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Chapter I

Introduction

The distortion function was introduced by Gromov in [9] and given a finitely generated subgroup H of a

finitely generated group G, essentially detects how much the intrinsic geometry of H differs from the geom-

etry induced on H by G. One motivation for studying the distortion function is that it is closely related to the

membership problem. Specifically, given a finitely generated subgroup H of a finitely generated group G, the

membership problem of H in G is solvable if and only if the distortion function is bounded by a computable

function.

The distortion function is not well-defined when the subgroup H is not finitely generated. In this thesis, we

define a variation of the distortion function that can be computed in the case that H is not finitely generated.

We name this function the generalized distortion function, and denote it by δ . We calculate this function

in a few natural cases, and demonstrate a connection between this function and the isoperimetric spectrum

defined by Osin and Rybek in [17]. One consequence of this connection is that the group F2×F2 contains an

uncountable collection of subgroups with mutually incomparable generalized distortion functions.

We then turn our attention to an application of this function to asymptotic cones. The asymptotic cone of

a group G is a metric space which captures certain aspects of the coarse geometry of G. Roughly speaking,

the asymptotic cone is how the group looks from infinitely far away, and is constructed by taking a certain

limit of scaled down copies of the group viewed as a metric space. The roots of asymptotic cones come

from a paper of Gromov proving that finitely generated groups of polynomial growth are nilpotent [8]. Van

den Dries and Wilkie added non-standard analysis to the construction in this paper, formally introducing

asymptotic cones [24]. Since then, several other standard algebraic and geometric properties of groups have

been shown to have natural parallels in their asymptotic cones. For instance, a finitely generated group is

virtually abelian if and only if all of its asymptotic cones are quasi-isometric to Rn for some n ∈ N [9], and a

finitely-generated group is hyperbolic if and only if all of its asymptotic cones are R-trees [9].

Given a finitely generated subgroup H of a group G, we define a subspace of the asymptotic cone of

G which corresponds to H, and denote this subspace by Coneω
G(H). We show that the function δ detects

whether this subspace is connected. We also show that in this case, the ordinary distortion function is not

sufficient to decide whether or not Coneω
G(H) is connected.

We then turn our attention to convexity properties of subgroups of groups. The notion of a subgroup being

strongly-quasi convex was introduced independently by Tran and Genevois [7, 23], and is a generalization

of the notion of quasi-convex subgroups of hyperbolic groups that works nicely outside of the hyperbolic
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setting. We show that whether a subgroup is strongly quasi-convex can be detected by a natural convexity

property of the embedding of Coneω
G(H) in Coneω(G). We use this characterization to show that any group

satisfying a law cannot have an infinite, infinite index strongly quasi-convex subgroup. We also show that if

H is a strongly quasi-convex subgroup of a group G, then the stabilizer of Coneω
G(H) in Coneω(G) under the

natural action of G is the same as the commensurator of H in G.

Finally, we provide applications of these results to groups with Morse elements. Any group with a Morse

element has cut points in its asymptotic cone, and it was shown in [21] that any loxodromic element of an

acylindrically hyperbolic group is Morse. Thus, groups with Morse elements form a natural intermediary

class between acylindrically hyperbolic groups and groups with cut points in their asymptotic cones. It is

therefore natural to ask which properties of acylindrically hyperbolic groups can be extended to the class of

groups with Morse elements. One possible candidate for such a property is the fact that any acylindrically

hyperbolic group where all non-trivial conjugacy classes are infinite is mixed identity free. We show that

with certain additional assumptions, groups with Morse elements are also mixed identity free.

The thesis is structured as follows. We begin in Chapter 2 with a more detailed overview of our results.

We then provide the necessary background on a number of topics relevant to this thesis in Chapter 3. The

next chapter proves some basic properties and computes some basic examples of the generalized distortion

function. We also discuss the relationship between the generalized distortion function and the isoperimetric

spectrum. Chapter 5 discusses the case where the subgroup H is finitely generated. We compute some exam-

ples in this case and prove that the generalized distortion function detects the connectedness of Coneω
G(H).

Chapter 6 deals with convexity properties of Coneω
G(H) and their applications. We conclude by discussing a

few open problems related to the results of this thesis.
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Chapter II

Overview of main results

II.1 Generalized distortion

We begin by recalling the definition of the distortion function.

Definition II.1.1. Let H be a subgroup of a group G, with G = 〈X〉 and H = 〈Y 〉 where X and Y are finite

sets. The distortion function of H in G with respect to X and Y is defined by the formula

∆
G,X
H,Y (n) = max{|h|Y | h ∈ H, |h|X≤ n},

where |h|Y denotes the word length of h with respect to the generating set Y . A subgroup H of a group G is

called undistorted if ∆
G,X
H,Y is bounded from above by a linear function.

We consider distortion up to the following equivalence relation.

Definition II.1.2. For non-decreasing functions f ,g:N→ N, we write that f �∆ g if there exists a constant

C such that f (n)≤Cg(Cn) for all n ∈ N. We write f ∼∆ g if f �∆ g and g�∆ f .

Up to this equivalence relation, the distortion function does not depend on the choice of the finite gener-

ating sets for G and H.

For the distortion function to be well-defined up to equivalence, it is necessary for both the group G and

the subgroup H to be finitely-generated. Here, we provide a variation of the distortion function which can be

computed even when the subgroup H is not finitely generated.

Definition II.1.3. Let H be a subgroup of a group G with finite generating set X . We will denote by YH,m the

set {h ∈ H | |h|X≤ m}. When the subgroup H is clear from context, we will simply denote YH,m by Ym. We

will denote by Hm the subgroup of H generated by YH,m.

Definition II.1.4. We will denote by T the set {(k,m,n) ∈ N3 | k ≤ m}.

Definition II.1.5. Let H be a subgroup of a group G with finite generating set X . We define δ
G,X
H : T →N to

be the function defined by δ
G,X
H (k,m,n) = max{|h|Ym | h ∈Hk, |h|X≤ n}= ∆

G,X
Hk,Ym

(n). We refer to this function

as the generalized distortion function.

Note that the domain of δ is T , as if k > m, then it is possible that Ym is not a generating set for Hk.

We consider generalized distortion up to the following equivalence.
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Definition II.1.6. Given two functions f ,g : T → N which are non-decreasing in the first and third variable

and non-increasing in the second variable, we write f �δ g if there exists a natural number C such that for all

(k,m,n) ∈ T , we have that f (k,Cm,n)≤Cg(Ck,m,Cn)+C, whenever (Ck,m,Cn) ∈ T . We say that f and g

are equivalent, denoted f ∼δ g, if f �δ g and g�δ f . We write that f ≺δ g if f �δ g, but f is not equivalent

to g.

Up to this equivalence, the generalized distortion function does not depend on the choice of the finite

generating set of G. We now have two equivalence relations ∼δ and ∼∆ for the two functions δ and ∆. In

most cases, it will be clear from context which equivalence relation is relevant, and in these cases we will

supress the subscripts.

Finitely generated free groups and wreath products of finitely generated groups are important examples

of finitely generated groups with non-finitely generated subgroups. We calculate δ in both of these cases. For

background on wreath products see section III.3.

Theorem II.1.7. (Theorem IV.1.3) If G is a finitely generated free group, and H is any subgroup of G, then

δ G
H (k,m,n)� n/m.

Theorem II.1.8. (Theorem IV.1.7) Let A,B be finitely generated groups, and let G = A oB. If H = A(B) is the

base group of the wreath product, then δ G
H (k,m,n)� n/m.

Next we turn our attention to a connection between the generalized distortion function and the isoperimet-

ric spectrum defined in [17]. This function, denoted by f is a generalization of the Dehn function to finitely

generated but not necessarily finitely presented groups analogous to the generalized distortion function δ .

These functions are considered up to a natural equivalence relations. For details about these functions and

this equivalence relation, see section III.1.

In [16], an interesting connection between the distortion function and the Dehn function is presented.

Specifically, the authors prove the following.

Theorem II.1.9. Up to equivalence, the set of Dehn functions of finitely presented groups is the same as the

set of distortion functions of subgroups of F2×F2.

We prove the following related theorem.

Theorem II.1.10. Theorem (IV.2.2) If f is a function which can be realized as the isoperimetric spectrum of

a finitely generated group, then f can also be realized as the generalized distortion function of a subgroup of

F2×F2.
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Note that this theorem is weaker than the obvious analogy with II.1.9. In particular, the theorem does not

claim that any function which can be obtained as the generalized distortion of a subgroup of F2×F2 can be

obtained as the isoperimetric spectrum of a finitely generated group.

It is proven in [17] that there exists an uncountable set of groups with pairwise incomparable isoperimetric

spectra. Therefore we have the following corollary of II.1.10.

Corollary II.1.11. There exists a set of uncountably many subgroups of F2×F2 with mutually incomparable

distortion functions.

Note that a finitely generated group can have only countably many finitely generated subgroups. Thus, a

similar result cannot be obtained for the ordinary distortion function and in fact represents a genuinely new

phenomenon for the generalized distortion function.

Another result from [17] is that there exist finitely generated groups whose isoperimetric spectrum is not

fundamentally independent of the variable k, i.e. f is not equivalent to any function of the two variables m,m.

Hence we also obtain the following corollary of II.1.10.

Corollary II.1.12. There exists a subgroup H of F2×F2 such that δ
F2×F2
H is essentially dependent on the

variable k.

We then turn our attention to the case where H is finitely generated. Note that in this case for suffi-

ciently large k, the subgroup Hk will be the entire subgroup H. For this reason, the function δ is essentially

independent of the variable k.

If G is a finitely generated group with finitely generated subgroup H, and X is a finite generating set for

G, then ∆
G,X
H,X∩H(n) = δ

G,X
H (k,1,n) for all natural numbers n and all sufficiently large natural numbers k. It is

in this sense that δ is a generalization of the distortion function.

The function δ turns out to be useful in particular to discern the connectedness of a certain subspace of

the asymptotic cone of G.

Given a group G and an ultrafilter ω , we will denote the asymptotic cone of G with respect to ω by

Coneω(G). We will study a natural subspace of Coneω(G) corresponding to a subgroup H. Essentially,

points in the asymptotic cone of a group G can be represented by certain elements of the ultrapower Gω . We

denote by Coneω
G(H) the subspace of Coneω(G) consisting of points with a representative from Hω . For the

formal definition of this subspace, see section III.2.

We show that the function δ determines whether Coneω
G(H) is connected. Specifically, we prove the fol-

lowing result, which also shows that for such a subspace connectedness is equivalent to path-connectedness.

Theorem II.1.13. Theorem V.2.13 For any finitely generated group G and any subgroup H, the following

conditions are equivalent.
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1. H is finitely generated and δ G
H (k,m,n)≤ f (n/m) for some function f : R≥0→ N.

2. Coneω
G(H) is path connected for all non-principal ultrafilters ω .

3. Coneω
G(H) is connected for all non-principal-ultrafilters ω .

This theorem enables us to relate the ordinary distortion function to the connectedness of Coneω
G(H), and

to construct pairs H ≤G such that Coneω
G(H) is disconnected, but the distortion of H in G is small. Consider

the following properties of a finitely generated subgroup H of a finitely generated group G:

1. H is undistorted in G,

2. Coneω
G(H) is connected for all non-principal ultrafilters ω ,

3. ∆G
H is bounded by a polynomial function.

The following theorem collects the relationship between these three properties.

Theorem II.1.14. (V.2.18) For any finitely generated subgroup H of a finitely generated group G, the follow-

ing implications hold:

1⇒ 2⇒ 3

Further, the missing implications do not hold. Specifically, we have the following.

1. For any k ∈ N, there exists a finitely generated group G and a finitely generated subgroup H of G such

that ∆G
H(n)∼ nk and Coneω

G(H) is connected for any non-principal ultrafilter ω .

2. For any real number ε > 0, there exists a finitely generated group G with a finitely generated subgroup

H such that ∆G
H(n)� n1+ε but Coneω

G(H) is disconnected for some non-principal ultrafilter ω .

II.2 Strongly quasi-convex subgroups

We now provide the definition of a strongly quasi-convex subgroup of a finitely generated group.

Definition II.2.1. A subgroup H of a group G with finite generating set X is said to be quasi-convex if

there exists a number M such that any geodesic in the Cayley graph Γ(G,X) connecting two points in H

is contained in the M neighborhood of H. H is said to be strongly quasi-convex if for all real numbers

λ ≥ 1,C ≥ 0 there exists a constant N(λ ,C) such that any (λ ,C)-quasi-geodesic in Γ(G,X) connecting two

points in H is entirely contained in the N neighborhood of H.

In general, quasi-convexity is not independent of the choice of the finite generating set of G. For instance,

in the group Z×Z = 〈a〉 × 〈b〉, the subgroup 〈ab〉 is not quasi-convex with respect to the generating set
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〈a,b〉, but is quasi-convex with respect to the generating set 〈ab,a〉. In the case where G is hyperbolic,

quasi-convexity is independent of the choice of the finite generating set.

We have the following relationship between these properties of a subgroup H of a finitely generated group

G:

strongly quasi-convex⇒ quasi-convex⇒ finitely generated and undistorted.

None of the reverse implications hold. To see this again consider G = Z×Z = 〈a〉× 〈b〉. The subgroup

〈ab〉 is undistorted but not quasi-convex, and the subgroup 〈a〉 is quasi-convex but not strongly quasi-convex.

However, in the case when G is hyperbolic, all of these properties are in fact equivalent.

Strong quasi-convexity is a generalization of quasi-convexity that is preserved under quasi-isometry in

general. Tran [23] characterized strongly quasi-convex subgroups based on a certain divergence function,

and showed that they satisfy many properties of quasi-convex sugroups of hyperbolic groups. Specifically,

any strongly quasi-convex subgroup is undistorted, has finite index in its commensurator, and the intersection

of any two strongly quasi-convex subgroups is strongly quasi-convex. Examples of strongly quasi-convex

subgroups include peripheral subgroups of relatively hyperbolic groups and hyperbolically embedded sub-

groups of finitely generated groups.

We show that the property of being strongly quasi-convex is equivalent to a natural property of the em-

bedding of Coneω
G(H) in Coneω(G).

Definition II.2.2. We say that a subspace T of a metric space S is strongly convex if any simple path in S

starting and ending in T is entirely contained in T .

Theorem II.2.3. (VI.1.12) Let H be a finitely generated subgroup of a finitely generated group G. H is

strongly quasi-convex in G if and only if Coneω
G(H) is strongly convex in Coneω(G) for all non-principal

ultrafilters ω .

This characterization gives useful information about the structure of the asymptotic cones of groups with

strongly quasi-convex subgroups. For instance, we obtain the following result.

Theorem II.2.4. (Theorem VI.2.1) If G is a finitely generated group containing an infinite, infinite index

strongly quasi-convex subgroup H, then all asymptotic cones of G contain a cut point.

Next, we provide background and definitions for identities and mixed identities in groups.

Definition II.2.5. Given a group G, an element g ∈ F2 is called an identity in G if for any homomorphism

φ : F2→G, φ(g) = e. An element g ∈ F2 ∗G is called a mixed identity if for all homomorphisms φ : F2 ∗G→

G which are identity when restricted to G, φ(g) = e. If no nontrivial elements of F2 is an identity of G,
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then G is said to be identity free. If no non-trivial element of F2 ∗G is a mixed identity for G, then G

is said to be mixed identity free, abbreviated MIF. Any mixed identity can be conjugated to be in the form

g1xn1g2xn2 . . .gkxnk where each gi 6= e and ni 6= 0 for all 1≤ i≤ k. We call the set {g1,g2, . . .gk} the coefficients

of the mixed identity.

In general, being mixed identity free is a much stronger property than being identity free. For example if

g is a non-trivial element of G the conjugacy class of which has n elements, then G satisfies the non-trivial

mixed identity [xn!,g].

Some consequences of a group being mixed identity free can be found in [11]. For instance, it is shown

that if G is an ICC mixed identity free countable group, then a generic length function on G (in a certain

technical sense) corresponds to a word length giving a Cayley graph isomorphic to a specific universal graph.

Combining Theorem II.2.4 with a result of Drutu and Sapir [6] gives the following result.

Corollary II.2.6. (Theorem VI.2.3) If G is a finitely-generated group containing an infinite, infinite index

strongly quasi-convex subgroup, then G does not satisfy a non-trivial identity.

This result can be applied to show for instance that solvable groups and groups satisfying the law xn = 1

for some n ∈ N cannot have infinite, infinite index strongly quasi-convex subgroups.

If G is a finitely generated group, then G acts naturally on its asymptotic cone. We call the stabilizer of

Coneω
G(H) under this action the asymptotic stabilizer of H in G. We relate this subgroup to the commensurator

of H in G.

Definition II.2.7. Let H be a subgroup of a group G. The commensurator of H in G, denoted CommG(H) is

the set of elements g ∈ G such that g−1Hg∩H is a finite index subgroup of both H and g−1Hg.

An alternate characterization for the commensurator in the case that G is finitely generated can be found

in [2].

Proposition II.2.8. Let H be a subgroup of a group G with finite generating set X. Then the commensurator

of H in G is the set of elements g ∈ G such that dhausdor f f (gH,H)< ∞.

It is useful to contrast this definition with that of the asymptotic stabilizer AstabG(H). Essentially, the

commensurator is stricter in that for an element g ∈ G to be in the commensurator it can only move elements

of H a fixed finite distance. On the other hand, for g to be in the asymptotic stabilizer of H, it can move

elements of H unbounded distances, as long as the distance it moves elements is sublinear in terms of the

length of the elements of H. An example where these two notions differ is presented in section IV.1.
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Theorem II.2.9. (Theorem VI.2.12) If H is a strongly quasi-convex subgroup of a finitely generated group

G, then the commensurator of H in G is the stabilizer of Coneω
G(H) in Coneω(G) under the natural action of

G.

Finally we turn our attention to applications of this result to groups with Morse elements.

Definition II.2.10. An element g of a finitely generate group G is called Morse if the subgroup 〈g〉 is strongly

quasi-convex in G.

Any group with a Morse element has cut points in its asymptotic cone, and it was shown in [21] that

any loxodromic element of an acylindrically hyperbolic group is Morse. Thus, groups with Morse elements

form a natural intermediary class between acylindrically hyperbolic groups and groups with cut points in

their asymptotic cones. It is therefore natural to ask which properties of acylindrically hyperbolic groups can

be extended to the class of groups with Morse elements. One possible candidate for such a property is the

following fact about acylindrically hyperbolic groups.

Definition II.2.11. If G is a group such that every non-trivial conjugacy class is infinite, then G is said to be

an ICC (infinite conjugacy class) group.

Theorem II.2.12. [10] If G is an ICC acylindrically hyperbolic group, then G does not satisfy any non-trivial

mixed identities.

We prove variants of this theorem with additional assumptions. The first involves the notion of a Morse

element being ”orientable”. This notion is defined in Section VI.2.

Theorem II.2.13. (Theorem VI.2.26) If G is an ICC group with an orientable Morse element then G is mixed

identity free.

Next we show that in the context of not necessarily orientable Morse elements, we can obtain a partial

result in the direction of being mixed identity free.

Theorem II.2.14. (Theorem VI.2.26) If G is an ICC group with a Morse element, then G does not satisfy any

mixed identity with one coefficient.

Finally, we show the following.

Theorem II.2.15. (Theorem VI.2.26) If G is an ICC amenable group with a Morse element, then G is mixed

identity free.

Unfortunately, there are no known examples of ICC amenable groups with Morse elements so it is not

clear at the moment whether Theorem II.2.15 has any applications.
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Chapter III

Background

III.1 Asymptotic invariants of finitely generated groups

In this section, we recall some important definitions and facts about the distortion function and the Dehn

function.

Definition III.1.1. Given a group G given by the finite presentation P = 〈X | R〉, and a word w in F(X)

which evaluates to identity in G, the area of w with respect to the presentation P, denoted AreaP(w) is the

least natural number n such that there exists a decomposition of w in F(X) of the form Πn
i=1u−1

i riui where

each ui ∈ F(X) and each ri ∈ R. If w is a word in F(X) which evaluates to 1 in G, we write w =G 1.

Definition III.1.2. Given a group G and a finite presentation for G, P = 〈X | R〉, the Dehn function f : N→N

of G with respect to P is given by fP(n) = max{AreaP(w) | w ∈ F(X),w =G 1, |w|X≤ n}.

We consider Dehn functions up to the following equivalence.

Definition III.1.3. Given two non-decreasing functions f1, f2 : N→N, we write that f1 � f2 if there exists a

constant C ∈N such that for all n ∈N, f1(n)≤C f2(Cn)+Cn+C. f1 and f2 are said to be equivalent, written

f1 ∼ f2 if f1 � f2 and f2 � f1.

Up to this equivalence, the Dehn function of a finitely presented group does not depend on the choice of

the finite generating set P.

Definition III.1.4. Given a group G given by finite presentation 〈X | R〉, a Van Kampen diagram for w over

P is a directed labeled planar graph where each edge is labeled by an element in X , the boundary of each cell

is a word in R, and the boundary of the entire diagram is w.

A word w in F(X) evaluates to 1 in G if and only if there is a Van Kampen diagram for w. The area of a

word w which evaluates to identity in G is the minimal number of cells in a Van Kampen diagram for w.

In [17], Osin and Rybek defined a generalization of the Dehn function for finitely generated but not

necessarily finitely presented groups. We recall that definition here.

Definition III.1.5. Let G be the group with finite generating set X , given by the presentation 〈X | R〉, i.e.

G∼=F(X)/〈〈R〉〉. Let Sm = {w∈ 〈〈R〉〉 | |w|X≤m}. The isoperimetric spectrum of G is the function f : T →N

defined by f (k,m,n) = max{AreaSm(w) | w ∈ 〈〈Sk〉〉, |w|X≤ n}.

We consider this function up to the following equivalence.
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Definition III.1.6. Given two functions f ,g : T → N which are non-decreasing in the first and third vari-

ables and non-increasing in the second variable, we write that f � f g if there exists a constant C such that

f (k,Cm,n)≤Cg(Ck,m,Cn)+C(n/m)+C. We say that f ∼ f g if f � f g and g� f f .

Up to this equivalence, the isoperimetric spectrum does not depend on the choice of the finite generating

set X . Note that the only difference between this equivalence relation and the one in Definition II.1.6 is the

presence of the linear term C(n/m). Again, when the relevant equivalence relation is clear from context, we

will omit the subscript.

We will also need the following theorem of Olshanskii, which is useful for constructing subgroups with

particular distortion functions.

Theorem III.1.7. [15] For any group H, and any function `:H→ N satisfying the following conditions:

1. for all h ∈ H, `(h) = 0 if and only if h = 1,

2. `(h) = `(h−1) for all h ∈ H,

3. `(gh)≤ `(g)+ `(h) for all g,h ∈ H,

4. there exists a constant a such that |{h ∈ H | `(h)≤ n}|≤ an,

there exists a group G = 〈X〉 with |X |< ∞ , an embedding φ of H in G, and a constant C such that for all

h ∈ H,
|φ(h)|X

C
≤ `(h)≤C|φ(h)|X .

III.2 Asymptotic cones

We now turn to defining asymptotic cones. We begin by recalling the definition of an ultrafilter.

Definition III.2.1. A subset of the power set of the natural numbers, P(N), is called an ultrafilter if it

satisfies the following properties.

1. For all S,T ∈P(N), if S ∈ ω and S⊂ T , then T ∈ ω .

2. For all S,T ∈ ω , S∩T ∈ ω .

3. For all S ∈P(N), exactly one of S and N\S is in ω .

4. N ∈ ω .

Further, if ω does not contain any finite sets, then ω is called a non-principal ultrafilter.
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Definition III.2.2. Given an ultrafilter ω , and a sequence of real numbers (ri), a real number L is called the

ultralimit of (ri) with respect to ω , denoted limω ri, if for all ε > 0 we have that {i ∈ N | |ri−L|< ε} ∈ ω .

Recall that given an ultrafilter ω and any bounded sequence of real numbers, (ri), limω(ri) exists and is

unique.

Now let (S,d) be a metric space, and let ci be an unbounded, strictly increasing sequence of positive

real numbers. Denote by di the metric on S defined by di(x,y) = d(x,y)/ci. We call the sequence (ci) the

scaling sequence.

Definition III.2.3. Given a metric space (S,d), a scaling sequence (ci), and an infinite sequence of points

z = (si) in S, denote by SNz the set of infinite sequences (ti) in S such that di(si, ti) is bounded. The sequence

(si) is called the observation point.

Definition III.2.4. Given (xi),(yi) ∈ SNz , let d∗((xi),(yi)) = limω di(xi,yi).

Note that this is a bounded sequence so the limit exists. However, in general d∗ will not be a metric, as

there can be different sequences (xi),(yi) such that d∗((xi),(yi)) = 0.

Definition III.2.5. We will denote by Coneω
z ((di),S) the metric space that results from quotienting the

pseudo-metric d∗ by the equivalence relation (xi) ∼ (yi) if d∗((xi),(yi)) = 0. We will denote the resultant

metric by dω
S . When the choice of the base point or the scaling sequence is clear, we will simply write

Coneω(S). We will denote the equivalence class of (xi) by (xi)
ω , so dω

S ((xi)
ω ,(yi)

ω) = d∗((xi),(yi)).

Definition III.2.6. A map f between two metric spaces (S,dS) and (T,dT ) is called a (λ ,C)-quasi-isometric embedding

if for all s, t ∈ S
dS(s, t)

λ
−C ≤ dT ( f (s), f (t))≤ λdS(s, t)+C.

f is called ε-quasi-surjective if for all t ∈ T , there exists an s ∈ S such that dT ( f (s), t)≤ ε . A map f is called

a (λ ,C,ε)-quasi-isometry if f is a (λ ,C)-quasi-isometric embedding, and is ε-quasi-surjective. When we

don’t care about the quasi-isometry constants, we will simply call f a quasi-isometry and say that S and T

are quasi-isometric.

Definition III.2.7. Let S be a metric space. A path p: [0, `]→ S is called a (λ ,C)-quasi-geodesic if p is a

(λ ,C)-quasi-isometric embedding.

Definition III.2.8. Given a pointed metric space (S,x) and (λ ,C)-quasi-geodesic paths

pi: [0, `i]→ S such that the sequence `i/ci is bounded and (pi(0)) ∈ SNz , let L = limω`i/ci. If L 6= 0, define the

ω-limit of the paths pi, denoted

p = limω(pi): [0,L]→Coneω(S),
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by the following formula: p(x) =
(

pi

(
x `i

L

))ω

. If L = 0, define p = limω(pi):{0} → Coneω(S) by the

formula p(0) = (pi(0))ω .

Definition III.2.9. A geodesic in Coneω(S) is called a limit geodesic if it is an ω-limit of geodesic paths.

Note that the limit of geodesics is a geodesic in the asymptotic cone. Thus, if S is a geodesic metric space,

then so is Coneω(S).

A finitely generated group G can be considered as a metric space using the word metric arising from any

finite generating set X . Given an ultrafilter ω , we will denote the asymptotic cone of G with respect to ω by

Coneω(G) where we assume all scaling sequences are ci = i unless otherwise specified, and the observation

point will always be (e)ω . Note that G is (1,0, 1
2 ) quasi-isometric to its Cayley graph Γ(G,X), and so its

asymptotic cone is isometric to the asymptotic cone of Γ(G,X). This is a geodesic space, and so we have that

Coneω(G) is a geodesic space.

The asymptotic cone of G depends on the choice of a finite generating set X , an ultrafilter ω , and the

choice of a scaling sequence (di). Note that changing the generating set of a group gives a quasi-isometric

Cayley graph, and so will give a bi-Lipschitz asymptotic cone. In general, however, the other choices can

matter, and a group can have many different asymptotic cones. For instance, Thomas and Velickovic exhibited

a group such that one of its asymptotic cones is an R-tree, and another is not simply connected [22]. These

two choices turn out to be closely related. Specifically, given any scaling sequence (ci) such that the sizes

of the sets Sr = {i|ci ∈ [r,r+ 1)} are bounded, and any ultrafilter ω , there exists an ultrafilter ω ′ such that

Coneω((ci),G) =Coneω ′((i),G) [19]. This justifies our choice to take all scaling sequences as ci = i unless

otherwise specified. In the case of groups, we will also always take the observation point to be (e).

Definition III.2.10. We say that a metric space S is transitive if for any two points s, t ∈ S there exists an

isometry φ :S→ S such that φ(s) = t.

Recall that for any group G, Coneω(G) is a transitive space, and that any asymptotic cone is complete.

If G is a finitely generated group, then G acts on its asymptotic cone by the formula g(gi)
ω = (ggi)

ω .

Given a subgroup H of a finitely generated group G, we denote by Coneω
G(H) the set of points in Coneω(G)

with a representative of the form (hi)
ω where all hi are in H.

III.3 Wreath products

We finish with a short section recalling the definition and setting our notation for wreath products.

Definition. Given finitely generated groups A and B, we denote by A(B) the set of functions f : B→ A with

finite support.
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Definition. Given two finitely generated groups A and B, B acts on A(B) by the following formula. If b1,b2

are elements of B, and f is an element of A(B), then (b1 f )(b2) = f (b2b1). The semidirect product of B and

A(B) with respect to this action is denoted by A oB and is called the wreath product of A and B. We refer to

the subgroup A(B) as the base group of the wreath product.

Wreath products of particular interest for our purposes as they provide a natural example of a finitely

generated group with non-finitely generated subgroups. In particular, the base group will not be finitely

generated whenever A is infinite.
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Chapter IV

The generalized distortion function

IV.1 Basic properties and examples

We begin by showing that the generalized distortion function is essentially independent of the choice of the

finite generating set.

Proposition IV.1.1. Let φ be a quasi-isometry between finitely-generated groups G1 and G2. Let X1,X2 be

finite generating sets for G1,G2 respectively. Let H1 be a subgroup of G and let H2 = φ(H1). Then δ
G1,X1
H1 ∼

δ
G2,X2
H2 . In particular if X ,Y are finite generating sets for a group G with subgroup H, then δ

G,X
H (k,m,n) ∼

δ
G,Y
H (k,m,n).

Proof. Let φ be a (λ ,C) quasi-isometry from G1 to G2 such that φ(H1) = H2. Let D = λ +C. Fix

(k,m,n) ∈ T with m > Dk, and let h ∈ H1
k be such that |h|X1≤ n. Note that this means we can find a nat-

ural number p and a sequence 1 = h1,h2, . . .hp = h such that dX1(hi,hi+1) ≤ k for all 1 ≤ i < p. This im-

plies that dX2(φ(hi),φ(hi+1)) ≤ Dk, for all 1 ≤ i < p, so φ(h) ∈ H2
Dk . Further, we have that |φ(h)|X≤ Dn.

Thus, |φ(h)|YH2 ,m≤ δ
G2,X2
H2

(Dk,m,Dn). This implies that we can find a natural number q≤ δH2,X (Dk,m,Dn)

and a sequence 1 = h1,h2, . . .hq = h such that dX2(φ(hi),φ(hi+1)) ≤ m for all 1 ≤ i < q. This means that

dX1(hi,hi+1) ≤ Dm for all 1 ≤ i < q, and so |h|YH1
Dm
≤ q ≤ δH2,X (Dk,m,Dn). Thus, δ

G1,X1
H1 (k,Dm,n) ≤

δ
G2,X2
H2 (Dk,m,Dn). By symmetry, δ

G1,X1
H1 ∼ δ

G2,X2
H2 .

Lemma IV.1.2. let H be a subgroup of a group G with finite generating set X. If H ′ is a finite index subgroup

of H, then δ G
H ′ ∼ δ G

H .

Proof. As H ′ is finite index in H, there exists a constant C such that for all h ∈ H, there exists an h′ ∈ H ′

such that dX (h,h′)≤C. Fix (k,m,n) ∈ T . Let h ∈ H ′ be such that h ∈ H ′k and |h|X≤ n. Let p = δ G
H (k,m,n).

there exists a natural number q ≤ p and q elements of H, e = h1, h2, . . .hq = h, with dX (hi,hi+1) ≤ m. For

each hi with 1 < i < q, let h′i be an element of H ′ with dX (hi,h′i) ≤C. As dX (h′i,hi) ≤ m+2C, we have that

δ
G,X
H ′ (k,m+ 2C,n) ≤ δ G

H (k,m,n) and so δ G
H ′ � δ G

H . On the other hand, let h be an element of H such that

|h|X≤ n and h ∈ Hk. Let e = h1,h2 . . .hp = h be such that for all 1 ≤ i ≤ p− 1, dX (hi,hi+1) ≤ k and for all

1≤ i≤ p, hi ∈H. For each 1≤ i≤ p there exists an h′i ∈H ′ such that dX (hi,h′i)≤C. Therefore dX (h′i,h
′
i+1)≤

2C+ k for all 1≤ i≤ p−1. Therefore hp ∈ H2C+k. There exists a natural number q≤ δ G
H ′(2C+ k,m,n+C)

and q elements of H ′,e = h′′1 ,h
′′
2 , . . .h

′′
q = h′p, with dX (h′′i ,h

′′
i+1) ≤ m for all 1 ≤ i ≤ p−1. As dX (h′p,h) ≤C,

we have that |hp|Ym+C≤ q+1, and so δ
G,X
H (k,C+m,n)+1≤ δ

G,X
H ′ (k+2C,m,n+C). Therefore, we have that

δ G
H ∼ δ G

H ′ .
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Theorem IV.1.3. Let F(X) be the free group on the finite generating set X, and let H be a subgroup of F(X).

Then δ
F(X)
H (k,m,n)� n/m.

Proof. Fix (k,m,n)∈ T . Let h∈Hk, with |h|X≤ n. As h∈Hk, we can find p∈N, and wi ∈ F(X) for 1≤ i≤ p

such that h is freely equal to the concatenation w1w2 . . .wp and for all 1≤ i ≤ p, |wi|X≤ k. Denote by w the

concatenation w1w2 . . .wp. Let `1`2 . . . `q be a reduced representation of h with each `i ∈ X . Fix a reduction of

w in F(X). Let f (i) be the preimage of `i under this reduction in w1w2 . . .wp. Let wi j be such that f ( j) ∈ wi j .

Observe that for all 1 ≤ i < j ≤ q, if wi, j is the portion of w beginning at f (i) and ending at f ( j), then wi, j

is freely equal to `i`i+1 . . . ` j, and hence |wi, j|X= j− i+1. This implies that for all 1 ≤ m j < m( j+1) ≤ q,

|wim j wim j+1 . . .wim( j+1)−1 |X≤ m+ 2k, as f (m j) is within k of the start of wm j, and f (m( j+ 1)) is within k of

the end of wm( j+1)−1. Finally, as

h = (w1w2 . . .wim−1)(wim . . .wi2m−1) . . .(wib(n/m)c−1 . . .wib(n/m)c−1)(wib(n/m)c . . .wp)

we have that |h|Ym+2k≤ b(n/m)c+1. We conclude that δ G
H � n/m.

Definition IV.1.4. Given a function f from a group B to a group A, the support of f , denoted supp( f ) is the

set {b ∈ B | f (b) 6= 1}.

Definition IV.1.5. Given a group B with finite generating set X , and a subset S ⊂ B, the reach of B, denoted

reach(B), is the length of the shortest loop in Γ(B,X) which starts and ends at 1, and goes through every point

in S.

In [4], Olshanskii and Davis present a formula for computing the word length of an element of wreath

products of finitely generated groups A and B. Here we present a version of that formula for elements in the

natural copy of A(B) in the wreath product.

Lemma IV.1.6. [4] Let A and B be groups with finite generating sets X and Y respectively, and let f be an

element in the natural copy of B(A) in A oB. Then | f |X∪Y= reach(supp( f ))+∑b∈supp( f )| f (b)|X .

Theorem IV.1.7. Let A and B be finitely generated groups. Let G = A oB, and let H be the natural copy of

A(B) in G. Then, δ G
H (m,n,k)� n/m.

Proof. Fix (k,m,n) ∈ T . Let f ∈ Hk with | f |X∪Y≤ n. By Lemma IV.1.6, reach( f )≤ n and

∑
b∈supp( f )

| f (b)|X≤ n.
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Figure IV.1: Theorem IV.1.6

Let ` be a loop in Γ(B,Y ) starting and ending at e and containing all elements in supp( f ) with length equal

to reach( f ). As f ∈ Hk, if b ∈ supp( f ), then |b|Y≤ k. For 1 ≤ i ≤ dn/me, let pi be a subpath of ` of length

less than or equal to m such that each pi is disjoint and the pis cover `. For each pi let b1
i be the first point

on pi in supp( f ), and let b2
i be the last point on pi in supp( f ). Let p1

i be a geodesic connecting e to b1
i , and

let p2
i be a geodesic connecting b2

i to e. Let `i be the the loop obtained by concatenating p1
i , the portion of pi

between b1
i and b2

i and p2
i . The length of `i is at most 2k+m≤ 3m. Let fi be the restriction of f to pi, and let

ni = ∑
b∈pi

| f (b)|X .
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As the length of `i ≤ 3m, | fi|Y4m≤ dni/me. Thus as f = f1 f2 . . . fdn/me, we have that

| f |Y4m≤
dn/me

∑
i=1

⌈ni

m

⌉
≤
dn/me

∑
i=1

(
ni

m
+1)≤ 2

n
m
+1.

Thus, δH,X∪Y (k,4m,n)≤ 2n/m+1, so δH � n/m.

IV.2 A group with uncountably many incomparably distorted subgroups

We will show that the set of all isoperimetric spectra of 2 generated groups is contained in the set of all

generalized distortion functions of subgroups of F2×F2. In order to prove this, we need the following result

from [16].

Lemma IV.2.1. Let ∆ be a Van Kampen diagram over a presentation 〈X | R〉, where X is a symemtric

generating set, and R is closed under cyclic shifts. Let w be the boundary word of ∆. Then w is equal in F(X)

to a word of the form u1r1u2r2 . . .rnun+1, where:

1. For all 1≤ i≤ n, Ri ∈ R;

2. n≤ Area(∆);

3. u1u2 . . .un+1 = 1;

4. ∑
n+1
i=1 |ui|X≤ 4e where e is the number of edges in ∆.

Theorem IV.2.2. Let G be the group given by the presentation 〈X | R〉, and let H be the subgroup of F2×F2 =

〈x,y〉×〈a,b〉 generated by elements of the form ( f , f ) for f ∈ F2 and (1,r) for r ∈ R. Then, fG ∼ f δH , where

fG is the isoperimetric spectrum of G.

Proof. Fix (k,m,n) ∈ T with k ≥ 2. Let h = (u,v) ∈ Hk such that |h|X= |u|X+|v|X≤ n. We can write h =

(h1,h1)(h2,h2) . . .(hp,hp)(1,w), with each |hi|X≤ m, and p ≤ d|u|X/me ≤ dn/me. Note that (1,w) ∈ Hk,

as h ∈ Hk, and as k ≥ 2, each (hi,hi) ∈ Hk. Further, |w|X≤ |u|X+|v|X≤ n. As w ∈ Hk, w evaluates to 1 in

the group given by the presentation 〈a,b | Sk〉 where Sk = {w ∈ 〈〈R〉〉 | |w|X≤ k}. Let ∆ be a minimal Van

Kampen diagram for w over the presentation 〈a,b | Sm〉. This diagram will have less than fG,X (k,m,n) = q

cells. Thus, by Lemma IV.2.1, we can write w as u1r1u2r2 . . .rquq+1, with each ri ∈ Sm, u1u2 . . .uq+1 = 1, and

∑
n+1
i=1 |ui|X≤ 4e, where e is the number of edges in ∆. As each ri ∈ Sm, |ri|≤ m. The number of edges in ∆

will be less than or equal to mq+ |w|X , as each edge of ∆ either belongs to a face of ∆, or is on the boundary

of ∆. We can also write each ui as a product of t elements of F2 whose length is less than or equal to m, with
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t ≤ d|ui|X/me. Thus, we can write w as a product of no more than

f (k,m,n)+
q+1

∑
i=1
d|qi|/me ≤ f (k,m,n)+

q+1

∑
i=1
|ui|/m+1

≤ q+4e/m+q+1≤ q+4(mq+ |w|)/m+q+1≤ 6q+4n/m+1

elements of length less than or equal to m. This in turn means that |w|Y2m≤ 6 f (k,m,n) + 5n/m + 1, so

δ G
H � f fG.

Now fix (k,m,n) ∈ T , and let w be a word equal to 1 in 〈a,b|Sk〉 of length less than or equal to n whose

area with respect to the presentation 〈a,b | Sm〉 is equal to f (k,m,n). Note that if (u,v) ∈H, then u =G v. Let

(u1,v1) . . .(up,vp) = (1,w) with |(ui,vi)|X≤ m for all 1≤ i≤ p. We can then write that

w = Π
p
1u1u2 . . .ui(u−1

i vi)(u1u2 . . .ui)
−1,

where each u−1
i vi ∈ Sm. Thus, p≥ AreaSm(w) = f (k,m,n), so δ G

H � f fG.

In [17], it is shown that there is a collection of uncountably many 2-generated groups with pairwise

incomparable isoperimetric spectra. It therefore follows from IV.2.2 that F2×F2 contains an uncountable

collection of subgroups with incomparable distortion. Further, [17] shows that there exist groups whose

isoperimetric spectrum depends essentially on k, and so the same result follows for generalized distortion

functions of subgroups of groups.
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Chapter V

Generalized distortion and asymptotic cones

V.1 Computing the generalized distortion function in the case where H is finitely generated

We begin by defining a variant of distortion that will help us calculate generalized distortion for a variety of

finitely generated subgroups of finitely generated groups.

Definition V.1.1. Let H be an infinite subgroup of a group G and let Y,X be finite generating sets of H and

G respectively. Define the lower distortion function of H in G, denoted ∇
G,X
H,Y (n), by the formula

∇
G,X
H,Y (n) = min{|h|Y | |h|X> n,h ∈ H}.

We consider lower distortion up to the same equivalence as distortion, and denote by ∇G
H the function

∇
G,X
H,Y for some choices of the finite generating sets X ,Y .

Example V.1.2. For p ∈ N, p ≥ 2, let G = BS(1, p) = 〈a,b|b−1ab = ap〉, and let H = 〈a〉. Note that apn
=

b−nabn, and so ∆G
H(n)� pn. In fact, ∆G

H ∼ pn [9]. Next, note that if k < pn, then we can write k = ∑
n−1
i=0 ci pi,

with 0≤ ci < p. This in turn means that we can write ak = ∏
n−1
i=0 b−iacibi = (∏n−1

i=0 acib−1)bn−1. This implies

that |ak|X≤ n+n(p) = n(p+1). Thus, ∇G
H(n)� pn.

Example V.1.3. Let G be the discrete Heisenberg group, i.e. the group of all upper triangular integer matrices

with ones along the diagonal, and let H be the center of this group, i.e. the subgroup of all matrices of

the form


1 0 c

0 1 0

0 0 1

 with c ∈ Z. Let X be the generating set for the group G given by G = 〈x,y,z〉 where

x =


1 1 0

0 1 0

0 0 1

, y =


1 0 0

0 1 1

0 0 1

, and z =


1 0 1

0 1 0

0 0 1

, and let Y = {z}, a generating set for H. Note that

xnynx−ny−n = zn2
. Now let m be a natural number such that (n− 1)2 < m < n2. We know that |zn2 |X≤ 4n.

Thus,

|zm|X≤ 4n+(n2− (n−1)2) = 4n+2n−1≤ 6n.

Thus, if m≤ n2, then |zm|X≤ 6n, and so ∇G
H(n)� n2.
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Now we will show that if |h|X≤ n, then |h|Y≤ n2. Let f :G→N be the function given by f


1 a b

0 1 c

0 0 1

=

|a|, and let k:G→ N be the function given by k


1 a b

0 1 c

0 0 1

= |b|. We have that

f (gx)≤ f (g)+1, f (gy) = f (g), f (gz) = f (g),

and thus if |g|X≤ n, then f (g)≤ n. Similarly,

k(gx) = k(g), k(gy)≤ f (g)+ k(g), k(gz)≤ k(g)+1.

Thus if |g|X≤ n, then k(g)≤ n2. If h∈H, then |h|Y= k(h), and so if |h|X≤ n, then |h|Y≤ n2. Thus, ∆G
H(n)� n2.

Example V.1.4. Let G = 〈a,b,c|[a,b] = 1, [a,c] = 1,c−1bc = b2〉 ∼= Z×BS(1,2), and let H = 〈a,b〉 ∼= Z×Z.

Let X = {a,b,c}. Note that |b2n |X≤ 2n+1, so ∆G
H(n)� 2n, but |an|X= n, and so ∇G

H(n)� n. Thus, we have

that ∆G
H 6∼ ∇G

H .

Recall that if H is a finitely generated subgroup of the finitely generated group G, then the function δ is

essentially independent of the variable k, as for sufficiently large k, Hk = H.

Note that if f1, f2, g1 and g2 are strictly increasing functions such that f1(n) ∼ f2(n) and g1(n) ∼ g2(n)

then f1(n)/g1(m)∼= f2(n)/g2(m). Thus, we can state the following proposition.

Proposition V.1.5. For a finitely generated, infinite subgroup H of a finitely generated group group G, the

following inequalities hold

∆G
H(n)

∆G
H(m)

� δ
G
H (k,m,n)� ∆G

H(n)
∇G

H(m)
. (1)

Proof. First, choose a finite generating set X for G containing a generating set Y for H. Fix n ∈ N and

let h be an element of H such that |h|X≤ n, and |h|Y= ∆
G,X
H,Y (n). By definition, if k ∈ Ym then |k|X≤ m,

and so |k|Y≤ ∆
G,X
H,Y (m). Thus, |h|Ym≥

⌈
∆

G,X
H,Y (n)/∆

G,X
H,Y (m)

⌉
, and we obtain the first inequality in (1). For the

next inequality, note that if |h|X≤ n, then |h|Y≤ ∆
G,X
H,Y (n). Thus, we can write h as a product of at most⌈

∆
G,X
H,Y (n)/(∇

G,X
H,Y (m)−1)

⌉
elements of length less than or equal to ∇

G,X
H,Y (m)−1 with respect to Y . Note that

if h is an element of H such that |h|Y< ∇
G,X
H,Y (m), then by the definition of ∇

G,X
H,Y , |h|X≤ m, and h ∈ Ym. This

gives the second inequality in (1).
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Definition V.1.6. We call a subgroup H of a group G uniformly distorted if ∆G
H ∼ ∇G

H .

Combining the previous observations gives the following corollary.

Corollary V.1.7. If H is a uniformly distorted finitely generated subgroup of a finitely generated group G,

then δ G
H (k,m,n)∼ ∆G

H (n)
∆G

H (m)
∼ ∆G

H (n)
∇G

H (m)
.

Example V.1.8. Example V.1.2 showed that if G = BS(1, p) = 〈a,b | b−1ab = ap〉 and H = 〈a〉, then H is

uniformly distorted in G, so we can apply Corollary 3.7 to get that δ G
H (k,m,n)∼ pn−m.

Example V.1.9. Example V.1.3 showed that if G is the discrete Heisenberg group, and H is the center of G

then H is uniformly distorted in G and we have from Corollary 3.7 that δ G
H (k,m,n)∼ (n/m)2 .

We conclude this section with an example demonstrating that for a group G with finitely generating set

X , δ
G,X
H (k,n−1,n) can grow very quickly.

Example V.1.10. Let H be a finitely generated subgroup of a finitely generated group G such that the mem-

bership problem is undecidable, and let X be a finite generating set for G containing a generating set of H.

The existence of such subgroups was demonstrated independently by Mihailova and Rips [20] [13]. Gro-

mov [9] showed that the distortion function of H in G is bounded by a computable function if and only if the

membership problem is solvable. Fix k such that Hk = H, and note that

∆
G,X
H,Y (n) = δ

G,X
H (k,1,n)≤ δ

G,X
H (k,1,2)δ G,X

H (k,2,3) . . . δ
G,X
H (k,n−1,n).

Thus, if δ
G,X
H (k,n− 1,n) is bounded by a computable function, then so is ∆

G,X
H,Y (n), a contradiction. Thus,

δ
G,X
H (k,n−1,n) is not bounded by any computable function.

V.2 Connectedness in asymptotic cones

We begin by defining an analog of the generalized distortion function for the case of a metric space S.

Definition V.2.1. Given a metric space S, a real number r > 0, and two points s, t ∈ S, an r-path connecting s

and t is a sequence of points s = s0, s1, . . . ,sk = t with dS(si,si+1)≤ r for all 0≤ i < k. We call k the length

of the r-path. We say a metric space S is r-connected if for any two points s, t ∈ S there exists an r-path

connecting s and t. If (S,s) is a pointed r-connected metric space, and t is in S, let |t|r be the length of the

shortest r-path connecting s and t.

Definition V.2.2. Let (S,s) be a proper r-connected pointed metric space. Define νS(m,n):R≥r×R≥0→ N

to be max{|t|m| dS(s, t)≤ n}.
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Lemma V.2.3. νS is well-defined, i.e. for all real numbers m ≥ r,n there exists a constant K ∈ R such that

for any point t ∈ S with d(s, t)≤ n, |t|m≤ K.

Proof. Fix n∈R≥0, and let B be the closed ball centered at s of radius n. As B is compact, it can be covered by

some finite number p of open balls of radius m. Let s1, . . .sp be the centers of these balls. As S is r-connected

for each si there exists a sequence of points

s = s0,i, s1,i, . . . , sKi,i = si

with dS(s j,i,s j+1,i)≤ m for all 0≤ i < Ki. Let K = max{Ki | 1≤ i≤ p}. Any point in B is within m of some

si, and so νS(m,n)≤ K +1.

If H is a finitely-generated subgroup of a finitely generated group G, and X is a finite generating set of G,

then H is n-connected and proper for some n ∈ N with respect to the word metric induced by X . It is clear in

this case that δ G
H is the restriction of νH to N×N, where we consider H with the word metric induced from

G, and k is large enough that Yk generates H.

Definition V.2.4. Given two functions f ,g:R≥r×R≥0→R which are non-increasing in the first variable, and

non-decreasing in the second variable, we write f �ν g if there exists a constant C ∈ R such that f (Cm,n)≤

Cg(m,Cn) for all m,n ∈ R≥0,m≥ r and we say that f ∼ν g if f �ν g and g�ν f .

Again, we will repress the subscript ν whenever the relevant equivalence relation is clear from context.

Essentially, ν measures how far away S is from being a geodesic metric space. For instance, if S is

geodesic, then νS(m,n) = dn/me.

Lemma V.2.5. If (S,s),(T, t) are proper, r-connected pointed metric spaces, and f is a (λ ,C,ε)-quasi-

isometry between S and T such that f (s) = t, then, νS ∼ νT .

Proof. First, fix n ∈ R≥0,m ∈ R≥r, and let y ∈ S with dS(s,y) ≤ n. This implies that dT (t, f (y)) ≤ λn+C.

Let K = νT (m,λn+C). There exist K +1 points y0, y1 . . .yK such that

t = y0, y1, . . . , yK = f (y)

with dT (yi,yi+1)≤m. By quasi-surjectivity, for each i there exists an y′i ∈ S such that dT ( f (y′i),yi)≤ ε . Thus,

dT ( f (y′i), f (y′i+1))≤ m+2ε, and so

dS(y′i,y
′
i+1)≤ λ (m+2ε)+C ≤ λ

′m
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Figure V.1: Lemma V.2.5

for some fixed λ ′ as m≥ r. Note that we can choose y′0 to be s, and y′K to be y. Thus νS(λ
′m,n)≤ νT (m,λn+

C). If λn+C ≤ m, we have that νT (m,λn+C) = 1, so we can assume that λn+C is greater than r as well,

and we have that νS(λ
′m,n)≤ νT (m,λ ′′n) for some fixed λ ′′. By symmetry, νT � νS, and so νT ∼= νS.

Definition V.2.6. Call a metric space S asymptotically transitive if Coneω(S) is transitive for all ultrafilters

ω .

Theorem V.2.7. Let r be a positive number and let (S,s) be an asymptotically transitive proper r-connected

pointed metric space. The following are equivalent:

1. there exists a function f :R≥0→ R≥0 such that for all m≥ r,n≥ 0,

νS(m,n)≤ f (n/m),

2. there exists a constant K such that νS(i,4i)≤ K for all real numbers i≥ r,

3. Coneω(S) is path connected for all non-principal ultrafilters ω ,
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4. Coneω(S) is connected for all non-principal ultrafilters ω .

Note that the implication 1)⇒ 2) is clear, simply by letting K = f (4). The implication 3)⇒ 4) is also

immediate.

To show that 2) implies 3) we will need the following lemma.

Lemma V.2.8. Let r ∈ R≥0. If (S,s) is an asymptotically transitive, proper, r-connected, pointed metric

space and there exists a constant K such that νS(i,4i) ≤ K for all real numbers i ≥ r, then for any points

p = (yi)
ω ,q = (zi)

ω ∈Coneω(S), there exist K +1 points

p = p0, p1, p2, ..., pK = q

in Coneω(S) such that dω
S (pi, pi+1)≤ dω

S (p,q)/2.

This lemma is reminiscent of a lemma in [18] used to prove that any group satisfying a quadratic isoperi-

metric inequality has a simply connected asymptotic cone. In that paper, Papasoglu used the isoperimetric

inequality to build sequences of loops to fill a loop in the asymptotic cone. This is very similar to the approach

we will use to prove that 2) implies 3). Similar ideas can also be found in [12], [3], and [19]

Proof. If (yi)
ω = (zi)

ω , the result is trivial, so let (yi)
ω and (zi)

ω be points in Coneω(S) such that

dω
S ((yi)

ω ,(zi)
ω) =C > 0.

Note that by the transitivity of Coneω(S), we can assume that (yi)
ω = (s)ω . This means in particular that

dS(s,zi)≤ 2Ci ω-almost surely. Note that Ci/2≥ r ω-almost surely, and hence νS (Ci/2,2Ci)≤K ω-almost surely.

It follows that there exist points s = yi,0, yi,1, ..., yi,K = zi with dS(yi, j,yi, j+1) ≤ Ci/2 for all 0 ≤ j ≤ K− 1

ω-almost surely. Now define p j = (yi, j)
ω . Note that

dω
S (p j, p j+1) = limω dS(yi, j,yi, j+1)/i≤C/2,

and so we have our desired p0, ..., pK .

We will also need the following Lemma in order to prove that 4) implies 1).

Lemma V.2.9. If S is a connected metric space, then for any real number r > 0, S is r-connected.

Proof. For a fixed r > 0, and fixed p∈ S, consider the set C of points q such that there exists a finite sequence

of points p = p0, p1 . . . pK = q with d(pi, pi+1) ≤ r. If x ∈ C, then clearly Br(x) ⊂ C, and so C is open.
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Similarly, if x 6∈C, then Br(x)⊂ S \C, so C is closed. Hence, C is open, closed and non-empty, so C = S, as

desired.

We are now ready to prove the theorem.

Proof. We begin by proving 2) implies 3).

Let p,q ∈ Coneω(S), and let C = dω
S (p,q). We will define a uniformly continuous function f from

numbers of the form a/Kn with a,n ∈ N a ≤ Kn to the asymptotic cone such that f (0) = p and f (1) = q.

Note that this is sufficient, since asymptotic cones are complete, and these numbers are dense in the interval

[0,1].

We will define the function inductively as follows. First, define f (0) = p and f (1) = q. Then, fix n ∈ N,

and assume we’ve defined f on all numbers of the form a/Kn in such a way that for all s ∈ N∪{0} with

s < Kn

dω
S

(
f
( s

Kn

)
, f
(

s+1
Kn

))
≤ C

2n .

Now let t = (K`+ b)/Kn+1 where 1 ≤ b < K and ` ∈ N∪{0}, ` ≤ Kn−1 According to Lemma V.2.8, there

exist points p0, p1, . . . , pK such that

f
(

`

Kn

)
= p0, p1, ..., pK = f

(
`+1
Kn

)
,

and

dω
S (pi, pi+1)≤

dω
S ( f ( `

Kn ), f ( `+1
Kn ))

2
≤ C

2n+1 .

Let f (t) = pb. It is straightforward to verify that f is uniformly continuous.

We will now show that 4) implies 1) by contradiction. Assume that Coneω(S) is connected, and that

νS(m,n) is not bounded by any homogeneous function. Hence there exists a c∈R>0 such that νS(n,cn) is not

bounded. Let ni be a sequence of natural numbers such that νS(ni,cni)≥ i. Let ω be an ultrafilter containing

{ni|i ∈ N}. Consider a sequence of points ti ∈ S such that dS(s, ti) ≤ ci, and |ti|i= νS(i,ci). According to

Lemma V.2.9, we can pick points (s)ω = p0, p1, ..., pk = (ti)ω in Coneω(S) such that dω
S (pi, pi+1) ≤ 1

2 . Let

p j = (ti, j)ω . We have that dS(ti, j, ti, j+1) ≤ i ω-almost surely, so νS(i,ci) = |ti|i≤ k ω-almost surely. On the

other hand if j > k, then νS(n j,cn j)> k. However,

{n j| j > k}= {n j| j ∈ N}∩{n|n > nk} ∈ ω,

a contradiction.

26



We now want to study how distortion of groups relates to connectedness in asymptotic cones. We begin

by defining a natural subspace of the asymptotic cone of G corresponding to H.

Definition V.2.10. Let T be a subspace of a metric space S. Denote by Coneω
S (T ) the set of all points in

Coneω(S) with a representative (ti)ω with each component in T .

Lemma V.2.11. For all subspaces T ⊂ S, Coneω
S (T ) is closed in Coneω(S).

Proof. Note that Coneω
S (T ) = Coneω(T ) where we consider T under the induced metric from S. Since

asymptotic cones are complete, this is a complete metric space. A complete subspace of a complete metric

space is closed and so we have that Coneω
S (T ) is closed in Coneω(S).

Note that we can think about a subgroup H of a group G as a subspace of the metric space we get by

considering the word metric on G.

Lemma V.2.12. If H is a subgroup of a finitely generated group G such that Coneω
G(H) is connected for all

ultrafilters ω , then H is finitely generated.

Proof. Let H be a subgroup of a finitely generated group G, and let X be a finite generating set for G. We

call an element h of H reducible if there exists a constant k ∈ N and k elements of H, h1, h2 . . . hk, with

|hi|X< |h|X for all 0 ≤ i ≤ k such that h = h1h2 . . .hk. We call an element h ∈ H irreducible if it is not

reducible. We can assume that there exists no i such that all elements h∈H with |h|X≥ i are reducible, as this

would imply that H is finitely generated. Thus we can find a sequence (hi) of irreducible elements of H such

that |hi|X> |hi−1|X for all i. Fix an ultrafilter ω and consider the asymptotic cone Coneω
G(H) with respect to

ω and the scaling sequence (|hi|X ). Assume this asymptotic cone is connected. As (hi)
ω ∈Coneω

G(H), there

exist points (e)ω = p0, p1, . . . , pk = (hi)
ω with d(pi, pi+1)≤ 1/4 for all 0≤ i < k. Let p j = (hi, j)

ω . We have

that |h−1
i, j hi, j+1|X≤ |hi|X/2 ω-almost surely. Finally, note that hi = hi,k = h1,i(h−1

i,1 hi,2) . . .(h−1
i,k−1hi,k). This,

however, implies that hi is ω-almost surely reducible, a contradiction.

We can apply Theorem V.2.7 to a subgroup H of a finitely generated group G, where H is given the word

metric induced from G. In this case, the relationship between νH and δ G
H combined with Lemma V.2.12 gives

the following theorem.

Theorem V.2.13. The following are equivalent for a subgroup H of a finitely generated group G:

1. H is finitely generated and there exists a constant K such that δ G
H (k, i,4i) ≤ K for all i and for all

sufficiently large k.

2. H is finitely generated and there exists a function f such that δ G
H (k,m,n) ≤ f ( n

m ) for all sufficiently

large k.
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3. Coneω
G(H) is path connected for all ultrafilters ω .

4. Coneω
G(H) is connected for all ultrafilters ω .

Example V.2.14. We have previously seen that if G = BS(1, p) = 〈a,b | b−1ab = ap〉, and H = 〈a〉 then

δ G
H (k,m,n) ∼ pn−m. Thus, δ G

H (k, i,2i) is unbounded, and we can conclude from Theorem V.2.7 that there

exists an ultrafilter ω such that Coneω
G(H) is disconnected.

Example V.2.15. If G is the discrete Heisenberg group, and H is the center of G, then we have seen in a

previous example that δ G
H (k,m,n) ∼ n2/m2, and so δ G

H (k, i,4i) is bounded, and Coneω
G(H) is connected for

all ultrafilters ω .

We now want to relate the connectedness of Coneω
G(H) to the distortion of H in G. In order to do this, we

need a couple preliminary results.

Definition V.2.16. A function f :R≥1 → R is called superlinear if for all k ∈ R the set {x | f (x) ≤ kx} is

bounded. f is called sublinear if for all k ∈ R the set {x | f (x)≥ kx} is bounded.

Lemma V.2.17. Let f :R≥1 → R be an increasing, sublinear function with f (r) ≤ r for all real numbers

r ≥ 1. There exists a function `:R≥1→ R≥1 satisfying the following properties:

1. for all m,n ∈ N, `(m)+ `(n)≥ `(m+n).

2. for all n ∈ N, `(n)≥ f (n).

3. for all k ∈ N, there exists a pk ∈ R such that ` is constant on the interval [pk,kpk].

Proof. We will define pk and ` by induction on k. First let p1 = 1 and let `(1) = 1. Assume we have defined

pk and `(n) for n≤ kpk in a way that satisfies properties 1-3. Let pk+1 be the least real number such that for

all r ∈ R, if r ≥ (k+ 1)pk+1, then f (r) ≤ r/(k+ 1)!. For s ∈ R, if kpk < s ≤ pk+1 define `(s) = s/k!. For

s ∈ R, pk+1 ≤ s≤ (k+1)pk+1, define `(s) = pk+1/k!. By definition,

`((k+1)pk+1) = pk+1/k!= (k+1)pk+1/(k+1)! .

We will now show that ` satisfies properties 1-3. First, fix r ∈ R≥1, and let k ∈ N such that kpk ≤ r ≤

(k+1)pk+1. If kpk < r < pk+1, then `(r) = r/k!, and if s < r, then `(s)≥ s/k!. Thus, if p+q = r, then

`(p)+ `(q)≥ p/k!+q/k!= r/k!= `(r).
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If pk+1 < r ≤ (k+ 1)pk+1, then `(r) = `(pk+1), and property 1 follows immediately as ` is increasing. For

s ∈ R, if kpk ≤ s≤ pk+1, then `(s) = s/k!> f (s) by definition. If pk+1 ≤ s≤ (k+1)pk+1, then

`(s) = `((k+1)pk+1) = (k+1)pk+1/(k+1)!≥ f ((k+1)pk+1)≥ f (s),

so ` satisfies property 2. It is clear that this definition of ` satisfies property 3.

We are now ready to relate the connectedness of Coneω
G(H) to the distortion of H in G.

Theorem V.2.18. If H is a finitely generated subgroup of a finitely generated group G, then the follow-

ing implications hold.

1. If ∆G
H(n) is linear, then Coneω

G(H) is connected for all ultrafilters ω .

2. If Coneω
G(H) is connected for all ultrafilters ω , then ∆G

H(n)� f for some polynomial f .

3. For every increasing, superlinear function φ :N→ N there exists a group G with a subgroup H such

that Coneω
G(H) is disconnected for some ultrafilter ω , but ∆G

H(n)� φ .

4. For all k ∈ N, there exists a group G with a subgroup H such that Coneω
G(H) is connected for all

ultrafilters ω , and ∆G
H ∼ nk.

Proof. We will begin by proving claim 1.

If H is a subgroup of G, then we can define a continuous function ρ from Coneω(H) to Coneω
G(H) by

ρ((hi)
ω) = (hi)

ω . For all h ∈ H, |h|X≤ C|h|Y for some fixed constant C, so ρ is well-defined. Assume

(hi)
ω ∈ Coneω

G(H). This means that there exists B such that for all i ∈ N, |hi|X/i ≤ B. Distortion is linear

means that there exists D such that
|hi|Y

i
≤ D
|hi|X

i
≤ DB.

Thus, ρ is surjective, and Coneω
G(H) is connected, as Coneω

G(H) is connected.

Now we prove the second claim in Theorem V.2.18.

Assume that Coneω
G(H) is connected in Coneω(G), and hence that δ G

H (k, i,2i) is bounded by some con-

stant K for all i for sufficiently large k. By induction we have that ∆G
H(2

n) = δ G
H (k,1,2n)≤ Kn for all n ∈ N.

Now let n ∈ N, and let m ∈ R such that 2m−1 ≤ n < 2m. We have that

∆
G
H(n)≤ ∆

G
H(2

m)≤ Km = (2m)log2 K ≤ (2n)log2 K .

Thus, ∆G
H(n)� nlog2 K .
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We will now prove the third claim of the theorem. Let φ be a superlinear, increasing function N→ N. φ

can be extended to an invertible, increasing, superlinear function from R≥1 to R. We can now apply Lemma

V.2.17 to φ−1 to get a function ` which is always larger than φ−1. We can then restrict ` to the natural

numbers and take ceilings to get a function from N to N. We can extend this to a function from Z to Z by

defining `(0) = 0 and `(−z) = `(z) for z < 0. As `≥ φ−1, we have that φ(`(n))≥ n. If φ is subexponential,

then this ` now satisfies all of the conditions of Theorem III.1.7, and hence there exists a group G = 〈X〉, a

constant C and an embedding ψ:Z→ G such that

`(n)
C
≤ |ψ(n)|X≤C`(n).

Now note that if |ψ(n)|X≤ m, then `(n) ≤C|ψ(n)|X≤Cm, and so n < φ(`(n)) ≤ φ(Cm). Hence, distortion

is bounded by φ . On the other hand, `(pk) = `(pk +1) = · · · = `(kpk) implies that C|ψ(q)|X> `(pk) for all

pk ≤ q ≤ kpk while |ψ(kpk)|X≤C`(pk), and so δ G
H (k, `(pk)/C,C`(pk)) ≥ k. By Theorem V.2.7, Coneω

G(H)

is disconnected for some ultrafilter ω .

Note that if φ is superexponential, then claim 2 of Theorem V.2.18 shows that Coneω
G(H) is not connected

for all ultrafilters ω .

Part 4 of the theorem can also be proven using this method.

Fix k ∈ N, and for z ∈ Z let `(z) =
⌈
|z|

1
k

⌉
. Let G be a group with finite generating set X and ψ an

embedding of Z into G such that
`(z)
C
≤ |ψ(z)|X≤C`(z).

Note that if |ψ(z)|X≤ m, then

|z|1/k≤
⌈
|z|1/k

⌉
= `(z)≤C|ψ(z)|X≤Cm,

which implies that |z|≤ Ckmk. Thus ∆G
H(m) � mk. Now note that `(mk) = m, so |ψ(mk)|X≤ Cm, which

implies ∆G
H(Cm)≥mk. Thus, ∆G

H(m)∼mk. The above calculations show that if |ψ(z)|X≤ 4i, then |z|≤ 4kCK ik.

Further, if |z|≤ (i/C)K then |ψ(z)|X≤C`(z)≤ i. Thus, δ G
H (k, i,4i)≤ 4kC2k, and so by Theorem V.2.7 we have

that Coneω
G(H) is connected.
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Chapter VI

Convexity in asymptotic cones

VI.1 Strongly quasi-convex subgroups

Definition VI.1.1. A subspace T of a metric space S is called Morse if for all constants λ ,C there exists a

constant M such that any (λ ,C)-quasi-geodesic connecting points in T is contained in the M neighborhood

of T .

Definition VI.1.2. We say a subset T of a metric space S is strongly convex if every simple path starting and

ending in T is entirely contained in T .

Theorem VI.1.3. Let T be a closed subspace of a geodesic metric space S. Assume that Coneω
S (T ) is strongly

convex in Coneω(S) for all ultrafilters ω and for any two points t1, t2 in Coneω
S (T ) there exists an isometry φ

of Coneω(S) fixing Coneω
S (T ) such that φ(t1) = t2. Then T is Morse.

Proof. Assume T is not Morse. This means that there exist constants λ ≥ 1,C≥ 0 such that for all i∈N there

exists a (λ ,C)-quasi-geodesic pi: [0,ki]→ S parameterized by length, and si ∈ [0,ki] with pi(0) and pi(ki) in

T and dS(pi(si),T )≥ i. For all i let

di = sup{dS(pi(s),T ) | s ∈ [0,ki]}. (2)

We can choose our paths pi to make the sequence (di) increasing with all di >C. For each i, let si be a point

in [0,ki] such that dS(pi(si),T ) = di (such a point exists as paths are compact). Let s`i = max{si− 3λdi,0},

and similarly let sr
i = min{si + 3λdi,ki}. By (2) dS(pi(s`i ),T ) and dS(pi(sr

i ),T ) are less than or equal to di.

Let dS(pi(s`i ),T ) = k`i , and dS(pi(sr
i ),T ) = kr

i . Let t`i be a point in T such that dS(pi(s`i ), t
`
i ) = k`i , and let

p`i : [0,k
`
i ]→ Γ(G) be a geodesic from t`i to pi(s`i ). Note that by assumption we can take t`i = t where t is some

fixed point in T by taking an isometry fixing T sending t`i to t. Similarly, let pr
i : [0,k

r
i ] be a geodesic from

pi(sr
i ) to a point tr

i ∈ T such that dS(tr
i , pi(sr

i )) = kr
i . Denote by pm

i : [s`i ,s
r
i ]→ S the segment of pi from pi(s`i )

to pi(sr
i ).

We will need the following lemma.

Lemma VI.1.4. 1. For all i ∈ N, if s`i 6= 0, a ∈ [si,sr
i ], and b ∈ [0,k`i ], then

dS(pm
i (a), p`i (b))≥ di.

2. For all i ∈ N, if sr
i 6= ki, a ∈ [s`i ,si], and b ∈ [0,kr

i ], then dS(pm
i (a), pr

i (b))≥ di.
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Figure VI.1: Theorem 5.3

Proof. First, if s`i 6= 0, then s`i = si−3λdi. Now note that

dS(pm
i (a), pm

i (s
`
i ))≥

3λdi

λ
−C = 3di−C > 3di−di = 2di,

as pi is a (λ ,C) geodesic, and we assumed that di >C. Thus, as dS(p`i (b), pm
i (x

`
i ))≤ di, dS(pm

i (a), p`i (b))≥ di.

The second claim follows similarly.

We return to the proof of Theorem VI.1.3.

Fix an ultrafilter ω , and consider the asymptotic cone of S with respect to ω and the scaling sequence

di. By construction, dS(t, p`i (k
`
i )) ≤ di, and so (p`i (k

`
i ))

ω ∈ Coneω(G). As |s`i − sr
i |≤ 6λdi, we have that

dS(pi(s`i ), pi(sr
i ))≤ 6λ 2di+C,. and so as (pi(s`i ))

ω ∈Coneω((di),S), we have that (pi(sr
i ))

ω ∈Coneω((di),S).

As dS(pi(sr
i ), pr

i (k
r
i )) = d(pr

i (0), pr
i (k

r
i ))≤ di, we have that (pr

i (k
r
i ))

ω ∈Coneω((di),S). Thus we can define

k` = limω k`i
di
,s` = limω s`i

di
,sr = limω sr

i
di
,kr = limω kr

i
di
,
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and we can define p`: [0,k`]→ Coneω((di),S) as limω(p`i ), pm: [s`,sr]→ Coneω((di),S) as limω(pm
i ), and

pr: [0,kr] as limω(pr
i ). We have that p` and pr are geodesics, and pm is a (λ ,0) quasi-geodesic, and hence all

are simple.

Now we have three simple paths, p`, pm, pr, such that p`(0) and pr(kr) are in Coneω
S ((di),T ), and p` and

pr both intersect pm. Unfortunately, the concatenation of these three paths may not be simple, as p` and pr

could intersect pm in more than once. To deal with this case, we need the following lemma.

Lemma VI.1.5. Let s = limω si/di.

1. If a ∈ [0,k`],and b ∈ [s`,sr], with p`(a) = pm(b), then b≤ s.

2. if a ∈ [0,kr], and b ∈ [s`,sr], with pr(a) = pm(b), then b≥ s.

Proof. Note that if {i|k`i = 0} ∈ ω, then pl is a trivial path, and the result is clear. Otherwise, we have that

{i|k`i 6= 0} ∈ ω. In this case we can use Lemma VI.1.4 to say that if (bi)
ω is on p` and (ai)

ω is on pm after s,

then dω
S ((bi)

ω ,(ai)
ω)≥ limω di

di
≥ 1. The proof of claim 2 follows similarly.

Thus, we can form a simple path which starts and ends in Coneω
S ((di),T ) as follows. Let

p = max{t ∈ [s`,sr] | ∃a ∈ [0,k`] p`(a) = pm(t)},

and let

q = min{t ∈ [s`,sr] | ∃a ∈ [0,kr] pr(a) = pm(t)}.

We obtain a simple path by following p` up to pm(p), then following pm up to pm(q), and finally following

pr back to pr(kr). This path contains pm(s) by Lemma VI.1.5. Finally, as pm(s) = (pm
i (si))

ω ,

dω
S (pm(s),Coneω

S ((di)T )) = limω
dS(pm

i (si),Coneω
S ((di),T ))

di
= limω di

di
= 1.

Thus, we have a simple path starting and ending in Coneω
S (T ), which is not entirely contained in Coneω

S (T ).

In order to prove a partial converse of this statement we will need the following results from Drutu, Mozes

and Sapir [5]. Note that an error was found in this paper [1], but none of the following lemmas were affected.

Lemma VI.1.6. ( [5] Lemma 2.3) Let S be a geodesic metric space, ω an ultrafilter, and B a closed subset

of Coneω(S). If x,y are in the same connected component of Coneω(S) \B, then there exists a sequence of
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paths (pi)
n
i=1 such that each path is a limit geodesic in X, and the concatenation of the paths pi is a simple

path from x to y.

Definition VI.1.7. A path is called C bi-lipschitz if it is a (C,0) quasi-geodesic.

Lemma VI.1.8. ( [5] Lemma 2.5) In the same setting as Lemma 5.6, let p be a simple path in Coneω(S)

which is a concatenation of limit geodesics. For all δ there exists a constant C and a C bi-Lipschitz path

p′ such that the Hausdorff distance between p and p′ is less than δ , and p′ is also a concatenation of limit

geodesics connecting the same points.

Lemma VI.1.9. ( [5] Lemma 2.6) Let p be a C-bi-Lipschitz path in Coneω(S) which is a concatenation

of limit geodesics. There exists a constant C′ and a sequence of paths (pn) in S such that each pn is C′

bi-Lipschitz, and limω(pn) = p.

Theorem VI.1.10. If T is a Morse subspace of a metric space S, then Coneω
S (T ) is strongly convex in

Coneω(S).

Figure VI.2: Theorem 5.9
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Proof. Let p be a simple path in Coneω(S) starting and ending in Coneω
S (T ) but not entirely contained in

Coneω
S (T ). As Coneω

S (T ) is closed, there is a subpath p′ of p which starts and ends in Coneω
S (T ) but no

interior point of p′ is in Coneω
S (T ). Let x be the initial point of p and let y be the terminal point of p. Let x′,y′

be points on p′ such that

max{dω
S (x,x

′),dω
S (y,y

′)}<
dω

S (x,y)
2

,

and let pl , pr be limit geodesics from x to x′ and from y′ to y respectively. Let pm be a concatenation of

limit geodesics connecting x′ to y′ avoiding Coneω
S (T ). Such a path exists by Lemma VI.1.6 as Coneω

S (T ) is

closed. The concatenation of pl pm and pr may not be simple, so we let a be the first point of pl on pm, and

b be the last point of pr on pm. By the choice of x′ and y′, p` does not intersect pr, so we can obtain a simple

path by following p` from x to a, pm from a to b, and pr from b to y. Call this concatenation q.

Let z be a point on q such that dω
S (z,Coneω

S (T )) = d > 0. Using lemma VI.1.8, we can find a path q′ such

that q′ is a C bi-Lipschitz path which is a concatenation of limit geodesics, and the Hausdorff distance between

q and q′ is less than d
2 . Thus, there is a point z′ on q′ such that dω

S (z,z
′)≤ d/2, so dω

S (z
′,Coneω

S (T ))≥ d/2.

Finally we can apply Lemma VI.1.9 to this new path q′ to get that q′ = limω(qn) with each qn being a C′

bi-Lipschitz path starting and ending in T . Thus, as T is Morse, each path is in some fixed neighborhood of

T . This implies that q = limω(qn) is entirely contained in Coneω
S (T ), a contradiction.

Thus, if T is Morse in S, then Coneω
S (T ) is strongly convex in Coneω(S).

Definition VI.1.11. A subgroup H of a group G with finite generating set X is called strongly quasi-convex

if it is Morse as a subspace of the Cayley graph G with respect to X .

Note that if H is a subgroup of G, then for any two points (hi)
ω ,(ki)

ω in Coneω
G(H) there exists an

isometry of Coneω(G) fixing Coneω
G(H) which sends (hi)

ω to (ki)
ω . Thus, we can combine the previous two

results to give:

Theorem VI.1.12. A subgroup H of a group G is strongly quasi-convex if and only if Coneω
G(H) is strongly

convex in Coneω(G) for all ultrafilters ω .

VI.2 Applications

We begin this section by proving a large class of groups cannot contain infinite infinite index strongly quasi

convex subgroups.

Theorem VI.2.1. If a path connected metric space S contains a proper closed strongly convex subspace T

consisting of more than one point, then S contains a cut point.
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T

t

s

p(s1)

t2

p(t1)

p(t3)

Figure VI.3: Theorem VI.2.1

Proof. Let s ∈ S \T , and let t ∈ T . Let p: [0, `]→ S be a simple path connecting s and t. Let t1 = min{a ∈

[0, `] | p(a) ∈ T}. This is well-defined as T is closed. We will show that p(t1) is a cut point. Let t2 6= p(t1) be

a point in T . If p(t1) is not a cut point, then there exists a path p′: [0,k] connecting s and t2 such that p(t1) is

not on p′. Let t3 = min{a ∈ [0,k] | p′(a) ∈ T}. Let s1 = max{a ∈ [0, t1] | p(s1) ∈ p′} Create a simple path by

following p from t1 to s1 and then following p′ from s1 to t2. This is a simple path connecting two points of

T that is not entirely contained in T , a contradiction.

Sapir and Drutu [6] proved the following theorem.

Theorem VI.2.2. If G is a non-virtually cylic group satisfying a law, then no asymptotic cone of G contains

a cut point.

If H is an infinite, infinite index subgroup of a finitely-generated group G, then it is easy to see that
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Coneω
G(H) is a proper subspace of Coneω(G) that consists of more than one point. Thus, we can combine the

previous two results to get the following corollary.

Corollary VI.2.3. If G is a finitely-generated group containing an infinite, infinite index strongly quasi-

convex subgroup H, then G does not satisfy a law.

We will now show that if H and K are strongly quasi-convex subgroups of a finitely generated group G,

then Coneω
G(H ∩K) =Coneω

G(H)∩Coneω
G(K). This is not true in general for any two subgroups of a finitely

generated group.

Example VI.2.4. Let G = Z×BS(1,2) = 〈a,b,c|[a,b] = [a,c] = 1,b−1cb = c2〉. Consider the subgroups

H = 〈(a,e)〉 and K = 〈(a,c)〉 where e is the identity element in BS(1,2). It is clear that H ∩K = {(a0,e)},

but ((ai,ci))ω = ((ai,e))ω ∈Coneω(H)∩Coneω(K).

Notation VI.2.5. If γ is a geodesic in a metric space S containing the points s and t, then we will denote by

[s, t]γ the subsegment of γ connecting s and t.

We will need the following lemma, which is based heavily on ideas found in Lemma 3.2 of [23].

Lemma VI.2.6. Let a,b,c be points in a metric space X, and let γ1 and γ2 be geodesics connecting a to b

and b to c respectively. Let K = d(b,c), and assume that d(a,b) ≥ 3K. There exists a (2,0) quasi-geodesic

γ3 connecting a to c such that there exists a point x ∈ γ1∩ γ3∩B3K(b).

Proof. Denote the concatenation of γ1 and γ2 by γ . If γ is a (2,0) quasi-geodesic, then we are done, so assume

γ is not a (2,0) quasi-geodesic. As d(a,b)≥ 3d(b,c), we have that d(a,c)≥ d(a,b)−d(b,c)≥ (2/3)d(a,b).

On the other hand dγ(a,c) = d(a,b)+ d(b,c) ≤ (4/3)d(a,b). Thus, dγ(a,c)/d(a,c) ≤ 2. Therefore, there

exists a maximal subsegment [x,y] of γ such that dγ(x,y)/d(x,y) = 2. Let γ3 be the concatenation of [a,x]γ1 ,

[x,y] and [y,c]γ2 where [x,y] is a geodesic connecting x and y. It follows from the proof of Lemma 3.2

from [23] that γ3 is a (2,0) quasi-geodesic.

We will now show that d(x,b)≤ 3d(b,c). As dγ(x,y) = 2d(x,y), we have that

d(x,b)+d(b,y) = dγ(x,y) = 2d(x,y)≥ 2d(x,b)−2d(y,b).

Rearranging gives that 3d(b,y)≥ d(x,b). As d(b,c)≥ d(b,y), we have that 3d(b,c)≥ d(b,x).

Notation VI.2.7. Let S be a metric space and let T be a subspace of S. We denote by Nε(T ) the set of points

s in S such that there exists a t ∈ T with d(s, t)≤ ε .
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Lemma VI.2.8. Let (S,s) be a pointed geodesic metric space, with Morse subspaces U,V . Let (xi)
ω ∈

Coneω
S (U)∩Coneω

S (V ). Assume (xi)
ω 6= (s)ω . Then there exists a real number ε ≥ 0 such that (xi)

ω ∈

Coneω
S (U ∩Nε(V )).

Proof. Let (ui)
ω be a representative of (xi)

ω with all components in U . Let (vi)
ω be a representative of (xi)

ω

with all components in V . For each i ∈ N, let γ1,i be a geodesic connecting s to ui, and let γ2,i be a geodesic

connecting ui to vi. As (xi)
ω 6= (s)ω , we have that d(s,ui) ≥ 3d(ui,vi) ω-almost surely. Thus, By Lemma

VI.2.6 we can ω-almost surely find a (2,0) quasi-geodesic γ3,i containing a point zi ∈ γ1∩B3d(ui,vi)(ui). As zi

is on the geodesic γ1 which connects two points of the Morse subset U , there exists a constant D such that for

all i ∈ N there exists a point yi ∈U , with d(yi,zi) ≤ D. As (ui)
ω = (vi)

ω , we have that limω d(ui,vi)/i = 0.

Thus

dω
S (yi,ui) = limω dS(yi,ui)/i≤ limω(dS(yi,zi)+dS(zi,ui))/i≤ limω(D+3dS(ui,vi))/i = 0.

Thus, (yi)
ω = (ui)

ω . Finally, as zi is on the (2,0) quasi-geodesic γ3,i connecting two points of the Morse

subspace V , there exists a constant E such that zi is within E of some point in V , so yi is within ε = D+E of

a point in V .

Theorem VI.2.9. Given a finitely generated group G and strongly quasi-convex subgroups H and K, Coneω
G(H)∩

Coneω
G(K) =Coneω

G(H ∩K).

Proof. Fix a finite generating set X for G. It is clear that Coneω(H ∩K)⊂Coneω(H)∩Coneω(K). Assume

(hi)
ω ∈ Coneω(H)∩Coneω(K). If (hi)

ω = (e)ω , then clearly (hi)
ω ∈ Coneω

G(H ∩K), so we can assume

otherwise. According to Lemma VI.2.8, there exists a representative (h′i)
ω of (hi)

ω and a constant C such

that for all i ∈ N, h′i ∈ H there exists a ki ∈ K with d(h′i,ki) ≤ C. There exist only finitely many elements

g ∈ G with |g|X≤ C. Thus, there exists an element g ∈ G such that h′ig = ki ω-almost surely. Let j be the

least i such that h′jg = k j. If h′ig = ki, let h′′i = h′ih
−1
j = kik−1

j ∈H∩K. Otherwise, let h′′i = e ∈H∩K. Clearly

(h′′i )
ω = (h′i)

ω = (hi)
ω . So (hi)

ω ∈Coneω(H ∩K), and Coneω(H)∩Coneω(K) =Coneω(H ∩K).

Lemma VI.2.10. Let G be a finitely generated group with finite generating set X, and let H,K be subgroups

of G such that H ≤ K. Then Coneω
G(H) =Coneω(K) for all ultrafilters ω if and only if H is finite index in K.

Proof. First, if H is finite index in K, then there exists a finite set S of elements of K such that K =ts∈SHs. Let

M =max{|s|X | s∈ S}. Any element k∈K is within M of an element of H, and hence Coneω
G(H)=Coneω

G(K).

Now assume that H is of infinite index in K. For each right coset C of H in K, let kC be an element

of C such that for any other k ∈ C, |k|X≥ |kC|X . As H is infinite index in K, we have that there exist
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cosets C such that |kC|X is arbitrarily large. Fix a sequence of right cosets Ci such that |kCi |X is an in-

creasing unbounded sequence. Consider the point (kCi)
ω ∈ Coneω

G(K) where Coneω(G) is an asymptotic

cone with respect to the scaling sequence (|kCi |X ). If dX (kCi ,H)< |kCi |X , then there exists an h ∈H such that

dX (kCi ,h) = dX (h−1kCi ,e) = |h−1kCi |X , but this contradicts the minimality of |kCi |X . Thus, dX (H,kCi) = |kCi |X

and d((kCi)
ω ,Coneω

G(H)) = 1, so Coneω
G(H) does not equal Coneω

G(K).

Definition VI.2.11. Given a finitely generated group G and a subgroup H, the asymptotic stabilizer of H in

G, denoted AstabG(H), is defined to be {g ∈ G | gConeω
G(H) =Coneω

G(H)}.

Theorem VI.2.12. If H is a strongly quasi-convex subgroup of G, then CommG(H) = AstabG(H).

Proof. It is clear that CommG(H)⊂ AsbatG(H). Let g ∈ AstabG(H). This means that

Coneω
G(g

−1Hg) = g−1Coneω
G(Hg) = g−1Coneω

G(H) =Coneω
G(H).

Thus, by Theorem VI.2.9, we have that Coneω
G(H∩g−1Hg) =Coneω

G(H)∩Coneω
G(g

−1Hg) =Coneω
G(H). By

Lemma VI.2.10, we have that g−1Hg∩H is finite index in H. A similar argument shows that g−1Hg∩H is

finite index in g−1Hg, and thus CommG(H) = AstabG(H).

This is not the case for a general subgroup of a group.

Example VI.2.13. Let G, H and K be as in VI.2.4. Consider the HNN extension of G given by the presentation

〈a,b,c, t|[a,b] = [a,c] = 1,b−1cb = c2, t−1at = ab〉. It is clear that no power of t is in the commensurator of

H, but d(t−1ant,an) = d((ab)n,an) = |bn|{a,b,t}� log2(n). On the other hand |an|{a,b,t}∼ n, so t ∈ AstabG(H).

In particular, CommG(H) is an infinite index subgroup of AstabG(H).

We now recall a result about the structure of virtually cyclic groups.

Theorem VI.2.14. If G is an infinite virtually cyclic group then exactly one of the following two statements

holds:

1. There exists an element a ∈ G of infinite order and a finite normal subgroup H such that for all g ∈ G

there exists an n ∈ N and an h ∈ H such that g = han.

2. There exists an element a ∈ G of infinite order, a finite normal subgroup H, and an element f ∈ G

satisfying f 2 = e and f a f = a−1, such that for all g ∈ G there exist an n ∈ N, an h ∈ H and ε ∈ {0,1}

such that g = han f ε .

If G satisfies 1, then we say that a is orientable in G.
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Definition VI.2.15. An element a of a finitely generated group G is called Morse if the subgroup generated

by a is strongly quasi-convex.

The following theorem is proven in [23].

Theorem VI.2.16. If H is a strongly quasi-convex subgroup of a finitely generated group G, then H is finite

index in its commensurator. In particular, if a is a Morse element, then CommG(〈a〉) is virtually cyclic.

Definition VI.2.17. If a is an infinite order element of a group G, then the elementary subgroup of a, denoted

E(a) is the largest subgroup of G in which 〈a〉 is a finite index subgroup, if such a subgroup exists.

Remark. Theorem VI.2.16 implies that if a is a Morse element of a group G, then E(a) exists and is equal to

CommG(H) = AstabG(H).

Definition. If a is a Morse element of a group G, then we call a orientable if a is orientable in its commen-

surator.

Lemma VI.2.18. Let a be a Morse element of a finitely generated group G, and let H, f be as in Theorem

VI.2.14 for the commensurator of 〈a〉. Then if h1,h2 ∈ H and n,m ∈ N with |n|6= |m|, then h1an is not

conjugate to h2am.

Proof. Assume that there exists a t ∈G such that t−1h1ant = h2am. This implies that t ∈CommG(〈a〉). Thus,

we have that h2am = t−1h1tt−1ant, and so, as H is normal in CommG(〈a〉), t−1ant = t−1h−1
1 th2am = h3am

for some h3 ∈ H. Assume without loss of generality that |n|< |m|. Note that n 6= 0, as otherwise h1an

would have finite order while h2am would have infinite order. We will show by induction that for all k ∈ N,

t−kh1ank
t = hamk

for some h ∈ H. Assume that the result holds for k−1 and note that

t−kh1ank
tk = t−kh1tkt−(k−1)t−1ank

ttk−1 =

t−kh1tkt−(k−1)h3amnk−1
tk−1 = t−kh1tkt−(k−1)h3tk−1amk

= hamk

for some h ∈ H. But this implies that 〈a〉 is exponentially distorted in CommG(〈a〉), a contradiction as 〈a〉 is

a finite index subgroup of CommG(H).

We will need the following Lemma due to Neumann in [14].

Lemma VI.2.19. Let k ∈ N, H1, H2, . . . ,Hk be infinite index subgroups of a group G and g1, g2, . . .gk be

elements of G. Then G 6=
⋃k

i=1 Higi.

Notation VI.2.20. We denote the conjugacy class of an element G of a group G by (g)G. We denote the

centralizer of an element G of a group G by CG(g).
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Lemma VI.2.21. Let G be an ICC group, and let a be an orientable Morse element. Then for any n ∈N and

g1,g2 . . .gn ∈ G\{e}, there exists t ∈ G such that t−1git 6∈CommG(〈a〉) for all i ∈ {1,2 . . .n}.

Proof. First note that for any g ∈ G, (g)G ∩CommG(H) is finite by Lemma VI.2.18 and the fact that a is

orientable. For each gi let ki = |(gi)
G∩CommG(〈a〉)| and let (gi)

G∩CommG(〈a〉) = {hi,1,hi,2, . . .hi,ki}. For

each hi, j ∈ (gi)
G ∩CommG(〈a〉) let ti, j be such that t−1

i, j giti, j = hi, j. The set of t ∈ G such that t−1git ∈

CommG(〈a〉) can be written as tki
j=1CG(gi)ti, j. Thus, the set of t ∈ G such that t−1git ∈ CommG(〈a〉) for

some i ∈ {1,2, . . .n} can be written as ∪n
i=1 t

ki
j=1 CG(gi)ti, j. As G is ICC, this is a finite union of cosets of

subgroups of infinite index and hence by Lemma VI.2.19, does not cover G. Thus there exists t ∈G such that

t−1git 6∈CommG(〈a〉) for all i ∈ {1,2, . . .n}.

Lemma VI.2.22. Let G be an ICC group with Morse element a. Then for any g ∈ G \ {e}, there exists an

element t ∈ G such that t−1gt 6∈CommG(〈a〉).

Proof. Let H, f be as in VI.2.14.

Assume that (g)G ⊂CommG(H). By VI.2.18, (g)G can only contain finitely many elements of the form

han where h ∈H and n ∈N. Thus as G is ICC, there must exist h1,h2 ∈H and n,m ∈N with n 6= m such that

h1an f ,h2am f ∈ (g)G. Note that

h1an f h2am f = h3an f am f = h3an−m

for some h3 ∈ H as H is normal. For all t in G,

t−1h3an−mt = t−1h1an f tt−1h2am f t ∈CommG(〈a〉),

as both t−1h1an f t and t−1h2am f t are in (g)G ⊂ CommG(〈a〉), but this contradicts Lemma VI.2.18 and the

fact that G is ICC.

Lemma VI.2.23. Let G be an amenable group, let a be a Morse element of G, and let g1, g2, . . .gn be

elements of G\{e}. Then there exists an element t ∈G such that t−1git 6∈CommG(〈a〉) for all i ∈ {1,2 . . .n}.

Proof. If a is orientable in its commensurator, then we are done by Lemma VI.2.21, so assume a is not

orientable in its commensurator. Let H and f be as in Theorem VI.2.14 for the commensurator of a, and let

µ be a left invariant finitely additive measure for G. For g ∈ G define Tg = {t ∈ G | t−1gt ∈CommG(〈a〉)}.

If h = t−1gt then Th = t−1Tg so as µ is left invariant, we have that if g is conjugate to h then µ(Tg) = µ(Th).

We will show that for g 6= e,µ(Tg) = 0. Assume that there exists a g ∈ G \ {e} with µ(TG) = p > 0. If

(g)G∩CommG(H) is finite, then Tg is a finite union of cosets of CG(g), and so has measure zero, so we can
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assume that (g)G∩CommG(〈a〉) is infinite. Let M ∈ N be such that Mp > 1. By Lemma VI.2.18 we can find

M elements

k1 = h1an1 f , k2 = h2an2 f , . . .kM = hManM f ∈ (g)G∩CommG(〈a〉)

with ni 6= n j whenever i 6= j. Thus kik j is of the form han for some h ∈ H and some n ∈ N. By Lemma

VI.2.18, we have that µ(Tkik j) = 0 whenever i 6= j. Tki ∩Tk j ⊂ Tkik j , so µ(Tki ∩Tk j) = 0 whenever i 6= j. On

the other hand µ(Ti) = p for all i ∈ {1, 2 . . .M} so µ(Ti
⋂

i∈{1,2, ...i−1, i+1, ...M}T c
i ) = p. But this is a collection

of M disjoint sets, contradicting that Mp > 1.

Lemma VI.2.24. let S be a metric space, and let T1 ,T2 , . . .Tn be strongly convex subspaces of S. For all

1 ≤ i ≤ n, let pi be a non-trivial geodesic in Ti such that the concatenation of the pis forms an n-gon. Then

either there exists an 1≤ i≤ n−1 such that the intersection of Ti and Ti+1 consists of more than one point or

the intersection of T1 and Tn consists of more than one point.

Proof. The result is trivial if n = 2. In the case of n = 3 note that the concatenation of p2 and p3 is a path

that begins and ends in T1. Thus the path is either entirely contained in T1 or is not simple. In either case the

result follows. Now fix n and assume that the result holds for all m < n. Again, note that the concatenation

of p2 through pn begins and ends in T1 and so is either contained in T1 (in which case the result follows

immediately) or is not simple. In the latter case, we have a point p which occurs on two different geodesics

pi and p j. This splits the n-gon into two different polygons, at least one of which has fewer than n sides. The

result now follows by induction.

Definition VI.2.25. Given a group G with finite generating set X and an ultrafilter ω , we will denote by

ΠG/ω the group consisting of equivalence classes of sequences (gi) with gi ∈ G for all i ∈ N where two

sequences (gi),(hi) are considered equivalent if gi = hi ω-almost surely. We will denote the equivalence

class of (gi) by (gi)
ω,L to distinguish elements of L (G) from points in Coneω(G). Finally, we will denote

by L (G) the subgroup of ΠG/ω where (gi)
ω,L ∈L if and only if there exists a constant C ∈ N such that

|gi|X≤Ci ω-almost surely.

Theorem VI.2.26. If G is an ICC group with orientable Morse element a, and w is a nontrivial element of

F2 ∗G, then w is not a mixed identity of G if any one of the following conditions hold.

1. a is an orientable Morse element.

2. w has only one coefficient.

3. G is amenable.
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p1 = pk

q1

q2

qk−1

pk−1

p2

p3

g1Coneω
G(K)

g2Coneω
G(K)

gk−1Coneω
G(K)

Figure VI.4: Theorem 5.13

Proof. We begin by proving part 1. Let w be a non-trivial mixed identity satisfied by G. By taking cyclic

conjugates, we can assume without loss of generality that w is of the form g1xn1g2xn2 . . .gkxnk where gi ∈

G\{e} and ni 6= 0 for all 1≤ i≤ k. Let a be a Morse element of G such that g1 ,g2 . . . gk do not belong to the

commensurator of 〈a〉. This is possible by Lemma VI.2.21 and the fact that a conjugate of a Morse element

is Morse. Let K = CommG(〈a〉). For j ∈ {1, 2, . . .k}, let p j = (g1an1ig2an2i
2 . . .g jan j i)ω . As w is a mixed

identity, pk = (e)ω . Let qi be a path from pi to pi+1 for all 1≤ i≤ k−1, and let qk be a path from pk to p1. Let

gi = (g1an1ig2an2i
2 . . .g jan j igi+1)

ω,L for i between 1 and k. For 1≤ i≤ k, qi begins and ends in giConeω
G(K).

qk begins and ends in (g1)
ω,LConeω

G(K). As L (G) acts on Coneω(G) by isometries we can form a k-gon

q where each side is entierly contained in a strongly convex set by concatenating q1,q2 . . .qk. We can use

Lemma VI.2.24 to conclude that there exists a j such that g j−1Coneω
G(K)∩ g jConeω

G(K) consists of more
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than one point. Thus, we have that (an j ig j+1)
ω,LConeω

G(K)∩Coneω,L
G (K) contains at least two points, and so

g j+1Coneω
G(K)∩Coneω

G(K) =Coneω
G(g j+1Kg−1

j+1)∩Coneω
G(K) =Coneω

G(g j+1Kg−1
j+1∩K)

contains at least two points. But this implies that g j+1Kg−1
j+1∩K is an infinite subgroup of G, which contra-

dicts the fact g j+1 does not belong to the commensurator of 〈a〉.

Part 2 of the theorem can be proven using the exact same method, but replacing Lemma VI.2.21 with

Lemma VI.2.22.

Part 3 can be proven the same way replacing VI.2.21 with VI.2.23.
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Chapter VII

Directions for future research

In this chapter, we present several potential directions for further research based on the results presented in

this thesis.

We begin with some further questions in the direction of the connection between the generalized distortion

function and the isoperimetric spectrum.

Question. Is the set of functions that can be realized as the generalized distortion functions of subgroups of

F2×F2 the same as the set of functions which can be realized as isoperimetric spectra of finitely generated

groups?

Note that this would be a more natural generalization of Theorem II.1.9. The difficulty is that the con-

struction used in the proof of this result does not always return a finitely generated group given a subgroup of

F2×F2, and so we were only able to recover one direction of this argument.

This begs another natural question.

Question. Is the set of functions which can be realized as the generalized distortion function of a subgroup

of a finitely generated group the same as the set of functions which can be realized as isoperimetric spectra

of finitely generated groups?

The answer to this question is likely no. One reason to believe this is that the corresponding question

for the ordinary distortion function and the Dehn function is negative. The easiest way to see this is to note

that there is a gap between linear and quadratic in the set of possible Dehn functions, but no such gap exists

for distortion functions. This can be seen easily from III.1.7. It is possible that a similar trick could work in

the case of generalized distortion functions and isoperimetric spectra, however no such gap is known for the

isoperimetric spectrum. In any case, it is clear that any proof in the negative direction will require some form

of obstruction for a function to be an isoperimetric spectrum.

Perhaps the most obvious conjecture related to this thesis is the following.

Conjecture VII.0.1. If G is a finitely generated ICC group with a Morse element, then G does not satisfy

any non-trivial mixed identity.

The clearest evidence for this conjecture is Theorem VI.2.26. Essentially, the goal is to remove the

orientability condition from the theorem. This could be accomplished by removing the orientability condition
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from Lemma VI.2.21. Alternatively, it could be achieved by a different argument utilizing more directly the

geometry of asymptotic cones of groups with Morse elements.
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