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CHAPTER I 

 

Introduction 

 

The objective of this thesis was to investigate possibilities of improving the performance of 

frameworks such as the Resilient Information Architecture Platform for Smart Grid framework 

(RIAPS) [1], a large, embedded software framework written entirely in Python. Due to the nature 

of the Python programming language, fast performance was traded for ease of use and 

accessibility, and the result was a platform that is not focused on being a strictly real-time system. 

However, novel techniques were investigated to determine which is the ideal solution to enhance 

the performance of RIAPS. Using faster, compiled languages, such as C++, performance-centric 

parts of RIAPS can be sped up significantly. This is then implemented and tested in order to 

quantify the performance improvement. All of the code developed for this research was written by 

me can be found on GitHub (https://github.com/EthanMayer/Leveraging-Compiled-Languages-to-

Optimize-Python-Frameworks) under the open-source Apache License Version 2.0. 

 

I.1 RIAPS 

RIAPS is a software platform that allows developers to build applications for modern systems 

using a component-oriented approach. Recently, the push towards distributed, real-time, and 

embedded computing necessitated the creation of a framework to support this. The primary 

application of this software is the “Smart Grid”, the future of the internet-connected energy grid, 

where RIAPS can serve as a foundational tool for creating distributed computing systems. RIAPS 

was created by the Vanderbilt Institute of Software Integrated Systems (ISIS) with funding from 
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the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy. RIAPS 

includes tools such as an application run-time system (component model, messaging framework, 

security framework), run-time services (discovery service, deployment service, time 

synchronization service), design-time tools (modeling language, code generators), and operation 

services (application deployment and control). RIAPS aims to provide programmers with both 

design and run-time tools for building embedded software that can be used in areas such as the 

Smart Grid. 

The platform is written entirely in Python due to its ease of use and general convenience. 

Consequently, performance is largely limited by the language’s single core nature, and it cannot be 

considered a real-time system. “Single core” in this instance means that all Python code will 

ultimately run on a single processor. Although the threading Python library is used to handle the 

execution of developer applications, this is simply a convenient abstraction that is ultimately 

executed sequentially for each instance of the Python Interpreter. Thus, since no true parallel 

multithreading takes place, RIAPS acts as a single-core program with both the RIAPS platform and 

developer application sharing time on a single processor. Although the platform is designed to be 

run in a distributed environment, with several different nodes distributed throughout a Smart Grid, 

the speed of each individual node in the network is limited by that node’s single-core performance. 

Theoretically, multiple actors can be run on the same node with multiple components, each in a 

separate actor. However, this is a very performance-intensive solution since a separate Python 

interpreter would be used for each actor. 

The ideal solution would consist of using parallel software threads to handle running the 

developer applications on separate cores. True threads can run on separate cores in parallel. With 

these threads, the RIAPS platform can be separated from the developer application(s) and run in 
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parallel. Thus, RIAPS’s overhead can be separated from the developer code via separate threads, 

and each developer application thread would run faster, resulting in a more real-time system. 

POSIX Threads, otherwise known as pthreads, can be used to spawn separate, parallel threads so 

there is no performance bottleneck occurring on a single processor core. Since RIAPS is written in 

Python, a different language will have to be used to run the developer application while using a 

communication library, such as ZeroMQ (ZMQ), to communicate back with RIAPS. 
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CHAPTER II 

 

Background 

 

This chapter will lay the foundation for the motivation for this thesis by explaining the context of 

the research. Once the technical aspects of languages used in RIAPS are fully presented, the reason 

for this research will become clear. The details of both Python and Cython are discussed, as well as 

the motivating factors driving this project. 

 

II.1 Python 

Python [2] is one of the most popular modern programming languages. Unlike traditional compiled 

languages, such as C or C++, Python is an interpreted language; the CPython interpreter, written in 

C, interprets Python code (in the form of bytecode) that runs on a virtual machine. The Python 

interpreter, as it is currently implemented, does not take advantage of multiple processor cores that 

may be available to it. Usually, there exists only one interpreter to run Python programs, thus in 

general, two Python threads cannot be run in parallel, only concurrently on a single processor core. 

A Global Interpreter Lock (GIL) exists that only allows the Python interpreter to be used by a 

single Python thread at a time. Unlike C or C++, there exists no true multithreading, and all 

“threading” done in Python is ultimately sequentially executed via sharing time on a single 

processor. Thus, the multicore computing power that accompanies all modern CPUs cannot be 

leveraged by Python to improve performance. This limitation is visualized in Figure II.1 below. 
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Figure II.1: Python GIL Visualization with Concurrent Python Threads [3]. 

 

    ZeroMQ, also known as ZMQ, is the library used for communication in RIAPS and the other 

implementations in this research [4]. ZMQ is a fast and lightweight open-source networking library 

that provides a framework for communicating with different threads. This library is available in 

multiple languages, including Python and C++, and also allows messaging between them using 

objects such as sockets and ports. It offers multiple different transport methods, most notably 

transports such as in-process and inter-process, and allows for easy implementations of common 

communication patterns, such as communication between a pair of sockets. It should be noted that, 

due to the thread-safe nature of ZMQ and the prevalence of threads in both RIAPS and this 

research, a socket must first be created by the thread that intends to use it. 

 

II.2 Cython 

Cython [5], commonly described as “Python at the speed of C”, is a programming language that is 

a superset of the Python programming language with the additional, optional ability to declare and 

use C types and functions. Cython is a compiled language that generates C/C++ files that, when 

compiled, are automatically wrapped in interface code, producing extension modules that can be 
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imported by regular Python code. The intended use case of Cython is for developers to pinpoint 

slow and generally computationally intensive components of their project and then either replace 

them with Cython or write Cython code to interface with a C/C++ file written to do the same job. 

The step-by-step Cythonize process can be seen below in Figure II.2. In this figure, setup.py is the 

Python file that is normally used for all Cython projects that defines aspects of the Cythonize 

process and initiates it. hello.pyx is the Cython file, as denoted by the .pyx file type, that will be 

Cythonized. After calling setup.py, the Cython compiler generates hello.c from the hello.pyx 

Cython code. This hello.c file is then compiled, by an ordinary C compiler, into the shared library 

file hello.so. From here, the actual Python program, launch.py, can import the Cython function 

from this shared library. 

 

Figure II.2: Cythonize Process [6]. 
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    As stated previously, since Cython is a superset of Python, all Python code and libraries natively 

work with Cython, meaning Python code can call Cython code and vice versa. Additionally, 

Cython can import and use any C/C++ library as long as a Cython header file is made to wrap the 

C header files. In fact, several Python libraries already have Cython modules, such as ZMQ, since 

Cython is used in the backend of the libraries to speed them up. Since the result is a mixture of 

Python and C/C++ code, Cython gives developers a large amount of flexibility between the ease of 

use of Python and the speed and technical ability of C/C++. Thus, this option seems particularly 

enticing when considering methods to speed up Python-based RIAPS. 

 

II.3 Motivation 

In the last decade, single-core performance has started to plateau. As Moore’s law slows down, the 

rate at which single-core performance is improving is reducing drastically. There are many factors 

contributing to this slowdown; the inability to keep doubling the number of transistors on a die is 

hindering potential maximum performance. Additionally, more transistors and faster clock 

frequencies lead to more heat production and energy consumption. The ability to draw heat off a 

die with the same surface area as a former die with lower heat production is difficult. The drastic 

increase in energy consumption for marginally faster clock speeds is leading to a slow-down in the 

rate at which single-core performance is increasing.  

To counteract this, modern CPUs have put more emphasis on including multiple independent 

cores on each chip. As newer generations of CPUs are released, more individual cores continue to 

be added to each chip. Even if single-core performance increases slow down, adding additional 

cores can allow the industry to keep up exponential speed gains. On paper, benchmarks show 

multicore performance increasing exponentially and far outpacing single-core performance. This 
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performance difference was recently quantified by Dr. Abinash Roy in 2009 and visualized in 

Figure II.3 [7]. 

 

 

Figure II.3: Performance comparison between single-core and multi-core Intel processors using 

SPECint2000 and SPECfp2000 benchmarks [7]. 

 

According to their research, increasing the performance of a single core by 13% will require a 

20% clock frequency increase, leading to a 73% increase in power consumption. On the other 

hand, decreasing clock frequency by 20% reduces performance by 13% but also reduces energy 

consumption by 49%. Thus, if multiple cores can be effectively utilized, they can each be 

individually slower and still yield faster overall results with less energy consumption. The future of 

fast and energy-efficient computation is multicore, so modern frameworks must be designed with 

this in mind. 
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Since Python is strictly single-core, RIAPS as a framework is also strictly single-core. Python’s 

threading library allows the use of Python threads, which are non-preemptive and concurrent, and 

synchronization primitives, such as locks, that in tandem can be used to separate tasks into 

concurrent threads within the same Python interpreter. Although the threading Python library is 

used as an abstraction to separate the developer-defined application from the RIAPS runtime, all 

code is ultimately executed sequentially via sharing time on a single core. Sharing time on a single 

processor is done via context switching, which occurs when the processor swaps from executing 

one thread to another. The default context switching interval in Python is 5 milliseconds, so each 

thread is run for that amount of time before the next thread is run. A visualization of this single-

threaded behavior can be seen below in Figure II.4. Each ComponentThread is a Python thread that 

runs a developer’s application code. These Python threads are placed vertically in the visual below 

to denote their concurrent, not parallel, execution. 
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Figure II.4: RIAPS Python Hierarchy. 

 

Due to this single-core nature and considering the slow-down of single core performance 

improvements, large performance improvements will not be seen when upgrading processors or 

microcontrollers. In contrast, upgrading to multiple cores opens up the opportunity for significant 

performance increases. Additionally, the base energy cost of running a Python program at a certain 

speed would be much higher than running an equivalent, perfectly multithreaded program at the 
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same speed. RIAPS is intended to be distributed across embedded devices, which are generally 

energy-conscious and not using high clock frequencies. Thus, a more modern and multithreaded 

approach is warranted. 
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CHAPTER III 

 

Implementation 

 

This chapter will discuss the implementation of the solutions created during this research. As 

explained in Chapter II, the motivation for these implementations was to design a proof-of-

concept multicore solution for RIAPS. As the project progressed, multiple different prototypes in 

different programming languages were made in order to determine the most optimal solution for 

RIAPS. The two primary implementations created were a Python + Cython Prototype and a Python 

+ C++ Prototype. 

 

III.1 Cython Investigation 

A significant amount of research went into investigating whether Cython would be a suitable 

solution to making RIAPS a more real-time system. Cython’s intended function is to be used as a 

drop-in replacement for the backend of slow Python code or libraries in order to speed them up; 

RIAPS’s needs fit this requirement well. Replacing the mechanism that handles spawning threads 

for the developer’s application would contribute greatly toward making RIAPS a more real-time 

system. Since this proposed solution is intended to be a drop-in replacement through the use of 

Cython, a very minimal amount of RIAPS that has been written in Python would need to change. 

The first step was to study Cython and create a proof-of-concept prototype before attempting to 

integrate anything into RIAPS. Fortunately, since Cython is simply a superset of Python, there was 

only minimal syntax that needed to be learned. Even when using C-style syntax, such as for static 

typing, Python’s normal syntax patterns were followed, making the process a smooth transition. 
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Compiling Cython was simple, and when importing from other Python programs, there was no 

noticeable difference from the importer’s perspective when compared to importing normal Python 

libraries. 

This process became more difficult when implementing multithreading. The goal was to 

demonstrate using Cython as a bridge between a pure Python program and pure POSIX threads. 

While researching, it became apparent that using the pthread library to spawn true POSIX threads 

within Cython was a relatively novel and rare approach to parallelization in Cython. In Cython, 

when a C library is to be imported and used, a Cython header file must be made, similar to a C 

header file, declaring all classes and functions in Cython syntax. For many C libraries, such as the 

standard library, ZeroMQ, and others, these header files already exist because of their use in 

Python. However, due to its novel nature, for the pthread library, a custom Cython header file had 

to be created to allow the import and use of pthread in Cython. Once I created this header file that 

declared all classes and functions in pthread, it could be imported by Cython. 

The goal was to change the RIAPS hierarchy seen previously in Figure II.2 to a truly 

parallelized environment seen below in Figure III.1. Each ComponentThread is a pthread launched 

by Cython that runs a developer’s application code. These pthreads are placed horizontally in the 

visual below to denote their parallel and simultaneous execution. The only change that was 

required for this implementation was converting the comp.py Python file that usually handles 

component threads into a comp.pyx Cython file. Thus, all Python syntax stays the same while 

additional C-style syntax was added to import the pthread library and launch pthreads instead of 

Python threads. Since the developer application and RIAPS runtime are distinct and not directly 

reliant on each other, parallelizing the developer application threads would be an ideal solution. 

Not only would the RIAPS overhead be free to handle more tasks, but the developer application 
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could also be more performance-intensive without slowing down the overall framework execution. 

This is especially important for modern CPUs with many separate processor cores. 

The goal was to change the RIAPS hierarchy seen previously in Figure II.2 to a truly 

parallelized environment seen below in Figure III.1. Each ComponentThread is a pthread launched 

by Cython that runs a developer’s application code. These pthreads are placed horizontally in the 

visual below to denote their parallel and simultaneous execution. The only change that was 

required for this implementation was converting the comp.py Python file that usually handles 

component threads into a comp.pyx Cython file. Thus, all Python syntax stays the same while 

additional C-style syntax was added to import the pthread library and launch pthreads instead of 

Python threads. Since the developer application and RIAPS runtime are distinct and not directly 

reliant on each other, parallelizing the developer application threads would be an ideal solution. 

Not only would the RIAPS overhead be free to handle more tasks, but the developer application 

could also be more performance-intensive without slowing down the overall framework execution. 

This is especially important for modern CPUs with many separate processor cores. 

 

 

Figure III.1: RIAPS Python + Cython Hierarchy. 
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Problems arose when considering the interactions between the Python framework and C-based 

pthreads. Firstly, debugging is a challenge when compared to Python or C individually. Cython’s 

usual debugging process uses an extension for the GNU debugger (cygdb) so that Cython code can 

be debugged via the command line. With this, the convenience of visual debugging via IDE tools 

usually present for Python and C is lost. Additionally, using cygdb alone is not sufficient to debug 

the entire program. The upper-level Python running RIAPS may also have to be debugged. 

Additionally, cygdb will not account for the pthreads spawned by Cython, so these will have to be 

debugged separately if needed. Working on a production-level and security-minded framework 

such as RIAPS requires a significant amount of attention to detail when it comes to solving 

complex issues, so difficulties experienced in debugging could be prohibitive. A comprehensive 

multi-level Cython debugger has been investigated [8], and a graphical overview of it can be seen 

below in Figure III.2. This debugger intended to unify the debugging of the multiple layers of 

Cython into a comprehensive debugger complete with a GUI. However, using this debugger 

proved challenging and time-consuming, and questions arose whether this comprehensive 

debugging solution was worth the effort to use. While it allowed for comprehensive debugging of 

Cython programs, the time required for the setup and learning process made it not worth using. 
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Figure III.2: Cython Debugger Graphical Overview [8]. 

 

Memory management across all of these different levels of the hierarchy also presents another 

challenge. One of the benefits of Cython was the seamless integration with Python, thus making it 

an ideal facilitator when transferring Python data structures to the pthreads. Using cross-language 

libraries, such as pybind11, would allow the C layer to receive and operate directly on Python 

objects used by RIAPS. However, since the Global Interpreter Lock would still have to be used 

when accessing these data structures, performance could be lost, potentially to the point of 

defeating the purpose of this research.  

When taking all of these inconveniences and challenges into account, there may be more 

practical alternatives to integrating the speed of compiled languages in RIAPS. Thus, the research 
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pivoted at this point towards eliminating this middle ground and thus eliminating the added 

complexity from it. Cython was originally chosen due to the novelty of this particular use case and 

for the perceived ease of integration so that it can act as a bridge between Python and C. However, 

the added complexity outweighed the benefits.  

 

III.2 C++ Investigation 

After realizing that Cython was likely not the ideal solution to optimizing RIAPS, a simplified 

approach was the new goal. Going directly from Python to a compiled language, such as C++, 

would be a stark transition but would avoid the complexity of an intermediate layer. Thus, the 

research pivoted to directly bridging the gap between RIAPS’s Python runtime and developer 

applications made with C++. 

The core motivation and goal of the Python + C++ Prototype remains the same as the previous 

investigation; in order to observe a performance increase, the most inefficient aspect of RIAPS 

must be tackled. Developer application threads must use real, parallelizable threads, such as 

pthreads, so that a single processor core does not have to execute both the RIAPS overhead and 

developer application concurrently. Thus, the developer application must be written in C++. The 

goal remains to change the RIAPS hierarchy seen previously in Figure II.2 to a truly parallelized 

environment; however, in this implementation, Cython will not be used. The new proposed 

hierarchy diagram is seen below in Figure III.3. Each ComponentThread is a pthread launched 

directly by C++ that runs a developer’s application code. These pthreads are placed horizontally in 

the visual below to denote their parallel and simultaneous execution. 
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Figure III.3: RIAPS Python + C++ Hierarchy. 

 

Since the Cython intermediate layer has been removed, Python will now directly interface with 

the lower C++ layer. Using the CDLL function from the ctypes Python library, C++ functions 

found in a shared library can be executed. A shared library, which is a .so file on Unix systems and 

a .dll file on Windows, is a compiled file that cannot be executed alone but instead is meant to 

contain functions that can be loaded and called by other executables or shared libraries at load time 

or runtime. This method is done as opposed to being directly copied by the linker at compile time 

and bundled into the executable. 

However, when a C++ function in the shared library is loaded and called by Python, this 

function is not necessarily executed in parallel with the calling Python program. This C++ function 

must instead act more like a main function. No core functionality was executed here except for 

launching pthreads so that other C++ functions, also loaded from the shared library, can be 

executed in parallel. 

Since there is less of a bridge between the Python and C++ layers, all communication occurred 

through sending ZMQ messages back and forth between RIAPS and the developer application C++ 

threads. Since the original implementation of RIAPS held this same design philosophy, not many 
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additional changes would be required to be made to RIAPS. As discovered with Cython in the 

previous section, Python objects can no longer be sent as-is due to the GIL requirement. In order 

for C++ to manipulate these Python data structures directly, the GIL would have to be acquired by 

the pthread each time they are accessed, which introduces the same performance issues seen in 

Python due to the presence of a single Python interpreter. 

In order to ensure the communication system is language-agnostic, all data structures being 

exchanged between Python and C++ were serialized into a universal format, such as JSON. While 

Python’s native serialization methods, such as pickle, do not include native support for complex 

data structures, such as named tuples, a library such as jsonplus was used to handle all JSON-

related functions. Similarly in C++, nlohmann’s json library was used for the deserialization and 

serialization of all message data after being received and before being sent, respectively.  

Before integrating into RIAPS, a prototype was implemented as a proof-of-concept of this 

design. As described above, an upper-level Python program will load and call a C++ main function 

from a shared library. This main function will then spawn pthreads that run in parallel and handle 

receiving/processing/sending data to and from the Python level via JSON. A visualization of this 

prototype can be seen below in Figure III.4. 
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Figure III.4: Python + C++ Prototype Implementation. 

 

The general flow of the prototype is as follows: the “main” thread, written in Python, launched a 

C++ function from a shared library. After launching this function and passing the correct 

parameters to it, which are necessary to setup the ZMQ ports, etc., the only purpose of the Python 

main thread was to send and receive messages while JSON serializing and deserializing them, 

respectively. The ZMQ Poller was used to handle detecting incoming messages on the two ports, 

one for each thread, so that no time is wasted being blocked while waiting to receive from one of 

the threads. 

Each of the C++ worker pthreads executed in parallel simultaneously since no locking devices, 

such as mutexes or semaphores, are present due to the absence of shared resources. Each thread 

performed some sort of work, of which there are five options: no work, light math computation 

(iteratively calculate the Fibonacci number of the square root of the current message number), 

heavy math work (iteratively calculate the Fibonacci number of the current message number), 
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function calls (recursively calculate the Fibonacci number of the current message number), and 

memory allocation (allocate and free memory between each message). All of this work was in 

addition to the normal JSON serialization done upon sending a message and deserialization done 

upon receiving a message. Once the total number of target messages was achieved, the program 

exited. 

 

III.3 Python Control 

The primary purpose of the Python Control Implementation was to generate test data representative 

of a baseline of performance. Since RIAPS is programmed entirely with Python, a control in this 

same form was needed to perform comparisons against the other tests performed for this research. 

The Python Control Implementation functioned identically to the other Python + C++ Prototype, 

but the entire program was written in pure Python. Thus, due to the GIL, all threading was 

ultimately executed sequentially, and these results are expected to be the slowest in all cases. The 

work done by the Python main thread and the Python worker threads was identical in each 

respective test case to the work described above for the Python + C++ Prototype. A visualization of 

this workflow can be seen below in Figure III.5. 
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Figure III.5: Python Control Implementation. 
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CHAPTER IV 

 

Results 

 

This chapter will discuss the results of the prototypes implemented in Chapter III. Before actual 

integration into RIAPS can occur, these prototypes need to produce quantitative data to serve as 

justification for their proof-of-concept designs. The Python + C++ Prototype will have test results 

shown alongside a Control Implementation that is written in pure Python. Several different test 

categories will be shown for different workloads. These tests are listed in Table IV.1. The 

parameters and variables present in each test are detailed in Table IV.2. 

 

Test  
Message 

Amount 
Work Notes 

Messaging Tests 100k; 500k; None Only work done is JSON serialization/deserialization  

Light 

Computational 

Load Tests 

100k; 500k 

Square 

Root 

Fibonacci 

The Fibonacci number of the square root of the 

current message number is calculated iteratively 

Heavy 

Computational 

Load Tests 

1k; 5k Fibonacci 
The Fibonacci number of the current message 

number is calculated iteratively 

Function Calls 

Tests 
10; 40 

Recursive 

Fibonacci 

The Fibonacci number of the current message 

number is calculated recursively 

Memory 

Allocation Tests 
100k; 500k 

Memory 

Allocation 

100 data structures of 4 KB size are allocated and 

freed 

Table IV.1: Test Details. 
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Test Parameter Value Notes 

CPU Apple M1 ARM; 8 cores; no thermal throttling or power saving; starts idle 

RAM 16 GB No memory bottlenecks, such as swapping, occur 

Runs per Test 10 Ensures external factors are averaged out 

Printing/Logging None 
No printing/logging done to avoid bottlenecks (writing to 

output/buffer) 

Main Thread Python All implementations have a Python main thread 

Worker Threads 2 
All implementations use 2 worker threads; thread language 

varies 

Communication ZMQ All communication is done via PAIR sockets 

Message Format JSON 
Data serialized before being sent; messages deserialized after 

being received 

Message Number Variable Number of pairs of messages sent/received varies 

Work Variable 
Amount and type of work (if any) done between messages 

varies; see details for each test’s work below 

Table IV.2: Test Parameter and Variable Details. 

 

For every test in this chapter, certain test parameters were able to be kept constant. Every test 

was run on an Apple M1 ARM 8-core processor, and there was no throttling present, whether for 

thermal reasons or for power-saving. No tasks or apps were actively running in the background, 

and the CPU started at idle for each test. The system has access to 16 gigabytes of RAM, so no 

memory issues occurred, such as swapping, to slow the tests down. Since there are many external 

factors that can affect the performance of a program being benchmarked, such as OS scheduling or 

interrupts, 10 runs were performed sequentially for each test to ensure these external factors can be 
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averaged out. Additionally, no printing or logging of any kind is done, so the test results will not be 

influenced by waiting for I/O or waiting to write to a buffer. During each test, a Python main 

thread launches two worker threads, both in Python for the Python Control Implementation or both 

in C++ for the Python + C++ Prototype, and these threads are communicated with via ZMQ PAIR 

sockets. Each pair of messages consists of one message sent to a worker thread and one message 

sent back to the main thread. All messages sent consist of data in JSON form. Upon receiving a 

message, it is deserialized and the data is extracted. When sending a message, the data that is to be 

sent is first serialized into JSON. This process is visualized in the message sequence diagram seen 

below in Figure IV.X. In this diagram, the main thread and both worker threads are shown with 

their ZMQ PAIR sockets and the messages between them. Two types of example tests, the 100,000 

message tests and the 500,000 message tests, are shown in the diagram. The points at which the 

test timer starts and ends are clearly demarcated as to visually show which parts of the program are 

being timed for the results later in this chapter. 
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Figure IV.1: Test Message Sequence Diagram. 

 

For each test involving C++ pthreads, their CPU affinity was set to ensure that each of the two 

pthreads were run simultaneously on separate CPU cores. Processor affinity is used to force the 
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execution of a thread on a certain CPU core. Although the pthread library has its own functions to 

set CPU core affinity, these only work on Linux, and these tests were run on MacOS. Thus, the 

thread_policy_set MacOS API function was used to ensure that each pthread will be executed 

simultaneously on different CPU cores [9]. 

 

IV.1 Messaging Tests 

IV.1.1 Messaging Test 1 Results 

For the first Python Control Implementation messaging test, 100,000 pairs of messages were sent 

and received between the main thread and each worker thread for a total of 200,000 pairs of 

messages, or 400,000 total messages. Besides the JSON serialization/deserialization process 

described previously, no other computational work was done in between messages. The results of 

this test can be seen below in Figure IV.2. 

 

 

Figure IV.2: Python Control Messaging Test 1 Results. 
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Out of the 10 runs performed for this first Python Control Implementation test, the time per run 

ranged from the quickest at 17.195 seconds to the longest at 18.565 seconds with the average time 

per test being 17.968s. Since there was no further work to do besides sending and receiving 

messages, these tests were relatively quick. 

For the first Python + C++ Prototype messaging test, 100,000 pairs of messages were sent and 

received between the main thread and each worker thread for a total of 200,000 pairs of messages, 

or 400,000 total messages. Besides the JSON serialization/deserialization process described 

previously, no other computational work was done in between messages. The results of this test 

can be seen below in Figure IV.3. 

 

 

Figure IV.3: Python + C++ Prototype Messaging Test 1 Results. 
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time per test being 13.912 seconds. As expected, this prototype was able to send and receive the 

same number of messages as the Python Control Implementation in less time. Using C++ worker 

threads led to an average speed-up of 23%. 

 

IV.1.2 Messaging Test 2 Results 

For the second Python + C++ Prototype messaging test, 500,000 pairs of messages were sent 

and received between the main thread and each worker thread for a total of 1,000,000 pairs of 

messages, or 2,000,000 total messages. This test was identical to the previous Messaging Test 1 

but with more messages to simulate a higher throughput application. Besides the JSON 

serialization/deserialization process described previously, no other computational work was done 

in between messages. The results of this test can be seen below in Figure IV.4. 

 

 

Figure IV.4: Python Control Messaging Test 2 Results. 
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Out of the 10 runs performed for this second Python Control Implementation test, the time per 

run ranged from the quickest at 86.411 seconds to the longest at 91.021 seconds with the average 

time per test being 87.126 seconds. Each run here ran longer than the previous Python Control 

Implementation test due to the significant increase in messages. When compared, this test averaged 

handling 400% more message pairs in about 385% more time. As seen in the results graph, this test 

benefited from Python’s caching mechanism, which allowed each run after the first run to 

consistently complete on average around 5% faster. However, the initial slow run was necessary 

for this future speed improvement. 

For the second Python + C++ Prototype messaging test, 500,000 pairs of messages were sent 

and received between the main thread and each worker thread for a total of 1,000,000 pairs of 

messages, or 2,000,000 total messages. As with the Python Control Implementation for this test, 

this test was identical to the previous Messaging test but with more messages to simulate a higher 

throughput application. Besides the JSON serialization/deserialization process described 

previously, no other computational work was done in between messages. The results of this test 

can be seen below in Figure IV.5. 
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Figure IV.5: Python + C++ Prototype Messaging Test 2 Results 

 

Out of the 10 runs performed for this second Python + C++ Prototype messaging test, the time 

per run ranged from the quickest at 69.11 seconds to the longest at 70.018 seconds with the 

average time per test being 69.5 seconds. As with the previous messaging test, this prototype was 

able to send and receive the same number of messages as the Python Control Implementation in 

less time. Using C++ worker threads led to an average speed-up of 20%. When compared to the 

previous Python + C++ messaging test, this test averaged handling 400% more message pairs in 

about 400% more time, a linear scaling. 

Of the two messaging tests performed here, the Python + C++ Prototype implementation 

consistently performed faster than its Python Control Implementation counterpart. A summary of 

the results can be seen below in Table IV.3. Since no work was done in this test, this is the worst-

case scenario for performance for the Python + C++ Prototype. Still, the speed-up over the Python 

69.5

67.5

68

68.5

69

69.5

70

70.5

71

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Ti
m

e 
(s

)

Run

Graph of Test v. Time
Python + C++, 500,000 Message Pairs, No Work 

Time (s)

Average (s)



32  

Control Implementation averaged 23% and 20% for each test, respectively, representing the floor 

for performance increases. 

 

Test Metric  Messaging Test 1 Messaging Test 2 

Number of Messages Sent to Each Thread 100,000 500,000 

Python Control Average Time (s) 17.968 87.126 

Python Control Variance (s) 0.224 1.768 

Python Control Standard Deviation (s) 0.494 0.329 

Python Control Range (s) 1.370 4.610 

Python + C++ Prototype Average Time (s) 13.912 69.500 

Python + C++ Prototype Variance (s) 0.022 0.045 

Python + C++ Prototype Standard Deviation (s) 0.148 0.212 

Python + C++ Prototype Range (s) 0.553 0.908 

Python + C++ Prototype Average Speed-Up 23% 20% 

Table IV.3: Messaging Test Results. 

 

IV.2 Light Computational Load Tests 

IV.2.1 Light Computational Load Test 1 Results 

For the first Python Control Implementation test with light computational load, 100,000 pairs of 

messages were sent and received between the main thread and each thread for a total of 200,000 

pairs of messages, or 400,000 total messages. In addition to the JSON serialization/deserialization 

process, further computational work was done by each worker thread in between messages to 

simulate a light workload that may be performed by a developer application. To simulate 
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computational work, a function to calculate the Fibonacci number of an input number was created. 

Thus, each worker thread received an integer representing the number of the current message, 

found the Fibonacci number corresponding to the square root of this number, and sent it back to the 

main thread. The results of this test can be seen below in Figure IV.6. 

 

 

Figure IV.6: Python Control Light Computational Load Test 1 Results 
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down by 6%, a small yet noticeable slowdown of each run.  

For the first Python + C++ Prototype test with light computational load, 100,000 pairs of 

messages were sent and received between the main thread and each thread for a total of 200,000 

pairs of messages, or 400,000 total messages. In addition to the JSON serialization/deserialization 

process, further computational work is done by each worker thread in between messages in the 

same way as described above for the equivalent Python Control Implementation test. The results of 

this test can be seen below in Figure IV.7. 

 

 

Figure IV.7: Python + C++ Prototype Light Computational Load Test 1 Results 
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thread in between each message, the average time per run was unchanged from the Messaging Test 

1 without the workload. Due to the speed of a compiled language such as C++ and other 

advantages, such as compiler optimizations and running in parallel on separate CPU processors, 

this workload ended up being negligible and did not slow down this test by a quantifiable amount 

of time, avoiding the 6% slowdown experienced by the Python Control Implementation during this 

test. Additionally, the Python + C++ Prototype experienced a 27% speed-up when compared to the 

equivalent Python Control Implementation test. 

 

IV.2.2 Light Computational Load Test 2 Results 

For the second Python Control Implementation test with light computational load, 500,000 pairs 

of messages were sent and received between the main thread and each thread for a total of 

1,000,000 pairs of messages, or 2,000,000 total messages. In addition to the JSON 

serialization/deserialization process, further computational work was done by each worker thread 

in between messages via the square root Fibonacci calculation. The results of this test can be seen 

below in Figure IV.8. 
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Figure IV.8: Python Control Light Computational Load Test 2 Results 
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pairs of messages, or 2,000,000 total messages. In addition to the JSON 

serialization/deserialization process, further computational work was done by each worker thread 

in between messages in the same way as above to simulate light computational load. The results of 

this test can be seen below in Figure IV.9. 

 

 

Figure IV.9: Python + C++ Prototype Light Computational Load Test 2 Results 
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avoid the 18% slowdown experienced by the Python Control Implementation during this test. The 

Python + C++ Prototype experienced a 32% speed-up when compared to the equivalent Python 

Control Implementation test. 

Of the two light computational load tests performed here, the Python + C++ Prototype 

implementation performed faster than its Python Control Implementation counterpart in both tests. 

A summary of the results can be seen below in Table IV.4. Since computational load was 

introduced between each message, the average speed-up increased due to C++ excelling at 

mathematical calculations, boosting the average speed-up to 27% and 32% for each test, 

respectively. 

 

Test Metric  

Light 

Computational 

Load Test 1 

Light 

Computational 

Load Test 2 

Number of Messages Sent to Each Thread 100,000 500,000 

Python Control Average Time (s) 19.018 102.975 

Python Control Variance (s) 0.358 3.054 

Python Control Standard Deviation (s) 0.598 1.748 

Python Control Range (s) 1.396 6.075 

Python + C++ Prototype Average Time (s) 13.916 70.071 

Python + C++ Prototype Variance (s) 0.026 0.415 

Python + C++ Prototype Standard Deviation (s) 0.162 0.664 

Python + C++ Prototype Range (s) 0.605 2.223 

Python + C++ Average Prototype Speed-Up 27% 32% 

Table IV.4: Light Computational Load Test Results. 
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IV.3 Heavy Computational Load Tests 

IV.3.1 Heavy Computational Load Test 1 Results 

For the first Python Control Implementation test with heavy computational load, 1,000 pairs of 

messages were sent and received between the main thread and each thread for a total of 2,000 pairs 

of messages, or 4,000 total messages. In addition to the JSON serialization/deserialization process, 

further computational work was done by each worker thread in between messages to simulate a 

heavy workload that may be performed by a developer application. To simulate computational 

work, a function to calculate the Fibonacci number of an input number was created. Thus, each 

worker thread received an integer representing the number of the current message, found the 

Fibonacci number corresponding to the number, and sent it back to the main thread. The results of 

this test can be seen below in Figure IV.10. 

 

 

Figure IV.10: Python Control Heavy Computational Load Test 1 Results 
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Out of the 10 runs performed for this first Python Control Implementation test, the time per run 

ranged from the quickest at 0.208 seconds to the longest at 0.213 seconds with the average time per 

run at 0.211 seconds. The timescale for this test was in sub-seconds due to the relatively small 

number of messages. Although the number of total message pairs has significantly decreased 

compared to the previous tests, the computational work performed in between each message took 

much longer. In other words, the computational workload influenced test runtime far more than 

communication due to the increased workload. Unlike the previous Light Computational Load Test 

1, where the maximum Fibonacci number to be calculated was 316, here the maximum Fibonacci 

number to be calculated was 1,000 due to the removal of the square root operator.  

For the first Python + C++ Prototype test with heavy computational load, 1,000 pairs of 

messages were sent and received between the main thread and each thread for a total of 2,000 pairs 

of messages, or 4,000 total messages. In addition to the JSON serialization/deserialization process, 

further computational work was done by each worker thread in between messages in the same way 

as described above for the equivalent Python Control Implementation test. The results of this test 

can be seen below in Figure IV.11. 
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Figure IV.11: Python + C++ Prototype Heavy Computational Load Test 1 Results 
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of messages were sent and received between the main thread and each thread for a total of 10,000 

pairs of messages, or 20,000 total messages. In addition to the JSON serialization/deserialization 

process, further computational work was done by each worker thread in between messages via the 

Fibonacci calculation. The results of this test can be seen below in Figure IV.12. 

 

 

Figure IV.12: Python Control Heavy Computational Load Test 2 Results 
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portion of the total time of each run. 

For the second Python + C++ Prototype test with heavy computational load, 5,000 pairs of 

messages were sent and received between the main thread and each thread for a total of 10,000 

pairs of messages, or 20,000 total messages. In addition to the JSON serialization/deserialization 

process, further computational work was done by each worker thread in between messages in the 

same way as above to simulate heavy computational load. The results of this test can be seen 

below in Figure IV.13. 

 

 

Figure IV.13: Python + C++ Prototype Heavy Computational Load Test 2 Results 
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each message, up to the 5,000th number, the runtime was still very quick. Here, C++’s 

computational advantage is obvious. The Python + C++ Prototype experienced a 72% speed-up 

when compared to the equivalent Python Control Implementation test. 

Of the two heavy computational load tests performed here, the Python + C++ Prototype 

implementation performed faster than its Python Control Implementation counterpart in both tests 

by a significant amount. A summary of the results can be seen below in Table IV.5. Since heavy 

computational load was introduced between each message, the average speed-up significantly 

increased due to C++ excelling at mathematical computation, boosting the average speed-up to 

35% and 72% for each test, respectively. 

 

Test Metric  

Heavy 

Computational 

Load Test 1 

Heavy 

Computational 

Load Test 2 

Number of Messages Sent to Each Thread 1,000 5,000 

Python Control Average Time (s) 0.211 2.565 

Python Control Variance (s) 0.000 0.003 

Python Control Standard Deviation (s) 0.002 0.057 

Python Control Range (s) 0.005 0.226 

Python + C++ Prototype Average Time (s) 0.138 0.712 

Python + C++ Prototype Variance (s) 0.000 0.000 

Python + C++ Prototype Standard Deviation (s) 0.011 0.020 

Python + C++ Prototype Range (s) 0.037 0.074 

Python + C++ Average Prototype Speed-Up 35% 72% 

Table IV.5: Heavy Computational Load Test Results. 
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IV.4 Function Calls Tests 

IV.4.1 Function Calls Test 1 Results 

For the first Python Control Implementation function calls test, 10 pairs of messages were sent and 

received between the main thread and each thread for a total of 20 pairs of messages, or 40 total 

messages. In addition to the JSON serialization/deserialization process, further computational work 

was done by each worker thread in between messages to simulate a function-call-heavy workload 

that may be performed by a developer application. To simulate this type of work, a function to 

recursively calculate the Fibonacci number of an input number was created. Thus, each worker 

thread received an integer representing the number of the current message, found the Fibonacci 

number corresponding to the number recursively, and sent it back to the main thread. The results of 

this test can be seen below in Figure IV.14. 

 

 

Figure IV.14: Python Control Function Calls Test 1 Results 
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Out of the 10 runs performed for this first Python Control Implementation test, the time per run 

ranged from the quickest at 0.002 seconds to the longest at 0.105 seconds with the average time per 

run at 0.012 seconds. The timescale for this test was in sub-seconds due to the relatively small 

number of messages. The initial outlier can be explained with Python’s caching mechanism; thus, 

the range of run times was large here due to caching having a significant impact on subsequent run 

times. A 98% speedup was observed after the first run due to caching. Although 10 message pairs, 

and thus calculating the Fibonacci number of 10, may seem small, Python’s speed slowed 

exponentially when dealing with recursive function calls. This is not surprising, since the time 

complexity of a recursive Fibonacci solution is O(2n), otherwise known as exponential. Thus, this 

light test served as a safe baseline. 

For the first Python + C++ Prototype function calls test, 10 pairs of messages were sent and 

received between the main thread and each thread for a total of 20 pairs of messages, or 40 total 

messages. In addition to the JSON serialization/deserialization process, further computational work 

was done by each worker thread in between messages in the same way as described above for the 

equivalent Python Control Implementation test. The results of this test can be seen below in Figure 

IV.15. 
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Figure IV.15: Python + C++ Prototype Function Calls Test 1 Results 
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160 total messages. In addition to the JSON serialization/deserialization process, further 

computational work was done by each worker thread in between messages via the recursive 

Fibonacci calculation. The results of this test can be seen below in Figure IV.16. 

 

 

Figure IV.16: Python Control Function Calls Test 2 Results 
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performed the worst at function calls. 
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For the second Python + C++ Prototype function calls test, 40 pairs of messages were sent and 

received between the main thread and each thread for a total of 80 pairs of messages, or 160 total 

messages. In addition to the JSON serialization/deserialization process, further computational work 

was done by each worker thread in between messages in the same way as above to simulate heavy 

function-call load. The results of this test can be seen below in Figure IV.17. 

 

 

Figure IV.17: Python + C++ Prototype Function Calls Test 2 Results 
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large percentage, the original runtimes for the previous Function Calls Tests for this 

implementation were very small. Additionally, this was still 19 times faster scaling than Python 

when going from a small amount to a large amount of function calls. C++’s function-calling 

advantage was abundantly clear with a 99% speed-up when compared to the Python Control 

Implementation counterpart.  

Of the two function calls tests performed here, the Python + C++ Prototype implementation 

performed staggeringly faster than its Python Control Implementation counterpart in both tests. A 

summary of the results can be seen below in Table IV.6. Due to the large number of function calls, 

C++ was able to achieve an average speed-up of 75% and 99% for each test, respectively. 

 

Test Metric  
Function Calls 

Test 1 

Function Calls 

Test 2 

Number of Messages Sent to Each Thread 10 40 

Python Control Average Time (s) 0.012 41.983 

Python Control Variance (s) 0.001 0.111 

Python Control Standard Deviation (s) 0.031 0.333 

Python Control Range (s) 0.103 1.146 

Python + C++ Prototype Average Time (s) 0.003 0.549 

Python + C++ Prototype Variance (s) 0.000 0.000 

Python + C++ Prototype Standard Deviation (s) 0.001 0.001 

Python + C++ Prototype Range (s) 0.005 0.004 

Python + C++ Prototype Average Speed-Up 75% 99% 

Table IV.6: Function Calls Test Results. 
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IV.5 Memory Allocation Tests 

IV.5.1 Memory Allocation Test 1 Results 

For the first Python Control Implementation memory allocation test, 100,000 pairs of messages 

were sent and received between the main thread and each thread for a total of 200,000 pairs of 

messages, or 400,000 total messages. In addition to the JSON serialization/deserialization process, 

further computational work was done by each worker thread in between messages to simulate a 

memory-heavy workload that may be performed by a developer application. To simulate this type 

of work, 100 data structures, each 4 KB in size, were created and then deleted by each thread in 

between each message. In Python, this operation takes the form of allocating lists of this size 

within a temporary scope that ceases to exist by the time the next message is sent. The results of 

this test can be seen below in Figure IV.18. 

 

 

Figure IV.18: Python Control Memory Allocation Test 1 Results 
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Out of the 10 runs performed for this first Python Control Implementation test, the time per run 

ranged from the quickest at 217.077 seconds to the longest at 246.436 seconds with the average 

time per run at 220.682 seconds. Once again, the effects of caching were observed in the first 

outlier on the graph; subsequent runs gained a 12% speedup after the first run. Python was also 

slow at memory operations; this test is 1,128% slower than the equivalent Python Control 

Implementation results from Messaging Test 1. 

For the first Python + C++ Prototype memory allocation test, 100,000 pairs of messages were 

sent and received between the main thread and each thread for a total of 200,000 pairs of messages, 

or 400,000 total messages. In addition to the JSON serialization/deserialization process, further 

memory-oriented computational work was done by each worker thread in between messages in the 

same way as described above for the equivalent Python Control Implementation test. The results of 

this test can be seen below in Figure IV.19. 

 

 

Figure IV.19: Python + C++ Prototype Memory Allocation Test 1 Results 
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Out of the 10 runs performed for this second Python + C++ Prototype test, the time per run 

ranged from the quickest at 14.119 seconds to the longest at 14.41 seconds with the average time 

per run at 14.264 seconds. C++’s memory operations were fast due to its low-level nature, so this 

test was only 3% slower than the equivalent no-work Python + C++ Prototype test in Messaging 

Test 1 with the same number of messages. This implementation also ran 94% faster when 

compared to the equivalent Python Control Implementation test above. 

 

IV.5.2 Memory Allocation Test 2 Results 

For the second Python Control Implementation function calls test, 500,000 pairs of messages 

were sent and received between the main thread and each thread for a total of 1,000,000 pairs of 

messages, or 2,000,000 total messages. In addition to the JSON serialization/deserialization 

process, further computational work was done by each worker thread in between messages via the 

same memory operations as the previous test. The results of this test can be seen below in Figure 

IV.20. 
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Figure IV.20: Python Control Memory Allocation Test 2 Results 
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in between messages in the same way as above to simulate heavy memory operations load. The 

results of this test can be seen below in Figure IV.21. 

 

 

Figure IV.21: Python + C++ Prototype Memory Allocation Test 2 Results 
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implementation performed extremely fast in both tests, much faster than its Python Control 

Implementation counterpart and almost as fast as the same messaging tests without any work. A 

summary of the results can be seen below in Table IV.7. C++ was able to achieve an average 

speed-up of 94% and 93% for each test, respectively. 

 

Test Metric  
Memory Allocation 

Test 1 

Memory Allocation 

Test 2 

Number of Messages Sent to Each Thread 100,000 500,000 

Python Control Average Time (s) 220.682 1090.916 

Python Control Variance (s) 74.318 6.818 

Python Control Standard Deviation (s) 8.621 2.611 

Python Control Range (s) 29.359 8.379 

Python + C++ Prototype Average Time (s) 14.264 71.339 

Python + C++ Prototype Variance (s) 0.009 0.069 

Python + C++ Prototype Standard Deviation (s) 0.093 0.263 

Python + C++ Prototype Range (s) 0.291 0.761 

Python + C++ Prototype Average Speed-Up 94% 93% 

Table IV.7: Memory Allocation Test Results. 
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CHAPTER V 

 

Conclusions and Future Work 

 

This chapter will discuss the conclusions drawn from both the discussion of the implementation of 

the tests in Chapter III and the results of each test shown in Chapter IV. Once a final conclusion 

has been drawn on which design is the best and most beneficial for RIAPS, future work can be 

discussed as it relates to the details and intricacies involved with moving this proof-of-concept 

prototype design to full integration with a large framework such as RIAPS.  

 

V.1 Conclusions 

Python’s drawbacks cause it to be a slow language, especially when compared to traditional, 

compiled languages. Due to the nature of Python and the existence of the GIL, no true parallel 

multithreading can be achieved, severely limiting its ability to fully use the computational 

resources available on modern computers and embedded devices. Since RIAPS is entirely 

programmed in Python, this distributed framework will suffer from the same performance issues. 

Many different approaches were considered and attempted when looking for a solution to these 

performance issues in the Python-based RIAPS. Cython seemed like an efficient and easily 

integrated middle layer that would help facilitate the transition from high-level Python to lower-

level parallelized C code. While integration with Python was easy, the interactions between Python 

and low-level compiled code were not necessarily easier via Cython. The added complexities of a 

middle layer, along with the fact that facilitating the transfer of Cython data structures to compiled 

code was slow due to the GIL, ruled Cython out as an effective solution. 
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Direct Python–C++ integration offers a fast and achievable solution for parallelism to optimize 

RIAPS. Compiling C++ functions to a shared library that can be accessed by Python gives Python 

scripts the ability to launch pthreads. Serializing Python data structures to a language-agnostic 

format, such as JSON, allows threads to execute free of the GIL. Prototype implementations and 

tests show the benefits and promise of this approach. Overall, the Python + C++ Prototype 

implementation performed better in every test compared to the Python Control Implementation. 

The worst-case scenario for a speed-up, which was shown with the communication-only 

messaging test, still yielded a 20%-23% average runtime reduction. When introducing load, 

depending on the type of load, speed increases of up to 99% can be observed. Thus, this direct 

Python–C++ integration improves RIAPS performance in every situation while not introducing 

any unmanageable drawbacks. 

 

V.2 Future Work 

The majority of future work to be done involves integrating this C++ prototype implementation 

into the RIAPS framework. Due to technical limitations, such as the fact that RIAPS can only run 

on Linux due to library dependencies, development directly onto RIAPS would have been time-

consuming to set up properly in the timeframe and scope of this research. The Python + C++ 

Prototype implementation serves as a solid proof-of-concept for future work to implement true 

parallelization into RIAPS. All developer applications hosted by RIAPS would experience an 

increase in performance. Many developer applications, such as computationally intensive, high-

function call, or memory-intensive ones, would benefit greatly from this truly parallel capability. 

RIAPS’s component model, which currently serves as a convenient encapsulation of the developer 
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application, will be the target of the parallelization. Developer applications written in C++ can be 

compiled into shared libraries and then launched as a component within RIAPS.
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