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CHAPTER 1 
 

INTRODUCTION 
 

Definition and characterization of DNA methylation 
 
DNA methylation (DNAme) is a chemical modification marked by the addition of a methyl 

group to the C-5 position of cytosine (5mC) within the CpG dinucleotide context. It is 

deposited by methylation writers, notably DNA methyltransferases (DNMTs). Methylation is 

stably maintained by DNMT1, a maintenance DNMT that preferentially methylates hemi-

methylated DNA templates during DNA replication, while de novo methylation is handled by 

DNMT3a and DNMT3b. DNAme is also a heritable epigenetic mark, where methylomes can 

be faithfully reproduced through mitosis and cell expansion. Because DNAme changes are 

associated with changes in gene expression in the absence of alterations to the underlying 

DNA sequence, the modification is considered “epigenetic". Methylation has been studied in 

numerous contexts including X-chromosome inactivation (1), imprinting (2, 3), and 

transgene silencing. Here, I focus on the role of DNAme at gene enhancers in reinforcing 

tissue and cell identity. 

 

Targeted mutagenesis of DNA methyltransferases—DNMT3a and DNMT3b—in mice results 

in embryonic lethality (4), demonstrating that methylation is essential for proper 

mammalian development. DNMT deficiency has also been shown to limit the ability of mouse 

embryonic stem cells to faithfully differentiate (5), indicating an important relationship 

between DNA methylation maintenance and cell specification. Additionally, in human 

embryonic stem cells, the deletion or inhibition of DNMT1 results in rapid cell death (6), 
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emphasizing the importance of DNA methylation maintenance in early cell development. 

CpGs may also be demethylated through a series of chemical transitions initialized by the ten 

eleven translocation (TET) proteins which function as 5-methylcytosine dioxygenases (7-9); 

this process involves a stepwise oxidation process that produces intermediates: 5-

hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Like the methylation 

writers, the TET protein family also shows importance to developmental fidelity. Studies 

have shown that TET2 gene deletions or loss-of-function mutations are common in 

numerous cancers, including myelodysplastic syndromes (~ 20%), acute myeloid leukemia 

(~ 12-25%), and chronic myelomonocytic leukemia (~ 20-40%) (10, 11). These studies 

emphasize the importance of DNA methylation mechanisms for driving proper cellular 

development.  

 

While most of the twenty-eight million CpG sites genome-wide are stably methylated (~ 80-

90% CpGs methylated) (12-14), scattered genomic regions of low methylation are enriched 

for transcriptional enhancers and promoters. CpG sites are generally depleted in mammalian 

genomes compared to other dinucleotides. This is due to the passive deamination of 5mC to 

thymine (15); however, areas of the genome that frequently lack methylation avoid this 

transition mutation and show lower rates of CpG depletion. Consequently, this leads to 

regions with higher frequencies of CpG dinucleotides than expected, called CpG islands, often 

coinciding with gene promoters and other regulatory elements (16, 17). 

 

While CpG island definitions vary, they describe regions that feature high CpG density as a 

result of largely being hypomethylated (18, 19).  CpG islands became a common methylation 



 3 

annotation of study in early methylation work (12, 20-22), leading to increased knowledge 

of subsets of DNA regions of low methylation, or hypomethylation. CpG islands are 

associated with increased transcriptional permissiveness. They feature a lower 

concentration of nucleosomes associated with increased chromatin accessibility (23), 

yielding a transcriptionally permissive state that allows transcription factors, co-activators, 

and other proteins to interact with the underlying DNA sequence. Roughly 40% of 

transcription start sites coincide with a CpG island (24), while about 60% of CpG islands are 

found at promoters. Some transcription factor motifs are also enriched for CpG 

dinucleotides, implying methylation may play a role in some transcription factor binding 

(25), and thus, may impact gene transcriptional regulation at regulatory regions. Studies 

have shown some transcription factors to be methyl-sensitive (e.g. JUND, CREB1, NRF1 and 

CTCF) (26, 27), where methylation prohibits binding of the underlying sequence; other 

transcription factors have been revealed to have higher affinity for methylated CpGs (e.g. 

MBD1 and MBD2) (28, 29), and still, others are indifferent to methylation (e.g. YY1) (30). 

CpG islands are also associated with histone modifications indicative of transcriptionally 

permissive chromatin (23, 31). While CpG islands became a prominent annotation for HMRs, 

we now understand they represent only a subset of all HMRs across the genome (32, 33). A 

high density of CpG dinucleotides is integral to the CpG island definition. Dynamically 

methylated enhancers generally do not feature the CpG density to qualify for the heuristic 

criteria required for CpG island delineation; consequently, CpG islands enrich for promoters, 

and enhancer regions are largely ignored by this genomic annotation. While CpG islands 

persisted as a major annotation in early studies to understand DNA hypomethylation, in this 
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thesis, we analyze non-coding HMRs to better understand DNA hypomethylation at 

enhancers.  

 

DNA methylomes between cell types are highly discriminatory of distinct cell states, marked 

by differences in cell-specific HMRs. While promoters are often stably hypomethylated, the 

most dynamically hypomethylated regions are distal from transcription start sites and 

enriched for active enhancers (14, 34-36). Differentially methylated regions are sufficient to 

distinguish cell types and recapitulate developmental relationships (13, 32, 33), indicating 

that methylation changes in the non-promoter context are associated with the gene 

regulatory events that reinforce and define cell identities. These observations also 

underscore the specificity of methylomes across cell types.  

 

Historical perspective on DNA methylation and gene expression  
 

DNAme has long been thought to modulate gene expression (37, 38), though the exact 

physical and temporal relationship between methylation and transcriptional permissiveness 

is poorly understood.  While early studies prioritized the methylation of promoters as a mark 

of transcriptional silencing, results from various groups were incongruent regarding the 

strict idea of methylation as a silencing epigenetic mark. Early methylation studies using 

endogenous -globin DNA suggested that DNAme was inhibitory to gene expression (39-41). 

Busslinger, et al. used an M13 (engineered to be hemimethylated) vector containing a -

globin gene transfected into mouse L-cells (a fibroblast cell line) to test the effects of 

methylation at different portions of a gene on transcription. Results showed that gene body 

methylation was permissive of transcription. However, methylation around the 5’ region of 
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the gene led to a disruption of -globin transcription, indicating the potential for promoter 

methylation to regulate gene expression. Another study using similar cloning techniques in 

mouse Ltk- cells found that unmethylated sequences introduced into a cell would integrate 

into the DNA in a DNase-I sensitive manner, indicative of open chromatin and a gene 

transcriptionally permissive state (42). In contrast, DNA sequences that were fully 

methylated lacked DNase-I sensitivity upon transfection, leading to the conjecture that 

methylated DNA induces inactive DNA structures.  

 

Around the same time, other researchers expanded beyond the mouse fibroblast L-cells to  

Ltk- cells (mononucleated myogenic cells that lack the leukocyte tyrosine kinase receptor) 

(43), which do not express endogenous -actin. Researchers transfected methylated -actin 

DNA into Ltk- cells as well as cells from the myogenic mouse LB line, which can be induced 

to express -actin. In this comparison, methylation was sufficient to silence the expression 

of -actin only in the fibroblasts. Interestingly, in the myogenic cells, methylation patterns 

of introduced genes included areas of demethylation that mimicked the pattern typically 

found in myoblasts in vivo. While the methylated promoter of -actin prevented expression 

in fibroblasts, the methylated promoter did not affect transcription in myogenic cells; this 

suggests the methylation status is interpreted differently in distinct cellular contexts. These 

observations also suggested that methylation is not exclusively inhibitory (43). 

 

 A subsequent study investigated methylation of the IgG -gene in pre-B cells, finding similar 

conclusions. The IgG -gene can be transcriptionally induced with administration of 

lipopolysaccharide (LPS), where activation occurs although methylation changes in the pre-
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B cells are absent over many generations (44). Thus, gene activation can be achieved 

independent of methylation changes. This suggested that methylation is not always, itself, 

inhibitory to expression and may otherwise function in a context-dependent manner with 

respect to transcriptional silencing.  

 

Work measuring transcription and methylation of pluripotency genes in embryonic stem cell 

differentiation time courses suggested that methylation stably silences associated genes 

(45). More recent work has benefited from whole-genome methylation profiling in 

conjunction with RNA-seq data across multiple cell types, revealing that promoter 

methylation is largely invariable regardless of gene transcriptional status (46-48). Whole-

genome bisulfite sequencing allowed for a deeper, genome-wide look at genome DNA 

methylation; results show that transcription is not strongly linked to promoter methylation 

as promoters generally feature low methylation across cell types regardless of 

transcriptional status (32, 34). It is important to note that subsets of promoters do undergo 

methylation associated with gene silencing during cell development. DNA methylation is 

associated with strong repression of parental alleles of imprinted genes (e.g. H19 and Igf2) 

(49). Also, the promoters for Oct4 and Nanog, quintessential transcription factors for 

pluripotency, have been observed to become methylated during cell differentiation (13). 

While subsets of promoters undergo developmental methylation associated with gene 

silencing, promoter methylation is a poor predictor of transcriptional activity. Meanwhile, 

the non-coding genome (outside of promoters) shows dynamic methylation changes, 

suggesting methylation at enhancers and other non-coding regulatory regions is more 

correlated with transcriptional status (Fig. 1).  
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Figure 1. DNA methylation and transcriptional control paradigms.  
(A) Diagram of the nucleic acid cytosine. The upper diagram shows a canonical cytosine. The 
lower graphic depicts a methylated cytosine; the additional methyl group is shown in red. 
(B) Diagram comparing the historical and modern perspective of the effect of 
enhancer/promoter methylation on transcriptional expression control. The historical 
perspective prioritized the methylation at promoters as a sign of transcriptional silencing. In 
comparison, the modern perspective prioritizes enhancer hypomethylation as an indicator 
of expression activity, as promoter hypomethylation is common regardless of transcriptional 
status. 

 

Nonetheless, early studies in DNA methylation suggested a highly correlative relationship 

between promoter methylation and gene expression. Early studies involving the 

measurement of methylation and transcriptional status of genes revealed that 

transcriptional activation could precede the demethylation of regulatory elements (50, 51). 

While these studies suggest that DNA methylation is not always prohibitive of transcription, 

the notion remained that gene activation involved loss of DNA methylation at some point in 

developmental time. However, the timing and coordination of these two events remain 

poorly understood for decades. Thus, there remains an uncertain distinction as to whether 

DNA methylation is instructive or reflective of gene regulation.  
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Cross-tissue DNA methylation patterns 
 
DNA methylation is highly conserved across species as well as tissues within a species (47), 

where methylation patterns are common among conserved sequences. Across the genome, 

methylomes are largely stable, as 85-90% of CpGs are constitutively methylated (13, 52, 53). 

The other variably methylated regions distinguish not only cell types but also lineages (14, 

35), indicating that methylation patterns along differentiation pathways are stable and 

specific. A study by Eckhardt, et al.  featured data from the Human Epigenome Project from 

diverse cell types including heart muscle, liver, skeletal muscle, sperm, fibroblasts, 

keratinocytes, melanocytes, and placenta (47). The sample collection also includes two very 

closely related hematopoietic blood cell types in CD4 lymphocytes and CD8 lymphocytes, 

which are both subtypes of T cells. The researchers assayed methylation at CpGs in 

chromosomes 6, 20, and 22 using targeted bisulfite sequencing in conjunction with ABI3730 

capillary sequencing and found regions that were uniquely hypomethylated in subsets of 

cells. For example, the study highlights CpG islands that are specifically hypomethylated in 

only the lymphocytes but not other cell types. Results show additional subsets that uniquely 

define fibroblasts, keratinocytes, and melanocytes, underscoring the lineage and cell 

specificity of methylation patterns. This also suggests that methylation changes may be 

established at developmental stages that are then maintained as cells specify into various 

differentiated cell types, marking distinct lineages.  

 
In another study comparing the methylomes of tissue- and cancer-specific CpG island shores, 

2 kb regions that flank CpG islands and feature lower CpG-density than CpG islands (19, 54), 

this subset of hypomethylated regions were capable of distinguishing three cell types: 
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induced pluripotent stem cells (iPSC), embryonic stem cells, and fibroblasts, emphasizing the 

specificity of the methylome along developmental timepoints (55). The study further 

identified 4,401 differentially methylated regions between iPSCs and fibroblasts; using 

unsupervised clustering, the methylation values at these regions across samples were 

sufficient to fully distinguish normal brain, spleen, and liver samples. Using the same 

methodology, the methylation status at these 4,401 differentially methylated regions also 

largely delineated colorectal cancer from matched normal colonic mucosa, further 

identifying not only different cell types but also healthy cell states. While this collection of 

DMRs is somewhat small, the results emphasize the specificity of subsets of variably 

methylated regions. These limited subsets of HMRs (e.g. CpG islands and small DMR subsets) 

provided insight into the functional characterization of DNA methylation, but also presented 

limitations. Because earlier methylation studies relied upon locus-specific techniques (e.g. 

PCR) to study specific hypomethylated regions, genomic regions of interest were often 

limited to promoters, given the popularity of CpG islands. However, now whole-genome 

techniques have provided insight into non-coding HMRs as technology and analytic 

approaches have been refined.  

 

As DNA methylation has been studied for decades, methodology for measuring CpG 

methylation has been diverse and improved over time, leading to advancements in both 

breadth and resolution. Early studies used a variety of methods to look at whole-genome 

levels of cytosine to methylcytosine, including a method involving hydrolyzation of the 

sample into nucleotides before employing chromatography to isolate fractions measured by 

relative UV absorbance (56, 57). Other assays relied on enzymatic digestion; briefly, by using 



 10 

combinations of methyl-sensitive (i.e. HpaI can cut at unmethylated sites) and methyl-

insensitive restriction enzymes (e.g. MspI) in conjunction with PCR, methylated and 

unmethylated fractions can be measured. The introduction of bisulfite conversion and 

sequencing allowed higher base pair resolution (58, 59). Bisulfite treatment of DNA results 

in the deamination of unmethylated cytosines to uracil, which is read as thymine after 

sequencing. Earlier methods utilizing Sanger sequencing or microarrays relied upon 

knowledge of a targeted region and allowed for locus-specific observations. The advent of 

next-generation sequencing provided an accessible method to assay the whole genome. This 

allows measurement of all CpG sites in a more unbiased manner. With the depth and 

resolution afforded by next-generation sequencing, we can better understand the genome-

wide methylation trends.  

 

Comparing whole-genome bisulfite sequencing data, the regions with the most dynamic 

methylation differences between cell types are found to be enriched in the non-coding 

genome (32). This is consistent with the idea that the dynamic epigenetic processes that 

control cell identity are controlled by the non-coding genome (60). Previous studies have 

highlighted the enrichment of active enhancers in non-coding HMRs (32, 34). Cell-specific 

HMRs show enrichment for enhancer-associated marks including histone modifications 

indicative of open chromatin (H3K27ac and H3K4me1), DNase I hypersensitivity, 

transcription factor ChIP-seq signal, and transcription factor motifs—all commonly utilized 

marks of active enhancers (Fig. 2).  Additionally, regions that bind transcription factors show 

reduced levels of methylation (60-62), supporting the idea that dynamic non-coding HMRs 

are enriched in enhancers that impact cell identity.  
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Figure 2. Enhancer marks and annotations. 
(A) Diagram of multiple epigenetic layers. Chromatin accessibility is largely influenced by 
and identifiable through numerous chemical histone modification. Transcription factors 
physically interact with the underlying DNA sequence and other co-factors to promote 
promoter-enhancer interactions. DNA methylation is the default status of the genome. 
Continuous regions of low methylation are indicative of promoters or non-coding regulatory 
elements. (B) Chromatin immunoprecipitation sequencing (ChIP-seq) can be used to identify 
histone modifications or transcription factor binding. Exceptional levels of ChIP-seq values 
for histone modifications (often H3K27ac) or specific transcription factors can be used to 
define super-enhancers (top). The bimodal nature of DNA methylation reveals continuous 
regions of low methylated CpG sites that define hypomethylated regions with well-defined 
boundaries. 
 

 

 

Multi-unit enhancer annotations  
 
Early locus-specific studies identified regulatory segments of the genome that could control 

transcription of a target gene. These regions, labeled locus control regions (LCRs), were first 

described in the -globin locus. While a 5 kb segment of the -globin gene was transcribed 

in erythroleukemia cell lines, it was not observed to promote strong or detectable expression 
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in transgenic mice (63, 64). It was observed that the deletion of a region upstream of the -

globin gene was common in -thalassemia cases (65-67), where the absence of this regions 

resulted in a lack of chromatin accessibility at the locus. The addition of the LCR, located 

between 6 and 22 kb upstream of the -globin gene, yielded expression of the -globin gene 

segment at near-endogenous levels, suggesting that the LCR, a genomic region distal from 

the actual gene, was necessary for proper gene expression (68). The -globin LCR consists of 

five distinct DNase-I hypersensitivity sites (69). The first four are present in only erythroid 

cells, while the fifth is formed in multiple other lineages. Targeted analysis using fragments 

of the LCR identified context-dependent enhancer activity from DNase hypersensitivity sites 

(DHSs) 2, 3, and 4. DHSs represent regions of open chromatin, which are measured by levels 

of DNase digestion, indicative of chromatin accessibility. The activity of the LCR is erythroid 

cell type-specific, highlighting the ability for individual units of enhancer clusters to behave 

in an independent and context-specific manner. 

 

Similarly, investigation of the cis-regulatory landscape surrounding pancreatic islet genes 

highlighted the role of clustered enhancers in tissue-specific gene regulation (70). One 

thousand pancreatic islet-specific genes and ubiquitously transcribed genes were compared 

with transcription factor ChIP-seq and chromatin accessibility data. Most genes with islet-

specific gene expression showed a high surrounding density of chromatin accessibility sites, 

with an average of three clustered enhancers compared to a single enhancer around 

ubiquitously expressed genes. These spatially related enhancers were also enriched for Type 

2 Diabetes risk-associated variants, highlighting the functional roles of the clustered 
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enhancer regions in tissue-specific biology. This context-specific example highlights the 

relationship between tissue-specific gene regulation and clustered regulatory elements.  

 
Super-enhancers are defined as regions of the genome that show exceptionally higher levels 

of ChIP-seq signal, generally measuring either transcription factor binding (e.g. Med1, Klf4, 

or Esrrb) or H3K27ac, a mark of accessible chromatin (71). More specifically, they are 

identified by ranking all ChIP-seq regions by total background-subtracted ChIP-seq signal on 

the x-axis and plotting the total background-subtracted ChIP-seq signal (reads per million 

per bp) on the y-axis; the method then identifies the  point on the x-axis where a tangent line 

to the resultant curve has a slope of 1, where any region to the right of that point (higher 

ChIP-seq signal) is defined as a super-enhancer.  The process of defining super-enhancers 

also includes a stitching step before ranking that involves combining regions within 12.5 kb 

end-to-end into a continuous region. While not all super-enhancers consist of multiple 

individual units, they are commonly referred to as collections of clustered enhancers (56% 

consist of multiple units) (72). They are enriched for transcription factor motifs and are 

physically near genes that regulate developmental specification and reinforce cell identity. 

Super-enhancers are also enriched for disease-associated variants and eQTLs, suggesting 

that clustered enhancers are significant for linking genome to phenome. We find that 

clustered HMRs are especially enriched for variants linked to cell-specific phenotypes.   

 

Stretch enhancers, another annotation that includes clustered enhancer regions, are 

genomic regions defined by ChromHMM enhancers states (regions of the genome that are 

labeled as likely enhancers by a Hidden Markov model trained to recognize genome states 

based on ChIP-seq data targeting histone modifications [e.g. H3K27ac and H3K4me1] and 
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CTCF) are continuous and have a length that exceeds 3,000 base pairs. Like super-enhancers, 

they are also enriched for specific transcription factors motifs and GWAS SNPs (73, 74).  

 

While numerous chromatin-based methodologies have revealed clustered enhancer loci, 

their identification varies depending on the ChIP-seq target used to find them. In recent work 

in our lab, we have observed that HMRs also cluster together more often than expected by 

random chance. HMRs can be linked together end-to-end (maximum inter-HMR distance of 

6 kb) between individual HMRs to compose clusters of HMRs. We find HMR clusters to be a 

larger genomic annotation with more regions that partially encompasses other clustered 

enhancer annotations. We compared HMRs with super-enhancers, finding a small congruent 

subset; however, the majority of clustered HMRs do not overlap with SEs—currently a 

prominent annotation used to describe clustered enhancers. Additionally, both our data and 

that of others reveals that HMR clusters exist outside of open chromatin; this suggests that 

clustered HMRs are not only more permissive than clustered enhancers defined by 

chromatin accessibility, but may record genome-phenome information not retained by 

chromatin accessibility marks (e.g. DNase-seq or ChIP-seq data for histone modifications). 

 

Locus-specific studies have revealed more complex dynamics within clusters of enhancers. 

A study of the STAT5-driven WAP enhancer in mammary tissue showed an interplay 

between three individual enhancers within a super-enhancer (75). Targeted mutations in 

transcription factor binding sites within each individual element showed that distinct 

enhancers had differential effects with regards to transcriptional deficiencies. The inhibition 

of individual or combinations of enhancers revealed differential impact on transcriptional 
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regulation, indicating that not all enhancers in a cluster are equal in a cell-specific context. 

Furthermore, the same paper showed that while all super-enhancers in the study were 

defined by similar STAT5 binding, only half were associated with highly expressed genes 

associated with the induction of STAT5 during pregnancy. In fact, the authors report an 

associated transcriptional range that spans over four magnitudes, suggesting expression at 

associated genes is widely variable and can include low expression. This suggests that all 

super-enhancers are not characterized by the classical assumption of strong transcriptional 

effects, and that clustering enhancers may have other characteristics that extend beyond the 

super-enhancer annotation. Super-enhancers have a specific definition reliant upon 

“exceptional” levels of ChIP-seq signal, where not all super-enhancers comprise individual 

component elements. Rather, we find that clustering is more prevalent in methylome data 

than in super-enhancer defined regulatory elements (76). 

 

Another locus-specific study in mouse used a combination of p300 ChIP-seq binding data 

and a reporter assay to identify a grouping of three enhancers associated with Sox2 (77), 

which is a key transcription factor attributed with maintaining pluripotency. Using 

heterozygous deletion of individual enhancers, the study showed differential implications 

for transcription of Sox2. Deletion of some enhancers reportedly did not affect expression 

levels, while deletion of others significantly reduced mRNA and protein levels of Sox2. This 

reinforces the idea that the individual elements within a cluster do not share the same 

enhancer functions in a given cellular context. The deletion of these elements resulted in 

aberrations to cell colony morphology, gene expression, as well as the ability to differentiate 

into embryoid bodies, highlighting the potential significance of enhancer clusters to faithful 
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differentiation and proper cell identity. Super-enhancers are defined by ChIP-seq signal of 

specific enhancer-associated marks, including histone modifications and transcription factor 

binding. However, DNA methylation was largely ignored as an enhancer-associated 

epigenetic mark for the study of clustering enhancers. Here, we have revealed that HMR 

clusters exist outside of chromatin accessible regions and describe a previously 

underappreciated clustered enhancer mark.  

 

Using electronic health records to study HMR function  
 
Electronic health records (EHRs) have been adopted as a strategy to obtain large numbers 

of cases and controls for diseases and phenotypes of research interest. EHRs contain medical 

data on patients in a hospital system over time and may be paired with genotyping data 

providing a rich resource for clinical epidemiological and genetic studies. Records may 

include patient billing codes, procedural codes, medication history, clinical notes, and other 

demographics. The availability of large quantities of disease cases accompanied by genotypic 

data allows for the testing of statistical associations between genetic variants and 

phenotypes. BioVU, the biobank effort at Vanderbilt University, provides the ability to test 

for genetic associations with both diseases in a phenome-wide association study (PheWAS) 

as well as clinical lab values in a lab-wide association study (LabWAS) through logistic and 

linear regression (78-80). 

 

Biobanks have started to proliferate across the world, capturing patient populations with 

diverse multi-ancestral backgrounds and environmental exposures. The sample sizes 

provided by modern, continuously expanding biobanks provides the opportunity to look for 
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statistical trends between genetics and phenotypes. Researchers can statistically associate 

the presence of an alternative allele at a SNP with clinical lab values or disease traits. Major 

biobank efforts include both academic and private institutions, including FinnGen, Biobank 

Japan, UCLA Precision Health Biobank, Michigan Genomics Initiative, and BioVU (81). Sample 

sizes at individual sites (e.g. ~120k in BioVU and ~500k in the UK Biobank) have provided 

the ability to statistically test for variant-trait associations in well-powered phenotypes. 

Differences in ascertainment strategies (i.e. some of these efforts involve participant 

acquisition through population-based health programs while others are ascertained from a 

health center context), sequencing methods, and phenotypes represented in the EHRs make 

meta analyses and comparisons across biobanks more difficult. Nonetheless, with efforts 

such as the Global Biobank meta-analysis Initiative to standardize methods across global 

sites with the goal of combining sample sizes across broad backgrounds, biobanks offer the 

promise of revealing novel genetic and trait associations. Overall, biobanks have contributed 

to research for genetic associations with disease phenotypes, providing potentially 

actionable targets for genetic treatments. 

 

Genome-wide association studies (GWAS), which utilize large amounts of individual 

genotypic data with EHRs to look for SNPs of interest in association with a clinical trait, have 

revealed that most disease-associated genetic variation is in the non-coding genome (82-84). 

GWAS variants are also enriched for expression quantitative loci (eQTLs), which are 

sequence variants that are statistically associated with altered expression of a gene (85, 86). 

This suggests that the most common disease-associated sequence variant does not affect the 

coding region, and putative protein function, but rather affects the expression of genes 
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through regulatory elements. As HMRs are enriched for non-coding enhancers (32), these 

observations indicate that HMRs feature trait-associated genetic variation (60). The use of 

GWAS SNPs may provide biological context for interpreting the function of non-coding 

HMRs. We find that HMRs established in developmentally distinct contexts tag enhancers 

relevant to the gene transcription regulatory needs at distinct developmental stages. This 

provides a framework for better understanding the role of DNA methylation as well as 

providing context for genetic variants within HMRs. However, it remains difficult to assign 

the exact role and potential gene targets of individual HMRs. Strategies to determine 

enhancer-gene relationships commonly rely on nearest neighbor approaches, where about 

half of gene assignments are incorrect (87); to accurately ascertain the proper gene target(s) 

would require time-consuming mechanistic studies with very low throughput. By aligning 

genetic variant-trait data with methylation data, we can link an HMR more directly to a 

biological function by utilizing directly overlapping sequence variants.  

 

Currently, we can infer the function of non-coding putative enhancers by associating the 

regions to nearby genes, thought to be potential regulatory targets. We can then use 

knowledge of the genes to infer the function and spatiotemporal specificity of their 

regulatory elements with gene ontology; this strategy identifies enrichments of ontological 

terms that have been assigned to groups of genes by similar biological function. However, 

studies have shown that utilization of nearest neighbor methodologies for gene association 

are at best nearly 50% incorrect. Nonetheless, without the use of high-resolution chromatin 

capture techniques to measure the 3-dimensional relationship of the genome, nearest 

neighbor approaches tend to be the most reliable methods (87). This highlights the difficulty 
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in using traditional gene assignment methods. By comparison, we can identify genetic 

sequence variants directly overlapping HMRs that were directly associated with a disease 

state, thus linking the function more directly to the HMR sequence.   

 

Stratified LD score regression (S-LDSC) is another method to associate sequence variants 

with clinical diseases and lab values (88, 89). The methodology attempts to quantify the 

enrichment of SNP-based additive genetic heritability—or the heritability captured by 

underlying genetic variants as opposed to environmental influences. The “partitioned” 

heritability method aims to quantify the amount of heritability captured by a subset of the 

genome (e.g. super-enhancers, open chromatin regions, promoters, or HMRs), normalized 

by the amount of SNPs included within that annotation ([% h2]/[% SNPs]) (89). S-LDSC 

estimates heritability based on the concept that SNPs with high linkage disequilibrium (LD) 

to other SNPs are more likely to capture a causal genetic variant. For one SNP, the statistic 

from GWAS summary statistics should capture the total effect of SNPs in LD with that 

particular SNP. Thus, LD score (a measure of total LD for a SNP) is proportional to the X2 

statistic. If an annotation is enriched for heritability, then that category should contribute 

more to the X2 statistic than another category with lower enrichment for heritability. The 

method attempts to find annotations where SNPs with high LD to that category also have 

higher X2 statistics than SNPs with lower LD to that category.  The model estimates effect 

sizes of SNPs linearly on the input annotation categories—in other words, the strategy asks 

if any category contributes more to the genetic heritability than other annotations.  
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S-LDSC is an attractive approach as it uses GWAS summary statistics to estimate LD scores 

within samples; this is much more feasible and computationally tractable than computing 

heritability estimates from individual patient-level data and genotypes. As summary 

statistics are widely available across various diseases and lab values, we are enabled to 

examine partitioned heritability estimates from diverse phenotypes of importance to the cell 

types we include in our analyses. In our own work, we have employed S-LDSC to assess 

partitioned heritability among our HMR groups defined by developmental specificity (e.g. 

within the hematopoietic lineage) or clustering.  

 

Scope of Thesis 
 

In this dissertation, I present my primary project to investigate the functional role of HMR 

patterns in defining cell histories. In Chapter II, I present the findings of my research focused 

on the patterns that arise from comparing whole-genome methylation profiling across 

diverse and highly related cell lineages. While previous studies have focused on limited 

pairwise differential methylation comparisons and locus-specific changes, we utilize whole-

genome bisulfite sequencing to investigate enhancer HMR patterns both within and between 

cell types.  By analyzing the correspondence of non-coding HMRs across diverse human cell 

types and tissues, we identify a hierarchical conservation of HMRs, enriched for stage-

relevant enhancers, along cell differentiation trajectories. HMRs established at distinct 

developmental contexts capture scaling genetic heritability of cell-relevant complex traits, 

underling the power of HMR patterns to inform the function of the underlying DNA sequence.  
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We expand on these observations to show that HMRs accumulated through cell development 

are established near existing HMRs; this leads to the formation of HMR clusters. We show 

that HMR clusters are established near active genes important for cell identity, enrich for 

regulatory elements, and capture a disproportionate amount of partitioned genetic 

heritability relative to their unclustered counterparts. By comparing against super-

enhancers defined by ChIP-seq signal for histone modifications or transcription factor 

binding, we find HMR clusters to be more pervasive, indicating that clustered enhancers may 

be underappreciated and suggesting a unique epigenetic role for DNA methylation. 

Collectively, these data reveal how DNA hypomethylation reflects previous and current 

genome function, providing genetically distinct epigenetic records of cell developmental 

states.  
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CHAPTER II  

CROSS-TISSUE PATTERNS OF DNA HYPOMETHYLATION REVEAL GENETICALLY 
DISTINCT HISTORIES OF CELL DEVELOPMENT 

 

BACKGROUND 
 
Among the twenty-eight million CpG dinucleotides in the human genome, the majority (80-85%) of 

cytosines undergo constant DNA methylation (DNAme) in most cellular contexts (52, 53, 90-92). 

However, a subset of sites forms discrete regions containing stretches of CpGs that are not covalently 

modified by methylation and are thus considered “hypomethylated”. The majority of these 

hypomethylated regions (HMRs) are non-coding and coincide with putative gene regulatory 

elements including promoters and enhancers (14, 34-36, 53).  

DNAme has long been tied to transcriptional control; however, apart from a very small subset of 

developmentally regulated genes, promoters are stably hypomethylated and largely invariant across 

cell types, regardless of gene transcriptional status (47, 93-95). Thus, promoter HMRs poorly predict 

transcriptional programs that ultimately determine cellular phenotypes. By contrast, enhancer HMRs 

vary considerably between cell types, which results from their context-dependent demethylation 

(32, 33, 57, 96-101). While enhancer HMRs are more predictive of nearby gene activity than 

promoter HMRs (34), how these HMRs are established or maintained and their relationship to cell 

identity is not well understood. 

We previously showed that non-coding HMRs represent an exclusive subset of chromatin accessible 

sites (34). More recently, we showed that, while HMRs correlate with chromatin accessibility and 

other indicators of permissive chromatin, the temporal dynamics of HMR formation is distinct from 

chromatin remodeling changes (99, 102). Importantly, HMRs can persist long after chromatin 

remodeling changes during cell fate transitions in terminally differentiating hematopoietic cells (99, 

102). Similarly, in the mammary gland, gene regulatory changes during the first pregnancy result in 
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demethylation of pregnancy-responsive gene enhancers. The maintenance of these enhancer HMRs 

is long-lasting, even after pregnancy signals dissipate (103). These studies indicate that HMRs 

capture both active and previously active gene regulatory elements in a manner not reflected by 

other common enhancer-associated chromatin states.  

Despite these observations, very few studies have considered the combinatorial and temporal 

significance of HMR patterns in a genome-wide manner across developmentally diverse datasets. For 

example, “super-enhancers”, a class of enhancers that are defined by high levels of histone H3 lysine 

27 acetylation (H3K27ac) and Mediator binding, are often comprised of multiple enhancers units (71, 

104). Both selective and persistent hypomethylation of individual enhancer units within super-

enhancers have been observed in mouse embryonic stem cells (ESCs) during exit from naïve 

pluripotency (62, 105). These combinations of HMR patterns suggest that coordinated 

hypomethylation of enhancers through cell fate transitions serves to uphold specific cellular states. 

Altogether, this argues that HMRs are established and maintained as a memory of gene regulatory 

activity; thus, consideration of how HMRs are shared within and between cell types may inform 

critical epigenetic patterns that secure cellular phenotypes. However, this hypothesis and its link to 

phenotypic outcomes remains to be tested across diverse tissues and developmental timepoints in a 

genome-wide manner. 

Here, we performed a comparative analysis of whole-genome methylation data from diverse tissues 

representing distinct organ systems and developmental timepoints. Unlike previous studies that 

emphasize pairwise differential methylation or locus-specific changes during limited differentiation 

time courses, we comprehensively characterize HMR relationships both within and between cell 

types to understand the functional significance of combinatorial HMR patterns. By analyzing 

methylomes across diverse cell types, both distant and related, we show that hierarchical 

conservation of HMRs across tissues can identify enhancer HMRs established in developmentally 
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distinct contexts. We further demonstrate that HMRs established at distinct timepoints partition the 

genome in a way that is highly predictive of complex trait heritability, which highlights the 

significance of these HMR patterns to the underlying genome sequence. Ultimately, these data 

provide novel insights into how DNA hypo-methylation informs genome function by providing a map 

that traces the developmental histories underlying cellular states.  

RESULTS 
 

Shared HMR patterns among diverse cell types reveal common functional and 
developmental histories.  
 
Studies aiming to understand the relationship between DNA methylation patterns and phenotypic 

outcomes have focused largely on individual differentially methylated regions without consideration 

of combinatorial changes that drive phenotypes. To understand the functional significance of 

complex HMR patterns, we determined the correspondence of HMRs across diverse human cell types 

and developmental timepoints. We hypothesized that shared HMR patterns among diverse cell types 

could reveal common functional and developmental histories. To illustrate this idea, genome browser 

tracks of methylation data are displayed for datasets representing diverse lineages and 

developmental timepoints at a B cell enhancer cluster upstream of the CD27 gene (Fig 3A). This locus 

contains a group of HMRs with varying levels of HMR specificity that are surrounded by genes 

involved in lymphoid development and signaling including CD27, LTBR, and TAPBPL. A comparison 

of HMRs reveals different levels of both cell-type and lineage specificity, including HMRs conserved 

in all samples (developmentally constitutive); HMRs shared exclusively among lineage-related 

samples (e.g., hematopoietic cells); and HMRs present only in B cells. The lymphocyte-specific 

expression of CD27 highlights a potentially important role for the combination of shared and cell 

specific HMRs observed at this locus.  
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Figure 3. Levels of HMR specificity recapitulate developmental relationships through 
accumulation and maintenance. 
(A) Multiple alignment of WGBS methylation and HMR tracks across 10 cell types: H1 ESC, fetal spinal 
cord, fetal heart, adrenal gland, liver, hematopoietic stem and progenitor cells, neutrophil, 
macrophage, B cell, and T cell. Methylation tracks are represented by orange vertical bars showing 
methylation value per CpG site. Methylation fraction is calculated as the fraction of reads containing 
a methyl-C over the total number reads covering a CpG site. HMR calls are shown by dark blue 
horizontal bars. Developmentally constitutive, lineage-specific, and cell specific HMRs are 
highlighted by blue and green dotted bars, respectively. The plotgardener R package was used to 
generate the genome browser snapshot (106). (B) Heatmap of average methylation per HMR across 
cell types. Non-coding HMRs were k-means clustered based on their average CpG methylation values 
across 10 cell types represented in (A). A k-means of 10, assessed by the elbow method, was used to 
cluster HMRs into groups that are consistent with the biological relationships of their cell types. 
Groups are manually labeled to reflect their biological relationships. (C) The transcription factor (TF) 
motif enrichment of each k-means group reflects biological relationships captured in (B). 
Representative TFs were selected from the top significant hits ranked by natural log adjusted p-value 
for each k-means group. The top ranked TFs are shown unless the top TF(s) for that group were 
redundant; the second top ranked TF is shown for the group, “Myeloid + HSPC,” and the third ranked 
TF is shown for the group, “Differentiated.” Fold enrichment values are normalized from 0 to 1 across 
TFs. The background comparison file comprises HMRs across all represented cell types. (D) Bar 
graph of the total number HMRs for each cell type, arranged by developmental progression. (E) Bar 
graph measuring the presence of HMRs established in either H1 ESCs (top; green) or HSPCs (bottom; 
grey) in developmentally progressive cell types. The software Bedtools intersect was used to 
determine overlap between cell type HMR datasets using default settings (107). Overlap was defined 
as a 1bp minimum. 
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To investigate the extent to which these HMR patterns can be observed globally, we determined a set 

of high-confidence HMRs using publicly available whole genome bisulfite sequencing (WGBS) data 

from ten different cell types and tissues, including embryonic stem cells (H1 ESCs), hematopoietic 

stem & progenitor cells (HSPCs), fetal heart, fetal spinal cord, liver, adrenal gland, macrophages, 

neutrophils, T cells, and B cells (see Methods). As the resolution of HMR specificity is contingent on 

the quantity and interrelatedness of cell types included in the analysis, we maximized comparative 

potential by including datasets representing a diversity of organ systems and developmental stages.  

HMRs were determined for each dataset using MethPipe (108, 109), which employs a computational 

model originally described in Molaro et al. 2011 (33) to detect adjacent clustering of unmethylated 

CpG sites in the genome. Specifically, a 2-state hidden Markov model (HMM) with Beta-Binomial 

emission distributions allowed high and low methylation states to be trained separately on each 

individual WGBS dataset (108, 109). This modeling approach is robust to sequence coverage 

differences both within and between WGBS datasets. This is important given that sequence coverage 

is not uniformly distributed across the genome. Therefore, we required a minimum mean sequence 

read coverage of 10x at symmetric CpG sites for any HMR dataset to be included in our analysis. Of 

the ten datasets included, eight achieve CpG read coverage >25x, while the B and neutrophil cell 

datasets reach nearly 12x (Table 1) (108). This resulted in a total set of 126,104 unique non-coding 

HMRs with an average length of ~866 bp (Fig 4). Those HMRs spanning transcriptional start sites 

(TSS; -2000/+1000 bp) and exons were excluded from the analysis in order to focus on non-coding 

HMRs harboring putative enhancers (Table 2). By excluding the substantial number of constitutive 

HMRs overlapping gene promoters, we achieve better resolution to detect non-promoter HMR 

patterns that contribute to cellular states. 
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Figure 4. HMR lengths by cell type. 
Density plot of HMR lengths (in bp) by cell type. The x-axis of the plot is visually limited to the range 
of 0 to 5000 bp for visibility.  

 

 

Table 1. Table of coverage values for WGBS datasets per cell type. 

Cell type Coverage Download link 

H1 ESC 25.933 
http://smithdata.usc.edu/methbase/data/Lister-ESC-
2009/Human_H1ESC/tracks_hg19/Human_H1ESC.hmr.bb 

Fetal heart 37.134 
http://smithdata.usc.edu/methbase/data/Roadmap-Human-
2015/Human_Fetal-Heart/tracks_hg19/Human_Fetal-Heart.hmr.bb 

Fetal spinal 
cord 

33.623 
http://smithdata.usc.edu/methbase/data/Roadmap-Human-
2015/Human_Fetal-Spinal-Cord/tracks_hg19/Human_Fetal-Spinal-
Cord.hmr.bb 

Adrenal 71.558 
http://smithdata.usc.edu/methbase/data/Roadmap-Human-
2015/Human_Adrenal-gland/tracks_hg19/Human_Adrenal-
gland.hmr.bb 

Liver 49.478 
http://smithdata.usc.edu/methbase/data/Roadmap-Human-
2015/Human_Liver/tracks_hg19/Human_Liver.hmr.bb 

HSPC 37.562 
http://smithdata.usc.edu/methbase/data/Roadmap-Human-
2015/Human_HSC/tracks_hg19/Human_HSC.hmr.bb 

Macrophage 36.130 
http://smithdata.usc.edu/methbase/data/Roadmap-Human-
2015/Human_Macrophage/tracks_hg19/Human_Macrophage.hmr.bb 
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Neutrophil 11.602 http://smithdata.usc.edu/methbase/data/Hodges-Human-
2011/Human_BCell/tracks_hg19/Human_Neut.hmr.bb 

B cell 11.855 
http://smithdata.usc.edu/methbase/data/Hodges-Human-
2011/Human_BCell/tracks_hg19/Human_BCell.hmr.bb 

T cell 34.106 
http://smithdata.usc.edu/methbase/data/Roadmap-Human-
2015/Human_Tcell/tracks_hg19/Human_Tcell.hmr.bb 

 

Table 2. Number of HMRs after preliminary filters. 

 # HMRs # HMRs # HMRs 

 Total Raw 
Post-50 bp 
filter Post-50 bp filter 

     Post RefSeq TSS/Exon filter 

H1 ESC 36359 35965 18235 

Fetal Spinal 65130 65105 44390 

Fetal Heart 64186 64122 43473 
Adrenal 
gland 56655 56549 36610 

Liver 58652 58559 38132 

HSPC 67223 67069 46056 

Macrophage 77058 76898 54331 

Neutrophil 72120 71731 49103 

T cell 51640 51539 32366 

B cell  54998 54792 34070 
 

 

Hierarchical clustering applied to these datasets was sufficient to recapitulate both related and 

distant cell type relationships, demonstrating the quality and specificity of HMR calls (Fig 5). Next, 

we utilized k-means clustering to group HMR methylation levels across the 10 different cell types and 

tissues in an unsupervised manner. We used the elbow method to determine an optimal number of 

k-means clusters (n=10, Fig 6). 
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Figure 5. Hierarchical clustering of HMRs by average methylation per cell type. 
Dendrogram of average CpG methylation across HMRs per cell type. The input matrix used for the k-
means clustering heatmap in Fig 3 was used for input to the R program, ggdendro. Distance was 
measured with the “euclidean” option, and hierarchical clustering was performed with the ward.D2 
method.  
 
 

 

 

Figure 6. Dotplot of elbow method to determine appropriate number of k-means for 
methylation heatmap. 
Figure displays within sum of squares estimates for clusters at each value of k-means group amount 
from 1 to 2. Estimates are derived from the kmeans() function in R.  
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The resultant heatmap revealed groups of HMRs highly stratified by both group function and 

developmental stage (Fig 3B). We manually classified each k-means group according to cell types 

displaying average HMR methylation ≤50% for each group. For example, in the “Hematopoietic” HMR 

group, blood cells uniquely display low methylation levels, whereas the “Early Developmental” HMR 

group is dominated by H1 ESCs. Likewise, a group of HMRs is specific to the “Fetal” developmental 

state compared to stem and adult cells. Using this analysis, we achieve remarkable resolution to 

distinguish HMRs that are unique between highly related cell types such as macrophage and 

neutrophil cells; further, we identify a more specific group of exclusive T and B cell HMRs.  

Since transcription factors (TFs) govern the functional progression and specialization of cell types, 

we performed TF motif enrichment analysis to understand the gene regulatory significance of each 

k-means group. Top motifs stratify strongly by k-means group (Fig 3C). Furthermore, representative 
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TFs from top results show k-means group-specific enrichment of canonical TFs indicative of their 

respective cell types. For example, the ubiquitous CTCF is enriched in the All group (110); 

pluripotency factors OCT4-Sox2-Nanog are primarily in the Early Developmental k-means group 

(111); CEBP, a factor important for myeloid development, is enriched exclusively in macrophages 

and neutrophils (myeloid cells) (112); and early B cell factor EBF2 is in the highly specific B cell group 

(113). Similarly, the retinoic acid receptor alpha (RARa) motif is highly enriched exclusively in the 

liver/adrenal-specific Endocrine group. The enrichment of cell specific transcription factors in cell 

specific HMRs confirmed expectations of our HMR group annotation strategy and highlights the 

ability to observe shared HMR patterns that reflect not only subsets of cell types but also 

developmental periods. 

Given the specificity of the TF enrichment analysis supporting cell- and lineage-specific functions, we 

considered whether associated genes displayed similar biological specificity. We used GREAT 

ontology enrichment analysis to analyze sets of genes neighboring HMR groups defined by k-means 

clusters shown in Fig 3B (114). We show enrichment of distinct biological processes representative 

of the cell type and developmental stage associated with HMR groups (Fig 7). Interestingly, the least 

differentiated HMR group of Early development enriched for early morphogenic specification 

ontologies, while the intermediate HMR group defined by sharing between the blood cell types and 

stem and progenitor cells enriches for blood-related signaling ontologies. Additionally, the myeloid-

specific enrichments show myeloid lineage specificity, whereas B cell-specific ontologies are 

enriched in the B cell group; this highlights the ability of HMRs to distinguish not only disparate 

lineages and developmental stages, but also highly related cell types. Together these data show that 

HMRs alone can recapitulate functional relationships between cell types. Furthermore, by comparing 

HMRs within and across lineages, we discovered that levels of HMR specificity can reflect deep 

developmental roots of gene regulation, capturing time point-specific branchpoints of development 

(Fig 3 and 5). For example, the hematopoietic k-means cluster contains a group of HMRs that are 
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shared between stem and progenitor cells as well as derived cell types (B cell, T cell, neutrophil, and 

macrophage), but not others. This data suggests that HMRs established at specific, early 

developmental timepoints are maintained in subsequent cellular states. We explore this in further 

detail below. 

Figure 7. Bargraph of GREAT gene ontology results by methylation heatmap k-means 
cluster. 
GREAT gene ontology enrichments are shown for cluster groups from the heatmap in Figure 3B 
(114). Results from the top 3 by hypergeometric FDR q-values are displayed. The x-axis shows the 
hypergeometric q-values. The cluster groups shown include (A) “Early developmental,” (B) “Fetal,” 
(C) “Liver,” (D) “Myeloid,” (E) “T cell-specific,” (F) “B cell-specific,” (G) “All,” (H) “Hematopoietic,” and 
(I) “Myeloid  + HSPC.” 

 

 

HMRs accumulate and persist through subsequent developmental transitions. 

Terminally differentiated cells exhibit between ~2-3.5 times the number of non-coding HMRs 

compared to embryonic stem cells (Fig 3D). While a minor subset of H1 ESC HMRs are cell type-
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specific, most H1 ESC HMRs are highly shared across the cell types analyzed (Fig 3B, 14,223 merged 

HMRs that are shared among “All” cell types; of 18,235 H1 ESC non-coding HMRs, 2,616 are cell 

specific while 15,619 are shared with at least one other cell type, a 5.97-fold difference). Our 

comparative analysis further reveals specific HMR groups defined by developmental stage (fetal vs. 

adult, differentiated vs. undifferentiated), lineage, and cell type (Fig 3B). These data suggest a model 

whereby H1 ESCs supply a base HMR set to which additional HMRs are added at distinct lineage 

commitments through cell development. This is important because it suggests that a developmental 

hierarchy exists among HMRs and that HMRs accumulate as cells differentiate.  

To determine whether progressive HMR establishment can be traced in developmentally derived cell 

types, we used pluripotent H1 ESCs, multipotent HSPCs, and terminally differentiated myeloid 

(macrophages) and lymphoid (B cells) lineage cells to construct a pseudo-time course (Fig 3D). In 

general, we observe that non-coding HMRs increase in number with increasing cell maturity. An 

increase of total HMRs could be explained by 1) a simple accumulation of additional HMRs, or 2) a 

net increase with high turnover of HMRs. To differentiate between these two modes of HMR 

expansion, we measured HMR overlap between either embryonic stem cells or hematopoietic stem 

cells and mature hematopoietic cell types. Of 18,235 HMRs observed in H1 ESCs, 11,959 (65.58%) 

were represented by HMRs in the total multipotent HSPC dataset. Of these 11,959 HMRs that were 

observed in both H1 ESCs and HSPCs, 11,310 (62.02%) and 10,285 (56.40%) were represented by 

HMRs in the macrophage and B cell datasets, respectively (Fig 3E). Next, of 34,605 HMRs established 

in HSPCs but absent in H1 ESCs, 27,312 (78.93%) and 15,185 (44.23%) were represented by HMRs 

in the macrophage and B cell datasets, respectively (Fig 3E).  

These data show that a majority of the HMRs observed in differentiated cells (~60%) are established 

at early developmental stages and suggest a pattern of HMR accumulation in relation to 

developmental progression. In addition to acquiring new HMRs, macrophages retain a majority of 
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HMRs established in HSPCs, whereas B cells retain half as many HSPC-derived HMRs and fewer total 

HMRs compared to macrophages. This observation is consistent with previous studies 

demonstrating that lymphoid commitment and myeloid restriction requires re-methylation of 

specific early hematopoietic regulatory elements in parallel to demethylation of lymphoid-specific 

elements (115-117). Failure to remethylate these regions can result in a lineage priming imbalance 

favoring myeloid differentiation; thus, fewer HMRs are retained from HSPCs in B cells compared to 

macrophages. Despite this B cell remethylation of a subset of HSPC HMRs, we observe a general 

increase in HMRs across the hematopoietic lineage that supports a model where new HMRs are 

progressively established through successive developmental stages and persist through later stages 

of cell differentiation. 

HMRs are non-randomly established into spatially organized clusters. 
 
Locus-specific analysis of individual WGBS datasets indicates that multiple distinct HMRs are 

frequently located near one another, rather than being randomly distributed across linear genomic 

space (Fig 3A). Moreover, these HMR groups appear to be spatially organized with HMRs that are 

present in varying degrees of cell types and tissues, from developmentally constitutive to B cell 

specific. The example locus shown in Fig 3A depicts a group of adjacent HMRs near the CD27 gene. 

CD27 and several other genes surrounding the locus play a key role in B cell function (118-120). To 

quantify this HMR grouping phenomenon genome-wide, we calculated observed and expected 

distributions of inter-HMR distances utilizing the cell types represented in Fig 3. Expected 

distributions were simulated by random shuffling (n=10,000) HMRs across the genome for each 

dataset, excluding a blacklist of protein coding RefSeq TSSs (-2000/+1000 bp) and exons. HMR 

distances are significantly closer to each other than expected by random chance (Fig 8A, Wilcoxon 

rank sum, p-value < 2.2e-16). Interestingly, differentiated cell types consistently show lower expected 

and observed distances (~40-50 kb and ~12 kb, respectively) compared to those of H1 ESCs, which 
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feature the largest inter-HMR distances; this is consistent with having fewer HMRs overall, 

supporting its role as a basal HMR set.  

Figure 8. HMRs cluster more than expected. 
A) Distribution plots of inter-HMR distances by cell type. The green distributions represent 
observed values from HMR datasets per cell type. Vertical navy bars show median values. Grey 
distributions show expected values by random shuffling across the non-coding genome. For each 
cell type, the expected and observed distributions were determined to be significantly different by 
the Wilcoxon rank sum test. All p-values were reported as zero (p < 2e-16) with a range of 2 
values from 1.4337x108-4.4508x108. (B) Diagram of HMR clustering and cell specificity workflow. 
HMRs are annotated for clustering behavior and/or cell specificity. Non-coding HMR datasets are 
defined by HMRs that do not overlap RefSeq protein-coding TSSs (TSS -2000/+1000) and exons. 
Clustering refers to groups of HMRs in a cell type that are located a maximum of 6 kb end-to-end 
from the next HMR, linking 3 or more HMRs; clusters cannot cross TSSs or exons. Unclustered 
HMRs are defined as non-coding HMRs that are not within 6 kb of any other non-coding or 
TSS/exon-overlapping HMR. Cell specificity is also defined, with any base pair overlap between 
HMRs constituting overlap. (C) Bar graph of HMR clustering annotations discussed in (B) and Fig 
S6 as percentages of total HMRs by cell type. Selected cell types represent members of the 
hematopoietic and hepatic lineages. Colors reflect cell types representing different developmental 
stages and lineages. (D) Bar graph of proportion of cell type HMRs that are clustered HMRs (3+ 
HMRs) vs unclustered. Total values are calculated as [#unclustered + #clustered]. (E) Sankey 
diagram showing the flow of B cell HMRs. B cell HMRs are divided on the right of the panel into 
clustering groups. The left shows HSPC HMRs that overlap B cell HMRs, and are hierarchically 
categorized as clustered HSPC HMR, unclustered HSPC HMR, shared, or cell specific. To define cell 
specificity, B cell HMRs were compared to datasets from adrenal gland, H1 ESC, HSPC, fetal spinal, 
fetal heart, liver, macrophage, neutrophil, and T cell. (F) The bar graph shows the top biological 
process gene ontology results for the Sankey group of HMRs that progress from HSPC unclustered to 
B cell clustered (indicated in red). Results from GREAT Gene Ontology using default background and 
gene assignment settings are represented by bars showing binomial q-value (114). 
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These data suggest that clustered HMRs play a distinct regulatory role compared to their unclustered 

counterparts. To characterize the features that distinguish “clustered” and “unclustered” HMRs we 
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first determined a set of heuristic criteria to define clusters (Fig 8B). We plotted per-cell type 

distributions for non-coding inter-HMR distances and measured distance quantiles. From this, we 

analyzed "end-to-end" cluster lengths based on three maximum linking values: the ≤12.5 kb stitching 

distance commonly used in ChIP-seq-based super-enhancer studies (71, 104, 121-123); the 

approximate mean inter-HMR distance of 11 kb and ≤6 kb which represents the median inter-HMR 

distance after filtering for values under 50 kb (Table 3). Previous studies that have characterized 

clustered super-enhancers have used a common linking distance threshold of 12.5 kb. This distance 

was reportedly selected for its ability to qualitatively link high signal regions together while avoiding 

inclusion of lower signal peaks. Thus, the super-enhancer definition is reliant upon signal intensity 

and distribution. However, HMRs are defined by a bimodal methylation signal distribution, and such 

a distance applied to methylation data results in extraneously long stitched regions, the biological 

function of which is difficult to assign; some exceed 1Mb, which can result from HMRs spread across 

gene deserts, or large topological domains with low methylation levels or CpG frequency. By 

comparison, a linking distance of 6 kb results in stitched regions with an overall mean length of ~10 

kb, which is consistent with other clustered enhancer annotations such as stretch and super-

enhancers (Table 4, Fig 9) (73, 104). Using a linking distance of 6 kb, we determined the fraction of 

HMRs that are clustered or unclustered for a subset of cell types, including H1 ESC, HSPC, B cell and 

Liver (Fig 8C). To avoid confounding contributions of promoter characteristics to our analysis, 

clusters were not allowed to cross TSSs or exons. At a 6 kb threshold, non-TSS/exon HMR groupings 

that exist as pairs or as clusters of 3 or more constitute ~35% of all HMRs. For the rest of this paper, 

“clusters” refer to clusters with 3 or more HMRs (see annotation strategy in Fig 10).  
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Figure 9. HMR cluster lengths are consistent across cell types. 
The graph shows the lengths of HMR clusters, end-to-end, per cell type. Data is represented by both 
a violin plot and boxplot. The boxplot shows the interquartile range, and the bold black line shows 
the median value per cell type. The red dotted line shows the value 10,000 bp, which approximates 
the mean cluster length of 9764.59 bp, measured across the cell types: H ESC, fetal heart, fetal spinal 
cord, adrenal gland, liver, HSPC, macrophage, neutrophil, T cell, and B cell.  
 

 

 

 

Table 3. Inter-HMR lengths by cell type. 

Quantile H1 ESC Fetal Spinal Fetal Heart Adrenal Liver 
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0.1 227 881 761 673 633 

0.2 1283 1770 1626 1678 1508 

0.3 2953.8 2960 2787 2969 2716.8 

0.4 5626.6 4574 4329 4777 4441.4 

0.45 7102.65 5485 5309 5990 5540 

0.5 8921 6555 6361 7311 6846 

0.55 11013.15 7805 7689 8799.3 8461 

0.6 13299.8 9237 9183 10524 10148.2 

0.7 18970 13267 13231 15105.6 14803 

0.8 26779 19213 19414 21739.2 21582 

0.9 37041.2 29618 29903 32016.2 31880.6 

Quantile HSPC Macrophage Neutrophil T cell B cell 

0.1 652 535.9 523 715 436.3 

0.2 1469 1152.8 1190 1789 1259 

0.3 2618 2025.7 2123 3329.4 2410 

0.4 4222.4 3284 3472 5214 4030 

0.45 5205 4078.55 4298 6397.3 4998 

0.5 6330 5001 5265 7728 6142 

0.55 7668.15 6080.45 6409.95 9361 7474 

0.6 9208 7375 7824.4 11244.8 9112.8 

0.7 13361 10919 11583 15820.8 13573.1 

0.8 19384 16430.2 17323 22468.6 19841.2 

0.9 29702 26317.3 27366 32882.2 30592.7 
 

Table 4. Clustering group region counts by clustering distance (bp). 

Linking Distance Unclustered Clustered 
 

6,000 17,185 5,974  

11,000 12,441 9,044  

12,500 11,668 9,717  

 

Figure 10. Schematic of HMR definitions and annotation. 
Visual graphic of HMR definitions for groups: (A) unclustered, (B) unclustered: TSS/exon proximal, 
(C) clusters of 2 HMRs, and (D) clusters of 3+ HMRs. Gene tracks are not to scale.  
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As demonstrated in Fig 3A, a typical cluster consists of multiple HMRs with different levels of cell 

type specificity between them—broadly shared (developmentally constitutive), lineage-shared or 

cell-specific. This means that a cluster identified in one cell type may not exist across all cell types. As 

the formation of clusters is contingent on the addition of new HMRs near existing HMRs, most HMR 

clusters (~35-40%) contain at least one lineage- and/or cell type-specific HMR. Given that HMRs 
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accumulate over developmental timelines, this observation raises the possibility that, as cells 

differentiate, HMRs are preferentially added to clusters in a lineage-specific manner. Indeed, we 

observe a positive correlation between clustering and developmental state. Clustering percentage 

increases as development progresses (Fig 8D, H1 ESC to HSPC & HSPC to Macrophage: p<2.2x10-16), 

and this is accompanied by a relative decrease in unclustered HMRs. Tracking these HMRs temporally 

for each pseudo-timepoint reveals that a substantial fraction of early-established HMRs is joined by 

additional HMRs in subsequent developmental states. The establishment of new HMRs near existing 

HMRs can lead to clustering, where an HMR may be classified as unclustered at an early timepoint 

but become clustered in a differentiated cell type (Fig 8E). These growing clusters of HMRs are often 

in proximity to lineage-specific genes, as suggested by gene ontology analysis (Fig 8F). Altogether, 

these data show that HMRs can be broadly distinguished by 1) the number of cell types that share 

them—a corollary of temporal establishment or developmental time—and 2) their clustering 

behavior, which may reflect a collective and unique developmental function that distinguishes 

clustered HMRs from other types of genomic regions.  

Clustered HMRs are functionally distinct from unclustered HMRs. 
 
Sequencing approaches have enabled the discovery of many spatially clustered regulatory elements 

genome-wide using chromatin accessibility (73), histone modifications (124-129), and transcription 

factor binding (71, 104). More recently, clustering of enhancers has been commonly associated with 

concepts such as super-enhancers (SEs) (104), stretch enhancers (73), shadow enhancers (130, 131) 

and locus control regions (LCR) (132, 133), which are thought to provide regulatory additivity, 

synergy, and redundancy to their target genes in a tissue-specific manner.  

Comparison of clustered B cell HMRs with histone H3K27ac-defined B cell super-enhancers shows 

that, while the majority of super-enhancers coincide with HMRs (both clustered and unclustered), 

only 1.5% of clustered HMRs overlap super-enhancers (Fig 3A) (104). This discrepancy may be 
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explained by the observation that only a fraction of SEs exists as clusters in linear genomic space. 

Indeed, 15% of SEs from Whyte et al. are singletons and only 196 of 1,355 stitched murine ESC 

enhancers are SEs (71, 72). Thus, super-enhancers do not exclusively consist of clustered enhancers, 

and ChIP-seq defined enhancer clusters are not exclusively SEs. Clustered HMRs are more frequent 

than SEs, and their existence raises the question of whether they represent distinct functional 

characteristics compared to their unclustered HMR counterparts.  

Figure 11. Clustered HMRs show distinct enhancer-associated characteristics 
compared to unclustered HMRs. 
(A) Venn diagram showing partially overlapping sets between three region datasets: All B cell HMRs 
(blue line); clustered B cell HMRs (green line; subset of All); and GM12878 super-enhancers (solid 
red circle) (71). GM12878 is a tier 1 ENCODE lymphoblastoid cell line derived from EBV 
immortalized B cells. (B) Bar graph of HMR overlap with selected ChromHMM annotations: strong 
enhancer, weak enhancer, heterochromatin, repressed, insulator, weak transcription. The height of the 
bars represents the fraction of clustered and unclustered HMRs that overlap each annotation. Z-test 
of proportion p-values are shown, comparing HMR group proportion values for each ChromHMM 
annotation. (C) TF motif enrichment in clustered (left; green) and unclustered (right; blue) HMRs. 
Results are plotted as -log10p-value by fold enrichment, measured as percentage of target regions 
containing motif divided by the percentage of background regions. Background represents all 
clustered and unclustered HMRs.  
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To address this question, we used ChromHMM annotations to functionally categorize HMRs based on 

clustering behavior in B cells (Fig 11B) (124, 125). Notably, clustered HMRs are enriched for “strong 

enhancers” (X2=316.66, p=7.725x10-71) while unclustered HMRs show higher enrichment of 

“heterochromatin” (X2=432.37, p=8.159x10-96) and “insulators” (X2=329.57, p=1.191x10-73). This 

suggests clustered HMRs are enriched for active regulatory regions while unclustered HMRs tag 

elements involved in three-dimensional chromatin structure. This result is corroborated by the 
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strong enrichment of the CTCF motif in unclustered HMRs, while both clustered and unclustered B 

cell HMRs show comparable enrichment of lymphoid-relevant transcription factors, including PU.1, 

SpiB, and ETS family members (Fig 11C). 

Given the enrichment of strong enhancer annotations in clustered HMRs, we investigated their 

transcriptional regulatory activity by comparing with our recently published ATAC-STARR-seq data 

for immortalized B cells (Fig 12A) (134). ATAC-STARR-seq is a massively parallel reporter assay that 

uses Tn5 transposase to selectively clone accessible DNA from native chromatin into a plasmid-based 

reporter to test accessible chromatin regions for active and silent regulatory activity (134, 135). Since 

a majority of B cell HMRs overlap accessible chromatin regions in lymphoblastoid cells (Fig 13), we 

measured the proportion of HMRs that contain an activator or silencer (Fig 12A). Despite being fewer 

in number, clustered HMRs contain a significantly higher proportion of transcriptional regulators, 

including both activators and silencers (p = 2.39x10-13 and 0.0106, respectively), than unclustered 

HMRs. 

Figure 12. Clustered HMRs are enriched for active regulatory elements compared to 
unclustered HMRs. 
(A) Boxplot of ATAC-STARR-seq regulatory element overlap by clustered and unclustered HMRs. 
Overlap is measured at the unit of HMRs, and values depict fraction of total HMRs that contain a 
regulatory element. A Wilcoxon rank sum test was used to determine statistical significance. (B) Point 
and line graph of the proportion of HMRs near an expressed gene at different TSS distances. HMRs 
are grouped by HMR clusters that contain a cell specific HMR and unclustered cell specific HMRs. 
Denominators for the HMR clusters and unclustered HMR groups are 444 and 1621, respectively. 
Counts below the graph represent the cumulative amount of genes below each threshold per HMR 
group. p-values are derived from a z-test of proportions to test the fraction of HMRs represented by 
HMR-single nearest neighbor gene pairs below each threshold distance. (C) Boxplot of TPM values 
(derived from GM12878 cell line data) of nearest neighbor RefSeq protein-coding genes to clustered 
and unclustered HMRs. Two nearest neighbor genes (with TPM > 0) per HMR were filtered for TAD 
boundary crossing. Statistical significance was measured by a Wilcoxon rank sum test in R using the 
wilcox.test() function. (D) Multiple alignment of region around the CD27 locus showing methylation 
and HMR tracks across 6 cell types: H1 ESC, hematopoietic stem and progenitor cells, macrophage, 
neutrophil, B cell, and T cell. Methylation tracks are represented by orange vertical bars showing 
methylation value per CpG site. HMRs are shown by dark blue horizontal bars. Below the multiple 
alignment, Hi-C interaction score data is represented by heatmap triangles representing interaction 
matrices for GM12878s and H9 ESC cells. Values for the Hi-C data are derived from .hic interaction 
matrix files. The plotgardener R package was used to generate the genome browser snapshot (106).  
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Figure 13. Euler plot comparing B cell HMRs with open chromatin. 
Euler plot of all B cell HMRs and open chromatin defined by DNase I hypersensitivity sites in 
GM12878 cells. The DNase file was downloaded from the UCSC Genome Browser Table Browser 
using the following main settings: clade: “mammal”; genome: “human”; assembly: “Feb 2009 
(GRCh37/hg19)”; group: “Regulation”; track: “Duke DNaseI HS”; table: GM12878 Pk 
(wgEncodeOpenChromDnaseGm12878Pk)” [ENCODE file ID: ENCFF001UVC]. The values, 13573 and 
20497, represent count values for HMRs. The value 102228 represetns a count for open chromatin 
regions.  
 

 

Based on the finding that clustered HMRs are enriched for both strong enhancer annotations and 

“activators” defined by ATAC-STARR-seq (Fig 12A), we hypothesized that clustered HMRs are more 

likely to be associated with active genes compared to unclustered HMRs. To address this question, 

we defined pairs of HMRs and their nearest neighbor genes, measuring the proportion of cell-specific 

clustered and unclustered HMRs that tag the nearest “active” (TPM>0) gene at different threshold 

HMR-TSS distances (Fig 12B). To pair HMRs with their nearest neighbor active gene, we used a gene 

assignment strategy that identifies the nearest expressed neighboring gene within a topologically 

associated domain (TAD) containing both the gene and the HMR(s). A recent study showed that a 

combination of nearest neighbor assignment in conjunction with a minimum expression threshold 

increased associated-gene prediction accuracy above several gene assignment methods, including 

the commonly utilized simple nearest neighbor (87). Using this assignment strategy, we paired HMR 

groups with lymphoblastoid RNA-seq (GM12878) data from ENCODE as a proxy for B cells (136). 

Focusing on B cell specific HMRs, we observed a significantly higher proportion of clustered HMRs 

near active genes compared to unclustered HMRs at all observed distance thresholds (Fig 12B; all p-
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values <8.42e-10). While our unclustered definition omits HMRs that are within 6 kb of TSSs or exons, 

these observations remain consistent when TSS/Exon proximal HMRs are included (Fig 14A; all p-

values <1.96e-5). Similar results were obtained for the same analysis performed on liver HMRs (Fig 

14B). 

We further reasoned that target genes of clustered HMRs display increased transcriptional output 

compared to those of unclustered HMRs. To define putative HMR target genes, we used a similar 

approach to the gene assignment strategy discussed above that incorporates both a TAD and 

expression filter (TPM > 0); due to uncertainty that the nearest gene is a true positive, we considered 

two nearest neighbors for gene assignment. Using this approach, we observe that genes assigned to 

clustered B cell HMRs show a significantly higher distribution of transcript levels compared to those 

near unclustered HMRs (p = 0.007; Fig 12C) (136). However, when these comparisons are binned by 

HMR-gene distance, we do not observe significant differences in gene expression across bins, except 

in the most distal (≥100 kb) HMR-gene distance bin (Fig 14C). We performed the same analysis for 

liver clustered HMR target genes, finding the pattern is consistent across cell types (Fig 14D-E). 

These observations suggest that the functional distinction of clustered HMRs compared to 

unclustered HMRs is a general phenomenon.  

Figure 14. HMR proportions near active genes and boxplots comparing gene 
expression and distance near clustered and unclustered HMRs. 
(A) Point and line graph of the percentage of HMRs that are found in HMR-gene single nearest 
neighbor pairs at different distances. HMRs are grouped by HMR clusters that contain a cell-specific 
HMR and unclustered cell-specific HMRs. Denominators for the HMR clusters, unclustered (including 
TSS/exon-proximal), and unclustered HMR groups are 444, 2040, and 1621, respectively. p-values 
are derived from a z-test of proportions to test the fraction of HMRs represented below each 
threshold distance. (B) Point and line graph of the percentage of HMRs that are found in HMR-gene 
single nearest neighbor pairs at different distances. HMRs are grouped by HMR clusters that contain 
a cell-specific HMR and unclustered cell-specific HMRs. Denominators for the HMR clusters and 
unclustered HMR groups are 798 and 5424, respectively. Counts below the graph represent the 
cumulative amount of genes below each threshold per HMR group. P-values are derived from a z-test 
of proportions to test the fraction of HMRs represented below each threshold distance. (C) Boxplot 
of normalized read counts of nearest neighbor RefSeq protein-coding genes to clustered and 
unclustered Liver HMRs. Nearest neighbor genes were filtered for TAD boundary crossing. Results 
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for Liver are also displayed in (D) for all genes, but binned by distance between the HMR and nearest 
gene. Statistical significance was measured by a Wilcoxon rank sum test.  
 

 

Given the relationship between clustered HMRs and gene activity, we considered whether the 

appearance of clustered HMRs in differentiated cells accompanies changes in chromatin 

conformation. We used publicly available Hi-C data to compare long range chromatin contacts 

around the CD27 locus between embryonic stem cells and differentiated B cells (Fig 12D). This locus 

provides a representative example of a cluster of HMRs that accumulates HMRs with increasing 

developmental specificity. Here, we observe that the accumulation of immune cell specific HMRs 

coincides with chromatin conformation changes as indicated by increased frequency of Hi-C 
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interactions (Fig 12D). As the region accumulates clustered HMRs through cell development, new 

chromatin contacts are created around the newly established HMRs (137, 138), indicating the 

functional importance of the spatial proximity of clustered HMRs. Altogether, these results argue that 

combinatorial HMR establishment and HMR history relates to chromatin conformation changes that 

accompany cell differentiation (see Discussion). 

Non-coding HMR patterns are highly enriched for genetic variants linked to specific 
clinical phenotypes. 
 
Genome-wide associations studies (GWAS) have demonstrated that a substantial portion of human 

phenotype-associated single nucleotide polymorphisms (SNPs) is located in functional regulatory 

elements (139-143). Integration of GWAS with functional genomic data reveals that disease risk 

variants also localize primarily within cell type-specific enhancers of disease-relevant tissues (84). 

Studies examining the relationships between disease loci and molecular phenotypes such as gene 

expression, chromatin accessibility or the DNAme status of cis-acting enhancers have identified a 

strong connection between non-coding genetic variants and epigenetic regulation (144-146). Based 

on these previous studies, we expected a SNP enrichment among HMR patterns that would associate 

with various traits. We therefore asked whether specific HMR patterns harbor genetic variants linked 

to distinct clinical phenotypes, and, in turn, whether these relationships can inform the functional 

significance of different HMR patterns.  

We reasoned that GWAS SNPs could be leveraged to reveal genetic variants in HMRs of critical 

importance to normal cell development and function. As in Fig 3D-E, we defined B cell HMRs that are 

H1 ESC-derived (developmentally constitutive), HSPC-derived (lineage-shared) or B cell-specific. 

GWAS SNPs not only reflect trait-associated genetic variation, but also GWAS summary statistics can 

be used to estimate partitioned genetic heritability of traits assigned to subsets of the genome, based 

on the assumption that regions with higher quantities of SNPs in high linkage disequilibrium are 
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more likely to capture a causative variant. We used stratified LD score regression (S-LDSC) to 

perform partitioned heritability analysis from GWAS summary statistics of 79 traits and clinical lab 

values representing a range of organ systems ((89) Table 5). We found significant enrichment of trait 

heritability within lineage- and cell-specific HMRs (Fig 15A).  

Table 5. List of 79 summary statistic files used for S-LDSC analyses. 

Traits: 

Albumin 

ALP 

ALT 

Angina_byDoctor 

Apolipoprotein_B 

AST 

blood_EOSINOPHIL_COUNT 

blood_PLATELET_COUNT 

blood_RBC_DISTRIB_WIDTH 

blood_RED_COUNT 

blood_WHITE_COUNT 

bmd_HEEL_TSCOREz 

body_BALDING1 

body_BMIz 

body_HEIGHTz 

body_WHRadjBMIz 

bp_SYSTOLICadjMEDz 

Cadiomyopathy_andOther 

CardiacArrythm 

Cholesterol 

Coffee_type 

Congen_Heart_andGreatArteries 

cov_EDU_YEARS 

cov_SMOKING_STATUS 

disease_AID_SURE 

disease_ALLERGY_ECZEMA_DIAGNOSED 

disease_DERMATOLOGY 

disease_HI_CHOL_SELF_REP 

disease_HYPOTHYROIDISM_SELF_REP 

disease_RESPIRATORY_ENT 
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Diseases_of_liver 

disease_T2D 

ECG_load 

ECG_phaseTime 

ECG 

Haematocrit_percentage 

HeartAttack_byDoctor 

HighBloodPressure_byDoctor 

I25_chronicIHD 

I9_Cardiomyopathy 

I9_IHD_wideDefinition 

ICD10_I42_Cardiomyopathy 

ICD10_I48_atrialFibrillationAndFlutter 

IGF1 

Liver_chirrosis 

lung_FEV1FVCzSMOKE 

lung_FVCzSMOKE 

Lymphocyte_count 

LymphoidLeukemia 

mental_NEUROTICISM 

Myocardial_infarction 

Neutrophil_count 

other_MORNINGPERSON 

PASS_AgeFirstBirth 

PASS_Anorexia 

PASS_Autism 

PASS_BMI1 

PASS_Coronary_Artery_Disease 

PASS_Crohns_Disease 

PASS_DS 

PASS_Ever_Smoked 

PASS_HDL 

PASS_Height1 

PASS_LDL 

PASS_NumberChildrenEverBorn 

PASS_Rheumatoid_Arthritis 

PASS_Schizophrenia 

PASS_Type_2_Diabetes 

PASS_Ulcerative_Colitis 

PASS_Years_of_Education2 
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pigment_HAIR 

pigment_SKIN 

pigment_SUNBURN 

pigment_TANNING 

Primary_lymphoid_neoplasms 

repro_MENARCHE_AGE 

repro_MENOPAUSE_AGE 

RheumatoidFactor 

Triglycerides 
 

Figure 15. S-LDSC identifies HMR annotation-specific trait enrichments. 
(A) Volcano-style plots of S-LDSC partitioned heritability results across 79 traits are shown for three 
B cell HMR groups: H1 ESC-derived, HSPC-derived, and cell specific. HMRs are ordered by the 
developmentally distinct cell type in which they were established. Each HMR group was tested for 
enrichment of genetic heritability with a standard set of 98 base annotations against traits that 
include both clinical diseases as well as clinical lab values. Negative enrichment values were clipped 
to the lowest positive enrichment value for each row of plots (A: 0.1174537; B: 0.25754925). The 
size of each point represents the -log10p-value of the enrichment, and the color shows the 
log10enrichment value. Points with a p-value <= 0.05 or an enrichment > 10 are labeled by their trait 
name where available. (B) Further partitioned heritability analysis applied to B cell HMRs grouped 
only by clustering behavior is also represented. (C) Point and line plot of S-LDSC enrichment values 
by annotation group for “Lymphocyte Count”. These graphs include data from developmentally 
derived B cell HMRs compared against other enhancer-associated groups, including ancient human 
enhancer sequence age, FANTOM 5 enhancers, eQTLs, super-enhancers, and the H3K27ac histone 
mark. Genomic controls were also included, such as phastCons 46-way annotations as well as 
promoters and CTCF sites. The x-axis represents enrichment values, and the y-axis displays genomic 
annotations. Points show enrichment estimates and lines display 95% confidence intervals. The red 
line marks an enrichment score of 0. (D) Point and line plot of S-LDSC enrichment values by 
annotation group for “Crohn’s Disease”. 
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More specifically, we found that trait specificity not only stratifies by but also increases with HMR 

specificity. For example, H1 ESC-derived B cell HMRs are nominally enriched for traits not 

immediately attributable to B cell function, such as cardiomyopathy and morning person. This is 
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unsurprising due to the pleiotropy of gene regulation and the shared genetic architecture between 

many complex traits. However, HSPC-derived HMRs are enriched for genetic heritability of general 

hematopoietic traits including white blood cell, platelet, and neutrophil counts. In highly B cell-specific 

HMRs, we identify a notable enrichment of specific immune-related clinical traits and lab values, 

several of which achieve significance after multiple testing correction (p<Bonferroni, n=79). These 

observations hold true for S-LDSC analysis in H1 ESC-derived, and cell specific liver HMRs (Fig 16), 

reinforcing the notion that cell stage-derived HMRs are indicative of stage-relevant gene regulatory 

needs.  

Figure 16. S-LDSC identifies Liver HMR annotation-specific trait enrichments. 
Volcano-style plots of S-LDSC partitioned heritability results across 79 traits are shown for two liver 
HMR groups: H1 ESC-derived and cell-specific. HMRs are ordered by the developmentally distinct 
cell type in which they were established. Each HMR group was tested for enrichment of genetic 
heritability with a standard set of 98 base annotations against traits that include both clinical 
diseases as well as clinical lab values. Negative enrichment values were clipped to the lowest positive 
enrichment value for each row of plots (A: 0.02781896; B: 0.03787533). The size of each point 
represents the -log10p-value of the enrichment, and the color shows the log10enrichment value. Points 
with a p-value of ≤ 0.05 or an enrichment > 10 are labeled by their trait name where available. 
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HMRs stratified solely by clustering behavior also demonstrate heritability enrichment patterns 

associated with specific lymphoid traits (Fig 15B). In fact, compared to clustered HMRs, unclustered 

HMRs show no statistically significant trait enrichment above significance thresholds, suggesting that 

results in Fig 15A are powered predominantly by clustered HMRs. Accordingly, these trends were 

observed in gene-based disease enrichment analyses (disease ontology) applied to the same HMR 

groups analyzed by S-LDSC (Fig 17) (147, 148). For example, the top disease ontology enrichments 

for H1 ESC-derived HMRs include morphogenic ontologies such as craniofacial abnormalities, and the 

top ontologies for B cell-specific HMRs include multiple lymphoid- and leukemia-related ontologies, 

reflecting the biological state associated with each HMR group. Together with the partitioned 

heritability results, these data suggest clustered cell specific HMRs are both near lineage-specific 

genes and enrich for cell specific trait heritability over that of unclustered HMRs.  

Figure 17. Disease ontology for developmentally specific and clustered B cell HMRs. 
Lollipop plots show top ten disease ontology enrichments as analyzed through WebGestalt with 
default parameters. The x-axis shows enrichment ratios, and the y-axis displays disease ontologies 
sourced for the GLAD4U disease database (149). The y-axis is sorted by enrichment value. The color 
for each bar represents the p-value for that trait. Individual graphs show results from B cell HMR 
developmental and clustering groups: (A) H1 ESC-derived, (B) HSPC-derived, (C) cell-specific, (D) 
clustered, and (E) unclustered.  
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To better contextualize the partitioned heritability enrichment results from B cell data, we compared 

results against other known functional genomic feature annotations. We compared S-LDSC 

enrichment levels on a per-trait basis for B cell and liver HMR annotations (those from Fig 15A and 

Fig 16) and other functional genomic annotations (Fig 15C-D, Fig 18A-B). For both immune-related 

clinical lab values and disease traits, we observe increasingly stronger enrichment from H1 ESC-

derived to HSPC-derived to B cell-specific HMRs. In contrast, both H1 ESC-derived and liver-specific 

HMRs show positive enrichment for ALT (alanine transaminase) compared to B cell HMRs, as 

expected. This shows that SNP-based trait enrichment is capable of distinguishing HMR patterns 

from both distant and highly related cell types. Across cell relevant traits, we observe SNP-based 

heritability enrichment values that surpass those of promoters, expression quantitative loci (eQTLs), 
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and histone marks of open chromatin (H3K27ac) often used to approximate active regulatory 

regions. Enrichment values associated with cell specific HMRs are comparable to those of FANTOM5 

enhancers, supporting the notion that developmentally specific HMRs mark enhancers important for 

cell identity. Altogether, this analysis highlights the functional significance of different HMR patterns, 

all of which are enriched for heritability at or above the levels measured for other enhancer 

definitions. These results further indicate a quantitative relationship between HMR patterns and 

complex trait heritability. Thus, the stratification of HMRs by “sharedness” between cell types 

provides important contextual information to predict genome-to-trait relationships.  

Figure 18. S-LDSC B cell by trait across genomic annotations. 
Point and line pots of S-LDSC enrichent vlaues by annotation group per trait. The x-ais represents 
enrichment values, and the y-ais dispalys genomic annotations. Points show enirhcment point 
enstimates and lines display 95% confidence intervals. The red dotted line marks an enrichment 
score of 0. Annotation groups include popular enhancer-associated genomic annotatoins such as 
ancient human enhancer sequence age, FANTOM 5 enhancers, eQTLs, super-enhancers, and the 
H3K27ac histone mark. Genomic controls were also included, such as phastCons 46-way annotations 
as wella s promtoers and CTCF sites. The graphs include data from (A) develoop[metally dreived B 
cell HMRs. (B) This graph shows S-LDSC results for alanine transaminase. The data includes the 
annotations from (A) in addition to developmentally derived Liver HMRs.  
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DISCUSSION 
 
Here, we use comparative hypomethylation profiling to assess global hypomethylation patterns 

across cell types. This broader analysis reveals complex patterns of HMR establishment across a 

developmentally diverse dataset. By examining HMRs in a hematopoietic developmental context, we 

show that HMRs accumulate at distinct developmental stages and commonly persist through 

sequential lineage commitments.  

These developmentally hypomethylated regions are associated with distinct, stage-appropriate 

transcription factors and gene pathways, leading to a model where H1 ESCs, with the fewest HMRs, 

present a basal set of HMRs to which additional regions are hypomethylated through development 

(Fig 19). In fact, about two-thirds of HMRs established in H1 ESCs remain in HMR datasets of 

differentiated cell types, highlighting their early establishment and continuous hypomethylation 

across time. Consequently, most (~3/4) HMRs in B cells were traced back to either H1 ESCs or HSPCs, 

indicating that the majority of HMRs are established at early cellular states. This further implies that 

biological differences between these cell types are driven by the minority population of differentially 

methylated HMRs. There are some exceptions to this general model, where a small subset of HMRs is 

“remethylated” between HSPCs and B cells. These regions are likely enhancers of genes involved in 

myeloid specification, as indicated by their retention in macrophage cells.  

Figure 19. HMRs accumulate in clusters that record histories of cell development. 
The conceptual model diagram summarizes the observations of HMR accumulation into clusters that 
feature different levels of methylation specificity.  
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Differentially methylated regions (DMRs) can be quantitatively identified and have been commonly 

used as a unit for studying DNA methylation (19, 150-153). However, our results demonstrate that 

consideration of HMRs that are shared among different degrees of developmentally related cell types 

can be highly informative for understanding the developmental history of the cell. The ability to 

distinguish unique HMRs between highly related cell types suggests that we can use combinatorial 

patterns of both shared and unique HMRs to distinguish or even predict cell types, although this 

remains to be tested. 
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We further show that new HMRs are preferentially established near existing HMRs, leading to the 

progressive enrichment of HMR clusters in differentiated hematopoietic cell types; however, it is 

unclear if these patterns extend to other developmental lineages. Notably, clustered HMRs compose 

about 1/3 of all HMRs in differentiated cells, compared to less than 1/6 in H1 ESCs, indicating 

clustering increases proportionally to developmental progression. These spatially correlated HMRs 

are enriched for unique stage-relevant gene ontologies, trait-associated genetic heritability, and 

ChromHMM annotations, implying distinct regulatory roles compared to their unclustered 

counterparts.  

Previous investigations into enhancers describe subsets of clustering enhancers, including super-

enhancers and hub enhancers (71, 104, 132). Super-enhancers that have been defined by H3K27 

acetylation levels or by TF binding often consist of enhancer clusters. Clustering alone does not 

designate SEs and only a fraction of SEs is comprised of multiple enhancers units. We wanted to 

understand how many B cell HMR clusters also overlap super-enhancers that have been defined by 

ChIP-seq approaches. Our main conclusion from this analysis is that most super-enhancers also 

overlap clustered HMRs, but there are many more clustered HMRs than super-enhancers. One 

explanation for this broader phenomenon may be the finding that HMRs are often established near 

existing HMRs over developmental timescales. Thus, clustered HMRs can consist of regions 

representing both past and present enhancer activity (perhaps long after histone modifications and 

TF binding are lost). The establishment and maintenance of HMRs represents a unique characteristic 

of DNA hypomethylation compared to other more transient chromatin states. Another important 

consideration is that super-enhancers are defined by strength of TF binding or histone modification, 

which is measured on a continuous scale, whereas methylation is measured on an absolute scale. 

We note that HMR clusters show patterns of hierarchical establishment that logically follow 

developmental paths. However, it is unclear if HMRs that persist through cell states remain 
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epigenetically active at later stages. Clusters may include a combination of active and 

decommissioned, inactive enhancers recorded in HMR patterns. Murine models of early development 

have highlighted contrasting dynamics between spatially and functionally related enhancers during 

exit from pluripotency, where some require re-methylation while others retain hypomethylation (62, 

105, 115, 116, 154). These enhancers may serve to uphold cellular states during cell fate transitions. 

Our lab has also observed ‘vestigial’ enhancers on shorter timescales by applying ATAC-Me-seq to a 

differentiation time course, simultaneously measuring chromatin accessibility and DNA methylation 

(102); these analyses reveal a subset of regions that undergo chromatin closing while simultaneously 

maintaining hypomethylation levels. This is contrary to previous models of chromatin dynamics and 

DNA methylation that predicted methylation gain accompanies chromatin closing. These data 

suggest the uncoupling of chromatin accessibility and DNA methylation dynamics in a way that leads 

to the persistence of HMRs in chromatin inaccessible regions.  

Partitioned heritability analysis of B cell HMRs established at three distinct developmental stages 

revealed enrichment of traits that reflect stage-relevant biology; in general, broadly shared HMRs 

were enriched for heritability of broader phenotypes while B cell-specific HMRs were enriched for 

lymphocyte-relevant traits. Each B cell HMR subset likely suffers from power limitations, 

representing between 3,187,775 and 9,228,469 bp, or as low as ~0.1% of the genome. Despite this 

limitation, we observe a remarkable correspondence between heritability enrichment and stage 

specific HMRs. This highlights the unique ability for hypo-methylation to capture information from 

multiple developmental timepoints; we find highly shared, lineage-shared, and cell specific 

heritability enrichment all within the methylome of a differentiated cell type. The genome-wide 

combination of stage-specific heritability signals within clusters implies the information is not only 

persistent through later cell stages, but also accumulated over time. The observation that DNA 

hypomethylation can persist through the closing of chromatin suggests that the use of H3K27ac to 
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identify putative enhancers precludes the observation of many HMRs, a subset of which forms 

hierarchical clusters that record cell developmental histories. 

Our findings highlight DNA hypo-methylation as a unique epigenetic mark compared to common 

enhancer-associated histone marks. We highlight the unique accumulation of HMRs through 

developmental progression into clusters, enriched for stage-relevant SNP-based heritability. 

Through this process, epigenetic information can be maintained state to state. Thus, our results 

support that the methylome presents a historical documentation of developmental choices which 

could assist in the prioritization and interpretation of SNP data associated with clinical traits and 

diseases. These conclusions may further assist in understanding the complex role of the methylome 

in development and epigenetic gene regulation.  

CONCLUSIONS 
 
Here, we characterize HMR relationships both within and between developmentally diverse cell 

types to understand the functional significance of complex HMR patterns. We show that levels of HMR 

specificity across cell-types capture time point-specific branchpoints of development. Our analysis 

further reveals that HMRs form clusters in proximity to active genes that are important for cell 

identity. This is a wide-spread phenomenon and only a very small subset of HMR clusters is explained 

by overlapping super-enhancer annotations. Lastly, partitioned heritability revealed the functional 

significance of different HMR patterns linked to specific phenotypic outcomes and indicates a 

quantitative relationship between HMR patterns and complex trait heritability. Altogether, our 

findings reveal that HMRs can predict cellular phenotypes by providing genetically distinct historical 

records of a cell’s journey through development, ultimately providing novel insights into how DNA 

hypo-methylation mediates genome function. 

METHODS 
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HMR selection/exclusion dataset 

DNA HMRs were obtained through the MethBase DNA Methylation trackhub from the UCSC Genome 

Browser, which references data processed through the MethPipe software for processing whole 

genome bisulfite sequencing data (108, 109). To achieve a high-confidence genome-wide 

methylation dataset, cell types were included based on a minimum coverage of 10x (155). This 

resulted in the selection of: adrenal, fetal heart, fetal spinal cord, liver, macrophage, neutrophil, and T 

cell from the NIH Roadmap Epigenomics Consortium (35); H1 ESC from Lister, et al. (92); and B cell, 

neutrophil, and HSPC (listed as “HSC” on the Genome Browser) from Hodges, et al. (32). As a primary 

cleaning step, to focus on non-coding HMRs, we removed promoter- and exon-overlapping HMRs 

(discussed below in section “Clustering annotation and percentage” and Fig 10). To do this, we 

combined RefSeq exon and protein-coding gene TSSs (-2000, +1000 bp) annotations to form an 

exclusion BED file. Next, we referenced this file to eliminate promoter- and exon-overlapping HMRs 

using the intersect function from the Bedtools package with option ‘-v’ (107). Exclusion was defined 

by any basepair overlap. We required a minimum of 50bp for an HMR to be included in our analysis.  

CD27 multiple alignment with Hi-C  

Plots were generated in reference to the hg19 genome build, showing the chromosome position: Chr 

12: 6,522,500 – 6,575,000. We used a page width of 7, while HMR and methylation elements had a 

height of .3 and 1.0, respectively. The multiple alignment was constructed with the plotgardener R 

package (106), using the methylation and heatmap data represented in our HMR selection dataset. 

Hi-C interaction score data was visualized with the plotHicTriangle() function from the plotgardener 

R package (106). Contact matrices for both samples were plotted at 10 kb resolution.  

HMR dendrogram 
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This analysis was performed using the per-HMR average CpG numerical matrix as composed in the 

methylation heatmap analysis. To perform hierarchical clustering, we used the hclust() function with 

the method “ward.D2”. Colors were added using Adobe Illustrator.  

Methylation heatmap  

Heatmaps were generated in R with the package pheatmap (156). Numerical matrices representing 

per-HMR DNA methylation per cell type were used as input. These were generated in bash using 

methylation bigWig files from the MethBase DNA Methylation trackhub hosted on the UCSC Genome 

Browser (108, 109, 155). We used the KentUtils binary package to convert bigWig files to bedGraph 

files. bedGraph score columns were used to populate a numerical matrix representing the sample-

population methylation proportion at individual HMRs in rows. The HMR consensus set used here 

represented all HMRs, created by concatenating HMR files from all cell types and using Bedtools 

merge to combine overlapping features. The HMRs from each cell type were filtered for a minimum 

length of 50 bp and against the list of RefSeq TSSs (-2000/+1000) and exons described above. 

Heatmaps were generated using R package: pheatmap using options: kmeans_k = 10, cluster_cols = 

FALSE, cuttree_rows = 10 (156). We also used the option “set.seed(86)” in R for reproducibility.  

Transcription factor motif enrichment analysis 

The HOMER perl package was used to calculate transcription factor motif enrichment (157). A 

background region was used to represent the merged HMR datasets of all cell types. Natural log 

transformed binomial p-values as reported by HOMER were used to rank motif enrichment output. 

Scaled fold enrichment was calculated by the quotient of two HOMER output values: [%target/ 

%background]. Top representative TFs are displayed in Fig 3C. All TFs shown represent the top TF 

by rank unless the top TFs were redundant. The second ranked TF is shown for the group, “Myeloid 

+ HSPC,” and the third ranked TF is shown for the group, “Differentiated.” All data is represented in 



 66 

Fig 11C to visualize TF enrichment differences between clustered and unclustered HMRs. Data 

visualization is scaled by TF to show relative cell specific enrichment. Graphing was performed in R 

using the ggplot2 package (158).  

k-means clustering gene ontology 

Gene ontology was conducted using the web-based tool: GREAT (114). Specifically, GREAT takes BED 

files as input and assigns gene pairs using regulatory domains around gene TSSs (extending to the 

nearest gene’s central domain up to a maximum extension distance). Here, we used the default gene 

annotation protocol from GREAT with a maximum extension of 1Mb. For input, we supplied BED files 

for each k-means cluster representing the HMRs in each group. Standard settings for maximum 

region-gene distance and gene assignment were used. Top results were downloaded from the web 

app using the “Shown ontology data as .tsv” selection. GREAT provided output for all k-means groups 

except for “Differentiated,” as this group includes >20,000 HMRs and annotates to a large number of 

genes that prohibits the ability to detect gene ontology enrichment. Output files were filtered to 

exclude the top row before import to R. Top ranked binomial test q-value results are displayed as bar 

plots using ggplot2 and geom_bar().  

Inter-HMR distances 

To measure inter-HMR distances, we employed the Bedtools closest function with the ‘-io -d’ options 

to calculate the distance from each HMR to the nearest HMR per cell type (107). Next, we extracted 

the output distance column to represent our observed distribution for graphing in R. To compare this 

distribution to random expectation, we used a script based on the process used for shuffling in 

Benton M.L., 2018 which uses Bedtools closest to calculate distances between shuffled non-coding 

HMRs per cell type (159, 160). The Bedtools closest function takes two input files. For this analysis, 

the input dataset is submitted twice. A region blacklist was used to exclude placement of HMRs 
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during the shuffle into coding space, defined by RefSeq TSSs and exons (161); this file was also used 

in the HMR annotation step. We iterated the random shuffle-closest procedure 10,000 times to create 

a null expectation of genomic positioning given random placement. Distances per shuffle-closest 

were summarized as means, yielding a distribution of average distances per shuffle. Distributions 

were plotted using the ggplot2 R package. Inter-HMR distance values were filtered for those at or less 

than 500,000 bp to allow for better resolution of the density plot. Statistical significance between 

expected and observed inter-HMR distance values for each cell type were calculated using the 

wilcox.test() function in R. Statistical tests were computed on the list of inter-HMR distance values 

less than or equal to 500 kb.  

Clustering annotation and percentage 

To assess the prevalence of clustering per cell type, we utilized the same procedures outlined in Fig 

10. Unclustered HMRs (Fig 10A) were defined as HMRs that are not within 6kb of any other HMR. 

We used Bedtools merge with the options ‘-c’ and ‘-d 6000’ to link BED regions and output constituent 

counts. We then use those that have a count of one and filter against RefSeq TSSs and exons. Because 

this excludes promoter and exon-proximal (within 6 kb) non-coding HMRs, we also perform a more 

inclusive unclustered HMR annotation by filtering HMRs by RefSeq TSSs and exons before 

performing a Bedtools merge step (‘-c’, ‘-d 6000’) to identify isolated HMRs (Fig 10B), where Bedtools 

merge reports an input BED region that was not merged with any other HMR with a value of 1. By 

removing RefSeq TSS- and exon-overlapping HMRs before merging regions, we can find otherwise 

“unclustered” HMRs that are near a genic HMR. For Fig 8C, we subtract the total of our working 

unclustered HMR definition (Fig 10A) from this more inclusive definition to deduce the count of 

“TSS/exon-proximal” unclustered HMRs. To find clustered HMRs that do not cross the boundaries of 

TSSs and exons, we first use Bedtools complement to generate a BED file of regions that do not overlap 

the RefSeq regions. We then use Bedtools intersect with the ‘-c’ and ‘-F 1.0‘ options to find a whitelist 
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set of regions that contain two or more (for identifying clusters with exactly 2 HMRs) or 3 or more 

HMRs. We use Bedtools intersect again with the ‘-lof’ and ‘-F 1.0’ options to produce a file where each 

row contains two BED coordinates: one for the whitelist region and one for the individual HMR. We 

then use a bash script to process this file with the purpose of linking HMR regions that are within 6 

kb of each other that are within the same whitelist region (without passing a TSS or exon boundary). 

The output includes the linked end-to-end coordinates of clusters as well as the number of HMRs in 

each 6 kb-linked cluster. This can then be used to determine HMR clusters with exactly 2 (Fig 10C) 

or 3 or more HMRs (Fig 10D). To find individual clustered HMRs, we used Bedtools intersect with the 

original file as the ‘-a’ file and merged cluster datasets as ‘-b’ files. For the analyses outside of Fig 8C, 

the terms “clustered” and “clusters” refers to clusters of 3 or more HMRs. For Fig 8D, data was 

compiled and binned into clustered (3+) or unclustered HMRs. Denominators were defined as the 

total number of clustered and unclustered HMRs so that relative quantities in each cell type are 

visually comparable. Plots were generated with the ggplot2 R package. 

Sankey Diagram 

HMR counts for each Sankey node and flow were determined using bash and the Bedtools suite. Nodes 

represent the total quantity of clustered and unclustered HMRs per cell type. Plots were generated 

in R using the package networkD3 (162). To accurately represent the total quantity of HMRs per cell 

type, additional nodes were input and later processed with Adobe Illustrator.  

Sankey gene ontology 

Gene ontology was conducted using the web-based tool: GREAT (114), as with the k-means clustering 

gene ontology analysis. Here, we again used the default gene annotation protocol from GREAT. For a 

background file, we used the default “Whole genome” option. Standard settings for maximum region-

gene distance and gene assignment were used. Top results were downloaded from the web app using 
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the “Shown ontology data as .tsv” selection. Output files were filtered to exclude the top row before 

import to R, and the preceding “#” is removed from the second row. Top results ranked by binomial 

q-value are displayed as a bar plot using ggplot2 and geom_bar. 

Super-enhancer annotation 

GM12878 SEs were downloaded from the Hnisz et al. in hg19 as a BED file (of coordinates for both 

enhancers and super-enhancers) permitting comparison with clustered and all B cell HMR datasets 

using Bedtools intersect (104). GM12878s are a well-studied Tier 1 ENCODE cell type derived from 

EBV-transformed B cells. SEs were selected from the “GM12878.bed” file. To use eulerr, input 

coordinates between groups must match; to accomplish this, we concatenated the GM12878 SE, B 

cell clustered, and B cell unclustered files before using Bedtools to sort and merge the BED file. We 

then used Bedtools intersect with the ‘-u’ option and the merged BED file as the ‘-a’ file to map each 

input BED file to the merged regions (representing a consensus list of HMRs). These were combined 

in R to generate a list of three BED files. Plotting was performed using the R package, eulerr, with the 

option ‘shape = “ellipse”’ to maintain proportionally sized ellipses.  

ChromHMM annotation 

A ChromHMM 15-state annotation file was downloaded from the UCSC Genome Browser in hg19 as 

assayed in the GM12878 cell line (155). Intersections were assessed using Bedtools intersect with the 

‘-wo’ option and B cell HMRs as the ‘-a’ file with the ChromHMM BED file as the ‘-b’ file. Using R, HMR 

quantities per ChromHMM group were calculated as the number of HMRs that contain at least one 

instance of that ChromHMM group. Denominators for calculation proportions were 5974 and 17185 

for B cell clustered and unclustered HMRs, respectively. Statistical testing was performed using the 

Z-test of proportions in R using prop.test(). Graphing was performed in R with the package, ggplot2.  

ATAC-STARR-seq comparison 
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BED files for GM12878 ATAC-STARR-seq regulatory elements were obtained from Hansen & Hodges 

(134) (GSE181317). HMRs were converted to GRCh38 for comparison using liftOver (parameters: -

bedPlus=3). We determined the number of overlaps between the datasets with Bedtools intersect 

(default parameters) piped to a line count command (wc -l). The proportion of overlapping HMRs 

was calculated as [#overlapping/#total] and then plotted with ggplot2 in R. We performed a two-

tailed, two-sample Z-test of proportions with the prop.test() function in R to obtain p-values.  

Nearest-neighbor RNA-seq analyses  

To determine if clustered HMRs are more likely to associate with active genes than unclustered 

HMRs, we measured the proportion of HMRs near “active” genes (TPM > 0) at different distances for 

the two HMR groups: HMR clusters that contain cell specific HMRs and unclustered cell specific 

HMRs. We defined coordinates for the clustered HMR region from end-to-end including all HMR 

constituents. To assign the nearest HMR-gene pair, we downloaded two RNA-seq datasets acquired 

from the ENCODEv3 release. Here, we elected to use data for GM12878s, a lymphoblastoid cell line, 

to match B cells as closely as possible; and we used the ENCODE Tier 1 HepG2 dataset to as a proxy 

for liver. We first isolated the ENSEMBL gene ID and TPM columns from each file before averaging 

between replicates for each cell type using the tidyverse package, merge(), and rowMeans() in R. We 

then used BioMart to convert ENSEMBL IDs to HUGO gene symbols to identify high-confidence 

protein-coding genes (163). To provide the highest conversion rate using BioMart, we truncated the 

version number from the ENSEMBL IDs. We performed the conversion using the useMart() function 

to establish search parameters with options: biomart = “ENSEMBL_MART_ENSEMBL,” host = 

"grch37.ensembl.org,” path = "/biomart/martservice,” and dataset = "hsapiens_gene_ensembl.” This 

was used in conjunction with the getBM() function requesting the output “attributes” of 

“hgnc_symbol,” “strand,” “chromosome_name,” “start_position,” and “end_position.” We then filtered 

the output for rows that had a non-empty “hgnc_symbol” column value. This was then merged with 
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the dataframe described above with ENSEMBL ID and averaged TPM values. We used the strand 

information provided from BioMart to elect a TSS from either the “start_position” or “end_position,” 

based on if the “strand” was “1” or “-1” respectively. This file was transformed into BED format using 

the TSS position to create a gene file with coordinate, gene ID, and TPM information.  

To find the nearest active gene to HMR clusters and unclustered HMRs, we employed a strategy to 

first find a large pool of surrounding genes, before filtering out pairs that cross TAD boundaries and 

identifying the nearest gene. To do this, we assigned the surrounding gene landscape to each HMR 

by using Bedtools closest with the ‘-d’ distance option as well as the ‘-k 100’ option to output the 

nearest 100 genes to each HMR. We then filtered the list of HMR-TSS pairs for TAD crossing using 

reference TAD BED files, for “GM12878” and “Liver,” as downloaded from the 3D Genome Browser 

(164). We used Bedtools intersect with the ‘-f 1.0’ option to eliminate HMR-TSS pairs that are not fully 

within a TAD BED coordinate range. Using R, we filtered the resulting list to represent the nearest 

gene to each HMR. We then determined the quantity of HMR-gene pairs under each distance 

threshold (10, 25, 50, 75, 100, and 150 kb) for each HMR group, separately, by filtering the single 

nearest neighbor dataset by the HMR-TSS distance column and counting rows. We calculated the 

denominator of these proportions as the total amount of HMRs input to the analysis for each HMR 

group for each cell type. We used the prop.test() function in R to compare the HMR proportions 

between HMR clusters that contain cell specific HMRs and unclustered cell specific HMRs at each 

threshold value. Output was plotted using ggplot2, geom_point(), and geom_line().  

To measure the transcriptional output differences associated with clustered or unclustered HMRs, 

we utilized the BED files of replicate-averaged TPM values and associated ENSEMBL IDs. We found 

the 2 nearest neighboring genes to each HMR using Bedtools closest with the ‘-d’ distance option to 

output HMR-TSS distances and the ‘-k 2’ option to limit output to the two nearest TSSs. We then 

filtered the list of HMR-TSS pairs for TAD crossing using reference TAD BED files, for “GM12878” and 
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“Liver,” as downloaded from the 3D Genome Browser (164). We used Bedtools intersect with the ‘-f 

1.0’ option to eliminate HMR-TSS pairs not fully within a TAD BED coordinate range. We used R to 

eliminate gene redundancy within the clusters and unclustered datasets, separately. Statistical 

testing was performed using the wilcox.test() function in R. TPMs were plotted using ggplot2 and 

geom_boxplot().  

S-LDSC 

Stratified LD-score regression was performed with LDSC using the appropriate python scripts 

distributed by the Price lab (https://github.com/bulik/ldsc) (88). Reference base annotation files 

were downloaded from the Price repository (Phase 3, version 2.2 annotations). We used the 

appropriate reference files coordinating with the 1000 Genomes baseline v2.2 scores and HapMap 3 

SNPs (https://alkesgroup.broadinstitute.org/LDSCORE/). Summary statistics were collected from 

both the Price lab (https://alkesgroup.broadinstitute.org/LDSCORE/independent_ sumstats/) as 

well as the Neale lab heritability repository (https://nealelab.github.io/UKBB_ldsc/ index.html) 

(89). Traits were obtained based on their determined relevance to either broad cell-agnostic etiology 

or to biology specifically relating to B cells or Liver. This provided us the ability to determine 

specificity of results associated with varying cell specificity of HMRs. In total, we assessed 79 traits 

as described in Table 5. The primary LDSC program was run per HMR annotation per trait. Results 

for individual traits were tabularized per HMR annotation. Results were visualized using ggplot in R 

with the functions geom_point and case_when for conditional coloring. To determine B cell 

developmentally derived HMRs, we used Bedtools intersect to compare HMR files. H1 ESC-derived B 

cell HMRs were defined by B cell HMR coordinates and had to had overlap with HMRs from HSPC as 

well as H1 ESC, together. HSPC-derived B cell HMRs had to have overlap with HSPC HMRs but not H1 

ESC HMRs. B cell-specific HMRs had to have no overlap with any HMRs from the collection of adrenal 

gland, liver, fetal heart, fetal spinal cord, H1 ESC, HSPC, macrophage, neutrophil, and T cell HMRs. In 
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the clustering analysis, all clustered or all unclustered HMRs were used. Liver HMRs were defined as 

H1 ESC-derived based on any overlap with H1 ESC HMRs. Cell specific Liver HMRs were also defined 

against the same comparative cell type collection used with B cell for this specific analysis. 

Annotations used to compare against HMR groups were selected from those included in the 

“baselineLF_v2.2.UKB.tar.gz” from the Price lab LD-score website. Annotations were selected for 

their relevance to enhancers; CTCF, a ubiquitous transcription factor, was included as a negative 

control for cell specific disease enrichment. 

WebGestalt Gene Ontology Analysis 

Developmentally grouped B cell HMR BED files, as used in the S-LDSC analysis, were used as input in 

addition to BED files for all B cell clustered or all B cell unclustered HMRs. GREAT Input was used to 

identify nearest neighbor genes in hg19 (114). We used the default gene assignment parameters 

under “Association rule settings” called “Basal plus extension,” which in most cases replicates a two-

nearest neighbor gene association strategy. In the web app, we downloaded the “Gene -> genomic 

region association table” file from the “genomic region-gene associations” page. Gene symbols were 

extracted from the GREAT input downloaded files using the first column. These were input into the 

WebGestalt web app to perform an over-representation analysis on the disease functional database, 

GLAD4U (147-149). For a reference gene set, we selected “genome protein-coding.” Results were 

downloaded, and the enrichment values file was used to plot enrichment ratio values for top diseases 

in R using ggplot2. 
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Chapter III 
 

DISCUSSION AND FUTURE DIRECTIONS 
 

Discussion 
 

This research aimed to examine the non-coding HMR patterns that arise from cross-cell 

type methylation profiling across both highly related and distant cell types. We collected 

whole-genome bisulfite sequencing data from multiple developmental stages, including H1 

ESCs, fetal tissues, adrenal gland, liver, and representatives from the hematopoietic lineage 

(e.g., Hematopoietic stem and progenitor cells, macrophages, T cells, and B cells). 

Unsupervised clustering of over 126,000 HMRs across 9 cell types revealed distinct HMR 

groups that indicate a hierarchical establishment of HMRs through development; HMR 

groups reflect developmental stage specificity, supported by both transcription factor motif 

enrichment and gene ontology. By dissecting HMR patterns in a pseudo-time course from 

H1 ESCs to adult stem (HSPC) and differentiated cell types (Macrophage and B cell), we 

identify that most HMRs (~ 60%) are established in early stem cell stages and persist 

through subsequent developmental stages. These are adjoined by the accumulation of 

increasingly cell specific HMRs through differentiation; hierarchically established HMRs are 

formed nearby existing HMRs more often than expected, leading to ~1/3 of HMRs existing 

in clusters (≤ 6 kb between HMRs) in mature cell methylomes. We find clusters to be 

associated with increased enhancer activity. SNP-based partitioned heritability analysis 

reveals enrichment of complex trait genetic heritability in HMRs; furthermore, heritability 

for trait-relevant traits enriches positively with both HMR specificity and clustering.   
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Through unsupervised clustering, we identified groups of HMRs of varying degrees of 

specificity that reflect a developmental hierarchy. Hierarchical clustering groups reveal 

HMRs that are shared among all cell types; shared among cell types of a specific 

developmental stage (e.g. fetal tissue); shared among a specific lineage or sub-lineage; and 

cell specific. Previous studies have highlighted the cell specificity of methylomes and their 

ability to distinguish cell types from similar tissues. A study by Schultz, et al. annotated 

DMRs among the tissue and cell type groups: glands, mucosa, muscle, immune, fat, and 

epithelial (14). Hierarchical clustering applied to the set of 1,198,132 DMRs showed that 

differential methylation was sufficient to distinguish tissues and cell type groups. 

Hierarchical clustering of DMRs was as similarly discriminatory as RNA-seq data, 

emphasizing the specificity of the methylome.  

HMRs are hierarchically acquired through development 

Here, we characterize non-coding HMRs across the genome between diverse cell types 

(both highly related and distant), providing us granularity in assessing the degrees to 

which all non-coding HMRs are shared among cell types and tissues; in contrast, DMRs only 

capture those hypomethylated regions that differ between samples by a statistical 

threshold. DMRs are commonly identified through an assumption of a beta-binomial 

distribution to model methylation values (165); however, among a collection of samples 

from multiple tissue origins, the DMR definition lacks granularity in understanding the 

degree to which methylation profiles are shared among specific, related cell types. Thus, 

DMRs lack the resolution to interpret degrees of developmental specificity, whereas our 

whole-genome cross-cell type methylation profiling approach reveals HMR groups that we 

can identify as lineage specific (e.g. lymphoid specific, defined by the specific presence in 
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only B and T cells). These results underline the power of viewing the methylome through 

distinct HMR units and incorporating diverse cell types from various lineages and 

developmental timepoints to reveal specific branchpoints in cell fate specification.  

We found novel insights regarding the developmental patterns of HMRs by analyzing 

methylomes within a pseudo-time course representing the hematopoietic lineage. We 

analyzed methylation data for the following collection of cell types: H1 ESC (pluripotent 

stem), HSPC (multipotent adult stem), macrophage (mature myeloid lineage), and B cell 

(mature lymphoid lineage); this combination of samples provided us with representatives 

of several sequential developmental stages.  By measuring the total amount of HMRs across 

cell types, we found that HMRs tend to accumulate through differentiation in the 

hematopoietic lineage (other adult methylomes also show increased HMR counts 

compared to H1 ESC). Tracing the retention of existing HMRs through later stages revealed 

that a majority of HMRs are maintained in subsequent stages. The exception to this resides 

in the hematopoietic lymphoid lineage, where we observe a decrease in both total HMRs 

and HMRs retained from HSPC to B cell; this conforms with expectations from mouse work 

that indicates the need to remethylate enhancer regions during this transition to avoid a 

lineage imbalance favoring the myeloid lineage (115, 116).  

The general retention of non-coding HMRs through developmental progression in whole-

genome data conforms with observations in previous studies in mouse models. A study by 

Hon et al. utilized whole-genome methylation data from 17 cell types, describing a subset 

of DMRs that display an active chromatin state (as measured by H3K4me1 and H3K27ac) in 

mouse embryonic stem cells, but an inactive chromatin state in adult tissues (62). This 
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observation suggested that DNA methylation can record “vestigial” enhancers that were 

active at a previous developmental stage. This retention of DNA methylation contrasts with 

the emphasis on a hypomethylated genome in embryonic stem cells and subsequent 

methylation of promoter regions during exit from naïve pluripotency (45, 166).  

Prior to the genome-wide scope afforded by whole-genome bisulfite sequencing, promoter 

methylation was measured by targeted bisulfite PCR amplification. While promoters of 

genes driving pluripotency have been shown to undergo methylation during cell fate 

transitions, this limited scope promoted the notion that pluripotency equated with vast 

hypomethylation and that methylation accompanied restriction of lineage determination. 

Our results contradict these assumptions as we show that H1 ESCs contain the fewest 

number of HMRs of any cell type in our analysis, and that most of the HMRs present in H1 

ESCs are retained in all other cell types. Our analysis allowed us to build an alternative 

model whereby H1 ESCs feature the most restrictive hypomethylation profiles, and cell 

specification is accompanied by hypomethylation of stage-specific non-coding regulatory 

elements. A revised model that incorporates more recent observations from whole-genome 

methylation data could benefit the interpretation of DNA methylation studies as the field 

continues to gain whole-genome bisulfite datasets.  

HMRs clusters offer a new model for clustered enhancers 

Clustered enhancers have been studied through various types of functional genomic 

annotations and methodologies. Early studies identified specific locus control regions with 

multiple DNase I-hypersensitivity sites that affect gene transcription (69, 167-170). These 

highlighted the variable importance and cell-specific activity of constituent elements of 
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enhancer clusters, suggesting the influence of individual elements of an enhancer cluster is 

context specific. More recently, super-enhancers have been identified through ChIP-seq 

signal targeting the enhancer-associated marks: histone modifications (e.g. H3K27ac) and 

transcription factor binding (e.g. Pu1, Med1) (71, 104). As part of the annotation strategy, 

ChIP-seq peaks are linked (≤ 12.5 kb) together computationally to be analyzed as a singular 

unit, before looking for “exceptionally” high ChIP-seq signal for SE designation. It is 

important to note that because of this strategy, not all SEs contain constituent enhancers; ~ 

15% are singular enhancers, and ~ 77% contain three or fewer constituents (72). However, 

the notion that all SEs represent clustered enhancers has been perpetuated by numerous 

studies that define SEs in language that suggests as much (104, 122, 171-175). As a popular 

annotation for clustered enhancers, we compared SEs defined in GM12878 

(lymphoblastoid) cells by H3K27ac signal with our B cell HMR clusters. We find that while 

most SEs are captured by HMRs, there are many more HMR clusters than SEs, suggesting 

that clustered enhancers across the genome are underappreciated and understudied.  

While SEs only represent those elements with exceptionally high ChIP-seq signal values, 

SEs do not capture all H3K27ac peaks. Nonetheless, we identify 27,505 unique HMR 

clusters in our comparison between H3K27ac-defined SEs in GM12878 cells 

(lymphoblastoid cells) and B cell HMR clusters, suggesting HMR clusters may be more 

pervasive than other clustered enhancer annotations (104)—and that subsets of HMRs do 

not overlap histone modifications indicative of open chromatin (e.g.  H3K27ac). This 

corresponds with observations from our lab and others regarding the decoupling of 

chromatin accessibility and DNA methylation. Schultz, et al. identified 1,198,132 DMRs 

across 6 tissue groups, and further reported that 60.1% (719,837) were “novel” (14). These 
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were compared against putative enhancers defined by histone marks (176), suggesting that 

subsets of HMRs that are specific to cell types and lineages may exist outside of open 

chromatin histone marks.  

Related to these ideas, our lab has developed ATAC-Me to simultaneously profile chromatin 

accessibility and methylation status through a protocol that combines use of Tn5 

transposase to enrich for nuclease-free DNA as well as bisulfite conversion prior to 

sequencing (99, 102). When applied to a THP-1 monocyte-to-macrophage time course 

model (up to 72hr), dynamic chromatin accessibility changes were apparent; however, 

average methylation values within these opening and closing regions was largely constant. 

This was contrary to the idea that enhancer demethylation temporally accompanies 

chromatin opening. In contrast, Barnett et al. reveals a temporal decoupling of DNA 

methylation and chromatin accessibility, where changes in methylation are delayed 

compared to chromatin accessibility.  Regions that underwent chromatin closing showed 

no statistical changes in methylation through this time course, suggesting that the 

underlying DNA sequence retained a hypomethylated state while transitioning to a closed 

chromatin state. Altogether, this argues that, while HMRs often coincide with chromatin 

accessibility, their existence is not dependent on open chromatin and may thus be more 

prevalent; this also supports a model whereby histone marks may reflect transient 

regulatory states, whereas DNA hypomethylation records both current and previous 

regulatory activity. This implies that DNA hypomethylation provides a unique view of 

genome function that links present and previous genome to phenome using information 

that may not be present in chromatin accessibility or active transcription factor binding 

data.  
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HMR subsets enrich for genetic heritability 

S-LDSC applied to our HMR groups reveals that HMRs enrich for SNP-based partitioned 

genetic heritability for cell-relevant complex traits—both disease statuses and clinical lab 

values (88, 89). Additionally, by annotating B cell and Liver HMRs by the developmental 

stage (e.g. H1 ESC, HSPC, or mature cell type) at which they were established, we find that 

enrichment for cell-relevant heritability (e.g. lymphocyte counts measured in B cell HMRs) 

scales with the specificity of the HMRs as well as clustering status. This is consistent with 

our observations from unsupervised clustering combined with TF motif enrichment and 

GO, suggesting that HMRs established at a specific developmental stage overlap enhancers 

that are appropriately stage specific. Notably, in our S-LDSC analysis of B cell HMRs, we 

find B cell-specific HMRs to enrich heritability at levels above those for other enhancer 

annotations, including FANTOM5 enhancers (Fig. S11). FANTOM5 defines enhancers 

through balanced bidirectional capped transcripts and are considered to be a high-quality 

annotation for active enhancers (177). HMRs defined by clustering and their 

developmental stage of establishment—predictably enriched for stage-relevant trait SNP-

based heritability—could provide a functional annotation resource to prioritize trait-

associated SNPs, provided the appropriate cell types were assayed by whole-genome 

bisulfite sequencing.  Linkage disequilibrium presents difficulty in differentiating causal 

SNPs from those SNPs that show association with a trait due to localization within the same 

LD block (178, 179). Overall, the strong enrichment for heritability with HMR subsets 

presents the ability to compare HMR information with other genetic layers (e.g. SNPs, 

chromatin accessibility, transcription factor motifs, or conserved sequence regions) to 

better understand the putative function of SNPs.  
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In conclusion, we have systematically dissected HMR patterns across diverse cell types 

representing a variety of lineages and developmental stages. Our results argue that all 

HMRs within the methylome of a cell type or tissue are informative in understanding and 

predicting cellular phenotypes. We show HMRs are highly predictive of cell identify and 

provide a unique epigenetic layer that captures genetically distinct records of cell’s history 

through cell development.  

Future Directions 
 

Our data and that of others highlight the lineage and cell specificity of HMRs, storing 

information highly predictive of cell identity. A study by Koestler, et al. utilized methylation 

data from the Illumina Infinium HumanMethylation27 BeadArray, which measures 27,578 

CpGs across 14,495 genes, to statistically train a model to predict the cell proportions from 

whole-blood samples (180). Complete blood cell counts were used as a ground truth to 

measure monocyte to lymphocyte ratios. While this analysis attempted to discriminate 

related mature blood cell types, and the BeadArray only measures a subset of all CpGs, the 

model was able to predict a proportion of .176 monocytes to .814 lymphocytes compared to 

.179 and .821 as measured by complete blood cell counts; these results display a root mean 

squared error of only 5-6%, underlining the power of DNA methylation to predict and 

differentiate related cell types. The comparison by Schultz, et al. between hierarchically 

clustered DMRs amongst 6 tissue groups to hierarchically clustered RNA-seq data showed a 

similar separation of tissue groups, further emphasizing the specificity and predictive power 

of HMRs (14).  
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The ability to not only distinguish mature cell types, but also track shared lineage histories 

among cell types, suggests a collection of HMRs across diverse cell types and developmental 

stages could be used to predict the identity of an unknown cell type. This may be particularly 

useful in identifying the cell origin of an unknown cancer clinically, leading to improved 

therapeutic approaches. Ideally, a predictive model using HMRs would incorporate a variety 

of cell types from many lineages, germ lines, and specialized tissues. Currently, publicly 

available whole-genome bisulfite sequencing data includes an array of hematopoietic cell 

types, given the availability of whole blood sampling. Other cell types are also available, 

though many are non-healthy, cancer cells, given the importance of methylation changes in 

defining cancer phenotypes. Besides a limited (but growing) breadth of cell type diversity in 

publicly available methylome collections, many cell types do not offer multiple WGBS 

datasets. This lack of depth of individual cell types and tissues precludes our ability to cross-

reference methylomes within a cell type to generate a “high-confidence” HMR dataset; we 

are also unable to assign weights to individual HMRs to represent their estimated effect on 

transcription or other phenotypes, as one might perform with allelic counts in SNP-based 

transcriptome or polygenic risk score models. However, both clustering status and 

developmental specificity HMR information could be incorporated into a transcription 

predictive model to provide additional statistical weighting to individual SNPs. Nonetheless, 

the specificity afforded by HMRs presents a promising opportunity for cell identity 

prediction as future WGBS datasets are generated and shared.  

Overall, our study provides a model to annotate and interpret the methylome in informative 

ways. The decoupling of DNA methylation from other enhancer-associated marks such as 

chromatin accessibility provides a unique epigenetic layer that records both active and 
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historical regulatory states.  Future expansion of whole-genome methylome data will be 

useful in improving our interpretation of genetic variants, gene regulation, and methylation, 

itself.  
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