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CHAPTER 1

Introduction

1.1 Introducing Andean Agriculture

The western cordillera of the south-central Andes rises to elevations above 5000 meters

above sea level less than 100 km from the shores of the Pacific Ocean. These steep and

arid mountain slopes are punctuated by narrow river valleys which flow from the glaciated

peaks to the Pacific Ocean to the west, and to Lake Titicaca to the East. At first, this

rugged landscape does not seem well suited to intensive agricultural production for the

Inka empire, the largest prehispanic empire in the Americas. However, Andean people

transformed these slopes into productive agricultural landscapes through the construction

of monumental-scale agricultural infrastructure. Kilometer-long canals fed (and often con-

tinue to feed) the terracing complexes constructed by Andean farmers that cover much of

the valley walls and floor. The rapid elevation change also creates rapid changes in ecolog-

ical zones, enabling farmers to cultivate a wide variety of crops within a few hours or days’

walk. Cotton, coca, maize, quinoa, potatoes, and more crops are cultivated as one moves

from the coast to the highland planes where herds of camelids are managed (Murra 1972).

By dispersing themselves throughout the valley Andean farmers and pastoralists took

advantage of the diverse, vertically-stacked, ecological zones of the Andes (Murra 1972).

Murra (1972) described pre-hispanic Andean social and economic systems as a ”Vertical

Archipelago” wherein Andean people adapted to the ecological diversity of the Andes and

utilized reciprocity amongst kinship groups to ensure access to crucial resources and main-

tain self-sufficiency. In this model, Andean farming settlements may have been dispersed,

but they were also densely connected through complex systems of kinship. These kinship

networks bound together communities that spanned the length of the valley, ensuring ex-

change and access to the diversity of resources they produced. Murra’s model dominated
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Andean scholarship for decades, however, it has since been problematized by scholars who

observed its dependence on being able to recognize ethnicities in the archaeological record

(Stanish 2003; Van Buren 1996). Rather, these scholars suggest that rather than supplying

food and goods to the population at large, verticality likely functioned to produce food and

goods that were useful in the maintenance of elite political power, whether local, Inka, or

Spanish (Stanish 2003; Van Buren 1996). In this model, rather than connected by kinship

networks, distributed settlements were connected by an extractive political economy. In

any case, the resulting small and dispersed farming settlements characteristic of the pre-

hispanic Andes lead D’Altroy (2014, p. 33) to describe the Inka state as being mostly a

”rural society”, though we will see that this form of ruralism is quite different than the

isolated rural hinterlands produced by European colonizers (Kagan 2000).

1.2 Colonial Intrusions

In contrast to these small but densely connected settlements, the Spanish crown imagined

densely populated, centralized, and independent cities as the epitome of culture. To the

Spanish, urban centers were ”the preferred arena for social and economic exchange, and

the stage for political conflict and accommodation” (Hoberman and Socolow 1986, p. 3).

Following centuries of practice during the Reconquest, cities were also a way of legitimiz-

ing royal claims to land and formed the lowest level of royal government (Kagan 2000,

p. 26). They were seen as a way to bring order, peace, prosperity, and Christianity to new

and inhospitable lands, and were therefore crucial to the growth of the empire. Indeed,

these ideals became so deeply tied to the city, many Spaniards believed that policı́a,(the

complex term used to refer to civic duty and proper life in a republic) could not exist

without it (Kagan 2000, p. 27). Spanish colonizers, therefore, aspired to create idealized

European settlements, which they believed would foster health, civilized behavior, and

obedience in its colonized residents (Málaga Medina 1975, p. 9; Mumford 2012). These

new cities were designed in regular gridded patterns with central plazas, churches, and
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a surrounding hinterland for agricultural production (Bethell 1984, p. 81; Kagan 2000;

Matienzo 1967; Mumford 2012), defining the ideal Spanish colonial city. In the Andean

region, these aspirations reached their apotheosis in the 1570s CE as Viceroy Francisco de

Toledo forcibly resettled indigenous populations into gridded urban settlements known as

reducciónes. This resettlement project, known as the Reducción General de Indios, was one

of the largest forced resettlements in human history (Kagan 2000; Mumford 2012; Wernke

2007a).

Nevertheless, the Spanish colonists couldn’t impose their will for urbanization with im-

punity. A fundamental paradox of Spanish colonization in the Andes is that the colonizers

were dependent on Andean farmers for their own survival and prosperity. The food, goods,

and wealth of colonial Peru were produced by Andean people following millennia-old An-

dean traditions to effectively manage an Andean landscape. Therefore, while the Spanish

crown may have sought to transform the people and the landscape to match its own ide-

alized structure of a Spanish colony, it disrupted existing systems at its own peril. Where

Spanish policy and the practical realities of Andean life conflicted, the resulting tension

demanded resolution.

Such a resolution certainly did not come from the upper levels of Spanish colonial

administration. Toledan guidance with respect to the resettlement was often vague, and

at times contradictory (Wernke 2013, p. 283). For example, Toledo wanted to distance

(physically as well as metaphorically) Andean people from their religious lives, contexts,

and practices, which he described as ”demonic” (Wernke 2013, p. 283). To do so, he

demanded that reducción towns be built far from existing settlements, which were to be

destroyed and completely abandoned. However, to do so would have also forced farmers

away from their agricultural lands, rendering the entire system of agricultural production

and exchange untenable.
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Aware of the tenuous position of the colony, Toledo’s guidance also recommended min-

imizing any disruption to the local economy, in clear contradiction to the previous admoni-

tion (Mumford 2012, pp. 119–121). In such contexts, where general administrative policy

is unclear and conflicts with practical demands, it likely fell to local decision-makers, both

Andean and Spanish, to decide how to resolve the resulting paradox.

1.3 Street-Level Bureaucracy in the Colonial Andes

Paradoxes between high-level policy and on-the-ground realities are not unique to 16th-

century colonial Peru. Modern governmental policies designed to create uniform ways of

generating social order often conflict with the need for flexible responses to particular cir-

cumstances. The term street-level bureaucracy was coined to examine the ways in which

modern public-service professionals such as social workers, teachers, or police officers

shape public policies through their exercise of personal discretion in challenging environ-

ments (Lipsky 2010). As on-the-ground workers are forced to contend with the daily re-

alites of the context in which they are working, they often resort to compromises or coping

strategies which may result in their work conflicting with the governmental, administrative,

or personal ideals they seek to promote.

These street-level bureaucrats, as the individuals who directly interface with the pub-

lic they are intended to serve, discipline, or control, fundamentally define the relationship

between citizens and the state (Lipsky 2010). Street-level bureacracy therefore claims that

policy is not created at higher (often political) administrative levels and passively imple-

mented by mindless workers. Rather, practical policy is created on the ground, as a part

of a dynamic and contested process between local administrators and the citizens they en-

counter.

Applying the concepts of street-level-bureacracy to Spanish colonial contexts encour-

ages us to understand the ways in which local and regional administrators may have been

guided by the administrative ideals of the resettlement, while simultaneously creating a
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wide variety of street-level policies. Toledo’s vague and conflicting guidance left copi-

ous room for discretion by local administrators charged with ensuring the execution of the

resettlement. Indeed, it is questionable the degree to which local spanish administrators

may have desireds to conform to the ideals of the resettlement espoused by Toledo and the

Spanish Crown. Their own lives and prosperity were deeply tied to the degree to the goods

produced by Andean peoples. They were therefore highly incentivised to preserve as much

as possible the highly effective systems of production perfected by Andean farmers and

the Inka empire over the previous hundreds and thousands of years. Likewise, indigenous

Andean people, experienced at imperial politics under the Inka empire prior to the Spanish,

and the primary agents of reducción construction, had little incentive to abandon their own

systems of production and socialization at Spanish behest.

In Huamanga, (modern day Ayacucho), research suggests that full-time residence in re-

ducción settlements was not strictly enforced in spite of the imperial policy. Rather farmers

were allowed to maintain their primary residences outside of the town (Stern 1993, p. 90).

Relaxed colonial enforcement of residency in reducciones could have been beneficial to

both the colonists and indigenous communities, permitting the exploitation of an expanded

portion of the rural landscape outside of the daily accessibility of the town. Further south,

in the Arequipa Valley, Davies’ (2014) historical research suggests that the Spanish effec-

tively separated the colonial and indigenous economies, with the Spanish initially focused

on vineyards (and later, wheat) as the city of Arequipa grew and demand for food increased.

Meanwhile, the indigenous populations retained usufruct rights to lands both local and dis-

tant and tried to maintain traditional methods of exchange and subsistence Davies 1984.

Between Ayacucho and Arequipa is the Colca Valley, a semi-arid river valley with ex-

tensive terracing in the middle and upper valleys which has been the subject of some of the

most intensive archaeological investigations into agricultural deintensification in southern

Peru (Denevan 1986; Donkin 1979; Gelles 2000; Guillet et al. 1987; Treacy 1990b; Wernke

and Whitmore 2009; Wernke 2013). Here, the local population did indeed (at least for a
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time) retain primary residences at reducción settlements, resulting in higher than average

rates of agricultural abandonment (as we show in Chapter 4). As local agents made deci-

sions about which fields to maintain or abandon, distance from colonial settlements became

a fundamental concern, in addition to field productivity and reliability (Wernke 2013). In

the Colca Valley, patterns of abandonment were largely an outcome of risk assessment, as

higher elevation terrace complexes with higher frost risk were abandoned at higher rates

than lower elevation terraces. However, a sliding scale of elevation versus distance was

evident, wherein beyond certain thresholds, sheer distance from a reducción outstripped

elevation as the prime driver of terrace abandonmentWernke 2013.

Nevertheless, the effects of street-level policy are evident, even in the Colca. As will be

examined in greater depth in Chapter 5, Wernke (2013) has demonstrated that prehispanic

community organization played a significant role in patterns of agricultural deintensifiction.

The reducción settlement of Corporaque was positioned such that it was closer fields man-

aged by the higher-status (right-side) communities, while fields managed by lower-status

(left-side) communities were more distant, shaping differing patterns of field abandonment

between local communities. This is powerful evidence that even when forced to move into

new ”reduced” towns, indigenous communities retained a significant measure of control

over street-level policy.

1.4 Urbanization and Ruralization

In spite of indigenous shaping of street-level policy, and whatever discretion was available

to street-level Spanish bureaucrats, the resettlement had an undeniable effect on the existing

agricultural infrastructure. The demographic pull of colonial settlements often made the re-

quired regular maintenance of the infrastructure untenable (Denevan 1986; Donkin 1979;

Gelles 2000; Guillet et al. 1987; Treacy 1990b; Wernke and Whitmore 2009; Wernke 2013)

and a mix of environmental risks and distance from reducciones encouraged a settlement

pattern characterized by central cores with a proximate agricultural ruralized hinterland
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with zones of unproductive and mostly unpopulated land between. Therefore, as the Span-

ish sought to enforce a colonial logic of urbanization, they implicitly constructed along

with it a corresponding rural landscape.

If the city was the moral and physical manifestation of order, effective administration,

and civil society, the non-urban (rusticus) was seen as the opposite of these traits (Kagan

2000, p. 27). The insistence of Spanish authorities on enforcing urbanization therefore

forms a twin process, which I term ruralization. Ruralization results from the Spanish at-

tempt at reformulating pre-hispanic dispersed settlements into places that exist outside of

society, governmental administration, and morality. Infrastructure, including agricultural

fields and canals, that existed outside of the urban sphere were to be deprioritized and, ulti-

mately, abandoned. In broad terms, the consequences of these transformations are known:

exacerbated mortality of the indigenous population and agro-pastoral de-intensification; the

mass abandonment of large swaths of agro-pastoral infrastructure.

While we understand these consequences at the local level, we lack knowledge of the

contours of these processes at regional and trans-regional scales. To what extent did ru-

ralization take hold across the western highlands of the south-central Andes, and what is

the extent of the resulting abandonment of agricultural infrastructure? As ruralization gen-

erated vulnerabilities as indigenous communities faced new stresses to their longstanding

arrangements of agro-pastoral logistics and logics, where and how were street-level poli-

cies able to alleviate these burdens? How might we be able to identify these variations in

policies in surviving features on the modern landscape? Hypothesizing that there was not a

uniform implementation of Spanish policy, or a single solution to conflicting demands, this

dissertation examines patterns of agricultural field abandonment and their relationships to

reducción settlements at a trans-regional scale. By measuring the landscape at this scale,

it is possible to establish general understandings of the phenomena, against which we can

compare the local circumstances, thereby providing a more complete picture of both.
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Archaeological investigation of these processes at a trans-regional scale requires in-

novations in archaeological methodology. Excavation and pedestrian surveys provide a

wealth of local and regional detail, but they are challenging to scale to dimensions cov-

ering tens-of-thousands of square kilometers (Alcock and Cherry 2016; Banning 2002;

Wernke, VanValkenburgh, Zimmer-Dauphinee, et al. in press). It is therefore important to

investigate the extent to which the information offered by these methods is applicable out-

side of their particular contexts. Archaeological survey through remote-sensing data such

as satellite imagery enables us to explore patterns at these larger scales, though at the cost

of much of the detail provided by local methods. However with this expanded scope, we

can explore whether lessons learned in local contexts appear consistent with broader pat-

terns and, perhaps more importantly, identify where they may be different, thereby driving

new directions for fruitful local research. Recent advancements in computer vision and

AI (Lecun et al. 1998; Voulodimos et al. 2018) make it possible for computers to aid re-

searchers as they conduct such large scale surveys, making them more robust, consistent,

and reliable.

This dissertation therefore seeks to provide two major contributions, one anthropolog-

ical, the other methodological. Anthropologically, I seek to examine the transformation of

the Andean landscape under Spanish colonial rule, and to demonstrate how the interaction

between environmental constraints, imperial policy, and local actions shaped, distorted and

transformed the twin processes of urbanization and ruralization in the western cordillera

of the south-central Andes. Methodologically, I introduce the concept of an AI-assisted

imagery survey, where AI tools are used to identify archaeological features that may have

been missed during a fully manual survey, or would take too long to manually record. The

researcher recursively edits, enhances, and refines the survey results, providing insights

that cannot be accessed through automated tools, and editing errors in the data.
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1.5 Reimagining Archaeological Imagery Survey: AI-Assisted Survey

This dissertation expands on the work of GeoPACHA, a “browser- based geospatial plat-

form for discovering and documenting archaeological sites in the Andes through system-

atic visual survey of satellite and historical aerial imagery by a network of trained teams”

(Wernke, VanValkenburgh, and Saito 2020). GeoPACHA researchers undertook a feder-

ated collection of research-driven projects, enabling teams to work independently to con-

duct imagery surveys to answer specific research questions. By looking at larger regional

patterns, GeoPACHA hopes to be able to provide important comparative data to better

understand the local variation that is missing in more localized research (Wernke, Van-

Valkenburgh, Zimmer-Dauphinee, et al. in press, p. 2). Furthermore, Wernke et al. ob-

serve that past people also operated across scales, understanding, and local, regional, and

trans-regional processes to interpret and control their own lives (Wernke, VanValkenburgh,

Zimmer-Dauphinee, et al. in press, p. 2). Archaeologists must join their subjects in adopt-

ing multiscalar perspectives if we hope to develop a more complete understanding of past

processes. Local, regional, and trans-regional approaches are therefore complementary,

each providing critical perspectives that are missing from other scales of research.

In this spirit, this dissertation proposes and employs AI-assisted remote sensing as a

new method of archaeological imagery survey for quickly investigating trans-regional scale

areas while maintaining a high level of data quality and local detail. This approach com-

plements and expands so-called ”Brute Force” manual techniques which rely on teams of

highly trained archaeologists to inspect very large areas by hand (Casana 2020:95) and

identify archaeological features. In applications such as the detection of archaeological

structures, this can help dramatically reduce the amount of time archaeologists must spend

examining the majority of the landscape that does not include archaeological features. Not

only does this increase efficiency by reducing the amount of work required to record the fea-

tures in an area, it also helps researchers maintain attention, decreasing the rate of missed
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features. For applications where the extent of the features are important, such as the in-

ventory and mapping of agricultural infrastructure, this dissertation shows that AI-assisted

surveys can precisely map the boundaries of the features, a laborious and time-consuming

process beyond merely marking the presence or absence of a feature.

While such digitization is possible by hand, maintaining high levels of detail for large

spatial extents is challenging due to fatigue and time constraints. AI-assisted surveys al-

low trained researchers to generate high-resolution data for a small fraction of the area of

interest, and use that data to produce maps for very large areas at a higher level of detail

than would be practical by hand. In each case, researchers then inspect the results of the

AI model, editing features where necessary, removing false positives, and adding insights

that could not have been produced by the AI model alone, thereby gathering higher quality

data in less time than would be possible with brute force methods alone.

Such promises to dramatically reduce the work and improve the efficiency of archaeo-

logical practice should properly be met with skepticism. Much of the discourse surrounding

the use of technology in archaeology is about making archaeology faster, or more efficient.

However proponents of ”slow archaeology” argue that important aspects of archaeologi-

cal knowledge result from the experience of practicing archaeology (Caraher 2016). It is

feared that this focus on efficiency often seeks to automate processes that were previously

arduous and time-consuming but may do so at the expense of the experiential knowledge

that accompanies tedious archaeological work (Caraher 2016). Casana (2020) echoes this

concern, observing that automated surveys are incapable of identifying unique features

(features of a kind previously unobserved) or of recognizing and recording the complex

relationships that exist between archaeological features. For example, the significance of

a canal or roadway connecting to settlements of archaeological importance (or even the

lack of such a canal or roadway) can only be intuited by an archaeologist who has spent

extensive time observing many different combinations of settlements, canals and roadways

during many hours of tedious investigation.
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I agree with these concerns. From my perspective, attention to the importance of ex-

periential knowledge gained during data collection combined with a dedication to deeply

exploring and enhancing the data produced through automated techniques is what distin-

guishes an AI-assisted survey from an automated one. AI-assisted surveys place human

researchers at the center of the survey process, utilizing their unique skills where they are

most valuable, to identify subtle relationships between features, and evaluate edge-cases

where automated models struggle. In this way, AI-assisted survey methods encourage re-

searchers to seek out and carefully consider edge-cases and places where it is difficult to

determine precisely how to characterize the features identified. The greater attention is paid

to these features, the better the AI will perform.

This leads naturally to a recursive process, where the researcher carefully considers

their features of interest and generates data to train the AI (Davis 2020), the AI directs the

researcher towards similar features, and the researcher evaluates the result. This evaluation

quickly demonstrates to the researcher shortcomings in their definitions and examples: ”I

haven’t included enough examples of round buildings, the model is biased towards square

ones.” ”This terracing looks very different to that of the next valley over, that’s why the

model is struggling to identify it. Also, I wonder why it’s so different?” The researcher must

now identify further examples of features of interest (and features of non-interest) which

improves the AI performance and suggests yet more locations for deeper investigation. The

AI-assisted survey process, therefore, requires a deep engagement with the data, rather than

the ”deskilling” which is a common concern with automation (Caraher 2016). Modern AI

models are data-hungry, requiring thousands of training examples to learn effectively. The

design of this data demands the researcher develop a clear understanding of the breadth of

possible features they wish the AI to identify. It is for this reason I find it vitally important

that any researcher conducting an AI-assisted survey spend substantial time generating the

training data themselves. It is not enough to simply hire others to create the data. Otherwise

it is impossible to grasp the subtleties between a cluster of corrals and a set of walled
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agricultural fields where alpacas are grazing (or indeed the arbitrariness of the distinction).

Without this experience it is impossible to faithfully interpret the data produced by the AI

model, and to grasp the ambiguity that may exist therein, in the same sense an archaeologist

cannot understand the subtleties of an excavation map if they have not themselves dug an

excavation unit (Caraher 2016).

AI-assisted survey therefore should not be seen primarily as a way of reducing effort or

tedium. The research for this dissertation contained both of these in multitudes. Rather, the

AI-assisted approach is a method for directing attention where it can be most productive,

enabling the researcher to provide the deeper insights that are unique to human capacity

while highlighting variability in the landscape by where the model fails, and thereby en-

couraging the researcher to challenge assumptions of uniformity.

1.6 Structure of the Dissertation

This dissertation consists of six chapters, including four articles produced in the course of

this study. These articles cover the application of automated survey techniques to iden-

tify archaeological features in satellite imagery, AI-assisted satellite survey methods, the

distribution of active and abandoned agricultural fields, and the dynamics of agricultural

de-intensification in the highlands of the western cordillera of the south-central Andes.

Though composed of independent articles, the work is cumulative, building on the findings

and lessons learned from the previous articles.

Chapter 2 presents and evaluates the results of an automated survey for archaeological

structures (defined as structures without evidence of modern roofs or maintenance less than

30 m in diameter) in satellite imagery. Furthermore, it discusses the importance of sam-

pling in model construction and evaluation, showing the effects of spatial-autocorrelation

on evaluations of model performance. Accounting for this effect is vital to properly mea-

sure the quality of data created by automated models and build trust in their results, yet

is rarely discussed in archaeological efforts at automation. The results of this paper are
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therefore foundational to the credibility of the results in chapters 3 and 4.

Chapter 3 introduces the framework of AI-assisted satellite surveys while compar-

ing the results of the automated survey for archaeological structures to data collected by

GeoPACHA, a ”brute force” satellite survey project undertaken by a team of trained ar-

chaeologists. Systematic manual inspection is the gold standard for satellite archaeological

survey, however this paper demonstrates that both manual and automated surveys missed

a similar percentage of visible features. Importantly, each survey identified features that

were missed by the other, though the automated survey was prone to false-positives, which

must be removed by human researchers. I therefore propose an AI-assisted approach for

future research, where both human researchers and AI models search for features which are

then evaluated for accuracy and enriched with important contextual data by the researcher.

These edited data can then be iteratively supplied to the AI model to further enhance its

abilities, allowing researchers to obtain high quality data while limiting errors caused by

fatigue.

Chapter 4 applies an AI-assisted survey approach to the identification and classifica-

tion of agricultural fields in the western cordillera of the South-Central Andes, measuring

and characterizing the distribution of currently in use (active) and abandoned agricultural

fields. The data is validated through comparison to independently digitized test data, man-

ual inspection, and comparison to very large scale regional surveys of agricultural terracing

undertaken by the Peruvian Ministry of Agrarian and Irrigation development. The final re-

sults are a trans-regional inventory of active and abandoned fields at a significantly higher

resolution than was reasonably achievable by hand at that scale. This data demonstrates

that common estimations of the rate of field abandonment by archaeologists are often much

higher than the actual rate at a regional level. I suggest that this is potentially the result of

an archaeological sampling bias towards regions where settlements and their associated

fields are especially abandoned. Finally, exploratory analyses are completed to understand
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the relationship between active and abandoned agricultural infrastructure and various envi-

ronmental covariates in the western valleys of the study region and Titicaca basin.

Chapter 5 brings together data from the Linked Open Gazetteer of the Andean Re-

gion (LOGAR) (Wernke and Saito 2019), GeoPACHA (Wernke, VanValkenburgh, Zimmer-

Dauphinee, et al. in press), and the agricultural field inventory completed in Chapter 4 to

examine the factors influencing Andean decisionmaking in the construction and abandon-

ment of agricultural fields and placement of reducción settlements in the river valleys of

the western cordillera of the south-central highlands. Expanding on previous work in the

Colca Valley, this work explores whether local patterns identified in this deeply studied

region are applicable to the broader region and searches for evidence of regional variation.

Key findings show that elevation, slope, and distance from existing fields were important

factors in the decision of where to place reducción settlements, suggesting that indigenous

populations likely drove the selection of construction sites. Furthermore, elevation, slope,

distance from streams and distance from reducción settlement played important roles in

agriculturalist decisions to maintain or abandon agricultural fields for the region, demon-

strating the additional burden imposed by the resettlement. Finally, preliminary local anal-

yses show evidence of variation in the importance from the distance to reducciones for

patterns of agricultural abandonment, suggesting that the political and practical realities of

the resettlement were handled differently in different regions.

Chapter 6 synthesizes the results of the previous papers, examining the regional agri-

cultural transformations shaped by the Reducción as well as the promise offered by new

AI-assisted approaches to large-scale regional survey. It also proposes promising directions

for future research and expansion on these successes to further enhance our understanding

of regional and trans-regional variation.
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CHAPTER 2

Progress and Prospects in Automated Image-Based Archaeological Survey: An

Assessment from the Southern Peruvian Andes

Authors: James Zimmer-Dauphinee, Steven A. Wernke

2.1 Introduction: Evaluating Automated Surveys

Interest in automated survey of remotely sensed data for archaeological features has grown

markedly in recent years (Davis 2020). Enthusiasm for AI-based feature detection in satel-

lite and aerial imagery is understandable, as it holds the potential to dramatically expand

scales of analysis to interregional- and even continental-scale views of archaeological dis-

tributions. Yet assessing AI-based feature detection accuracy is key to establishing reliable

AI-based imagery surveys. To do so, the results of automated survey techniques must be

compared to independent data sets collected by more traditional means such as system-

atic visual survey of satellite imagery. The practice of withholding a randomly selected

partition of the data for the purposes of model evaluation is standard practice in machine

learning workflows (Tan et al. 2021), however, this practice must be further examined with

remotely sensed geographic data, where spatial dependency also must be considered in

model evaluation. Spatial autocorrelation (systematic variation as a function of distance)

suggests that adjacent image tiles cannot be treated as independent samples (Miller 2004).

Rather it should be expected that adjacent tiles are correlated to each other, merely due to

their proximity, resulting in overconfidence in the model if adjacent or spatially proximate

tiles are placed in both the training set and the data sets reserved for model evaluation.

This paper forms the first step towards a credible, reliable, and thoroughly tested au-

tomated archaeological survey in the south-central Andean Highlands. To evaluate the

effects of spatial autocorrelation on model evaluation, a convolutional neural network is

trained and evaluated on data from the western cordillera of the southern Peruvian Andes
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that has been treated in two different ways. First, the data was split into training and vali-

dation data sets using a naive random sampling strategy. As a result, some evaluation tiles

are spatially adjacent to the image tiles used for training. The data is then split a second

time, with steps taken to ensure spatially proximate tiles are not split between the training

and test sets. Evaluations of the model performance are then compared to examine the

effects of spatial autocorrelation. This comparison of training data and model validation

methods demonstrates that failing to account for spatial autocorrelation in model training

data can lead to a substantial overestimation of model performance. Beyond this cautionary

tale, this paper contributes a workflow for producing reliable training data and estimates of

model performance for AI-assisted archaeological imagery survey.

2.2 Archaeological Context: Applications in the Peruvian Southern Highlands

This project seeks to explore the feasibility of leveraging large-scale imagery-based au-

tonomous archaeological survey to enable regional- to interregional scale analysis of set-

tlement patterning and land use through the transition from Inka imperial rule (ca 1450-

1532 CE) through the Spanish invasion and colonization of the Andes. It is situated in

the western cordillera of the southern Peruvian Andes (Figure 2.1). Here, the cordillera

rises from the hyperarid coast through vast expanses of high-altitude steppe (puna), which

is in turn punctuated by glaciated peaks and stratovolcanoes and bounded in the east by

the Lake Titicaca Basin (Sandor 1992). Pacific drainages cut through the puna, produc-

ing montane valley oases of high potential agricultural productivity (Sandor 1987). By late

prehispanic times, these highland valleys were home to large ethnic polities, which through

Inka imperial expansion in the 15th century CE were variously incorporated as provincial

administrative units (Neira Avendaño 1990). Population and agro-pastoral production in

most localities in the region reached their apogee under Inka occupation (Doutriaux 2004;

Linares Delgado 1989; Neira Avendaño 1990; Chavez 2019; Wernke 2006).

These processes were truncated abruptly with the Spanish invasion. Following an early
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Figure 2.1: Autonomous Archaeological Survey Region with locations of positive image
tiles used in model construction.

period of plunder, violence, indirect rule, and internecine conflict among Spanish factions,

the Spanish Crown dispatched the Viceroy Francisco de Toledo in 1569 to establish a sta-

ble system of governance, evangelization, and economic extraction from the Viceroyalty

of Peru (Cook and Cook 2007; Mumford 2012). The centerpiece of Toledo’s reforms was

a General Inspection and with it the Reducción General de Indios—the General Resettle-

ment of Indians—one of the largest forced resettlement programs by a colonial power in

world history. The General Resettlement forcibly displaced over 1.4 million indigenous

people from their traditional homes into compact, gridded towns known as reducciones

de Indios or literally “Indian reductions.” The goals were to increase Spanish control and

surveillance of indigenous daily life, improve the efficiency of taxation, and enforce Span-

ish concepts of urban living that they saw as crucial to civilization and Christianization

17



(Mumford 2012; Wernke 2007a,b). The broad contours of what resulted are clear enough:

the immiseration of large segments of the native Andean populace through the disartic-

ulation of links between community, landscape, and longstanding logistics of production

(Mumford 2012; Stern 1993; Wernke and Whitmore 2009). In an arid environment where

mobility and dispersion of settlement among vertically distributed ecological zones was a

long-standing feature of Andean community and land-use arrangements, the centralization

of people into nucleated settlements had the effect of displacing many away from their pro-

ductive lands, and the close living quarters of reducciones exacerbated the transmission of

European-introduced diseases (Cook 1992, 1998).

Nevertheless, the dynamics of this process at large scales remain poorly understood.

Historical data and local archaeological research suggest that Spanish influence and power

were differentially implemented across the landscape, sometimes with counterintuitive con-

sequences (Davies 1984; Wernke 2007b, 2013). For instance, the city of Arequipa, the

southern seat of Spanish colonial power, was dependent on agricultural surpluses both for

its own sustenance and the production of wealth through regional exchange (Boza Cuadros

2021; Davies 1984). It seems incongruous, then, that a mere 30 km to the southeast of Are-

quipa vast complexes of agricultural terracing and their associated irrigation systems, along

with the major late prehispanic settlement of Churajon were abandoned shortly following

the Spanish invasion (Szykulski 1998, 2008; Szykulski et al. 2000). Simultaneously, agri-

cultural settlements more distant from the city appear more likely to survive or prosper.

This project represents a first step toward collecting the data to understand the processes

that drove this penumbra of de-population and agricultural deintensification in the outskirts

of one of the seats of colonial power.

A first step in understanding these processes is to identify the settlement patterns of

both reducciones and prehispanic settlements, to better model colonial dislocation and its

effects on agricultural productivity, urbanization, ruralization, and economic exchange sys-

tems. These changes in settlement patterns and interactions occurred on a tremendous
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scale over the expanse of the viceroyalty as a whole, encompassing hundreds of thousands

of square kilometers. Even regionally, the scale of resettlement and its effects surpasses

areas that can be effectively studied through field methods. To address this problem, we

seek to generate machine learning models capable of identifying archaeological settlements

(via the identification of relict buildings) in high-resolution satellite imagery, allowing us

to rapidly catalog archaeological features at scales that are otherwise difficult to achieve.

This approach complements and extends recent efforts using “brute force” (manual inspec-

tion) techniques of satellite imagery surveys (Casana, Kantner, et al. 2014; Casana and

Cothren 2013; Parcak 2019; Wernke, VanValkenburgh, and Saito 2020). In particular, the

area of interest overlaps with one of the manual imagery surveys conducted as part of the

GeoPACHA (Geospatial Platform for Andean Culture, History, and Archaeology) project

(Wernke, VanValkenburgh, Zimmer-Dauphinee, et al. in press). The project discussed here

functions as a pilot study for broader implementation using large datasets of manually-

tagged features from GeoPACHA as training data.

2.3 Materials and Methods: Deep Learning and Remote Sensing

Deep Convolutional Neural Networks were used on satellite imagery to test the feasibility

and understand the potential challenges of automatically identifying archaeological fea-

tures in satellite imagery. Imagery from Digital Globe’s WorldView I and WorldView 2

satellite constellations (now owned by MAXAR), covering approximately 11,500 square

kilometers between the cities of Arequipa and Cuzco, was used to produce and test models

to survey for archaeological structures utilizing transfer learning on a CNN with a ResNet-

50 backbone. The imagery was radiometrically, atmospherically, and geometrically cor-

rected, and processed using a coarse elevation model as a DigitalGlobe Standard 2A level

product by the DigitalGlobe Foundation (Pour et al. 2021). It should be noted however

that the coarse elevation model is insufficient to remove all topographic distortions, some

of which are apparent in the data. The imagery was mosaiced and pan-sharpened by the
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researchers, (a standard preprocessing procedure which combines the panchromatic and

multispectral images to generate high-resolution color images) and the Red, Green, and

Blue (RGB) bands were extracted for analysis. Future research will leverage more spectral

bands to improve the results further. Finally, the images were scaled from 32-bit to 8-bit

to reduce the computational storage and processing power requirements. ImageNet, the

dataset used for initial training of the ResNet-50 model used in this analysis, is composed

of 8-bit RGB images (Deng et al. 2009). The above treatment of the data, therefore, brings

it into closer alignment with the data used to pre-train the ResNet-50 model.

For analysis, the imagery was chipped into 76.8 x 76.8m tiles (256 pixels at 0.3m resolu-

tion, an efficient size for computational processing), for a total of 1,946,106 tiles. Training

deep learning models requires large amounts of imagery data and, generally, the more data,

the better the results. However, this must be balanced with the time required for collecting

training data. Ultimately, a total of 5245 labeled tiles were selected for model training and

testing. An initial 5,000 tiles were randomly selected for manually coding the presence or

absence of archaeological structures, (defined as round or rectangular structures, no more

than 30m in their largest dimension that appear abandoned and/or appear to lack modern

roofing and maintenance). Of the 5,000 tiles, approximately 1% (n=47) yielded exam-

ples of archaeological structures. This data was then augmented with an additional 308

tiles containing archaeological structures to provide the model with sufficient examples of

structure presence for training and testing. Finally, tiles that fell on the edge of the image,

and so did not form a complete tile, were removed to produce the final dataset.

The labeled image tiles were then split into training, validation, and testing sets. This

is a standard practice in machine learning that has been practiced for decades, however,

recently researchers have encouraged a closer examination of the assumptions of random

splitting (Tan et al. 2021). In our case, the data split was performed in two ways to test for

the effects of spatial autocorrelation on the model’s performance, and the model was trained

twice, once for each division of the data. The first split (Split A) was via naive random
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sampling of image tiles. That is, individual tiles were placed in the training, validation, or

testing set, and no tile was placed in multiple sets. This method fails to account for spatial

autocorrelation (the tendency for proximate phenomena to be more similar than distant

ones) because it may split neighboring tiles in the training and validation or testing sets.

The presence of spatially-autocorrelated features in both the training and validation data

limits the ability of model evaluations to accurately describe the performance of the neural

network which may be vulnerable to overfitting on the image background, rather than the

features of interest.

The data was then re-split between the training, validation, and testing sets (Split B). To

avoid spatially proximate tiles being divided between sets, the second split took a stratified

random sample which defined any tiles within 400m of each other as being a part of the

same “locus.” The resulting loci were split with 80% of loci placed in the training set, 10%

in the validation set, and 10% in the testing set. All tiles from each locus were placed in the

same data set. This prevents neighboring tiles from being split between sets and reduces

the effects of spatial autocorrelation on the model’s confidence. The resulting number of

training, validation, and testing samples are very similar between the two splits, shown in

Table 2.1.

Table 2.1: Number of positive and negative examples in each data split

Split A Split B
Training Positive: 292 Negative: 3904 Positive: 298 Negative: 3919
Validation Positive: 27 Negative: 497 Positive: 24 Negative: 486
Testing Positive: 36 Negative: 489 Positive: 33 Negative: 485

Finally, for each training dataset, the training data was augmented using techniques

including vertical and horizontal flips, random rotations, and transformation to black/white

images, a standard process for improving the results of computer vision models (Hauberg et

al. 2016; Simard, Steinkraus, and Platt 2003). This artificially increases the size of the data

available for training which in turn can reduce overfitting and improve the model’s ability to

respond to a wide variety of positions, rotations, and color combinations of archaeological
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structures in the imagery.

The open-source Raster Vision (Azavea 2022) framework was used to extract tiles from

the imagery, train the deep learning model, and compare the model’s results to the valida-

tion set. The commonly used ResNet-50 convolutional neural network, pre-trained on more

than a million images from the ImageNet database was selected as the backbone architec-

ture for our model. We then transfer-trained the model on our own dataset for 20 Epochs

with a Batch size of 20 images using a Learning rate of 0.0001.

2.4 Results: The Importance of Sampling

Initial results of the model using the randomly selected tiled dataset (Split A) appeared

promising when compared to the validation set, achieving an approximately 88% recall

(percent of true positives identified) and 82% precision (percent of predicted positives that

are true positives) for a balanced accuracy of 93%. However, when the model was applied

to the survey area, a manual review of 1000 randomly selected tiles that the model coded as

containing archaeological structures showed these promising metrics to be inaccurate. With

an 82% precision, we would expect 820 of the “positive” tiles to contain archaeological

structures. However, only 320 of the extracted predictions actually contained such struc-

tures, resulting in a true precision of approximately 32%. This suggests that the model’s

performance on the validation set in Split A is not representative of how it performs on all

satellite tiles in the region and that the model was overfitting to the validation set, despite

not having access to the validation set for training. This is likely due (at least in part) to

spatial autocorrelation, as will be discussed further below. Furthermore, a manual review

of the data suggests that the model frequently confused modern architecture with archaeo-

logical structures, suggesting that modern architecture may not be sufficiently represented

in the data (Figure 2.2).

Split B was designed to mitigate the effects of spatial autocorrelation. This way, the

model was no longer able to use the similarity between spatially proximate tiles to assist
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Figure 2.2: Selected Images with Autonomous results and Ground-truth labels. Boxes are
76.8m x 76.8m (256 pixel x 256 pixel at 0.3m resolution)

in its predictions and, the model was much less effective at correctly identifying tiles with

structures in the validation dataset. For Split B, the model produced a much lower (and

more realistic) recall of 54% and precision of 93% for a balanced accuracy of only 77%.

All results are shown in Table 2.2. This suggests that the validation set is now more accu-

rately representing the model’s performance in the real world. However, such results are

insufficient for application to archaeological work, suggesting that further model improve-

ments are necessary to produce a useful model. We are now pursuing those improvements,

the results of which are forthcoming (Zimmer-Dauphinee, VanValkenburgh, and Wernke in
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press). The insights from our experience here are well worth conveying, since to our knowl-

edge, issues of spatial autocorrelation in the training and validation steps have not been

discussed systematically in the literature on machine learning and archaeological satellite

remote sensing.

Table 2.2: Evaluation metrics for each data split and precision compared to the manual
inspection of Split A

Split A Manual Inspection of Split A Split B
Recall 0.88 Not Evaluated 0.54
Precision 0.82 0.32 0.93
Balanced Accuracy 0.93 Not Evaluated 0.77

2.5 Discussion: Lessons Learned

Accurate evaluation of automation techniques is crucial to their application in archaeologi-

cal contexts. A model with poor precision fails at sufficiently reducing the manual labor of

settlement identification, as it is still necessary for experts to review many false positives to

identify the true positives. A low recall rate (one that produces a high rate of Type II errors)

such as the result of the second model is perhaps even more concerning as it risks missing

important archaeological evidence and gives a false impression that an absence of evidence

does indeed imply evidence of absence. Accurately measuring the model’s effectiveness on

previously unseen, “real world” data is therefore vital to understanding whether and how a

particular model is useful.

This research, therefore, highlights the need for careful research design and rigorous

evaluation of automated model results and suggests fruitful paths forward for selecting

spatially unbiased training data samples. The naive random sampling of image tiles for

partitioning into training and validation datasets produced a poor representation of the re-

sults the model would have if applied to the “real world.” This poor representation may

result from a variety of sources. From a machine-learning perspective, archaeological data
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sets tend to be relatively small. With only 6,000 labeled image tiles, and 1000 valida-

tion tiles, it is possible that the validation set did not have sufficient representation of the

landscape to accurately depict the results of the model when applied to it. This problem

is exacerbated by the highly imbalanced nature of the data, with only approximately 1%

of the tiles containing positive examples naturally. Therefore, even with oversampling of

tiles with archaeological structures, there were very few (only a few dozen) examples of

archaeological structures in the validation dataset. This may not be enough to truly evaluate

whether the model is successfully capturing all archaeological structures.

The infrequency of modern buildings in the landscape may also have been a challenge

to the accurate evaluation of the model. While more common than relict archaeological

structures, the vast majority of the landscape is not covered by modern architecture, result-

ing in relatively few examples in the validation dataset. However initial models show a

strong bias towards false positives when evaluating whether a tile containing modern struc-

tures also contained archaeological structures. This is unsurprising. Due to the similarities

in size, shape, and material of modern and archaeological structures, it is very likely that

the model will have difficulty distinguishing archaeological and modern structures. Fur-

thermore, many modern settlements are located in close proximity to archaeological set-

tlements, particularly in the highlands where pastoralists and modern ranchers make use

of the same persistent and limited ecological resources. This means that some tiles con-

tain both archaeological and modern structures, making it further difficult for the model to

disambiguate between the two. Therefore, locations with many modern structures such as

modern towns or cities are likely to be misidentified. If the number of modern structures in

the validation set was low due to the relatively small sample size and random chance, the

validation dataset may not have captured sufficient examples of modern structures to ade-

quately test the model’s efficacy of rejecting these buildings as archaeological structures.

However, the large discrepancy between the precision calculated using the naive ran-

dom sampling validation set and the precision evaluated post hoc from applying the model
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to large-scale satellite imagery suggests that insufficient examples of archaeological and

modern structures in the training and testing data are not the only source of concern. Rather,

it appears that the model is overfitting to the naive random sampling validation dataset, de-

spite not having trained on this data. This is possible because of spatial autocorrelation.

While none of the image tiles in the naive random sampling validation dataset were used

to train the model, in some cases neighboring tiles were split between the training and val-

idation sets by random chance. As a result, the model was trained on tiles that were very

similar to those in the validation set, and overfitting in the training process was not captured

in the validation dataset. Therefore, the model generalized to previously unseen (and less

proximate) data more poorly than expected from the validation set’s results.

The solution to this problem is to establish a stratified random sampling method for

partitioning the dataset into training, validation, and test sets. Previous research in the

Andes has used 100m as a minimum distance to designate a boundary between separate

archaeological loci (Wernke, VanValkenburgh, and Saito 2020). Following this metric and

using geographic information systems, it is possible to cluster any tiles within a 100 m

radius from each other as belonging to the same locus. Then, rather than partitioning tiles,

one can randomly partition loci between training and evaluation datasets and reduce the

effects of spatial autocorrelation on evaluations of the model’s performance. The resulting

training, validation, and test sets retain an approximately 80,10,10 split while retaining all

spatially proximate tiles within a single dataset.

The evaluation of the model using the stratified random partitioning of tiles by locus is

a much more accurate depiction of the model’s performance, though that performance is

somewhat less impressive than hoped. The greatest barrier to deep learning success in the

location of archaeological architecture is the extreme imbalance in the number of images

that contain an archaeological feature, and those that don’t. Clearly, the percentage of the

landscape devoid of surface archaeological features discernable in satellite imagery is much

larger than the percentage that contains them. In fact, given the random sampling strategy
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for our initial 5000 image tiles, it appears that for the region in question, approximately 1%

of the landscape appears to have some form of archaeological features on it. Working with

such fundamentally unbalanced datasets is quite challenging, and an area of active research

throughout the machine learning industry.

2.6 Conclusions and Future Research

Convolutional neural networks and satellite imagery are promising tools for identifying ar-

chaeological structures in the Andes, but further work is needed to improve model accuracy

before they can be deployed at large scale with confidence in their performance. Given the

challenges presented by the highly unbalanced nature of the dataset and the limited number

of samples available for training, more sophisticated modeling approaches are needed to

increase the balanced accuracy to a feasible level for archaeological applications. Ongo-

ing work suggests that a modified SimSiam Representational model (Chen and He 2020;

Chen, Kornblith, et al. 2020) can achieve balanced accuracy sufficient for archaeological

applications by leveraging large unlabeled datasets in the modeling process.

In any case, achieving a model capable of identifying the location of archaeological

sites is only a first step. Even preliminary models suggest that tens or hundreds of thou-

sands of archaeological structures will be identified, scattered across thousands of square

kilometers covering the western cordillera of the Andes. To fully utilize data at this scale

and begin asking meaningful archaeological and anthropological questions, one needs more

than mere location information. Settlement characterization and classification will be cru-

cial. Even simple classifications such as whether a structure or settlement is more likely

associated with pastoral or agricultural activity may allow researchers to begin exploring

the relationships between these activities in the Andes on a trans-regional scale.

It should also be acknowledged that “structures” (as defined by this paper) are not

the only features of the Andean landscape that are of archaeological interest. Landscape

features such as the ubiquitous agricultural terraces and canals are vital to understanding
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the production of food, wealth, and power in the Andes. It has been estimated that as

much as 1,000,000 hectares of land in Peru has been terraced (Guillet et al. 1987). In

the Colca Valley, it is estimated that 61% of this once-productive agricultural land has

been abandoned (Denevan 2003; Donkin 1979; Treacy 1990a) and in northern Chile, that

number reaches as high as 80% (Wright 1962). The causes and effects of this abandonment

in localities such as the Colca Valley have been thoroughly debated, yet the applicability of

these discussions and the potential of local variation across the broader landscape remain

understudied. Comprehensive mapping of active and abandoned agricultural terracing from

satellite imagery using machine learning as conducted in Chapter 4 will provide crucial

information for developing a global understanding of these processes, and direct future

research to better understand local variations in communal decision-making. Chapter 5 of

this dissertation begins these explorations.

Finally, it bears reiteration that satellite surveys, whether by hand or by machine, are

only capable of identifying features that are visible within satellite imagery. Such methods

will not capture archaeological materials that are obscured by vegetation such as may be

common in certain regions, in the North and East of Peru. Nevertheless, similar approaches

utilizing regional scale LiDAR data have proven effective at transforming archaeological

understandings of settlement and economic patterns in Cambodia and the Maya lowlands

(Canuto et al. 2018; Chase et al. 2012; Guyot et al. 2021; Verschoof-van der Vaart and

Lambers 2019). Neither of these data sources will be able to capture more transient struc-

tures which lack surficial remains to be observed from the air, nor archaeological features

which may never have had structures to begin with. For these reasons, further comparison

to pedestrian survey samples is vital to evaluate and account for the bias that is introduced

into our understanding of the archaeological record through primarily remote sensing and

computational approaches.

Trans-regional approaches promise to change our understanding of interactions at scale,

and to better highlight regional and local variation across the broader landscape, however,
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such approaches should be seen as effective tools to broaden our understanding of the

scale and scope of the archaeological record, not as replacement methodologies for more

traditional archaeological approaches.
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CHAPTER 3

Eyes of the Machine: Toward AI-assisted Satellite Archeological Survey in the Andes

Authors: James Zimmer-Dauphinee, Parker VanValkenburgh, Steven A. Wernke

3.1 Introduction: The Potential of AI-Assisted Surveys

Archaeological surveys conducted through the manual inspection of high-resolution satel-

lite imagery hold transformational promise for regional and supraregional research. Tra-

ditional pedestrian surveys covering many thousands of square kilometers can be pro-

hibitively expensive and time-consuming, especially when conducted in physically chal-

lenging landscapes such as the Central Andean Cordillera. In contrast, manual satellite

prospection allows archaeologists to efficiently survey hundreds of thousands of square

kilometers for visible features and to generate reliable data (Casana and Cothren 2013;

Parcak 2017; Ur 2013; Wernke, VanValkenburgh, and Saito 2020). Furthermore, it allows

regions that were once geographically or politically inaccessible to be investigated through

the inspection of freely available satellite imagery (Casana and Cothren 2013).

Nevertheless, manual satellite survey methods are labor-and time-intensive, and the low

frequency of archaeological features in many landscapes can make for monotonous work.

Far from being a trivial issue, observer fatigue dramatically increases the likelihood of false

negatives (Körber et al. 2015), meaning that important archaeological features may go un-

recorded. Reliable satellite survey also requires surveyors to have extensive training in both

archaeology and satellite image interpretation (Casana 2020, p. 95), increasing the cost of

inspecting large areas without archaeological features. Facing these challenges, researchers

have sought to automate satellite prospection to cover large areas more quickly, completely,

and efficiently (Davis et al. 2021; Lambers, Verschoof-van der Vaart, and Bourgeois 2019;

Lasaponara and Masini 2007; Somrak, Džeroski, and Kokalj 2020; Trier, Cowley, and

Waldeland 2018; Zingman et al. 2016).
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Despite their potential benefits, there are reasons to be skeptical about the potential of

fully automated approaches to replace manual archaeological imagery survey. Archaeolog-

ical features missed by automated detection (false negatives) may contain vital information,

while locations incorrectly identified as archaeological loci (false positives) may mislead

the researcher as they examine large-scale patterns. Automated surveys are also incapable

of capturing unique features––or of recognizing the complex relationships that exist be-

tween archaeological features (Casana 2020).

Here, we propose an approach that seeks to avoid some of these downsides. Rather than

fully replacing manual with automated methods, we promote an “AI-assisted” approach

that employs deep learning to augment the results of manual surveys by directing the sur-

veyor’s attention toward locations that are most likely to contain archaeological features.

To evaluate its potential, we compare the results of a deep learning model for identifying

archaeological structures in the southern Peruvian highlands to data collected and edited

by a team of experts through the Geospatial Platform for Andean Culture, History, and Ar-

chaeology (GeoPACHA). Our results suggest AI-assisted survey provides an additive check

on features of interest and reduces the burden of examining survey grids devoid of visible

archaeological features, which in the case of Geopacha approached 95% of grid cells. We

envision a near-term future in which human-machine teaming approaches will surpass the

sensitivity and specificity rates of either approach when deployed exclusively. In turn, these

results can be further augmented and verified, through on-the-ground pedestrian surveys.

3.2 Human vs. Machine: Comparing Brute-Force and Automated Methods

3.2.1 Manual (Brute-Force) Methods

Manual satellite surveys have been referred to as ”brute force” techniques, in contrast to

automated surveys (Casana and Cothren 2013; Wernke, VanValkenburgh, and Saito 2020).

Some brute force methods, such as Albert Lin’s search for Genghis Khan and Sarah Par-

cak’s GlobalXplorer utilize ”citizen scientists” to quickly survey large areas and obtain
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measures of confidence in their findings through repeated observations by non-specialists

(Lin et al. 2014; Parcak 2019). Such approaches are suited for generating presence/absence

information, but non-specialists cannot leverage contextual knowledge to record detailed

metadata (Casana 2020). Presence/absence data may flag areas of interest for further inves-

tigation by specialists, but without specialist intervention, applications are limited to broad

and atemporal settlement pattern analyses. Other research programs, such as the CORONA

Atlas project and GeoPACHA (Casana and Cothren 2013; Wernke, VanValkenburgh, and

Saito 2020), rely on trained specialists to ensure the quality of the collected data and pro-

vide deeper and more rich metadata about the observations made. To date, these methods

have proven highly effective in identifying archaeological features over vast areas but re-

main time-consuming and require team members to have significant training and domain

knowledge. They are also subject to human vigilance constraints (attention span)––a factor

that may be especially significant in large-scale, extended imagery survey campaigns.

Research on human vigilance has repeatedly demonstrated, across diverse domains,

that even trained specialists can be poor at detecting “rarely occurring, low-signal-to-noise-

ratio signals embedded in the context of varying background configurations” (Harris 2002;

Körber et al. 2015; Shingledecker et al. 2017). The distribution of archaeological fea-

tures in the southern Peruvian highlands follows such a pattern: GeoPACHA surveyors

identified archaeological features in only 5% of survey grids (Wernke, VanValkenburgh,

Zimmer-Dauphinee, et al. in press). In such circumstances, even well-trained experts may

miss visible archaeological features due to lower vigilance from distraction, boredom, and

fatigue. Automated survey methods may help to alleviate these problems by reducing time

spent examining locations that lack features and refocusing surveyors’ attention on possible

locations of missed features.
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3.2.2 Automated Methods

Traditional remote sensing approaches to automated object detection/classification have

relied on pixel-wise spectral comparisons to identify features of interest (Comer and Har-

rower 2013; Parcak 2009). However, archaeological features vary widely in their construc-

tion materials or (as in the case of the Andes) are constructed of similar materials to the

background landscape, resulting in little to no spectral difference between features of in-

terest and their surroundings (Alexakis et al. 2009; Garrison et al. 2008). This has led to

the adage that there is ”no generalized spectral signature for archaeology,” though there

may be spectral signatures for particular cases or archaeological correlates (Agapiou et al.

2013; Lasaponara and Masini 2007; Parcak 2009, 2017; Saturno et al. 2007). In contrast,

state-of-the-art computer vision models such as Convolutional Neural Networks (CNNs)

and Vision Transformer (ViT) Models examine the correlations between proximate pixels,

enabling the detection of morphological variation at the scale of the objects of interest, in

addition to spectral variation at the pixel level (Sevara et al. 2016). These technological

improvements open up new opportunities for detecting archaeological features using com-

putational methods. Furthermore, rapid improvement in computer vision in the past decade

has allowed models in select fields to meet (and in a rare, but growing number of cases,

to surpass) specialist capabilities (Bewes et al. 2019; Buetti-Dinh et al. 2019; Byeon et al.

2019; Dodge and Karam 2017; He et al. 2015). Archaeology may similarly benefit from

these methods.

Even with such improvements, there remain concerns with automated surveys. Current,

state-of-the-art models in archaeological site detection are more akin to citizen scientists

than to trained specialists. False positives/negatives are persistent problems, and the best

models only provide location and morphological information with little to no metadata con-

cerning context, or relationships between features. Such results may be useful for guiding

broad analyses or to assist human specialists, but may miss important dimensions necessary

for detailed analyses.
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In addition to practical concerns with automated techniques, conceptual problems must

be addressed. Due to their complexity, deep learning algorithms are ”black boxes” (La-

tour and Woolgar 1979) that are impossible for researchers to completely understand. If

one cannot concretely explain why a given model makes any particular evaluation about

the presence or absence of archaeological features, one may doubt the trustworthiness of

the information the model produces. Fortunately, computer science researchers in the field

of Explanatory AI (XAI) have provided researchers with a series of tools such as Grad-

CAM (Selvaraju et al. 2020), Layer-Wise Relevance Propagation (Montavon et al. 2019)

and others (Rai 2020; Tjoa and Guan 2021) to evaluate model behavior at the level of in-

dividual predictions as well as the global results of the model. Furthermore, this concern

is not unique to data produced through automated means (Davis 2020, p. 3), humans are

also black boxes. A researcher working with data collected via brute force survey by vol-

unteer citizen scientists or even trained professionals may struggle to delineate an explicit

hermeneutics of archaeological imagery survey, which is a complex interplay of visual

cues, prior knowledge, and decision-making resulting in the evaluation of the presence or

absence of archaeological features.

Nevertheless, some aspects of archaeological survey remain inaccessible to computa-

tional methods. As recognised by Casana (2014, p. 228), a human researcher is “engaging

in a discursive, analytic process, thinking creatively about features we see” and is capable

of “identifying unique or unusual features.” Neither of these vital characteristics is possi-

ble using automatic techniques. In contrast to automated identification of the presence or

absence of a feature, archaeologists are searching for what such presences and absences

mean concerning their relationships to each other and the archaeological record. Given this

fact, researchers cannot relinquish our ability to think analytically and creatively about the

features we see. Humans must remain active participants in the acquisition and analysis

of archaeological data and take the time to examine the features we identify in their larger

context.

34



Despite these caveats, we argue that automated surveys hold great potential. The auto-

mated identification of archaeological features at regional and supraregional scales provides

contexts for deciding where best to focus human creativity and analytical thinking. Much

like a trowel, shovel, or backhoe, automation tools are not appropriate in all circumstances,

but AI-Assisted surveys may be invaluable to address questions at a supraregional scale.

3.3 Data Sources

3.3.1 Satellite Imagery

For our preliminary automated survey, satellite imagery from DigitalGlobe’s WorldView 2

and WorldView 3 satellite constellations (since purchased by Maxar) were used to produce

and test models to detect archaeological structures. The imagery, covering approximately

11,500 square kilometers between the cities of Arequipa and Cuzco (Figure 3.1) is a Stan-

dard 2A level product, radiometrically and atmospherically corrected, and geometrically

pre-processed using a coarse elevation model by DigitalGlobe (Pour et al. 2021). The

images were then mosaiced, pan-sharpened using the OrfeoToolbox Bayesian Fusion al-

gorithm, (Grizonnet et al. 2017) and scaled from 32-bit to 8-bit to reduce computational

storage and processing requirements. While it is possible that the increased bit-depth could

provide additional information for model training, traditional machine learning datasets

such as ImageNet are composed of 8-bit Red, Green, and Blue (RGB) images. There-

fore, to facilitate transfer learning on pre-trained networks the RGB spectral bands were

extracted to bring the images more in line with these data (Deng et al. 2009).

3.3.2 Archaeological Data for Automated Survey

Archaeological features of interest in the automated survey were relict buildings (Figure

3.2), defined as round or rectilinear structures, no more than 30m in their largest dimen-

sion, lacking modern roofing and maintenance. Using the QGIS Geographic Information

System (QGIS Development Team 2009), a grid of 76.8m x 76.8m squares (256 x 256

pixels at 0.3m resolution) was generated covering the imagery. Ultimately, a total of 6,428
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Figure 3.1: GeoPACHA and Automated Survey Study regions

labeled tiles were selected for model training and testing. Initially, 5000 squares were ran-

domly selected for manual inspection. The presence or absence of archaeological structures

was recorded for each square. Of these, approximately 1% (n=47) yielded examples of ar-

chaeological structures. This data was augmented with an additional 308 squares contain-

ing archaeological structures previously known to the authors to provide sufficient positive

examples for model training and validation. Initial modeling efforts revealed that mod-

ern structures were often confused with archaeological structures, so an additional 1,183

squares containing modern structures were added as negative examples to the dataset. Re-

moving squares that fell on the edge of an image, or where the imagery was obscured by

clouds, resulted in a total of 6,428 labeled squares for model training, validation, and test-

ing. Finally, image chips corresponding to the label squares were extracted using Raster

Vision (Azavea 2022).
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Figure 3.2: Examples of archaeological structures used for training the automated survey
model. Note that archaeological structures may be isolated or associated with other archae-
ological or modern features.

The labeled image chips were split into training (n structures=298, n negatives=3919),

validation (n structures=24, n negatives=486), and testing (n structures=33, n negatives=485)

sets. Any chips within 400m of each other were grouped and the resulting groups were split

with 80% of groups placed in the training set, 10% in the validation set, and 10% in the

testing set. This ensured that all chips from within a single locus, or located in closely

neighboring loci, were not split between training and validation sets, thereby minimizing

the effects of spatial autocorrelation on model evaluation. Finally, the training data were

augmented using vertical and horizontal flips and random rotations. This increases the

number of images available for training to reduce overfitting and improve the model’s abil-

ity to identify archaeological structures in any orientation. The validation set was used to

monitor and evaluate the training progress. However, as one modifies model hyperparame-

ters to optimize performance the model becomes fitted to the validation set. A separate test
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set was therefore reserved for independent evaluation of future versions of the model.

3.3.3 GeoPACHA Data

The automated survey results were compared to those acquired through brute force meth-

ods via GeoPACHA. As described by Wernke and colleagues, GeoPACHA is a “browser-

based geospatial platform for discovering and documenting archaeological sites in the An-

des through systematic visual survey of satellite and historical aerial imagery by a network

of trained teams” (Wernke, VanValkenburgh, and Saito 2020). In this case, GeoPACHA

data from a survey area overlapping with our automated survey area offer an independent

means of comparison of the two methods. The GeoPACHA database currently contains

36,248 recorded loci. The south-western survey zone, edited by Wernke, covered 78,372

km² and recorded 14,685 loci with attribute data. This dataset was collected entirely in-

dependently from the automated survey data described above and provides an independent

test of the model for the approximately 3,000 km² where the two surveys overlap, in which

GeoPACHA identified 844 loci. (Figure 3.3) This data should therefore be both sufficiently

high-quality and high-quantity to evaluate the capabilities of the automated survey.

3.4 Methods: Building a Model

3.4.1 Deep Learning (DL)

Innovations in DL in recent decades have dramatically improved the capabilities of com-

puter vision models (Voulodimos et al. 2018). However, training such models from scratch

requires datasets of thousands or millions of labeled example images. Such datasets are

often beyond the scale available for archaeological data. Fortunately, a method known as

transfer-learning makes it possible to repurpose models that have been pre-trained on stan-

dard datasets such as ImageNet (Deng et al. 2009) to work on new problems with much

smaller data sets. This research uses transfer-learning on the well-known ResNet-50 (He

et al. 2015) computer vision model, trained on ImageNet, to classify satellite imagery chips

for the presence or absence of archaeological features.
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Figure 3.3: Data produced by the GeoPACHA and Automated surveys for the region of
overlap overlaps with the automated survey. Note the similarity in distribution between the
surveys.

We used an open-source framework for deep learning on remote sensing data, known as

Raster Vision (Azavea 2022), to train and deploy our automated survey. The training data

was used to transfer-train a ResNet-50 model using the standard Adam optimizer for 20

epochs (full passes through the training data), with a learning rate of 0.0001 (for rapid and

stable optimization), and a batch size of 20 images (to speed up computation). The model

was checked against the validation set to evaluate overfitting. Methodological details, code,

and model parameters are included at github.com/geopacha.

3.4.2 Making Data Comparable

The GeoPACHA dataset enables comparison of the results of the automated survey directly

with high-quality, independently produced data. However, some translation is necessary to

make the datasets comparable. The automated survey algorithm marks 76.8 x 76.8m chips
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that contain archaeological features, while the GeoPACHA data records a single point

for each locus, located near the surveyor’s estimation of the center of the locus. In the

GeoPACHA dataset, all features within 100 m of each other are designated as a part of the

same locus. Therefore, a locus with two components separated by a space of 80m, would

be marked in the space between the components, where there are no archaeological fea-

tures for the automated survey to find. Furthermore, differences in preprocessing between

the Worldview imagery and the imagery sources (Bing, Google) used for GeoPACHA pro-

duced differences in loci locations. To account for these differences, any chip identified

by the automated survey as containing an archaeological feature which was located within

100m of a GeoPACHA locus was designated as having identified that locus.

Of the 844 loci identified in GeoPACHA for the survey area, 391 locations marked in

GeoPACHA were not identified by the automated survey. A manual review of these 391

loci found 102 which were not visible in the satellite imagery used for the automated sur-

vey. These loci were either obscured in the automated imagery dataset, (due to clouds,

shadows, or destruction) or had been mapped from their record in published works (and

labeled as such in GeoPACHA). These loci were not visible in the Worldview imagery,

and so could not be identified by the automated survey. Excluding these loci from the

analysis left 742 loci in the GeoPACHA dataset that are also visible in the Worldview im-

agery for the automated survey region. There are several (/sim20) features identified in the

GeoPACHA dataset that do not meet the working definition of archaeological structures

used in the construction of the automated survey. These are large-scale constructions such

as fortifications or corrals that were clearly of archaeological relevance but did not contain

structures smaller than 30m in dimension. While it is expected that the model would not

identify these features because the training data was not designed to do so, these features

were not excluded from the following analysis because there are indeed visible archaeo-

logical features at these locations which were not identified by the automated survey. As

discussed above, one of the advantages of human surveyors over automated methods is their
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ability to engage in the creative process of identifying features of archaeological interest

that fall outside narrow definitions. The choice to penalize the model for not identifying

visible archaeological features for which it was not designed reflects this shortcoming and

offers a more realistic picture of working with automated survey data. While the model can

(and will) be re-trained to identify such features, the following analysis reflects its current

capabilities and is therefore a conservative estimate of the automated survey’s potential

performance.

3.5 Results: Comparing Deep Learning to Brute-Force Surveys

The automated survey successfully identified 453 visible loci that were also identified in

the GeoPACHA dataset. In these locations, GeoPACHA and the automated survey were in

agreement and we have high confidence in the presence of visible archaeological features.

This leaves 289 loci visible in the GeoPACHA data that the automated survey failed to iden-

tify. However, in addition to the loci identified by GeoPACHA, the automated survey also

identified 1031 other locations as having archaeological structures that were not identified

in the GeoPACHA dataset. A manual review of these locations found that 315 locations did

indeed contain structures that met the definition of an archaeological structure used in this

analysis. This brings the total of known loci in the area identified through the combined

surveys to 1,057. Of these, GeoPACHA surveyors identified 742 (recall ≈ 70%), while the

automated survey identified a comparable 766 (recall ≈ 73%). The results are summarized

in Figure 3.4. Of course, there may be more archaeological features visible in the imagery

which were not identified by either the GeoPACHA or the automated surveys, however, we

expect that the number of unidentified visible features in the region is very small.

While the two surveys had a similar recall rate, GeoPACHA surveyors far outperformed

the automated survey in terms of precision. It is difficult to evaluate how many of the

742 loci identified by GeoPACHA surveyors were incorrectly marked as archaeological

features without visiting these features on the ground. However, following our inspection
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Figure 3.4: Confusion matrix for the GeoPACHA survey shows decent recall and very few
false positives, while the automated survey had a decent recall but many false positives.

of the data, we expect that the number of falsely identified loci is negligible, likely less than

1%. In the automated survey, there were 716 false positives wherein the model mistakenly

identified modern structures, rocks, or other natural formations as archaeological structures.

Therefore, 48% of all the loci identified by the automated survey were false positives. As

a result, the F1 score (used for evaluating model performance) for the automated survey is

∼61% while GeoPACHA surveyors achieved an F1 score of ∼82%.

3.6 Blending Automation and Brute-Force: Introducing the AI-assisted Survey

3.6.1 Evaluating False Negatives

We found it surprising that the team of expert GeoPACHA surveyors and the automated

algorithm had similar recall rates, with each missing approximately 30% of the visible

archaeological features identified between the two surveys. Human vigilance constraints

may have played a role in producing this pattern. Most of the features identified in the

study area are estancias (pastoralist corral and residential complexes), which often have

both modern and archaeologically relevant components. GeoPACHA surveyors for this

region were asked to record an estancia if it appeared to contain components that lacked

roofs or evidence of maintenance for part or all of the estancia complex. After viewing

many modern estancias that did not contain unmaintained structures, researchers may have
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been less likely to observe archaeological features when they were present due to fatigue

or uncertainty about whether a structure met the standard of “unmaintained.”

Regardless of the underlying factors, the relatively low recall rate for both surveys sug-

gests that future analyses must account for biases caused by missing data, regardless of

whether the data comes from an automated survey or expert surveyors. For more rigorous

analyses, it may be necessary for teams to re-survey areas that have already been inspected

to ensure that as complete a dataset as possible has been collected, establish quantifiable

metrics for how much data is likely missing, and evaluate biases. Comparisons to terrestrial

surveys are also necessary to account for the archaeological features that were missed be-

cause the features were not visible from the satellite imagery. Fortunately, archaeologists

are accustomed to these sorts of considerations as archaeological data is always partial,

contingent, and uncertain due to taphonomic and sampling biases.

3.6.2 Evaluating False Positives

Our results suggest that while the automated survey was not subject to fatigue or uncer-

tainty, it was also less discerning. That is, the automated survey identified some archaeolog-

ical features missed by GeoPACHA surveyors, but it often misidentified modern structures

and complexes as archaeologically relevant loci, and it occasionally misidentified rocks,

trees, and other “natural” landscape features as archaeological features. This issue might

be addressed by increasing the size of the training dataset; enhancing data augmentation;

and using all eight available spectral bands of the satellite imagery to provide the algorithm

with more information about the materials of the identified features.

In any case, the problem with false positives will likely persist as the unbalanced nature

of the data is a fundamental problem. CNNs tend to perform best when there are similar

numbers of positive and negative examples, while archaeological features are uncommon

on the landscape. Therefore, it remains necessary for human researchers to manually check

the results of even highly reliable automated models to eliminate false positives. Rather
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than surrendering control to an algorithm, using AI to assist in the survey process appears

optimal, with humans acting as the ultimate arbiters of presence or absence, and identifying

unique or unusual features the model may have missed.

3.7 Conclusions

While manual and automated methods have been counterpoised as mutually exclusive ap-

proaches to archaeological imagery survey, our experiences suggest they can be produc-

tively combined along a spectrum of human-machine teaming approaches. In this paper,

our AI-assisted approach is shown to have identified several hundred more archaeological

loci in the study area than either manual or automated survey alone. These results suggest

that when automated methods are used to focus and expand human interpretation, rather

than replace it, they can make satellite surveys more robust, consistent, and reliable. Post

hoc comparison between different survey methods, such as the one presented above, al-

lows for independent evaluation of results and can help to highlight shortcomings in data

produced by different approaches. However, because it requires multiple surveys to be

completed independently of each other, it also demands excess work and provides little

immediate benefit to the surveyors themselves. A more productive alternative is to use

automated and manual survey methods in tandem, to improve results and relieve some of

the time and fatigue burdens on expert surveyors. We envision three particularly promis-

ing approaches for AI-human teaming in archaeological imagery surveys. First, automated

methods can be used for “low-probability filtering” – identifying regions with no clear ar-

chaeological features and allowing researchers to exclude them to focus on areas that have

a higher probability of containing features of interest. This approach would not only re-

duce the overall time it takes to survey, but also help the researcher to maintain vigilance

as they will discover features of interest more frequently, and suffer less fatigue. Alter-

natively, automated survey can be employed as “quality control”, that is, as a secondary

check during the survey process, identifying areas that the researcher should review again
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before marking a location as not containing features of archaeological interest. One of the

great advantages of this second technique is that human researchers maintain control over

the process throughout, enabling them to record the kinds of complex metadata that are still

beyond automated approaches. Third, and perhaps most excitingly, the automation/manual

survey process can take a “recursive teaming” approach, with manual survey data feed-

ing back into the automated survey algorithm to improve its results, which can then guide

further manual survey. The model analyzed above was trained using a mere 298 positive

examples of archaeological structures, and the simplest and most powerful way of im-

proving deep learning algorithms is to provide them with more training data. GeoPACHA

contains over 36,000 loci with archaeological features. Using this data as training data,

could dramatically improve the capabilities of the automated system, allowing it to better

guide manual surveyors to identify features missed in their initial efforts, and to expand

to new areas. This loop can be condensed further: human-guided incremental machine

learning enables models to improve dynamically as new data is added, rather than having

to repeatedly train from scratch (Gil et al. 2019; He et al. 2015; Yang and Tang 2020)(Gil

et al. 2019; He et al. 2015; Yang and Tang 2020). Such approaches allow the researcher

and the automated system to work together, simultaneously improving the results of both.

Indeed, this is the path we are pursuing going forward. Advances in computer vision tech-

niques in the last decade have made it important to revisit their usefulness in conducting

archaeological surveys using satellite imagery. In some domains such as medical imaging,

automated search/classification algorithms are approaching or surpassing human capacity

for identifying features of interest. However, their application in archaeology is just begin-

ning. Our research demonstrates that DL methods, when used in tandem with “brute-force”

manual surveys, show great promise for large-scale regional and supraregional surveys.
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CHAPTER 4

Chapter 4: AI-Assisted Satellite Imagery Survey and Trans-Regional Evaluation of

Field Abandonment in the South-Central Andes

Authors: James Zimmer-Dauphinee, Andrea Gutierrez, Mary Wright, Greta Cullipher,

Grecia Roque, Parker VanValkenburgh, Steven A. Wernke

4.1 Introduction: Trans-regional Agriculture

Terracing is one of the defining human constructions in the Andes. Predominantly con-

structed for agricultural purposes, terracing’s primary benefit is its facilitation of irrigation

(Treacy 1990a), though it offers a wide array of other physical benefits including the cre-

ation of level ground, slowing erosion, and even moderating temperature at high altitudes

(Donkin 1979; Morlon 1996; Treacy and Denevan 1994). In addition to shaping the phys-

ical landscape, the prehistoric construction of large-scale terrace complexes shaped the

social landscape through the communal labor required for their construction and contin-

ual maintenance and management (D’Altroy 2014; Janusek and Kolata 2004; Kolata 1991;

Langlie 2018; Van Buren 1996). Spanish colonists sought to commandeer this physical

and social infrastructure as a foundation for wealth and power. Following the Spanish

invasion, much of the monumental-scale agricultural infrastructure fell into disrepair and

was abandoned. Substantial research has been done on this process at the local level, par-

ticularly in the Colca Valley (Denevan 1988; Guillet et al. 1987; Treacy 1987, 1990b,a;

Wernke 2007b, 2010, 2013). However, post-invasion regional and trans-regional dynam-

ics of Andean agricultural infrastructure remain much less documented and understood,

in significant measure because of the sheer scale of the systems and the difficulties in-

volved in mapping them at scale. (Erickson 2000; Stern 1993). This has led to a lack

of consensus amongst archaeologists with widely varying estimates of the proportion of

agricultural infrastructural abandonment between 40% (Denevan 1988) and 80% (Wright
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1962). Government-sponsored studies have tended to place the rate of infrastructural aban-

donment much lower, around 15% to 25% AgroRural and CERA 2021.

This research addresses the scalar challenges for registering a trans-regional inventory

of terraced field systems through an AI-assisted satellite imagery survey of currently in-use

and abandoned agricultural fields in the southwestern Peruvian highlands. Recording agri-

cultural data at this scale, we offer a trans-regional evaluation of the rates and distribution

of terrace abandonment, expanding on local research to evaluate its generalizability and

identify potential locations with alternative historical pathways. To do so, we use a sam-

ple of high-accuracy manual survey data to train a Convolutional Neural Network (CNN)

to segment high-resolution (Worldview 2 and Worldview 3) satellite imagery into three

classes: active agricultural fields, abandoned agricultural fields, and no agricultural fields,

then deploy the trained model over 81,000 km2 of the south-central Andes.

This work complements and builds on “brute force” (manual) surveys of satellite im-

agery such as those conducted by GeoPACHA (Wernke, VanValkenburgh, and Saito 2020;

Wernke, VanValkenburgh, Zimmer-Dauphinee, et al. in press) and other satellite archae-

ological surveys (Langlie 2022), or the Peruvian Ministry of Agriculture (AgroRural and

CERA 2021). This AI-assisted approach affords the expansion of analyses to new regions

and imagery across the western cordillera of the Andes and deployment on new imagery

as it becomes available. This has implications not only for archaeologically understanding

processes of the past at very large scales, but will also contribute to understanding the ef-

fects of climate change on sustainable agricultural development in the present and future.

By automating the bulk of the labor burden in generating inventories of agricultural fields,

the inventory can quickly be repeated on a periodic basis to track changes in agricultural

infrastructure over time. The region’s aridity and dependence on irrigation for agricultural

production implies that the extent of agricultural fields will be strongly correlated to water

availability from glacial melt (Guillet 1992; Guillet et al. 1987). Tracking the expansion

and contraction of agricultural fields over time may therefore provide important insights
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into glacial dynamics as they are affected by global warming.

Following manual data collection and model training, we deployed the model on im-

agery covering approximately 70,000 km² of the western, south-central highlands of Peru.

Comparison to existing datasets from GeoPACHA show that the model was able to map

agricultural features with substantially more detail than was achieved by hand at that scale,

and even identified terracing systems that were missed in a large-scale inventory of terrac-

ing by the Peruvian Ministry of Agrarian and Irrigation development, making this the most

detailed, accurate, and complete inventory of agricultural fields in the western south-central

Peruvian highlands to date. Finally, we present exploratory spatial analyses to characterize

the ecological contexts in which agricultural terracing was built and where it continues to

be used or has been abandoned.

4.2 Archaeological Context

The research conducted in this study focuses on Southwestern Highlands study region de-

fined by GeoPACHA, a “browser-based geospatial platform for discovering and document-

ing archaeological sites in the Andes through systematic visual survey of satellite and his-

torical aerial imagery by a network of trained teams” (Wernke, VanValkenburgh, and Saito

2020). This region encompasses diverse regions including the western Titicaca Basin and

several Pacific drainages including the Colca, Arequipa, and Moquegua Valleys (Figure

4.1). The high and arid valleys of the southern Peruvian highlands stand out as some of the

most intensively terraced landscapes in the Andes, and are dependent on irrigation from

streams and rivers to ensure consistent yields of a diverse variety of crops, with a focus on

maize, quinoa, and potatoes (Guillet et al. 1987; Treacy 1990b). In contrast, the terraced

fields in the Titicaca Basin predominantly rely on rainwater for irrigation, while simultane-

ously benefiting from temperatures moderated by the large body of water(Smith, Denevan,

and Hamilton 1968). The Titicaca floodplain also provides extensive areas with minimal
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slope, where agriculture thrives, often working to limit excessive water, rather than bring-

ing distant water in (Kolata 1991; Stanish 1997). These two regions therefore have very

different dynamics, which we begin to explore in this chapter.

Figure 4.1: Study region, including highland river valleys and western Titicaca agricultural
zones. The blue region represents the contiguous region with a 0.75°C or higher increase
in temperature due to the lake effect of Lake Titicaca.

4.2.1 Terraces: Unlocking fertility in Andean landscapes

“Considering the small extent of land around Cuzco suited for cultivation,

[Pachacuti Inka Yupanqui] supplied by art what was wanting in nature” - Pedro

Sarmiento de Gamboa

The steep and rocky slopes of the arid-to-semi-arid western cordillera of the Andes in

southern Peru do not upon first impression appear to lend themselves to cultivation. How-

ever, sucre (Quechua)/ taka (Aymara)/ andenes (Spanish)/ terraces (English) were con-

structed by prehispanic Andean agriculturalists to enable the cultivation of a wide variety
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of crops in the region. Among the most obvious of the physical benefits of terracing is their

creation of nearly level surfaces which helps to prevent soil erosion, improves soil depth

and increases water retention (Donkin 1979, p. 131; Treacy and Denevan 1994). It has

also been proposed that terracing complexes can create their own microclimates, shaping

the environment to obstruct the flow of cold air and thereby protecting crops from the risk

of frost (Donkin 1979, p. 131; Erickson 2000; Morlon 1996). Through these transforma-

tions, terracing allows cultivation to occur throughout the river valleys and take advantage

of the rich diversity in microclimates offered by rapid elevation changes. At high altitudes,

unirrigated terraces in the altiplano are still used to grow crops such as quinoa, potatoes,

cañahua, oca, and ulluca (Donkin 1979, p. 34). In the lower valleys, where irrigated bench

terracing is more common, maize, coca, and cotton are grown, as well as (following the

Spanish introduction of new cultigens) wheat, grapes, and olive trees (Fisher 1998, p. 32).

Bench terraces and contour terraces are also ubiquitous in the Titicaca Basin, and cover

nearly every slope surrounding the Lake’s shores (Erickson 2000). Erickson estimates that

precolumbian terracing spans 500,000 hectares in the hills immediately surrounding the

lake and the Basin valleys alone (Erickson 2000, p. 329).

Apart from their physical benefits, terraces have also shaped social relations, requiring

immense communal labor for their construction and maintenance, and requiring supra-

household coordination of irrigation water apportionment (Guillet 1992). Traditional mod-

els for understanding monumental-scale agricultural infrastructure propose that highly cen-

tralized authority is required to organize the labor networks required for such major land-

scape transformation projects (Wittfogel 1957; Stanish 2003). Under Inka rule, highly

formalized and irrigated bench terraces were part of “a systematic and nationwide pol-

icy of land improvement and colonization” with the goal of expanding maize cultivation

(Donkin 1979, pp. 33–34) Erickson notes that many terraces constructed under Inka aus-

pices “appear over constructed or over-engineered” (Erickson 2000, p. 332)(to symbolize

and enforce Inka power. The imposing complexes of meticulously designed and strictly
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managed terracing were constructed by local labor that was mobilized by Inka elites. This

formed a powerful demonstration of Inka control over the land and the people, shaping

them both to conform to Inka rule.

However, recent research has challenged the idea that monumental agriculture projects

could only be achieved through centralized, hierarchical rule, showing that large-scale agri-

cultural systems in the Titicaca Basin were constructed prior to the establishment of any

state-level societies (Erickson 1999). Indeed, Langlie (2018, p. 3) argues that long-term

collective action by farmers over generations created monumental-scale agricultural land-

scapes that encouraged food independence and local management, thereby forming a pow-

erful tool of resistance to hegemonic authorities. She emphasizes that understanding local

practices are fundamental to understanding broader regional and political patterns. The fol-

lowing research bridges local and regional dimensions, by generating accurate local data

about agricultural feature construction and management at a broad regional and suprare-

gional scale.

4.2.2 What is a Terrace?

Agricultural terraces are anthropogenic platforms of earth formed behind walls constructed

to retain the soil and provide a space for planting crops. For certain features, such as the

highly formalized and meticulously constructed Inka bench terraces described above, their

designation as “terracing” is clear (Figure 4.2). However, there are more marginal cases

which can be difficult to distinguish from other parcels of land. In his typology of terracing

in the Colca Valley, Denevan designates “Valley bottom walled terraces” as anthropogenic

terraces “at lower elevations on the nearly flat river terraces. They are enclosed by stone

or adobe walls and are interspersed with unterraced walled fields. These are very broad

terraces with low retaining walls, divided by wall field boundaries.”(Denevan 1986, p. 39)

It can therefore be difficult to distinguish between “valley bottom walled terraces” and “un-

terraced walled fields,” especially when identifying them from aerial or satellite imagery.
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Similarly, Denevan describes upland walled terraces as sloping-field, self-filling ter-

races which “do not appear to have been corrals for livestock” and require “careful exami-

nation to determine function.” (Denevan 1986, p. 39). In this case, not only is it difficult to

determine whether a field is terraced or unterraced, it can be difficult to determine whether

it is a field or a corral. For his part, Denevan’s survey of the valley using aerial imagery

acknowledges that the visual differentiation between categories is often arbitrary and does

not attempt to distinguish between valley bottom walled terraces and unterraced walled

fields, simply designating all fields on the valley floor as “Bottomland fields” and fields on

the valley slopes as “terraces” (Denevan 1986, 1988).

Figure 4.2: Example of Agricultural Terracing near Yura, Peru

For the purposes of this research, the semantic differences between a terrace and a

walled field are outside of our scope. Rather, we are interested in where there is visual

evidence that agricultural production is happening or has happened in the past. That is,

where agricultural fields (regardless of whether they are on an anthropogenic terrace or

not) are being maintained, or have been abandoned. Therefore, while the literature on

agricultural fields in the Andes is generally framed in terms of terracing, we have taken
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a more expansive approach to inventory all areas of agricultural production visible in the

satellite imagery.

4.2.3 Agricultural Abandonment

A casual observer in the Andes today will notice that much of the once-productive agri-

cultural landscape now appears unused, though precise measurements of how much has

been abandoned have been elusive. The reasons for this large-scale abandonment have

been thoroughly debated, with proposed causes including environmental factors such as

climatic shifts (Guillet et al. 1987), tectonic uplift (Clement and Moseley 1991; Moseley

1983), or environmental catastrophe, as well as factors such as depopulation, new agricul-

tural methods, and Spanish colonial policies (Cook 2004; Cook and Cook 2007; Guillet et

al. 1987; Wernke 2010). Guillet (1987) proposed that periodic droughts were major causes

of terrace contraction and abandonment, while periods of relative water abundance caused

expansion. To Guillet and Donkin, one of the primary benefits of terracing in the semi-arid

western Andean cordillera is its facilitation of canal irrigation (Donkin 1979, p. 34; Guillet

et al. 1987), so a lack of water renders terracing useless. In contrast, Treacy argues that

drought may have the opposite effect, stimulating irrigation system expansion to account

for the lack of water, thereby creating terrace system expansion (Treacy 1990b). Denevan

sought to better understand terrace expansion and contraction in the Colca Valley by com-

paring active and abandoned terracing around the town of Corporaque in aerial imagery

collected during the Shippee-Johnson aerial photography expedition in 1931 to that in im-

agery collected in 1974 (Denevan 1988, 2003). The results showed that there had been

a clear increase in cultivation since 1931, though Denevan does not discuss the potential

reasons for this increase.

In addition to water management, D’Altroy points out in his comments on Guillets’s

work that social and political decisions shape the agricultural landscape (Guillet et al.

1987). In the Upper Mantaro and Yanamarca Valleys, the intensity of high-altitude land
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use decreased dramatically under Inka control as people were moved to lower-elevation

areas and preference was given to maize over tubers for cultivation. Lynch agrees, con-

tending that the availability of water itself is more dependent on the social and political

decisions of water management than the presence of the water itself, stating clearly that

“terrace abandonment in the south-central Andes result in large part from social and po-

litical, not natural, causes (Guillet et al. 1987).” Wernke (2013) demonstrates that these

physical limitations were also shaped by cultural and social structures in a complex net-

work of decision-making by Andean farmers. Using detailed inventories of agricultural

fields, mapped to visita documents, Wernke shows different strategies for different ayl-

lus. Lower-ranked communities in reducción settlements were further displaced from their

fields during the resettlement, forcing them to walk further and accept higher and more

ecologically marginal fields, while higher-ranked communities were able to prioritize ele-

vation, abandoning more distant fields (Wernke 2013). In this way, the complex interplay

between social rank, community membership, and ecological affordances worked together

to shape agricultural abandonment in the Colca Valley. In all likelihood, a complex mosaic

of each of the factors listed here, in combination with others, continue to shape the agricul-

tural infrastructural dynamics. Though this paper does not claim to resolve these questions,

we believe that any attempt to tease apart the palimpsest of causes and decisions that shape

the agricultural landscape today must include an analysis of where agricultural fields were

abandoned, and where the decision was made to continue maintaining them.

Just as it is important to analytically parse the concept of “terrace” above, it is also

necessary to examine the concept of abandonment in greater detail. Researchers who have

sought to understand the continued maintenance or abandonment of agricultural features in

the Andes have typically identified fields with eroded walls, native vegetation, and particu-

lar patterns of color or texture designating a lack of maintenance as “abandoned.” However,

this may be a poor description of the actual use of the land by those who interact with it

on a daily basis (Guillet et al. 1987). In some instances, crops that do not need the thicker
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soils or increased moisture provided by irrigation canals may be cultivated on fields that

are not maintained as formal terraces. In the Titicaca Basin, Erickson claims that the walls

and platforms of (primarily unirrigated) Prehispanic terraces are often not maintained by

contemporary farmers, resulting in poor preservation and destruction. Nevertheless, fields

are still cultivated on the dissolving terraces. In fact, walls are sometimes removed inten-

tionally to increase the area of individual field plots (Erickson 2000, p. 331). Even fields

that are no longer cultivated may not be “abandoned,” as they may provide excellent spaces

for grazing or corralling camelids, due to their existing walls and fertile soils. Therefore,

though “abandonment” is used as a shorthand in this paper to match the existing literature,

it is important to remember that the phenomenon being studied may better be thought of as

an agricultural “deintensification,” or simply a land use transformation.

4.2.4 Previous Efforts to Characterize the Extent and Distribution of Agricultural

Abandonment

There has long been great interest in characterizing the extent and distribution of agricul-

tural use and abandonment in Peru. Archaeologists in the academic literature sought to

understand the social and ecological contexts of what some described as an “agrarian col-

lapse” (Denevan 1986, p. 9). Simultaneously, policymakers in the fields of agriculture and

sustainable development wanted to understand the extent and context of agricultural aban-

donment in the hopes of revitalizing abandoned fields to increase economic opportunity and

production (Denevan 1988; Kendall and Drew 2019; AgroRural and CERA 2021). How-

ever, the sheer scale of agricultural terracing has been a challenge to their systematic study,

and large-scale inventory projects have often been left incomplete. Of even greater concern,

estimations of the rate of terrace abandonment vary dramatically. In 1963, A.C.S Wright

estimated that as much as 80% of terracing in Northern Chile was abandoned (Wright 1963,

p. 73). In 1986, Agricultural Engineer and ecologist Luı́s Masson estimated that as much

of 1,000,000 hectares of Peru has been terraced and that 75% of that terraced landscape is
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abandoned, though two years later he’d reduced his estimation of the extent by nearly half

and estimated that approximately 50% of those were abandoned (Denevan 1988, p. 20).

In 1987 the Oficina Nacional de Evaluación de Recursos Naturales (ONEM) undertook a

survey project to inventory the terraced landscape in Peru, with the goal of revitalizing the

abandoned agricultural landscape and developing Peru’s agricultural economy (AgroRural

and CERA 2021, p. 40). The inventory was never completed, but preliminary results found

more than 150,000 ha of terraces across four departments, more than 60% of which was still

in use (AgroRural and CERA 2021). Peruvian governmental research into terrace abandon-

ment continued with the Instituto Nacional de Recursos Naturales (INRENA) of Peru in

1995 expanding on the efforts of ONEM, and ultimately publishing a survey of agricul-

tural fields in 1999 that included 8 departments, with 256,950 ha of terracing (AgroRural

and CERA 2021, p. 41). According to INRENA, only 16% of inventoried terraces were

abandoned (AgroRural and CERA 2021, p. 41).

Simultaneously, archaeologists were becoming increasingly interested in understanding

the extent of terrace abandonment but also its causes. The bulk of archaeological research

on terrace abandonment at this time focused on the Colca Valley in the southern Peru-

vian highlands. In 1988 William Denevan produced an inventory of active and abandoned

terracing in the Colca Valley, created through the manual inspection of aerial imagery col-

lected in 1974 (Denevan 1988). At a scale of 1:17,000, Denevan examined ten districts in

the Colca Valley and concluded that overall approximately 42 percent of all the fields are

abandoned, and 61 percent of bench terraces are abandoned. Bottomland fields in contrast

remained cultivated at a much higher rate with only 7 percent abandoned (Denevan 1988,

p. 28).

Finally, in 2008, The Peruvian Ministerio de Desarrollo Agrario y Riego proposed a

study called “Programa Andenes” to inventory and characterize the state of terraces in Peru

through the visual inspection of satellite and remote sensing data across 11 regions and 720

districts (AgroRural and CERA 2021, p. 45). In contrast to the GeoPACHA manual survey
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and AI-Assisted survey (this chapter), the Programa Andenes took a more constrained ap-

proach to the agricultural landscape, choosing to identify only agricultural terracing, rather

than agricultural fields more broadly. To this end, the project generated clear definitions

of terraces, differentiating them from other land parcels by the structure of the wall and

the slope of the platform, and differentiating in-use terraces from abandoned ones using

indicators such as color, vegetation, and wall erosion (AgroRural and CERA 2021, pp. 46–

48). The Programa Andenes project estimated that for all 11 regions, approximately 24%

(81,400 ha) of terracing was abandoned (AgroRural and CERA 2021, p. 52). Nevertheless,

as the Programa Andenes researchers observed in their report, it can be challenging to dis-

tinguish between terracing from other agricultural parcels, as the differences can be quite

subtle and difficult to see, especially in satellite imagery. This makes the distinction some-

what arbitrary, and may more easily allow variation in observation procedures between

research teams or over the course of the study. Among other challenges the researchers

cited the very large dimensions of the study area in contrast to the very small size of the

units of observation (terraces), and their dispersion across the territory (AgroRural and

CERA 2021, pp. 47–48). Each of these challenges is directly addressed by the AI-Assisted

survey approach.

4.3 Data Construction: Building data for model construction

Two data sets are required to conduct an AI-Assisted survey of satellite imagery, the first is

the satellite imagery, which must be pre-processed using standard procedures to correct for

distortions due to elevation and to merge multispectral and panchromatic bands to generate

multispectral imagery at high spatial resolution. The second is a collection of “labels”

which provide the deep learning model with examples of the features we wish the model

to identify, in this case, the boundaries of active and abandoned agricultural fields. Finally,

environmental variables of interest were selected for exploratory analysis of the ecological

context of agricultural fields in the study region. Details of these data collection procedures
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are as follows.

4.3.1 Imagery Description and Processing

The Worldview-2 and Worldview-3 satellite imagery for this research are provided gratis

via USGS as an NSF federally-funded project and were provided as OrthoReady Stan-

dard 2A products. This means that the data is atmospherically corrected, geographically

projected, and provides an RPC sensor model for orthorectification. We acquired 126 im-

ages with less than 10% cloud cover per image. Thirty images were from the WorldView

3 (WV3) satellite constellation with 8 spectral bands and a 0.31-meter spatial resolution,

and 96 from the WorldView-2 (WV2) constellation with the same 8 spectral bands and a

0.46 meter spatial resolution. Together, these images cover the entirety of the study re-

gion. Each image was supplied as a collection of tiles with both multispectral and panchro-

matic elements and was processed using Orfeo Toolbox (OTB) through the Python API

(Grizonnet et al. 2017). The tiles were first orthorectified using their RPC sensor mod-

els and a 30m SRTM DEM. The tiles were then mosaiced together to form full Multi-

spectral and Panchromatic images. The images were Pansharpened using OTB’s Bayesian

fusion algorithm and then resampled to 8-bit to save on storage and computational require-

ments. The relevant script and details on its execution are provided at https://github.com/

JamesZDonline/GeoPACHA machine learning. It should be noted that due to variations

in processing workflows, the resulting imagery does not always align perfectly with on-

line imagery such as that provided by Google Earth or Bing. Geometric transpositions of

approximately 30m are evident in some regions. Furthermore, in areas where the images

overlap, there is occasionally a slight shift evident between images in the dataset.

4.3.2 Agricultural Labels

High-precision maps of the presence of active and abandoned agricultural fields are needed

to train the AI to detect terracing and distinguish between its status. As an adjunct to the

GeoPACHA imagery survey, Grecia Roque and Steven Wernke digitized polygons of active
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agricultural areas in the southern highlands survey area. This data is still preliminary and

under editorial review, however it provides a powerful comparison for the AI-assisted sur-

vey. This preliminary GeoPACHA data may be described as “regionally accurate,” which

is to say that it does an excellent job of recording the broad boundaries of agricultural fea-

tures, but it also includes other features of the landscape such as settlements, rivers, and

hills which were not terraced but are surrounded by terracing. The result is an overesti-

mation of the cultivable area. This is necessary for such large-scale manual surveys as a

finer-grained approach that excludes these features takes far too long to practically com-

plete over many thousands of square kilometers. Furthermore, due to the slight variation

in processing between online imagery and our imagery dataset, the digitized fields do not

always perfectly align with the WorldView II/WorldView III imagery used for this analy-

sis. The lower precision and spatial shift make it inadvisable to use this data for AI training

directly.

Data on abandoned agricultural infrastructure was opportunistically tagged by minimal

grid cell provenience, as a part of the GeoPACHA survey project. This data is also prelim-

inary and currently under editorial review. It is also much lower resolution than the active

data, comprised of marked .005 degree (∼500m) survey grid squares that were identified

to contain any amount of abandoned agricultural features. Therefore, a single survey grid

can contain both active and abandoned agricultural features, resulting in an overlap of the

datasets and a lack of clear labels for each feature. The opportunistic sampling of this data

also results in incomplete data for the region, with some areas lacking records.

To generate a dataset that is more precise in its labeling of agricultural features, and is

aligned with the processed WVII and WVIII imagery, (and therefore useable for training

the AI model) we sampled 50 areas of approximately 30 km² (squares with 0.05 degrees

of latitude and longitude to a side) that contained active agricultural fields for a total of

approximately 1500 km². A team of researchers then edited the regional survey of active

agricultural terracing within these sample regions to refine the field boundaries, exclude
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unwanted regions, and align it with the processed imagery (Figure 4.4). This resulted in

a 14% reduction on average of the measured cultivable area from 29,002.00 to 24,937.60

hectares for the regions surveyed. This was a laborious process. A single 30 km² region,

surveyed at a finer resolution, took between a few minutes up to 8 hours to digitize thor-

oughly, depending on the scale and complexity of the terracing in the region, with the

average region taking several hours to complete. A second round of digitizing was then

required to generate a detailed map of the abandoned terracing in our 50 survey regions.

One of the benefits of a machine-learning approach is that if we can train the model at

this higher resolution, it will reproduce this effort over thousands of square kilometers in

a matter of hours, rather than the years required to do it by hand. Nevertheless, the field

boundaries appear to have a nearly fractal complexity and while we excluded the bulk of

the towns, hills, and valleys, we did not manage to exclude all small local structures, roads,

and a vast array of other non-terraced features.

The digitized regions were then split into training (n=40) and validation (n=10) datasets,

with care taken to ensure that adjoining regions were not split between training and vali-

dation to limit the effects of spatial autocorrelation on the model evaluation. Examining

the training data it was clear there was significantly more active terracing than abandoned

terracing in our data. Therefore, a 51st area was added over the Churajón area, which con-

tains extensive abandoned terracing, to augment the abandoned training data and provide

more examples of abandoned fields on which to train the model. This data was then passed

to the Free and Open Source (FOSS) RasterVision (Azavea 2022) framework for further

processing and model training and deployment.

4.3.3 Ecological data

Several ecological variables were selected for comparison to the model results to better

understand the distribution of agricultural fields and their abandonment. Elevation, slope,

aspect (the cardinal direction in which the slope faces), and Geomorphon (a geomorphic
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index; discussed below) were all selected as preliminary characteristics of the environment

that may have had an effect on the construction, and later the maintenance or abandonment,

of agricultural fields and terracing. The elevation data was a 30m resolution Digital Ele-

vation Model (DEM) from the Shuttle Radar Topography Mission (SRTM) (Center 2017).

The Slope (in degrees) and Aspect (in degrees clockwise from North) variables were cal-

culated from the DEM using the r.slope.aspect function in GRASS GIS (GRASS Devel-

opment Team 2012). The geomorphon dataset was calculated using the r.geomorphon tool

in GRASS. While the other variables are commonly used in geospatial analyses and are

well known, the geomorphon data may bear further explanation due to its relative lack of

use. The geomorphon tool categorizes the landscape into 8 different morphological classes

based on sight lines and the local neighborhood of elevations. These classes include: flat,

peak, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit. This provides an in-

tuitive way of understanding the shape of the landscape that aligns well with commonly

used terms in geographical and archaeological descriptions. For instance, this data pro-

vides a clear way to examine the proposal that most active agricultural fields occur in the

valley bottom (flat, valley, footslope), while terraces on the valley wall are more likely to

be abandoned (slope, shoulder, spur). Finally, relevant climatic variables related to pre-

cipitation and temperature were downloaded from the WorldClim 2 Bioclimatic variables

dataset (Fick and Hijmans 2017).

4.4 Methods: Training and assisting the AI

4.4.1 Automated Survey using Raster Vision

The processed imagery, along with the boundaries of the 51 squares designated as Areas of

Interest (AOI) and the high precision terrace label data form data objects known in Raster

Vision as “scenes.” Using Raster Vision, up to 1000, 300 pixel x 300 pixel image and corre-

sponding label chips were randomly extracted from within each area of interest for a total

of approximately 51,000 chips. Labels were composed of three categories, “Abandoned
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Field” (class id =2), “Active Field” (class id=1) and “Background” (class id=0) as shown

in Figure 4.3.

Figure 4.3: An example of a training data “chip.” Imagery is shown on the left and manually
digitized labels are shown on the right.

Training data was augmented using random 90° rotations, and horizontal and vertical

flips, and then used to transfer-train DeepLabv3, a Deep Learning semantic segmentation

architecture. A pretrained ResNet-50 was used as the backbone architecture, which does

feature extraction for the DeepLabv3 model. The model was trained using the Adam op-

timization algorithm for 30 epochs with a learning rate of 0.0001 with a batch size of 10.

Configuration and log files are included in the Github Repository. After each epoch, the

model predictions were compared to the data in the validation set to track training progress

and watch for evidence of overfitting. Once the model was trained, Raster Vision was

used to create a “model bundle” which contains all of the model parameters and protocols

for deploying the model on new imagery. The model bundle was then used to deploy the

model across all of the images in the Southwestern Highlands study region, thereby pro-

ducing pixel-segmented raster maps of the presence of active and abandoned fields for each

image.
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4.4.2 Data Compilation

Semantic segmentation predictions were created for each of the 126 images covering the

study region. However, many of these images overlap with each other. This can be advan-

tageous, because it provides multiple opportunities for the deep learning model to identify

features where they are present, thereby avoiding missing features as a result of clouds

or shadows which may obscure features in the imagery. Simultaneously, it increases the

potential for false positives and creates the potential for conflicting predictions between

images. The r.series function in GRASS GIS was used to merge the predictions into a

single and cohesive dataset, generating a raster dataset with a 1m pixel resolution for the

region. For each pixel r.series evaluated if the model results for any image predicted active

or abandoned agricultural fields at that location. If there were multiple predictions, the

modal result was selected. In cases of conflict where the mode was equally split between

active and abandoned terracing, the result defaulted to active terracing, as these predictions

were shown to be much more accurate in the validation data, and therefore were more likely

to be correct. This suggests that the model may overestimate the amount of active terrac-

ing for locations of conflicting information. However, the accuracy of the active terracing

results and visual inspection suggests that the effects of this result are marginal. These

biases are also likely countered by the prevalence of false positives in the abandoned fields

dataset. Finally, the predictions for the study region were converted from raster to vector

format using the GRASS GIS r.to.vect function for data cleaning and analysis.

4.4.3 Data Cleaning

As the first step in the AI-assisted research design, we then undertook data cleaning to

reduce the prevalence of false positives and gain a better understanding of the quality and

potential shortcomings of the results. The model produced a great many very small fea-

tures, often due to noise in the imagery. Following visual inspection, a threshold of .01

hectares was selected as the smallest features of archaeological interest, and any features
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smaller than this were excluded from the analysis. Furthermore, the manual inspection

of the results revealed no evidence of agricultural fields above 4,500 meters in the study

region. However, the dataset did show terracing above this elevation, primarily recorded

as abandoned. These very high-elevation features were primarily modern erosion control

measures, rather than active or abandoned agricultural features. Though they do strongly

resemble agricultural features, they are not the features of interest for this research, and

future versions of the model will attempt to distinguish between abandoned terracing and

erosion control to exclude such features. For the purposes of this analysis, any features

above 4,500 meters in the dataset were excluded as either noise or modern features. Mod-

ern erosion control at lower elevations was manually removed wherever they were ob-

served. Finally, a comprehensive inspection of the data was undertaken, recording which

model predictions had been visually inspected and approved, and removing or editing fea-

tures where necessary. All active and abandoned terracing above 50 hectares in size (n

active:541, n abandoned:292) were manually inspected in addition to nearly 70 thousand

smaller features distributed across the landscape which were opportunistically evaluated.

Abandoned features tended to be smaller in size and more fragmented, making them more

difficult to inspect overall. Nevertheless, in total 337,507 hectares ∼86% of active agricul-

tural features were inspected, and 85,576 hectares ∼60% of abandoned agricultural features

were inspected.

4.4.4 Defining regions: Titicaca Basin and Western Andean Valleys

The use, maintenance, and abandonment of agricultural infrastructure in the slopes adjacent

to Lake Titicaca is a substantially different phenomenon than in other areas of the South-

western Highland Study Region. In part, this owes to the distinctive climatological and

environmental conditions driven by the lake itself, as the mass of water acts as a heat sink,

moderating temperatures relative to altiplano settings beyond the circum-lacustrine area.
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Given the biogeophysical diversity and the great depth and diversity of human interven-

tions in the area, field systems in the Titicaca Basin are diverse, including several variants

of raised field systems along the lake edge, valley bottom field systems, and unirrigated

(rainfed) terrace complexes on upland slopes. In contrast to the narrow vertical ecological

zones of the western cordillera’s river valleys, the immediate vicinity of the lake provides

massive areas of relatively flat, and occasionally waterlogged, land for cultivation. In spite

of the high altitude, the large body of water also helps to moderate the temperature of the

region, protecting plants from frost risk. Therefore the area of current and abandoned agri-

cultural activity around Titicaca is much greater than in other regions, which can obscure

regional and subregional variation in the distribution fields outside of the vicinity of Lake

Titicaca. We have therefore divided the data into two regional sets, one which includes the

Western Cordillera river valleys, and the other which covers the extensive fields that extend

several kilometers from the shores of Lake Titicaca.

It is challenging to rigorously define the boundary between the Titicaca regime and agri-

culture more typical to the river valleys. An approximate boundary can be determined visu-

ally, as there is a sharp decline in the areal extent of agriculture approximately 40 km from

the lake shore, however, this boundary becomes less clear in areas along the shore where

the density of agricultural production is lower. If we take the temperature-moderating effect

of the lake as a primary driver of the agricultural landscape in the region, we can model its

boundary. A statistical comparison between the elevation and the mean annual temperature

for the region shows the two variables are very strongly negatively correlated, with a covari-

ance of ∼-0.96. However, as one approaches the lake, this relationship changes. A linear

regression can be used to predict expected temperature based on elevation allows us to map

the deviation from this expected value by mapping out the model residuals and generating

contour lines to show the magnitude of this effect.This was implemented in QGIS with the

GRASS 7 plugin, using the r.regression.line tool to estimate the linear model coefficients.

Estimated coefficients were then used in the Raster Calculator to predict temperature as a
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function of elevation. These predictions were subtracted from the true temperature values

as provided by WorldClim to map the residuals. As can be seen in Figure 4.5 the contour

line representing 0.75 degrees C above expected temperature appears to map closely to the

boundary of the increased density of agricultural activity near Lake Titicaca. Therefore,

any agricultural fields within that 0.75 degree contour were marked as a part of the Titicaca

phenomena and modeled separately from those outside of it. The one deviation from this

pattern is at the southern edge of Huiñaymarca, where the temperature is slightly cooler,

possibly due to air currents from the glaciated peaks to the east in Bolivia. These fields,

located immediately adjacent to the lake are clearly a part of the same agricultural complex

as the rest of the Titicaca data, and were added manually to the Titicaca dataset. Having

separated the data, it is now possible to examine each phenomenon independently.

4.5 Results: Evaluating the model and characterizing field ecology

4.5.1 Model Quality

Evaluating the quality of the data produced by the AI-assisted survey is vital to have confi-

dence in the results of any analysis using the data. Of the 51 areas that were manually sur-

veyed in detail, 10 were reserved for the purpose of evaluating data quality. These include

a mixture of active and abandoned agricultural features, and background non-agricultural

land to provide a thorough test. For semantic segmentation, a common and easy-to-interpret

metric for measuring data quality is the Intersection over Union (IOU), also known as the

Jaccard Index. This calculates the area of the intersection between the predicted label and

true label, and divides it by the total area covered by both the predicted and the true la-

bels. This results in a value between 0 and 1 where 0 represents no overlap between the

predicted and true labels, and 1 represents a perfect alignment between the two. IOU is

preferable to measures such as accuracy (the ratio between correct and incorrect labels)

for semantic segmentation, because accuracy can be skewed by the imbalance between la-

bel classes. For example, the data suggests that approximately 6% of the land area in the
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survey area contains an active or abandoned agricultural field. The model could therefore

achieve a 94% accuracy simply by marking the entire region as not containing any agri-

cultural fields. Therefore, I used IOU to evaluate the model’s performance, comparing the

model output prior to data cleaning to the validation dataset. This provides a conservative

description of model performance, with post-hoc manual data cleaning ensuring the results

of the AI-Assisted survey are better than those reported for the automated survey alone.

Figure 4.4: Comparing the results of the “Active” agricultural survey. Regional-scale man-
ual survey data collected for GeoPACHA is shown on the left. Detailed “local-scale” survey
data collected for model validation is shown in the center, and unedited fully automated sur-
vey data is shown on the right.

Due to the differences in difficulty between identifying active and abandoned agricul-

tural fields, the IOU for active and abandoned fields were calculated separately, and an

overall IOU score was obtained by averaging the two metrics together. For active agri-

cultural fields, the model performed remarkably well with an IOU of 0.64. However, the

model’s performance on abandoned agricultural fields was not as good, with an IOU of

0.43 for a mean IOU of 0.54. This is largely due to the model overestimating the extent

of abandoned agriculture, or identifying features such as water drainages, power lines, or

other linear features with limited amounts of vegetation as abandoned terracing landscapes.

While the comparison of the AI predictions to the validation dataset provides a good mea-

sure of the data quality, it can be difficult to judge from the metrics alone the implications

of these IOU values. We therefore compared the coarse manual surveys conducted for the
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Table 4.1: IOU scores for the Automated Survey and GeoPACHA Survey compared to the
high resolution manually coded training data

Automated Survey Geopacha Survey
Active 0.64 0.51
Abandoned 0.43 0.06
Mean 0.54 0.30

GeoPACHA project to the refined manual surveys conducted in preparing the data for AI

training and validation. This creates comparative metrics to understand the DL model’s

performance in relation to that of humans working at very large scales. For active agri-

cultural fields, GeoPACHA surveyors achieved an IOU of 0.51 while the low resolution of

abandoned fields led to a much lower performance of ∼0.06 for a mean IOU of 0.30. We

can therefore confidently claim that the raw data produced by the AI model is of as high

or higher quality than that produced by the GeoPACHA survey alone for both active and

abandoned fields (Figure 4.4). Quality metrics are summarized in Table 4.1.

4.5.2 Measuring Deintensification

The high quality of the output data allows us to evaluate prevailing understandings of the

extent, prevalence, and distribution of agricultural deintensification and field abandonment.

In total, the AI-assisted survey identified approximately 512,098 hectares of agricultural

fields in the study region (Figure 4.5). Of these, 76.4% (391,158 ha) were under cultiva-

tion at the time the imagery was collected, while the remaining 23.6% (120,940 ha) were

identified as abandoned. However, this distribution is not consistent across the region. As

discussed above, the region around Lake Titicaca dominates the dataset including 399,606

hectares of agricultural land or 78% of the agricultural fields in the study region. Of the

Lake Titicaca region fields, 21% (85,488 ha) are abandoned, while 31.5% (35,451 ha) are

abandoned in the western valleys. Overlaying a 0.1-degree grid over the survey region, it

is possible to map the changes in abandonment rate across the entire survey region (Figure

4.6).
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Figure 4.5: Results of the AI-assisted agricultural survey following data cleaning.

4.5.3 Exploratory Analysis Ecologically Contextualizing Agricultural Infrastructure

As an initial exploratory analysis, the distributions of active and abandoned agricultural

features were compared to a variety of environmental features expected to be correlated to

the construction and maintenance of agricultural fields. Certainly, these are not the only

factors of relevance to agriculture, as agriculturalists in the Andes have transformed their

environments by working around, with, and through the ecological variety afforded to them.

Nevertheless, as the below analysis will show, environmental factors do impact the process

of deciding where to invest the time and energy to make these environmental transforma-

tions, and so this analysis establishes a null hypothesis, against which such transformations

can be understood.
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Figure 4.6: Local variations in % abandoned are mapped across the region. Comparing
to Figure 4.5, note that most of the regions showing >50% abandonment are in locations
with very little agriculture, suggesting vulnerability to noise in the data. An exception to
this is Churajon, where abandonment rates do indeed top 70%. Missing squares had no
agricultural features recorded.

4.5.3.1 Elevation

One of the commonly cited environmental factors to limit agricultural production in the

Andes is elevation. This is primarily due to elevation’s strong correlation with temperature,

and therefore the risk of frost. Sampling the data, the average elevation of currently in-

use agricultural fields is 3707 m, and the average elevation of abandoned fields is 3876

m while the average elevation of nonagricultural land is 4101 m. From an agricultural

perspective, it is rational to build fields at lower elevations where possible to limit the risk

of frost, thus leading to the overall lower elevation of agricultural fields. Terraced slopes

also shed cool air better compared to natural slopes and valley bottoms (where cold air

pools at night). Furthermore, when determining whether to maintain or abandon a field,
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the higher and therefore more marginal fields are likely to be abandoned first, resulting

in the overall pattern of abandoned fields at higher elevations than in-use ones. Splitting

the data into River Valley and Titicaca datasets, the pattern is even stronger in the River

Valleys, with an average elevation of 3,100 meters for in-use fields, while abandoned fields

have an elevation of 3,520 (Figure 4.7). Results are summarized in Table 4.2

Figure 4.7: Violin plot showing the distributions of agricultural features across Elevation
for the different survey regions. Horizontal lines designate means.

A Kruskal-Wallis test shows that statistically significant differences exist between the

three, with a p-value of <2.2e-16, while a pairwise Wilcox test with Bonferroni correction

shows that all three values are statistically different with a p-value of <2.2e-16. Comparing

these numbers to the Titicaca data demonstrates the power of the effect of the lake on

frost risk, as the average in-use field at 3,860 meters is higher than the average abandoned

ones in the river valleys. The Titicaca abandoned fields are even higher than the average

elevation for the region. Kruskal-Wallis and Wilcox tests on these data also show all of

these differences to be statistically significant with p-values of <2.2e-16.
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Table 4.2: Mean Elevations (m) for each land-use classification and region

River Valleys Titicaca Overall
Active 3091 3857 3709
Abandoned 3505 3994 3874
Not Agricultural 4128 3983 4108

4.5.3.2 Slope

Another environmental factor expected to influence the construction and maintenance of

agricultural fields is slope. Throughout the study region, active fields are located on terrain

with lower-than-average slopes. This is especially true around Lake Titicaca, where the

average slope is only around 4.24° because most of the active fields are located on the

lake’s floodplain. In the narrow River Valleys, active fields are primarily in the valley

bottoms, with a smaller but significant portion on the valley walls, resulting in an average

slope of 12.2°. The abandoned fields, in contrast, tend to occur on steeper slopes, with an

average of 18.2° in the river valleys, and 13.3° around Lake Titicaca (Table 4.3). These are

both higher than the average slope for the regions, which are likely somewhat lowered due

to the high-altitude puna (flat grasslands), which are too high for agricultural production

(Figure 4.8).

Again, each of these differences is statistically significant with p-values of <2.2e-16

according to Kruskal-Wallis and pairwise Wilcox tests. While terracing allows farmers to

cultivate fields on steep slopes, the steeper the slope the more labor is required to construct

and maintain terrace walls and fill them with soil to create platforms. Simultaneously,

steep slopes require terraces to be narrower, resulting in less growing area than land that

is naturally flatter. Therefore, it is unsurprising to see such a strong preference in field

construction for flat lands and abandonment rates increasing with slope. This also aligns

with Denevan’s work in the Colca Valley, which found that bottomland fields were nearly

all maintained, while terraces were much more likely to be abandoned (Denevan 1988).
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Figure 4.8: Violin plot showing the distributions of agricultural features across Slope for
the different survey regions. Horizontal lines designate means.

Table 4.3: Mean Slope for each land-use classification and region

River Valleys Titicaca Overall
Active 12.5° 4.13° 5.8°
Abandoned 18.4° 13.4° 14.6°
Not Agricultural 14.9° 13.0° 14.7°

4.5.3.3 Geomorphology

Closely related to the slope is the geomorphology of the landscape. The distribution of

agricultural lands with regard to geomorphons is shown in Figure 4.9. Currently in-use

agricultural fields are much more likely to be located on flat, footslope (transition from

slope to flat), or shoulder (transition from flat to slope) landforms, while abandoned files

are much more likely to be situated on slopes.
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Figure 4.9: Percentage of features that fall in each Geomorphon class. Note that active
fields are located on flatlands and valley bottoms while abandoned fields tend towards
slopes. Both distributions are distinct from that of the background “Not Agricultural” class.

4.5.3.4 Aspect

Aspect (the direction the slope faces) is yet another environmental variable commonly ex-

pected to be associated with agricultural production. In the southern hemisphere, north

facing slopes should receive more sunlight. Depending on context, this may be a benefit

for plants who receive more opportunity for photosynthesis, or may be a burden as more

direct sunlight requires higher water demands (Kohut 2023). However, generally, it does

not appear from this data that Aspect has a substantial effect on the construction or main-

tenance of agricultural fields.

Removing flat areas (which by definition do not have an Aspect) and calculating the

circular means of the angles show little difference between Active, Abandoned, or Non-

Agricultural classes. In the River Valleys, the circular mean shows ∼220° from North, that

is, the slopes on average face South West, this follows the trends as water flows from the
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Figure 4.10: Distribution of Aspects for fields in the Titicaca Region. The active fields tend
to be on land that is close to flat, resulting in more erratic distribution. Abandoned fields
are much more frequently terraced, and reflect the distribution of the background.

mountain slopes to the Pacific Ocean. The survey area only includes land on the South

Western side of Lake Titicaca, therefore for fields near Lake Titicaca, the average slope

faces the North East, directing water towards the Lake. The one deviation from this pattern

is the Abandoned fields in the Titicaca Region, which tend to be directed further East on

average. This may be due to the valleys at the western boundary of the region which are

more likely to be abandoned and are oriented more easterly.

4.5.3.5 Precipitation

Water is vital to agriculture, particularly in the arid environment of the study area. There-

fore, it may be expected that precipitation amounts would be highly correlated with agri-

cultural production, however, a comparison of fields to precipitation amounts in the wettest

quarter of the year (during the agricultural season), shows that this relationship is more
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Figure 4.11: Distribution of Aspects for fields in the western river valleys. Note the slight
south-western tendency for both active and abandoned fields. This reflects the background
distribution as the Andes slope towards the Pacific.

complicated than expected. Indeed, in the River Valleys, it appears that agriculture is in-

versely related to precipitation amounts with active fields receiving the least water with

approximately 208mm on average, abandoned fields receiving 272 mm and non agricul-

tural lands receiving the most with 335mm.

This pattern is likely due to an inverse correlation between elevation and precipitation

amounts. The highlands (where it is too cold to grow crops) receive significantly more rain

than the valleys themselves, which rely on rivers, springs, and irrigation networks to water

their crops. The Titicaca fields, being higher and close to a large body of water, receive

significantly more precipitation with milder temperatures. As a result, the expected pattern

of increased cultivation with increased precipitation holds true.
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Table 4.4: Circular means of the aspect show that active and abandoned fields as well as
non agricultural land tend towards the direction of the drainage basin, the Pacific Ocean for
the river valleys, and Lake Titicaca for the land in its zone of influence.

River Valleys Titicaca
Active 218° (SW) 57° (NE)
Abandoned 220° (SW) 90° (E)
Not Agricultural 212° (SW) 46° (NE)

Table 4.5: Mean precipitation (mm) for the wettest quarter for each land-use classification
and region

River Valleys Titicaca Overall
Active 201 446 399
Abandoned 270 446 403
Not Agricultural 336 438 350

4.6 Validating the Results: Comparisons to previous survey efforts

4.6.1 GeoPACHA

The manual/visual survey for agricultural fields completed by the GeoPACHA project iden-

tified approximately 558,197 ha of land currently under cultivation in the study region. This

includes terraces, such as those found in the river valleys on the western end of the study

area, as well as waru waru and flat agricultural fields in valley bottoms and around Lake

Titicaca. However, as discussed in the description of data sources, this number is a sub-

stantial overestimate as it also includes many areas that do not contain agricultural fields as

a result of the lower-resolution “regionally accurate” survey methods required for covering

such a large area by hand. Over the entire study region, the AI-assisted survey identified

391,158 ha of land currently under cultivation, a 30% reduction from the manual survey.

Excluding the data around Lake Titicaca to focus on the river valleys the pattern remains

the same, with 105,359.37 hectares of land under cultivation identified by the GeoPACHA

manual survey and 74,763.61 ha by the AI-Assisted survey a 29% reduction. Visual com-

parison between the two datasets, as well as the data quality metrics, suggest that these

differences are primarily due to the elimination of features that were incorrectly identified
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Figure 4.12: Violin plot showing the distributions of agricultural features across rates of
precipitation in the wettest quarter for the different survey regions. Horizontal lines desig-
nate means.

in the manual survey, rather than features that were missed in the AI-Assisted survey. This

result strongly speaks to the value of an AI-assisted approach for inventorying agricultural

fields in satellite imagery. While the area surveyed by hand for the AI-assisted survey was

very small in comparison to the full manual survey, the resulting data was much more pre-

cise. For analyses such as estimations of agricultural production capacity a 30% reduction

in land area is substantial, fundamentally changing our understanding of the agricultural

landscape.

4.6.2 Programa Andenes

The Programa Andenes study was conducted between 2012 and 2013 by the Consortium

of Private Organizations for the Promotion of Small and Micro Enterprises (Copeme),

the Center for Promotion and Development Studies (Desco), and the Promotion of Life
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(Fovida). This research, published in 2021, is to the author’s knowledge, by far the most

extensive study of active and abandoned agricultural terracing in Peru and represents a

monumental effort, identifying over 340,000 hectares of terracing. 140 of the districts re-

ported as inventoried by Programa Andenes are included in the Southwest Highlands study

area, with ∼125 districts falling mostly or entirely within the study area. Unfortunately, no

GIS files of the data are included with the report, and the pdf maps included are very low

resolution, making it impossible to compare the results of the surveys directly. Neverthe-

less, the report does include measurements of the total area of terracing for each district,

and breakdowns between active and abandoned terracing for most (131) districts. These

measurements can be compared to the results of the AI-assisted survey to examine their

similarities and differences.

Given the results of the GeoPACHA survey and the large scale of the Programa Andenes

project, one might expect that the AI-Assisted survey will identify less agricultural area

than the Programa Andenes. However, this is not the case. Of the 140 Districts in the

study region with data for the total area of terraces (currently in use or abandoned) in

the Programa Andenes report, the AI-Assisted survey identified more agricultural fields in

110 of them, with over half of all districts showing more than a 50% increase over the

Programa Andenes project. This is primarily due to the differences in definitions of targets

of interest between Programa Andenes (which sought to only map terraced fields) and the

AI-Assisted Survey (which sought to map all agricultural fields, including non-terraced

agricultural land). This contrast is especially clear in the 35 districts around Lake Titicaca,

where the AI-Assisted survey regularly identified 2 orders of magnitude more agricultural

fields than Programa Andenes did terracing (Figure 4.13).

However, in other cases, the AI-assisted survey found agricultural terracing that was

missed in the Programa Andenes survey. For example in the district of Andaray, where the

steep slopes require terracing for all agricultural fields, Programa Andenes reports a total

of 69.85 hectares of terracing. As shown in Figure 4.14 this is less than half the size of
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Figure 4.13: Percent difference between AI-assisted survey results and Programa Andenes
results. Andaray and Candarave are highlighted for further discussion in the text.

a single active terrace complex identified by the AI-Assisted survey in Andary. In total,

the AI-assisted survey identified over 1000 hectares of active and abandoned terracing in

Andaray.

Given the tendency of the AI-Assisted survey to find more fields than the Programa

Andenes project, it is important to examine the 26 districts where the AI-Assisted survey

identified less agricultural land. Two of these, Candarave and Quilahuani included regions

where the imagery used in the AI-Assisted survey had insufficient coverage, and so missed

a section of Terracing (Figure 4.15). This accounts for less than 1300 hectares of primarily

active agricultural fields and will be corrected in future work.

Another 7 districts fall on the edge of the survey boundary, suggesting that agricultural

features outside of the AI-Assisted survey may account for the lower return rate. For the

80



Figure 4.14: Agricultural fields in Andaray. These terraced fields cover much more area
than is listed in the Programa Andenes results, suggesting that they may have been missed
in the manual survey.

remaining 17 districts, it is difficult to determine why the AI-Assisted survey detected less

than the Programa Andenes inventory without the original Programa Andenes data. It is

possible that the AI-Assisted survey is achieving a higher level of detail than the Programa

Andenes survey as it did for the GeoPACHA survey, thereby removing features that were

incorrectly labeled as terracing. This hypothesis is supported in some districts, such as

Achoma, Puyca, Susapaya, Sitajara, and Huanuara as a visual inspection suggests that the

AI-Assisted dataset is thoroughly inventorying the currently in use fields, while reporting

numbers substantially lower than those reported by Programa Andenes. In other cases, it is

possible that the AI-Assisted survey missed features identified by the Programa Andenes

project, particularly in the less reliable abandoned fields dataset. This seems to be the case
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Figure 4.15: Fields in Candarave that were missed in the AI-assisted survey due to in-
sufficient imagery coverage. One can clearly see the lines where the edges of the images
stopped. This will be corrected for future analyses.

around the Pocsi District, where the model seems to have particularly struggled with iden-

tifying abandoned terracing. Further improving the abandoned field aspect of the model

will be important in future research.

4.7 Discussion: The promise of AI-assisted survey

The results of the AI-Assisted survey of agricultural fields are highly promising for the fu-

ture of understanding regional and supraregional patterns of agricultural deintensification.

“Brute force” manual survey methods can be highly detailed at a local level, achieving

very precise and highly accurate data. However, achieving such a level of detail at regional

or trans-regional scales can be prohibitively time-consuming for manual surveyors. As a
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result, large-scale manual surveys are often forced to operate at lower spatial resolutions,

resulting in the inclusion of nonagricultural features as shown by the GeoPACHA manual

survey, or in missing features of interest as demonstrated in the Progama Andenes project.

Deep-learning offers a way to achieve both goals simultaneously by generating high-

resolution data at very large spatial scales. As this research demonstrates, while the current

deep-learning model may not surpass human capacity at the local scale, it far exceeds it at

the trans-regional scale. The resulting extensive and high-resolution data will enable more

accurate analyses of the capacity of agricultural production and the extent, distribution, and

causes of agricultural deintensification and field abandonment. Furthermore, once trained,

a deep learning model can be rapidly deployed on new imagery. Previously unsurveyed

regions can be covered in a matter of hours, rather than months, and areas that have been

previously examined can be monitored as new satellite imagery comes available, allowing

us to track for the first time the expansion and contraction dynamics of agricultural infras-

tructure in the Andes at a regional scale. Such a dynamic perspective would shed light

on the flexibility and stability of Andean agricultural infrastructure in light of ongoing po-

litical and climatological transformations, providing insight into how past processes may

have shaped agricultural production, and how best policymakers may respond to them in

the future.

Initial exploratory analyses of the data offer insights into how agriculture is distributed

on the landscape in the southwestern highlands of Peru. As expected, environmental vari-

ables such as elevation and ground slope have significant impacts on the creation and main-

tenance of agricultural fields across the study region. Future work will seek to further refine

these analyses and to tease apart the relationships between them. Elevation and precipita-

tion, for example, likely interact to confine the zones in which agricultural production is

practical. Crops at high elevations are likely to receive more water, but are also more sus-

ceptible to frost, while crops at lower elevations are safe from frost, but may have difficulty

receiving enough water without extensive irrigation. Furthermore, aspect has reportedly
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had an impact on the suitability of land for agricultural production (Kohut 2023) in areas

of the survey region such as the Colca Valley, however from the trans-regional perspective,

it does not seem to have had a substantial impact on either the creation or maintenance of

agricultural fields. Such regional variations bear further investigation.

Finally, this research offers a fresh perspective on the question of how much agricultural

land has been abandoned in the western cordillera of the south-central Andean highlands.

While estimates of the rate of field abandonment have ranged as high as 80% and archaeo-

logical projects to measure abandoned land have shown local abandonment rates as high as

40%, regional and transregional surveys by the Peruvian government have shown the aver-

age rate to be much lower, between 16% and 24%. The AI-assisted survey aligns well with

the governmental surveys, showing estimations of an average abandonment rate between 21

and 23%, Indeed, in our estimation, the AI-assisted survey likely slightly overestimates the

rate of agricultural abandonment due to the model’s tendency to identify modern erosion

control measures as abandoned agricultural fields. While every effort was made to remove

these errors where they were observed, the large scale of the region makes it likely that

some similar features were missed. Remembering that local rates of abandonment may be

much higher,(or much lower) than the average, this research demonstrates the importance

of developing regional or trans-regional data to understand broad patterns.

Much archaeological research on terracing and agriculture has been devoted to the

Colca Valley, with limited examples from other regions such as Cusco (Kendall and Drew

2019) or the Titicaca Basin (Erickson 2000; Langlie 2018). While decades of intensive

research has offered invaluable insights into the dynamics of agricultural production and

abandonment in the Colca Valley, this paper suggests that these lessons cannot necessarily

be taken as representative of the southwestern highlands as a whole. Rather, it appears

likely that the Colca Valley may have especially high rates of abandonment, leading ar-

chaeologists to overestimate the amount of abandonment that occurred trans-regionally, at

least in the South-western Highland region. This is perhaps not surprising. Archaeologists
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have traditionally focused our efforts on “archaeological sites,” that is, locations with a

high density of human activity in the past that are often now abandoned. As we expand

to examine the surrounding landscape and agricultural infrastructure that once supported

the abandoned settlements we study, it is not unlikely that we are more likely to encounter

abandoned agricultural features as well. We must remember that this experience does not

necessarily represent the landscape as a whole, and seek to contextualize our investigations

still more broadly in the regional and interregional context, a goal that may be assisted

through AI-assisted surveys.

4.8 Conclusions

In spite of their importance, agricultural fields (particularly terracing) in the Andes have

attracted less attention from archaeologists than other features of archaeological interest.

This is largely due to the fact that information about fields is dispersed across the dozens or

even hundreds or thousands of hectares of agricultural land that may surround prehistoric

or modern towns, while archaeological information is much more concentrated in those

settlements themselves. Agricultural fields also tend to be primarily of economic interest,

perhaps making them less attractive as subjects of study than elaborate ceremonial centers

or residential complexes where more aspects of daily life intersect (Donkin 1979, p. 25).

Finally, fields located on terracing can be notoriously difficult to date archaeologically, due

to the transportation of soil and embedded materials often required for construction and the

continual remodeling necessary for maintenance. Nevertheless, these monumental-scale

infrastructure projects were vital to the economic, social, and political lives of Andean

people throughout prehistory and following the Spanish conquest and deserve further ex-

amination. This research represents the first step on this path, mapping where these features

are, and their current state of use or abandonment.
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4.8.1 Current and Future Work

There are many avenues for future research on agricultural features generated by the above

methods and data. One dimension includes continuing to refine the AI models. The reli-

able identification of abandoned terracing is a major challenge even for human researchers.

This makes it especially difficult to build a reliable AI model because the performance of

the model will be limited by the quality of the data it is provided. However, there are meth-

ods for managing imprecise or unreliable data, known as “weak supervision,” which may

help improve the quality of the abandoned terrace predictions. We are currently exploring

these methods as one potential avenue for refining the AI-Assisted survey. Furthermore,

agricultural features identified by the model can now be refined by human surveyors and

then fed back into the model as additional training data. This should result in substantial

improvement in the model’s performance.

Secondly, the inventory of agricultural features has shown that rates of field abandon-

ment, and the relationship of field production and abandonment to environmental variables,

is non-stationary across the study region. That is, local populations have made different

choices, and possibly been offered different affordances, about how to manage agricultural

resources. Mapping these variations and incorporating more social and human experien-

tial variables into the modeling process will be vital to developing new, better, and more

sophisticated hypotheses about how these variations arose. This research can then guide

future studies in the field to test hypotheses and “ground truth” the data produced through

trans-regional satellite surveys.

On a more local level, Denevan mapped in-use and abandoned agriculture of the Colca

valley in 1931 using imagery from the Shippee Johnson expedition, and again in 1974

using aerial imagery acquired from the Servicio Aerofotográfico Nacional in Lima to trace

the changes in agricultural production over a 43 year period (Denevan 1986). Digitizing

Denevan’s maps for direct comparison to the AI-Assisted survey would be instructive about

the performance of the survey, but more importantly would allow us to track the changes
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that have occurred after another 50 years, thereby gaining a better understanding of the

dynamics and transformations of agricultural production in the Colca valley over the course

of a century. This and similar local projects, conducted in cooperation with local experts,

will be vital to developing not only a broad, but deep understanding of the dynamics of

agricultural infrastructure.

Another important dimension of future research is developing better understanding of

the data produced by the AI-assisted survey itself. While the overall metrics of the survey

were good, it was not equally reliable everywhere, with some regions appearing to contain

higher rates of false positives than others. While much of this imbalance was removed

through manual data cleaning, understanding and correcting for these patterns will be im-

portant as we deploy the model to new images and expand the inventory to new regions.

Finally, constructing further deep-learning models to further improve the quality and

kinds of information available will allow researchers to ask new kinds of questions. Cur-

rently, the inventory has mapped the location of agricultural fields at the level of agricultural

complexes. However, there is great variation in the types of fields that may occur within a

complex. Denevan (1986) discusses 6 types of terraces in the Colca Valley alone, (largely

shaped by their ecological context), and Langlie (2018) demonstrates that the morphology

of terraces within a complex can reveal patterns of social resistance, in addition to those

of social control commonly attributed to Inka terraces. Future models may be designed

to map the boundaries of individual fields (Wang, Waldner, and Lobell 2022), rather than

those of field complexes, allowing for this kind of morphological analysis at trans-regional

scales. In each of these applications, AI-assisted survey methods promise transformational

research at previously impossible archaeological scales.
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CHAPTER 5

Agricultural Infrastructure and Reducciones in the River Valleys

Authors: James Zimmer-Dauphinee, Steven Wernke, Parker VanValkenburgh

5.1 Introduction

Prehispanic agricultural production in the highlands of the western cordillera of the south-

ern Peruvian Andes was made possible through the construction of monumental-scale in-

frastructure projects by prehispanic andean farmers. Terracing covers much of the slopes

of the highland, and are fed by lengthy canals, bringing water from streams and rivers to

thousands of hectares of agricultural fields. Agricultural surpluses in these valleys helped

to feed empires, allowing the Inkan Empire to reach its peak in population and agricul-

tural production during the Late Horizon (Chavez 2019; Janusek and Kolata 2004; Wernke

2013). However, the indigenous population and the agricultural landscape underwent an-

other transformation following the Spanish invasion. Under the command of the Spanish

Crown, Viceroy Francisco de Toledo sought to increase political stability, evangelization,

and economic extraction in the Viceroyalty of Peru. Toledo’s reforms included the ”Gen-

eral Resettlement of the Indians”, which forcibly displaced over 1.5 million indigenous

people from their traditional homes into compact, gridded towns with a devastating impact

on the native Andean populace. It disrupted traditional communities and land-use arrange-

ments, displaced people from their productive lands, and exacerbated the transmission of

European-introduced diseases.

The dynamics of the Spanish invasion and its aftermath on agricultural production are

still poorly understood. Historical data and archaeological research suggest that Spanish

influence and power were differentially implemented across the landscape with varying re-

sults (Wernke 2007a, 2013; Davies 1984), yet most research into the particular dynamics
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of Reducción placement and agricultural deintensification in the western south-central An-

dean highlands has been restricted to a single valley. Over 30 years of research in the Colca

Valley (Treacy 1987; Wernke 2010) have given key insights into the construction of reduc-

ciones, the abandonment of agricultural fields (Denevan 1988; Guillet et al. 1987; Treacy

1990b) and the complex and dynamic relationship between these historical facts (Wernke

2013). However, the extent to which the lessons learned from this research can be applied

to a broader regional or trans-regional context has not been demonstrated. This research

seeks to address this shortcoming by examining 3 key questions about the placement of

reducción settlements and the effects of this on the process of agricultural deintensification

that occurred following the fall of the Inka empire. The primary questions this research

explores are:

1. Were reducción settlements strategically located to ensure accessibility to existing

agricultural infrastructure?

2. Does a greater distance from a reducción settlement increase the odds of agricultural

field abandonment?

3. Does the importance of proximity to reducción settlements in the process of agricul-

tural deintensification vary across the study region?

Question 1 aims to improve our understanding of the street-level process of negotiation

and creativity that was undertaken between Spanish officials and indigenous populations

during the planning and construction of reducción settlements. Official Spanish colonial

policy fundamentally conflicted with the prehispanic Andean economic system on which it

was dependent. Official policy offered no solutions for this problem, leaving it to the dis-

cretion of, local inspectors, encomenderos, and curacas to resolve, including through the

selection of reducción location (Hemming 1970, p. 394). This question, therefore, seeks

to examine the importance of access to agricultural infrastructure in this process. Question

2 examines the dynamics of the agricultural systems once the resettlement had occurred,
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seeking to understand whether increased travel time to reach fields had a strong effect on

the productivity and ultimately maintenance of those fields. In this phase, the negotiation

between Spanish and indigenous populations continued, as reducción residents were forced

to either abandon very distant fields or abandon the reducción to maintain them. The third

question examines the region for variation in the results of these negotiations, seeking to

understand comparatively where differences in the outcome may have occurred. Together,

these questions lead to new hypotheses and productive directions for future investigation.

While variation in the results can be mapped across the landscape, precisely what social,

political, and economic factors shaped these results will require further archival and field-

work. The results of this research, therefore, suggest new avenues for future research that

the data suggest are most likely to provide new insights into the dynamics of resettlement

and agricultural production.

5.2 Archaeological Context

5.2.1 The “Reducción General de Indios”

As discussed in previous chapters, the Reducción General de Indios, literally the “General

Resettlement of Indians” was one of the largest forced resettlement programs in history,

relocating over 1.5 million native Andean people into over 1,000 planned towns (Hemming

1970, p. 395). These towns were designed to bring Spanish conceptualizations of civiliza-

tion to native Andean peoples through the imposition of Mediterranean-style urbanization

as a part of Peruvian Viceroy Francisco de Toledo’s plan in the 1570s to create order and

control following decades of violence, and unrest in Peru (Stern 1993, p. 80). The design

of the reducciones placed the spiritual, governmental, and social lives of its citizens in

the physical center of town with a large rectangular plaza adjoined by the church and sur-

rounded by gridded streets, the church, and the cabildo (town hall) (Mumford 2012; Wernke

2013, p. 214). In contrast to this Spanish ideal of urbanism, late prehispanic Andean set-

tlements were generally smaller and dispersed throughout the valley to take advantage of
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the diverse, vertically-stacked, ecological zones of the Andean river valleys (Murra 1972).

Distributing the population throughout the valley in this way, Andean people were able to

leverage a wide array of agricultural and pastoralist resources, from cotton on the coast to

coca and maize in the mid valleys, to potatoes and quinoa in the upper valleys and camelids

in the high altitude puna (D’Altroy 2014; Davies 1995, p. 174; Mumford 2012; Murra

1972; Stern 1993, p. 4). Andean farmers constructed terracing on valley walls to utilize

irrigation networks which provided water in the arid and semi-arid environment, allowing

regions such as the Colca Valley to become known as a breadbasket of the prehispanic

Andes.

Spanish efforts to disrupt this system through forced centralization into urban settle-

ments endangered the pre-existing social and economic networks. This was a problem for

the Spanish whose primary goals were the parasitic extraction of resources from Andean

people, forcing the colonizers to balance their desire for control and surveillance with the

viability and sustainability of their attempted imposed system (Mumford 2012; Stern 1993;

Wernke 2007b, 2013). This offered substantial opportunities for Andean people to nego-

tiate, manage, and shape the terms of the resettlement. Precisely how Spanish colonizers

and indigenous Andean people negotiated this balance is unclear, and likely varied across

communities and local officials. Toledan guidance about the process of selecting locations

for reducciones emphasized level terrain, healthy climate, and minimizing disruption to

the local economy by placing them on top of major pre hispanic settlements, while simul-

taneously locating them as far as possible from pre hispanic cemeteries and shrines, and

abandoning and burning pre hispanic settlements (Mumford 2012, pp. 119–121; Wernke,

VanValkenburgh, and Saito 2020, S66). In sum, Toledo’s guidance was vague, contradic-

tory, and left much to local magistrates. Therefore, the balance between the reducción ideal

and practical reality was likely highly varied and contingent on local processes.

Stern writes that in Huamanga, Andean people often abandoned the reducciones with

the support of local officials, returning to live closer to their dispersed landholdings (1993,
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p. 90). Such a pattern has also been shown in Huarochirı́, with the population quickly

moving to new post-reducción towns in the decades that followed the resettlement (Oré

Menéndez 2022). Meanwhile, Wernke’s research on the Colca Valley has shed some light

on how the process of negotiation played out there, where reducción residence was en-

forced. Drawing on visita documents as well as local knowledge and toponyms, Wernke

was able to show that reducción settlements were placed closer to fields controlled by

higher-ranking “right side” ayllu groups than the fields of the lower-ranking “left-side”

(Wernke 2007b, 2013, p. 283) and that modern patterns of field abandonment are patterned

with respect to reducción locations. This implies that, at least in the Colca Valley, local

prehispanic social structure and associated agricultural landholdings played an important

role in selecting the location of the reducciones.

These relationships between pre-existing agricultural infrastructure and reducción set-

tlement locations are intriguing as they offer insight into the strategies and negotiations

employed in the emplacement of reducción settlements in a way that can be measured at

regional scales. In cases such as the Colca Valley, where Andean people did indeed re-

settle into new towns and the locations of those towns were the product of Andean and

Spanish negotiations of ideals, one would expect the reducción town to be as close as pos-

sible to existing agricultural infrastructure. In contrast, the need for reducción settlements

to be located near existing agricultural infrastructure would not be as great if indigenous

people continued to maintain residences outside of the reducción (Oré Menéndez 2022;

Stern 1993). As a result, one would expect the maintenance of agricultural fields to be less

affected by the proximity of reducción settlements. Of course, the exploration of these pat-

terns cannot offer any final answers to the modes of negotiation and management employed

during the resettlement by the Spanish and Indigenous people. Many different patterns

likely existed, including but not exclusive to the two models discussed above and equifinal-

ity suggests that many different processes may lead to similar outcomes. Nevertheless, a

thorough examination of the relationship between agricultural infrastructure and reducción
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settlement location will allow us to generate hypotheses about what variations may exist

in reducción placement strategies across the region which can be explored further in future

research.

5.2.2 Agricultural Deintensification and Ruralization

While the distribution of agricultural infrastructure may give indications about the process

of negotiation and decision-making that led to the placement of reducción settlements, the

continued use or abandonment of said agricultural infrastructure may provide information

about the ultimate results and implications of those strategies. In the Colca Valley, agricul-

tural fields further from reducción settlement locations were more likely to be abandoned

than those that were more proximate, with other variables such as elevation being held

equal (Wernke 2013). This suggests that regions of once productive land were no longer

maintained as the burden of traveling from centralized settlements to distant fields became

too great to bear (Davies 1984; Mumford 2012; Stern 1993; Wernke 2007b). This process

would also be self-reinforcing, as a lack of regular maintenance on distant fields and canals

would make them less productive and reliable, and therefore less worth an investment of

future labor. With canals in particular, this could become a problem for more proximate

fields, if they are reliant on distant canals for reliable irrigation, thereby violating the ar-

bitrary Spanish distinction between urban and rural. This is a process that we are terming

“ruralization,” signaling its dialectic production as a result of an enforced Mediterranean-

style urbanization.

5.2.3 The Study Region: The Pacific Drainages of the Southern Peruvian Highlands

As described in the previous chapter, the region of interest for the AI-assisted agricultural

inventory project covered both the river valleys of the western cordillera of the southern

Peruvian Andes and the southwestern boundary of Lake Titicaca. The agricultural fields

around Lake Titicaca compose the majority of agricultural land in the study region of Chap-

ter 4, however, the processes of agricultural development and maintenance in the region
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immediately adjacent to Lake Titicaca are very different than those in the river valleys, due

to the warming effects of the lake and the high availability of water. Modeling these two

processes together does not make sense as the decision-making on whether to construct,

maintain, or abandon a field is very different in each of these contexts. In contrast to the

Titicaca fields, the river valleys are characterized by highly restricted availability of agri-

cultural land, limited access to water, and dynamic temperatures across a wide variety of

slopes and elevations. This combination of restriction and dynamism is particularly inter-

esting, as it provides a greater need, and opportunity, for creativity in managing agricultural

infrastructure, and may lead to more starkly differentiated distributional patterns. This re-

search, therefore, chooses to focus analyses on the river valleys of the western cordillera of

the south-central Andes, as shown in Figure 5.1.

Figure 5.1: Western River Valleys Survey Region. This map also shows the locations of
known reducción settlements used in this analysis.
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5.2.4 Simplifying Assumptions

This analysis is premised on two major assumptions, namely: 1) The distribution of agri-

cultural fields in the modern-day river valleys of the western cordillera of the southern

Peruvian Andes is approximately equivalent to that at the time of the Spanish invasion. 2)

The distribution of currently-maintained and abandoned agricultural fields is significantly

shaped by the results of the Toledan resettlement program and the social, economic, and

ecological restructuring that resulted.

These are significant assumptions that likely do not hold true everywhere in the study

region, and may not be fully valid anywhere. For example, the Majes-Siguas irrigation

project has generated approximately 15,950 ha of new agricultural land since the 1970s,

drawing water from the Colca Valley to irrigate desert planes nearly 100 km away (Au-

todema 2016). Fortunately, these fields fall outside of our study region and, in any case,

would be easy to exclude from any analysis. Excluding such major agricultural develop-

ment projects, there is hope that assumption 1 is valid in most cases as the construction of

agricultural fields, (and particularly agricultural terracing), is a highly labor-intensive pro-

cess. Historical records show that Spanish colonists in Arequipa undertook limited efforts

to produce new fields, preferring to use the extensive field systems already in existence

(Davies 1984). The severe population decline during and following the conquest ensured

that there were extensive fields available for farmers who sought land, and it required far

less effort to maintain a field than to construct a new one (Davies 1984). Another point in

favor of the relatively static distribution of agricultural fields is the success of efforts in the

Colca Valley to match current field toponyms to the names found in the visita documents

(Wernke 2013). This suggests that field distributions (and generational knowledge about

them) have remained reasonably stable over the last 400 years. As fields are maintained

through kinship networks across generations, they are not just locations of agricultural pro-

duction but retain deeper meanings of social relation and reciprocity, making them resilient

and stable places in the landscape.
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The second assumption is harder to justify, given nearly 400 years of economic trans-

formation, Peruvian Agrarian Reform, long-standing governmental and local interest in

expanding agricultural production (Denevan 1988; Kendall and Drew 2019; Treacy 1987,

2019), and the documented dynamism of growth and contraction of the maintenance of

agricultural fields through time (Denevan 1986). Nevertheless, this assumption once again

appears to hold true in the Colca Valley, where there is a clear relationship between the

proximity to reducción settlements and the active or abandoned condition of agricultural

fields. In general, fields closer to the reducción are less likely to be abandoned, contin-

gent on the elevation (risk of frost) and other social/environmental factors. It, therefore,

appears that, at least in the Colca Valley, broad patterns of agricultural deintensification

that were established during or as a result of the resettlement persist today, perhaps due to

the substantial effort required to revitalize agricultural terracing and the canal systems that

support them. This paper brings together two major sources of regional-scale archaeolog-

ical data, the locations of reducciones and the locations of agricultural fields, along with

an array of ecological and environmental variables to examine the process of agricultural

deintensification as a result of the 16th-century forced resettlement of Andean people.

5.3 Data

5.3.1 Reducción Locations

The locations of a remarkable number of the more than 1000 reducciones estimated to have

been constructed during the Toledan Resettlement are known (Mumford 2012; VanValken-

burgh 2017; Wernke 2007b; Wernke, VanValkenburgh, and Saito 2020). As an ongoing

collaborative project, the Linked Open Gazetteer of the Andean Region (LOGAR) (Wernke

and Saito 2019) has been connecting Colonial-era documentation to modern cartographic

features such as toponyms, and (primarily) modern towns, and villages. Through this work,

the locations of approximately 673 reducciones across Peru have been identified, forming
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the most comprehensive database of reducciones compiled so far (Wernke, VanValken-

burgh, and Saito 2020, p. 564). Initial analysis of this data by LOGAR researchers shows

that reducción settlements tend to be either coastal settlements below 250m, or highland

settlements, which have a peak in density between 3000 and 3500 meters (Wernke, Van-

Valkenburgh, and Saito 2020, p. 567). LOGAR identifies 37 reducción features in our study

region, which forms the bulk of the data used in this analysis. However, the LOGAR data’s

reliance on modern cartographic features means that it misses reducción settlements that

are no longer occupied, or have changed their names. Therefore, the reducción location

data was further augmented with data from GeoPACHA.

One of the principal survey objectives for GeoPACHA was the identification of missing

relict reducciones, however, this data is still under review, making it difficult to evaluate

how much confidence to place in the features identified. Therefore, this paper takes a

conservative approach. Of the 47 features in GeoPACHA marked as reducciones within

the study region, only 3, (Polobaya, Huamanmarca I, and a feature designated by Locus

Id 5983) were deemed sufficiently likely to be reducciones to be included in the dataset,

resulting in a total of 40 reducción locations to be used in modeling. We do not expect

this to be a complete census of reducciones in the survey area (no such census exists),

and many towns (particularly ones that are no longer occupied) may be missing from the

dataset, however, we hope that this data nevertheless provides a sufficient cross-section of

settlements to speak broadly about their distribution on the landscape. Furthermore, we

acknowledge that reducciones were not the only settlement type that may have influenced

agricultural deintensification during the late 16th and early 17th centuries. For example

small rural hamlets, often populated by workers who left the reducción to care for fields

or herds, were increasingly granted official legitimacy as an ”annex” in the 17th and 18th

centuries (Abercrombie 1998; Oré Menéndez 2022, pp. 160–162).Nevertheless, as one of

the largest and most immediate disruptions of settlement patterns and the social order that

generated them, we have selected the reducciones as our unit of interest for this analysis.
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5.3.2 Field Locations

The second major source of regional archaeological data is the results of the AI-assisted

inventory of agricultural fields conducted in the previous paper. Some modifications have

been made to the data described in the previous chapter for this analysis. Data cleaning has

continued, further reducing the number of false positives in both the active field (fields cur-

rently under cultivation) and abandoned field (fields no longer under cultivation) datasets.

The changes in this are marginal compared to the extent of active and abandoned agricul-

tural fields identified in the region but may be relevant as this paper seeks to move between

local and regional scales. In spite of this additional cleaning, the data still remains imperfect

with occasional false positives and negatives. These problems are particularly prevalent in

the Abandoned Field data set, as identifying abandoned fields is a much more challenging

task for both AI and human surveyors as they more closely resemble other environmen-

tal features and their boundaries are often less well defined as terrace walls decay. These

imperfections are important to remember in the modeling process and in model interpreta-

tions. Nevertheless, as shown in the previous chapter, this data remains more complete and

more precise than any other survey at this scale known to the authors.

Secondly, in contrast to the previous chapter, this research will focus on the river valleys

of the western cordillera of the south-central Peruvian Andes, excluding the region around

Lake Titicaca as shown in Figure 5.1. This is because the following analyses, (which

take into account elevation, slope, and walking distances from reducción settlements) are

premised on verticality, aridity, micro-ecological diversity, and the constraints of cultivable

land in the valleys. In contrast, the agricultural fields on the Lake Titicaca floodplain are

more expansive, frequently designed to deal with excesses of water, and are ecologically

moderated in temperature and precipitation by the environmental effects of the lake (Erick-

son 2000; Janusek and Kolata 2004; Kolata 1986; Stanish 2003). This forms a fascinating

and distinct set of processes that must be understood in their own context, a project that we

will undertake in the future, but is not the focus of this dissertation.
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Table 5.1: Correlation matrix for a selection of environmental variables. Notice the high
correlation with Elevation.

Elevation Mean Annual
Temp

Mean Diurnal
Temp Range

Precip Wettest
Quarter

Elevation – – – –
Mean Annual

Temp
-0.94 – – –

Mean Diurnal
Temp Range

0.41 -0.54 – –

Precip Wettest
Quarter

0.67 -0.48 -0.04 –

5.3.3 Environmental Correlates

Several environmental correlates were selected for analysis, either due to apriori expecta-

tion or experimental demonstration that they are relevant to agricultural production/dein-

tensification. Potentially relevant environmental correlates identified for these analyses

were mean annual temperature, mean diurnal temperature range, mean precipitation of

the wettest quarter, elevation, slope, aspect (direction of slope face), geomorphon classi-

fication (classification of local terrain shape), distance from streams, and walking cost-

distance from reducción settlements. The first three of these correlates were obtained from

the WorldClim database of weather and climate data (Fick and Hijmans 2017), and apriori

are expected to have an effect on agricultural production. Frost risk is a major concern in

the highlands, potentially damaging or destroying crops, and the arid-to-semi-arid environ-

ment demands that crops be grown in the wettest season. However, these variables were all

highly correlated with each other and with Elevation (Table 5.1). As can be seen in Figures

5.2 and 5.3 the higher the elevation, the lower the temperature and the wetter the climate.

Such multicollinearity is a substantial problem for developing rigorous statistical mod-

els, making the results inaccurate and difficult to interpret. Therefore the 30m Elevation

model from the Shuttle Radar Topography Mission (SRTM) (Center 2017) was selected as

a proxy variable to simultaneously represent each of these biologically relevant climatic
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Figure 5.2: Scatter plot showing the high correlation between elevation and mean annual
temperature

variables. This operationalization decision mirrors the way in which Elevation is often dis-

cussed in relation to agriculture in the academic literature. Though it is common to say “no

agriculture occurs above 4500m,” this observation is more a commentary on the covariate

of temperature which results in temperatures too cold to support agriculture above 4500m,

than a result of the inherent properties of elevation itself.

Slope (in degrees), aspect, and geomorphon classification were all derived from the

SRTM Elevation model using the GRASS Geographic Information System as described in

the previous chapter. However, the geomorphon variable was not used in the final modeling

procedure because it increased the model’s complexity without substantially improving

the model’s predictions, likely due to its correlation with the slope variable. The “Flat”

geomorphon category, for example, is equivalent to a slope of 0. Aspect was similarly

rejected for inclusion in the model as it did not contribute meaningfully to the model’s

predictions, as may be expected from the exploratory analysis in the previous chapter.

A linear distance from streams dataset was also generated for these analyses using

GRASS GIS. Stream locations were calculated from the digital elevation model (DEM)
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Figure 5.3: Scatter plot showing moderate correlation between precipitation and elevation.

using the GRASS r.stream.extract function with an accumulation threshold of 100,000. Vi-

sual inspection with satellite imagery shows that the resulting stream network corresponds

well with the appearance of visible surface water in the imagery. The linear distance from

these streams (in meters) was then calculated for the entire study region. However, this

variable should be treated with caution, as streams used for irrigation in the river valleys

are often fed by springs (Denevan 1988), which cannot be easily modeled from the eleva-

tion data. Furthermore, Andean people constructed canals to transport water great distances

from the streams from which it originates. Indeed, it has been argued the primary purpose

of terracing was to facilitate this irrigation (Guillet et al. 1987; Treacy 1990a). Therefore,

the distance from a stream may not be a perfect predictor of the availability of spring wa-

ter. However, it seems reasonable to assume that the longer the canal that is required to

transport water, the more labor would be required to maintain that canal across the whole

distance. Therefore, it is likely that fields which are reliant on the canal to transport water

a great distance from the original stream are more likely to be abandoned than those that

are more proximate to the stream and may have a shorter canal.
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Finally, a cost-distance raster estimating walking times (in hours) from reducción settle-

ments was calculated using GRASS’s r.walk function which uses the Aitken (1977)/Lang-

muir (1984) hiking function to estimate the time it takes to walk a distance based on the

ground’s slope. Though not calibrated for the Andes specifically, this analysis is preferable

to linear distance as it takes into account the effects of slope on human walking speed,

making it a more reliable measure of human experience (White 2015). Additionally, the

highly efficient implementation of this algorithm in GRASS makes it possible to calculate

the walking time across the entire study area. Unfortunately, this dataset must be inter-

preted cautiously as well, as it is almost certain that our reducción dataset is incomplete.

Locations which appear to be very far from a reducción may in fact be very close if there

is an unidentified reducción or other settlement such as an annex or farmstead is nearby.

Nevertheless, for short distances, where it is less likely that an unknown settlement will

dramatically change the values, this data may provide crucial insights into the effects of

distance from reducción on agricultural deintensification.

5.4 Methods

5.4.1 Modeling Field Locations

A first step to understanding the effect of reducción settlements on agricultural deintensifi-

cation is to develop a model of where agricultural fields could be produced and maintained

on the landscape. This model of what affects the distributions of agricultural infrastructure

and deintensification helps us to understand what environmental variables are important to

these processes and what their effects might be. As explored in the previous paper, for ex-

ample, Elevation and slope both appear to significantly modify the odds of the presence of

agricultural fields, or an existing field’s abandonment, as do the mean diurnal temperature

range, and average rainfall in the wettest month. Aspect (the direction the slope faces) in

contrast, does not. This chapter seeks to more formally model these relationships using

multinomial regression.
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There are three main classifications of the landscape we are interested in understanding

for this phase of the analysis:

1. Currently-in-use “Active” agricultural fields

2. “Abandoned” agricultural fields

3. Uncultivated or “Not Agricultural” land

Multinomial regression extends binomial regression (also known as logistic regression)

to allow the estimation of the likelihood of belonging to one of three or more classes based

on independent covariates. In doing so it defines one class (in this case “Not Agricultural”)

as the reference class, and then calculates the likelihood of belonging to another class in

reference to this class. This allows us to evaluate the effect each of the covariates has on

the odds of creating an agricultural field, and how likely that field is to have been aban-

doned. We generated a stratified random sample of 25,534 points, 7967 located within

active agricultural fields, 9567 in abandoned agricultural fields, and 8000 in the not culti-

vated background. The ecological variables were then sampled at each of these locations.

Slight differences in the number of points for each category result from the randomness of

sample generation, however, the approximate balance of the data should provide the best

estimate of model coefficients. Of primary interest in this exploratory model is the sign

and magnitude of the estimated coefficients, representing whether each covariate makes

the cultivation and abandonment of a particular location more or less likely and the size

of that effect relative to the other covariates respectively. This will enable us to include

the most relevant variables in later analyses of agricultural deintensification in relation to

reducción settlement location.

5.4.2 Locating Reducciones

The next phase in this analysis is to construct a formal model of the locations of reducción

settlements on the landscape. The goal here is to generate a null model that is capable
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of simulating plausible distributions of reducción settlements. For example, it was very

unlikely that a reducción would be constructed above 4500 meters, or on a very steep

slope. Before we can understand other features of reducción distributions, such as whether

there is evidence of clustering, or whether they are located especially close to agricultural

fields, we must first take these environmental features into account.

The R Statistical package “SpatStat” was used to construct an inhomogeneous Poisson

Point Process (PPP) model to describe the distribution of reducción settlements in the study

area. Inhomogeneity, in the context of PPP modeling, means that the intensity of the point

pattern (i.e. the frequency of reducciones) is affected by covariates, such as Elevation or

Slope. Both a priori and empirically, this is clearly the case. As discussed by Wernke et

al (2020), the density of reducción settlements is strongly related to elevation, with most

highland reducciones occurring around 3000m in and few located below 2000 or above

4000 (Figure 5.4).

Figure 5.4: Plot of reducción density as a function of elevation and the corresponding
intensity distribution estimated by the ppp model.

This is the most habitable zone of the highlands, as the environment becomes too arid

at lower altitudes outside of the valleys, and too cold at higher ones. Exploratory analysis
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confirmed this non-linear relationship for the study area, with the density of reducción set-

tlements gradually increasing between 2000 m and 3000 m and then gradually decreasing

until 4500 meters. This relationship was therefore modeled as a quadratic function, shown

in Figure 5.4. To assist in the model’s numerical stability and assist in interpretation, the

elevation data was divided by 100. The model coefficients therefore can be read as the

change in the log odds for every 100 meters elevation change.

Toledo also advised that reducciones should be located on level terrain (Wernke, Van-

Valkenburgh, and Saito 2020, s66). This is logical as it would be much more difficult to

construct a large, gridded town on steep and uneven slopes, and appears to be supported by

the data as the distribution of reducciones shows a clear tendency for lower slopes. While

other considerations were certainly taken into account when locations were selected to con-

struct reducciones, incorporating these two features into our analysis allows us to create a

model of where it would be reasonable to consider constructing a reducción. The model is

a Poisson point process because it does not model any interaction between the points, that

is, the model assumes that the presence of one reducción does not make another reducción

nearby more or less likely to occur. This is likely not the case in reality, as settlements may

move from one location to another and be rebuilt as a part of ongoing negotiations between

the ideals of urbanization and the realities of resource production and management in the

Andes. These new settlements may be more opportunistically located but are likely to still

be close to the old settlement location, resulting in a cluster of settlements. Alternatively,

it may be unlikely that several reducción settlements would be constructed very close to

each other simultaneously as this would force competition for already limited resources.

This would result in an inhibition effect (more spaced than random) on the intensity of the

point process. Nevertheless, it is useful to make the simplifying assumption of no interac-

tion between settlement locations during their construction for the purposes of mitigating

computational and mathematical complexity. While a log-Cox model (or other point pro-

cess model) could theoretically capture such clustering and inhibition effects, the number
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of reducciones in the study region is limited (n=40), making it challenging to rigorously

model such complex processes. Furthermore, the goal of this model is not to accurately

capture the parameters of reducción construction, but rather to serve as a null model for

the estimation of locations that would be suitable for the placement of a reducción. This

goal can be achieved without taking into account the interaction effects between reducción

settlements, as is demonstrated by the goodness-of-fit measures and tests discussed in the

results section of this chapter. As this research expands to further regions and the size

of the point pattern (number of reducciones) is greater, it may be possible to adopt more

sophisticated modeling procedures, however, such complexity is not necessary at this time.

Having constructed a point process model for the intensity of construction of reduc-

ciones, it was possible to simulate point patterns that mirror the distribution of reducción

settlements, resulting in patterns of reducción settlements that are plausible, but differ-

ent from reality. Using the calibrated model, we simulated the construction of reducción

settlements 1000 times, allowing us to compare the actual distribution of settlements to

settlement locations simulated by the model.

5.4.3 Influence of agricultural infrastructure on reducción settlement location

A primary question of interest is whether access to pre-existing agricultural infrastructure

was a major influence in the selection of reducción settlement locations. If this is the case,

one would expect reducción settlements to have access to more agricultural fields (either

active or abandoned) on average than the simulated settlements. For the purposes of model-

ing the accessibility of agricultural fields from settlement locations, we designated any field

within a two-hour walk from the reducción settlements to be “accessible” to agriculturalists

in that reducción. While it is possible that agriculturalists may occasionally have chosen to

work fields more distant than this from the reducciones, in the authors’ estimation distances

further than this introduces a serious burden on the potential productivity of the land as the

laborers would have to spend significant portions of each day in transit, or (if possible)
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move away from the reducción. Rather, it seems likely that most full time-residents would

have made great efforts to travel shorter distances than this. In Wernke’s analysis of the

fields of Corporaque, he found that the mean walking time to abandoned fields for “left

side” ayllus was 109 minutes (1.8 hours), while the mean walking time to unabandoned

fields was 46 minutes ( .75 hours) for the same groups (Wernke 2013). A 2-hour cost basin,

therefore, provides a generous outer bound for fields that may be considered “accessible.”

The walking time from each reducción location (simulated and actual) was calculated

using the SRTM DEM. First, each reducción point location was buffered with a radius of

10 kilometers, and the DEM was cropped to this extent, greatly reducing the computational

load for calculating cost-distance and enabling the computation in R. Then the cost-distance

was calculated using Tripcevich’s hiking function in the R “movecost” package. Tripce-

vich’s hiking function follows the form:

speed =
4.028×46

((arctan(|slope|)× 180
π
)+4.127)+46

∗ 1
N

(5.1)

Where slope is expressed in degrees, thereby modeling travel speed as a function of

slope. This model was selected for this analysis, (rather than other walking models such

as Tobler’s, Aitken 1977/Langmuir 1984, Garmy, Kaddouri, Rozenblat, and Schneider’s

hiking function, or others) as it was calibrated for movement in the Andean highlands by

tracking the progress of a Llama caravan in 2007 as it carried salt to Chancara, just off the

western edge of the study region. Though the dynamics of a long-distance llama caravan

are likely different to those of agriculturalists traveling to their fields, Tripcevich describes

the caravan’s movement as steady travel all day, with short breaks and a lunch break. Such

steady travel should well represent the movement of farmers to their fields.

The 2 hour walking time cost basin polygons for each simulated and real reducción

settlement location were intersected with both the active and abandoned field polygons
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to calculate the total area of agricultural infrastructure within a 2 hour walk from the re-

ducción location. The average accessible agricultural area was calculated for each of the

1000 simulated instances of reducción distribution and compared to the average accessible

agricultural area of the 40 real reducción locations. This allows us to evaluate the access of

reducción settlements to agricultural infrastructure in relation to the distribution produced

by the null model of reducción locations.

5.4.4 Effects of Reducción Settlement Location on Agricultural Deintensification

Following previous research in the Colca Valley, we hypothesize that the forced resettle-

ment of the population into reducciones in the river valleys shaped decisions to maintain or

abandon extant agricultural fields, and the results of this process still visible on the land-

scape today (Wernke 2015). Fields located at great distances from reducción settlements

would be very difficult or impossible to cultivate while maintaining a permanent residence

in the reducción. As a result, we expect to see the rate of field abandonment increase with

distance from reducciones across the study region. The dataset from the multinomial re-

gression of field locations was filtered to only include examples of active or abandoned

agricultural fields and a logistic regression model was constructed including the variables

identified as important in the exploratory multinomial agricultural model, in addition to the

walking-distance from reducciones variable.

However, it should be observed that in terms of an agriculturalist’s ability to cultivate

a field while maintaining a residence in the reducción, there is no meaningful difference

between a field that is 6 hours away, to one that is more than 30 hours away. In either

case, it is impossible to walk to the field, perform a full day’s labor, and return to the

reducción at night. Any variation in active and abandoned field distribution at this distance

therefore must be the result of processes that this model does not attempt to evaluate, such

as the maintenance of a remote residence. Furthermore, due to the incompleteness of the

reducción dataset, it is impossible to evaluate whether a particular field is actually several
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days’ walk from a reducción, or whether a much more proximate one is simply unknown.

Therefore, only sample locations that were within 6 hours of a reducción were included in

this analysis to evaluate the effects of distance from reducciones on deintensification.

5.4.5 Mapping Local Variations

The previous analysis assumes that maintaining a permanent and full-time residence in the

reducción was mandatory and common practice. However, it is possible that this restric-

tion was less robust in some instances than in others, with farmers allowed to maintain part

or even full-time residence outside of town. This would make it much more possible to

continue to cultivate and maintain distant fields, and we would expect the distance from

reducciones to be much less powerful as a predictor of agricultural field abandonment. It

is, therefore, useful to look for variations in the importance of this variable at local levels,

rather than focusing only on the trans-regional pattern. One way to do this is to repeat the

analyses many times while limiting the extent of the analyses to smaller areas (Kvamme

2005). We therefore divided the study region into 103 overlapping regions of 0.5°. Any

data that was further than 6 hours from a reducción, any region that included less than 100

sample points total, or included less than 30 sample points representing either active or

abandoned agricultural features, was filtered out. This helps to lower the noise resulting

from outliers (false positives or negatives in the terracing dataset), resulting in a consistent

measure of the importance of the distance from the closest reducción in the likelihood of

agricultural field abandonment. We then repeatedly ran a logistic regression using eleva-

tion, slope, distance from streams, and distance from reducciones as covariates, (latitude

was dropped as it is not expected it will have substantial effects for such small regions)

using only the sample data points contained in that region, and mapped the coefficient for

the distance from reducción variable.
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5.5 Results

5.5.1 Modeling Field Locations

The exploratory multinomial model showed latitude, elevation, slope, and distance from

streams to all be significant contributors to agricultural field construction and abandon-

ment. Their coefficients (representing the change in log odds of being active or abandoned

agricultural fields in comparison to the non-cultivated background) and their 95% confi-

dence intervals are reported in 5.2.

Table 5.2: Multinomial model coefficients, odds-ratios, and confidence intervals.

Variable Units Model Coefficient ∆ Odds/∆ Unit Odds 95% CI
Latitude:Active Degrees 0.4919 1.635 1.548 - 1.728
Latitude:Aband Degrees 0.2742 1.315 1.257 - 1.377
Elevation:Active 100 m -0.2131 0.808 0.803 - 0.814
Elevation:Aband 100 m -0.1297 0.878 0.873 - 0.884

Slope:Active 10° -0.0585 0.943 0.940 - 0.947
Slope:Aband 10° 0.0058 1.006 1.003 - 1.009
Distance to

Stream:Active
1km -0.3396 0.712 0.699 - 0.725

Distance to
Stream:Aband

1km -0.0881 0.916 0.905 - 0.927

These values can be converted to the change in odds by exponentiating them, which

is also reported for convenience and ease of interpretation. In Table 5.2 therefore, the

Latitude change in odds is 1.6 for active fields, meaning there is a 1.6 times increase in the

odds (or, equivalently, there is a 60% increase in odds) for an active field for every degree

further North in the study region. Similarly, the Elevation (100m change) for active fields

value of 0.808 shows that for every 100m increase in elevation, there is a 20% decrease

in the odds of an active field. Caution must be used when interpreting these values, as

they are contingent on the arbitrary selection of units used for this analysis. For example,

the values would change significantly if one were to model changes in elevation by the

meter (the change in odds will be much lower per meter change in elevation) or by the

kilometer (the change in odds will be much higher per kilometer change in elevation).
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It would not be correct, therefore, to suggest that in general a change in elevation has a

greater effect than a change in slope. Rather, the model suggests that a 100m change in

elevation has a greater effect than a 10° change in slope, the implications of which are

not immediately clear. Rather, it is more useful to look at the direction of change (does

field construction/abandonment become more or less likely), and to compare coefficients

between the Active and Abandoned fields for a single variable. For a 100-meter increase in

elevation, the model shows a 20% decrease in the odds of an active field, but only a 13%

decrease in the odds of an abandoned field, if all other variables are held constant. This

suggests that higher-elevation fields are less likely to be constructed and are more likely to

be abandoned than fields at lower elevations.

Similar logical patterns hold for distance from streams and slopes, with both active and

abandoned fields becoming increasingly less likely with distance from water, and the odds

of active fields decreasing with an increase of slope. However, it is interesting to note

that the odds of an abandoned field are nearly unaffected by increases in slope, and may

even be very slightly increased. This reflects the high frequency of terracing on the valley

slopes, and the high rates of abandonment of terracing in the valleys today, mirroring the

observations made in the Colca Valley (Denevan 1986, 1988). The strongest effect across

the region comes from latitude, which shows an approximately 60% increase in the odds

of active fields and an approximately 30% increase in the odds of an abandoned field for

every degree further north. This may be due to the increase in warmth as one moves closer

to the equator, but likely is mostly the result of the selection of the survey area in relation

to the agricultural infrastructure. The southern portion of the survey area is very dry and

contains little to no agricultural fields, resulting in a marked increase as one moves north

toward less arid climates.

With these four covariates, the model achieves a McFadden’s pseudo R2 value of 0.21.
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Table 5.3: PPP model coefficients, odds-ratios, and confidence intervals.

Variable Units Model Coefficient ∆ Odds/∆ Unit Odds 95% CI
Elevation 100m 1.6437 5.1744 2.816 - 9.509
Elevation2 100m -0.0268 0.9735 0.965 - 0.983

Slope Degrees -0.1888 0.8280 0.775 - 0.885

Given the complexity of the phenomenon, the restriction of this model to purely environ-

mental variables, and the limitations of the data, this is a moderately good fit. More im-

portantly, the model highlights which environmental variables are important to agricultural

production and field abandonment and produces a baseline understanding of the direction

and strength of these effects which can be used to better interpret the effects of other factors

in agricultural deintensification.

5.5.2 PPPm

The next stage of analysis was the construction of the inhomogeneous Poisson point process

model. This model shows that slope and elevation also have statistically significant effects

on the frequency of reducción settlements in the highlands, at a less than 0.01 level (model

coefficients summarized in 5.3).

However, of greater interest to our research is how well the model does at estimating the

intensity distribution of reducciones across the landscape contingent on elevation and slope.

A visual inspection of the intensity map produced by the model in Figure 5.5, showing that

the model expects higher intensities in river valleys, particularly the Arequipa, Colca, and

Cotahuasi valleys. This aligns well with the known distribution of settlements and matches

intuitively our expectations about where reducciones may be located.

Another check of model fit is the graph of the envelope for the K statistic for data

simulated by the model (Figure 5.6). This graph shows the distribution of the K statistic

(which tests for clustering and dispersion) for 100 simulated point patterns, the statistic

for the true data in black, and the theoretical value for the statistic in red. A poorly fitted

model would differ widely between the observed and the theoretical data, with the observed
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Figure 5.5: Estimate of Intensity of Reduccion settlements by inhomogeneous PPP model
accounting for elevation and slope. Note the correlation with known point distribution.
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data landing outside of the simulated envelope for much of the graph. Instead, our model

aligns the theoretical and observed data nearly perfectly and never deviates outside of the

envelope.

Figure 5.6: Plot of PPP model envelope for K statistic, suggesting a high quality of model
fit.

Finally, a Balanced Independent Two-Stage Monte Carlo Test (designed to test the

goodness-of-fit for spatial patterns) fails to reject the null hypothesis that 100 model simula-

tions and observed data come from different distributions with a p-value of 0.99. Together

these tests suggest that the inhomogeneous PPPm fits the data well and can be used to

simulate plausible distributions of reducción settlements.

5.5.3 Reducción Locations and Agricultural Infrastructure

1000 simulated point patterns representing plausible distributions of reducción settlements

were generated. These simulations produced between 10 and 42 locations each, with an av-

erage of 25.4 points per simulation for a total of 25,401 plausible reducción locations. Cost

basins representing a 2-hour walking time were generated for each of these settlements,
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covering 433,407 ha per simulation on average. For each simulated point pattern, the agri-

cultural area within its cost basin was calculated and divided by the number of points in

that simulation. So, for example, the first simulation had 21 points whose cost basins cov-

ered a total of 18052.5 ha of active and abandoned agricultural fields, for an average area

of 18052.5 ha / 21 sites = 859.6 ha of agricultural land. Repeating this calculation for each

simulated point pattern produced 1000 average measures of access to agricultural land for

different plausible distributions of reducción settlements.

Following the central limit theorem, this distribution of sample averages produces an

approximately normal distribution with a mean of 717.7 ha and a standard deviation of

171.2 ha. Repeating the process once more for the locations of actual reducción settle-

ments collected from LOGAR and GeoPACHA databases showed that the true reducción

settlements had an average of 1241 ha of accessible land with agricultural fields, placing it

on the far-right tail of the distribution (Figure 5.7), more than 3 standard deviations above

the average.

Only 5 of the 1000 simulations had access to more agricultural land on average. Taking

as a null hypothesis that the locations of reducción settlements are not related to the acces-

sibility of agricultural infrastructure, this result strongly rejects this hypothesis, suggest-

ing instead that reducción settlements in the river valleys were carefully and intentionally

placed with greater than average access to agricultural infrastructure.

5.5.4 Effects of Reducción Settlement Location on Agricultural Deintensification

Global and Local

To better understand the effects of distance from a reducción on the likelihood of field aban-

donment, we constructed a binomial regression model to predict whether a field was active

or abandoned, using the environmental variables identified as important in the multinomial

model and the walking cost distance from a reducción in hours.

Latitude no longer appears to have a large effect, as it did in the multinomial model.
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Figure 5.7: Distribution of mean area of agricultural infrastructure within 2 hour walk of
1000 simulated reducción patterns. Note mean for true reducción distribution is in the
99.5th percentile.

This is likely in large part due to the restriction of the model to the relatively narrow bands

of latitude where agricultural fields are actually located. Distance to streams, in contrast,

appears to have the largest effect on the odds of abandonment. While this is suggestive

that the distance water must be transported by canals is predictive of field abandonment,

the relatively large scale of the units (kilometers) may overemphasize the importance of

this variable. When taken with the above caveats about this variable, the significance of

this result should be treated with caution. Of greater interest, the elevation variable shows

an approximately 6.6% increase in the odds of field abandonment with a 100 meter gain
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Table 5.4: Binomial regression model coefficients, odds, and confidence intervals in the
prediction of whether an agricultural field will be maintained or abandoned.

Variable Units Model
Coefficient

∆ Odds/∆ Unit Odds 95% CI

Latitude Degrees -0.0472 0.9539 0.876 - 1.038
Elevation 100 m 0.0637 1.0658 1.056 - 1.076

Slope Degrees 0.0826 1.0861 1.081 - 1.092
Distance to

Streams
Kilometers 0.2719 1.3124 1.278 - 1.348

Time to
Reducción

Hours 0.1082 1.1143 1.080 - 1.150

in elevation, matching the result from the multinomial model, and slope shows approxi-

mately an 8% increase in odds for a 1° increase in slope angle. Finally, the model also

shows a greater than 11% increase in the odds of abandonment for every hour walking time

further away from known reducciones, all other factors held constant, suggesting that for

most of the study region, distance from reducciones substantially influences agricultural

deintensification.

However, this is a global model, summarizing the effects across the entire study region.

Repeating the modeling procedure for data sampled at smaller scales across the landscape

allows us to map the variations in covariate importance across the landscape. For example,

the distribution of coefficients for the elevation covariate shows that it is highly important

in predicting the abandonment of fields in the western highlands, but it is less important, or

even a negative predictor in the lower river valleys to the east (Figure 5.8).

This makes sense as farmers at lower elevations do not have to be as concerned about

frost risk, and indeed for crops suited to colder environments may see benefits to main-

taining fields higher in the valley. Similarly, mapping the coefficient of the distance from

reducción settlements can suggest where proximity to reducciones was important for main-

taining fields, and where there may have been more flexibility. In the Colca Valley, and

fields to the east of Arequipa, the coefficient for distance from reducciones is very high,
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Figure 5.8: The variation in model estimates of the odds of field abandonment due to
elevation. Noise resulting from small sample size is likely responsible for some of the
variation, however a general trend of elevation being especially important in regions where
average elevation is higher is apparent.

suggesting that the distance from reducción fields substantially increases the rate of aban-

donment (Figure 5.9).

Intriguingly, fields in the north western portion of the study region seem to be less de-

pendent on proximity to reducciones, showing much lower or even negative coefficients,

suggesting that perhaps fields further away from the reducción are more likely to be main-

tained.
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Figure 5.9: The variation in model estimates of the odds of field abandonment due to
distance from reducción. Noise resulting from small sample size is likely responsible for
some of the variation, however it appears that travel time to a reducción is an important
factor in the Arequipa and Colca Valleys, while it is not further to the west near Cotahuasi.

5.6 Discussion

5.6.1 Reducción Placement

The idea that reducción settlements were placed strategically close to important agricultural

resources is neither new nor particularly surprising. Toledo himself recommended that the

resettlement cause as little disruption as possible, and both Spanish and Indigenous actors

had many incentives to maintain as much agricultural production as possible, the Spanish

for exploitation and extraction, the indigenous for survival and economic independence.

However, the methods of limiting this disruption are not a given. A model wherein the

resettlement towns were constructed but the population continued to primarily live outside
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of town, or at least maintained active secondary residences near their fields, would limit

economic disruption without necessitating the placement of the new towns close to readily

accessible agricultural fields. Indeed, it may be advantageous to place such a town further

away, following (from the Spanish perspective) Toledo’s other directives of “abandoning”

pre hispanic towns, cemeteries, and ritual places, while (from the Indigenous perspective)

limiting the day-to-day contact with the place of Spanish power. Broadly, such a model is

not supported by this analysis, which shows that most reducción settlements were placed

close to agricultural fields.

An alternative model, that reducción settlements were placed with relatively easy ac-

cess to pre-existing agricultural infrastructure in an effort to mitigate some of the massive

disruptions of the resettlement, finds more support in this analysis. The extreme difference

between the actual and the simulated distribution of reducciones in relation to access to

fields suggests that it would be difficult to find locations for reducciones that have better

access to fields while simultaneously meeting the slope and elevation requirements. This

likely implies that reducciones were likely placed quite near prehispanic settlements, ceme-

teries or ritual places, in spite of the Toledan admonishment to the contrary. The placement

of reducciones therefore represents the results of a negotiation between ideals, practicality,

and social, political, economic context, rather than a strict adherence to the plans of the

resettlement.

We do not mean to imply, however, that Spanish and indigenous actors were working

together to maximize economic gain. As actors in an ongoing and empowered (though

imbalanced) negotiation, differing goals, incentives, and power structures shaped the out-

comes. This is clear from Wernke’s work on field abandonment around the reducción of

Corporaque. The goal may not have always been to optimize the area available for agricul-

ture, but rather to optimize access for particular people, access to particularly productive

lands, or access to land that could grow socially valued crops such as maize. Sometimes,
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reducciones may have indeed been placed with little regard for access to existing agri-

cultural infrastructure. Indeed, a closer look at the reducción data shows an interesting

pattern in this respect. While most of the settlements have access to very large amounts

of agricultural fields within a 2 hour walk, a few, such as Huamanmarca I, Machu Llacta,

and “Boginoni 200420-203445” have dramatically less access to agricultural infrastructure

than even the average for the simulated settlement locations. Also in contrast to most of

the reducciones in our dataset, these reducciones are abandoned today.

There are a few possible ways to interpret this pattern. One is that reducciones which

were placed without careful regard for the availability of agricultural infrastructure were

abandoned to create new towns with better access to such important resources. In this

scenario, negotiations about the placement of reducción settlements broke down to such a

degree that the town’s location was untenable after construction. Often, the town was then

moved to a nearby and better-suited location. Alternatively, it is possible that such aban-

doned settlements are the result of changes in local social, political, or economic conditions

that caused a town that was thriving without agricultural infrastructure to no longer persist.

One example of this may be to revive the model of periodic and temporary occupation of

reducción settlements with primary residences located closer to the fields. Such a town

may have been constructed, maintained, and survived as long as there was a need to return

to it periodically to fulfill obligations to the Spanish, or as a meeting place for festivals.

However as Spanish control waned or became focused elsewhere it would no longer have

been necessary to support the town which could then be abandoned.

The differences in agricultural access between abandoned reducción settlements and

settlements that remain occupied to this day form a pattern that also serve as a reminder

that the above results and discussion are preliminary and require deeper investigation. The

reducción data included in this research primarily comes from the LOGAR database as

this is the most complete, accurate, and peer-reviewed collection of reducción settlements.

However, the LOGAR data was primarily collected by matching the names of reducciones
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in Spanish colonial documents to those of modern towns and place names today, suggest-

ing that the sample of reducciones is strongly biased away from reducciónes that have been

abandoned. This bias in our data was somewhat mitigated through the inclusion of settle-

ments identified in GeoPACHA such as, Huamanmarca, Polobaya, and Locus 5983 which

are abandoned. However, if it is the case that a lack of access to agricultural infrastructure

is a strong predictor of the abandonment of a reducción, and there are many reducción set-

tlements in the study region who’s locations remain unknown, then this bias may go a long

way towards explaining why the reducción locations in our data appear to have so much

higher access to agricultural fields on average. Future research to confirm the locations of

other abandoned reducciones and efforts to evaluate the completeness of known reducción

data would do a great deal to improve confidence in these analyses.

5.6.2 Agricultural Deintensification

It has previously been shown that agricultural field abandonment in the Colca Valley is

correlated with distance from the reducción of Coporaque when elevation and other envi-

ronmental factors are held constant (Wernke 2013), but the generality of this pattern has not

previously been investigated across the western cordillera of the south-central Andean high-

lands. This research successfully expands this finding, encompassing several river valleys

across the western south-central highlands and thereby demonstrating the lasting impact

of the Toledan resettlement on agricultural deintensification. However, a global summary

of the effect reducciones have had on agricultural fields over the survey region is limited

in the insights it can provide. On the ground, variations in negotiation, land management,

ecological and political context, and individual farmer decisions open up a wide variety of

potential outcomes that are likely to go unfortunately unnoticed and unconsidered when

merely considering global statistics. In contrast, one of the greatest potential benefits of

regional and supraregional studies such as this one is the ability to comparatively evalu-

ate differences in strategy between different localities. One may imagine several ways in
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which local dynamics may differ from the global trends of reducción settlements and field

abandonment. One anomaly may be the wholesale abandonment of a region, such as oc-

curred at Churajon, where nearly 35,500 ha of fields were completely abandoned in the

early 17th century (Szykulski 2008; Szykulski et al. 2000). No settlement, reducción or

otherwise remained to continue to maintain and cultivate these fields. A visual inspection

of the agricultural data suggests that this is a rare occurrence, with some level of cultivation

persisting in most regions where abandoned fields are present.

Another potential local divergence from the global pattern is the presence of agricul-

tural fields with no nearby reducción. Fields such as those south of Ampato and Sabancaya

(Figure 5.10) are the most apparent of these, with no known reducciones within 40 kilome-

ters.

This occurrence made it necessary to limit the distance from reducción variable to only

include fields less than 6 hours away from a reducción for the global analysis because the

existence of a large quantity of active and abandoned fields an estimated 30-hour walk

from the nearest reducción so severely skewed the distribution of the data that it obscured

the more local effects of interest. Perhaps the most intriguing interpretation of this is the po-

tential for communities that were able to avoid or resist resettlement and create or maintain

systems of fields outside of Spanish control. Given the limitations of the reducción dataset,

it is wise to be cautious in this interpretation. Rather, there are probably unknown or un-

recorded reducciones located in this region that were not included in the dataset. There

are several modern towns in the area that were likely reducciones that did not appear in

the surviving fragments of the Tasa de la visita general de Francisco de Toledo, including

Huanca, Taya, Huambo, and Lluta. Only further archival and field investigation will clarify

the prehistoric, colonial, and modern contexts that give rise to these fields.

A more subtle form of avoidance or resistance to the resettlement may be as Stern pro-

posed for Huamanga, the construction of a reducción settlement but the maintenance of

households and fields outside and separate from Spanish control. The map showing the
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Figure 5.10: Fields to the south of Ampato have no known reducciones nearby. However,
the modern town of Huanca has gridded streets and is located in a similar context to reduc-
ciones in other areas, suggesting that it may have been an as-yet unrecorded reducción.

local variation of field abandonment as a function of distance from reducciones does not

generally support this description for the Arequipa Valley or Colca Valleys, which show

high coefficients, suggesting a strong effect. However, such a pattern is shown in the west-

ernmost valleys of the study area. Here the coefficients for distance from reducciones

are mostly close to zero, suggesting limited influence on field abandonment as a result of

distance from reducciones. In fact, what effect does appear to exist is actually slightly

negative, suggesting that in this region proximity to reducción is predictive of field aban-

donment. Once again, this must be interpreted with caution. It is possible that an unknown
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reducción could change this dynamic. For example, if there is a band of abandoned fields

halfway between a known and unknown reducción, both of which have active fields the

model would measure substantial active fields at a greater distance than the abandoned

ones, resulting in the lowering of this coefficient. However, unlike the fields to the south of

Ampato, many reducciones have been identified in this region, and the pattern appears to

exist in the center of this cluster of reducciones, as well as to their north, east, and south.

This analysis, therefore, suggests this region as another fruitful area for additional archival

and field study to understand what dynamics may have encouraged the abandonment of

fields close to reducciones, while stimulating their growth and maintenance further away.

5.7 Conclusions

This research set out to examine trans-regional patterns and regional variations in agricul-

tural deintensification as a result of the colonial forced urbanization of Andean people and

the corresponding ruralization of non-urban land. From these analyses, it seems clear that

reducciones were placed, on average, closer to existing agricultural fields than would be

expected if their proximity to such infrastructure was not being considered. While the guid-

ance of Toledo may not have prioritized such considerations, local Spanish and indigenous

populations were strongly incentivized to maintain access to as many fields as possible.

Therefore, street-level policy prioritized access to agricultural infrastructure over the offi-

cial policies of the Viceroyalty. This research also suggests that reducciones that did not

prioritize agricultural access may have been less likely to survive, though the sample size

of abandoned settlements in this analysis is not large enough to come to any conclusions.

Once the reducciones were constructed, this analysis suggests that for most regions in

the study area, agriculturalists were forced to make difficult decisions about which fields

to maintain, and to sacrifice those fields that were too far away to work effectively. This is

shown by the increase in odds of field abandonment for fields that are further away from the
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location of known reducciones, holding other variables constant. Such patterns are reflec-

tive of the Spanish de-prioritization of non-urban landscapes, a process we have designated

ruralization. However, there are regional deviations from this pattern, suggesting that en-

forcement of reducción living may have varied across the study area, or the presence of

as-yet unidentified reducciones. Further investigation will be required to understand these

variations in their particular contexts. Nevertheless, these results show the power of trans-

regional analyses for identifying local and regional patterns, and for suggesting potential

important avenues for future investigation.
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CHAPTER 6

Conclusions

Following the Spanish invasion, Viceroy Francisco de Toledo sought to transform indige-

nous people into easily exploited and obedient Christian subjects by transforming where

they lived into highly organized and centralized towns (Mumford 2012, p. 120). This forced

resettlement program, known as the Reducción General de Indios, was expected to instill

”policı́a” and facilitate Christian conversion through urbanization (Kagan 2000). However,

the Spanish colonists were entirely dependent on the Andean production of goods for their

own prosperity and survival, and existing Andean economic and social systems of produc-

tion were reliant on networks of smaller and more dispersed settlements. Any disruption

to this system endangered the extractive goals of the empire. This fundamental conflict

between official colonial policy and street-level reality was managed at local and regional

levels by street-level bureaucrats (both Spanish and Indigenous), who used their consider-

able discretion to implement the Toledan Reforms in ways that made sense in their own

contexts. For example, while Toledo complained about reducciónes being constructed near

prehispanic settlements ”where they have their idolatries and the graves of their ancestors”

(Mumford 2012, p. 120) the practice appears to have been a common one, maintaining vital

access to existing agricultural infrastructure.

Nevertheless, in seeking to urbanize the people, the Spanish formed what they saw as a

complementary rural landscape. Agricultural fields located great distances from reducción

settlements could not be maintained while the workers who claimed it were restricted to

living in a reducción. As opposed to the dispersed settlements that characterized the pre-

hispanic settlement pattern, the resettlement created these non-urban spaces as ”rural” and

therefore lacking in the power, structure, and morality that the Spanish believed to define

urban life (Kagan 2000). This dissertation has shown that this effort had lasting impacts
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on the agricultural landscape, with large tracts of once-productive agricultural land aban-

doned and decaying across the landscape. However, it also shows that this effort was deeply

dependent on local circumstances and street-level policies. Most of the agricultural land

identified in this paper was within a few hours’ walk of a known reducción settlement,

and distance to fields was just one of the many considerations reducción farmers had to

consider, complicating the calculations, but not necessarily fundamentally changing them.

In some regions, even this effect seems to have been limited, with distance to reducciones

having little to no influence on field abandonment, suggesting that perhaps farmers did not

remain restricted to the reducciones for long (Oré Menéndez 2022).

Rather than the uniformity one would expect from a top-down imposition of iron-clad

law, the resulting picture is one of immense variation. However, such variation is only

visible when looking at the broader trans-regional context. Such a perspective was enabled

in this research through the application of a novel methodology – AI-assisted survey. The

various merits and drawbacks of automated survey of remote sensing data compared to

brute-force manual survey have been a topic of periodic interest and debate in archaeology

for decades (Casana 2014; Comer and Harrower 2013; Custer et al. 1986). This dissertation

eschews this divide by suggesting that AI is merely another tool for researchers to employ

as they work to develop a better understanding of large-scale phenomena. As such it can

be used to expand and improve the researcher’s work, rather than replace it.

6.1 Summary of Work

Chapter 2 laid the foundation for an AI-assisted survey by establishing protocols for the cre-

ation of training and validation data to accurately evaluate automated survey performance

in archaeological structure detection. However, it also made clear that the automated sur-

vey results alone did not produce data that is sufficiently precise or complete to be directly

used in archaeological analyses. Too many archaeological features were missed, and far
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too many locations without archaeological structures were erroneously marked as contain-

ing them. What was not clear was how the model results compared to more traditional

”brute force” methods such as the manual inspection of satellite imagery. In previous sur-

vey projects in the middle east, researchers have claimed the ability to capture nearly 100%

of visible archaeological features of interest through the manual inspection of CORONA

satellite imagery (Casana 2014, 2020). This success was largely due to the rigorous de-

sign of the survey project and extensive training of its surveyors, but also is a result of

the large size and distinctive visibility of the archaeological features of interest in this sur-

vey. The detection of archaeological features such as buildings, towns, or estancias in the

south-western Peruvian highlands is likely to be an inherently more challenging task, as

the features are smaller and less easily visually distinguished from the surrounding land-

scape or modern features. In this case, how well do trained surveyors perform in detecting

archaeological features in the landscape, and what might automated techniques have to

offer?

Chapter 3 addressed these questions through a comparison of the results between the

automated survey and GeoPACHA, a survey project in Peru modeled on the CORONA

success described above. GeoPacha undertook a ”brute-force” manual survey in Peru using

publically available Google, Bing, and other commercial satellite images, and overlaps

with approximately 3,000 square kilometers of the region autonomously surveyed using

the imagery provided by the Digital Globe Foundation. Overcoming differences in image

alignment, research design, and data representation, the results of these two surveys were

compared, demonstrating that both the ”brute-force” and automated surveys had similar

rates of feature recall. That is, they each missed approximately 30% of features on the

landscape. Importantly, however, they did not miss the same features, and when taken

together, the two surveys found about 30% more features than either survey alone. The

biggest advantage in feature detection of the manual survey was therefore not its recall,

but its precision. In our estimation, very few of the features identified manually are false
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positives, probably less than 5%. In contrast, nearly half of the features identified by the

automated model were false positives, highlighting the need for manual review of any

automated survey technique.

In addition to the automated model’s relatively poor precision, an automated survey

that is designed to detect the presence or absence of features fails to capture other impor-

tant information such as the age or use of the buildings, or contextual data such as whether

a structure is isolated, part of a larger settlement, or related to other archaeological fea-

tures. In short, the model provides a filter, which tells researchers where to look, while

the human collaborators are required to provide rich contextual information to make that

location meaningful. This information can then be fed back into the AI to further improve

its predictions in the future. This is the fundamental idea of an AI-assisted survey, which

combines the speed of an automated survey with the depth of a brute-force one. It is my

assertion AI-assisted surveys promise to be faster, more complete, and more accurate, all

while maintaining the important metadata produced by human researchers.

Chapter 4 carries this idea forward conceptually, while applying it to a new problem,

mapping the distribution of active and abandoned agricultural infrastructure. Large-scale

agricultural deintensification in the Andes has long been a subject of archaeological inter-

est (Denevan 1986; Guillet et al. 1987; Treacy 1990a; Wernke and Whitmore 2009), as

researchers seek to understand the causes of the mass abandonment of agricultural infras-

tructure that occurred following the Spanish invasion. By measuring the scale and pattern-

ing of this abandonment at trans-regional scales we can examine regional variation in the

colonial processes that affected agricultural production in the Andes. However, doing so

using satellite imagery provides unique challenges for both human and automated survey-

ors. Prehispanic Andean people constructed terracing at an enormous scale, and digitizing

its extent by hand is a slow process. It is also unclear when such digitizing is ”complete”

as agricultural fields appear to have a nearly fractal level of complexity as one seeks to map

them with increasing levels of precision. As one draws a boundary around a field system,
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one must decide how much time and effort to expend to exclude rivers, valley cliffs, un-

terraced hills, or towns that are situated amongst the fields. However, if one wishes to be

more precise, one could also exclude roads that cross through and between fields, isolated

buildings, and trees. Perhaps, rather than mapping systems of fields, one could map the

extent of individual fields or terraces within a field system. Each level of precision requires

exponentially more time to complete.

Therefore, the question is not how precise one can make a manual survey, but rather

how precise can it be at what scale and within what timeframe. A manual approach to

cover the 81,148 km² study area required months of work to produce a map of currently-

in-use agricultural systems that we describe as ”regionally accurate”. That is, it tends to

show where active fields are present, but the digitized boundaries may also include many

non-agricultural features such as rivers or towns. This is a necessity for such large-scale

manual surveys as a finer-grained approach that excludes these features takes far too long

to practically complete at a large scale. We refined a sample of this data in 51 areas cov-

ering 1500 km² seeking to exclude non-agricultural features to the extent possible. While

excluding the bulk of the towns, hills, and valleys, we did not exclude all small isolated

structures, roads, and a vast array of other non-agricultural features. Even still, a 30 km²

region with complex systems of fields could easily take between 5 and 8 hours of labor to

complete. A survey of 100,000 km² could take decades. Using an AI-assisted approach,

we can use our sample of higher-resolution data to map agricultural fields in a matter of

weeks or months more precisely than would be feasible to do by hand in years.

Such a promise of speed and precision demands deeper evaluation. Chapter 4, therefore,

includes a comparison of the data results to two existing manual surveys, one a preliminary

GeoPACHA dataset that is still under editorial review, and the other a dataset collected by

the Peruvian Department of Agrarian Development and Irrigation known as Programa An-

denes. The AI-assisted survey results are shown to be markedly better than the preliminary

data produced for GeoPACHA, due largely to the opportunistic sampling of abandoned
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fields in GeoPACHA and the lower resolution of the data produced. The comparison to

Programa Andenes is more challenging, however, as Programa Andenes was interested

solely in agricultural terracing, while the survey conducted for this dissertation was con-

cerned more broadly with agricultural fields in general. As a result, the AI-assisted survey

identified much more land area as agricultural than did Programa Andenes on average.

However, in some instances, it was possible to show that the AI-assisted survey identified

terracing that was missed in the Programa Andenes manual survey.

Finally, Chapter 4 begins an exploratory analysis of the distribution of active and aban-

doned agricultural fields with respect to environmental covariates. Elevation, Slope, and

Geomorphology are all shown to affect the odds that Andean people would construct and

maintain agricultural infrastructure. Simultaneously, aspect seems to have little to no mean-

ingful impact on field construction and maintenance. This analysis is formalized in a multi-

nomial model in Chapter 5. Ultimately, the AI-assisted survey showed an agricultural field

abandonment rate of 24%, much lower than is commonly estimated or measured in the

archaeological literature. This suggests that archaeological sampling may be biased to-

wards regions where field abandonment is especially high, a logical conclusion given usual

archaeological focus on abandoned settlements. The results of these studies must there-

fore be evaluated trans-regionally as one seeks to take the lessons learned from them to

understand historic agricultural transformations outside of their particular contexts.

Chapter 5 begins this expansion, relying heavily on previous research in the Colca Val-

ley and Huamanga to inspect the plausibility of extrapolating those lessons to the other

river valleys in the western south-central Andean highlands. In the Colca Valley, agricul-

tural deintensification was strongly related to the late 16th century forced resettlement of

the indigenous population into centralized towns known as reducciónes (Denevan 1988;

Wernke and Whitmore 2009; Wernke 2013). Chapter 5 attempts to characterize the distri-

bution of these towns as an inhomogenous Poisson Point Pattern contingent on elevation

and ground slope. This model was then used as a null hypothesis to test whether reducción
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settlements were constructed to prioritize access to agricultural infrastructure by simulating

plausible alternative distributions of reducciones and measure how much agricultural land

was within an estimated 2-hour walk from the reducciones. The simulation showed that

the locations of known reducciónes have access to much more agricultural land than would

be expected by the simulation, suggesting that as indigenous people constructed the towns,

they did so with access to agricultural infrastructure in mind. This suggests a process of

negotiation such as the one proposed by Wernke (Wernke 2013) in the selection of sites for

reducción settlements, where the bureaucratic Spanish mandates of distance from prehis-

panic settlements and culturally important sites were subsumed by practical realities and

indigenous influence.

Reversing the question, Chapter 5 also examines the effects of the Resettlement on pat-

terns of agricultural deintensification and field abandonment. Work in the Colca Valley

has previously shown that increased distance from the reducción increases the odds of field

abandonment, contingent on environmental factors such as elevation and slope (Wernke

2013). This makes sense as distance increases the difficulty in performing agricultural

labor, but for moderate distances this challenge may be balanced by differences in the suit-

ability of land for particular crops. Both Spanish colonizers and indigenous residents of

the reducciones would have been concerned about these challenges, as their wealth and

survival depended on increased agricultural production, however, the ways in which these

challenges were managed may have varied. Therefore the relationship between distance

from reducción and agricultural abandonment is modeled in Chapter 5 in two different

ways, globally and locally. Globally, the pattern observed in the Colca Valley appears to

hold true, with a greater rate of abandonment at greater distances from reducciones after ac-

counting for covariates such as slope, elevation, and distance from water. Locally, however,

it appears that there is variation across the landscape, with the westernmost valleys showing

little or even negative preferences for fields closer to reducción settlements. This suggests
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that different resettlement strategies may have been at play in this region, perhaps allow-

ing farmers to maintain residences away from the reducción to enable greater agricultural

productivity, though further research will be necessary to confirm this hypothesis.

Ultimately, this research shows that the forced resettlement of the indigenous Andean

population had a lasting impact on agricultural infrastructure in the south-central Andes.

As the Spanish sought to create urban communities, they also produced rural land which

was outside the easy access of those forced to live in reducción settlements. Farmers were

forced to balance ecological concerns such as elevation and ground slope with the distance

they had to travel to maintain their fields, thereby limiting the variety of agricultural lands

they could bring to bear. This additional burden would have made these communities more

vulnerable to external forces such as poor crop yields or natural disasters. Nevertheless,

Andean people took active roles in shaping the new agricultural landscape. Reducción

settlements were located close to existing agricultural infrastructure, maintaining access

to resources that had been constructed over generations in spite of the Spanish Crown’s

commitment to destroying Andean ties to their past. Furthermore, the effects of the reset-

tlement were not uniform across the south-central Andes, with some regions seeing much

higher rates of abandonment than others. As local Andean leaders and Spanish administra-

tors implemented the reforms described by Toledo, they used their discretion to shape the

resettlement in ways that they saw fit. We must therefore be careful when describing “The

Resettlement,” as the resettlement was different things in different places, and the local

contexts shaped it to achieve different outcomes.

6.2 Future Research

6.2.1 Returning to structure detection

There are many aspects of this work that can be expanded or improved in the future. With

regard to archaeological structure detection, further research has already begun as we work
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to move away from chip-based classification techniques and towards object detection meth-

ods, which not only predict the presence or absence of a structure in a particular ”chip” but

also draw a box around individual features it identifies as archaeological structures. This

will aid reviewers in identifying what features the model believes to be of archaeological

relevance and, if sufficiently accurate, would allow the rapid counting of buildings across

large areas, with the bounding box providing an approximate measure of building dimen-

sions. Such detailed information will be valuable for calculating population dynamics and

scale, and can be difficult to achieve even with the high-quality GeoPACHA metadata due

to inconsistencies in how and whether counts of archaeological features were recorded

during the brute force survey. Preliminary research with collaborators from the Vanderbilt

Data Science Institute has shown this approach to be highly promising for detecting and

measuring corrals and estancias and I look forward to applying it to residential structures

as well. We are also working to expand the Deep Learning methods used to include con-

tinual learning, which will allow us to continue to improve the model as new data is added

without having to fully retrain the model each time.

6.2.2 Dating Fields

Turning to the agricultural survey, the weakest aspect of this data is its lack of available

dating information. To some extent, this is unavoidable, as dating agricultural fields, es-

pecially terracing, can be challenging on the ground, much less from satellite imagery.

However, there may be ways of approaching this issue. Schreiber (1987) has used eight

lines of evidence to estimate the dates of terrace construction during the Wari occupation

of the Carahuarazo Valley. Among these were the relationships between settlements with

known or estimated construction dates and the terracing. If, for example, a terrace is con-

structed around, but not through a site, then this suggests the site was in existence when the

terrace was constructed. Such complex relationships are precisely the kind of information
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an AI-assisted may be able to determine where an automated survey would fail. Further-

more, local research questions are better elucidated, it may be possible to target particular

analyses such as OSL dating to further estimates of terrace dates.

6.2.3 Modeling Canals

The lack of explicit consideration of canals is another challenge in the analyses of this

dissertation. Distance from streams is taken as a proxy for the availability of water, but

prehispanic canal systems can stretch for kilometers, bringing water to even distant fields

(Dillehay, Eling, and Rossen 2005). However, given the distribution of agricultural infras-

tructure and a high resolution elevation model, it would likely be possible to extrapolate

the locations of canals. Visually, it is often easy to intuit the existence of a canal, even if

it is not visible in the imagery, because terracing will begin as a few narrow fields near the

start of the canal and expand out and down as the canal moves downhill away from the

stream. Understanding this process is particularly important as the maintainence or aban-

donment of fields fed by a canal may be determined by the maintenance or abandonment of

the canal. I.e. Fields that are proximate to a reducción may be abandoned if the canal that

feeds them brings water from a distant stream and is not sufficiently maintained. Determin-

ing the presence and path of canals, and combining it with the agricultural data produced in

this dissertation, may therefore provide further insights into agricultural deintensification.

6.2.4 Alternate Regions: Lake Titicaca

Chapter 5 excluded fields around Lake Titicaca from this analysis due to the major dif-

ferences between agricultural processes between these fields and those in the river val-

leys. However, the majority of agricultural fields identified in the AI-assisted survey of

the GeoPACHA southwestern study area were located in the vicinity of the lake, including

systems of abandoned terracing that far outstrip in extent those at Churajon. Therefore, any

deeper understanding of agricultural deintensification in the south-central Andes demands
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further investigation of the Titicaca fields. Future research will seek to understand the rela-

tionships between the Spanish resettlement and patterns of agricultural deintensification in

this region relate, and how they are similar or different to those in the river valleys.

6.2.5 Ground Truthing/Field Testing

Finally, the results of this dissertation suggest several locations for deeper investigation.

While agriculture and reducciones mostly co-occur on the landscape, there are a handful of

locations where this dynamic appears to not hold true in our data. The regions surrounding

Huanca, Huambo, Taya, and Lluta in Caylloma Province contain extensive terracing that

is not accompanied by any known reducción settlements. However, the town of Huanca

itself appears very similar in form to a reducción. It is possible, and in my opinion likely,

that Huanca is simply a reducción that is not listed in the surviving tasa fragments, and

so was not identified in the LOGAR or GeoPACHA data. Other similar reducciones may

also be in the area. Archival research may be able to confirm this, though I have not yet

been able to track down sufficient evidence to be certain. On the ground archaeological

investigation of the town may also be able to confirm this hypothesis. Other regions will

likely require further investigation. Agriculturalists in the districts of Cotahuasi, Huayna-

cotas, Tomepampa, and others near the border of Arequipa and Ayacucho appear to have

placed a lower priority on proximity to reducciones in determining whether to maintain a

field. This may be the result of an unrecorded reducción that is skewing the data, or due to

the high density of reducciones in the area making it so that very little cultivable land is far

from a reducción. Alternatively, it may be the result of differences in colonial era prioriti-

zation of agricultural production over resettlement confinement. Addressing this question

will likely require the production of a local history and archaeological investigation of the

reducciones to search for departures between bureaucratic documentary evidence and local

realities. Ultimately, the most powerful demonstration of the value of AI-assisted surveys

is its ability to generate new questions and suggest new hypotheses, allowing us to consider
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new possibilities that we could never before explore.
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ISBN: 84-8387-041-X.

Moseley, Michael E. (1983). “The good old days were better: Agrarian collapse and tec-
tonics”. In: American Anthropologist 85.4, pp. 773–799. DOI: 10/bp38mq.

Mumford, Jeremy Ravi (2012). Vertical empire: The general resettlement of Indians in the
colonial Andes. Duke University Press.

Murra, John V. (1972). “El ”control vertical” de un máximo de pisos ecológicos en la
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