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CHAPTER 1

Introduction

1.1. Motivation
Complex traffic, characterized by the intricate interplay between vehicle automation technologies,
human drivers, and diverse transportation modes sharing the same corridor, poses significant chal-
lenges for researchers and transportation experts. Firstly, the increasing adoption of vehicle au-
tomation technologies introduces new dynamics into traffic flow, as automated vehicles interact
with human-driven vehicles. Understanding their coexistence and potential implications is essential
for the safe and efficient integration of autonomous vehicles into the traffic ecosystem. Secondly,
human drivers exhibit diverse driving behaviors influenced by factors such as individual personalities
and decision-making processes, making it difficult to accurately capture their actions in traffic mod-
els. The complexity is further compounded by the presence of heterogeneous traffic, with vehicles
of various classes and driving rules sharing the same roads. These nontrivial vehicular interactions
lead to atypical flow dynamics that require advanced data analytics and modeling approaches to
comprehend the intricacies of modern urban mobility. As a result, a comprehensive understanding
of complex traffic necessitates the development of new estimation techniques, innovative data pro-
cessing strategies, and efficient modeling approaches to capture the non-linear interactions between
these elements and effectively analyze traffic behavior.

Recent advances in traffic data collection, particularly camera-based trajectory data, has revolu-
tionized the field of understanding complex traffic systems. The vast volume and granularity of
data collected from cameras and sensors provide a comprehensive view of traffic behaviors, allowing
researchers to delve into microscopic details and analyze macroscopic trends. This wealth of data
enables accurate calibration and validation of traffic models. Data-driven approaches, empowered
by big data analytics and machine learning, unveil intricate patterns and relationships that were
previously elusive. These approaches can capture the complexities of human driving behaviors, in-
teractions between different vehicle types, and the influence of external factors like weather and road
conditions. As a result, models and simulations driven by big data can predict traffic dynamics with
higher precision and reliability. Real-time data processing further enhances traffic management, en-
abling authorities to respond dynamically to congestion and optimize traffic flow. Therefore it is
important to prioritize data-processing and harness data-driven tools towards more efficient, safe,
and sustainable traffic solutions.

This dissertation aims at answering the overarching question: How can we develop modeling, estima-
tion and data-processing methods to understand complex traffic dynamics? In the following chapters
we solve a series of reconstruction problems. Reconstruction refers to the process of recovering the
unknown or missing information about a system using the available data or measurements. First
we address the parameter estimation problem, the process of inferring the unknown parameters
of a given model that describes the microscopic traffic dynamics from vehicle’s on-board sensor
data. Second we tackle the state estimation problem, which involves estimating the current or past
states of macroscopic traffic dynamics based on available fixed-location measurements. Finally, we
investigate data reconciliation problem, which processes incomplete and noisy video tracking data
while ensuring compliance with dynamical constraints. The integration of these tools contributes
to understanding complex traffic patterns at various scales. The specific problem formulations are

1



introduced next.

1.2. Problem statements

1.2.1. Driving behavior modeling

Microscopic traffic modeling and measurements that contain vehicle-level detailed dynamics are
integral to the study of traffic dynamics. They reveal the relationship between individual traffic
participants and the resulting traffic flow phenomena. The movement of individual vehicles based on
car-following and lane-changing behavior can be characterized through microscopic models, which
give a zoomed-in perspective of the traffic dynamics by looking at a small neighborhoods of vehicles.
Characterizing individual vehicles can inform system-level impact such as congestion formation [13,
14, 208]. In particular, the longitudinal dynamics (or car-following that tells how each vehicle
adjusts its speed in response to the change of speed and headway to the vehicle in front) provides
critical safety information such as time-to-collision and safe trailing distance. Proper understanding
and control of driver’s longitudinal behavior has the potential to benefit traffic on a larger scale
such as wave smoothing and overall safety [202, 237, 194].

The following questions remain open:

• Can we determine the parameter identifiability of common car-following systems? The chal-
lenges in understanding microscopic traffic dynamics stem from both the limited practical and
theoretical understanding of parameter estimation performance in car-following systems. The
issue of parameter identifiability, which analyzes whether the parameters can be uniquely de-
termined given the model and data, remains insufficiently addressed. While current research
mainly focuses on data-fitting quality, the fundamental question of identifiability has not been
adequately explored.

• How to develop online parameter estimation methods? Calibrating car-following models on
every vehicle-driver unit is time-consuming, and the necessary measurement data is difficult
to obtain. There is a pressing need for more efficient car-following identification methods,
particularly to assess the large-scale impact of mixed-autonomy traffic comprising adaptive
cruise control (ACC)-enabled vehicles and human drivers. Existing techniques are predomi-
nantly offline in nature, making them less adaptable to real-time applications and lacking the
flexibility to capture the nuanced driving variability. As on-board sensors increasingly provide
high-frequency data and the demand for real-time driver assistance grows, there is an urgent
requirement to develop online and scalable identification methods.

• How to accurately model the intricacy of human drivers? Accurately modeling human drivers,
a major challenge, is crucial as they will remain a significant portion of road users in the near
future. Human drivers exhibit inherent heterogeneity and variations influenced by various
internal and external factors. Better design of vehicle automation and personalization features
relies on accurate modeling of human driving behavior. The combination of physics-based and
data-driven models needs to be explored to capture both variation and stochasticity of human
drivers while ensuring feasibility and adherence to physical constraints.
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1.2.2. State estimation problem

Traffic control and management strategies depend on a good estimation of traffic flow in spatial
and temporal dimensions. While flow model based traffic management strategies are well developed
for lane adhering homogeneous flows [57], the modelling, estimation, and control of heterogeneous
traffic is less well developed. The challenges for developing traffic control and management strategies
to account for increasingly heterogeneous road users are many, and must be addressed to achieve
accurate, safe and effective heterogeneous traffic management. The important question becomes:

• What can we do to accurately estimate traffic state evolution, when nontrivial vehicular inter-
actions are involved?

These challenges include but are not limited to (1) much more complicated vehicular interactions,
such as overtaking and creeping, are difficult to capture from aggregate count or average speed
data from traditional sensors; (2) lack of high quality heterogeneous traffic trajectory datasets to
support research in this area. For example, although vehicle trajectory data for homogeneous traffic
are abundant [159, 113, 122], they do not contain heterogeneous traffic and vehicular interactions
with loose lane-discipline; (3) there is no traffic estimation routine readily available for heterogeneous
or loose lane-discipline traffic, due to the increasing non-linearity of the traffic phenomena and the
increased state space such that commonly used state estimators are prone to failure [24]. These
limitations motivate a new generation of modelling and estimation techniques on complex traffic
flows to be developed.

1.2.3. Data reconciliation problem

The impact of individual driving behavior (humans or automated vehicles) on broader traffic flow is
relatively less studied; it has so far only been demonstrated through small-scaled experiments and
simulation [194, 79, 261]. More data and representative tests can help us to come to a more realistic
conclusion of their impact, and the capability to do continuous testing can inform improvements to
the systems. This motivates the need for having large-scale traffic data that captures a long spatial
and temporal duration.

Not only a large scope is desired, the data must also have the microscopic fidelity at the vehicle-level
scale in order to validate and build realistic microscopic models. Additionally, accurate estimation
of energy consumption also relies on vehicle-level detailed dynamics. However, currently available
open-road trajectory datasets either lack spatial scope, or contain trajectory-level errors [123, 170,
42], which makes dynamics-based traffic analysis difficult. These challenges motivate a need for
a large-scale high-quality trajectory dataset that provides a realistic picture on open-road traffic
dynamics. There are issues remain to be addressed from video-based processing:

• What are some effective approaches to handle the data quality challenges associated with exist-
ing video processing algorithms? Current video processing algorithms suffer from inaccuracies,
such as projection errors, occlusions, dimensions, and kinematic discrepancies [170]. Existing
data processing techniques are ad-hoc and computationally expensive. There is a need for an
efficient and systematic data processing pipeline to tackle a variety of data quality issues in
video processing.

• How to build scalable data processing pipeline to facilitate continuous data generation? The
challenge lies in creating automatic data reconciliation methods capable of handling large
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volumes of trajectory data from traffic video processing. Lightweight algorithm integration is
essential to ensure seamless deployment in real-world data generation systems.

1.3. Contributions and organization of the dissertation
Related research on addressing the above challenges are explored in Chapter 2. Chapters 3-7
document the main contributions of this thesis along with the related publications, which directly
address the above challenges. Specifically:

1. Chapter 3: Provide practical and theoretical parameter identifiability analysis of
car-following systems. This is the first work to rigorously analyze identifiability (i.e.,
uniqueness of parameters given input-output data) of car-following models expressed as or-
dinary differential equations (ODEs). Two methods are developed and applied to investigate
parameter identifiability. The first method is a numerical direct test, which is a straightfor-
ward optimization problem formulation to find worst-case indistinguishable parameters in the
output space. The direct test can be applied to a specific experimental setup. The second
method is based on differential geometry to analyze structural identifiability of the ODEs. It
gives theoretical results given generic, noise-free setting. The results indicate that all tested
car-following models are structurally identifiable, but under certain experimental setup or
given noisy data, they can be practically unidentifiable.

Publications:

• Y. Wang, M. L. Delle Monache, and D. B. Work. Identifiability of car-following dynamics.
Physica D: Nonlinear Phenomena, 430:133090, 2022

2. Chapter 4-5: Develop online and efficient methods for identification of ACC and
human-driving car-following dynamics. In this work an online filtering method to dis-
cover ACC car-following systems is developed, and an end-to-end data-driven model for human
drivers is proposed. The proposed methods are validated with data either collected from a
real vehicle or from a simulation platform, and they demonstrate more effectiveness in com-
putation and better dynamics recovery compared to existing methods. For ACC systems, an
online system identification method based on recursive least squares (RLS) is derived, which
shows fast and accurate recovery of car-following dynamics. For human-driving which ex-
hibits higher stochasticity and variance, a Gaussian Process (GP) model is learned directly
from human-driving data. The model is tested in a full-scale human-in-the-loop driving sim-
ulation platform, and shows better penalization performance than existing ACCs.

Publications:

• Y. Wang, G. Gunter, M. Nice, M. Delle Monache, and D. Work. Online parameter
estimation methods for adaptive cruise control systems. IEEE Transactions on Intelligent
Vehicles, 6(2):288–298, 2020. URL https://doi.org/10.1109/TIV.2020.3023674

• Y. Wang, Z. Wang, K. Han, P. Tiwari, and D. B. Work. Gaussian process-based person-
alized adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems,
23(11):21178–21189, 2022

• Y. Wang, Z. Wang, K. Han, P. Tiwari, and D. Work. Personalized adaptive cruise control
via gaussian process regression. In 2021 IEEE International Intelligent Transportation
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Systems Conference (ITSC), pages 1496–1502, Indianapolis, IN, USA., 9 2021. IEEE.
URL https://doi.org/10.1109/ITSC48978.2021.9564498

3. Chapter 6: Design estimation techniques to accurately reconstruct complex, het-
erogeneous traffic. We address the traffic state estimation problem in the context of het-
erogeneous (multi-class) traffic. The contributions made are threefold: First, we introduce a
multi-class traffic estimation formulation that leverages an existing model capable of capturing
intricate vehicular interactions, allowing for the simultaneous estimation of density evolution
for each vehicle class. Second, we propose innovative particle filter algorithms tailored to esti-
mate the complex evolution of mixed traffic based on sparse and noisy data, accommodating
nonlinear and non-differentiable state evolution dynamics. Finally, we validate the effective-
ness of these traffic estimation techniques using real traffic data collected from a mixed-traffic
corridor, demonstrating their accurate recovery of traffic density evolution for each vehicle
class.

Publications:

• Y. Wang and D. Work. Estimation for heterogeneous traffic using enhanced particle
filters. Transportmetrica A: Transport Science, pages 1–26, 2021. URL https://doi.org/
10.1080/23249935.2021.1881186

4. Chapter 7: Propose an automatic trajectory data reconciliation pipeline for a mod-
ern traffic testbed. We design a data reconciliation pipeline to address the limitations of
video-based trajectory extraction systems. Motivated by the need for high-quality data to
assess driving behavior’s impact on large-scale traffic, the Tennessee Department of Trans-
portation’s I-24 MOTION testbed utilizes nearly 300 high-resolution cameras along 4.5 miles
of interstate highway. The proposed pipeline automatically imputes, smooths, and corrects
erroneous trajectory measurements from computer vision algorithms using an online object
matching algorithm and a convex optimization formulation for individual trajectories. Once
completed, this work will produce the most extensive and reliable open-road trajectory data
available, benefiting mixed-autonomy traffic research and other transportation studies.

Publications:

• Y. Wang, D. Gloudemans, Z. N. Teoh, L. Liu, G. Zachár, W. Barbour, and D. Work. Au-
tomatic vehicle trajectory data reconstruction at scale. arXiv preprint arXiv:2212.07907,
2022. doi: 10.48550/ARXIV.2212.07907. URL https://arxiv.org/abs/2212.07907

• Y. Wang, J. Ji, W. Barbour, and D. Work. Online min cost circulation for multi-object-
tracking on fragments. In 2023 IEEE 26th International Conference on Intelligent Trans-
portation Systems (ITSC), 2023

• D. Gloudemans, Y. Wang, J. Ji, G. Zachar, W. Barbour, D. B. Work, E. Hall, M. Cebelak,
and L. Smith. I-24 motion: An instrument for freeway traffic science. Transportation
Research Part C: Emerging Technologies, 2023. Under review

Lastly, Chapter 8 concludes this thesis, discusses limitations and provides future research directions.
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CHAPTER 2

Related work

2.1. Microscopic traffic dynamics

2.1.1. Car-following dynamics

Microscopic-level description of traffic, such as car-following and lane-changing, provides the most
detailed individual driving behavior that could have systematic impact of the overall traffic patterns.
In particular, car-following dynamics describe the longitudinal dynamics of a vehicle in response
to the change of speed of the vehicle in front [34, 67, 88]. Studying car-following behavior is
fundamental to understand the impact on safety, fuel consumption and traffic stability [137, 136, 194,
79, 110, 146]. Physics-based control policies, expressed as ordinary differential equations (ODEs),
give rise to common car-following models like the optimal velocity model (OVM) [13], intelligent
driver model (IDM) [208], Gipps model [70], and Gazis-Herman-Rothery (GHR) model [34]. These
ODE-based models find application in traffic microsimulation, offering provable and interpretable
properties such as rational driving and stability [253, 153]. The "string stability" property of
car-following systems reveals how individual driver-vehicle units impact broader traffic patterns.
Identifying car-following model parameters is essential for string stability analysis and the design
of string-stable ACC systems.

Parameter estimation for car-following models involves finding the best-fit parameters given input
and output data from platooned vehicles, such as speed and space gaps. Various works have tack-
led car-following estimation for human drivers, using the NGSIM dataset [52, 172, 151]. Kesting
and Treiber proposed a methodology for Intelligent Driver Model parameter estimation using a
genetic search algorithm to address non-convexity in the search space [105]. Punzo and Simonelli
estimated optimal parameters for different car-following models on a four-vehicle platoon using
batch optimization with gradient-based techniques [169]. Besides these offline batch calibration
methods, probabilistic methods offer single-pass parameter identification. Van Hinsberge et al. use
Bayesian analysis to update prior probabilities into posterior probabilities [212], while Hoogendoorn
& Hoogendoorn employ generalized maximum likelihood estimation [93]. Papamichail et al. sum-
marize other microscopic model calibration approaches for automatic and connected vehicles [165].
Online parameter estimation, with potential for scalability and real-time applications, benefits from
model identifiability analysis for rigorous experimental design. The convergence of car-following
model parameters during estimation is influenced by the sensitivity to captured driving behav-
ior [152]. Proper models of system and measurement noises are crucial for the performance of
online filtering methods [17].

Recent learning-based approaches developed from robotics have opened up a new modeling paradigm.
It motivates our study on modeling human-driving, which exhibits more variation and subtleties
that the physics-based ODEs are insufficient to describe. Throughout the literature, various tech-
niques were developed to characterize human driving styles, ranging from classification to deep
learning sequence prediction. The majority treats human-driving modeling as a classification prob-
lem [234, 55, 54]. For example, drivers are categorized as normal/aggressive/cautious, based on their
driving styles and skills. These class definitions are usually subjective and ambiguous, and often
does not provide enough resolution to reveal their detailed car-following dynamics, which hinders
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analysis such as fuel consumption, safety and driving stability. Learning-based approaches for car-
following modeling have shown some new promising perspectives. A popular approach is through
inverse reinforcement learning, which learns a reward function through expert demonstration [116].
Other data-driven system identification tools such as neural networks [239], SINDy [29], Gaussian
Process (GP) [236] and Neuro-fuzzy methods [11] are becoming popular to identify unknown and
complex systems. However, the training usually requires large amount of data, and tend to be
complicated and time-consuming due to the non-parsimonious model structure, making them not
suitable for time-critical applications. These tools however, are promising to be coupled with ex-
isting controllers such as Model Predictive Control (MPC) to enhance control performance and to
achieve robust behaviors.

2.1.2. Parameter identifiability

The inverse problem of learning microscopic car following model parameters through experimental
data (e.g., microscopic-level trajectory data and macroscopic level aggregated counts from fixed
sensors) is part of the process to calibrate complex microscopic traffic simulation software. A
recent review of these calibration techniques appears in [122], and is commonly categorized into
four types [164, 171, 173, 120]. Briefly put, type I calibration views the calibration problem as a
likelihood estimation problem where the distribution of the parameter likelihood is calculated for
the future time step based on historical driving data (e.g., [164, 206, 94, 205, 173, 169, 242]). Type
II calibration directly uses a global search to find the best-fit parameters for which the simulated
complete trajectory most closely represent the observed trajectory (e.g., [133, 233, 41, 166, 81]).
Type III calibration considers the long-range interactions amongst vehicles within a platoon (e.g.,
[118, 117, 85]), and type IV calibration relies on mesoscopic or macroscopic traffic flow patterns
such as the headway distributions (e.g., [99, 120]). Chapter 3 considers parameter identifiability of
microscopic models given microscopic data (e.g., velocity and spacing), which are closely related to
Type I and II. More background on these Type I and II calibration methods can be found in book
chapters such as [206, 37], review articles [106, 91, 94, 121, 122] and the references therein.

In addition to the question of determining the best fit parameters given experimental data, several
studies have also considered the confidence level and the sensitivity of parameter estimation. For
example, Punzo et al. [173] considered a variance-based global sensitivity analysis to produce the
importance ranking of the IDM parameters, and to consequently reduce the parameters to be fur-
ther calibrated. Monteil & Bouroche [150] considered a systematic statistical approach to first use
a global sensitivity analysis to reduce the parameter space, then log likelihood estimation for the
insensitive parameters and finally likelihood-ratio for interval estimation; Treiber & Kesting [205]
investigated on the data sampling interval, completeness and parameter orthogonality and their
effects on parameter calibration of the IDM, instead of solely on data-fitting quality. The sensitivity
approaches considered in the mentioned works are closely related to identifiability [142, 150]. How-
ever, a formal analysis of identifiability on microscopic traffic models (from a theoretical perspective)
has not yet been explicitly studied in the previous work.

Although a systematic study on the parameter identifiability for microscopic traffic models still
remains unaddressed in transportation research, it has been developed in and extensively applied to
other research fields such as waste water treatment process [21], robot dynamics [108], and biological
processes [210], where the system evolution equations are also expressed as ODEs. We summarize
the related approaches for tackling structural and practical identifiability respectively.
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Structural identifiability of dynamical systems is closely related to the algebraic formulation of the
dynamic equations, and provides theoretical possibility for uniquely inferring the system unknowns
a priori before collecting experimental data [73, 131]. It can be analyzed using similarity transfor-
mation [227, 35, 88, 211] (applicable to autonomous systems), Laplace transform [18], power series
expansion [167, 78], implicit functions [257], differential algebra [181, 58, 131] and differential geom-
etry [220] (applicable to systems with external inputs). Multiple software packages have also been
developed for direct implementation of some of the techniques, for example, DAISY [19], COM-
BOS [140], SIAN [92] and STRIKE-GOLDD [222, 221]. All the mentioned tools are suitable for
analyzing systems of which dynamics are written as rational functions. STRIKE-GOLDD, in par-
ticular, is capable for analyzing nonlinear, non-rational system dynamics as well, making it suitable
for analyzing a wider class of car-following models.

In practice when an experiment is fully defined (the specific values of the initial condition and
the input trajectory are known), numerical methods are often useful to assess identifiability. The
numerical methods can be used to explore the profile likelihood [177, 115], which allows to de-
rive likelihood-based confidence intervals for each parameter and recovers the functional relations
between parameters due to non-identifiability. The sensitivity matrix [195] combines numerical
calculations with a tractable symbolic computation to investigate local structural identifiability.

Numerical methods can also help to assess practical identifiability, which relaxes the noise-free
assumption of f and g in the structural analysis. Methods such as Monte Carlo simulations [141] help
to check the relative error of estimated parameters under noisy output measurements. Numerically
evaluating the profile likelihood can help to distinguish practically unidentifiable parameters due to
measurement error from structurally unidentifiable ones by the shape of the likelihood profile [134].

2.2. Macroscopic traffic dynamics

2.2.1. Traffic flow models

Various macroscopic traffic flow models have been proposed to extend the seminal traffic flow models
such as the Lighthill-Whitham-Richards (LWR) [128, 178] and Aw, Rascle and Zhang (ARZ) [10, 263]
models, to incorporate multiple vehicle classes. One set of extensions describe multi-class traffic
where vehicle classes follow homogeneous dynamics. Another set of extensions explicitly define
vehicle dynamics which allow for bulk overtaking.

The growing interest for complex traffic has motivated studies on modelling traffic that is highly
heterogeneous. These traffic flow models include, for example, the n-populations model [20], which
assumes that the average speed of a vehicle class depends on the mean free space and allows over-
taking between vehicle classes. In a related work, the porous model [154] consider the heterogeneous
traffic system as porous medium which allows small and fast vehicles to move through the ‘pores’
defined by the free space between other vehicles in a disordered flow. Another proposed model
could capture overtaking in the free flow condition [157]. The Fastlane model [214] introduces dy-
namic passenger car equivalent (PCE) parameters that scale according to the traffic state. The
model of [203] considers the dynamics of traffic mixed with buses and cars. Algorithms are also
developed to solve for multi-class traffic flow models, including [266, 265, 267]. Inspired by these
works, the creeping model [56] explicitly defines class-specific velocity functions and jam densities
to capture both overtaking and creeping features of heterogeneous traffic flows. More recently, a
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coupled microscopic-macroscopic model was proposed [33] to account for the effect of large and
slow-moving vehicles, while the non-local multi-class traffic flow model [39] was developed to con-
sider heterogeneous drivers and vehicles characterised by their look-ahead visibility. The porous
model [154] was re-examined [65] with an analytical expression for the pore space distribution such
that the model is specifically tailored to a mixed flow of cars and powered two-wheelers.

The development of these new models are essential to incorporate the increasingly heterogeneous
transportation environment present in different parts of the world. Other traffic modelling meth-
ods considering heterogeneous traffic, for example, include the multi-class model based on three
dimensional flow concentration surface [148], multi-class multi-lane mesoscopic modelling [44], and
cellular automata modelling [138]. More detailed reviews of these and other models can be found
in [215, 62, 57].

2.2.2. State estimation for mixed traffic

For traffic control and management, accurate traffic state estimation is an important task. The
problem is typically posed as a model-based estimation problem in which real-time data streams
are used to correct model-based predictions in an online setting. Kalman filter (KF) and the
extended Kalman filter (EKF) was first proposed for traffic state estimation [66, 201]. The EKF is an
extension of the KF for differentiable nonlinear systems and has since been broadly applied to traffic
state estimation [240, 213, 86]. For non-differentiable models such as the cell transmission model
(CTM) or its extensions, the unscented Kalman filter (UKF) and the ensemble Kalman filter (EnKF)
are also applied [86, 158, 254, 24, 179]. These Kalman-based filters, however, are minimal variance
estimators which limit their application on traffic estimation problems that can generate multi-modal
error distributions [24], even though error bounds can be derived [197, 223, 198]. Therefore, a fully
Monte Carlo sampling-based filter, the particle filter [51, 38] is adopted [143, 144, 255, 238, 168].
Readers can refer to a complete review on traffic estimation techniques and the associated flow
models in [185].

We also notice that complementary approaches on existing filters can improve the state estima-
tion performance. Demonstrated in [143], a realistic Poisson distributed noise modeling is used
to describe the empirical distribution of the field data. In [25], the randomness is introduced on
the sending and receiving functions as well as on the speed adaptation rules to incorporate the
stochasticity of the traffic model. Moreover, joint parameter-state estimation with a random walk
parameter dynamic has shown to improve state estimation [240]; similar ideas related to dual filter-
ing have also been explored for simultaneous parameter and state estimation [86, 213].

Unlike the widely studied homogeneous traffic flow estimation problem, only a very small number
of works consider multi-class traffic state estimation, e.g., [213, 158, 156]. This is in part due to the
increased complexity both in terms of the number of state variables (which increases proportionally
with the number of classes), as well as the dynamics of the state variables (e.g., due to classes
behaving distinctly in response to vehicles ahead). In [213], a dual EKF approach is considered to
estimate the total density (and also the Fastlane model parameters), from which the individual class
densities are recovered via their respective passenger car equivalents. In [156], an UKF is considered
to track multi-class traffic in which overtaking is permitted in freeflow traffic but not congestion.
In [158] an adaptive unscented Kalman filter that allows the model noise covariance matrix to be
estimated simultaneous with the states is shown to outperform the standard UKF when applied to
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freeway traffic composed of cars and trucks.

2.3. Trajectory data and historical importance

2.3.1. Vehicle trajectory datasets

Trajectories from a common reference system serve as the ultimate empirical data to study traf-
fic dynamics. Throughout the literature, we have found a growing volume of trajectory datasets
collected at various scales through different sensing mechanisms. We summarize these in Table 2.1.

Small-scale trajectory data is usually collected via vehicles that have been equipped with high-
accuracy GPS sensors [97, 98, 43, 95] and other in-vehicle sensors. Unlike conventional probe
vehicles or floating cars, vehicles currently collect their position data with significantly higher spatial
and temporal resolution levels to obtain high-quality trajectory data [83]. Data collected from a
combination of in-vehicle sensors such as radars, LiDAR and cameras provides ambient information,
which can be useful for traffic flow studies as well as for training and testing AI algorithms for
autonomous driving. Readers are directed to references such as [136, 102] for a comprehensive
discussion on such dataset.

Image sensors and video processing algorithms associated with overhead cameras or Unmanned
Aerial Systems (UAV) have become increasingly powerful as a large-scale trajectory data source.
The seminal work is the Next Generation Simulation (NGSIM) dataset [159] developed in early
2000s, which is a collection of real-world trajectories, based on the use of cameras mounted on tall
buildings and covering approximately 600-meter long roadway sections with a frequency of 10 Hz
in several US locations. More recently in the highD dataset [114], videos were recorded by overhead
flying drones (4096 × 2160 pixels, 25 fps), which provided much higher-quality videos than that of
the NGSIM dataset [42]. HighD provides highway trajectories covering 420m of road segment, for
a total of 28,000 vehicle miles traveled. The pNEUMA large-scale field experiment [16] recorded
traffic streams in a multi-modal congested environment over an urban area using UAV. The dataset
was generated by a swarm of 10 drones hovering over a traffic intensive area of 1.3 km2 in the
city center of Athens, Greece, covering more than 100 km-lanes of road network at 25Hz. Most
recently, Automatum dataset became available [190], which covers 12 characteristic highway-like
scenes from 30 hours of drone videos. HIGH-SIM [186] is another high-quality highway trajectory
dataset extracted from aerial video data. The videos were collected by three 8K cameras in a
helicopter over an 8000 ft long segment of the I-75 freeway in Florida for 2 hours. The dataset
covers a wide range of traffic characteristics. A comparison across selected datasets can be viewed
from Table 2.1. Other examples and discussion on their usage in traffic studies can be found in a
comprehensive survey, such as [123].

2.3.2. Data quality issues and remedies

Raw trajectories from video footage are usually obtained from a tracking-by-detection framework [100,
7], where a set of object detections for all frames are linked across time to form continuous tra-
jectories. The detected bounding boxes are then transformed to a common reference system (e.g.,
global positioning system) for meaningful interpretation of dynamics. One of the errors we aim to
reconcile is tracking discontinuity due to, for example, noisy detection, inevitable object occlusion
and switching camera field of views, which results in track fragmentations. The first problem to
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Dataset Year Context Camera
config

Road
segment VMT Hours of

recording

NGSIM [159] 2006 Highway 8 cameras 600m 18,000 0.75
pNeuma [16] 2018 Urban arterial 10 drones 10km N/A 59
highD [114] 2018 Highway 1 drone 420m 28,000 147

Automatum [190] 2021 Highway Overhead
drones N/A 18,724 30

HIGH-SIM [186] 2021 Highway Aerial
cameras 2,438m N/A 2

I-24
MOTION [75] 2022 Highway 276

4K cameras 4.2 miles 200M/yr
(expected) daylight

Table 2.1: Video-based trajectory data comparison. VMT: vehicle miles traveled

address is data association, with is given a set of detections, identify their origin (objects that they
are associated with). Data association problems can be difficult when the tracking produces large
fragmentations or when the detections have false alarms or missing detections, which are common
in real-world video-based detection systems.

Various approaches for data association have been proposed, taking into consideration factors such as
association criteria, object motion complexity, and computational requirements. These approaches
typically differ in their choices of 1) matching cost (referred to as probability, affinity, energy, or
confidence) and 2) matching criteria (such as global cost minimization, greedy approach, hierar-
chical matching, etc.), leading to different problem formulations. The matching cost incorporates
kinematic information (e.g., position and velocity) and attribute information (e.g., shape and ap-
pearance), while the matching criteria guide the algorithm in solving the data association problem.

Solving the optimal data association or multi-object-tracking (MOT) problem is inherently a chal-
lenging NP-hard matching problem that requires combinatorial optimization algorithms. However,
specific characteristics of the MOT problem, such as the Markov assumption of association cost,
can be leveraged to apply polynomial-time algorithms like bipartite matching and min-cost flow
solvers. Graph-based formulations offer efficient algorithms for finding global minimum-cost track-
ing solutions. In these formulations, tracks (or detections) are represented as nodes in a graph, while
pairwise matching costs are represented as graph edges. The general data association problem can
be viewed as finding the least-cost set cover on the track graph [40]. Several studies [32, 264, 224]
have investigated efficient algorithms related to bipartite matching and min-cost flow. Interested
readers are encouraged to refer to a recent survey [175] for further exploration of this topic.

To the best of our knowledge, the majority of previous studies on graph-based MOT approaches
have focused on offline methods. In these methods, all detections/fragments must be available in
memory to construct a static graph. However, this approach can be a significant disadvantage,
especially as more sensing devices provide sequential data that requires continuous monitoring.
While a few online methods, such as [119], operate on a frame-by-frame basis, they still require
multiple iterations of updates within each frame. Therefore, it is necessary to develop an online
method that operates on a fragments (or tracklets) graph. This means that fragments are added to
the graph one at a time, resulting in even further reduced computation requirements.
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Although trajectory data serves as the fundamental building block for traffic studies, many works [42,
170, 204] raised the issue of the quality of the seminal NGSIM data, including nonphysical kine-
matics and inter-vehicle distance. The importance for data postprocessing is also emphasized
in [106, 170, 207, 123]. Montanino and Punzo [149] undertook one of the most thorough efforts
of data reconciliation by applying a series of smoothing operations on the dataset. They posed
the smoothing and reconstruction as a nonlinear, non-convex optimization problem, as to find the
minimum local smoothing window subject to kinematic constraints. Other data postprocessing
efforts [204, 53] also performed data reconciliation considering realistic vehicle kinematics and driv-
ing dynamics. Although comprehensive, these works provide ad-hoc treatments for specific sources
of errors and rely on multiple iterations of smoothing, which cannot be applied for the streaming
setting. We are in need of a more efficient alternative for trajectory reconciliation that applies to
streaming data.
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CHAPTER 3

Microscopic dynamics reconstruction and parameter identifiability

3.1. Introduction
With the advancement of sensor technologies, abundant traffic data is readily available to study
traffic patterns and individual driving behaviors. Examples of such datasets include overhead camera
data [159, 113] and floating-car data [169, 206, 2, 30]. The collection of such datasets support tasks
such as the parameterization of microscopic models which describe individual vehicle car-following
behaviors.

Studies of car-following models and calibration of such models have mostly been focused on data-
fitting quality. Model calibration is usually posed as an optimization problem such that the best
fit parameters are found by minimizing the error between the model prediction and corresponding
measurement data [107, 169], or through probabilistic approaches to find the most likely parameter
candidate [242, 1]. Although the approaches report good accuracy of the estimated parameters, they
lack a theoretical guarantee that a unique parameter set can be recovered, which is provided by an
identifiability analysis of the evolution-observation system [18, 130]. In other words, using data-
fitting quality as the metric alone for model calibration does not guarantee the uniqueness of the
best-fit parameters, nor can it tell how robust the current estimation is under a different experimental
dataset or numerical setup [130]. Such ambiguity might result in a different parametrization when
repeating the experiment, leading to an inaccurate characterization of car-following behaviors, such
as analytically determining string stability [153].

Besides that different driver behaviors on a microscopic scale can greatly change traffic features on a
macroscopic scale [118, 120, 169], knowledge of microscopic model parameters is key to understand
individual driving behavior of the adaptive cruise control and the interplay between automated
vehicles and human drivers [13, 67, 81, 146, 147, 242, 85, 107]. Therefore, the identifiability of
car-following models is an important question to advance calibration of these models.

3.2. Problem statement
The parameter identifiability problem refers to the ability to uniquely recover the unknown model
parameters from the observation data. Mathematically, consider a general form of a dynamical
system: 

ẋ(t) = f(x(t), u(t), θ)
y(t) = g(x(t), u(t), θ)
x(0) = x0,

(3.1)

Figure 3.1: A car-following system.
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where x(t) ∈ Rnx is the state variable vector, u(t) is the scalar input, and θ ∈ Rnθ is the parameter
vector; f, g are analytic vector functions describing the evolution of the state and the measurement
model, and x0 is the initial condition. The generic question for parameter identifiability is: Given
the system (3.1) and a known input u(t), can we uniquely determine the model parameters θ from
the output y(t) for a given initial condition? In the context of car-following (Figure 3.1) models,
the system of equations can be written as:

ẋ(t) =

[
ṡ(t)
v̇(t)

]
=

[
u(t)− v(t)

fCF(x(t), u(t), θ)

]
y(t) = x(t)

x(0) =

[
s0
v0

]
.

(3.2)

The state vector x(t) in (3.2) is given by the space gap s(t) and the velocity v(t) of the ego vehicle.
The space gap is taken as the distance between the lead vehicle and the ego (follower) vehicle while
the speed is that of the ego vehicle. The input u(t) is the velocity profile of a lead vehicle and fCF is
usually a 2nd order ordinary differential equation (ODE) that describes the car-following dynamics.

With in-vehicle sensor data such as radar data being available, it is now possible to directly mea-
sure s(t) and v(t), as well as the velocity profile of the lead vehicle u(t). For (3.2), the parameter
identifiability question becomes: Given the output time-series y(t) (the velocity and space gap mea-
surements) and the input u(t), can we uniquely determine the model parameters θ in fCF?

One type of identifiability is structural identifiability (or theoretical identifiability), which investi-
gates the input-output configuration and relies on algebraic calculations to determine if the param-
eter set is unique from the observation [229, 131]. It is completely defined by the model structure
and does not consider data quality or model errors. A structural identifiability analysis can be per-
formed prior to the estimation of the unknowns in order to detect potential model structural issues
and separate them from numerical problems, which should be dealt with differently [222]. However,
structurally identifiable systems do not preclude the existence of some specific initial conditions un-
der which the system becomes unidentifiable [183, 218]. For this limitation, practical identifiability
can be complimentary to provide insights on the dynamical models.

Practical identifiability is usually based on numerical methods to determine, for a given experimental
setup, whether the parameters are unique. This is sometimes modified to also consider the presence
of moderate measurement errors. In practice, a realistic way to formulate the identifiability problem
when performing an experiment becomes: for a given initial condition and an input trajectory that
are known, whether there exists distinct valid parameters that produce the same outputs? Notice
that ensuring uniqueness of the parameters (e.g. there are no distinct parameters that produce
the same output) does not imply well-posedness of the inverse problem. When solving the inverse
problem, one needs to ensure additional properties, e.g. continuity w.r.t. the initial datum, to
guarantee the recovery of the parameters and reconstruction the input.

This chapter investigates, from both theoretical and practical angles, parameter identifiability of a
microscopic car-following system instantiated as one of four different car-following models, i.e., the
constant-time headway relative-velocity (CTH-RV) model [13, 146, 81], the optimal velocity (OV)
model [13], the follow-the-leader (FTL) model [63] and the intelligent driver model (IDM)[208]. Only
CTH-RV is a linear model while other three are nonlinear. We address the following questions:
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• Are the car-following systems of the form (3.2) structurally identifiable?

• Are they identifiable in practice given a specific experimental setup (i.e., given a known initial
condition and a known input)?

• Are they identifiable in practice given a specific experimental setup when moderate measure-
ment errors are allowed?

We address the question of structural identifiability using a differential geometry approach, and
practical identifiability using a numerical direct test. The main findings to the above three questions
are:

• The investigated car-following models are all structurally locally identifiable, i.e., almost all
points in the parameter space of each of the car following models can be uniquely identified
for all admissible inputs given almost all initial conditions. Special initial conditions and
parameter sets that lose structural identifiability are also discovered.

• Given a specific experimental setup (the specific initial condition and input that are known),
the CTH-RV and FTL are not identifiable, i.e., there exist distinct parameters that produce
the same output.

• Given a specific experimental setup when measurement errors are present, all models are not
practically identifiable, i.e., there exist distinct parameters that produce the same output
within a small error bound.

Throughout the literature of microscopic traffic modeling we found that the focus has been on model
calibration techniques instead of parameter identifiability. In this light, the main contributions of
this chapter are the following:

• We provide structural identifiability analysis of four common car-following models using a
differential geometry framework. This allows us to detect if there are structural issues of the
dynamic model and to distinguish them from other possible causes of calibration failures, such
as the choice of optimization algorithms.

• We subsequently provide a numerical direct test, which is a constrained optimization prob-
lem, to check identifiability for a specific experimental design (for a given and known initial
condition and input.

• We investigate the practical identifiability for a specific experimental design when moderate
measurement errors are present, also with a direct test.

This study therefore provides both analytical and practical insights on parameter identification.

The organization of this chapter is as follows. In Section 2.1.2 we summarize the existing microscopic
traffic model calibration work, as well as methods derived in other research fields to tackle parameter
identifiability problems. In Section 3.3 we present the four microscopic car-following models that
we analyze in this work. We introduce the methodological tools used, including the differential
geometry approach and the numerical direct test approach, in Section 3.4. Section 3.5 provides the
structural identifiability results of the selected car-following models, and Section 3.6 presents the
practical identifiability results.
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3.3. Car-following models
In this section, we briefly present four commonly used car-following models that describe the accel-
eration dynamics in the form of an ODE.

Constant-time headway relative-velocity (CTH-RV) model The CTH-RV model has been
predominately used to describe the car-following behaviors of ACC vehicles [146, 147, 81, 242, 15,
127]. It is a simple model with linear dynamics with respect to the space gap and relative velocity
∆v(t) := u(t)− v(t):

v̇(t) = k1(s(t)− τv(t)) + k2(∆v(t)), (3.3)

where k1 and k2 are non-negative gains and τ is the constant time-headway. The three (time-
invariant) parameters constitute the parameter vector of this model, i.e., θ = [k1, k2, τ ], whose
identifiability is to be determined.

The equilibrium initial condition x∗0 for the car-following system (3.2) under the acceleration dy-
namic (3.3) is:

x∗0 = [τu0, u0]
T , (3.4)

where u(0) = u0 is the initial velocity of the leader. It is easy to see that this initial condition
results in ṡ(0) = u0 − v0 = 0 and v̇(0) = fCF (x

∗
0, u0, θ) = 0.

Optimal velocity (OV) model We also consider the car-following model proposed by Bando et
al. [12, 13], where an optimal velocity term V (s(t)) is introduced to describe the desired spacing-
speed relationship at equilibrium:

V (s(t)) = a

(
tanh

(
s(t)− hm

b

)
+ tanh

(
hm
b

))
, (3.5)

where the parameters a, hm, and b determine the shape of the optimal velocity function, which
increases monotonically as a function of s(t), and asymptotically plateaus at a maximum speed as
s→∞. Consequently the vehicle accelerates and decelerates to achieve the optimal velocity:

v̇(t) = α (V (s(t))− v(t)) , (3.6)

where the parameter α determines the sensitivity of the stimulus, which is the difference between
the desired velocity V (s(t)) and the actual velocity v(t). The parameter vector of this model is
θ = [α, a, hm, b]. The corresponding equilibrium initial condition for (3.2) under (3.6) is:

x∗0 =

[
hm − b ∗ tanh−1

(
tanh

(
hm
b

)
− u0

a

)
, u0

]T
. (3.7)

Follow-the-Leader (FTL) model The third model is one of the simplest follow-the-leader vari-
ations of the Gazis-Herman-Rothery (GHR) car-following model, which originated from research
conducted by General Motors in the 1950s [67, 69, 63]. We consider the following form:

v̇(t) =
C∆v(t)

s(t)γ
, (3.8)

where the parameter C and γ are constants describing the sensitivity of ∆v(t) and s(t), respectively,
or the acceleration. The parameter vector of interest is θ = [C, γ]. The corresponding equilibrium
initial condition x∗0 for (3.2) under (3.8) is:

x∗0 = [s0, u0]
T . (3.9)
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Intelligent driver model (IDM) The intelligent driver model was proposed in [208] to model
a realistic driver behavior, such as asymmetric accelerations and decelerations. It is of the form:

v̇(t) = a

[
1−

(
v(t)

vf

)4

−
(
s∗(v(t),∆v(t))

s(t)

)2
]

(3.10)

where the desired space gap s∗ is defined as:

s∗(v(t),∆v(t)) = sj + v(t)T +
v(t)∆v

2
√
ab

. (3.11)

The parameters of the model θ = [sj , vf , T, a, b] are the freeflow speed vf , the desired time gap T ,
the jam distance sj , the maximum acceleration a and the desired deceleration b. The corresponding
equilibrium initial condition x∗0 is:

x∗0 =

[
sj + u0 ∗ T√
1− (u0/vf )4

, u0

]T
. (3.12)

3.4. Methodology
In this section we highlight the methods for identifiability analysis. The structural local identifiabil-
ity is carried out through a differential geometry method, and the practical identifiability considering
a full experimental setup and measurement error is examined using a numerical direct test method.

3.4.1. Differential geometry framework for structural identifiability

We first introduce the concepts of structurally global and structurally local identifiability via precise
definitions. Note that the following definitions are modified from references such as [222, 78, 131,
228], in order to suit the specific format of our analysis.

Definition 1. Let θ ∈ IRnp denote the generic parameter vector, X0 a set of generic initial conditions
and U a set of admissible inputs. Let y(t, θ, x0, u) be the output function from the state-space
model (3.1). If for all t > 0,

y(t, θ, x0, u) ≡ y(t, θ∗, x0, u)⇒ θ = θ∗ (3.13)

for almost all θ ∈ IRnp , almost all x0 ∈ X0 and every input u ∈ U then the model is said to be
structurally globally identifiable.

Definition 2. A dynamical system given by (1) is structurally locally identifiable (s.l.i.) if for almost
all θ ∈ IRnp there exists a neighborhood N (θ) such that, for all θ1, θ2 ∈ N (θ), the implication (3.13)
holds for all t > 0.

Remark 1. Notice that Definitions 1. and 2. consider the generic parameter vector and initial
conditions, and thus may not be applicable to parameters and initial conditions that fall into a
measure zero set.
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Remark 2. We consider admissible inputs are polynomial inputs of degree n (with n non-zero time
derivative) that enables structurally identifiable systems. In particular, no admissible input exists
for structurally unidentifiable systems.

The differential geometry framework [217] considers identifiability as an augmented observability
property for a general nonlinear system of ODEs such as (3.1), and it can be evaluated in the same
manner. The main idea of identifiability consists in considering the parameters θ as additional
states with zero dynamics. Hence, the parameter-augmented state and the dynamics become x̃ =
[x, θ] ∈ Rnx̃ , with nx̃ = nx + nθ and

x̃(t) =

[
x(t)
θ

]
and


˜̇x(t) = f(x̃(t), u(t))
y(t) = g(x̃(t), u(t))
x̃(0) = x̃0 = [x0, θ]

T .

(3.14)

In the general case of a nonlinear system with time-varying input, to identify the parameters we
need to take into account the changes to the output due to the changing input in the augmented
state. Thus we use the extended Lie derivatives. The extended Lie derivatives can, then, be used to
build the rows of the observability-identifiability matrix OI [103, 221], whose rank is to be evaluated
for the identifiability analysis. The Lie derivative of g(x̃(t), u(t)) in the direction of f(x̃(t), u(t)) is
given by:

Lfg(x̃, u) =
∂g(x̃, u)

∂x̃
f(x̃, u) +

j=∞∑
j=0

∂g(x̃, u)

∂u(j)
u(j+1) (3.15)

where u(j) is the jth time derivative of the input u. The Lie derivatives of higher order are:

Li
fg(x̃, u) =

∂Li−1
f g(x̃, u)

∂x̃
f(x̃, u) +

j=∞∑
j=0

∂Li−1
f g(x̃, u)

∂u(j)
u(j+1). (3.16)

The observability-identifiability matrix OI(x̃, u) for a general nonlinear system (3.14) becomes

OI(x̃, u) =


∂
∂x̃g(x̃, u)

∂
∂x̃(Lfg(x̃, u))
∂
∂x̃(L

2
fg(x̃, u))
...

∂
∂x̃(L

nx̃−1
f g(x̃, u))

 (3.17)

Finally, a nonlinear observability-identifiability condition can be used to infer the structural local
identifiability of (3.14):

Theorem 1 (Nonlinear Observability – Identifiability Condition (OIC)). If a model (3.14) satisfies
rank(OI(x̃0, u)) = nx + nθ, with OI(x̃0, u) given by (3.17) and x̃0 being a (possibly generic) point
in the augmented state space, the model is locally observable and locally structurally identifiable in
a neighborhood N (x̃0) of x̃0.

Remark 3. The differential geometry approach yields results that are valid almost everywhere, i.e.,
for all values of the system variables (initial conditions and inputs) except for a set of measure zero.
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Throughout the rest of the chapter, we focus on analyzing structural local identifiability for almost
all initial conditions in the augmented initial state x̃0, i.e., we compute OI(x̃0, u) symbolically with
x̃0 = [x0, θ]

T . We also explore the special cases for x̃0 (the initial conditions and parameters that
belong to a set of measure zero) such that structural identifiability is lost. More details of the setup
and analysis are presented in Section 3.5.

3.4.2. Numerical direct test

The direct test is a conceptually straightforward way to test identifiability considering a fully-defined
system (i.e., the given initial condition and input trajectory are known). The direct test offers
analysis that differs from structural identifiability in that it looks for the worst-case unidentifiable
parameters in the following sense. It poses the identifiability problem as for finding the maximally
distinct (as specified by an objective function) parameters θ1 and θ2 such that the output of two
systems (which are identical except for the parameters) differ by no more than a threshold ϵ (pos-
sibly equal to zero). It is an idea first proposed in [230] as a numerical alternative to algebraic
computation.

The generic form of the direct test reads:

maximize
θ1,θ2∈Θ

d(θ1, θ2)

subject to e(θ1, θ2) ≤ ϵ,
(3.18)

where the objective function d(θ1, θ2) is the distance between two parameters in the parameter
space Θ. The constraint e(θ1, θ2) ≤ ϵ caps the difference between the output of the system under
θ1 and θ2 at ϵ, which is a small, user-defined threshold of measurement error. In order to evaluate
e(θ1, θ2), one must solve the ODE (3.1) for the same known initial condition and the same given
input trajectory under the two parameters θ1 and θ2. This problem formulation finds the most
distinct (as quantified by d) parameters such that the fully defined system produces similar outputs
(or the same outputs when ϵ = 0). The difference e(·, ·) is only due to θ for a fully-defined system.
Therefore e(·, ·) is a function of only two parameters θ1 and θ2.

Denote the decision variables of (3.18) at optimality as θ∗1, θ
∗
2, and the objective function value at

optimality as δ∗ := d(θ∗1, θ
∗
2). Naturally, under the tightest constraint ϵ = 0, all parameters in Θ

for system (1) with a specific and known initial condition and input trajectory produce a unique
output if and only if δ∗ = 0. When this occurs, we say that the system (3.1) with the prescribed
initial and input condition is identifiable; the same system is unidentifiable under the same initial
and input conditions if δ∗ > δ, where δ is a small positive number that is problem-specific.

When measurement error is allowed, we consider a relaxed constraint, ϵ > 0. If δ∗ is small, then we
say the system is practically identifiable, i.e., similar outputs can be produced only by parameters
that are similar. On the other hand, if δ∗ is large, we found two distinct parameters that generate
similar outputs, indicating that the same system is practically unidentifiable.

Results on the change of δ∗ as ϵ changes provides insights on the sensitivity of identifiability with
respect to the measurement error, and will be presented in the numerical experiment (Section 3.6).
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3.5. Structural identifiability analysis
In this section, we analyze structural local identifiability of the car-following system (3.2) under the
various car following models in Section 3.3. The analysis reveals that all the systems are structurally
locally identifiable, i.e., it is theoretically possible to uniquely infer the unknown parameters under
any admissible input and almost all initial conditions. We also explore the specific initial conditions
(those belonging to a set of measure zero) such that each model becomes unidentifiable.

The organization of this section is the following. First we give an overview of the analysis, including
the toolbox for implementing the differential geometry analysis for a given car following model, and
interpret the results of the analysis. Next, we provide the structural local identifiability analysis
for the CTH-RV (3.3) model in detail, by showing the explicit observability-identifiability matrices
OI(x̃0, u) under both a generic and specific initial conditions, and a set of admissible inputs for
which the system is structurally identifiable. The structural local identifiability results of the other
models ((3.6), (3.8) and (3.10)) are then summarized.

3.5.1. Implementation overview

We deploy a direct implementation of the framework for structural identifiability through STRuc-
tural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decompo-
sition (STRIKE-GOLDD) [219, 222], an open-source MATLAB toolbox that computes the observability-
identifiability matrix OI(x̃0, u) and analyzes the local structural parameter identifiability, state
observability, and input reconstructability of nonlinear dynamic models of ODEs. Because only
parameter identifiability is concerned in this chapter as the states and the inputs can be directly
measured, we use the toolbox solely for the purpose of identifiability.

In addition, we use STRIKE-GOLDD to also determine a priori the minimum degree n of a poly-
nomial input u(t) to enable a structurally identifiable system [221]. For example, if OI has full rank
under u(n)(t) = 0 but not u(n−1)(t) = 0, then an input u(t) of degree n or above is sufficient for
structural identifiability. Otherwise, u(t) with degree higher than n should be explored.

For structurally unidentifiable systems, no admissible input exists. For structurally identifiable sys-
tems, the degree n (i.e., number of non-zero time derivatives) for an input to be admissible depends
on the initial condition. We explore the admissible input condition for structurally identifiable car-
following systems under both generic initial conditions and a special set of initial conditions where
higher-order input may be required to be admissible.

3.5.2. Structural local identifiability analysis for CTH-RV

Recall CTH-RV ODE (3.3). The parameter-augmented system dynamics can be written as

˜̇x1(t) = ṡ(t) = u(t)− v(t)˜̇x2(t) = v̇(t) = k1(s(t)− τv(t)) + k2(u(t)− v(t))˜̇x3−5(t) = θ̇(t) = 0
y(t) = s(t)
x̃(0) = [x0, θ]

T .

(3.19)

The following propositions and proofs show the structural identifiability of CTH-RV from the cal-
culated observability-identifiability matrices.
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Proposition 1. According to Definition 2, the CTH-RV system (3.19) is structurally locally iden-
tifiable under almost all initial condition x0 and an admissible input u(t) with degree n ≥ 0 up to
a set of measure zero.

Proof. Consider almost all initial state conditions x0 = [s0, v0]
T . We prove that input u(t) with

degree n ≥ 0 is admissible for structural local identifiability, i.e., OI(x̃0, u) is full rank with constant
input u(t) = u0. This implies that OI(x̃0, u) for n > 0 is also full rank [221].

Constructing the observability-identifiability matrix OI(x̃0, u) requires at least nx̃− 1 = 4 extended
Lie Derivatives, where nx̃ = 5 is the dimension of the augmented state. The four extended Lie
Derivatives are:

L1
fg(x̃, u) = u(t)− v(t)

L2
fg(x̃, u) = k2(v(t)− u(t))− k1(s(t)− τv(t))

L3
fg(x̃, u) = k1(v(t)− u(t))− (k2 + k1τ)(k2(v(t)− u(t))− k1(s(t)− τv(t)))

L4
fg(x̃, u) = −(k1 − (k2 + k1τ)

2)(k2 ∗ (v(t)− u(t))− k1(s(t)− τv(t)))

− k1(k2 + k1τ)(v(t)− u(t)).

(3.20)

Consequently, OI(x̃0, u) for system (3.19) is a 5×5 matrix:

OI(x̃0, u) =
1 0 0 0 0
0 −1 0 0 0
−k1 k2 + k1τ τv0 − s0 v0 − u0 k1v0

−k1(k2 + k1τ) (k2 + k1τ)
2 − k1 o43 o44 o45

o51 o52 o53 o54 o55

 (3.21)

with specific entries defined as follows:

o43 = v0 − u0 + (k2 + k1τ)(s0 − τv0)− τ(k2(v0 − u0))− k1(s0 − τv0)

o44 = k1(s0 − τv0)− k2(v0 − u0)− (k2 + k1τ)(v0 − u0)

o45 = −k1(k2(v0 − u0)− k1(s0 − τv0))− k1v0(k2 + k1τ)

o51 = k1(k1 − (k2 + k1τ)
2)

o52 = −k1(k2 + k1τ)− (k2 + k1τ)(k1 − (k2 + k1τ)
2)

o53 = (s− τv0)(k1 − (k2 + k1τ)
2)− (k2 + k1τ)(v0 − u0) + (2τ(k2 + k1τ)− 1)

(k2(v0 − u0)− k1(s0 − τv0))− k1τ(v0 − u0)

o54 = (2k2 + 2k1τ)(k2(v0 − u0)− k1(s0 − τv0))−
k1(v0 − u0)− (k1 − (k2 + k1τ)

2)(v0 − u0)

o55 = k21(v0 − u0)− k1v0(k1 − (k2 + k1τ)
2).

Analytically, it is difficult to prove that the matrix OI(x̃0, u) is full rank. A symbolic calculator
such as MATLAB can provide a general case: the matrix in general is not rank deficient (see an
example in Appendix A). In this case, the system is structurally locally identifiable according to
Theorem 1. Since constant input u(t) = u0 is admissible, u(t) with degree n ≥ 0 is also admissible
according to [221].

21



However, Theorem 1 provides a general result that is valid for all values of the state and parameters
except for a set of measure zero. It is possible that for some special initial conditions the matrix
is not full rank. The symbolic calculator leads to generic conclusions on the rank of a matrix and
fails to capture a specific set (of measure zero). Therefore, it is possible to categorize the system
as locally structurally identifiable whereas for special initial conditions the result is uninformative.
The following proposition gives an example of special initial condition that leads to unidentifiable
CTH-RV system:

Proposition 2. The CTH-RV system (3.19) is unidentifiable given an equilibrium initial condi-
tion (3.22) and constant input u(t) = u0.

Proof. We prove that the system (3.19) is unidentifiable under constant input u(t) = u0 with an
equilibrium initial conditions specified as

x(0) = x∗0 =

[
τu0
u0

]
. (3.22)

where u0 is the initial value of the lead vehicle velocity. The equilibrium initial condition results
in ṡ(0) = 0 and v̇(0) = fCTHRV(u0, x

∗
0, θ) = 0. The same four Lie Derivatives (3.20) will be used

to calculate OI(x̃0, u). However, due to the specified initial conditions and the constant input
condition, OI(x̃0, u) becomes:

OI(x̃0, u) =
1 0 0 0 0
0 −1 0 0 0
−k1 k2 + k1τ 0 0 k1u0

k1(k2 + k1τ) k1 − (k2 + k1τ)
2 0 0 −k1u0(k2 + k1τ)

o51 o52 0 0 o55

 (3.23)

o51 = k1(k1 − (k2 + k1τ)
2)

o52 = −k1(k2 + k1τ)− (k2 + k1τ)(k1 − (k2 + k1τ)
2)

o55 = −k1u0(k1 − (k2 + k1τ)
2).

It is obvious that rank(OI(x̃0, u)) = 3, and therefore this system is structurally unidentifiable
under equilibrium initial conditions. Furthermore, the specific unidentifiable parameter(s) can be
detected by removing each of the columns of OI(x̃0, u) and recalculating the rank. If the rank does
not change after removing the ith column, than the corresponding ith variable in the augmented
state x̃ is unidentifiable (or observable) [222]. It is straightforward to see that removing the 3rd or
the 4th column of OI(x̃0, u) does not change the rank, and therefore, the corresponding parameters
k1 and k2 are unidentifiable.

Corollary 1. Given an equilibrium initial condition x∗0 for the CTH-RV system (3.19), the admis-
sible input required to enable structural identifiability is with degree n ≥ 1.

In the case of equilibrium initial condition, a constant input is not admissible to enable structural
identifiability. Therefore, time-varying input may be needed to excite the system. We check the
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order of the input required by replacing the higher order derivatives of u(t) in OI with zero and
recalculating rank(OI). This procedure gives a full rank (OI) when ü = 0, as long as u̇ ̸= 0.
Therefore an input with degree n ≥ 1 is admissible for structural identifiability of CTH-RV, even if
the system starts from an equilibrium initial condition.

Another unidentifiable case that differential geometry fails to detect constitutes a special relationship
between the initial condition and the parameters. As long as such relationship is established, there
exists no admissible input, and the initial conditions need not to be at equilibrium. This case is
demonstrated below.

Proposition 3. Given a generic initial condition x0 = [s0, v0]
T for the CTH-RV system (3.19), if

τ = s0
v0

and k2 =
v0
s0

, no admissible input exists.

Proof. Please see the Appendix A.0.1 for details.

Remark 4. Measuring the space gap alone y(t) = s(t) leads to the same identifiability results as
measuring both states y(t) = [s(t), v(t)]T . One can arrive to this result by checking the rank of
the observability-identifiability matrix OI(x̃0, u). This finding is in agreement with [169, 205] that
using space gap instead of velocity or acceleration profile to calibrate a car-following model leads to
sensitivity in the objective function.

Visualization As an illustration of the above analysis for CTH-RV, we visualize the output
differences e(·, ·) corresponding the settings of Propositions 1-3. We first fix one parameter as
θtrue, and compare the output error under another parameter θ. Let e(θ, θtrue) be defined as the
mean-squared-error (MSE):

e(θ, θtrue) =

∫ T

0
∥y(t, θtrue)− y(t, θ)∥22dt, (3.24)

which describes the error between the true output simulated by θtrue and the output simulated by
θ, under the same initial conditions and input. Let T denote the total time over which the ODE is
solved.

We visualize e(θ, θtrue) as one sweeps over the parameter space for CTH-RV (see Figure 3.2a-3.2c).
Figure 3.2a shows that the error is zero only at θ = θtrue, indicating an identifiable system. Fig-
ure 3.2b and 3.2c, on the contrary, show that even for a structurally locally identifiable system,
there exists an initial condition, parameters, and input combinations such that distinct parameters
exist and produce the same output, as suggested by Proposition 2 and 3. Specifically, we see in
Figure 3.2b that k1 and k2 are unidentifiable under an equilibrium initial condition and a constant
input. This is consistent with the finding from [242]; in Figure 3.2c, we see that that k1 is uniden-
tifiable when the initial speed and space gap satisfies s0 = τv0, even though the initial condition is
not at a equilibrium state (i.e., v0 ̸= u0).

3.5.3. Structural local identifiability analysis for other models

Following the same procedure as was used to analyze the CTH-RV, we check the observability-
identifiability matrix OI(x̃0, u) for the other three models, i.e., the OV model (3.6), the FTL
model (3.8) and the IDM (3.10). The structural identifiability results for each of the models under
almost all initial conditions and the corresponding a priori set of admissible inputs are summarized
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(a) An identifiable scenario: initial condition x0 = [60, 20]T , input u(t) = 31. θtrue = [k1, k2, τ ]
T =

[0.0216, 0.1943, 1.2293]T .

(b) An unidentifiable scenario: equilibrium initial condition x∗
0 = [38.1, 31]T and u(t) = 31. θtrue =

[k1, k2, τ ]
T = [0.0216, 0.1943, 1.2293]T .

(c) An unidentifiable scenario: initial condition x0 = [72.7, 32.5]T and u(t) is shown in Figure 3.3. θtrue =
[k1, k2, τ ]

T = [0.0216, 0.4472, 2.2361]T .

Figure 3.2: Visualization of e(θ, θtrue) for CTH-RV. Red diamond indicates θtrue. Even for struc-
turally locally identifiable systems, there may exist an initial condition and input combination such
that certain parameter become unidentifiable.
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Table 3.1: Structural local identifiability summary.

Model Parameters Admissible polynomial input u(t) degree n
fCF θ Generic (almost all) x0 Equilibrium x∗0†

CTH-RV k1, k2, τ n ≥ 0 n ≥ 1
OV α, a, b, hm n ≥ 0 n ≥ 1
FTL C, γ n ≥ 0 N/A
IDM a, b, sj , vf , T n ≥ 0 n ≥ 1

† The equilibrium initial condition for each model is listed in Section 3.3.

in Table 3.1. For specific initial conditions (e.g., an equilibrium initial condition), the system may
require a higher-order input to enable structural identifiability (also see Table 3.1).

Table 3.1 suggests that all the models are structurally locally identifiable, i.e., parameters for each
model can be uniquely identified under any admissible input given almost all initial conditions,
whether it is known or not, even if only space-gap is being measured. Moreover, a constant input
degree n = 0 is an admissible input to enable structural identifiability of all the models. Additionally,
all inputs u(t) with degree n ≥ 0 are also admissible to enable structural identifiability.

However, the analysis does not preclude the existence of an initial condition (e.g., an equilibrium
initial condition) for which the models become unidentifiable for a constant input. For some models,
higher-order inputs are required to enable structural identifiability. For CTH-RV, OV and IDM,
any input with degree n ≥ 1 is an admissible input to enable identifiablity for the equilibrium initial
condition. On the other hand, the FTL completely loses identifiability given an equilibrium initial
condition v0 = u0, since no admissible inputs can be found to enable identifiability.

Overall, the main outcome of the structural local identifiability analysis is that we find no funda-
mental intrinsic structural problems in any of the analyzed models. This means it is possible to
design an experiment (i.e., chose an initial condition and an input) in order to uniquely infer the
unknown model parameters.

The structural local identifiability analysis provides theoretical results that are generally valid for
almost all numerical values of the initial conditions and the parameters, but the test could fail to
detect unidentifiable scenarios (even for a simple CTH-RV model, it fails to detect a special initial
condition (Proposition 2) or parameter dependency (Proposition 3) that causes non-identifiability).
In practice, identifiability would be impossible when close to these special conditions (because of the
rank deficiency of the observability-identifiability matrix). The probability of being in a small open
set around these measure-zero sets, although unlikely, is not zero. Therefore, it is important to ask
a different question in practice: given the experimental design (i.e., given a specific initial condition
and input trajectory that are known), whether there exists multiple distinct parameters that would
produce the same output. If multiple distinct parameters are indistinguishable in the output space,
then the corresponding model(s) are unidentifiable. We proceed to numerical methods in the next
section to address this question.
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Table 3.2: Parameter bounds.

Models Parameter θ Lower bound θmin Upper bound θmax

CTHRV [k1, k2, τh] [0.001, 0.01, 0.1] [1, 1, 3]
OV [α, a, hm, b] [0.5, 10, 2, 18] [3.3, 32, 30, 45]
FTL [C, γ] [100, 1] [600, 3]
IDM [sj , vf , T, a, b] [3, 21, 0.1, 0.1, 0.5] [25, 41, 3, 3, 5]

3.6. Practical identifiability analysis
Although the initial condition and parameter subspace that loses structural identifiability for CTH-
RV can be analytically solved for, it is much challenging to exhaustively find the special cases for
other models composed of irrational functions. To this end, we use a numerical method to analyze
a more specific notion of identifiability: given a specific initial and input condition that are known
and non-trivial, i.e., non-equilibrium initial condition and time-varying input, are there distinct
parameters that produce the same or similar output? If such distinct parameter sets are found,
then the corresponding model is unidentifiable to this specific experimental setup, irrespective of
the cause (initial condition or parameters fall into a measure zero set or the input is not informative
enough). In this section, we present identifiability analysis using direct test for models (3.3), (3.6),
(3.8) and (3.10). First, we provide the details of the numerical experiment setup, including a specific
optimization formulation. Next, we solve (3.18) with 1) the tightest constraint ϵ = 10−6 and 2)
the relaxed constraint ϵ > 10−6. Because the choice of the cut-off threshold ϵ is arbitrary, we
incrementally increase ϵ to observe the sensitivity of model calibration to the measurement error.

For δ-identifiability at both ϵ = 10−6 and ϵ > 10−6, we first provide the detailed analysis on the
CTH-RV model (3.3), and summarize the results for the others.

3.6.1. Implementation details

Consider the following optimization problem formulation for (3.18):

maximize
θ1,i,θ2,i∈[θmin,i,θmax,i],∀i

d(θ1, θ2) =
1
√
nθ

√√√√ nθ∑
i=1

(
θ1,i − θ2,i

θmax,i − θmin,i

)2

subject to e(θ1, θ2) =
1

K

k=K∑
k=0

∥yk(θ1)− yk(θ2)∥22 ≤ ϵ.

(3.25)

The subscript i on θ denotes the ith element in the parameter vector. The resulting distance
(objective function) is a normalized Euclidean distance scalar between 0 and 1 bounded by θmin and
θmax (Table 3.2), i.e., d(θmin, θmax) = 1. The trajectory difference e(·, ·) in the constraint is a mean
squared error to measure the difference between yk(θ1) and yk(θ2), i.e., the discrete-time space-gap
simulated with an Euler method using θ1, θ2, respectively. The number of decision variables is 2×nθ

where nθ is the dimension of the parameters for each model. Recall that we denote the solution
to (3.18) as δ∗ and the corresponding parameter pair as (θ∗1, θ

∗
2).

The optimization solver used to solve (3.25) is patternsearch in the MATLAB global optimization

26



Figure 3.3: A time-varying lead vehicle velocity profile.

Table 3.3: Direct test finds two indistinguishable parameter sets for CTH-RV with ϵ =1e-6

Model Parameter θ∗1 θ∗2 δ∗

CTHRV
k1 1 0.001
k2 0.4472 0.4472 0.5774
τ 2.236 2.236

toolbox [139]. The patternsearch is a gradient-free optimization solver that works with potentially
non-smooth objective functions. More details regarding the solver can be found in [9].

3.6.2. Practical identifiability with error-free measurement

In the numerical setting, we specify the tightest constraint at approximately zero (specifically,
ϵ = 10−6) and solve for the optimization problem (3.25) with a time-varying input profile (Figure 3.3)
and a fixed, non-equilibrium initial condition x0 = [72.7, 32.5]T . We use this initial condition and
input for all of the models in the analysis for the remaining of this chapter. Given this specific
experiment setup, direct test aims to find indistinguishable (thus unidentifiable) parameters that
separate farthest in the parameter space. This specific initial condition is chosen to illustrate the
utility of the direct test, i.e. given an arbitrary but non-equilibrium initial condition, can we find
two distinct parameters that generate the same output.

CTH-RV The direct test result for CTH-RV by solving the optimization problem with ϵ = 10−6 is
listed in Table 3.3. Table 3.3 suggests that given a non-equilibrium lead velocity profile (Figure 3.3)
and an arbitrary, non-equilibrium initial condition that are known, the CTH-RV is unidentifiable.
Solving problem (3.25) results in δ∗ = 0.577, meaning there exists two distinct parameters that
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Figure 3.4: Visualize indistinguishable parameter sets θ∗1 (red diamond) and θ∗2 (green diamond)
from Table 3.3.

Figure 3.5: Visualize practically indistinguishable parameter sets for CTHRV.

generate the same output. Figure 3.4 visualizes this result: θ∗1 and θ∗2 are far apart but produce
the same output. The value of e(θ, θ∗1) remains constant along the unidentifiable parameter. Fur-
thermore, the unidentifiable parameters fall into a set such that τ = s0/v0 and k2 = v0/s0. This
corresponds to Proposition 3 where k1 cannot be uniquely identified.

Additionally, we discovered that when the initial conditions are in a neighborhood of the measure-
zero set identified in Proposition 3, CTH-RV can still be practically unidentifiable, as shown in
Figure 3.5. In this example, the initial condition is s0 = 72, v0 = 32, and the parameters are
θ1 = [1, 0.394, 2.35]T and θ2 = [0.1, 0.394, 2.35]T . A small output difference is obtained (ϵ = 0.0745)
with distinct parameters (δ∗ = 0.5201). Note that k2 ≈

v0
s0

and τ ≈ s0
v0

, which mean that the initial

conditions are not exactly in the measure-zero set as shown in Proposition 3, but in a neighborhood
of a it.

Other models As for the other three models, the solution to the direct test (3.25) is summarized
in Table 3.4. The results indicate that the FTL (3.8) is also unidentifiable under the specific
experiment setup (δ∗ = 0.677). OV (3.6) and IDM (3.10) are practically identifiable (δ∗ = 0.0117
and 0.0476, respectively, both are small), which suggests that only parameters that are close to each
other can produce the same output. The solutions found by numerical direct test are visualized in
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Table 3.4: Direct test finds indistinguishable parameter sets for other models with ϵ =1e-6

Model Parameter θ∗1 θ∗2 δ∗

OV

α 3.0772 3.1427

0.0117a 19.7485 19.7451
hm 22.2094 22.2122
b 23.2986 23.2915

FTL C 130.0285 599.9699 0.6766
γ 1 1.3582

IDM

s0 10.5615 8.3913

0.0476
v0 35.788 35.771
T 2.787 2.903
a 2.559 2.494
b 3.395 3.395

Figures 3.4-3.8 for the corresponding models.

3.6.3. Practical identifiability when measurement noise is present

The practical identifiability is nontrivial to quantify because 1) the threshold for δ∗ to be iden-
tifiable/unidentifiable cannot be easily generalized across all models. Parameters for each model
also have different physical meanings. 2) The trajectory error ϵ has multiple possible formulations
(RMSE, ARE, MSE, etc.), making a universal cut-off threshold for practical identifiability impos-
sible. Therefore, we provide the sensitivity analysis instead. The analysis is to provide a sense
of robustness of parameter estimation with the presence of imperfect measurements (e.g., with
measurement errors).

The value of ϵ used in the constraint of the direct test problem is user-defined, and must be specified
before solving the numerical problem. Therefore, we vary ϵ values to find the maximum parameter
distances for each ϵ (see, for example, e(·, ·) = 0, 0.1, 1 and 5m2 for IDM in Figure 3.9). This is
to analyze the sensitivity of the maximum distance between two indistinguishable parameters with
respect to the tolerance on the output differences. Previous studies suggest that calibrating on
empirical data achieves the lowest MSE of 1-2m2 in space gap [81, 242], our analysis on practical
identifiability will focus on e(·, ·) to be less than 1m2, or ϵ ∈ [0, 1].

In particular, we select ϵ equally-spaced in log space between 10−6 and 100, and solve for δ∗ and
the corresponding (θ∗1, θ

∗
2) in problem (3.25). The resulting curves shown in Figure 3.10 are the

solutions δ∗ as a function of ϵ in the constraint for each model. The curve is the maximum distance
in parameter space such that the output error does not exceed ϵ. Clearly, as the output difference ϵ
increases, so does the maximum parameter distance δ∗. Intuitively, given a specific initial condition
and lead vehicle trajectory, as measurement error increases, the best-fit parameters are more likely
to be non-unique, and the estimated parameters are less robust in the worst case.

Furthermore, Figure 3.10 suggests that the CTH-RV and the FTL are practically unidentifiable no
matter what output error threshold to chose, under the given initial and input conditions. I.e.,
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Figure 3.6: Visualize indistinguishable parameter sets θ∗1 (red diamond) and θ∗2 (green diamond) for
OV from Table 3.4.

Figure 3.7: Visualize indistinguishable parameter sets θ∗1 (red diamond) and θ∗2 (green diamond) for
FTL from Table 3.4.
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Figure 3.8: Visualize indistinguishable parameter sets θ∗1 (red diamond) and θ∗2 (green diamond) for
IDM from Table 3.4.

there is no guarantee to find the unique parameters for the CTH-RV and the FTL even with perfect
(error-free) data. On the other hand, the OV and the IDM can be practically identifiable when the
threshold for output error is decreased. However, identifiability may not be achieved if the data is
contaminated with noises (ϵ is large).

In summary, the direct test is a conceptually straightforward method to test identifiability given a
particular experimental design (i.e., with a known initial condition and a known input). It is very
helpful to know (for model that is structurally locally identifiable) if the experiment leads to practical
unidentifiability. Our approach provides a tool that highlights where an experiment can fail in the
sense that similar outputs are obtained by distinct parameters. This practical identifiability test is
complementary to that of structural identifiability analysis, which provides theoretical identifiability
results for almost all initial conditions and parameters, but does not preclude the existence of
special initial conditions and parameters (those belong to a set of measure zero) that result in
non-identifiability (shown in Proposition 2 and 3). Note also that the direct test does not aim to
find all initial conditions and parameters that fall into a set of measure zero, but simply tests if
indistinguishable parameters exist given a full experimental setup, which can be useful in practice.
Having a user-defined output difference threshold ϵ gives the direct test more flexibility to understand
the impacts of output measurement errors.

However, numerical test also has some disadvantages. For example, depending on the optimization
solver and the set of starting points, the numerical approach may not find the true global maxi-
mum, and thus may misleadingly provide a lower bound on δ∗, rather than the global maximum.
In addition, the numerical direct test is performed based on a specific initial condition and input
trajectory that are known, which limits its use to inform experimental designs. This approach does
not consider practical experimental design, including how to design one or several experiments to
best estimate the parameters, which is an interesting direction for further investigation. Neverthe-
less, it is insightful as a verification tool to diagnose the potential unidentifiability under a specific
setup.
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(a) e(θ1, θ2) = 0 (b) e(θ1, θ2) = 0.1

(c) e(θ1, θ2) = 1 (d) e(θ1, θ2) = 5

Figure 3.9: A demonstration of various trajectory differences e(θ1, θ2) of IDM.
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Figure 3.10: The sensitivity of practical identifiability with respect to the error threshold ϵ. The
specific setup is x0 = [72.7, 32.5]T and input u(t) shown in Figure 3.3 for all the models.

3.7. Conclusion
In this work, we study the structural and practical identifiability of four car-following models.

The structural identifiability analysis is carried through using a differential geometry approach. It
provides theoretical identifiability results under error-free assumptions for almost all initial condi-
tions and parameters, and informs the admissible input condition that enables structural identifi-
ability. However, it does not preclude the existence of initial conditions and parameters that lose
identifiability. The results from the differential geometry analysis show that all models are struc-
turally locally identifiable, i.e., all models in theory have unique parameterizations when fitting
with space gap data given almost all initial conditions and any admissible input. For some initial
conditions such as an equilibrium initial condition, higher-order input is required for CTH-RV, OV
and IDM to be identifiable. No admissible input exists for FTL when the initial condition is at
equilibrium to enable identifiability.

As a complementary analysis, we use a numerical direct test to study practical identifiability given a
specific experimental setup (a given known initial condition and input). It also provides insights on
the sensitivity of parameter identifiability due to measurement errors on the output. The direct test
finds that CTH-RV and FTL are practically unidentifiable, meaning that there exists multiple dis-
tinct parameters that produce the same output, given a specific experimental setup. It also suggests
that OV and IDM are practically identifiable when the measurement error is small. Although only
four models are investigated, the provided methods can be applied to other car following models.

The findings also open up questions for future research. For example, we are interested to design an
experiment or sets of experiments that avoid problematic initial conditions for identifiability. Design
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of reduced order models that allow robust parameter identification while reflecting the dynamics of
car following behavior are also of interest.
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CHAPTER 4

Applications on adaptive cruise control system identification

4.1. Introduction
As traffic composition is becoming increasingly diverse due to the rising penetration of vehicle
automation, identification of individual driving behavior becomes more important to understand,
for example, driving comfort, safety, and its broader implication on the traffic at larger-scale. We
are facing many new challenges: growing market demands for a wide range of real-time application
requires a prompt and high-fidelity estimation of individual driver-vehicle dynamics. We are also
provided with new opportunities. For example, on-board acquisition equipment provides continuous
and high-frequency signals that contain rich contextual information; the prevalence for cloud and
edge computing offers seamless connection with the physical systems. Because of these reasons,
efficient algorithms for identification of the individual driving behavior is desired.

The impact of individual driver-vehicle unit on the broad traffic patterns can be studied via the
so called “string stability” property of the car-following system. The interpretation of a string
stable vehicle is that a homogeneous platoon consisting of these vehicles will dissipate disturbances
rather than amplify them as the perturbation propagates in through platoon. Although string
stability manifests along a platoon of vehicles, it is a property of the individual vehicle car following
behavior [253, 153]. Thus identifying the car-following model parameters of the follower vehicle is
sufficient to analytically prove the string stability of the follower vehicle. One practical use case of
studying parameter identification and string stability is the design of string stable ACC systems,
which has been an important topic in the vehicle control community for decades [174, 96, 23, 127,
200]. The ACC system enables the vehicle (instead of the human driver) to adjust velocity in
response to the vehicle ahead. Recently, as the vehicle systems have transitioned from research to
practical deployments on commercial vehicles, the traffic modeling community is now in need of
more efficient system identification routines to understand how these vehicles behave in practice.
Surprisingly, all commercial systems that have been tested [137, 136, 194, 79, 110, 146] are shown
to be string unstable and with varying performance characteristics. Being able to characterize
the behavior of the ACC system in real time has implications for traffic management, where an
emerging area of research [79, 256, 269, 235, 49] aims to dampen phantom traffic jams caused by
string unstable driving behavior [196].

This chapter considers the problem of estimating the parameters of adaptive cruise controlled vehi-
cles using online algorithms that can sequentially estimate the parameters when new measurements
become available. Two online methods are used based on recursive least squares (RLS) and particle
filtering (PF), and both are shown to provide accurate estimates. As a proof of demonstration, we
also implement the methods on data collected from a 2019 stock SUV with ACC, using only data
from the vehicle’s existing on-board sensors.

The new contributions to this chapter are:

• The development of online parameter estimation algorithms to solve the problem of
recovering adaptive cruise control parameters. We use two online estimation algorithms, RLS
and PF, that are fast and scalable for real time system identification of ACC dynamics.

• Provide a parameter identifiability analysis of the methods. We provide an analysis
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of the parameter identifiability of both methods to understand if and when the estimates
can be theoretically recovered. This analysis is important but missing for the batch methods
previously applied to estimate parameters of ACC systems.

• Experiment demonstration Finally, we provide numerical and real world examples illus-
trating the performance of the methods in controlled numerical simulations, as well as on
a modern ACC vehicle. The real vehicle experiment uses only the onboard CAN bus data,
which provides a novel experimental approach to understand the behavior of ACC vehicles.

The remainder of the chapter is organized as follows. Section 4.2 reviews the ACC model and
outlines the batch optimization method as a benchmark for parameter estimation. Section 4.3.1
introduces the online RLS and PF based estimators, and provides an analysis of the estimators at
equilibrium driving conditions. Section 4.4 demonstrates the performance of the estimation routines
on synthetically generated (simulated) data, in order to assess the performance of the methods under
controlled settings. Section 4.5 addresses the practical performance of the method using data from a
real vehicle platform. It presents both the experimental protocol for collecting ACC radar and speed
measurements directly from a 2019 vehicle’s CAN bus, and the results of parameter estimation on
that data. Finally, Section 4.6 explores future research directions.

4.2. Preliminaries
In this section, we briefly review a common model assumed for ACC vehicle dynamics, and then
review a standard simulation-based optimization method to estimate the model parameters used in
this work as a benchmark.

4.2.1. Model description and string stability

With the increasing interest in how vehicles with automated driving systems [96, 23] will affect
traffic flow patterns, several works have looked at modeling ACC vehicles using car-following models
[146, 80, 79]. A common variation of these models is the constant time headway relative velocity
(CTH-RV) model (3.3). Here we rewrite it as:

v̇(t) = f(θ, s(t), v(t),∆v(t)) = α(s(t)− τv(t)) + β(∆v(t)), (4.1)

where s, v, and ∆v are the space gap, velocity, and velocity difference between the ACC vehicle and
a leading vehicle. The vector of model parameters θ = [α, β, τ ]T control the gain on the constant
time headway term and the relative velocity term respectively, while the parameter τ is the time
gap at equilibrium.

We note that models considering constant time headway and relative velocity terms are regularly
used both to design string stable adaptive cruise control systems, as well as to model the behavior
of vehicles under ACC control [147, 146, 127, 259, 260, 15]. Compared to other modeling choices, it
is observed that CTH-RV model performs about as well in terms of data fitting real ACC systems
compared to more complex nonlinear models [81]. However, the model is a simplification of the
proprietary control logic and complex vehicle dynamics of real ACC vehicles, and the quality of fit
can drop for some specialized vehicles (e.g., hybrid vehicles) [79]. To avoid the need to know the
proprietary control logic, we adopt a similar strategy to what is done for human drivers, namely
model the full system as an ordinary differential equation. For the remainder of this work, we adopt
the CTH-RV as the assumed model of the ACC equipped vehicle.
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Given (4.1), it is easy to check the string stability [253] of the ego (i.e., follower) vehicle by evaluating
partial derivatives of the model with respect to s, v, and ∆v. Following the analysis of [153], if

α2τ2 + 2αβτ − 2α ≥ 0, (4.2)

then the model is said to be L2 strict string stable, which is consistent with the string stability
condition provided in [253]. Moreover, if

(ατ + β)2 − 4α ≥ 0, (4.3)

then the model is said to be L∞ strict string stable [153]. All studies that have collected empirical
data on commercial ACC systems have found them to be string unstable [80, 79, 146, 110] (in the
L2 sense). In Section 4.5, we illustrate that the new online methods introduced in this work find
that a stock 2019 SUV is neither L2 nor L∞ strict string stable.

Note that although string stability manifests along a platoon of vehicles, it is a property of the
individual vehicle car following behavior [253, 153]. Thus identifying the car-following model pa-
rameters of the follower vehicle is sufficient to analytically prove the string stability of the follower
vehicle. The interpretation of a string stable vehicle is that a homogeneous platoon consisting of
these vehicles will dissipate disturbances rather than amplify them as the perturbation propagates
in through platoon.Since no priori knowledge of the ACC system string stability is assumed in the
experiments, we do not use string stability as constraints during parameter estimation.

4.2.2. Offline batch optimization

Here a well known batch technique for car-following parameter estimation [169, 80] is reviewed to
estimate the parameters of the ordinary differential equation (ODE) model (4.1). The parameter
estimation problem is posed as an optimization problem in which the ACC model appears as a
constraint. It can be directly solved as a simulation-based optimization problem using standard
descent-based optimization routines.

The parameter values are optimized to minimize the root mean squared error (RMSE) between
simulated space gap data and recorded space gap data. The RMSE space gap error is used here
because it was found to perform well in previous works [169, 105]. The general form of optimization
problem is written as:

minimize :
√

1
T

∫ T
0 (sm(t)− s(t))2dt

subject to: ṡ(t) = u(t)− v(t) = ∆v
v̇(t) = f(θ, s, v,∆v),

(4.4)

with possible additional constraints on the initial conditions, and bounds on the parameters. In (4.4),
f(θ, s, v,∆v) corresponds to the car-following model in (4.1). The term u(t) is the lead vehicle
velocity as a function of time and is assumed to be available from measured data. Similarly, sm(t)
denotes the measured space gap, which is compared to the space gap predicted by the model in the
objective function. The total time of the dataset and simulation is T .

It is important to note that the problem is nonlinear in the decision variables (the state and model
parameters), and depending on the form of the car-following model, it may also be non-convex. To
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combat this potential problem the optimization problem can be solved many times, with each run
starting from randomly selected different initial candidate parameter values, as in [169].

4.3. Online parameter estimation techniques
We next introduce two online methods to estimate the adaptive cruise control model parameters
using velocity, space gap, and relative velocity data.

4.3.1. Recursive least-squares formulation

First we derive a RLS estimator. Unlike (4.4), the least-squares method proposed here does not
require multiple starting points or repeatedly solving an ODE within each optimization run, sub-
stantially reducing the runtime. We briefly derive the least-squares formulation for the ACC car-
following model (4.1).

First we rewrite the continuous time ODE (4.1) in discrete-time using a forward Euler step scheme:

vk+1 = vk + α(sk − τvk)∆T + β(uk − vk)∆T, (4.5)

where vk, sk and uk denote the velocity of the follower vehicle, the space gap, and the velocity of the
leading vehicle at timestep k, respectively. The term ∆T is the timestep size, which is selected to
correspond to the frequency at which the velocity, space gap, and relative velocity data is measured
(e.g., on the order of 1/10 of a second for some sensor platforms including the experiments presented
later in this work). The dynamics can be rewritten as:

vk+1 = γ1vk + γ2sk + γ3uk, (4.6)

with γ1 := (1 − (ατ + β)∆T ), γ2 := (α∆T ) and γ3 := (β∆T ). Note that instead of directly
estimating the parameters α, β, τ , we can instead estimate γ1, γ2, γ3. Except in the degenerate
case when γ2 = 0, we can always uniquely determine the values of α, β, τ given a set of values for
γ1, γ2, γ3.

We now demonstrate that one can recover γ := [γ1, γ2, γ3]
T from an experimental dataset containing

(vk, sk, uk) for all k ∈ {1, ...,K}, via least-squares. We expand (4.6) in time by stacking the
uniformly sampled measurements to obtain:


v2
v3
...
vK

 =


v1 s1 u1
v2 s2 u2
...

...
...

vK−1 sK−1 uK−1


γ1γ2
γ3

 , (4.7)

or
Y = Xγ. (4.8)

The term Y contains the values of vk from timestep 2 to K. The term X contains measurements
of vk, sk, and uk from timestep 1 to K − 1 in column-wise order.

Given the data matrices Y and X, γ has a unique solution if and only if rank(X) = rank([X Y ]) =
3. Note that this condition is not satisfied at equilibrium, where vi = vj = uk for all timesteps
i, j and k. In other words, using only data from equilibrium driving, it is not possible to recover
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the model parameters. In non-equilibrium driving and when sensor noise is present, it is easy to
generate an over determined system of equations, motivating the search for least squares solution
to (4.7).

To convert the least squares problem into an online method, a recursive implementation is desired.
The least squares solution to (4.7) has an exact recursive implementation by considering the kth row
of measurements {Yk, Xk} one row at a time. The least squares estimate of the parameter vector at
time k using all data collected from timestep 1 through k, denoted γ̂k, can be sequentially updated
by:

γ̂k = γ̂k−1 + PkXk(Yk − γ̂k−1Xk), (4.9)

where P−1
k =

∑k
i=1XiX

T
i is the cumulative outer product of Xk. Solving (4.9) requires an initial

estimate of the parameters γ0 ∼ N (γ̂0, P0), which are specified in the numerical experiment in
Section 4.4.

4.3.2. Online joint state and parameter estimation formulation

The parameter estimation problem can also be framed as an online joint parameter and state esti-
mation problem, in which model and measurement noises are explicitly considered. Such methods,
if fast enough, may also be used for real-time processing of data in order to estimate the model
parameters during data collection.

Problem formulation

To jointly estimate the state and model parameters, we consider an augmented state formulation
in which the model parameters are added to the state vector. The model of the evolution of the
augmented state is completed by assuming the parameters are constant in time.

We proceed as follows. First, θ = [α, β, τ ]T , is concatenated to the physical system state xk ∈ R2 =
[sk, vk]

T to form an augmented state xa
k ∈ R5. This is written as:

xa
k =

[
x
θ

]
k

=
[
s v α β τ

]T
k
. (4.10)

The discrete time dynamics of the augmented system using the same discretization approach as
(4.5) can be written as:

xa
k = Fd(x

a
k−1, uk−1), (4.11)

where Fd refers the system dynamics in the augmented state. The nonlinearities in the dynamics
appear due to the product of augmented state variables representing the ACC model parameters
and the physical states.
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The augmented state dynamics (4.11) are written as:

Fd(x
a
k−1, uk−1) =

sk−1 +∆T (uk−1 − vk−1)
vk−1 +∆T [αk−1(sk−1 − τk−1vk−1) + βk−1(uk−1 − vk−1)]

αk−1

βk−1

τk−1

 (4.12)

Additionally, a measurement equation is written to reflect the condition that the physical states
(sk, vk) may be directly measured, but we do not measure the parameters (αk, βk, τk):

yk = Cxa
k =

[
1 0 0 0 0
0 1 0 0 0

]
xa
k. (4.13)

In (4.13), yk ∈ R2 are the measurements, and C is the measurement matrix.

Particle filter

Because the augmented state (of the nonlinear augmented system) is to be estimated, a nonlinear
estimator must be considered. Here, we outline an approach to estimate the augmented state using
a PF.

The filter takes in the discrete-time system that considers model and measurement noises. The
state-space form is written as:

xa
k = Fd(x

a
k−1, uk−1) +wk

yk = Cxa
k + νk,

(4.14)

where wk ∼ (0, Q) ∈ R5 and νk ∼ (0, R) ∈ R2 are independent white noise processes for the model
and the measurement equations, respectively, at time k. Q ∈ R5×5 and R ∈ R2×2 are the known
process and measurement error covariance matrices.

Recall that the Bayesian state estimation method sequentially approximates the posterior probability
density function (PDF) of the augmented state at step k given past observations, i.e., p(xa|y1:k).
The Bayesian state estimation method can be summarized into two parts:

1. State propagation: obtain the prior distribution at k:

p(xa
k|y1:k−1) =

∫
p(xa

k|xa
1:k−1)p(x

a
k−1|y1:k−1)dx

a
k−1 (4.15)

2. State update: obtain the posterior distribution at k:

p(xa
k|y1:k) =

p(yk|xa
k)p(x

a
k|y1:k−1)

p(yk|y1:k−1)
. (4.16)

The particle filter [51, 38], among other filtering techniques, is deployed to approximate the prior
and the posterior distributions from equations (4.15) and (4.16) because of its flexibility in noise
distribution and its relaxed assumption about the linearity of the (augmented) dynamics of the
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Algorithm 1 Particle filter
Initialize (k = 0)
Draw i particles {xa,(i)

0 }i=1:Np from an initial distribution p(xa
0). Assign equal weights ω(i)

0 = 1/Np,
where i = 1, . . . , Np, and Np is the number of particles.
for k = 1 . . . T do

State propagation:
x
a,(i)
k = Fd(x

a,(i)
k−1 , uk−1) +w

(i)
k for all i.

State update:
Assign weight: ω

(i)
k := ω

(i)
k−1p(yk|(x

a,(i)
k ) for all i.

Normalize weight: ω
(i)
k := ω

(i)
k /
∑Np

i=1 ω
(i)
k for all i.

Resample:
Draw x

a,(i)
k with probability ω

(i)
k for all i.

end

system. PF uses weighted particles (samples) to approximate the conditional state distribution given
all measurements up to the current timestep using a sequential estimation approach. Therefore, the
output is a probability distribution for each parameter at each time step.

A summary of the PF is written in Algorithm 1. During implementation, it is important to monitor
the effective particle size [199] to ensure a valid estimation result. For more details on the PF
implementation, readers are referred to standard references such as [188].

4.3.3. Observability analysis

In this section we provide insights on the ability to estimate the ACC model parameters via an
observability analysis. An observable system indicates theoretically that its initial state can be
inferred from observing the outputs. For parameter estimation in the joint state-parameter form,
recovering the initial state indicates identifying the non-changing parameters. In this work we
consider a special case of parameter observability if the parameters are considered as constant state
variables. This assumption allows us to equate the notion of observable augmented state to uniquely
identifiable parameters given measurements. Given that the augmented state dynamics (4.14) are
nonlinear, observability must be assessed on a linearized version of the model. This can only be
done at fixed values of the augmented state, and is explained as below.

First we write the linearized state-space model of the nonlinear discrete-time system (4.11):

xa
k = Ak−1x

a
k−1 +Bk−1uk−1

yk = Cxa
k,

(4.17)

where Ak is the Jacobian of Fd defined in (4.11) with respect to the augmented state variables at
time k, Bk is the Jacobian with respect to the control inputs at time k, and C is the time-invariant
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measurement matrix as defined above in (4.13). Further, Ak can be written as

Ak =
∂Fd

∂xa

∣∣∣∣
xa∗
k ,u∗

k


1 −∆T 0 0 0

α∆T 1− ατ∆T − β∆T (s− τv)∆T (u− v)∆T −αv∆T
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


xa∗
k ,u∗

k

, (4.18)

where xa∗
k , u∗k are the state and input points about which the system is linearized and Bk is defined

similarly.

We choose to analyze the system observability by computing the above partial derivatives evaluated
at an equilibrium point. The condition for equilibrium reduces to zero acceleration and space gap
change, i.e.:

uk − vk = 0

sk − τkvk = 0 .
(4.19)

In addition, the system (4.11) reduces to a linear time invariant system, and Ak from (4.18) at
equilibrium simplifies to:

A =


1 −∆T 0 0 0

α∆T 1− ατ∆T − β∆T 0 0 −αv∆T
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

From here the observability matrix can be calculated using A and C as follows:

O =
[
C, CA, CA2, CA3, CA4

]T
,

where O is the observability matrix, the rank of which is used to assess observability.

When analyzed at any equilibrium point, the resulting observability matrix has rank(O) = 3 ̸= 5,
corresponding to a non-observable system. The corresponding null space of the observability matrix
is:

null(O) =
[
0 0 0 1 0
0 0 1 0 0

]T
, (4.20)

indicating two unidentifiable parameters, α and β at the equilibrium points. This analysis shows
that for the augmented-state estimation problem there is no guarantee for exact recovery of α and β
at equilibrium when using filtering techniques. The observability matrix derivation in this section is
based on the linearized system around an equilibrium point. Therefore, it does not provide insight
on parameter estimation for non-equilibrium trajectories, which we will instead explore numerically
in the computational experiments in Section 4.4 using the PF described next.

4.4. Estimation on synthetic data
In this section, each parameter estimation routine described above is run on synthetically generated
data. This is done to understand the potential to recover the true model parameters under controlled
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settings. We show that all methods produce good estimates under non-equilibrium driving but have
limited ability to recover true parameters under equilibrium driving conditions, consistent with the
discussion from Section 4.3.

4.4.1. Setup of synthetic experiments

The general setup is as follows. First, synthetic data is created by selecting a set of model parameters
and a predefined lead driver velocity profile. A time-series of velocity and space gap data is then
created via a forward simulation of (4.5) under the selected parameters and input signal. The
simulated data is then fed into each estimation method, with each returning a set of estimated
parameter values. The accuracy of the recovered parameters and the resulting state error of the
system trajectory under the recovered parameters is then compared. The run-time for each method
is also reported.

Equilibrium driving

In order to create a set of synthetic measurement data for driving under equilibrium, we begin
by setting the true parameters as: θtrue = [0.08, 0.12, 1.5]T . These values are representative of
parameter values that have been reported for commercial ACC systems [79]. Additionally, in order
to generate a synthetic dataset, the velocity profile of a lead vehicle is needed, along with an initial
space gap, and the initial velocity of the following vehicle.

We generate equilibrium data by setting the velocity of the lead vehicle at a constant uk = vlead =
24 m/s while the initial space gap and the initial velocity of the follower satisfy s0 = τtruev0. A
total of 900 seconds of velocity and space gap data is generated at a measurement frequency of 10
Hz. Because the data is generated such that the equilibrium condition (4.19) is satisfied, the true
parameters α and β do not influence the space gap or velocity of the follower vehicle.

Non-equilibrium driving

We also consider a non-equilibrium driving scenario where the lead vehicle velocity (the system
input) is empirically generated from a human driven vehicle in real highway driving. Using the
empirical input, the ACC velocity and space gap data are still generated via forward simulation
of the ACC model under the known true parameters. About 900 seconds of lead vehicle data is
collected in which the driver of the vehicle follows the traffic rules but has variations in speed due
interactions with other vehicles on the roadway. The simulation is initialized at a follower velocity
and space gap of 32.5 m/s and 37.8 m, and the data is again generated at 10 Hz. Figure 4.1 displays
the lead and follower velocity profiles, and the space gap data.

The true parameters used to generate the synthetic dataset are again θtrue = [0.08, 0.12, 1.5]T ,
which is neither L2 (4.2) nor L∞ (4.3) strict string stable. This means the ACC may amplify lead
vehicle disturbances. As can be seen in the simulation data (Figure 4.1), in several occasions the
follower vehicle slows down more than the leader.

4.4.2. Parameter estimation results on synthetic data

Using the synthetic data created above, we now turn to the results of each parameter estimation
routine that attempt to recover the true parameters using only the measurement data. We use
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Figure 4.1: Synthetic space gap and following vehicle data, generated from an empirical lead vehicle
profile.
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Method Parameters Values

Batch θ0 [U(0, 1) U(0, 1) U(1, 3)]T
optimization # initial points 100

Least γ0 [0.976, 0.01, 0.01]T

squares P0 0.1I‡
3

Particle Np 500 particles
filter µxa

0
[37.8 32.5 0.1 0.1 1.4]T

Q0 diag[0.5 0.5 0.2 0.2 0.3]2

Q diag[0.2 0.1 0.01 0.01 0.01]2

R diag[0.2 0.1]2

Table 4.1: Parameters and initialization for all estimation routines. ‡I3 is the identity matrix with
size 3× 3.

the mean absolute error (MAE) in space gap and velocity to compare the accuracy of each esti-
mation method. Both RLS and the PF require several algorithm parameters to be set, which are
summarized in Table 4.1. For the batch method, we sample 100 starting points for the parameters
from uniform distributions described in Table 4.1. For RLS, we set the initial coefficient vector γ0

and its corresponding covariance matrix P0. For the PF, we set the number of particles used in
the estimator Np, the initial distribution of the augmented state vector (assumed to follow a nor-
mal distribution with mean µxa

0
and covariance Q0), and the model and measurement covariance

matrices Q and R.

Equilibrium driving results

The performance of both online parameter estimators and the batch estimator are summarized in
Table 4.2. The summary includes the estimated parameters, the corresponding MAE for space gap
and velocity, and the run time.

Compared to the true parameters θtrue = [0.08 0.12 1.5]T , all methods estimate the true τ accurately,
but have larger errors on α and β. In the least squares method, this is due to the fact that the matrix
X from (4.7) has rank 1 (i.e., the columns in X (4.8) are linearly dependent, since vi = vj = ui = uj
for i, j ∈ {1, ...,K} at equilibrium), and consequently γ does not have a unique solution. In the PF,
the lack of observability of the system (4.17) leads to the the non-convergence of the PDFs in the
PF (see Figure 4.2). Only τ converges to the true value, while the distributions of α and β drift
away from the true values over time. Unlike the RLS estimator and the PF, the batch method does
not benefit from additional information about the true parameters via the prior given at time 0. As
a consequence, the errors on α and β are largest for the batch method.

The experiments illustrate that for all methods, the parameters are not identified at equilibrium.
This is consistent with the lack of persistent excitation in the input signal [27].

Even though the true α and β are not recovered correctly, all methods produce models that have
negligible MAE for speed and space gap. This is again due to the fact that α and β do not influence
the trajectory of the ACC vehicle at equilibrium.
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Figure 4.2: Posterior parameter PDFs for equilibrium driving dataset from PF estimates. The plot
shows that parameter α and β are not identified correctly, i.e., the distributions drift away from the
true values (black vertical lines) over time. Only the distribution of τ converges to the true value.

Criteria Batch optimization RLS PF

Estimated
parameter

values

α = 8.34
β = 7.30
τ = 1.50

α = 0.0965
β = 0.0976
τ = 1.50

α = 0.065
β = 0.604
τ = 1.50

Algorithm Offline Online Online

Running time (s) 12.44 0.06 8.45
MAE space gap (m) 0.00 0.00 0.14
MAE velocity (m/s) 0.00 0.00 0.00

Table 4.2: Performance on synthetic equilibrium data. True parameters are: αtrue = 0.08, βtrue =
0.12, τtrue = 1.5.
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Finally, we compare the runtime of each method. The recursive least-squares approach recovers the
parameters in 0.06 seconds, which is the fastest runtime of the three methods by more than 2 orders
of magnitude. The PF runs in 8 seconds, which is a factor of 100 faster than real time (recall the
dataset is 900 seconds long). Although the total time to execute the batch method on a 900-second
data is only 12 seconds, this is an offline method and cannot be run until all the data has been
collected. This is in contrast to the online methods, which produce new estimates every time a new
measurement is available. All the experiments are performed on the same MacBook Pro with 2.7
GHz CPU, such that the running time is comparable.

Non-equilibrium driving results

We now turn to the performance of the methods on the synthetic dataset generated from the ACC
model when fed empirically collected non-equilibrium lead vehicle driving data. The results of each
method are summarized in Table 4.3.

Both the batch method and the RLS estimator recover the true model parameters used to generate
the data. The PF performs worse but the estimates improve over time (Figure 4.3). When simulating
with the mean values of the PF parameter estimates, the calibrated model has an MAE of 0.32 m/s
in velocity and 2.54 m in the space gap. Given that the PF assumes both a model and measurement
noise, it is not surprising that it does not perfectly recover the true parameters (since the model and
measurement in fact have zero error in this synthetic example). We note the runtime for the two
online methods again outperforms the batch method, and are significantly faster than real time.

Table 4.3 also shows the string stability estimate based on the recovered parameters using each
method. Because the value of the parameters are used to determine the model string stability, it is
important to know if errors in the estimates are large enough to change the string stability estimate.
In this experiment, we find that all models under the estimated parameters are string unstable, as
is the case with the true model parameters.

Additional numerical experiments can be found in [243], which explores the RLS performance in
the presence of measurement noise, looking both at the real noise expected from the stock sensors
as well as the sensitivity of the estimator to a range of noises. We find that the method can tolerate
the noise levels present on the commercial vehicle platforms.

4.5. Case study on a 2019 ACC equipped vehicle
We now present a case study in which all methods are used to estimate the model parameters using
data collected from a 2019 ACC equipped vehicle.

4.5.1. Experimental details

We first describe the velocity and space gap data collection using measurements from the stock
radar system of an ACC-equipped vehicle. We compare the measurements collected from the ACC
vehicle CAN bus to measurements collected using those from the GPS devices mounted on the ACC
vehicle and its leader during the experimental data collection.

To set up the experiment, we create a two-vehicle system in which an ACC-equipped vehicle follows
an instrumented lead vehicle driven by a human in real freeway driving conditions. The vehicle
used in this experiment is a commercially available 2019 SUV with a full velocity range adaptive
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Figure 4.3: Posterior parameter PDFs for non-equilibrium driving dataset from PF estimates.

Criteria Batch optimization RLS PF

Estimated
parameter

values

α = 0.08
β = 0.12
τ = 1.5

α = 0.08
β = 0.12
τ = 1.5

α = 0.04
β = 0.21
τ = 1.41

Algorithm Offline Online Online

Running time (s) 11.27 0.06 8.43
MAE space gap (m) 0.00 0.00 2.54
MAE velocity (m/s) 0.00 0.00 0.32

L2 strict string stable No No No
L∞ strict string stable No No No

Table 4.3: Performance on synthetic nonequilibrium data: True parameters are: αtrue =
0.08, βtrue = 0.12, τtrue = 1.5. The reported parameter values are the maximum a posteriori (MAP)
estimates of the last timestep (at 900 s), which can be slightly different from the estimates of the
earlier timesteps.
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Figure 4.4: Left : The 2019 ACC equipped stock SUV used in the experiment. Right : relative
position data collected from the CAN bus of the vehicle within a duration of 15 min drive. Each
point corresponds to the latitudinal and longitudinal distance to an object detected by the stock
radar sensor and reported on the CAN bus. Colors correspond to distinct objects.

cruise control system (Fig. 4.4, left). A total of 15 minutes (900 seconds) of data are recorded at 10
Hz in which the ACC vehicle follows the lead vehicle through traffic on a freeway in Nashville, TN.

The driver of the lead vehicle is instructed to drive as they would normally in traffic, while the ACC
equipped vehicle follows with ACC engaged. The entire experiment is conducted without any ACC
de-activations or overrides, and no cars cut in between the leader and the ACC follower.

Velocity, lead vehicle velocity, and space gap data is collected by recording measurements from the
CAN bus on the vehicle. The radar unit reports the latitudinal and longitudinal distance to objects
in front of the vehicle (Figure 4.4, right), from which the space gap between the two vehicles can be
computed. It also reports the relative velocity of objects in the field of view of the sensor. Since the
ACC vehicle velocity is also published to the CAN bus, the lead vehicle velocity can be determined
from the radar data. With straightforward processing of the radar data, it is possible to convert
into velocity data of the leader and follower, and space gap, as shown in Figure 4.5.

4.5.2. CAN bus velocity and space gap data validation

In order to assess the accuracy of the stock vehicle radar unit, both vehicles are additionally equipped
with sub-meter accurate GPS units which track global position and velocity. The devices are the
same units used for primary data collection in our previous work [79, 80, 192]. The time-series of
space gap and velocity are recorded from both GPS devices and the radar unit on the ACC vehicle
and compared.

A histogram of the differences between the two measurement techniques is displayed in Figure 4.6.
The distribution of differences between radar space gap measurements and GPS space gap measure-
ments is approximately zero-centered, as are the relative velocity differences. The sensors do not
appear to be biased. The standard deviations of the differences between the measurement devices
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Figure 4.5: CAN bus measurement of an ACC-enabled vehicle following a human-driven vehicle.

is 0.72 m and 0.20 m/s for the space gap and relative velocity respectively, suggesting the sensor
noises are also low.

As a further check, we briefly note that all estimation methods described next were run on data
collected from the GPS devices as well as on the data from the radar unit as logged on the CAN bus.
In all cases the estimated parameters are similar across the two sensor platforms. We conclude that
the on-board radar measurements reported on the CAN bus are comparable to the GPS devices.

The fact that the space gap, velocity, and relative velocity data can be collected directly from the
CAN bus significantly simplifies experimental data collection. Compared to our earlier work that
required instrumenting two vehicles, the approach here can be applied using only a single vehicle
(the ACC equipped vehicle). Eventually this may allow improved data collection from ACC vehicles
in increasingly realistic settings, such as under cut-ins and lane changing.

4.5.3. Parameter estimation results on a 2019 ACC vehicle

With the CAN bus data validated, we now turn to the parameter estimation problem applied to the
vehicle. The data contains non-equilibrium driving data, which is used to estimate the parameters
using each method. We follow the same setup as the synthetic data experiments, with the notable
exception that the true parameters of the ACC vehicle are unknown. The MAE between the
measured space gap and the space gap under the estimated parameters is reported. Similarly, the
MAE of the velocity is used to assess the quality of the estimated parameters. The string stability
of the calibrated model under the parameters estimated by each method is also determined.
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Figure 4.6: Histogram of the difference between GPS measurements and CAN bus measurements
for space gap and relative velocity measurements.

Criteria Batch optimization RLS PF

Estimated
parameter

values

α = 0.0227
β = 0.194
τ = 1.227

α = 0.0174
β = 0.164
τ = 1.127

α = 0.0431
β = 0.164
τ = 1.221

Algorithm Offline Online Online

Running time (s) 11.98 0.06 8.70
MAE space gap (m) 2.02 2.24 2.60
MAE velocity (m/s) 0.24 0.26 0.35

L2 strict string stable No No No
L∞ strict string stable No No No

Table 4.4: Performance summary of all estimation methods on ACC data.
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Figure 4.7: Comparison between recorded vehicle velocity and space gap vs simulated for each
model found.
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Figure 4.8: velocity error distribution for each calibrated model.

These results are summarized in Table 4.4. All methods produce parameters that fit the data well,
with some differences in the actual parameter values. A simulation using the estimated parameters
from each method is shown in Figure 4.7. All methods have nearly identical velocity profiles, with
slight differences in the space gap profiles. The batch optimization achieves both the lowest MAE
velocity and space gap errors at 0.24 m/s and 2.02 m. This represents errors of 0.8% in velocity
and 5.0% in space gap. The least-squares method has a comparable performance, with MAE values
of 0.26 m/s and 2.24 m (0.87% in velocity and 5.6% in space gap). Finally, the PF estimated
parameters produce slightly higher MAEs of 0.35 m/s and 2.60 m, which correspond to percent
errors of 1.2% in velocity and 6.5% in space gap. Overall, the MAEs are comparable and low both
in absolute values and in percent. Moreover, the models are similar in scale to those found in other
works [146, 79].

We explore the errors in more detail. The largest error between the measured data and the ACC
model run with estimated parameters occurs between roughly 325 seconds and and 375 seconds, in
which the real ACC vehicle engages in an acceleration that is not captured by any of the calibrated
models. This underscores that while each calibrated model produces a good overall reconstruction
of the ACC vehicle, none are able to perfectly describe the complex nonlinear vehicle dynamics
controlled by a proprietary ACC system.

The histograms of the errors are shown in Figure 4.8 and 4.9. The average velocity and space gap
error of both online methods is relatively similar to that of the batch method. All three methods
return a model that has an average velocity error of within 0.01 m/s and similar standard deviations.
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Figure 4.9: space gap error distribution for each calibrated model.

Both the online methods produce the average space gap errors that are slightly more biased than
the batch method, and standard deviations within 4 m. These MAE values are of the same order
as is reported in other works [146, 79, 80]. Given that both the online methods have similar average
velocity and space gap errors compared to the batch methods and the estimated models fit the
recorded data relatively well, this suggests that both the RLS and the PF are viable online methods
for learning ACC model parameters.

With the estimated parameters from each of the methods, we check the string stability of the vehicle
under ACC control. Like all previous studies considering commercial ACC systems [146, 79, 80, 110],
we find that the calibrated model of the vehicle tested in this work is neither L2 or L∞ strict
string stable. The results are consistent across the different calibration methods, as summarized in
Table 4.4.

With respect to the runtime, the recursive least-squares method is again the fastest, with a total
computation time of 0.06 seconds to process the 15 minute dataset. The PF executes in 8.7 seconds,
while the batch optimization method runs in 11.98 seconds. The runtime of the batch method is
sensitive to the initial guess and the number of parameters to be estimated. The online methods have
a distinct advantage in real-time applications, since they produce new estimates of the parameters
as new data becomes incrementally available, and they can scale to arbitrarily long datasets.
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4.6. Conclusion
This work uses two online methods to estimate parameters of vehicles under control of a stock
ACC system, and provides a corresponding parameter identifiability analysis for the estimators.
The online methods used here are scalable and suitable for real time implementations, and produce
comparable results to an offline batch optimization method. All methods are tested on a 2019
vehicle with ACC using sensor data from the stock vehicle platform as reported on the CAN bus.
All methods indicate the vehicle ACC system is string unstable, adding to the findings of eight
other ACC systems as reported in [79, 80]. We further intend to exploit the experimental platform
used in this work, which allows critical velocity and space gap data to be recorded directly from the
CAN bus of the vehicle. Such data could be valuable for a variety of experimental settings in which
humans and automation systems interact in mixed traffic.

We envision in our own work to generalize the application of the online system identification methods
to study human driving behavior, using vehicles equipped with stock sensors similar to the ACC
vehicle used in this work. As humans or automated vehicles may change driving behaviors depending
on traffic conditions or environmental factors, it is important to apply online system identification
algorithms to capture such behavioral changes characterized by the model parameters.
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CHAPTER 5

Applications on human car-following system identification

5.1. Introduction
As discussed in Chapter 4, ACC automatically adjusts the longitudinal speed of the ego vehicle to
maintain a safe distance from the vehicle ahead. ACC has been shown to increase safety, enhance
driving comfort, and reduce fuel consumption [187, 174, 193, 249]. However, the limited settings
of ACC prevent the drivers to preserve their own car-following styles, resulting in lack of trust and
usage of that technology. In addition, a variety of usage conditions and the changing of the drivers’
expectations persist in real-world driving. Drivers differ in their preferences and skills, and their
styles may change over time. Personalization on vehicle maneuvers such as path tracking, steering
and car-following is less developed, yet implicit driving preference significantly impacts driver’s
acceptance and trust towards the existing advanced driver-assistance systems (ADAS) [84]. In this
chapter we formulate the penalization task as a system identification problem, where we design a
personalized adaptive cruise control (PACC) that is learned from human-driving data.

The learning-based model benefits from the exploratory data-driven tools, as opposed to the model-
based system identification which are often based on a fixed model structure. However, challenges
still persist such as the verification of safety, stability and rationality. Recent developments such
as the control Lyapunov and control barrier functions have been applied to provide safe and stable
controlled systems [5, 6], as well as formal verification tools to facilitate assured autonomy from
learning [258, 225, 4].

Amongst all the control design approaches, we draw particular attention to Gaussian Process (GP)
regression, to design a personalized ACC that mimics the individual’s driving behaviors. We focus
on predicting the drivers’ preferences and actions based on their past behaviors. GP regression can
be utilized to identify the relationship between input (driver’s perceived information) and output
(desired acceleration), which allows it to provide personalized guidance towards driving.

In this chapter we make the following contributions:

• Design of a GP-based personalized adaptive cruise controller (GP-PACC) that
allows learning the implicit longitudinal human driving styles without categorizing it based
on predefined rules. This approach is purely data-driven, and allows each user to have a
unique hyperparameter set that characterize his/her driving profile.

• Validation of the proposed GP-PACC with both the synthetic data and human-
in-the-loop experiments. Results show that GP-PACC can almost exactly recovers the
synthetic car-following data even under reasonable measurement noises, and can capture the
driving styles of a real human driver up to 80% more accurately than calibrated baseline
car-following models.

The remainder of this chapter is organized as follows: Section 5.2 introduces the problem formulation
of this study. Section 5.3 outlines the fundamentals of GP regression used to model car-following
behaviors, and describes the training and validation method for the GP model. In section 5.4 we
conduct numerical experiments and human-driving experiments on a game engine to test the validity
of the model. Finally, the study is concluded with some future directions in section 5.5.
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5.2. Problem formulation
The proposed GP model aims to take the same input-output configuration of a traditional ODE-
based car-following model (3.2). It learns from individual driver’s naturalistic car-following behavior,
and outputs a desired acceleration profile that closely mimics it.

Consider the discretized car-following dynamics of the general continuous-time form (3.2)

xk+1 =

[
s
v

]
k+1

=

[
sk + (uk − vk)∆t

vk + fCF(sk, vk, uk)∆t

]
(5.1)

where fCF : R3 → R1 is a GP model. GP is trained to recover driver’s naturalistic car-following be-
havior by minimizing the difference between the predicted acceleration and the recorded naturalistic
driving acceleration.

The general assumption of GP regression is that inputs and outputs follow a multivariate Gaussian
distribution, where any collection of the input/output vectors are jointly Gaussian distributed. GP
regression is nonparametric (i.e. not limited by a functional form), so rather than calculating
the probability distribution of parameters of a specific function, GP calculates the probability
distribution over all admissible functions that fit the data. The GP training requires us to specify
a prior distribution, and maximize the posterior probability of hyperparameters (that describe the
prior) using the training data. The trained hyperparameters can then be used to make prediction
on any points of interest. The general form of the prior is:

fGP(z) ∼ GP(m(z), c(z, z
′
)), (5.2)

where m(z) is the mean function of the input vector z, and c(z, z′
) is a covariance function, which

encodes the smoothness of fGP (i.e., similarity of inputs corresponds to the similarity of outputs).
Furthermore, we adopt a nonlinear output error (NOE) training procedure outlined in [111], with the
goal of making GP a good simulation model to achieve multiple-step-ahead prediction (simulation)
accuracy, instead of just one-step-ahead prediction accuracy.

The block diagram of the proposed GP-PACC system is shown in Fig. 5.1. We consider the ACC
algorithm as the high-level controller, which takes the input of the ego vehicle speed, lead vehicle
speed, and space gap information, and outputs an acceleration. The low-level vehicle dynamics will
then output the corresponding speed and space gap.

5.3. System identification via Gaussian Processes
In this section we outline GP training using the nonlinear output error (NOE) approach. The
derivation is based on [112]. The goal of NOE is to include simulation in the training step, thus
reducing the GP multi-step prediction (simulation) error, as apposed to naive GP regression that
is trained on one-step prediction only.

Gaussian processes extend multivariate Gaussian distributions to infinite dimensionality. They
are a form of supervised learning and the training result represents a nonlinear mapping fGP(z) :
Rdim(z) → R, such as fCF in (3.2). The mapping between the input vector z and the function value
fGP(z) is accomplished by the assumption that fGP(z) is a random variable and is jointly Gaussian
distributed with z, which is also assumed to be a random variable [176].

57



Figure 5.1: Block diagram of the proposed GP-PACC system. The predictive safety filter component
is described in Appendix B

Setup The GP model setup includes selecting the model regressors, the mean function and the
covariance function. In the following discussion, we focus on the commonly used zero-mean and the
squared-exponential covariance function that relates two sample input vectors zi and zj :

c(zi, zj) = σ2
fexp

(
−1

2
(zi − zj)TP−1(zi − zj)

)
+ σ2

nδij , (5.3)

where δij = 1 if i = j and δij = 0 otherwise, and P = diag[l21, ..., l2dim(z)] contains the characteristic
length scale for each dimension of the input vector. The hyperparameters of the covariance function
θ = [σf , σn, l1, ..., ldim(z)]

T include the measurement noise σn, the process standard deviation σf , and
the characteristic length scales, which are learned by maximizing the likelihood of the observation.

Bayesian model inference The inference of a Bayesian model is a process where the prior knowl-
edge of the hyperparameter vector θ is updated to a posterior distribution through the identification
(training) data.

We specify the training input Z and target y for a total of N samples:

Z = [z1, z2, ..., zN ]T (5.4)

y = [y1, y2, ..., yN ]T , (5.5)

where the subscript denotes the sample index.

The corresponding GP model can be used for predicting the function value y∗ given a new input
z∗ based on a set of past observations D = {Z,y}. The key assumption is that the data can be
represented as a sample from a multivariate Gaussian distribution:[

y
y∗

]
∼ N

(
0,
[
K KT

∗
K∗ K∗∗

])
, (5.6)
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where 0 ∈ RN is a vector of zeros, and K is the covariance matrix

K =


c(z1, z1), c(z1, z2)...c(z1, zN )
c(z2, z1), c(z2, z2)...c(z2, zN )

..., ...
c(zN , z1), c(zN , z2)...c(zN , zN )

 (5.7)

K∗ = [c(z∗, z1), c(z∗, z2)...c(z∗, zN )] K∗∗ = c(z∗, z∗). (5.8)

We want to infer θ by computing the posterior distribution of the hyperparameters:

p(θ|Z,y) = p(y|Z, θ)p(θ)
p(y|Z)

. (5.9)

For unknown knowledge of θ, it is reasonable to specify a uniform distribution p(θ), and as a result,
the posterior distribution is proportional to the marginal likelihood, i.e.,

p(θ|Z,y) ∝ p(y|Z, θ). (5.10)

Maximizing the posterior distribution is equivalent to minimizing the negative log likelihood l(θ):

l(θ) := ln p(y|Z, θ) = −1

2
ln|K| − 1

2
yTK−1y− N

2
ln(2π). (5.11)

Once the best-fit θ is obtained, we can compute the covariance matrix (5.7) and the output distri-
bution y∗ (in terms of the prediction mean and variance) given a new input vector z∗:

ŷ∗ = K∗K
−1y

var(y∗) = K∗∗ −K∗K
−1KT

∗ .
(5.12)

For the simplicity of notation, we denote the output prediction as:

y∗ = fGP (z∗, θ) +N (0, σ2
n). (5.13)

We adopt a training process similar to calibrating an ODE-based car-following model [133, 233,
41, 166, 81]. The process is to find the parameters of which the simulated output is closest to the
recorded measurement. The simulated state {x̂k = [ŝ, v̂]k}Nk=1 given the initial state x0 = [s0, v0],
the external input signal u0:N−1 and a GP model (5.13) are used as part of the pseudo training input
of the GP-NOE model. This way, the dynamics (3.2) can be inherently included in the training
when the simulated states are fed back as the regressors. The simulated state can be obtained via:

x̂k+1 =

[
ŝ
v̂

]
k+1

=

[
ŝk + (uk − v̂k)∆t
v̂k + fGP (ẑk, θ)∆t

]
x̂0 = x0 = [s0, v0], k = 0 : N − 1

(5.14)

where ẑk = [ŝk, v̂k, uk] is the kth sample of the pseudo training input, which contains the simulated
state and the measured external input at time k, as opposed to the recorded data zk = [sk, vk, uk].
We rewrite (5.14) to the following to denote the simulated trajectories:

x̂k+1 = g(x̂k, uk, θ,∆t), k = 0 : N − 1. (5.15)
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The simulation also requires an initial guess of the hyperparameters θ. The mean prediction is
stated as fGP (ẑk, θ) according to (5.12). The training target is the acceleration data at the same
timestep y1:N .

Let us denote Ẑ1:N = [ẑ1, ẑ2, ..., ẑN ]T . The training of the GP model with NOE structure is an
iterative process shown in Algorithm 2. The implementation is based on the GP-Model-based
System-Identification Toolbox for Matlab [191].

Algorithm 2 GP-NOE training
Data: Training input Z, training target Y, covariance function c(·, ·), initial hyperparameters θ,

initial condition x0 = [s0, v0]
while l(θ) (5.11) is not minimal do

obtain the simulated (pseudo) regression vectors Ẑ1:N with the initial state x0 = [s0, v0] and
the current hyperparameters θ, according to (5.14);

update θ by minimizing the negative log likelihood l(θ).
end

5.3.1. Model validation

Training a GP-NOE model is similar to calibrating a car-following model, which is conducted by
finding the model parameters that minimize the error between the simulated vehicle trajectories and
the benchmark. We validate the GP model in simulation, i.e., obtaining a closed-loop simulated
trajectory according to (5.14), and compare the acceleration and space-gap trajectories with the
recorded data, similar to evaluating a car-following model from calibration (e.g., [133, 233, 41, 166,
81, 48]).

Two performance metrics are measured: the mean squared error (MSE) and the log predictive-
density error (LPD) [112, 72] between the GP simulated acceleration and the recorded acceleration
of a validation data set:

MSE =
1

N

N∑
k=1

(yk − ŷk)
2

LPD =
1

2
ln(2π) +

1

2N

N∑
k=1

(
ln(σ2

k) +
(yk − ŷk)

2

σ2
k

) (5.16)

where yk is the acceleration data at timestep k, ŷk is the mean prediction of GP at timestep k, and σ2
k

is the prediction variance. MSE measures the error only on the mean predicted acceleration, whereas
LPD takes into account the entire distribution of the prediction by penalizing the overconfident
prediction (smaller variance) more than the acknowledged bad predicting values (higher variance).
In addition, the MSE on the space gap (MSE-s) will also be calculated, since small and biased
acceleration prediction might lead to a larger space gap error. The simulated space gap can be
obtained from the GP output using (5.14). The lower these measures the better GP model performs
in terms of recovering the original driving data.
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Figure 5.2: Compare GP predicted acceleration (red solid line) with data (black dotted line). The
first half is training result and the second half is validation result.

5.4. Experiments and results

5.4.1. Numerical experiments

A set of car-following data is synthetically generated using IDM [208], which has been used through-
out the literature to model a realistic driver behavior, such as asymmetric accelerations and decel-
erations. The simulated car-following data serves as “ground truth", from which the GP-PACC
prediction errors can be computed, and the prediction variance can be compared with the known
noise. The model is specified in (3.10). In this experiment, the synthetic data is obtained from an
IDM with parameters θ = [sj , vf , T, a, b, δ] = [2, 33.3, 1.6, 0.73, 1.67, 4] based on empirical investiga-
tions [208].

We generate 200 seconds of data at 10Hz given a pre-recorded, freeway high-speed lead vehicle
speed profile ranging between 25m/s to 35m/s. The simulated data is also manually polluted with
Gaussian white noise ranging from 0.01 to 0.1 standard deviation onto the acceleration signal, in
order to emulate the realistic sensor errors. We train the GP model on the first 100 seconds and
use the second half as the validation set (see Fig. 5.2). This composition is shown to reproduce the
car-following styles for various drivers consistently well in our later experiments.

Fig. 5.2 visualizes the GP simulated acceleration (red solid line) and the benchmark data (black
dashed line), as well as the prediction uncertainty (grey area). The data is synthetically generated
using IDM. One can see that the uncertainty band well captures the deviation of the data set, and
the mean prediction traces the mean of the data accurately.

More quantitatively, Fig. 5.3 shows the MSE of the GP simulation on the acceleration, velocity and
the space gap, as well as the LPD on the acceleration, respectively. When various levels of sensor
noises are present, the GP results show that the MSE of acceleration prediction is overall very low
(under 3.5×10−4), and so does the corresponding velocity (under 0.01(m/s)2) and space gap MSE
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Figure 5.3: Performance of GP-PACC compared with synthetic data.

(under 4.5m2). It indicates that the GP model can very accurately reproduce the driving profile
and is robust under noisy measurements.

Note in Fig. 5.3 that, as the standard deviation of the added noise increases (emulating a higher
noise of real-world acceleration measurement), the MSE values for both the acceleration and the
space gap prediction are lower. There are two reasons for this: (a) inverting the covariance matrix
K during the parameter inference step (5.11) suffers from numerical issues when the variance of y is
too low; (b) Training may not converge to a global minimal due to the non-convex and non-smooth
objective function (5.11), albeit the warm start.

Lastly, the LPD (bottom of Fig. 5.3) on the acceleration prediction indicates that the new obser-
vations (from the validating set) are well-accounted by the posterior predictive distribution, even
with higher sensor errors.

Overall, the numerical experiments suggest that GP can accurately reproduce the driving data even
with reasonable measurement noise. The posterior distribution can also accurately characterise the
uncertainty of the data set. The results show that GP-PACC almost exactly mimics the driver
in a purely data-driven way, and hence improves the personalization in ADAS by adapting the
longitudinal driving assistance to the driver’s preferences and needs.

5.4.2. Human-In-The-Loop Experiments on the Unity Game Engine

Modeling and simulation environment in Unity game engine Game engines are concep-
tually the core software necessary for a game program to properly run. They generally consist of
a rendering engine for graphics, a physics engine for collision detection and response, and a scene

62



Figure 5.4: Naturalistic driving in a car-following scenario with a gaming laptop, a Logitech racing
wheel, and the Unity game engine.

graph for the management of elements like models, sound, scripting, threading, etc. Along with the
rapid development of game engines in recent years, they become popular options in the development
of intelligent vehicle technology [132], with studies conducted for driver behavior modeling [251],
connected vehicle systems prototyping [250, 129], and autonomous driving simulation [50, 182].

In this study, human-in-the-loop experiments are conducted on a customized driving simulator
platform, which is built with a Windows gaming laptop (processor Intel Core i7-9750 @2.60 GHz,
32.0 GB memory, NVIDIA Quadro RTX 5000 Max-Q graphics card), a Logitech G29 Driving Force
racing wheel, and Unity game engine 2019.2.11f1 [252]. A three-lane highway scene is built in the
simulation environment, where human drivers are able to manually drive the ego vehicle to follow
the target vehicle, shown as Fig. 5.4.

Data acquisition The experiment trip resembles a freeway high-speed scenario, and has a total
period of 200 seconds. The lead vehicle’s trajectory comes from the CAN-bus data of a pre-recorded
trip by a human driver [242]. The trajectory contains a time-varying speed profile within the range
25-35m/s that captures a naturalistic freeway acceleration and deceleration scenario. The data is
recorded in 10Hz. The training input and target are organized according to (5.4) and (5.5), where
Z = {zk = [s, v, u]k}Nk=1, and y = {yk}Nk=1.

Training result The parameter inference takes about 10 seconds to complete, with the best-
estimated parameters θ = [l1, l2, l3, σf , σn] = [14.4, 1.4, 5.9, 0.56, 0.11], where l1, l2, l3 correspond to
the characteristic length scales of s, v, u, respectively.

To visualize the training result, Fig. 5.5 compares the GP simulated acceleration and Unity recorded
acceleration. The mean prediction (red line) aligns well with the recorded data (dotted black line)
both in the training and validation sets. The uncertainty captures the variation of the recorded
data in the training set, and accurately acknowledges the uncertain prediction in the validation set
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Table 5.1: Model training results: all trained on the same training set and validated on the same
validation set shown in Fig. 5.5.

Model GP CTH-RV IDM

MSE - acceleration 0.0909 0.0742 0.0927
MSE - velocity 0.851 0.779 6.044
MSE - space gap 24.8 41.6 1101
LPD - acceleration -0.0023 N/A N/A

(with a wider prediction variance), with a few exceptions at around 120 sec.

To further validate that the GP model captures the driving dynamics, we compare its ability to re-
construct human-driving profiles with that of two ODE-based car-following models. The first model
is the constant-time headway relative-velocity (CTH-RV) model used to characterize adaptive cruise
control driving behaviors [81], and the second one is IDM [208], which is used to describe human-
driving behaviors. Since the GP-PACC design problem is formulated as a system identification
problem, where the goal is to minimize the discrepancy between the predicted driving profiles and
the measured ones, it shares the same objective with calibrating car-following models. GP-PACC,
CTH-RV and IDM are trained (calibrated) with the same training data, and validated with the
same testing data produced from the same driver shown in Fig. 5.5. We use acceleration as the
prediction target in order to be consistent with the GP model training, which also has the target
of minimizing the error on predicted acceleration. A general form of calibrating any car-following
model is written as minimizing a sum-of-squared cost function:

minimize
θ

:
∑N

k=1(yk − ŷk)
2

subject to: ŷk = fCF(sk, vk, uk, θ), k = 1, 2, .., N
(5.17)

with possible additional constraints on the initial conditions, and bounds on the parameters.

The training and testing errors are measured by MSE on the acceleration and space gap. As shown
in Table 5.1, GP can perform on par with, or even outperform some established analytical car-
following models in terms of reproducing acceleration, velocity and space gap trajectories. Notably,
GP outperforms both other models with the lowest space-gap MSE, which tends to accumulate from
inaccurate acceleration prediction.

In addition, we see that the training on naturalistic driving data does not provide satisfactory
results as compared to training with synthetic data. One immediate reason is that synthetic data
generated using ODE-based models has a cleaner relationship between the inputs (s, v, u) and the
output (acceleration), which can be captured by the squared-exponential covariance function (5.3);
On the other hand, naturalistic driving data contains more randomness and inconsistent patterns
even during the same trip. More driving datasets are desired to test the ability of our model on
recovering the longitudinal car-following behavior. It will be interesting to compare not only with
other car-following models, but also across datasets (e.g., naturalistic driving datasets [98] and
field experimental data for ACC vehicles [82, 135]) for future work. Nevertheless, GP modeling of
human-in-the-loop experiments shows promising results, even with no explicit assumptions on the
personalized driving styles.
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Figure 5.5: Compare GP-PACC guided acceleration (red) with the actual acceleration recorded by
one of the human-in-the-loop experiments (dotted black). The first half is training result and the
second half is validation result.

5.4.3. Human-in-the-loop override validation

In addition to the numerical analysis, the GP controller is also validated with human-in-the-loop
override validation. The purpose of the tests is to measure each driver’s comfort and trust of
the proposed GP-PACC as well as two other baseline models (i.e., CTH-RV and IDM). The test
drivers undergo several blind tests: an unknown controller drives the ego vehicle for each trip, and
the frequency and duration of which the drivers override the equipped ACC (by stepping on the
acceleration/braking pedals) are recorded.

Experiment setup In this validation, instead of using manual control for car-following, the ego
vehicle is driven with the trained GP-PACC as well as two other baseline ACC models. Four drivers
(two males and two females with diverse real-world driving experience) participate in the tests, and
each is randomly provided with the individualized GP-PACC or either of the two baseline models.
The operating controller for a specific trip is unknown to the driver in order to eliminate potential
bias. Each driver completes the tests when all three controllers are covered.

Each trip lasts 200 sec, where each driver monitors the trip and overrides the equipped ACC when
he/she feels uncomfortable. The equipped ACC resumes control immediately after the driver lets
go the overrides. The timestamps of which the driver overrides the ACC are be recorded.

Controller specifications GP-PACC is customized for each driver. First, a 200-sec naturalistic
car-following data is collected from each driver with the same simulation setup: all drivers are told
to naturally follow the same leader, whose speed and acceleration profiles are shown as the blue
lines in Fig. 5.6. All trips are recorded on the same Unity game engine with the same Logitech
G29 Driving Force racing wheel. Other simulation parameters (e.g., weather, surrounding traffic
and road conditions are fixed for all trips). Next, the training for GP-PACC is conducted using
Algorithm 2. The resulting GP-PACC specifications are summarized in Table 5.2.

The other two baseline ACC models are taken directly from two calibrated ACC models. Specifically,
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Figure 5.6: A trip driven by GP controller with driver B behind the wheel.

Figure 5.7: A trip driven by ACC#1 with driver B behind the wheel.

Figure 5.8: A trip driven by ACC#2 with driver B behind the wheel.
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Table 5.2: GP-PACC parameters for each driver

Driver l1 l2 l3 σf σn

A 14.4 1.40 5.90 0.56 0.11
B 18.4 1.72 1.11 0.43 0.20
C 5.61 0.47 1.70 0.56 0.20
D 4.33 1.25 2.40 0.17 0.19

ACC#1 is the constant-time headway relative-velocity (CTH-RV) model of the form:

ak = 0.0131(sk − 1.6881vk − 7.57) + 0.2692(uk − vk), (5.18)

and ACC#2 is of the form of an IDM:

ak = 0.73

[
1−

(vk
30

)4
−
(
s∗(vk, uk)

sk

)2
]
, (5.19)

where the desired space gap s∗ is defined as:

s∗(vk, uk) = 2 + 1.5vk +
vk(vk − uk)

2.21
. (5.20)

The parameters for both baseline ACCs are chosen as suggested in [81, 208].

Results All four drivers override the operating ACC models to different extents. From Table 5.3,
in general, all drivers intervene the vehicle less when running GP-PACC as compared to running
other two baseline ACC models. On average, all drivers override only 4.43% (8.7 sec total) of the
200-sec trip when GP-PACC is on board.

As an illustration, the recorded trips from one of the drivers (driver B) can be visualized in Fig. 5.6-
5.8. The top row (Fig. 5.6) shows the trajectories when GP-PACC is the selected controller. The
middle row (Fig. 5.7) corresponds to ACC#1 (CTH-RV controller) being in operation and the
bottom row (Fig. 5.8) corresponds to ACC#2 (IDM controller). The recorded trajectories include
the speeds for leader and follower (left-most column), space gap (middle column) and accelera-
tions for leader adn follower (right column) with respect to time. The magenta highlights indicate
the timestamps when the driver overrides ACC (either by pressing gas or brake pedal) that is in
operation.

Driver B indicates that he overrides when he feels “falling behind from the lead vehicle, and the
neighboring vehicles on the right lane will cut into the gap between the ego vehicle and the lead
vehicle". Fig. 5.6 shows that the driver feels comfortable when GP-PACC is in control, i.e., the
driver only overtook the controller for about 1 second during the entire trip. On the other hand,
the driver pressed the gas pedal several times when ACC#1 is in operation (Fig. 5.7), and even
more so with ACC#2 engaged (Fig. 5.8). The results strongly indicate that the driver favors the
personalized controller (GP-PACC) in the unbiased test settings.
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Table 5.3: Human-in-the-loop experiments results: drivers gas & brake takeover percentage during
a 200-sec trip

Driver GP-PACC ACC#1(CTH-RV) ACC#2(IDM)

Gas / Brake Gas / Brake Gas / Brake

A (F) 0% / 0.60% 4.2% / 0.65% 11.9% / 0.6%

B (M) 3.1% / 0.15% 14.6% / 1.8% 26.7% / 1.7%

C (F) 8.6%/ 2.7% 18.8% / 4.6% 58.8% / 8.25%

D (M) 2.3% / 0.25% 4.4% / 0.35% 22.4% / 0.9%

Avg. 3.5% / 0.93% 10.5% / 1.85% 30.0% / 2.86%

5.5. Conclusion and Future Work
In this chapter we propose GP-PACC that mimics personalized car-following behavior. The learning
is achieved using a Gaussian Process regression with nonlinear output-error training on the car-
following data. We explore this purely data-driven controller design to capture personalized driving
styles, which sometimes cannot be captured by an explicit car-following model.

The training result shows that GP has the potential to provide safe and realistic acceleration guid-
ance that closely resembles personalized acceleration profile. Specifically, GP almost exactly recovers
the car-following profiles of an IDM driver (data generated using an IDM), and outperforms two
other established analytical car-following models in terms of reproducing naturalistic car-following
space gap trajectories. A series of human-in-the-loop experiments are conducted on the Unity driv-
ing simulator to test drivers’ override rates when running their personalized GP-PACC versus other
baseline ACC models. Results indicate that all tested drivers express comfort using GP-PACC,
which reduces the human override duration 60% and 85% as compared to two other standard ACC
models, respectively. This brings promising potentials of the acceptance towards the personalized
controller in near real-world scenarios.

For future work, adaptive GP training can be incorporated into current routine to enhance the
proposed GP-PACC. Since training a GP dynamical system requires only limited data, it is possible
to adaptively train the GP model as more data is collected. This training procedure allows to
capture the variations in driving behaviors across a longer period of time and a wider range of
speed. Additionally, since driver override has only been adopted as a measurement to test our
GP-PACC in this chapter, it can also be considered as a direct feedback to the GP model, which
will enhance the performance of our future GP-PACC in a more straightforward manner. As more
contextual information (e.g., weather, road geometry) becomes available, the training features can
be augmented to expand the functionality of personalization.
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CHAPTER 6

Macroscopic traffic dynamics and state estimation

6.1. Introduction
In this section we focus on the macroscopic scale traffic analysis – instead of acquiring measurements
and modeling the driving behavior of individual vehicles, we concern about the evolution of overall
traffic flow and density. The macro-scale analysis allows us to see the evolution of traffic patterns
and provide insights towards infrastructure-level monitoring and control in order to, for example,
mitigate congestion.

In addition to the complexity introduced by the interaction between human-driven vehicles and
automated vehicles, another dimension of complexity is due to the diverse vehicle types and the
distinct driving rules associated with each class, which is still prevalent in developing countries.
There are several challenges when studying the mixed traffic environment: (1) existing macroscopic
traffic models are insufficient to describe the complexity in non-trivial vehicular interactions; (2)
macroscopic traffic data are often noisy and extremely sparse; (3) although there has been an
increasing amount of research efforts to study macroscopic traffic evolution by combining models
and measurements through estimation approaches, the complexity in mixed traffic often hinders the
estimation accuracy.

In this chapter and the next we consider the traffic state estimation problem with a case study
in heterogeneous (multi-class) traffic. To address the challenges above, we provide the following
contributions:

• Multi-class traffic estimation formulation We leverage a previously developed multi-class
traffic flow model that can capture complex vehicular interactions, to formulate the state esti-
mation problem where the density evolution of each vehicle class is estimated simultaneously.

• New particle filter algorithms We propose several novel algorithmic designs based on
the particle filters to estimate the complex evolution of mixed traffic given sparse and noisy
data. The proposed algorithms are applied to nonlinear and non-differentiable state evolution
dynamics.

• Validation with real traffic data The proposed traffic estimation techniques are demon-
strated using measurement data collected at a mixed-traffic corridor. We show that the
proposed methods can accurately recover the traffic density evolution for each vehicle class.

This chapter begins with a brief introduction to traffic flow models in Section 2.2. The formulation
of traffic state estimation problem is described in Section 6.3 with a focus on particles filters

6.2. Overview on a two-class creeping model
The two-class creeping model [56] is a system of scalar conservation laws that governs the flow of
each vehicle class:

∂ρj(x, t)

∂t
+

∂ρj(x, t)Vj(r(x, t))

∂x
= 0, j ∈ {1, 2}, (6.1)

where ρj(x, t) denotes the density of each vehicle class (indexed by j) at time t and space x. The
velocity function for each class Vj(·) is distinct for each vehicle class and depends on the total density
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r =
∑

j ρj . For simplicity, in this work we consider the following velocity functions:

Vj(r) = max

(
vm

(
1− r

rmj

)
, 0

)
, j ∈ {1, 2} (6.2)

where vm is the speed limit applied to all road users. The class specific jam densities rmj ∈ {rm1 , rm2 }
control the total density r at which the individual vehicle classes come to a complete stop. If
rm1 ̸= rm2 , then one vehicle class will be able to creep through traffic while the other class is
completely stopped. In the simplified setting considering a piecewise linear velocity function, the
three parameters, vm, rm1 and rm2 , completely define the two class creeping flow. Note that the
creeping model is well posed [56], which is, in general, difficult to establish for many macroscopic
models in which overtaking occurs.

Note that the model is able to capture a variety of traffic regimes such as overtaking (i.e., faster
vehicles overtaking slower ones) and creeping (small vehicles overtaking large vehicles that have
come to a complete stop). In multi-class traffic, the traffic regimes can be further complicated, for
example, when one class is congested but the other class remains in free flow. More traffic regimes
are tested in the numerical experiments in [241].

A numerical scheme is used to approximate the solution to the PDE (6.1) based on the Godunov
scheme [76], which requires solving a Riemann problem at every interface between each pair of
consecutive and discretised road segments at each time step. On scalar models, the approach leads
to the well known cell transmission model (CTM) [46, 47]. The discretised creeping model reads as
follows:

ρk+1
i,j = ρki,j +

∆t

∆x

(
F k
i− 1

2
,j
− F k

i+ 1
2
,j

)
, j ∈ {1, 2}, (6.3)

where ρki,j represents the density of class j in the ith cell at time k. The terms F k
i−1/2,j and F k

i+1/2,j
are the numerical fluxes of class j via the upstream and downstream boundaries of cell i at time k.

For simplicity of the notation, we use subscripts on variables, e.g., ρ−,j and ρ+,j , to represent
upstream and downstream densities respectively of class j. The flux for vehicle class j over a cell
boundary is thus defined as:

Fj(ρ−,1, ρ−,2, ρ+,1, ρ+,2)

= min{Sj(ρ−,1, ρ−,2), Rj(ρ+,1, ρ+,2)}, j ∈ {1, 2},
(6.4)

where Sj(·, ·) and Rj(·, ·) are the sending and receiving functions for vehicle class j defined as:

Sj(ρ−,1, ρ−,2) =

{
Qj(ρ−,1, ρ−,2) if ρ−,j ≤ ρcj(ρ−,ĵ)

Qmax
j (ρ−,ĵ) if ρ−,j > ρcj(ρ−,ĵ)

(6.5)

Rj(ρ+,1, ρ+,2) =

{
Qmax

j (ρ+,ĵ) if ρ+,j > ρcj(ρ+,ĵ)

Qj(ρ+,1, ρ+,2) if ρ+,j ≤ ρcj(ρ+,ĵ),
(6.6)

where ρĵ denotes the density of the other vehicle class. In addition, Qj(ρ1, ρ2) = max{ρjVj(ρ1 +

ρ2), 0}, Qmax
1 (ρ2) = maxρ1Q1(ρ1, ρ2) and ρc1(ρ) =

rm1 −ρ2
2 is the critical density of ρ1 such that Qmax

1

is obtained. Similarly, Qmax
2 (ρ1) = maxρ2Q2(ρ1, ρ2) and ρc2(ρ) =

rm2 −ρ1
2 is the critical density of ρ2

such that Qmax
2 is obtained.

For a complete description and analysis of the model, the reader is referred to [56].
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Figure 6.1: State estimation procedure

6.3. Bayesian traffic state estimation
Building on these works, we consider the problem of traffic state estimation when the base traffic
flow is heterogeneous and nontrivial interactions such as overtaking occur between classes. The
traffic flow dynamics are described by the two-class creeping model [56], which allows small vehicles
(e.g., motorbikes) to overtake larger ones, including when the large vehicles come to a complete
stop. Traffic state estimation is performed using one of several fully nonlinear particle filtering
algorithms. Because heterogeneous traffic may have significantly different operating rules compared
to a homogeneous passenger-car traffic environment, we investigate the ability of each of the particle
filters to reconstruct multi-class traffic in both simulated and real settings where overtaking of large
vehicles by small vehicles can occur, particularly in highly congested traffic.

The Bayesian approach to traffic state estimation evaluates the posterior distribution of the system
state given a prior state estimate and measurement data. A diagram is shown in Figure 6.1. At
each timestep, a prediction distribution is obtained based on a Markovian-like process f(·), and the
distribution is re-weighted based on the newly-obtained measurement distribution y. This model-
prediction and measurement-correction loop continues sequentially.

The state of the system xk for model (6.3) at time k is defined as:

xk =
[
ρk1,1, . . . , ρ

k
imax,1

, ρk1,2, . . . , ρ
k
imax,2

]T
, (6.7)

where imax is the number of cells in the spatial discretisation.

The state propagation equation is:

xk = f(xk−1,θ) +wk, (6.8)

where f(·, ·) is the discrete-time creeping model defined in (6.3), and it propagates the traffic state to
the next time step, with the input parameter vector θ = [vm, rm1 , rm2 ]T . The measurement equation
is:

yk = h(xk) + vk, (6.9)
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Figure 6.2: Illustration of traffic state estimation with the evolution of traffic density over time and
space. Traffic density ρki represents location i at time k. Sparse measurements are taken at specific
locations on the roadway. The state vector xk represents densities at all positions at time k, while
partial observation is denoted as yk.

where yk is the sensor data obtained at time k and relates to the system state through the mea-
surement equation h(·). In the case when (a subset of) the system state is directly measured, the
observation equation is linear. The terms wk ∼ N (0, Q) and vk ∼ N (0, R) denote the additive
unbiased process noise and measurement noise at time k with assumed covariance matrices Q and
R.

The state estimation problem can be viewed as sequentially evaluating the prior state distribution
p(xk|Y k−1) and the posterior state distribution p(xk|Y k) given measurements Y k = [y1,y2, . . . ,yk],
according to:

p(xk|Y k−1) =

∫
p(xk|xk−1)p(xk−1|Y k−1)dxk−1

p(xk|Y k) =
p(yk|xk)p(xk|Y k−1)

p(yk|Y k−1)
.

(6.10)

In the particle filter described next in Section 6.4, the probability distributions (6.10) are evaluated
based on sequential Monte Carlo sampling.

6.4. Filters design
In this section, we summarise the standard bootstrap particle filter (PF) and discuss the weight
degeneracy as measured by the effective particle size. Then we propose two enhancement methods,
namely parameter-adaptive filtering and spatially-correlated process noise modelling, to improve
the PF estimation.
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Due to the nonlinearity and non-differentiability of the process model (6.1), discontinuities in the
traffic state can occur, which can generate a multi-modal state distribution and limit the perfor-
mance of minimal variance estimators such as EKF and UKF. The challenge motivates the use
of PF, with the idea of propagating and updating Monte Carlo samples sequentially to represent
the full state distribution without restrictive assumptions on the system dynamics and the noise
distribution.

The particle filter starts with a collection of Np samples (referred to as particles) from the initial
state probability density function p(x0), where x0 is a random variable representing the state vector
at time k = 0. Each realisation of the state vector is denoted as x0

l , l = 1, · · · , Np. At each time
instant, the particles are propagated to the next time step using the discrete time process model
f(x,θ), i.e., the traffic flow model (6.3), to approximate the prior state distribution xk|k−1 at time
k.

The state distribution is updated after measurements are obtained. Specifically, a weight (ql) is
assigned to each particle based on the conditional relative likelihood evaluated from the likelihood
function p(yk|xk). The posterior state distribution xk|k is approximated by resampling the particles
according to the new weight distribution. This step ensures that the heavier-weighted particles are
more likely to be drawn from the probability density function while the total number of particles is
preserved.

Algorithm 3 PF algorithm for traffic state estimation

Initialise: Draw x
0|0
l from N (µ0, Q0) for l = 1 : Np

for k = 1:T do
State propagation:
x
k|k−1
l = f(x

k−1|k−1
l ,θ) +wk

l for all l
State update:
Assign weight: ql := p[(yk = yk∗)|(xk = x

k|k−1
l )]

Normalise weight: ql :=
ql∑Np
l=1 ql

Resample:
Draw x

k|k
l with probability ql

end
µ0: mean of the initial state distribution
Q0: initial state covariance matrix
x
k|k−1
l : sample l from prior state distribution at time k

x
k|k
l : sample l from posterior state distribution at time k

wk
l : a realisation of the process noise wk ∼ N (0, Q), where Q is the covariance matrix of wk

yk∗: a measurement at time k

6.4.1. Parameter-adaptive particle filtering (PAPF)

Inspired by the dual filtering approach for simultaneous state and model parameter estimation [86,
213, 162], in this filter, we allow the estimated model parameters to be adjusted at each time step
instead of having fixed values, i.e., we model the parameters as time-invariant (the dynamics do not
change over time) with some noise as approached in the standard dual-filtering problems mentioned
above. This gives the estimator extra flexibility that can potentially produce more accurate state
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estimates. The goal is not for online parameter estimation due to the challenge in identifiability
analysis of a nonlinear and non-differentiable model, but simply allowing parameter estimates to
be updated in motion to facilitate state estimation. We name this approach parameter-adaptive
particle filter, or PAPF in the remaining of this chapter.

The PAPF includes an additional particle filter running in parallel with the state estimator to adjust
the estimated parameters. In the parameter propagation step, the parameter samples are obtained
by performing a random walk from the best estimated parameter in the previous timestep, θ̂

k−1|k−1
.

In the parameter update step, the prior state distribution (xk|k−1) is approximated by propagating
the best state estimate at the previous timestep (x̂k−1|k−1) through the traffic flow model (6.3) with
the parameter samples. The remaining parameter update step follows a similar approach described
in Algorithm 3: each parameter sample is re-weighted according to the relative likelihood function
p(yk|xk) after measurements are obtained, and resampled according to the new weight distribution.
The estimator of the posterior parameter distribution, θ̂

k|k
, proceeds next for the state update.

The state estimation exactly follows Algorithm 3 with the exception that the parameter in the state
propagation equation is now the best posterior parameter estimator, θ̂

k|k
, instead of a deterministic

parameter θ. The detailed PAPF algorithm is summarised in Algorithm 4.

6.4.2. Spatially correlated noise modelling (SCNM)

This approach differs from Algorithm 3 in terms of the process noise at time k, wk ∼ N (0, Q). In the
PF, we apply the commonly implemented assumption that Q is a diagonal matrix, indicating that
the elements of the state vector xk are uncorrelated. It is suggested by [25] that if the traffic in one
cell is extremely congested, then the vehicles interact very often with each other, and their location
and speed will be highly correlated. Motivated by this observation, we modify the covariance
matrix of the process noise wk to Q(i, i′) with off-diagonal terms, which represents the similarity
between all possible pairs of cells (indexed by i and i′). We use a covariance expression Q(i, i′) =

exp
(
− |i−i′|

d

)
× σ2

wk , where σwk is the standard deviation of noise wk. The characteristic length-
scale d is a measure of how far away two cells (i, i′) need to be for the cell values to be uncorrelated.
The correlation between two cells is assumed to depend solely on the relative distance of the pair
instead of the absolute location of the cells.

In practice, the traffic state can be highly correlated in space, i.e., cells in freeflow traffic are likely
to occur next to each other, and similarly with the congested flow. We encode this heuristic via
correlation in the process noise to account for a similar traffic pattern in neighbouring cells, and
decrease the correlation with respect to the relative distance as one would expect. The introduction
of a spatially correlated process noise increases the correlation on the prior state distribution, and
is shown in [241] to improve the effective particle size.

6.5. A case study: heterogeneous traffic state estimation
In this section, we apply the enhanced particle filters on heterogeneous trajectory data collected in
Chennai, India [101]. We first briefly describe the dataset and preparation for the use of our proposed
methods. Then, we describe the experiment setup including the estimated model parameters and
particle filter parameters. Finally, we discuss the results.
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Algorithm 4 PAPF algorithm
Initialise:
Draw x

0|0
l from N (µ0, Q0) for l = 1 : Np

Set x̂0|0 = µ0 and θ̂
0|0

= θ0

for k = 1:T do
Parameter propagation:
θ
k|k−1
m = θ̂

k−1|k−1
+ ηk

m for m = 1 : Nm

Parameter update:
x
k|k−1
m = f(x̂k−1|k−1,θ

k|k−1
m ) +wk

m for all m
Assign weight: qm := p[(yk = yk∗)|(xk = x

k|k−1
m )]

Normalise weight: qm := qm∑Nm
l=1 qm

Resample:
Draw θ

k|k
m with probability qm

Update θ̂
k|k

State propagation:
x
k|k−1
l = f(x

k−1|k−1
l , θ̂

k|k
) +wk

l for all l
State update:
Assign weight: ql := p[(yk = yk∗)|(xk = x

k|k−1
l )]

Normalise weight: ql :=
ql∑Np
l=1 ql

Resample:
Draw x

k|k
l with probability ql

Update x̂k|k

end
µ0: mean of the initial state distribution
Q0: initial state covariance matrix
θ0: initial parameter values
ηk
m: a realisation of the parameter noise ηk ∼ N (0, Qθ), where Qθ is the covariance matrix of ηk

Nm: number of parameter samples at each time step
x̂k|k: a point estimate of the state at time k

θ̂
k|k

: a point estimate of the parameter at time k
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Figure 6.3: Density evolution of real heterogeneous traffic data. The red rectangles indicate mea-
surement positions.

6.5.1. Data description and preparation

In this study, we incorporate the vehicle trajectory data in mixed traffic [101]. The dataset was
extracted from the video sequences in an urban midblock road section in Chennai, India. Various
types of road users were present in the data, such as passenger vehicles, buses, motorbikes and
auto-rickshaws. The data was prepossessed to include 3,005 vehicle trajectories, and the positions
were recorded at a resolution of 0.5 s for 15 min on a stretch of 245 m, 3-lane city roadway. The
total traffic flow observed in the study section is 6,010 vehicles per hour, and the instantaneous
speeds vary from 0 to 15.22 m/s.

For the purpose of this study, we first discretize the densities such that ∆x = 16.3m (or imax = 15)
and ∆t = 1s. We then count the number of occurrences of each vehicle in each discretised cell at
each time step. We separate the counts of motorbikes (as the smaller, faster class, corresponding
to ρ1) and the counts of all other road agents combined (or the larger, slower class corresponding
to ρ2), because of motorbikes’ observed overtaking properties. Lastly, a kernel density estimation
(KDE) approach [26, 89] with a fixed Gaussian kernel is employed to transform the initial counts
into macroscopic traffic quantities (e.g., density of each vehicle type, in number of vehicles per cell)
across time and space. We use ρki,j to denote the density of class j at cell i at time step k.

The obtained heterogeneous traffic density data can be visualised in Figure 6.3. It also serves as
the ‘ground truth’ macroscopic traffic data for the state reconstruction tasks.

6.5.2. Experiment setup

The roadway is discretised into imax = 15 cells and the experiments are run for kmax = 300 time
steps, or 300 seconds. All four PFs use the same approxiamte model, with the specifications sum-
marised in Table 6.2. Again for filters with parameter-adjustment (PAPF and PAPF+SCNM), the
approximate model parameters are the initial parameter estimates, and the noise on each param-
eter is assumed to follow a Gaussian zero mean and 0.005 standard deviation. In addition, both
the parameter-update step and the state-update step use Np = 500 particles, which is empirically
shown as suitable for the state dimension. We assume that the noisy density measurements for
both vehicle classes are obtained in an upstream, an intermediate and a downstream cells indexed
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(a) PF (b) PAPF

(c) PF+SCNM (d) PAPF+SCNM

Figure 6.4: Filter performance: estimated density evolution

by i = 2, 8 and 14, as indicated by the red rectangles in Figure 6.3. The initial state noise, the
measurement noise and the state prediction noise are all assumed to be Gaussian zero mean, with
standard deviation of 1 vehicle/cell. For filters with spatially correlated noise (PF+SCNM and
PAPF+SCNM), a characteristic length of 15 is used.

Parameter Values

Initial conditions
ρ̂0i,1 =

{
4 i ∈ [1, 8]

1 otherwise

ρ̂0i,2 = 1,∀i

Boundary conditions

ρ̂k0,1 = sgn (sin(0.4 k))× 8 + 8

ρ̂k0,2 = 1, ∀k
ρ̂kimax+1,1

= 2, ∀k
ρ̂kimax+1,1

= 2,∀k

Table 6.1: Initial and boundary conditions

In addition, we empirically choose the model initial and boundary conditions (Table 6.1) to best
represent the observed measurements. The approximate model with the specified parameters, initial
and boundary conditions is shown to yield MAEs of 1.92 and 1.67 vehicles/cell for class ρ1 and ρ2,
respectively, in the studied space and time frame.
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Parameter Values

vm 15.3 m/s
rm1 16 vehicles/cell
rm2 10 vehicles/cell

Table 6.2: Filter performance summary on real data.

Average improvement (MAE reduction %)

Class PF PAPF PF+SCNM PAPF+SCNM

ρ1 31.9 33.2 46.4 43.9
ρ2 25.8 29.5 46.3 31.5

Table 6.3: Approximate model parameters

6.5.3. Results and discussion

The estimated density evolution from PF, PAPF, PF+SCNM and PAPF+SCNM can be visualised
in Figure 6.4. A visual inspection indicates that filters with spatial correlation (PF+SCNM and
PAPF+SCNM) generally have a more pronounced state reconstruction performance than PF and
PAPF. The flow for both vehicle classes is ‘smoother’ across the space. Practically, spatial correlation
in the states help to correct one part of the states, which carries over to its neighbourhoods. It
models the similarity in densities of cells of close vicinity, which may implicitly capture the flow
dynamics of traffic that PF without SCNM cannot capture.

It can also be observed that PAPF does not provide as significant improvement in traffic state
reconstruction as SCNM does. This could be due to a combination of the identifiability issue of the
creeping model parameters as well as observability issue of the state, which are not in the scope
of this work. Since the recorded traffic is mostly in free-flow state, the filter performance cannot
generalize to a variety of traffic regimes. When available, heterogeneous traffic data that contains
traffic jams or creeping scenarios should be used to validate our proposed filters for various traffic
state reconstruction.

Nevertheless, with the limited heterogeneous data available, the enhanced filters show significant
improvement than the standard PF, and improve the estimation accuracy up to 46% as compared to
using the approximate model alone. The findings using real heterogeneous data is also in agreement
with the results from the numerical experiments: PF with parameter-adaptation and spatially-
correlated noises are promising enhancement for traffic state estimation problems.

6.6. Conclusion
Considering previous traffic estimation works mainly focus on homogeneous flow with strict lane
adherence, this work tackles estimation problem on heterogeneous traffic where non-trivial vehicular
interactions occur. Due to the filtering challenges caused by the nonlinear and non-differentiable
nature of the traffic flow model, in this chapter we propose three methods to enhance the standard
particle filter to estimate complex traffic, both in simulated environments and with real heteroge-
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neous traffic data. The results show that the enhanced PFs, especially with spatially-correlated
noise modelling, can reduce the estimation error up to 80% and 46% from forward simulation using
the approximate model, using the synthetic data and real data, respectively. The enhanced PFs
significantly and consistently outperform the standard PF in all scenarios considered.

This chapter is a starting point for further work in the field of heterogeneous traffic state estimation.
For example, this work demonstrates that enhanced particle filtering techniques can improve the
accuracy of heterogeneous traffic state estimation, and explored the performance as a function of the
traffic regime. A rigorous analysis on model observability and/or error boundedness (e.g., extensions
to [24] and [198] for heterogeneous traffic models) is challenging but could provide theoretical insights
on expected filter performance. Moving towards realistic deployment settings, the functional form
of the velocity function will also be important questions to consider. Finally, field data that records
more complex heterogeneous traffic scenarios would be insightful to evaluate the performance of the
proposed filters when it becomes available.
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CHAPTER 7

Bridging micro-macro traffic studies through trajectory data
reconstruction

7.1. Introduction
Vehicle trajectory data is integral to the study of traffic dynamics. They reveal the relationship
between individual traffic participants and the resulting traffic flow phenomena. The increasing
volume of data sources is enabling revolutionary research on, for example, traffic flow theory and
corridor management.

Accurate estimation of energy consumption also relies on vehicle-level detailed dynamics [59, 60,
161]. High-quality trajectory data can close the gap for understanding microscopic traffic phenom-
ena, such as lane-change and car-following [68, 71, 184, 106, 207] and the impact of mixed autonomy
in traffic [193, 79, 261].

We draw attention to the following necessary features for trajectory data in order to enable modern
transportation studies:

• Large spatial-temporal scale. Current trajectory datasets have limitations in both spatial
and temporal coverage, hindering the calibration and training of traffic flow models. Expand-
ing the scale enables sampling of diverse traffic scenarios, contributing to advancements in
traffic flow theory and artificial intelligence algorithms [122].

• Sufficient microscopic fidelity. In addition to a large scale, data must possess fine-grained
vehicle positions to validate and construct realistic microscopic models. Traditional collection
methods like loop detectors provide low-frequency, aggregated features suitable for macro-
scopic characteristics. However, validating microscopic features without individual vehicle-
level data is challenging. Video-based trajectory data, combined with image processing algo-
rithms, can offer a comprehensive "bird’s eye" view and achieve complete spatial and temporal
coverage of roadway segments.

• Continuous data generation. Generating live traffic measurements is crucial for effective
traffic control strategies such as variable speed limits, ramp metering, and Lagrangian control
with connected and autonomous vehicles. Real-time deployment requires an efficient data
reconciliation pipeline capable of handling streaming data with low latency.

Ultimately, vehicle and transportation technologies are trending towards "intelligent" and more
autonomous solutions. Being able to measure the broader impact on traffic will be crucial in
enabling future generations of traffic control and management. Now with the advancement in
camera resolutions and computer-vision algorithms for object detection and tracking, the process of
getting reliable trajectory data can be greatly automated, yet issues on the quality of the data still
remain. This chapter aims to provide a comprehensive pipeline to systematically rectify trajectory
data produced by automatic computer vision algorithms. Leveraging physical constraints such as
vehicle dynamics and state information, this pipeline outputs trajectories that significantly improve
the validity and quality of the raw data. The core methods presented here are in the process of
being deployed on a large-scale open-road testbed – the I-24 MOTION system, which we describe
later in this chapter.
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To address the challenges mentioned above, we highlight the following contributions in this chapter:

• The development of an automatic trajectory data reconciliation pipeline for a mod-
ern traffic testbed. Specifically, the pipeline includes a) an online data association algorithm to
solve a min-cost flow problem, which consequently matches fragments that belong to the same
object, and b) a novel trajectory reconciliation algorithm, which is formulated as a quadratic
program. It reconstructs realistic vehicle dynamics from disturbed detection data with sys-
tematic smoothing and outlier correction. The resulting trajectories automatically satisfy the
internal consistency (differentiation of trajectories with speeds and accelerations).

• The assessment on the trajectory quality including dynamics analysis, error statis-
tics and a qualitative dashboard. Results show that the reconciled trajectories improve
a variety of measures on various traffic scenarios (simulation data, real-world freeflow and
congested scenarios).

• The deployment on I-24 MOTION system. We build a software architecture that is
capable of postprocessing upstream raw tracking data, and outputs high quality trajectory
data in real time. The architecture leverages upon asynchronous processes, and is currently
deployed on the I-24 MOTION system for frequent data generation.

This work, although still in progress, illustrates the first step towards automatic and online trajec-
tory data reconciliation from video-based data extraction. Future work will focus on fine tuning the
parameters associated with the proposed algorithms to further enhance the data quality.

7.2. I-24 MOTION system

7.2.1. Overview

The Interstate-24 MObility Technology Interstate Observation Network (I-24 MOTION) is a new
instrument for traffic science located near Nashville, Tennessee. It consists of 276 pole-mounted
high-resolution traffic cameras that provide seamless coverage of approximately 4.2 miles I-24, a
4-5 lane (each direction) freeway with frequently observed congestion. The cameras are connected
via fiber optic network to a compute facility where vehicle trajectories are extracted from the video
imagery using computer vision techniques. The main output of the instrument are vehicle trajectory
datasets that contain the position of each vehicle on the freeway, as well as other supplementary
information on vehicle dimensions and class. As the system continues to mature, all trajectory
data will be made publicly available at i24motion.org/data. The map of the system can be seen in
Figure 7.1.

A prototype software architecture comprises of three main modules: video ingest, vehicle detection
and tracking, and trajectory post-processing and reconstruction, managed by the system control
server. We refer readers our manuscript [75] for detailed descriptions of the system design, hardware
and software architectures.

7.2.2. Known data artifacts

Vehicle detection and tracking is achieved through a crop-based tracking method called Crop-based
Tracking [74]. This method uses cropped portions of images for processing, significantly reducing

81

i24motion.org/data


Poles

Mile	Marker

Legends

Bell Road

Hickory Holly Road

Old Hickory Road

Figure 7.1: Map for I-24 MOTION infrastructure locations. Photo credit: Junyi Ji

Figure 7.2: Example artifacts. For all figures, horizontal scale = 4 min. and vertical scale = 0.4
mi. a.) Missing pole / offline cameras causes a wide band of missing data. b.) Overpass causes a
narrow band of missing data. c.) Homography error causes multiple trajectories corresponding to
the same vehicle, or else results in a narrow band with no coverage. d.) Packet drops cause bands
of missing trajectory data with a discrete start and end. Post-processing only partially fills in this
data. Photo credit: Gergely Zachar and Derek Gloudemans
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Figure 7.3: Examples of common inaccuracies from upstream video processing algorithms: missing
detection, inaccurate localization, and non-rectilinear shape. Photo credit: Derek Gloudemans

detection inference time. An accurate object motion model is employed, generating cropping boxes
based on object priors. A Retinanet object detector is used to detect cars and trucks. A Kalman
filter with linear dynamics handles the motion model, assuming constant velocity along the primary
roadway direction. Intersection-over-union metric computes object affinity. Multi-camera tracking
is solved through detection fusion. The system is designed to scale with a large number of cameras,
processing cameras on separate nodes.

Although raw trajectory data from dense deployment of cameras and CV algorithms can achieve
complete spatial and temporal coverage of a roadway segment, such data contains inaccuracies from
camera errors (dropped, doubled, and corrupted frames) network errors (Figure 7.2d: data packet
drops), object detection and tracking (Figure 7.3: fragmentations, ID swaps, false negatives and
false positives [22]) often caused by object-object or infrastructure-object occlusions, timestamp
quantization errors, homography assumption errors, and infeasible derivative quantities resulting
from finite difference approximation over very short timescales. Treatments for specific sources of
errors that rely on multiple iterations of rectification or require manual fine-tuning are not viable
for longer term streaming datasets the I-24 MOTION is designed to produce. For small datasets,
data cleaning and rectification with some manual involvement can address many common errors
created in vehicular datasets [42].

In this chapter we address the miscellaneous upstream errors in a systematic manner regardless of
the causes, by introducing an automatic data post-processing pipeline which will be continuously
improved to automate as much of the data cleaning steps as possible. Currently, it consists of two
modules: a) an online data association algorithm to solve a min-cost flow problem, which
consequently matches fragments that belong to the same object. This step reduces fragmentation
due to tracking interruptions across multiple cameras and compute nodes, as well as potential
discontinuity due to occlusion from physical infrastructure. The second component of the pipeline
is b) a trajectory reconciliation algorithm, which is formulated as a quadratic program. This
step reconstructs realistic vehicle dynamics from disturbed detection data with trajectory derivative
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smoothing and outlier correction while minimally perturbing the original vehicle detections. By
penalizing high-frequency noise and low-frequency outliers, this step removes the majority of the
errors caused by timestamp quantization, localization errors, homography projection errors etc. The
resulting trajectories automatically satisfy the internal consistency (differentiation of trajectories
with speeds and accelerations).

7.3. Data reconstruction methods

7.3.1. Online data association

The multi-object tracking (MOT) problem plays a pivotal role in modern computer vision-aided
cyber-physical systems. These systems rely on intelligent sensing technologies and efficient data
processing tools to monitor and control physical infrastructures. However, challenges emerge when
dealing with the increasing data size resulting from larger field of views covered by multiple cameras
and the continuous stream of incoming data. To address these challenges, effective algorithms
capable of handling significant volumes of streaming data are required. This chapter focuses on
extending a well-known algorithm designed for the MOT problem into an online framework that
can process streaming data of any size. The algorithm described in this chapter can effectively
handle “fragments”, which refer to incomplete tracking of moving objects caused by conservative
tracking from the upstream video processing process. Tracking discontinuities can occur due to
various factors such as object occlusion and/or misalignment between adjacent cameras.

Problem formulation

In this section, we outline the problem formulation for MOT as an equivalent problem for finding
the minimum-cost circulation (MCC) of a graph. Solving for MCC on a track graph results in
trajectory sets that have the highest maximum a posteriori (MAP). The problem formulation is
explained in literature such as [264, 231], and therefore only highlighted briefly in this section.

A fragment with index k is denoted as ϕk = {p1, ..., pn}, which consists of a series of positional data
ordered by time (frame). Each data point pi is a vector containing timestamp, x and y position
of a fixed point on the bounding box. We are given a set of fragments as input Φ = {ϕi}. A
trajectory τk = {ϕk1 , ..., ϕkn} consists of one or more fragments. A set of such trajectories form
a trajectory set hypothesis T = {τ1, ..., τK}. Assuming that fragments are conditionally i.i.d., the
fragment association step aims at finding T ∗, the hypothesis with the highest MAP:

T ∗ = argmaxTP (T |Φ)
= argmaxTP (Φ|T )P (T )

= argmaxT
∏
i

P (ϕi|T )
∏
τk∈T

P (τk)

s.t. τk ∩ τl = ∅, ∀k ̸= l,

(7.1)

with a non-overlapping trajectory constraint, since each fragment can belong to at most one tra-
jectory. The likelihood P (ϕi|T ) = P (ϕi) = βi indicates the probability that a fragment is a false
positive and thus should not be included in the trajectory hypothesis. The prior of a trajectory can
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Figure 7.4: Left: fragments in time-space coordinates. In this example ϕ1 and ϕ3 should be as-
sociated, and ϕ2 and ϕ4 should be associated. The numbers indicate the order of last timestamp.
Middle: fragments as a circulation graph. Red edges are the entering edges which have costs ceni ;
blue is inclusion edges with cost ci; green is exiting edges with cost cexi and yellow is the transition
edges with cost cij . Right: the residual graph after running the negative cycle canceling algorithm
to obtain the min-cost circulation. The residual edges that carry the min-cost circulation are high-
lighted in bold. The fragment association assignment can be obtained by tracing along the bold
edges.

be modeled as a Markov chain:

P (τk) = Penter(ϕk1)
n−1∏
i=1

P (ϕki+1
|ϕki)Pexit(ϕkn), (7.2)

where Penter(ϕk1) and Pexit(ϕkn) denote the probabilities that ϕk1 starts the trajectory and ϕkn ends
the trajectory, respectively. Taking the negative logarithm of (7.1), the MAP problem becomes
equivalent to the following integer program:

minimize
fi,fi,j ,fen

i ,fex
i

∑
i

cifi +
∑
i

ceni fen
i +

∑
i,j

ci,jfi,j +
∑
i

cexi fex
i (7.3a)

subject to fi, fi,j , f
en
i , fex

i ∈ {0, 1}, (7.3b)

fen
i +

∑
j

fj,i = fi = fex
i +

∑
j

fi,j , (7.3c)

where
ceni = − logPenter(ϕi), cexi = − logPexit(ϕi),

ci,j = − logP (ϕi|ϕj), ci = − log
1− βi
βi

.
(7.4)

The decision variables are binary according to the unit-flow constraint (7.3b). fi indicates whether ϕi

should be included in any trajectory, fen
i and fex

i determine whether a trajectory starts or ends with
ϕi, respectively. fi,j indicates if fragment ϕj is an immediate successor of ϕi. The flow-conservation
constraint (7.3c) ensures non-overlapping trajectories.

Equivalent min-cost-circulation problem

In seminal work [264], it is shown that (7.3) has a natural graph interpretation, and solving for (7.3)
is equivalent to solving the min-cost-flow of a tracklet graph, which has a polynomial solution [61].
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Later in the work of [232], it is proven that the min-cost-flow problem for MOT is equivalent to a
min-cost-circulation problem on a slightly modified graph. Many efficient algorithms are developed
to solve this problem [3, 189, 109, 77], and simplification are made to further improve the algorithmic
efficiency in the MOT context [264, 119, 231]. The graph is constructed such that each fragment
ϕi is represented as two nodes ui and vi, with a directed edge (ui → vi) and a cost $(ui → vi) = ci
indicating inclusion of ϕi; edges between two fragments ϕi and ϕj are represented as (vi → uj), with
the cost $(vi → uj) = cij related to the likelihood of ϕj following ϕi. The edge direction implies
the sequential order between fragments. Furthermore, the graph has a dummy node s that has an
incident edge to every u, and every v directs back to s. The resulting graph is therefore a directed
circulation graph, see Figure 7.4. We denote this circulation graph as G(V,E), with node set V and
edge set E. Each edge e := (u, v) ∈ E has a unit capacity r(e) = 1, a cost $(e) and a binary flow
f(e) ∈ {0, 1}. The data association problem can be formulated as finding a set of non-overlapping
circulations f on G with the lowest total cost. The total cost of the circulations is

∑
e∈f $(e)f(e).

Negative cycle canceling algorithm

One efficient algorithm is the negative cycle canceling algorithm (NCC) proposed by Klein [109] and
later on optimized by Goldberg et al. [77, 189], based on the Ford-Fulkerson’s method for incremental
improvement. To understand the algorithm we first recall the definition of an important concept –
a residual graph Gr:

Definition 3. The residual graph Gr(V,Er) for the original directed graph G(V,E) with respect to a
flow f is generated by replacing each edge e = (u→ v) ∈ E by two residual edges e′ = (u→ v) ∈ Er

and er = (v → u) ∈ Er, with cost $(e′) = $(e) and residual capacity r(e′) = r(e) − f(e), while
$(er) = −$(e) and r(er) = f(e).

In the context of MOT graph as shown in Figure 7.4, the construction of residual graph can be
simplified. The edges in the flow of the original graph simply needs to be reversed and costs on the
edges negated, to form the corresponding residual graph.

The idea of NCC is to repeatedly find a cycle with negative cost in the residual graph Gr and push
flow through the cycles. The algorithm terminates when no more negative cycles can be found
(optimality condition). We direct interested readers the above reference for the details and proof of
correctness of this algorithm, and only provide an outline in Algorithm 5.

First, a circulation graph G(V,E) is constructed from the set of fragments Φ (ConstructTracklet-
Graph) and we iteratively look for a negative cycle in Gr based on, for example, Bellman-Ford
algorithm. If such cycle exists, then update the residual graph according to Definition 3 (Push-
Flow). When the iteration stops (no more negative cycle can be found), the assignment, or the
trajectories, can be extracted by traversing along all the cycles through the residual edges in Gr

(FlowToTrajectories).

Note that the NCC algorithm guarantees feasibility at each iteration because every node is balanced
(inflow equals outflow). The algorithm terminates immediately if no feasible flow can be found. The
proof for correctness of the general NCC algorithm is detailed in [3]. The central idea is based on
the theorem of negative cycle optimality conditions:

Theorem 2. (Negative Cycle Optimality Conditions) A feasible circulation f in G is optimal if
and only if the residual graph Gr contains no negative-cost cycles.
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Figure 7.5: Scenario 1: the new fragment (ϕ5) starts a new trajectory. The residual graph from
the previous iteration is G+

r,4, with the min-cost circulation highlighed in bold. G−
r,5 is obtained by

AddNode(G+
r,4, ϕ5), with the added nodes highlighted in yellow. The min-cost cycle Γ in G−

r,5 is
colored yellow. Finally, G+

r,5 is obtained by PushFlow(G−
r,5, Γ).

Figure 7.6: Scenario 2: the new fragment is connected to the tail of an existing trajectory. In
this example the new node u5 has candidate connections to v1 and v3 based on the motion model
described in [246]. The min-cost cycle in this scenario also includes the post-node of ϕ3, v3, which
means that ϕ5 succeeds ϕ3 as the new tail of this trajectory.

Figure 7.7: Scenario 3: the new fragment breaks an existing trajectory. In this case, the min-cost
cycle contains the pre-node of ϕ3 and the post-node of ϕ1, meaning ϕ5 has a higher tendency to be
a continuation of ϕ1 and ϕ3 is siloed.
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Additionally we mention the following useful lemma that is specific to the MOT context, and was
proved in [232]:

Lemma 1. A circulation with total integer flow amount K can only be sent through K distinct
cycles.

Next we show an online extension of the NCC algorithm and provide proof for correctness based on
this important theorem.

Algorithm 5 Negative cycle cancellation for min-cost-circulation on a tracklet graph
Input: Set of fragments Φ = {ϕi}
Result: Set of trajectories T = {τi}
G(V,E,C)← ConstructCirculationGraph(Φ)
f ← 0
Gr ← G

while a negative-cost cycle Γ exists in Gr do
// Update residual graph
Gr ← PushFlow(Gr,Γ)

end
T ← FlowToTrajectories(Gr)

Online negative cycle canceling

The streaming data coming from modern sensing technologies necessitates an online and memory-
bounded version of Algorithm 5. In other words, the tracking graph G is dynamic: new fragments
are added in order of time and older fragments are removed from the graph. In this section we
introduce an online version of the NCC algorithm which can be applied to a dynamic graph for
online MOT.

A naive online extension of Algorithm 5 is to construct a circulation graph for each newly added
fragment ϕk from scratch and rerun the NCC algorithm. However, it is inefficient because the
majority of the graph remains the same and the majority of the computation on the min-cost cycle
is wasted. This opens opportunities for an online extension of the algorithm to minimize repeated
calculations.

The proposed online algorithm is based on the assumption that fragments are added to the graph
in the order of last timestamp, which is a reasonable assumption in practice as this is the order
that fragments are generated from object tracking. The online algorithm proceeds by adding each
fragment ϕk to the residual graph from the previous iteration G+

r,k−1 one at a time, to obtain a new
graph G−

r,k (AddNode(G−
r,k−1, ϕk)). This step adds two nodes uk and vk to the graph along with

edges (s→ uk), (uk → vk), (vk → s) and possibly additional transition edges incident to uk. Then,
we search for the least-cost negative cycle Γ in G−

r,k (FindMinCycle(G−
r,k)) and push flow through

the cycle to obtain the updated residual graph G+
r,k. When all the fragments are processed, we

output the trajectories T by tracing all the cycles in the final residual graph. It can be proved
that pushing flow through Γ, G+

r,k contains the min-cost circulation because the flow is feasible and
no further negative cycles can be found in G+

r . We denote the residual graph after adding ϕk at
iteration k to be G+

r,k. The algorithm is shown in Algorithm 6.
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A visual illustration of how the online NCC algorithm works is shown in Figure 7.5-7.7. We show
three scenarios for adding a new fragment ϕ5 to the current MOT result with 4 fragments (The
MOT result up to k = 4 is maintained by G+

r,4, where ϕ1 and ϕ3 are temporarily associated, and ϕ2

and ϕ4 are temporarily associated).

Algorithm 6 Online NCC for MCC on a tracklet graph
Input: Set of fragments Φ = {ϕi}
Result: Set of trajectories T = {τi}
f ← 0
G+

r,0 ← {s}
k ← 1

for each ϕk (ordered by last timestamp) do
G−

r,k ← AddNode(G+
r,k−1 , ϕk)

Γ← FindMinCycle(G−
r,k)

G+
r,k ← PushFlow(G−

r,k, Γ)
k ← k + 1

end
T ← FlowToTrajectories(G+

r,k)

The proof for correctness of Algorithm 6 is described in Appendix C, along with an improvement
on runtime and memory. Algorithm 7 documented in the Appendix is currently deployed on the
I-24 MOTION system.

7.3.2. Trajectory reconciliation algorithm

Problem formulation

After applying fragment association, the next step is to rectify the stitched, raw trajectories with
denoising, imputation and smoothing operations. Instead of ad-hoc correcting each source of the
detection errors shown in Figure 7.3, we treat all noises and errors in a one-step approach to rectify
them all at once. To simplify the problem, we consider a 2D vehicle motion model, with independent
longitudinal (x) and lateral (y) dynamics. This allows us to decompose the problem to solving two
independent 1D reconciliation problems. The reconciled trajectories automatically satisfy the state
consistency amongst the orders of differentiation, i.e., the finite-difference of position is speed and
the finite-difference of speed is acceleration, etc.

We use the following notations. Each trajectory τi includes the following features (features are the
same for all trajectories, therefore the index i is dropped for simplicity): let x = [x[1], x[2], ..., x[N ]]T

be the back-center x-position vector for N timesteps, and similarly let y be the time-series of the
back-center y-position; vx = [vx[1], vx[2], ..., vx[N−1]]T is the time-series of speed in the longitudinal
direction (x-axis), and similarly vy is the time-series of speed in the lateral component (y-axis). The
acceleration a and jerk j use the same 2D representation. Lastly, l, w represent the vehicle length
and width, respectively. The vehicle dynamics model can be seen in Figure 7.8

Consider the following discrete-time 3rd order 1D motion model in either longitudinal or lateral
direction (the same method is applied for x-component and y-component dynamics. We demonstrate
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Figure 7.8: A simple 2D vehicle model

on x-component only):

x[t+ 1] = x[t] + v[t]∆T

v[t+ 1] = v[t] + a[t]∆T

a[t+ 1] = a[t] + j[t]∆T,

(7.5)

with ∆T as the timestep. Notice that the finite-difference method decrements the dimension of
time-series as an increase of derivative order, i.e., x ∈ RN , v ∈ RN−1, a ∈ RN−2 and j ∈ RN−3.
Eq (7.5) can be written in matrix multiplication form:

v = D(1)x

a = D(2)x

j = D(3)x,

(7.6)

where D(k) ∈ R(N−k)×N represents the kth-order differentiation operator. For example, k = 1, 2,
and 3 can be written as:

D(1) =
1

∆T


−1 1 0 ... 0 0 0
0 −1 1 ... 0 0 0
...

...
...

...
...

...
0 0 0 ... −1 1 0
0 0 0 ... 0 −1 1


.

D(2) =
1

∆T 2


1 −2 1 0 ... 0 0 0
0 1 −2 1 ... 0 0 0
...

...
...

...
...

...
...

0 0 0 0 .... 1 −2 1



D(3) =
1

∆T 3

−1 3 −3 1 ... 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 .... −1 3 3 1

 .

Consider corrupted measurement z which contains missing data (indicated by the observation op-
erator H), noises w and outliers e:

z = Hx + w + e, z ∈ RM ,w ∈ RM , e ∈ RM , H ∈ RM×N , (7.7)
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and missing data exists if M < N . We aim to find the reconstructed position x̂ that is smooth
in kth-order derivatives. The idea is to use a combination of Ridge and Lasso regression [268],
to simultaneously handle noises and outliers, assuming outliers are sparse and noises have small
magnitude:

minimizex, e ∥z−Hx− e∥22 +
k=K∑
k=2

λk∥D(k)x∥22 + λ1∥e∥1 (7.8a)

subject to −D(1)x ⪯ 0, (7.8b)

⌊x⌋(k) ⪯ D(k)x ⪯ ⌈x⌉(k), k = 2, 3, ...,K. (7.8c)

The first term of the cost function (7.8a) penalizes the data-fitting error on the non-missing entries.
The second term regularizes the smoothness of the position vector, by penalizing the l2-norm of
higher-order derivatives (e.g., k = 2 and k = 3 correspond to accelerations and jerks in respective).
The third term regularizes the sparsity of the outliers. The first constraint (7.8b) states that the
speed has to be non-negative, i.e., no cars are traveling backward at any time. The second con-
straint (7.8c) sets the upper and lower bound for each high-order derivatives. For example, ⌈x⌉(2) is
the largest possible acceleration. Note that (7.8a) can be written into a quadratic programming form
by converting the l1 penalization to a linear programming with linear inequality constraints [36] [28].
The problem can be solved with a convex programming solver such as cvxopt [216]. Note that above
formulation rectifies the trajectory of each vehicle independently of another. After treatment (7.8),
further investigation is needed to determine if, for example, considering vehicular interactions in
the optimization formulation (e.g., with additional non-collision constraint) is required.

The 2D dynamics can be obtained by solving two independent optimization problems of form (7.8)
for both longitudinal and lateral dynamics.

7.4. Experiment and deployment on the I-24 MOTION system
In this section we discuss the application of the proposed two-step data postprocessing pipeline
on the newly established I-24 MOTION system. A comprehensive evaluation is conducted on the
validation system, a small subset of the I-24 MOTION with 18 cameras, where a short segment
of manually-labeled ground truth trajectory data is used as benchmark. More qualitatively (in
the absence of ground truth), we computed a variety of traffic-specific measures such as speed and
acceleration distributions, to evaluate the truthfulness of the resulting postprocessed data.

7.4.1. Experiments on the I-24 MOTION validation system

The validation system was built in 2020 and functioned as a prototype for the design selections in
the full system. The validation system consists of three poles that host 18 cameras to seamlessly
cover 2000 ft highway segment. The detailed description of the design can be found in [75].

Evaluation metrics

Vehicles tracking and trajectory reconciliation performance can be evaluated with standard multi-
object-tracking (MOT) metrics, specified in [22, 145, 125, 180]. For all the following metrics, an
intersection-over-union (IOU) of vehicle footprint with ground truth of 0.3 or higher is required to
be considered as a true positive.
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• Precision: number of detected objects over sum of detected and false positives (target: 1).

• Recall : number of detections over number of objects (target: 1).

• Switches per GT : total number of track switches per ground truth trajectory (target: 0).

• Fragments per GT : total number of switches from tracked to not tracked per ground truth
trajectory (target: 0).

• Multi-object-tracking accuracy (MOTA): an aggregated measure to indicate tracking perfor-
mance. It is detection errors (false negatives and false positives) and fragmentations normal-
ized by the total number of true detections (target: 1).

• Multi-object-tracking precision (MOTP): the total error in estimated position for matched
prediction and ground truth pairs over all time, averaged by the total number of matches
made (target: 1).

Other statistics are computed to qualitatively assess the trajectories:

• Trajectory lengths distribution

• Speed distribution (calculated using finite-difference)

• Acceleration distribution (calculated using finite-difference)

Dataset description

Properties GT-i GT-ii

Length of video recording (sec) 90 51
Length of road segment (ft) 2073 2073
Total number of vehicle annotations 176,805 91,267
No. lanes 8 8
No. trajectories 314 100
Trajectory lengths (ft) (avg, stdev, max) (1635.4, 639.0, 2270.5) (1013.5, 587.9, 2183.8)
Speed (ft/sec) (mean, stdev, max) (106.0, 10.9, 147.7) (42.2, 35.1, 110.8)

Table 7.1: Ground Truth Dataset Statistics

All evaluations are performed on two internal datasets obtained from the I-24 MOTION validation
system, to be subsequently released to the public. The first dataset consists of 176,805 vehicle
annotations spanning 90 seconds of video capturing free-flow traffic from each of 18 traffic cameras,
with ground truth vehicle bounding boxes obtained by human annotators for all vehicles within
the video sequences. Similarly, the second dataset contains 91,267 annotations from a 51-second
recorded video that capture denser and slower traffic than the one from the first recording. The two
ground truth datasets are termed as GT-i and GT-ii, respectively. Table 7.1 summarizes the two
ground truth datasets in more detail.

The raw tracking data was obtained using a crop-based fast tracking algorithm mentioned in [74].
The raw tracking results obtained from the two video recordings are termed as RAW-i and RAW-ii.
Likewise, the postprocessed datasets are denoted as REC-i and REC-ii in respective.

92



Figure 7.9: Probability of fragment ϕi after the last measurement of ϕi is represented as a cone.
The matching cost of ϕi and ϕj is determined by the negative log likelihood of ϕj given the cone
probability.

Implementation details

In this section, we describe the computation of edge costs for min-cost flow and the choice of
parameters λi’s for solving the trajectory rectification problem 7.8.

The probabilities of a trajectory starts or ends with a fragment Penter and Pexit is determined by
the ratio of the true number of trajectories and the predicted number of trajectories. The fragment
linking costs P (ϕi|ϕj) can be modeled by (a combination of) dynamics, shape affinity and the time
interval between the two fragments. We implemented a version that considers the dynamics only,
as it is shown to properly represent the matching probabilities.

The general idea is, if ϕj is indeed a continuation of ϕi but the object tracking is broken due to, e.g.,
object occlusion, then the projected position of ϕi at the time of ϕj has a high chance of overlapping
with the actual detection of ϕj . The probability of track i at the time of ϕj follows a stochastic
process, with the mean p̂i being the projected position of track i given ϕi, and the variance increases
with respect to ∆t, the time elapsed since the end of ϕi, tie, i.e.,

pi(t
i
e +∆t) = p̂i(t

i
e +∆t) + ηi(∆t), and ηi(∆t) ∼ N (0, α+ β∆t). (7.9)

The uncertainty ηi(∆t) follows a Brownian-like process, with zero-mean and variance α + β∆t
growing linearly with ∆t (see Figure 7.9). The projected mean of position is:

p̂i(t) = vit+ p̄i, (7.10)

where vi = [vx,i, vy,i]
T and p̄i = [xi, yi]

T can be determined using, for example, linear regression.
Finally, the matching cost is the negative log likelihood of ϕj given the probabilities computed from
ϕi:

Λ(ϕi, ϕj) =
1

2Nj

∑
tj∈[tjs,tje]

log
(
α+ β(tj − tie)

)
+

1

2Nj

∑
tj∈[tjs,tje]

(pj(tj)− p̂i(tj))
2

α+ β(tj − tie)
, (7.11)
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(a) Graph size at each iteration of online NCC. (b) Cumulative runtime (sec) for online NCC.

Figure 7.10: Online NCC performance

where Nj is the number of measurements of ϕj . tjs and tje are the start and end timestamp of ϕj ,
and pj(tj) is the measurement of ϕj at tj .

After fragment association, the next step is to impute missing data, correct for outliers, and smooth
the trajectories in a single step by solving an optimization problem (Eq. (7.8)). To balance the
terms in the cost function, we conducted a grid search to determine the optimal parameters λi.
We found that setting K up to 3, where the λ2 term penalizes large accelerations and λ3 penalizes
large jerks, was sufficient. Empirical assessment of a subset of trajectories led us to pre-tune the
parameters to λ1 = 1.0 × 10−3, λ2 = 1.67 × 10−2, and λ3 = 1.0 × 10−7, for both the longitudinal
and lateral directions of travel. The acceleration and jerk constraints were set to ±10 ft/sec2 and
±3 ft/sec3 for the longitudinal (x) direction, and ±5 ft/sec2 and ±1 ft/sec3 for the lateral direction,
respectively.

The parameter tuning is subject to the implicit assumption of Euler forward discretization, with the
current sampling frequency of 25Hz. We demonstrate the capacity the above choice of parameters to
bring close the speed and acceleration to a more realistic range, but note that a detailed parameter
optimization that generalizes to a range of datasets is part of our ongoing effort to operationalize
the described methods.

Results

The performance of the pipeline on two tracking datasets is presented in Table 7.2 and 7.3. The
results demonstrate that the data association step enhances precision and recall by accurately
connecting fragments and filling in the gaps between the detections.

The graph size remains bounded during the online NCC procedure. We choose a window size
of 5 seconds, meaning that when adding fragment ϕk with a last timestamp of tk, all existing
trajectories with a last timestamp older than tk−5 are removed from the graph using the CleanGraph
step. Figure 7.10a illustrates the relationship between the graph size and the number of fragments
processed k. We observe that the number of nodes is maintained between 20-30, and the number
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Metrics / Statistics RAW-i REC-i

Precision ↑ 0.71 0.90 (+26.8%)
Recall ↑ 0.56 0.83 (+48.2%)
MOTA ↑ 0.32 0.74 (+131.3%)
MOTP ↑ 0.63 0.73 (+15.9%)
Fragments per GT ↓ 5.22 0.60 (-88.5%)
Switches per GT ↓ 1.43 0.04 (-97.2%)
No. unique trajectories 789 321
Trajectory lengths (ft) (avg, stdev, max) (507.8, 419.4, 2096.5) (1455.1, 711.6, 2094.7)
Speed (ft/sec) (avg, stdev, max) (106.4, 13.8, 437.8) (105.9, 10.5, 142.9)
Acceleration (ft/sec2) (avg, stdev, max) (-9.76, 1891.3, 55701.0) (0.12, 1.46, 6.7)

Table 7.2: Evaluation results for the first ground truth dataset.

Metrics / Statistics RAW-ii REC-ii

Precision ↑ 0.87 0.88 (+1.1%)
Recall ↑ 0.55 0.79 (+43.6%)
MOTA ↑ 0.48 0.68 (+41.7%)
MOTP ↑ 0.72 0.75 (+4.2%)
Fragments per GT ↓ 5.38 1.95 (-63.8%)
Switches per GT ↓ 2.98 0.53 (-82.2%)
No. unique trajectories 411 150
Trajectory lengths (ft) (mean, stdev, max) (147.8, 126.8, 568.8) (588.2, 512.2, 2181.6)
Speed (ft/sec) (mean, stdev, max) (39.2, 11.6, 276.5) (39.3, 7.4, 66.4)
Acceleration (ft/sec2) (mean, stdev, max) (39.2, 675.8, 25017.1) (-0.04, 1.48, 6.94)

Table 7.3: Evaluation results for the second ground truth dataset.

of edges between 20-35, ensuring it remains “memory-bounded". The graph size decreases each
time when timed-out trajectories (nodes) are removed from the graph. Towards the end of the
iteration, the size temporarily increases because fewer nodes are removed as the time cursor no
longer advances forward.

The cumulative run-time for each process in the online NCC algorithm is shown in Figure 7.10b.
The total run-time of this example is approximately 5 seconds, averaging about 0.01 seconds per
iteration. This time is well below the input rate and scales linearly with the number of fragments in
the dataset. In this example, the majority of the run-time is consumed during the AddNode step,
where the cost of every pair of fragments in the time window needs to be computed. Notably, the
runtime of FindMinCycle and PushFlow combined constitutes only 1% of the total computation
time at each iteration (10−4sec per iteration), which is the optimization target of the online NCC
algorithm.

Furthermore, the smoothing step leads to a more realistic range of speed and acceleration, as com-
pared to the raw tracking data which contains quantization errors. Figure 7.11 and 7.12 provide
a comparison of trajectory lengths, speed, and acceleration distributions before and after postpro-
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Figure 7.11: Distributions of trajectory lengths (left), speed (middle) and acceleration (right) for
RAW-i (blue) and REC-i (orange).

Figure 7.12: Distributions of trajectory lengths (left), speed (middle) and acceleration (right) for
RAW-ii (blue) and REC-ii (orange).
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Figure 7.13: An overview of the postprocessing system diagram. The architecture includes several
parallel processes performing local data association in each direction (EB: east bound, WB: west
bound). The results are then passed on to the master processes, which perform association across
adjacent road segments. The final step involves the reconciliation module, which imputes and
smooths all associated fragments and writes the results to the database.

cessing.

In summary, the postprocessing improves all metrics on all the tested datasets. Particularly it
produces longer trajectories with feasible dynamics. However, the most significant challenge occurs
when associating fragments in dense and slow traffic, where the complex speed and lane-change
behavior is not adequately captured by the current data association cost model.

7.4.2. Deployment on I-24 MOTION System

The complete I-24 MOTION testbed [75] consists of 276 cameras in total that seamlessly cover 8
lanes (4.2 miles) of I-24 segment near Nashville, TN (see the testbed map in Figure 7.1). On a
typical workday morning, the recorded raw tracking data spans 4 hours, from 6:00 AM to 10:00
AM, making it 16 times larger in temporal scale, and 22 times larger in spatial scale than SIM3, the
largest simulation dataset presented in this chapter. Therefore, it is crucial to design an architecture
that is scalable for size of the testbed.
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Software architecture

To handle the volume of tracking data from this testbed, we design a postprocessing software
architecture that employs parallel and asynchronous compute processes (see Figure 7.13). This
architecture utilizes multiple processes running concurrently, managed by a master scheduler, to
handle tracking data from nine upstream video processing nodes, with each process assigned to
independently process fragments detected from 25-31 cameras. Each process performs local data
association independently, and the locally processed results are passed to the master process of
the corresponding direction of travel, which runs a second pass of data association to connect the
partial trajectory fragments across each adjacent local process. Finally, all resulting trajectories
are smoothed and imputed in the “reconciliation module" before being written to the postprocessed
database.

Our experiments demonstrate that this software architecture can effectively handle the volume of
tracking data from this testbed. In addition to implementing an online version of the min cost
flow algorithm mentioned in Section 7.3.1, for a typical workday morning on I-24 MOTION, which
spans 8 lanes of traffic (4.2 miles) and was captured from 6AM to 10AM, our approach can process
approximately 400 trajectories per minute for light traffic (flow is about 30 vehicles/lane/min), while
for heavy traffic (120 vehicles/lane/min) it can process one minute of data in 50 seconds. For a full-
scale 4-hour run with the asynchronous software structure illustrated in Figure 7.13, local processes
are completed in 1.5 hours, and master processes in 2 hours, resulting in a total runtime of 3.5
hours to process 4 hours of data. The server that hosts this architecture operates on Ubuntu 20.04,
with 528GB total memory and 64 CPU cores. These results indicate that our proposed algorithm
is scalable and can efficiently process large volumes of real-time tracking data on I-24 MOTION.

Time-space diagrams

Figures 7.14a-7.14e illustrate a subset of data captured by I-24 MOTION. Each day, the traffic
is shown as a time-space diagram spanning 4.2 miles of I-24 westbound traffic during 4 hours of
morning congestion starting at 6:00AM. Each image is created by plotting all westbound vehicle
trajectories and color-coding the points based on the speed of the vehicle. Vehicle lengths, widths,
heights, and lateral positions are also measured but not shown. The waves visible in the image
propagate at approximately 12-13 miles per hour.

The time-space diagrams for I-24 W morning rush hour traffic from Nov 21 - Nov 25, 2022 are
read such that the x-axis is time of day (HH:MM), and y-axis is roadway postmile (mi). Postmile
decreases for travelers in the westbound direction. A typical congestion pattern is shown with
frequent oscillatory traffic observed. In this week, several incidents were observed. For example,
on Nov 21 (Figure 7.14a) A severe rear-end crash on the HOV lane occurred at 6:14AM that was
immediately followed by an onset of upstream queuing on lane 1 and lane 2. The congestion lasted
for about 1.5 hrs before the crash was cleared. Later at 7:40AM, there was a slowdown on lane 3
caused by a large object falling out of a pickup truck. The roadway was cleared about 2.5 minutes
later. On Nov 23 (Figure 7.14c), the traffic volume reduced due to the approach of the Thanksgiving
holiday. A sideswipe crash occurred at 7:35AM due to a vehicle changing from lane 1 to lane 2
that caused a collision with another car travelling in lane 2. All of these events result in noticeable
congestion patterns shown in the time-space diagrams.

The diagrams show that perturbations in different times and locations all propagate upstream,
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creating traffic waves with varying frequencies and amplitudes. Although the severity of the bot-
tlenecks vary, the resulting congestion pattern generally travel against the direction of traffic at a
constant characteristic speed of approximately 13 mph (see also [209, 87, 104]). We observe that
oscillations with longer periods are often accompanied by larger amplitudes. The strong correlation
between traffic wave period and amplitude is also discussed in [64].

Even in the present form, data from I-24 MOTION already suitable to study traffic waves and
other macroscopic quantities. This allows I-24 MOTION data to be used for speed analysis directly
without needing to extrapolate long distances between fixed sensors (data cleaning is, however
still required). Moreover, the camera-based sensors yield useful insight into the initial causes of
bottlenecks not visible in any other sensing modality (e.g., debris on the roadway).
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(a) Monday Nov 21 2022

(b) Tuesday Nov 22 2022

(c) Wednesday Nov 23 2022

(d) Thursday Nov 24 2022 (Thanksgiving)

(e) Friday Nov 25 2022 (Black Friday)

Figure 7.14: Time-space diagrams of 5 days in November 2022. Photo credit: Gergely Zachar
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(a) A calendar view of November, 2022

(b) Traffic dynamics. Top: trajectory lengths, middle: speed, bottom: acceleration

Figure 7.15: Dashboard example (1/2)
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(a) Statistics examples. Top: vehicle type distribution, bottom: trajectory OD matrix

(b) An overhead animation. Photo credit: Gergely Zachar

Figure 7.16: Dashboard example (2/2)
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Interactive dashboards

During the data generation development phase, it is crucial to perform qualitative evaluations
of the data in a meaningful manner. To facilitate the visualization of qualitative measures, we
have constructed an alpha-version analysis component. This component computes traffic-relevant
statistics, such as speed distribution, vehicle type distributions, and the start and ending locations
of each tracked trajectory. The resulting statistics are then presented through an internal dashboard
system.

The current utilization of the dashboard system primarily involves comparing statistics across multi-
ple data processes. Figure 7.15-7.16 offer illustrative examples of this comparison. The dashboard’s
landing page showcases a calendar view (Figure 7.15a), with thumbnail time-space diagrams for
each day on which data has been produced. Upon selecting a specific day, users are directed to
the "analysis" page (Figure 7.15b, 7.16a and 7.16b), where comprehensive statistics for all runs
occurring on that day are displayed. These statistics include trajectory length, speed and accel-
eration distributions, vehicle type distribution, an OD matrix of all trajectories, and an overhead
animation view of any selected road segment and time range. These visualizations enable us to ac-
cess fundamental traffic information, identify potential data processing issues, and facilitate further
enhancements. In the future, additional information can be integrated into the dashboard system
to analyze various aspects, such as crashes, ramp traffic, and corridor control strategies. We also
intend to make the dashboards publicly accessible alongside future data releases.

7.5. Conclusion
High-quality trajectory data can close the gap for understanding microscopic traffic phenomena.
A real-world live testbed like I-24 MOTION helps researchers to understand the impact of mixed
autonomy in traffic. However, data produced by cameras and upstream computer vision algorithms
still lacks high quality to be ready for research use. In this chapter we demonstrate a two-step
data postprocessing pipeline to automatically reconcile detection and tracking data. The pipeline
includes a fragment association algorithm to solve an online min-cost flow problem, and a trajectory
rectification approach formulated as a quadratic programming. The accuracy is benchmarked on
a set of numerical experiments using micro-simulation, as well as on two manually-labeled ground
truth datasets. Results show that the two-step treatments improve a variety of trajectory qual-
ity measures on all the testing cases, given different traffic scenarios. Noticeably, it significantly
improves the velocity and acceleration dynamics, despite the parameter tuning and cost function
design step are only preliminary. This proposed pipeline has high promises to replace previous
manual efforts on data cleaning.

For future work, a few algorithmic improvements can be made on existing methods to potentially
address issues in real data. For example, different cost models for data association and an exhaustive
parameter tuning need to be performed to improve the current results. The cost model design should
consider more expressive features, such as appearance embedding (colors, dimensions and type of
vehicles) in addition to the dynamics information, to fully describe the similarity between two
fragments. Furthermore, a multi-vehicle reconciliation formulation can be considered to account for
potential collisions.
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CHAPTER 8

Conclusions and future work

8.1. A recap of contributions
In this thesis, we address the challenges of reconstructing complex traffic dynamics from both
microscopic and macroscopic scales. We apply modeling, parameter and state estimation techniques
to solve traffic dynamics reconstruction problems, and build a software pipeline for large-scale traffic
data generation.

A recap of the contributions are summarized below:

Novel parameter identifiability analysis for car-following systems. Chapter 3 provides a
comprehensive practical and theoretical analysis of parameter identifiability for car-following mod-
els expressed as ODEs. Two methods are developed: a numerical direct test to find worst-case
indistinguishable parameters and a differential geometry-based approach for structural identifiabil-
ity. The results show that car-following models are structurally identifiable in generic, noise-free
settings, but practical identifiability challenges may arise under specific experimental conditions or
with noisy data.

Efficient identification of ACC and human-driving car-following dynamics. A novel online
filtering method for discovering ACC car-following systems (Chapter 4) and an end-to-end data-
driven model for human drivers (Chapter 5) are developed. The proposed methods demonstrate
improved computation efficiency and better dynamics recovery compared to existing techniques.
The online system identification method based on recursive least squares (RLS) shows fast and
accurate recovery of ACC car-following dynamics. The Gaussian Process (GP) model for human-
driving outperforms existing ACCs in a human-in-the-loop driving simulation platform.

Accurate traffic state estimation in heterogeneous traffic. A novel multi-class traffic esti-
mation formulation is introduced in Chapter 6 to estimate density evolution for each vehicle class.
Innovative particle filter algorithms are designed to estimate complex mixed traffic evolution using
sparse and noisy data, accommodating nonlinear and non-differentiable state evolution dynamics.
Real traffic data from a mixed-traffic corridor validates the accurate recovery of traffic density
evolution for each vehicle class.

Automatic trajectory data reconciliation pipeline for traffic testbed. A data reconciliation
pipeline is proposed in Chapter 7 to improve the video-based trajectory extraction system accuracy.
The pipeline automatically imputes, smooths, and corrects erroneous trajectory measurements using
an online object matching algorithm and a convex optimization formulation. The resulting high-
quality trajectory data from the MOTION testbed benefits mixed-autonomy traffic research and
other transportation studies.

8.2. Limitations and potential improvements
This dissertation addresses the challenge of reconstructing traffic dynamics at both the microscopic
level, focusing on modeling car-following dynamics of ACC and human drivers, and the macroscopic
level, solving state estimation of traffic density evolution. However, certain limitations still remain
unaddressed, which are important to acknowledge.
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Accurately modeling human drivers, who constitute a significant portion of road users, poses a
primary challenge due to their inherent heterogeneity and variations influenced by diverse factors.
Chapter 5 explores modeling human car-following behavior using Gaussian Process (GP) models.
However, the purely data-driven approach, devoid of physical constraints, may lead to infeasible
predictions and sensitivity to training data quality. To address this, adaptive training of the GP
model can consider variations in driving behaviors over time and speed ranges as data accumulates.
Incorporating human interaction and physical constraints as direct feedback during training can
guide the model towards feasible solutions. Promising techniques like physics-informed Gaussian
Process [262, 163] or other time-series and dynamics modeling approaches (e.g., Long Short-term
Memory (LSTM) [90] and inverse reinforcement learning [155]) offer potential enhancements. Ad-
ditionally, leveraging contextual information such as weather and road geometry can expand the
model’s functionality, accommodating a broader range of driving scenarios.

Despite significant progress in addressing data quality issues from video-based tracking data, ad-
ditional challenges remain. In Chapter 7, the proposed data association approach substantially
reduces fragmentation and enhances trajectory lengths. However, the association results currently
rely solely on motion information in the formulation of cost modeling (Equation 7.11). To improve
this aspect, future work could explore more expressive features, such as appearance embeddings
(colors, dimensions, and vehicle types), in addition to dynamics information to better describe the
similarity between two fragments. Additionally, supervised learning approaches can be employed
to learn the implicit matching cost from labeled datasets, further enhancing the data association
process.

Lastly, there is room for improvement in the formulation for denoising and imputation of trajectory
data, as presented in Chapter 7.3.2. The current approach solves a convex optimization problem for
each individual trajectory, without considering interactions among multiple trajectories. Explor-
ing alternative formulations that consider multiple trajectories, such as simultaneously enhancing
individual trajectories while ensuring a safe distance between vehicles (conflict constraints), could
be a promising avenue. Although this would make the problem non-convex, efficient solvers and
heuristics can be explored to mitigate the computational load.

8.3. Future research directions
Below outlines potential future research directions built upon existing works.

Detecting safety-critical driving behaviors from large-scale traffic data: Investigating the
relationship between individual drivers, whether human or automated vehicles, and its impact on
traffic flow efficiency remains a crucial area of research. The use of large-scale traffic data, such as
I-24 MOTION, can potentially shed light on this connection. There are three steps to advance this
research. (1) Develop rigorous and comprehensive quantitative measures to assess the safety and
efficiency of individual drivers. These measures should consider a range of factors, such as vehicle
speed, lane-changing behavior, acceleration, and following distances, to capture the nuances of
different driving styles and their impact on traffic dynamics. (2) Design novel algorithms to identify
causal relationships between specific driving behaviors and their adverse effects on safety and traffic
flow disruption. Causal inference techniques, such as causal Bayesian networks or counterfactual
analysis, can be employed to establish cause-and-effect relationships from observational traffic data.
(3) Explore the use of graph-based algorithms for outlier detection in traffic data. By modeling the
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interactions of driving agents as a graph, outlier detection techniques can reveal unusual patterns or
behaviors that deviate significantly from the norm, and signal potential adversarial driving actions.

Develop novel data-driven traffic models: Traditional traffic flow models based on partial
differential equations (PDEs) often rely on simplified assumptions and fixed parameters, which may
not capture the full complexity of real-world traffic dynamics. In addition, they typically treat traffic
as a continuous quantity and may not account for individual driver characteristics. There are two
possible remedies: first, data-driven models based on machine learning techniques, such as neural
operators [126] and physics-informed neural networks [45, 31] that incorporate physical laws or
constraints into neural networks, can learn complex patterns and non-linear relationships from traffic
data and ensure the model’s predictions align with fundamental traffic principles. It is important to
investigate the possibility of implementing these data-driven models in real-time traffic management
systems, which includes developing algorithms that can continuously learn from incoming data,
adapting to changing traffic conditions and providing up-to-date predictions and insights. Second,
agent-based models can be an avenue to increase granularity of traditional traffic flow models. They
simulate individual vehicles or drivers as separate entities with their own behaviors and decision-
making processes. This approach allows for the representation of heterogeneous traffic, human
driver interactions, and individual variations in driving behavior.

Distributed traffic monitoring and control with connected vehicles: We are reaching a
point where nearly every vehicle on the road is constantly collecting sensing data about the driver
and the vehicle itself as well as the surrounding environment. It can be powerful to leverage the
communication amongst all the vehicles to collaboratively optimize traffic flow, reduce congestion,
and enhance safety. There are three tasks. First, design data fusion and aggregation techniques to
combine the information collected from multiple vehicles to obtain a comprehensive view of traffic
conditions. This can involve data assimilation from fixed location sensors as well as crowdsourced
vehicle sensing data, to monitor infrastructure conditions and traffic conditions. This step promotes
a wide coverage and timely updates, and increases data reliance. Second, we can investigate the use
of consensus algorithms and federated learning [124] for distributed traffic control at intersections
and merging lanes. In federated learning, models are trained locally on individual vehicles, and
only aggregated model updates are shared, which ensures data privacy and reduces communication
overhead. Challenges such as data imbalance amongst vehicles, computational resources allocation
and robust diagnostics for outlier and faulty data, should be addressed in this step. The last task
is simulation and real-world testing. We can simulate the distributed traffic monitoring and control
system in various traffic scenarios using realistic traffic simulation platforms. Real-world testing
and field trials need to be conducted to validate the effectiveness and scalability of the proposed
algorithms and approaches.
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APPENDIX A

Appendix for Chapter 3

Given the symbolic matrix (3.21), one can find numerical substitutions for all the symbolic variables
such that (3.21) is full rank. Such substitutions belong to a generic initial condition and parameter
set. One example is:

[k1, k2, τ, u0, v0, s0] = [0.01, 0.12, 1.4, 30, 33, 40]. (A.1)

The corresponding identifiability matrix becomes:

OI(x̃0, u) =
1 0 0 0 0
0 −1 0 0 0

−0.0100 0.134 6.20 3.00 0.330
0.00134 −0.00796 1.579 −0.824 −0.0484
−0.0000796 −0.000274 −0.658 0.107 0.003456

, (A.2)

and rank(OI(x̃0, u))=5.

A.0.1. Proof for proposition 3

Recall the system of equations for CTH-RV:

ẋ(t) =

[
ṡ(t)
v̇(t)

]
=

[
u(t)− v(t)

k1(s(t)− τv(t)) + k2(u(t)− v(t))

]
y(t) = x(t)

(A.3)

This system in fact can be written as a scalar differential equation:

v̇(t) = k1

∫ t

0
(u(ξ)− v(ξ))dξ + (−k1τ − k2)v(t) + k2u(t). (A.4)

Take the derivative on both sides to get rid of the integral operator:

v̈(t) = k1(u(t)− v(t))dt+ (−k1τ − k2)v̇(t) + k2u̇(t). (A.5)

Re-arrange to separate the input and output:

v̈(t) + (k1τ + k2)v̇(t) + k1v(t) = k1u(t) + k2u̇(t). (A.6)

Now this is the standard form of a second-order non-homogeneous differential equation. The solution
v(t) has two parts, a homogeneous solution (or complementary solution vc(t), corresponds to the
transient response), and a particular solution (or Vp(t), corresponds to the steady state response).
The general solution would be the sum of two parts:

v(t) = vc(t) + Vp(t). (A.7)

First let’s see the homogeneous solution vc(t) by solving

v̈(t) + (k1τ + k2)v̇(t) + k1v(t) = 0. (A.8)
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The solution is of the form:
vc(t) = c1e

r1t + c2e
r2t, (A.9)

where r1 and r2 are the roots of the characteristic equation for (A.8), and c1 and c2 are constants,
which can be solved using initial values after the particular solution Vp(t) is obtained.

Moving on to Vp(t). We will show the condition such that the steady state response Vp(t) does not
depend on k1.

For simplicity, let us assume the input (forcing) function as a sinusoidal wave, i.e., u(t) = asin(ωt).
Because we can represent almost all functions by Fourier series, which is a superposition of sine and
cosine waves, the choice of u(t) does not change the solution. The forcing term, or the RHS of (A.6)
is

g(t) = k1u(t) + k2u̇(t) = k1asin(ωt) + k2aωcos(ωt). (A.10)

By undetermined coefficients method, we can solve for the particular solution and the corresponding
coefficients:

Vp(t) = Asin(ωt) +Bcos(ωt), (A.11)

where A,B can be solved by plugging Vp(t) into (A.6). A,B can be represented in terms of a, ω and
the model parameters θ. We will simplify the expressions by denoting A,B as functions of some
parameters:

A = fA(a, ω, θ)

B = fB(a, ω, θ).
(A.12)

Recall the superposition principle for ODE since ODE is a linear operator, the particular solution will
always be a combination of sine and cosine waves with the same frequency but different magnitudes
as the input u(t). In this case, we just need to see if A,B depend on any parameter p ∈ {k1, k2, τ}
to make a difference in the steady state response. This can be done by taking the partial derivatives
∂fA
∂p

and
∂fB
∂p

and examine the dependency. In other words:

find the solution Sp for
∂fA
∂p

= 0 and
∂fB
∂p

= 0, ∀ p ∈ {k1, k2, τ} ∈ P
(A.13)

where P is the set of legal values for parameter p. If the solution set for each p, Sp, does not depend
on p, then p is unidentifiable. Solve for (A.13) we get

Sk1 = {k2 =
1

τ
}

Sk2 = ∅
Sτ = ∅.

(A.14)

This suggests that A,B are independent of k1 if k2 =
1

τ
.

Now let us go back to the initial condition and the transient response. In order to use the information
s(0) = s0, we’ll need to work on the first-order differential equation (A.4) instead of (A.6). Simply
plug in the initial condition s(0) = s0 and v(0) = v0 in (A.4) to obtain:

v̇(0) = k1s0 + (−k1τ − k2)v0 + k2u0, (A.15)
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where
∫ t
0 (u(ξ)− v(ξ))dξ|t=0 = s0, and u0 is the initial value of the input. Now if we do the same as

before (A.13) by taking partial derivatives of v̇(0) to find the unidentifiable parameter(s) and the
corresponding “condition" in order for that parameter to be unidentifiable, i.e.,

for p ∈ {k1, k2, τ}, find the solution Sp for
∂v̇(0)

∂p
= 0 ∀ p ∈ P

(A.16)

Solving (A.16) we get:
Sk1 = {s0 = τv0}
Sk2 = ∅
Sτ = ∅.

(A.17)

The solution shows that k1 cannot be identified if τ =
s0
v0

from the transient response. Substitute

τ =
s0
v0

and k2 = 1/τ =
v0
s0

into the OI(x̃0, u), we obtain:

OI(x̃0, u) =
1 0 0 0 0
0 −1 0 0 0
−k1 v0/s0 + k1s0/v0 0 v0 − u(t) k1v0

−k1(v0/s0 + k1s0/v0) (v0/s0 + k1s0/v0)
2 − k1 0 o44 o45

o51 o52 0 o54 o55

 (A.18)

o44 = −u̇(t)− (v0/s0 + k1s0/v0)(v0 − u(t))− v0(v0 − u(t))/s0

o45 = −k1v0(v0/s0 + k1s0/v0)− k1v0(v0 − u(t))/s0

o51 = k1(k1 − (v0/s0 + k1s0/v0)
2)

o52 = −(v0/s0 + k1s0/v0)(k1 − (v0/s0 + k1s0/v0)
2)− k1(v0/s0 + k1s0/v0)

o54 = u̇(t)(2v0/s0 + k1s0/v0)− k1(v0 − u(t))− (k1 − (v0/s0 + k1s0/v0)
2)

(v0 − u(t))− ü(t) + (v0(2v0/s0 + 2k1s0/v0))/s0

o55 = k1v0u̇(t)/s0 − k1v0(k1 − (v0/s0 + k1s0/v0)
2)− k21(v0 − u(t))+

k1v0(v0/s0 + k1s0/v0)(v0 − u(t))2/s0.

Matrix (A.18) clearly shows that the above substitution results in rank(OI(x̃0, u))=4. The column
corresponding to parameter k1 is zero, meaning that k1 is unidentifiable. This result is in agreement
with the analytical proof that k1 does not affect either the transient response or the steady state
response. Note that we can choose u0 ̸= v0 such that the initial condition of the system is at
non-equilibrium. Please see Figure 3.2c for a visualization. Hence we complete the proof.
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APPENDIX B

Appendix for Chapter 5

B.1. Predictive Safety Filter
A purely data-driven control approach such as GP does not explicitly take driving safety into
account. Throughout the literature, we found learning-based control achieves “safe-by-design" with
verified control envelopes [8], fixed-point computations of the set-valued mappings [160], and safety
filtering [226], as common approaches. In this paper we adopt a predictive safety filtering approach
similar to [226], which finds a safe acceleration profile that is closest to the GP-predicted acceleration
and achieves collision avoidance.

Consider the following notations and assumptions:

Let I≥k denotes a set of integers in the interval [k,∞) ∈ R. Let ak denote the acceleration of the
leader vehicle at time k, which we assume can be measured. yk stands for the acceleration for the
follower at k. amin denotes the hardest braking deceleration for the follower, which the follower
vehicle can actuate instantaneously. smin is the minimum space gap.

We develop a safety filter on commanded accelerations to achieve collision avoidance. The safety
filter seeks to ensure two properties are met at all times. The first property is collision avoidance in
the form sk ≥ smin. The second property is bounded deceleration in the form yk ≥ amin. To choose
accelerations that achieve these two properties we form at each time-step k a set of allowable states
into which the vehicle can move to time-step k + 1, which we denote as S:

(sk, vk, uk, ak) ∈ S ⇒ yk′ ≥ amin, sk′ ≥ smin,∀k
′ ∈ I≥k (B.1)

according to the following discrete-time dynamics:
s
v
u
a


k+1

= g(sk, vk, uk, ak, yk) =


s
v
u
a


k

+


u− v
y
a
0


k

∆t. (B.2)

S is derived using a standard stopping time condition under constant acceleration from the leading
vehicle (see appendix). By choosing yk such that (sk, vk, uk, ak) ∈ S the filter ensures that either
both collision avoidance and bounded acceleration will be met in all following time-steps, or S = ∅
meaning that a collisions cannot be avoided. In the case that multiple such commanded accelerations
exist, we choose the yk that is closest to that prescribed by the GP ŷk. This can be stated in the
following form:

minimize
yk

(ŷk − yk)
2

s.t. ŷk = fGP (sk, vk, uk, θ)

[sk+1, vk+1, uk+1, ak+1]
T = g(sk, vk, uk, ak, yk)

(sk+1, vk+1, uk+1, ak+1) ∈ S.

(B.3)

Scenarios in which the set S = ∅ can be trivially triggered through simulating large lead vehicle
decelerations that exceed amin in magnitude. This is consistent with game theoretic results that
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describe collisions between systems with equal, and unequal, dynamics and input ranges. Additional
study of the feasibility of these safety regions through data and analysis of naturalistic and controlled
scenarios is reserved for future work. One possible alternative formulation is through, for example,
a control barrier function [5].

B.2. Derivation of safe set
For a car-following system shown in Figure 3.1, we derive the safe set S given the state (s0, v0, u0, a0)
and amin, which stand for the initial space gap, follower velocity, leader velocity, leader acceleration
and the hardest braking deceleration for the follower. The safe condition gives a requirement for
(s0, v0, u0, a0) such that future collision can be prevented if the follower vehicle executes amin,
amin < 0. Let the safety space-gap margin be smin, smin > 0, and assume the given state is safe,
i.e., s0 ≥ smin, and v0 ≥ 0, u0 ≥ 0.

Consider two scenarios:

1. a0 < 0 and

2. a0 ≥ 0.

Scenario 1): Denote the leader and follower position as pl(t) and pf (t), respectively. Consider a
non-decreasing position for the leader vehicle when decelerating:

pl(t) =


pl(0) + u0t+

1

2
a0t

2, 0 < t < −u0
a0

pl(0)−
u20
2a0

, t ≥ −u0
a0

,

Similarly, the non-decreasing follower’s position during hardest braking can be denoted as

pf (t) =


pf (0) + v0t+

1

2
amint

2, 0 < t < − v0
amin

pf (0)−
v20

2amin
, t ≥ − v0

amin
.

Denote the stopping time for leader and follower as

T s
l = −u0

a0
, T s

f = − v0
amin

.

Safety requires that the space gap between the two vehicles is above the safety margin when both
vehicles are at a stop, i.e.,

pl(T
s
l )− pf (T

s
f )− l > smin, or

pl(0)−
u20
2a0
−
(
pf (0)−

v20
2amin

)
− l > smin

s0 −
u20
2a0

+
v20

2amin
> smin.

Consequently, the condition for safe state when a0 < 0 is

C1 := s0 −
u20
2a0

+
v20

2amin
> smin.
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Scenario 2): The position for the leader becomes

pl(t) = pl(0) + u0t+
1

2
a0t

2.

The same safety criterion can be derived by setting

s(t) = pl(t)− pf (t)− l

=
1

2
(a0 − amin)t

2 + (u0 − v0)t+ s0 > smin ∀t > 0.

Note that s(t) is a convex quadratic function. It can be observed that s(t) > 0 ∀t if s(t) has no
real roots, i.e., (u0 − v0)

2 − 2(a0 − amin)(s0 − smin) < 0, or the larger of the real roots < 0, i.e.,
−(u0−v0)−

√
(u0 − v0)2 − 2(a0 − amin)(s0 − smin) < 0. The corresponding safe condition becomes

C2 := s0 − (u0 − v0)
2 − 2(a0 − amin)(s0 − smin) < 0 ∪

(u0 − v0) +
√
(u0 − v0)2 − 2(a0 − amin)(s0 − smin) > 0

The overall set for the safe state is

S = {s0 ≥ smin, v0, u0 ≥ 0|((a0 < 0) ∩ C1) ∪ ((a0 ≥ 0) ∩ C2)}.
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APPENDIX C

Appendix for Chapter 7

C.1. Proof for correctness of online negative cycle canceling
Recall the negative cycle optimality condition in Theorem 2, we need to prove the following lemma:

Lemma 2. The circulation in G+
r,k is optimal, i.e., there is no more negative cycles in G+

r,k for every
k.

Proof. We prove by induction. The base case is G+
r,0, which contains a single node s and therefore has

no circulation nor negative cycle. During the first iteration, G−
r,1 has one cycle: s→ u1 → v1 → s.

If the cost of this cycle is positive, then G+
r,1 = G−

r,1 and no more negative cycle remains in G+
r,1.

Otherwise if the cost for this cycle is negative, G+
r,1 is G−

r,1 with all edges reversed and costs negated,
therefore the only cycle G+

r,1 has a positive cost.

For the induction, we want to prove that given G+
r,k−1 which has no negative cycle, G+

r,k remains
optimal (no negative cycles) after pushing flow through the min-cost cycle Γ in G−

r,k. Note that if
Γ does not exist on G−

r,k, i.e., G+
r,k = G−

r,k, then G+
r,k remains optimal. If Γ exists, it is obvious that

Γ must contain the subpath uk → vk → s (one of the three scenarios illustrated in Figure 7.5-7.7).
We proceed the proof by contradiction.

Suppose there exists a negative-cost cycle ∆ in G+
r,k. Let Γ̄ be the residual cycle in G+

r,k obtained
by reversing and negating the cost of Γ. If Γ̄ and ∆ share no common edges, then ∆ must not
contain the subpath uk → vk → s, nor any incident edges to uk. This is because any flow that goes
through an incident edge to uk must come out through the edge uk → vk per the flow conservation
constraint. Therefore if ∆ exists it must have already existed in G+

r,k−1, which contradicts the
precondition that G+

r,k−1 is optimal (no negative cycles).

On the other hand if there exists a subpath π(u, v) ∈ Γ and the residual path π(v, u) ∈ ∆, i.e., Γ̄
and ∆ share a common subpath π(v, u), we can prove that Γ is not the min-cost cycle in G−

r,k. Let
the subpath π(u, v) and Γ

′ form the cycle Γ, and the subpath π(v, u) and ∆
′ form the cycle ∆ (see

Figure C.1). We have $(π(u, v)) = −$(π(v, u)) given the definition of a residual graph, along with
the assumptions that Γ and ∆ are negative cost:

$(Γ) = $(π(u, v)) + $(Γ
′
) < 0, and

$(∆) = $(∆
′
)− $(π(v, u)) < 0,

We can get
$(Γ

′
) + $(∆

′
) = $(Γ) + $(∆),

meaning that the cycle formed by Γ
′ and ∆

′ in G−
r,k has a lower cost than either Γ or ∆. It

contradicts the fact that Γ is the least-cost cycle on G−
r,k.

Therefore we proved that G+
r,k obtained from each iteration in Algorithm 6 must be optimal.
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Figure C.1: Proof that the larger cycle composed of ∆′ and Γ
′ is of lesser cost than Γ in G−

r,k.

C.2. Improvements for online NCC
We outline a few improvements on the runtime and memory of running the online NCC algorithm
in practice.

C.2.1. Runtime improvements

The offline NCC algorithm has time complexity of O(|V ||E|2 log |V |), given that the step of finding
the minimum mean cycle (the cycle whose average cost per edge is smallest) takes O(|V ||E|). The
FindMinCycle step in the online NCC algorithm can be further improved based on the following
result from the proof in the previous section:

Corollary 2. If a negative cycle exists on G−
r,k after adding the new fragment ϕk, then it must

contain a subpath π(uk, s) = (uk → vk → s).

This observation is helpful because we can limit our search for the min-cost cycle at each iteration
to include this subpath. In order to find Γ, which has the cost of $(Γ) = $(π(s, uk))+$(π(uk, s)), we
simply need to find the shortest path from s to uk in G−

r,k and check if $(π(s, uk))+$(π(uk, s)) < 0,
as there is only one path for π(uk, s) and the cost of which is fixed. The step of FindMinCycle can be
reduced to finding the single-source shortest path, which reduced the runtime to Θ(|E|+ |V | log |V |)
at every iteration.

C.2.2. Memory bound

To limit the size of the graph at each iteration, we add a step CleanGraph(G+
r,k, τ) to remove the

trajectory (circulation) that is timed out at a customized time threshold τ . Since all the fragments
are added in order of time, we can simply check the tails of each trajectory, or the succeeding nodes
to the dummy node s at each residual graph G+

r,k for timeout. If timeout exceeds τ , all the nodes
along the entire circulation (except for s) can be safely removed from G+

r,k.

The removal of a circulation keeps the remaining flow in G+
r,k feasible because according to Lemma 1,

removing one cycle does not interfere with other cycles as no cycles have shared edges. The remaining
of G+

r,k is still optimal because no negative cycle can be created in a subgraph of an optimal residual
graph.
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Algorithm 7 Memory-bounded online NCC
Input: Set of fragments Φ = {ϕi}
Result: Set of trajectories T = {τi}
f ← 0
G+

r,0 ← {s}
k ← 1
τ ← A time window

for each ϕk (ordered by last timestamp) do
G−

r,k ← AddNode(G+
r,k−1 , ϕk)

Γ← FindMinCycle(G−
r,k)

G+
r,k ← PushFlow(G−

r,k, Γ)
G+

r,k ← CleanGraph(G+
r,k, τ)

k ← k + 1
end
T ← FlowToTrajectories(G+

r,k)
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