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CHAPTER 1. INTRODUCTION

The interplay between culture and disease

Health-related human behaviors, including disease-transmitting and preventative health

behaviors, are influenced by the wider cultural landscape, and thus are subject to cultural

evolution—the transmission and change of cultural traits over time (Luigi Luca Cavalli-Sforza

and Feldman 1981). For example, the Bubonic Plague that ravaged Europe during the early 14th

century was introduced to various regions as a result of increased trade across Eurasia (Raoult et

al. 2013; Davis 1986). The spread was further facilitated by the housing and hygienic practices

of the time—it was commonplace in Europe for people to share living spaces with livestock, and

houses were built with thatched roofs (Shrewsbury 2005). These behaviors provided a breeding

ground for the rats that carried the fleas that acted as plague vectors, and provided these fleas

with easy access to human and animal hosts (Raoult et al. 2013). A well-known example of

cultural practices affecting both the prevalence of infectious disease and the selection pressure on

a genetic trait is the link between farming practices in central Africa, the prevalence of malaria,

and the incidence of sickle-cell disease. Water-intensive farming practices expanded a breeding

ground for Anopheles gambiae, the vector for the malaria parasite (Wiesenfeld 1967). Increased

prevalence of malaria drove selection for the protective phenotype found in humans with one

copy of the sickle-cell allele. (Durham 1982; K. N. Laland, Odling-Smee, and Feldman 2000;

Wiesenfeld 1967). Another example of a disease linked to a cultural practice is Kuru, a fatal

neurodegenerative disease found only in the Foré people and their immediate neighbors in the

Okapa District of the Eastern Highlands Province of Papua New Guinea (Alpers 2008). This

disease is transmitted via their mortuary practice of consumption of the body of a dead person,

including the infected brain tissue, particularly by female relatives and their children, resulting in

the high prevalence of the disease in women and children.

Alongside diseases, preventative health practices can also spread between people and

affect health outcomes. For example, culturally integrated practices such as hand washing and

regular bathing have led to a reduction in disease burden (Vermeil et al. 2019; Langford, Lunn,

and Panter-Brick 2011; Haverstick et al. 2017), and vaccines are estimated to currently prevent

about five million deaths per year (Carter et al. 2021). As I will discuss, anti-vaccine sentiments

are based in aspects of culture, such as religion, and values, such as personal liberty (Jackson

1969). Also, the recent unexpected and seemingly illogical shift in vaccination beliefs and
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behaviors towards hesitancy in the United States suggest that there are other factors in play

besides an understanding of vaccine benefits. Vaccination practices, therefore, could be

considered culturally motivated behaviors. In fact, several authors (Streefland, Chowdhury, and

Ramos-Jimenez 1999; de Figueiredo et al. 2020) use the term “local vaccination cultures” to

describe the shared beliefs among individuals within a community about vaccine-preventable

disease etiology, prevention, and treatment. Vaccination culture, which can be shaped by the

larger cultural landscape, can affect an individual’s vaccine attitudes and decisions. Therefore, it

is fitting to use cultural evolutionary modeling frameworks to model vaccination behavior.

However, as I describe below, most health-related models and vaccination behaviors do not

account for cultural evolutionary dynamics and are thus likely to miss important influences

affecting disease transmission.

Interventions to prevent disease spread before vaccines

Human populations have coevolved with various pathogens that infect them. As a result,

human populations have evolved physiological defenses—i.e., innate and adaptive immune

responses—as well as preventive health practices, both of which enable individuals to fight these

infections. Occasionally, however, as pathogens evolve and vectors adapt, populations are

exposed to novel infections that evade these preventative measures and immune responses; this

could result in disease outbreaks with the potential to spread widely—possibly resulting in a

pandemic—or to remain persistently (i.e. become endemic) in certain regions (Racaniello 2004).

Infectious disease outbreaks and endemic disease are naturally recurring phenomena that have

been shaping populations and cultures throughout human history (Lederberg 2000; Morens 1998;

Morens, Folkers, and Fauci 2004). Alongside endemic disease, there have been about 20

recorded pandemics to date, from the Justinian Plague in 541 AD to the current COVID-19

pandemic (Piret and Boivin 2020). Endemic disease and emerging infections continue to be a

concern across the world as hundreds of thousands to millions die each year as a result of

infectious disease (CDC-Centers for Disease Control and Prevention 2009; Excler et al. 2021).

Vaccines are a relatively recent development on the timescale of human-disease

interactions. Prior to vaccines, common practices to prevent illness and disease-spread included

quarantine—the detention and segregation of subjects suspected to carry a contagious disease

(Gensini, Yacoub, and Conti 2004), restrictions on gatherings, and isolation mandates or

lockdowns (Morens, Taubenberger, and Fauci 2021). Quarantines for sailors, for example, were

2
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implemented at ports beginning in 1377 to combat the plague in Europe, and in 1423 a dedicated

plague hospital (lazaretto) was opened in Venice on an island separated from the city (Tognotti

2013). These practices, termed “non-pharmaceutical interventions”, are still employed today,

especially in cases of emerging infections before there are effective vaccines or treatments, such

as during an Ebola outbreak, COVID-19, and pandemic influenza (Markel et al. 2007; Morens,

Taubenberger, and Fauci 2021). Variolation, also referred to as inoculation, was the precursor to

vaccination. The practice was implemented after the observation that previous exposure to

smallpox (variola) or similar diseases (such as cowpox) conferred some level of protection

against severe disease (Riedel 2005). Variolation was developed as a method of immunizing

patients against severe smallpox (variola major) by infecting them with small amounts of

material from the sores of patients with a mild form of the disease (variola minor) (Plotkin 2011;

Dumbell, Bedson, and Rossier 1961). The earliest record of variolation dates back to 15th

century China, which included “nasal insufflation” with powdered smallpox material, such as

scabs (Weniger and Papania 2013). Various forms of variolation were commonly practiced in

other parts of Asia and Africa, as well (Langer 1976a). The practice was formally introduced to

Western Europe in 1721 by Lady Mary Wortley Montague, an English aristocrat who lost several

family members to smallpox and insisted that her children be inoculated by physicians after

learning about the practice during her stay in the Ottoman empire (Riedel 2005). Bolstered by the

smallpox outbreak in Boston, the introduction of variolation in the American colonies occurred

around the same time and was driven by the efforts of Reverend Cotton Mather, who learned

about it from Onesimus, his former slave (Riedel 2005; T. H. Brown 1988). However, since

knowledge of variolation came from an African source, there was initially widespread fear and

distrust of the practice, with Cotton Mather receiving threats and many in the Boston medical

community expressing skepticism “that Africans were capable of medical innovation” (Minardi

2004; T. H. Brown 1988).

The invention of the smallpox vaccine in 1796 by Edward Jenner, which involved

inoculating patients with the cowpox virus (vaccinia), marked the beginning of the end of

variolation (Riedel 2005). Despite natural skepticism—manifesting in rumors of the vaccine

turning people into cows (Lau 2020), and the concern of a loss of potency (Brimnes

2004)—Jenner’s thesis was widely accepted by the great majority of physicians, and vaccination

practice spread quickly. Vaccination was viewed as preferable to variolation, as the resulting
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infection was safer and vaccinated individuals were less likely to be the source of smallpox

infection (Gronim 2006; Brimnes 2004; Langer 1976a), and by the 1800s the practice had

reached most European countries and the United States (Riedel 2005). Gradually, vaccination

replaced variolation worldwide, and variolation was prohibited in England by the Vaccination

Act of 1840 (Didgeon 1963).

Human perception and response to emerging diseases can change with respect to

familiarity with the disease and the availability of resources to combat the disease (Medley and

Vassall 2017). Prior to the development of the Polio vaccine in the 1950s, Poliomyelitis was one

of the most feared infections in the United States, especially during the summer months when the

virus seemed to peak (CDC 2022). However, the elimination of polio has shifted the public

perception of polio to one of a rare disease that is largely confined to the developing world

(Elsevier 2014; Centers for Disease Control and Prevention 2015; Martinez-Bakker, King, and

Rohani 2015). As another example, the 1918 influenza pandemic was responsible for at least 50

million deaths worldwide; populations implemented various interventions to limit the spread of

this disease, including quarantines, mask mandates, and limitations on mass gatherings (Short,

Kedzierska, and van de Sandt 2018). In contrast, seasonal influenza is viewed very differently.

Even though approximately 400,000 people die each year from seasonal outbreaks (Paget et al.

2019), influenza vaccine uptake is relatively low (for example, ~10% of the population in China

and ~45% in the United States (“Flu Vaccination Coverage, United States, 2016-17 Influenza

Season” 2023; Q. Wang et al. 2018)). Finally, in the 1950s, measles was so common as to be

considered a “rite of passage” but still caused widespread complications and death in children;

since the vaccine, the severity of measles has been downplayed as a “rash” by those who are

skeptical of the vaccine (Berche 2022; Mastroianni 2019).

The overall concept that pre-exposure to infectious agents can confer immunity still

drives other traditional practices such as “pox parties”, in which children are intentionally

exposed to diseases like chickenpox, measles, and rubella, and most recently “COVID Parties”

(Orenstein and Garon 2016; Bok et al. 2022; “‘Pox Parties’ Still Pose Risk for Severe

Chickenpox Complications” 2016). These intentional exposure events are strongly discouraged

by public health officials for a number of reasons that are analogous to the risks of variolation,

such as the possibility of severe disease or complications and the potential to spread the disease

to at-risk individuals, but the practice persists (Young 2009).
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Types and sources of vaccine hesitancy

Following in the steps of its predecessor, variolation, vaccination is one of the most

important and successful public health achievements of the last century (Fenner 1982;

Kim-Farley et al. 1984; D. Salk 1980). However, in developed countries, there has been a recent

resurgence of vaccine-preventable diseases (VPDs) despite the demonstrated safety and efficacy

of vaccines and the generally high childhood vaccination rates (Atwell and Salmon 2014; Kubin

2019; Falagas and Zarkadoulia 2008; Dubé et al. 2013). Because of the risks of these

vaccine-preventable disease outbreaks worldwide (Glanz et al. 2009), in 2019, the World Health

Organization named vaccine hesitancy as one of its ten threats to global health (Scheres and

Kuszewski 2019).

Developing an operational definition for vaccine hesitancy has been challenging for

researchers due to the difficulty in categorizing vaccination attitudes and the complex interaction

of different social, cultural, political and personal factors in vaccine decision-making (Dubé et al.

2013). Since vaccine hesitant attitudes are not always coupled with reduced vaccine uptake (as

vaccine-hesitant individuals may accept all recommended vaccines in a timely manner, but still

have significant doubts in doing so), it has been difficult to fully understand vaccine hesitancy at

the population level (Dubé et al. 2013). This difficulty in painting a clear picture has manifested

in the development of several vaccine acceptance and resistance models, with most focusing on

parental decision-making (Dubé et al. 2013). In 2015, after an extensive review of these models,

the SAGE Working Group on Vaccine hesitancy concluded that vaccine hesitancy “refers to

delay in acceptance or refusal of vaccination despite availability of vaccination services. Vaccine

hesitancy is complex and context specific, varying across time, place and vaccines. It is

influenced by factors such as complacency, convenience and confidence,” (MacDonald and

SAGE Working Group on Vaccine Hesitancy 2015) which are the components of the “3 Cs”

model, first proposed to the WHO EURO Vaccine Communications Working Group in 2011. The

“3 Cs model” has been viewed as being the most readily understandable conceptual framework

for disentangling the complexity of vaccine hesitancy (MacDonald and SAGE Working Group

on Vaccine Hesitancy 2015). Each of the three categories—complacency (the belief that

vaccination is unnecessary when the perceived risk of VPDs is low), convenience (the

accessibility and affordability of vaccines), and confidence (the level of trust in the efficacy and

safety of the vaccine, and in the healthcare system)—are influenced by a number of other factors
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such as the motivation of policy makers, self-efficacy, and cultural context (MacDonald and

SAGE Working Group on Vaccine Hesitancy 2015; Dubé et al. 2013). Unlike the social

determinants of health, which tend to influence health behaviors in a single direction, vaccine

hesitancy determinants, such as education and socio-economic status, have been associated with

both higher and lower levels of vaccine acceptance (MacDonald and SAGE Working Group on

Vaccine Hesitancy 2015).

Vaccine hesitancy and vaccination opposition are, however, not recent phenomena: public

opposition to vaccinations has been based in theology, politics, law, and general skepticism since

their creation in 1796 (Schwartz 2012; Koslap-Petraco 2019; Siddiqui, Salmon, and Omer 2013;

Callender 2016). Similar pushback against preventative health measures existed in the preceding

century with the practice of variolation, particularly since there was a small chance of death and

of spreading smallpox after inoculation (Chorba and Esparza 2022; Riedel 2005; Bernoulli 1760;

Blower and Bernoulli 2004). Variolation was argued to be against the will of God by English and

French clergy (Langer 1976a). Writers and religious leaders against inoculation discredited the

practice by emphasizing its origins in Turkey, “a land of harems,” and its associations with “a

few Ignorant Women, amongst an illiterate and unthinking People” (Wagstaffe 1722), in

reference to the introduction of variolation to Europe by Lady Mary Wortley Montague (Riedel

2005). As the practice of variolation ran counter to 18th century medical theories, physicians

were also hesitant to adopt the practice; these medical theories were grounded in an

understanding of treating disease as expelling “excessive or corrupted” materials from the body,

therefore the idea of healing by intentionally inserting infection into the body was unfamiliar and

illogical (Gronim 2006).

Two persistent themes of vaccine hesitancy include, first, the idea that vaccinations are

more harmful than the diseases they intend to prevent—this theme, reminiscent of the “artificial

smallpox” arguments of 18th century (Blower and Bernoulli 2004; Bernoulli 1760), usually

occurs at the introduction of new vaccines (Schwartz 2012). The second theme, usually

occurring after compulsory vaccination mandates, is the idea that vaccines may not be necessary

during a decline in disease (Schwartz 2012). With the introduction of compulsory vaccination in

the 19th century came the precursors of contemporary vaccination exemptions (Durbach 2005;

Swales 1992a) which include non-medical exemptions on the basis of religious, philosophical,

and personal beliefs (E. Wang et al. 2014; Phadke et al. 2016). The Anti-Vaccination League,
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founded in mid-19th-century London, argued that compulsory vaccination invaded the people’s

liberties (Wolfe and Sharp 2002). A 1969 review of mandatory vaccination in the United States

revealed a similar objection—“infringement on personal liberty”—along with an aversion to

government intrusion on religious beliefs and a general distrust of medical science (Jackson

1969). Thus, since the advent of vaccinations, cultural context has interacted with

vaccine-related beliefs and in turn influenced vaccination behaviors, ultimately affecting

population-level immunity and public health.

Mathematical models of disease dynamics

In addition to driving the invention of the vaccine, smallpox also prompted the first

mathematical models of disease; these models led to the first mathematical predictions of how

severe a disease outbreak would be and how many lives could be improved by an intervention. In

1766, Daniel Bernoulli aimed to convince the public about the benefits of whole population

“inoculation” in the first application of a mathematical model to infectious disease (Dietz and

Heesterbeek 2002; Bernoulli 1760). This model became a precursor to the compartmental model

most commonly used in infectious disease modeling today. Bernoulli’s model, which calculated

the gain in life expectancy at birth if smallpox were to be eliminated as a cause of death,

estimated a gain in 1/9 the average lifespan with smallpox inoculation (Bernoulli 1760). His

work in the prolongation of life expectancy and competing risks had immediate financial impact

as annuities were being sold at the time; as a result, Bernoulli’s work received considerable

attention in actuarial literature (Dietz and Heesterbeek 2002). In 1927 the Kermack–McKendrick

model—the SIR (Susceptible-Infected-Recovered) model we know today—was published

(Kermack and McKendrick 1927), but it was not until 1960 (Brambilla, n.d.) that the infectious

disease epidemiological applications of Bernoulli’s compartmental model were fully recognized

(Dietz and Heesterbeek 2002). In more recent applications, researchers have added additional

compartments to represent more complex scenarios, such as Exposed, Vaccinated, Died,

Reported, Unreported, Latent (Liu et al. 2020; Calafiore, Novara, and Possieri 2020; Schlickeiser

and Kröger 2021). With the 20th century came a number of additional developments in

infectious disease epidemiology, such as mathematical models incorporating age structure of the

population (G. F. Webb 1985; Thomas and Clark 2011). In addition, “catalytic” models, which

have their roots in chemistry, apply the law of mass action to explain epidemic behavior

(Muench 1959; Griffiths 1974). For example, in a catalytic model, the force of infection, which
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in a traditional SIR model could be a constant rate at which susceptible individuals become

infected, can instead be represented as a function of the age of the individual or the year of

infection (Cauchemez et al. 2019). In epidemiological applications, it could also be assumed that

the rate of new infections is proportional to the relative numbers of infected and susceptible

individuals in a population (Muench 1959). Catalytic and compartmental models have accurately

predicted the dynamics of malaria (Ross 1910), measles (Griffiths 1974), the plague (Kermack

and McKendrick 1927), and AIDS (Huang and Villasana 2005), and continue to be applied to

understand COVID-19 dynamics and vaccine efficacy (G. Webb 2021; Demongeot et al. 2022).

Mathematical models of population behaviors

Mathematical models have not only been a staple in the field of epidemiology due to their

capability in reproducing real world disease phenomena, but have also proved useful in

understanding the behavior of populations. In 1798, Thomas Malthus published An Essay on the

Principle of Population, in which he speculated that populations experience exponential growth

while food production experiences arithmetic growth (Malthus 1872). The Malthusian theory, as

this came to be known, suggested that populations have a tendency to increase beyond the means

of subsistence and are necessarily limited by the food supply and other resources. Therefore,

populations would quickly outpace their food supply, resulting in reduced living standards,

famine, war, and population decline (Malthus 1872). Taking note of the unrealistic nature of

Malthus’ population growth model, Alphonse Quetelet and Pierre François Verhulst added a term

to Malthus’ equation to represent a population’s increasing resistance to further growth (Cramer

2002). This addition of a carrying capacity would result in an exponentially growing population

arriving at an upper limit or saturation level over time (Cramer 2002). Verhulst published his

suggestions, deriving the “courbe logistique” or logistic function, in three papers between

1838–1847 (Cramer 2002; Verhulst 1845, 1838, 1847). However, it was not until the rediscovery

of his work by Raymond Pearl and Lowell J. Reed in the early 20th century that its use became

widely accepted in statistics (Pearl and Reed 1920, 1922; Cramer 2002).

Populations are naturally composed of various potentially evolving subgroups, with

individuals and groups simultaneously connected and interacting in a variety of ways. Social

network models were developed to capture these types of population dynamics. Broadly, social

network models are statistical models that are used for the analysis of relational data (Amati

2020) and social network analysis uses network and graph theory to investigate social structures
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(Otte and Rousseau 2002). Though the application of mathematics to social structures has roots

in the late 19th century (Freeman 2004; Macfarlane 1882), major development to the field of

social network analysis occurred in the 1930s in several disciplines (J. Scott and Carrington

2011; Lewin 1936; Moreno 1934). In 1934, psychologist Jacob L. Moreno invented the

‘sociogram’ as a way of visually representing social networks with points and lines; he referred

to this approach as ‘sociometry’ (Moreno 1934). Moreno’s work and that of his colleague Kurt

Lewin (Lewin 1936) most explicitly focused on examining ways in which the structures of small

groups influenced the perceptions and action choices of their individual members. By the 1950s,

sociometry took the form of an emphasis on group dynamics, becoming an important application

in education and community studies (Cartwright and Zander 1958; Harary and Norman 1953).

These more modern social networks often represent individuals as nodes in a network, with

edges between nodes indicating connections between pairs of people, enabling researchers to

model the likelihood of information or disease to spread in the population.

While social network analysis is essentially graph theory at its core, other types of

mathematical models have been employed to highlight specific features of network structure.

With the “blockmodeling” technique, researchers can simplify a complex social network to a

more readily analyzable one by grouping units (i.e. nodes or individuals) of the network based on

their social positions or statuses (J. Scott and Carrington 2011; Lorrain and White 1971; White,

Boorman, and Breiger 1976; Boorman and White 1976). Most recently, agent-based models have

been used to explore processes of change in networks. An agent-based model is a computational

model for simulating the actions and interactions of autonomous agents, which can be individual

or collective entities (Laubenbacher, Hinkelmann, and Oremland 2013). In this type of model,

each agent individually assesses its situation and makes decisions on the basis of a set of rules

(Bonabeau 2002; Laubenbacher, Hinkelmann, and Oremland 2013).

Behavior-change models are a class of mathematical models that simulate changes in

behaviors in response to internal or external motivators (Verelst, Willem, and Beutels 2016).

These types of models typically complement disease models to more accurately represent the

disease transmission landscape by incorporating behavioral changes, such as preventative health

behaviors, in response to information about the disease. A widely used theoretical framework of

behavior-change models is that of game theory. Though some game-theoretic ideas can be traced

to the 18th century, major developments of the theory began in the 1920s with the work of the
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mathematicians Emile Borel and John von Neumann (John Von Neumann and Morgenstern

1944; Borel 1921; J. Von Neumann 1928). A limitation for game theoretic models in particular is

the assumption that humans are rational decision-makers capable of accurately assessing their

environment (Verelst, Willem, and Beutels 2016; Voinson, Billiard, and Alvergne 2016). Game

theory presupposes that a decision-maker (“player”) chooses the best action among all the

actions available to them according to their preferences and interactions with other players

(Osborne 2004; Colman 2016). Predictions are made using various behavioral assumptions about

how deeply people reason and how they react to observed behavior (Camerer 2009). Perhaps the

most famous example of game theory’s application to the study of cooperative behavior is the

prisoner’s dilemma, in which a pair of agents can either cooperate or defect, and each individual

has an incentive to choose to defect, whereas cooperating would be better for the group

(Yasukawa 2010; Poundstone 1993).

Agent-based modeling has a number of advantages over other widely used models, as

they are able to incorporate the increasing complexity of social systems. It is also difficult to

model population heterogeneity and identify emergent behavior using ordinary or partial

differential equations (ODEs and PDEs) or game theoretic frameworks (Bonabeau 2002;

Laubenbacher, Hinkelmann, and Oremland 2013). Agent-based social network models are able

to capture emergent phenomena, and can more easily be used to represent spatial heterogeneity

(Bonabeau 2002; Laubenbacher, Hinkelmann, and Oremland 2013). They can also simulate

stochasticity in human decision making, for example, by accounting for imitation behavior

(Ndeffo Mbah et al. 2012).

Behavior–change models and models of cultural evolution in the context of disease

Given their broad usage in modeling behaviors and epidemiological processes,

mathematical models make useful tools for understanding human behavior in the context of

disease. The spread of infectious disease is intrinsically linked to human behavior, and it has

become increasingly common for epidemiological models to incorporate aspects of human

behavior and behavioral response to disease (e.g (Perra et al. 2011; Mao and Yang 2012b; Bauch

2005; Chauhan, Misra, and Dhar 2014; Funk, Salathé, and Jansen 2010; Tanaka, Kumm, and

Feldman 2002)). Vaccination and social distancing are the most common forms of disease

interventions modeled by these behavior-change models (Verelst, Willem, and Beutels 2016;

Fenichel et al. 2011; Azizi et al. 2022). A series of compartmental models have represented the
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spread of disease alongside the spread of either beliefs or behaviors, terming these “coupled

contagions” in which simulated individuals can be “infected” by cultural factors such as vaccine

hesitancy, fears, information, or health-related behaviors, which can in turn alter the likelihood of

being infected by the disease (Epstein, Hatna, and Crodelle 2021; Smaldino and Jones 2021;

Epstein et al. 2008a; Mehta and Rosenberg 2020). For example, a coupled contagion model

showed that the spread of anti-vaccine sentiment, modeled alongside the vaccine-preventable

disease, could cause epidemics that would otherwise not have occurred (Mehta and Rosenberg

2020). Homophily, the tendency for individuals to associate with others more like themselves,

and outgroup aversion, the desire to not engage in activities associated with the outgroup, are

examples of other properties that change the interactions between individuals that these models

can also incorporate (Smaldino and Jones 2021; Smaldino et al. 2017).

Cultural evolutionary models, models that delineate change in cultural traits over time,

have not yet become prominent among researchers who implement behavior-change models.

Cultural evolutionary models were first proposed as an analogue to theoretical population

genetics, to illustrate how cultural traits could be transmitted—and be subject to evolutionary

forces—in a way that often parallels biological evolution (Cavalli-Sforza and Feldman 1973;

Cavalli-Sforza and Feldman 1973; Creanza and Feldman 2016). Typically, behavior change

models do not account for factors such as intergenerational effects, nonrandom assortment in

interactions or mating preferences, and biased transmission of behavioral traits. Cultural

evolution models are able to readily account for these factors and thus allow us to track the

evolution of health beliefs and behaviors (Creanza, Kolodny, and Feldman 2017). These types of

models are also able to capture the effects of vertical and intergenerational transmission as well

as oblique (community) influences (L. L. Cavalli-Sforza and Feldman 1981; Boyd and Richerson

1988; Creanza, Kolodny, and Feldman 2017). This is important when modeling vaccination

cultures, as parents’ vaccine decisions have been shown to be influenced by grandparents

(Karthigesu, Chisholm, and Coall 2018) and non-family influences (Dubé et al. 2013). Insights

from cultural evolution have been used to quantify the viral spread of information (Barkow,

O’Gorman, and Rendell 2012) which is of particular concern in understanding vaccine adoption

and the spread of vaccine hesitancy. Cultural evolutionary models hold the potential to provide

unique insights into the complexity of human health-specific behavior.
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Research Aims and Dissertation Structure

As human behavior adds complexity to disease dynamics, it is imperative that we not

only continue to include behavioral effects in models of disease, but also consider the forces

behind these evolving behaviors. Disease spread and human behavior are studied across a variety

of disciplines, each adding unique insights to understanding and securing human health. My

dissertation work provides a unique addition to the collection of behavior-change models and

vaccination/vaccine hesitancy models, by intertwining mathematical and cultural evolution

methods and theory with social and behavioral science. My work also aims to uncover potential

cultural drivers of unexpected vaccination environments, such as decreasing vaccine confidence

in highly vaccinated populations or vice versa.

In Chapter 2, I aim to show that a cultural evolutionary framework is a robust way to

model scenarios in which parental behaviors regarding their children are influenced, but not fully

dictated, by their beliefs. Examples of this belief-behavior interaction include beliefs surrounding

various aspects of childrearing such as formula feeding, sleep training, circumcision, attachment

parenting, and homeschooling, as well as childhood vaccination adoption and the spread of

vaccine hesitancy, which is the focal example of my work. With these studies, I explore how the

interplay of intergenerational dynamics, vaccine perception and assortative mating affect

vaccination adoption and vaccine hesitancy.

Vaccination behaviors have shifted throughout history in response to changing

vaccination policies. These shifts, in the long term, result in the formation of varying and

sometimes unexpected vaccine belief-behavior dynamics cultures. Therefore, in Chapter 3, I

examine how external forces, such as vaccination mandates and vaccine inaccessibility, interact

with social factors to affect the vaccination belief-behavior equilibrium.

Finally, in Chapter 4, I use agent-based modeling to explore the dynamics of novel

vaccine uptake with the consideration of various decision biases present in a population as well

as the effects of individuals outside of the focal population with outsized cultural influence

(“influencers”). COVID-19 management has involved the development and deployment of new

vaccines. The novelty of the COVID-19 vaccine has made its acceptance more uncertain

compared to the acceptance of established vaccines. The interplay of cognitive biases could

partially explain fluctuations in vaccination rates and the failure to achieve herd immunity.
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Given, as I described above, that vaccines that have now been accepted as part of the health

culture in developed countries were themselves once novel and met with outspoken criticism, I

sought to build a model that could speculate on the time it takes for herd immunity to be

achieved in an environment of increased behavioral stochasticity.

To conclude, in Chapter 5, I draw links between Chapters 2-4, discuss the implications

of the models presented therein, and suggest avenues for future study.
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CHAPTER 2.

A CULTURAL EVOLUTIONARY MODEL OF THE INTERACTION BETWEEN

PARENTAL BELIEFS AND BEHAVIORS, WITH APPLICATIONS TO VACCINE

HESITANCY
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Introduction

Niche construction is a process in which organisms modify their local environment, thus

altering selection pressures on themselves and the other organisms in that environment (K.

Laland, Matthews, and Feldman 2016; John Odling-Smee, Laland, and Feldman 2013).

Mathematical models of niche construction have traditionally been used in a biological and

ecological context, with organisms altering their physical environment. In cultural niche

construction, humans modify their cultural environments—such as their beliefs, behaviors,

preferences, and social contacts—in ways that subsequently alter evolutionary pressures on

themselves and/or their culture (John Odling-Smee, Laland, and Feldman 2013). Since human

evolution is also directed by human culture, models incorporating these types of cultural

evolutionary dynamics have been expanded to encompass a broad range of scenarios in which

evolutionary pressures are altered by non-genetic traits, with applications to religion, fertility,

and the evolution of large-scale human conflict (Fogarty and Creanza 2017; John Odling-Smee,

Laland, and Feldman 2013; O’Brien et al. 2012; Fuentes 2013; Creanza, Fogarty, and Feldman

2012; Creanza and Feldman 2014). Using a niche construction framework allows for the

exploration of a broad range of complex feedback scenarios in cultural evolution. Here, we

propose a cultural niche construction model of the interactions between beliefs and behaviors,

where a belief can be defined as an individual’s stance in either supporting or opposing a

particular behavior. In this type of model, an individual’s beliefs can influence their behaviors,

and these belief-behavior interactions can be affected by and shape the broader cultural and

biological landscape. We apply this model to the interactions between vaccine-related beliefs,

such as vaccine opposition by individual parents, and vaccination behaviors, such as a pair of

parents vaccinating their offspring. Modeling the belief-behavior interactions underlying

vaccination coverage using a cultural evolution framework allows us to better understand how

vaccination “cultures” are formed and how they can be transformed to promote public health.

Understanding vaccination behaviors is a crucial aspect of preventing infectious disease

outbreaks. The implementation of childhood vaccination policies has led to the eradication of

smallpox and the elimination of poliomyelitis (polio) in the United States (Fenner 1982;

Kim-Farley et al. 1984; D. Salk 1980). The high efficacy of the measles vaccine, combined with

wide vaccine acceptance in developed countries, had resulted in measles previously being

targeted for elimination by 2020 (Thompson et al. 2013). However, over the past decade, there
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has been a resurgence of vaccine-preventable diseases (VPDs) in developed countries despite the

safety and efficacy of vaccines and high overall childhood vaccination rates (Atwell and Salmon

2014; Kubin 2019; Falagas and Zarkadoulia 2008; Dubé et al. 2013). Vaccine hesitancy, named

one of the World Health Organization’s ten threats to global health in 2019 (Scheres and

Kuszewski 2019), is believed to be responsible for decreasing vaccination coverage and thus

increasing the risk of vaccine-preventable disease outbreaks worldwide (Glanz et al. 2009).

Vaccine hesitancy is a complex and context-specific individual attitude influenced by multiple

factors, such as complacency (the belief that vaccination is unnecessary when the perceived risk

of VPDs is low), convenience (the accessibility and affordability of vaccines), and confidence

(the level of trust in the efficacy and safety of the vaccine, and in the healthcare system)

(MacDonald and SAGE Working Group on Vaccine Hesitancy 2015; Dubé et al. 2013).

Additionally, anti-vaccine sentiments are still on the rise despite well-documented vaccine

efficacy and safety, including numerous studies debunking the spurious connection between

vaccines and autism (Eggertson 2010) and other anti-vaccination arguments (Rao and Andrade

2011). The spread of these sentiments and disease outbreak risk are further exacerbated by

homophily—the tendency of individuals to choose social contacts and mates who are similar to

themselves (Burley 1983; Creanza and Feldman 2014; Creanza, Fogarty, and Feldman 2012;

Gimelfarb 1988). Network-based simulations suggest that individuals with similar

vaccine-hesitant opinions form groups that are more susceptible to vaccine-preventable diseases,

impeding the attainment of herd immunity and substantially increasing the likelihood of disease

outbreak in these clusters (Salathé and Bonhoeffer 2008).

It has become increasingly common for epidemiological models to incorporate aspects of

human behavior and behavioral response to disease (e.g (Perra et al. 2011; Mao and Yang 2012b;

Bauch 2005; Chauhan, Misra, and Dhar 2014; Funk, Salathé, and Jansen 2010; Tanaka, Kumm,

and Feldman 2002)), with vaccination and social distancing being the most common forms of

disease interventions modeled (Verelst, Willem, and Beutels 2016; Fenichel et al. 2011; Azizi et

al. 2022). A series of compartmental models have represented the spread of disease and the

spread of either beliefs or behaviors as “coupled contagions”, where individuals in the model can

be “infected” by cultural factors such as vaccine hesitancy, fears, information, or health-related

behaviors, which can alter the likelihood of being infected by the disease (Epstein, Hatna, and

Crodelle 2021; Smaldino and Jones 2021; Epstein et al. 2008a; Mehta and Rosenberg 2020).
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These coupled contagion models have illustrated that the spread of anti-vaccine sentiment could

cause epidemics that would otherwise not have occurred (Mehta and Rosenberg 2020). These

models can also incorporate other properties that change the interactions between individuals,

such as homophily and outgroup aversion (Smaldino and Jones 2021).

Traditionally, most “behavior change models” aim to describe the adoption of new

behavior in response to a disease or to non-disease influences, using a game-theoretic framework

(Marshall et al. 2012; Morin et al. 2010; Gray et al. 2011). However, game theoretic models can

make unrealistic assumptions such as population homogeneity, as well as rational and cost

minimizing decision making (Verelst, Willem, and Beutels 2016). Network models have aimed

to improve upon these assumptions, for example, by accounting for heterogeneity and imitation

behavior (Ndeffo Mbah et al. 2012). These behavior change models, however, typically focus on

a single generation of a population, whereas cultural evolution models can account for

intergenerational effects, allowing us to track the evolution of vaccination beliefs and future

vaccination behaviors. Thus, we aim to diversify the pool of disease-related behavior change

models by employing a cultural evolution framework which allows parental behaviors to affect

offspring and accounts for parental transmission of cultural beliefs. It is important to understand

how parents’ beliefs, which may differ from one another, interact with their perceptions of the

relative risks of disease and vaccines to shape the decision to vaccinate their children, which in

turn affects the future risk of vaccine-preventable disease outbreaks. Indeed, belief systems can

act as the main barrier to vaccination, as opposed to lack of vaccine access, particularly in

wealthier countries (Salathé and Bonhoeffer 2008; May and Silverman 2003). For example,

increasing rates of non-medical exemption from vaccines (exemption on the basis of religious,

philosophical, and personal beliefs), have been observed in the United States (E. Wang et al.

2014; Phadke et al. 2016). Without these considerations, models commonly used in public health

may be misleading; thus, understanding and incorporating the underlying health cultures and

their evolution, including the interplay between beliefs and behaviors, will allow us to build

more comprehensive and representative models of vaccination dynamics and better support

public health efforts.

In this study, we propose a cultural evolution framework to represent the interactions

between parental beliefs and behaviors, and we use this framework to model the spread of

vaccine hesitancy and childhood vaccination, incorporating the transmission of vaccine attitudes
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both from parents and from the community. We aim to assess the dynamic interactions between

beliefs (shaped by social interactions) and behaviors (influenced by these beliefs). Using vaccine

beliefs and vaccination behaviors as a focal example of belief-behavior interactions, we explore

the situations in which vaccine hesitancy is most likely to spread, potentially reducing childhood

vaccination rates and leading to an increase in vaccine-preventable disease outbreaks. In

addition, we consider that the perception of the relative risks of a disease and its preventive

vaccine can fluctuate based on the prevalence of vaccination (Bauch 2005), such that the

population’s vaccination coverage can influence the decision to vaccinate one’s children. Finally,

we take into account that the decision to vaccinate a child is often the joint consideration of two

individuals who might have different vaccine attitudes, and we further incorporate homophily

(assortative mating) to understand how social subcultures might influence parental behaviors.

Overall, we propose that a generalizable modeling framework for belief-behavior interactions

can help inform public health strategies by improving our understanding of the cultural dynamics

of vaccine hesitancy.

Methods

A generalized framework for modeling the interactions between beliefs and behaviors

To model the cultural evolution of beliefs and behaviors, we build on the cultural niche

construction framework of (Creanza, Fogarty, and Feldman 2012) to assess the effects of parental

attitudes on vaccination behaviors and on the resulting vaccination landscape. We use this

adapted model to explore how vaccination patterns evolve in a population when a cultural trait,

such as vaccine hesitancy, can influence but not perfectly predict a behavior, such as vaccinating

one’s children. As we will describe, the parental beliefs influence their likelihood of enacting a

behavior that affects their children. In addition to the links between vaccine hesitancy and

childhood vaccination behaviors, which we explore in detail below, examples of this type of

belief-behavior interaction include beliefs surrounding diverse aspects of childrearing such as

formula feeding, sleep training, circumcision, attachment parenting, and homeschooling, which

influence but do not perfectly predict a parent’s likelihood of enacting the associated behaviors.

Thus, we first describe the model as a general framework for belief-behavior interactions, and

then we outline modifications to the model that enable us to apply it to vaccine hesitancy and

parental vaccination behaviors.
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We consider two cultural traits: V, a trait that accounts for the effect of a parental

behavior on offspring, and A, a belief trait that can be transmitted to offspring. Each trait has two

possible states, V+ (affected by the parental behavior) or V− (unaffected) and A+ (a belief

supporting the behavior) or A− (opposing), respectively. In other words, when parents who either

support or oppose the focal behavior decide to enact the focal behavior, the children are affected

by the behavior and acquire the V+ state. Parents can also transmit a supporting belief or an

opposing belief to their children. Thus, there are four possible phenotypes: V+A+ (type 1: affected

and supporting), V+A− (type 2: affected and opposing), V−A+ (type 3: unaffected and supporting),

and V−A− (type 4: unaffected and opposing), whose population frequencies are denoted by x1, x2,

x3, and x4, respectively, with .
𝑖=1

4

∑ 푥
𝑖

= 1

The belief trait (A) can influence the dynamics of the behavior trait (V) in two ways: by

influencing the likelihood that couples enact the behavior, and by determining with whom each

adult will preferentially pair in assortative interactions. The state of the belief trait (A) informs

the value of an assortative mating parameter (αk), which measures the departure from random

mating. We define a ‘choosing parent’, arbitrarily, as the first member of each mating pair. The

choosing parent's A state dictates the level of assortative mating, that is, the degree to which an

individual of a given A state will preferentially mate with another individual of the same state,

expressed by parameters αk where k = {1, 2} and 0≤αk≤1 (Table S2.1). If the choosing parent is

A+, this individual mates preferentially with other A+ individuals with probability α1, and mates

randomly with probability 1−α1, whereas if the choosing parent is A−, this individual mates

preferentially with other A− individuals with probability α2, and mates randomly with probability

1−α2. There are sixteen possible mating pairs from the four phenotypes described, and we use the

notation mi,j to indicate the frequency of a mating between a choosing parent of type i and the

second parent of type j where i, j = {1, 2, 3, 4} (Table S2.1); for example, m1,3 represents the

mating frequency of V+A+ (x1) and V−A+ (x3).

19



Table 2.1: List of parameters, their definitions, and default or initial values

Parameter Meaning Parameter Meaning

V Effect of parental behavior (V+

affected, V− unaffected)
In our focal example: V+

vaccinated, V− unvaccinated

A Belief trait (A+ supporting, A−

opposing)
In our focal example: A+ vaccine
confident, A− vaccine hesitant

mij Mating frequencies (given in
Table S2.1)

⍺k Assortative mating parameter
(homophily)
Default: ⍺1= 0, ⍺2= 0

Bm,n Probability that parental pairs
enact the behavior, which
depends on whether they were
affected by the behavior
themselves in childhood (bm) and
their beliefs (cn) (given in Table
S2.2)

Cn Probability that parental pairs
transmit ‘supporting’ belief to
their children
Default: C0= 0.01, C1= C2 = 0.5,
C3 = 0.99

bm Probability that parental pairs
enact the behavior given whether
they were affected by the
behavior
Default: b0= 0.01, b1= b2 = 0.5,
b3 = 0.99

cn Probability that parental pairs
enact the behavior given their
beliefs
Default: c0= 0.01, c1= c2 = 0.5, c3
= 0.99

σ Comprehensive selection
coefficient for V+, dependent on
the fraction of individuals
affected by the behavior (see
Figure 2.1)

σmax The highest additional benefit
that can be conferred by the
behavior
Default: σmax= 0.1

Initial Phenotype Frequencies x1(V+A+) = 0.81, x2 (V+A−) = 0.1, x3 (V−A+) =
0.07, x4 (V−A−) = 0.02

Since the two traits (A and V) are transmitted vertically, for each phenotype we must

specify the probability that the mating produces an offspring of that phenotype. The supporting

belief trait (A+) is transmitted with probability Cn, and the opposing belief trait (A−) is

transmitted with probability 1−Cn (for n = {0, 1, 2, 3} as shown in Tables 2.2 and Table S2.2). If

C0 = 0, two A− parents will always produce A− offspring, and if C3 = 1, two A+ parents will

always produce A+ offspring. However, if C0 > 0, two A− parents can produce A+ offspring at

some probability, and similarly if C3 < 1, two A+ parents can produce A− offspring with some

probability.
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In contrast, parents’ beliefs (A), in addition to their own affected states (V), can influence

their behavior towards their offspring via a set of “influence parameters” that inform their

probability of enacting the behavior (V+ with probability Bm,n for m, n = {0, 1, 2, 3}; Table 2.1).

The probability that each mating pair produces an offspring with the V+ trait (i.e. affects their

offspring) is a scaled product of the influence of parental beliefs (cn for n = {0, 1, 2, 3}) and the

influence of parental effect states (bm for m = {0, 1, 2, 3}) (Tables 2.2 and Table S2.2). For

example, for mating pair V+A+× V+A−, the combined effect states (V+ × V+) will influence the

affecting behavior by b3, and the combined belief states, (A+ × A−), will influence the affecting

behavior by c2. Therefore, a V+A+× V+A− mating will produce a V+ offspring with probability

; this pair will also produce an A+ offspring with probability C2 based on their𝐵
3,2

 =  𝑐
2

1+𝑏
3

2( )
combined belief states. Thus, according to the model, this pairing will produce a V+A+ offspring

with probability B3,2C2 and a V+A− offspring with probability B3,2(1−C2). We note that assortative

mating (αk>0) will increase the frequency of matings between individuals that share a belief trait,

with these non-random interactions in turn skewing behavioral outcomes toward those of

same-state couples (via c0 and c3).

Transmission and influence probabilities are constant throughout a single simulation,

with values ranging from 0 to 1. At default settings, the influence parameters bm and cn, and the

transmission parameter Cn would take the following values: C0, b0, c0 = 0.01; C1, C2, b1, b2, c1,

c2 = 0.5; and C3, b3, c3 = 0.99. In our model, the influence of parental beliefs (cn) is greater than the

influence of whether they were affected by the behavior in childhood (bn) on their likelihood of

affecting their offspring with the behavior. Therefore, offspring being affected by the behavior is

guaranteed at some probability only if cn > 0.
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Table 2.2: Presence (+) and absence (–) subscript assignments. Demonstrating the trait

presence (+) and absence (–) combinations associated with m, n subscripts. For example, the + ×

– combinations is associated with m and n subscript value 2: an A+ × A– pairing transmits A+ at

probability C2. This rule applies to parameters Cn, bm, Bm,n, cn, as shown in Table S2.2.

Subscript Value (m,
n; e.g. bm, Cn)

Associated Pairing
(e.g. V × V, A × A)

0 – × –

1 – × +

2 + × –

3 + × +

The cultural selection pressure on the behavior is given by the parameter σ, such that the

frequency of the V+A+ and V+A− phenotypes are multiplied by 1+σ after vertical cultural

transmission has occurred. At the end of each timestep, the frequency of each phenotype is

divided by the sum of all four frequencies, ensuring that the frequencies sum to 1. This cultural

selection coefficient is implemented in the same way as a selection coefficient in a

population-genetic model, but unlike the latter, it accounts for both biological fitness and cultural

selection pressures, including perceived risks or benefits of the effect of the behavior itself,

personal cost-benefit analyses of enacting the behavior, and the structural or societal-level factors

influencing the behavior (Pruitt, Kline, and Kovaz 1995; L. L. Cavalli-Sforza and Feldman

1981). The cultural selection (σ) parameter modulates whether there are more or fewer affected

individuals than expected: in other words, when σ>0, individuals affected by parental behavior

are more common in a set of offspring than would be expected strictly based on the parental

beliefs and whether the parents were affected by the behavior themselves.

Thus far, we have described vertical cultural transmission from parent to offspring. The

model also incorporates a second phase with community influences (i.e. influence from

non-parental adults), in which individuals can change their inherited beliefs (A) due to influence

from other adults in the population. There are two probabilities associated with belief

modulation: the probability that an opposing (A−) individual adopts the supporting (A+) belief

(A− to A+ transition probability, given by ), and the probability that an A+ individual𝐴
→𝑆푢푝푝표푟푡𝑖𝑛𝑔
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adopts the A− state (A+ to A− transition probability, given by ). These transitions can𝐴
→𝑂푝푝표푠𝑖𝑛𝑔

occur at constant rates or be represented as functions of the frequency of either trait in the

population, as we outline below.

To compute the frequency of a given phenotype in the next iteration, we sum the

probability that each mating pair produces offspring of that phenotype over each of the sixteen

possible mating pairs. Cultural selection (σ), described above, then operates on offspring with the

V+ trait. The full recursions, giving xiʹ phenotype frequencies in the next iteration in terms of xi in

the current iteration, are given in Supplementary Text S2.1. If xiʹ is equal to xi, the system is at

equilibrium. As we do not incorporate a birth-death process or population asynchrony in this

model, iterations in the discrete-time format of our model should not be strictly interpreted as

years or generations. We instead interpret each iteration broadly as a timeframe in which the

specified cultural interactions could occur, which varies among individuals, populations, and

cultures.

Modeling the interactions between vaccine-related beliefs and vaccination behaviors

To model the evolution of vaccine beliefs and behaviors, we build on the cultural niche

construction framework described above to assess the effects of vaccine attitudes on vaccination

behaviors and on the resulting vaccination culture. We use this adapted model to explore how

vaccination patterns evolve in a population when a cultural trait, such as vaccine hesitancy, can

influence but not perfectly predict a behavior, such as vaccinating one’s children. For simplicity,

we define beliefs as one of two vaccination stances: supporting vaccines (i.e. vaccine-confident

attitude) and opposing vaccines (i.e. vaccine-hesitant attitude). We also assume no gender-biased

differences in trait transmission, such that offspring are equally likely to be vaccinated with a

vaccine-hesitant mother as with a vaccine-hesitant father.

To apply this model to vaccine beliefs and vaccination behaviors, we assign parameters

as listed in Table 2.1, with V+ being vaccinated, V– being unvaccinated, A+ being

vaccine-confident and A– being vaccine-hesitant. Because of the parent-to-offspring transmission

of vaccinations in our model (i.e. parents make a decision to vaccinate their offspring and that

offspring remains immunized for a substantial amount of time), our model is most readily

applicable to established childhood vaccines, as opposed to a novel vaccine such as the

COVID-19 or an annual vaccine such as the influenza vaccine. Thus, the initial phenotype
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frequencies were estimated using reports of Measles-Mumps-Rubella (MMR) vaccination rates

(~91% coverage in the United States) and estimates of vaccine attitude frequencies obtained

from various sources in the literature (Kennedy, Brown, and Gust 2005; Leask 2011) and the

Centers of Disease Control ChildVax database (Hill et al. 2019, 2017). Unless otherwise stated,

the model is initialized with phenotypic frequencies based on United States data: x1 (frequency of

V+A+) = 0.81, x2 (V+A−) = 0.1, x3 (V−A+) = 0.07, x4 (V−A−) = 0.02.

To capture the effects of herd immunity on reducing vaccination behaviors—for example,

the belief that vaccines are unnecessary when most others are vaccinated (Omer et al. 2009)—we

make the cultural selection coefficient a vaccine-frequency-dependent function. Because the

cultural selection coefficient for vaccination depends on the fraction of the population that is

already vaccinated, we calculate σ in each timestep as a function of the current vaccination

coverage (frequency of V+, i.e. x1 + x2), and in each simulation we specify σmax as the maximum

cultural selection pressure for getting vaccinated (−1≤σmax≤1) (see the cultural selection

coefficient function in Figure 2.1). To incorporate this relationship into the model, we

constructed a function by defining our assumptions (incorporating evolutionary game theory, e.g.

that herd immunity decreases the incentive to vaccinate) and then choosing a curve with a

trajectory that met these pre-specified conditions: with unvaccinated individuals holding baseline

fitness at 1, we assume that when vaccination coverage is low, the real and perceived benefits of

vaccination are highest, and thus, the cultural selection pressure is near σmax, however, as

vaccination coverage increases toward the level of herd immunity (for simplicity, ≥ 70%

vaccination coverage), the perceived benefits of vaccination decrease and the cultural selection

pressure is reduced, i.e. offspring can be “free riders,” reaping the benefits of high vaccination

coverage without a perceived vaccination cost to themselves or their parents (Figure 2.1) (Bauch

and Bhattacharyya 2012).
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Figure 2.1: Cultural selection coefficient function. The cultural selection coefficient function

was constructed by fitting a curve to specified conditions, considering both health- and

non-health-related effects (seeMethods). The selection coefficient (σ; vertical axis) is dependent

on the frequency of vaccinated individuals (V+) in the population (horizontal axis). σmax is the

maximum cultural selection coefficient associated with being vaccinated. Perceived vaccine

benefit is reduced as vaccination coverage increases, since the negative effects of the disease will

be less apparent. Note: Of the σmax values shown, only σmax = 0.1 allows the cultural selection

pressure to be either positive or negative at a given timepoint depending on the frequency of

vaccination.

We also allow individuals to change their beliefs after vertical transmission, transitioning

from vaccine confidence to hesitancy and vice versa. For this manuscript, we have modeled the

dynamics of these transition probabilities in three ways, drawing on existing literature (e.g.

(Epstein, Hatna, and Crodelle 2021; Perra et al. 2011; Ndeffo Mbah et al. 2012; Jacobson, St

Sauver, and Finney Rutten 2015)): (1) with belief transition being dependent on the frequency of

vaccinated (V+) individuals in the population such that vaccine confidence wanes at high
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vaccination frequencies (“herd-immunity-driven hesitancy” (Figure 2.2), (2) with belief

transition being dependent on the frequency of vaccinated (V+) individuals in the population such

that vaccine hesitancy wanes at high vaccination frequencies (“vaccine-fear-driven hesitancy”

(Figure S2.1) and (3) with belief transition being dependent on the frequency of

vaccine-confident (A+) individuals in the population such that vaccine hesitancy wanes at high

vaccine confidence frequencies (“obliquely transmitted hesitancy” (Figure S2.2). Note that for

our application to vaccine beliefs and childhood vaccination behaviors, we primarily employ the

“herd-immunity-driven hesitancy” behavior-dependent framework to account for the influence of

disease prevalence outlined in Figure 2.2, where is analogous to , and𝐴
→𝑆푢푝푝표푟푡𝑖𝑛𝑔

𝐴
→𝐶표𝑛𝑓𝑖𝑑𝑒𝑛푡

to . As the frequency of vaccinated individuals (V+) increases in the𝐴
→𝑂푝푝표푠𝑖𝑛𝑔

𝐴
→𝐻𝑒푠𝑖푡𝑎𝑛푡

population, confident individuals (A+) are more likely to become hesitant ( probability𝐴
→𝐻𝑒푠𝑖푡𝑎𝑛푡

increases) and vaccine-hesitant individuals (A−) are less likely to become confident (𝐴
→𝐶표𝑛𝑓𝑖𝑑𝑒𝑛푡

probability decreases). When vaccination coverage is low, we assume in this scenario that the

negative effects of the disease and the benefit of the vaccine are more apparent and the transition

to vaccine confidence is more likely; on the other hand, when vaccination coverage is high, the

perceived risks of the vaccine can be more salient than the risks of the disease, and the transition

to hesitancy is more likely (Coelho and Codeço 2009). Similar to the cultural selection function,

we generated the belief transition functions by first choosing a baseline function with a shape

that aligned with our general assumptions and then modifying the function to fit specific criteria:

1) probabilities could approach zero, but not equal zero, 2) transition to supporting belief and

transition to opposing belief are equally likely at 50% population frequency, and, specifically for

the focal example of vaccination, and for herd-immunity-driven hesitancy 3) that high

vaccination frequencies (above herd-immunity levels of vaccination coverage) promote the

transition to vaccine hesitancy (Jacobson, St Sauver, and Finney Rutten 2015; Kennedy, Brown,

and Gust 2005). To set an upper bound for the belief transition functions, we use the percent

difference between vaccine refusal rates in 1991 and 2004 in the United States to estimate

transition probabilities between 1–2% (Omer et al. 2009). The assumptions for the

oblique-transmitted hesitancy framework and vaccine-fear-driven hesitancy framework are

outlined in the supplement (Figure S2.1-S2.2).
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Figure 2.2: Attitude transition probability function (“Herd-immunity-driven hesitancy”).

Attitude transition probability functions were constructed by fitting a curve to specified values

based on the assumptions pictured and outlined inMethods. Attitude transition probability

(vertical axis) is a function of the vaccination frequency in the population (V+; horizontal axis).

The probability that a vaccine-hesitant individual adopts vaccine confidence (A− to A+ transition

probability, shown in dashed black) is determined by the function , and the probability𝐴
→𝐶표𝑛𝑓𝑖𝑑𝑒𝑛푡

that a vaccine-confident individual adopts vaccine hesitancy (A+ to A− transition probability,

shown with a solid blue line) is determined by the function .𝐴
→𝐻𝑒푠𝑖푡𝑎𝑛푡

Results

To test our model, we first initialized a population with a set of phenotype frequencies

and examined the changes in these frequencies over time with a given set of parameters . Then,

we evaluated the effects of each parameter by running simulations at multiple parameter

combinations and recording the population frequencies of each phenotype once the system

approached an equilibrium. In our first set of simulations, we include only vertical transmission

dynamics, i.e. only parent-to-offspring transmission, varying parameter values in turn to test their

effects on population vaccination behavior and attitudes. In the vertical transmission phase of the

model, parents choose whether to vaccinate their offspring (i.e., transmit V+) or to not vaccinate

(V−), and parents also transmit a vaccine attitude (confidence, A+, or hesitancy, A−), each with a
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specified probability given the phenotypes of the parents. In the community-influence phase of

the model, we incorporate the influence of non-parental adults on offspring attitudes. The

parental attitude state, vaccination status, assortative mating levels, and cultural selection

parameters interact to affect vaccination coverage (frequency of V+ in the population) and

vaccine confidence (frequency of A+).

Temporal dynamics of vaccine-related beliefs and behaviors

To test whether the equilibrium phenotype frequencies were sensitive to starting

frequencies, we plotted the dynamics of each phenotype over time at default parameters (given in

Table 2.1). For each set of initial phenotype proportions tested, the phenotype frequencies in the

population quickly adjusted to approach equilibrium values and then gradually plateaued to a

stable equilibrium (vertical transmission: Figure 2.3 and Figure S2.3; vertical +

herd-immunity-driven vaccine hesitancy: Figure S2.4. This demonstrates that equilibrium

frequencies of vaccination coverage and vaccine confidence are determined by the parameter

conditions rather than by the initial frequencies.
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Figure 2.3: Equilibrium frequencies are determined by the parameter space, not by initial

frequencies. The change in each of the four phenotype frequencies and the total V+ and A+

frequencies (vertical axis) over 100 iterations of the model with vertical transmission only

(horizontal axis). Top row: Initial frequencies are varied, such that we begin each simulation

with a different phenotype at an initial high frequency (0.81): V+A+ in panel A, V+A− in panel B,

V−A+ in panel C, V−A− in panel D; the remaining phenotypes are set to lower frequencies (0.1,

0.07, 0.02). See Figure S2.3 for a full listing of these initial frequencies. Bottom row: The

maximum cultural selection coefficient (σmax) is varied: E. σmax = −0.1; F. σmax = 0; G. σmax = 0.1;

H. σmax = 0.5. Cultural selection against vaccinated individuals increases the frequency of V−A−,

decreasing the other frequencies (E), whereas increased cultural selection favoring vaccinated

individuals increases V+A+ frequencies while decreasing the other frequencies (F, G, H). In all

panels, the remaining parameters are held at default values (Table 2.1).

Low confidence transmission (C1 = C2 = 0.1, Figure 2.4A) increases the frequency of

vaccine hesitancy (A–) in the population over time, increasing the probability that more couples

choose not to vaccinate their offspring. However, the increase in vaccine hesitancy does not

occur equally in vaccinated and unvaccinated individuals: A– frequency may increase overall in

this environment, but V+A– frequencies are lower and V–A– frequencies are higher (compared to

Figure 2.4B-C and Figure S2.6). At neutral confidence transmission probabilities (i.e. when
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couples with one confident and one hesitant parent are equally likely to transmit either attitude),

there is a higher chance that the vaccinated but vaccine-hesitant (V+A–) phenotype is replenished.

However, if vaccine confidence is highly transmitted (C1 = C2 = 0.8), the V+A– frequency will be

reduced, as this phenotype is more likely to produce A+ offspring than A–, thus increasing V+A+

phenotype frequencies in the population (Figure 2.4 and Figure S2.6). If we turn to the other

conflicting phenotype, unvaccinated but vaccine-confident (V–A+) individuals become more

common when A+ increases in frequency in the population as C1 = C2 increases from 0.1 to 0.5

(Figure 2.4 and Figure S2.6). In contrast, higher vaccine confidence transmission (C1 = C2 = 0.8)

can lead to a vaccination-promoting environment in which V– frequencies are reduced over time;

thus the V–A+ phenotype becomes rare and V+A+ predominates (Figure 2.4 and Figure S2.6).

Figure 2.4: Temporal effects of confidence transmission. The change in phenotype frequencies

over 50 iterations as vaccine confidence transmission in mixed-attitude couples (C1 = C2) is

varied (A. C1 = C2 = 0.1; B. C1 = C2 = 0.5; C. C1 = C2 = 0.8) with vertical transmission only,

while other parameters are held at default values (Table 2.1). The population equilibrates at over

90% A–V– at low confidence transmission (A). Increasing the probability of confidence

transmission results in less vaccine hesitancy and, in turn, higher vaccination frequencies (V+A+).

Parent-to-Offspring Interactions (Simulations with vertical transmission only)

Vaccination coverage increases as vaccine confidence transmission is more likely

Since our assessment of the temporal dynamics demonstrated that our simulations

approach stable equilibria, we then modulated different sets of parameters and recorded the

phenotype frequencies at equilibrium, generating heat maps showing the results across a range of
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parameters. In the first of these, we tested the relationship between vaccination probability and

vaccine confidence transmission. To directly alter vaccination probabilities while still accounting

for the couple’s vaccine attitudes, we set ranges of values for Bm,n that vary along the horizontal

axis of Figure 2.5, with the vaccination probability for two hesitant parents (B0,0) on the lower

end of the range and the vaccination probability for two confident parents (B3,3) on the higher end

of the range (Table S2.3). Confidence transmission probabilities are also structured in this “range

shift” manner (Figure 2.5A-B, Table S2.3). If we vary both confidence transmission parameters

and vaccination probability parameters by implementing range shifts in both Cn and Bm,n, we

observe a positive interaction between confidence transmission and vaccination probability:

vaccination coverage increases as either of these parameters are increased (Figure 2.5A).
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Figure 2.5: Vaccination coverage levels are determined by an interaction between

confidence transmission and vaccination probability. Heatmaps showing final vaccination

coverage (A, C) and corresponding vaccine confidence (B, D) after 100 time-steps with vertical

transmission only. In A and B, confidence transmission probabilities (Cn) are set within the

range indicated on the vertical axis, and vaccination probabilities (Bm,n) are set within the range

indicated on the horizontal axis with B0,0, B1,0, B2,0 and B3,0 taking the lowest value and B3,3 taking

the highest value (Table S2.3). In C and D, confidence transmission in mixed-attitude couples

(C1 = C2) is varied along the vertical axis, while the vaccination probabilities (Bm,n) are set within

the range indicated on the horizontal axis as in A and B. (Table S2.3). We show increased

equilibrium vaccination coverage with increasing vaccination probability and confidence

transmission probability ranges, while confidence levels are primarily dictated by proportion of

the population transmitting confidence or hesitancy.

32



Confidence transmission dominates the vaccination coverage and confidence patterns at
equilibrium

However, couples with mixed vaccination and/or attitude states (V+ × V−, A+ × A−) are

assumed to be more variable in their decision to vaccinate their offspring than parents who share

the same state. Thus, in the simulations that follow, we primarily modulated the specific

probabilities associated with these mixed-state pairings. In Figure 2.5C-D, we varied

vaccination probabilities (Bm,n) across the full range of individuals but modulated confidence

transmission probabilities only for mixed-attitude couples (C1 = C2), i.e. those with one

vaccine-hesitant parent and one vaccine-confident parent. In these tests, we observe increasing

equilibrium vaccination coverage as Bm,n probabilities increase, with higher coverage in

high-confidence transmission environments (Figure 2.5C-D).

In both aforementioned simulations (Figure 2.5), we confirm vaccination coverage levels

are determined by an interaction between confidence transmission and vaccination probability,

whereas confidence levels are dictated primarily by levels of confidence transmission. In sum,

the degree to which parents with mixed vaccine-hesitant and vaccine-confident attitudes transmit

vaccine confidence instead of vaccine hesitancy to their offspring is a key factor in determining

population trait majorities which can drastically shift population dynamics.

We compared the effects of varying the confidence transmission probabilities for

mixed-attitude couples (C1 and C2) in combination with multiple factors: 1) the maximum

cultural selection coefficient (σmax) (Figure 2.6A-B), 2) the vaccination influence parameters b1
and b2 (Figure 2.6C-D), 3) the attitude influence parameters c1 and c2 (Figure 2.6E-F), and 4)

the vaccination probabilities of couples with mixed states, B1,1, B1,2, B2,1, B2,2 (Figure 2.6G-H). In

each examination, we observed a Cn threshold: there is a mid-range value of Cn at which

vaccination coverage and vaccine confidence traits are polymorphic, i.e. both forms of each trait

coexist in the population). This Cn threshold value is more sensitive to σmax than to bm, cn, or Bm,n:

the threshold value is lowered as σmax increases (diagonal line in Figure 2.6A-B). Although

vaccination probability (Bm,n) is dependent on both cn, the influence of parental vaccine attitude,

and bm, the influence of parental vaccination state (Table S2.2), modulating either type of

influence of mixed-state parents has little effect on the level of vaccination coverage and

negligible effects on confidence levels at each non-threshold Cn (Figure 2.6C-F).
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Figure 2.6: Vaccine confidence transmission dictates vaccination coverage and confidence

levels

Heatmaps showing final vaccination coverage and vaccine confidence after 100 time-steps with

vertical transmission only. The top row (A, C, E, G) shows vaccination coverage (i.e.

frequency of V+ in the population) with low coverage in brown and high coverage in green; the

bottom row (B, D, F, H) shows the corresponding final vaccine confidence (i.e. frequency of A+),

with low confidence in black and high confidence in red. Unless varied on the horizontal or

vertical axis, other parameters are set to the default values given in Table 2.1. In our model,

parents’ likelihood of vaccinating their children depends on both their vaccination state and their

attitude state. This figure shows that the strength of parental transmission of vaccine confidence

(Cn) has a much stronger effect on the equilibrium levels of both vaccine coverage (V+) and

confidence (A+) than other parameters: the maximum cultural selection coefficient, σmax (A, B),

the influence of parental vaccination state, bm (C, D), the level of influence of parental vaccine

attitudes on their vaccination behaviors, cn (E, F), and the probability that mixed-state parents

vaccinate their offspring Bm,n (G, H). Dashed white lines demarcate the region in which

equilibrium frequencies are between 0.1 and 0.9.

Interestingly, direct modulation of the mixed-state couple vaccination probability (B1,1 =

B1,2 = B2,1 = B2,2) also has little power in affecting coverage and confidence levels at equilibrium
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(Figure 2.6G-H). We hypothesize that predominantly high or predominantly low confidence

transmission within a population reduces the occurrence of “mixed-state” pairings, i.e. if the

majority of the population becomes confident or hesitant, there are fewer confident-hesitant and

vaccinated-unvaccinated pairings. Thus, the effect of modulating mixed-state vaccination

probabilities (B1,1, B1,2, B2,1, B2,2) is significantly minimized as these couples approach low

frequencies in the population, and confidence transmission dominates the vaccination patterns.

Cultural selection determines trait equilibrium levels at fixed confidence transmission
probabilities

Next, we hold vaccine confidence transmission (Cn) at default probabilities, reminiscent

of Mendelian transmission, such that two vaccine-confident or two vaccine-hesitant parents

predictably transmit their vaccine attitude, and parents with differing vaccine attitudes each have

a ~50% chance of transmitting their own state, e.g. C0 near 0, C1 and C2 at 0.5, C3 near 1 (Table

2.1).
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Figure 2.7: Cultural selection influences vaccination coverage and vaccine confidence.

Heatmaps showing final vaccination coverage (A, C, E) and final vaccination confidence (B, D,

F) after 100 time-steps with vertical transmission only, only parent-to-offspring transmission.

As in previous figures, parameters not varied here are given in Table 2.1. Parents’ likelihood of

vaccinating their children depends on both their vaccination state and their attitude state. At

default probabilities of vaccine confidence transmission (Cn values in Table 2.1), these figures

show that modulating the maximum cultural selection coefficient affects the equilibrium levels

of vaccination coverage and vaccine confidence across the range of specified parameters:

parental vaccination state influence, bm (A, B), parental attitude state influence, cn (C,D), and

offspring vaccination probability, Bm,n (E,F). Unless directly modulated (as in panels E-F), Bm,n

varies with bm and cn: . Dashed white lines demarcate the region in which𝐵
𝑚,𝑛

 =  𝑐
𝑛

1+𝑏
𝑚

2( )
equilibrium frequencies are between 0.1 and 0.9.

We then varied cultural selection in combination with vaccination-associated probabilities (bm,

cn, Bm,n). With Cn held constant, cultural selection (σmax) is the primary factor determining
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vaccination coverage and confidence levels (Figure 2.7). Raising the maximum cultural

selection coefficient increases the equilibrium level of vaccination coverage and vaccine

confidence across various levels of vaccination state influence (bm) (Figure 2.7A-B), vaccination

attitude influence (cn) (Figure 2.7C-D), and vaccination probability (Bm,n) (Figure 2.7E-F).

Unlike in Figure 2.6, vaccine confidence does not always mirror vaccination coverage across all

levels of attitude influence (cn) or vaccination probabilities. Instead, vaccine confidence levels

decline with increased cn and increased Bm,n for σmax⪅ 0.3 (Figure 2.7D, F), as well as for both
increased cn and increased bm (Figure S2.7). This dynamic is interesting as these parameters

inform vaccination behavior, hinting that high vaccination rates could reduce a populations’

expected vaccine confidence. Vaccination coverage and vaccine confidence remain low when

cultural selection does not favor vaccination (σmax ⪅ 0), i.e. parents vaccinate their children at or
below the levels expected based on cultural transmission rates.

Offspring can change their inherited hesitancy state (vertical dynamics and community

influences)

Increased exposure to the attitudes of the broader community (non-parental adults in the

population) and personal experiences with the disease could influence and change vaccination

beliefs inherited in childhood. Therefore, we next included these community influences in our

model to understand how they might modulate vaccine confidence and vaccination coverage

levels. In the belief transition phase of the model, offspring can change their vaccine attitude

with some probability based on the frequency of vaccination in the population (Figure 2.2).

Thus, in addition to the vertical transmission of attitudes and behaviors, phenotype frequencies

are further affected by the probability that adult offspring change their attitude (i.e. transition

from vaccine confident (A+) to hesitant (A−) and vice versa). By modulating the attitude

transition probabilities according to the vaccination coverage (“herd-immunity-driven

hesitancy”), we assume that when vaccine coverage (V+ frequency, x1 + x2) is low, disease

occurrence is high and the negative effects of the disease are experienced widely, thus the

benefits of being vaccinated (and the costs of not being vaccinated) are more evident (Gangarosa

et al. 1998; Ozawa et al. 2012). As vaccination coverage (V+) increases in the population, and

thus disease occurrence is low, the benefits to being vaccinated are less obvious, while
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low-probability costs such as adverse reactions become more apparent and could be perceived as

being riskier than the disease itself.

Community influences expand the polymorphic space at moderate confidence transmission

The addition of herd-immunity-driven hesitancy produces a pattern of vaccination

coverage and vaccine confidence similar to that of simulations run with solely vertical

transmission (Figure 2.6 and Figure 2.7 compared to Figure 2.8 and Figure 2.9, and Figure

2.3-2.4 compared to Figures S2.4-S2.6)—the level of (vertical) vaccine confidence transmission

still largely determines the level of vaccination coverage and vaccine confidence (Figure 2.8).

However, these community influences expanded the polymorphic space, resulting in a wider

range of confidence transmission probabilities for mixed-state couples (C1=C2) in which the

different states of each trait (vaccinated, unvaccinated, confident, and hesitant) are well

represented in the population. In other words, there is a wider band of moderate values outlined

by the dashed white lines in Figure 2.8 than in Figure 2.6). Herd-immunity-driven hesitancy

appears to shift the equilibrium levels of vaccination coverage and vaccine confidence away

from extreme values. We also tested a more traditional understanding of oblique transmission,

i.e. confidence-dependent belief transition (“obliquely transmitted hesitancy”) in which

individuals are more likely to transition to vaccine confidence when they interact with more

vaccine-confident people (Figure S2.2). The results of these simulations are similar to those

without belief transition, i.e., the equilibrium levels of vaccination coverage and vaccine

confidence approach either high or low values near the threshold (compare Figure 2.6, Figure

2.8 and Figure S2.8). Similarly, if we structure belief transition in a manner that reflects an

influence of vaccine fear reduction after widespread adoption, i.e, individuals are more likely to

adopt vaccine confidence if vaccination frequency is high, the pattern of outcomes show a lower

occurrence of moderate values at equilibrium (Figure S2.9).
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Figure 2.8: Vaccine confidence transmission dictates vaccination coverage and confidence

levels (with herd-immunity-driven hesitancy). Heatmaps showing final vaccination coverage

(i.e. frequency of V+ in the population, with low coverage in brown and high coverage in green

(A, C, E, G)) and final vaccine confidence (i.e. frequency of A+, with low confidence in black

and high confidence in red (B, D, F, H)) after 100 time-steps in which attitude transition can

occur after parent-to-offspring transmission of beliefs. The likelihood that individuals change

their vaccine beliefs depends on the current vaccination coverage of the population (Figure 2.2).

Unless varied on the horizontal or vertical axes, other parameters are set to the default values

given in Table 2.1. Parents’ likelihood of vaccinating their children depends on both their

vaccination state and their attitude state; these figures show that the strength of parental

transmission of vaccine confidence (Cn) has a much stronger effect on the equilibrium levels of

both vaccine coverage (V+) and confidence (A+) than other tested parameters do: the maximum

cultural selection coefficient, σmax, (A,B), the influence of parental vaccination state, bm, (C, D),

the level of influence of parental attitudes on their vaccination behaviors, cn, (E,F), and offspring

vaccination probability, Bm,n (G,H). Dashed white lines demarcate the region in which

equilibrium frequencies are between 0.1 and 0.9.
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Community influences reduce equilibrium values at constant confidence transmission

With neutral confidence transmission (C1 = C2 = 0.5), we also observe an expansion of the

polymorphic space when we modulate cultural selection (σmax) alongside the influence and

transmission parameters, with an overall reduction of vaccination coverage and vaccine

confidence levels at equilibrium (Figure 2.9 compared to Figure 2.7). Similarly to simulations

without belief transition, as the influence of vaccine attitudes (cn) and vaccination probabilities

(Bm,n) increase (Figure 2.9C-F), the population’s equilibrium vaccination coverage increases

while its vaccine confidence decreases. This pattern persisted across all tested levels of

maximum cultural selection (σmax) (Figure 2.9C-F). In other words, we observe higher levels of

confidence when the influence of vaccine attitude is low for mixed-attitude parental pairs

(Figure 2.9D) and vaccination probabilities are low for mixed-trait parental pairs (Figure 2.9F)

than we do at higher values.
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Figure 2.9: Cultural selection influences vaccination coverage and vaccine confidence (with

herd-immunity driven hesitancy). Heatmaps showing final vaccination coverage (A, C, E) and

final vaccination confidence (B, D, F) after 100 time-steps with herd-immunity-driven

hesitancy. As in previous figures, parameters not varied are given in Table 2.1. Parents’

likelihood of vaccinating their children depends on both their vaccination state and their attitude

state. At default probabilities of vaccine confidence transmission (Cn), these figures show that

modulating the maximum cultural selection coefficient affects the equilibrium levels of

vaccination coverage and vaccine confidence across the range of specified parameters: parental

vaccination state influence, bm (A, B), parental attitude state influence, cn (C,D), and offspring

vaccination probability, Bm,n (E,F) for mixed-trait pairs. Unless directly varied (as in panels E-F),

Bm,n varies as bm and cn are varied, as shown in Table 2.1. [Note: All vaccination and confidence

equilibrium frequencies are between 0.1 and 0.9.]

41



Figure 2.10: The influence of parental traits on vaccination coverage and vaccine

confidence at different levels of cultural selection. Heatmaps showing final vaccination

coverage (A, C) and final vaccination confidence (B, D) after 100 timesteps with

herd-immunity-driven hesitancy. We modulate the interaction between vaccination state

influence (bm; vertical axis) and attitude influence (cn; horizontal axis) at various maximum

cultural selection coefficients: σmax = 0 (A, B) and σmax = 0.1 (C, D). As in previous figures,

unvaried parameters are given in Table 2.1. Vaccination frequency increases as both influence

probabilities increase and vaccination confidence decreases as both influence probabilities

increase.

Modulating the influence of parental traits reveals uncoupling of trait equilibrium frequencies

We explored the interaction between the influence parameters, bm and cn, at various

maximum cultural selection coefficients (σmax) (Figure 2.10). Vaccination coverage and vaccine

confidence equilibrate at frequencies between 0.1 and 0.6 across the range of bm and cn,

indicating that these trait frequencies are not particularly sensitive to either parameter. Cultural

selection favoring vaccination increases the equilibrium level of vaccination coverage and
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vaccine confidence (Figure 2.10 and Figure S2.10). The most notable deviation between

equilibrium confidence and vaccination frequencies occurs at the intersection of the highest

influence parameter values (bm and cn), circumstances in which the parents’ vaccination states

and vaccine attitudes overwhelmingly support offspring vaccination. In this top right section of

the heat maps, vaccination coverage is high while vaccine confidence is lower, indicating a

behavioral pattern in which mixed-trait couples are more inclined to vaccinate their offspring

than transmit vaccine confidence. Overall, the addition of vaccination-frequency-dependent

belief transition to a population that would otherwise equilibrate at high vaccination coverage

(Figure S2.7) leads to increased attitude transition to vaccine hesitancy and subsequently lower

vaccine coverage.

Cultural selection modulates the effect of homophily on equilibrium outcomes

We hypothesized that mating preference (assortative mating) could modulate belief and

behavior dynamics and thus the vaccination coverage and confidence levels in the population. If

individuals are more likely to pair with individuals of the same vaccine attitude, such that

same-attitude couples become more common and mixed-attitude couples are less common, the

parameter values for mixed-attitude couples may have less impact on vaccination coverage and

confidence dynamics. Therefore, we analyzed the interaction between A+ homophily (with 𝛼1
indicating the preference of A+ individuals for other A+ individuals) and A− homophily (with 𝛼2
indicating the preference of A− individuals for other A− individuals) at various σmax levels. When

vaccine attitudes are affected by community influences and there is neither cultural selection for

nor against being vaccinated (σmax = 0), we observe a threshold region at roughly equal mating

preferences (𝛼1 ≈ 𝛼2; diagonal lines in Figure 2.11C-D); above this boundary (when 𝛼1 > 𝛼2)
vaccination coverage and confidence are much higher than below this boundary (when 𝛼1 < 𝛼2).
When cultural selection explicitly does not favor vaccination (e.g. σmax = −0.1, Figure 2.11A-B),

low vaccination coverage and confidence can occur even when there are more vaccine-confident

couples in the population than hesitant couples (𝛼1 ＞ 𝛼2). Likewise, if cultural selection favors
being vaccinated (σmax > 0, Figure 2.11E-H), the threshold between high and low equilibrium

values is shifted, such that high coverage and high confidence levels can potentially be attained

even when vaccine-hesitant individuals preferentially pair with each other more than

vaccine-confident individuals do (𝛼1 < 𝛼2). We observe qualitatively similar patterns when

vaccine attitudes are only transmitted from parent to offspring (Figure S2.11); as we have

43



previously observed in Figures 2.8-2.10, the addition of vaccination-frequency-dependent belief

transition leads to a broader polymorphic region than vertical transmission alone. However, if

belief transition is obliquely influenced or influenced by fear of the vaccine, the range of the

polymorphic region is similar to that observed in simulations without community influences

(compare Figure 2.11, Figure S2.12, and Figure S2.13). These patterns illustrate two

overarching themes: 1) preferential interactions between individuals with similar vaccine beliefs

can dramatically shift the equilibrium levels of vaccination coverage and confidence with all

other parameters remaining equal, and 2) the actual and perceived quality and efficacy of the

vaccine are important to determining vaccine acceptance.
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Figure 2.11: Homophily between individuals with similar vaccine beliefs can shift

equilibrium frequencies of both vaccination coverage and confidence. Heatmaps showing

final vaccination coverage (A, C, E, G) and final vaccine confidence (B, D, F, H) after 100

timesteps with herd-immunity-driven hesitancy. As in previous figures, unspecified

parameters are given in Table 2.1. As vaccine-hesitant individuals (A−) increasingly prefer to

pair with one another (𝛼2; horizontal axis), vaccine-confident individuals (A+) must also

preferentially interact to maintain high vaccine coverage (𝛼1; vertical axis); this tradeoff is
modulated by the cultural selection pressures on vaccination (σmax = -0.1 (A, B), σmax = 0 (C, D)

and σmax = 0.1 (E, F), σmax = 0.5 (G, H)). Dashed white lines demarcate the region in which

equilibrium frequencies are between 0.1 and 0.9.

Discussion

In this manuscript, we present an application of a generalized cultural evolution

framework by modeling the spread of vaccine attitudes and their effects on childhood

vaccination frequency in a population. Increasing and maintaining sufficient vaccination

coverage to combat disease is more complex than simply increasing vaccine availability or

providing accurate information. A number of factors affect a person’s vaccine-related beliefs and

parents’ decision to vaccinate their children, including their history with vaccinations and

perception of the disease and vaccine effects. As such, it is important to understand how these

personal factors can shape vaccination cultures and thus affect public health. Using a cultural
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niche construction framework, we modeled the transmission of vaccine attitudes and vaccination

behavior in a variety of circumstances and measured the resulting levels of vaccination coverage

and vaccine confidence in the population. Using this novel approach of modeling dynamically

interacting beliefs and behaviors, we are able to explore the interplay of cultural factors that

drive vaccine attitudes and vaccination behavior, providing insight into how vaccination cultures

are formed, maintained, and evolve.

Cultural parameters predict future vaccination coverage and vaccine confidence

Our model demonstrates that the cultural landscape—here, the parameters in the model

that aim to reflect transmission patterns of beliefs and behaviors, the level of preferential

assortment based on beliefs, etc.—can be more predictive of future levels of vaccine coverage

and confidence than current coverage and confidence levels in the population (i.e. the initial

conditions). Our simulations each approached a stable equilibrium, and in general we could infer

that a population with high vaccination coverage will have low rates of vaccine hesitancy and

vice versa. Further, our model shows vaccine confidence transmission (Cn) to be the parameter

that most strongly determines vaccination coverage and confidence levels. That is, even though

parents’ decision to vaccinate their children is based on both their level of confidence in vaccines

and a consideration of their own vaccination status, the probability of transmitting

vaccine-positive attitudes is a stronger predictor of future vaccination coverage than the

probability of vaccination itself (Figures 2.6 and 2.8). Finally, our simulations also suggest that

a pro-vaccination health culture can be undermined by a vaccine hesitancy “echo chamber”,

possibly formed by a higher degree of preferential assortment (homophily) among

vaccine-hesitant individuals, who then form pairs more likely to transmit vaccine-hesitancy to

their children.

Positive perception of the vaccine is sufficient to maintain vaccination coverage

This model also shows that the perceived value and efficacy of a vaccine are important to

maintaining sufficient levels of vaccination coverage, especially if vaccine confidence is not

being robustly transmitted (or maintained in adulthood). Individuals essentially perform an

internal cost-benefit analysis based on their circumstances and interpretation of accessible

information when deciding to vaccinate. We aimed to be inclusive of their various considerations

via our comprehensive cultural selection coefficient. Increasing positive public perception
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through honest and effective communication and reducing public concern about vaccines and

increasing vaccine safety could together drive increased vaccination trust and acceptance.

Achieving the optimal vaccination coverage lies not only in the hands of the public by

vaccinating themselves and their children, but also in the efforts of health officials and leaders in

creating an environment that fosters confidence by assuring the public of vaccine efficacy, safety,

and value, while providing convenient avenues to attain vaccines.

Interestingly, there is a large region of the parameter space (such as C1=C2>0.6 in Figures

2.6 and 2.8, panels A, C, E, G) in which the vaccination coverage equilibrates at a level that is

comparable to the rates of established childhood vaccines in the United States (e.g. ~91%

coverage for the MMR vaccine (Hill et al. 2019, 2017)). One difference from the expected rates

in the US, however, is that in these simulations the level of vaccination coverage tends to

equilibrate at a lower level than the vaccine confidence, whereas in the US the fraction of

vaccine-hesitant individuals is thought to be higher than the fraction of vaccinated individuals

(Gowda and Dempsey 2013). The discrepancy between expected and observed hesitancy rates

could be the result of policies that promote public health by encouraging childhood vaccination,

such as school requirements for immunization records.

Limitations of the model

As with any model, we cannot fully capture the complex reality of the relationship

between vaccine hesitancy and vaccination behavior. First, though vaccination frequency data is

available for numerous vaccines, frequency data for vaccine attitudes are much less common,

with the two traditionally not surveyed together. Thus, there is no dataset that exactly estimates

the phenotypes presented here, for example, the number of vaccinated but hesitant (V+A–)

individuals in a population. The goals of vaccination attitude surveys have been primarily to

identify themes of vaccine hesitancy, and to a lesser degree, the themes of vaccination. However,

they generally do not report parent vaccination states or whether the child was actually

vaccinated (on schedule). With data presenting parent vaccination states alongside their vaccine

attitudes and vaccination decisions, we would be able to more accurately inform phenotype

frequencies, possibly extending the model to incorporate various types of hesitancy. We note,

however, that our results did not depend on the initial proportions of vaccination status or

vaccine hesitancy, so these data would primarily be for comparison to our equilibrium outcomes.
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We were also constrained by limited data to inform our cultural transmission and

transition probabilities. In our model, baseline confidence transmission and influence

probabilities are structured according to a simple pattern of inheritance, such that each parent is

equally likely to influence an offspring’s phenotype. However, cultural traits and vaccination

attitudes may not strictly follow this pattern: one parent might have more influence, or one

variant of a trait might be more likely to be transmitted. In addition, transmission probabilities

are constant in our model, remaining unaffected by changing cultural conditions throughout each

simulation, but in reality, these probabilities may fluctuate in response to a variety of factors

including vaccine type or family structure. Future developments of the model could include

modulating the probability of vaccine confidence transmission according to other aspects of the

cultural environment, such as the attitude frequencies in the population. We could also use the

current frequency of these cultural traits across different populations to generate more specific

hypotheses about their underlying cultural transmission processes (Kandler and Powell 2018;

Kandler, Wilder, and Fortunato 2017). Our cultural selection coefficient did vary with the

frequency of vaccination coverage, and we tested multiple attitude transition probability

functions that varied with either vaccination frequency or confidence levels. However, the exact

relationships between trait distribution and vaccine perception or attitude transition probabilities

could not be informed by existing data. Modulating both the attitude transition probabilities and

the cultural selection coefficient according to the level of vaccination coverage in a population,

however, reflects that perceptions about the vaccine and its associated effects on health could be

meaningfully different in a population with high vaccination coverage than in one with low

coverage. In testing three forms of belief transition, we are able to explore how different

community influences could shape vaccination coverage and hesitancy levels.

Though vaccination coverage and vaccine confidence stabilized in our simulations, in

reality vaccination rates fluctuate over time in response to changing population dynamics,

perhaps never arriving at a stable equilibrium. For example, the increasingly rapid spread of

information (Hornik et al. 2015) may cause attitudes and behaviors to change frequently over

short periods of time. In our model, most of the phenotype frequency fluctuations occur in the

first few iterations before quickly adjusting to an equilibrium. Unlike some models of population

dynamics, this model has a discrete-time format and does not consider asynchrony in population

turnover. Thus, the timescale of our model might not translate directly to years or generations,

48

https://paperpile.com/c/PPmoaU/npyV8+V2Iko
https://paperpile.com/c/PPmoaU/npyV8+V2Iko
https://paperpile.com/c/PPmoaU/B8R3p


and we avoid interpreting the number of iterations in literal terms. It is possible that if more

realistic birth and death processes were incorporated, the cultural dynamics would occur at

different timescales and would continue to fluctuate instead of approaching a stable equilibrium.

In addition, the grandparents of the children to be vaccinated also influence the parents’

vaccination decisions (Karthigesu, Chisholm, and Coall 2018). A restructuring of the timescale

or the incorporation of population asynchrony in our model could allow for consideration of

these influences.

In this model, we constructed the offspring vaccination probability to be informed

primarily by parents’ vaccine attitudes and secondarily by their own vaccination status. Though

it is understood that there is an interaction between parents’ beliefs and their own experiences

with vaccines regarding their decision to vaccinate their children, accurately modeling the

relative contribution of these two factors could benefit from empirical studies on parental

willingness to vaccinate based on their beliefs and vaccination status. With our current formula

(Bm,n, Table S2.2), vaccine-confident parents who did not themselves receive childhood vaccines

have a reduced likelihood of vaccinating their offspring than vaccinated parents. In reality,

parental vaccine attitudes might even further outweigh their own vaccination status in their

decision-making process than we model here.

Future Explorations

Finally, future developments of this model could include homophily of oblique

interactions, that is, if vaccine-related beliefs influenced not only one’s mate choice but also

one’s choice of social groups or information sources. On one hand, individuals who

disproportionately interact with vaccine-hesitant contacts would have a biased perspective that

vaccine hesitancy is more prevalent in the population than it actually is, which can reduce their

likelihood of vaccinating their children (Brunson 2018); on the other hand, a high degree of

homophily in oblique interactions has been hypothesized to hinder the transmission of vaccine

hesitancy to vaccine-confident individuals, reducing the spread of the belief overall (Mehta and

Rosenberg 2020). Another potential further exploration of the model includes modeling

preferential assortment based on vaccination status rather than vaccine attitude, which has been

shown to occur in an empirical contact-network study of high school students (Barclay et al.

2014).
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Our model can be readily applied to other scenarios in which the effects of a parental

behavior are long-lasting and potentially influenced by beliefs. For example, other aspects of

childrearing such as formula feeding, sleep training, circumcision, attachment parenting, and

homeschooling could provide additional avenues of exploration with this type of model. Like

vaccines, these decisions employ an assessment of social, cultural, and economic costs and

benefits, to parents and offspring.

Recommendations

Our findings suggest that broad efforts to encourage and inform the public about vaccine

safety and efficacy will foster higher vaccine coverage, and thus points toward several

recommendations for public health policy and outreach. We recommend that accurate

information about vaccines be readily accessible through a variety of means, be easily

understood, and be supported by personal anecdotes since individuals who are skeptical about

vaccines might invest more time in seeking out information about them (Gowda and Dempsey

2013; Ellithorpe, Adams, and Aladé 2022; Benin et al. 2006), and that dialogue between people

with different beliefs and attitudes be encouraged as it can help to break the “echo chambers” of

homophily, encouraging individuals to communicate and empathize with one another. Therefore,

to address vaccine hesitancy, our results underscore the importance of considering the cultural

beliefs and community influences that underpin health behaviors.
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Introduction

A comprehensive understanding of health behaviors and their potential for exacerbating

or mitigating disease risk requires insight into how cultural beliefs influence these behaviors.

Local vaccination cultures—the shared beliefs among individuals within a community about

vaccine-preventable disease etiology, prevention, and treatment—can affect an individual’s

vaccine attitudes and decisions (Streefland, Chowdhury, and Ramos-Jimenez 1999; de

Figueiredo et al. 2020). The definition of “vaccine hesitancy” varies between sources, spanning

from an attitude of uncertainty about vaccines to the behavior of vaccine refusal. Here we use the

definition from (Larson, Gakidou, and Murray 2022): “a state of indecision and uncertainty that

precedes a decision to become (or not become) vaccinated.” In 2019, vaccine hesitancy was

named one of the World Health Organization’s ten threats to global health (Scheres and

Kuszewski 2019) because of its link to reduced vaccination coverage and more frequent

outbreaks of vaccine-preventable diseases (VPDs) worldwide. Vaccine hesitancy is a key

indicator of the vaccination culture of a population, and both modeling (e.g. (Funk, Salathé, and

Jansen 2010)) and public health studies (e.g. (MacDonald and SAGE Working Group on Vaccine

Hesitancy 2015; Dubé et al. 2013)) have considered vaccine hesitancy to be influenced by

multiple societal- and individual-level factors, such as the vaccination coverage of the

population, the perceived risk of vaccine-preventable diseases, the level of trust in specific

vaccines, and the confidence in the healthcare system.

Theoretical studies have modeled how the spread of disease can be affected by aspects of

human behavior, particularly vaccination and social distancing behaviors (Bauch 2005; Chauhan,

Misra, and Dhar 2014; Funk, Salathé, and Jansen 2010; Mao and Yang 2012a; Perra et al. 2011;

Tanaka, Kumm, and Feldman 2002; Verelst, Willem, and Beutels 2016). Other models have

examined a phenomenon known as “coupled contagion,” in which individuals can transmit not

only a disease itself but also cultural factors such as vaccine adoption, disease-related fears, and

(mis)information, which can in turn modulate their disease susceptibility in the simulation

(Epstein et al. 2008b; Epstein, Hatna, and Crodelle 2021; Smaldino and Jones 2021; Mehta and

Rosenberg 2020). In real populations, health policies and other external factors can play a role in

shaping vaccination cultures; two such factors are vaccine mandates, which drive vaccination

uptake (even among vaccine-hesitant people), and vaccine inaccessibility, which hinders vaccine

uptake (even among vaccine-confident people). Compulsory vaccination policies have been met
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with opposition since their implementation in the 1800’s (Durbach 2005; Swales 1992b). This

opposition, intertwined with religious and political ideas, led to the allowance of vaccination

exemptions based on medical and non-medical (e.g. religious or philosophical) reasons (Blume

2006). Though the implementation of compulsory vaccinations generally results in a drastic

reduction in disease incidence and mortality (Lawler 2017; Abrevaya and Mulligan 2011), the

high vaccination coverage that follows can facilitate the public perception of reduced disease

severity and thus reduced vaccine necessity; this phenomenon has been observed in real

populations (P. E. Fine and Clarkson 1986; P. Fine, Eames, and Heymann 2011) and incorporated

into modeling studies (de Figueiredo et al. 2020; Funk, Salathé, and Jansen 2010; Reluga, Bauch,

and Galvani 2006). In this vein, non-medical exemptions to compulsory vaccinations have been

increasing, particularly in wealthier countries where theoretical predictions suggest that belief

systems can act as the main barrier to vaccination, as opposed to lack of vaccine access (Salathé

and Bonhoeffer 2008; May and Silverman 2003). This rise in non-medical exemptions appears to

have a non-trivial effect on public health, since these exemptions are correlated with the recent

increase in VPD outbreaks in the United States (Aloe, Kulldorff, and Bloom 2017; Phadke et al.

2016). However, the circumstances under which vaccine mandates might lead to increased

vaccine hesitancy remain uncertain.

Even less understood is the potential association between vaccine (in)accessibility and

vaccine attitudes. Vaccine accessibility issues are external pressures that negatively impact

vaccination rates and coverage. Challenges to vaccine accessibility are particularly prevalent in

low and middle-income countries as well as rural areas in developed countries (Zaffran et al.

2013; Zerhouni 2019). For example, storage capabilities, distribution logistics, and affordability

can limit the number of vaccine doses available in a specific area, and thus reduce the number of

individuals who can receive a vaccine, leaving vulnerable communities at risk for a VPD

outbreaks (Zaffran et al. 2013; Mahoney et al. 2007). This limited access may also interact with

psychological and cultural factors, such as distrust in the healthcare system, potentially

exacerbating the effects of low vaccine accessibility. Further, vaccination cultures can be shaped

by experience with vaccines and the disease: for example, living in a rural area could limit

exposure to the disease and alter the perception of disease risk, and a lack of vaccine access for

an extended period could entrench certain attitudes about vaccines in a culture. Thus, to explain

the differences in vaccination outcomes and resulting disease risk across human populations, it is
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crucial to better understand how cultural beliefs and behaviors interact with external pressures

that increase or reduce vaccination coverage.

Cultural niche construction theory describes a process in which humans modify their

cultural environments—for example, their beliefs, behaviors, preferences, and social

contacts—in ways that subsequently alter evolutionary pressures on the population and its

culture (John Odling-Smee, Laland, and Feldman 2013). Mathematical models of cultural niche

construction have been used to explain the evolution of behaviors related to religion, fertility, and

large-scale human conflict (Fogarty and Creanza 2017; John Odling-Smee, Laland, and Feldman

2013; O’Brien et al. 2012; Fuentes 2013; Creanza, Fogarty, and Feldman 2012; Creanza and

Feldman 2014). Since health cultures can be shaped by or influence the larger cultural landscape,

the cultural niche construction framing can give insight into the cultural dynamics shaping

disease risk. By using this type of model to simulate the interactions between beliefs and

behaviors, we seek to understand how vaccination cultures affect vaccination coverage, as well

as how vaccine-related beliefs and behaviors are affected by external forces, such as the

availability of vaccines and the degree to which they are compulsory.

We adapted a cultural niche construction framework to model vaccination beliefs and

behaviors, incorporating the transmission of vaccination culture both from parents and from the

community (Anderson and Creanza 2023). Using this model, we previously demonstrated that

the overarching cultural landscape, including the likelihood of adopting vaccine hesitancy and

the probability of transmitting it to one’s children, determines the equilibrium levels of

vaccination coverage and vaccine hesitancy in a population. In addition, we demonstrated that

the transmission of vaccine confidence and positive vaccine perception are imperative to

maintaining high levels of vaccination coverage, especially when individuals preferentially

choose a partner with shared vaccine beliefs. In this manuscript, we expand the scope of this

model to explore how the vaccination coverage and vaccine hesitancy in a population could be

affected by external forces. In particular, we focus on vaccine mandates and vaccine

inaccessibility, which both lead to a decoupling of parental vaccine beliefs and their vaccination

behaviors such that vaccine mandates can increase the chances that vaccine-hesitant parents will

vaccinate their children, and vaccine inaccessibility can decrease the chances that

vaccine-confident parents will vaccinate their children. We explore the effects of these external

forces on the dynamics of both vaccine beliefs and vaccination coverage, providing insight into
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the differences between cultural development in the opposing contexts of mandates and

inaccessibility.

Methods

We build on a more general cultural niche construction framework of (Creanza, Fogarty,

and Feldman 2012; Anderson and Creanza 2023) to assess the effects of vaccine mandates and

vaccine accessibility on the resulting landscape of vaccination coverage and vaccine confidence.

For a population of individuals, we track the status of vaccination coverage and vaccine

confidence over time; within this population, individuals mate, decide whether to vaccinate their

offspring, and transmit a vaccine attitude trait. Their decision to vaccinate is influenced by their

own beliefs and their vaccination states, and population trait frequencies are further modulated

by vaccination frequency dependent cultural selection pressures.

General Framework of the Model

Each individual in our model (depicted in Figure 3.1) has a vaccination (V) trait, either

V+ (vaccinated) or V− (unvaccinated), and an attitude (A) trait, either A+ (vaccine confident) or

A− (vaccine hesitant), resulting in four possible phenotypes (V+A+, V+A−, V−A+, and V−A−) that

we initialize with frequencies structured to represent those of the United States: V+A+ (i.e.

frequency of vaccinated, vaccine confident individuals) = 0.81, V+A− = 0.1, V−A+ = 0.07, V−A− =

0.02. These frequencies were estimated using reports of Measles-Mumps-Rubella vaccination

rates and estimates of vaccine attitude frequencies obtained from various sources in the literature

(Kennedy, Brown, and Gust 2005; Leask 2011). In each iteration, individuals mate randomly

within the population. Each parental pair vaccinates their offspring with probability Bm,n (i.e.,

vertical transmission of vaccination, with the subscript m denoting the vaccination trait pair and

n denoting the attitude trait pair of the parents; see Table 3.1 and Table 2.2); in general, this

probability increases with each vaccinated and vaccine-confident parent. This vaccination

probability is influenced by two factors: whether each of the parents are themselves vaccinated

(bm), and whether each of the parents are vaccine confident or hesitant (cn). The probability that a

couple vaccinates their offspring is calculated as , to account for the influence𝐵
𝑚,𝑛

= 𝑐
𝑛

1+𝑏
𝑚

2( )
of both vaccination states and vaccine attitudes . We model varying levels of vaccine mandates

and inaccessibility by modulating the influence that parental vaccine attitudes have on the

likelihood that they vaccinate their offspring (by increasing or decreasing cn): for example, a
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vaccine mandate will make a vaccine-hesitant parent more likely to vaccinate their child, and

vaccine inaccessibility will make a vaccine-confident parent less likely to vaccinate their child.

Each parental pair also transmits a vaccine attitude trait to their offspring (i.e., vertical

transmission of beliefs) with vaccine confidence transmitted at probability Cn and vaccine

hesitancy at probability 1-Cn. We set the probability of transmitting vaccine confidence to be

highest for two vaccine-confident parents and lowest for two vaccine-hesitant parents (Table

3.1). For simplicity, we set the baseline confidence transmission probabilities (Cn) to values

reminiscent of Mendelian transmission, such that two vaccine-confident or two vaccine-hesitant

parents predictably (~100% likely) transmit their vaccine attitude, and parents with differing

vaccine attitudes each have a ~50% chance of transmitting each state: C0 near 0, C1 and C2 at 0.5,

C3 near 1 (Table 3.1). Influence parameters, bm and cn, are valued similarly and predict the

probability that the couple vaccinates their children according to the equation ,𝐵
𝑚,𝑛

= 𝑐
𝑛

1+𝑏
𝑚

2( )
such that parents who are both vaccine confident and vaccinated are most likely to vaccinate,

vaccine hesitant and unvaccinated parents are least likely to vaccinate, and parental pairs with

mixed states of one or both traits will have intermediate likelihoods of vaccinating.

Next, cultural selection (σ) operates on the resulting phenotype frequencies such that the

frequency of vaccination in the population is greater or less than expected given the predicted

probabilities that vaccine-confident and -hesitant parents vaccinate their offspring. The

proportion of vaccinated individuals in the population is multiplied by 1+σ, such that a positive σ

increases the proportion of vaccinated individuals and a negative σ decreases it. This process

encompasses the various factors that might make parents more or less likely to vaccinate,

including the severity of the disease and the general trust in the healthcare system. Since the

perceived benefit of the vaccine might vary based on the vaccination coverage in the population,

we allow σ to depend on the frequency of the V+ trait: when the frequency of vaccination is low,

the effects of the disease are more evident and individuals are more likely to vaccinate (high σ),

but when the frequency of vaccination is high, the risks of the disease are masked and

individuals are less likely to vaccinate (lower σ) (see Supplementary Text S3.1 for a more

detailed explanation of how σ is calculated as a function of vaccination coverage (V+)). The

equation relating the frequency of V+ and σ is given in Figure 2.1. In genetics, the selection

coefficient is traditionally small (in the range of -0.1 to 0.1 (Eyre-Walker and Keightley 2007));
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at baseline in our model, we kept the maximum cultural selection coefficient at 0.1 which

allowed for both positive and negative selection depending on the frequency of vaccinated

individuals in the previous iteration.

Finally, oblique interactions (cultural influences from non-parental individuals) then act

to further modify trait frequencies in the population. Individuals in the simulation can change

their vaccine attitudes based on interactions with others and their perceptions of their

surroundings. If the vaccination coverage in the population is low, we consider the negative

effects of the disease to be more apparent and thus people will be less likely to adopt a

vaccine-hesitant attitude, and if the vaccination coverage is high, the negative effects of the

disease are prevented (amplifying the perception of the vaccine’s risks and costs, however small)

and people might be more likely to become vaccine hesitant (Figure 2.2). Each subsequent

iteration of the model begins with the phenotype frequencies produced at the end of the current

iteration. The simulation is run until phenotype frequencies reach equilibrium (Figure 3.1, Table

3.1). For more detail see Supplementary Text S3.1 and (Anderson and Creanza 2023). All code

to run the simulations is provided at www.github.com/CreanzaLab/VaccineModel and

http://doi.org/10.6084/m9.figshare.22493317.
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Figure 3.1: Workflow of a single iteration of the model. The schematic shows the processes

within a single model iteration. The model is initialized with the phenotypic frequencies (V+A+,

V+A−, V−A+, V−A−) in the population. After individuals mate and reproduce, they vertically

transmit vaccination and attitude traits to their offspring. Vaccination trait frequencies are further

modulated by cultural selection. Oblique transmission (cultural transmission from non-parental

adults in the population) follows, which may lead offspring to alter their attitude state.

(Parameters, their definitions, and baseline values are listed in Table 3.1)
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Table 3.1: List of parameters, their definitions, and baseline values.

Parameter Meaning
V Vaccination state (V+ vaccinated, V− unvaccinated)
A Vaccine attitude (A+ confident, A− hesitant)
Bm,n Probability that parental pairs vaccinate their children, which depends upon the

parents’ vaccination states (bm) and vaccine attitudes (cn) (given in Table S2.2)
Cn Probability that parental pairs transmit vaccine confidence to their children

Baseline: C0= 0.01, C1= C2 = 0.5, C3 = 0.99
bm Probability that parental pairs support offspring vaccination given their

vaccination states
Baseline: b0= 0.01, b1= b2 = 0.5, b3 = 0.99

cn Probability that parental pairs support offspring vaccination given their vaccine
attitude
Baseline: c0= 0.01, c1= c2 = 0.5, c3 = 0.99

σ Comprehensive selection coefficient for V+, dependent on the population-wide
vaccination rate (see Figure 2.2)

σmax The highest additional benefit that can be conferred by vaccination
Baseline: σmax= 0.1

Parameter subscripts
indicating traits of
the mating pair (m
and n in bm, cn, Cn,
and Bm,n)

V−×V−: m=0; V−×V+: m=1; V+×V−: m=2; V+×V+: m=3
A−×A−: n=0; A−×A+: n=1; A+×A−: n=2; A+×A+: n=3

Parameterization for Compulsory Vaccination and Vaccine Inaccessibility Simulations

We hypothesize that parental vaccine attitudes influence their use of exemptions and thus

levels of non-vaccination will differ based on parental attitudes under a mandated vaccination

system. Therefore, we simulate the effects of compulsory vaccination by modulating the

influence of a couple’s vaccine attitudes on their likelihood of vaccinating their offspring (cn); in

other words, a vaccine mandate alters the influence of a couple’s vaccine attitude on their

decision to vaccinate. We assume the implementation of mandates would increase vaccination in

couples with at least one vaccine-hesitant individual. If vaccination exemptions are permitted, we

expect that A− × A− couples (those with two vaccine-hesitant individuals) would be most likely

to obtain exemptions, followed by mixed attitude (A− × A+ or A+ × A−) couples, with vaccine

confident couples (A+ × A+) being least likely. Hence, to model the effects of implementing a

vaccine mandate, we increase attitude influence parameters from baseline values (Table 3.1) to

represent two levels of mandate strictness, a strict mandate in which c0 = 0.5, c1 = c2 = 0.9, c3 =

0.99 and a more lenient mandate in which c0 = 0.3, c1 = c2 = 0.7, c3 = 0.99 (Figure 3.2).
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Similarly, to represent a vaccine inaccessibility scenario, we reduced the influence of

parental vaccine attitudes on vaccination behaviors for couples with at least one confident

individual (i.e. reducing c1, c2, c3 from baseline values). In this simple representation of a

vaccine-scarce environment, we assume that parents’ confidence in vaccines would have reduced

influence on their ability to vaccinate their offspring, that is, their vaccine confidence does not

ensure their ability to overcome vaccine inaccessibility. Hesitant couples are least likely to

vaccinate their offspring regardless of vaccine availability, but couples who would likely

vaccinate their offspring given the chance would have difficulty doing so due to the lack of

access. We modeled two levels of vaccine inaccessibility– a somewhat inaccessible vaccine in

which c0 = 0.01, c1 = c2 = 0.3 , and c3 = 0.7 and an inaccessible vaccine in which c0 = 0.01, c1 = c2
= 0.1, c3 = 0.5. Assuming mixed attitude (A− × A+ or A+ × A−) couples exhibit the most

variability in their likelihood of transmitting vaccine confidence, we then examined the effect of

the interaction between the maximum cultural selection coefficient (σmax) and mixed-attitude

confidence transmission probability (C1=C2) for a scenario with baseline parameters (no active

mandate and an accessible vaccine), with a lenient mandate, and with a somewhat inaccessible

vaccine (Figure 3.2).

We next examined the effects of varying the transmission probability of vaccine

confidence parameters for all couple types (C0, C1, C2 and C3), instead of focusing on the vaccine

confidence transmission of mixed-attitude couples. We varied all Cn parameters simultaneously

within a specified range of values (Table S2.3) across different levels of mandate strictness

(Figure 3.4) and vaccine inaccessibility (Figure 3.5). As before, we varied these parameters in

conjunction with the maximum cultural selection coefficient σmax.

Results

Compulsory Vaccination and Vaccine Inaccessibility
We examined the effect of the interaction between the maximum cultural selection

coefficient (σmax) and confidence transmission probability of mixed-attitude couples (A− × A+ and

A+ × A–; C1=C2) (Figure 3.2). Modeling the effects of a vaccine mandate reveals a decoupling of

vaccination coverage and vaccine confidence trajectories when parents are more likely to

transmit vaccine hesitancy (Figure 3.2C-D). Even when vaccine confidence is very low

(specifically at mixed-trait couple confidence transmission probabilities below 0.5; red region in

Figure 3.2D), vaccination coverage is higher with a lenient mandate than without the mandate
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(compare Figure 3.2C-D to Figure 3.2A-B; Supplementary Table S3.1). However, the

leniency of the mandate in Figure 3.2C-D means that many vaccine-hesitant couples can obtain

an exemption, and vaccination coverage remains lower when vaccine hesitancy is common. This

suggests that an external pressure to vaccinate helps overcome the opposing cultural pressure

imposed by hesitancy in the population, but a mandate would have to be stricter to achieve herd

immunity in a predominantly vaccine-hesitant population.
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Figure 3.2: External factors (vaccine mandates and vaccine scarcity) decouple equilibrium

levels of vaccine confidence from vaccination coverage. Heatmaps showing equilibrium

vaccine coverage and vaccine confidence levels with an accessible vaccine and no active

mandate (A, B), with an accessible vaccine and a lenient mandate (C, D) and an environment

with vaccines somewhat inaccessible (E, F). Assuming mixed-attitude couples might have the

most variability in their likelihood of transmitting vaccine confidence to their offspring, we vary

C1 = C2 (confidence transmission probability of mixed-attitude couples) on the vertical axis, and

maximum selection coefficient σmax (indicative of the perceived value of vaccinating offspring)

on the horizontal axis. A lenient mandate (C, D) is modeled by c0 = 0.3, c1 = c2 = 0.7, c3 = 0.99;

vaccine inaccessibility (E, F) is modeled by c0 = 0.01, c1 = c2 = 0.3, c3 = 0.7. Unspecified

parameters are given in Table 3.1. These simulations show an inverse correlation between

vaccination coverage and vaccine confidence at Cn < 0.5 under a lenient mandate, and Cn > 0.5

when vaccine access is limited. Baseline conditions (Table 3.1) are highlighted by black boxes in

each heatmap. To facilitate comparisons between panels, the mean and median for the section of

the heatmaps with C1 = C2 < 0.5 are presented in Supplementary Table S3.1.
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Figure 3.3: Vaccine mandates and inaccessibility drive different distributions of both

vaccination coverage and vaccine confidence. Phenotype and trait frequencies are plotted over

100 model iterations. Compared to baseline transmission levels (panel A, parameter values given

in Table 3.1), a lenient vaccine mandate (c0 = 0.3, c1 = c2 = 0.7, c3 = 0.99; panel B) leads to

increased vaccination coverage at equilibrium (black line) but decreased vaccine confidence

levels (magenta line). In contrast, when a vaccine is somewhat difficult to access (c0 = 0.01 ; c1 =

c2 = 0.3 , and c3 = 0.7; panel C), vaccination coverage is lower than in panel A but vaccine

confidence is higher. The specific simulations shown here are highlighted with black rectangles

on the heatmaps in Figure 3.2.
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Table 3.2: Change from Baseline Equilibrium Frequencies. Final equilibrium frequencies for

baseline, a lenient vaccine mandate, and a somewhat inaccessible vaccine are shown along with

the percent difference from baseline frequencies. Colored lines in the first row correspond to the

line colors in Figure 3.3. Negative changes are indicated by a red downward pointing triangle;

positive changes are indicated by green upward pointing triangle. A vaccine mandate leads to

increased vaccination among vaccine-hesitant individuals, and vaccine inaccessibility leads to

decreased vaccination and increased vaccine confidence among unvaccinated individuals.

Phenotype V+A+ ━ V+A−━ V−A+ ━ V−A− ━ V+ ━ A+ ━

Baseline Equilibrium
Frequencies 46.3% 9.7% 20% 24% 56% 66.3%

Percent Diff.
from Baseline Mandate 42.1%

(-9%)▼
19.1%
(97%)▲

14.6%
(-27%)▼

24.2%
(0.8%)▲

61.3%
(9%)▲

56.8%
(-14%)▼

Inaccessibility 34.4%
(-26%)▼

4.3%
(-56%)▼

41.2%
(106%)▲

20.1%
(-16%)▼

38.8%
(-31%)▼

75.6%
(14%)▲

When vaccines were somewhat inaccessible, vaccination coverage was noticeably

reduced overall, while vaccine confidence increased slightly across the parameter space.

Juxtaposed with the mandate scenario (Figure 3.2C-D), our vaccine scarcity models produce an

opposite deviation of vaccination coverage from vaccine confidence levels: when vaccines are

mandated, we observe increased vaccination coverage in low-confidence environments, and

when vaccines are inaccessible, we observe lower than expected vaccination coverage (<50%) in

a predominantly vaccine-confident environment (>90%) (Figure 3.2).

Compulsory vaccination may increase vaccination coverage at the expense of confidence,
while vaccine inaccessibility promotes confidence

In the three scenarios examined thus far—baseline (no mandate and accessible vaccines),

a lenient mandate, and somewhat inaccessible vaccines—most of the variability in equilibrium

frequencies across the parameter space occurs at confidence transmission levels between C1 = C2

= 0.4 to 0.6 (Figure 3.2). This threshold region separates definitively higher and definitively

lower vaccination coverage and vaccine confidence outcomes. The effect of actual and perceived

vaccine fitness (σ) is also most noticeable in this region of the heatmap: as cultural selection for

vaccination increases at any fixed probability of confidence transmission, vaccination coverage

and vaccine confidence levels at equilibrium are increased. Changes in vaccination and

confidence frequencies are not independent of each other, as these effects are the consequence of
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changes in phenotypic frequencies. Therefore, for each scenario, we plotted the temporal

dynamics of each phenotype (VA) and the vaccination (V+) and confidence (A+) traits at baseline

parameter values (Figure 3.3), then calculated the difference in frequency from baseline

equilibrium (Table 3.2). With an accessible vaccine that is not mandated (Figure 3.3A, Table

3.2), the phenotype frequencies of the system equilibrate generally with either vaccinated and

vaccine confident (V+A+) or unvaccinated and vaccine hesitant (V–A–) individuals most abundant

(Figure 3.3A, Table 3.2). Though these two phenotypes remain the most abundant when a

lenient vaccine mandate is implemented, the equilibrium frequency of vaccinated but

vaccine-hesitant individuals (V+A–) is greatly increased compared to baseline (Figure 3.3B,

Table 3.2). Interestingly, a mandate also results in a higher frequency of unvaccinated and

vaccine-hesitant individuals (V–A–), while reducing vaccinated and vaccine-confident individuals

(V+A+) in the population. Vaccine inaccessibility, on the other hand, resulted in approximately

double the frequency of unvaccinated but vaccine-confident (V–A+) individuals. In summary,

compared to baseline outcomes, implementation of a mandate increases vaccination coverage at

the expense of confidence by driving vaccination in hesitant individuals, and vaccine

inaccessibility promotes confidence despite low vaccination coverage by driving confidence in

unvaccinated individuals.

Vaccination and confidence frequencies are more variable when offspring beliefs are more
likely to differ from their parents’ beliefs

The clear disjunction between higher and lower vaccination (V+) and vaccine confidence

(A+) frequencies observed in Figure 3.2 is not observed when the probability of confidence

transmission is modulated for all couples (Figure 3.4). When mixed-attitude couples transmit

confidence to their offspring at high (C1 = C2 > 0.5) or low (C1 = C2 < 0.4) probabilities, which

skews population attitude frequencies to either highly confident or highly hesitant, the

subsequent offspring are more likely to vaccinate (in a confident population) or not vaccinate (in

a hesitant population) (Figure 3.2). Similarly, if all couple types are transmitting confidence at

lower probabilities or higher probabilities (i.e. C0, C1, C2, and C3 are all lower or higher,

respectively), vaccination frequencies will equilibrate at either lower levels or higher levels

(Figure 3.4A). However, if all couples are transmitting confidence at mid-range probabilities (or

C1 and C2 are closer to 0.5), the population equilibrates at more polymorphic frequencies, that is,

both forms of each trait coexist in the population at moderate frequencies.
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Equilibrium vaccination coverage increases as cultural selection for vaccination increases

in both mandated vaccines (Figure 3.4C, E) and vaccine inaccessibility scenarios (Figure 3.5C,

E); confidence frequencies remain more consistent across the range of cultural selection

pressures (Figure 3.4D, F, Figure 3.5D, F). When we model an increase in vaccine mandate

strictness (increased difficulty in obtaining exemptions), vaccination frequencies are increased

(Figure 3.4C, E). On the other hand, greater degrees of inaccessibility lead to larger reductions

in vaccination coverage (Figure 3.5C, E), and lower coverage occurs despite higher levels of

vaccine confidence
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Figure 3.4: Increasing mandate strictness and increased cultural selection drive vaccination

coverage . Heatmaps showing final vaccination coverage (A, C, E) and corresponding vaccine

confidence (B, D, F) after 100 time-steps while simultaneously varying all confidence

transmission probabilities (Cn; vertical axis) and maximum selection coefficient (σmax; horizontal

axis). We show an accessible vaccine with no mandate (c0= 0.01, c1= c2 = 0.5, c3 = 0.99) (A, B), a

lenient mandate (c0 = 0.3, c1 = c2 = 0.7, c3 = 0.99) (C, D), and a strict mandate (c0 = 0.5, c1 = c2 =

0.9, c3 = 0.99) (E, F). Cn values are set within the range indicated on the vertical axis with C0

taking the lowest value, C1 and C2 taking intermediate values, and C3 taking the highest value

(Table S2.3).
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Figure 3.5: Vaccine inaccessibility reduces vaccination coverage despite high levels of

vaccine confidence. Heatmaps showing final vaccination coverage (A, C, E) and corresponding

vaccine confidence (B, D, F) after 100 time-steps while simultaneously varying all confidence

transmission probabilities (Cn; vertical axis) and maximum selection coefficient (σmax; horizontal

axis). Cn values are set within the range indicated on the vertical axis with C0 taking the lowest

value, C1 and C2 taking intermediate values, and C3 taking the highest value (Table S2.3). We

simulate an accessible vaccine and no mandate (c0= 0.01, c1= c2 = 0.5, c3 = 0.99) (A, B), a

somewhat inaccessible vaccine (c0 = 0.01 ; c1 = c2 = 0.3 , and c3 = 0.7) (C, D) and an inaccessible

vaccine (c0 = 0.01, c1 = c2 = 0.1, c3 = 0.5) (E,F).

Changing the relationship between vaccination coverage and cultural selection can alter
vaccination behavior when the vaccine is accessible

In the previous analyses, we assumed that the cultural selection for vaccination would

begin to decrease from its maximum value as members of a population with widespread

vaccination coverage (exceeding 70% vaccination coverage, see Figure 2.1) might perceive a

reduced cost of the disease and thus a reduced pressure to vaccinate their children. To assess the

robustness of our model to different relationships between vaccination coverage and cultural
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selection pressures, for example representing variations in herd immunity criteria or in parent

priorities, we tested the same simulations with multiple cultural selection functions. We

examined the interaction between mixed-attitude pair confidence transmission probability (C1 =

C2) and a range of maximum cultural selection coefficients (σmax) for these different cultural

selection functions (shown in Figure S3.1A for σmax = 0.1). In line with cultural selection acting

primarily on the vaccination trait, most of the differences among the cultural selection functions

are observed in the vaccination equilibrium frequencies and not the confidence equilibrium

frequencies, particularly when no mandates or lenient mandates are imposed (Figure S3.1B-C).

Compared to the baseline function used in Figures 3.2-3.5 (also shown in Figure S3.1, column

3), when we reduce the vaccination coverage level at which “herd immunity” is achieved and σ

decreases, vaccination coverage is reduced most noticeably at the intersection of low values of

σmax and high values of mixed-attitude pair confidence transmission (Figure S3.1B-C, column

4). When the level required for herd immunity is increased, vaccination coverage is increased in

this low σmax high confidence transmission area of the heatmap (Figure S3.1B-C, column 2).

The overall patterns we observed with the original cultural selection function are robust to the

particular function we used. At higher values of C1=C2 and σmax (top right corner of the heat

maps), vaccination coverage was reduced when the σ function was more negatively correlated

with vaccination coverage (columns 3 through 6 in Figure S3.1). In addition, we observed that

the largest differences in vaccine coverage between cultural selection (σ) functions occurred

when vaccines were accessible and there were no mandates (Figure S3.1B); differences in the

cultural selection function had less of an effect on vaccination coverage when a lenient mandate

was imposed (Figure S3.1C), and had little effect on vaccination coverage when vaccines were

inaccessible (Figure S3.1D). The least variation is observed when vaccines are inaccessible:

across confidence frequencies, the cultural selection function did not meaningfully alter the

equilibrium vaccination coverage or vaccine confidence (Figure S3.1D). This result is intuitive,

since most differences between cultural selection functions occur in regions of high vaccination

coverage, and the simulations with inaccessible vaccines do not not lead to high vaccination

coverage for any parameter combination.

Discussion

Here, we build on the cultural niche construction framework proposed by (Anderson and

Creanza 2023) to model the cultural spread of vaccine attitudes and vaccination behavior in the
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presence of external forces imposed by two scenarios: vaccine mandates and vaccine

inaccessibility. Multiple factors influence an individual’s vaccine-related beliefs and a couple’s

decision to vaccinate their offspring, including their own vaccination status and their perception

of the relative risks of the disease and the vaccine. As such, it is important that we understand

how public health policies, such as vaccine mandates and barriers to vaccination, such as

geography or affordability, can shape vaccination cultures and thus affect public health. Using a

cultural niche construction approach allows us to explore the effects of the interplay between

external forces and cultural factors providing further insight into how vaccination cultures are

formed, maintained, and evolve.

With our initial model (Anderson and Creanza 2023), we showed that when population

traits are at or near an equilibrium, we can infer that a population with high vaccination coverage

will have low rates of vaccine hesitancy and vice versa. However, when there are external

pressures as modeled here, such as increased pressure to vaccinate or difficulty in acquiring

vaccination exemptions, an undercurrent of vaccine hesitancy can persist in a relatively

well-vaccinated population, potentially limiting the adoption of newly introduced vaccines. This

possibly contributes to the unexpected lag in uptake of newer vaccines, such as the COVID or

HPV vaccines, in communities with otherwise high vaccination rates (Gilkey et al. 2017; Hanson

et al. 2018; Wong et al. 2021). The perceived increase in hesitancy surrounding new vaccines

may actually be existing vaccine hesitancy becoming apparent. In addition, “fence sitters”, those

who have not made a firm stance regarding vaccines and thus could be more influenced by

targeted campaigns (Leask 2011), may develop higher levels of uncertainty about new vaccines

than their parents had about existing ones.

In contrast to the effect of vaccine mandates, by modeling vaccine inaccessibility we

illustrate another important pattern: reduced vaccination coverage in a vaccine-confident culture.

In a vaccine-scarce environment, an individual’s attitude regarding vaccines has less influence on

vaccination behavior due to the barrier imposed by resource availability. As a result, a population

may be undervaccinated despite holding vaccine-affirming beliefs. In addition, a health culture

previously shaped by vaccine inaccessibility could potentially ingrain specific behavioral

practices (for example, visiting the doctor only when a child is sick and not for a regular vaccine

schedule) that are not easily modified even if vaccines become more readily available. These

vaccine scarcity scenarios are most likely to exist in low- and middle-income countries in which
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vaccine acquisition, storage and/or distribution resources are insufficient (Smith, Lipsitch, and

Almond 2011; Mathieu et al. 2021; Burki 2021) whereas the opposite scenario (low vaccine

confidence–high vaccination coverage) after vaccine mandates is most common in developed

nations (Solís Arce et al. 2021). In summary, we find that vaccine mandates can result in high

vaccination coverage even in a culture of hesitancy, and that lack of access to vaccines can

produce the inverse: low vaccination coverage in a culture of confidence.

It is difficult, as with any system, to fully capture the complex reality of vaccine

hesitancy and vaccination behavior with a mathematical model. Caveats of this model include

the lack of empirical data to inform how we model the influence of vaccine confidence on

vaccination behaviors in the face of mandates or vaccine inaccessibility. In addition, our model

simplifies the process of human population turnover with discrete generations; in reality, of

course, population turnover is asynchronous and multiple generations can have cultural

interactions with one another (Anderson and Creanza 2023). However, this simple model is able

to demonstrate interesting scenarios that confirm the importance of understanding the culture of

the communities in which public health policies act, and how the cultural landscape might affect

specific outcomes. A community is most protected from VPD outbreaks if two conditions are

met: vaccination coverage achieves or exceeds herd immunity levels, and future vaccinations are

not threatened by underlying vaccine hesitancy. The effects that we observe as a result of varying

the cultural selection function suggest that an “unwavering” (positive) perception of vaccination

is better for maintaining higher levels of vaccination coverage, than one that varies with

vaccination coverage. This highlights a significant issue in increasing vaccination in the absence

of (severe) disease as perceptions are shaped by experience of both the disease and measures

used to address the disease. Since increasing vaccination coverage might require different

strategies than increasing confidence, we encourage public health policymakers to consider both

beliefs and behaviors patterns in their outreach efforts and information campaigns.

The results of our simulations are congruent to those observed in other behavior change

model studies (Verelst, Willem, and Beutels 2016). For example, Epstein et al. (Epstein, Hatna,

and Crodelle 2021) demonstrated using a “triple contagion” model, in which a disease, fear of a

disease, and fear of a vaccine can each be transmitted between individuals, that high vaccination

coverage may be achieved when fear of a vaccine is low and fear of the disease is high. Though

our model uses different methods of transmission, we arrive at similar conclusions; for example,
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our model predicts higher vaccination coverage when the cultural selection coefficient is high,

suggesting a higher perceived value of vaccination (and thus lower fear of the vaccine).

Similarly, faster spread of vaccine fear in the Epstein et al. study could be interpreted similarly to

higher probabilities of transmitting vaccine hesitancy (lower C1 = C2 values) in our model, and

we also observe reduced vaccination coverage in these scenarios.

In addition, an experimental study of the effects of COVID-19 vaccine scarcity (Pereira

et al. 2022) found that vaccine scarcity could decrease the willingness to vaccinate, but it did not,

however, affect the perception of risk or protection associated with the vaccine. Though the

perceived risk in our model is modulated according to vaccination frequency (that is, in our

model, perceptions are modulated by vaccination coverage), our simulations reveal an intuitively

similar pattern: vaccination is reduced overall when vaccines are scarce. However, while

perception may be modulated in our model, we do observe an increase in vaccine confidence

under conditions that result in low vaccination coverage. This is in line with the findings of

(Pereira et al. 2022) as vaccine-confident individuals may choose to forgo vaccinations for the

benefit of others if resources are limited, while still maintaining (and transmitting) their vaccine

beliefs. The Pereira et al. study, however, focused on adult vaccination with the COVID-19

vaccine, a novel vaccine that is not part of the traditional child vaccination schedule on which

our model was based. The differences between the vaccine target populations (e.g. child vs.

adult) and the interacting individual values (e.g. compassion for higher-risk individuals in

foregoing one’s own vaccinations when vaccines are scarce) may produce differing dynamics

requiring different public health approaches.

In sum, our model shows, in both mandate and inaccessibility scenarios, that the

probability of transmitting vaccine-positive attitudes is a strong predictor of whether future

vaccination coverage is high or low (Figures 3.2, 3.4-3.5). We also demonstrate that vaccine

efficacy and perceived value are important to maintaining sufficient levels of vaccination

coverage, especially if vaccine confidence is not being robustly transmitted (or maintained in

adulthood), regardless of vaccination scenario (Figures 3.2, 3.4-3.5). Thus, our model

demonstrates the importance of clear and accurate communication about vaccines even when

vaccination is compulsory and resulting coverage is high, to reduce the spread of inaccurate

information that can foster vaccine hesitancy and hinder the uptake of future vaccines. Taken

together, our model suggests that combatting low or declining vaccine uptake would take a
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sophisticated approach that targets the physical vaccination behavior (availability and mandates)

while simultaneously addressing a population’s constantly evolving vaccine perceptions.
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CHAPTER 4.

EXPLORING THE EFFECTS OF CULTURAL TRANSMISSION AND DECISION-MAKING

BIASES ON THE ACCEPTANCE OF NOVEL VACCINES

Introduction

Vaccine hesitancy and anti-vaccine sentiments have existed since Edward Jenner created

the smallpox vaccine in 1796 (Schwartz 2012), despite vaccination being safer than its

predecessor, variolation (Langer 1976b; Riedel 2005). However, today, vaccination remains an

established part of the routine standard of care in childhood health practices, with childhood

vaccination frequencies exceeding 90% in most of the developed world (Luman et al. 2005;

Ventola 2016). As vaccines continue to be developed and improved, the adoption of vaccines for

new diseases, new vaccines for existing diseases, or even new methods of delivery could be

faced with public reluctance. For example, in contrast to other vaccine-preventable diseases in

the developed world, the COVID-19 pandemic recently affected the daily lives of people around

the globe. Yet, despite the novelty of the disease, widespread fear and concern of contracting the

disease, and public health efforts to promote the vaccine, COVID-19 vaccination coverage has

fallen short of expected goals (Sallam 2021; Cénat et al. 2023; Curtis et al. 2022). Since the

choice to vaccinate is influenced by both external and internal pressures, these factors also affect

the rate of uptake, and thus the time it takes for a novel vaccination practice to be established as

part of a health routine.

Understanding and working within a cultural context and understanding how people

make decisions is important to improving and maintaining public health. Health decisions are

shaped by a number of personal and social factors, such as past experiences, current priorities,

media influences, and beliefs about the disease (Bury 1997; Clark and Weale 2012). These

factors may lead individuals to under- or overestimate their epidemiological risk (Voinson,

Billiard, and Alvergne 2015). Decision-making can be an “iterative” process – in which priorities

are revised in light of new information, to correct errors or to adapt to a changing environment

(Sharot et al. 2023; Clark and Weale 2012). In the same vein, individuals might reassess, for

example, their health beliefs and personal values during health crises or, less urgently, the

introduction of a new form of a routine health practice. Thus, priorities and decision-making
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dynamics could vary over the course of a lifetime, or from day to day. For instance, during the

initial vaccine introduction stage of the COVID-19 pandemic, people were more likely to express

an intention to vaccinate if they surmised that more of their social circle supported the vaccine

(Roy et al. 2022). This trend is consistent with studies of HPV and influenza vaccines: knowing

one’s social contacts had been vaccinated influenced an individual’s decision to vaccinate

themselves (Allen et al. 2009; Bruine de Bruin et al. 2019). In contrast, "established" vaccines

are often accepted as routine, and parents who decline childhood vaccines such as MMR most

commonly cite concerns about the side effects of the vaccine and a lower perceived vaccine

effectiveness and importance (K. F. Brown et al. 2010). Thus, the process of making decisions

about a novel vaccine differs from that of an established vaccine—there is limited information, a

lack of experience, and perhaps new considerations on which individuals base their vaccination

decision.

It has become increasingly common to incorporate aspects of human behavior and the

social environment, such as fear, information spread, and social networks, into quantitative

models of infectious disease dynamics (e.g (Perra et al. 2011; Mao and Yang 2012b; Bauch 2005;

Chauhan, Misra, and Dhar 2014; Funk, Salathé, and Jansen 2010; Tanaka, Kumm, and Feldman

2002; Epstein et al. 2008b; Epstein, Hatna, and Crodelle 2021)). Since culturally specific

behaviors have been linked to the spread and endemism of disease (Alpers 2008; Raoult et al.

2013; Yoder and Dworkin 2006; Gastañaduy et al. 2016; Wolff and Madlon-Kay 2014; Bahta

and Ashkir 2015), models of cultural evolution have also been employed to understand how

cultural forces such as homophily and social learning interact with the disease epidemiological

landscape to shape health cultures (Anderson and Creanza 2023, 2022; Verelst, Willem, and

Beutels 2016).

An inaccurate yet prevalent assumption of behavior adoption and social learning models

is that the rate of susceptibility to the adoption of a behavior is proportional to the prevalence of

the behavior in the population (Walters and Kendal 2013). Models incorporating decision making

typically assume agents are rational and thus make decisions that maximize their payoffs (Ndeffo

Mbah et al. 2012; Bauch 2005; Voinson, Billiard, and Alvergne 2015). Disease transmission

models tend to also incorporate the assumption that individuals make an objective evaluation of

epidemiology and statistical probability (Voinson, Billiard, and Alvergne 2015). However,

people also make vaccination decisions based on non-epidemiological factors, such as advice

75

https://paperpile.com/c/PPmoaU/XXuJu
https://paperpile.com/c/PPmoaU/tv3OZ+GYtn0
https://paperpile.com/c/PPmoaU/PZNkX
https://paperpile.com/c/PPmoaU/nR0J4+5OE6W+bDeXB+4v9yh+skC36+DoW2a+9gP7Q+vEbfj
https://paperpile.com/c/PPmoaU/nR0J4+5OE6W+bDeXB+4v9yh+skC36+DoW2a+9gP7Q+vEbfj
https://paperpile.com/c/PPmoaU/nR0J4+5OE6W+bDeXB+4v9yh+skC36+DoW2a+9gP7Q+vEbfj
https://paperpile.com/c/PPmoaU/hxXtG+eeLEe+Cv9N4+ZBDEC+qQ4Wn+9wnu9
https://paperpile.com/c/PPmoaU/hxXtG+eeLEe+Cv9N4+ZBDEC+qQ4Wn+9wnu9
https://paperpile.com/c/PPmoaU/hxXtG+eeLEe+Cv9N4+ZBDEC+qQ4Wn+9wnu9
https://paperpile.com/c/PPmoaU/Cznug+9LaXm+MOfg0
https://paperpile.com/c/PPmoaU/Cznug+9LaXm+MOfg0
https://paperpile.com/c/PPmoaU/u9nbQ
https://paperpile.com/c/PPmoaU/kJACP+bDeXB+ilMGt
https://paperpile.com/c/PPmoaU/kJACP+bDeXB+ilMGt
https://paperpile.com/c/PPmoaU/ilMGt


from others and their own research (Brunson 2013b, [a] 2013). In addition, humans’

decision-making skills are often inefficient at dealing with uncertainty and computing probability

when considering epidemiological factors (Voinson, Billiard, and Alvergne 2015; Gigerenzer and

Selten 2002). To address this issue, researchers have explored the effects of heuristics—shortcuts

humans use to make decisions (Todd and Gigerenzer 2012). Decision-making biases, sometimes

known as cognitive biases, are one type of heuristic that humans often use; in the context of

health behaviors, researchers have investigated conformity bias, when individuals are

disproportionately likely to adopt the most common belief or behavior, and content bias, when

individuals are more likely to adopt traits with particular characteristics (Walters and Kendal

2013; Thoma et al. 2021). This research has shown that the strength of conformist tendencies is

linked to how likely a behavior is to become established in a population. However,

anti-conformism, the tendency to adopt the minority trait in a population, has also been theorized

to explain within-group similarity among human cultural groups and guard against population

collapse in periods of high environmental variation (Boyd and Richerson 1988; Eriksson and

Coultas 2009; Denton et al. 2020; Grove 2019; Latané and Wolf 1981).

Decision-making biases do not operate independently, as they interact with surrounding

social factors such as the behaviors and beliefs of one’s direct contacts and other relationships

which influence decisions. Decision-making biases are also diverse and employed differentially

among individuals (Blumenthal-Barby and Krieger 2015; Efferson et al. 2008; Morgan et al.

2012). As such, homophily plays a key role in driving or hindering the effects of cognitive

biases. Homophily, the propensity for individuals to choose social contacts and mates who are

similar to themselves (Burley 1983; Creanza and Feldman 2014; Creanza, Fogarty, and Feldman

2012; Gimelfarb 1988), can shape one’s social circle and may also influence the ways in which

an individual interacts with these contacts. An association between decision-making biases and

homophily may present itself simply as such: consider someone who surrounds themself with

similar people, or preferentially seeks out information from specific sources. If this person holds

conformity bias, they might be inclined to adopt the beliefs of those in the circle they

manufactured. However, if this person is anti-conformist, they might be less inclined to adopt the

same beliefs as those in their immediate surroundings.

As discussed, a number of factors, including the iterative process of priority setting and

differences in decision-making biases, could partially explain fluctuating rates of established
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vaccine uptake and stochastic rates of novel vaccination (Azarpanah et al. 2021; Luz,

Nadanovsky, and Leask 2020; Walters and Kendal 2013; Voinson, Billiard, and Alvergne 2015).

Taking note of and expanding on the considerations presented in previous research (Walters and

Kendal 2013; Voinson, Billiard, and Alvergne 2015)(Voinson, Billiard, and Alvergne 2015), we

propose a model that captures the rapid dynamics of vaccine beliefs and behaviors when a novel

vaccine is deployed, incorporating stochasticity and variations in decision-making patterns. We

consider the effects of the distribution of three forms of decision-making biases in the population

(such that cultural traits can be transmitted in conformity biased, anti-conformity biased, and

unbiased ways). We also incorporate the effects of distal opinion leaders (thought influencers

who can transmit cultural information without direct contact with an individual) and homophilic

interactions with social contacts. We show that the spread of vaccine confidence and the adoption

of a novel vaccine is differentially impacted by the distribution of biases in a population.

Methods

In this agent-based model, we simulate a population of i×j individuals, arranged on a

two-dimensional matrix such that the element Mi,j of a matrix is associated with individual (i, j)

We construct four i×j matrices, with each matrix holding one of four qualities attributed to each

individual (i, j): a vaccination state (vaccinated (V+) or unvaccinated (V–)), an attitude state

(vaccine confident (A+) or vaccine hesitant (A–)), a disease state (uninfected/susceptible (D0),

infected (D+), or recovered (D–) ), and “bias” state (anti-conformity biased (B–), unbiased (B0),

conformity biased (B+)). At the start of each simulation, all individuals (i, j) in the population are

unvaccinated (V–), and other parameters are assigned according to pre-specified probabilities

(Table 4.1). At initialization, we specify the attitude threshold, i.e. the percent of the initial

population to be vaccine confident (A+), and the disease threshold, the percent of the initial

population that is infected (D+), then the attitude state and disease state of each individual in the

matrix is assigned randomly according to these specified probabilities. Each individual (i, j) is

also assigned one of the three decision-making biases according to pre-specified probabilities

(Table 4.1).

There are two influencers in this model: a vaccine-confident influencer and a

vaccine-hesitant influencer. Influencer conditions (the attitude of the influencer, and their

“reach,” the percent of population in each timestep that has the chance to adopt the influencer’s

beliefs) and homophily presence (whether individuals change location in the matrix at random or
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based on their vaccine attitude) are also initialized at the start of the simulation to the values in

Table 4.1. The results presented herein are those of a population of 400, run for 100 timesteps.

Table 4.1: Parameters and initial conditions, with citations when values were informed by

the literature

Parameter Initial value
Vaccination state (V+ vaccinated, V− unvaccinated) States change within simulation
Attitude state (A+ vaccine confident, A– vaccine hesitant) States change within simulation
Starting confident population (confidence threshold) 0.8
Disease state (Susceptible (D0), Infected (D+), Recovered
(D–))

States change within simulation

Initially infected (disease threshold) 0.2
Bias: (Novelty (B–), Unbiased (B0), Conformist (B+) Initialized with various combinations
Probability of infection (not previously infected or
vaccinated; P(I)) (Alimohamadi, Taghdir, and Sepandi
2020; World Health Organization 2021)

0.3

Probability of infection if vaccinated (P(I|V+)) (Lipsitch
et al. 2022)

0.1

Probability of infection if previously infected (not
vaccinated) (P(I|D–)) (N. N. Nguyen et al. 2022)

0.16

Reach of confident influencer (Shearer, Forman-Katz,
and Khuzam 2021)

0.3

Reach of hesitant influencer (Shearer, Forman-Katz, and
Khuzam 2021)

0.4

Disease Transmission

At the start of each simulation we set a disease threshold value that indicates the initial

frequency of infected individuals in the population. We also specify three probabilities of

infection: the probability of infection if an agent has never been infected or vaccinated (P(I)); the

probability of infection if an agent has never been infected but is vaccinated (P(I|V+)); vaccine

efficacy parameter); and the probability of infection if an agent has been previously infected but

is not vaccinated (P(I|D–); infection-induced immunity parameter)). If an agent has been infected

and is vaccinated (both D– and V+), the probability of infection is the product of P(I|V+) and

P(I|D–).
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Our goal with this model is not to study the disease dynamics in particular, but to provide

insights with regards to how cultural and decision-making tendencies interact with disease

epidemiology to affect vaccination and vaccine belief outcomes. As such, we employ a

simplified pattern of disease transmission, focusing primarily on disease as a factor influencing

vaccine beliefs and vaccination behavior. After initialization, the probability that an individual

becomes infected in subsequent timesteps depends on 1) whether they were exposed to the

disease, that is, whether they were in immediate contact with an infected individual in the

previous timestep, 2) whether they are vaccinated and 3) whether they had been previously

infected. After recovery, individuals are assigned the state D– (recovered with infection-induced

immunity status). We also included the introduction of a random infection to the population

every five timesteps, since the population is not meant to be a completely closed system.

Vaccination

In this model, individuals vaccinate themselves based on their vaccine attitude (A+ or A–),

their decision-making bias (B–, B0, B+) and the number of vaccinated and infected individuals in

their immediate contacts (Figure 4.1). There are four primary assumptions on which we

construct vaccination probability: 1) Vaccine-confident individuals are more likely to vaccinate

themselves than vaccine-hesitant individuals regardless of social network composition

(vaccinated and infected proportions); 2) Individuals who hold a conformity bias are more likely

than unbiased and anti-conformity biased individuals to vaccinate as the number of vaccinated

individuals in their contacts increases, and those who hold an anti-conformity bias are more

likely to vaccinate as the number of unvaccinated contacts increase; 3) Both vaccine-confident

and vaccine-hesitant individuals are more likely to vaccinate themselves as the number of

infected individuals in their direct contacts increases (increased risk of infection); 4) Confident

individuals with an unbiased decision-making strategy are more likely to vaccinate than hesitant

individuals with unbiased strategy. Based on these assumptions, we constructed a set of functions

that we use to calculate partial vaccination probabilities: PD(V): vaccination probability based on

the number of infected contacts (Figure 4.1A) and PV(V): vaccination probability based on the

number of vaccinated contacts (Figure 4.1B). Taken together, final vaccination probability

(PF(V)) is the product of the infection frequency-based probability (Figure 4.1A), the disease

infectivity (P(I)), vaccination frequency-based probability (Figure 4.1) and vaccine efficacy (1 –
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P(I|V+)) (Equation in Figure 4.1 caption). Once vaccinated, individuals remain vaccinated for

the remainder of the simulation.
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Figure 4.1: Vaccination Probability Functions. Vaccination probability functions were

constructed according to specific assumptions outlined above. The final vaccination probability

PF(V) is the function of two other probabilities: A) the probability (PD(V)) that an agent decides

to vaccinate (vertical axis) based solely on their vaccine attitudes (confident (A+) in black,

hesitant (A–) in green) and the number of infected individuals in their direct contacts , and B) the

probability (PV(V)) that an agent decides to vaccinate based solely on their bias (red –

anti-conformist (B–), black – unbiased (B0), blue – conformist (B+)), their attitude (solid –

confident (A+), dashed – hesitant (A–)), and the number of vaccinated individuals in their direct

contacts . These calculations are then used to determine PF(V) via the equation

. Functions in panel B were modified𝑃
𝐹
(𝑉) = 𝑃

𝐷
(𝑉) × 𝑃(𝐼) × 𝑃

𝑉
(𝑉) × (1 − 𝑃(𝐼|𝑉+))

from (Anderson and Creanza 2023).

Attitude Transition

During each timestep, an individual is able to change their vaccine attitude (i.e. transition

from vaccine hesitant to vaccine confident or vice versa). The probability that an individual

changes their attitude is influenced by their bias, the attitudes of their direct contacts, and

whether they follow an influencer. The “influencer” in our model is an individual outside of the

population (external force) who influences the attitude transition of a predetermined proportion
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of the population at each timestep. There are two potential external influencers in our model, a

vaccine-confident (A+) influencer and a vaccine-hesitant (A–) influencer. At initialization, we set

the reach of each influencer, i.e. the proportion of the population following the influencer (Table

4.1). During each timestep, individuals are chosen at random, within the constraints of the

influencer's reach, to be “followers”. As described in more detail below, if the individual is a

follower, their attitude can also change in response to the influencer, depending on whether their

attitude matches the attitude(s) of their influencer(s) (Figure 4.3).

The initial probability that an individual changes their attitude state is determined by a

function informed by the individual’s bias (anti-conformity, unbiased or conformity) and the

number of surrounding vaccine-confident individuals (Figure 4.2); we use one set of functions

for confident to hesitant transitions and a complementary set of functions for hesitant to

confident transitions. These functions were constructed according to the following assumptions:

a confident individual with a novelty bias is more likely to become vaccine hesitant as more of

their direct contacts become vaccine-confident, whereas conformity-biased confident individuals

are less likely to change their attitude state under the same conditions (Figure 4.2A). The

opposite is assumed for vaccine-hesitant individuals: those who hold a conformity bias are more

likely to become vaccine–confident as more of their direct contacts become vaccine confident,

whereas vaccine hesitant individuals with anti-conformist bias individuals are more inclined to

remain vaccine hesitant (Figure 4.2B). Unbiased individuals, regardless of attitude, remain 50%

likely to change their belief independent of the frequency of confident individuals in their direct

contacts. (Figure 4.2).
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Figure 4.2: Attitude Transition Probability Functions. Vaccination probability functions were

constructed according to specific assumptions outlined above (equations modified from

(Anderson and Creanza 2023) A) The probability of a vaccine-confident agent transitioning to

vaccine hesitant based on their decision-making bias (red – anticonformist (B–), black – unbiased

(B0), blue - conformist (B+)), and the number of confident individuals in their direct contacts. B)

The probability of a vaccine–hesitant agent transitioning to vaccine-confident.

If an individual is a follower, their transition probability may be further adjusted based on

the individual’s attitude, and the attitude(s) of their influencer(s) (Figure 4.3). If an agent is

following a single influencer with whom they share the same attitude, the probability of attitude

transition is unchanged. However, if the agent is following both the confident and hesitant

influencers then the probability of attitude transition transition is reduced by some factor. If the

agent is following a single influencer of the opposite attitude, then the probability of transition to

the influencer’s attitude is increased.
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Figure 4.3: Description of the effect of the influencer on follower attitude transition.

Attitude transition probability is reduced if an agent is following both influencers, but increased

if an agent is following an influencer with the opposing attitude. An example with a confident

agent is shown.

Homophily

A simulation can be run with or without the effects of homophily, i.e. with attitude-based

relocation to another position in the matrix or with random relocation. If the simulation is run

with homophily enabled, a prespecified number of individuals, selected at random, may switch

positions in the matrix based on their attitude state. Selected individuals may relocate to

positions where they will be surrounded by more individuals of the same vaccine attitude

(homophily). During each timestep, two individuals are chosen at random (Agent 1 and Agent

2), and we then sum the number of vaccine-confident individuals in each agent’s direct contacts.

If Agent 1 is vaccine-confident and Agent 2 is vaccine-hesitant, and there are more

vaccine-confident agents currently surrounding Agent 2 than surrounding Agent 1, then there is a

probability that Agent 1 will switch places with Agent 2. Similarly, if Agent 1 is vaccine-hesitant

and Agent 2 is vaccine-confident, and there are less vaccine-confident people surrounding Agent

2, than surrounding Agent 1, then Agent 1 may switch places with Agent 2. If Agent 1 and Agent

2 share the same attitude, or a possible switch is unfavorable to any party, no switch occurs. This

process continues for a prespecified number of individuals.
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If the simulation is run without homophily, selected individuals may change locations

within the matrix at random, that is, without attitude dependence. We expect homophily to

subsequently decrease attitude transitions, since an individual is more likely to be near clusters of

other individuals who share beliefs with one another and attitude transitions depend on the

fraction of neighbors with each belief.

Results

Temporal Analysis and Homophily Effects

To determine whether dynamics differed between populations with different distributions

of decision-making biases, we held all other parameters at default values (Table 4.1) and tracked

the population frequencies of confident, vaccinated, infected, and recovered individuals over

time for six distributions of decision-making bias in the population (Figure 4.4–4.5).

Concurrently, we tested whether the presence of homophily had an effect on outcomes (compare

Figures 4.4–4.5 top row vs. bottom row). The effect of homophily was negligible except when

the total population (Figure 4.4C, F) or majority of the population (Figure 4.5A, D) is

conformity biased. In these higher conformity-biased environments, the presence of

homophily-motivated movement reduces maximum average vaccination frequency achieved by

the end of both simulations (Figure 4.4C, F and Figure 4.5A, D), but reduces confidence

frequency in only the all-conformist environment (Figure 4.4C-F).

A homogeneously conformist population and a homogeneously anti-conformist

population display other notable patterns. Only when the population is homogeneously

conformist is the confidence increased from the starting frequency (Figure 4.4C, F), and though

initially reduced, confidence is highly stochastic in a population that consists solely of novelty

biased individuals (Figure 4.4A, D ).

Using a threshold of 70% vaccination coverage as a proxy for herd immunity

(demarcated by the horizontal dashed line on our line plots (Figures 4.4-4.5)), these tests show

no significant effect of bias distribution or influencer effect (not shown, see discussion) on time

to herd immunity. Even though individual simulations may have resulted in herd immunity

frequencies at later timesteps, on average 70% vaccination was achieved for all tests before 10

timesteps.
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Figure 4.4: Temporal analysis of trait dynamics with homogeneously biased population.

Each plot was created by running 10 simulations and plotting the average frequency of A+ (blue),

V+ (black), D– (yellow) and D+ (red) at each timestep. Initial parameters for each simulation were

set to those shown in Table 4.1 while varying population bias distribution– homogeneously

anti-conformity-biased population (A, D); homogeneously unbiased population (B, E) and

homogeneously conformist-biased population (C, F). Each simulation was run with

homophily-based movement (D–E) and without homophily, i.e. random relocation (A–C).

86



Figure 4.5: Temporal analysis of trait dynamics with heterogeneously biased population.

Each plot was created by running 10 simulations and plotting the average frequency of A+ (blue),

V+ (black), D– (yellow) and D+ (red) at each timestep. Initial parameters for each simulation were

set to those shown in Table 4.1 while varying population bias distribution:individuals are either

anti-conformist or and conformist-biased, with higher conformist frequencies (A, D); individuals

can be anti-conformist, conformist, or unbiased (B, E) and all individuals are either

anti-conformist or conformist biased, with higher novelty frequencies (C, F). Each simulation

was run with homophily based movement (D–E) and without homophily, i.e. random relocation

(A–C).

Sensitivity Analysis

Next, we conducted a sensitivity analysis, varying the probability of infection if an agent

has never infected or vaccinated (P(I)) and the probability of infection if an agent has never been

infected but is vaccinated (P(I|V+)), under two decision-making bias scenarios: 1) all biases

present in the population at proportions B– = 0.4, B0 = 0.2, B+ = 0.4 (Figure 4.6A-B, and 2) a

homogeneously conformist population (Figure 4.7A-B). For each pair of conditions, we plot the

average vaccination and confidence frequencies of 10 simulations at each of 100 timesteps.

These simulations are run with homophily-based relocation, and all other parameters are as listed

in Table 4.1.
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If individuals are completely susceptible to infection (never infected and unvaccinated;

P(I)>0), the model produces a tradeoff between vaccine efficacy (1-P(I|V+)) and the probability

of infection (Figure 4.6B and 4.7B). Vaccine uptake is reduced when the probability of vaccine

breakthrough infections is higher (Figure 4.6B and 4.7B), while vaccine uptake is increased

when the risk of infection to completely susceptible individuals is higher (Figure 4.6B and

4.7B). This behavior is more readily observed in the heterogeneous population (Figure 6B), as

the homogeneously conformist population exhibits more irregularities in the pattern of

vaccination uptake (Figure 4.7B).

Interestingly, we note that population confidence and vaccination frequency patterns do

not mirror one another in the simulations with a heterogeneously biased population (Figure 4.6).

That is, confidence frequencies under particular conditions do not predict vaccination

frequencies (Figure 4.6). Also, in contrast to vaccination, varying the parameters tested did not

lead to a distinctive pattern of confidence adoption in the heterogeneous population (Figure 4.6);

all simulations represented in the heatmap have roughly similar confidence levels. The average

final confidence frequency for each condition approached midrange values (~0.6), both when

varying the probability of infection (P(I) of completely susceptible individuals) and varying the

starting vaccine confidence (A+) frequency in conjunction with the probability of infection

(vaccinated) (Figure 4.6A, C). Vaccination frequencies, however, responded differentially to

each case: low vaccination uptake was linked to both low risk of infection and low vaccine

efficacy (Figure 4.6B), but vaccination frequencies were mostly consistent at each level of

vaccinated probability of infection despite the variations in starting confidence (Figure 4.6D).
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Figure 4.6: Confidence frequencies remain stable as vaccination uptake is affected by

infection probabilities in a population with heterogeneous decision-making biases. Each heat

map shows the average confidence frequency (in blue; A, C) and vaccination frequency (in

black; B, D) at the final timestep (100) of 10 simulations at each of the conditions specified on

the axes in a population with heterogeneous decision-making biases (B– = 0.40, B0 = 0.20, B+ =

0.40). Panels A and B show the outputs at various susceptible infection probabilities (vertical

axis) and vaccinated probability of infection (horizontal axis), and (C, D) show the outputs of

varying the starting confidence frequencies in the population (vertical axis) and the probability of

breakthrough infection for vaccinated individuals (horizontal axis). The median average

frequency of each heat map is shown.
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Similarly, in the homogeneously conformist population, there does not appear to be a

pattern in final confidence level in response to variations in infection probabilities (Figure 4.7A,

C). However, unlike in the heterogeneous population, confidence and vaccination frequencies in

the homogeneously conformist population roughly mirror each other (Figure 4.7). This

population also exhibits sensitivity to initial confidence frequencies in the population (Figure

4.7C-D). When initial confidence frequency in the homogeneous population is varied alongside

breakthrough infection probability for vaccinated individuals, average confidence frequencies at

100 timesteps remain higher at higher initial frequencies and remain lower at lower initial

frequencies (Figure 4.7C, D). In this population, vaccination patterns correspond to confidence

patterns, i.e, vaccination frequencies are higher if confidence frequencies are higher and lower

when the population is hesitant (Figure 4.7C, D).
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Figure 4.7: Confidence and Vaccination dynamics are sensitive to initial confidence in a

homogeneously conformist population. Each heat map shows the average confidence (in blue;

A,C) and vaccination (in black; B, D) frequency at the final timestep (100) of 10 simulations at

each of the conditions specified on the axes in a homogeneously conformist population (B– = 0,

B0 = 0, B+ = 1). Panels A and B show the outputs at various susceptible infection probabilities

(vertical axis) and probability of breakthrough infection for vaccinated individuals (horizontal

axis), and panels C and D show the outputs of varying the starting confidence frequencies in the

population (vertical axis) and the probability of infection for vaccinated individuals (horizontal

axis). The median average frequency of each heat map is shown.
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Discussion

As humans need to make many decisions each day, our conscious and subconscious

minds use a variety of decision-making shortcuts (heuristics). These approaches are not without

error and occasional irrational outcomes, and those shortcuts that can be predicted by the

characteristics of a trait or the frequency of a trait in a population are often called cognitive or

decision-making biases. Many theoretical studies have considered the effects of two

frequency-dependent decision-making biases, namely conformist bias and anti-conformist bias,

compared to random imitation (unbiased transmission) (Efferson et al. 2008; Denton et al. 2020;

Walters and Kendal 2013; Grove 2019). Since they affect health-related decisions, it is important

to understand how these decision-making biases may affect the adoption of novel health

information and practices. Biases interact with the information provided by our social networks

and a variety of other sources available to us. In fact, the vaccination characteristics of a parent’s

social network have been shown to be more predictive of parent vaccination decisions than their

own vaccination characteristics (Brunson 2013a). The stochasticity created by these biases,

especially when a population has heterogeneous biases, may also contribute to fluctuations in

vaccination adoption rates and the lower-than-expected adoption of novel vaccines in otherwise

highly vaccinated regions. In this study, we use an agent-based model to elucidate the effects of

various decision-making biases on the adoption of a novel vaccine and the spread of vaccine

confidence in a population.

Increasing the accessibility of accurate information about vaccines is one way of

combating vaccine hesitancy (Dror et al. 2020; Jacobson, St Sauver, and Finney Rutten 2015).

However, this type of approach might be less effective than expected due to the existence of

anti-vaccination echo chambers—closed environments in which participants disproportionately

encounter information, opinions, and beliefs that reflect and reinforce their preexisting beliefs

(Diaz Ruiz and Nilsson 2023; Cinelli et al. 2021; C. T. Nguyen 2020), fueled in part by

confirmation bias—the tendency to search for, interpret or remember information in a manner

that confirms or supports one’s existing beliefs (Nickerson 1998; Pohl 2004). The decreased

vaccination and confidence frequencies in the presence of homophily likely represents an

echo-chamber-like effect (Figure 4.4). If individuals are choosing to surround themselves with

similar individuals and, at the same time, the probability of attitude transition is dependent on the

attitudes of surrounding contacts, a small-scale social environment is created in which
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vaccine-hesitant individuals are less likely to transition to confidence because there becomes

limited exposure to individuals of the opposite attitude. As a result, the level of vaccine

confidence and vaccination in a population in which individuals exhibit homophilic tendencies is

lower than that in which social circles are randomly formed. This effect may also be amplified in

a homogeneously conformist population, as vaccine-confident individuals who find themselves

in majority hesitant circles are most likely to adopt the hesitant attitude (as opposed to if they

were unbiased or anti-conformist).

We only explored the effects of frequency-dependent bias in our simulations, in so much

as individual decision-making biases interact with vaccination and confidence frequencies to

either drive or hinder vaccination behavior or attitude transition. However, the characteristics of

cultural traits, the quality of information about those traits, and the “prestige” of the information

source have all been shown to affect behavior adoption (Henrich 2001; Slater and Rouner 1996;

L. L. Cavalli-Sforza and Feldman 1981; Henrich and Boyd 2002; Fogarty et al. 2017). One way

in which we have accounted for the characteristics of the vaccine is via the vaccine-efficacy

parameter. However, further development of the model could include, for example, a system that

represents varying quality of vaccine information as vaccine frequencies increase, and/or varying

prestige among agents and influencers, which would inform attitude transition probabilities.

Though the reach of the influencer is significant in this current model (30% and 40% of

the population), the effect of the influencer on the outcome of the simulations is quite small

(adding only 0.05 to an initially calculated probability of attitude transition of 0, such that the

added effect is reduced as transition probability increases to prevent a probability of greater than

1. Incorporating more variation among agents’ interactions with influencers, as well as variations

in influencer effect, could reveal more interesting patterns of trait adoption and provide insight

into the information–source–adoption structure surrounding health-related information.

An agent may find itself in a position that could result in possible cognitive dissonance,

i.e., surrounded by mostly agents with the opposite attitude or only following a single influencer

with the opposite belief. Some research suggests that being surrounded by conflicting beliefs

might make individuals less likely to change their mind instead of more likely (Sharot et al.

2023). In the current framing of the model, an agent is not necessarily less inclined to adopt the

opposite belief in environments in which the opposite belief is of higher frequency or presented

by highly influential sources (unless anti-conformist). This creates another avenue of future
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exploration with this model—the effects of cognitive dissonance. This observation also prompts

the question, do social networks change to accommodate a counterintuitive response to opposing

information? Are those who exhibit this obstinate response to conflicting information more or

less likely to to use homophily when choosing social contacts or to have social networks of

particular characteristics, for example in regards to size or distribution of beliefs?

Finally, this work prompts some larger questions about health decisions. In particular,

when does a vaccine cease to be novel? Does its novelty depend on human consensus,

chronological time that has passed since the introduction of the vaccine, or stability of vaccine

adoption? Since vaccination beliefs and behaviors may differ between established and novel

vaccines, knowing this point of transition is important to accurately modeling vaccine uptake.

Overall, we predict complex short-term evolutionary dynamics when a novel vaccine is

introduced to a population; these dynamics can be affected by the cultural transmission of ideas

between connected individuals and from cultural influencers external to the population, but,

importantly, they are meaningfully affected by the decision-making biases of individuals

themselves.
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CHAPTER 5. DISCUSSION

Mathematical models are essential tools in the public health toolkit. Historically,

epidemiological mathematical models have primarily focused on the transmission of infectious

agents, though more recently the importance of individual behaviors in predicting

population-level emergent trends has become increasingly salient (Perra et al. 2011; Azizi et al.

2022). There is, however, still a need for understanding the cultural contexts driving changes in

behaviors over time and the pace of these cultural evolutionary changes, both on an individual

and population scale.

My dissertation work sought to expand the pool of mathematical models related to public

health, particularly models that incorporate human behaviors, by integrating themes and

techniques from the field of cultural evolution. Whereas behavior-change models generally

examine changes in behavior within a population, cultural evolutionary theory allows behaviors

to be tracked over multiple generations, which is particularly useful when examining diseases

that can be prevented by childhood vaccines and thus involve inter-generational interactions.

Also, the frameworks commonly employed by existing models often assume population

homogeneity and rational decision making, which inaccurately characterize behavioral and belief

dynamics that occur during times of uncertainty or when individuals are faced with unvetted

information. Combining cultural evolutionary considerations with agent-based modeling

approaches could better capture this stochasticity. Using both a discrete-time deterministic

framework and agent-based modeling techniques, I mapped vaccine confidence and vaccination

frequencies under various circumstances and considerations including the effects of

intergenerational (vertical) and extra-parental (oblique) transmission (Chapter 2 and Chapter

3), vaccination mandates and vaccine inaccessibility (Chapter 3), homophily and social network

influences (Chapters 2–Chapter 4), perception of disease risk and vaccination benefit (Chapter

2 and Chapter 3), and decision-making biases (Chapter 4). In Chapter 2 and Chapter 3, I

focus on childhood vaccination practices , then shift focus to self-vaccination with a novel

vaccine in Chapter 4.

My work reveals that parental transmission of vaccine confidence drives vaccination in

later generations, and preferential mate-choice (homophily) can shift population frequencies of

vaccine confidence and vaccination coverage towards one extreme or the other. Cultural
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selection (the overall deviation from the expected level of vaccination which can be linked to the

public perception of the vaccine) is important for combatting the effects of high vaccine-hesitant

homophily. I was able to model scenarios that resulted in intuitively “conflicting” outcomes:

environments with vaccine mandates could produce high vaccination coverage with lower

confidence frequencies, while environments with vaccine inaccessibility could produce lower

vaccination coverage despite higher confidence frequencies. Finally, my model of novel vaccine

adoption reveals that heterogeneity of decision-making biases in a population can differentially

affect both vaccine confidence and vaccination frequencies.

As with any model, we cannot fully capture the complex interactions between beliefs,

behaviors, and the environment that shape the public health landscape. Therefore, the models

presented here have the necessary caveat of oversimplification. Simple models, however, are a

good starting point to help researchers clarify and test assumptions about a complex system,

including the effects of representing similar scenarios in multiple ways (Tedeschi 2006). Indeed,

by modeling multiple interacting cultural processes, our model has the flexibility to explore the

effects of altering trait dynamics through various mechanisms. For example, in Chapter 3, I

modulated parameters that allowed parental beliefs to influence behaviors to simulate external

forces affecting vaccination behaviors, focusing on vaccine exemption-seeking behavior and

parental motivation to overcome barriers to vaccination; my rationale was that parents’ beliefs

would have less influence over their behaviors when external forces made vaccines less

accessible or more compulsory. However, if I were to interpret, for example, barriers to

vaccination as adding a greater cost to obtaining a vaccine (higher cultural selection against

vaccination, which would result in fewer individuals vaccinated than expected), I could also

modulate the cultural selection parameter to model the increasing or decreasing barriers to

vaccinations. Both would result in a reduction in vaccination coverage, but via different means.

Being able to model these differential effects is important especially in designing intervention

strategies which can vary based on target population or healthcare intervention.

The models presented here provide a unique way of viewing vaccine belief-behavior

interactions. Cultural evolutionary theory allows us to treat cultural traits as heritable, and the

niche construction framework provides an avenue to explore how one cultural trait and another

that affects its transmission are propagated in a population. The frameworks on which these

models are based are generalizable, in that they can be used to model a variety of circumstances.
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The model presented in Chapter 2 and Chapter 3 can be readily applied to scenarios in which

the effects of a parental behavior are long-lasting and potentially influenced by beliefs. For

example, other aspects of childrearing such as formula feeding, sleep training, circumcision,

attachment parenting, and homeschooling could provide additional avenues of exploration with

this type of model. Like vaccination, these decisions employ an assessment of social, cultural,

and economic costs and benefits, both to parents and offspring. In the model discussed in

Chapter 4, I consider, explicitly, the interplay of individual decision-making biases and external

influences. This model is broadly applicable to the uptake and acceptance of novel healthcare

technologies or healthcare strategies. Models like these are important to the advancement of

public health, especially in an age in which technology and human interactions are quickly

evolving.

Though not directly translatable to exact units of time, each model examines dynamics

over varying durations. The first model structure (discussed in Chapters 2 and Chapter 3)

examines long-term and inter-generational dynamics. This model covers mate pairing,

reproduction, and reassessing one’s own beliefs during adulthood, where one iteration could be

interpreted as a generation, though this interpretation is somewhat complicated by the

non-overlapping generations in the model compared to overlapping generations in human

populations. This type of intergenerational model is useful in understanding broadly how, for

example, present conditions might shape the future, or how group characteristics change or

maintain a cultural environment. The second model (discussed in Chapter 4), examines the

effects of short-term belief and behavior dynamics within a single interconnected population.

Multiple within-generation events are considered in the second model—disease transmission and

recovery, social restructuring, and rapid decision-making, which may occur on a scale from days

to months. This type of agent-based model is useful for understanding emergent events, and

quickly identifying points of intervention for behavior modification in a heterogeneous

population. These models and their foci are best considered jointly, as short-term dynamics and

individual behaviors shape the present landscape from which future dynamics can be inferred.

My model describing long-term dynamics (Chapter 2 and Chapter 3) includes a

community-influence stage in which the beliefs of adult offspring may change. This

belief-transition stage is more detailed in the short-term model (Chapter 4), which outlines

explicitly various factors that could play a role in this process. There is potential in nesting these
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models to examine, perhaps, how self-vaccination practices in adulthood might affect parental

childhood vaccination behavior.

Since models represent a distillation of complex processes, the representation of

population heterogeneity in these models is by necessity simplified. Real populations contain a

number of interacting subpopulations, each with varying characteristics that may differentially

affect healthcare perceptions and disease transmission (Demongeot et al. 2022; G. Webb 2021;

Reluga 2009; Thompson and Duintjer Tebbens 2017). Demographic factors shown to impact

vaccination include age and gender (Babad et al. 1995; Bhattacharyya and Ferrari 2017;

Edmunds et al. 2000; Ferrari, Grenfell, and Strebel 2013; Gay et al. 1995; Prada et al. 2017;

Trentini et al. 2017; Magpantay, King, and Rohani 2019; Zintel et al. 2022; Hebert et al. 2005;

Momplaisir et al. 2021). The effect of age on preventative health behaviors, including

vaccination, is multifaceted as it may be associated with differences in adherence to tradition,

values, or subjective social status; with differential risk of severe disease, which may affect the

perceived vaccination value; with risk aversion, which could affect exposure to infection; and

with homophily, which affects information source and belief mutability (Deeks et al. 2009;

Rolison et al. 2013; Lim et al. 2019; Amarie et al. 2020; Ferrini, Edelstein, and Barrettconnor

1994; Burbank, Padula, and Nigg 2013). One hallmark of vaccination culture is experience of the

vaccine-preventable disease (Dubé et al. 2013). Multiple studies have reported increased vaccine

hesitancy in younger age groups (e.g. age 18-24) (Khan, Watanapongvanich, and Kadoya 2021;

Lazarus et al. 2021). Today's older generations may have experienced epidemics and pandemics

that younger generations have not; for example, the polio vaccine was released in 1955, serious

influenza pandemics occurred in 1957 and 1968, and smallpox was eradicated in 1980 (Kayser

and Ramzan 2021; J. Salk and Salk 1977). Thus, it is plausible that these age groups might

perceive the risks of a current pandemic differently, thus leading to differential behaviors.

Though not tested in this work, the first model (Chapter 2 and Chapter 3) has the

built-in capacity to account for gender-biased transmission. The results presented in this thesis

use transmission parameter settings that do not distinguish between parents, thus making the

assumption that there is no difference in cultural transmission between mother and father, which

is in line with a survey-based study in Italy that found most parents (~80%) reported contributing

equally when deciding whether to vaccinate their child (Bertoncello et al. 2020). However, a

study that more directly considered parental attitudes concluded that “mothers’, but not fathers’,
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vaccine confidence predicted children’s vaccination status” (Lee, Overall, and Sibley 2020),

which we could readily represent in our model by relaxing the assumption that c1 = c2 (Chapter

2). In the agent-based model, I would account for the effects of gender and age on

self-vaccination by assigning these characteristics to each agent, and having them affect vaccine

adoption probabilities. Inconsistencies exist among empirical self-vaccination studies as well,

with various studies reporting that women were more reluctant to get the COVID-19 vaccine

than men, that men were more reluctant than women, and that both men and women had similar

probabilities of adopting or rejecting the vaccine (Lazarus et al. 2021; Nery et al. 2022; Moore et

al. 2021; Wu et al. 2021; Troiano and Nardi 2021; Zintel et al. 2022; Robertson et al. 2021).

Similar inconsistencies in gender-biased vaccine hesitancy have been reported for influenza

(lower uptake in women (Jiménez-García et al. 2010) vs. higher uptake in women (Applewhite et

al. 2020)).

While representing different probabilities of cultural transmission from mothers and

fathers is straightforward to implement in a cultural niche construction model, this model is quite

limited in the types of family structures that can be represented. Given its basis in theoretical

population genetics, structures with two primary parents (or parental decision-makers) can be

easily represented, whereas representing single parent-households (household with a single

parental decision-maker) may mean removing parameters unique to this type of model (e.g

assortative mating frequencies), or specifying transmission probabilities for single phenotypes as

well as paired phenotypes. Though we account for the effects of oblique influences

(extra-parental) on attitude transition in adulthood, we did not explicitly account for oblique

influences in the household or oblique influences on primary parent decisions, for example those

that would exist within multigenerational or households or families with more than two parental

figures. Modeling this dynamic, however, could be done similarly to my second model, in which

an individual’s cultural influences were spatially structured instead of generationally structured,

by adding a function that scales vaccination probability based on the characteristics of

influencing contacts, such as their attitudes and how much influence they have on the agent.

Cultural transmission probabilities, transition probabilities, and bias distribution in a

population, were informed using empirical data whenever possible. However, much of these

real-world data were limited, and thus our models are primarily based on theoretical

assumptions. In the first model, we treat vaccination and vaccine attitude similarly to genetically
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inherited traits; however, unlike genetic traits, which have predictable rates of transmission,

cultural traits can deviate from Mendelian-like predictions of inheritance. For example, it is

possible for offspring to be more likely to reject a cultural trait if both parents possess it—a form

of intergenerational “rebellion” (Feldman and Cavalli-Sforza 1976). Specifically for the second

model, it is difficult to parameterize the decision-making biases of a population based on

real-world data since it is challenging to identify and thus quantify these decision-making biases.

In real examples of cultural traits, decision-making biases that influence the adoption of a trait

are likely to differ based on the type of trait being studied (Acerbi and Bentley 2014). Further,

some beliefs, behaviors, and dispositions have varying rates of change depending on the

perceived benefit provided to each individual within a specific environment. For example,

religious beliefs might provide benefits to some because of the stress relief and social acceptance

these beliefs provide (Sharot et al. 2023; Charlesworth and Banaji 2022; Kahneman, Slovic, and

Tversky 1982). Also, religious beliefs might be more likely to show conformist-biased cultural

transmission than, say, fashion decisions (Acerbi, Ghirlanda, and Enquist 2012)he 2019

SARs-Cov-2 pandemic sparked renewed interest in vaccine hesitancy, and vaccination data

collection has begun to include various psychosocial components, for example the effect of

social influences, measurements of the rates at which individuals change their minds, and

vaccination intention (Meng et al. 2023; Perrin 2020). As these datasets become available, the

compiled psychosocial information would be useful to more accurately fit transition probability

functions and set transmission parameter values for both models.

In conclusion, the relationship between human health-related beliefs and behaviors is

complex and modulated by various internal and external influences. Cultural evolution

techniques and considerations assist us in gaining greater insight into these complexities.

Improving and securing public health relies on acknowledging what we can and cannot change in

regards to human behavior and reasoning, understanding how the things that can change actually

do change over time, and knowing how to work within those confines. The work presented here

should influence future models to incorporate changes in behaviors alongside epidemiological

processes to better understand and improve public health.

100

https://paperpile.com/c/PPmoaU/uBzD6
https://paperpile.com/c/PPmoaU/RxwXg
https://paperpile.com/c/PPmoaU/bCF2T+xabDT+YzI6U
https://paperpile.com/c/PPmoaU/bCF2T+xabDT+YzI6U
https://paperpile.com/c/PPmoaU/npYap
https://paperpile.com/c/PPmoaU/04SGJ+RanLq


REFERENCES

Abrevaya, Jason, and Karen Mulligan. 2011. “Effectiveness of State-Level Vaccination

Mandates: Evidence from the Varicella Vaccine.” Journal of Health Economics.

https://doi.org/10.1016/j.jhealeco.2011.06.003.

Acerbi, Alberto, and R. Alexander Bentley. 2014. “Biases in Cultural Transmission Shape the

Turnover of Popular Traits.” Evolution and Human Behavior: Official Journal of the

Human Behavior and Evolution Society 35 (3): 228–36.

Acerbi, Alberto, Stefano Ghirlanda, and Magnus Enquist. 2012. “The Logic of Fashion Cycles.”

PloS One 7 (3): e32541.

Alimohamadi, Yousef, Maryam Taghdir, and Mojtaba Sepandi. 2020. “Estimate of the Basic

Reproduction Number for COVID-19: A Systematic Review and Meta-Analysis.” Journal

of Preventive Medicine and Public Health = Yebang Uihakhoe Chi 53 (3): 151–57.

Allen, Jennifer D., Anshu P. Mohllajee, Rachel C. Shelton, Megan K. D. Othus, Holly B.

Fontenot, and Richard Hanna. 2009. “Stage of Adoption of the Human Papillomavirus

Vaccine among College Women.” Preventive Medicine 48 (5): 420–25.

Aloe, Carlin, Martin Kulldorff, and Barry R. Bloom. 2017. “Geospatial Analysis of Nonmedical

Vaccine Exemptions and Pertussis Outbreaks in the United States.” Proceedings of the

National Academy of Sciences of the United States of America 114 (27): 7101–5.

Alpers, Michael P. 2008. “The Epidemiology of Kuru: Monitoring the Epidemic from Its Peak to

Its End.” Philosophical Transactions of the Royal Society of London. Series B, Biological

Sciences 363 (1510): 3707–13.

Amarie, Alya, Ari Udijono, Nissa Kusariana, and Lintang Dian Saraswati. 2020. “Description of

Knowledge, Attitude, and Practice of Coronavirus Disease-19 Prevention Based on Gender

and Age in Java Island Community.” Journal of Public Health for Tropical and Coastal

Region 3 (2): 26–30.

Amati, Viviana. 2020. “Social Network Models.” In Encyclopedia of Quality of Life and

Well-Being Research, edited by Filomena Maggino, 1–7. Cham: Springer International

Publishing.

Anderson, Kerri-Ann, and Nicole Creanza. 2022. “Internal and External Forces Affecting

Vaccination Coverage: Modeling the Interactions between Vaccine Hesitancy, Accessibility,

and Mandates.” bioRxiv. https://doi.org/10.1101/2022.09.20.22280174.

101

http://paperpile.com/b/PPmoaU/adnw9
http://paperpile.com/b/PPmoaU/adnw9
http://paperpile.com/b/PPmoaU/adnw9
http://dx.doi.org/10.1016/j.jhealeco.2011.06.003
http://paperpile.com/b/PPmoaU/adnw9
http://paperpile.com/b/PPmoaU/RxwXg
http://paperpile.com/b/PPmoaU/RxwXg
http://paperpile.com/b/PPmoaU/RxwXg
http://paperpile.com/b/PPmoaU/npYap
http://paperpile.com/b/PPmoaU/npYap
http://paperpile.com/b/PPmoaU/ccn0e
http://paperpile.com/b/PPmoaU/ccn0e
http://paperpile.com/b/PPmoaU/ccn0e
http://paperpile.com/b/PPmoaU/tv3OZ
http://paperpile.com/b/PPmoaU/tv3OZ
http://paperpile.com/b/PPmoaU/tv3OZ
http://paperpile.com/b/PPmoaU/sPUzV
http://paperpile.com/b/PPmoaU/sPUzV
http://paperpile.com/b/PPmoaU/sPUzV
http://paperpile.com/b/PPmoaU/hxXtG
http://paperpile.com/b/PPmoaU/hxXtG
http://paperpile.com/b/PPmoaU/hxXtG
http://paperpile.com/b/PPmoaU/IGCZv
http://paperpile.com/b/PPmoaU/IGCZv
http://paperpile.com/b/PPmoaU/IGCZv
http://paperpile.com/b/PPmoaU/IGCZv
http://paperpile.com/b/PPmoaU/rSbo8
http://paperpile.com/b/PPmoaU/rSbo8
http://paperpile.com/b/PPmoaU/rSbo8
http://paperpile.com/b/PPmoaU/9LaXm
http://paperpile.com/b/PPmoaU/9LaXm
http://paperpile.com/b/PPmoaU/9LaXm
http://dx.doi.org/10.1101/2022.09.20.22280174
http://paperpile.com/b/PPmoaU/9LaXm


———. 2023. “A Cultural Evolutionary Model of the Interaction between Parental Beliefs and

Behaviors, with Applications to Vaccine Hesitancy.” Theoretical Population Biology 152

(May): 23–38.

Applewhite, Andres, Fernando F. Stancampiano, Dana M. Harris, Alyssa Manaois, John Dimuna,

Jada Glenn, Michael G. Heckman, Danielle E. Brushaber, Taimur Sher, and Jose Raul

Valery. 2020. “A Retrospective Analysis of Gender-Based Difference in Adherence to

Influenza Vaccination during the 2018-2019 Season.” Journal of Primary Care &

Community Health 11: 2150132720958532.

Atwell, Jessica E., and Daniel A. Salmon. 2014. “Pertussis Resurgence and Vaccine Uptake:

Implications for Reducing Vaccine Hesitancy.” Pediatrics.

Azarpanah, Hossein, Mohsen Farhadloo, Rustam Vahidov, and Louise Pilote. 2021. “Vaccine

Hesitancy: Evidence from an Adverse Events Following Immunization Database, and the

Role of Cognitive Biases.” BMC Public Health 21 (1): 1686.

Azizi, Asma, Caner Kazanci, Natalia L. Komarova, and Dominik Wodarz. 2022. “Effect of

Human Behavior on the Evolution of Viral Strains During an Epidemic.” Bulletin of

Mathematical Biology 84 (12): 144.

Babad, H. R., D. J. Nokes, N. J. Gay, E. Miller, P. Morgan-Capner, and R. M. Anderson. 1995.

“Predicting the Impact of Measles Vaccination in England and Wales: Model Validation and

Analysis of Policy Options.” Epidemiology and Infection 114 (2): 319–44.

Bahta, Lynn, and Asli Ashkir. 2015. “Addressing MMR Vaccine Resistance in Minnesota’s

Somali Community.”Minnesota Medicine 98 (10): 33–36.

Barclay, Victoria C., Timo Smieszek, Jianping He, Guohong Cao, Jeanette J. Rainey, Hongjiang

Gao, Amra Uzicanin, and Marcel Salathé. 2014. “Positive Network Assortativity of

Influenza Vaccination at a High School: Implications for Outbreak Risk and Herd

Immunity.” PloS One 9 (2): e87042.

Barkow, Jerome H., Rick O’Gorman, and Luke Rendell. 2012. “Are the New Mass Media

Subverting Cultural Transmission?” Review of General Psychology: Journal of Division 1,

of the American Psychological Association 16 (2): 121–33.

Bauch, Chris T. 2005. “Imitation Dynamics Predict Vaccinating Behaviour.” Proceedings.

Biological Sciences / The Royal Society 272 (1573): 1669–75.

Bauch, Chris T., and Samit Bhattacharyya. 2012. “Evolutionary Game Theory and Social

102

http://paperpile.com/b/PPmoaU/Cznug
http://paperpile.com/b/PPmoaU/Cznug
http://paperpile.com/b/PPmoaU/Cznug
http://paperpile.com/b/PPmoaU/3Z054
http://paperpile.com/b/PPmoaU/3Z054
http://paperpile.com/b/PPmoaU/3Z054
http://paperpile.com/b/PPmoaU/3Z054
http://paperpile.com/b/PPmoaU/3Z054
http://paperpile.com/b/PPmoaU/M0KWz
http://paperpile.com/b/PPmoaU/M0KWz
http://paperpile.com/b/PPmoaU/LG3PY
http://paperpile.com/b/PPmoaU/LG3PY
http://paperpile.com/b/PPmoaU/LG3PY
http://paperpile.com/b/PPmoaU/RbgYF
http://paperpile.com/b/PPmoaU/RbgYF
http://paperpile.com/b/PPmoaU/RbgYF
http://paperpile.com/b/PPmoaU/lF2FQ
http://paperpile.com/b/PPmoaU/lF2FQ
http://paperpile.com/b/PPmoaU/lF2FQ
http://paperpile.com/b/PPmoaU/9wnu9
http://paperpile.com/b/PPmoaU/9wnu9
http://paperpile.com/b/PPmoaU/E31Xy
http://paperpile.com/b/PPmoaU/E31Xy
http://paperpile.com/b/PPmoaU/E31Xy
http://paperpile.com/b/PPmoaU/E31Xy
http://paperpile.com/b/PPmoaU/uGRA1
http://paperpile.com/b/PPmoaU/uGRA1
http://paperpile.com/b/PPmoaU/uGRA1
http://paperpile.com/b/PPmoaU/bDeXB
http://paperpile.com/b/PPmoaU/bDeXB
http://paperpile.com/b/PPmoaU/lGo4X


Learning Can Determine How Vaccine Scares Unfold.” PLoS Computational Biology 8 (4):

e1002452.

Benin, Andrea L., Daryl J. Wisler-Scher, Eve Colson, Eugene D. Shapiro, and Eric S. Holmboe.

2006. “Qualitative Analysis of Mothers’ Decision-Making About Vaccines for Infants: The

Importance of Trust.” Pediatrics. https://doi.org/10.1542/peds.2005-1728.

Berche, Patrick. 2022. “History of Measles.” Presse Medicale 51 (3): 104149.

Bernoulli, Daniel. 1760. An Attempt at a New Analysis of the Mortality Caused by Smallpox and

of the Advantages of Inoculation to Prevent It.

Bertoncello, Chiara, Antonio Ferro, Marco Fonzo, Sofia Zanovello, Giuseppina Napoletano,

Francesca Russo, Vincenzo Baldo, and Silvia Cocchio. 2020. “Socioeconomic Determinants

in Vaccine Hesitancy and Vaccine Refusal in Italy.” Vaccines 8 (2).

https://doi.org/10.3390/vaccines8020276.

Bhattacharyya, S., and M. J. Ferrari. 2017. “Age-Specific Mixing Generates Transient Outbreak

Risk Following Critical-Level Vaccination.” Epidemiology and Infection 145 (1): 12–22.

Blower, Sally, and Daniel Bernoulli. 2004. “An Attempt at a New Analysis of the Mortality

Caused by Smallpox and of the Advantages of Inoculation to Prevent It. 1766.” Reviews in

Medical Virology 14 (5): 275–88.

Blumenthal-Barby, J. S., and Heather Krieger. 2015. “Cognitive Biases and Heuristics in Medical

Decision Making: A Critical Review Using a Systematic Search Strategy.”Medical

Decision Making: An International Journal of the Society for Medical Decision Making 35

(4): 539–57.

Blume, Stuart. 2006. “Anti-Vaccination Movements and Their Interpretations.” Social Science &

Medicine 62 (3): 628–42.

Bok, Stephen, Daniel E. Martin, Erik Acosta, Maria Lee, and James Shum. 2022. “Construct

Validation of the COVID-19 Cavalier Scale: Analysis of Indirect Effects with Optimism on

Likelihood to Travel.” Transportation Research Interdisciplinary Perspectives 13 (March):

100538.

Bonabeau, Eric. 2002. “Agent-Based Modeling: Methods and Techniques for Simulating Human

Systems.” Proceedings of the National Academy of Sciences of the United States of America

99 Suppl 3 (Suppl 3): 7280–87.

Boorman, Scott A., and Harrison C. White. 1976. “Social Structure from Multiple Networks. II.

103

http://paperpile.com/b/PPmoaU/lGo4X
http://paperpile.com/b/PPmoaU/lGo4X
http://paperpile.com/b/PPmoaU/ghD1M
http://paperpile.com/b/PPmoaU/ghD1M
http://paperpile.com/b/PPmoaU/ghD1M
http://dx.doi.org/10.1542/peds.2005-1728
http://paperpile.com/b/PPmoaU/ghD1M
http://paperpile.com/b/PPmoaU/Yc4s2
http://paperpile.com/b/PPmoaU/ezRor
http://paperpile.com/b/PPmoaU/ezRor
http://paperpile.com/b/PPmoaU/ilWmL
http://paperpile.com/b/PPmoaU/ilWmL
http://paperpile.com/b/PPmoaU/ilWmL
http://paperpile.com/b/PPmoaU/ilWmL
http://dx.doi.org/10.3390/vaccines8020276
http://paperpile.com/b/PPmoaU/ilWmL
http://paperpile.com/b/PPmoaU/yxQoy
http://paperpile.com/b/PPmoaU/yxQoy
http://paperpile.com/b/PPmoaU/5gx56
http://paperpile.com/b/PPmoaU/5gx56
http://paperpile.com/b/PPmoaU/5gx56
http://paperpile.com/b/PPmoaU/hPLkc
http://paperpile.com/b/PPmoaU/hPLkc
http://paperpile.com/b/PPmoaU/hPLkc
http://paperpile.com/b/PPmoaU/hPLkc
http://paperpile.com/b/PPmoaU/grnPn
http://paperpile.com/b/PPmoaU/grnPn
http://paperpile.com/b/PPmoaU/TWojE
http://paperpile.com/b/PPmoaU/TWojE
http://paperpile.com/b/PPmoaU/TWojE
http://paperpile.com/b/PPmoaU/TWojE
http://paperpile.com/b/PPmoaU/YZWZH
http://paperpile.com/b/PPmoaU/YZWZH
http://paperpile.com/b/PPmoaU/YZWZH
http://paperpile.com/b/PPmoaU/h5tfB


Role Structures.” The American Journal of Sociology 81 (6): 1384–1446.

Borel, E. 1921. “La Théorie Du Jeu et Les Equation Intégrales à Noyau Symétrique Gauche.”

Comptes Rendus de l’Académie Des Sciences 173: 1304–8.

Boyd, Robert, and Peter J. Richerson. 1988. Culture and the Evolutionary Process. University of

Chicago Press.

Brambilla, F. n.d. “Modelli Deterministici E Stocastici in Epidemiologia.” Bollettino Del Centro

per La Ricerca Operativa, Serie.

Brimnes, Niels. 2004. “Variolation, Vaccination and Popular Resistance in Early Colonial South

India.” Medical History 48 (2): 199–228.

Brown, Katrina F., J. Simon Kroll, Michael J. Hudson, Mary Ramsay, John Green, Susannah J.

Long, Charles A. Vincent, Graham Fraser, and Nick Sevdalis. 2010. “Factors Underlying

Parental Decisions about Combination Childhood Vaccinations Including MMR: A

Systematic Review.” Vaccine 28 (26): 4235–48.

Brown, T. H. 1988. “The African Connection. Cotton Mather and the Boston Smallpox Epidemic

of 1721-1722.” JAMA: The Journal of the American Medical Association 260 (15):

2247–49.

Bruine de Bruin, Wändi, Andrew M. Parker, Mirta Galesic, and Raffaele Vardavas. 2019.

“Reports of Social Circles’ and Own Vaccination Behavior: A National Longitudinal

Survey.” Health Psychology: Official Journal of the Division of Health Psychology,

American Psychological Association 38 (11): 975–83.

Brunson, Emily K. 2013a. “The Impact of Social Networks on Parents’ Vaccination Decisions.”

Pediatrics 131 (5): e1397–1404.

———. 2013b. “How Parents Make Decisions about Their Children’s Vaccinations.” Vaccine 31

(46): 5466–70.

———. 2018. “The Impact of Social Networks on Parents’ Vaccination Decisions.”

Immunization Strategies and Practices. https://doi.org/10.1542/9781610022774-the_impact.

Burbank, Patricia, Cynthia Padula, and Claudi R. Nigg. 2013. “Changing Health Behaviors of

Older Adults.” Journal of Gerontological Nursing 26 (3): 26–33.

Burki, Talha. 2021. “Global COVID-19 Vaccine Inequity.” The Lancet Infectious Diseases 21

(7): 922–23.

Burley, Nancy. 1983. “The Meaning of Assortative Mating.” Ethology and Sociobiology 4 (4):

104

http://paperpile.com/b/PPmoaU/h5tfB
http://paperpile.com/b/PPmoaU/5L5Wn
http://paperpile.com/b/PPmoaU/5L5Wn
http://paperpile.com/b/PPmoaU/PRyJB
http://paperpile.com/b/PPmoaU/PRyJB
http://paperpile.com/b/PPmoaU/I6hUA
http://paperpile.com/b/PPmoaU/I6hUA
http://paperpile.com/b/PPmoaU/fD3Mq
http://paperpile.com/b/PPmoaU/fD3Mq
http://paperpile.com/b/PPmoaU/PZNkX
http://paperpile.com/b/PPmoaU/PZNkX
http://paperpile.com/b/PPmoaU/PZNkX
http://paperpile.com/b/PPmoaU/PZNkX
http://paperpile.com/b/PPmoaU/BbgeL
http://paperpile.com/b/PPmoaU/BbgeL
http://paperpile.com/b/PPmoaU/BbgeL
http://paperpile.com/b/PPmoaU/GYtn0
http://paperpile.com/b/PPmoaU/GYtn0
http://paperpile.com/b/PPmoaU/GYtn0
http://paperpile.com/b/PPmoaU/GYtn0
http://paperpile.com/b/PPmoaU/yOz7n
http://paperpile.com/b/PPmoaU/yOz7n
http://paperpile.com/b/PPmoaU/Vbxji
http://paperpile.com/b/PPmoaU/Vbxji
http://paperpile.com/b/PPmoaU/ZXM22
http://paperpile.com/b/PPmoaU/ZXM22
http://dx.doi.org/10.1542/9781610022774-the_impact
http://paperpile.com/b/PPmoaU/ZXM22
http://paperpile.com/b/PPmoaU/mHUmt
http://paperpile.com/b/PPmoaU/mHUmt
http://paperpile.com/b/PPmoaU/7scu3
http://paperpile.com/b/PPmoaU/7scu3
http://paperpile.com/b/PPmoaU/3PIYW


191–203.

Bury, Michael. 1997. Health and Illness in a Changing Society. Psychology Press.

Calafiore, Giuseppe C., Carlo Novara, and Corrado Possieri. 2020. “A Time-Varying SIRD

Model for the COVID-19 Contagion in Italy.” Annual Reviews in Control 50 (October):

361–72.

Callender, David. 2016. “Vaccine Hesitancy: More than a Movement.” Human Vaccines &

Immunotherapeutics 12 (9): 2464–68.

Camerer, Colin F. 2009. “Chapter 13 - Behavioral Game Theory and the Neural Basis of

Strategic Choice.” In Neuroeconomics, edited by Paul W. Glimcher, Colin F. Camerer, Ernst

Fehr, and Russell A. Poldrack, 193–206. London: Academic Press.

Carter, Austin, William Msemburi, So Yoon Sim, Katy A. M. Gaythorpe, Ann Lindstrand, and

Raymond C. W. Hutubessy. 2021. “Modeling the Impact of Vaccination for the

Immunization Agenda 2030: Deaths Averted Due to Vaccination Against 14 Pathogens in

194 Countries from 2021-2030.” https://doi.org/10.2139/ssrn.3830781.

Cartwright, Dorwin, and Alvin Zander. 1958. Group Dynamics: Research and Theory.

Cauchemez, Simon, Nathanaël Hoze, Anthony Cousien, Birgit Nikolay, and Quirine Ten Bosch.

2019. “How Modelling Can Enhance the Analysis of Imperfect Epidemic Data.” Trends in

Parasitology 35 (5): 369–79.

Cavalli-Sforza, L. L., and M. W. Feldman. 1981. “Cultural Transmission and Evolution: A

Quantitative Approach.” Monographs in Population Biology 16: 1–388.

Cavalli-Sforza, Luigi Luca, and Marcus W. Feldman. 1981. Cultural Transmission and

Evolution: A Quantitative Approach. Princeton University Press.

CDC. 2022. “Polio Elimination in the United States.” Centers for Disease Control and

Prevention. August 12, 2022. https://www.cdc.gov/polio/what-is-polio/polio-us.html.

CDC-Centers for Disease Control, and Prevention. 2009. “CDC - Malaria - Malaria Worldwide -

Impact of Malaria,” February.

https://www.cdc.gov/malaria/malaria_worldwide/impact.html.

Cénat, Jude Mary, Pari-Gole Noorishad, Seyed Mohammad Mahdi Moshirian Farahi, Wina Paul

Darius, Aya Mesbahi El Aouame, Olivia Onesi, Cathy Broussard, et al. 2023. “Prevalence

and Factors Related to COVID-19 Vaccine Hesitancy and Unwillingness in Canada: A

Systematic Review and Meta-Analysis.” Journal of Medical Virology 95 (1): e28156.

105

http://paperpile.com/b/PPmoaU/3PIYW
http://paperpile.com/b/PPmoaU/esOdv
http://paperpile.com/b/PPmoaU/dgzFG
http://paperpile.com/b/PPmoaU/dgzFG
http://paperpile.com/b/PPmoaU/dgzFG
http://paperpile.com/b/PPmoaU/jgITv
http://paperpile.com/b/PPmoaU/jgITv
http://paperpile.com/b/PPmoaU/7R69S
http://paperpile.com/b/PPmoaU/7R69S
http://paperpile.com/b/PPmoaU/7R69S
http://paperpile.com/b/PPmoaU/HP6d6
http://paperpile.com/b/PPmoaU/HP6d6
http://paperpile.com/b/PPmoaU/HP6d6
http://paperpile.com/b/PPmoaU/HP6d6
http://dx.doi.org/10.2139/ssrn.3830781
http://paperpile.com/b/PPmoaU/HP6d6
http://paperpile.com/b/PPmoaU/OSlYm
http://paperpile.com/b/PPmoaU/OwZFJ
http://paperpile.com/b/PPmoaU/OwZFJ
http://paperpile.com/b/PPmoaU/OwZFJ
http://paperpile.com/b/PPmoaU/KciUM
http://paperpile.com/b/PPmoaU/KciUM
http://paperpile.com/b/PPmoaU/CLxT6
http://paperpile.com/b/PPmoaU/CLxT6
http://paperpile.com/b/PPmoaU/2vbl1
http://paperpile.com/b/PPmoaU/2vbl1
https://www.cdc.gov/polio/what-is-polio/polio-us.html
http://paperpile.com/b/PPmoaU/2vbl1
http://paperpile.com/b/PPmoaU/eJLEr
http://paperpile.com/b/PPmoaU/eJLEr
https://www.cdc.gov/malaria/malaria_worldwide/impact.html
http://paperpile.com/b/PPmoaU/eJLEr
http://paperpile.com/b/PPmoaU/1KdeB
http://paperpile.com/b/PPmoaU/1KdeB
http://paperpile.com/b/PPmoaU/1KdeB
http://paperpile.com/b/PPmoaU/1KdeB


Centers for Disease Control and Prevention. 2015. Epidemiology and Prevention of

Vaccine-Preventable Diseases, 14th Edition E-Book: The Pink Book. Edited by Hall, E.,

Wodi, A.P., Hamborsky J., et al. Public Health Foundation.

Charlesworth, Tessa E. S., and Mahzarin R. Banaji. 2022. “Patterns of Implicit and Explicit

Attitudes: IV. Change and Stability From 2007 to 2020.” Psychological Science 33 (9):

1347–71.

Chauhan, Sudipa, Om Prakash Misra, and Joydip Dhar. 2014. “Stability Analysis of SIR Model

with Vaccination.” American Journal of Computational and Applied Mathematics 4 (1):

17–23.

Chorba, Terence, and José Esparza. 2022. “A Head of State Leading by Example.” Emerging

Infectious Diseases 28 (10): 2141–43.

Cinelli, Matteo, Gianmarco De Francisci Morales, Alessandro Galeazzi, Walter Quattrociocchi,

and Michele Starnini. 2021. “The Echo Chamber Effect on Social Media.” Proceedings of

the National Academy of Sciences of the United States of America 118 (9).

https://doi.org/10.1073/pnas.2023301118.

Clark, Sarah, and Albert Weale. 2012. “Social Values in Health Priority Setting: A Conceptual

Framework.” Journal of Health Organization and Management 26 (3): 293–316.

Coelho, Flávio Codeço, and Claudia T. Codeço. 2009. “Dynamic Modeling of Vaccinating

Behavior as a Function of Individual Beliefs.” PLoS Computational Biology 5 (7):

e1000425.

Colman, Andrew M. 2016. Game Theory and Experimental Games: The Study of Strategic

Interaction. Elsevier.

Cramer, J. S. 2002. “The Origins of Logistic Regression.” https://doi.org/10.2139/ssrn.360300.

Creanza, Nicole, and Marcus W. Feldman. 2014. “Complexity in Models of Cultural Niche

Construction with Selection and Homophily.” Proceedings of the National Academy of

Sciences of the United States of America 111 Suppl 3 (July): 10830–37.

Creanza, Nicole, Laurel Fogarty, and Marcus W. Feldman. 2012. “Models of Cultural Niche

Construction with Selection and Assortative Mating.” PloS One 7 (8): e42744.

Creanza, Nicole, Oren Kolodny, and Marcus W. Feldman. 2017. “Cultural Evolutionary Theory:

How Culture Evolves and Why It Matters.” Proceedings of the National Academy of

Sciences of the United States of America 114 (30): 7782–89.

106

http://paperpile.com/b/PPmoaU/pPVcD
http://paperpile.com/b/PPmoaU/pPVcD
http://paperpile.com/b/PPmoaU/pPVcD
http://paperpile.com/b/PPmoaU/xabDT
http://paperpile.com/b/PPmoaU/xabDT
http://paperpile.com/b/PPmoaU/xabDT
http://paperpile.com/b/PPmoaU/4v9yh
http://paperpile.com/b/PPmoaU/4v9yh
http://paperpile.com/b/PPmoaU/4v9yh
http://paperpile.com/b/PPmoaU/DJ05C
http://paperpile.com/b/PPmoaU/DJ05C
http://paperpile.com/b/PPmoaU/DdR54
http://paperpile.com/b/PPmoaU/DdR54
http://paperpile.com/b/PPmoaU/DdR54
http://paperpile.com/b/PPmoaU/DdR54
http://dx.doi.org/10.1073/pnas.2023301118
http://paperpile.com/b/PPmoaU/DdR54
http://paperpile.com/b/PPmoaU/g8LZv
http://paperpile.com/b/PPmoaU/g8LZv
http://paperpile.com/b/PPmoaU/pm8zd
http://paperpile.com/b/PPmoaU/pm8zd
http://paperpile.com/b/PPmoaU/pm8zd
http://paperpile.com/b/PPmoaU/vKR3e
http://paperpile.com/b/PPmoaU/vKR3e
http://paperpile.com/b/PPmoaU/qkMBB
http://dx.doi.org/10.2139/ssrn.360300
http://paperpile.com/b/PPmoaU/qkMBB
http://paperpile.com/b/PPmoaU/ZFKch
http://paperpile.com/b/PPmoaU/ZFKch
http://paperpile.com/b/PPmoaU/ZFKch
http://paperpile.com/b/PPmoaU/oizob
http://paperpile.com/b/PPmoaU/oizob
http://paperpile.com/b/PPmoaU/TcT5M
http://paperpile.com/b/PPmoaU/TcT5M
http://paperpile.com/b/PPmoaU/TcT5M


Curtis, Helen J., Peter Inglesby, Caroline E. Morton, Brian MacKenna, Amelia Green, William

Hulme, Alex J. Walker, et al. 2022. “Trends and Clinical Characteristics of COVID-19

Vaccine Recipients: A Federated Analysis of 57.9 Million Patients’ Primary Care Records

in Situ Using OpenSAFELY.” The British Journal of General Practice: The Journal of the

Royal College of General Practitioners 72 (714): e51–62.

Davis, David E. 1986. “The Scarcity of Rats and the Black Death: An Ecological History.” The

Journal of Interdisciplinary History 16 (3): 455–70.

Deeks, Amanda, Catherine Lombard, Janet Michelmore, and Helena Teede. 2009. “The Effects

of Gender and Age on Health Related Behaviors.” BMC Public Health 9 (1): 1–8.

Demongeot, Jacques, Quentin Griette, Pierre Magal, and Glenn Webb. 2022. “Modeling Vaccine

Efficacy for COVID-19 Outbreak in New York City.” Biology 11 (3).

https://doi.org/10.3390/biology11030345.

Denton, Kaleda Krebs, Yoav Ram, Uri Liberman, and Marcus W. Feldman. 2020. “Cultural

Evolution of Conformity and Anticonformity.” Proceedings of the National Academy of

Sciences of the United States of America 117 (24): 13603–14.

Diaz Ruiz, Carlos, and Tomas Nilsson. 2023. “Disinformation and Echo Chambers: How

Disinformation Circulates on Social Media Through Identity-Driven Controversies.”

Journal of Public Policy & Marketing 42 (1): 18–35.

Didgeon, J. A. 1963. “Development of Smallpox Vaccine in England in the Eighteenth and

Nineteenth Centuries.” British Medical Journal 1 (5342): 1367–72.

Dietz, Klaus, and J. A. P. Heesterbeek. 2002. “Daniel Bernoulli’s Epidemiological Model

Revisited.” Mathematical Biosciences 180: 1–21.

Dror, Amiel A., Netanel Eisenbach, Shahar Taiber, Nicole G. Morozov, Matti Mizrachi, Asaf

Zigron, Samer Srouji, and Eyal Sela. 2020. “Vaccine Hesitancy: The next Challenge in the

Fight against COVID-19.” European Journal of Epidemiology 35 (8): 775–79.

Dubé, Eve, Caroline Laberge, Maryse Guay, Paul Bramadat, Réal Roy, and Julie Bettinger. 2013.

“Vaccine Hesitancy: An Overview.” Human Vaccines & Immunotherapeutics 9 (8):

1763–73.

Dumbell, K. R., H. S. Bedson, and E. Rossier. 1961. “The Laboratory Differentiation between

Variola Major and Variola Minor.” Bulletin of the World Health Organization 25 (1): 73–78.

Durbach, Nadja. 2005. Bodily Matters: The Anti-Vaccination Movement in England, 1853–1907.

107

http://paperpile.com/b/PPmoaU/ZLJHs
http://paperpile.com/b/PPmoaU/ZLJHs
http://paperpile.com/b/PPmoaU/ZLJHs
http://paperpile.com/b/PPmoaU/ZLJHs
http://paperpile.com/b/PPmoaU/ZLJHs
http://paperpile.com/b/PPmoaU/T0vAZ
http://paperpile.com/b/PPmoaU/T0vAZ
http://paperpile.com/b/PPmoaU/mNWYO
http://paperpile.com/b/PPmoaU/mNWYO
http://paperpile.com/b/PPmoaU/9Qnbf
http://paperpile.com/b/PPmoaU/9Qnbf
http://paperpile.com/b/PPmoaU/9Qnbf
http://dx.doi.org/10.3390/biology11030345
http://paperpile.com/b/PPmoaU/9Qnbf
http://paperpile.com/b/PPmoaU/OgUOL
http://paperpile.com/b/PPmoaU/OgUOL
http://paperpile.com/b/PPmoaU/OgUOL
http://paperpile.com/b/PPmoaU/CZf57
http://paperpile.com/b/PPmoaU/CZf57
http://paperpile.com/b/PPmoaU/CZf57
http://paperpile.com/b/PPmoaU/h71kH
http://paperpile.com/b/PPmoaU/h71kH
http://paperpile.com/b/PPmoaU/U1M65
http://paperpile.com/b/PPmoaU/U1M65
http://paperpile.com/b/PPmoaU/2gQYX
http://paperpile.com/b/PPmoaU/2gQYX
http://paperpile.com/b/PPmoaU/2gQYX
http://paperpile.com/b/PPmoaU/i8TNW
http://paperpile.com/b/PPmoaU/i8TNW
http://paperpile.com/b/PPmoaU/i8TNW
http://paperpile.com/b/PPmoaU/yVXUl
http://paperpile.com/b/PPmoaU/yVXUl
http://paperpile.com/b/PPmoaU/pXzW0


Duke University Press.

Durham, William H. 1982. “Interactions of Genetic and Cultural Evolution: Models and

Examples.” Human Ecology: An Interdisciplinary Journal 10 (3): 289–323.

Edmunds, W. J., N. J. Gay, M. Kretzschmar, R. G. Pebody, H. Wachmann, and ESEN Project.

European Sero-epidemiology Network. 2000. “The Pre-Vaccination Epidemiology of

Measles, Mumps and Rubella in Europe: Implications for Modelling Studies.”

Epidemiology and Infection 125 (3): 635–50.

Efferson, C., R. Lalive, P. Richerson, R. Mcelreath, and M. Lubell. 2008. “Conformists and

Mavericks: The Empirics of Frequency-Dependent Cultural Transmission☆.” Evolution

and Human Behavior: Official Journal of the Human Behavior and Evolution Society 29

(1): 56–64.

Eggertson, Laura. 2010. “Lancet Retracts 12-Year-Old Article Linking Autism to MMR

Vaccines.” CMAJ: Canadian Medical Association Journal = Journal de l’Association

Medicale Canadienne 182 (4): E199–200.

Ellithorpe, Morgan E., Robyn Adams, and Fashina Aladé. 2022. “Parents’ Behaviors and

Experiences Associated with Four Vaccination Behavior Groups for Childhood Vaccine

Hesitancy.”Maternal and Child Health Journal 26 (2): 280–88.

Elsevier. 2014. “Remembering the Dreaded Summers of Polio.” Elsevier Connect. October 22,

2014. https://www.elsevier.com/connect/remembering-the-dreaded-summers-of-polio.

Epstein, Joshua M., Erez Hatna, and Jennifer Crodelle. 2021. “Triple Contagion: A Two-Fears

Epidemic Model.” Journal of the Royal Society, Interface / the Royal Society 18 (181):

20210186.

Epstein, Joshua M., Jon Parker, Derek Cummings, and Ross A. Hammond. 2008a. “Coupled

Contagion Dynamics of Fear and Disease: Mathematical and Computational Explorations.”

PloS One 3 (12): e3955.

———. 2008b. “Coupled Contagion Dynamics of Fear and Disease: Mathematical and

Computational Explorations.” PloS One 3 (12): e3955.

Eriksson, K., and J. C. Coultas. 2009. “Are People Really Conformist-Biased? An Empirical Test

and a New Mathematical Model.” Journal of Evolutionary Psychology 7 (1): 5–21.

Excler, Jean-Louis, Melanie Saville, Seth Berkley, and Jerome H. Kim. 2021. “Vaccine

Development for Emerging Infectious Diseases.” Nature Medicine 27 (4): 591–600.

108

http://paperpile.com/b/PPmoaU/pXzW0
http://paperpile.com/b/PPmoaU/OXM4C
http://paperpile.com/b/PPmoaU/OXM4C
http://paperpile.com/b/PPmoaU/VcMO6
http://paperpile.com/b/PPmoaU/VcMO6
http://paperpile.com/b/PPmoaU/VcMO6
http://paperpile.com/b/PPmoaU/VcMO6
http://paperpile.com/b/PPmoaU/oiqUC
http://paperpile.com/b/PPmoaU/oiqUC
http://paperpile.com/b/PPmoaU/oiqUC
http://paperpile.com/b/PPmoaU/oiqUC
http://paperpile.com/b/PPmoaU/xw969
http://paperpile.com/b/PPmoaU/xw969
http://paperpile.com/b/PPmoaU/xw969
http://paperpile.com/b/PPmoaU/CZP7J
http://paperpile.com/b/PPmoaU/CZP7J
http://paperpile.com/b/PPmoaU/CZP7J
http://paperpile.com/b/PPmoaU/ATdgF
http://paperpile.com/b/PPmoaU/ATdgF
https://www.elsevier.com/connect/remembering-the-dreaded-summers-of-polio
http://paperpile.com/b/PPmoaU/ATdgF
http://paperpile.com/b/PPmoaU/vEbfj
http://paperpile.com/b/PPmoaU/vEbfj
http://paperpile.com/b/PPmoaU/vEbfj
http://paperpile.com/b/PPmoaU/a0bss
http://paperpile.com/b/PPmoaU/a0bss
http://paperpile.com/b/PPmoaU/a0bss
http://paperpile.com/b/PPmoaU/9gP7Q
http://paperpile.com/b/PPmoaU/9gP7Q
http://paperpile.com/b/PPmoaU/3R6oM
http://paperpile.com/b/PPmoaU/3R6oM
http://paperpile.com/b/PPmoaU/njg4c
http://paperpile.com/b/PPmoaU/njg4c


Eyre-Walker, Adam, and Peter D. Keightley. 2007. “The Distribution of Fitness Effects of New

Mutations.” Nature Reviews. Genetics 8 (8): 610–18.

Falagas, Matthew E., and Effie Zarkadoulia. 2008. “Factors Associated with Suboptimal

Compliance to Vaccinations in Children in Developed Countries: A Systematic Review.”

Current Medical Research and Opinion 24 (6): 1719–41.

Feldman, M. W., and L. L. Cavalli-Sforza. 1976. “Cultural and Biological Evolutionary

Processes, Selection for a Trait under Complex Transmission.” Theoretical Population

Biology 9 (2): 238–59.

Fenichel, Eli P., Carlos Castillo-Chavez, M. G. Ceddia, Gerardo Chowell, Paula A. Gonzalez

Parra, Graham J. Hickling, Garth Holloway, et al. 2011. “Adaptive Human Behavior in

Epidemiological Models.” Proceedings of the National Academy of Sciences of the United

States of America 108 (15): 6306–11.

Fenner, F. 1982. “A Successful Eradication Campaign. Global Eradication of Smallpox.”

Reviews of Infectious Diseases 4 (5): 916–30.

Ferrari, M. J., B. T. Grenfell, and P. M. Strebel. 2013. “Think Globally, Act Locally: The Role of

Local Demographics and Vaccination Coverage in the Dynamic Response of Measles

Infection to Control.” Philosophical Transactions of the Royal Society of London. Series B,

Biological Sciences 368 (1623): 20120141.

Ferrini, R., S. Edelstein, and E. Barrettconnor. 1994. “The Association Between Health Beliefs

and Health Behavior Change in Older Adults.” Preventive Medicine 23 (1): 1–5.

Figueiredo, Alexandre de, Clarissa Simas, Emilie Karafillakis, Pauline Paterson, and Heidi J.

Larson. 2020. “Mapping Global Trends in Vaccine Confidence and Investigating Barriers to

Vaccine Uptake: A Large-Scale Retrospective Temporal Modelling Study.” The Lancet 396

(10255): 898–908.

Fine, Paul, Ken Eames, and David L. Heymann. 2011. “‘Herd Immunity’: A Rough Guide.”

Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of

America 52 (7): 911–16.

Fine, P. E., and J. A. Clarkson. 1986. “Individual versus Public Priorities in the Determination of

Optimal Vaccination Policies.” American Journal of Epidemiology 124 (6): 1012–20.

“Flu Vaccination Coverage, United States, 2016-17 Influenza Season.” 2023. March 20, 2023.

https://www.cdc.gov/flu/fluvaxview/coverage-1617estimates.htm.

109

http://paperpile.com/b/PPmoaU/QkjJU
http://paperpile.com/b/PPmoaU/QkjJU
http://paperpile.com/b/PPmoaU/cRHQw
http://paperpile.com/b/PPmoaU/cRHQw
http://paperpile.com/b/PPmoaU/cRHQw
http://paperpile.com/b/PPmoaU/uBzD6
http://paperpile.com/b/PPmoaU/uBzD6
http://paperpile.com/b/PPmoaU/uBzD6
http://paperpile.com/b/PPmoaU/SqEKo
http://paperpile.com/b/PPmoaU/SqEKo
http://paperpile.com/b/PPmoaU/SqEKo
http://paperpile.com/b/PPmoaU/SqEKo
http://paperpile.com/b/PPmoaU/3WMgx
http://paperpile.com/b/PPmoaU/3WMgx
http://paperpile.com/b/PPmoaU/mTbKo
http://paperpile.com/b/PPmoaU/mTbKo
http://paperpile.com/b/PPmoaU/mTbKo
http://paperpile.com/b/PPmoaU/mTbKo
http://paperpile.com/b/PPmoaU/Pdyt5
http://paperpile.com/b/PPmoaU/Pdyt5
http://paperpile.com/b/PPmoaU/0Zu1h
http://paperpile.com/b/PPmoaU/0Zu1h
http://paperpile.com/b/PPmoaU/0Zu1h
http://paperpile.com/b/PPmoaU/0Zu1h
http://paperpile.com/b/PPmoaU/xHHhr
http://paperpile.com/b/PPmoaU/xHHhr
http://paperpile.com/b/PPmoaU/xHHhr
http://paperpile.com/b/PPmoaU/727zB
http://paperpile.com/b/PPmoaU/727zB
http://paperpile.com/b/PPmoaU/lxVbB
https://www.cdc.gov/flu/fluvaxview/coverage-1617estimates.htm
http://paperpile.com/b/PPmoaU/lxVbB


Fogarty, Laurel, and Nicole Creanza. 2017. “The Niche Construction of Cultural Complexity:

Interactions between Innovations, Population Size and the Environment.” Philosophical

Transactions of the Royal Society of London. Series B, Biological Sciences 372 (1735).

https://doi.org/10.1098/rstb.2016.0428.

Fogarty, Laurel, Joe Yuichiro Wakano, Marcus W. Feldman, and Kenichi Aoki. 2017. “The

Driving Forces of Cultural Complexity.” Human Nature 28 (1): 39–52.

Freeman, Linton C. 2004. The Development of Social Network Analysis: A Study in the

Sociology of Science. Createspace Independent Pub.

Fuentes, Agustín. 2013. “Cooperation, Conflict, and Niche Construction in the Genus Homo.”

War, Peace, and Human Nature, 78–94.

Funk, Sebastian, Marcel Salathé, and Vincent A. A. Jansen. 2010. “Modelling the Influence of

Human Behaviour on the Spread of Infectious Diseases: A Review.” Journal of the Royal

Society, Interface / the Royal Society 7 (50): 1247–56.

Gangarosa, E. J., A. M. Galazka, C. R. Wolfe, L. M. Phillips, R. E. Gangarosa, E. Miller, and R.

T. Chen. 1998. “Impact of Anti-Vaccine Movements on Pertussis Control: The Untold

Story.” The Lancet 351 (9099): 356–61.

Gastañaduy, Paul A., Jeremy Budd, Nicholas Fisher, Susan B. Redd, Jackie Fletcher, Julie Miller,

Dwight J. McFadden 3rd, et al. 2016. “A Measles Outbreak in an Underimmunized Amish

Community in Ohio.” The New England Journal of Medicine 375 (14): 1343–54.

Gay, N. J., L. M. Hesketh, P. Morgan-Capner, and E. Miller. 1995. “Interpretation of Serological

Surveillance Data for Measles Using Mathematical Models: Implications for Vaccine

Strategy.” Epidemiology and Infection 115 (1): 139–56.

Gensini, Gian Franco, Magdi H. Yacoub, and Andrea A. Conti. 2004. “The Concept of

Quarantine in History: From Plague to SARS.” The Journal of Infection 49 (4): 257–61.

Gigerenzer, Gerd, and Reinhard Selten. 2002. Bounded Rationality: The Adaptive Toolbox. MIT

Press.

Gilkey, Melissa B., William A. Calo, Macary W. Marciniak, and Noel T. Brewer. 2017. “Parents

Who Refuse or Delay HPV Vaccine: Differences in Vaccination Behavior, Beliefs, and

Clinical Communication Preferences.” Human Vaccines & Immunotherapeutics 13 (3):

680–86.

Gimelfarb, A. 1988. “Processes of Pair Formation Leading to Assortative Mating in Biological

110

http://paperpile.com/b/PPmoaU/H60mn
http://paperpile.com/b/PPmoaU/H60mn
http://paperpile.com/b/PPmoaU/H60mn
http://paperpile.com/b/PPmoaU/H60mn
http://dx.doi.org/10.1098/rstb.2016.0428
http://paperpile.com/b/PPmoaU/H60mn
http://paperpile.com/b/PPmoaU/0DTXj
http://paperpile.com/b/PPmoaU/0DTXj
http://paperpile.com/b/PPmoaU/LFbBY
http://paperpile.com/b/PPmoaU/LFbBY
http://paperpile.com/b/PPmoaU/mFmIV
http://paperpile.com/b/PPmoaU/mFmIV
http://paperpile.com/b/PPmoaU/skC36
http://paperpile.com/b/PPmoaU/skC36
http://paperpile.com/b/PPmoaU/skC36
http://paperpile.com/b/PPmoaU/YmF6v
http://paperpile.com/b/PPmoaU/YmF6v
http://paperpile.com/b/PPmoaU/YmF6v
http://paperpile.com/b/PPmoaU/ZBDEC
http://paperpile.com/b/PPmoaU/ZBDEC
http://paperpile.com/b/PPmoaU/ZBDEC
http://paperpile.com/b/PPmoaU/kjTsO
http://paperpile.com/b/PPmoaU/kjTsO
http://paperpile.com/b/PPmoaU/kjTsO
http://paperpile.com/b/PPmoaU/szyy5
http://paperpile.com/b/PPmoaU/szyy5
http://paperpile.com/b/PPmoaU/oP7TU
http://paperpile.com/b/PPmoaU/oP7TU
http://paperpile.com/b/PPmoaU/vMRzn
http://paperpile.com/b/PPmoaU/vMRzn
http://paperpile.com/b/PPmoaU/vMRzn
http://paperpile.com/b/PPmoaU/vMRzn
http://paperpile.com/b/PPmoaU/r3hJC


Populations: Encounter-Mating Model.” The American Naturalist.

https://doi.org/10.1086/284827.

Glanz, Jason M., David L. McClure, David J. Magid, Matthew F. Daley, Eric K. France, Daniel

A. Salmon, and Simon J. Hambidge. 2009. “Parental Refusal of Pertussis Vaccination Is

Associated with an Increased Risk of Pertussis Infection in Children.” Pediatrics 123 (6):

1446–51.

Gowda, Charitha, and Amanda F. Dempsey. 2013. “The Rise (and Fall?) of Parental Vaccine

Hesitancy.” Human Vaccines & Immunotherapeutics 9 (8): 1755–62.

Gray, Richard T., Alexander Hoare, Pol Dominic McCann, Jack Bradley, Ian Down, Basil

Donovan, Garrett Prestage, and David P. Wilson. 2011. “Will Changes in Gay Men’s Sexual

Behavior Reduce Syphilis Rates?” Sexually Transmitted Diseases 38 (12): 1151–58.

Griffiths, D. A. 1974. “A Catalytic Model of Infection for Measles.” Journal of the Royal

Statistical Society. Series C, Applied Statistics 23 (3): 330.

Gronim, Sara Stidstone. 2006. “Imagining Inoculation: Smallpox, the Body, and Social Relations

of Healing in the Eighteenth Century.” Bulletin of the History of Medicine 80 (2): 247–68.

Grove, Matt. 2019. “Evolving Conformity: Conditions Favouring Conformist Social Learning

over Random Copying.” Cognitive Systems Research 54 (May): 232–45.

Hanson, Kayla E., Brandon Koch, Kimberly Bonner, Annie-Laurie McRee, and Nicole E. Basta.

2018. “National Trends in Parental Human Papillomavirus Vaccination Intentions and

Reasons for Hesitancy, 2010–2015.” Clinical Infectious Diseases: An Official Publication

of the Infectious Diseases Society of America 67 (7): 1018–26.

Harary, Frank, and Robert Zane Norman. 1953. Graph Theory as a Mathematical Model in

Social Science.

Haverstick, Stacy, Cara Goodrich, Regi Freeman, Shandra James, Rajkiran Kullar, and Melissa

Ahrens. 2017. “Patients’ Hand Washing and Reducing Hospital-Acquired Infection.”

Critical Care Nurse 37 (3): e1–8.

Hebert, Paul L., Kevin D. Frick, Robert L. Kane, and A. Marshall McBean. 2005. “The Causes

of Racial and Ethnic Differences in Influenza Vaccination Rates among Elderly Medicare

Beneficiaries.” Health Services Research 40 (2): 517–37.

Henrich, Joseph. 2001. “Cultural Transmission and the Diffusion of Innovations: Adoption

Dynamics Indicate That Biased Cultural Transmission Is the Predominate Force in

111

http://paperpile.com/b/PPmoaU/r3hJC
http://paperpile.com/b/PPmoaU/r3hJC
http://dx.doi.org/10.1086/284827
http://paperpile.com/b/PPmoaU/r3hJC
http://paperpile.com/b/PPmoaU/dAdAM
http://paperpile.com/b/PPmoaU/dAdAM
http://paperpile.com/b/PPmoaU/dAdAM
http://paperpile.com/b/PPmoaU/dAdAM
http://paperpile.com/b/PPmoaU/QDWKc
http://paperpile.com/b/PPmoaU/QDWKc
http://paperpile.com/b/PPmoaU/nmXft
http://paperpile.com/b/PPmoaU/nmXft
http://paperpile.com/b/PPmoaU/nmXft
http://paperpile.com/b/PPmoaU/42u5M
http://paperpile.com/b/PPmoaU/42u5M
http://paperpile.com/b/PPmoaU/M1dMH
http://paperpile.com/b/PPmoaU/M1dMH
http://paperpile.com/b/PPmoaU/ryjxk
http://paperpile.com/b/PPmoaU/ryjxk
http://paperpile.com/b/PPmoaU/btbxL
http://paperpile.com/b/PPmoaU/btbxL
http://paperpile.com/b/PPmoaU/btbxL
http://paperpile.com/b/PPmoaU/btbxL
http://paperpile.com/b/PPmoaU/2WgTF
http://paperpile.com/b/PPmoaU/2WgTF
http://paperpile.com/b/PPmoaU/YcUgr
http://paperpile.com/b/PPmoaU/YcUgr
http://paperpile.com/b/PPmoaU/YcUgr
http://paperpile.com/b/PPmoaU/vyPSy
http://paperpile.com/b/PPmoaU/vyPSy
http://paperpile.com/b/PPmoaU/vyPSy
http://paperpile.com/b/PPmoaU/4G1RB
http://paperpile.com/b/PPmoaU/4G1RB


Behavioral Change.” American Anthropologist.

https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1525/aa.2001.103.4.992?casa_token

=owT43peAvEYAAAAA:g0-lCl3X2v5nch5MxXYKvhmuP94AM2zWDaD81XgCIpTLyc7

rhd7DWsLxhM463nWgLbKU7b5Yqj0FjT4.

Henrich, Joseph, and Robert Boyd. 2002. “On Modeling Cognition and Culture: Why Cultural

Evolution Does Not Require Replication of Representations.” Journal of Cognition and

Culture 2 (2): 87–112.

Hill, Holly A., Laurie D. Elam-Evans, David Yankey, James A. Singleton, and Yoonjae Kang.

2017. “Vaccination Coverage Among Children Aged 19–35 Months — United States,

2016.”MMWR. Morbidity and Mortality Weekly Report.

https://doi.org/10.15585/mmwr.mm6643a3.

Hill, Holly A., James A. Singleton, David Yankey, Laurie D. Elam-Evans, S. Cassandra Pingali,

and Yoonjae Kang. 2019. “Vaccination Coverage by Age 24 Months Among Children Born

in 2015 and 2016 — National Immunization Survey-Child, United States, 2016–2018.”

MMWR. Morbidity and Mortality Weekly Report.

https://doi.org/10.15585/mmwr.mm6841e2.

Hornik, Jacob, Rinat Shaanan Satchi, Ludovica Cesareo, and Alberto Pastore. 2015.

“Information Dissemination via Electronic Word-of-Mouth: Good News Travels Fast, Bad

News Travels Faster!” Computers in Human Behavior.

https://doi.org/10.1016/j.chb.2014.11.008.

Huang, Xun C., and Minaya Villasana. 2005. “An Extension of the Kermack–McKendrick

Model for AIDS Epidemic.” Journal of the Franklin Institute 342 (4): 341–51.

Jackson, C. L. 1969. “State Laws on Compulsory Immunization in the United States.” Public

Health Reports 84 (9): 787–95.

Jacobson, Robert M., Jennifer L. St Sauver, and Lila J. Finney Rutten. 2015. “Vaccine

Hesitancy.”Mayo Clinic Proceedings. Mayo Clinic 90 (11): 1562–68.

Jiménez-García, Rodrigo, Valentín Hernández-Barrera, Ana Lopez de Andres, Isabel

Jimenez-Trujillo, Jesus Esteban-Hernández, and Pilar Carrasco-Garrido. 2010. “Gender

Influence in Influenza Vaccine Uptake in Spain: Time Trends Analysis (1995–2006).”

Vaccine 28 (38): 6169–75.

John Odling-Smee, F., Kevin N. Laland, and Marcus W. Feldman. 2013. Niche Construction:

112

http://paperpile.com/b/PPmoaU/4G1RB
https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1525/aa.2001.103.4.992?casa_token=owT43peAvEYAAAAA:g0-lCl3X2v5nch5MxXYKvhmuP94AM2zWDaD81XgCIpTLyc7rhd7DWsLxhM463nWgLbKU7b5Yqj0FjT4
https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1525/aa.2001.103.4.992?casa_token=owT43peAvEYAAAAA:g0-lCl3X2v5nch5MxXYKvhmuP94AM2zWDaD81XgCIpTLyc7rhd7DWsLxhM463nWgLbKU7b5Yqj0FjT4
https://anthrosource.onlinelibrary.wiley.com/doi/abs/10.1525/aa.2001.103.4.992?casa_token=owT43peAvEYAAAAA:g0-lCl3X2v5nch5MxXYKvhmuP94AM2zWDaD81XgCIpTLyc7rhd7DWsLxhM463nWgLbKU7b5Yqj0FjT4
http://paperpile.com/b/PPmoaU/4G1RB
http://paperpile.com/b/PPmoaU/ohJsj
http://paperpile.com/b/PPmoaU/ohJsj
http://paperpile.com/b/PPmoaU/ohJsj
http://paperpile.com/b/PPmoaU/C3Cwd
http://paperpile.com/b/PPmoaU/C3Cwd
http://paperpile.com/b/PPmoaU/C3Cwd
http://paperpile.com/b/PPmoaU/C3Cwd
http://dx.doi.org/10.15585/mmwr.mm6643a3
http://paperpile.com/b/PPmoaU/C3Cwd
http://paperpile.com/b/PPmoaU/0NpWX
http://paperpile.com/b/PPmoaU/0NpWX
http://paperpile.com/b/PPmoaU/0NpWX
http://paperpile.com/b/PPmoaU/0NpWX
http://paperpile.com/b/PPmoaU/0NpWX
http://dx.doi.org/10.15585/mmwr.mm6841e2
http://paperpile.com/b/PPmoaU/0NpWX
http://paperpile.com/b/PPmoaU/B8R3p
http://paperpile.com/b/PPmoaU/B8R3p
http://paperpile.com/b/PPmoaU/B8R3p
http://paperpile.com/b/PPmoaU/B8R3p
http://dx.doi.org/10.1016/j.chb.2014.11.008
http://paperpile.com/b/PPmoaU/B8R3p
http://paperpile.com/b/PPmoaU/YkySz
http://paperpile.com/b/PPmoaU/YkySz
http://paperpile.com/b/PPmoaU/AC4T3
http://paperpile.com/b/PPmoaU/AC4T3
http://paperpile.com/b/PPmoaU/lNwUD
http://paperpile.com/b/PPmoaU/lNwUD
http://paperpile.com/b/PPmoaU/tyCbi
http://paperpile.com/b/PPmoaU/tyCbi
http://paperpile.com/b/PPmoaU/tyCbi
http://paperpile.com/b/PPmoaU/tyCbi
http://paperpile.com/b/PPmoaU/4gXCI


The Neglected Process in Evolution (MPB-37). Princeton University Press.

Kahneman, Daniel, Paul Slovic, and Amos Tversky. 1982. Judgment Under Uncertainty:

Heuristics and Biases. Cambridge University Press.

Kandler, Anne, and Adam Powell. 2018. “Generative Inference for Cultural Evolution.”

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences

373 (1743). https://doi.org/10.1098/rstb.2017.0056.

Kandler, Anne, Bryan Wilder, and Laura Fortunato. 2017. “Inferring Individual-Level Processes

from Population-Level Patterns in Cultural Evolution.” Royal Society Open Science 4 (9):

170949.

Karthigesu, Shantha P., James S. Chisholm, and David A. Coall. 2018. “Do Grandparents

Influence Parents’ Decision to Vaccinate Their Children? A Systematic Review.” Vaccine

36 (49): 7456–62.

Kayser, Veysel, and Iqbal Ramzan. 2021. “Vaccines and Vaccination: History and Emerging

Issues.” Human Vaccines & Immunotherapeutics 17 (12): 5255–68.

Kennedy, Allison M., Cedric J. Brown, and Deborah A. Gust. 2005. “Vaccine Beliefs of Parents

Who Oppose Compulsory Vaccination.” Public Health Reports 120 (3): 252–58.

Kermack, W. O., and A. G. McKendrick. 1927. “A Contribution to the Mathematical Theory of

Epidemics.” Proceedings of the Royal Society of London. Series A, Mathematical and

Physical Sciences 115 (772): 700–721.

Khan, Mostafa Saidur Rahim, Somtip Watanapongvanich, and Yoshihiko Kadoya. 2021.

“COVID-19 Vaccine Hesitancy among the Younger Generation in Japan.” International

Journal of Environmental Research and Public Health 18 (21).

https://doi.org/10.3390/ijerph182111702.

Kim-Farley, Robertj, Lawrenceb Schonberger, Benjaminm Nkowane, Olenm Kew, Kennethj

Bart, Waltera Orenstein, Alanr Hinman, Milfordh Hatch, and Jonathane Kaplan. 1984.

“POLIOMYELITIS IN THE USA: VIRTUAL ELIMINATION OF DISEASE CAUSED

BY WILD VIRUS.” The Lancet. https://doi.org/10.1016/s0140-6736(84)90829-8.

Koslap-Petraco, Mary. 2019. “Vaccine Hesitancy: Not a New Phenomenon, but a New Threat.”

Journal of the American Association of Nurse Practitioners 31 (11): 624–26.

Kubin, Laura. 2019. “Is There a Resurgence of Vaccine Preventable Diseases in the U.S.?”

Journal of Pediatric Nursing. https://doi.org/10.1016/j.pedn.2018.11.011.

113

http://paperpile.com/b/PPmoaU/4gXCI
http://paperpile.com/b/PPmoaU/YzI6U
http://paperpile.com/b/PPmoaU/YzI6U
http://paperpile.com/b/PPmoaU/npyV8
http://paperpile.com/b/PPmoaU/npyV8
http://paperpile.com/b/PPmoaU/npyV8
http://dx.doi.org/10.1098/rstb.2017.0056
http://paperpile.com/b/PPmoaU/npyV8
http://paperpile.com/b/PPmoaU/V2Iko
http://paperpile.com/b/PPmoaU/V2Iko
http://paperpile.com/b/PPmoaU/V2Iko
http://paperpile.com/b/PPmoaU/i2fIt
http://paperpile.com/b/PPmoaU/i2fIt
http://paperpile.com/b/PPmoaU/i2fIt
http://paperpile.com/b/PPmoaU/rvbVH
http://paperpile.com/b/PPmoaU/rvbVH
http://paperpile.com/b/PPmoaU/lDeRo
http://paperpile.com/b/PPmoaU/lDeRo
http://paperpile.com/b/PPmoaU/Cwibi
http://paperpile.com/b/PPmoaU/Cwibi
http://paperpile.com/b/PPmoaU/Cwibi
http://paperpile.com/b/PPmoaU/6hrQI
http://paperpile.com/b/PPmoaU/6hrQI
http://paperpile.com/b/PPmoaU/6hrQI
http://paperpile.com/b/PPmoaU/6hrQI
http://dx.doi.org/10.3390/ijerph182111702
http://paperpile.com/b/PPmoaU/6hrQI
http://paperpile.com/b/PPmoaU/VIcYO
http://paperpile.com/b/PPmoaU/VIcYO
http://paperpile.com/b/PPmoaU/VIcYO
http://paperpile.com/b/PPmoaU/VIcYO
http://dx.doi.org/10.1016/s0140-6736(84)90829-8
http://paperpile.com/b/PPmoaU/VIcYO
http://paperpile.com/b/PPmoaU/9PBty
http://paperpile.com/b/PPmoaU/9PBty
http://paperpile.com/b/PPmoaU/sl6BX
http://paperpile.com/b/PPmoaU/sl6BX
http://dx.doi.org/10.1016/j.pedn.2018.11.011
http://paperpile.com/b/PPmoaU/sl6BX


Laland, Kevin, Blake Matthews, and Marcus W. Feldman. 2016. “An Introduction to Niche

Construction Theory.” Evolutionary Ecology 30 (February): 191–202.

Laland, K. N., J. Odling-Smee, and M. W. Feldman. 2000. “Niche Construction, Biological

Evolution, and Cultural Change.” The Behavioral and Brain Sciences 23 (1): 131–46;

discussion 146–75.

Langer, William L. 1976a. Immunization Against Smallpox Before Jenner. Scientific American.

———. 1976b. “Imnlunization against Smallpox before Jenner.” Scientific American 234 (1):

112–17.

Langford, Rebecca, Peter Lunn, and Catherine Panter-Brick. 2011. “Hand-Washing, Subclinical

Infections, and Growth: A Longitudinal Evaluation of an Intervention in Nepali Slums.”

American Journal of Human Biology: The Official Journal of the Human Biology Council

23 (5): 621–29.

Larson, Heidi J., Emmanuela Gakidou, and Christopher J. L. Murray. 2022. “The

Vaccine-Hesitant Moment.” The New England Journal of Medicine 387 (1): 58–65.

Latané, Bibb, and Sharon Wolf. 1981. “The Social Impact of Majorities and Minorities.”

Psychological Review 88 (5): 438–53.

Laubenbacher, Reinhard, Franziska Hinkelmann, and Matt Oremland. 2013. “Agent-Based

Models and Optimal Control in Biology: A Discrete Approach.” In Mathematical Concepts

and Methods in Modern Biology, 143–78. Elsevier.

Lau, Travis Chi Wing. 2020. “Inventing Edward Jenner: Historicizing Anti-Vaccination.” In The

Routledge Companion to Health Humanities, 120–33. Routledge.

Lawler, Emily C. 2017. “Effectiveness of Vaccination Recommendations versus Mandates:

Evidence from the Hepatitis A Vaccine.” Journal of Health Economics 52 (March): 45–62.

Lazarus, Jeffrey V., Scott C. Ratzan, Adam Palayew, Lawrence O. Gostin, Heidi J. Larson,

Kenneth Rabin, Spencer Kimball, and Ayman El-Mohandes. 2021. “A Global Survey of

Potential Acceptance of a COVID-19 Vaccine.” Nature Medicine 27 (2): 225–28.

Leask, Julie. 2011. “Target the Fence-Sitters.” Nature 473 (7348): 443–45.

Lederberg, J. 2000. “Infectious History.” Science 288 (5464): 287–93.

Lee, Carol H. J., Nickola C. Overall, and Chris G. Sibley. 2020. “Maternal and Paternal

Confidence in Vaccine Safety: Whose Attitudes Are Predictive of Children’s Vaccination?”

Vaccine 38 (45): 7057–62.

114

http://paperpile.com/b/PPmoaU/UPq5N
http://paperpile.com/b/PPmoaU/UPq5N
http://paperpile.com/b/PPmoaU/BfZ74
http://paperpile.com/b/PPmoaU/BfZ74
http://paperpile.com/b/PPmoaU/BfZ74
http://paperpile.com/b/PPmoaU/PhP9v
http://paperpile.com/b/PPmoaU/3v162
http://paperpile.com/b/PPmoaU/3v162
http://paperpile.com/b/PPmoaU/UeLkf
http://paperpile.com/b/PPmoaU/UeLkf
http://paperpile.com/b/PPmoaU/UeLkf
http://paperpile.com/b/PPmoaU/UeLkf
http://paperpile.com/b/PPmoaU/JIhM2
http://paperpile.com/b/PPmoaU/JIhM2
http://paperpile.com/b/PPmoaU/0TxiW
http://paperpile.com/b/PPmoaU/0TxiW
http://paperpile.com/b/PPmoaU/EdAor
http://paperpile.com/b/PPmoaU/EdAor
http://paperpile.com/b/PPmoaU/EdAor
http://paperpile.com/b/PPmoaU/OJRsw
http://paperpile.com/b/PPmoaU/OJRsw
http://paperpile.com/b/PPmoaU/lYn3S
http://paperpile.com/b/PPmoaU/lYn3S
http://paperpile.com/b/PPmoaU/oxrfD
http://paperpile.com/b/PPmoaU/oxrfD
http://paperpile.com/b/PPmoaU/oxrfD
http://paperpile.com/b/PPmoaU/l8DcF
http://paperpile.com/b/PPmoaU/ptdZ5
http://paperpile.com/b/PPmoaU/yLMQ6
http://paperpile.com/b/PPmoaU/yLMQ6
http://paperpile.com/b/PPmoaU/yLMQ6


Lewin, Kurt. 1936. Principles of Topological Psychology. New York: McGraw-Hill.

Lim, Ming Tsuey, Yvonne Mei Fong Lim, Seng Fah Tong, and Sheamini Sivasampu. 2019.

“Age, Sex and Primary Care Setting Differences in Patients’ Perception of Community

Healthcare Seeking Behaviour towards Health Services.” PloS One 14 (10): e0224260.

Lipsitch, Marc, Florian Krammer, Gili Regev-Yochay, Yaniv Lustig, and Ran D. Balicer. 2022.

“SARS-CoV-2 Breakthrough Infections in Vaccinated Individuals: Measurement, Causes

and Impact.” Nature Reviews. Immunology 22 (1): 57–65.

Liu, Z., P. Magal, O. Seydi, and G. Webb. 2020. “A COVID-19 Epidemic Model with Latency

Period.” Infectious Disease Modelling 5 (April): 323–37.

Lorrain, François, and Harrison C. White. 1971. “Structural Equivalence of Individuals in Social

Networks.” The Journal of Mathematical Sociology 1 (1): 49–80.

Luman, Elizabeth T., Lawrence E. Barker, Kate M. Shaw, Mary Mason McCauley, James W.

Buehler, and Larry K. Pickering. 2005. “Timeliness of Childhood Vaccinations in the

United States: Days Undervaccinated and Number of Vaccines Delayed.” JAMA: The

Journal of the American Medical Association 293 (10): 1204–11.

Luz, Paula Mendes, Paulo Nadanovsky, and Julie Leask. 2020. “How Heuristics and Cognitive

Biases Affect Vaccination Decisions.” Cadernos de Saude Publica 36Suppl 2 (Suppl 2):

e00136620.

MacDonald, Noni E., and SAGE Working Group on Vaccine Hesitancy. 2015. “Vaccine

Hesitancy: Definition, Scope and Determinants.” Vaccine 33 (34): 4161–64.

Macfarlane, Alexander. 1882. Analysis of Relationships of Consanguinity and Affinity.

Magpantay, F. M. G., A. A. King, and P. Rohani. 2019. “Age-Structure and Transient Dynamics

in Epidemiological Systems.” Journal of the Royal Society, Interface / the Royal Society 16

(156): 20190151.

Mahoney, Richard T., Anatole Krattiger, John D. Clemens, and Roy Curtiss 3rd. 2007. “The

Introduction of New Vaccines into Developing Countries. IV: Global Access Strategies.”

Vaccine 25 (20): 4003–11.

Malthus, Thomas Robert. 1872. An Essay on the Principle of Population ... The Fourth Edition.

Mao, Liang, and Yan Yang. 2012a. “Coupling Infectious Diseases, Human Preventive Behavior,

and Networks--a Conceptual Framework for Epidemic Modeling.” Social Science &

Medicine 74 (2): 167–75.

115

http://paperpile.com/b/PPmoaU/5kJ3t
http://paperpile.com/b/PPmoaU/AZN82
http://paperpile.com/b/PPmoaU/AZN82
http://paperpile.com/b/PPmoaU/AZN82
http://paperpile.com/b/PPmoaU/eT871
http://paperpile.com/b/PPmoaU/eT871
http://paperpile.com/b/PPmoaU/eT871
http://paperpile.com/b/PPmoaU/mfkCp
http://paperpile.com/b/PPmoaU/mfkCp
http://paperpile.com/b/PPmoaU/ejDXm
http://paperpile.com/b/PPmoaU/ejDXm
http://paperpile.com/b/PPmoaU/AA7N0
http://paperpile.com/b/PPmoaU/AA7N0
http://paperpile.com/b/PPmoaU/AA7N0
http://paperpile.com/b/PPmoaU/AA7N0
http://paperpile.com/b/PPmoaU/EFzo1
http://paperpile.com/b/PPmoaU/EFzo1
http://paperpile.com/b/PPmoaU/EFzo1
http://paperpile.com/b/PPmoaU/fzYm6
http://paperpile.com/b/PPmoaU/fzYm6
http://paperpile.com/b/PPmoaU/Ddsed
http://paperpile.com/b/PPmoaU/xMhF3
http://paperpile.com/b/PPmoaU/xMhF3
http://paperpile.com/b/PPmoaU/xMhF3
http://paperpile.com/b/PPmoaU/5Uy0s
http://paperpile.com/b/PPmoaU/5Uy0s
http://paperpile.com/b/PPmoaU/5Uy0s
http://paperpile.com/b/PPmoaU/EZHQ9
http://paperpile.com/b/PPmoaU/11hVI
http://paperpile.com/b/PPmoaU/11hVI
http://paperpile.com/b/PPmoaU/11hVI


———. 2012b. “Coupling Infectious Diseases, Human Preventive Behavior, and Networks--a

Conceptual Framework for Epidemic Modeling.” Social Science & Medicine 74 (2):

167–75.

Markel, Howard, Harvey B. Lipman, J. Alexander Navarro, Alexandra Sloan, Joseph R.

Michalsen, Alexandra Minna Stern, and Martin S. Cetron. 2007. “Nonpharmaceutical

Interventions Implemented by US Cities during the 1918-1919 Influenza Pandemic.”

JAMA: The Journal of the American Medical Association 298 (6): 644–54.

Marshall, Brandon D. L., Magdalena M. Paczkowski, Lars Seemann, Barbara Tempalski,

Enrique R. Pouget, Sandro Galea, and Samuel R. Friedman. 2012. “A Complex Systems

Approach to Evaluate HIV Prevention in Metropolitan Areas: Preliminary Implications for

Combination Intervention Strategies.” PloS One 7 (9): e44833.

Martinez-Bakker, Micaela, Aaron A. King, and Pejman Rohani. 2015. “Unraveling the

Transmission Ecology of Polio.” PLoS Biology 13 (6): e1002172.

Mastroianni, Brian. 2019. “Measles in America: What Life Was Like Before and After the

Vaccine.” Healthline Media. March 6, 2019.

https://www.healthline.com/health-news/life-before-and-after-the-measles-vaccine.

Mathieu, Edouard, Hannah Ritchie, Esteban Ortiz-Ospina, Max Roser, Joe Hasell, Cameron

Appel, Charlie Giattino, and Lucas Rodés-Guirao. 2021. “A Global Database of COVID-19

Vaccinations.” Nature Human Behaviour 5 (7): 947–53.

May, Thomas, and Ross D. Silverman. 2003. “‘Clustering of Exemptions’ as a Collective Action

Threat to Herd Immunity.” Vaccine 21 (11-12): 1048–51.

Medley, Graham F., and Anna Vassall. 2017. “When an Emerging Disease Becomes Endemic.”

Science 357 (6347): 156–58.

Mehta, Rohan S., and Noah A. Rosenberg. 2020. “Modelling Anti-Vaccine Sentiment as a

Cultural Pathogen.” Evolutionary Human Sciences 2: e21.

Meng, Lu, Nina B. Masters, Peng-Jun Lu, James A. Singleton, Jennifer L. Kriss, Tianyi Zhou,

Debora Weiss, and Carla L. Black. 2023. “Cluster Analysis of Adults Unvaccinated for

COVID-19 Based on Behavioral and Social Factors, National Immunization Survey-Adult

COVID Module, United States.” Preventive Medicine 167 (February): 107415.

Minardi, Margot. 2004. “The Boston Inoculation Controversy of 1721-1722: An Incident in the

History of Race.” The William and Mary Quarterly 61 (1): 47–76.

116

http://paperpile.com/b/PPmoaU/5OE6W
http://paperpile.com/b/PPmoaU/5OE6W
http://paperpile.com/b/PPmoaU/5OE6W
http://paperpile.com/b/PPmoaU/uxyIr
http://paperpile.com/b/PPmoaU/uxyIr
http://paperpile.com/b/PPmoaU/uxyIr
http://paperpile.com/b/PPmoaU/uxyIr
http://paperpile.com/b/PPmoaU/V7YcR
http://paperpile.com/b/PPmoaU/V7YcR
http://paperpile.com/b/PPmoaU/V7YcR
http://paperpile.com/b/PPmoaU/V7YcR
http://paperpile.com/b/PPmoaU/jfEpg
http://paperpile.com/b/PPmoaU/jfEpg
http://paperpile.com/b/PPmoaU/tm2v7
http://paperpile.com/b/PPmoaU/tm2v7
https://www.healthline.com/health-news/life-before-and-after-the-measles-vaccine
http://paperpile.com/b/PPmoaU/tm2v7
http://paperpile.com/b/PPmoaU/3qrW0
http://paperpile.com/b/PPmoaU/3qrW0
http://paperpile.com/b/PPmoaU/3qrW0
http://paperpile.com/b/PPmoaU/UQrh0
http://paperpile.com/b/PPmoaU/UQrh0
http://paperpile.com/b/PPmoaU/LWEQy
http://paperpile.com/b/PPmoaU/LWEQy
http://paperpile.com/b/PPmoaU/w9bJQ
http://paperpile.com/b/PPmoaU/w9bJQ
http://paperpile.com/b/PPmoaU/04SGJ
http://paperpile.com/b/PPmoaU/04SGJ
http://paperpile.com/b/PPmoaU/04SGJ
http://paperpile.com/b/PPmoaU/04SGJ
http://paperpile.com/b/PPmoaU/EDinA
http://paperpile.com/b/PPmoaU/EDinA


Momplaisir, Florence M., Barbara J. Kuter, Fatemeh Ghadimi, Safa Browne, Hervette

Nkwihoreze, Kristen A. Feemster, Ian Frank, et al. 2021. “Racial/Ethnic Differences in

COVID-19 Vaccine Hesitancy Among Health Care Workers in 2 Large Academic

Hospitals.” JAMA Network Open 4 (8): e2121931.

Moore, Daniella Campelo Batalha Cox, Marcio Fernandes Nehab, Karla Gonçalves Camacho,

Adriana Teixeira Reis, Maria de Fátima Junqueira-Marinho, Dimitri Marques Abramov,

Zina Maria Almeida de Azevedo, et al. 2021. “Low COVID-19 Vaccine Hesitancy in

Brazil.” Vaccine 39 (42): 6262–68.

Moreno, Jacob Levy. 1934. Who Shall Survive?

Morens, David M. 1998. “Measles in Fiji, 1875: Thoughts on the History of Emerging Infectious

Diseases.” Pacific Health Dialog 5 (1). http://trueinfections.com/MeaslesinFiji1875.pdf.

Morens, David M., Gregory K. Folkers, and Anthony S. Fauci. 2004. “The Challenge of

Emerging and Re-Emerging Infectious Diseases.” Nature 430 (6996): 242–49.

Morens, David M., Jeffery K. Taubenberger, and Anthony S. Fauci. 2021. “A Centenary Tale of

Two Pandemics: The 1918 Influenza Pandemic and COVID-19, Part II.” American Journal

of Public Health 111 (7): 1267–72.

Morgan, T. J. H., L. E. Rendell, M. Ehn, W. Hoppitt, and K. N. Laland. 2012. “The Evolutionary

Basis of Human Social Learning.” Proceedings. Biological Sciences / The Royal Society

279 (1729): 653–62.

Morin, Benjamin R., Liana Medina-Rios, Erika T. Camacho, and Carlos Castillo-Chavez. 2010.

“Static Behavioral Effects on Gonorrhea Transmission Dynamics in a MSM Population.”

Journal of Theoretical Biology. https://doi.org/10.1016/j.jtbi.2010.07.027.

Muench, Hugo. 1959. Catalytic Models in Epidemiology. Harvard University Press.

Ndeffo Mbah, Martial L., Jingzhou Liu, Chris T. Bauch, Yonas I. Tekel, Jan Medlock, Lauren

Ancel Meyers, and Alison P. Galvani. 2012. “The Impact of Imitation on Vaccination

Behavior in Social Contact Networks.” PLoS Computational Biology 8 (4): e1002469.

Nery, Nivison, Jr, Juan P. Aguilar Ticona, Cristiane W. Cardoso, Ana Paula Pitanga Barbuda

Prates, Helena Cristina Alves Vieira, Andrea Salvador de Almeida, Mirela Maisa da Silva

Souza, et al. 2022. “COVID-19 Vaccine Hesitancy and Associated Factors according to

Sex: A Population-Based Survey in Salvador, Brazil.” PloS One 17 (1): e0262649.

Nguyen, C. Thi. 2020. “Echo Chambers and Epistemic Bubbles.” Episteme 17 (2): 141–61.

117

http://paperpile.com/b/PPmoaU/aiKvx
http://paperpile.com/b/PPmoaU/aiKvx
http://paperpile.com/b/PPmoaU/aiKvx
http://paperpile.com/b/PPmoaU/aiKvx
http://paperpile.com/b/PPmoaU/m78qF
http://paperpile.com/b/PPmoaU/m78qF
http://paperpile.com/b/PPmoaU/m78qF
http://paperpile.com/b/PPmoaU/m78qF
http://paperpile.com/b/PPmoaU/GrSRc
http://paperpile.com/b/PPmoaU/zm5HK
http://paperpile.com/b/PPmoaU/zm5HK
http://trueinfections.com/MeaslesinFiji1875.pdf
http://paperpile.com/b/PPmoaU/zm5HK
http://paperpile.com/b/PPmoaU/SBvhU
http://paperpile.com/b/PPmoaU/SBvhU
http://paperpile.com/b/PPmoaU/PyJDI
http://paperpile.com/b/PPmoaU/PyJDI
http://paperpile.com/b/PPmoaU/PyJDI
http://paperpile.com/b/PPmoaU/7cbYd
http://paperpile.com/b/PPmoaU/7cbYd
http://paperpile.com/b/PPmoaU/7cbYd
http://paperpile.com/b/PPmoaU/7T18I
http://paperpile.com/b/PPmoaU/7T18I
http://paperpile.com/b/PPmoaU/7T18I
http://dx.doi.org/10.1016/j.jtbi.2010.07.027
http://paperpile.com/b/PPmoaU/7T18I
http://paperpile.com/b/PPmoaU/Rer6W
http://paperpile.com/b/PPmoaU/kJACP
http://paperpile.com/b/PPmoaU/kJACP
http://paperpile.com/b/PPmoaU/kJACP
http://paperpile.com/b/PPmoaU/raFrU
http://paperpile.com/b/PPmoaU/raFrU
http://paperpile.com/b/PPmoaU/raFrU
http://paperpile.com/b/PPmoaU/raFrU
http://paperpile.com/b/PPmoaU/4MEZ2


Nguyen, Nhu Ngoc, Linda Houhamdi, Van Thuan Hoang, Jeremy Delerce, Léa Delorme,

Philippe Colson, Philippe Brouqui, Pierre-Edouard Fournier, Didier Raoult, and Philippe

Gautret. 2022. “SARS-CoV-2 Reinfection and COVID-19 Severity.” Emerging Microbes &

Infections 11 (1): 894–901.

Nickerson, Raymond S. 1998. “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises.”

Review of General Psychology: Journal of Division 1, of the American Psychological

Association 2 (2): 175–220.

O’Brien, Michael J., Kevin N. Laland, Jack M. Broughton, Michael D. Cannon, Agustín Fuentes,

Pascale Gerbault, A. Magdalena Hurtado, et al. 2012. “Genes, Culture, and Agriculture: An

Example of Human Niche Construction.” Current Anthropology 53 (4): 000–000.

Omer, Saad B., Daniel A. Salmon, Walter A. Orenstein, M. Patricia deHart, and Neal Halsey.

2009. “Vaccine Refusal, Mandatory Immunization, and the Risks of Vaccine-Preventable

Diseases.” The New England Journal of Medicine 360 (19): 1981–88.

Orenstein, Walter A., and Julie R. Garon. 2016. “Hardly Harmless: The Dangerous Tradition

Of’pox Parties'.” Infectious Diseases in Children 29 (3): 8.

Osborne, M. J. 2004. An Introduction to Game Theory. Vol. 3. New York: Oxford University

Press.

Otte, Evelien, and Ronald Rousseau. 2002. “Social Network Analysis: A Powerful Strategy, Also

for the Information Sciences.” Journal of Information Science and Engineering 28 (6):

441–53.

Ozawa, Sachiko, Andrew Mirelman, Meghan L. Stack, Damian G. Walker, and Orin S. Levine.

2012. “Cost-Effectiveness and Economic Benefits of Vaccines in Low- and Middle-Income

Countries: A Systematic Review.” Vaccine 31 (1): 96–108.

Paget, John, Peter Spreeuwenberg, Vivek Charu, Robert J. Taylor, A. Danielle Iuliano, Joseph

Bresee, Lone Simonsen, Cecile Viboud, and Global Seasonal Influenza-associated Mortality

Collaborator Network and GLaMOR Collaborating Teams*. 2019. “Global Mortality

Associated with Seasonal Influenza Epidemics: New Burden Estimates and Predictors from

the GLaMOR Project.” Journal of Global Health 9 (2): 020421.

Pearl, R., and L. J. Reed. 1920. “On the Rate of Growth of the Population of the United States

since 1790 and Its Mathematical Representation.” Proceedings of the National Academy of

Sciences of the United States of America 6 (6): 275–88.

118

http://paperpile.com/b/PPmoaU/KpnPE
http://paperpile.com/b/PPmoaU/KpnPE
http://paperpile.com/b/PPmoaU/KpnPE
http://paperpile.com/b/PPmoaU/KpnPE
http://paperpile.com/b/PPmoaU/QVTkF
http://paperpile.com/b/PPmoaU/QVTkF
http://paperpile.com/b/PPmoaU/QVTkF
http://paperpile.com/b/PPmoaU/AkFMc
http://paperpile.com/b/PPmoaU/AkFMc
http://paperpile.com/b/PPmoaU/AkFMc
http://paperpile.com/b/PPmoaU/BfctA
http://paperpile.com/b/PPmoaU/BfctA
http://paperpile.com/b/PPmoaU/BfctA
http://paperpile.com/b/PPmoaU/f7xfE
http://paperpile.com/b/PPmoaU/f7xfE
http://paperpile.com/b/PPmoaU/ZpTZW
http://paperpile.com/b/PPmoaU/ZpTZW
http://paperpile.com/b/PPmoaU/d6i71
http://paperpile.com/b/PPmoaU/d6i71
http://paperpile.com/b/PPmoaU/d6i71
http://paperpile.com/b/PPmoaU/OesrB
http://paperpile.com/b/PPmoaU/OesrB
http://paperpile.com/b/PPmoaU/OesrB
http://paperpile.com/b/PPmoaU/fmqBO
http://paperpile.com/b/PPmoaU/fmqBO
http://paperpile.com/b/PPmoaU/fmqBO
http://paperpile.com/b/PPmoaU/fmqBO
http://paperpile.com/b/PPmoaU/fmqBO
http://paperpile.com/b/PPmoaU/Yidfs
http://paperpile.com/b/PPmoaU/Yidfs
http://paperpile.com/b/PPmoaU/Yidfs


———. 1922. “A Further Note on the Mathematical Theory of Population Growth.”

Proceedings of the National Academy of Sciences of the United States of America 8 (12):

365–68.

Pereira, Beatriz, Amy Greiner Fehl, Stacey R. Finkelstein, Gabriela M. Jiga-Boy, and Marta

Caserotti. 2022. “Scarcity in COVID‐19 Vaccine Supplies Reduces Perceived Vaccination

Priority and Increases Vaccine Hesitancy.” Psychology & Marketing 39 (5): 921–36.

Perra, Nicola, Duygu Balcan, Bruno Gonçalves, and Alessandro Vespignani. 2011. “Towards a

Characterization of Behavior-Disease Models.” PloS One 6 (8): e23084.

Perrin, A. 2020. “23% of Users in U.S. Say Social Media Led Them to Change Views on an

Issue; Some Cite Black Lives Matter.” Pew Research Center. October 15, 2020.

https://www.pewresearch.org/short-reads/2020/10/15/23-of-users-in-us-say-social-media-le

d-them-to-change-views-on-issue-some-cite-black-lives-matter/.

Phadke, Varun K., Robert A. Bednarczyk, Daniel A. Salmon, and Saad B. Omer. 2016.

“Association Between Vaccine Refusal and Vaccine-Preventable Diseases in the United

States: A Review of Measles and Pertussis.” JAMA: The Journal of the American Medical

Association 315 (11): 1149–58.

Piret, Jocelyne, and Guy Boivin. 2020. “Pandemics Throughout History.” Frontiers in

Microbiology 11: 631736.

Plotkin, Stanley A. 2011. History of Vaccine Development. Springer Science & Business Media.

Pohl, Rüdiger. 2004. Cognitive Illusions: A Handbook on Fallacies and Biases in Thinking,

Judgement and Memory. Psychology Press.

Poundstone, William. 1993. Prisoner’s Dilemma: John von Neumann, Game Theory, and the

Puzzle of the Bomb. Knopf Doubleday Publishing Group.

“‘Pox Parties’ Still Pose Risk for Severe Chickenpox Complications.” 2016, February 2016.

Prada, J. M., C. J. E. Metcalf, S. Takahashi, J. Lessler, A. J. Tatem, and M. Ferrari. 2017.

“Demographics, Epidemiology and the Impact of Vaccination Campaigns in a Measles-Free

World – Can Elimination Be Maintained?” Vaccine 35 (11): 1488–93.

Pruitt, Rosanne Harkey, Priscilla M. Kline, and Rebecca Bolt Kovaz. 1995. “Perceived Barriers

to Childhood Immunization Among Rural Populations.” Journal of Community Health

Nursing. https://doi.org/10.1207/s15327655jchn1202_1.

Racaniello, Vincent R. 2004. “Emerging Infectious Diseases.” The Journal of Clinical

119

http://paperpile.com/b/PPmoaU/LzALX
http://paperpile.com/b/PPmoaU/LzALX
http://paperpile.com/b/PPmoaU/LzALX
http://paperpile.com/b/PPmoaU/ZGcMj
http://paperpile.com/b/PPmoaU/ZGcMj
http://paperpile.com/b/PPmoaU/ZGcMj
http://paperpile.com/b/PPmoaU/nR0J4
http://paperpile.com/b/PPmoaU/nR0J4
http://paperpile.com/b/PPmoaU/RanLq
http://paperpile.com/b/PPmoaU/RanLq
https://www.pewresearch.org/short-reads/2020/10/15/23-of-users-in-us-say-social-media-led-them-to-change-views-on-issue-some-cite-black-lives-matter/
https://www.pewresearch.org/short-reads/2020/10/15/23-of-users-in-us-say-social-media-led-them-to-change-views-on-issue-some-cite-black-lives-matter/
http://paperpile.com/b/PPmoaU/RanLq
http://paperpile.com/b/PPmoaU/u2N9M
http://paperpile.com/b/PPmoaU/u2N9M
http://paperpile.com/b/PPmoaU/u2N9M
http://paperpile.com/b/PPmoaU/u2N9M
http://paperpile.com/b/PPmoaU/kzzUl
http://paperpile.com/b/PPmoaU/kzzUl
http://paperpile.com/b/PPmoaU/9W2Ab
http://paperpile.com/b/PPmoaU/uzNjE
http://paperpile.com/b/PPmoaU/uzNjE
http://paperpile.com/b/PPmoaU/D6wvX
http://paperpile.com/b/PPmoaU/D6wvX
http://paperpile.com/b/PPmoaU/aAiWh
http://paperpile.com/b/PPmoaU/nScOS
http://paperpile.com/b/PPmoaU/nScOS
http://paperpile.com/b/PPmoaU/nScOS
http://paperpile.com/b/PPmoaU/RcpzQ
http://paperpile.com/b/PPmoaU/RcpzQ
http://paperpile.com/b/PPmoaU/RcpzQ
http://dx.doi.org/10.1207/s15327655jchn1202_1
http://paperpile.com/b/PPmoaU/RcpzQ
http://paperpile.com/b/PPmoaU/3XTcq


Investigation 113 (6): 796–98.

Rao, T. S. Sathyanarayana, and Chittaranjan Andrade. 2011. “The MMR Vaccine and Autism:

Sensation, Refutation, Retraction, and Fraud.” Indian Journal of Psychiatry 53 (2): 95–96.

Raoult, Didier, Nadjet Mouffok, Idir Bitam, Renaud Piarroux, and Michel Drancourt. 2013.

“Plague: History and Contemporary Analysis.” The Journal of Infection 66 (1): 18–26.

Reluga, Timothy C. 2009. “An SIS Epidemiology Game with Two Subpopulations.” Journal of

Biological Dynamics 3 (5): 515–31.

Reluga, Timothy C., Chris T. Bauch, and Alison P. Galvani. 2006. “Evolving Public Perceptions

and Stability in Vaccine Uptake.” Mathematical Biosciences 204 (2): 185–98.

Riedel, Stefan. 2005. “Edward Jenner and the History of Smallpox and Vaccination.”

Proceedings 18 (1): 21–25.

Robertson, Elaine, Kelly S. Reeve, Claire L. Niedzwiedz, Jamie Moore, Margaret Blake,

Michael Green, Srinivasa Vittal Katikireddi, and Michaela J. Benzeval. 2021. “Predictors of

COVID-19 Vaccine Hesitancy in the UK Household Longitudinal Study.” Brain, Behavior,

and Immunity 94 (May): 41–50.

Rolison, Jonathan J., Yaniv Hanoch, Stacey Wood, and Pi-Ju Liu. 2013. “Risk-Taking

Differences Across the Adult Life Span: A Question of Age and Domain.” The Journals of

Gerontology. Series B, Psychological Sciences and Social Sciences 69 (6): 870–80.

Ross, Sir Ronald. 1910. The Prevention of Malaria ... With Contributions by Professor L.O.

Howard ... Colonel W.C. Gorgas ... With Many Illustrations.

Roy, Debendra Nath, Mohitosh Biswas, Ekramul Islam, and Md Shah Azam. 2022. “Potential

Factors Influencing COVID-19 Vaccine Acceptance and Hesitancy: A Systematic Review.”

PloS One 17 (3): e0265496.

Salathé, Marcel, and Sebastian Bonhoeffer. 2008. “The Effect of Opinion Clustering on Disease

Outbreaks.” Journal of the Royal Society, Interface / the Royal Society 5 (29): 1505–8.

Salk, D. 1980. “Eradication of Poliomyelitis in the United States. I. Live Virus

Vaccine-Associated and Wild Poliovirus Disease.” Clinical Infectious Diseases.

https://doi.org/10.1093/clinids/2.2.228.

Salk, J., and D. Salk. 1977. “Control of Influenza and Poliomyelitis with Killed Virus Vaccines.”

Science 195 (4281): 834–47.

Sallam, Malik. 2021. “COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review

120

http://paperpile.com/b/PPmoaU/3XTcq
http://paperpile.com/b/PPmoaU/DgTTl
http://paperpile.com/b/PPmoaU/DgTTl
http://paperpile.com/b/PPmoaU/eeLEe
http://paperpile.com/b/PPmoaU/eeLEe
http://paperpile.com/b/PPmoaU/ESTh1
http://paperpile.com/b/PPmoaU/ESTh1
http://paperpile.com/b/PPmoaU/zUPPk
http://paperpile.com/b/PPmoaU/zUPPk
http://paperpile.com/b/PPmoaU/ZujKw
http://paperpile.com/b/PPmoaU/ZujKw
http://paperpile.com/b/PPmoaU/kvoks
http://paperpile.com/b/PPmoaU/kvoks
http://paperpile.com/b/PPmoaU/kvoks
http://paperpile.com/b/PPmoaU/kvoks
http://paperpile.com/b/PPmoaU/QcV9Z
http://paperpile.com/b/PPmoaU/QcV9Z
http://paperpile.com/b/PPmoaU/QcV9Z
http://paperpile.com/b/PPmoaU/flfun
http://paperpile.com/b/PPmoaU/flfun
http://paperpile.com/b/PPmoaU/XXuJu
http://paperpile.com/b/PPmoaU/XXuJu
http://paperpile.com/b/PPmoaU/XXuJu
http://paperpile.com/b/PPmoaU/6wp8Q
http://paperpile.com/b/PPmoaU/6wp8Q
http://paperpile.com/b/PPmoaU/pRnNK
http://paperpile.com/b/PPmoaU/pRnNK
http://paperpile.com/b/PPmoaU/pRnNK
http://dx.doi.org/10.1093/clinids/2.2.228
http://paperpile.com/b/PPmoaU/pRnNK
http://paperpile.com/b/PPmoaU/2wsH9
http://paperpile.com/b/PPmoaU/2wsH9
http://paperpile.com/b/PPmoaU/jgZXG


of Vaccine Acceptance Rates.” Vaccines 9 (2). https://doi.org/10.3390/vaccines9020160.

Scheres, Jacques, and Krzysztof Kuszewski. 2019. “The Ten Threats to Global Health in 2018

and 2019. A Welcome and Informative Communication of WHO to Everybody.” Zdrowie

Publiczne I Zarządzanie. https://doi.org/10.4467/20842627oz.19.001.11297.

Schlickeiser, Reinhard, and Martin Kröger. 2021. “Analytical Modeling of the Temporal

Evolution of Epidemics Outbreaks Accounting for Vaccinations.” Physics 3 (2): 386–426.

Schwartz, Jason L. 2012. “New Media, Old Messages: Themes in the History of Vaccine

Hesitancy and Refusal.” The Virtual Mentor: VM 14 (1): 50–55.

Scott, John, and Peter Carrington. 2011. The SAGE Handbook of Social Network Analysis.

Edited by John G. Scott and Peter J. Carrington. London, England: SAGE Publications.

Sharot, Tali, Max Rollwage, Cass R. Sunstein, and Stephen M. Fleming. 2023. “Why and When

Beliefs Change.” Perspectives on Psychological Science: A Journal of the Association for

Psychological Science 18 (1): 142–51.

Shearer, Elisa, Naomi Forman-Katz, and Maya Khuzam. 2021. “Fact Sheets: State of the News

Media.” Pew Research Center. July 13, 2021.

https://www.pewresearch.org/journalism/collection/fact-sheets-state-of-the-news-media/.

Short, Kirsty R., Katherine Kedzierska, and Carolien E. van de Sandt. 2018. “Back to the Future:

Lessons Learned From the 1918 Influenza Pandemic.” Frontiers in Cellular and Infection

Microbiology 8 (October): 343.

Shrewsbury, J. F. D. 2005. A History of Bubonic Plague in the British Isles. Cambridge

University Press.

Siddiqui, Mariam, Daniel A. Salmon, and Saad B. Omer. 2013. “Epidemiology of Vaccine

Hesitancy in the United States.” Human Vaccines & Immunotherapeutics 9 (12): 2643–48.

Slater, Michael D., and Donna Rouner. 1996. “How Message Evaluation and Source Attributes

May Influence Credibility Assessment and Belief Change.” Journalism & Mass

Communication Quarterly 73 (4): 974–91.

Smaldino, Paul E., Marco A. Janssen, Vicken Hillis, and Jenna Bednar. 2017. “Adoption as a

Social Marker: Innovation Diffusion with Outgroup Aversion.” The Journal of

Mathematical Sociology 41 (1): 26–45.

Smaldino, Paul E., and James Holland Jones. 2021. “Coupled Dynamics of Behaviour and

Disease Contagion among Antagonistic Groups.” Evolutionary Human Sciences 3: e28.

121

http://paperpile.com/b/PPmoaU/jgZXG
http://dx.doi.org/10.3390/vaccines9020160
http://paperpile.com/b/PPmoaU/jgZXG
http://paperpile.com/b/PPmoaU/yPnqM
http://paperpile.com/b/PPmoaU/yPnqM
http://paperpile.com/b/PPmoaU/yPnqM
http://dx.doi.org/10.4467/20842627oz.19.001.11297
http://paperpile.com/b/PPmoaU/yPnqM
http://paperpile.com/b/PPmoaU/aEj39
http://paperpile.com/b/PPmoaU/aEj39
http://paperpile.com/b/PPmoaU/RFQKy
http://paperpile.com/b/PPmoaU/RFQKy
http://paperpile.com/b/PPmoaU/LwmMh
http://paperpile.com/b/PPmoaU/LwmMh
http://paperpile.com/b/PPmoaU/bCF2T
http://paperpile.com/b/PPmoaU/bCF2T
http://paperpile.com/b/PPmoaU/bCF2T
http://paperpile.com/b/PPmoaU/4988d
http://paperpile.com/b/PPmoaU/4988d
https://www.pewresearch.org/journalism/collection/fact-sheets-state-of-the-news-media/
http://paperpile.com/b/PPmoaU/4988d
http://paperpile.com/b/PPmoaU/OtSfN
http://paperpile.com/b/PPmoaU/OtSfN
http://paperpile.com/b/PPmoaU/OtSfN
http://paperpile.com/b/PPmoaU/Rt3qL
http://paperpile.com/b/PPmoaU/Rt3qL
http://paperpile.com/b/PPmoaU/jxhAj
http://paperpile.com/b/PPmoaU/jxhAj
http://paperpile.com/b/PPmoaU/Y4Ibx
http://paperpile.com/b/PPmoaU/Y4Ibx
http://paperpile.com/b/PPmoaU/Y4Ibx
http://paperpile.com/b/PPmoaU/e8ZUU
http://paperpile.com/b/PPmoaU/e8ZUU
http://paperpile.com/b/PPmoaU/e8ZUU
http://paperpile.com/b/PPmoaU/qarJO
http://paperpile.com/b/PPmoaU/qarJO


Smith, Jon, Marc Lipsitch, and Jeffrey W. Almond. 2011. “Vaccine Production, Distribution,

Access, and Uptake.” The Lancet 378 (9789): 428–38.

Solís Arce, Julio S., Shana S. Warren, Niccolò F. Meriggi, Alexandra Scacco, Nina McMurry,

Maarten Voors, Georgiy Syunyaev, et al. 2021. “COVID-19 Vaccine Acceptance and

Hesitancy in Low- and Middle-Income Countries.” Nature Medicine 27 (8): 1385–94.

Streefland, Pieter, A. M. R. Chowdhury, and Pilar Ramos-Jimenez. 1999. “Patterns of

Vaccination Acceptance.” Social Science & Medicine.

https://doi.org/10.1016/s0277-9536(99)00239-7.

Swales, J. D. 1992a. “The Leicester Anti-Vaccination Movement.” The Lancet.

https://doi.org/10.1016/0140-6736(92)93021-e.

———. 1992b. “The Leicester Anti-Vaccination Movement.” The Lancet 340 (8826): 1019–21.

Tanaka, Mark M., Jochen Kumm, and Marcus W. Feldman. 2002. “Coevolution of Pathogens

and Cultural Practices: A New Look at Behavioral Heterogeneity in Epidemics.”

Theoretical Population Biology 62 (2): 111–19.

Tedeschi, Luis Orlindo. 2006. “Assessment of the Adequacy of Mathematical Models.”

Agricultural Systems 89 (2): 225–47.

Thomas, Jason R., and Samuel J. Clark. 2011. “More on the Cohort-Component Model of

Population Projection in the Context of HIV/AIDS: A Leslie Matrix Representation and

New Estimates.” Demographic Research 25 (July): 39–102.

Thoma, Volker, Leonardo Weiss-Cohen, Petra Filkuková, and Peter Ayton. 2021. “Cognitive

Predictors of Precautionary Behavior During the COVID-19 Pandemic.” Frontiers in

Psychology 12 (February): 589800.

Thompson, Kimberly M., and Radboud J. Duintjer Tebbens. 2017. “Lessons From the Polio

Endgame: Overcoming the Failure to Vaccinate and the Role of Subpopulations in

Maintaining Transmission.” The Journal of Infectious Diseases 216 (suppl_1): S176–82.

Thompson, Kimberly M., Peter M. Strebel, Alya Dabbagh, Thomas Cherian, and Stephen L.

Cochi. 2013. “Enabling Implementation of the Global Vaccine Action Plan: Developing

Investment Cases to Achieve Targets for Measles and Rubella Prevention.” Vaccine 31

Suppl 2 (April): B149–56.

Todd, Peter M., and Gerd Gigerenzer, eds. 2012. “Ecological Rationality: Intelligence in the

World.” Evolution and Cognition. 590.

122

http://paperpile.com/b/PPmoaU/j0jAa
http://paperpile.com/b/PPmoaU/j0jAa
http://paperpile.com/b/PPmoaU/k06bu
http://paperpile.com/b/PPmoaU/k06bu
http://paperpile.com/b/PPmoaU/k06bu
http://paperpile.com/b/PPmoaU/DkDgI
http://paperpile.com/b/PPmoaU/DkDgI
http://paperpile.com/b/PPmoaU/DkDgI
http://dx.doi.org/10.1016/s0277-9536(99)00239-7
http://paperpile.com/b/PPmoaU/DkDgI
http://paperpile.com/b/PPmoaU/z7T07
http://paperpile.com/b/PPmoaU/z7T07
http://dx.doi.org/10.1016/0140-6736(92)93021-e
http://paperpile.com/b/PPmoaU/z7T07
http://paperpile.com/b/PPmoaU/ye2OT
http://paperpile.com/b/PPmoaU/DoW2a
http://paperpile.com/b/PPmoaU/DoW2a
http://paperpile.com/b/PPmoaU/DoW2a
http://paperpile.com/b/PPmoaU/mKKc5
http://paperpile.com/b/PPmoaU/mKKc5
http://paperpile.com/b/PPmoaU/kP2VW
http://paperpile.com/b/PPmoaU/kP2VW
http://paperpile.com/b/PPmoaU/kP2VW
http://paperpile.com/b/PPmoaU/FN8Z0
http://paperpile.com/b/PPmoaU/FN8Z0
http://paperpile.com/b/PPmoaU/FN8Z0
http://paperpile.com/b/PPmoaU/qWWtn
http://paperpile.com/b/PPmoaU/qWWtn
http://paperpile.com/b/PPmoaU/qWWtn
http://paperpile.com/b/PPmoaU/0n0rp
http://paperpile.com/b/PPmoaU/0n0rp
http://paperpile.com/b/PPmoaU/0n0rp
http://paperpile.com/b/PPmoaU/0n0rp
http://paperpile.com/b/PPmoaU/Seou8
http://paperpile.com/b/PPmoaU/Seou8


https://doi.org/10.1093/acprof:oso/9780195315448.001.0001.

Tognotti, Eugenia. 2013. “Lessons from the History of Quarantine, from Plague to Influenza A.”

Emerging Infectious Diseases 19 (2): 254–59.

Trentini, Filippo, Piero Poletti, Stefano Merler, and Alessia Melegaro. 2017. “Measles Immunity

Gaps and the Progress towards Elimination: A Multi-Country Modelling Analysis.” The

Lancet Infectious Diseases 17 (10): 1089–97.

Troiano, G., and A. Nardi. 2021. “Vaccine Hesitancy in the Era of COVID-19.” Public Health

194 (May): 245–51.

Ventola, C. Lee. 2016. “Immunization in the United States: Recommendations, Barriers, and

Measures to Improve Compliance: Part 1: Childhood Vaccinations.” P & T: A

Peer-Reviewed Journal for Formulary Management 41 (7): 426–36.

Verelst, Frederik, Lander Willem, and Philippe Beutels. 2016. “Behavioural Change Models for

Infectious Disease Transmission: A Systematic Review (2010–2015).” Journal of the Royal

Society, Interface / the Royal Society 13 (125): 20160820.

Verhulst, P. F. 1838. “Notice Sur La Loi Que La Population Suit Dans Son Accroissement.”

Correspondence Mathematique et Physique 10: 113–29.

———. 1845. “Resherches Mathematiques Sur La Loi D’accroissement de La Population.”

Nouveaux Memoires de l’Academie Royale Des Sciences 18: 1–41.

———. 1847. “Deuxième Mémoire Sur La Loi D’accroissement de La Population.” Nouveaux

Mémoires de l’Académie Royale Des Sciences, Des Lettres et Des Beaux-Arts de Belgique

20: 1–32.

Vermeil, T., A. Peters, C. Kilpatrick, D. Pires, B. Allegranzi, and D. Pittet. 2019. “Hand Hygiene

in Hospitals: Anatomy of a Revolution.” The Journal of Hospital Infection 101 (4): 383–92.

Voinson, Marina, Sylvain Billiard, and Alexandra Alvergne. 2015. “Beyond Rational

Decision-Making: Modelling the Influence of Cognitive Biases on the Dynamics of

Vaccination Coverage.” PloS One 10 (11): e0142990.

———. 2016. “Correction: Beyond Rational Decision-Making: Modelling the Influence of

Cognitive Biases on the Dynamics of Vaccination Coverage.” PloS One 11 (12): e0167842.

Von Neumann, J. 1928. “Zur Theorie der Gesellschaftsspiele.” Mathematische Annalen 100 (1):

295–320.

Von Neumann, John, and Oskar Morgenstern. 1944. Theory of Games and Economic Behavior.

123

http://paperpile.com/b/PPmoaU/Seou8
http://dx.doi.org/10.1093/acprof:oso/9780195315448.001.0001
http://paperpile.com/b/PPmoaU/Seou8
http://paperpile.com/b/PPmoaU/iMhmX
http://paperpile.com/b/PPmoaU/iMhmX
http://paperpile.com/b/PPmoaU/Jh6yK
http://paperpile.com/b/PPmoaU/Jh6yK
http://paperpile.com/b/PPmoaU/Jh6yK
http://paperpile.com/b/PPmoaU/MKD6Y
http://paperpile.com/b/PPmoaU/MKD6Y
http://paperpile.com/b/PPmoaU/TquQw
http://paperpile.com/b/PPmoaU/TquQw
http://paperpile.com/b/PPmoaU/TquQw
http://paperpile.com/b/PPmoaU/MOfg0
http://paperpile.com/b/PPmoaU/MOfg0
http://paperpile.com/b/PPmoaU/MOfg0
http://paperpile.com/b/PPmoaU/G5uAt
http://paperpile.com/b/PPmoaU/G5uAt
http://paperpile.com/b/PPmoaU/SylpY
http://paperpile.com/b/PPmoaU/SylpY
http://paperpile.com/b/PPmoaU/iF9Bs
http://paperpile.com/b/PPmoaU/iF9Bs
http://paperpile.com/b/PPmoaU/iF9Bs
http://paperpile.com/b/PPmoaU/TUJrw
http://paperpile.com/b/PPmoaU/TUJrw
http://paperpile.com/b/PPmoaU/ilMGt
http://paperpile.com/b/PPmoaU/ilMGt
http://paperpile.com/b/PPmoaU/ilMGt
http://paperpile.com/b/PPmoaU/O2kNk
http://paperpile.com/b/PPmoaU/O2kNk
http://paperpile.com/b/PPmoaU/74NSg
http://paperpile.com/b/PPmoaU/74NSg
http://paperpile.com/b/PPmoaU/HEZNj


Princeton University Press.

Wagstaffe, William. 1722. A Letter to Dr. Freind: Shewing the Danger and Uncertainty of

Inoculating the Small Pox. Samuel Butler.

Walters, Caroline E., and Jeremy R. Kendal. 2013. “An SIS Model for Cultural Trait

Transmission with Conformity Bias.” Theoretical Population Biology 90 (December):

56–63.

Wang, Eileen, Jessica Clymer, Cecilia Davis-Hayes, and Alison Buttenheim. 2014. “Nonmedical

Exemptions from School Immunization Requirements: A Systematic Review.” American

Journal of Public Health 104 (11): e62–84.

Wang, Qiang, Na Yue, Mengyun Zheng, Donglei Wang, Chunxiao Duan, Xiaoge Yu, Xuefeng

Zhang, Changjun Bao, and Hui Jin. 2018. “Influenza Vaccination Coverage of Population

and the Factors Influencing Influenza Vaccination in Mainland China: A Meta-Analysis.”

Vaccine 36 (48): 7262–69.

Webb, Glenn. 2021. “A COVID-19 Epidemic Model Predicting the Effectiveness of Vaccination

in the US.” Infectious Disease Reports 13 (3): 654–67.

Webb, Glenn F. 1985. Theory of Nonlinear Age-Dependent Population Dynamics. CRC Press.

Weniger, Bruce G., and Mark J. Papania. 2013. “61 - Alternative Vaccine Delivery Methods.” In

Vaccines (Sixth Edition), edited by Stanley A. Plotkin, Walter A. Orenstein, and Paul A.

Offit, 1200–1231. London: W.B. Saunders.

White, Harrison C., Scott A. Boorman, and Ronald L. Breiger. 1976. “Social Structure from

Multiple Networks. I. Blockmodels of Roles and Positions.” The American Journal of

Sociology 81 (4): 730–80.

Wiesenfeld, S. L. 1967. “Sickle-Cell Trait in Human Biological and Cultural Evolution.

Development of Agriculture Causing Increased Malaria Is Bound to Gene-Pool Changes

Causing Malaria Reduction.” Science 157 (3793): 1134–40.

Wolfe, Robert M., and Lisa K. Sharp. 2002. “Anti-Vaccinationists Past and Present.” BMJ 325

(7361): 430–32.

Wolff, Emily R., and Diane J. Madlon-Kay. 2014. “Childhood Vaccine Beliefs Reported by

Somali and Non-Somali Parents.” Journal of the American Board of Family Medicine:

JABFM 27 (4): 458–64.

Wong, Martin C. S., Eliza L. Y. Wong, Junjie Huang, Annie W. L. Cheung, Kevin Law, Marc K.

124

http://paperpile.com/b/PPmoaU/HEZNj
http://paperpile.com/b/PPmoaU/3AiJP
http://paperpile.com/b/PPmoaU/3AiJP
http://paperpile.com/b/PPmoaU/u9nbQ
http://paperpile.com/b/PPmoaU/u9nbQ
http://paperpile.com/b/PPmoaU/u9nbQ
http://paperpile.com/b/PPmoaU/YRpTv
http://paperpile.com/b/PPmoaU/YRpTv
http://paperpile.com/b/PPmoaU/YRpTv
http://paperpile.com/b/PPmoaU/o7vjr
http://paperpile.com/b/PPmoaU/o7vjr
http://paperpile.com/b/PPmoaU/o7vjr
http://paperpile.com/b/PPmoaU/o7vjr
http://paperpile.com/b/PPmoaU/M6uYt
http://paperpile.com/b/PPmoaU/M6uYt
http://paperpile.com/b/PPmoaU/AL1zP
http://paperpile.com/b/PPmoaU/SkgHG
http://paperpile.com/b/PPmoaU/SkgHG
http://paperpile.com/b/PPmoaU/SkgHG
http://paperpile.com/b/PPmoaU/lhLmT
http://paperpile.com/b/PPmoaU/lhLmT
http://paperpile.com/b/PPmoaU/lhLmT
http://paperpile.com/b/PPmoaU/lfIqE
http://paperpile.com/b/PPmoaU/lfIqE
http://paperpile.com/b/PPmoaU/lfIqE
http://paperpile.com/b/PPmoaU/RMNYu
http://paperpile.com/b/PPmoaU/RMNYu
http://paperpile.com/b/PPmoaU/qQ4Wn
http://paperpile.com/b/PPmoaU/qQ4Wn
http://paperpile.com/b/PPmoaU/qQ4Wn
http://paperpile.com/b/PPmoaU/iDu3b


C. Chong, Rita W. Y. Ng, et al. 2021. “Acceptance of the COVID-19 Vaccine Based on the

Health Belief Model: A Population-Based Survey in Hong Kong.” Vaccine 39 (7): 1148–56.

World Health Organization. 2021. “COVID-19 Natural Immunity: Scientific Brief, 10 May

2021.” 2021.

https://apps.who.int/iris/bitstream/handle/10665/341241/WHO-2019-nCoV-Sci-Brief-Natur

al-immunity-2021.1-eng.pdf.

Wu, Jian, Quanman Li, Clifford Silver Tarimo, Meiyun Wang, Jianqin Gu, Wei Wei, Mingze Ma,

Lipei Zhao, Zihan Mu, and Yudong Miao. 2021. “COVID-19 Vaccine Hesitancy Among

Chinese Population: A Large-Scale National Study.” Frontiers in Immunology 12

(November): 781161.

Yasukawa, K. 2010. “Game Theory.” In Encyclopedia of Animal Behavior, edited by Michael D.

Breed and Janice Moore, 1–5. Oxford: Academic Press.

Yoder, Jonathan S., and Mark S. Dworkin. 2006. “Vaccination Usage among an Old-Order

Amish Community in Illinois.” The Pediatric Infectious Disease Journal 25 (12): 1182–83.

Young, Leslie. 2009. The Everything Parent’s Guide to Vaccines: Balanced, Professional Advice

to Help You Make the Best Decision for Your Child. Simon and Schuster.

Zaffran, Michel, Jos Vandelaer, Debra Kristensen, Bjørn Melgaard, Prashant Yadav, K. O.

Antwi-Agyei, and Heidi Lasher. 2013. “The Imperative for Stronger Vaccine Supply and

Logistics Systems.” Vaccine 31 Suppl 2 (April): B73–80.

Zerhouni, Elias. 2019. “GAVI, the Vaccine Alliance.” Cell 179 (1): 13–17.

Zintel, Stephanie, Charlotte Flock, Anna Lisa Arbogast, Alice Forster, Christian von Wagner, and

Monika Sieverding. 2022. “Gender Differences in the Intention to Get Vaccinated against

COVID-19: A Systematic Review and Meta-Analysis.” Zeitschrift Fur

Gesundheitswissenschaften = Journal of Public Health, January, 1–25.

125

http://paperpile.com/b/PPmoaU/iDu3b
http://paperpile.com/b/PPmoaU/iDu3b
http://paperpile.com/b/PPmoaU/ekKpL
http://paperpile.com/b/PPmoaU/ekKpL
https://apps.who.int/iris/bitstream/handle/10665/341241/WHO-2019-nCoV-Sci-Brief-Natural-immunity-2021.1-eng.pdf
https://apps.who.int/iris/bitstream/handle/10665/341241/WHO-2019-nCoV-Sci-Brief-Natural-immunity-2021.1-eng.pdf
http://paperpile.com/b/PPmoaU/ekKpL
http://paperpile.com/b/PPmoaU/25ZYJ
http://paperpile.com/b/PPmoaU/25ZYJ
http://paperpile.com/b/PPmoaU/25ZYJ
http://paperpile.com/b/PPmoaU/25ZYJ
http://paperpile.com/b/PPmoaU/jpVjZ
http://paperpile.com/b/PPmoaU/jpVjZ
http://paperpile.com/b/PPmoaU/Cv9N4
http://paperpile.com/b/PPmoaU/Cv9N4
http://paperpile.com/b/PPmoaU/8uLnr
http://paperpile.com/b/PPmoaU/8uLnr
http://paperpile.com/b/PPmoaU/dnQWp
http://paperpile.com/b/PPmoaU/dnQWp
http://paperpile.com/b/PPmoaU/dnQWp
http://paperpile.com/b/PPmoaU/6f2hw
http://paperpile.com/b/PPmoaU/T9nO9
http://paperpile.com/b/PPmoaU/T9nO9
http://paperpile.com/b/PPmoaU/T9nO9
http://paperpile.com/b/PPmoaU/T9nO9


APPENDIX

Supplementary Text

Text S2.1: Recursions for Vaccine Niche Construction
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Text S3.1: Detailed Methods

Here, we expand on the model proposed in Chapter 2. We consider two cultural traits: a

vaccination trait (V), and a vaccine attitude trait (A). Each individual can take one of two

possible states for each trait, V+ (vaccinated) or V− (unvaccinated) and A+ (vaccine confident) or

A− (vaccine hesitant), respectively. This results in four possible phenotypes: V+A+ (type 1:

vaccinated and confident), V+A− (type 2: vaccinated and hesitant), V−A+ (type 3: unvaccinated

and confident), and V−A− (type 4: unvaccinated and hesitant), whose frequencies in the

population are denoted by x1, x2, x3, and x4, respectively, with . (See Table 2.2 for
𝑖=1

4

∑ 푥
𝑖

= 1

subscript assignments).

The four phenotypes described produce sixteen possible mating pairs. The mating

frequency, mi,j indicates the frequency of a mating between a parent of type i and the second

parent of type j where i, j = {1, 2, 3, 4} (Table 2.2); for example, m1,3 represents the mating

frequency of V+A+ (x1) and V−A+ (x3). In this manuscript, we assume random mating, therefore

individuals of different phenotypes mate with one another at a rate equal to the product of their

frequencies.

Since the two traits (A and V) are transmitted vertically, for each phenotype we specify the

probability that the mating produces an offspring of phenotype (V+A+). The vaccine confidence

trait (A+) is transmitted with probability Cn, and the vaccine hesitancy trait (A−) is transmitted

with probability 1−Cn (for n = {0, 1, 2, 3} as shown in Table S2.2). If C0 = 0, two A− parents will

always produce A− offspring, and if C3 = 1, two A+ parents will always produce A+ offspring.

However, if C0 > 0, two A− parents can produce A+ offspring at some probability, and similarly if

C3 < 1, two A+ parents can produce A− offspring with some probability.

Transmission of vaccination (V+ with probability Bm,n for m, n = {0, 1, 2, 3}; Table S2.2) is

more complex, since parents’ vaccine attitudes (A), in addition to their own vaccination states

(V), can influence their behavior in vaccinating their offspring via a set of “influence

parameters” that inform vaccination probabilities. The probability that each mating pair produces

an offspring with the V+ trait (i.e. vaccinates their offspring) is a scaled product of the influence

of parental attitudes (cn for n = {0, 1, 2, 3}) and the influence of parental vaccination states (bm for

m = {0, 1, 2, 3} ) (Table S2.2). For example, for mating pair V+A+× V+A−, their combined

vaccination states (V+ × V+) will influence vaccination behavior by b3, and their combined
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attitude states, (A+ × A−), will influence vaccination behavior by c2. Therefore, a V+A+× V+A−

mating will produce a V+ offspring with probability ; this pair will also𝐵
3,2

 =  𝑐
2

1+𝑏
3

2( )
produce an A+ offspring with probability C2 based on their combined attitude states.

Transmission and influence probabilities are constant throughout a single simulation,

with values ranging from 0 to 1. At baseline settings, the influence parameters bm and cn, and the

transmission parameter Cn would take the values indicated in Table 3.1. In our model,

vaccination probabilities are structured such that a couple’s vaccine beliefs have a greater

influence (cn) on their likelihood of vaccinating their offspring than their own vaccination status

(bn). Therefore, offspring vaccination is guaranteed at some probability only if cn > 0. We

implement vaccine mandates and vaccine inaccessibility by modulating the influence of vaccine

attitudes (cn). We increase the influence parameter values of couples with at least one vaccine

hesitant individual (c0:A− × A−, c1: A− × A+, c2: A+ × A− ) to model a vaccine mandates or

decreasing influence parameter values of couples with at least one vaccine confident individual

(c3: A+ × A+, c2: A+ × A−, c1: A− × A+) to model vaccine inaccessibility. In other words, a vaccine

mandate will make a vaccine-hesitant parent more likely to vaccinate their child, and vaccine

inaccessibility will make a vaccine-confident parent less likely to vaccinate their child.

The cultural selection on vaccination is given by the parameter σ. After vertical cultural

transmission has occurred, the frequency of the V+A+ and V+A− phenotypes are multiplied by

1+σ. This parameter modulates whether there are more or fewer vaccinated individuals than

expected: in other words, when σ>0, vaccinated individuals are more common in a set of

offspring than would be expected strictly by parental beliefs and vaccination statuses. This

cultural selection coefficient is structured to encompass both biological fitness and cultural

selection pressures, including perceived risks or benefits of the vaccine itself, personal

cost-benefit analyses of preventative health behaviors, and the structural or societal-level factors

influencing vaccination rates (Pruitt, Kline, and Kovaz 1995; L. L. Cavalli-Sforza and Feldman

1981). Under the assumption that effects of herd immunity may lead to a reduction in

vaccination behaviors—for example, the belief that vaccines are unnecessary when most others

are vaccinated (Omer et al. 2009)—the cultural selection coefficient function in our model is

vaccine-frequency-dependent. We calculate σ in each timestep as a function of the current

vaccination coverage (frequency of V+, i.e. x1 + x2), and in each simulation we specify σmax as the
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maximum cultural selection pressure for getting vaccinated (−1≤σmax≤1) (see the cultural

selection coefficient function in Figure 2.1). To incorporate this relationship into the model, we

constructed a function by defining our assumptions (incorporating evolutionary game theory, e.g.

the “free rider” problem) and then choosing curves with a trajectories that met pre-specified

conditions: with unvaccinated individuals holding baseline fitness at 0, we assume that when

vaccination coverage is low, the real and perceived benefits of vaccination are highest, and thus,

the cultural selection pressure is near σmax, however, as vaccination coverage increases toward the

level of herd immunity, the perceived benefits of vaccination decrease, represented as a reduction

in the cultural selection pressure (Bauch and Bhattacharyya 2012).

The model incorporates a second phase with oblique cultural transmission (i.e. influence

from non-parental adults), in which individuals can change their inherited vaccine attitudes (A)

due to influence from other adults in the population. There are two probabilities associated with

attitude modulation: the probability that an vaccine hesitant (A−) individual adopts the vaccine

confident (A+) state (A− to A+ transition probability, given by in Figure 2.2), and the𝐴
→𝐶표𝑛𝑓𝑖𝑑𝑒𝑛푡

probability that an A+ individual adopts the A− state (A+ to A− transition probability, given by

in Figure 2.2). As with the strength of cultural selection (σ) described previously, the𝐴
→𝐻𝑒푠𝑖푡𝑎𝑛푡

probability that offspring change their vaccine attitude is a function of the V+ frequency in the

population. As the frequency of vaccinated individuals (V+) increases in the population,

vaccine-confident individuals (A+) are more likely to become hesitant ( probability𝐴
→𝐻𝑒푠𝑖푡𝑎𝑛푡

increases) and vaccine-hesitant individuals (A−) are less likely to become confident (𝐴
→𝐶표𝑛𝑓𝑖𝑑𝑒𝑛푡

probability decreases). Similarly to the cultural selection function, the belief transition functions

were generated by first choosing a function with a shape that aligned with our general

assumptions and then modifying the function to fit specific criteria: 1) probabilities could

approach zero, but not equal zero, 2) transition to supporting belief and transition to opposing

belief are equally likely at 50% vaccination frequency, and, 3) that high vaccination frequencies

(e.g. above herd-immunity levels of vaccination coverage) promote the transition to vaccine

hesitancy (Jacobson, St Sauver, and Finney Rutten 2015; Kennedy, Brown, and Gust 2005). The

upper bound for the belief transition functions were set by calculating the percent difference

between vaccine refusal rates in 1991 and 2004 in the United States to estimate transition

probabilities between 1–2% (Omer et al. 2009). By modulating the attitude transition
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probabilities according to the vaccination coverage in this manner, we assume that when vaccine

coverage (V+ frequency, x1 + x2) is low, disease occurrence is high and the negative effects of the

disease are experienced widely, thus the benefits of being vaccinated (and the costs of not being

vaccinated) are more evident (Gangarosa et al. 1998; Ozawa et al. 2012). As vaccination

coverage (V+) increases in the population, and thus disease occurrence is low, the benefits to

being vaccinated are less obvious, while low-probability costs such as adverse reactions become

more apparent and could be perceived as being riskier than the disease itself. Modulating both

the attitude transition probabilities and the cultural selection coefficient according to the level of

vaccination coverage in a population reflects that perceptions about the vaccine and its

associated effects on health could be meaningfully different in a population with high

vaccination coverage than in one with low coverage.

To compute the frequency of a given phenotype in the next iteration, we sum the

probability that each mating pair produces offspring of that phenotype over each of the sixteen

possible mating pairs. Cultural selection (σ), described above, then operates on offspring with the

V+ trait. At the end of each timestep, the frequency of each phenotype is divided by the sum of

all four frequencies, ensuring that the frequencies sum to 1. The full recursions, giving xiʹ

phenotype frequencies in the next iteration in terms of xi in the current iteration, are given in

Supplementary Text S2.1. If xiʹ is equal to xi, the system is at equilibrium. Unless otherwise

stated, the model is initialized with phenotypic frequencies structured to represent those of the

United States: x1 (frequency of V+A+) = 0.81, x2 (V+A−) = 0.1, x3 (V−A+) = 0.07, x4 (V−A−) = 0.02.

These frequencies were estimated using reports of Measles-Mumps-Rubella (MMR) vaccination

rates and estimates of vaccine attitude frequencies obtained from various sources in the literature

(Kennedy, Brown, and Gust 2005; Leask 2011) and the Centers of Disease Control ChildVax

database (Hill et al. 2019, 2017).
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Supplementary Tables

Table S2.1. Mating frequencies for all possible matings.
In this model, ⍺1 is the rate of assortment if the choosing parent is A+, and ⍺2 is the rate of
assortment if the choosing parent is A−. The choosing parent is listed first for each mating. On
the right side of the equations, the first term represents the frequency of random matings and the
second term the frequency of assortative matings.

♂ ⨉ ♀ Mating Frequency ♂ ⨉ ♀ Mating Frequency

V+A+ ⨉ V+A+ 𝑚
1,1

= 푥
1
2(1 − α

1
) +

α
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1
2

(푥
1
+푥

3
)
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3
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Table S2.2: Probabilities of trait transmission to offspring from cultural trait pairings.
For each mating, the probability of transmitting each trait, and corresponding influence
parameters, are given. The probability of vaccinating an offspring, Bm,n, depends on both the
parents’ vaccination state (V+: vaccinated; V−: unvaccinated) and their belief state (A+: vaccine
confident; A−: vaccine hesitant). Bm,n is informed by the influence parameter bm that corresponds
to the parents’ V states and the influence parameter cn that correspond to their A states. For each
parental pairing, the probability of not vaccinating an offspring is 1 – Bm,n. Each pairing transmits
confidence in vaccines at a rate Cn, and hesitancy at rate 1 – Cn. The parameters bm, cn, and Cn are
set as constants for each simulation, and Bm,n is calculated from these.

Trait Transmission Probabilities Influence of parental
vaccination and attitudes
on offspring vaccination

Mating pair Offspring
vaccination (V+)
probability

V− offspring
probability

A+ offspring
probability

A– offspring
probability

V influence
(m)

A influence
(n)

V+A+ ⨉ V+A+ 𝐵
𝑚=3,𝑛=3

= 𝑐
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1+𝑏
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2( ) 1 − 𝐵
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Table S2.3: Probability range assignments for Figure 2.5
To vary the range of Bm,n used in a given simulation, each probability was grouped according to
default vaccination probability calculations. All probabilities in a group hold the value assigned
to that group in the range, as shown. Cn probabilities were assigned values as shown, with C0
taking the lowest value in the range and C3 taking the highest. The lowest probability range
group is given as an example of value assignment.

Range

Low High

Parameters B0,0, B1,0, B2,0,
B3,0

B0,1, B0,2
B1,1, B1,2, B2,1,

B2,2
B3,1, B3,2, B0,3 B2,3, B1,3 B3,3

Example value
(range 0–0.49) 0 0.09 0.19 0.29 0.39 0.49

Low High

Parameters C0 C1 C2 C3

Example value
(range 0.1–0.4) 0.1 0.2 0.3 0.4
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Table S3.1: Quantitative differences between equilibrium frequencies with low
transmission of vaccine confidence
The mean and median of vaccination coverage and vaccine confidence levels at equilibrium were
calculated for the section of the heatmaps in Figure 3.2 for which C1 = C2 < 0.5 (blue in
vaccination coverage heatmaps; red in the confidence level heatmaps).

Vaccination Coverage
below C1 = C2 < 0.5

No Mandate Lenient Mandate Vaccine Inaccessible

Mean 9.031% 27.723% 5.032%

Median 4.047% 25.872% 2.578%

Confidence Levels
below C1 = C2 < 0.5

Mean 10.875% 9.092% 9.927%

Median 5.262% 5.115% 5.178%
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Supplementary Figures

Figure S2.1: Vaccine-fear-driven attitude transition probability. Attitude transition
probability (vertical axis) is a function of the vaccination frequency in the population (V+;
horizontal axis). Fear-driven hesitancy assumptions outlined on the graph: increased vaccine
uptake reduces vaccine fear, thus increasing the likelihood of adopting vaccine confidence. The
probability that a vaccine hesitant individual adopts vaccine confidence (A− to A+ transition
probability, shown in dashed black) is determined by the function , and the probability𝐴

→𝐶표𝑛𝑓𝑖𝑑𝑒𝑛푡
that a vaccine confident individual adopts vaccine hesitancy (A+ to A− transition probability,
shown with a solid blue line) is determined by the function . .𝐴

→𝐻𝑒푠𝑖푡𝑎𝑛푡
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Figure S2.2: Confidence-frequency-dependent attitude transition probability function
(obliquely transmitted hesitancy).We used the same equations as the belief transition functions
in Figure 2.2 to construct the confidence-frequency-dependent belief transition schema.
Transition probabilities were redefined according to different assumptions outlined on the graph:
Individuals are more likely to adopt the majority attitude. Attitude transition probability (vertical
axis) is a function of the confidence frequency in the population (A+; horizontal axis). The
probability that a vaccine hesitant individual adopts vaccine confidence (A− to A+ transition
probability, shown in dashed black) is determined by the function , and the probability𝐴

→𝐶표𝑛𝑓𝑖𝑑𝑒𝑛푡
that a vaccine confident individual adopts vaccine hesitancy (A+ to A− transition probability,
shown with a solid blue line) is determined by the function .𝐴

→𝐻𝑒푠𝑖푡𝑎𝑛푡
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Figure S2.3: Population frequencies reach stable equilibria determined by the parameter
space, not by initial frequencies. Each phenotype approaches the same equilibrium frequency
for a given set of parameters regardless of its initial frequency in our simulations. Each of the
four phenotype frequencies and the total V+ and A+ frequencies (vertical axis) approach
equilibrium values prior to iteration 300 and remain stably at those frequencies (compare this
figure with Figure 2.3 (top row), which shows the first 100 iterations of the same simulations).
We varied the initial frequencies, such that we begin each simulation with a different phenotype
at an initial high frequency (0.81): A) x1 (V+A+) = 0.81, x2 (V+A−) = 0.1, x3 (V−A+) = 0.07, x4
(V−A−) = 0.02; V+A−; B) x1 (V+A+) = 0.1, x2 (V+A−) = 0.81, x3 (V−A+) = 0.02, x4 (V−A−) = 0.07;
V−A+; C) x1 (V+A+) = 0.02, x2 (V+A−) = 0.07, x3 (V−A+) = 0.81, x4 (V−A−) = 0.1 ); D) x1 (V+A+) =
0.07, x2 (V+A−) = 0.02, x3 (V−A+) = 0.1, x4 (V−A−) = 0.81. The remaining parameters are held at
default values (Table 2.1) and simulations were performed with vertical transmission only
(only parent-to-offspring transmission). These results indicate that equilibrium frequencies are
determined by the parameter space, not initial frequencies.
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Figure S2.4: Population frequencies reach stable equilibria determined by the parameter
space, not by initial frequencies (with herd-immunity driven hesitancy). Each phenotype
approaches the same equilibrium frequency for a given parameter set regardless of its initial
frequency in our simulations. Each of the four phenotype frequencies and the total V+ and A+

frequencies (vertical axis) approach equilibrium values prior to iteration 300 and remain stably at
those frequencies (compare this figure with Figure 2.3 (top row), which shows results with only
vertical transmission). We varied the initial frequencies, such that we begin each simulation with
a different phenotype at an initial high frequency (0.81): V+A+ in panel A, V+A− in panel B,
V−A+ in panel C, V−A− in panel D; the remaining phenotypes are set to lower frequencies (0.1,
0.07, 0.02). See Figure S1 for a full listing of these initial frequencies. The remaining parameters
are held at default values (Table 2.1) and these simulations included both vertical and
herd-immunity-driven hesitancy.
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Figure S2.5: Temporal effects of cultural selection (with herd-immunity-driven hesitancy
belief transition). The equilibrium phenotype frequencies change as the maximum cultural
selection coefficient (σmax) is varied: A. σmax = –0.1; B. σmax = 0; C. σmax = 0.1; D. σmax = 0.5.
Herd-immunity-driven hesitancy is included, and other parameters are held at default values
(Table 2.1). (Compare this figure with Figure 2.3 (bottom row), which shows results with
vertical transmission only.) Cultural selection against vaccinated individuals increases the
frequency of V−A−, while decreasing the other frequencies (A), whereas increased cultural
selection favoring vaccinated individuals increases V+A+ frequencies while decreasing the other
frequencies (C, D). The highest levels of conflicting phenotypes (V+A– and V–A+) were observed
when cultural selection was neutral (B).
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Figure S2.6: Temporal effects of confidence transmission (with herd-immunity-driven
hesitancy belief transition). The change in phenotype frequencies over 50 iterations as vaccine
confidence transmission in mixed couples (C1=C2) is varied (A. C1=C2=0.1; B. C1=C2=0.5; C.
C1=C2 = 0.8). Herd-immunity-driven hesitancy is included and other parameters are held at
default values (Table 1). The population equilibrates at over 90% V–A– at low confidence
transmission (A). Increasing the probability of confidence transmission results in higher V+A+

frequencies and lower V–A– (B, C). In comparison to simulations with only vertical transmission
(Figure 2.4), phenotype frequencies reach equilibrium at values closer to mid-range levels (i.e.
V+A+ levels at equilibrium are reduced while other frequencies are increased). It is also worth
noting that the V–A– equilibrium value is higher than V–A+ at C1=C2 = 0.5 when
herd-immunity-driven hesitancy is added.
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Figure S2.7: The influence of parental traits on vaccination coverage and vaccine
confidence (with vertical transmission only). Equilibrium vaccination coverage (A,C) and
corresponding vaccine confidence (B, C) after 100 time-steps without community
influence–only parent-to-offspring transmission (Compare to Figure 2.10 with oblique
transmission). Influence of parental vaccination states (b1 =b2; vertical axis) and influence of
parent vaccine attitudes (c1 =c2; horizontal axis) are varied at two maximum cultural selection
coefficients: σmax= 0 (A, B) and σmax= 0.1 (C, D). Positive selection for vaccination increased
vaccination coverage and vaccine confidence across parameter ranges, however, vaccine
confidence is lower than expected at the intersection of high state influence parameters.
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Figure S2.8: Vaccine confidence transmission dictates vaccination coverage and confidence
levels (with confidence-frequency-dependent belief transition). Heatmaps showing final
vaccination coverage (i.e. frequency of V+ in the population, with low coverage in brown and
high coverage in green (A, C, E, G)) and final vaccine confidence (i.e. frequency of A+, with low
confidence in black and high confidence in red (B, D, F, H)) after 100 time-steps with obliquely
transmitted hesitancy (Figure S2). Unless varied on the horizontal or vertical axes, other
parameters are set to the default values given in Table 2.1. We vary confidence transmission (Cn)
of mixed trait pairs (C1 = C2) in conjunction with the maximum cultural selection coefficient,
σmax, (A,B), the influence of parental vaccination state, bm, (C, D), the level of influence of
parental attitudes on their vaccination behaviors, cn, (E,F), and offspring vaccination probability,
Bm,n (G,H). Dashed white lines demarcate the region in which equilibrium frequencies are
between 0.1 and 0.9.
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Figure S2.9: Vaccine confidence transmission dictates vaccination coverage and confidence
levels (with vaccine-fear-driven belief transition). Heatmaps showing final vaccination
coverage (i.e. frequency of V+ in the population, with low coverage in brown and high coverage
in green (A, C, E, G)) and final vaccine confidence (i.e. frequency of A+, with low confidence in
black and high confidence in red (B, D, F, H)) after 100 time-steps with vaccine-fear-driven
belief transition (Figure S2.1). Unless varied on the horizontal or vertical axes, other
parameters are set to the default values given in Table 1. We vary confidence transmission (Cn)
of mixed trait pairs (C1 = C2) in conjunction with the maximum cultural selection coefficient,
σmax, (A,B), the influence of parental vaccination state, bm, (C, D), the level of influence of
parental attitudes on their vaccination behaviors, cn, (E,F), and offspring vaccination probability,
Bm,n (G,H). Dashed white lines demarcate the region in which equilibrium frequencies are
between 0.1 and 0.9.
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Figure S2.10: The influence of parental traits on vaccination coverage and vaccine
confidence (at extreme levels of cultural selection compared to Figure 2.10). Equilibrium
vaccination coverage (A,C) and corresponding vaccine confidence (B, C respectively) after 100
time-steps with herd-immunity-driven hesitancy belief transition. Influence of parental
vaccination states (b1 =b2; vertical axis) and influence of parent vaccine attitudes (c1 =c2;
horizontal axis) are varied at two maximum cultural selection coefficients: σmax= −0.1 (A, B) and
σmax= 0.5 (C, D). Positive selection for vaccination increases vaccination coverage and vaccine
confidence across parameter ranges, however, vaccine confidence is lower than expected at the
intersection of high state influence parameters.
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Figure S2.11: Homophily between individuals with similar vaccine beliefs can shift the
equilibrium frequencies of both vaccination coverage and confidence (with vertical
transmission only). Heatmaps showing final vaccination coverage (A, C) and final vaccine
confidence (B, D) after 100 timesteps with only parent-to-offspring transmission (compare to
Figure 2.11). As in previous figures, unspecified parameters are given in Table 1. As
vaccine-hesitant individuals (A−) increasingly prefer to pair with one another (increasing 𝛼2;
horizontal axis), vaccine-confident individuals (A+) must also preferentially interact to maintain
high vaccine coverage (𝛼1; vertical axis); this tradeoff is modulated by the cultural selection
pressures on vaccination (σmax = −0.1 (A, B), σmax = 0 (C, D), σmax = 0.1 (E, F) and σmax = 0.5 (G,
H)). Dashed white lines demarcate the region in which equilibrium frequencies are between 0.1
and 0.9.
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Figure S2.12: Homophily between individuals with similar vaccine beliefs can shift the
equilibrium frequencies of both vaccination coverage and confidence (with
confidence-frequency dependent belief transition). Heatmaps showing final vaccination
coverage (A, C) and final vaccine confidence (B, D) after 100 timesteps with obliquely
transmitted hesitancy (Figure S2.2). As in previous figures, unspecified parameters are given
in Table 2.1. As vaccine-hesitant individuals (A−) increasingly prefer to pair with one another
(increasing 𝛼2; horizontal axis), vaccine-confident individuals (A+) must also preferentially
interact to maintain high vaccine coverage (𝛼1; vertical axis); this tradeoff is modulated by the
cultural selection pressures on vaccination (σmax = −0.1 (A, B), σmax = 0 (C, D), σmax = 0.1 (E, F)
and σmax = 0.5 (G, H)). Dashed white lines demarcate the region in which equilibrium
frequencies are between 0.1 and 0.9.
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Figure S2.13: Homophily between individuals with similar vaccine beliefs can shift the
equilibrium frequencies of both vaccination coverage and confidence (with
vaccine-fear-driven hesitancy). Heatmaps showing final vaccination coverage (A, C) and final
vaccine confidence (B, D) after 100 timesteps with vaccine-fear-driven hesitancy (Figure S2.1).
As in previous figures, unspecified parameters are given in Table 2.1. As vaccine-hesitant
individuals (A−) increasingly prefer to pair with one another (increasing 𝛼2; horizontal axis),
vaccine-confident individuals (A+) must also preferentially interact to maintain high vaccine
coverage (𝛼1; vertical axis); this tradeoff is modulated by the cultural selection pressures on
vaccination (σmax = −0.1 (A, B), σmax = 0 (C, D), σmax = 0.1 (E, F) and σmax = 0.5 (G, H)). Dashed
white lines demarcate the region in which equilibrium frequencies are between 0.1 and 0.9.
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Figure S3.1: Selection trajectories affect outcomes at equilibrium when vaccines are
accessible.. Heatmaps showing equilibrium vaccine coverage and vaccine confidence levels with
an accessible vaccine and no mandate (Section B), with an accessible vaccine and a lenient
mandate (Section C) and an environment with vaccines somewhat inaccessible (Section D),
employing various cultural selection (σ) functions: (A1) σ does not depend on vaccination
coverage, (A2) σ decreases after a high herd-immunity threshold of ~90% coverage, (A3) σ
decreases after a medium herd-immunity threshold of ~70% coverage (baseline function), (A4) σ
decreases after a low herd-immunity threshold of ~50% coverage, (A5) σ decreases linearly as
vaccination coverage increases, (A6) σ decreases according to a cubic function. We vary C1 = C2

(confidence transmission probability of mixed-attitude couples) on the vertical axis, and
maximum selection coefficient σmax (indicative of the perceived value of vaccinating offspring)
on the horizontal axis. Unspecified parameters are given in Table 3.1 with σmax held at 0.1 for all
functions shown in Section A but varied in the heatmaps in Sections B-D. Black and white
dashed lines indicate the area of the heat maps in which vaccination and confidence frequencies
equilibrate between 0.1 and 0.9.
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