bounding box are perfectly orthogonal to their respective vanishing points. In this
way, the training enforces the CNN to utilize visual cues from the image and align bounding boxes along
these visual axes.

Lossvp =1/2−αl((yl(yvpl − yc))+ xl(xvpl − xc))/(2(xvpl − xc)(yvpl − yc)ylxl)+ (5.8)
1/2−αw((yw(yvpw − yc))+ xw(xvpw − xc))/(2(xvpw − xc)(yvpw − yc)ywxw)+

1/2−αh((yh(yvph − yc))+ xh(xvph − xc))/(2(xvph − xc)(yvph − yc)yhxh)

where (xvpl ,yvpl) is the vanishing point, in pixel coordinates, aligned with the roadway direction of travel,
(xvpw,yvpw) is the vanishing point, in pixel coordinates, perpendicular with the roadway direction of travel,
and (xvph,yvph) is the vanishing point, in pixel coordinates for vertically aligned lines within the frame, αl is
-1 if the rear of the bounding box is closer to (xvpl ,yvpl) than the front of the bounding box and 1 otherwise,
αw is -1 if the left side of bounding box is closer to (xvpw,yvpw) than the right side of the bounding box and 1
otherwise, and αh is -1 if the bottom of the bounding box is closer to (xvph,yvph) than the front of the bounding
box and 1 otherwise.
Convert objects from image space to shared 3D space. The object detector outputs objects parameterized
by bounding rectangular prism corner coordinates in image space. Camera homography information is uti-
lized to convert object points on the ground plane into shared 3D space (lossless), and the height of the object
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in 3D space is selected to minimize the point reprojection error into image space. Then, the resulting corner
coordinates in 3D space are (with some slight rectification error) converted into the simplified state formula-
tion, rigidly constraining each object into a rectangular prism state representation as defined in Equation 5.9.
The state of an object at frame n, xn, is expressed as:

xn = [xn,yn, ln,wn,hn,vn]
T , (5.9)

where (xn,yn) is the back bottom rear center coordinate of the vehicle in roadway coordinate space, and
(ln,wn,hn) are the dimensions of the vehicle (length, width, and height in feet, respectively), and vn is the ob-
ject’s velocity in the x-direction (in ft/sec). This state formulation is a relatively straightforward modification
of that described for SORT [5] adapted to 3D space. Note that the heading angle of the vehicle θ is assumed
to be zero to maintain a linear and observable dynamical system. The full 3D filter formulation is shown in
Appendix G.

5.2.4 Select Best Detection for Each Object and Bookkeeping
The resulting objects have the same formulation as the Kalman filter formulation for tracked objects, so they
can be used to i.) select the best detection for each crop or initialize new objects as in [91] and Chapter 4,
and then to perform filter measurement updates. The remainder of the algorithm is identical to single-camera
formulation in Chapter 4.

5.2.5 Experiments
The resulting multi-camera 3D object tracker is benchmarked on the I-24 3D dataset. This dataset and
benchmarking results are described in Chapter 6.

5.3 Polygon Intersection-over-Union Loss

This section introduces a novel loss function for training viewpoint agnostic 3D object detectors such as the
one described in the previous section. 1

Autonomous driving is a primary domain that propels research in 3D object detection. Precise detection
and localization of vehicles and pedestrians within a driving scenario are paramount to autonomous vehicles
functioning safely and effectively. To enable this end, densely annotated ego-vehicle driving datasets pro-
duced with carefully calibrated and heavily instrumented test vehicles such as KITTI [160], NuScenes [285],
Waymo OpenDrive [124] have enabled a large body of work on 3D object detection and tracking tasks. As
a result, extremely accurate detection 3D vehicle, cyclist, and pedestrian models have been proposed that
leverage the full suite of available sensors, including LIDAR, stereo images, and depth images [334] [335]
[336] [337] [338] [339]. State-of-the-art 3D detection methods on KITTI frequently score above 90% AP70
(average precision) [160].

The dense sensor set provided in these datasets comes at a price. Methods proposed utilizing these works
are not generalizable to other vehicles with different or less capable sensing. Recognizing this shortcoming,
monocular 3D object detection methods have been proposed to predict object positions using a single camera
and no additional sensors [143, 144, 150]. Posing the 3D object detection problem in this manner introduces
the challenge of recovering depth information from an image, which is inherently depth-ambiguous. Monoc-
ular methods take a step in the direction of generality; only a single camera is required for detection; yet these
methods incorporate information from the 3D scene explicitly (e.g., into the model anchor box generation ar-
chitecture) or implicitly (by training to regress object positions directly in 3D space). Thus, a model trained
for one camera in one vehicle can’t be easily applied to another vehicle and camera, and training data is only
available for a very small subset of instrumented vehicles.

To detect 3D objects from a single, arbitrary camera, such as a cell-phone camera or dashcam from an
arbitrary vehicle, a more general method is required. Recently, a subset of monocular 3D detection methods
have attempted to detect 3D bounding boxes for vehicles without utilizing scene information in the trained
model. Instead, these models predict positions natively in 2D image space and incorporate scene homography
only after training and after inference [151–153, 155]. By posing 3D detection in this way, a trained model

1This section is adapted from [94].
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Figure 5.2: Example of IoU-based losses and relative improvements versus L1-loss in a.) image coordinates,
where bounding boxes are axis-aligned, [3] b.) 3D viewpoint-based detection, in which the scene homography
can be used to precisely compute object rectangular footprints in a bird’s-eye view [4] and c.) 3D viewpoint-
agnostic detection (this work), using 3D box projections into 2D space.

may be able to generalize to an unseen camera view simply by changing the post-inference scene homography.
In other words, these methods are viewpoint-agnostic. The performance of these models, while steadily
improving, still trails other monocular 3D detection methods and 3D detection methods more generally.

This work seeks to leverage a key trend in object detection works: across a variety of domains and de-
tection problem formulations, intersection-over-union (IoU) based methods have been shown to outperform
L1 and L2 norm-based methods for loss calculation during training. Intersection over Union (IoU) is com-
monly used for measuring the similarity between (generally) two rectangular, axis-aligned bounding boxes.
Many previous works on 2D object detection tasks demonstrate that IoU can be used as a regression loss
for axis-aligned 3D bounding boxes. In [3] [157] and [158] it is shown that incorporating IoU loss into 2D
object detection models can improve their performance. In a similar vein, [4] and [159] show that IoU for
two rotated rectangles can be used as a loss function to improve the performance of 3D object detection mod-
els. Figure 5.2 summarizes. Unfortunately, these methods are not directly applicable to viewpoint-agnostic
monocular methods because the projection of a 3D bounding box into an image does not result in rectangular
planes; rather, the six surrounding planes of vehicles occupy arbitrary quadrilaterals in pixel-space. Thus,
most existing methods use L1 loss to regress the eight corner points of the 3D box on 2D image planes.

The core contribution of this work is to present a new and efficient way of calculating the IoU between
two convex polygons which we refer to as polygon IoU and implement it as a loss function (PIoU loss).
We show both in simulation and in 3 state-of-the-art viewpoint-agnostic 3D detection models that the loss
function converges faster than L1 loss. We implement a batched version of the IoU function between two
polygons to enable fast training of models with the method. We utilize models trained with PIoU loss on
the KITTI 3D detection benchmark and show that, in most cases, the new loss formulation increases model
accuracy, particularly for higher requisite IoU thresholds.

The rest of this section is laid out as follows: Section 5.4 describes the PIoU method in more detail.
Section 5.5 describes experiments comparing L1 loss and PIoU loss with simulated polygons, Section 5.6
details experiments on the KITTI benchmark and describes implementation details for incorporating PIoU
loss into 3 detection models. Section 5.7 describes the results.

5.4 Polygon IoU Loss

The Polygon IoU (PIoU) method proposed calculates the intersection-over-union metric for any two convex
polygons in 2D coordinates. The inputs are two sets A and B consisting of the (x,y) corner coordinates of
each polygon, and the algorithm output falls in the range [0,1]. This output can then be utilized as a loss
function Loss = 1−PIoU .

5.4.1 Overview
Polygon IoU loss calculation consists of:
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1. Order the points of A and B clockwise.

2. Compute C, the set of all points of intersection of any two edges of the polygons.

3. Find AB, the set of all points in A that lie in the interior of B, and vice versa for BA.

4. Compute the area of the convex polygon defined by the overlapping set of points I =AB ∪BA ∪C

5. Compute the areas of A, B and I.

6. Compute PIoU according to: AreaI
AreaA+AreaB−AreaI

(5.10)

We describe each step in more detail below.

5.4.2 Clockwise
A set of points is ordered in a clockwise manner by computing the geometric center of the polygon. Then,
angles are calculated between an arbitrary first point (defined to be at 0°), and each other point, relative to
the geometric center. Points are then sorted in order of decreasing angle relative to the center. Note that the
clockwise ordering of A and B is necessary for subsequent computational steps which assume a clockwise,
geometrically adjacent ordering of points.

5.4.3 Finding intersections C
For a line that passes through points (x1,y1),(x2,y2), and a line that passes through points (x3,y3),(x4,y4),
the intersections (Ix, Iy) are calculated as:

Ix =
(x1y2 − y1x2)(x3 − x4)− (x3y4 − y3x4)(x1 − x2)

D
,

Iy =
(x1y2 − y1x2)(y3 − y4)− (x3y4 − y3x4)(y1 − y2)

D

(5.11)

D = (x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4) (5.12)

Utilizing this formula, the intersection point between every line defined by consecutive points in A and B is
computed. Some of these intersections do not lie on the polygons A and B. We filter invalid points and only
keep the intersections with x coordinates within the range of both two pairs of points in C. x must satisfy
x1 ≤ Ix ≤ x2 and x3 ≤ Ix ≤ x4. (Restrictions on y coordinates are automatically satisfied if x coordinates are
within the correct range.)

5.4.4 Finding points A inside B
For a convex polygon, each edge is assigned a direction in clockwise order, as in Figure 5.3. Then if and
only if a point (x,y) lies on the same side of all the edges of the polygon, it lies inside the polygon. Let the
endpoints of the line segment be (x1,y1) and (x2,y2). We compute:

(y− y1)(x2 − x1)− (x− x1)(y2 − y1) (5.13)

where a positive result means that the point lies on the left of the line, a negative result means that the point
lies on the right of the line, and zero means that the point lies on the line. Each point in A is checked against
the line segments defined by B to determine AB, the set of points in A lie within B, and the opposite is done to
determine BA. The full set of points defining the intersection of A and B is then defined by I =AB ∪BA ∪C.

5.4.5 Calculating the area of a polygon
Let (xi,yi) represent the coordinates of the i-th point of a polygon. Let

x = [x1,x2, ...,xn]
T ,x∗ = [x2,x3, ...,xn,x1]

T ,

y = [y1,y2, ...,yn]
T ,y∗ = [y2,y3, ...,yn,y1]

T (5.14)
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Figure 5.3: A polygon with edges marked with directions in clockwise order. Relative to each line segment,
the point (x,y) lies on the right side, while (x̄, ȳ) lies on the left of one line segment and on the right of three
line segments. Credit: Xinxuan Lu.

The area of a polygon is computed by:

Area =
1
2
(xT y∗− yT x∗) (5.15)

The areas of I, A, and B are thus computed, and equation 5.10 is used to determine the PIoU.

5.4.6 Batched implementation
Polygon IoU loss is applicable for convex polygons with any number of corners. However, a variable number
of points among polygons impedes calculation in a batched, vectorized implementation. Thus, for batched
implementation, we restrict inputs to a fixed number of points per batch (in practice, for 3D bounding box
calculation, all polygons will be four-sided). For 4-sided polygons, there are at most 8 points in the set C,
at most 4 interior points in each set AB and BA, and at most 8 points in I. So, the size of the vector that
represents the intersection region is set to 8. If the actual number of points in the set I is less than 8, the set
is padded with repeated points which won’t alter the result of (5.15).

For polygons with P points, the maximum number of corner points in I is set to be 2P. The batched
implementation of a function empirically computes forward and backward training passes significantly faster
than a non-batched loop-based implementation of PIoU. Pseudo-code for a batched, vectorized implementa-
tion of PIoU with batch size B is given below. The shape of the output tensor at each step is given in square
brackets.

Algorithm: Batched Tensor PIoU
Inputs: polygonA and polygonB. Each [B,P,2].
▷ C = intersections of all line segments in polygonA and polygonB using (0, 0) to fill the empty. [B,2P,2].
▷ AB = all points of polygonA that are inside polygonB, using (0, 0) to fill the empties. [B,P,2].
▷ BA = all points of polygonB that are inside polygonA using (0, 0) to fill the empties. Tensor shape: [B,P,2].
▷ overlap = union of [C, AB, BA]. [B,4P,2].
▷ sort overlap in decreasing order with respect to the distance from (0, 0)
▷ keep the first 8 points in overlap. [B,2P,2].
▷ placeholder = the points farthest from (0, 0) in overlap. [B,1,2].
▷ replace (0, 0) in overlap with placeholder
▷ areaO,areaA,areaB = areas of overlap, polygonA, and polygonB. Each [B].
▷ PIoU = areaO/(areaA+areaB−areaO). [B].

5.4.7 Edge Cases
When an edge from polygon A and an edge from polygon B are parallel, the intersections between the two
edges are ill-defined because the denominator in (5.11) approaches zero. This occurs when: i.) two edges
coincide with the same line. ii.) Two edges are parallel but not coincident with the same line. In case i.),
the points of A and B already suitably define the intersection points, so including points of A exactly on an
edge of B in AB covers this case. In case ii.), the two edges have no intersection. Thus, we can remove these
intersections from C for numerical stability.
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Figure 5.4: PIoU score versus iteration for (left) 4-sided simulated polygons and (right) 8-sided unrestricted
simulated polygons. Credit: Xinxuan Lu.

5.5 Experiments on simulated polygons

5.5.1 Four-sided convex polygons
We generate two sets of quadrilaterals (4-sided polygons), with one set as the initial polygons and one set as
the ground truth. The polygons are generated as centers and offsets of four points to ensure they are convex.
We use the Adam optimizer to regress predicted polygons with the goal of approximating the ground truth
polygons. The polygons are generated in a batch of 32 for the training. We compare the result of L1 loss,
PIoU loss, and a combination of L1 and PIoU loss. The IoU with respect to iterations is plotted on the left
of Figure 5.4. The results take the average of 5 independent trials. The PIoU loss converges the fastest in the
beginning. However, the PIoU loss does not achieve a high IoU when it converges. PIoU+L1 loss has the
fastest convergence speed and accuracy after around 2000 iterations.

5.5.2 Eight-sided unrestricted polygons
We repeat this experiment with 8-sided polygons, this time not restricting the predicted polygons to be con-
vex. IoU versus optimization iteration is plotted on the right of Figure 5.4. The results take the average
of 5 independent trials. The results are similar to the 4-sided polygon case. The PIoU loss converges the
fastest initially, while PIoU+L1 loss converges faster than L1 loss alone and additionally reaches the highest
overall IoU score. Non-convex polygons produce slightly more noise in loss curves, visible in the PIOU and
PIOU+L1 curves of Figure 5.4 (right). This experiment on simulated 8-sided polygons shows that our PIoU
loss has good performance even when the polygons are not convex and have more than four sides.

5.5.3 Computation speed
We compare the computation speed of our batched implementation of PIoU loss relative to a pixel-wise IoU
loss (as used for object segmentation tasks). For a batch size of 1, our PIoU loss is 4.0x faster than the pixel-
wise implementation. PIoU loss is 56.0x faster for a batch size of 16 and 281.6x faster for a batch size of
128.

5.6 Experiments on KITTI 3D

PIoU loss supports polygons with any number of points. However, there are not existing detection problems
well suited to evaluating polygons with more than 4 points. We test it on 3D detection problems where the
projection of 3D bounding boxes to the image plane can be separated into two quadrilaterals, the front 4 and
back 4 corner coordinates of the 3D bounding box. We incorporate PIoU loss into RTM3D [152], MonoCon
[153], and MonoRCNN [151] and test each on the KITTI 3D benchmark [160]. In all three models, we
compare the performance of using PIoU+L1 loss and only using L1 loss. The rest of this section describes
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Figure 5.5: Predicted (red) and ground truth (green) 3D bounding boxes from the train/val split of KITTI
dataset from MonoCon object detection model trained with L1 loss (left) and PIoU+L1 loss (right). Top
images show the predicted bounding boxes in 3D space, and bottom images show the corresponding predicted
footprints in a birds-eye view. Credit: Xinxuan Lu.

the models, modifications, and experimental parameters for each experiment. The results are listed in Section
5.7.

5.6.1 Dataset
We use KITTI 3D object detection benchmark as our training and evaluation dataset. As KITTI does not
allow more than three submissions and the labels for the testing set are not released, we follow [153] to
divide the official training set of KITTI 3D into 3712 training images and 3769 evaluation images. (We use
train/val to represent this split.) Three classes of objects, cars, pedestrians, and cyclists, are used for training.
During training, only left-camera images and ground-truth labels are used (calibration matrices are used only
to produce pixel-space 3D keypoint projections.)

5.6.2 Evaluation Metrics
The objects in KITTI are categorized into easy, moderate, and hard according to their height, truncation level,
and occlusion ratio. We evaluate the results for each category using the same evaluation guidelines as KITTI.
As suggested by KITTI in 2019, we use 40 recall positions to calculate the average precision (AP) of results.
KITTI sets different 3D bounding box overlap thresholds for cars (70%) and cyclists (50%). We evaluate cars
at 70%, 50% and 30% AP3D and cyclists at 50% and 25% AP3D.

5.6.3 Ensuring convexity
As our polygon IoU loss is accurate when the two polygons are convex, we encourage the predicted keypoints
to form convex polygons during training. The ground truth keypoints are projected from 3D cuboids, so it is
guaranteed that they form two convex quadrilaterals. We ensure that the initial predictions of the model are
convex by adding a small offset (4 corner points of a square centered at the origin) to the predicted keypoints
at initialization. During our training and testing, we find that a convex initial prediction is sufficient to make
the PIoU loss converge.

5.6.4 RTM3D
5.6.4.1 Experiment Settings
We modify an unofficial implementation [340] of RTM3D to do our experiments. We do not follow RTM3D
to assume a Gaussian kernel for keypoints. We solve a least-squares problem to obtain the best-fitting 3D
bounding boxes from the predicted keypoints, 3D dimension, and orientation. For comparison, We add our
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Model + Loss Types AP70 AP50 AP30
Easy Mod Hard Easy Mod Hard Easy Mod Hard

RTM3D (L1) 3.88 2.55 1.96 24.13 18.62 15.34 51.31 40.04 35.03
RTM3D (L1+PIoU) 4.08 2.70 2.15 25.02 18.58 15.25 51.10 41.05 34.95

MonoCon (L1) 22.27 16.98 14.69 62.00 46.19 41.71 85.09 65.94 60.97
MonoCon (L1+PIoU) 24.93 18.45 15.49 63.88 46.92 41.01 85.88 66.60 61.43

MonoRCNN (L1) 16.94 13.73 11.67 49.87 38.65 33.47 76.57 60.93 52.63
MonoRCNN (L1+PIoU) 16.73 13.62 11.63 51.14 38.63 33.50 74.05 59.99 51.85

Table 5.1: Results for RTM3D, MonoCon, and MonoRCNN on KITTI 3D Car on train/val split, evaluated by
AP3D with IoU thresholds of 0.7, 0.5, and 0.3. Best result for each model at each threshold is shown in bold.

PIoU loss to regress the 2D projected keypoints of 3D bounding boxes. We use the same training settings
for both the baseline and modified model. We use an Adam optimizer with an initial learning rate of 0.0002
which decreases by a factor of 0.1 in epochs 150 and 180. The weight decay is 1e-6. We train for a total
of 200 epochs with a batch size of 16. The experiments run on Ubuntu 20.04 and RTX A5000. It took 14.3
hours to train the model with PIoU loss and 11.5 hours to train the model with L1 loss. Adding PIoU loss
computation to the RTM3D model only slightly increases the training time.

5.6.4.2 The Least-Squares Problem
We define the least-squares problem for finding the best-fitting 3D bounding boxes similar to the definitions
in RTM3D. For each predicted object, P̂ represents the eight corner points of the 3D bounding box on the
2D image plane. Θ̂, D̂ = [ĥ, ŵ, l̂]T , d̂ represent the predicted orientation, dimensions, and depth of the 3D
bounding box. T = [x,z,d]T represents the position of the 3D bounding box, where d represents the horizontal
depth. f (D,T,Θ) maps the 3D bounding box to the 8 corner points in the image plane. We set αP =
0.05,αT = 1,αD = 1,αd = 1 in our experiments. The least-squares problem is defined as

max
D,T,Θ

αP∥ f (D,T,Θ)− P̂∥2 +αT∥Θ− Θ̂∥2

+αD∥D− D̂∥2 +αd∥d − d̂∥2
(5.16)

5.6.5 MonoCon
5.6.5.1 Experiment Settings
We use an unofficial implementation [341] of MonoCon. For comparison, we add our polygon IoU loss to
regress the 2D projected keypoints of 3D bounding boxes. We use the same training settings for both the
baseline and modified model. The batch size is 8, and the total epoch number is 240. Following the original
paper, We use an AdamW optimizer with a weight decay of 0.00001. We use a cyclic learning rate scheduler
with an initial learning rate of 0.000225 which first gradually increases to 0.00225 with a step ratio of 0.4 and
then gradually drops to 2.25e−8. The experiments run on Ubuntu 20.04 and RTX A5000. Figure 5.5 shows
predicted outputs from the implemented model.

5.6.6 MonoRCNN
5.6.6.1 Experiment Settings
We modify the official code of MonoRCNN to incorporate our polygon IoU loss and use the original code to
train the baseline. For comparison, we add PIoU loss to regress the 2D projected keypoints of 3D bounding
boxes. We use the same training settings for both models. We train for 60000 iterations with a batch size of
8. The initial learning rate is 0.01 and is reduced by 0.1 after 30k, 40k, and 50k iterations. The experiments
run on Ubuntu 20.04 and RTX A5000.
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5.7 Results

Sections 5.7.1 and 5.7.2 present the results of each model on the KITTI cars and cyclists data, respectively,
and Section 5.7.3 shows the performance changes for each model across various phases of training. Note
that all AP scores are relatively low when compared with leading benchmark performance on the KITTI
3D detection dataset as a whole. This is because monocular 3D detection is relatively challenging when
compared to 3D detection with sensor fusion as a whole and viewpoint agnostic models additionally cannot
incorporate scene information explicitly or implicitly into model structure or learning.

5.7.1 Results on KITTI Cars
Table 5.1 shows the final AP scores on KITTI 3D cars with different IoU thresholds. On RTM3D, PIoU
loss has on average modestly better AP scores than the original model. Notably, AP70 exclusively improves
across the easy, moderate and hard subsets of the data, suggesting that PIoU offers the most benefit at higher
IoU thresholds because L1 is often suitable for producing “decent” 3D detection results. Averaged across all
difficulties, PIoU results in +0.18% AP70, +0.24% AP50, and +0.25% AP30. Proportional to baseline scores,
AP70. achieves the largest relative increase.

For the MonoCon model on KITTI cars, the proposed PIoU + L1 loss gives better results than the original
model for nearly all different difficulty levels and at all IoU thresholds. (for the IoU threshold of 0.5, PIoU
loss gives better results on the easy and moderate difficulty but not on the hard difficulty.) Again, the largest
improvements from PIoU loss are seen at higher requisite IoU thresholds (+1.64% AP70, +0.64% AP50, and
+0.64% AP30).

Lastly, the performance of the MonoRCNN model on KITTI cars is marginally worse when trained with
PIoU + L1 loss versus L1 loss alone. However, there is still improvement at some IoU thresholds (-0.12%
AP70, +0.42% AP50, and -1.42% AP30 averaged across difficulty levels), and the general trend across models
holds that PIoU + L1 loss yields greater relative gain at stricter IoU thresholds.

Across all models, PIoU loss yields more improvements on easier difficulty levels. This trend is intuitive,
as the ability of a loss function to improve performance is limited when features relevant to an object are not
visible or are highly obscured; better model architectures can likely yield more performance improvement in
these cases.

Model
AP50 AP25
Easy Mod Hard Easy Mod Hard

RTM3D 0.03 0.03 0.03 3.44 2.00 1.56
RTM3D* 0.04 0.04 0.04 5.97 3.17 2.81

MonoCon 4.25 1.96 1.90 19.20 10.84 10.22
MonoCon* 4.69 2.63 2.19 18.27 10.22 9.53

MonoRCNN 3.05 2.01 2.04 15.98 9.05 9.14
MonoRCNN* 4.31 2.73 2.55 19.05 11.22 11.28

Table 5.2: Evaluation results for RTM3D, MonoCon, and MonoRCNN on KITTI 3D Cyclist on the train/val
split, evaluated by 3D AP with IoU thresholds of 0.5 and 0.25. A * indicates models are trained with PIoU+L1
loss; other models are trained with L1 loss. Best result for each model at each threshold is shown in bold.

Model + Loss Types AP50 @ 200 epochs AP50 @ 160 epochs AP50 @ 100 epochs
Easy Mod Hard Easy Mod Hard Easy Mod Hard

RTM3D (L1) 24.13 18.62 15.34 24.29 18.74 15.35 17.66 13.80 11.15
RTM3D (L1+PIoU) 25.02 18.58 15.25 24.91 18.59 15.30 20.41 15.11 13.22
Improvements 0.89 -0.04 -0.09 0.62 -0.15 -0.05 2.75 1.31 2.07

Table 5.3: Evaluation results for RTM3D on KITTI 3D Car on the train/val split, evaluated by AP3D with an
IoU threshold of 0.5 at epoch 100, 160, and 200. Best result at each epoch is shown in bold.
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Model + Loss Types AP70 @ 240 epochs AP70 @ 160 epochs AP70 @ 80 epochs
Easy Mod Hard Easy Mod Hard Easy Mod Hard

MonoCon (L1) 22.27 16.98 14.69 19.45 14.69 12.27 3.47 3.08 2.45
MonoCon (L1+PIoU) 24.93 18.45 15.49 19.94 15.35 12.98 14.84 10.84 8.86
Improvements 2.66 1.47 0.8 0.49 0.66 0.71 11.37 7.76 6.41

Table 5.4: Evaluation results for MonoCon on KITTI 3D Car on the train/val split, evaluated by AP3D with
an IoU threshold of 0.7 at epoch 80, 160, and 240. Best result at each epoch is shown in bold.

5.7.2 Results on KITTI Cyclists
Table 5.2 compares the AP scores of incorporating PIoU loss versus L1 loss alone on KITTI 3D cyclists. For
RTM3D, the accuracy is very low and therefore the change in prediction accuracy between the loss functions
is negligible when IoU thresholds are 0.5., but PIoU+L1 loss significantly improves performance over L1
loss alone for an IoU threshold of 0.25 (+1.65% AP30 averaged across all difficulties.)

MonoCon performance is less notable on cyclists than on cars. Still, the performance of a model trained
with PIoU+L1 loss is better than L1 alone at the more stringent IoU threshold of 0.5 (+0.56% AP50.)

For MonoRCNN, adding PIoU loss strictly improves cyclist detection performance. The AP scores in
all IoU thresholds and difficulty levels increase by around 1-3%. Here again, the largest improvements in
prediction accuracy occur for the easy subsets of the data (+1.26% AP50 and +3.07% AP25).

5.7.3 Model Performance at Different Epochs
Lastly, we test the convergence speed of PIoU + L1 loss versus the baseline L1 loss. Table 5.3 shows the
AP scores for RTM3D on KITTI cars at different epochs. When using PIoU loss, the AP scores early in
training are significantly better than the baseline model (e.g. +2.75% AP50 on easy subset). (A similar trend
is visible for AP70 but this table is omitted for brevity). Table 5.4 similarly shows PIoU+L1 loss results in
faster model convergence than the L1 baseline at an IoU threshold of 0.7 for KITTI cars. After 80 epochs,
PIoU results in at least +5% AP70 for each difficulty, with the largest performance improvement on the easy
subset (+11.37%). The results indicate strongly that PIoU+L1 loss converges faster than L1 loss alone.

5.8 Conclusions and Future Work

In this work, we propose an efficient way to calculate IoU between convex polygons with irregular shapes.
The batched implementation of the proposed PIoU loss in PyTorch is differentiable and can be used as the
loss function for large object detection models. We show that PIoU loss can speed training convergence,
both for simulated polygons and on the KITTI 3D detection dataset. We also show that using PIoU+L1
loss can increase the AP scores over L1 loss alone. Improvements vary when we incorporate PIoU loss into
different 3D object detection models, with The CenterNet-based models benefitting more than the R-CNN-
based model and a best result of +1.64% AP70 for MonoCon on KITTI cars. The most notable performance
gains occur for highly visible vehicles when a strict IoU metric is required, meaning PIoU is especially helpful
in transforming “good” predictions to “great” predictions.

This work tests PIoU loss on 3 different 3D object detection models for a benchmark dataset with rel-
atively constrained (4-sided) polygons. In future work, we would like to incorporate the loss function into
more difficult cases where rectangular bounding boxes are not sufficiently expressive and a detection for-
mulation is preferred to a segmentation-based model formulation, providing an “in-between” for expressive
detections of middling complexity. The results of PIoU in this work are quite promising, and we hope that
future work can test the loss formulation on a larger sampling of methods and datasets, and in combination
with other loss formulations.
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6. A Multi-Camera Vehicle Tracking Baseline
6.1 Introduction

In recent years, 3D detection and tracking datasets in the autonomous vehicle domain have led to marked
advancements in perception and planning algorithms and AV technology more generally [124, 284, 285]. But
designing autonomous technologies from an ego-vehicle perspective alone is not enough. Studies have shown
that control algorithms designed for an individual vehicle’s objectives can cause rippling instabilities in traffic
[16], while controllers designed with global traffic objectives in mind can significantly reduce congestion
[10, 342].

Automatic traffic monitoring offers a tremendous but under-exploited opportunity to address this issue.
Computer vision research has progressed sufficiently in other fields such that efficient algorithms for traffic
monitoring at scale likely exist, and state and federal transportation agencies maintain camera networks with
tens of thousands of cameras nationally; increasingly ubiquitous edge sensing devices only add to the number
of potentially useful traffic cameras. Moreover, in several cases, multi-camera systems have been deployed
at considerable scale specifically to study the effects of intelligent transportation systems (ITS) and AVs on
traffic [34, 70, 79, 80, 343]. Similarly, work on autonomous management of city-scale traffic will benefit
immensely from the ability to track vehicle movements precisely (often requiring 3D detection) across many
cameras [296]. It yet remains to be explored whether existing algorithms can achieve tracking performance
suitable for fine-grained traffic analysis (i.e. HOTA above 75% and over 95% mostly tracked objects), where
small localization errors or a single ID switch can be damaging in understanding a scenario [50].

We seek to enable research on precise vehicle tracking in the traffic monitoring context, with emphasis
on the challenges of multi-camera tracking faced in systems such as [34, 70, 79, 80, 343]. Work in this field
has been slowed by a lack of 3D multi-camera tracking data; this work addresses this shortage to enable
development and evaluation of tracking methods to meet the needs of the next generation of intelligent traffic
systems and AV research. 1

The primary contribution of this work is the introduction of a novel dataset suitable for multi-
camera tracking, consisting of 877,000 3D vehicle bounding boxes annotated across 16-17 cameras
with dense viewpoints covering 2000 feet of interstate roadway near Nashville, TN. The Interstate-24-3D
Dataset (I24-3D) introduced in this work is comprised of 3 scenes (sets of videos recorded at the same time
from different cameras), recorded at 4K resolution and 30 frames per second. Vehicle 3D bounding boxes are
annotated by hand for 720 unique vehicles. I24-3D is the first 3D multiple-camera dataset in a traffic moni-
toring context with real videos and tracks objects across a larger set of cameras than any other multi-camera
tracking dataset. The secondary contribution of this work is the benchmarking of a number of existing
algorithm combinations to assess the difficulty of 3D multi-camera tracking on this dataset, with results
(best performance of 44.8% HOTA and 62% mostly tracked objects) showing that the implemented methods
achieve good performance but do not produce data suitable for fine-grained traffic analysis.

The rest of this chapter is organized as follows: Section 6.2 describes the data and annotations included
in I24-3D. Section 6.3 provides details of benchmarking experiments using the dataset, and Section 6.4 de-
scribes the results. Additional details on the dataset including annotation details, accuracy metrics, timestamp
synchronization efforts, additional experimental settings and implementation details, unabridged results, and
privacy considerations are included in Appendices I - N.

6.2 The I24-3D Dataset

This section introduces the I24-3D Dataset, detailing the location of the cameras, describing the annotations,
vehicle classes, and suitable uses, and providing annotation quality metrics. Data is available at i24motion.
org, and code demonstrating usage is available at github.com/DerekGloudemans/I24-3D-dataset.

1This chapter is repurposed from [95].
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Figure 6.1: Example annotated (green boxes) frames from each camera field of view for one scene of the
I24-3D Dataset. The approximate field of view for each camera is shown on the overhead roadway diagram
below (some cameras shown in unique colors as examples). Regions outside of the considered field of view
for each camera are blurred for this visualization. Cameras provide coverage of 2000 feet of Interstate-24
near Nashville, TN.

6.2.1 Overview
The I24-3D Dataset consists of 3 scenes, or collections of video data recorded simultaneously from 16-17
cameras, densely covering a section of roughly 2000 feet of roadway. Each scene is 60-90 seconds long,
recorded at 4K resolution and 30 frames per second, and features manually annotated 3D bounding boxes
on every vehicle visible within the field of view of each camera suitable for vehicle re-identification, 3D
object detection, tracking, and multi-camera tracking tasks (see Table 6.1.) Over 275 person hours were
spent annotating the data.

6.2.2 Location
I24-3D was recorded using I-24 MOTION [34], an open-road testbed along Interstate 24 near Nashville,
Tennessee. The utilized portion of this testbed contains 18 cameras mounted on three 110-foot tall roadside
poles, spaced at roughly 500 feet and covering an approximately 2000 foot field of view on the interstate [85].
(Due to periodic camera outages, each scene contains footage from only 16-17 cameras).

6.2.3 Annotation Description
Annotations are provided in a roadway-aligned coordinate plane, where x-coordinate indicates distance along
the roadway and y-coordinate indicates lateral (lane) position, of the bottom center rear of the vehicle. For
each direction of travel in each camera field of view, a homography relates the roadway coordinate system to
the pixel coordinates of the field of view. We rely on standard perspective transforms [344] for this conversion
(see Appendix I), assuming the roadway visible in each field of view can be reasonably represented by a flat
plane with a relevant field of view (FOV) comprising most of each image (masks are provided for regions

Scene Time (s) Cameras Frames Boxes IDs VMT Description
1 90 17 45900 291k 324 118 Free-flow traffic
2 60 16 30600 146k 114 24.4 Slow traffic, snow conditions
3 60 16 28800 440k 282 67.0 Congested traffic
Total 210 - 105300 877k 720 209 -

Table 6.1: Summary of scene data for I24-3D dataset. Time indicates the total global duration of a scene
(each video segment for the scene has that duration). Frame count is aggregated across all cameras in the
scene, cameras indicates the number of active cameras for the scene. Boxes indicates number of 3D bounding
boxes, IDs indicates unique vehicle trajectories.
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Figure 6.2: Example single annotation. The annotation is stored in roadway coordinates (left) but can be
projected into cameras 5 and 6 on pole 1 (p1c5 and p1c6).

falling outside of the FOV for each camera). All distances are given feet, as the geometry of the roadway is
laid out in feet (e.g. lanes are 12 feet wide).

A single vehicle 3D bounding box annotation includes vehicle class, unique vehicle ID, bounding box
length, width, and height (fixed for all annotations for a single vehicle), vehicle roadway position, originating
camera, timestamp, and frame index. This information is sufficient to losslessly project the annotation into
the originating camera, or into any other camera in which it is visible. Figure 6.2 shows an example. Object
localization is precise, with 1.24 ft average positional error between annotations of the same vehicle
labeled in multiple cameras, and 0.5 ft average dimensional error. (See Appendix J and K.)

6.2.4 Vehicle Classes
Vehicles are classified into six classes: sedan, midsize (minivan, SUV or compact SUV), van, pickup, semi
(tractor-trailer), or truck). Figure 6.3 depicts example annotations for each class as well as the total number
of annotations for each class. We make one additional distinction: vehicles other than semis that tow trailers
are classified with the towing vehicle’s class, but bounding boxes are drawn to include the trailer. This choice
reflects that a vehicle and trailer behave as a single semi-rigid body. Vehicle IDs with trailers include: Scene
1: [288, 133, 7, 138, 43, 270, 245, 216], Scene 3: [225, 105, 15, 148, 247, 219].

Figure 6.3: Example vehicles and vehicle class annotation counts for the I24-3D dataset.

6.2.5 Dataset Uses and Comparison
The I24-3D dataset provides annotations of sufficient richness for a variety of canonical computer vision
problems, including object reidentification, 2D and 3D detection and tracking. Most notably, multiple videos
from a single scene can be used for multiple-camera tracking tasks, and the presence of 3D labels in this
dataset enables explicit modeling of a shared 3D space for object tracking. Table 6.2 provides a comparison
of the suitable uses of the I24-3D dataset and the most similar existing datasets. Notably, I24-3D is the only
dataset in a traffic monitoring context that allows for 3D multi-camera tracking.

6.3 Benchmarking Experiments

To provide an initial gauge of tracking difficulty and existing algorithm performance on I24-3D, we bench-
mark a set of tracking methods on this dataset. Experimental protocol, metrics for evaluation, and imple-
mented algorithms are briefly described in this section.
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Dataset Resolution Detection MOT MCT Boxes Frames Cameras
2D 3D 2D 3D 2D 3D

WILDTRACK [295] 1920×1080 ✓ ✓ ✓ ✓ 38k 61k 7
KITTI [284] 1382×512 ✓ ✓ ✓ ✓ 200k 15k 1
NuScenes [285] 1600×900 ✓ ✓ ✓ ✓ ✓ ✓ 12M 40k 6

BoxCars116k [115] varies ✓ ✓ 116k 116k 1
UA-DETRAC [215] 1920×1080 ✓ ✓ 1.2M 140k 1
CityFlow [296] 960×540 ✓ ✓ ✓ 229k 117k 25*
Synthehicle [298] 1920×1080 ✓ ✓ ✓ ✓ ✓ ✓ 4.62M 6.7k 7
I24-3D (Ours) 3840×2160 ✓ ✓ ✓ ✓ ✓ ✓ 877k 105k 16-17

Table 6.2: Suitable uses and metrics for comparable MOT and 3D vehicle detection datasets, grouped by
traffic monitoring (bottom) and other contexts (top). MOT indicates multiple object tracking (in 2D or 3D),
and MCT indicates multiple camera tracking (with 3D tracking requiring a unified tracking space). Boxes
indicates the total number of monocular bounding box view annotations, Frames indicates the total number
of annotated frames in the dataset, Cameras indicates the number of camera views in a single scene. A *
indicates some camera fields of view have large gaps between them (non-overlapping).

6.3.1 Experimental Protocol
Each scene is split into temporally contiguous training and validation partitions (the first 80% and the last
20% of each scene, respectively). Training is performed exclusively using the training partition. All training
is performed locally on RTX6000 GPUs, and detection models are trained until convergence. During tracking
we maintain tight 1/60th second synchronization between each video using corrected frame timestamps (see
Appendix J), skipping frames as necessary to maintain a 15 Hz nominal frame rate.

For tracking evaluation, we find a best-fit 3rd order polynomial spline for each ground truth vehicle to
obtain a continuous object representation in roadway coordinates. Predicted vehicle trajectories are compared
against boxes sampled from the best-fit spline for each object. We linearly interpolate between the spline-
sampled boxes and the tracker-output predictions at 30Hz to produce object sets at the same discrete times.
Additional experimental details are given in Appendix L.

6.3.2 Metrics
We compare tracker performance using the clearMOT metrics [216], the MT/ML metrics used in [345], and
HOTA [218]. We also consider the percentage of ground truth (GT %) and predicted objects (Pred%) matched
to at least one predicted or ground truth object, respectively). To account for time-synchronization errors, we
use a requisite 30% 2D-footprint IOU threshold between predicted and ground truth objects.

6.3.3 Algorithms Implemented
A variety of multi-camera 3D MOT pipelines are assembled, each requiring 3 algorithmic components: i.) a
3D object detector, ii.) an object tracker / association method, and iii.) a method for combining objects across
cameras. We briefly describe algorithms implemented for each stage (implementation and parameter details
can can be found in Appendix L).
3D Detectors:

• Monocular 3D Detector (Single3D) - a Retinanet model with Resnet34-FPN backbone [132]. The
formulation is camera-agnostic (as training a separate model for each camera FOV is infeasible both
from data scarcity and scalability standpoints.) Average Precision (AP) scores for this detector: AP30 =
0.718, AP50 = 0.598, AP70 = 0.254. (See Appendix L for experimental details.)

• Monocular 3D Multi-frame Detector (Dual3D) - Inspired by recent works utilizing multiple frames
for detection and tracking [87], we add the previous frame as detection input. AP scores for this
detector: AP30 = 0.810, AP50 = 0.714, AP70 = 0.572.

• Monocular 3D Crop Detector (CBT) - as described in [91], we train a Retinanet Model with Resnet34-
FPN backbone for detecting objects in cropped portions of full frames. AP scores for this detector:
AP30 = 0.767, AP50 = 0.700, AP70 = 0.464.

• Ground Truth Detections (GT) - perfect ground-truth detections.
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Detector Tracker DF TF HOTA MOTA Rec Prec GT% Pred% MT ML Sw/GT
Crop Byte ✓ ✓ 23.6 21.3 53.4 64.0 90.5 72.9 25.6 25.0 1.1
Crop KIOU ✓ ✓ 24.6 21.4 54.4 64.2 90.5 71.2 27.6 22.3 1.1
Dual3D Byte ✓ ✓ 30.9 50.0 65.6 81.9 90.6 93.4 35.9 15.0 0.9
Dual3D KIOU ✓ ✓ 39.7 71.6 76.5 93.7 91.5 95.3 52.5 10.4 0.7
Single3D Byte ✓ ✓ 27.5 49.3 62.8 83.9 92.1 91.8 29.7 15.4 0.9
Single3D KIOU ✓ ✓ 39.9 71.6 76.3 94.1 93.4 95.6 51.6 8.8 0.7
Crop Byte ✓ 15.2 -16.5 43.5 47.0 90.4 59.8 14.5 32.2 1.5
Crop KIOU ✓ 20.7 -2.1 51.6 52.9 90.2 53.7 25.5 26.4 1.5
Dual3D Byte ✓ 38.7 75.0 80.2 93.8 93.0 93.6 59.0 8.0 0.8
Dual3D KIOU ✓ 44.8 77.0 83.0 93.2 91.7 92.3 63.8 8.8 0.5
Single3D Byte ✓ 38.2 72.6 80.6 90.9 94.9 92.5 58.7 4.7 1.1
Single3D KIOU ✓ 44.8 77.1 83.0 93.4 93.3 91.3 62.2 7.8 0.5

Crop Byte ✓ 19.2 34.7 58.3 72.8 91.9 81.4 27.1 16.6 2.4
Crop KIOU ✓ 19.3 32.1 57.9 71.4 91.9 79.7 25.9 17.3 2.4
Dual3D Byte ✓ 20.9 60.2 64.2 94.8 92.7 94.7 29.5 8.7 2.8
Dual3D KIOU ✓ 21.1 60.4 64.0 95.2 92.6 94.7 29.7 8.9 2.7
Single3D Byte ✓ 21.3 60.3 63.9 95.3 93.8 94.2 27.1 7.5 2.6
Single3D KIOU ✓ 21.4 60.3 63.7 95.5 94.2 93.9 26.5 7.5 2.6
Crop Byte 17.6 18.7 59.8 64.0 91.9 73.0 30.4 15.1 3.0
Crop KIOU 16.9 10.8 57.5 60.0 91.9 66.0 28.2 18.5 3.2
Dual3D Byte 15.0 55.1 72.8 81.7 93.2 87.5 42.5 6.8 7.3
Dual3D KIOU 15.1 55.6 72.7 82.2 93.1 87.8 42.3 7.0 7.3
Single3D Byte 15.1 54.0 72.3 80.8 94.3 85.9 40.5 5.8 7.2
Single3D KIOU 15.2 54.4 72.2 81.3 94.5 86.1 39.4 5.6 7.1

Table 6.3: Tracking results for each multi-camera tracking pipeline. Sw/GT indicates object ID switches per
ground truth object. Best result for each metric shown in bold.

Object Trackers:
• Kalman-Filter IOU Tracker (KIOU) - as described in [166]. We utilize a contant velocity roadway-

coordinate Kalman filter for object position prediction.
• ByteTracker (Byte) - noting this tracker’s state of the art performance on the MOTChallenge bench-

marks [217], we utilize the two-stage association method described in [226], using IOU as both primary
and secondary matching criterion and utilizing a Kalman filter as suggested by authors.

• Crop-based Tracking (CBT) - as proposed in [91], detection on some frames is performed by re-
detecting priors in cropped subsets of the overall frame, and object associations are implicit for these
frames.

• Ground Truth Single Camera Tracklets - perfect single-camera tracklets.

Cross-Camera Rectification Methods:
• Detection Fusion (DF) - as preferred in the AV context [285], detections from all cameras are com-

bined online in roadway coordinates and non-maximal supression with a stringent 1% IOU threshold
utilized to eliminate overlapping detections.

• Trajectory Fusion (TF)- as proposed in [311], single camera tracklets are compared for spatio-
temporal overlap offline, stitched together when a matching criteria is met, and refined to optimally
describe the observed set of tracked object positions.

• None - as a baseline, object tracklets from each camera are output with no fusion.
• Both (DF+TF) - Tracking uses detection fusion, and a subsequent trajectory stitching step is performed

to deal with remaining object fragmentations.

6.4 Results

Table 6.3 reports results for each of the above implemented pipelines. The best performing pipeline com-
bines Dual3D detection with KIOU tracking and trajectory fusion (HOTA 44.8%). In general, trajectory
fusion alone performs best (across otherwise equal run settings) and no cross-camera rectification strategy
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(baseline) performs worst. While relatively high MOTA scores are achievable at a low 0.3 IOU threshold
(77.1% maximum), HOTA scores are still relatively low when compared to top performing algorithms on
MOTchallenge and KITTI [217, 284]. This is primarily driven by relatively low localization accuracy, es-
pecially for fast moving vehicles (where a 1-frame timing error results in dropping below a 70% threshold
for localization accuracy for an otherwise perfect detection.) See Appendix M for an example HOTA plot at
varying localization thresholds.

Even the best pipelines miss 5% of ground truth objects entirely (GT%), and track only 64% of
objects for 80% of overall duration (MT). This result demonstrates the difficulty of tracking most or all
of the vehicles in a traffic scene at the level of granularity and completeness necessary for in-depth traffic
analysis. Even utilizing ground truth detections or single camera tracklets cannot fully mitigate these failures.
For brevity, pipelines utilizing ground truth inputs are included in Appendix M; the best-performing pipeline
utilizing ground truth detections achieves HOTA 59.6%, and the best-performing pipeline utilizing ground-
truth single-camera tracklets achieves HOTA 61.6%. This indicates that the cross-camera tracklet rectification
problem is difficult even with great single-camera tracklets.
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Figure 6.4: Time-space diagrams (object x-position vs time) for each lane for Dual3D +KIOU+TF pipeline
on Scene 3 (Lane 4 is rightmost lane in direction of travel). False negatives (yellow), false positives (red)
and true positives (blue) shown. In this case, most false positives are closely paired with a false negative,
indicating that an object was tracked below the IOU threshold. Lanes farthest from cameras (EB lane 1 and
WB lane 4) have the more false negatives in general, likely due to smaller object size and greater object
occlusion. In some cases, a predicted object that falls below the IOU threshold with a ground truth object
results in a parallel false positive and false negative track.

Table 6.4 reports results for the best pipeline per scene. Scene 1 is easiest across a variety of metrics,
with Scene 2 being easier on MOTP (slow-moving objects due to snowy conditions minimizes localization
inaccuracies). Per-scene results for all methods are included in Appendix M. Figure 6.4 shows the best
performing pipeline’s outputs evaluated against ground truth object annotations for Scene 3. Lanes farther
from cameras and with high object densities have a much higher rate of false negatives (e.g. westbound
(WB) lane 4). Slow-moving, un-occluded objects (e.g. WB Lane 1) are tracked relatively accurately. Faster
moving objects (e.g. EB Lane 2) are often tracked, but not accurately enough to surpass the IOU threshold

Scene HOTA MOTA MOTP Rec Prec GT% Pred% MT ML Sw/GT
1 58.5 89.7 69.2 92.9 96.7 95.3 98.4 86.3 2.2 0.02
2 46.9 77.7 74.5 86.2 91.1 90.4 82.4 64.0 9.6 0.49
3 29.1 63.5 64.8 69.9 91.7 89.3 96.1 40.9 14.6 1.05
avg 44.8 77.0 69.5 83.0 93.2 91.7 92.3 63.8 8.8 0.52

Table 6.4: Tracking results for Dual3D + KIOU + TF for each scene. Best score for each metric shown in
bold, generally suggesting an easier scene.

75



requirement. Results on Scene 3 demonstrate the difficulty of tracking all objects in dense stop-and-go traffic,
when many objects are occluded for long periods of time.

6.5 Conclusion

This work introduced the I24-3D dataset, a multi-camera 3D vehicle tracking dataset with a total of 57 min-
utes of video and 877,000 vehicle annotations across 16-17 cameras. It also provided an initial benchmarking
of some multi-camera 3D tracking pipelines from existing algorithms, demonstrating the difficulty of tracking
on this dataset.

The benchmarking performed in this work represents a first step towards developing and evaluating effi-
cient and accurate 3D multi-camera tracking pipelines. Moreover, though none of the benchmarked pipelines
achieved performance suitable for fine-grained traffic analysis (i.e. HOTA ¿ 0.75, mostly tracked objects ¿
95%), we suspect that there do exist methods or combinations of methods that will perform better than the
implemented methods from this work, especially those that better utilize the 3D scene information stemming
from multiple cameras in an intensely occlusion-aware manner. We encourage interested researchers to report
their results on this benchmark utilizing the protocol described in Section 6.3 and Appendix L. In the future,
we look forward to developing such scene-aware MOT methods, armed with a new enabling dataset. We also
intend to release a 3D multi-camera tracking challenge with new scenes and cameras from the I-24 MOTION
system [34].
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7. A Long-Term Vehicle Tracking Baseline
7.1 Introduction

Figure 7.1: Example fields of view from each of the 234 cameras included in the I24V dataset. Each camera
is recorded in 1920 × 1080 resolution and at 30 frames per second. Scene information is provided for each
roadway direction of travel in each camera.

Much concerted work has been spent on multiple object tracking benchmarks in recent years, primarily
from the perspective of pedestrian tracking in crowds [82, 217] or vehicle tracking from an AV perspective
[284, 285]. These datasets generally have high object density, short scenes (1-2 minutes), and short object
longevity (∼10 seconds), focusing on high localization accuracy, precision and recall. As a result they do
not emphasize challenging aspects of long-term tracking: appearance changes, long-term occlusions, and
increasing chance of fragmentation or ID swaps with increasing track length. 1.

Crucially, there is no existing multiple object tracking dataset with a high object density (over 250), long
moving object durations (over 5 minutes), and more than 25 overlapping cameras covering a single scene
or scenario at the same time. As a result, researchers cannot answer whether existing tracking algorithms
are suitable for tracking objects through dense scenes over tens of thousands of frames, because there is no
dataset to perform this evaluation on. Such tracking is crucial in the context of traffic science, where origin-
destination information for individual vehicles and long-term vehicle behavior are paramount for designing
well-fitting models of human driver behavior [37, 54]. It is our goal to provide a video dataset of a different
spatial and temporal scale than previous works to enable object tracking research in this vein.

To this end, we present the Interstate 24 Video (I24V) dataset. The dataset consists of a single scene,
1 hour in duration, of 4.2 miles of interstate roadway, covered by 234 cameras with overlapping fields of
view. Given the scale of this dataset (over 2000 times the video duration of MOTChallenge [82], 500x the
duration of KITTI [284] and 80x the scale of CityFlow [296]) traditional manual annotation of objects is
infeasible. To combat this difficulty, we provide a set of 270 manually-corrected GPS trajectories from over
100 instrumented vehicles on the roadway during the recording duration. Objects persist for an average of
6.6 minutes (11880 frames average at 30 frames per second (FPS)) and a high object density (> 500 across
the scene) is typically observable. This annotation set is suitable for assessing object tracking algorithms
along recall-oriented metrics. Initial experiments show that existing high-performing trackers fall well short
of acceptable tracking performance on data of this scale, and further work is needed to develop suitable
algorithms for long-term tracking tasks. We take considerable care to make the data useful for computer
vision applications, developing new techniques for keeping camera homographies more accurately aligned

1This chapter is adapted from [93]

77



Dataset Cameras Video (hr) Scene (min)
DukeMTMC [291] 8 11.3 85
Wildtrack [295] 7 1.0 8.6
CityFlow [296] 25 3.3 6.5
Synthehicle [298] 7 17 3
EPFL-Terrace [346] 4 14 3.5
PETS [292] 8 0.2 0.3
pNEUMA Vision [297] 10 3.9 13
I24-3D [95] 17 1.0 1.5
I24-Video (proposed) 234 234 60

Table 7.1: This table summarizes the most comparable existing multi-camera datasets according to Cameras,
the total number of camera fields of view covering a single scene, Video, the total length of all included video,
and typical Scene duration as estimated from available information for each work.

than existing stabilization methods allow. Succinctly, the contributions of this work are:

1. The largest multi-camera video dataset (234 cameras and 234 hours of video covering a scene with
high object density and long object durations).

2. A sparse set of 270 GPS-produced annotations corresponding to 1782 minutes of labeled vehicle tra-
jectory.

3. Preliminary benchmarking of existing object tracking algorithms on this dataset.
4. Precise scene information and a unified curvilinear coordinate system for the entire scene, useful for

filter-based tracking and downstream traffic science.
5. Methods for precisely re-aligning camera homographies to account for drift outperforming existing

image stabilization techniques in over 99% of cases.

The rest of this chapter is organized as follows: Section 7.2 introduces the dataset, its attributes, and
methods used to ensure its fidelity. Section 7.3 describes the numerical experiments and Section 7.4 the
results for homography re-estimation methods and for object tracking algorithms benchmarked on the dataset.
Much additional explanation and analysis omitted for brevity is available in the Appendices.

7.2 Dataset

This section describes the data released in this work. This dataset includes: i.) 234 hours of video concur-
rently recorded from 234 cameras. ii.) Scene information for each roadway direction of travel in each camera.
iii.) A unified curvilinear coordinate system aligned with the primary roadway direction of travel. iv.) Ground
truth GPS trajectories for 270 vehicle runs through the camera fields of view v.) Object detections produced
at 30Hz on the video scene. Each is described in more detail in the following sections.

7.2.1 Video Data
7.2.1.1 Location
Video of a single complex traffic scene was recorded using the I-24 MOTION traffic testbed [34]. Briefly,
this system is comprised of 294 IP pan-tilt-zoom cameras densely covering a 4.2 mile stretch of 8-10 lane
interstate roadway near Nashville, Tennessee. The main system features 40 ∼110-foot tall traffic poles, each
with six cameras mounted to provide seamless coverage of roughly 500 feet of the interstate. The primary
goal of this camera system is to provide accurate, anonymized vehicle trajectory and dimension information
to enable traffic science. See [34] for more details. Figure 7.2 provides an overview of system features and a
typical camera coverage layout for a single camera pole. Due to the layout of the cameras, any object passing
through the whole system is visible in a minimum of 185 cameras, and roughly 1-3 cameras at any point in
time with a few exceptions for overpasses and camera pole outages.
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Figure 7.2: (top) Graphical overview of the I-24 MOTION system. Each blue dot represents a camera pole
with 6 cameras. Red dot indicates a camera pole outage (Pole 25). (orange) drone image showing 8 of the
40 system camera poles. (purple) Typical 6 camera per pole coverage layout. Best viewed zoomed-in.

7.2.1.2 Recording Details
On a morning in November 2022, video data was recorded from 234 of the 296 cameras simultaneously
from 6:00AM to 10:30AM, roughly covering the morning rush hours. The 7:00-8:00AM hour is published
here. HD video (1920 × 1080 pixels) was recorded at 30 frames per second from each of the cameras and
stored in H.264 compressed format, totaling ∼1 TB. As in [296], any visible license plates are redacted
using [347]. Each video is then manually inspected, to remove any pedestrians, private property, or other
personally identifiable information (see Appendix T). The one-hour scene has notable features, including
i.) several anomalous events, including at least 10 stopped vehicles, ii.) high object density (>500 objects
present at most times during the recording), and iii.) significant occlusion of vehicles by taller vehicles with
moderate frequency.

7.2.2 Scene Homography
Particular care with scene information is taken in this work as an accurate transformation from image pixel
space to a unified coordinate system is a vital pre-requisite for precise multi-camera tracking. The standard
approach [344] utilizes a homography, which relates two planar surfaces via a linear transformation, in this
case the road surface visible within camera frames and a suitable world coordinate system (We use Tennessee
State Plane coordinates (EPSG:2274), which are preferred to other systems such as WSG84 (standard GPS
convention) in that they utilize a globally orthonormal basis.) The road surface is treated as a planar surface
(for each direction of travel) within a limited field of view (FOV) for each camera. Intrinsic-extrinsic camera
calibration as used in the AV context [124, 284, 285] is infeasible here as cameras were not accessible prior
to installation, can be replaced or moved, the focus is not fixed, and in-situ intrinsic camera calibration is not
possible.

To compute each homography, lane marking corners are utilized as well-defined, semantically meaning-
ful features. World coordinate system points are obtained by manually labeling aerial survey footage (∼1
inch/pixel), while the corresponding image coordinates are produced with semi-automatic labeling on the
recorded images. Manual aid was required because the lane markings are identical and repetitive, so addi-
tional visual clues were required to uniquely label each lane marking. The homography matrix is fit to these
correspondence points via a least-squares formulation as implemented in OpenCV [348]. See Appendix O
for details.
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7.2.2.1 Homography Re-estimation
Ideally, homographies ensure that multiple views of the same point map to a single unique point on the state
plane. In reality, camera fields-of-view are constantly changing due to inaccuracies in the pan-tilt mechanism
during homing, settlement of the foundation, and most significantly the sunflower effect (the tilting of metal
infrastructure poles away from the sun due to differential heating of the sun and shade-facing sides of the
pole) [349]. Uncorrected, these factors produce significant homography errors sometimes greater than 10
feet. Figure 7.3a shows the magnitude of these shifts at one time for a typical camera homography. Figure
7.3b illustrates how the average shift for a camera changes over time, due to both the initial error (due to long
term phenomena since the initial camera calibration) and the fluctuations in error over a single morning due
to the rising morning temperature and changing cloud cover (peaks and valleys).
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Figure 7.3: Typical homography error dynamic and the representation of the Sunflower Effect: (a.) uncor-
rected displacement of image points showing the magnitude of error (in feet) that using the original homog-
raphy without accounting for drift would cause. The red polygon area represents the camera FOV, (b.) The
displacement error of a typical camera over the day. Gray vertical line indicates the time instant shown in (a).
(c.) Mean average displacement of all the cameras for the westbound roadway side, sorted by magnitude of
error. (Credit: Gergely Zachár.)

Repeated manual correction is not feasible, and proper correction of the camera movement is challenging
because traditional video stabilization methods (utilizing feature-matching techniques, based on e.g. SIFT
[350] or SURF [351]) are ill suited for our scenes; a.) a large portion of the image corresponds to “noise”
(e.g. trees, grass), producing hard-to-match feature points, b.) feature points are usually not semantically
meaningful and potentially do not lie on the plane of the road surface, thus are unsuitable for homography
estimation, c.) the relevant features on the ground plane in the region of interest are frequently occluded
by vehicles, d.) a large number of co-moving vehicles can skew the calculation of optical flow along the
direction of vehicle travel. To circumvent these issues, we propose the following homography re-estimation
procedure:

1. Average frames for a suitable time (∼ 1 min) to remove vehicles from the scene.
2. Find an initial, rough alignment based on a SIFT and a FLANN-based matcher [352] (as in OpenCV

[348]).
3. Shift original correspondence points using rough alignment. Use to seed re-detection of lane markers.
4. Filter and refine the detected lane marker corner points.
5. Calculate the homography matrix using successfully re-identified corner points.

For a specific time instance this automatic re-detection and homography re-estimation often fails, either
due to i.) lane marking occlusion in heavy traffic or ii.) failure of FLANN matcher. To provide a robust
homography in spite of these failures, two methods are proposed and implemented: i.) calculation of a
single, static homography for an extended period (e.g. all-day) by filtering and averaging homographies
over the period, and ii.) a dynamic, time-varying homography. The later a time-varying kernel-based filter
of the homography parameters, with a variable window size. Each method is computed offline (utilizing all
information for the whole day). Additional details are given in Appendix P. The effectiveness of each solution
is compared to the existing approach (FLANN-based matcher) in Section 7.3.1.
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Figure 7.4: Camera fields of view (a and b) are related to (c) state plane coordinates, a rectilinear coordinate
system, via perspective transforms. State plane coordinates are related to curvilinear roadway coordinates (d)
via straightforward mathematical equations.

7.2.3 Roadway Coordinate System
We define an additional roadway coordinate system with the primary (X) axis aligned with the roadway di-
rection of travel, and the secondary(Y) axis always perpendicular to the roadway direction of travel. Since the
roadway is not perfectly straight, a curvilinear coordinate system is required to achieve the desired attributes,
resulting in a locally orthonormal coordinate basis (see Figure 7.4 for a comparison). Such a coordinate sys-
tem enables strongly domain-informed filter-based trackers [5] to be implemented trivially (e.g assume that
the primary direction of motion for objects is along the primary axis and enforce reasonable vehicle physics).
This coordinate formulation is also preferred for traffic science because quantities such as lane position and
inter-vehicle spacing within a lane can be easily computed. A full description is given in Appendix O.

7.2.4 GPS Tracks and Correction
Concurrent with video recording, a fleet of 103 GPS instrumented vehicles was driven through the portion
of roadway observed by the I-24 MOTION testbed. Details on vehicle instrumentation can be found in [13].
On these vehicles, positional data was recorded at 0.1s intervals. A total of 270 vehicle passes through
the roadway were made during the recording period, providing the same number of vehicle trajectories for
comparison.

7.2.4.1 GPS Track Refinement
Initial attempts to compare GPS track data against known, ground truth object positions (manually annotated)
revealed that GPS data contained positional errors (mainly bias along primary direction of travel, and mainly
high variance perpendicular to direction of travel), consistent with the GPS sensor’s reported error metric of
2.5m circular error probable (CEP) (see Figure 7.5). Additionally, a small time discrepancy between some
GPS track data and the camera network is observable. The following protocol was utilized to make GPS
trajectories suitable for direct comparison against object tracking outputs from camera data:

1. Manually annotate a ‘perfect’ position for each GPS track, once per camera pole (e.g. 37+ annotations
for a GPS track that travels the full length of the camera system). See Figure 7.5.

2. Correct GPS bias in the roadway coordinate system primary (longitudinal) axis direction by finding the
mean offset between GPS positions and manually annotated object positions.
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Figure 7.5: (left) GPS tracks (lines) and corresponding manual annotations (circles) for westbound (top)
and eastbound (bottom) roadway directions of travel. One GPS trajectory is highlighted in green. (right)
Detail for highlighted trajectory, showing relative x-position (top) and y-position (bottom) of nearby object
detections (black dots), manual annotations (green circles), and the uncorrected corresponding GPS track.
Deviations of over 20ft x / 12ft y position can be seen. Detections closely matching corrected GPS track
shown in red. (Detections for every 30th frame are plotted for clarity.)

3. Determine the time offset in the range [-2s,2s] that minimizes the variance in GPS positional offsets
relative to manually annotated object positions.

4. Correct residual error in the longitudinal direction by linearly interpolating the required offset between
consecutively labeled offsets between GPS and manually annotated object positions.

5. Linearly interpolate lateral coordinate between manually annotated object positions for each GPS track.

Figure 7.5 shows the alignment between manually annotated object positions (circles) and GPS positions
(lines) for a single typical GPS track. In total 7885 manual annotations are made. Figure 7.6 shows a his-
togram of GPS intersection-over-union alignment with object detections (see Section 7.2.5) before and after
correction. Corrected GPS tracks align more closely with CNN-produced object detections than original GPS
tracks (IOU of 45% vs 8%). After correction, 270 vehicle trajectories were produced with an average length
of 6.6 minutes and 17560 feet. Each object is virtually always visible in at least one camera, corresponding
to a minimum of 3207600 roughly annotated bounding boxes.

7.2.5 Detections
To allow preliminary analysis of existing object tracking methods, a baseline set of object detections was
produced. Because the cameras in this dataset have widely varying fields of view, a viewpoint agnostic
monocular object detector was utilized (i.e. an object detector that does not explicitly or implicitly code

0.0 0.2 0.4 0.6 0.8 1.0
IOU

Fr
eq

ue
nc

y

0.083
0.445

Uncorrected GPS
Corrected GPS

Figure 7.6: (left) Intersection-over-union histogram between GPS and closest automatically detected object
position, before (black, mean 0.083) and after (green, mean 0.445) manual correction. (right) Examples of
corrected (green) and uncorrected (black) GPS positions in a camera field of view.
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Figure 7.7: Longitudinal (X) position versus time for all detections on the westbound side. Each colored pixel
(a total of 123,768,540 though with some overlaps for vehicles in different lanes but the same X position at
the same time) represents a detected vehicle in a particular location and time.

scene information into its structure or parameter weights). This allows a single set of network parameters
to be utilized for all camera fields of view (rather than training a separate model for each camera field of
view, which was infeasible based on storage, implementation, and training time constraints). This work uti-
lized a Retinanet ResNet50-FPN backbone object detector [132] to provide detections. The network outputs
were parameterized to produce rectangular prism representations for 3D bounding boxes in addition to 2D
bounding box outputs for predicted objects (see Chapter 5). Detections are nominally produced at 30 Hz with
some frames skipped to provide ± 1/60s synchronization across all cameras. The resulting dataset contains
158,976,915 detections, each including a 3D bounding box defined in the roadway coordinate system, a 2D
bounding box in image coordinates, vehicle class (sedan, midsize, van, pickup, semi truck or other truck),
timestamp, camera, and detection confidence.

Figures 7.7 and 7.8 show the resulting detection set in roadway coordinates. Each diagram plots roadway
X-position versus time for all detections on the given roadway direction. In some cases, more than one
detection may be mapped to a single pixel because they correspond to two detections occupying nearly
the same X-position at the same time, in different lateral (lane) positions.In these figures, horizontal bands
without detections correspond either to missing camera poles (see Appendix U or overpasses.

7.3 Experiments

This section first describes experiments used to assess the accuracy of the homography re-estimation method
proposed in this work, then describes initial MOT algorithm benchmarking performed using baseline object
detections.

7.3.1 Homography Re-estimation
To assess the effectiveness of homography re-estimation methods proposed in Section 7.2.2.1, we utilize
the homography goodness-of-fit (equation 7.1) which indicates how well the homography maps between
the image plane and state plane, and the error metric defined in equation 7.2 which indicates average the
positional error in points translated between the image plane and state plane via the computed homography.
For each method, homographies are computed at 1 minute intervals overlapping by 50%. The computed
homography’s fitness is assessed according to:
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Figure 7.8: Longitudinal (X) position versus time for all detections on the eastbound side. Each colored pixel
(a total of 123,768,540 though with some overlaps for vehicles in different lanes but the same X position at
the same time) represents a detected vehicle in a particular location and time.

f itness(t) = ||At ,I ′
t

Ht−→ ||2 (7.1)

where I ′
t is the subset of correspondence points successfully rediscovered in the image at time t, At is the

corresponding subset of points in state plane coordinates, Ht−→ indicates a linear transform between coordinate
spaces using Ht , the homography matrix fit directly to the rediscovered points at time t. Error is computed as:

error(t) = ||I Ht−→,I H∗
t−→ ||2 (7.2)

where I is the full set of correspondence points labeled in the original reference image, Ht is the homography
fit directly to time t between the rediscovered points I′t and the corresponding state plane points At , and H∗

t
is the homography for time t produced by the selected method. Because Ht is prone to error, any reported
error may come either from the instantaneous homography Ht or the method-fit homography H∗

t (i.e. Ht is
a good baseline when sufficiently many correspondence points are rediscovered.) We report other metrics
independent from Ht in Appendix Q.

7.3.2 MOT Algorithm Benchmarking
A limited set of detection-fusion tracking algorithms (SORT [5], IOUT [166], KIOU [322], and ByteTrack
with both Euclidean distance and IOU as similarity metric [226]) is implemented based on the criteria that
i.) algorithms must not require retraining on the tracking data as no training data for object detection is made
available, ii.) must not require additional inputs (e.g. appearance embeddings), and iii.) must be tracking by
detection-based (not joint detection and tracking-based) methods. These criteria are necessary because, on
a dataset of this size, generating auxiliary information or conducting one-off algorithm runs on all videos is
prohibitively time-intensive. For comparison, an oracle tracker is implemented which selects all detections
close to a GPS trajectory and linearly interpolates tracklet positions between these selected positions. The
oracle represents performance theoretically obtainable using the existing set of object detections with a per-
fect motion model. This evaluation is merely a first step at gauging the difficulty of this dataset; we make
annotations and evaluation protocols public so that researchers may evaluate their own algorithms and report
state of the art performance.

Tracking methods are evaluated using recall, assigned IDs per ground truth trajectory, and Multiple Object
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Tracking Precision (MOTP) in terms of both IOU and Euclidean distance from [216], Longest Consecutive
Subsequence (LCSS) by distance and time from [353], and DetA, AssA, and HOTA from [218]. Because the
dataset does not densely label objects, a false positive count cannot be obtained. Thus, the DetA metric from
[218] is modified:

DetA∗
α =

T P
T P+FN

(7.3)

where T P represents the number of object positions that are matched to a ground truth position with at least α

IOU overlap, and FN represents the number of ground truth object positions with no such match. We follow
the rest of the protocol from [218] for calculating AssA and HOTA.

7.3.2.1 Evaluation Protocol
Each object tracker is run using the detection set from Section 7.2.5. GPS trajectories and detections from
each camera are obtained at slightly different times. To account for this, tracking evaluation is performed at
fixed 0.1 second intervals, and each GPS trajectory and object tracklet position is linearly interpolated at each
evaluation time. Evaluation is performed as in [216]. For all metrics other than HOTA metrics, a lax IOU of
0.1 is required for an object tracklet and GPS trajectory to be matched.

7.4 Results

7.4.1 Homography Re-estimation Performance
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Figure 7.9: (a.) Typical homography fitness for a single camera, (b.) error dynamics for a single camera
over time with each homography re-estimation methods, (c.) Remaining error for each camera after (black)
SIFT-FLANN feature-matching, (orange) one-day best fit homography re-estimation, and (red) dynamic ho-
mography re-estimation methods relative to orignal reference homography baseline (blue). Cameras are
grouped by position on pole (see Figure 7.2) and by side of roadway (westbound homographies on top, east-
bound on bottom). (Credit: Gergely Zachár.)

Figure 7.9a reports the homography (Ht ) goodness-of-fit metric (equation 7.1) over time for a typical
camera using the homography re-estimation process defined in Section 7.2.2.1. This ∼2ft tightness is guar-
anteed by outlier removal processes during homography fitting; remaining error is due primarily to camera
lens distortions and errors in the flat-plane assumption. The fitness of Ht represents an “error floor” for a
homography based on the same assumptions.

Figure 7.9b show the additional error above the error floor for different homography re-estimation meth-
ods utilizing the error metric from equation 7.2. The reference (blue) indicates the resulting error without
any mitigation, showing both long term (high mean) and short term (high variance) error (3.78 feet whole-
day average). The SIFT-FLANN method (the existing optical flow-based ”camera stabilization” [348]), is
inferior (2.74 feet whole-day average) in almost all cases to the proposed methods utilizing semantically
meaningful lane markers. The static, all-day average homography removes the long term error, although it is
mostly unable to remove the error caused by the sunflower effect especially in highly fluctuating cases (1.39
feet whole-day average). Lastly, the dynamic homography utilizes nearby (temporally) homography estima-
tions for a given time instance, and can cope with short-term fluctuations caused by camera pole movement,
substantially reducing (0.33 feet whole-day average) the residual error caused by the static homography.
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Figure 7.9c compares the whole-day average error, per camera, for each homography re-estimation
method. The SIFT-FLANN based method (black line) improves on the reference homography (baseline)
for 98.6% of cameras. The static all-day reestimated homography (green) improves on the baseline for 100%
of cameras and outperforms the SIFT-FLANN method for 88.1% of cameras. The dynamic homography
method (red) improves upon the baseline in 100% of cases and on the SIFT-FLANN method in 99.7% of
cases. The mean average error over all cameras is 2.78 feet for the reference homography , 1.42ft for the
SIFT-FLANN method (49% reduction), 1.03ft for the all-day average method (63% reduction), and 0.33 for
the dynamic method (88% reduction).

7.4.2 Multiple Object Tracking Performance

Tracker HOTA DetA AssA Recall IDs/GT ↓ LCSSt (s) LCSSd (ft) MOTPi MOTPe (ft) ↓ TD (s)
SORT [5] 9.5 51.3 1.8 73.6 53.1 51.9 2609 68.0 2.70 12.3
IOU[166] 1.1 7.4 0.2 20.4 60.0 16.8 53.2 36.7 7.31 8.4
KIOU [166, 322] 8.5 51.2 1.4 73.9 47.9 40.6 2181 66.9 2.72 15.1
BT(L2) [226] 9.5 51.5 1.8 73.6 53.3 51.5 2575 70.0 2.71 12.4
BT (IOU) [226] 8.5 53.1 1.4 75.9 50.3 44.1 2390 67.1 2.72 14.9
Oracle 53.1 55.1 51.0 86.4 1.2 636 14699 75.3 2.53 690

Table 7.2: Tracking results for limited benchmark algorithm set. For each metric, a higher score is better
unless indicated with a ↓. DetA and AssA indicate the detection and association components of HOTA,
respectively. LCSS denotes the average longest consecutive subsequence (in seconds or feet) averaged across
all trajectories. MOTP indicates the average precision (by IOU of object footprint or Euclidean distance) for
all matched object bounding boxes, averaged over all trajectories. TD indicates mean tracklet duration.
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Figure 7.10: (left) A single trajectory (green) and all SORT [5] matched to this trajectory at least once (other
colors). Manual annotations shown as green circles. (right) A close-up showing the LCSS matched to this
trajectory (blue line), lasting ∼32 seconds.

Table 7.2 shows multiple object tracking performance for the implemented trackers. First, note that HOTA
is quite low for all trackers; driven primarily by low AssA scores. This indicates that object tracklets are not
strongly persistent (this is also supported by the relatively low LCSS and mean tracklet durations compared
to the 6.6 minute mean trajectory length, and high average IDs per ground truth). Such high fragmentation
means the tracking outputs are not useful for traffic science applications requiring long and accurate object
tracklets. All trackers with a motion model (all but IOU) achieve higher mean recall than raw object detections
of 44.5% (see Figure 7.6), which indicates that the motion model is crucial for filling in object positional
information when detections are missing. Figure 7.10 shows an example of all tracklets produced by SORT
[5] matched to a single trajectory, and demonstrates the large number of tracklets associated with the ground
truth trajectory.

The purpose of this initial benchmarking is not to claim that no existing tracker can perform well on
the I24V dataset, but rather to show that popular off-the-shelf methods are not suitable without substan-
tial enhancement such as more strongly physics and scene-informed models. For instance ByteTrack [226]
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achieves high performance on datasets such as MOTChallenge, where ID switches and fragmentations play
a relatively smaller role in overall scores, but performs poorly on this dataset where object persistence plays
a more outsized role in overall tracking performance, especially in the AsssA component of HOTA.

7.5 Conclusion

This work introduced the I24-Video Dataset, with concurrent video from 234 cameras recorded for one
continuous hour capturing rush-hour traffic along 4.2 miles of interstate roadway, scene information for each
camera, and 270 manually corrected GPS trajectories within the video data. These GPS trajectories were
used to perform a preliminary benchmarking of object tracking algorithms, indicating that trackers utilizing
stronger motion and appearance models are crucial for high performance on this dataset. The work also
introduced new methods for keeping traffic camera homographies more precisely synchronized over time than
existing methods allow. In the future, we plan to use this dataset to explore and design additional tracking
algorithms that prioritize long term (10 minute, 18000 frame) object persistence, necessary for many traffic
science applications. Several additional hours of GPS data are also recorded for future public benchmark
competitions.
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8. Conclusion and Future Perspectives
8.1 Conclusion

This dissertation proposed work to answer the following open question: How can we create a large-scale
traffic observation instrument for accurate and persistent vehicle trajectory generation using computer vi-
sion techniques? Work to answer this question was proposed aligning with three major categories. First, a
cutting-edge traffic instrument for rich data collection was proposed, designed, developed, and built. Second,
computationally efficient algorithms for object detection and tracking across multiple cameras were devel-
oped. Third, several first-in-kind datasets were released, including a novel dataset enabling vehicle tracking in
3D space across a 17-camera network, a large-scale dataset featuring videos, scene homographies, detections
and instrumented vehicle trajectories across 234 cameras, and the world’s largest (temporally and spatially)
vehicle trajectory dataset produced using the constructed instrument:

• A Large-Scale Traffic Instrument for Trajectory Data Collection This dissertation proposes, designs,
tests and implements the I-24 Mobility Technology Interstate Observation Network (MOTION), a
densely instrumented freeway that enables continuous, ongoing coverage of a roadway at the fine-
grained vehicle trajectory level. MOTION consists of a network of 296 traffic pole-mounted 4K res-
olution cameras recording video data over a 4.2-mile stretch of freeway in its entirety. The raw video
data stream exceeds 24 TB/day of traffic data footage that must be processed in real-time to extract
precise vehicle locations, trajectories, and other relevant information from the entire monitored portion
of roadway. This work discusses motivating design considerations, proposes a cost-effective physical
sensor configuration to enable the data extraction requirements, presents preliminary experiments as-
sessing the feasibility of the system, conducted as part of the first phase of the MOTION deployment,
and provides a reference for the I-24 MOTION system as built.

• Algorithms
– Multiple Object Tracking. A novel multiple object tracking method is proposed, utilizing the

core intuition that predictable object motion yields strong object location priors before objects are
detected at a given time. The proposed approach leverages this information to reduce the required
computation to detect and track objects by cropping small image portions known to contain object
priors and ignoring the rest of each frame. Experimental results show i.) the crop-based method
increases both the speed and accuracy of an existing object tracker, ii.) the method achieves a
new state of the art on the preeminent vehicle tracking benchmark [1], and iii.) the method yields
a best result of 150% speedup with no decrease in accuracy.

– Vehicle Turning Movement Counting. Based on the crop-based tracking method proposed, a
novel intersection turning movement counting algorithm is proposed. Relative to the previous
work, the primary contribution of this work is to introduce a new method for object initializa-
tion. Each manually identified source region is cropped at each frame and also processed by the
same object detector as cropped objects, allowing for the detection of new objects without ever
performing object detection on a whole frame. Experimentally, this method achieves competitive
performance against other turning movement counting algorithms, and moreover increases speed
by 57% relative to an otherwise identical method instead relying on full frame detections.

– Multiple Camera 3D Tracking. The crop-based single camera tracking is extended to solve the
multiple camera tracking problem. Relative to the previous work, the primary contribution of this
work is to further reduce the image area that needs to be processed at each frame by leveraging
the redundancy of overlapping camera views. Secondly, this work proposes a unified curvilinear
coordinate system closely fit to the roadway lane markings capable of providing vehicle positional
accuracy on the order of 2 feet across cameras while simultaneously aligning vehicle roadway
motion along the primary coordinate system axis. Thirdly, this work proposes a new IOU-based
loss formulation for 3D object detection from arbitrary viewpoints.

• Datasets
– Multiple Object Tracking Dataset. This work proposes a new dataset that provides multiple

object tracking labels in a shared 3D space, across multiple camera fields of view. Relative to
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existing works, this dataset is the first to enable the development of 3D vehicle tracking methods
in a traffic monitoring context. Moreover, the dataset has more synchronized camera views, more
3D vehicle bounding boxes, and more annotated frames than any other multiple camera multiple
object tracking or traffic monitoring dataset. This work benchmarks a number of existing multi-
camera multiple-object tracking approaches on the dataset, showing the implemented methods
fall short of desirable performance especially in occluded and dense scenes.

– Large Scale Vehicle Tracking Dataset. This work proposes a new dataset designed to allow
the benchmarking of object tracking algorithms for extremely long-term (10 minute) tracking
performance. It consists of a single scene of video data, 1 hour in duration, simultaneously
recorded from 234 overlapping cameras covering 4.2 miles of interstate roadway. A set 270 GPS
trajectories recorded over 100 instrumented vehicles on the roadway during the recording duration
is manually corrected to ensure positional accuracy. Initial experiments show that existing high-
performing trackers fall well short of acceptable tracking performance on data of this scale, and
further work is needed to develop suitable algorithms for long-term tracking tasks. Moreover, we
take considerable care to make the data useful for computer vision applications, developing new
techniques for keeping camera homographies more accurately aligned than existing stabilization
methods allow.

– Vehicle Trajectory Dataset. 2 weeks of vehicle trajectory data are released with the original I-24
MOTION system paper [34]. Any given day of trajectory data is larger than all existing trajectory
datasets (in terms of observation area length, duration of data recording and number of vehicles)
and over time the I-24 MOTION trajectory data will be the only publicly available, continuous
vehicle trajectory dataset except possibly among private entities.

8.2 Future Perspectives

8.2.1 Traffic Insights
The purpose of this dissertation work was to design and build the world’s largest trajectory data instrument,
but the larger goal of I-24 MOTION is to provide this data freely to enable new insights into traffic. I-24
MOTION generates trajectory data on a spatial and temporal scale that never available together before. This
means that events that unfold over large spatial scales, but have fine-grained (vehicle dynamics level) causes
or characteristics can be observed where they could not have been before. As an example, it may be possible
to view a stopped vehicle or a collision in the trajectory data, and to trace the “wave-front” of the bottleneck
backwards at the fidelity of a single car, observing also how the bottleneck spreads between lanes. Similarly,
stop and go wave asynchronity across lanes can be observed (as noted in the preliminary analysis of Chapter
3, as well as wave splitting and merging phenomena, as well as anomalous vehicles that, while proportionally
small in the overall flow of traffic such that they are lost in sensor modalities that aggregate data temporally,
have an outsized effect on the local traffic dynamics around them). In short, we don’t know what researchers
may find, but it is easy to argue that the ability to observe a domain at new fidelity and scale has the potential
to enable novel and disruptive findings.

8.2.2 Live Experiments
The instrument was also designed to support live experiments in traffic, including large deployments of auto-
mated vehicles which are designed to smooth traffic jams. The instrument will also support experiments con-
ducted in collaboration with Tennessee Department of Transportation to support active traffic management,
including experiments using variable speed limits, ramp meters, and lane closure systems. Such experiments
will allow further investigation of the consequences of emerging technologies on traffic flow. As an example,
the Congestion Impacts Reduction via CAV-in-the-loop Lagrangian Energy Smoothing (CIRCLES) experi-
ments conducted in November 2022 aimed to utilize Level 2 connected and autonomous vehicles [354] to
dampen stop and go waves on the corridor, reducing the overall energy consumption of vehicles in congested
traffic [355]. Figure 8.1 shows images of instrumented and controlled vehicles during the experiment. The
experiment relied on dense trajectory data produced by I-24 MOTION to analyze the energy consumption of
every vehicle on the roadway during the test. Figure 8.2 shows gps-recorded data from this test superimposed
on data from I-24 MOTION. Additional vehicle experiments on I-24 MOTION are slated for Winter 2024.
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Figure 8.1: (left) The fleet of instrumented vehicles used to execute control strategies during the CIRCLES
2022 experiment. (right) Software-controlled instrumented vehicles (green) are visible on the roadway, and
their positional data is recorded by I-24 MOTION cameras. (Drone imagery courtesy of Said ElSaid).

Additionally, the instrument is collocated with the I-24 Smart Corridor and a first-in-kind AI Decision
Support System for variable speed limit control [356]. This proximity will allow for data from I-24 MOTION
to be used both in the tuning of these AI algorithms (e.g. according to the wave propagation speeds observed
on the corridor or the release rates for ramp metering deployments) as well as in the collection and analysis
of data showing the effects of these technologies.

8.2.3 System Evolution
The algorithms proposed and implemented on the instrument in this work represent the first iteration of a
living system to be iteratively improved over time. Because of the need for a functioning software system in
November 2022 for the CIRCLES experiment, the original software stack for I-24 MOTION was designed
and implemented on an accelerated timeline. The first video data from camera poles in the MOTION system
was available just 2 months before the CIRCLES experiment, and data from the last camera poles was avail-
able just 1 week before the experiment. As a result, our team prioritized having a working software stack
over having a mature software system free from problematic edge cases and with state-of-the art tracking
performance.

Now, free from this time constraint, the I-24 MOTION software development team has more flexibility to
re-imagine the original software for faster, more accurate, and more resilient performance. Already, consider-
able work has been aimed at correcting issues visible in the first version of I-24 MOTION data. The concerted
work on homography error analysis and correction laid out in Chapter 7 was conducted in response to the
severe camera misalignment visible in the original data (e.g. in Figure 3.21c); this work was able to reduce
homography errors in 100% of camera fields of view. Figure 8.3 shows a histogram of object positions in
xy-roadway coordinate space, both before and after this homography correction. Significant misalignment is
visible in the original homographies especially at the regions between consecutive poles; such misalignments
make it difficult to reliably track objects across the testbed. These issues have been largely addressed by the
homography re-estimation work. Similarly, the original database architecture designed to store intermediate
data between tracking and post-processing was discovered to be extremely computationally burdensome (i.e.
conversion of the data between necessary formats takes 4 hours per day, which hampers efforts to make the
data production pipeline run as close to real-time as possible).

In a similar vein, the following modifications to the first system implementation have been identified as
promising directions for future research:

Offline Tracking Methods Early on in the design process for the first generation software stack for I-24
MOTION, a decision was made to use an online tracking algorithm motivated primarily by the long-term
goal of a real-time performant system. Early experiments were based on SORT [5] and later iterations of the
tracking algorithm were heavily based on IOU [166] and KIOU [322]. These algorithms require an explicit
tradeoff between keep objects alive for long periods between detections (increasing the possibility of identity
swaps especially if the motion model is not well-fit) and killing objects quickly when they are undetected
for a few frames (increasing fragmentations and false negatives). Current I-24 MOTION data exhibits heavy

90



Figure 8.2: (top) Time-space diagram (y-axis is distance, 4.2 mi, and x-axis is time, 3 hours in total) showing
data from instrumented vehicles (white) during the CIRCLES 2022 experiment superimposed over trajectory
from I-24 MOTION. (bottom) An inset showing approximately 4000 feet and 20 minutes of data in more
detail. Each vehicle trajectory can be traced through several stop-and-go waves during this period. (Credit:
Gergely Zachár and Derek Gloudemans.)

object fragmentation, with mean object lengths on the order of [DG: Get] meters. Despite the popularity of
filter-based online methods due to their simplicity and relative high-performance (especially in weak-physics
domains such as image pixel-space), models that incorporate both past and future information not only into
the object positional estimation step but also into the object-to-detection matching step wil likely outperform
such filter-based methods (which require explicit detection-to-tracklet assignment prior to filtering). Offline
tracking methods will be explored in future work.

While this decision does prevent the realtime running of this system, it is worth noting that i.) reason-
ably offline methods could be implemented in small temporal chunks, effectively approximating a fixed-lag
realtime tracking system and ii.) the existing algorithms also run much slower than real-time currently but
additionally can’t leverage future information to improve tracking performance.

Combine Postprocessing and Tracking Similarly, the software architectural decision to postprocess data
produced by the object detection and tracking step was borne of the poor performance object tracking. Future
work will explore incorporating strong physics-based consistency into the offline tracking formulation across
detections from all processing nodes, effectively eliminating the need for a separate postprocessing step.
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Figure 8.3: XY-roadway coordinate histogram for recorded vehicle positions during the I24-Video dataset
recording duration (see Chapter 7). (top) before homography correction and (bottom) after homography
correction. Best viewed in browser, zoomed in. (Credit: Gergely Zachár and Derek Gloudemans).

Faster Joint Object Detection Methods Modern object detectors are, for the most part, too slow for
realtime performance on the I-24 MOTION system, as the system requires roughy 4 cameras to be processed
on a single Nvidia A5000 GPU in realtime. One potential solution is to use simpler, less powerful, but faster
object detectors and instead use the tracking domain as a strong prior to boost object detection performance
or to alter object detector architecture. For instance, an object detector could be trained on the difference
between consecutive frames, leveraging the fact that objects that enter a frame always result in a difference
between consecutive frames in the region of appearance. In a related vein, inspired by [88, 207] multiple
frames could be processed simultaneously with CNN architectures that enforce cross-frame object continuity.

Integrate Explicit Occlusion Models Relying on motion models for implicit occlusion handling has
proven to be insufficient on this dataset (see Figure 3.21, where few object tracklets survive through 100-foot
occlusion gaps). Explicit occlusion models as in [194, 209, 210] could be added to enforce object continuity
(e.g. by modeling each occlusion zone as a rough queue and preventing object birth/death in these regions).

Extend Instrument Field of View onto Interchanges Additional cameras are allocated at interchanges
to eventually allow for object tracking through interchanges as they enter and exit the interstate. Such a
tracking task poses significant challenges, such as: i.) these portions of the roadway graded so their planes
are changing and not parallel to the plane of the main interstate roadway, ii.) the coordinate system used
throughout I-24 MOTION is defined relative to the yellow line for each roadway direction of travel; a new
piece-wise curvilinear coordinate system would need to be defined to maintain reliable object positional
information on ramps. Nevertheless, the inclusion of such data may reveal valuable traffic insights such as
how ramp buildup can affect the flow of traffic on the roadway upstream.

Incorporate Appearance Information for Tracking Current I-24 MOTION tracking algorithms do not
utilize appearance information to associate tracklets. This information represents low-hanging fruit by which
to improve the performance of trajectory stitching during post-processing with minimal modifications to other
portions of the pipeline. Joint detection and embedding models such as [170, 357] are well-suited towards
this task.

8.2.4 Democratizing I-24 MOTION Data
I-24 MOTION data represents a unique challenge in that it is i.) of sufficient size that it requires some
“big data” techniques to work with effectively, and ii.) is domain-specific and primarily of interest to traffic
researchers who traditionally work with much smaller datasets. Over time, we hope to add the following
data utilities to make the data more accessible and useful to researchers without having requiring a strong
data-science toolkit.

For instance, visualizing entire days worth of trajectory data is not feasible with a scalable vector graphics
library such as matplotlib. Rather, the data must be rasterized into a pixel-based image. Even then, many
browsers and applications are limited in their ability to open extremely large images, meaning that the full
resolution of the dataset must be downsampled for viewing convenience. For instance, in Chapter 3, we
present downsampled versions of original images 30000 x 5940 pixels in size. Even at this larger scale, one
pixel corresponds to a 2 foot / 0.5 second bin, so at high speeds trajectories can appear disconnected (visible
in Figure 8.2. This issue is explored and preliminary applications are developed to circumvent these issues in
[358], but in the future we would like to add additional functionalities to this tool.

Likewise, one day of trajectory data generally corresponds to >10GB of data, which is cumbersome to
load into computer memory and which may not be feasible to open with traditional file management tools
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(e.g. Microsoft Excel). Our team plans to build a toolkit for working with this data using iterators so that
only a small portion of the data needs to be kept in memory at any one time. This toolkit will also include
additional tools for converting data batchwise between units and coordinate systems.

8.2.5 The Future of Vehicle Trajectory Collection
I-24 MOTION was conceived and implemented at an ideal time to leverage advances in computer vision
algorithms and GPU-enabled computing techniques. We hope that I-24 MOTION represents a milestone in a
golden era of traffic sensing fueled by the confluence of sensing and computing technologies. It is our hope
that similar research efforts can benefit from the extensive work on designing infrastructure, hardware, and
software systems for vehicle sensing, and we are excited by the efforts of projects such as ACTION, Zen
Traffic Roadways, and the Lower Saxony Testbed [79, 80, 106] moving in the same technological current as
us to provide a new generation of traffic sensing.

On the other hand, it is possible that such efforts may represent an inflection point in traffic sensing. The
next generation of traffic researchers may never know the difficulty of limited vehicle trajectory data, and will
have from the onset an extensive, longitudinal vehicle trajectory data repository and testbed on which to fit
models, validate hypotheses, and deploy ITS solutions for testing. Perhaps future trajectory gathering efforts
will focus more on collecting a more diverse cross-section of trajectory data in a greater variety of locations
and conditions. In this vein, highD [66] is inspiring for the diversity of locations recorded, and pNEUMA
[71] is exciting because it tackles the challenge of using a swarm of drones to vastly extend the field of view
recorded relative to a single drone. We look forward to a day when drone-swarm based solutions are available
to produce large-scale trajectory data at any location.

Regardless of the course traffic researchers chart in the next decade, this dissertation concludes with
optimism for the insights, paradigm-shifting research, system improvements, and new ITS technologies that
are all but guaranteed in the wake of the I-24 MOTION system as it stands today.

Figure 8.4: Cameras in operation.
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Appendix
A List of Associated code repositories

• Code for LBT-Count AI City Challenge [92]

• Code for Crop-based Tracking [91]

• Code for I24-3D [95]

• Code for system deployment

• Code for Polygon IOU Loss [94]

• Code for roadway coordinate system from [95]

B I-24 MOTION Infrastructure Locations (Ch.3)

Poles

Mile	Marker

Legends

Bell Road

Hickory Holly Road

Old Hickory Road

Figure B.1: Map for I-24 MOTION infrastructure locations

Appendix B is adapted from [34].
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C Example Vehicle Trajectory (Ch.3)

Attribute Type Unit Value

id 12-byte BSON − 63732b74e1fa5a45ae0c2fdd
vehicle class int − 0
first timestamp float s 1668436223.30
last timestamp float s 1668436257.60
timestamp [float] s See Table 4
x position [float] ft See Table 4
y position [float] ft See Table 4
starting x float ft 325400.5531
ending x float ft 329300.5458
length float ft 15.6381
width float ft 5.8521
height float ft 4.7021
direction int − 1
Configuration ID int − -1

Table 3: Detailed information of the example trajectory.

timestamp (s) x position (ft) y position (ft)

1668436223.30 325400.5531 -19.19265508
1668436223.34 325405.0238 -19.12047988
1668436223.38 325409.4943 -19.04921183
1668436223.42 325413.9646 -18.97885093
1668436223.46 325418.4349 -18.90939717

· · · · · · · · ·
1668436257.42 329281.8317 -43.03453987
1668436257.46 329286.5097 -43.09132499
1668436257.50 329291.1881 -43.14893520
1668436257.54 329295.8668 -43.20737050
1668436257.58 329300.5458 -43.26663087

Table 4: The first 5 and the last 5 trajectory points for the example trajectory.

Appendix C is adapted from [34].
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D Additional Time Space Diagrams (Ch. 3)

(a) Monday Nov 21 2022

(b) Tuesday Nov 22 2022

(c) Wednesday Nov 23 2022

(d) Thursday Nov 24 2022 (Thanksgiving)

(e) Friday Nov 25 2022 (Black Friday)

Figure D.2

Appendix D is adapted from [34].
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(f) Monday Nov 28 2022

(g) Tuesday Nov 29 2022

(h) Wednesday Nov 30 2022

(i) Thursday Dec 1 2022

(j) Friday Dec 2 2022

Figure D.2: Additional time-space diagrams for I-24 westbound during morning rush hours on November
(a)-(e) 21-25 and (f)-(j) November 28-December 2. (Credit: Gergely Zachár and Derek Gloudemans.)
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Figure E.3: Distribution of inter-vehicle gaps for westbound traffic during 6:00-10:00AM on Monday,
November 21, 2022. Credit: Yanbing Wang.

E Platoon Consistency (Ch.3)

This work was primarily conducted by Yanbing Wang and is adapted from [34], and is included to show
additional traffic analysis for which the I-24 MOTION trajectory data is suitable.

Platoon consistency refers to the physical consistency of inter-vehicle spacing resulting from the indi-
vidual trajectories of two following vehicles [359].The leader-follower pair and their longitudinal gap are
calculate at each timestamp. Figure E.3 shows a histogram of the inter-vehicle gaps distribution from the
4-hr westbound traffic data captured on November 21, 2022 as an example. Note that a small portion of
the gaps are negative, and this is due to the artifacts mentioned above including a) homography error that
causes multiple trajectories corresponding to the same vehicle, and 2) current data association step fails to
connect partially overlapped trajectories of the same vehicle, creating the appearance of 2 vehicles when in
fact there is a single vehicle. These artifacts cause overlaps in trajectories which may not accurately reflect the
platoon consistency. Addressing these issues with more robust homography estimation and data association
techniques is an on-going effort, and we expect many of these artifacts to be reduced in the next release.

F Traffic Wave Calculations (Ch. 3)

This work was primarily conducted by Yanbing Wang and is adapted from [34], and is included to show
additional traffic analysis for which the I-24 MOTION trajectory data is suitable.

F.1 Wave propagation speed
The wave propagation speed is characterized by the slope of the slowdown that propagates upstream in the
time-space diagram shown in 3.22. The slope is calculated based on the cross-correlation method as used
in [314, 360], which compares the time series of the speed signals observed at two nearby locations on the
same congested freeway. The idea is to shift one signal relative to another until the first non-trivial peaks
are matched. The wave propagation speed is therefore the ratio between the time shifted and the distance
of these two locations. We randomly select a few pairs of locations from one trajectory dataset and obtain a
distribution of propagation speed. The distribution for the morning of Nov 22 2022, for example, has a mean
of 12.8 mph and a standard deviation of 0.5 mph.
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F.2 Wave frequency analysis
Wavelet transform is a time-frequency decomposition tool to effectively extract the non-stationary wave prop-
erties present in signals. The continuous wavelet transform is a convolution of the time-series signal x(t) with
a set of functions generated by the mother wavelet ψ(t):

Xw(a,b) =
1

|a|1/2

∫
∞

−∞

x(t)ψ
(

t −b
a

)
dt, (1)

where Xw(a,b) is a transformed signal at location b and scale a in the wavelet dimension. The scaling factor
and the translation factor vary continuously, providing an over-complete representation of the signals. We
select a commonly used mother wavelet as a Morlet wavelet:

ψ(t) = e−
t2
2 cos(5t). (2)

Figure F.4: Top: the speed time-series sampled from MM61.2 on Tuesday, Nov 29 2022. Bottom: a scale-
ogram produced by continuous wavelet transform of the speed signal. The color represents log-scale of the
power distribution across both frequency and time domain of the signal. Credit: Yanbing Wang

An example of wavelet transform result is shown in Figure F.4. The top figure shows the time-series of
speed sampled at a fixed location (in this case MM61.2) on Tuesday, Nov 29 2022. The bottom one is the
corresponding wavelet transform scaleogram of the signal. It is obvious that the traffic waves do not appear
to be stationary, i.e., the speed oscillation does not have a unique and consistent frequency across time. For
example, during 6:50AM-7:30AM, the power of the signal peaks around 6.7min, corresponding to a salient
wave period of 6.7min; during 8:30AM-9:30AM, the prominent wave period is near 9min.

G Kalman Filter Formulations (Ch.4 and Ch.5)

All standard Kalman filter notation in this Appendix is from [361] and [362]. Filter state, model and mea-
surement matrices are fairly standard but are my own work.
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G.1 2D Kalman Filter Formulation for Chapter 4
1

This section adopts standard filtering notation where the state of an object is expressed as x. As with the
Kalman filter described in [5], a constant velocity assumption (in terms of image pixel coordinates) is used
to model object dynamics, and the state of an object at frame n, xn, is expressed as:

xn = [ln, tn,rn,bn, l̇n, ṫn, ṙn, ḃn]
T , (3)

where (t, l) is the top left bounding box corner coordinate and (b,r) is the bottom right bounding box corner
coordinate. The state variables l̇, ṙ, ṫ, and ḃ denote the rates of change for each respective side of the
bounding box. (This state formulation is preferred to that described in [5] because empirically it results in
improved object tracking performance.) The resulting system (written for a single object for simplicity) has
the following state space form:

xn+1 = Fxn +wn , yn = Hxn + vn, (4)

where xn denotes the state at frame n, wn ∼ N (0,Qn) is the process noise with covariance Qn, yn is the
measurement at frame n and vn ∼ N (0,Rn) is the measurement noise with covariance Rn. The dynamical
model F and the observation model H are written explicitly as:

F =



1 0 0 0 ∆ 0 0 0
0 1 0 0 0 ∆ 0 0
0 0 1 0 0 0 ∆ 0
0 0 0 1 0 0 0 ∆

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, H =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 (5)

where ∆ is the time step between consecutive video frames, assumed to be constant. Thus, the the model noise
Qn is determined for this fixed time-step by computing one-step error distributions associated with the model
dynamics. The measurement noise Hn is computed separately for the crop detector and detector (to account
for the differing qualities of bounding box accuracy) based on empirical measurement errors compared to
true bounding boxes. The rest of the filter follows standard Kalman Filter formulation.

G.2 3D Kalman Filter Formulation for Chapter 5
This section adopts standard filtering notation where the state of an object is expressed as x. In descriptive
terms, a constant velocity along the roadway direction of travel is assumed, with assumed zero lateral velocity
and zero heading angle. Each measurement consists of a vehicle (x,y) coordinate position on the roadway,
and an estimate of each vehicle dimension. Each of these quantities is obtainable from 3D detector outputs
as described in Chapter 5. The state of an object at frame n, xn, is expressed as:

xn = [xn,yn, ln,wn,hn,vn]
T , (6)

where (xn,yn) is the back bottom rear center coordinate of the vehicle in roadway coordinate space, and
(ln,wn,hn) are the dimensions of the vehicle (length, width, and height in feet, respectively), and vn is the
object’s velocity in the x-direction (in ft/sec). This state formulation is a modification of that described for
SORT [5] adapted to 3D space. Note that the heading angle of the vehicle θ is assumed to be zero to maintain
a linear and observable dynamical system. The resulting system (written for a single object for simplicity)
has the same state space form as for the 2D case, with dynamical model F and measurement model H:

1Appendix G.1 is adapted from [91].
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F =


1 0 0 0 0 ∆i
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 (7)

where ∆i is the time between the last measurement update for object i and the current measurement for
object i (which depends on the timestamp for the camera in which object i is measured). To use these 3D
model dynamics in a multi-camera regime, the assumption that ∆i is a constant is no longer valid. This
is because the temporally closest frames from each camera are recorded at slightly different times (camera
shutters are not synchronized). Thus, for each object i the a priori state must be computed at the specific
timestamp for that camera frame. (Note that this introduces a slight peculiarity where we must select the
best camera in which to query an object’s location before we have predicted the updated a priori state for
that object, which is done by using the object’s last known position to evaluate equation 5.1. Thus, we need
a method to express Let Qi (the dynamical model covariance over this time difference ∆i, which we cannot
easily directly estimate) in terms of Qn (model covariance over a fixed 1-frame timestep, which we can
estimate with the error distribution of a series of time-step state roll-outs.

G.3 State Uncertainty Qi with Nonuniform Time-steps ∆i
This section is adapted from a Cross Validated Stack Exchange answer I authored in August 2022 [363].
Standard Wiener Process notation is used from [364].

The process (model) noise Q in a Kalman filter is assumed to be zero-mean Gaussian white noise. Under
this assumption, the process noise at time t is independent from the process noise at t + dt. True fans of
noise will recognize the time integral of Gaussian white noise as a Wiener process, or Brownian motion.
There are some heavy-hitting (for me, but thankfully not for Albert Einstein [365] and Norbert Wiener [366])
mathematical derivations involved that conclude: The covariance of a white Gaussian noise distribution
scales with the square root of time. How delightful to trail in some small way in the intellectual wake of such
company!

Let wn be process noise at time n, assumed to be drawn from a white noise (zero mean, time-uncorrelated)
multivariate Gaussian distribution with covariance Qn.

wn ∼N (0,Qn) (8)

The state covariance P is increased during the prediction step according to:

Pn|n−1 = FnPn−1|n−1FT
n +Qn (9)

Pn|n−1 is the a priori state covariance estimate at timestep n given all observations up to n− 1, Fn is the
model dynamics at timestep n, and Pn−1|n−1 is the a posteriori state covariance estimate at timestep n− 1
given all observations up to timestep n−1.

Intuitively, the process noise covariance Q depends on time. Over an infinitesimal time, the process noise
itself is infinitesimal, and likewise so is the process noise covariance. Likewise, over a large time period, the
model noise must grow large (otherwise there would be no need for measurement!). Implicitly (in discrete
time KF notation), Qn represents the Wiener Process for an independent standard normal noise variable
evaluated over one timestep. But we can also evaluate the Wiener Process over an arbitrary time window.
Let Q(∆) represent the process noise covariance for an arbitrary time difference ∆, or the shift in the Wiener
process over time.

A “timestep” is a discrete unit of time, but we require a continuous expression. To circumvent this, let ∆n
be the time difference between two consecutive timesteps, say n and n−1. When ∆ = ∆n, then Q(∆) = Qn

**Let’s move briefly into the notation adopted by Wiener Process [364].
The following expression holds for a Wiener Process W (here evaluated at times t2 and t1 ), where Z is an

independent standard normal noise variable.
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W (t2) =W (t1)∗
√

t2 − t1 ·Z (10)

Rearranging, we obtain an expression for the change in a Wiener process over time:

W (t2)−W (t1) =
√

t2 − t1 ·Z (11)

Next, note that Q(∆) also represents the shift in a Wiener Process over time. We can thus write the
expression for Q(∆) as:

Q(∆) =
√

∆ ·Z (12)

which allows us to express the model covariance over an arbitrary time interval ∆ in terms of the model
covariance over the standard camera frame-rate (which is measurable).

Q(∆)

Q(∆k)
=

√
∆ ·Z√
∆k ·Z

(13)

finally yielding:

Q(∆) =
√

∆/∆n ·Q(∆n) (14)

Thus, the model covariance over an arbitrary duration ∆ scales with the (known) model covariance over a
different (fixed) duration ∆n according to the square root of the ratio of these two time durations. Intuitively,
the integration of white process noise over time should scale less than linearly with respect to time because at
each infinitesimal time-step the process noise is equally likely to be positive or negative (i.e. equally likely to
add or subtract from the accumulated total noise). We would instead expect the scaling to approach linearity
if the noise was highly time-correlated (i.e. a positive process noise at time t implies that the process noise at
time t +dt is likely also positive).

H Results on 2021 AI City Track 1 Challenge (Ch. 4)

H.1 AI City Challenge
Track 1 of the 2021 AI City Challenge requires multi-class, multi-movement vehicle counting on video
sequences at intersections and along roadways. Thirty-one sequences from 20 distinct camera views are
included, comprising about 9 hours of total video data all of which has resolution of at least 1280×960. Each
camera field of view contains several vehicle movements of interest. To motivate the design of algorithms
that can be evaluated in real-time on edge compute devices, the computational efficiency of vehicle counting
algorithms are taken into account in addition to counting accuracy. Algorithms are assigned a score S1
according to the following formula:

S1 = 0.7×S1e f f ectiveness +0.3×S1e f f iciency

S1e f f ectiveness uses cumulative vehicle counts at several times throughout each video sequence’s overall
length to evaluate counting effectiveness, weighting each time segment to help smooth jitters from vehicles
counted near segment breakpoints. Cumulative count errors across all video sequences, turning movements
and vehicle classes are normalized using the number of ground-truth vehicles within each cumulative count
so that movements with more vehicles are counted more in the overall S1e f f ectiveness score.

To partially account for the difference in operating speeds of various competitors’ computing hardware,
S1e f f iciency weights an algorithm’s processing speed by the evaluating machine’s speed at a set of benchmark-
ing tasks relative to a baseline machine’s speed on the same benchmark tasks. To compare these algorithms
fairly in terms of speed, though, each algorithm must be run on the same compute hardware.

Appendix H is adapted from [92].
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One half of the testing data is made available to challenge participants, with only a very small proportion
of ground-truth labels provided such that supervised learning methods cannot feasibly be used. All submitted
algorithms are evaluated on the full dataset, run on the same edge device (Nvidia Jetson NX development kit
board.) As of submission, only aggregate S1 metrics from the first 50% of testing data are made public, so
we report these scores in Table 5.

H.2 Parameter Settings and implementation Details
We use a Pytorch implementation of Retinanet with a ResNet50-FPN backbone for feature extraction. Be-
cause the scale of objects in image crops varies significantly from the scale of objects when detecting on
whole frames, our localizer only is retrained for truck and car bounding box and class prediction per guid-
ance from challenge organizers. Training makes no use of AI City Challenge data in any way. All code is run
on a single GPU and 2 CPU cores (one of which is exclusively used for video decoding and frame buffering).

H.3 Track 1 Leaderboard

Team ID Rank S1 Score

37 1 0.9467
5 2 0.9459
8 3 0.9263
19 4 0.9249
118 5 0.9235
42 6 0.9157
95 7 0.8576
134 8 0.8449
153 9 0.8205
168 10 0.7545
144 11 0.7521
64 12 0.7506
86 13 0.6677
131 14 0.6548
133 15 0.4804
48 16 0.4205
77 17 0.3757

Table 5: S1 score for algorithms on 50% of testing data, evaluated on disparate machines.

Table 5 reports a comparison of all 17 algorithms submitted to the public Track 1 Challenge as part of
the 2021 Nvidia AI City Challenge. Our algorithm (Team ID 95) places 7th in terms of S1 score on the 50%
of testing data made publicly available, with S1 = 0.8576, S1e f f ectiveness = 0.8549 and S1e f f iciency = 0.8637.
LBT-Count processes the available videos at an average of 72.6 frames per second on a single GPU and 2
CPU cores.

H.4 Speed Comparison to Tracking by Detection
Lastly, to benchmark the impact of using Localization-based Tracking (LBT) rather than tracking-by-detection
(TBD) for the object detection and tracking portions of our counting method, we implement a detect-track-
count algorithm based on KIOU object tracking [166, 322]. We measure the speed of each method when a
measurement step is performed at every frame. The same network structure is used for the localizer in LBT
and the detector in TBD (Retinanet with ResNet50-FPN backbone). Table 6 reports the results.

LBT-Count is 52% faster than the detect-track-count (TBD) approach overall (20 fps vs 13.2 fps average).
LBT is faster than TBD on 29 of 31 available test sequences, and achieves at least a 100% speedup on 19 of
31 sequences. The speedup of LBT is somewhat correlated to the number of crops (the sum of the number
of tracked objects and the number of source regions for a camera field of view), as each cropped region
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Sequence Speedup Crops LBT-Count fps TBD fps

cam 14 534% 2.3 30.9 4.9
cam 16 308% 2.5 40.8 10.0
cam 17 310% 2.8 40.5 9.9
cam 20 308% 3.5 39.3 9.6
cam 19 309% 3.6 38.3 9.4
cam 18 323% 3.7 39.1 9.2
cam 13 252% 4.9 37.7 10.7
cam 15 283% 5.4 36.8 9.6
cam 1 dawn 171% 5.6 42.0 15.5
cam 12 251% 5.9 36.5 10.4
cam 2 rain 97% 6.0 39.0 19.8
cam 10 251% 6.4 37.0 10.5
cam 1 rain 166% 6.5 40.7 15.3
cam 1 150% 6.6 38.2 15.3
cam 2 64% 7.0 29.7 18.1
cam 3 rain 94% 7.8 37.1 19.1
cam 3 42% 7.9 25.4 17.9
cam 11 249% 9.2 35.8 10.3
cam 9 223% 9.4 33.7 10.4
cam 8 231% 12.0 34.2 10.3
cam 7 dawn 131% 15.6 33.9 14.7
cam 4 rain 102% 16.5 30.7 15.2
cam 6 snow 158% 18.6 32.9 12.7
cam 4 dawn 68% 19.1 25.7 15.3
cam 4 -13% 19.5 12.7 14.6
cam 6 35% 21.5 18.3 13.6
cam 5 dawn 78% 21.5 24.8 13.9
cam 7 rain 89% 21.6 26.1 13.9
cam 5 rain 81% 24.6 25.2 13.9
cam 7 9% 27.3 12.0 11.1
cam 5 -12% 27.9 11.9 13.5

Average 52% 11.4 20.0 13.2

Table 6: Speedup from using LBT-Count versus a tracking-by-detection-based counter (TBD). ”Crops” indi-
cates the average number of cropped regions processed by the localizer per frame in LBT-Count.

requires additional computation to localize vehicles within it. Sequences with fewer than 19 crops per frame
on average exclusively experience an increase in speed as a result of using the LBT framework.

I Scene Homography for I-24 3D Dataset (Ch. 6)

I.1 3D Perspective Transform Fitting
A homography relates two views of a planar surface. For each camera in each scene, we provide homography
information such that the 8-corner coordinates of the stored 3D bounding-box annotation can be projected
into any camera view for which the vehicle is visible, creating a monocular 3D bounding box within that
camera field of view. For each direction of travel in each camera view, for each scene, a homography relating
the image pixel coordinates to the roadway coordinate system is defined. (Though the same cameras are
used for different scenes, the positions of the cameras changes slightly over time due to pole expansion and
contraction in the sun). A local flat plane assumption is used (the roadway is assumed to be piece-wise
flat) [344]. A series of correspondence points series of correspondence points pq = [x,y,x′,y′,z′] are used
to define this relation, where (x,y) is the coordinate of selected correspondence point q in pixel coordinates
(row, column) and (x′,y′,z′) is the selected correspondence point in roadway coordinates.

Appendix I is adapted from [95].
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All selected points are assumed to lie on the road plane, so z′ = 0 for all selected correspondence points.
Visible lane marking lines are used as correspondence points in each camera field of view. Each lane is
reliably known to be 12 feet wide, and each lane-separating tick mark is known to be 10 feet long and at
a regular spacing of 40 feet. Thus, the road plane coordinates of each lane tick mark are known precisely.
The corresponding pixel coordinates are manually selected in each camera field of view, for each direction of
travel on the roadway.

A perspective transform (Equation 16) is fit to these correspondence points. We first define a 2D per-
spective transform which defines a linear mapping (Equation 15) of points from one plane to another that
preserves straight lines. The correspondence points are then used to solve for the best perspective transform
H as defined in equation 16, where si is a scale factor.

sq

x′q
y′q
1

∼H

xq
yq
1

 (15)

where H is a 3×3 matrix of parameters:

H=

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (16)

For each camera field of view and each direction of travel, the best perspective transform H is determined
by minimizing the sum of squared re-projection errors according to equation 17 as implemented in OpenCV’s
f ind homography() function [348]:

min
H ∑

q

(
x′q −

h11xq +h12yq +h13

h31xq +h32yq +h33

)2

+

(
y′q −

h21xq +h22yq +h23

h31xq +h32yq +h33

)2

(17)

The resulting matrix H allows any point lying on the plane within the camera field of view to be converted
into roadway coordinates and, the corresponding matrix Hinv can easily be obtained to convert roadway
coordinates on the plane into image coordinates. However, since each vehicle is represented by a 3D bounding
box, the top corner coordinates of the box do not lie on the ground plane. A 3D perspective transform P is
needed to linearly map coordinates from 3D roadway space to 2D image coordinates, where P is a 3× 4
matrix of parameters:

P =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 (18)

and P projects a point in 3D space (x′,y′,z′) into the corresponding image point (x,y) according to:

P


x′

y′

z′

1

∼ s′

x
y
1

 (19)

By observing the case where z′ = 0, it is evident columns 1,2, and 4 of P are equivalent to the columns of
Hinv and can be fit in the same way. Thus, we need only solve for column 3 of P . Next, we note as in [344]
that ( p11

p31
, p21

p31
) is the vanishing point (in image coordinates) of perspective lines drawn in the same direction

as the roadway coordinate x-axis. The same is true for the 2nd column and the roadway coordinate y-axis,
the 3rd column and the roadway coordinate z-axis, and the 4th column and the roadway coordinate origin.

Thus, to fully determine P it is sufficient to locate the vanishing point of the z-axis in roadway coordinates
and to estimate the scaling parameter p33. The vanishing point is located in image coordinates by finding the
intersection point between lines drawn in the z-direction. Such lines are obtained by manually annotating
vertical lines in each camera field of view. The scale parameter is estimated by minimizing the sum of
squared re-projection errors defined in equation 20 for a sufficiently large set of roadway coordinates and
corresponding, manually annotated coordinates in image space.
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min
p33

∑
q

(
xq −

p11x′q + p12y′q + p13z′q + p14

p31x′q + p32y′q + p33z′q + p34

)2

+

(
yq −

p21x′q + p22y′q + p23z′q +h24

p31x′q + p32y′q + p33z′q +h34

)2

(20)

The resulting 3D perspective transform P allows for the lossless conversion of points in roadway coordi-
nates to the corresponding points in image coordinates.

I.1.1 Curvature Correction
Lastly, we fit a 2nd-order polynomial curve f (x′) to describe the y-coordinate along a solid lane line as a
function of the x-coordinate (in space). We then use the fit curve to shift the y-coordinate of each point when
it is transformed from image space to roadway coordinate space to account for lateral roadway curvature
according to Equation 21.

y′o f f set = y′− f (x′) (21)

where y′o f f set is the corrected y-coordinate and f (x′) is the fit 2nd-order polynomial. We analogously
perform the reverse correction when converting points from 3D roadway coordinate space into 2D image
space. We note that the curvature also results in a slight error in x-coordinates, but the component of error in
the x-direction is negligible for the purposes of this dataset as it is proportional to the sine of a relatively small
angle (angle of roadway turn within the camera field of view). Figure I.5 shows coordinate system alignment
to the roadway markings before and after curvature correction.

J Sources of Timestamp Error and Corrections for I-24 3D Dataset (Ch. 5)

We discover, through numerous tests, that the timestamps reported by the IP camera firmware, are
inaccurate, approximately on the order of 0.1-1s. This Appendix describes the types of error we identify,
then details the corrections used to partially compensate for these errors. Lastly, it presents error metrics
before and after these timestamp corrections.

Appendix J is adapted from [95].

Figure I.5: (Left) Before curvature correction, lines in the x-direction (blue) with equal y deviate significantly
from roadway direction (white and yellow painted lines on roadway) at distances far from points used to fit lo-
cal camera homography. (Right) After curvature correction, roadway lines in image have equal y-coordinate.
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J.1 Known Timestamp Errors
Figure J.6 provides a visual overview of 4 timing errors (camera phase differences, camera clock offset,
camera timestamp quantization, and doubled/skipped frames) in the I24-3D dataset. We then provide an
example of each.

Figure J.6: Multiple-camera timing issues. a.) Frames from different cameras are out of phase. b.) Different
cameras report the same event (pink) as occurring at different times. c.) Camera time (blue) is quantized to
a lower precision (red) before being reported. d.) Cameras report the same frame twice or skip frames (dash
box).

Camera Phase and Offset: Figure J.7 shows the closest (in time) frames from camera p1c5 and p1c6; the
reported timestamps for these frames are still 0.01s apart, indicating the cameras record frames out of phase.
Furthermore, though camera p1c5 reports a time 0.01s earlier than p1c6, the position of vehicles suggest that
this frame was recorded after the frame from p1c6 (vehicles are slightly further along the roadway in their
respective directions of travel). We suspect this is due to camera clock offset (bias) relative to one another.

Figure J.7: Example of phase and clock offset error. Closest reported timestamps from cameras are unequal
(phase), and the positions of vehicles in camera p1c5 suggest this frame was recorded later than p1c5 (clock
offset).

Camera Timestamp Quantization Camera timestamps are reported to 0.01s precision, with higher-
precision camera times quantized (rounded or truncated) before reporting. To demonstrate this behavior, we
conduct the following test. We create two rotor clocks with two rotating disks (rotating at 2 Hz and 5 Hz).
We control the rotational frequency of each rotor precisely using a dynamometer. We record the rotor clock
rotation using a camera of the same model as deployed on I-24 MOTION (used to obtain the video data in
this dataset). Based on the rotational position of each hand extracted using image processing techniques, we
precisely determine the time deltas (∆) (difference in time between consecutive frames). We compare the
time deltas obtained by the coarse (2Hz) and fine (5Hz) rotor clocks to the reported timestamps from the
camera.

Figure J.8 shows the clock setup with rotor positions, and Figure J.9 shows the reported frame deltas.
The true time at which frames are recorded can be estimated from the coarse and fine rotor clock times,
which adhere closely to the 30 fps nominal framerate (subject to some jitter due either to slight camera
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deviations from the nominal framerate or slight errors in rotor positional extraction algorithm). Conversely,
the reported clock quantized timestamp deltas fluctuate significantly around the true clock times. Doubled
frames are visible (when delta = 0s, the same frame and timestamp has been sent twice by the camera). Thus,
the quantization of timestamps is shown to create error in determining the true time at which a frame was
recorded.

Figure J.8: Coarse 2Hz (red) and fine 5Hz (blue) rotors shown for two frames of lab test video. The position
of each rotor along with a total rotor revolution count can be used to determine the time since the start of the
video sequence and the time delta between two consecutive frames.
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Figure J.9: Time deltas between frames according to camera frame timestamps (black), coarse (red) and fine
(blue) rotor clocks, compared to nominal framerate (green). Reported clock timestamps fluctuate between
0.03 and 0.04 s (with occasional skipped or doubled frames resulting in anomalous deltas). Rotor clock times
show that the actual recording times for each frame adhere much more closely to nominal framerate.

Skipped/Doubled Frames: Lastly, Figure J.10 shows an example of a doubled frame from camera p1c2.
The same frame and timestamp are reported from the camera twice (frames 453 and 454). In frame 455,
objects have moved 7-8 feet from their positions in frames 453 and 454, consistent with a time difference of
roughly 2/30s (0.066s) for the average speeds at which the pictured vehicles are traveling, but the reported
time delta is only 0.04s. This suggests that an inaccurate timestamp has been reported for frame 455.

J.2 Timestamp Error Correction
To correct these timestamp errors, we perform 2 main operations and consider a third.
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Time Offset Correction
First we attempt to correct the camera clock offset or bias as we expect this value to be mostly fixed within
a relatively short (1-2 min) time-frame. Let the estimate of the true time of frame j for camera k be denoted
as t ′j,k, the reported camera timestamp be t j,kthe clock offset for camera k be denoted as ok, and the residual
error due to quantization and skipped/doubled frames for camera k and frame j denoted as ε jk. We estimate
the true time as:

t ′j,k = t j,k +ok + ε j,k (22)

Inspired by work on camera synchronization in sports [367], we use vehicles viewed simultaneously
by two cameras with overlapping fields of view to estimate the relative clock offset between the two (ok -
ok − 1). Let i index the set of m objects visible in a portion of the roadway coordinate system [xi,min,xi,max]
in both cameras k and k− 1. We sample s x-coordinates (indexed by r) uniformly spaced across the range
[xi,min,xi,max]. For each point in this range xr, we linearly interpolate between the two closest annotations for
camera k to estimate the time at which camera k would have reported object i in position xr. Let τr,k denote
this time. We set ok − ok−1 to be the mean difference between estimated times of sample x-points from the
two cameras.

ok −ok−1 =
∑i ∑r(τr,k − τr,k−1)

m∗ s
(23)

and set o0 = 0, allowing us to sequentially solve for the rest of camera clock errors. We ignore the effect
of quantization for purposes of estimating the camera clock offsets. We assume that the per-camera clock
offset does not drift over the relatively short duration of a single scene.

J.2.1 Residual Time Error Correction
Next we address the remaining timestamp errors caused by quantization and skipped/double frames. To rea-
son about out-of-phase camera frames, we utilize a continuous functional representation of each vehicle’s
trajectory. Inspired by the work of [116] and [50], we fit a cubic spline to each of the x position and the y
position of vehicle annotations as a function of reported timestamp, which ensures that the resulting trajectory
follows a constant jerk (3rd-derivative) model between spline knots (points where polynomial coefficients of
the spline function change). The number of knots ki for is constrained based on reasonable driving assump-
tions according to equation 24:

ki ≤ 2di (24)

where di is the difference between the maximum and minimum timestamps for which an annotation for
vehicle i exists.

The best-fit spline fx,i(t) for the x coordinates of object i is found by minimizing the mean squared error
between the spline-estimated object location and the annotated object location over all j annotated boxes for
object i in all camera views:

Figure J.10: Example of a doubled frame. Frame indices 453 and 454 for camera p1c2 in sequence 0 display
identical frames and timestamps. The following frames shows object positional changes (red arrows) consis-
tent with a larger time delta than is indicated by frame timestamps.
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min
fx,i

∑
j
(wi, j( fx,i(t j)− xi, j))2 (25)

where wi, j is a per-annotation weighting factor equivalent to the shift in pixels resulting from a one foot
change in the initial x-position of the annotation. This weighting enforces that the resulting spline distorts
visual object positions within the frame as little as possible. A similar equation is used to determine the best
fit spline for y coordinates fy,i(t) as a function of time.

We then use the best-fit spline f (x)i (t) for x-position for each object i visible within frame j of camera k
to estimate the residual error for each camera frame ε j,k according to Equation 26:

min
ε j,k

∑
i
(wi, j,k( f (x)i (t j,k)− xi, j,k))

2 (26)

where wi, j,k is the change (in pixels) resulting from a 1-foot change in x-position for object i in frame
j of camera k. We constrain ε j,k to be at most the change associated with a skipped frame (1/30s) plus
quantization error (0.01s).

J.2.2 Annotation shifting
Thus far, adjustments have only altered timestamps. Further enhancements to smooth vehicle trajectories as
they travel through multiple camera fields of view can be made by slightly altering the raw annotations at the
expense of annotation accuracy within a frame. However, noting that the RMSE for human annotations is
6.24 pixels (see next section), we consider small adjustments to raw annotations within this range. We test
allowable shifts of 1,2, and 3 pixels in the x and y direction separately such that each annotation is moved
slightly towards the best-fit spline position at the corresponding time. For each allowable maximum shift,
the average shift performed is much smaller (0.25px, 0.36px, 0.42px and 0.47px, respectively). Note that we
ultimately chose not to use any annotation-shifting for the released dataset, prioritizing accuracy within each
frame over cross-camera trajectory smoothness.

J.3 Post-Correction Error Characterization
We characterize each known source of error in the dataset. When applicable, we characterize the error before
and after timestamp corrections.

Human annotator variance is estimated by labeling the same object multiple times for a selection of
vehicles. The root mean-squared error (RMSE) is computed for all single-vehicle annotations, and this metric
is averaged across all sampled vehicles to estimate annotator root mean-squared error RMSEann = 6.24 pixels
for 4K resolution frames (3840×2160 pixels).

Vehicle size accuracy is verified based on known vehicle (make and model) sizes. A subset (10%) of
labeled vehicles within the dataset are selected with discernible make and model. The annotated dimensions
for each are compared to the actual size of that vehicle type when available, and otherwise to average vehicle
size metrics for that class (semis and trucks). Over all sampled vehicles, a mean dimension error of -0.5ft,
-0.1ft, and -0.2ft in length, width and height, respectively (standard deviation of 1.1ft, 0.3ft, and 0.6ft respec-
tively). Mean errors for each dimension indicate only slight annotator bias towards undersized annotations,
likely due to the ambiguous size of a curved 3D vehicle (vehicle classes with hard corners such as semis and
trucks were not under-estimated). Full size comparison data is included in Appendix K.

Homography misalignment is estimated by comparing the labeled positions of the same roadway point in
multiple camera fields of view. Average across all camera fields of view, the average cross-camera projection
error for homography matching points is 0.54ft/0.18ft (x/y directions) and 15.6 pixels for 4K video.

Cross-camera vehicle annotation misalignment is computed by comparing vehicle annotations simulta-
neously visible in two or more cameras. We average the misalignment across all such annotations. Table
7 reports the cross-camera vehicle annotation misalignment in the x (CCx) and y (CCy) directions (in feet)
and the cross-camera pixel error (CCp) after each correction. The corresponding errors for the points used
to define the homography themselves are also displayed; it is unlikely that any correction could reduce error
below that threshold without adjusting raw annotations since this error is added to the annotations during
homography transformation.
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Correction CCx ↓ CCy ↓ CCp ↓
Homography 0.54 ft 0.18 ft 7.8 px

No Correction 1.52 ft 0.69 ft 35.2 px
Curve 1.52 ft 0.44 ft 29.6 px
Offset 1.39 ft 0.44 ft 22.2 px
Residual 1.24 ft 0.44 ft 15.6 px

1px Shift 1.08 ft 0.26 ft 11.8 px
2px Shift 0.98 ft 0.14 ft 9.2 px
3px Shift 0.91 ft 0.08 ft 7.0 px

Table 7: All measured metrics for raw annotations and each sequential correction. Pixel errors are for boxes
drawn on 4K-resolution frames (3840×2160 pixels).

K Vehicle Size Estimation Error Data for I-24 3D Dataset (Ch. 5)

Table 8 provides all data used to compute vehicle dimension accuracy statistics. Vehicle sizes were
obtained from manufacturer websites when possible, or else estimated from class size averages (trucks and
semis). Vehicle make, model and year estimated, with some mistakes in model and year possible due to
difficulty in estimating this information from imagery. Vehicle size estimates were used from a 10% subset
of data selected across all dataset scenes.

Annotation (ft) True (ft)

ID Class Vehicle Guess L W H L W H

98 midsize 2018 Kia Soul 13.3 5.6 5.4 13.6 5.9 5.3
94 sedan 2014 Toyota Prius 13.9 5.3 4.5 14.7 5.8 4.9
0 sedan 2003 Chevrolet Impala 15.9 5.7 4.5 16.7 6.1 4.8
1 pickup 2017 Toyota Tacoma 17.2 5.8 6.0 17.7 6.2 6.0
64 midsize 2012 Toyota 4Runner 16.1 6.0 5.8 15.8 6.3 6.0
68 midsize 2018 Honda Odyssey 16.4 6.5 5.9 16.9 6.6 5.8
34 semi - 73.8 9.0 13.3 72.0 8.5 13.5
70 semi - 76.1 8.6 14.8 72.0 8.5 13.5
80 midsize 2018 Hyundai Tuscon 14.6 6.2 6.1 14.7 6.1 5.4
81 pickup 2015 Nissan Frontier 17.5 6.3 5.7 17.2 6.1 5.8
88 midsize 2004 GMC Yukon 15.8 6.0 6.0 16.6 6.6 6.4
96 midsize 2020 Toyota RAV4 15.3 5.9 6.0 15.2 6.1 5.8
97 midsize 2020 Toyota RAV4 14.6 5.6 5.7 15.2 6.1 5.8
83 midsize 2012 Honda CR-V 14.4 5.9 4.9 14.8 6.0 5.4
85 pickup 2016 Nissan Titan 18.0 6.5 5.8 20.3 6.7 6.4
40 midsize 2014 Chevrolet Equinox 14.0 6.0 5.0 15.7 6.1 5.5
41 midsize 2014 Toyota Highlander 15.2 6.4 5.0 15.9 6.3 5.7
39 sedan 2013 Honda Accord 14.9 5.8 4.0 15.8 6.1 4.8
34 semi - 73.8 9.0 13.3 72.0 8.5 13.5
32 midsize 2014 Dodge Caliber 13.6 6.0 4.9 14.5 5.8 5.0
28 sedan 2017 Honda Accord 15.1 6.0 4.4 15.8 6.1 4.8
17 van 2010 Chevrolet Express 18.0 6.5 6.9 18.7 6.6 6.9
15 pickup 2016 Ford F150 18.0 6.5 6.1 19.3 6.7 6.3
57 sedan 2015 fiat 500 11.0 5.4 4.6 11.7 5.3 4.9
58 truck 17 foot U-Haul style Box Truck 23.3 8.4 9.6 23.9 7.7 10.0

Appendix K is adapted from [95].
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74 midsize 2015 Chrysler Town and Country 15.5 6.3 5.0 16.9 6.6 5.7
9 truck 20 foot U-Haul style Box Truck 26.8 8.0 13.3 26.6 7.7 10.1
87 midsize 2012 Honda CR-V 14.4 5.7 4.9 14.8 6.0 5.4
90 sedan 2014 Nissan Altima 15.4 6.1 4.1 16.0 6.0 4.8
63 truck 17 foot U-Haul style Box Truck 25.8 8.3 11.9 23.9 7.7 10.0

106 sedan 2004 Cadillac Deville 16.6 5.7 4.3 17.3 6.3 4.8
108 van 2012 Chevrolet Express 19.2 6.5 6.3 18.7 6.6 6.8
109 midsize 2012 Honda CR-V 14.2 5.5 5.0 14.8 6.0 5.4
113 pickup 2014 Dodge 1500 18.7 6.5 5.8 19.1 6.6 6.3
95 semi - 72.1 8.9 12.8 72.0 8.5 13.5
26 van 2012 Chevrolet Express 17.8 6.5 7.0 18.7 6.6 6.8
27 midsize Jeep Grand Cherokee 13.8 5.8 5.6 15.8 6.3 5.8
1 van 2018 Ford Transit 250 20.6 6.3 9.9 22.2 6.8 9.1
0 pickup 2018 Toyota Tacoma 18.0 6.5 6.5 18.8 6.3 6.0
7 semi - 72.6 8.7 13.1 72.0 8.5 13.5
73 midsize 2018 Nissan Rogue 14.8 6.3 5.4 15.4 6.0 5.7
13 midsize 2004 Honda CR-V 13.0 5.4 6.3 14.9 5.8 5.5
93 midsize 2018 Kia Soul 12.4 6.0 5.0 14.3 5.8 5.3

257 van 2007 GMC Savana 19.2 6.3 6.8 18.7 6.6 6.8
34 midsize 2015 Chevrolet Suburban 17.2 6.7 5.5 18.5 6.6 6.4

248 pickup 2018 Chevrolet Silverado 1500 19.2 6.4 6.0 20.0 6.7 6.2
67 sedan 2016 Kia Forte 14.0 5.8 4.5 15.0 5.8 4.7

117 midsize 2014 Chevrolet Equinox 14.4 5.9 5.2 15.7 6.1 5.5
116 semi - 73.5 8.2 13.7 72.0 8.5 13.5
64 sedan 2012 Nissan Altima 14.6 5.9 4.3 15.9 5.9 4.8
32 midsize 2016 Jeep Wrangler (4 door) 14.2 6.3 5.5 15.3 6.2 6.1

114 midsize 2015 Dodge Grand Caravan 16.0 6.0 5.5 16.9 6.6 5.8
4 sedan 2014 Toyota Prius 13.8 5.4 4.5 14.7 5.8 4.9
90 midsize 2018 Honda Fit 12.8 5.4 4.5 13.4 5.6 5.0
0 van 2016 Dodge Sprinter 18.2 6.4 7.5 19.4 6.7 7.8
10 truck 17 foot U-Haul style Box Truck 24.8 6.8 10.4 23.9 7.7 10.0

245 midsize 2012 Chevrolet HHR 13.6 5.4 5.0 14.7 5.8 5.3
238 van 2015 Ford Transit 17.2 6.3 7.1 18.3 6.8 7.0
98 sedan 2017 Chrysler 300 15.3 6.2 4.2 16.6 6.3 4.9

140 truck 17 foot U-Haul style Box Truck 24.0 7.9 9.5 23.9 7.7 10.0
183 semi - 72.8 8.8 12.7 72.0 8.5 13.5
101 midsize 2018 Honda Fit 12.2 5.2 4.7 13.4 5.6 5.0
182 midsize 2014 Chevrolet Equinox 14.2 6.2 5.1 15.7 6.1 5.5
95 sedan 2015 Chevrolet Malibu 15.0 6.1 4.2 16.0 6.0 4.8

137 sedan 2017 Ford Fiesta 12.2 5.3 4.7 13.3 5.7 4.8
94 sedan 2014 Toyota Corolla 14.8 6.0 4.2 15.3 5.8 4.8
92 sedan 2015 Chevrolet Cruze 14.2 5.8 4.2 15.1 5.9 4.8

176 sedan 2016 Nissan Leaf 11.2 5.4 4.6 14.6 5.8 5.1
134 pickup 2016 Chrevolet Silverado 1500 18.0 6.6 5.3 17.1 6.7 6.2
214 midsize 2018 Jeep Compass 13.4 5.7 5.0 14.4 6.2 5.4
224 midsize 2020 Toyota RAV4 14.0 6.2 5.3 15.2 6.1 5.8
229 pickup 2016 Ford F150 Crew Cab 18.6 6.8 5.7 19.3 6.7 6.3

Table 8: Annotated and true dimensions for assessed data subset (10% of vehicles).

Table 9 reports aggregate size estimate error metrics for each class and averaged over all samples. For
each dimension (length, width and height) the percentage of vehicles that are reported with less than 1 foot
of error in this dimension is summarized, as is the mean error and standard deviation in annotations errors).
Over all sampled vehicles, a mean dimension error of -0.5ft, -0.1ft, and -0.2ft in length, width and height,
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respectively, was obtained (annotations were too small on average). The standard deviation for each error was
1.1ft, 0.3ft, and 0.6ft respectively. Mean errors for each dimension indicate only slight annotator bias towards
undersized annotations, likely due to the difficult of exactly sizing curved 3D vehicles from an oblique angle
(notably, vehicles with hard corners such as semis and trucks were not under-estimated). The dimension with
the largest distribution of error was length (1.1ft standard deviation). Notably, 96% of vehicle annotations
have height accurate within 1 foot and 100% of vehicle annotations have width accurate within 1 foot.

Class Samples Length (ft) Width (ft) Height (ft)

sedan 16 -1.0 (0.7) -0.2 (0.2) -0.5 (0.2)
midsize 28 -0.9 (0.6) -0.2 (0.3) -0.3 (0.4)
van 7 -0.6 (0.7) -0.2 (0.2) +0.0 (0.5)
pickup 9 -0.6 (0.9) -0.1 (0.2) -0.3 (0.4)
truck 5 +0.5 (0.9) +0.2 (0.6) 0.9 (1.6)
semi 7 +1.5 (1.3) +0.2 (0.3) -0.1 (0.7)

Under 1 ft Error - 60% 100% 96%

Total 72 -0.5(1.1) -0.1 (0.3) -0.2 (0.6)

Table 9: Annotation dimension error mean (standard deviation) compared to known vehicle sizes. + indicates
mean estimated dimension is too large.

L Additional Experimental Settings and Implementation Details for I-24 3D Dataset
(Ch. 5)

L.1 Evaluation Protocol
To assess the difficulty of the tracking dataset and to provide initial evidence on the suitability of existing
tracking algorithms, we benchmark a set of tracking methods on this dataset. Experimental protocol, metrics
for evaluation, and implemented algorithms are described in this Appendix.

L.1.1 Model Training
Each scene is split into temporally contiguous training and validation partitions (the first 80% and the last
20% of each scene, respectively). Thus, the validation partition of Scene 1 consists of all frames greater than
or equal to 2160 from each sequence, and the validation partition consists of all frames greater than or equal
to 1440 for Scenes 2 and 3. Detection model training is performed exclusively using the training partition.
All training is performed locally on RTX6000 GPUs, and detection models are trained until convergence
(Generally 10-15 epochs).

L.1.2 Tracking
Camera frames are out of phase (see Appendix J). To account for this, during tracking we maintain tight 1/60th
second synchronization between videos during tracking using corrected frame timestamps, skipping frames
as necessary to nominally maintain a 15 Hz frame rate (empirically, performance degrades above this frame
rate due to increased false positives). We perform tracking across all video sequences for a scene in parallel
(that is, all detections and tracklet updates are performed across all cameras for the same approximate time).
This is required for crop-based tracking pipelines [91] but not for tracking-by-detection pipelines. Tracking is
performed through the entire scene duration (i.e. across the training and validation partitions of the dataset).

Appendix L is adapted from [95].
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L.1.3 Detector AP Testing
We evaluate each detector on the validation partition of the I24-3D dataset. We follow the procedure detailed
in The Pascal VOC Dataset Challenge guidelines [6], including penalizing for multiple predicted objects
corresponding to the same ground truth object. To filter objects, we remove all objects with output confidence
less than 0.01, and perform non-maximal suppression on the set of detection outputs, first in the image
coordinate system with a requisite IOU of 0.4 for removal, then in roadway coordinates with a requisite
IOU of 0.1 for removal. We compare the remaining set of detections against the ground truth detections in
roadway coordinates. We use birds-eye view precision (APbev) rather than 3D precision (AP3D) (i.e. height is
not included in the evaluation).

L.1.4 Tracking Evaluation
We evaluate each tracking pipeline on each entire scene, including both the training and validation partitions.
We fit a best-fit 3rd order polynomial spline to each ground truth object to obtain a continuous object rep-
resentation in roadway coordinates as described in Appendix I. Predicted vehicle trajectories are compared
against boxes sampled from the best-fit spline for each object. Since ground truth objects are labeled in cam-
eras with varying start times and tracked objects are produced with synchronized timestamps, we compute
and compare only the temporally-overlapping sections of each ground truth trajectory dataset with the predic-
tions. We linearly interpolate between the spline-sampled boxes and the tracker-output predictions at 30Hz
to produce object sets at the same discrete times.

IOU Threshold: For all metrics except HOTA (which uses a variable IOU threshold for considered
matches), we use a required IOU of 0.3 throughout evaluation. This is because, despite our best efforts to
fully rectify annotations corresponding to the same vehicle viewed from different cameras at the same time,
we are not able to fully remove the projection errors between these annotations (see Appendix J). Thus, we
seek to avoid penalizing tracking algorithms for output errors that could reasonably be an artifact of these
inconsistencies, so we select a somewhat lax IOU threshold to account for 1.24ft/0.44ft X/Y cross-camera
annotation misalignment.

L.2 Algorithm Implementation Details
L.2.1 3D Detectors

• Monocular 3D Detector (Single3D) - a Retinanet model with Resnet34-FPN backbone [132]. The
outputs from this network are parameterized as a rectangular prism rather than as corner coordinates,
which empirically leads to better model convergence. The formulation is camera-agnostic (as training a
separate model for each camera FOV is infeasible both from data scarcity and scalability standpoints.)
We remove all detections with a confidence lower than 0.3, and perform non-maximal suppression
on detection outputs per camera, in pixel coordinates, with an IOU threshold of 0.4, then in shared
roadway coordinates with an IOU threshold of 0.01. We quantize the model to half precision (16-bit
float) for speed at inference. Code is originally from https://github.com/yhenon/pytorch-retinanet.

• Monocular 3D Multi-frame Detector (Dual3D) - Inspired by recent works utilizing multiple frames
for detection and tracking [87], we add the previous frame as detection input. We double the input
channels of the model’s first convolutional layer to accomodate the additional input. As above, we
remove all detections with a confidence lower than 0.3, and perform non-maximal suppression on
detection outputs per camera, in pixel coordinates, with an IOU threshold of 0.4. We quantize the
model to half precision (16-bit float) for speed at inference.

• Monocular 3D Crop Detector (CBT) - as described in [91], we train a Retinanet Model with Resnet34-
FPN backbone for detecting objects in cropped portions of full frames. We expand each object prior
by 1.3x to select the relevant pixels of a frame for each object, and resize these pixels to a crop size
of 112x 112 pixels. After detection, we keep only the 50 highest confidence outputs from the detector
and then using a weighting factor W of 0.4 to weight confidence and IOU with object prior to select
the best detection for each existing object. On full-frame detections frames (every 4 frames), we use
the Dual3D detector.

• Ground Truth Detections (GT) - perfect ground-truth detections, stored natively in roadway coordi-
nates.
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L.2.2 Object Trackers
• Kalman-Filter IOU Tracker (KIOU) - as described in [166]. We utilize a contant velocity roadway-

coordinate Kalman filter for object position prediction. We use the object-to-detection intersection over
union metric in roadway coordinates to select the best-matching detection for each existing object.

• ByteTracker (Byte) - we utilize the two-stage association method described in [226], using IOU as
both primary and secondary matching criterion and utilizing a Kalman filter as suggested by authors.
As suggested by the authors, we relax the criteria of each detector such that all objects with confidence
higher than 0.3 are kept for the primary matching step and all object with confidence between 0.01 and
0.3 are kept for the secondary matching phase.

• Crop-based Tracking (CBT) - as proposed in [91], detection on some frames is performed by re-
detecting priors in cropped subsets of the overall frame, and object associations are implicit for these
frames.

• Ground Truth Single Camera Tracklets - perfect single-camera tracklets.

L.2.3 Cross-Camera Rectification Method
• Detection Fusion (DF) - as preferred in the AV context [285], detections from all cameras are com-

bined online in roadway coordinates and non-maximal suppression with a stringent 0.01 IOU threshold
utilized to eliminate overlapping detections.

• Trajectory Stitching (TF) - as proposed in [311], single camera tracklets are compared for spatio-
temporal overlap offline, stitched together when a matching criteria is met, and refined to optimally
describe the observed set of tracked object positions. We refer the interested reader to the cited work
for an explanation of parameters and their meanings. We use this algorithm as implemented at https:
//github.com/yanb514/I24-postprocessing.

• None - as a baseline, object tracklets from each camera are output with no fusion.
• Both (DF+TF) - Tracking uses detection fusion, and a subsequent trajectory stitching step is performed

to deal with remaining object fragmentations.

M Full Results for I-24 3D Dataset (Ch. 6)

This Appendix details AP testing results, tracking results for pipelines utilizing ground truth detections
or tracklets as input, and finally lists per-scene results for all pipelines.

M.1 Detector AP Testing Results
Figure M.11 show the results of detector average precision testing. At all tested IOU thresholds, the Dual3D
network has the highest AP score (0.572 AP70), and the Single3D model has the lowest AP score at all 3
thresholds (0.254 AP70). Interestingly, despite the large difference in detection precision, comparable tracking
pipelines using these two detectors show only slight or negligible performance difference, perhaps explainable
by insufficient Kalman filter parameter tuning to account for the more accurate measurements provided by
the Dual3D detector.

Appendix M is adapted from [95].
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Figure M.11: Precision versus recall curves for each detector at IOU thresholds of 0.7 (solid), 0.5 (dash) and
0.3 (dot), generated as in [6]. Overall AP score for each model at each threshold is listed in the legend.

M.2 Results for Ground Truth Pipelines
Table 10 shows per-scene and average results for each implemented pipeline using ground truth detections
as input. A few results are of note. Trajectory Fusion (TF) is the most accurate multi-camera rectification
method, with Detection Fusion (DF) and DF + TF slightly less accurate and roughly equal across both trackers
(KIOU and ByteTrack). Though recall is high (89%) and precision is very high (as high as 99.8 %), still only
73.6% of objects are fully tracked at best. These results show that high-quality detections alone are not
enough to solve the multi-camera tracking problem.

Table 11 shows results for all pipelines utilizing ground truth single-camera tracklets, either as-is or with
a subsequent trajectory fusion (TF) step. With trajectory fusion, an HOTA of 61.7% is achieved. This score
is mostly driven down by remaining ID switches (0.51 per ground truth object on average), as the localization
accuracy (MOTP) is fairly high (83.6% average). Intuitively, it makes sense that given great single-camera
tracklets, the remaining difficulties are caused by ID switches across cameras which constitute failures in
trajectory fusion. The results of the AP testing, ground truth detection and tracklet pipelines indicate that
there is room for improvement in all 3 components of the implemented multi-camera pipelines (detector,
tracker and multi-camera rectification).

116



Tra. DF TF Scene HOTA MOTA MOTP Rec Prec GT% Pred% MT ML Sw/GT
Byte ✓ ✓ 1 66.5 94.0 78.5 94.3 99.7 96.6 100.0 89.8 0.9 0.13
Byte ✓ ✓ 2 47.3 85.6 62.2 88.0 97.4 86.0 100.0 69.3 3.5 0.23
Byte ✓ ✓ 3 40.9 76.3 82.6 79.1 96.8 92.5 99.8 57.7 5.3 1.30
Byte ✓ ✓ avg 51.6 85.3 74.4 87.1 98.0 91.7 99.9 72.2 3.3 0.55
KIOU ✓ ✓ 1 66.3 92.2 78.5 93.2 99.0 96.0 100.0 89.8 2.2 0.11
KIOU ✓ ✓ 2 48.2 87.0 62.0 89.0 97.9 86.0 100.0 73.7 4.4 0.20
KIOU ✓ ✓ 3 38.3 65.7 69.9 74.8 89.2 82.6 93.0 44.5 19.9 0.59
KIOU ✓ ✓ avg 50.9 81.7 70.1 85.7 95.4 88.2 97.7 69.3 8.8 0.30
Byte ✓ 1 71.7 95.5 78.5 95.5 99.9 96.6 100.0 91.9 0.9 0.00
Byte ✓ 2 69.2 89.3 86.3 90.4 98.8 86.0 100.0 68.4 3.5 0.22
Byte ✓ 3 37.8 73.1 82.3 80.8 91.5 93.6 95.8 60.1 4.3 1.64
Byte ✓ avg 59.6 86.0 82.4 88.9 96.8 92.0 98.6 73.5 2.9 0.62
KIOU ✓ 1 71.7 95.5 78.5 95.5 99.9 96.6 100.0 91.9 0.9 0.00
KIOU ✓ 2 68.7 89.1 86.3 90.2 98.9 86.0 100.0 67.5 3.5 0.23
KIOU ✓ 3 38.1 73.4 82.3 81.4 91.3 93.6 95.4 61.2 4.3 1.63
KIOU ✓ avg 59.5 86.0 82.4 89.0 96.7 92.0 98.5 73.6 2.9 0.62
Byte ✓ 1 63.0 91.3 90.9 91.5 100.0 96.6 100.0 85.4 0.9 0.69
Byte ✓ 2 52.4 82.8 92.0 83.4 99.5 86.0 100.0 58.8 3.5 1.02
Byte ✓ 3 38.8 76.7 91.6 77.0 100.0 93.2 100.0 52.3 5.3 2.17
Byte ✓ avg 51.4 83.6 91.5 84.0 99.8 91.9 100.0 65.5 3.3 1.29
KIOU ✓ 1 62.7 91.4 91.0 91.6 100.0 96.6 100.0 85.4 0.9 0.71
KIOU ✓ 2 51.4 82.6 92.0 83.3 99.4 86.0 100.0 57.0 4.4 1.09
KIOU ✓ 3 39.3 76.7 91.7 77.0 100.0 93.2 100.0 50.9 6.0 2.10
KIOU ✓ avg 51.1 83.6 91.6 83.9 99.8 91.9 100.0 64.4 3.8 1.30
Byte 1 23.6 73.5 90.1 91.1 85.4 96.6 97.6 85.1 0.9 9.40
Byte 2 28.2 68.5 91.6 83.7 85.3 86.0 86.8 60.5 3.5 4.93
Byte 3 24.9 67.9 91.3 79.3 88.1 93.6 89.9 54.1 4.3 6.33
Byte avg 25.6 70.0 91.0 84.7 86.3 92.0 91.4 66.6 2.9 6.88
KIOU 1 23.6 73.5 90.1 91.1 85.4 96.6 97.6 85.1 0.9 9.40
KIOU 2 28.2 68.5 91.6 83.7 85.3 86.0 86.8 60.5 3.5 4.93
KIOU 3 24.9 67.9 91.3 79.3 88.1 93.6 89.9 54.1 4.3 6.33
KIOU avg 25.6 70.0 91.0 84.7 86.3 92.0 91.4 66.6 2.9 6.88

Table 10: Results for all tracking pipelines using ground truth (GT) detections on each scene. Results include
higher order tracking accuracy (HOTA), multiple object tracking accuracy / precision (MOTA/MOTP), recall
(Rec), precision (Prec), ground truth and prediction match rates (GT% / Pred %), mostly tracked and mostly
lost objects (MT/ML) and number of ID switches per ground-truth object (Sw/GT). Best average result for
each metric across all pipelines shown in bold.

TF Scene HOTA MOTA MOTP Rec Prec GT% Pred% MT ML Sw/GT
✓ 1 59.5 76.2 78.5 88.2 88.1 100.0 99.1 82.6 0.9 0.16
✓ 2 77.6 95.6 88.3 97.0 98.6 100.0 98.5 95.6 2.6 0.22
✓ 3 47.9 70.6 84.1 95.7 79.3 99.3 92.1 96.4 1.1 1.16
✓ avg 61.7 80.8 83.6 93.6 88.7 99.8 96.6 91.6 1.5 0.51

1 19.9 14.6 90.3 89.2 55.0 100.0 76.9 84.2 0.3 9.15
2 29.3 38.7 92.4 95.1 63.0 100.0 83.0 98.2 0.0 5.25
3 28.7 36.9 92.8 98.2 61.8 100.0 83.5 98.6 0.0 5.25
avg 26.0 30.1 91.8 94.2 59.9 100.0 81.1 93.7 0.1 6.55

Table 11: Results for all tracking pipelines using ground truth single camera tracklets on each scene. Best
average result for each metric across all pipelines shown in bold.

M.3 Per-scene Results for Tracking Pipelines
Tables 12, 13, and 14 report the results for each pipeline using the Dual3D, Single3D, and Crop3D detectors,
respectively, on each scene. Across most pipelines, Scene 3 is the most difficult and Scene 1 is the easiest.
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On Scene 1, the best performing pipeline (Dual3D + KIOU + TF) achievs 58.5% HOTA and 86.3% mostly
tracked objects, still not accurate enough for fine-grained traffic analyses (HOTA 0.75 and 95% mostly tracked
objects). The best-performing pipelines for Scene 3 (Single3D or Dual3D + KIOU + TF) acheive just 29.1%
HOTA). All pipelines utilizing Crop3D perform poorly on Scene 2 (best HOTA 11.5%). This is because
Crop3D searches within a local region around each object prior, and always utilizes the best detection from
this local crop to update the object’s position. This strategy fails when the region is occluded (e.g. by snow)
which is often the case in Scene 2.

Finally, Figure M.12 shows the HOTA curves for the best performing pipeline (Dual3D + KIOU + TF)
relative to the baseline with no cross-camera rectification, for Scene 1. Detection and Association scores
refers to the DetA formula and AssA defined in [218], which are roughly meant to appraise the accuracy of the
detection and object matching performance of the tracker independently. Higher Order Tracking Accuracy
(HOTA) is an aggregate metric composed of these two components, evaluated at 19 evenly spaced IOU
thresholds required for a prediction to be considered a true positive. Lower thresholds result in higher scores
because more predictions are deemed valid matches according to the threshold. Note that for both pipelines,
the association score is lower than the detection score, indicating that more the cross-camera association
problem is more problematic than detection accuracy for achieving high HOTA. Additionally, it can be seen
that performance of all metrics declines steeply at a required IOU of 0.5 and higher, meaning that more
precise object localization could likely also improve HOTA scores considerably.
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Figure M.12: Detection accuracy, Association accuracy, and HOTA as defined for Dual3D + KIOU pipeline
(Solid) and Dual3D + KIOU + TF (dotted).
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Tra. DF TF Scene HOTA MOTA MOTP Rec Prec GT% Pred% MT ML Sw/GT
Byte ✓ ✓ 1 25.9 19.2 49.0 54.1 60.8 88.5 91.2 26.4 25.2 0.17
Byte ✓ ✓ 2 43.2 74.8 73.9 80.8 93.2 91.2 89.7 55.3 8.8 0.57
Byte ✓ ✓ 3 23.6 56.0 68.3 61.9 91.5 92.2 99.3 26.0 11.0 1.98
Byte ✓ ✓ avg 30.9 50.0 63.7 65.6 81.9 90.6 93.4 35.9 15.0 0.91
KIOU ✓ ✓ 1 52.1 86.2 68.9 89.3 96.6 95.0 99.5 80.1 3.1 0.19
KIOU ✓ ✓ 2 43.1 74.5 74.0 80.1 93.6 91.2 90.3 53.5 8.8 0.57
KIOU ✓ ✓ 3 24.0 54.0 64.5 60.2 90.9 88.3 96.1 23.8 19.2 1.29
KIOU ✓ ✓ avg 39.7 71.6 69.2 76.5 93.7 91.5 95.3 52.5 10.4 0.68
Byte ✓ 1 57.6 89.0 69.1 92.2 96.6 95.3 98.8 84.2 2.5 0.04
Byte ✓ 2 29.8 73.1 62.8 78.8 93.4 93.9 86.1 52.6 7.0 1.30
Byte ✓ 3 28.7 62.9 64.9 69.5 91.4 89.7 96.0 40.2 14.6 1.07
Byte ✓ avg 38.7 75.0 65.6 80.2 93.8 93.0 93.6 59.0 8.0 0.80
KIOU ✓ 1 58.5 89.7 69.2 92.9 96.7 95.3 98.4 86.3 2.2 0.02
KIOU ✓ 2 46.9 77.7 74.5 86.2 91.1 90.4 82.4 64.0 9.6 0.49
KIOU ✓ 3 29.1 63.5 64.8 69.9 91.7 89.3 96.1 40.9 14.6 1.05
KIOU ✓ avg 44.8 77.0 69.5 83.0 93.2 91.7 92.3 63.8 8.8 0.52
Byte ✓ 1 26.5 72.8 57.8 77.2 95.0 94.7 97.9 57.8 4.0 1.51
Byte ✓ 2 18.7 53.2 70.3 59.0 91.7 91.2 87.3 14.0 9.6 3.50
Byte ✓ 3 17.5 54.6 66.5 56.2 97.7 92.2 98.7 16.7 12.5 3.27
Byte ✓ avg 20.9 60.2 64.9 64.2 94.8 92.7 94.7 29.5 8.7 2.76
KIOU ✓ 1 26.8 73.4 57.9 77.3 95.6 94.4 98.5 57.1 4.0 1.50
KIOU ✓ 2 19.1 53.3 70.5 58.6 92.3 91.2 86.9 14.9 10.5 3.35
KIOU ✓ 3 17.5 54.5 66.6 56.2 97.7 92.2 98.8 17.1 12.1 3.30
KIOU ✓ avg 21.1 60.4 65.0 64.0 95.2 92.6 94.7 29.7 8.9 2.72
Byte 1 14.1 60.5 57.9 82.1 80.7 94.7 94.7 66.5 3.1 8.57
Byte 2 15.6 50.1 69.4 68.6 79.5 91.2 79.1 25.4 8.8 6.66
Byte 3 15.2 54.8 66.8 67.6 84.8 93.6 88.7 35.6 8.5 6.57
Byte avg 15.0 55.1 64.7 72.8 81.7 93.2 87.5 42.5 6.8 7.27
KIOU 1 14.2 61.3 58.1 82.5 81.0 94.7 94.9 67.4 3.4 8.63
KIOU 2 15.7 50.8 69.7 67.9 80.6 91.2 79.3 22.8 8.8 6.55
KIOU 3 15.2 54.8 66.9 67.6 84.9 93.2 89.0 36.7 8.9 6.57
KIOU avg 15.1 55.6 64.9 72.7 82.2 93.1 87.8 42.3 7.0 7.25

Table 12: Results for all tracking pipelines using Dual3D detections on each scene. Best average result for
each metric across all pipelines shown in bold.
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Tra. DF TF Scene HOTA MOTA MOTP Rec Prec GT% Pred% MT ML Sw/GT
Byte ✓ ✓ 1 28.1 26.6 51.5 58.0 64.9 90.7 91.7 33.9 23.6 0.19
Byte ✓ ✓ 2 29.9 66.8 65.8 70.9 94.6 95.6 86.7 34.2 5.3 1.16
Byte ✓ ✓ 3 24.4 54.5 65.2 59.6 92.3 90.0 96.9 21.0 17.4 1.25
Byte ✓ ✓ avg 27.5 49.3 60.8 62.8 83.9 92.1 91.8 29.7 15.4 0.86
KIOU ✓ ✓ 1 52.3 86.1 69.1 89.4 96.5 96.3 99.5 81.7 1.9 0.17
KIOU ✓ ✓ 2 42.9 74.1 75.2 79.7 93.5 93.9 91.2 51.8 7.0 0.61
KIOU ✓ ✓ 3 24.5 54.5 65.2 59.7 92.2 90.0 96.3 21.4 17.4 1.24
KIOU ✓ ✓ avg 39.9 71.6 69.8 76.3 94.1 93.4 95.6 51.6 8.8 0.67
Byte ✓ 1 57.8 89.2 69.2 92.7 96.4 96.6 98.5 86.6 1.6 0.02
Byte ✓ 2 31.9 73.5 65.2 78.8 93.8 95.6 85.5 50.0 4.4 1.22
Byte ✓ 3 25.0 55.1 70.0 70.3 82.5 92.5 93.5 39.5 8.2 2.19
Byte ✓ avg 38.2 72.6 68.2 80.6 90.9 94.9 92.5 58.7 4.7 1.15
KIOU ✓ 1 57.5 89.3 69.2 92.9 96.3 96.6 97.9 87.0 1.6 0.03
KIOU ✓ 2 47.7 78.2 75.4 86.4 91.5 93.0 79.8 64.0 7.0 0.47
KIOU ✓ 3 29.1 63.8 65.1 69.7 92.3 90.4 96.1 35.6 14.9 1.05
KIOU ✓ avg 44.8 77.1 69.9 83.0 93.4 93.3 91.3 62.2 7.8 0.52
Byte ✓ 1 26.1 72.5 58.2 76.6 95.2 96.0 97.8 55.3 2.5 1.55
Byte ✓ 2 19.3 54.2 70.9 59.0 93.0 93.9 86.0 11.4 7.9 3.31
Byte ✓ 3 18.4 54.3 69.2 56.0 97.6 91.5 98.7 14.6 12.1 3.09
Byte ✓ avg 21.3 60.3 66.1 63.9 95.3 93.8 94.2 27.1 7.5 2.65
KIOU ✓ 1 26.4 72.6 58.4 76.6 95.5 96.3 97.7 53.7 2.2 1.52
KIOU ✓ 2 19.4 53.9 71.2 58.5 93.2 94.7 85.5 11.4 7.9 3.25
KIOU ✓ 3 18.4 54.3 69.2 55.9 97.7 91.5 98.4 14.2 12.5 3.09
KIOU ✓ avg 21.4 60.3 66.2 63.7 95.5 94.2 93.9 26.5 7.5 2.62
Byte 1 14.0 59.9 57.9 81.6 80.5 96.6 94.1 64.6 1.9 8.51
Byte 2 15.9 50.9 69.8 68.8 80.1 93.9 76.7 24.6 6.1 6.48
Byte 3 15.4 51.1 69.0 66.5 81.9 92.5 87.0 32.4 9.3 6.49
Byte avg 15.1 54.0 65.5 72.3 80.8 94.3 85.9 40.5 5.8 7.16
KIOU 1 14.2 61.0 58.1 82.2 81.0 96.6 94.4 65.5 1.6 8.53
KIOU 2 16.0 50.8 70.1 67.8 80.6 94.7 77.0 21.1 6.1 6.32
KIOU 3 15.4 51.4 69.0 66.5 82.2 92.2 87.1 31.7 9.3 6.49
KIOU avg 15.2 54.4 65.7 72.2 81.3 94.5 86.1 39.4 5.6 7.12

Table 13: Results for all tracking pipelines using Single3D detections on each scene. Best average result for
each metric across all pipelines shown in bold.
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Tra. DF TF Scene HOTA MOTA MOTP Rec Prec GT% Pred% MT ML Sw/GT
Byte ✓ ✓ 1 35.8 43.5 68.4 68.7 73.3 92.5 82.3 49.7 13.4 0.34
Byte ✓ ✓ 2 11.4 -27.9 66.3 31.7 34.8 90.4 44.6 6.1 40.4 1.89
Byte ✓ ✓ 3 23.5 48.2 65.3 59.8 84.0 88.6 91.8 21.0 21.4 1.20
Byte ✓ ✓ avg 23.6 21.3 66.7 53.4 64.0 90.5 72.9 25.6 25.0 1.14
KIOU ✓ ✓ 1 36.7 46.5 68.7 71.0 74.4 93.2 81.7 50.0 10.6 0.35
KIOU ✓ ✓ 2 11.5 -34.0 68.2 30.5 32.2 90.4 38.2 4.4 39.5 1.70
KIOU ✓ ✓ 3 25.6 51.8 69.3 61.9 86.2 87.9 93.8 28.5 16.7 1.36
KIOU ✓ ✓ avg 24.6 21.4 68.7 54.4 64.2 90.5 71.2 27.6 22.3 1.14
Byte ✓ 1 13.2 -31.7 47.7 38.8 35.6 89.4 59.5 14.0 35.4 0.86
Byte ✓ 2 9.1 -65.8 66.2 29.7 23.8 91.2 34.3 6.1 39.5 2.30
Byte ✓ 3 23.3 47.9 65.5 62.1 81.6 90.4 85.5 23.5 21.7 1.36
Byte ✓ avg 15.2 -16.5 59.8 43.5 47.0 90.4 59.8 14.5 32.2 1.51
KIOU ✓ 1 32.4 26.7 67.6 67.8 62.3 93.2 62.8 48.8 14.6 0.43
KIOU ✓ 2 7.1 -74.0 61.3 26.2 20.8 89.5 26.9 3.5 41.2 2.67
KIOU ✓ 3 22.8 40.9 69.4 60.8 75.4 87.9 71.5 24.2 23.5 1.53
KIOU ✓ avg 20.7 -2.1 66.1 51.6 52.9 90.2 53.7 25.5 26.4 1.54
Byte ✓ 1 24.7 58.4 59.0 74.7 82.4 94.4 93.5 51.9 5.3 1.43
Byte ✓ 2 10.9 -11.2 66.7 37.8 43.8 92.1 53.1 3.5 28.9 3.55
Byte ✓ 3 22.0 56.9 68.7 62.4 92.2 89.3 97.7 26.0 15.7 2.22
Byte ✓ avg 19.2 34.7 64.8 58.3 72.8 91.9 81.4 27.1 16.6 2.40
KIOU ✓ 1 25.2 59.0 59.1 75.6 82.3 95.0 94.1 51.2 4.3 1.42
KIOU ✓ 2 10.5 -20.5 67.0 35.4 38.9 92.1 47.6 1.8 32.5 3.49
KIOU ✓ 3 22.2 57.7 68.8 62.8 92.9 88.6 97.3 24.6 14.9 2.21
KIOU ✓ avg 19.3 32.1 65.0 57.9 71.4 91.9 79.7 25.9 17.3 2.37
Byte 1 22.0 45.1 59.0 76.4 71.2 94.1 81.9 56.8 5.0 1.90
Byte 2 9.2 -46.2 66.1 37.9 31.2 91.2 42.8 4.4 24.6 4.62
Byte 3 21.4 57.4 68.7 65.1 89.7 90.4 94.2 29.9 15.7 2.61
Byte avg 17.6 18.7 64.6 59.8 64.0 91.9 73.0 30.4 15.1 3.04
KIOU 1 22.5 47.8 59.2 77.1 72.8 95.0 83.0 58.4 4.3 1.89
KIOU 2 8.2 -62.8 66.0 33.4 25.9 90.4 39.7 1.8 28.9 5.09
KIOU 3 20.0 47.5 69.4 62.0 81.3 90.4 75.5 24.6 22.1 2.74
KIOU avg 16.9 10.8 64.9 57.5 60.0 91.9 66.0 28.2 18.5 3.24

Table 14: Results for all tracking pipelines using Crop3D detections on each scene. Best average result for
each metric across all pipelines shown in bold.

N Privacy Considerations for I-24 3D Dataset

As with any dataset containing video data of a public location, the I24-3D dataset potentially contains
personally identifiable information (PII). We visually inspect video sequences to ensure that license plates
are not visible at a visually distinctive level (license plate numbers cannot be determined from imagery except
possibly with extensive de-noising techniques). We further attempt to process each video sequence with a
license plate blurring software, but the software detects almost entirely false positives indicating that plate
information is not visually discernable. Likewise, we confirm that driver faces in each vehicle are not visually
discernible, no pedestrians are visible within the dataset, and no anomalous events (e.g. crashes) occur. Lastly,
we have submitted this research to University Institutional Review Board (IRB) and secured research approval
to ensure that the dataset management protocols appropriately protect individuals’ privacy.

O Coordinate Systems for the I-24 Video Dataset (Ch. 7)

Appendix N is adapted from [95].
Appendix O is adapted from [93].
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The Interstate-24 Video dataset utilizes 3 sets of coordinates utilized throughout I-24 MOTION system
[34] datasets:

• Image Coordinates: are given in pixels. (y(im),x(im)) denotes the row and column of the specified
pixel. By convention the top left pixel is (0,0).

• State Plane Coordinates: specify a rectilinear and orthogonal coordinate system. The EPSG 2274
state plane coordinate system for Tennessee is specified in feet relative to a known survey point.
(x(st),y(st)) indicates the coordinate (in feet) along the first (roughly east-west) and second (roughly
north-south) coordinate axis defined by the state plane coordinate system. (Note that a common con-
version from state plane coordinates to latitude/longitude coordinates (e.g. WSG84 or NAD83) can be
utilized if desired.) A third orthogonal coordinate axis (z-axis) is defined and corresponds to distance
off the roadway, such that z(st) = 0 for all points on the roadway plane.

• Roadway Coordinates: are defined such that the primary (x) axis lies along the median (or more
precisely, midway between the two interior yellow lines for the interstate) at all points within the
instrument extents, and the secondary (y) axis is defined locally to perpendicular to the primary axis
at all points along the roadway. All coordinates with a distance from the primary axis less than the
local radius of curvature (including all points on the roadway) have a unique (x(r),y(r)) coordinate. By
left-hand rule convention, we define the positive y-axis to be in the direction of the eastbound roadway
lanes at all points along the roadway.

O.1 Notation
Throughout the rest of this Appendix to disambiguate the various coordinate systems, the following notation
is used:

• x,y, and z refer to coordinate axes. A superscript (im), (st), or (r) specifies all variables corresponding
to a specific coordinate system (e.g. x(st)).

• Vectors and matrices in a specified coordinate system are denoted in bold (e.g. O(st)).

• Homography matrices are also listed in bold script, without superscript (e.g H).

• A subscript indexes a specific point (e.g. x(st)bbl ), and subscript i indicates an arbitrary element index
from a set of elements (e.g ai).

• An x,y, or z without a subscript indicates a generic variable along the specified axis within the specified
coordinate system.

A list of all variables along with their descriptions is given in Table 15. Transformations between image
and state plane coordinates, and transformations between state plane and roadway coordinates are detailed in
the next two sections.

O.2 Image ↔ State Plane Conversion
(parts of this subsection rely on similar definitions and descriptions to the supplement in [95].) A homography
relates two views of a planar surface. For each camera, we provide homography information such that the
8-corner coordinates of the stored 3D bounding-box annotation can be projected into any camera view for
which the vehicle is visible, creating a monocular 3D bounding box within that camera field of view. For each
direction of travel in each camera view, for each scene, a homography relating the image pixel coordinates
to the state plane coordinate system is defined. (Though the same cameras are used for different scenes,
the positions of the cameras changes slightly over time due). A local flat plane assumption is used (the
state plane coordinate system is assumed to be piece-wise flat) [344]. A series of correspondence points
ai = [x(im),y(im),x(st),y(st),z(st)] are used to define this relation, where (y(im),x(im)) is the coordinate of selected
correspondence point a in pixel coordinates (row, column) and (x(st),y(st),z(st)) is the selected correspondence
point in state plane coordinates.

All selected points are assumed to lie on the state plane, so z(st) = 0 for all selected correspondence
points. Visible lane marking lines and other easily recognizable landmarks on the roadway are used as
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Symbol Definition

H 3×3 matrix of homography parameters hi j
P 3×4 matrix of homography parameters pi j
s homography scale parameter
x(im), y(im) image coordinates (y indicates pixel row and x indicates pixel column)
x(st), y(st), z(st) state plane coordinates
x(r), y(r) roadway coordinates
O(st) state plane coordinates for object, equal to [o(st)bbl ,o(st)bbr ,o(st)btl ,o(st)btr ,o(st)f bl ,o(st)f br ,o(st)f tl ,o(st)f tr ]

o(st)bbl back bottom left state plane coordinate of object, equal to [x(st)bbl ,y
(st)
bbl ,z

(st)
bbl ]

o(st)c back bottom center state plane coordinate, primary reference coordinate for the object
o(st)spl state plane coordinates of point on center-line spline (y(r) = 0) with the same x(r) coor-

dinate as o(st)c

O(r) roadway coordinates for object, [x(r)o ,y(r)o , l,w,h]
x(r) generic longitudinal roadway coordinate along curvilinear spline axis
y(r) generic lateral roadway coordinate along axis locally perpendicular to longitudinal

roadway coordinate axis
x(r)o object longitudinal roadway coordinate along curvilinear spline axis
y(r)o object lateral roadway coordinate along axis locally perpendicular to longitudinal road-

way coordinate axis
l,w,h rectangular prism dimensions (length, width and height)
F(x(r)) spline defining state plane coordinate roadway center-line spline parameterized by x(r)

G̃(x(st)) spline approximating the center-line spline in roadway coordinates x(r) parameterized
by x(st)

Table 15: Summary of symbols used in this section.

correspondence points in each camera field of view. Each correspondence point is also labeled in global
information system (GIS) software, giving the precise GPS / state-plane coordinate system coordinates for
each labeled corresponding point. The corresponding pixel coordinates are manually selected in each camera
field of view, for each direction of travel on the roadway (see Appendix O.5).

A perspective transform (Equation 28) is fit to these correspondence points. We first define a 2D per-
spective transform which defines a linear mapping (Equation 27) of points from one plane to another that
preserves straight lines. The correspondence points are then used to solve for the best perspective transform
H as defined in equation 28, where s is a scale factor.

s

x(st)i

y(st)i
1

∼ H

x(im)
i

y(im)
i
1

 (27)

where H is a 3×3 matrix of parameters:

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (28)

For each camera field of view and each direction of travel, the best perspective transform H∗ is determined
by minimizing the sum of squared re-projection errors according to equation 29 as implemented in OpenCV’s
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f ind homography function [348]:

H∗ = argmin
H

∑
i

(
x(st)i −

h11x(im)
i +h12y(im)

i +h13

h31x(im)
i +h32y(im)

i +h33

)2

+

(
y(st)i −

h21x(im)
i +h22y(im)

i +h23

h31x(im)
i +h32y(im)

i +h33

)2

(29)

The resulting matrix H∗ allows any point lying on the plane within the camera field of view to be con-
verted into state plane coordinates. The corresponding matrix Hinv can easily be obtained to project state
plane coordinates on the z = 0 plane into image coordinates. However, since each vehicle is represented by
a 3D bounding box, the top corner coordinates of the box do not lie on the ground plane. A 3D perspec-
tive transform P is needed to linearly map coordinates from 3D state plane coordinate space to 2D image
coordinate space, where P is a 3×4 matrix of parameters:

P =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 (30)

and P projects a point in 3D space (x′,y′,z′) into the corresponding image point (x,y) according to:

P


x(st)

y(st)

z(st)

1

∼ s′

x(im)

y(im)

1

 (31)

where s′ is a new scaling parameter. By observing the case where z(st) = 0, it is evident columns 1,2,
and 4 of P are equivalent to the columns of Hinv and can be fit in the same way. Thus, we need only solve
for column 3 of P. Next, we note as in [344] that ( p11

p31
, p21

p31
) is the vanishing point (in image coordinates) of

perspective lines drawn in the same direction as the state plane coordinate x-axis. The same is true for the
2nd column and the state plane coordinate y-axis, the 3rd column and the state plane coordinate z-axis, and
the 4th column and the state plane coordinate origin.

Thus, to fully determine P it is sufficient to locate the vanishing point of the z-axis in state plane coor-
dinates and to estimate the scaling parameter p33. The vanishing point is located in image coordinates by
finding the intersection point between lines drawn in the z-direction. Such lines are obtained by manually
annotating vertical lines in each camera field of view. The scale parameter is estimated by minimizing the
sum of squared reprojection errors defined in equation 32 for a sufficiently large set of state plane coordinates
and corresponding, manually annotated coordinates in image space.

P∗ = argmin
p33

∑
i

(
x(im)

i −
p11x(st)i + p12y(st)i + p13z(st)i + p14

p31x(st)i + p32y(st)i + p33z(st)i + p34

)2

+

(
y(im)

i −
p21x(st)i + p22y(st)i + p23z(st)i +h24

p31x(st)i + p32y(st)i + p33z(st)i +h34

)2

(32)

The resulting 3D perspective transform P∗ allows for the lossless conversion of points in roadway coor-
dinates to the corresponding points in image coordinates. Observing that a lossless conversion from image
coordinates to state plane coordinates is available provided that the converted point lies on the z(st) = 0 plane,
it is possible to precisely convert a rectangular prism from image space to state plane coordinates by i.) con-
verting the footprint of the prism near-losslessly into state plane coordinates (the only source of error comes
from a set of 4 image coordinates that cannot be perfectly converted into a rectangle in state plane coordi-
nates), ii.) shifting the footprint in state plane coordinates along the z-axis, iii.) re-projecting the resulting
points back into the image, iv.) comparing the reprojected “top points” to the original top of the rectangular
prism in image coordinates, and v.) adjusting the height iteratively to minimize the re-projection error until
convergence.

124



O.3 State Plane → Roadway Coordinate System Conversion
Next, we consider the conversion of points in state plane coordinates to roadway coordinates. In most cases,
we care to convert a set of state plane coordinate points roughly in a rectangular prism (i.e. vehicle 3D
bounding box) into roadway coordinates; thus, we define this conversion for a rectangular prism. A single
point can be converted between state plane coordinates and roadway coordinates by treating it as a rectangular
prism with zero length, width and height.

Let O(st) be a 3D bounding box representation in state plane coordinates, an 8×3 matrix of x,y, and z
coordinates for each corner of the box. (Note that these corners need not exactly correspond to an orthogonal
rectangular prism, but the roadway coordinate equivalent will be exactly orthogonal so some truncation will
occur.) We reference, for example, the back bottom right (from the perspective of the rear of the vehicle) of
object O(st) as o(st)bbr = [x(st)bbr ,y

(st)
bbr ,z

(st)
bbr ], such that = O(st) = [o(st)bbl ,o

(st)
bbr ,o

(st)
btl ,o

(st)
btr ,o

(st)
f bl ,o

(st)
f br,o

(st)
f tl ,o

(st)
f tr ]. (For the

single-point case described above, all 8 corner coordinates are identical).
Next, Let O(r) = [x(r)o ,y(r)o , l,w,h] be the corresponding object representation of O(st) in roadway coordi-

nates. x(r) and y(r) are the roadway coordinate longitudinal and lateral coordinates (in feet), and l, w,and h
are the length, width, and height of the object respectively (in feet).

Let o(st)c denote the back bottom center coordinate of object O(st). By convention, this point is referenced
as the primary position of object O(st). Let o(st)spl denote the point on the center-line spline (i.e. y(r) = 0)
with the same x(r) coordinate as o(st)c .

Let F be the second-order spline parameterizing the roadway center-line in state plane coordinates. In
other words, F defines the longitudinal curvilinear axis y(r) = 0 along this spline. F is fit by manually labeling
a sufficiently large number of points along the interior yellow line for both directions of travel (in state plane
coordinates). A spline is fit to each yellow line, and a third spline is fit to lie precisely halfway between these
two splines. Spline control points are selected at suitably sparse intervals (200 foot minimum spacing) such
that the spline is relatively smooth while still capturing the roadway curvature (see Appendix O.6).

Given O(st), we first obtain l,w and h by computing the average distance between points on the front and
back, left and right, or top and bottom of the vehicle respectively. Next, we obtain o(st)c by computing the
average x(st) and y(st) state plane coordinates of the 4 back rectangular prism corners.

Next, we solve for x(r)o by solving the following optimization:

x(r)o = argmin
x(r)

||(F(x(r)),o(st)c ||2 (33)

using L2-norm (Euclidean distance) between the two points in state plane coordinate space. In other
words, determine the point on the roadway spline closest to the back center of the rectangular prism o(st)c .
This minimizing point is the corresponding roadway longitudinal coordinate x(r)o , and the distance from the
minimum distance point is roadway lateral coordinate y(r)o .

y(r)o = min
x(r)

||(F(x(r)),o(st)c ||2 (34)

Noting that the I-24 MOTION roadway segment has monotonically increasing x(st) coordinate, a sec-
ondary spline G̃(x(st)) is defined to parameterize x(r) as a function of x(st), which yields a good initial
guess for the closest roadway longitudinal coordinate for a given point in state plane coordinates. This
optimization can then be solved to arbitrary precision, yielding the complete roadway coordinate for the ob-
ject O(r) = [x(r)o ,y(r)o , l,w,h].

Constant Yellow Line Constraint: It is observed that points along the yellow line for each roadway direction
of travel have non-constant y-position due to the varying width of the median. It is desirable that the yellow
line (and by extension each set of lane-dividing markings) has constant y position. We finally apply the
following shift:

y(r)o += (C− γ(x(r)o )) (35)

where C is the desired constant yellow line y-coordinate (in this case -12 for westbound-side coordinates
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and +12 for eastbound-side coordinates) and γ(x(r)o ) represents the uncorrected yellow-line coordinate at the
given x-position per roadway side. Note that this creates a discontinuity in the coordinate system near y = 0
on each side, but these portions of the coordinate system are not used for objects on the roadway.

O.4 Roadway → State Plane Conversion
Reverse Yellow Line Constraint: First, the inverse yellow-line shift must be applied to the y-coordinate:

y(r)o −= (C− γ(x(r)o )) (36)

Next, given roadway coordinates for an object O(r), first find the corresponding point on the roadway
center-line spline in state plane coordinates o(st)c according to:

F(x(r)o ) = o(st)spl (37)

To obtain the back center coordinate o(st)c , we must offset o(st)spl by length y(r) in the direction perpendicular

to the roadway centerline spline at o(st)c . Let −→u F be the unit vector in the same direction as the derivative
spline F ′, and let −→u 1/F be the unit vector in the perpendicular direction (along the state plane, i.e. z(st) = 0.
Note that care should be given to ensure that the positive direction of −→u 1/F points towards the eastbound side

of the roadway with positive y(r).) Then, o(st)c is given by:

o(st)c = o(st)spl + y(r) ·−→u 1/F (38)

From here, the corner state plane coordinates for the right and left coordinates of the rectangular prism
can be obtained by offsetting o(st)c by ± 1

2 times w in the direction of −→u 1/F , and the front coordinates of
the rectangular prism can similarly be obtained by offsetting by l in the direction of −→u F or in the opposite
direction for objects on the westbound or negative y(r) side of the roadway. Similarly, the top coordinates can
be obtained by offsetting by a factor of h in the z(st) direction. The direction of travel for an object can be
obtained as the sign of the y(r) coordinate (negative for WB, positive for EB).For example, for an eastbound
object the front top left coordinate can be obtained as:

o(st)f tl = o(st)c − 1
2
·w ·−→u 1/F + l ·−→u F +h · [0,0,1] (39)

O.5 Correspondence Point Labeling
A brief description and a few pictures of overhead and camera fields of view.

Correspondence points are obtained for visible lane marking lines and other easily recognizable land-
marks on the roadway are used as correspondence points in each camera field of view. Labeling is carried out
in a custom OpenCV GUI, with semi-automated point selection to speed this process over the 230+ cameras
utilized in this work. An average frame from each camera is used to minimize the presence of occluding ve-
hicles during labeling. Figure O.13 shows an example of labeled points and the labeled relevant field of view
for a single camera. The corresponding pixel coordinates for each manually selected point in each camera
field of view, are stored, for each direction of travel on the roadway, each with a unique identifier. Typically,
at least 10 roadway markings or 40 correspondence points are labeled per roadway direction of travel. Ad-
ditionally, note that this initial correspondence point selection was performed for a day a few weeks prior to
the day on which video is recorded in this work.

Each correspondence point is also labeled in global information system (GIS) software, giving the precise
GPS / state-plane coordinate system coordinates for each labeled corresponding point. The same unique
identifier is assigned to each corresponding point previously labeled within a camera image. Additionally,
points along each yellow line were labeled periodically (every ∼50 feet). Figure O.15 shows an example of
labeled points in the state plane aerial imagery.

O.6 Centerline Spline Fitting
The following procedure was used to fit the center-line spline for the roadway coordinate system (y(r) = 0):
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Figure O.13: Correspondence points (blue) and fields of view (shaded polygons) for each roadway direction
of travel, labeled in a single camera field of view (P27C01). Around 100 correspondence points are visible
for each side of the roadway.

Figure O.14: Correspondence points (green for WB red for EB) labeled in camera imagery for all cameras
on one pole (P17). Fields of view (blue for WB and orange for EB) and a mask denoting relevant portions of
the image for tracking (dotted red polygon) are also shown. Similar plots are included in a separate file for
all cameras. Credit: Gergely Zachar.
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Figure O.15: Correspondence points labeled in aerial imagery using the GIS tool for a very small subset
(∼500 feet) of roadway, for one direction of travel only.
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1. For each roadway direction of travel, fit a spline parameterizing the (x(st),y(st)) points as a function of
u. Let F(WB)(u) and F(EB)(u) denote these splines. All splines implemented in this work are based on
SciPy’s spline package [368] and are constrained to have a minimum control point spacing of 200 feet
to ensure smoothness.

2. Moving along the EB yellow line spline F(EB)(u), sample points at fine (1 foot) intervals. For each
sampled point u, find the closest point on F(WB)(u) u′. Store the midpoint u∗.

3. Fit another spline Fmed(u) to the set of midpoints from the previous step.

4. Sample Fmed(u) at fine (0.1 foot intervals). Compute the distance between each consecutive pair, and
compute the cumulative distance along the spline to each point via finite difference approximation.

5. Re-parameterize Fmed(u) such that each point on the midpoint corresponds to the integrated distance
along the spline to that point. This yields the final spline F(x(r)) used above.

Lastly, γ(x(r))) must be computed for each roadway direction of travel. This is done by sampling F(x(r))
for each direction at regular (5-foot) intervals and recording the distance to the closest point on each of F(WB)
and F(EB). Since these offsets change very little (∼1 foot per mile), the offsets are stored in a lookup table
rather than fitting a true offset function. Thus, γ(x(r))) returns the recorded offset from F(x(r

′)) to F(WB) or
F(EB) for the closest sampled value x(r

′).
Figure O.16a shows the labeled points from aerial imagery (yellow and black lines) and the points labeled

in each image (blue dots), transformed into roadway coordinates. Figure O.16b shows the largest magnitude
shift in labeled correspondence points, when converted to the roadway coordinate system. Such “discontinu-
ities” are due to slight misalignment between aerial images taken during different passes of the photographing
aircraft, and result in small (less than 2 foot) errors in all cases. While these misalignments could be cor-
rected for by applying a smoothing to the correspondence points labeled within the aerial imagery, this was
ultimately decided against because the smoothing would need to be performed with respect to, essentially,
the roadway coordinate system spline itself, which is in turn a product of the labeled aerial imagery points.
This would produce complex and less well-understood artifacts in the resulting final coordinate system.

(a) (b)

Figure O.16: (a) correspondence points labeled in aerial imagery (yellow and black) and in individual camera
fields of view (blue) are projected into the roadway coordinate system. (b) A close-up detailing a type of
artifact visible in the coordinate system as a result of misalignment in the aerial imagery.

P Homography Re-estimation Methods for the I-24 Video Dataset (Ch. 7)

In ideal circumstances homographies can be estimated once (as discussed in the previous section), and
used continuously until some drastic change in the system, (e.g. the roadway section is rebuilt or the lane

Appendix P is adapted from [93].
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markings are repainted). Aside from these rare events there are several other factors which significantly de-
grade accuracy; long term events can be the replacement of the camera, inaccuracies in the pan-tilt mechanism
during homing, settlement of the foundation or the seasonal temperature change. Although these can be dealt
with occasional re-calibration, the sunflower effect requires constant re-estimation of the homographies. This
effect, the tilting of the metal infrastructure poles due to the differential heating of the sun and shade-facing
sides, can cause significant homography errors (sometimes greater than 10 feet, see Figure P.17 for a typical
camera example), both in timescales of hours for the daily warm up and cool down cycle, and also in the
timescales of minutes, caused by the varying cloud coverage (see Figure P.18, showing how the positional
drift in homographies varies over just 12.5 minutes). A video is included in supplementary material showing
the magnitude of drift over the course of a day. The camera movement can easily be seen by viewing the rela-
tion between the lane markers and the ROI rectangle (which maintains constant pixel coordinates throughout
the video). For reference, a typical dash line is 10 feet long.
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Figure P.17: Homography goodness of fit and uncorrected drift between reference homography and true scene
homography according to two metrics (Sub Drift and Full Drift) for a single typical camera. Horizontal grey
dashes show the two time instances for Figure P.18.(Credit: Gergely Zachár).

(a) (b)

Figure P.18: Full drift for the same camera at two time instances. For a given error value X , this indicates that
the original reference homography and the true homography for the scene map the same image coordinate
to points in the state plane X feet apart. The westbound field of view (i.e. the most important portion of the
image) is shown as a red polygon. Credit: Gergely Zachar.

Note, that tilting not only degrades single-camera accuracy, but due to the multiple pole architecture
and the camera FOVs, homography errors cause significant misalignment in state plane coordinates between
poles, resulting in vehicle tracking fragmentations . (Cameras on the same pole are less susceptible because
they are rigidly mounted and roughly ”moving” together.) Thus, the re-estimation of the homography is
necessary on relatively short timescales, or at a minimum on a daily basis.

Since manual re-annotation is not possible for continuous operation, a feature point re-identification
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method is developed, along with re-estimation methods for a static daily and for a dynamic, time-dependent
homography.

All methods and filtering steps are based on the assumption that the image is only slightly distorted
from the manually labeled ground truth. This assumption is necessary, because the homography and the re-
discovery relies on the lane markings which are non-unique and repetitive, thus a significant shift can cause
a mis-identification and misalignment. All presented methods are offline (they utilize both past and future
information relative to the specified time instance (i.e. use a non-casual filter)).

Automated homography generation is divided into two distinct steps. First the feature points are re-
discovered and a new homography is calculated for a single time instance. Second, a refinement step operates
on the homographies themselves of which removes outliers, filters, and aggregates over time. This approach
provides robustness for the final estimates based on the assumption that the re-estimation provides good
results in general but are prone to outliers and errors. To comply to this idea the implemented refinement
processes are draconian, and tuned to minimize false positives at the expense of occasionally removing some
true positives. The ”good in general” assumption is empirically tested, by rigorously inspecting the results
and fine tuning the filter parameters of each steps. In case of faulty estimates manual inspection always
shows problems which could cause confusion even for human observers or significant noise and drop in
image quality (e.g.: at dawn).

P.1 Notation
The following notation convention is used throughout the remainder of this Section. Also see Table 16 for a
list of utilized symbols and their meanings.

• Mathcal script (e.g. I) is used for sets of points. Bold Text (e.g. H) is used for vectors and matrices.
• The subscript t denotes a set of points or a homography for a specific time instance (e.g. It )
• No subscript denotes the initial reference points or homography (e.g. I, A, and H)
• The prime symbol denotes rediscovered points (e.g. I ′

t , which corresponds to subset At ) , or homogra-
phies based on rediscovered points (e.g.: H′

t )
• a superscript s denotes an image-to-image homography based on SIFT-FLANN matching (e.g. Hs

t )
• A superscript asterisk symbol ∗ denotes a homography estimate calculated with methods presented in

the previous Appendix (e.g.: H∗).
• An arrow I H−→ indicates a linear transformation on the point set I according to homography H. (e.g.

I ′
t

H′
t−→ =∧ At denotes that the set I ′

t of rediscovered points at time t, projected from image coordinates
to state plane coordinates by H′

t , estimates the set of corresponding points labeled in state plane coor-
dinates At ).

P.2 Homography Generation for a Single Time Instance
This section briefly describes the steps necessary for the homography generation for a single time instance t.

1. Generate a background extracted image to remove the vehicles from the scene. This is implemented
as a 1 minute long averaging of frames, with 50% overlap in time. Note that in case of heavy traffic
(essentially for stopped vehicles) this time period might not be sufficient for complete removal.

2. Compute an initial alignment estimate between the frame and the reference frame, on which the original
annotations were made. This step utilize the SIFT algorithm to find feature points and a FLANN based
matcher (both implemented in OpenCV). Note that the detected features can be anywhere on the image,
not necessarily corresponding to semantically meaningful points (e.g. grass, trees, parking cars outside
the road), and most importantly generally not lie on the plane of the roadway.

3. Based on the SIFT-FLANN generated corresponding points generate an image-to-image homography
(Hs

t ).

4. Examine Hs
t : transformation (e.g.: translation, rotation, scale) should be minimal, based on the slight

distortion assumption. Otherwise discard the current time instant, because the calculated alignment is
likely from erroneously matched points. No further steps are possible.
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Symbol Definition

I labeled image points (in image coordinates, unit: pixels)

It subset of the labeled image points at time t, corresponding to the successfully rediscov-
ered points (It ⊂ I)

I ′
t rediscovered image points (|I ′

t | ≤ |I|)

Is
t labeled image points after perspective transformation, utilizing the SIFT-FLANN

matcher, such that I Hs
t−→ Is

t

I∗
t ”labeled” image points generated such as A

H∗¬
t−−→ I∗

t

A aerial points (in state plane coordinates, unit: feet)

At subset of the aerial points at time t, corresponding to the successfuly rediscovered points
(At ⊂A)

H homography such that I H−→A

H¬ inverse homography such that A H¬
−−→ I

H′
t homography such that I ′

t
H′

t−→At

H∗ new static homography estimate by method from Appendix P.3

H∗
t new dynamic homography estimate for time t by methods from Sections P.4-P.5

Hs
t projection (image to image) generated with the SIFT-FLANN matcher results

Table 16: Notations for various point sets and homographies utilized in this work.

5. Binarize the averaged frame via OpenCV’s threshold function [348] and run a contour detection algo-
rithm. This provides good results because lane markings are high contrast, distinct features.

6. Transform the originally labeled feature points I, i.e. the four corner points of the lane markers, with
the calculated Hs

t (producing Is
t ) and calculate the geometric center for each marker. This provides a

seed point for rediscovery.

7. Select contour areas which include a seed point, thus creating a set of candidate for lane marks.

8. For each marker, select the 4 corner points on the corresponding contour that produce the largest area,
thus creating a quadrilateral.

9. Filter the candidates by contour area, contour area to quadrilateral area ratio, ratio of area compared
to the labeled reference area. This step is important to remove candidates which are merged, partially
occluded, or otherwise not rediscovered correctly.

10. Select the proper labels and store the 4 corner points as feature points of each remaining markers. With
this step the rediscovery steps are complete, yielding I ′

t .

11. Run a homography matrix estimator (which utilizes RANSAC) between the rediscovered I ′
t and the

corresponding aerial At points. Remove the feature points which are considered outliers by the algo-
rithm. In the current implementation these are points of which are further than 2̃ feet on the state plane.
The resulting homography for time instance t is written as H′

t .

The result of the listed process is a set of rediscovered feature points (I ′
t ) and a new homography (H′

t ) for
a given time instant t. Note that although the steps involve heavy filtering and outlier detection the resulting,
a standalone homography should not be used without further processing for the following reasons:
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Figure P.19: An example of SIFT-FLANN based seed points from step 6 (red dots), detected contours (purple
outlines) and re-detected dash corner points (yellow dots) for a 1-minute average frame. Because traffic at this
time instance was partially stopped, some vehicle artifacts are visible in the averaged frame. A few dashes
are not successfully rediscovered. Credit: Gergely Zachar.

• The number and positions of the rediscovered lane markings are not guaranteed, thus it is possible
to only rediscover lane markings which lie on the same line, thus providing poor estimates for the
perpendicular axis.

• Lane markings ”far” from the camera are hard to properly detect due to their small area and slight
camera movements can cause misidentification.

• The RANSAC based homography estimator does not guarantee that the selected points are proper.
In extreme cases it can select an erroneous subset and fit a good homography to it. As discussed
previously, the lane markings are non-unique and repetitive: usually there are multiple subsets of points
with nearly identical relative arrangement.

P.3 Static Homography Generation
To counter for the long term homography errors and somewhat compensate for the sunflower effect a single
homography can be generated for a given time interval, e.g.: the length of the recording or for the desired
time range. This method has the advantage of time-invariance (simplicity) and can utilize all the instantaneous
estimates over the specified window, resulting in ample redundancy for outlier removal. The method includes
two steps:

1. In the preparation phase the outliers are removed, i.e. the homography estimates of which significantly
differ from the others. The current implementations considers a homography an outlier if any of its
component (in the 3x3 matrix) deviates more than 30% from the arithmetic mean of all estimates. Note
that this process is iterative.

2. The main step is the averaging, i.e. calculating the arithmetic mean for each matrix component to
produce H∗.
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P.4 Dynamic Homography Generation
To counter for both long and short term homography problems a dynamic, time dependent method is pro-
posed. This solution is capable of modeling short-term camera motion (e.g. from the sunflower effect), but is
less trivial implement and use compared to the static version because it requires modifying the homography
as a function of time.

The underlying idea of this method is the ”smoothing” of the original estimates, based on the temporally
nearby values. Note that this is not straightforward because estimates are not necessarily available at all
time instances, e.g.: in case of heavy traffic the occlusion prevents homography estimation, similarly at the
beginning and at the end of the recording there is no preceding and subsequent information available. (This
is especially problematic at dawn and dusk where the even the recorded images are noisy and blurred thus
making feature rediscovery hard or even impossible.) Thus a method is necessary of which is capable to
adapt to these situations. An important and necessary property of a good dynamic homography is that it
provides ”smooth” variability over time, preventing discontinuities in positional data (which could in turn
cause fragmentations during object tracking.)

The proposed solution includes three steps:

1. In the preparation phase the outliers are removed. This step is exactly the same as in the static case.

2. A ”window size” parameter is computed, based on the available number of homography estimates in
a specified temporal neighbourhood around the given time instance. This step ensures that in case of
missing estimates the window size is larger, thus accommodating more data points.

3. The final step is the ”smoothing” of each homography matrix component, where a Gaussian kernel
function is used over time. The shape of the function, or more precisely the variance is determined by
the previous step.

Note that this method can provide a homography estimate H∗
t at any time instance, not just when instan-

taneous estimates are available. In our implementation a new estimate is generated at 10 second intervals.

P.5 SIFT-FLANN-based homography generation (existing)
No lane marking rediscovery is performed. Instead, the set of shifted points (Is

t ) generated from the original
labels (I) is direcly used from Appendix P.2 step 6 and above to fit a homography estimate H∗

t for time t i.e.

I Hs
t−→ Is

t
H∗

t−→A.
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Q Homography Error Metrics for the I24-Video Dataset (Ch. 7)

Next, we turn to defining metrics for assessing the effectiveness and accuracy of the proposed point
rediscovery and homography re-estimation metrics. This Appendix provides an overview of the possible
metrics and their properties.

Q.1 Notation
In addition to the notation defined in the previous section, the comparison operator E is defined as a function
of two sets of points (B,C ⊂ R2). The operator calculates the point-wise L2-norm between the common
subset of points shared by B and C , (i.e. the distances between two points which correspond to the same
feature), and produces a set of values. The resulting set can be used to calculate aggregate metrics, such as
mean, maximum, and standard deviation of error.

E(B,C) = {||bi,ci||2, ..., ||bn,cn||2}∀i s.t. bi ∈ B,ci ∈ C,bi =∧ ci (40)

Q.2 Reference Metrics
Metrics listed in this Appendix are computed by comparing the original reference labels (I and I) to rediscov-
ered points (I ′

t ). In some cases the same set of points is transformed with the original reference homography
(H or H¬) and the instantaneous homography estimate H′

t . They measure i.) the quality of the rediscovery
and instantaneous homography re-estimation process, and ii.) the movement of the cameras.

Most metrics presented here can be calculated in both image and state plane coordinate systems; thus
we present them in pairs. The resulting error values have units of pixels or distance (feet), respectively. In
practical evaluations we utilize the state plane distance (units of feet) as it is invariant to the image resolution
and FOV, thus comparable across cameras. As in Appendix O, we use a superscript (im) or (st) to denote the
coordinate system for each metric.

• Sub Drift I: This metric compares a subset of the originally labeled image points to the rediscovered
points. The resulting distances can be interpreted as the drift caused by the camera movement. Note
that in case of perfect alignment the maximum error is zero.

SubDriftI(im) = E(It ,I ′
t ) (41)

SubDriftI(st) = E(It
H−→,I ′

t
H−→) (42)

• Sub Drift II (not used): This metric compares a subset of the originally labeled aerial points to the
rediscovered points. The resulting distances are a combined error of the drift caused by the camera
movement and the homography fitness error. Thus even in case of no movement the error is non-zero,
as the homography is not a perfectly fit mapping of I to A.

SubDriftII(im) = E(A′
t

H¬
−−→,I ′

t ) (43)

SubDriftII(st) = E(I ′
t

H−→,At) (44)

• Full Drift: This metric compares the full set of the originally labeled image or aerial points transformed
by the reference and the re-estimated homography. The resulting distances can be interpreted as drift
caused by the camera movement. In the case of no camera movement, the error is zero (except for
possible stochasticity in the optimal homography H ′

t selected by the RANSAC algorithm utilized.)

FullDrift(im) = E(A H¬
−−→,A H′¬

t−−→) (45)

FullDrift(st) = E(I H−→,I H′
t−→) (46)

Appendix Q is adapted from [93].
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• Sub Fitness: This metric shows the fitness of the estimated homography, utilizing the rediscovered
points and a matching subset of aerial points. This error is caused by a combination of e.g.: inaccurate
feature point rediscovery, lens distortion, non flat roadway.

Fitness(im) = E(At
H′¬

t−−→,I ′
t ) (47)

Fitness(st) = E(I ′
t

H′
t−→,At) (48)

Q.3 Homography Re-estimation Metrics
Metrics listed here are derived from the metrics introduced at the previous section. Substituting the refer-
ence labels and homographies with the re-estimated homographies and points sets derived from them. The
interpretation and purpose of these metrics are to qualify how good are the new estimations; i.e. a perfect
homography provides a perfect alignment to the detections.

• Sub Drift: This metric compares a subset of points generated with the re-estimated homography (from
the originally labeled points) to the rediscovered points. The resulting distances can be interpreted as
a combined error of the re-estimation and the homography fitness error. Therefore even in case of a
perfectly aligned homography the error is non-zero. Note that, because the new subset of points are
generated from the reference labeled points this metric essentially merge Sub Drift I and II presented
in the previous section.

SubDrift(im) = E(I∗
t ,I ′

t ) =⇒ E(At
H∗¬

t−−→,I ′
t ) (49)

SubDrift(st) = E(I∗
t

H∗
t−→,I ′

t
H∗

t−→) =⇒ E(A H∗¬
t−−→ H∗

t−→,I ′
t

H∗
t−→) =⇒ E(At ,I ′

t
H∗

t−→) (50)

• Full Drift: This metric compares the full set of the originally labeled image or aerial points transformed
by the the re-estimated and by the instantaneous homography. In effect, these original labeled points
are chosen as “proxy points” for the real locations of the correspondence points in the image as they
are a full set known to lie near the true locations. The resulting distances can be interpreted as the error
of the homography re-estimation process. Note that in case of a perfect alignment the error is zero.

FullDrift(im) = E(A H∗¬
t−−→,A H′¬

t−−→) (51)

FullDrift(st) = E(I H∗
t−→,I H′

t−→) (52)

• Fitness: Since the fitness metrics does not depend on the re-estimated homography, they are equiva-
lent to the ones discussed in the previous section.

The homography re-estimation performance can be measured by the Full and Sub Drift metrics, but
both have caveats to consider: Sub Drift is a better measure of the real magnitude of the error, because it
incorporates inaccuracies of both the homography and the homography fitness, e.g. errors caused by intrinsic
camera problems and the non-flat roadway. On the other hand the Sub Drift metric only includes feature
points which are re-detected, thus hard to detect points further from the pole are often missing from the set.
This is crucial because the perspective those ”far” points account for larger state plane errors than the more
easily detectable closer ones. The combined effect of these that the Sub Drift is better in the assessment of
the expected minimal error, this is not the case for the maximum. Also worth noting is that Sub Drift does not
explictly rely on H ′

t being well-fit, so produces a reliable estimate of error even when the fitting of H ′
t fails

(though in practice this usually indicates poor point rediscovery).
The Full Drift metric is useful to assess the performance of the homography re-estimation itself, because

in case of perfect alignment the error is reduced to zero. In opposite to the Sub Drift this, metric includes all
labeled points, some of which are actually outside the processed ROI, thus resulting in an apparently larger
maximum error than during vehicle detection.
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Based on these considerations, we select Full Drift (Equation 46) as our primary metric and use it to
report the error for each method utilized as equation 2 the main text. We also utilize Sub Fitness (Equation
48) as a baseline measure for the error floor of each fit homography ( f itness in equation (1) of the main text).

Q.4 Additional Homography Metric Figures
Figure Q.20 shows the different state-plane error metrics for a camera with a long field of view. P05C06
is chosen as it clearly illustrates both long and short-term drift in the homography, as well as the relations
between the different metrics: On Figure Q.20a the homography Fittness is shown, representing the minimum
achievable accuracy for the vehicle detection. On Figure Q.20b the SubDriftI error is slightly higher than
FullDrift shown on Figure Q.20c, because it contains both the fitness and homography error. In this case,
the maximum SubDriftI values are higher than the maximum FullDrift values because the rediscovery rate
for the feature points is ∼80% for this particular case (relatively high), thus distant points are also likely
included. If the drift were more extreme, the most distant correspondence points might not be successfully
rediscovered, and the overall reported SubDriftI error may be driven down as a result. This dependence on the
number of rediscovered points is one reason why FullDrift is preferred to SubDrift in this work for comparing
homography re-estimation performance.
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Figure Q.20: (Repeated from Section 7.2.2.1.) Goodness of fit and uncorrected drift between reference
homography and true scene homography according to two metrics (Sub Drift and Full Drift) for a single
typical camera. Horizontal grey dashes show the two time instances for Figure P.18. Credit: Gergely Zachar.

Figure Q.21, Q.22 shows the mean FullDrift and SubDrift calculated and averaged over the time of the
recording, for all cameras in the system, sorted by magnitude, for each direction of roadway travel. Note
that not all cameras have fields of view defined for both sides of the roadway (hence there are more total
westbound fields of view than eastbound fields of view). The mean SubDrift is Lower than the mean FullDrift
over all cameras, and the maximum mean SubDrift (over all correspondence points and times) is lower than
for FullDrift. However as seen in Figure Q.20a, for some time instances the maximum SubDrift can be higher
than the maximum FullDrift.

The effectiveness of the homography re-estimation methods is illustrated on Figure Q.23, which shows
the additional error above the error floor, utilizing the FullDrift metric, for two cameras. The reference (blue)
indicates the resulting error without any mitigation, showing both long term (high mean) and short term (high
variance) error. The SIFT-FLANN method (orange) illustrates the performance of an optical flow based
”camera stabilization” solution. The static, all-day average method (green) removes the long term error,
although it is mostly unable to remove the error caused by the sunflower effect. Finally since the dynamic
homography (red) utilizes nearby (temporal) homography estimations for a given time instance, it can cope
with short-term fluctuations. Note that in most cases the all-day average is superior to the SIFT-FLANN
method, although there can be time instances where the former can produce better results. Figure Q.23 also
illustrates, that long field of view cameras (e.g. P05C06) are more sensitive to camera movement, compared
to mainly downwards-facing cameras (e.g. P05C04), thus the error caused by drift is more pronounced for
them.

Lastly, figure Q.24 compares the remaining mean average SubDrift and FullDrift errors for each camera
after (black) SIFT-FLANN feature-matching, (orange) one-day best fit homography re-estimation, and (red)
dynamic homography re-estimation methods relative to original reference homography baseline (blue). The
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Figure Q.21: Mean averaged SubDrift and FullDrift calculated for all westbound cameras in the system,
sorted by error magnitude. Credit: Gergely Zachar.
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Figure Q.22: Mean averaged SubDrift and FullDrift calculated for all eastbound cameras in the system, sorted
by error magnitude. Credit: Gergely Zachar.

overall trends and relative performance amongst methods is unchanged; in most cases the SIFT-FLANN
baseline outperforms the uncorrected reference homography, the all-day average outperforms SIFT-FLANN,
and the dynamic method outperforms the all-day average.
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Figure Q.23: Error dynamics for two cameras over time with each homography re-estimation methods. Long
field of view cameras e.g. Q.23a have more pronounced errors over down-looking cameras, e.g. Q.23b.
Credit: Gergely Zachar.
.
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Figure Q.24: Remaining SubDrift and FullDrift errors for each camera after (black) SIFT-FLANN feature-
matching, (orange) one-day best fit homography re-estimation, and (red) dynamic homography re-estimation
methods relative to original reference homography baseline (blue). Cameras are grouped by position on pole
(see Figure 2 in main text.) and by side of roadway (westbound homographies on top, eastbound on bottom).)
Credit: Gergely Zachar.
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R Additional GPS Trajectory Plots for the I24-Video Dataset (Ch. 7)

Figure R.25 shows plots for additional GPS tracks through the video scene. Manually annotated object
positions (circles) and GPS positions (lines) for are shown for the overall scene, divided by westbound (top
left) and eastbound (bottom left) direction of travel. (right) x-position relative to the corrected GPS track
(top) and absolute y-position (bottom) are plotted for the highlighted GPS track. It can be seen that a.) the
corrected GPS trajectories align more closely with object detections (black dots) and b.) there is significant
deviation between the corrected and uncorrected GPS trajectories. Note that especially the Y-coordinate error
in the uncorrected trajectories varies in character across different GPS trajectories.
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Figure R.25: Plots for 4 individual GPS trajectories. In each sub-figure, (top left) shows westbound X-
position and (bottom left) shows eastbound X-position for the whole scene duration. (top right) shows
nearby (in relative X-coordinates) and (bottom right) shows nearby (in Y-coordinates) detections, manual
annotations, and uncorrected GPS trajectory, relative to the corrected GPS trajectory.

Appendix R is adapted from [93].
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S Experimental Details for the I24-Video Dataset (Ch. 7)

S.1 Evaluation Protocol
Each object tracker is run using the detection set from Appendix 7.2.5. GPS trajectories and detections from
each camera are obtained at slightly different times. To account for this, tracking evaluation is performed at
fixed 0.1 second intervals, and each GPS trajectory and object tracklet position is linearly interpolated at each
evaluation time. GPS trajectories extend somewhat outside of the temporal duration for which detections
are available. Evaluation is performed only over the temporal range for which both GPS trajectories and
detections exist. Moreover, each GPS trajectory is clipped in the X-range [0,23000] such that the trajectory
is always visible within the field of view of the overall camera network. Evaluation is performed as in [216].
For all metrics other than HOTA metrics, a lax IOU of 0.1 is required for an object tracklet and GPS trajectory
to be matched, and matching is performed with the Hungarian Algorithm for bipartite matching [307]. For
each object tracklet, we use the median reported dimension (l,w, and h, in feet) over all reported tracklet
dimension measurements.

S.2 Parameter Settings
Table 17 lists relevant parameter settings for each implemented algorithm. Kalman filter parameters were
empirically fine-tuned using the I24-3D dataset [95].

Appendix S is adapted from [93].
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Algorithm Parameter Value Description

ALL tmax 2 Maximum time (sec) between detections before track is termi-
nated

tmin 2 Minimum track length (sec)
feval 10 Evaluation time step (Hz)

SORT [5] σhigh 0.5 Required object confidence to be included in detection set
φnms 0.1 Non-maximal suppression IOU threshold
dmax 10 Maximum allowable distance for a match (ft)
ftrack 10 Tracking time step (Hz)

IOUT [166] σhigh 0.5 Required object confidence to be included in detection set
φnms 0.1 Non-maximal suppression IOU threshold
φmin 0.1 Minimum IOU for a match
ftrack 15 Tracking time step (Hz)

KIOU [322] σhigh 0.5 Required object confidence to be included in detection set
φnms 0.1 Non-maximal suppression IOU threshold
φmin 0.1 Minimum IOU for a match
ftrack 10 Tracking time step (Hz)

ByteTrack (L2)
[226]

σhigh 0.01 Required object confidence to be included in detection set

φnms 0.1 Non-maximal suppression IOU threshold
dmax 10 Maximum allowable distance for a match (ft)
τhigh 0.4 Required confidence to be included in first matching step
ftrack 10 Tracking time step (Hz)

ByteTrack
(IOU) [226]

σhigh 0.01 Required object confidence to be included in detection set

φnms 0.1 Non-maximal suppression IOU threshold
φmin 0.1 Minimum IOU for a match
τhigh 0.4 Required confidence to be included in first matching step
ftrack 10 Tracking time step (Hz)

Oracle φmin 0.1 Minimum IOU for a match
ftrack 10 Tracking time step (Hz)

Table 17: Parameters for object tracking experiments on the I24-V dataset.

T Treatment of Personally Identifiable Information in the I24-Video Dataset (Ch. 7)

As stated in [34], the primary purpose of the I-24 system is not to produce video data, but rather is to
produce vehicle trajectory data. The data management plan for the system states that in general, video data
is not released to the public or stored for long periods of time, but occasionally video data may be released to
enable work on training, testing, and validation of trajectory generation algorithms. Thus, the video released
in this work represents an edge case for the system,

Nevertheless, the release of video data (or any data with individuals represented) carries with it the risk
of releasing personally identifiable information (PII) on the included individuals. In this work we make every
effort to prevent the leakage of PII to the public, and furthermore make it infeasible to automatically extract
PII such that doing so becomes extremely onerous to potential bad actors. A three-tiered approach is used:
1.) We release, more or less, a random hour of data, such that the potential for capturing a discrete event of
interest to a third party is near zero. 2.) We automatically redact all license plate information from all visible

Appendix T is adapted from [93].
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vehicles. 3.) We manually redact any regions containing private property or visible people.
Even in un-redacted video data, license plates are in almost all cases impossible to read. Figure T.26 pro-

vides a typical camera field of view, with the license plate only about 15 pixels wide and subject to significant
blurring from vehicle motion. (The vehicle used in this image is part of the GPS instrumented vehicle fleet
and does not belong to an individual). Nevertheless, we run an off-the-shelf license plate redaction algorithm
[347] on all frames and cover all detected license plates with a black rectangle.

Figure T.26: Example license plate from this dataset before redaction. License plate information is unrecov-
erable; for reference, the orange numbers on the rear window of the vehicle are about 5 times as large as
license plate text and are barely discernible. (The pictured vehicle is part of the GPS instrumented vehicle
fleet and does not belong to an individual).

We then manually inspect each video and redact the following sets of information. These areas are
blurred in the released videos. Polygons defining the redacted regions are also released such that data users
can replace these pixel values as desired for computer vision applications. Figure T.27 shows an example of
redacted regions.

• All visible people

• All private property

• Any stopped law enforcement vehicle (we leave ∼ 1 sec of the stopped vehicle visible to allow for
graceful handling of these vehicles by tracking algorithms.
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Figure T.27: Example redacted regions (red outline, blurred) for one camera field of view .

U Known Data Artifacts and Anomalies in the I24-Video Dataset (Ch. 7)

Here, we report a list of known anomalies and artifacts in the data as of submission time:

• Visible in some cameras on poles 3 and 4, there is a region that is blacked out in all frames and camera
fields of view. This region corresponds to a private residence. Different from other redaction areas in
this dataset, a virtual mask is applied to this region in all cameras in which it is visible, such that no
visual information from this region is ever recorded. Other regions are redacted after recording.

• All cameras from Pole 25 are missing; this pole was struck by a vehicle a few days prior to the recording
day and could not be restored in time.

• Homographies on the eastbound roadway side are not defined for cameras on poles 1-7. Construction
work required that temporary solid lane markings be painted, for which i.) corner points were not
uniquely distinguishable and ii.) no matching aerial imagery exists due to the short term nature of the
construction work.

• Reference homographies for cameras on poles 1 and 2 are defined, but homographies are not re-
estimated for these cameras. The lane markings were altered between the reference homography day
and the recording day meaning that SIFT-FLANN matching and lane marking re-detection fail.

• Camera P22C04 has a black ring visible on the left portion of the frame due to a mechanical misalign-
ment of the camera lens and body.

• Occasionally, GPS trajectories have missing recordings for time periods on the order of ∼ 1 sec. The
onboard sensor filtering attempts to compensate for this missing data, producing “sawtooth” artifacts
in the trajectory. Figure U.28 shows an example. The majority of these artifacts were removed during
data refinement, but some artifacts may still remain.

Appendix U is adapted from [93].
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Figure U.28: “Sawtooth” artifact in uncorrected GPS trajectories (lines). Circles depict corresponding man-
ually annotated vehicle positions.
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manta: A coarse-to-fine many-task network for joint 2d and 3d vehicle analysis from monocular image.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2040–2049,
2017.

[149] Abhijit Kundu, Yin Li, and James M. Rehg. 3D-RCNN: Instance-Level 3D Object Reconstruction via
Render-and-Compare. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3559–3568, Salt Lake City, UT, USA, June 2018. IEEE. ISBN 978-1-5386-6420-9. doi: 10.
1109/CVPR.2018.00375. URL https://ieeexplore.ieee.org/document/8578473/.

[150] Tong He and Stefano Soatto. Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D
Hypotheses and Task Priors. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):
8409–8416, July 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33018409. URL https://ojs.aaai.
org/index.php/AAAI/article/view/4856. Number: 01.

[151] Xuepeng Shi, Qi Ye, Xiaozhi Chen, Chuangrong Chen, Zhixiang Chen, and Tae-Kyun Kim. Geometry-
based Distance Decomposition for Monocular 3D Object Detection. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 15152–15161, Montreal, QC, Canada, October 2021.
IEEE. ISBN 978-1-66542-812-5. doi: 10.1109/ICCV48922.2021.01489. URL https://ieeexplore.ieee.
org/document/9711219/.

[152] Peixuan Li, Huaici Zhao, Pengfei Liu, and Feidao Cao. RTM3D: Real-Time Monocular 3D Detection
from Object Keypoints for Autonomous Driving. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, Lecture Notes in Computer Science,
pages 644–660, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58580-8. doi: 10.
1007/978-3-030-58580-8 38.

[153] Xianpeng Liu, Nan Xue, and Tianfu Wu. Learning Auxiliary Monocular Contexts Helps Monocular
3D Object Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 1810–1818, June 2022. doi: 10.1609/aaai.v36i2.20074. URL https://ojs.aaai.org/index.php/
AAAI/article/view/20074. ISSN: 2374-3468, 2159-5399 Issue: 2 Journal Abbreviation: AAAI.

[154] Yunpeng Zhang, Jiwen Lu, and Jie Zhou. Objects are Different: Flexible Monocular 3D Object
Detection. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3288–3297, Nashville, TN, USA, June 2021. IEEE. ISBN 978-1-66544-509-2. doi: 10.1109/
CVPR46437.2021.00330. URL https://ieeexplore.ieee.org/document/9578273/.

[155] Jakub Sochor, Adam Herout, and Jiri Havel. Boxcars: 3d boxes as cnn input for improved fine-
grained vehicle recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3006–3015, 2016.

[156] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

[157] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren. Distance-IoU Loss:
Faster and Better Learning for Bounding Box Regression. Proceedings of the AAAI Conference on

155

http://arxiv.org/abs/1909.01867
https://ieeexplore.ieee.org/document/8578473/
https://ojs.aaai.org/index.php/AAAI/article/view/4856
https://ojs.aaai.org/index.php/AAAI/article/view/4856
https://ieeexplore.ieee.org/document/9711219/
https://ieeexplore.ieee.org/document/9711219/
https://ojs.aaai.org/index.php/AAAI/article/view/20074
https://ojs.aaai.org/index.php/AAAI/article/view/20074
https://ieeexplore.ieee.org/document/9578273/
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf


Artificial Intelligence, 34(07):12993–13000, April 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i07.
6999. URL https://ojs.aaai.org/index.php/AAAI/article/view/6999. Number: 07.

[158] Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu, Rongguang Ye, Qinghua Hu, and Wangmeng
Zuo. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance
Segmentation. IEEE Transactions on Cybernetics, 52(8):8574–8586, August 2022. ISSN 2168-2275.
doi: 10.1109/TCYB.2021.3095305. Conference Name: IEEE Transactions on Cybernetics.

[159] Yu Zheng, Danyang Zhang, Sinan Xie, Jiwen Lu, and Jie Zhou. Rotation-robust intersection over
union for 3d object detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XX, pages 464–480. Springer, 2020.

[160] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI vision bench-
mark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 3354–3361,
Providence, RI, June 2012. IEEE. ISBN 978-1-4673-1228-8 978-1-4673-1226-4 978-1-4673-1227-1.
doi: 10.1109/CVPR.2012.6248074. URL http://ieeexplore.ieee.org/document/6248074/.

[161] Wenhan Luo, Junliang Xing, Anton Milan, Xiaoqin Zhang, Wei Liu, and Tae-Kyun Kim. Multiple
object tracking: A literature review. Artificial Intelligence, 293:103448, 2021.

[162] Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano, Roberto Tagliaferri, and
Francisco Herrera. Deep learning in video multi-object tracking: A survey. Neurocomputing, 381:
61–88, 2020.

[163] Litong Fan, Zhongli Wang, Baigen Cail, Chuanqi Tao, Zhiyi Zhang, Yinling Wang, Shanwen Li,
Fengtian Huang, Shuangfu Fu, and Feng Zhang. A survey on multiple object tracking algorithm. In
2016 IEEE International Conference on Information and Automation (ICIA), pages 1855–1862. IEEE,
2016.

[164] Jiahui Chen, Hao Sheng, Yang Zhang, and Zhang Xiong. Enhancing detection model for multiple hy-
pothesis tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 18–27, 2017.

[165] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M Rehg. Multiple hypothesis tracking revisited.
In Proceedings of the IEEE international conference on computer vision, pages 4696–4704, 2015.

[166] Erik Bochinski, Volker Eiselein, and Thomas Sikora. High-speed tracking-by-detection without using
image information. In 2017 14th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), pages 1–6. IEEE, 2017.

[167] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fairmot: On the fairness
of detection and re-identification in multiple object tracking. arXiv e-prints, pages arXiv–2004, 2020.

[168] Peng Chu, Jiang Wang, Quanzeng You, Haibin Ling, and Zicheng Liu. Transmot: Spatial-temporal
graph transformer for multiple object tracking. arXiv preprint arXiv:2104.00194, 2021.

[169] Ioannis Papakis, Abhijit Sarkar, and Anuj Karpatne. Gcnnmatch: Graph convolutional neural networks
for multi-object tracking via sinkhorn normalization. arXiv preprint arXiv:2010.00067, 2020.

[170] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang. Towards real-time multi-
object tracking. In European Conference on Computer Vision, pages 107–122. Springer, 2020.

[171] Zheng Zhang, Dazhi Cheng, Xizhou Zhu, Stephen Lin, and Jifeng Dai. Integrated object detection and
tracking with tracklet-conditioned detection. arXiv preprint arXiv:1811.11167, 2018.

[172] M Jaward, L Mihaylova, N Canagarajah, and D Bull. Multiple object tracking using particle filters. In
2006 IEEE Aerospace Conference, pages 8–pp. IEEE, 2006.

156

https://ojs.aaai.org/index.php/AAAI/article/view/6999
http://ieeexplore.ieee.org/document/6248074/


[173] Cheng Chang, Rashid Ansari, and Ashfaq Khokhar. Multiple object tracking with kernel particle filter.
In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
volume 1, pages 566–573. IEEE, 2005.

[174] Jerome Berclaz, Francois Fleuret, and Pascal Fua. Multiple object tracking using flow linear pro-
gramming. In 2009 Twelfth IEEE international workshop on performance evaluation of tracking and
surveillance, pages 1–8. IEEE, 2009.

[175] Peng Dai, Renliang Weng, Wongun Choi, Changshui Zhang, Zhangping He, and Wei Ding. Learning
a proposal classifier for multiple object tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2443–2452, 2021.

[176] Michael Engquist. A successive shortest path algorithm for the assignment problem. INFOR: Infor-
mation Systems and Operational Research, 20(4):370–384, 1982.

[177] William Brendel, Mohamed Amer, and Sinisa Todorovic. Multiobject tracking as maximum weight
independent set. In CVPR 2011, pages 1273–1280. IEEE, 2011.

[178] Bo Yang, Chang Huang, and Ram Nevatia. Learning affinities and dependencies for multi-target
tracking using a crf model. In CVPR 2011, pages 1233–1240. IEEE, 2011.

[179] Peng Chu and Haibin Ling. Famnet: Joint learning of feature, affinity and multi-dimensional assign-
ment for online multiple object tracking. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6172–6181, 2019.

[180] Bastian Leibe, Konrad Schindler, Nico Cornelis, and Luc Van Gool. Coupled object detection and
tracking from static cameras and moving vehicles. IEEE transactions on pattern analysis and machine
intelligence, 30(10):1683–1698, 2008.

[181] Anton Milan, Stefan Roth, and Konrad Schindler. Continuous energy minimization for multitarget
tracking. IEEE transactions on pattern analysis and machine intelligence, 36(1):58–72, 2013.

[182] Paula Craciun, Mathias Ortner, and Josiane Zerubia. Joint detection and tracking of moving objects
using spatio-temporal marked point processes. In 2015 IEEE Winter Conference on Applications of
Computer Vision, pages 177–184. IEEE, 2015.

[183] Anton Andriyenko and Konrad Schindler. Multi-target tracking by continuous energy minimization.
In CVPR 2011, pages 1265–1272. IEEE, 2011.

[184] Anton Milan, Konrad Schindler, and Stefan Roth. Detection-and trajectory-level exclusion in multiple
object tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3682–3689, 2013.
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