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Chapter 1

Introduction

1.1 Background

Equivariant homotopy theory is the study of homotopical invariants, like cohomology, of spaces

with an action by a fixed group G. Since not every space admits a non-trivial action by G, we expect

the class of spaces with G-action to systematically admit interesting structures not present for all

spaces. This extra structure endows invariants of spaces with G-action with additional data and the

study of the resulting algebraic structures is known as equivariant algebra. Equivariant algebra

occupies an important place in algebraic topology and played a crucial role in Hill, Hopkins, and

Ravenel’s solution to the Kervaire invariant one problem [HHR16].

The most fundamental object in equivariant algebra is the Mackey functor. Roughly, a Mackey

functor M for a finite group G consists of a collection of abelian groups M(H) indexed on the

subgroups H ≤ G. These groups are connected by a system of additive operations, called transfer

and restriction, which provide computational power. Mackey functors were originally defined by

Dress to axiomatize various structures that arise in representation theory [Dre73]. They provide

a useful framework for approaching problems in both topology and algebra when a finite group

is acting on objects of interest. The connection to equivariant homotopy theory comes from the

following example.

Example 1.1.1. Let X be a space with action by a finite group G and let E be a genuine G-spectrum,

i.e. a cohomology theory for spaces with G-action. For every n, there is a Mackey functor En(X).

Mackey functors play a role in equivariant homotopy theory analogous to the role of abelian

groups in ordinary algebraic topology. The use of Mackey functors in this way has its roots in

work of Bredon, and was fully realized by a program of work due to Peter May and collaborators

[Bre67, LMM81, May96]. Genuine equivariant cohomology theories are an alternative to the
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older Borel cohomology theories and have certain technical advantages. For example, the genuine

theories satisfy a version of Poincaré duality for all compact G-CW complexes. By contrast,

the Borel cohomology theory only satisfies Poincaré duality for G-CW complexes with free G-

action. The duality of genuine theories was utilized, for example, in Manolescu’s disproof of the

triangulatation conjecture in high dimensions [Man16].

While Mackey functors are abelian groups in the equivariant setting, there are several gener-

alizations of rings. A Green functor is (essentially) a Mackey functor R such that R(H) is a ring

for all H ≤ G. A Tambara functor is a commutative Green functor with additional multiplicative

operations known as norm maps. Norm structures were first studied in connection to equivariant

stable homotopy theory by Greenlees and May, and then more systematically by Hill, Hopkins,

and Ravenel [GM97, HHR16]. The norm operations of a Tambara functor provide significant ad-

vantages when performing computations and were a key ingredient in Hill, Hopkins, and Ravenel’s

seminal work on the Kervaire invariant one problem.

If E is a genuine G-ring spectrum (i.e. a multiplicative equivariant cohomology theory), and

X is any G-space then E0(X) is naturally a Tambara functor, and hence also a Green functor.

More generally, Angeltveit and Bohmann show the collection of Mackey functors E⋆(X) fit into

a graded Tambara functor [AB18]. Other examples of Green and Tambara functors arise naturally

from group representation rings, Grothendieck–Witt rings, and Galois field extensions.

Hill, Hopkins, and Ravenel’s solution to the Kervaire invariant problem motivated a tremendous

amount of recent work in developing a deeper understanding of equivariant algebra, particularly

the ways it relates to equivariant stable homotopy theory [Boh14, BGHL19, BH22, BH18, Hil17,

HH14, HH16, Hoy14, Maz13]. Recent work of Blumberg and Hill provides clarity on the sorts of

additive and multiplicative structures which can emerge in equivariant homotopy theory indexed

on an incomplete G-universe and concludes with a conjecture regarding the ways these additive

and multiplicative structures interact [BH22]. In the next section we describe this conjecture in

more detail. The main result of this thesis is a proof of this conjecture.
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1.2 Summary of results

We begin by describing two variations on Mackey and Tambara functors. The first variant is the

incomplete Tambara functors of Blumberg and Hill [BH18], which are like Tambara functors but

they are missing some norms maps. These structures arise naturally when studying localizations

of equivariant ring spectra. The reader unfamiliar with the theory of spectra in stable homotopy

theory should think of localization as the analogue of classical localization of rings and modules

at multiplicative subsets in commutative algebra. In contrast to the non-equivariant setting, if E

is a commutative ring in G-spectra there can exist localizations Ẽ of E that are not commutative

rings. In particular, Ẽ0 can fail to be a Tambara functor because the process of localization makes

some of the norms impossible to define [HH14]. Blumberg and Hill observed that while some

of the norms are lost, some of the norms remain, implying Ẽ0 is an incomplete Tambara functor

[BH15, BH18].

The second variant we need are the incomplete Mackey functors. In analogy with incomplete

Tambara functors, an incomplete Mackey functor is like a Mackey functor which only has some of

the transfer maps. Such structures were first studied by Lewis as a natural home for the unstable

equivariant homotopy groups of G-spaces, as well as homotopy groups of G-spectra indexed on

incomplete G-universes [Lew92]. Recently, these structures have been studied by Blumberg and

Hill in connection to novel incomplete models for equivariant stable homotopy categories [BH21].

Both “incomplete” settings arise from considering only restricted collections of operations,

norms or transfer, allowed in our algebraic structures. A bi-incomplete Tambara functor is a Tam-

bara functor in which we are only allowed some of the norms and some of the transfers. These

objects were introduced by Blumberg and Hill in [BH22] with examples coming from ring spectra

indexed on incomplete G-universes. In the same paper, Blumberg and Hill conjectured a general-

ization of the Hoyer–Mazur theorem [Hoy14, Maz13], predicting that the bi-incomplete Tambara

functors should serve as a form of equivariant ring objects for incomplete Mackey functors. Our

first main theorem, stated imprecisely here and more precisely in the main text, answers this con-
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jecture in the affirmative.

Theorem A (Theorem 3.4.4). Any category of (additively) incomplete Mackey functors admits

an equivariant symmetric monoidal structure for every compatible collection of multiplicative

norm maps. In each of these structures, the equivariant commutative monoids are exactly the

bi-incomplete Tambara functors.

The proof of Theorem A requires understanding the interplay of various incomplete systems

of norms and transfers. Because the norms and transfers of a bi-incomplete Tambara functor must

interact in non-trivial ways, we cannot pick arbitrary collections of available norms and transfers

and expect to get a coherent and useful algebraic object. We keep track of available norms and

transfers of a bi-incomplete Tambara functor by using indexing categories, written Onm and Otr,

which are certain subcategories of the category of finite G-sets. A pair of indexing categories

(Onm,Otr) are called compatible if they are able to index a bi-incomplete Tambara functor.

The first step toward proving Theorem A is to show that every compatible pair of indexing

categories determines an equivariant symmetric monoidal structure on the category of incomplete

Mackey functors with transfers indexed by Otr. The construction requires us to define norm func-

tors which allow us to move between incomplete K-Mackey functors and incomplete H-Mackey

functors for subgroups K ≤ H . These norm functors are an algebraic analogue of the famous

Hill–Hopkins–Ravenel norm on equivariant spectra. In the setting of ordinary Mackey functors,

the algebraic norms were first constructed by Mazur in the case G = Z/pn, and later for all finite

groups by Hoyer. These norms play an important role in other constructions in equivariant algebra

such as generalizations of topological Hochschild homology for Green functors [BGHL19].

Constructing the algebraic norm functors requires understanding exactly the conditions under

which two pairs of indexing categories can be compatible. Blumberg and Hill provide one charac-

terization which depends heavily on computation of the coinduction functors

MapK(H,−) : SetK → SetH
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for subgroups K ≤ H ≤ G. Unfortunately it is, in practice, not a simple task to determine the

orbit decomposition of coinduced sets.

Our second main theorem provides a way to check that two indexing categories are compat-

ible without needing to compute any coinduction functors. We achieve this by reframing the

problem in terms of transfer systems, a tool developed independently by Rubin and Balchin–

Barnes–Roitzheim to give an alternate description of the combinatorics of indexing categories

[BBR21, Rub21]. In Definition 2.5.6 we give a notion of a compatible pair of transfer systems

which can be checked without any difficult computations. Our second main theorem is:

Theorem B (Theorem 2.5.10). Compatibility of a pair of indexing categories is equivalent to a

compatibility condition (Definition 2.5.6) on the associated pair of transfer systems.

Theorem B provides enough understanding of compatible pairs to define the norm functors, but

it is also of independent interest. Important examples of compatible pairs of indexing categories

arise naturally from equivariant Steiner and linear isometries operads indexed on G-universes. Ru-

bin has, in some cases, classified the kinds of indexing categories that can arise from the equivari-

ant Steiner operads, but a classification of those determined by linear isometries operads remains

unknown [Rub21]. Theorem B could provide an avenue for understanding the linear isometries

operads via their compatibility with the Steiner operads.

The models of equivariant symmetric monoidal structures used in Theorem A are the symmet-

ric monoidal Mackey functors defined by Hill and Hopkins [HH16, HM19]. These can be thought

of as Mackey functors in symmetric monoidal categories: a symmetric monoidal Mackey functor

C consists of symmetric monoidal categories C(H) for every subgroup H ≤ G. The categories

C(H) are connected by strong monoidal functors that mirror data of ordinary Mackey functors.

These functors are subject to a rather large amount of coherence data. We prove this coherence

can be repackaged as a pseudo-functor which takes values in the 2-category of categories. We call

these objects categorical Mackey functors and show that they can recover most of the examples of

Hill and Hopkins.
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Theorem C (Theorem 4.2.6). Every categorical Mackey functor determines a symmetric monoidal

Mackey functor in the sense of [HH16].

Packaging the coherence this way allows for efficient construction of examples, such as that of

Theorem A. A more subtle advantage of Theorem C is that our pseudo-functors take values in the

2-category of categories, instead of symmetric monoidal categories. Valuing our pseudo-functors

in a less structured 2-category should allow one to define a notion of symmetric monoidal Tambara

functors, though we do not pursue this here. We expect that such structures play an important role

in studying the ring structures on equivariant spectra realized as spectral Mackey functors in the

sense of Guillou–May [GM11, BO15]. Finally, organizing symmetric monoidal Mackey functors

in this way sheds some light on the notion of equivariant commutative monoids.

Theorem D (Theorem 4.5.3). For a symmetric monoidal Mackey functorM coming from a cate-

gorical Mackey functor, its category of equivariant commutative monoids is the universal extension

ofM to a product preserving pseudo-functor AG
2 → Cat, where AG

2 is a 2-categorical version of

the Burnside category.

After a preprint [Cha22] of some of this work was made available online, it was brought to

my attention that a version of Theorem A was proved independently in the Ph.D. Thesis of Ivo

Vekemans. Our work differs in several ways. In this thesis we approach the problem by first study-

ing the ways that indexing categories can interact by proving Theorem B. Beyond its independent

interest, this theorem has the virtue of also providing an affirmative answer to Conjecture 7.90 of

[BH22]. From here, we work in the framework of the symmetric monoidal Mackey functors of

Hill and Hopkins [HH16] to prove Theorem A.

By contrast, Vekemans’ work provides an interesting and more general description of cate-

gories of incomplete Mackey and Tambara functors as modules over the Burnside bicategories in

a particular sense. This approach is similar, though still distinct, from the work of this thesis in

Chapter 4. We explain the differences in more detail in Remark 4.2.13.
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1.3 Notations and conventions

In this thesis the letter G is reserved for a finite group. The groups H and K will always be

subgroups of G. If K ≤ H , the functors ResHK , IndH
K , and MapK(H,−) denote the restriction,

induction, and coinduction functors of G-sets, respectively. In Chapter 3 we make use of extensions

of these functors to various Burnside categories, we denote these extensions by ρHK , IHK , and CH
K

respectively.

If X is a G-set we write XH for the set of H-fixed points of X . For any x ∈ X we write Gx

or StabG(x) for the stabilizer of x in G. We write Hx = H ∩Gx. If g ∈ G we write Hg = g−1Hg

for the conjugate subgroup.

The category of sets will be denoted by Set. The category of finite G-sets will be written SetG

and similar notation will be used for finite H-sets and finite K-sets. When using large categories,

we assume a choice of Grothendieck universe of small sets and all large categories, in particular

Set, are assumed to consist of only objects which exist in this universe. We will make no further

comment on the size of our categories; the interested reader should look at [Bor94, Section 1.1] or

[Shu08].

If C is any category we will write SetC for the category of functors from C in Set. If F : C → D

is a functor, will we use F ∗ : SetD → SetC for the functor given by precomposition with F . This

functor has a left adjoint and right adjoint which we denote by F! and F∗ respectively. If not

otherwise specified, we assume these adjoint are given by the pointwise Kan extension formulae.

7



Chapter 2

Mackey and Tambara functors

The starting point of equivariant algebra is to replace the category of abelian groups with the

category of Mackey functors. These objects are systems of abelian groups, indexed on the sub-

groups of a finite group G, which are connected by collections of group homomorphisms called

transfers and restrictions. The operations of transfer and restriction give computational power to

examples coming from equivariant topology and are an essential part of understanding the structure

of equivariant homotopical invariants.

Unfortunately, requiring that our invariants have this additional structure can be fairly restric-

tive. For example, if X is a connected, finite G-CW complex then it is not true that the homotopy

groups πn(X) admit the structure of a Mackey functor. The issue is that defining the transfer

homomorphisms requires additional structure on the space X . To alleviate this, one can instead

consider “incomplete” versions of Mackey functors which have only some of their transfers. We

keep track of which transfers are preserved using the data of indexing categories.

The story of commutative rings in equivariant algebra is similar. The most powerful equivariant

version of a commutative ring is known as a Tambara functor, which is a system of commutative

rings which are connected by transfers, restrictions, and additional multiplicative operations called

norms. In topology, examples of Tambara functors arise from genuine equivariant ring spectra

which represent multiplicative cohomology theories for G-spaces. An observation of Blumberg

and Hill is that if we allow a weaker notion of equivariant ring spectrum then we recover algebraic

data which is just like a Tambara functor, except that it is missing some of its norms. Such algebraic

objects are known as incomplete Tambara functors.

In this chapter we begin with background on indexing categories, Mackey functors, and Tam-

bara functors. We then recall Blumberg and Hill’s definition of bi-incomplete Tambara functors

which serve the role of commutative rings for incomplete Mackey functors. Keeping track of bi-
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incomplete Tambara functors requires that we use two different indexing categories which interact

in non-trivial ways. We prove a characterization of which pairs of indexing categories are suffi-

ciently compatible in Theorem 2.5.10. As a corollary, we answer a conjecture of Blumberg and

Hill in the affirmative; this is stated as Corollary 2.5.11.

2.1 Indexing Categories

Throughout this paper, systems of transfers and norms for Mackey and Tambara functors for a

finite group G are indexed by indexing categories. We begin this section by recalling the definitions

and some basic examples. At the end of the section we prove some new results regarding the

interaction of indexing categories with the normal cores of subgroups H of a group G.

An indexing category O is a particularly nice subcategory of the category of finite G-sets. Let

us first recall some definitions which make precise what we mean.

Definition 2.1.1. Let C be a category with finite coproducts. A subcategory O ⊂ C is

1. wide if it contains all the objects,

2. finite coproduct complete if it has finite coproducts, and they agree with the coproduct in C,

3. pullback stable if for any pullback square

A B

C D

g f

in C with f in O we also have g in O.

Definition 2.1.2. An indexing category O is a wide, pullback stable, finite coproduct complete

subcategory of SetG. For any H ≤ G, an H-set X is called O-admissible if there is a morphism

G×H X → G/H in O.

Example 2.1.3. For any group G we have the complete indexing category Ogen = SetG.

9



Example 2.1.4. For any group G we have the trivial indexing category Otr. A map f : X → Y is

in Otr if and only if for any orbit X0 ⊂ X , the restriction f : X0 → Y is an isomorphism onto its

image. Essentially, the only maps in Otr are fold maps and inclusions.

Non-trivial examples come from representation theory.

Example 2.1.5. Let V be a finite dimensional real representation of the group G with V G ̸= 0.

For H ≤ G a subgroup, we say that a finite H-set X is V -admissible if there is an H-equivariant

embedding X → V . There is an indexing categoryOV which is generated by the maps f : G/K →

G/H for subgroups K ≤ H such that H/K is V -admissible.

When V is a finite dimensional trivial representation we have OV = Otr. When V is the

regular representation of G then OV = Ogen. In general, OV will be something in between.

These indexing categories are called the Steiner indexing categories and are studied in [BH15] and

[Rub21].

Example 2.1.6. Let H ≤ G be a subgroup. Every G-indexing category O determines an H-

indexing category i∗HO. A map of H-sets f : S → T is in i∗HO if the induced G-map

G×H f : G×H S → G×H T

is in O. It follows from the definitions that for any K ≤ H , the i∗HO-admissible K-sets are the

same at the O-admissible K-sets. Note that for any K ≤ H , the induction functor

H ×K (−) : SetK → SetH

restricts to a functor

H ×K (−) : i∗KO → i∗HO.

Our definition of anO-admissible set is not exactly the same as one given in [BH22], though it

is equivalent. The difference is that Blumberg and Hill define admissibility for indexing systems,

which are structures that carry data equivalent to that of indexing categories. Indexing systems
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play no explicit role in this paper, and so we have worded our statements in terms of indexing

categories. In keeping with this, the next three lemmas are not new, although we include proofs

because we do not know a reference in which they are stated in this language.

Lemma 2.1.7 ([BH18, Proposition 3.1]). Suppose O is an indexing category and H ≤ G is a

subgroup. If X is an O-admissible H-set then every orbit of X0 ⊂ X is also O-admissible.

Proof. By assumption, we have a map f : G×H X → G/H in O which allows us to construct the

composite

G×H X0 → G×H X
f−→ G/H

where the first map is the inclusion. By Proposition 3.1 of [BH18], all monomorphisms of SetG

are in O and thus we have constructed a map G×H X0 → G/H that is in O.

Lemma 2.1.8 ([Rub21, Proposition 3.3]). LetO be an indexing category. If H/K isO-admissible,

then for all subgroups L ≤ G we have that (H ∩ L)/(K ∩ L) is also O-admissible.

Proof. Since H ∩ L = H ∩ (H ∩ L) we can replace L by H ∩ L and reduce to the case where

L ≤ H . Unwinding the definitions, it suffices to construct a map G/(L ∩ K) → G/L in O. By

assumption, we have a map f : G/K → G/H in O. Consider the following pullback diagram:

G/L×G/H G/K G/K

G/L G/H

p f

The map p must be in O by pullback stability and the fact that f is in O. By Lemma 2.1.7, we are

done if we can show the pullback G/L×G/H G/K has an orbit isomorphic to G/(L∩K). This is

immediate since the element (eK, eL) in the pullback has stabilizer exactly L ∩K.

When applying Lemma 2.1.8 we say (H ∩ L)/(K ∩ L) is obtained from H/K by intersection

with L. In this language, the lemma can be summarized by saying the collection of O-admissible

sets is closed under intersection with subgroups.
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Our next lemma states that the induction functors associated to subgroups K ≤ H , with H/K

an O-admissible H-set, give a function from admissible K-sets to admissible H-sets. Blumberg

and Hill refer to this property as closure under self-induction.

Lemma 2.1.9 (Closure under self-induction). Suppose K ≤ H are subgroups and H/K is an

O-admissible H-set. If T is an O-admissible K-set, then H ×K T is an O-admissible H-set.

Proof. The assumptions guarantee maps f : G×K T → G/K and g : G×H (H/K)→ G/H inO.

Since there is an isomorphism i : G/K ∼= G×H (H/K), which must be inO, we see the composite

g ◦ i ◦ f : G ×K T → G/H is a morphism in O. The result now follows from the isomorphism

G×K T ∼= G×H (H ×K T ).

If S is a G-set, we write Gs = {g ∈ G | g · s = s} for the stabilizer of s in G.

Lemma 2.1.10 ([BH18, Section 3]). A map f : S → T is inO if and only if for any s ∈ S we have

that Gf(s)/GS is an O-admissible Gf(s)-set.

In the remainder of this section we make a few new observations on the structure of index-

ing categories. Of particular interest is the interaction between indexing categories and the cores

(Definition 2.1.12 below) of various subgroups H ≤ G. We begin with a modest generalization of

Lemma 2.1.8.

Corollary 2.1.11. If H1/K1 and H2/K2 are twoO-admissible sets, then (H1 ∩H2)/(K1 ∩K2) is

also O-admissible.

Proof. Intersecting H1/K1 with H2 yields that (H1 ∩H2)/(K1 ∩H2) is O-admissible. Similarly,

intersecting H2/K2 with K1 gives us that (K1 ∩ H2)/(K1 ∩ K2) is O-admissible. We are now

done, as

(H1 ∩H2)/(K1 ∩K2) ∼= (H1 ∩H2)×K1∩H2 (K1 ∩H2)/(K1 ∩K2)

with the right hand side O-admissible by Lemma 2.1.9.
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Definition 2.1.12. For a subgroup H ≤ G the core of H in G, denoted CoreG(H), is the intersec-

tion of all conjugates of H . That is,

CoreG(H) =
⋂
g∈G

Hg

where Hg = gHg−1.

Remark 2.1.13. The core of a subgroup admits several equivalent definitions. In particular, it can be

described as the kernel of the group homomorphism G→ Σ|G/H| which realizes the left G-action

on the set of H-cosets. While the definition above is convenient for indexing categories, especially

in light of Corollary 2.1.11, this second description can be helpful to have in mind later when

considering the coinduction functors MapH(G,−) : SetH → SetG. It also makes evident that the

core is always a normal subgroup. Indeed, another equivalent characterization of the CoreG(H) is

the largest normal subgroup of G contained in H .

Lemma 2.1.14. Suppose H/K is an O-admissible H-set. Then for all g ∈ G the sets Hg/Kg are

O-admissible.

Proof. The result follows from noticing that

G×H H/K ∼= G/K ∼= G/Kg ∼= G×Hg Hg/Kg

and the fact that indexing categories contain all isomorphisms.

Proposition 2.1.15. Suppose O is an G-indexing category and K ≤ H ≤ G is a chain of sub-

groups. If H/K isO-admissible then so is CoreG(H)/CoreG(K). In particular, if G/H is admis-

sible then so is G/CoreG(H).

Proof. The result follows from repeated applications of Lemma 2.1.14 and Corollary 2.1.11.

Proposition 2.1.15 is useful when working with indexing categories because it allows us to

effectively replace an arbitrary subgroup H ≤ G with the CoreG(H), which is a normal subgroup.
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This is especially helpful when dealing with coinduced G-sets. For now, we content ourselves with

the following example.

Example 2.1.16. Suppose G = Σn is the symmetric group on n elements for n ≥ 5. Let H be any

proper subgroup of Σn, other than the alternating group. Since CoreΣn(H) is a normal subgroup

of Σn that is contained in H it must be the trivial group. By Proposition 2.1.15, ifO is an indexing

category with Σn/H admissible then Σn/e is also admissible.

The previous example illustrates the surprising ways the core can affect the admissible sets of

an indexing category. In Section 2.5, specifically the proof of Proposition 2.5.7, the interaction

between the cores of subgroups and indexing categories plays a central technical role in our char-

acterization of compatible indexing categories. We will define compatibility of indexing categories

precisely in Definition 2.4.2 below. Presently, it is sufficient to think about a pair of indexing cat-

egories (Om,Oa) as being compatible if Om acts on Oa in some algebraic sense. We end this

section by collecting a few corollaries illustrating the ways that the core sheds light on the rigid

structure of compatible pairs of indexing categories.

Corollary 2.1.17. Suppose H is a subgroup of G such that CoreG(H) = e is the trivial group

and suppose Om is an indexing category with G/H an Om-admissible G-set. If (Om,Oa) is a

compatible pair of indexing categories, then Oa is the complete indexing category.

Proof. By Proposition 2.1.15, we have that G/e isO-admissible. The result is now the conclusion

of [BH22, Proposition 7.69].

Corollary 2.1.18. Suppose G is a simple group, H ≤ G a proper subgroup, andOm is an indexing

category. If G/H is Om-admissible then the only indexing category Oa which is compatible with

Om is the complete indexing category.

2.2 Incomplete Mackey functors

In this section we review the notion of incomplete Mackey functors. Most of the material from

this section can be found in [BH22].
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If X and Y are two G-sets, then a span between X and Y is a pair of maps

[X
r←− A

t−→ Y ] (2.1)

where r, t are equivariant maps of G-sets. We refer to the G-set A in the span as the middle G-set

and the morphisms r and t as the legs of the span. Two spans are isomorphic if the there is an

isomorphism of their middle G-sets which is compatible with the legs.

Definition 2.2.1. Let O be an indexing category for a finite group G. The O-Burnside Category

AG
O is the category whose objects are finite G-sets and morphisms AG

O(X, Y ) are isomorphism

classes of spans (2.1) with t ∈ O. Composition is given by pullback, i.e. the composition of

[X
r1←− A

t1−→ Y ] and [Y
r2←− B

t2−→ Z] is the class of the span along the top of

A×Y B

A B

X Y Z

r1◦π1
π1

t2◦π2
π2

t1r1 t2r2

where the middle square is a pullback.

Remark 2.2.2. Composition in the categoryAG
O is well defined because the indexing categoryO is

pullback stable. In many ways this is the point of indexing categories, although they were invented

in [BH18] to manage incomplete systems of norms, not transfers.

Example 2.2.3. When O = SetG is the complete indexing category we refer to AG
O as simply the

Burnside category of G and denote it by AG.

Morphisms in the AG
O factor as composites of two nice families of maps called the restrictions

and transfers. For a map f : X → Y in SetG, we define the restriction of f by

Rf = [Y
f←− X = X].
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Similarly, if f ∈ O we can define the transfer of f by

Tf = [X = X
f−→ Y ].

Using these, we can decompose an arbitrary span as

[X
f←− A

g−→ Y ] = Tg ◦Rf . (2.2)

When f : G/K → G/H for K ≤ H is the canonical quotient we denote Rf and Tf by RH
K and

TH
K respectively. Finally, if f : G/H → G/Hg is a conjugation isomorphism, we denote Tf by cg,

the conjugation by g. Choosing cg−1 = Rf leads to the same conjugation maps.

The O-Burnside category of a group G is a semi-additive category with finite products given

by disjoint union of G-sets. It follows that a product preserving functor M : AG
O → Set naturally

takes values in commutative monoids. For any finite G-set X , the addition on M(X) is given by

M(X)×M(X) ∼= M (X ⨿X)
M(T∇)−−−−→M(X)

where∇ : X ⨿X → X is the fold map. The unit is given by the image of

M(∅) M(T∅→X)−−−−−→M(X)

Note M(∅) must be a singleton set as M is product preserving.

Definition 2.2.4. A semi O-Mackey functor is a product preserving functor M : AG
O → Set. An

O-Mackey functor is a semi O-Mackey functor that is group complete, in the sense that for all

X the commutative monoid M(X) is actually an abelian group. Any semi O-Mackey functor M

determines a O-Mackey functor M+ defined by letting M+(X) be the group completion of the

commutative monoid M(X) for every finite G-set X .

A morphism of (semi) O-Mackey functors is a natural transformation of product preserving
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functors. We denote the category ofO-Mackey functors for a group G by MackGO. WhenO = SetG

is the complete indexing category we recover the category of Mackey functors and denote this

category by MackG.

Remark 2.2.5. It is common to define Mackey functors to be product preserving functors from

the Burnside category into the category of abelian groups. While this definition is equivalent,

we have elected to value our Mackey functors in the category of sets for two reasons. First, this

definition lines up more readily with the view that the Burnside category is the multisorted Lawvere

theory whose models are Mackey functors. Second, and more importantly, we wish to have a better

analogy with Tambara functors which are also given as product preserving functors from a specified

category PG into sets. Unlike Mackey functors, however, Tambara functors cannot be defined as

functors that land in abelian groups. The essential difference is that Tambara functors are a model

for equivariant ring structures and the bilinear multiplication map R×R→ R of a ring R is not a

map of abelian groups.

While there are many objects in AG
O, it suffices to specify the value of a Mackey functor M

on only finitely many objects. Since every finite G-set is the union of its orbits, and all orbits are

isomorphic to G/H for some subgroup H , an O-Mackey functor M is determined by its value

on the objects G/H as well as on spans [G/H
r←− G/K

t−→ G/L] = TL
KR

H
K and conjugations cg.

Abusing notation, we use RH
K (resp. TH

K ) to denote both the restriction (resp. transfer) in AG
O as

well as the map induced by applying M .

The following lemma gathers together several standard and useful facts aboutO-Mackey func-

tors. The proofs are all standard and, with the exception of the double coset formula, straightfor-

ward. The double coset formula follows from a computation of the orbit decomposition for the

product of transitive H-sets: H/L×H/K.

Lemma 2.2.6. Let H be a subgroup of G. The restriction and transfer maps of a semi-O-Mackey

functor M satisfy the following properties, assuming the transfers exist.

1. (Additivity) All transfers, restrictions, and conjugations are additive maps of commutative

monoids.
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2. (Composition) For K ≤ L ≤ H we have RL
KR

H
L = RH

K and TH
L TL

K = TH
K .

3. (Double Coset Formula) Let K and L be subgroups of H and γ1, . . . , γn be a choice of rep-

resentatives for the double cosets K\H/L. If H/L is O-admissible, we have the following

equality of maps:

RH
KT

H
L =

∑
γi

TK
K∩LγiR

Lγi

K∩Lγicγi

4. (Weyl Group Action) The Weyl group WG(H) = NG(H)/H acts naturally on the G-set

G/H . Applying M to this action gives M(G/H) a canonical WG(H) action.

Remark 2.2.7. In the statement of the double coset formula we note that O-admissibility of H/L

is sufficient to imply both sides of the equation are well-defined. The left hand side is clear. To see

the right hand side is well defined, note that K/(K ∩ Lγi) is admissible for all i by Lemma 2.1.8.

As a warning, it seems it is possible for all the transfer on the right hand side to be well defined but

for the transfer on the left to still be undefined.

Examples of Mackey functors include the Burnside Mackey functor, representation rings, and

Galois field extensions discussed below. For simplicity, we write the examples as complete Mackey

functors, i.e. with O = SetG. Incomplete versions can be obtained for any O by restricting our

functors along the inclusion AG
O → AG.

Example 2.2.8. For any object X ∈ AG there is a represented semi-Mackey functor AX =

AG(X,−). The group completion A+
G/G is called the Burnside Mackey functor. One can check

that AG/G(G/H) is isomorphic to the set of isomorphism classes of finite H-sets with addition

given by disjoint union. It follows that A+
G/G(G/H) is the free abelian group on the set of transi-

tive H-sets. The restriction RH
K is given by the restriction of H-sets to K-sets while the transfer

TH
K is given by induction.

Example 2.2.9. For every H ≤ G, let Rep(H) denote the abelian group of virtual complex H-

representations. For subgroups K ≤ H , these groups are related via the classical induction and

restriction homomorphisms IndH
K : Rep(K) → Rep(H) and ResHK : Rep(H) → Rep(K). This
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produces the complex representation ring Mackey functor RG, which is given by RG(G/H) =

Rep(H) with transfers and restrictions are given by induction and restriction homomorphisms.

Varying the kinds of representations considered leads to other examples, such as the real orthogonal

representation ring ROG, the unitary representation ring RUG, etc.

Example 2.2.10. Let F ⊂ L be a a finite Galois field extension with Galois group G. We obtain a

Mackey functor L given by L(G/H) = LH , the H-fixed points of L. The restriction RH
K associated

to K ≤ H is given by inclusion of fixed points. The transfers TH
K are given by the classical field

trace: picking representatives h1K, . . . , hnK for the left cosets H/K we define tr : LK → LH by

tr(x) =
n∑

i=1

hix

which does not depend on the choice of representatives as x ∈ LK . In fact, the same transfers and

restrictions give a Mackey functor for any ring R with G-action.

Examples of incomplete Mackey functors come from unstable equivariant homotopy theory.

Example 2.2.11. Recall the trivial indexing category Otr of Example 2.1.4. An Otr-Mackey func-

tor is more commonly known as a coefficient system. Such an object consists of a system of

abelian groups, indexed by the subgroups of G, and connected by only the restriction maps. Given

a based G-space X and n ≥ 2, we have the n-th homotopy coefficient system of X given by

G/H 7→ πn(X
H) where XH denotes the H-fixed points of X . For subgroups K ≤ H , the restric-

tion map RH
K : πn(X

H)→ πn(X
K) is induced by the inclusion of fixed points XH → XK .

Example 2.2.12. Suppose X is a (based) G-space which is also an infinite loop space. In the

non-equivariant setting, such a space is equivalent to a connective spectrum; the failure of X

to be a genuine G-spectrum is measured by the non-existence of transfer maps in the homotopy

coefficient systems. More precisely, for a genuine ΩG-spectrum Y , the homotopy groups πn(Y ) fit

into a Mackey functor with the transfers determined by the delooping isomorphisms ΩV (Yn+V ) ∼=

Yn. To build in transfer maps to the homotopy coefficient system of X is equivalent to making

choices for equivariant deloopings X ∼= ΩV (XV ) for various non-trivial G-representations V .
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Such deloopings can be difficult to construct, although models in the case G = C2 have been

constructed by Liu, and used in computations of equivariant cohomology by Petersen [Liu20,

Pet22]. For more on the connections between incomplete Mackey functors and stability in topology

we refer the reader to the work of Lewis and Blumberg–Hill [Lew92, BH21].

2.3 Tambara functors

Examples 2.2.8, 2.2.9, and 2.2.10 above are all classical examples of Mackey functors. Notice,

though, that all three examples actually have more structure than simply an abelian group for all

subgroups H ≤ G. If M is any Mackey functor from these examples, M(G/H) is actually a

commutative ring for all H . This ring structure and the norm maps described below lead to the

notion of Tambara functors, originally defined in [Tam93]. Tambara functors, similar to Mackey

functors, are defined by first giving an additive category PG and letting (semi) Tambara functors

be the product preserving functors from this category into sets.

Eventually we need to define bi-incomplete Tambara functors, which depend on a pair of in-

dexing categories (Om,Oa), one for the multiplicative norms and one for the additive transfers.

Since the composition laws in the category PG are a bit elaborate, we first give the definition in

the case of complete indexing categories. We then proceed to explain the necessary modifications

to create a category we denote PG
Om,Oa

which is the domain of a bi-incomplete Tambara functor.

For a group G, the polynomial category PG is the category whose objects are finite G-sets and

with morphism sets PG(X, Y ) consisting of isomorphism classes of bispans

[X
r←− A

n−→ B
t−→ Y ]

where r, n, and t are equivariant maps of G-sets. The composition of morphisms is described be-

low. This category, like the Burnside category, is semi-additive and thus for any product preserving

functor S : PG → Set and any X ∈ PG, the set S(X) is naturally a commutative monoid with
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addition given by

S(X)× S(X) ∼= S(X ⨿X)
S([X⨿X

=←−X⨿X
=−→X⨿X

∇−→X])−−−−−−−−−−−−−−−−−−−→ S(S).

Putting the fold map ∇ in the middle of the bispan, instead of on the right, leads to a second

map S(X) × S(X) → S(X) which we call the multiplication. The composition laws of PG are

such that the addition and multiplication make S(X) into a commutative semiring (a ring possibly

without additive inverses).

Definition 2.3.1. A semi-Tambara functor is a a product preserving functorPG → Set. A Tambara

functor is a semi-Tambara functor S such that S(X) is a ring for all X . A morphism of Tambara

functors is a natural transformation of product preserving functors and the category of Tambara

functors for a group G is denoted by TambG.

Before describing the composition laws for PG, we highlight the key difference between the

categories AG and PG, namely the extra map A
n−→ B in the bispan. The map n in this cate-

gory exists to parameterize the norm maps NH
K : S(G/K) → S(G/H) for Tambara functors S.

These norm maps are multiplicative maps between the various rings comprising a Tambara func-

tor. Between the transfers, norms, and restrictions the category PG has three distinguished kinds

of morphisms associated to any map f : X → Y in SetG. We denote these by

Rf = [Y
f←− X = X = X],

Nf = [X = X
f−→ Y = Y ],

Tf = [X = X = Y
f−→ Y ],

and refer to these maps as the restriction, norm, and transfer associated to the map f . Just as we

did for Mackey functors, we abuse notation and sometimes use Rf , Nf , and Tf for both the maps

in PG as well as for the maps induced by a Tambara functor S. Further, when f : G/K → G/H

is a canonical quotient for K ≤ H , we write RH
K , TH

K and NH
K .
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To describe the composition laws in PG, we first note than an arbitrary bispan

ω = [X
r←− A

n−→ B
t−→ Y ]

can be written as the composition Tt ◦Nn ◦Rr. Given another bispan

ω′ = [Y
r′←− C

n′
−→ D

t′−→ Z],

we need to know how to write ω′ ◦ ω = Tt′Nn′Rr′TtNnRr as a composite of the form Tt′′Nn′′Rr′′ .

To do this, we need to describe the interchange rules relating the various T ’s, N ’s and R’s; these

are summarized over the course of a few lemmas. The proof that the definitions of compositions

given in the following lemmas defines a category can be found in the original paper of Tambara

[Tam93].

Lemma 2.3.2. For G-equivariant maps f : X → Y and g : Y → Z we have

1. Tg◦f = Tg ◦ Tf ,

2. Ng◦f = Ng ◦Nf ,

3. Rg◦f = Rf ◦Rg.

Lemma 2.3.3. For any pullback square

A B

C D

h

k

f

g

in SetG, we have both Rf ◦Ng = Nk ◦Rh and Rf ◦ Tg = Tk ◦Rh.

Remark 2.3.4. The composition law Rf ◦ Tg = Tk ◦ Rh in Lemma 2.3.3 is exactly the same

composition law satisfied by restrictions and transfers in the Burnside category. Indeed, there is a
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functor iadd : AG → PG that is the identity on objects and acts on morphisms by

[X
r←− A

t−→ Y ] 7→ [X
r←− A = A

t−→ Y ].

Restricting along iadd gives a forgetful functor i∗add : TambG → MackG analogous to sending a

commutative ring to its underlying abelian group.

Since the norms and restrictions satisfy the same interchange law as transfers and restrictions

there is a second functor imult : AG → PG which is the identity on objects and acts on morphisms

by

[X
r←− A

t−→ Y ] 7→ [X
r←− A

t−→ Y = Y ].

Restricting along this functor gives a functor from the category of Tambara functors to the category

of semi-Mackey functors analogous to sending a commutative ring to its underlying multiplicative

monoid.

It remains to explain how the transfers and norm maps interchange. To do so, we first need to

describe the exponential diagrams. For X ∈ SetG we denote the category of G-sets over X by

SetG/X . Associated to an equivariant map f : X → Y , we have a functor f ∗ : SetG/Y → SetG/X given

by pullback. By the adjoint functor theorem f ∗ has a right adjoint, called the dependent product,

which we denote by f∗ : SetG/X → SetG/Y .

Example 2.3.5. Let n : G/H → G/G be the collapse map. There are equivalences of categories

SetG/(G/H)
∼= SetH and SetG/(G/G)

∼= SetG and, passing through these equivalences, one can show

that n∗ : SetG → SetH is the usual restriction functor. By the uniqueness of adjoints, it follows

that n∗ : SetH → SetG is naturally isomorphic to the coinduction functor.

Given two composable maps A
t−→ B

n−→ C in SetG, we can form the associated exponential

diagram
B A B ×C n∗(A)

C n∗(A)

n

t r′

n′

t′

(2.3)
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in which n′ is the projection and t′ is the map realizing n∗(A) as an object in SetG/C . Noting that

B ×C n∗(A) = n∗n∗(A), the map r′ : n∗n∗(A)→ A is the counit of the adjunction.

Proposition 2.3.6. Given composable maps A t−→ B
n−→ C in SetG, the norm Nn and transfer Tt in

PG interchange as NnTt = Tt′Nn′Rr′ where t′, n′, and r′ are the maps in the exponential diagram

(2.3).

Example 2.3.7. Let G = C2 = {e, σ} be the cyclic group of order 2, let S ∈ TambC2 and let

a, b ∈ S(C2/e). Since addition is the transfer associated to the fold maps, the exponential diagram

can be used to compute that

NC2
e (a+ b) = NC2

e (a) +NC2
e (b) + TC2

e (a · cσ(b)).

For a derivation of the above formula, see Section 7 of [Str12].

2.4 Bi-incomplete Tambara functors

We now turn to the problem of defining bi-incomplete Tambara functors. Suppose we are given

a pair of indexing categories (Om,Oa). The idea is to take a wide subcategory PG
Om,Oa

⊂ PG with

the transfers restricted to maps in Oa and the norms restricted to Om. Due to the complicated

composition laws of PG, some care has to be taken in which indexing categories we can choose

and still have PG
Om,Oa

be a category.

Example 2.4.1. Let G = C2 be the group with two elements and suppose (Om,Oa) = (Ogen,Otr).

It follows from Example 2.3.7 that PG
Om,Oa

as described in the above paragraph is not a category.

Indeed, if∇ : C2/e⨿C2/e→ C2/e is the fold map, the example shows that defining the composi-

tion NC2
e ◦ T∇ in PG

Om,Oa
requires TC2

e . Since C2/e→ C2/C2 is not a morphism in Otr this means

the composition in P(Om,Oa) would not be defined.

The necessary condition to put on a pair of indexing categories (Om,Oa) is studied in [BH22]

and leads to the following definition which originates in [BH22, Definition 7.29].
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Definition 2.4.2. A pair of indexing categories (Om,Oa) is compatible if for all maps n : S → T

in Om, we have

n∗((Oa)/S) ⊂ (Oa)/T

where n∗ is the dependent product functor.

Theorem 2.4.3 (Theorem 7.30 of [BH22]). If (Om,Oa) is a compatible pair of indexing categories

then PG
Om,Oa

⊂ P is a wide subcategory with morphisms PG
Om,Oa

(X, Y ) given by isomorphism

classes of bispans

[X
r←− A

n−→ B
t−→ Y ]

with n ∈ Om and t ∈ Oa.

Definition 2.4.4. A semi (Om,Oa)-Tambara functor is a product preserving functor

S : PG
Om,Oa

→ Set .

A (Om,Oa)-Tambara functor is a semi (Om,Oa)-Tambara functor S such that S(X) is additively

group complete for all G-sets X . When the specific indexing categories are implicit, we refer

to such objects as (semi) bi-incomplete Tambara functors. The category of (Om,Oa)-Tambara

functors is denoted TambG
(Om,Oa).

The main example of interest comes to us from topology.

Definition 2.4.5. A G-universe U for a finite group G is a real orthogonal representation of G such

that UG ̸= 0 and for any finite dimensional subrepresentation V ⊂ U there exist G-equivariant

embeddings V n → U for all n.

Example 2.4.6. A complete G-universe U is one such that every real orthogonal G-representation

embeds into U infinitely many times. A model for U is given by taking the infinite direct sum of

the real regular representation of G.

Example 2.4.7. A trivial G-universe Utr is any G-universe with trivial G-action.
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Universes index different categories of genuine G-spectra SpGU . Different universes change the

associated categories of spectra in a subtle, but important, way related to the dualizability of the

the orbits G/H . Briefly, the suspension spectrum G/H+ ∈ SpGU is dualizable if and only if there

is a G-equivariant embedding G/H → U . For full details see [LMSM86, Section II.6].

If U is a complete G-universe, then every G-orbit has an embedding into U and so all orbits are

self-dual. As a result, the canonical quotient map G/K → G/H associated to subgroups K ≤ H

induces two maps of G-spectra:

rHK : Σ∞
GG/K+ → Σ∞

GG/H+

tHK : Σ∞
GG/H+ → Σ∞

GG/K+

For any G-spectrum X indexed on U , the assignment

G/H 7→ [Σ∞
GG/H+, X] (2.4)

is a Mackey functor, where restriction and transfer are given by (rHK)
∗ and (tHK)

∗ respectively. Here,

we have used [−,−] to denote the homotopy classes of maps in the equivariant stable homotopy

category. If X is a G-E∞ ring spectrum then the assignment (2.4) yields a Tambara functor.

When the universe U is not complete the situation is a bit more subtle. The universe U deter-

mines two operads, the Steiner operad SU and linear isometries operad LU , which in turn determine

indexing categories we denote OS and OL. The types of indexing categories arising this way are

studied in [Rub21].

Proposition 2.4.8 ([BH22, Proposition 7.82]). The pair (OL,OS) is compatible.

Correspondingly, in models of the equivariant stable homotopy category indexed on incomplete

universes, such as those studied in [BH21], the assignment (2.4) naturally takes values in OS-

Mackey functors. If X is an equivariant ring spectrum in this category, we obtain a (OL,OS)-

Tambara functor.
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2.5 Compatibility and Transfer Systems

Given a pair of indexing categories (Om,Oa), it is not straightforward from the definitions to

check whether or not the pair is compatible. Most of the difficulty stems from problems computing

the image of the dependent product functor n∗ : SetG/S → SetG/T associated to a map n : S → T

in SetG. The goal of this section is to alleviate this by providing a combinatorial characteriza-

tion of when two indexing categories are compatible that can be checked without computing any

dependent products.

In [BH22], Blumberg and Hill provide an alternative characterization of compatibility which,

in light of Example 2.3.5, amounts to only checking the dependent products along the canonical

projections n : G/K → G/H in Om. As remarked in that example, such functors are given by the

coinduction functor which sends an K-set X to the H-set MapK(H,X).

Example 2.5.1. Let H = e and G = C2, the group with two elements. Write ∗ for both the

trivial G-set and trivial H-set. There are four elements of Mape(C2, ∗ ⨿ ∗) and a straightforward

computation yields

Mape(C2, ∗ ⨿ ∗) ∼= ∗ ⨿ ∗ ⨿ C2/e

which (essentially) gives the formula from Example 2.4.1. More generally, we have an isomor-

phism:

Mape(C2, n · [∗]) ∼= n · [∗]⨿
(
n(n− 1)

2

)
· [C2/e]

Readers who are more familiar with computations in Tambara functors may recognize that this

equation arises in the norm in the C2-Burnside Tambara functor.

Theorem 2.5.2 ([BH22, Theorem 7.65]). A pair of indexing categories (Om,Oa) is compatible

if and only if for every pair of subgroups K ≤ H such that H/K is Om-admissible and every

Oa-admissible K-set T , the coinduced H-set MapK(H,T ) is also Oa-admissible.

Unfortunately, this characterization of compatibility can still be difficult to check in practice

due to the somewhat unwieldy nature of the coinduction functors. In particular, Example 2.5.1
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shows the coinduction functor does not preserve coproducts. Because of this, one of the standard

techniques of equivariant algebra, separating a G-set into its orbits, often does not work when

considering coinduction. In this section we provide a characterization of compatibility, Defini-

tion 2.5.6 below, that is more easily checked and does not make any reference to the coinduction

functors.

The main result of this section is stated in terms of transfer systems, a notion we now recall.

Definition 2.5.3. For a finite group G, a G-transfer system T is a partial order ≤T on the set of

subgroups of G such that

1. (refines subset relation) if K ≤T H then K ≤ H ,

2. (closure under conjugation) if K ≤T H , then for all g ∈ G we have Kg ≤T Hg,

3. (closure under intersection) If K ≤T H then for all L ≤ G we have (K ∩ L) ≤T (H ∩ L).

Notation 2.5.4. If T is a G-transfer system it is convenient to represent T as a directed graph with

a node for each subgroup H ≤ G and an arrow K → H if and only if K ≤T H . Figure 2.1

gives one example and one non-example of transfer systems for the cyclic group C4 drawn in this

notation.

Later, we will have two transfer systems T1 and T2 such that T1 refines in T2 in the sense that if

K ≤T1 H then K ≤T2 H . In such cases, we write T1 ≤ T2 and represent both transfer systems as

a single directed graph with two sets of arrows: a solid arrow K → H if K ≤T1 H and a dashed

arrow K 99K H if K ≤T2 H but not necessarily K ≤T1 H . When we need to be clear about

whether or not K ≤T1 H we write it explicitly. An example is given in Figure 2.2.

Independent work of Rubin [Rub21] and Balchin–Barnes–Roitzheim [BBR21] has shown that,

given a transfer system T , one can build an indexing categoryO generated by maps G/K → G/H

such that K ≤T H . This process can also be turned around, producing a transfer system from every

indexing category, and these two constructions are mutual inverses.
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C4 C4

C2 C2

C1 C1

Figure 2.1: Two poset structures on the set of subsets of the cyclic group C4. The left graph
is a transfer system. The right graph is not a transfer system as it fails to satisfy closure under
intersection.

C2 × C2

C2 × e ∆ e× C2

e

Figure 2.2: Two transfer systems T1 ≤ T2 on the group C2 × C2. The group ∆ is the diagonal
subgroup given by the image of the diagonal map C2 → C2 × C2. This pair of transfer systems is
not compatible.

Theorem 2.5.5 ([Rub21, Theorem 3.7]). The posets of indexing categories and transfer systems

for a finite group G are equivalent.

The theorem above implies that we could just as easily have defined bi-incomplete Tambara

functors in terms of the pair of transfer systems (Tm, Ta) that are equivalent to (Om,Oa). Unwind-

ing the definitions, we see that the category PG
Om,Oa

has a transfer TH
K if and only if K ≤Ta H and

a norm NH
K if and only if K ≤Tm H . Of course, describing PG

Om,Oa
in terms of transfer systems

requires that we have a notion of compatible transfer systems.

Definition 2.5.6. Let T1 and T2 be two G-transfer systems. We say (T1, T2) is a compatible pair if

1. T1 ≤ T2,

2. whenever A is a subgroup of G and B,C ≤ A are subgroups such that B ≤T1 A and

(B ∩ C) ≤T2 B then C ≤T2 A.
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We pause to explain the second requirement of compatibility in terms of our graphical repre-

sentations of transfer systems. The conditions that B ≤T1 A and (B ∩ C) ≤T2 B can be rep-

resented graphically by saying the following subgraph appears in the directed graph representing

these transfer systems:
A

C B

B ∩ C

(2.5)

Here the solid arrow B ∩ C → C exists by intersection of the solid arrow B → A with C. Two

transfer systems T1 ≤ T2 are compatible if any subgraph of the form (2.5) is actually a part of a

diamond:
A

C B

B ∩ C

(2.6)

We stress that once such a diagram is drawn it is an easy matter to check that the two transfer

systems are compatible, as the graphs of the transfer systems can simply be checked visually. An

example of a pair of transfer systems that are not compatible is found in Figure 2.2. To make this

pair compatible, we would need to add the relations ∆ ≤T2 C2 × C2 and C2 × e ≤T2 C2 × C2.

Our definition of compatible transfer systems will only have value if we can show it is related

to the notion of compatible indexing categories. In the remainder of this section we show they are

in fact equivalent. As a first step, we have:

Proposition 2.5.7. Suppose (Om,Oa) is a pair of indexing categories with corresponding pair of

transfer systems (Tm, Ta). If (Om,Oa) is compatible then (Tm, Ta) is as well.

Before proceeding with the proof, we note that the condition Tm ≤ Ta follows from Corollary

7.70 of [BH22] which says we have Om ≤ Oa. It suffices then to show the pair (Tm, Ta) meets

condition (2) of Definition 2.5.6.
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Lemma 2.5.8. If (Om,Oa) is compatible then (Tm, Ta) meets condition (2) of Definition 2.5.6 in

the special case where A = BC is the product of the subgroups B and C. That is, if the product

BC = {bc : b ∈ B, c ∈ C} is a subgroup of G such that B ≤Tm BC and (B ∩ C) ≤Ta B, then

C ≤Ta BC.

Proof. Let A = BC. Our goal is to show A/C isOa-admissible. Writing D = B∩C we have, by

Theorem 2.5.2, that the set MapB(A,B/D) isOa-admissible. Since indexing categories are closed

under subobjects (Lemma 2.1.7), we are done if we show there is an element µ ∈ MapB(A,B/D)

whose stabilizer Aµ ⊂ A is exactly C as this implies

A/Aµ = (BC)/C ⊂ MapB(A,B/D)

is Oa admissible.

Given any element x ∈ A we can write x = bc for some c ∈ C and b ∈ B. We define the map

µ : A→ B/D by

µ(x) = µ(bc) = bD

Since B ∩ C = D, the element b is unique up to right multiplication by an element of D and so

this map does not depend on the choice of b. Since the element c has no bearing on the value of µ

we have µ(xc′) = µ(x) for any c′ ∈ C and thus C ⊂ Aµ.

To show the reverse inclusion, take any x /∈ C (if A = BC = C the result is trivial) and, as

before, write x = bc. Since x /∈ C, we have b /∈ D and thus

(x · µ)(e) = µ(x) = bD ̸= eD = µ(e)

and so x /∈ Aµ. It follows that Aµ ⊂ C proving that Aµ = C.
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Proof of Proposition 2.5.7. By hypothesis we have a subgraph

A

C B

B ∩ C

in our transfer systems (Tm, Ta) and our goal is to show there is a dashed arrow C 99K A.

We proceed by induction on the index k = [A : C], where the base case is trivial. Supposing

that k > 1, let n be the number of double cosets B\A/C and write n = {1, 2, . . . , n} for the

trivial B-set with n elements. Note that n is admissible in all indexing categories by closure under

finite coproducts. We may assume n > 1 as n = 1 occurs only if A = BC, which was covered in

Lemma 2.5.8.

By Theorem 2.5.2, the set MapB(A, n) is Oa-admissible. Our goal is produce an element

µ ∈ MapB(A, n) so that C ⊂ Aµ ⊊ A. If we can produce such a µ, we have the following

subgraph in our transfer systems

A

Aµ B

C B ∩ Aµ

B ∩ C

(2)

(1)

where the arrow labeled (1) exists by induction hypothesis as the index [Aµ : C] is less than

k, the arrow labeled (2) exists since Aµ is the stabilizer of an object in MapB(A, n), which is

an Oa-admissible A-set, and all other arrows exist either by hypothesis or by the closure under

intersection property of transfer systems. Composing arrows (1) and (2) yields the result.

To define µ, let a1, a2, . . . , an be representatives for the double cosets B\A/C. For simplicity,
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take a1 = e to be the unit. For any x ∈ A, there is a unique ix ∈ n so that x ∈ BaixC and we

define µ(x) = ix. Since the double cosets are fixed under left multiplication by B we see that µ is

B-equivariant. Similarly, as the double cosets are fixed under right multiplication by C, we have

C ⊂ Aµ. Finally, we note the containment Aµ ⊂ A is strict as

(a2 · µ)(e) = µ(a2) = 2 ̸= 1 = µ(e)

so a2 · µ ̸= µ. We have used here the assumption that n > 1.

To show the reverse direction, that compatible transfer systems yield compatible indexing cat-

egories, we prove a stronger result. This leads to an affirmative answer to Conjecture 7.90 of

[BH22].

Proposition 2.5.9. Suppose that (Tm, Ta) is a compatible pair of transfer systems with correspond-

ing indexing categories (Om,Oa). If H/K is an Om-admissible H-set and f : S → T is a map

in i∗KOa then MapK(H, f) is a map in i∗HOa. Taking T = K/K, we see that MapK(H,S) is an

Oa-admissible H-set for all Oa-admissible K-sets S. In particular, (Om,Oa) is compatible.

Proof. To show MapK(H, f) is a map in i∗HOa, we must show for all α ∈ MapK(H,S) that

Hf◦α/Hα is an Oa-admissible set. Shifting to transfer systems, we must show Hα ≤Ta Hf◦α.

Writing C = CoreH(K), we claim that we have the following subgraph in the directed graph

for the pair (Tm, Ta).
Hf◦α

Hα C ∩Hf◦α

C ∩Hα

The solid arrows exist by Lemma 2.1.15 and closure under intersection. If we can establish the

existence of the dashed arrow, we can use compatibility of our transfer systems to complete the

diagram by filling in the last side of the diamond with a dashed arrow, completing the proof.
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We claim that

C ∩Hα = C ∩

(⋂
h∈H

h−1Kα(h)h

)

where Kα(h) is the stabilizer of α(h) in K. To prove the claim, we first note that for all x ∈ C we

have

(x · α)(h) = α(hx) = α(hxh−1h) = (hxh−1)α(h)

where the last equality follows from the fact that C is a normal subgroup of H . Thus x ∈ C ∩Hα

if and only if for all h ∈ H we have α(h) = (hxh−1)α(h) if and only if x ∈ h−1Kα(h)h for all h,

establishing the claim.

The same argument shows

C ∩Hf◦α = C ∩

(⋂
h∈H

h−1K(f◦α)(h)h

)
.

Since f : S → T is in i∗KOa we have, by Lemma 2.1.10, that K(f◦α)(h)/Kα(h) isOa-admissible

for any h. The Oa-admissibility of (C ∩Hf◦α)/(C ∩Hα) now follows from Lemma 2.1.8.

Together, Propositions 2.5.7 and 2.5.9 justify the claim that compatibility for indexing cate-

gories and transfer systems are the same.

Theorem 2.5.10. Suppose (Om,Oa) is a pair of indexing categories. If (Tm, Ta) is the correspond-

ing pair of transfer systems then (Om,Oa) is compatible, in the sense of Definition 2.4.2, if and

only if (Tm, Ta) is compatible, in the sense of Definition 2.5.6.

Finally, we end this section with the following corollary, affirmatively answering a conjecture

of Blumberg and Hill. This corollary overcomes a technical obstacle in defining norms of in-

complete Mackey functors. After unwinding definitions, the proof is immediate from Proposition

2.5.9.

Corollary 2.5.11 ([BH22, Conjecture 7.90]). If (Om,Oa) is a compatible pair of indexing cate-
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gories then for every Om-admissible H-orbit H/K, coinduction restricts to a functor

MapK(H,−) : i∗KOa → i∗HOa,

where i∗KO and i∗HO are the indexing categories of Example 2.1.6.
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Chapter 3

Equivariant symmetric monoidal structures

A symmetric monoidal category is a category together with an operation, denoted ⊗, which

endows the category with a way to combine two elements into a product. As the notation for the

product suggests, the primordial example is the category Ab of abelian groups equipped with the

tensor product. Abstracting the idea of the tensor product to a general category allows us to make

sense of rings in new settings.

A ring R is an abelian group equipped with group homomorphisms

µ : R⊗R→ R and η : Z→ R

which realize the multiplication and choice of unit, respectively. The maps µ and η are subject

to some conditions which describe the associativity and unitality of multiplication. The important

take away is that the maps µ and η, and the relations between them, can be written down in any

symmetric monoidal category and give rise to a definition of a monoid in these categories. The

name comes from the observation that monoids (in the usual sense) are exactly the monoids of the

category of Sets equipped with the cartesian product as its monoidal product.

Pushing forward these ideas into the setting of equivariant algebra, the category of Mackey

functors admits a symmetric monoidal product □ called the box product. One might hope to

recover Tambara functors as the (commutative) monoids in this category, but this is not the case.

To get Tambara functors we need to consider an extension of symmetric monoidal categories, due

to [HH16], called symmetric monoidal Mackey functors. We recall this construction in Section

3.1. Symmetric monoidal Mackey functors admit a notation of equivariant commutative monoids

and the Hoyer–Mazur theorem asserts that these are precisely the Tambara functors. A conjecture

of Blumberg and Hill posits that a similar theorem should hold relating bi-incomplete Tambara
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functors and incomplete Mackey functors [BH22, Conjecture 7.94]. We prove this conjecture in

Theorem 3.4.4.

3.1 Symmetric Monoidal Mackey Functors

In this section we recall the notion of G-symmetric monoidal Mackey functors in the sense of

Hill and Hopkins [HH16] and lay the groundwork for showing that bi-incomplete Tambara func-

tors are precisely the Om-commutative monoids in Oa-Mackey functors. This result is analogous

to the fact that commutative rings are the commutative monoids in the category of abelian groups.

While this is a helpful analogy to have in mind, we stress that Tambara functors are not the com-

mutative monoids in the monoidal category of Mackey functors. Although Mackey functors do

have a symmetric monoidal product, called the box product, the commutative monoids are the

commutative Green functors.

A crucial insight of Hill and Hopkins is that recovering Tambara functors from the category of

Mackey functors requires considering a form of equivariant symmetric monoidal structure on the

category of Mackey functors. Just as a symmetric monoidal category is a form of monoid object in

categories, an equivariant symmetric monoidal structure should be a form of equivariant monoid

object, i.e. a semi-Mackey functor, in categories. To keep our presentation brief, we limit our

presentation to only what we need, referring the interested reader to [HH16] for further discussion.

Definition 3.1.1. A symmetric monoidal O-Mackey functor C consists of symmetric monoidal

categories C(H) for every subgroup H ≤ G, together with strong monoidal functors

RH
K : C(H)→ C(K), cg : C(H)→ C(Hg)

for any pair K ≤ H , and for any g ∈ G. If H/K is an O-admissible H-set, we also have a

strong monoidal functor NH
K : C(K) → C(H). The functors NH

K , RH
K and cg are called the norm,

restriction, and conjugation respectively. We require further the following coherence data:

1. isomorphisms NH
KNK

L
∼= NH

L , RK
L R

H
K
∼= RH

L , and cgch ∼= cgh whenever these makes sense,
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2. For any g ∈ G, isomorphisms cgNH
K
∼= NHg

Kg cg and cgR
H
K
∼= RHg

Kg

3. For subgroups K,L ≤ H , with H/L O-admissible, the norms and restrictions are required

to have a natural isomorphism

RH
KN

H
L
∼=
⊗
γi

NK
K∩LγiR

Lγi

K∩Lγicγi (3.1)

where the product on the right is the symmetric monoidal product in C(K) indexed over a

collection of double coset representatives for L\H/K. We refer to this isomorphism as the

double coset formula.

Remark 3.1.2. Just as in Remark 2.2.7, the double coset formula makes sense as along as H/L is

O-admissible as this implies that K/K ∩ Lγi is O-admissible for all γi.

Example 3.1.3. For any G-indexing categoryO, there is a symmetric monoidalO-Mackey functor

SetO given by SetO(H) = SetH , where SetH is the category of H-sets with the monoidal product

given by disjoint union. The norm maps NH
K are given by the induction functors

H ×K (−) : SetK → SetH .

The restrictions are the usual forgetful functors, and the conjugations are given by the usual iso-

morphism of categories cg : SetH ∼= SetH
g

.

If we instead use the cartesian product as the monoidal product of SetH we can construct a

different symmetric monoidalO-Mackey functor by taking the same restrictions and conjugations,

and taking the norms to be coinduction functors. The change in norms is necessitated by the fact

that the norms must be strong monoidal.

Remark 3.1.4. The double coset formula is an exact analogue the formula for ordinary Mackey

functors from Lemma 2.2.6 (3). For Mackey functors, the double coset formula comes from the

composition laws for the Burnside category. A symmetric monoidal Mackey functor could be

defined as a 2-product preserving pseudo-functor out of an appropriate bicategorical Burnside cat-
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egory. We return to this perspective in Chapter 4. A similar construction is studied by Balmer and

Dell’Ambrogio in what they call Mackey 2-functors [BD20], though the structures they consider

are not general enough to include all symmetric monoidal Mackey functors. In particular, they

consider only examples in which the norm NH
K is both a left and right adjoint of RH

K .

With symmetric monoidal Mackey functors as our model for equivariant symmetric monoidal

categories, we turn to task of defining equivariant monoids in these categories. To motivate the def-

initions, we consider the example of equivariant stable homotopy in which our equivariant monoids

need to correspond to ring spectra.

For O = SetG, there is a symmetric monoidal Mackey functor G/H 7→ SpH , the category

of genuine H-spectra. The restriction functors are the usual restrictions ResHK : SpH → SpK and

the norms NH
K : SpK → SpH are given by the Hill–Hopkins–Ravenel norm [HHR16]. For any

H ≤ G, denote the category of commutative ring spectra in SpH by CommH .

Proposition 3.1.5 ([HHR16, Proposition 2.27]). The norm and restriction functors restrict to an

adjunction

CommK CommH
NH

K

RH
K

with NH
K as the left adjoint.

Proposition 3.1.5 says that a G-ring spectrum E, in addition to being a commutative monoid

in SpG, comes equipped with counit maps µG
H : NG

HR
G
HE → E, called norm multiplications by

[AB18], for any subgroup H ≤ G. Similarly, every H-ring spectrum F comes equipped with

unit maps ηGH : F → RG
HN

G
HF . The Hill–Hopkins model for equivariant commutative monoids

is essentially just ordinary commutative monoids, together with coherent collections of unit and

counit maps µG
H and ηGH . We begin by discussing the unit maps, which it turns out exist for all

ordinary commutative monoid in C(G) for any symmetric monoidal Mackey functor C.

For any subgroup H ≤ G, the double coset representatives γ1, . . . , γn for H\G/H can be

picked so that γ1 = e is the identity of G. This leads to a decomposition in the double coset
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formula:

RG
HN

G
H
∼= idC(H)⊗

(⊗
i>1

NH
H∩HγiR

Hγi

H∩Hγicγi

)
(3.2)

Suppose x is a monoid in the symmetric monoidal category C(H) and write ηx : 1H → x for

the unit. Since the restriction, norm, and conjugation functors are all strong monoidal, they all

preserve monoids and so there are unit maps ηi : 1H → NH
H∩HγiR

Hγi

H∩Hγicγi(x) for every i. In light

of (3.2), we can define a map ηGH : x→ RG
HN

G
H (x) by

x ∼= x⊗

(⊗
i>1

1H

)
1⊗(

⊗
ηi)−−−−−→ x⊗

(⊗
i>1

NH
H∩HγiR

Hγi

H∩Hγicγi(x)

)
∼= RG

HN
G
H (x) (3.3)

The maps ηGH function as the unit maps for our equivariant commutative monoids. While these

maps exist for any commutative monoid, the counits represent non-trivial data which differentiates

equivariant commutative monoids from the ordinary variety.

Definition 3.1.6 (See [Hoy14, Lemma 2.7.3]). For C a symmetric monoidal O-Mackey functor,

an O-commutative monoid is a monoid (in the usual sense) x ∈ C(G) together with norm multi-

plications µH
K : NH

KRG
K(x)→ RG

H(x) whenever H/K is O-admissible. When the groups are clear

from context, we may simply write µ for instead of µH
K . The norm multiplications are subject to

the following coherence data:

1. For any H ≤ G we have the triangle identity

RG
H(x) RG

HN
G
HR

G
H(x)

RG
H(x)

ηGH

RG
H(µG

H)

where ηGH is the map (3.3).

2. For all L ≤ K ≤ H , the map µH
L is equal to

NH
L RG

L (x)
∼= NH

KNK
L RG

L (x)
NH

K (µK
L )

−−−−−→ NH
KRG

K(x)
µH
K−−→ RG

H(x).
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3. For any K ≤ H and g ∈ G we have a commuting square

cgN
H
KRG

K(x) cgR
G
H(x)

NHg

Kg RG
Kg(x) RG

Hg(x)

cgµH
K

∼= ∼=
µHg

Kg

where the vertical isomorphisms come from the structural isomorphisms (2) of Definition

3.1.1.

4. (compatibility with the double coset formula). Let L, K, and H be subgroups of G with

L ≤ K. Fix representatives α1, . . . , αn and β1, . . . , βm for the double cosets H\G/L and

H\G/K respectively. The following diagram must commute:

⊗
αi

NK
K∩HαiN

K∩Hαi

L∩Hαi R
G
L∩Hαi (x)

⊗
αi

NK
K∩HαiR

G
K∩Hαi (x)

NK
L RG

LN
G
HR

G
H(x)

⊗
βi

NK
K∩Hβi

RG
K∩Hβi

(x)

NK
L RG

L (x) RG
K(x)

⊗NK
K∩Hαi

(µK∩Hαi
L∩Hαi

)

F

αK
L

NK
L RG

L (µG
H)

∼=

⊗µK

K∩Hβi

µK
L

The isomorphism comes from the double coset formula applied to RG
LN

G
H . To define the

map F , note that if αi ∈ HβjK, then K ∩ Hαi ∼= K ∩ Hβj and so we have well defined

multiplications ⊗
αi∈KβjH

NK
K∩HαiR

G
K∩Hαi (x)→ NK

K∩Hβj
RG

K∩Hβj
(x)

and F is the product of all these maps. The dotted arrow αK
L is defined to be the composite

along the top of the diagram and is included for future reference.

Definition 3.1.7. A morphism of O-commutative monoids x and y is a morphism f : x → y of

monoids in C(G) such that for any subgroups K ≤ H with H/K O-admissible, the following
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square commutes

NH
KRG

K(x) NH
KRG

K(y)

RG
H(x) RG

H(y)

NH
KRG

K(f)

µH
K µH

K

RG
H(f)

We now explain the presence of the dotted arrow αK
L in (4) above. Note the double coset

formula gives an isomorphism

RG
KN

G
HR

G
H(x)

∼=
⊗
βi

NK
K∩Hβi

RG
K∩Hβi

(x).

which allows us to consider the codomain of αK
L to be RG

KN
G
HR

G
H(x). Passing through this isomor-

phism the bottom rectangle of the diagram in (4) is

NK
L RG

L (N
G
HR

G
H(x)) RG

KN
G
HR

G
H(x)

NK
L RG

H(x) RG
K(x)

NK
L RG

L (µG
H)

αK
L

RG
K(µG

H)

µK
L

which commutes by (4). In particular the αK
L serve as norm multiplications for NG

HR
G
H(x) and the

map µG
H : NG

HR
G
H(x)→ x is a map of O-commutative monoids.

Proposition 3.1.8. For anyO-commutative monoid x and any H ≤ G with G/H anO-admissible

set, the object NG
HR

G
H(x) is also anO-commutative monoid. Moreover, the map µG

H : NG
HR

G
H(x)→

x is a morphism of O-commutative monoids.

Remark 3.1.9. Proposition 3.1.8 should be thought of as a weak form of Proposition 3.1.5 in our

setting. While we do not assert (yet) that the norm and restrictions give an adjunction on categories

ofO-commutative monoids, we have that the map µG
H lives in the correct category to be a candidate

for a counit map. This provides an important technical step in our proof of the generalized Hoyer–

Mazur theorem in Section 3.4.
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3.2 The Om-symmetric monoidal Mackey functor of Oa-Mackey functors

Let (Om,Oa) be a compatible pair of indexing categories. In this section we construct a sym-

metric monoidal Om-Mackey functor of Oa-Mackey functors. This construction has previously

been carried out in the complete case (Om,Oa) = (Ogen,Ogen) by Mazur [Maz13] for G = Cpn

and by Hoyer [Hoy14] for general G. This section lays the groundwork for Section 3.4 where we

generalize the Hoyer–Mazur theorem by characterizing (Om,Oa)-Tambara functors as the Om-

commutative monoids in Oa-Mackey functors.

Our first aim is to construct the restriction, norm, and conjugation functors which make up the

structure of our Om-symmetric monoidal Mackey functor. We first define analogous functors on

Burnside categories with the aim being to upgrade these to operations on Mackey functor cate-

gories by left Kan extending. The functor underlying the norm is an extension of the coinduction

functor

MapK(H,−) : SetK → SetH

to the Burnside categories AK
Oa

and AH
Oa

. A priori, it is not clear that coinduction extends to a

functor of incomplete Burnside categories. In the case of interest, our work in Section 2.5 on

compatible transfer systems, specifically Corollary 2.5.11, provides exactly the justification we

need to give such an extension.

A convenient consequence of defining all of our operations as left Kan extensions is that check-

ing the coherence data of Definition 3.1.1 reduces to checking for similar coherence at the level of

functors on the Burnside categories. In particular, the proof that the double coset formula holds

amounts to the fact that a similar formula holds on the level of sets with group action. Since the

functors on the Burnside category are very explicit, this data is easy to check by hand.

For any subgroup H ≤ G, we have an indexing category i∗HOa as in Example 2.1.6. To clean

up notation in this section, we denote the associated incomplete Burnside categories AH
i∗HOa

by

AH
Oa

. Similarly, we denote the category of i∗HOa-H-Mackey functors by MackHOa
.
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For subgroups K ≤ H , the categories SetK and SetH are connected by the functors

ResHK : SetH → SetK ,

MapK(H,−) : SetK → SetH .

For any choices of K and H the functor ResHK extends to a functor ρHK : AH
Oa
→ AK

Oa
because

ResHK, being the right adjoint to induction, preserves pullback diagrams and restricts to a functor

i∗HOa → i∗KOa. The coinduction functor extends to a functor CH
K : AK

Oa
→ AH

Oa
when H/K is

Om-admissible; coinduction preserves pullbacks because it is a right adjoint and it restricts to a

functor on indexing categories by Corollary 2.5.11.

Similarly, for any g ∈ G we have a conjugation isomorphism cg : SetH → SetH
g

. Abusing

notation a bit, this extends to an isomorphism cg : AH
Oa
→ AHg

Oa
of Burnside categories.

Definition 3.2.1. For any H ≤ G and subgroup K ≤ H the restriction functor

RH
K : MackHOa

→ MackKOa

and conjugation functor

cg : MackHOa
→ MackH

g

Oa

are given by left Kan extension along ρHK and cg respectively. If H/K is an Om-admissible H-set

we define the norm functor

NH
K : MackKOa

→ MackHOa

by left Kan extension along CH
K .

Remark 3.2.2. A priori, the left Kan extension of anOa-K-Mackey functor M : AK
Oa
→ Set along

CH
K : AK

Oa
→ AH

Oa
is an object in the presheaf category Fun(AH , Set). That NH

K (M) = (CH
K )!M

is actually a Mackey functor (i.e. preserves products) is the main result of [BD77].

44



Remark 3.2.3. While

(CH
K )! : Fun(AK

Oa
, Set)→ Fun(AH

Oa
, Set)

is the left adjoint of (CH
K )∗, it is worth noting that NH

K : MackKOa
→ MackHOa

is not a left adjoint.

In particular, the norm NH
K will usually fail to commute with colimits computed in the category of

Mackey functors. Nevertheless, the norm does commute with colimits computed in the presheaf

category Fun(AK
Oa
, Set) which is sufficient for many purposes.

Since the norm, restriction, and conjugation functors are defined via left Kan extension, we can

compute their value on represented functors using the Yoneda Lemma.

Lemma 3.2.4. Let L ≤ K ≤ H be a chain of subgroups with H/K an Om-admissible H-set

and let g ∈ G. For any K-set X , let AX = AK
Oa
(X,−) be the represented Mackey functor of

Example 2.2.8. The norm, restriction, and conjugation of AX are can be computed as NH
K (AX) ∼=

AMapK(H,X), RK
L (AX) ∼= AResKL (X), and cg(AX) = Acg(X)

While our definition of NH
K is completely analogous to Hoyer’s, our definition of the restric-

tions RH
K needs some justification. To define the restrictions, Hoyer defines a functor IHK : AK →

AH , which is the extension of the induction functor H×K (−) : SetK → SetH , and defines RH
K by

precomposition with IHK . While this definition still makes sense, it is convenient to define the re-

strictions as a left Kan extension because it makes them easier to compare with the norm functors.

For completeness, we show our definition is equivalent to Hoyer’s.

Proposition 3.2.5. The functors ρHK and IHK form an ambidextrous adjunction. That is, each is both

a left and right adjoint of the other.

Proof. To clean up notation, we write simply ρ and I . We first show there are natural bijections:

AK
Oa
(X, ρY )↔ AH

Oa
(IX, Y )

Going from left to right, we send a morphism [X
r←− A

t−→ ρY ] to [IX
Ir←− IA

t̂−→ Y ] where the

map t̂ : IA→ Y is the adjunct of the map t along the adjunction between induction and restriction
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of H-sets. To see that t̂ is a morphism in the indexing category i∗HOa, consider the decomposition

of t̂ as

IA
It−→ IρY

ϵ−→ Y

where ϵ is the counit of the adjunction on H-sets. The map It is in i∗HOa by closure under self-

induction (Lemma 2.1.9), so it remains to show ϵ is a morphism in the indexing category. The

counit is the map

H ×K ResHKY → Y

which sends a class [h, y] to the element hy. It is a straightforward exercise that the stabilizer of

[h, y] in H×KRes
H
KY is exactly hStabH(y)h

−1, which is also the stabilizer of hy. It follows that the

counit is the coproduct of many fold maps, and thus is in i∗HOa by finite coproduct completeness.

To build the inverse, suppose we are given a morphism [IX
p←− B

s−→ Y ]. By Proposition

2.16 of [BH18], the functor I is an essential sieve meaning there is a K-set B′, unique up to

isomorphism, and a K-equivariant map p′ : B′ → X so that B ∼= IB′ and p factors as B ∼=

IB′ Ip′−→ IX . It follows that any morphism [IX
p←− B

s−→ Y ] in AH(IX, Y ) is equal to one of

the form [IX
Ip′←− IB′ s−→ Y ]. We send such a morphism to [X

p′←− B′ ŝ−→ ρY ], where again ŝ is

coming from the adjunction between restriction and induction. Showing ŝ is a morphism in i∗KOa

is similar to the above argument for the adjunct t̂.

That the two constructions described above are inverse to one another can be understood by

considering what happens to the restriction and transfer maps of [X r←− A
t−→ ρY ] separately. For

the transfer, both constructions simply replace the map by its adjunct across the IndH
K ⊣ ResHK

adjunction. For the restriction, the first construction applies I , and the second uses the fact that I is

an essential sieve to undo this. It follows that the two maps described above are mutually inverse.

Moreover, since both the IndH
K ⊣ ResHK adjunction and the essential sieve property of I are natural,

this bijection is also natural in either argument establishing that ρ is the right adjoint of I . That this

adjunction is ambidextrous is established by simply turning all the spans around and repeating the

construction.
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Corollary 3.2.6. The functor (IHK )∗ : MackH → MackK is a model for left Kan extension along

ρHK and thus (IHK )∗ ∼= RH
K .

We need to show that RH
K , NH

K , and cg are all strong monoidal functors. The monoidal product

on the categories MackH and MackK is the box product, defined by Day convolution [Day70].

Briefly, if M and N are H-Mackey functors we define M □N by the left Kan extension diagram

AH
Oa
×AH

Oa
Set

AH
Oa

×

M×N

M□N=Lan×(M×N)

where M ×N sends (S, T ) to M(S)×N(T ) and the vertical map × is given by cartesian product

on H-sets.

Lemma 3.2.7. For any K ≤ H , the functors NH
K (assuming H/K is Om-admissible), RH

K , and cg

are all strong monoidal.

Proof. Because the functors ρHK , CH
K , and cg all preserve cartesian products, they are all strong

monoidal functors. The result follows from the general fact (see [DS95, Propsition 1]) that left

Kan extension along strong monoidal functors is a strong monoidal.

Proposition 3.2.8. With the choices of norms, restrictions, and conjugations from Definition 3.2.1,

the assignment G/H 7→ MackHOa
forms a symmetric monoidal Om-Mackey functor.

Proof. The restrictions norms, and conjugations are all strong monoidal by Lemma 3.2.7 so it

remain to establish (1)–(3) of Definition 3.1.1. For subgroups L ≤ K ≤ H , there are canonical

natural isomorphisms RK
L R

H
K
∼= RH

L , NH
KNK

L
∼= NH

L , and cgch ∼= cgh coming from the fact that

left Kan extension along a composite is isomorphic to the composite of left Kan extensions. This

establishes (1), and (2) follows similarly, so it remains to establish the double coset formula.

For any L,K ≤ H and any L-set X there is an isomorphism of H-sets

ResHK MapL(H,X) ∼=
∏
γi

MapK∩Lγi (K,ResL
γi

K∩Lγi (cγiX))
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where the γi run over a transversal of the double cosets K\H/L. We defer the proof of this

isomorphism to Lemma 3.5.1 below. For any L ≤ G and L-set T write AT for the represented

Mackey functorAL
Oa
(T,−). It is a property of Day convolution that there are natural isomorphisms

AS×T
∼= AS □ AT

for any pair of L-sets S and T . Using this, Lemma 3.2.4 and the set-level isomorphism above it

follows that the double coset formula holds for all represented Mackey functors AT .

To prove the double coset formula for an arbitrary Mackey functor M , we consider M as an

object in the presheaf category Fun(AH , Set) of functors from AH to Set. This category, like all

presheaf categories, is generated under colimits by the representable functors AT and so we may

write

M ∼= lim−→
I

ATi

for some index category I . By Remark 3.2.3, the norm and restriction commute with colimits in

Fun(AH , Set) so we have

RH
KN

H
L (M) ∼= RH

KN
H
L

(
lim−→
I

ATi

)
∼= lim−→

I

RH
KN

H
K (ATi

)

∼= lim−→
I

⊗
γi

NK
K∩LγiR

Lγi

K∩Lγicγi(ATi
)

∼=
⊗
γi

NK
K∩LγiR

Lγi

K∩Lγicγi

(
lim−→
I

ATi

)
∼=
⊗
γi

NK
K∩LγiR

Lγi

K∩Lγicγi(M)

where the third isomorphism uses the fact that ATi
is represented, and the fourth isomorphism uses

the fact that Day convolution, as a left Kan extension, commutes with colimits in the presheaf

category.
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3.3 Norms and restrictions on categories of Tambara functors

In the last section, we endowed the categories of Oa-Mackey functors with the structure of

a symmetric monoidal Om-Mackey functor. We now turn our attention to characterizing the

Om-commutative monoids in Oa-Mackey functors. In [BH22], it is conjectured that the Om-

commutative monoids are exactly the bi-incomplete Tambara functors. In this section we lay the

groundwork for proving this conjecture by studying how Tambara functors interact with the norm

and restriction functors for Mackey functors. We will show, in particular, that the norm or restric-

tion of any Tambara functor is again a Tambara functor.

It is convenient to phrase the main result of this section in slightly different language. We

construct Tambara norm functors

NH
K : TambK

(Om,Oa) → TambH
(Om,Oa)

for every Om-admissible H/K analogous to the Mackey norm functors from Definition 3.2.1. In

Theorem 3.3.7 we show these two constructions agree after applying the forgetful functors from

Tambara functors to Mackey functors. Similar results when the indexing categories are complete

are due to Hoyer and Mazur [Hoy14, Maz13] and we adapt the proof of Theorem 2.3.3 in [Hoy14],

and correct a small oversight. Similarly, we construct Tambara restriction functors, and also show

these are compatible with the forgetful functors from Tambara functors to Mackey functors.

For any K ≤ H , the restriction ResHK : SetH → SetK and induction H ×K (−) : SetK →

SetH extend to functors ρHK : PH
(Om,Oa)

→ PK
(Om,Oa)

and IHK : PK
(Om,Oa)

→ PH
(Om,Oa)

on polynomial

categories because both preserve pullbacks and exponential diagrams.

Definition 3.3.1. The Tambara norm functor NH
K : TambK

(Om,Oa) → TambH
(Om,Oa) is given by left

Kan extension along the functor IHK . The Tambara restriction functor RH
K is defined by left Kan

extension along ρKH .

Remark 3.3.2. One can show that IHK is the right adjoint of ρHK and it follows formally that, as in
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the case of Mackey functors, RH
K is naturally isomorphic to the precomposition (IHK )∗. It follows

there is an adjunction NH
K ⊣ RH

K .

Just as Lemma 3.2.4 computes the norms of represented Mackey functors, we can compute the

norms of represented Tambara functors. For any H ≤ G and H-set T , write PT for the represented

Tambara functor PH
(Om,Oa)

(T,−).

Lemma 3.3.3. For any K ≤ H and any H-set T there is an isomorphism of Tambara functors

RH
K(PT ) ∼= PResHK(T ). Similarly, if S is any K-set then NH

K (PS) ∼= PH×KS .

If iH = iadd : AH
Oa
→ PH

(Om,Oa)
is the inclusion functor of Remark 2.3.4, then the forgetful

functor which sends a Tambara functors to its underlying additive Mackey functor is UH = i∗H .

The main result of this section says that the Tambara norm functors “commute” with the forgetful

functors UH in the sense that there are isomorphisms UHNH
K
∼= NH

KUK where NH
K is the Mackey

norm functor. Before proving this result, we quickly prove the analogous result for the Tambara

restriction functors.

Lemma 3.3.4. For any pair K ≤ H of subgroups of G, there is a natural isomorphism of restric-

tion functors UKRH
K
∼= RH

KUH .

Proof. Consider the following commutative diagram of functors:

AK
Oa

PK
(Om,Oa)

AH
Oa

PH
(Om,Oa)

iK

IHK IHK

iH

Since this diagram commutes, there is a natural isomorphism of functors

(iH ◦ IHK )∗ ∼= (IHK ◦ iK)∗.

The result now follows from Corollary 3.2.6 and Remark 3.3.2 which identify both the Mackey

and Tambara restriction functors precomposition with IHK .
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Comparing the Tambara and Mackey restriction functors with the forgetful functors UK and

UH is easy because all functors involved are precomposition functors. Comparing the Tambara

and Mackey norms requires more care because it compares precomposition functors with left Kan

extensions. The correct categorical framework in which to approach such comparisons is the cal-

culus of mate diagrams, which we now recall; for more discussion see [Shu11, Part 1].

Consider the following square of functors, inhabited by a natural transformation α.

A B

C D

f

h k

g

α (3.4)

For any category C, we denote the category of functors and natural transformations from C to

Set by SetC . The square (3.4) determines another square of functors:

SetA SetB

SetC SetD

f∗

h∗ k∗

g∗

α∗ (3.5)

Because all Set valued functors admit left Kan extensions, the functors h∗ and k∗ in (3.5)

admit left adjoints we denote by h! and k! respectively. We denote the units and counits of these

adjunctions by ηh, ηk, ϵh and ϵk respectively. Using the units and counits, we can define a natural

transformation β : h!f
∗ ⇒ g∗k! as the composite

h!f
∗ h!f

∗·ηk====⇒ h!f
∗k∗k!

h!·α∗·k!====⇒ h!h
∗g∗k!

ϵh·g∗k!====⇒ g∗k!

which fills the square

SetA SetB

SetC SetD

h! k!

f∗

g∗

β (3.6)
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Definition 3.3.5. The square (3.6) is called the mate of the square (3.5). We say the square (3.4) is

exact, or satisfies the Beck–Chevalley condition, if β is a natural isomorphism.

In this language, we construct a natural transformation α : iHC
H
K ⇒ IHK iK so that the square

AK
Oa

PK
(Om,Oa)

AH
Oa

PH
(Om,Oa)

CH
K

iK

IHK

iH

α (3.7)

is exact. For a K-set T , the component αT : I
H
K iK(T )→ iHC

H
K (T ) is represented by the bispan

H ×K T
H×K(ϵCT )
←−−−−− H ×K ResHK MapK(H,T )

ϵI
MapK (H,T )−−−−−−→ MapK(H,T )

=−→ MapK(H,T )

where ϵC and ϵI are the counits of the coinduction-restriction and induction-restriction adjunctions

respectively. This is indeed a natural transformation, although the proof is rather involved and we

defer it to Section 3.5.

Lemma 3.3.6. The maps αT : I
H
K iK(T ) → iHC

H
K (T ) assemble into a natural transformation

α : iHC
H
K ⇒ IHK iK .

Equipped with the natural transformation α : IHK iK ⇒ iHC
H
K , we obtain the mate transforma-

tion

NH
KUK = (CH

K )!I
∗
K

β
=⇒ i∗H(I

H
K )! = UHNH

K

and the main result of this section is that β is a natural isomorphism.

For any bi-incomplete Tambara functor S : PK
(Om,Oa)

→ Set and H-set Y the pointwise Kan

extension formula allows us to write the elements of (CH
K )!UK(S)(Y ) as equivalence classes of

pairs (ω : CH
KB → Y, x ∈ RH

K(B)) where ω is a morphism in AH
Oa

. The equivalence classes are

generated by the relations

(ω ◦ CH
K (ω′), x) ∼ (ω, S(iK(ω

′))(x))
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for any maps ω′ in AK
Oa

. The component βS,Y : (CH
K )!i

∗
K(S)(Y )→ i∗H(I

H
K )!(S)(Y ) of β sends the

class represented by (ω : CH
KB → Y, x) to the class of (iH(ω) ◦ αB : IHKB → Y, x).

Theorem 3.3.7 ([Hoy14, Theorem 2.3.3]). For anyOm-admissible H/K, the square (3.7) is exact.

That is, the natural transformation β is a natural isomorphism of functors UHNH
K
∼= NH

KUK .

Remark 3.3.8. In proving a version of Theorem 3.3.7, Hoyer defines a map, which in our notation is

β−1, and shows it is well defined. It appears that Hoyer’s proof does not show that the inverse of his

map, which we call β, is well defined. The advantage of first defining the natural transformation

α is that the well-definedness of β is immediate from the fact that it is the mate of the natural

transformation α. Moreover, it is easier to check that α is a well defined natural transformation

because it is relating the functors IHK and CH
K instead of their respective left Kan extensions.

Proof. For notational brevity, we fix the subgroups K and H and suppress them from the notation

when clear, writing C instead of CH
K , ρ instead of ρHK and so on. Fixing a bi-incomplete K-Tambara

functor S and an H-set Y , we need to show the components βS,Y : C!i
∗
K(S)(Y )→ i∗HI!(S)(Y ) are

bijections. To show surjectivity, note that by Lemma 2.3.4 of [Hoy14], and the discussion that

follows, an arbitrary element in the codomain of βS,Y is a class represented by a pair (λ, x) where

λ is a bispan of the form

λ = [IρB
=←− IρB

ϵI−→ B
h−→ Y ].

One can check directly that βS,Y ([CρB
ηC←− B

h−→ Y, x]) = [ω, x] and thus our map is surjective.

Since the element [λ, x] is arbitrary, the assignment

[λ, x] 7→ [CρB
ηC←− B

h−→ Y, x] (3.8)

defines a section of β which Hoyer shows is well defined.

It remains to show our section (3.8) is surjective. To see this, suppose we are given an arbitrary

element [σ, x] ∈ (CH
K )!i

∗
K(S)(Y ) where σ is represented by the span CX

r←− A
t−→ Y and x ∈

S(X). We can factor the map r as the composite A
ηC−→ Cρ(A)

C(r̂)−−→ CX where r̂ is the adjunct
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of r. Using the defining relation of the pointwise Kan extension formula, we see that [σ, x] =

[σ′, S(r̂)(x)] where σ′ is represented by the span CρA
ηC←− A

t−→ Y . Since [σ′, S(r̂)(x)] is in the

image of (3.8), we are done.

3.4 Bi-incomplete Tambara Functors are Om-Commutative Monoids

In this section we prove the Om-commutative monoids in Oa-Mackey functors are exactly

the (Om,Oa)-Tambara functors. We begin by showing that for any G-Tambara functor S, the

underlying Mackey functor UG(S) is always an Om-commutative monoid by constructing norm

multiplications

µH
K : NH

KRG
KUG(S)→ RG

HUG(S)

for all pairs K ≤ H of subgroups of G. The construction of the µH
K rely heavily on our work from

Section 3.3 comparing the norm and restriction functors with the forgetful functor UG.

After establishing that Tambara functors give Om-commutative monoids we turn our attention

to the inverse construction of constructing a Tambara functor from an Om-commutative monoid

M . The essential step is to use the norm multiplications to build operations

νH
K : M(G/K)→M(G/H)

which we call the external norms of M . We show that if M is the underlying monoid of a Tambara

functor then the external norms agree with the usual internal norms of the Tambara functor. Not

only does this show that two constructions are mutually inverse, but is also implies that the external

norms are compatible with the transfers and restrictions in exactly the same way as the norms of

a Tambara functor, allowing us to conclude that every Om-commutative monoid equipped with

external norms is a Tambara functor.

Proposition 3.4.1. For any Tambara functor S ∈ TambG
(Om,Oa), the Mackey functor UG(S) is an
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Om-commutative monoid. Moreover, this gives a functor

UG : TambG
(Om,Oa) → CommOm(MackOa). (3.9)

Proof. For any map h : G/K → G/H in Om we define the norm multiplication

µH
K : NH

KRG
KUG(S)→ RG

HUG(S)

to be the unique map so that the following diagram commutes:

NH
KRG

KUG(S) RG
HUG(S)

UGNH
KRG

KS UGNH
KRH

KRG
HS UGRG

HS

µH
K

∼= ∼=

∼= UG·ϵHK

(3.10)

where ϵHK : NH
KRH

KRG
HS → RG

HS is the counit of the NH
K ⊣ RH

K adjunction and the vertical maps

are the isomorphisms of Theorem 3.3.7. The coherence data of Definition 3.1.6 is checked directly

using the explicit form of the isomorphism of Theorem 3.3.7 and the fact the counits ϵHK can be

explicitly computed using the pointwise Kan extension formula.

To see UG is a functor we must show that for any map F : S → T of Tambara functors that the

underlying map f = UG(F ) : UG(S)→ UG(T ) is a morphism of Om-commutative monoids. This

amounts to showing that the square

NH
KRG

KUG(S) NH
KRG

KUG(T )

RG
HUG(S) RG

HUG(T )

NH
KRG

Kf

µH
K µH

K

RG
Hf

commutes for any choices of K ≤ H but this is immediate since every map in the diagram (3.10)

is natural in S.
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The remainder of this section is devoted to constructing an inverse to the functor UG. Since

every Om-commutative monoid has the structure of a Green functor, and Tambara functors are

essentially Green functors with norm maps, it suffices to construct functorial norm operations on

every Om-commutative monoid.

Let M be an Om-commutative monoid in Oa-Mackey functors. Any element x ∈ M(G/K)

determines a map x̂ : AK/K → RG
KM . If H/K is Om-admissible, we can form the following

composite

AH/H
∼= NH

KAK/K

NH
K (x̂)
−−−−→ NH

KRG
KM

µ−→ RG
HM. (3.11)

where µ : NH
KRG

KM → RG
HM is the norm multiplication. By the Yoneda lemma, the map (3.11)

corresponds uniquely to an element νH
K (x) ∈ RG

HM(H/H) ∼= M(G/H) which we call the exter-

nal norm of x. When M = UG(S) comes from a Tambara functor, the external norms recover the

usual internal norms.

Proposition 3.4.2. For any Tambara functor S and element x ∈ S(G/K) the external norm νH
K (x)

is equal to the internal norm NH
K (x).

Proof. Using the definition of the norm multiplications on a Tambara functor, the composite (3.11)

defining νH
K (x) becomes

AH/H
∼= NH

KAK/K

NH
K (x̂)
−−−−→ NH

KUKRG
KS

β·RG
K−−−→ UHNH

K RG
KS

UH ·ϵ
RG
H

S

−−−−−→ UHRG
HS (3.12)

where ϵRG
HS : NH

KRG
KS → RG

HS is the counit of the NH
K ⊣ RH

K adjunction.

The external norm νH
K (x) is equal to the image of the element idH/H ∈ AH/H(H/H) under the

map (3.12). Evaluating all the functors in (3.12) at the object H/H , and using the pointwise Kan

extension formula, we can can compute where idH/H is sent at every step in the composition:

idH/H 7→ [C(K/K)
∼=←− H/H

=−→ H/H, idK/K ∈ AK/K(K/K)]

7→ [C(K/K)
∼=←− H/H

=−→ H/H, x ∈ UKRG
KS(K/K)]
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7→ [Iρ(H/H)
=←− Iρ(H/H)

ϵI
H/H−−−→ H/H

=−→ H/H, x ∈ RG
KS(K/K)]

7→ RG
H(S)(NϵI

H/H
)(x).

In the last line, we use the Yoneda lemma to identify RG
KS(K/K) with RG

HS(H/K) and call

the element x the same thing in both sets. Under the identification RG
H(S)(H/H) ↔ S(G/H),

this element corresponds to S(NIGH(ϵI
H/H

))(x). There is an isomorphism

Iρ(H/H) = H ×K (ResHK(H/H)) ∼= H/K

and after this identification the map ϵIH/H : H/K → H/H is the canonical quotient and so we have

νH
K (x) = S(NG/K→G/H)(x) = NH

K (x).

We can define an external norm νp : M(S) → M(T ) for any map p : S → T in SetG. First,

if p : G/K → G/H is the canonical quotient we define νp = νH
K . Any other map p in SetG is

isomorphic to a disjoint union of canonical quotients

p :
n∐

i=1

G/Ki → G/H

for some subgroups Ki ≤ H . For such p, we define νp to be the composition

n∏
i=1

M(G/Ki)

∏
νHKi−−−→

n∏
i=1

M(G/H)
µ−→M(G/H)

where µ is the multiplication map that exists because M is a Green functor.

Proposition 3.4.3. Suppose that M ∈ MackGOa
is an Om-commutative monoid. Then there exists

a (Om,Oa)-Tambara functor S : PG
(Om,Oa)

→ Set whose underlying Green functor is M . The

internal norms of S are given by the external norms νH
K .

Proof. We proceed by induction on the size of the group G. The base case of the trivial group

is immediate since both Tambara functors and i∗eOm-commutative monoids are just commutative
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rings. Suppose then that the result is true for all groups H with |H| < |G|.

By definition, the Mackey functor M has the structure of a commutative monoid in MackG,

i.e. a Green functor. Since a Tambara functor is just a Green functor with additional norm maps,

it suffices to show how the Om-commutative monoid structure determines norms M(G/K) →

M(G/H) for each K ≤ H with H/K an Om-admissible H-set. As indicated in the statement of

the proposition, the norm maps are given by the external norm maps νH
K : M(G/K)→M(G/H).

All that remains is to check the external norms satisfy the necessary compatibility with the transfers

and restriction maps of our Green functor M .

We first handle compatibility with transfers. Suppose we have L ≤ K ≤ H , and suppose we

have picked an exponential diagram in SetG

E F

G/L G/K G/H

α

β

γ

p q

where p and q are the canonical quotient maps. We need to show that for any x ∈ M(G/L) that

νH
K (TK

L (x)) = TγνβRα(x). We assume that L is a proper subgroup of H , as otherwise there is

nothing to show.

We claim there is a Tambara functor S and a map f : S →M of Om-commutative monoids so

that x = f(y) for some y ∈ S(G/L). Granting this, the naturality of external norms, transfers and

restrictions implies

νH
K (TK

L (x)) = νH
K (TK

L (f(y))) = f(νH
K (TK

L (y))) = f(TγνβRα(y)) = TγνβRα(x)

where the third equality uses the fact that, by Proposition 3.4.2, the external norms in UGS must be

equal to the internal norms of S and thus are sufficiently compatible with the transfers. The same

argument proves compatibility between the external norms and the restrictions and so it remains to

prove the claim.

By the induction hypothesis, and the assumption that L < H is proper, the i∗LOm-commutative

58



monoid RG
L (M) is isomorphic to UL(S

′) for some bi-incomplete L-Tambara functor S ′. Applying

the Tambara norm, and using Theorem 3.3.7, we have an equivalence ofOm-commutative monoids

UGNG
L S ′ ∼= NG

L R
G
LM . In the commutative square

RG
LN

G
L R

G
L (M)(L/L) NG

L R
G
L (M)(G/L)

RG
L (M)(L/L) M(G/L)

RG
L (µG

L )

∼=

µG
L

∼=

the left vertical arrow is surjective by (1) of Definition 3.1.6. It follows that the right arrow is

as well and so x is in the image of the map UGNG
L (S ′) ∼= NG

L R
G
L (M)

µG
L−→ M . This map is a

morphism of Om-commutative monoids by Proposition 3.1.8 so we have proven the claim.

Proposition 3.4.3 gives the object function of a functor

Φ: CommOm(MackOa)→ TambG
(Om,Oa) (3.13)

from the category ofOm-commutative monoids inOa-Mackey functors to the category of Tambara

functors. On morphisms, this functor sends a map of Om-commutative monoids to the map of

underlying commutative monoids i.e. to the map of Green functors. The compatibility conditions

on morphisms ofOm-commutative monoids imply that such maps of Green functors commute with

the external norms and hence are maps of Tambara functors. Since two maps of Tambara functors

are the same if and only if the underlying maps of Mackey functors are the same, this functor is

faithful. On the other hand, by Theorem 3.4.2, the composite Φ◦UG is actually the identity functor,

and thus Φ is also full and surjective on objects.

Theorem 3.4.4 ([BH22, Conjecture 7.94]). For any compatible indexing categories (Om,Oa), the

functor

Φ: CommOm(MackOa)→ TambG
(Om,Oa)

is an equivalence of categories.
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3.5 Proofs of Technical Lemmas

This section contains the proofs of two lemmas used earlier in this chapter. We have deferred

the proofs of these lemmas as the details are non-essential to understanding the goals of the paper

and consist mostly of diagram chases and formal category theory. The first lemma is a double coset

formula for the coinduction functor, used in the proof of Proposition 3.2.8. This formula is surely

well-known, but we could not find a reference. The second is the proof of Lemma 3.3.6 that the

maps α : iHCH
K ⇒ IHK iK actually assemble into a natural transformation. We first give the proof

of the double coset formula.

Lemma 3.5.1. Let H be a finite group and suppose L and K are two subgroups of H . Let

γ1, . . . , γn be a collection of representatives for the double cosets L\H/K. For any L-set X ,

there is an isomorphism of K-sets

ResHK MapL(H,X) ∼=
∏
γi

MapK∩Lγi (K,ResL
γi

K∩Lγi (cγiX))

where cγi(X) is the Lγi-set with the same objects as X but and action defined by (γilγ−1
i ) ·x = lx.

Proof. For any group G, let BG denote the category with one element and morphism set G. We

adopt the convention that the composite

• g1−→ • g2−→ •

is g1g2, instead of g2g1.

The category SetG is equivalent to the category of functors Fun(BG, Set). For any J ≤ G, the

inclusion of subcategories iJ : BJ → BG determines the restriction ResGJ = i∗J : SetG → SetJ .

By uniqueness of adjoints, the coinduction functor MapJ(G,−) : SetJ → SetG is isomorphic to

right Kan extension functor (iJ)∗.

60



Consider the following square of groupoids

Comma(iK , iL) BL

BK BH

u

v iL

iK

ϕ

where Comma(iK , iL) is the comma category iK/iL and ϕ is the canonical comma natural trans-

formation. The objects of Comma(iK , iL) are all the elements h ∈ H and an arrow h → h′ is a

pair (k, l) ∈ K × L such that khl−1 = h′.

By Proposition 1.26 of [Gro13], the comma square is exact, meaning there is a natural isomor-

phism v∗u
∗ ∼= i∗K(iL)∗. For any L-set X , we have observed that i∗K(iL)∗(X) ∼= ResHK MapL(H,X)

is the left hand side of our claimed isomorphism. It remains to identify v∗u
∗(X).

From the description of morphisms in Comma(iK , iL) we see that π0Comma(ik, iL) is in bi-

jection with the double cosets K\H/L. For any γi, we have π1(Comma(iK , iL), γi) is equal to

the set of pairs (k, l) such that k = γilγ
−1
i , which is naturally isomorphic to K ∩ Lγi . Since every

groupoid is equivalent to the disjoint union of the fundamental groups of its components, we have

an isomorphism of groupoids

Comma(iK , iL) ∼=
∐
γi

B(K ∩ Lγi)

which gives a natural isomorphism

Fun(Comma(iK , iL), Set) ∼=
∏
γi

Fun(B(K ∩ Lγi), Set) ∼=
∏
γi

SetB(K∩Lγi ) (3.14)

After identification (3.14), the map

v∗ : SetK →
∏
γi

SetB(K∩Lγi )

is the product of the restriction functors ResKK∩Lγi and the map u∗ is the product of the conjugations
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isomorphic BL ∼= B(Lγi) followed by the restrictions ResL
γi

K∩Lγi . Given any L-set X , we have

computed

v∗u
∗(X) ∼=

∏
γi

MapK∩Lγi (K,ResL
γi

K∩Lγi (cγiX))

completing the proof.

Remark 3.5.2. One can surely write down an actual K-equivariant bijection realizing the double

coset formula we just proved. We have included a categorical proof of the double coset formula

for two reasons. First, it offers some clarity as to why the statement is true. Secondly, and more

importantly, it is thematically connected to Lemma 3.3.6, which proves the existence of a natural

transformation filling an exact square.

The rest of this section is devoted to the proof of Lemma 3.3.6. Recall we have a square

AK
Oa

PK
(Om,Oa)

AH
Oa

PH
(Om,Oa)

CH
K

iK

IHK

iH

α (3.15)

of functors that we are trying to show is exact. For any K-set T , the component

αT : I
H
K iK(T )→ iHC

H
K (T )

is represented by the bispan

H ×K T
H×K(ϵCT )
←−−−−− H ×K ResHK MapK(H,T )

ϵI
MapK (H,T )−−−−−−→ MapK(H,T )

=−→ MapK(H,T )

where ϵC and ϵI are the counits of the coinduction-restriction and induction-restriction adjunctions

respectively. In order to keep the presentation a bit more organized, we abuse notation slightly and

replace, whenever it won’t cause confusion, all instances of induction, restriction, and coinduction
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functors by the symbols I , ρ, and C respectively so that the bispan α becomes simply

IT
IϵCT←−− IρCT

ϵICT−−→ CT
=−→ CT. (3.16)

Lemma 3.5.3 (Lemma 3.3.6). The maps αT : I
H
K iK(T ) → iHC

H
K (T ) defined by (3.16) assemble

into a natural transformation α : iHC
H
K ⇒ IHK iK .

Proof. We need to show that the maps αT are sufficiently natural. Suppose we are given a mor-

phism ω : T → T ′ in AK
Oa

which is represented by the span T
f←− A

g−→ T ′. We need to show that

the square

IT IT ′

CT CT ′

IiK(ω)

αT αT ′

iHC(ω)

(3.17)

commutes in PH
(Om,Oa)

.

To evaluate the top right composite, fix a choice of pullback diagram

P ρCT ′

A T ′

u

v ϵC

g

(3.18)

and consider the diagram

IT IA IA IT ′

IP IρCT ′

IρCA CA CT ′

CT ′

I(f) = I(g)

I(v)

I(u)

I(ϵC)

ϵI
F

ϵI Cg

(1)

(2) (3.19)
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where the square (1) is the result of applying H×K(−) to the pullback (3.18) and is thus a pullback.

We claim the trapezoid (2) is an exponential diagram for the composable arrows

IP
I(u)−−→ IρCT ′ ϵI−→ CT ′

and that the map F is such that I(v) ◦ F = I(ϵCA). We defer the proof of both claims to Lemma

3.5.4 below.

The diagram (3.19), and the composition laws in the category PH
(Om,Oa)

tells us the composite

αT ′ ◦ IHK iK(ω) is the bispan

IT
I(f◦ϵC)←−−−− IρCA

ϵI−→ CA
C(g)−−→ CT ′ (3.20)

We compute left-bottom composite of (3.17) using the diagram

IT

IρCT IρCA

CT CA

CT CA CA CT ′

I(ϵC)

ϵI

IρC(f)

ϵI

=

C(f)

=

C(f) = C(g)

(4)

(3)

(3.21)

in which squares (3) and (4) are both pullbacks. To see that (4) is a pullback, note that for any

X ∈ SetH , we have an isomorphism Iρ(X) ∼= H/K × X and the morphism ϵI : Iρ(X) → X is

the projection map.

The diagram (3.21), and the composition laws in PH
(Om,Oa)

tells us the composite iHC(ω) ◦ αT

is the bispan represented by

IT
I(ϵC◦ρC(f))←−−−−−−− IρCA

ϵI−→ CA
C(g)−−→ CT ′
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which, by the naturality of ϵC , is equal to (3.20).

Lemma 3.5.4. The trapezoid (2) from the proof of Lemma 3.5.3 is an exponential diagram. The

composite I(v) ◦ F is equal to I(ϵCA).

Proof. Consider the commutative diagram

Q CP CA

CT ′ CρCT ′ CT ′

γ

δ

C(v)

C(u) C(g)

ηC C(ϵC)

in which Q is chosen so that left square is a pullback. Since the right square is C applied to the

pullback square (3.18), and coinduction preserves pullbacks, the outside rectangle is a pullback.

Moreover, since the composite along the bottom is the identity by a triangle identity, we could have

chosen Q so that Q = CA, δ = C(g), and C(v) ◦ γ = idCA.

Lemma 2.3.5 of [Hoy14] says precisely that there is an exponential diagram

IρQ Q

IP IρCT ′ CT ′

ϵI

I(γ̂)
δ

I(u) ϵI

where γ̂ is the adjunct of γ along the restriction-coinduction adjunction. Taking F = I(γ̂) proves

the first claim.

To prove I(v) ◦ F = I(ϵCA), it suffices to show that v ◦ γ̂ = ϵCA. By definition, γ̂ is equal to the

composite ϵCP ◦ ρ(γ) and we have

v ◦ γ̂ = v ◦ ϵCP ◦ ρ(γ) = ϵCA ◦ ρC(v) ◦ ρ(y) = ϵCA ◦ idρCA = ϵCA

where the second equality uses naturality of ϵC and the third follows from our choice of γ.
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Chapter 4

Categorical Mackey functors

In Definition 3.1.1, we defined symmetric monoidal Mackey functors as collections of sym-

metric monoidal categories which are linked by strong monoidal functors. These functors satisfy

some relations, though the exact nature of where these relations come from and exactly how natu-

ral they should be is a bit opaque. In this chapter we revisit the definition of symmetric monoidal

Mackey functors and show how all of our examples of interest arise from a variant which we call a

categorical Mackey functor. We should note that the categorical Mackey functors we describe here

are different from those considered in [BO15], though those examples are special cases of ours.

There are several advantages to using categorical Mackey functors. First, the coherence data of

the strong monoidal functors becomes apparent. Second, we show in Section 4.3 how to efficiently

construct examples. Finally, in Theorem 4.5.3, we use this new perspective to shed some light on

the definition of G-commutative monoids, proving a new characterization of these objects via a

universal property.

The rest of this chapter is organized as follows. Section 4.1 contains a review of the theory

of bicategories which will be essential in the remainder of the chapter. In Section 4.2 we give the

definition of categorical Mackey functors and observe that every categorical Mackey functor deter-

mines a symmetric monoidal Mackey functor. In Section 4.3 we provide tools for constructing new

categorical Mackey functors. We conclude by studying a universal property for G-commutative

monoids in Section 4.5.

4.1 A crash course in bicategories

In this section we review the notion of a bicategory and discuss the examples of the bicategor-

ical Burnside category and Cat, the bicategory of small 1-categories.
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Definition 4.1.1. A bicategory B consists of a collection of objects ob(B) together with categories

B(x, y) for each pair of objects x, y ∈ ob(B). The objects of the categories B(x, y) are called

1-morphisms and are denoted by single stemmed arrows f : x → y. Morphisms between f and g

in B(x, y) are denoted by double stemmed arrows α : f ⇒ g. We refer to the morphisms in B(x, y)

as 2-morphisms and their composition as vertical composition.

In addition to the above, we have the following:

1. (Horizontal Composition) For x, y, z ∈ obB, a horizontal composition bi-functor

cx,y,z : B(y, z)× B(x, y)→ B(x, z)

Rather than write cx,y,z, we often denote horizontal composition by concatenation of 1-

morphisms.

2. (Unitors) For all b ∈ B, an object 1b ∈ B(b, b) and specified natural isomorphisms

ca,b,b(1b,−) ∼= idCa,b
∼= ca,a,b(−, 1a)

3. (Associators) Natural isomorphisms

αw,x,y,z : cw,y,z ◦ (idB(y,z)×cw,x,y)⇒ cw,x,z ◦ (cx,y,z × idB(w,x))

The associators and unitors are required to satisfy some coherence axioms that we do not include

here. The interested reader can find these diagrams in [JY21, Section 2.1].

Sometimes we will refer to the objects of a bicategory as 0-cells, the 1-morphisms as 1-cells

and the 2-morphisms as 2-cells. This terminology is especially helpful when visualizing diagrams.

Remark 4.1.2. The term bifunctor in (1) of the definition above means if we fix a particular f ∈

B(y, z) then

cx,y,z(f,−) : B(x, y)→ B(x, z)
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is a functor. For α a 2-cell in B(x, y) we write cx,y,z(f, α) as f · α and this element is called the

whiskering of α with f . Similarly, for g ∈ B(x, y) and β a 2-morphism of B(y, z) we have the

whiskering β · g.

Whiskering satisfies certain coherence laws with respect to the vertical composition. Rather

than write down the coherence explicitly, let us just say any sufficiently simple planar diagram of

0, 1 and 2 cells has exactly one vertical composition. For instance, in the diagram

x y z
g

f

α

k

h

β

we have (β · g) ◦ (h · α) = (k · α) ◦ (β · f). Full details on the coherence of pasting diagrams in

bicategories can be found in [JY21, Theorem 3.6.6].

Bicategories are just like regular categories, except that almost every statement only holds up

to an invertible 2-cell. For example, two objects x, y ∈ B are equivalent if there are 1-morphisms

f : x → y and g : y → x so that fg ∼= 1y and gf ∼= 1x. Note that g is not the unique “inverse” to

f , although any two inverses are equivalent.

Example 4.1.3. We write Cat for the bicategory of small categories. The objects are small 1-

categories and for any categories x and y, the morphism category Cat(x, y) is the category of

functors and natural transformations from x to y. Horizontal and vertical composition are given by

composition of functors and natural transformations. The associators and unitors are identities.

Example 4.1.4. Let (C,⊗, 1) be a monoidal category. Then there is a bicategory BC with a single

0-cell ∗ and BC(∗) = C. The horizontal composition in BC is the monoidal product ⊗ and the

associators are the associativity data of the monoidal category. The vertical composition is the

usual composition in C. One of the motivating reasons for studying bicategories is that in fact

monoidal categories are equivalent to bicategories with a single object. Thus bicategories can be

thought of as monoidal categories (or rings) with many objects.

Example 4.1.5. The Burnside bicategory AG of a finite group G is the bicategory whose objects
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are finite G-sets and morphisms AG(X, Y ) are spans – not isomorphism classes of spans –

X
r←− A

t−→ Y

where r, t are equivariant maps of G-sets. A 2-morphism between spans X
r←− A

t−→ Y and

X
r′←− A′ t′−→ Y is a G-equivariant map f : A→ A′ so that the obvious diagram commutes. Vertical

composition is by composition of G-equivariant maps.

Horizontal composition is given by pullback of G-sets, i.e. the composition of X r1←− A
t1−→ Y

and Y
r2←− B

t2−→ Z is the span along the top of

A×Y B

A B

X Y Z

r1◦π1
π1

t2◦π2
π2

t1r1 t2r2

where the middle square is the pullback. It is important we make a specific choice of pullback so

this is well defined. We make the choice:

A×Y B = {(a, b) ∈ A×B | t1(a) = r2(b)}.

Note this pullback construction is not strictly associative, and so we need associators which are

given by the obvious isomorphism (A×Y B)×Z C ∼= A×Y (B ×Z C) whenever necessary.

Finally, given three spans

ω1 = [X
r←− A

t−→ Y ]

ω2 = [X
r′←− B

t′−→ Y ]

ω3 = [Y
r′′←− C

t′′−→ Z]

and a 2-cell γ : ω1 ⇒ ω2 realized by a map γ : A → B, the whiskering is ω3 · γ : ω3ω1 ⇒ ω3ω2 is
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realized by the map γ ×Y idC : A×Y C → B ×Y C.

4.1.1 Pseudo-functors

Just as we do for ordinary categories, we often want a way of comparing different bicategories

through some kind of functor. Since the composition of 1-cells in a bicategory is not actually

associative, our functors will need to take this into account as a part of their data. This leads

naturally to the notion of a pseudo-functor.

Definition 4.1.6. A pseudo-functor F : B → C between two bicategories consists of

1. an object function, F : ob(B)→ ob(C),

2. functors Fx,y : B(x, y)→ C(Fx, Fy) for any x, y ∈ B,

3. specified isomorphisms µf,g : F (g)F (f)
∼
=⇒ F (gf) for any composable 1-cells f and g,

4. and isomorphisms 1F (x)
∼
=⇒ Fx,x(1x).

The composition and unit isomorphisms must satisfy certain compatibility with the associators and

unitors of the bicategories B and C. Full details can be found in [JY21, Definition 4.1.2]

Pseudo-functors describe situations in which composition of morphisms is not strictly associa-

tive. Such constructions are particularly common when morphisms in either the target or source

category are not described by functions on sets, such as the Burnside category. They are also fairly

common even when working with concrete and elementary constructions.

Example 4.1.7. Let G be a finite group and let C denote the subgroup poset of G, considered as

a 1-category in the usual way. We would like to define a functor C → Cat1, the category of

1-categories and functors, that sends H ≤ G to the category SetH of finite H-sets. Our functor

should send a morphism K ≤ H in C to the induction functor H×K (−) : SetK → SetH . However,

this is not a functor, because for any chain L ≤ K ≤ H and any L-set S

H ×K (K ×L S) ̸= H ×L S.
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While the equation above does not hold as a strict equality, it does hold up to natural isomorphism

and one can realize the desired functor as a pseudo-functor between bicategories.

Example 4.1.8. If X is a topological space, let Vect(X) denote the category of real, finite dimen-

sional vector bundles over X . If f : X → Y is continuous and E → Y is a vector bundle, then we

can construct a pullback bundle f ∗(E) → X . This describes a functor f ∗ : Vect(Y ) → Vect(X)

and one can ask if this gives a contravariant functor from topological spaces into the category of

categories. The answer to this question depends on the choice of pullbacks, but the usual choice

of pullbacks does not work since it is not associative. It is reasonably straightforward, however, to

turn this construction into a contravariant pseudo-functor.

Remark 4.1.9. Every category C determines a bicategory Ĉ with the same objects and 1-morphisms

as C, and only identity 2-cells. This allows us to consider 1-categories as particular examples of

bicategories and thus to make sense of pseudo-functors between 1-categories and arbitrary bicate-

gories. Of course, this is of the most interest when the target is not a 1-category.

4.1.2 Products in bicategories

As with ordinary functors between 1-categories, we can make sense of pseudo-limits of pseudo-

functors F : B → C. The whole definition (see [Bor94, Chatper 7]) is a bit unwieldy, but in the

case of products we can be quite explicit. The interested reader can check the definition we give

below is equivalent to the notion of a pseudo-limit of the pseudo-functor F : 2→ B where 2 is the

bicategory with 2 objects and only identity morphisms.

Definition 4.1.10. Let B be a bicategory and A,B ∈ B. A product of A and B in B, if it exists,

is an object P together with maps πA : P → A and πB : P → B such that if P ′ is some other

object of B, equipped with 1-morphisms π′
A : P

′ → A and π′
B : P ′ → B, then there is a 1-

morphism u : P ′ → P such that π′
A
∼= πA ◦ u and π′

B
∼= πB ◦ u. Moreover, u is unique up to

a unique 2-isomorphism, in the sense that for any other choice v : P ′ → P and 2-isomorphisms

α : πAu⇒ πAv and β : πBu⇒ πBv, there is a unique 2-isomorphism γ : u⇒ v so that πA · γ = α

and πB · γ = β.
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Example 4.1.11. We consider the bicategory Cat of 1-categories, functors, and natural transfor-

mations. A product here is given by the usual product of 1-categories. Explicitly, the product

of categories A and B is the category A × B with objects pairs (a, b) of objects in A and B. A

morphism (f, g) : (a, b)→ (a′, b′) is a pair of morphisms f : a→ a′ and g : b→ b′ in A and B.

Lemma 4.1.12. LetAG be the Burnside bicategory of a finite group G and let A,B be finite G-sets.

Then the disjoint union A⨿B is a product of A and B in AG.

Proof. The projection spans πA : A⨿B → A and πB : A⨿B → B are given by

πA = [A⨿B
iA←− A

=−→ A]

πB = [A⨿B
iB←− B

=−→ B]

where the left arrow in each span is the obvious inclusion. Given any other element P ∈ AG and

spans

pA = [Q
rA←− C

tA−→ A]

pB = [Q
rB←− D

tB−→ B]

we can define a span u : Q→ A⨿B by

u = [Q
rA⨿rB←−−−− C ⨿D

tA⊕tB−−−→ A⨿B]

The composite πAu is computed as

(C ⨿D)×A⨿B A

C ⨿D A

Q A⨿B A

ϕ1 ϕ2

tA⊕tBrA⨿rB
=iA
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where the inner diamond is a pullback in G-sets. We define an isomorphism

fA : C → (C ⨿D)×A⨿B A

by fA(c) = (c, tA(c)) for c ∈ C. One readily checks that (rA⨿rB)◦ϕ1 ◦fA = rA and ϕ2 ◦fA = tA

so that πA ◦ u is isomorphic, via the 2-cell fA, to pA as desired. A similarly defined fB will show

that πB ◦ u is isomorphic to pB.

It remains to show the 2-uniqueness of u : Q→ A⨿B. Suppose

v = [Q
r←− E

t−→ A⨿B]

is a span such that there are 2-isomorphisms α : πAu ⇒ πAv and β : πBu ⇒ πBv. We need to

construct a 2-cell γ : u ⇒ v so that πA · γ = α and πB · γ = β. The 2-cell α is realized by an

isomorphism of G-sets α : (C ⨿D)×A⨿B A→ E ×A A. Since every element of the domain is of

the form (c, tA(c)) for some c ∈ C, we see that α is given α(c, tA(c)) = (gA(c), tA(c)) for some

equivariant function gA : C → E. Similarly, there is a G-map gB : D → E that determines β.

We define γ : C⨿D → E to be the coproduct gA⨿gB. One can easily check that γ×A⨿BA = α

and γ ⨿A⨿B B = β. Moreover, γ is the unique map with this property, by the universal property

of the coproduct.

Corollary 4.1.13. The Burnside bicategory is generated under products by the transitive G-sets

G/H , in the sense that every object inAG is isomorphic to a finite product of elements of this form.

Going forward, we will interested in pseudo-functors which preserve products.

Definition 4.1.14. A pseudo-functor F : B → C preserves products if for any product x1 × x2 in

B, with projections πi : x1 × x2 → xi, the image F (x1 × x2) is a product with projections F (πi).

Suppose F : B → C preserves products. It follows from the definition that there must be

morphisms u : F (x1 × x2) → F (x1) × F (x2) and v : F (x1) × F (x2) → F (x1 × x2) so that the
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following diagram commutes up to some specified invertible 2-cells for i = 1, 2.

F (x1 × x2) F (x1)× F (x2) F (x1 × x2)

F (xi)

u

F (πi)
πF (xi)

v

F (πi)

It follows from Definition 4.1.10 that vu and uv are uniquely isomorphic to the identities. In the

case where C = Cat, u and v form an adjoint equivalence of categories in the usual sense.

Definition 4.1.15. If F,G : B → C are two pseudo-functors between bicategories, a pseudo-natural

transformation α : F ⇒ G consists of:

1. 1-cells αb : F (b)→ G(b) for all b ∈ B,

2. For all 1-cells f : a, b in B, an invertible 2-cell σf
α in C filling the following square:

Fa Ga

Fb Gb

αa

F (f) G(f)

αb

σf
α

We also require that all reasonable diagrams involving the σf
α and the associators and unitors for

F and G commute. Again, we refer the reader to Johnson–Yau for the full details [JY21, Section

4.2].

Lemma 4.1.16. The collection of bicategories, pseudo-functors, and pseudo-natural transforma-

tions assembles into a bicategory, denoted BiCat.

4.1.3 (2,1)-bicategories

In this subsection we highlight a particularly nice class of bicategories.

Definition 4.1.17. A (2, 1)-bicategory is a bicategory in which every 2-cell is an isomorphism.
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Remark 4.1.18. The choice of notation (2, 1)-bicategory is probably not illuminating to those en-

countering higher categories for the first time. A bicategory is a particular version of a 2-category,

meaning that it is like a category except that morphisms between two objects are also a category.

One could inductively define an n-category which is like a category except that the morphisms be-

tween any two objects form an (n−1)-category. In this context, an (n, k)-category is an n-category

such that every morphism from dimension k + 1 to n is invertible.

Example 4.1.19. Every bicategory B admits a sub-bicategory B(2,1) which is a (2, 1)-bicategory.

B(2,1) has the same objects and 1-cells as C, but only the isomorphism 2-cells. An important

example going forward will be AG
(2,1), which we refer to as the truncated Burnside bicategory.

Example 4.1.20. Recall from Remark 4.1.9 that every category C determines a bicategory Ĉ with

only identity 2-cells. Evidently Ĉ is always a (2, 1)-bicategory.

Example 4.1.19 provides a nice example of a pseudo-functor which preserves products.

Lemma 4.1.21. A bicategory B admits products if and only if B(2,1) admits products. Moreover,

the inclusion pseudo-functor B(2,1) → B is product preserving.

Proof. The only 2-cells appearing in the definition of a product are isomorphisms and thus all the

data of a product in B determines a product in B(2,1) and vice versa.

We end this section with a discussion of opposite categories. Since there are two kinds of mor-

phisms in a bicategory there are several things one might mean by the opposite category depending

on whether one wishes to invert 1-cells, 2-cells, or both. The next definition sets notation for these

choices.

Definition 4.1.22. Let B be a bicategory. We define the following dual categories:

1. the op-dual Bop has the same 0-cells and 2-cells as B but Bop(x, y) = B(y, x).

2. the co-dual Bco has the same 0-cells and 1-cells as B but Bco(x, y) = B(x, y)op.

3. the coop-dual Bcoop has the same 0-cells as B but Bcoop(x, y) = B(y, x)op.
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We make further use of the co-dual of a bicategory in Section 4.3. For now though, we finish

this section with the following observation.

Lemma 4.1.23. Let B be a bicategory. If B is a (2, 1)-bicategory then B is isomorphic to Bco.

Proof. The functor B → Bco which is the identity on 0-cells and 1-cells but sends every two cell

to its inverse is an isomorphism of bicategories.

4.1.4 Adjoints in bicategories

The data of an adjunction between functors can be phrased, using units and counits, in terms

of just functors and natural transformations. That is, we can think about adjunctions as particular

relations which exist between 1-cells and 2-cells in the bicategory Cat of small 1-categories. This

allows us to make sense of adjunctions in arbitrary bicategories.

Definition 4.1.24. Suppose f : b→ c is a 1-cell in a bicategoryB. A 1-cell g : c→ b is a left adjoint

of f if there exist 2-cells ϵ : gf → 1b and η : 1c → fg such the following diagrams commute:

g ◦ 1c g ◦ (f ◦ g) (g ◦ f) ◦ g

g 1b ◦ g

g·η

ϵ·g

1c ◦ f (f ◦ g) ◦ f f ◦ (g ◦ f)

f f ◦ 1b

η·f

f ·ϵ

where the unlabeled morphisms are unitors and associators.

Example 4.1.25. In the bicategory Cat, an adjoint pair is simply an adjoint pair of functors. Af-

ter replacing the unitors and associators with the appropriate identities, the coherence diagrams

become the usual triangle identities.

Lemma 4.1.26 ([JY21, Proposition 6.1.7]). Suppose f : b → c is a 1-cell in a bicategory B with

left adjoint g : c→ b. For any pseudo-functor F : B → C, the 1-cell F (g) is a left adjoint of F (f).
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Lemma 4.1.27. For any map of finite G-sets f : S → T , the transfer Tf is a left adjoint of Rf , in

the bicategory AG.

Proof. The spans Rf ◦ Tf and Tf ◦Rf are given by

Rf ◦ Tf = [S
π1←− S ×T S

π2−→ S]

Tf ◦Rf = [T
f←− S

f−→ T ]

The unit 2-cell η : 1S ⇒ RfTf is given by the diagonal S → S ×T S, while the counit

ϵ : TfRf ⇒ 1T is given by f : S → T . It is straightforward to check the necessary coherence.

Corollary 4.1.28. If C : AG → Cat is a pseudo-functor then there is an adjunction C(Tf ) ⊣ C(Rf )

for any morphism f of finite G-sets.

4.2 Categorical Mackey functors

In this section we lay out the definition of categorical Mackey functors and discuss their basic

properties.

Definition 4.2.1. A categorical Mackey functor is a product preserving pseudo-functor

M : AG
(2,1) → Cat .

A morphism α : M → N of categorical Mackey functors is a pseudo-natural transformation α

which respects products in the sense that the following diagram commutes for any A,B ∈ AG
(2,1)

M(A⨿B) M(A)×M(B)

N(A⨿B) N(A)×N(B)

αA⨿B

∼=

αA×αB

∼=

.

Before giving any examples, we clarify the data that must be given to determine such an object.
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Given any X ∈ AG, Corollary 4.1.13 says there exists subgroups Hi ≤ G so that

X ∼=
n∐

i=1

G/Hi (4.1)

It follows that given a categorical Mackey functor M , we must have isomorphisms of cate-

gories:

M(X) ∼=
n∏

i=1

M(G/Hi). (4.2)

In particular, up to categorical equivalences, M is determined by its values on the G/H . In

principle one can use this to define our Mackey functor by specifying its values on the orbits G/H ,

fixing isomorphisms of the form of (4.1) and defining M(X) by taking the equivalence (4.2) to be

the identity. Of course, to make this precise we need to specify some coherence data. The next

proposition enumerates how much data we need.

Proposition 4.2.2. The following data determines a categorical Mackey functor:

1. symmetric monoidal categories M(G/H) for each H ≤ G,

2. strong monoidal restriction functors RH
K : M(G/H)→M(G/K) for each K ≤ H ≤ G,

3. strong monoidal transfer functors TH
K : M(G/K)→M(G/H) for each K ≤ H ≤ G,

4. strong monoidal conjugation functors cg : M(G/H)→M(G/Hg) for all g ∈ G,

5. natural isomorphisms RK
L R

H
K
∼= RH

K and TH
K TK

L
∼= TH

L for any chain L ≤ K ≤ H ,

6. equalities cg1cg2 = cg1g2 ,

7. The following double coset isomorphism for J,K ≤ H:

RH
J T

H
K
∼=

⊕
γ∈K\H/J

T J
J∩KγRKγ

J∩Kγcγ

where ⊕ is the monoidal product of M(J),
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8. TH
H , RH

H are both the identity,

9. cg is the identity whenever g ∈ H ,

10. for any J ≤ L ≤ K ≤ H , the two ways of applying (5) to get from TH
K TK

L TL
J to TH

J are the

same. A similar statement holds for restrictions,

11. equalities cgTH
K = THg

Kg cg and cgR
H
K = RHg

Kgcg. That is, the cg are natural transformations

between transfers and restrictions.

Proof. Consider pairs (n, α) where n is a non-negative integer and α : G→ Σn. Such a pair deter-

mines a G-action on the ordered set {1, . . . , n} and we identify the pair (n, α) with the resulting

G-set. Without loss of generality we may assume that every object of AG is of this form. Let

X ⊂ (n, α) be an orbit. We write Xmin for the minimum element of X in the ordering on n.

For any G-set (n, α), we define a total ordering on collection of orbits X1, . . . , Xk of (n, α) by

declaring Xi ≤ Xj whenever Xmin
i < Xmin

j .

We fix a G-set (n, α) and let X1, . . . , Xk be the orbits, ordered as above. Given the data from

the statement, we define a categorical Mackey functorM on the object (n, α) by

M(n, α) =
k∏

i=1

M(G/Hi)

where Hi = Stab(Xmin
i ). It remains to check that this extends to an actual pseudo-functor.

We first define the transfers. Let (m,β) be another G-set and let Y1, . . . Yj be its orbits, ordered

as above, and write Ki for the stabilizer of Y min
i . Any G-map f : (n, α) → (m,β) determines a

map ϕf : k → j defined by f(Xi) = Yϕ(i). Pick a gi ∈ G such that giY min
ϕ(i) = f(Xmin

i ) so that

Hi ⊂ Kgi
ϕ(i) and define

M(Tf ) :
k∏

i=1

M(G/Hi)→
j∏

ℓ=1

M(G/Ki)

to be the “matrix” whose (i, ϕ(i)) entry is cg−1
i
T

K
gi
ϕ(i)

Hi
with all other entries 0. Since any two choices

of gi differ by an element in Kϕ(i), this is well defined by (6) and (9).
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For restrictions along f , we let

M(Rf ) :

j∏
i=1

M(G/Ki)→
k∏

i=1

M(G/Hi)

be the matrix whose (ϕ(i), i) entry is R
K

gi
ϕ(i)

Hi
cgi and all other entries are zero.

On any arbitrary span ω = [(n, α)
r←− (m,β)

t−→ (p, γ)] define

M(ω) =M(Rr)M(Tt)

and let the associators be given by the data of (6), (6), and (7). Using (8) and (9) we can choose

the unitors to be identities. The fact that these associators and unitors form a pseudo-functor is the

data of (10) and (11). All that remains is to define our functor on 2-cells.

Let ωi = [(n, α)
ri←− (mi, βi)

ti−→ (p, γ)] be any two spans inAG
(2,1). Since all 2-cells ofAG

(2,1) are

invertible, there is a 2-cell h : ω1 ⇒ ω2 if and only if m1 = m2 = m and we have a commutative

diagram of G-sets:
(m,β1)

(n, α) (p, γ)

(m,β2)

r1

h

t1

t2r2

Since h : m → m is an isomorphism, M(Tf ) consists only of index shuffling on the product of

categories and various conjugations functors cg. By the definition ofM on transfer and restriction

morphisms, and using the fact that conjugations are assumed to commute with the other data

strictly by (6) and (11), we have

M(Th)M(Rr1) =M(Rr2) and M(Tt2)M(Th) =M(Tt1).
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By (6) we have thatM(Th) ◦M(Th−1) is the identity functor, which implies

M(ω1) =M(Tg1)M(Rf1) =M(Tg1)M(Th)M(Th−1)M(Rf1) =M(Tg2)M(Rf2) =M(ω2)

and so for any two cell h : ω1 ⇒ ω2 we haveM(ω1) =M(ω2) so we can just takeM(h) to be the

identity two cell.

Remark 4.2.3. The proof of the preceding proposition relies heavily on the fact that the conjugation

functors cg are assumed to strictly commute with everything in sight. While this is a bit “evil,” it

seems to be a reasonable assumption in examples.

Remark 4.2.4. The data of Proposition 4.2.2 is quite bulky. In many cases, it is infeasible, or at

least undesirable, to check all this data. In Section 4.3 we provide a different method of producing

new, more elaborate examples from existing examples, allowing us to limit the number of times

we must invoke Proposition 4.2.2.

An ordinary Mackey functor is usually given as a product preserving functor from the ordinary

Burnside 1-category to the category of abelian groups. Similarly, a semi-Mackey functor is a

product preserving functor from the Burnside 1-category to commutative monoids. Interestingly,

the data of a semi-Mackey functor is equivalent to a functor that takes values in the category of

sets. Essentially, this works because a product preserving functor from the Burnside 1-category is

a monoidal functor into Set, where both categories have the categorical product as the monoidal

product. Since each object of the Burnside 1-category is a commutative monoid, it follows that

M(X) is also a commutative monoid.

The next proposition categorifies the argument of the previous paragraph to the present setting,

where the role of commutative monoids is played by symmetric monoidal categories. The proof

makes heavy use of the technical results of a paper of Day and Street [DS97].

Proposition 4.2.5. Let M : AG
(2,1) → Cat be a categorical Mackey functor. For every b ∈ AG

(2,1),

the category M(b) comes equipped with a symmetric monoidal structure.
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Proof. For this proof, we abbreviate M(b) by Mb. Similarly, if f : x→ y is a 1-cell in AG
(2,1) then

we abbreviate M(f) by Mf .

By [CKWW07, Theorem 2.15], any bicategory with binary products underlies a symmetric

monoidal bicategory with monoidal product given by the binary product. Following [DS97], any

object b ∈ AG
(2,1) is a pseudo-monoid, meaning it admits a coherently associative and unital multi-

plication. In our case, the multiplication µ : b⨿ b→ b is given by the span

b⨿ b = b⨿ b
∇−→ b

where ∇ is the fold map. Our explicit choice of pullbacks along identities implies this multiplica-

tion is strictly unital. The unit ∅ → b is given by the transfer along the unique map from the empty

set to B in G-sets. The diagrams of [DS97, Section 3] are easily checked. By [DS97, Proposition

5], we immediately get that Mb is a monoidal category with product given by the composite

Mb ×Mb
χb−→Mb⨿b

Mµ−−→Mb

where χb is a categorical equivalence, unique up to unique natural isomorphism, which witnesses

the fact that M is product preserving. It remains to check that this product is symmetric.

Let ρ : Mb ×Mb → Mb ×Mb be the switch map of categories and let τ : b ⨿ b→ b ⨿ b be the

switch map in AG
(2,1). We have a pasting diagram

Mb ×Mb Mb⨿b

Mb ×Mb Mb⨿b Mb

χb

ρ Mτ

Mµ

χb Mµ

u
cµ,τ

in Cat. The 2-cell u is the unique 2-cell which witnesses the fact that the 1-cells Mτχb and χbρ

agree, up to natural equivalence, after either projection Mb⨿b → Mb. The transformation c∇,τ

is the natural transformation which realizes the fact that M preserves composition up to natural
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isomorphism. The resulting 2-cell

cµ,τ ◦ u : Mµχbρ⇒Mµχb

gives a braiding which we need to check is symmetric; that is, we need to check that doing the

braiding twice is the identity.

The relevant diagram is

Mb ×Mb Mb⨿b

Mb ×Mb Mb⨿b Mb

Mb ×Mb Mb⨿b

χb

ρ Mτ

Mµ

ρ

χb

Mτ

Mµ

u
cµ,τ

χb

Mµ

u
cµ,τ

(4.3)

which realizes a 2-cell Mµχb ⇒Mµχb since ρ2 is the identity. Consider the diagram

Mµχb Mµχbρρ MµMτχbρ Mµχbρ

MµMτMτχb MµMτχb

MµMττχb Mµχb

Mµ·i−1·χb

= Mµ·u·ρ cµ,τ ·χbρ

MµMτ ·u Mµ·u

cµ,τ ·Mµχb

Mµ·cτ,τ ·χb cµ,τ ·χb

Mµ·i·χb

where i is the unitor for M . If we show this diagram commutes we are done as the top-right

composite is a 2-cell represented by the pasting diagram (4.3) while the bottom composite of the

diagram is the identity. The top-right square represents the two ways of evaluating the sub pasting

diagram of (4.3) consisting of the top-left square and the bottom right triangle; this commutes

because Cat is a strict 2-category. The bottom-right square commutes because M is a pseudo-

functor and this square is a whiskering of χb with two ways of resolving MµMτMτ to Mµττ = Mµ.
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To see the left triangle commutes, note that it is the whiskering of Mµ with the composite

(cτ,τ · χb)(Mτ · u)(u · τ) : χb →Mττχb.

Since Mττχb and χb are maps Mb×Mb →Mb⨿b which respect the projections up to isomorphism,

they must be uniquely isomorphic by the 2-uniqueness of bicategorical products and so both ways

around the triangle must be the same.

The symmetric monoidal structures on M(b) specified by the last proposition interact nicely

with the categorical transfer, restriction, and conjugation functors. In particular, all of these func-

tors are strong monoidal, providing the link between our categorical Mackey functors and the

symmetric monoidal Mackey functors of Definition 3.1.1.

Theorem 4.2.6. Every categorical Mackey functor M determines a symmetric monoidal Mackey

functor M̃ with M̃(H) = M(G/H), where M(G/H) is endowed with the symmetric monoidal

structure of Proposition 4.2.5.

In certain cases, we can identify the symmetric monoidal structure of Proposition 4.2.5 as a

cocartesian monoidal structure.

Lemma 4.2.7. Let M : AG
(2,1) → Cat be a categorical Mackey functor. If M is the restriction of

a pseudo-functor M : AG → Cat, then for any object b ∈ AG
(2,1), the symmetric monoidal product

on M(b), identified in Proposition 4.2.5, is a categorical coproduct.

Proof. Recall that for any b ∈ AG
(2,1), the symmetric monoidal product on M(b) is

µb : M(b)×M(b) ∼= M(b⨿ b)
M(T∇)−−−−→M(b)

By Lemma 4.1.27, the map T∇ is the left adjoint of R∇ and so, by Lemma 4.1.26, the functor µb
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must be a left adjoint of

Db : M(b)
M(R∇)−−−−→M(b⨿ b) ∼= M(b)×M(b)

Since the composite of R∇ with either projection map is the identity, we see that Db must be

equivalent to the diagonal functor. Since the coproduct functor is characterized as the left adjoint

to the diagonal functor, this concludes the proof.

We end this section with several examples. With the exception of Examples 4.2.8 and 4.2.9

all of these examples can be checked to be actual categorical Mackey functors using Proposition

4.2.2.

Example 4.2.8. The categorical Mackey functor Set⨿,iso is defined by Set⨿,iso(G/H) = SetHiso, the

category of finite G-sets and isomorphisms. The symmetric monoidal product is the disjoint union

of H-sets. The restrictions and transfers are given by restriction and induction of sets with group

actions. This example is representable in the sense that

Set⨿,iso(G/H) ∼= AG
(2,1)(G/G,G/H)

and so the fact that this is actually a product preserving pseudo-functor is entirely formal.

Example 4.2.9. The categorical Mackey functor Set⨿ is given by Set⨿(G/H) = SetH . The sym-

metric monoidal product is the disjoint union of H-sets. The restrictions and transfers are given

by restriction and induction of G-sets. Like Example 4.2.8, this example is is representable in the

sense that for all H we have equivalences of categories

Set⨿(G/H) ∼= AG(G/G,G/H)

and the transfers and restrictions are induced by maps in AG. In particular, Set⨿ is actually re-

stricted from a product preserving functor AG → Cat and is in fact the universal example of such

a functor.
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Example 4.2.10. The categorical Mackey functor Set× is given by Set×(G/H) = SetH . The

symmetric monoidal product is the Cartesian product of H-sets. The restrictions and transfers are

given by restriction and coinduction of G-sets.

Example 4.2.11. The categorical Mackey functor AG
⨿ is given by AG

⨿(G/H) = AH
1 , where the

subscript 1 means we are considering the Burnside 1-category. The symmetric monoidal product is

the disjoint union of H-sets. The restrictions and transfers are given by the extension of restriction

and induction of finite sets with group action to functors on the Burnside categories.

Example 4.2.12. The categorical Mackey functorAG
× is given byAG

×(G/H) = AH
1 . The symmetric

monoidal product is the Cartesian product of H-sets. The restrictions and transfers are given by the

extension of restriction and coinduction of finite sets with group action to functors on the Burnside

categories.

Remark 4.2.13. The categorical Mackey functor Set⨿,iso of Example 4.2.8 plays a central role in

our theory of categorical Mackey functors. In [HH16], Hill and Hopkins study structures called

G-symmetric monoidal categories which amount to objects which are, in some sense, modules

over Set⨿,iso. This idea is carried further in the work of Vekemans, who develops the notion for

incomplete G-symmetric monoidal structures which are indexed by various indexing categories.

The analogy with categorical Mackey functors can loosely be described as follows: the collec-

tion of categorical Mackey functors should be thought of as a symmetric monoidal category with

Set⨿,iso as the unit. Since the unit in a monoidal category is always a monoid, we can make sense

of modules over the unit and in fact every object is a module over the unit. In particular, morally

there should be no difference between considering categorical Mackey functors and considering

modules over Set⨿,iso. In classical terms, we have just described how one identifies modules over

a commutative ring R with modules over the R-algebra R.

Of course, while the analogy is quite strong it is a different task entirely to make the analogy

precise. We have taken the route that best suits our purposes for this thesis, but overall it seems to

be a matter of taste.
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4.3 Constructing categorical Mackey functors

In this section we describe a method of constructing examples of categorical Mackey functors

from old ones. The goal of this method is to bypass, to a certain degree, the necessity of checking

the data of Proposition 4.2.2. In particular, suppose M : AG
(2,1) → Cat is a rule which assigns

objects to objects, 1-cells to 1-cells and 2-cells to 2-cells. We wish to show thatM gives an actual

categorical Mackey functor. If the square

A B

C D

k

h f

g

is a pullback diagram in SetG the composition law in the Burnside category says that if M is a

pseudo-functor then there must be natural isomorphisms

M(Tk)M(Rh) ∼=M(Rf )M(Tg)

which can be hard to construct ad hoc. Even worse, showing these isomorphisms are sufficiently

natural presents its own challenge.

The plan is to factor the desired categorical Mackey functor as a composite

AG
(2,1)

TM−−→ Catco×
Mod−−→ Cat

where Cat× is the bicategory of categories with finite products, functors, and natural transforma-

tions and the superscript “co” indicates that we have taken the co-dual in the sense of Definition

4.1.22. We emphasize that the 1-morphisms in Cat× do not need to be product preserving as this

would be too restrictive for our examples.

The pseudo-functor TM should be a categorical Mackey functor which is already constructed.

For instance, if we pick TM to be the categorical Mackey functor of Example 4.2.12, the composite
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Mod ◦ TM will give a categorical Mackey functor of Mackey functors. The underlying symmetric

monoidal Mackey functor will be the one studied in Chapter 3.

Our pseudo-functor Mod sends a category C with products to

Mod(C) = Fun×(C, Set),

the category of product preserving functors from C to the category of sets. If f : C → D is any func-

tor then Mod(f) is given by left Kan extension along f . When we need to be explicit, we will take

left Kan extensions along non-identity functors to be defined by the pointwise formula; we require

left Kan extension along identity functor to be the identity functor. The fact that left Kan exten-

sions of product preserving functors preserve products is [BD77, Theorem 1.5(iii)]. If f, g : C → D

are two functors and α : f ⇒ g is a natural transformation (a morphism in Catco× (g, f)), then the

natural transformation given by the composite

idFun×(C,Set)
η
=⇒ f ∗f!

α∗
=⇒ g∗f!

has an adjunct which is Mod(α) : g! ⇒ f!. Phrased another way, for any M : C → Set, the natural

transformation Mod(α)M : g!M ⇒ f!M is the unique natural transformation so that

(Mod(α) · g) ◦ ηgM = (f!M · α) ◦ ηfM (4.4)

where the equality is as natural transformations from M to f!(M) · g.

Lemma 4.3.1. Mod is a pseudo-functor.

Proof. Given two composable functors f and g, the left Kan extension of the composite is canoni-

cally isomorphic to the composite of the left Kan extensions, providing the necessary isomorphisms

Mod(f ◦ g) ∼= Mod(f) ◦Mod(g). The same reasoning provides both the associators and the un-

itors, and the universal properties which make these choices canonical imply all the necessary

coherence.
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It remains to check that for any categories C and D with products that Mod gives an actual

functor:

Cat×(C,D)op → Cat(Mod(C),Mod(D)).

For any f : C → D, note that if we plug f = g and α = idf into equation (4.4) we get the defining

equation for Mod(idf ). Since idf! also satisfies this equation these two natural transformations

agree at all M and thus Mod(idf ) = idf! . It remains to show that if g, h : C → D and α : f ⇒ g

and β : g ⇒ h then we have an equality

Mod(α) ◦Mod(β) = Mod(β ◦ α).

For all M : C → Set, Mod(β ◦ α)M is the unique 2-cell h!M → f!M so that

(Mod(β ◦ α)M · h) ◦ ηhM = (f!M · (β ◦ α)) ◦ ηfM (4.5)

Consider the following commutative diagram where all arrows are natural transformations:

M M h∗h!M

g∗g!M h∗g!M

f ∗f!M g∗f!M h∗f!M

=

ηfM

ηgM

ηhM

Mod(β)·h

(g!M)·β

Mod(α)·g Mod(α)·h

(f!M)·α (f!M)·β

(4.6)

The top right square commutes by definition of Mod(β), the left rectangle commutes by the defi-

nition of Mod(α), and the bottom right square commutes because the two ways around represent

89



the two possible composites of the pasting diagram

C D Set

h

g

β

f!M

g!M

Mod(α)

in the strict 2-category Cat.

Commutativity of the diagram (4.6) gives

((Mod(α) ◦Mod(β)) · h) ◦ ηhM = (f!M · (β ◦ α)) ◦ ηfM

which means that Mod(α) ◦Mod(β) satisfies the defining property (4.5) of Mod(β ◦α) and so the

two natural transformations are equal.

Remark 4.3.2. Nowhere in this the above proof did we use anything about the category of sets other

than the fact that it admits all pointwise left Kan extensions and that these Kan extensions send

product preserving functors to product preserving functors as in [DS95]. Thus one could extend

the above result by replacing Cat× with the bicategory of small categories with products enriched

in some sufficiently nice category V . We will not pursue this further in this thesis.

We now need to show that Mod preserves products. First, we need to identify the products in

Cat×.

Lemma 4.3.3. The bicategorical product of Cat× is the usual product of 1-categories.

Proof. The only point that really needs addressing is the fact that the product A × B of two cat-

egories A and B with finite products is itself a category with finite products. Given two objects

(a1, b1) and (a2, b2) of A × B, a product of these two elements is given by (a1 ×A a2, b1 ×B b2)

where ×A and ×B denote products in A and B.

Lemma 4.3.4. The pseudo-functor Mod: Catco× → Cat is product preserving.
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Proof. Let A1 and A2 be categories with finite products and let πi : A1 × A2 → Ai be the pro-

jections. For this proof, we write S for the category of sets. The first step is to compute what the

functor Mod does to the projection functors πi. To this end, for any functor F : A1 × A2 → S we

define a functor F1 : A1 → S given on objects by F1(x) = F (x, ∗), where ∗ is a fixed terminal

object of A2; this terminal element exists because A2 has all finite products. F1 does the obvious

thing on morphisms. We claim that F1 is a left Kan extension of F along π1. That is, we there are

natural bijections of sets

π1
! (F )(x, y) ∼= F (x, ∗) (4.7)

for all (x, y).

To see this, define a natural transformation η : F ⇒ F1 ◦ π1 with component

η(x,y) : F (x, y)
F (idx,!)−−−−→ F (x, ∗) = (F ◦ π1)(x, y)

for any (x, y) ∈ A1 × A2. Given any other functor G : A1 → S and natural transformation

γ : F ⇒ G ◦ π1, we have a diagram

F (x, y) Gπ1(x, y) G(x)

F (x, ∗) Gπ1(x, ∗) G(x)

γ(x,y)

η(x,y) Gπ1(idx,!)

γ(idx,!)

in S which commutes by naturality of γ. We see that every such γ factors uniquely through η

establishing the claim.

Define a functor Φ: Mod(A1)×Mod(A2)→ Mod(A1×A2) by Φ(F,G)(x, y) = F (x)×G(y).

It is not hard to see this is an equivalence of categories and, moreover, we have

(π1
! Φ(F,G))(a) ∼= F (a)×G(∗) ∼= F (a)

where the first isomorphism uses (4.7) and the second usses the fact that G(∗) must be a singleton
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because G is product presrving. It follows that Mod(A × B) satisfies the property of the bicate-

gorical product and carries projections to projections.

Corollary 4.3.5. If T : AG
(2,1) → Catco× is a product preserving pseudo-functor then ModT =

Mod ◦T is a categorical Mackey functor.

Remark 4.3.6. A category T with finite products such that every object is isomorphic to a finite

product of some fixed object x ∈ T is called a Lawvere Theory. Such categories, first studied

systematically by Bill Lawvere, give a categorical approach to constructions in universal algebra

[Law63]. Briefly, the morphisms of the theory T encode the various structure maps present in the

algebraic theory of interest. The models of theory T are the product preserving functors T → Set

and encode the collection of all sets with the desired structure maps.

Generalizing, one considers multisorted Lawvere theories T in which we require that our ob-

jects be generated under products by a collection of objects {xi}i∈I . The main example of interest

in this paper are the Burnside 1-categories AH , which are the multisorted Lawvere theories whose

models are exactly the H-semi-Mackey functors. With this lens, one can interpret Corollary 4.3.5

as saying that if we can construct a “Mackey functor of Lawvere theories,” then the associated

collection of models is necessarily a categorical Mackey functor. The usefulness of the corollary

comes from the fact that the construction of the theories as a Mackey functor is, in many cases,

easier than the construction of the Mackey functor of models.

All of the examples at the end of section 4.2 lift to functors AG
(2,1) → Catco× and so post

composition with Mod yields new categorical Mackey functors. We focus on Example 4.2.12

which is the categorical Mackey functor determined by G/H 7→ AH with restriction and transfer

given by restriction and coinduction of H-sets. Composition with Mod yields a categorical Mackey

functor whose value on G/H is exactly the category of H-semi-Mackey functors. This example is

exactly the one we studied in Chapter 3.

Proposition 4.3.7. The categorical Mackey functor ModAG
×

agrees with the G-symmetric monoidal

Mackey functor of Proposition 3.2.8 in the case where the indexing category O is SetG.
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4.4 G-commutative monoids

Throughout this section we fix a categorical Mackey functor C : AG
(2,1) → Cat. By Theorem

4.2.6, the categories M(H) = C(G/H) form a symmetric monoidal Mackey functor in the sense

of Definition 3.1.1. The goal of this section and the next is to consider how the G-commutative

monoids fit into the framework of categorical Mackey functors. In this section we lay the ground-

work by showing how to recover the G-commutative monoids from constructions involving only

categorical Mackey functors. In the next section we prove that G-commutative monoids of a cate-

gorical Mackey functor C satisfy the universal property of being a kind of right Kan extension of

C.

Recall that for a symmetric monoidal Mackey functor M , the G-commutative monoids of M

are the subcategory CommG(M) ⊂ M(G) consisting of objects x together with norm multiplica-

tions

µH
K : NH

KRG
K(x)→ RG

H(x)

for subgroups K ≤ H ≤ G and subject to the coherence data of Definition 3.1.6.

The main result of this section recovers the G-commutative monoids of a symmetric monoidal

Mackey functor M which arises from a categorical Mackey functor C. Recall the categorical

Mackey functor Set⨿ of Example 4.2.9 which is given by

Set⨿(G/H) = SetH

with transfer and restriction given by induction and restriction respectively.

Theorem 4.4.1. Let C be a categorical Mackey functor and let M be the symmetric monoidal

Mackey functor determined by Theorem 4.2.6. There is an equivalence of categories

CommG(M) ∼= [Set⨿, C]
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where [−,−] denotes the category of maps of categorical Mackey functors.

Before giving the proof we need to unpack the data of the category [Set⨿, C]. The objects are

product preserving natural transformations, but we need to define the morphisms of this category.

Morphisms between natural transformations are handled by modifications.

Definition 4.4.2. Let f, g : B → D be a pair of pseudo-functors and let α, β : f ⇒ g be a pair of

pseudo-natural transformations. A modification m : α→ β is the data of a 2-cell mx : αx ⇒ βx in

D for all x ∈ B filling the diagram

f(x) g(x)

αx

βx

mx .

For every map h : x→ y in B we require the that the modification 2-cells be compatible with the 2-

cells that come from the pseudo-natural transformations. Diagramatically we write this coherence

as an equality of pasting diagrams

f(x) g(x) f(x) g(x)

f(y) g(y) f(y) g(y)

βx

αx

f(h) g(h)

βx

f(h) g(h)

αy

βy

αy

=
σh
α

mx

σh
β

my

where σh
α and σh

β are the invertible 2-cells which exist as a part of the data of α and β being pseudo-

natural transformations (Definition 4.1.15). In equations, the diagrams can be read as an equality

mx ◦ σh
α = σh

β ◦my.

The collection of bicategories, pseudo-functors, pseudo-natural transformations, and modifica-

tions form a weak version of a 3-category called a tricategory [GPS95]. In particular, the pseudo-

natural transformations and modifications form a one category which is what we consider in the

above theorem. In our case, the morphisms in [Set⨿, C] are determined by much less data than an
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arbitrary modification.

Let α, β : Set⨿ ⇒ C be two product preserving natural transformations. Since Set⨿ and C are

pseudo-functors which take values in Cat, a modification m between Set⨿ and C has the data of

actual natural transformations mx for all x ∈ AG
(2,1). We will show that really only one of these

natural transformation, namely

mG/G : αG/G ⇒ βG/G

matters. That is, the data of a modification is determined by the relatively manageable diagram

SetG C(G/G),

αG/G

βG/G

mG/G

though we can do even better. It turns out that the data of the natural transformation mG/G is itself

entirely determined by a single morphism in C(G/G), namely the component mG/G,G/G of mG/G

at the object G/G. The key to all of this is that the single object G/G ∈ Set⨿(G/G) determines

every object in Set⨿(X) for all X . We make this argument precise in the next lemma.

Lemma 4.4.3. Let α, β : Set⨿ ⇒ C be two product preserving natural transformations. Then two

modifications m and n from α to β are the same if and only if the component natural transfor-

mations mx and nx are the same for the object x = G/G. Moreover, the natural transformations

mG/G and nG/G agree if and only if the components

mG/G,G/G, nG/G,G/G : αG/G(G/G)→ βG/G(G/G)

are equal.

Proof. If m and n are the same then certainly all their components agree. Conversely, suppose that

mG/G = nG/G. For X a finite G-set we write f : X → G/G for the collapse map. Let σα be the
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invertible 2-cell which fills the diagram

Set⨿(G/G) C(G/G)

Set⨿(X) C(X)

αG/G

αX

Tf Tf
σα

which exists by the definition of a pseudo-natural transformation. Define σβ similarly. The defini-

tion of a modification gives equalities

σβ ◦mX = mG/G ◦ σα and nG/G ◦ σα = σβ ◦ nX .

Putting these together with the assumption mG/G = nG/G and the invertibility of σβ gives us that

mX = nX for all X proving the first claim.

To prove the second claim we need to check that the natural transformation µ = mG/G depends

only on the G/G component. Note that the domain category Set⨿(G/G) = SetG is generated

under disjoint union by the orbits G/H . Since the functors αG/G and βG/G are strong monoidal, we

see that µ is determined by its components at the orbits G/H for H ≤ G. There is a commutative

diagram
αG/G(G/H) TG

H (αG/H(H/H)) TG
HRG

H(αG/G(G/G))

βG/G(G/H) TG
H (βG/H(H/H)) TG

HRG
H(βG/G(G/G))

µG/H

∼=

TG
H (mG/H,H/H)

∼=

TG
HRG

H(µG/G)

∼= ∼=

(4.8)

where the unlabeled isomorphisms come from the data of α and β being pseudo-natural transfor-

mations. The squares commute because m is a modification. It follows that the components µG/H

are determined entirely by the data of α, β, and µG/G and thus there is at most one modification n

with nG/G,G/G = µG/G

We can now give the proof of Theorem 4.4.1.

Proof of Theorem 4.4.1. Let α : Set⨿ ⇒ C be a product preserving pseudo-natural transformation

of categorical Mackey functors and let x = αG/G(G/G) ∈ C(G/G). For any chain of subgroups

96



K ≤ H ≤ G there is a unique H-equivariant map

µH
K : H ×K ResGK(G/G)→ ResGK(G/G)

which, after applying the functor αG/H : SetH → C(G/H), induces a map

µH
K : NH

KRG
K(x)→ RG

H(x)

and this collection of maps define norm multiplications of x. The coherence of Definition 3.1.6 is

all immediate from pseudo-naturality of α and so x is a G-commutative monoid. To see this is a

functor, suppose we have a modification m : α→ β. Then

mG/G,G/G : αG/G(G/G)→ βG/G(G/G)

is a map of G-commutative monoids which makes the assignment α 7→ αG/G(G/G) functorial.

This functor, call it Φ, is faithful by Lemma 4.4.3. To show Φ is essentially surjective and full we

will produce a functor going the other way which is a section.

Suppose x is an object in CommG(M). We define a natural transformation

x̂ : Set⨿ → C

as follows. For every finite G-set Y and object f ∈ Set⨿(Y ) = AG(G/G, Y ) we define

x̂Y (f) = C(f)(x) ∈ C(Y ).

and we must show this is a functor x̂Y (f) : AG(G/G, Y ) → C(Y ). We will show the case when

Y = G/G, the general case being essentially the same. Thus AG(G/G,G/G) = SetG is the

97



category of finite G-sets. For every finite G-set Z pick an isomorphism

ηZ :

NZ∐
i=1

G/HZ
i → Z.

The point of this is that if we can define x̂G/G on maps of the form

v :
N∐
i=1

G/Hi →
M∐
i=1

G/Ki

then we can conjugate these by the isomorphisms C(ηZ) and C(ηZ)−1 to extend x̂ to all kinds of

maps. Since

G/Hi
∼= TG

Hi
RG

Hi
(G/G) ∈ Set⨿(G/G)

the value of x̂(v) is determined by a coherent choice of maps of the form

TG
Hi
RG

Hi
(x)→ TG

Kj
RG

Kj
(x)

for Hi ≤ Kj which are provided by the norm multiplications of x. The coherence follows from

the data of Definition 3.1.6. At that remains is to define the invertible 2-cells of x̂.

For any map ω : Y → Z in AG
(2,1) we need to define an invertible 2-cell σω

x̂

AG(X, Y ) C(Y )

AG(X,Z) C(Z).

ω∗

x̂Y

C(ω)

x̂Z

σω
x̂

Unwinding the definitions, for any object f : X → Y we need an equivalence

C(ω ◦ f)(x) ∼−→ C(ω)C(f)(x)

which we can take to be the data given to us by the fact that C is a pseudo-functor. All the necessary

coherence follows from the assumption that C is actually a pseudo-functor.
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4.5 The universal property of G-commutative monoids

In this section we offer one final perspective on G-commutative monoids, characterizing these

objects via a universal property. This universal property exists in the context of the following

extension problem: given a categorical Mackey functor C : AG
(2,1) → Cat, when does C admit an

extension to AG? That is, when can we construct a functor Ĉ such that the diagram

AG
(2,1) Cat

AG

i

C

Ĉ
(4.9)

commutes up to pseudo-natural equivalence where i is the inclusion.

Of course, such an extension problem does not always admit a solution. Indeed, by Lemma

4.2.7 an extension Ĉ to AG can only exist if the symmetric monoidal product on C(G/H) is the

coproduct for all H ≤ G. Symmetric monoidal categories in which the monoidal product is the

categorical coproduct are called co-cartesian. This motivates the following definition.

Definition 4.5.1. A categorical Mackey functor M : AG
(2,1) → Cat is co-cartesian if it is restricted

from a product preserving pseudo-functor M̂ : AG → Cat.

As noted in Example 4.2.9, Set⨿ gives us a canonical example of a co-cartesian categorical

Mackey functor. More generally, if X is any finite G-set we could define a co-cartesian categorical

Mackey functor by the assignment

Y 7→ AG(X, Y )

and we will call this SetX⨿ . These representable categorical Mackey functors will offer us a way to

solve a weaker version of our extension problem which we now state.

Our new extension problem begins by considering the question: if we cannot get an exact
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solution to (4.9), how close we can get to an solution? That is, can we always construct a diagram

AG
(2,1) Cat

AG

i

C

Ĉ
α (4.10)

where α is some 2-cell? Of course, it is likely the case that many such α exist. More interesting

is whether or not we can construct and identify a universal example of such a diagram. Before

proceeding to the general construction, we consider more closely the case where G = e is the

trivial group.

Example 4.5.2. When G = e, a categorical Mackey functor C : Ae
(2,1) → Cat is exactly the data

of a symmetric monoidal category. A product preserving functor Ĉ : Ae → Cat is exactly a co-

cartesian monoidal category. Thus a solution to our weak extension problem is precisely a co-

cartesian monoidal category Ĉ together with a strong monoidal functor α : Ĉ → C such that for

any co-cartesian mononidal category D̂ and strong monoidal functor β : D̂ → C there is a unique

factorization of β as a composite

D̂ f−→ Ĉ α−→ C

The solution to this problem is to take Ĉ to be the category of commutative monoids in C and take

α to simply be the functor which forgets the monoid structures. Since strong monoidal functors

preserve commutative monoids, and every object in a co-cartesian monoidal category has a unique

structure as a commutative monoid, any functor β must factor as desired.

The observation which we use to characterize G-commutative monoids is that Theorem 4.4.1

allows us to run essentially the same argument as the last example.

Theorem 4.5.3. For a categorical Mackey functor C there is always a solution (Ĉ, α) to the exten-

sion problem (4.10). Explicitly, given any other pair

(D : AG → Cat, β : i∗(D)→ C),
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there is a pseudo-natural transformation β̂ : D → Ĉ, unique up to modification equivalence, such

that the pseudo-natural transformation β factors as a composite

i∗(D) i∗(β̂)−−−→ i∗(Ĉ) α−→ C.

Finally, there is an equivalence of categories Ĉ(G/G) ∼= CommG(C).

Proof. Recall that we have defined the co-cartesian categorical Mackey functors SetX⨿ by

SetX⨿ (Z) = AG(X,Z)

for any finite G-sets X and Z. Define the functor Ĉ : AG → Cat by the rule

Ĉ(X) = [i∗ SetX⨿ , C]

where, as in Theorem 4.4.1, the brackets [−,−] denote a category of pseudo-natural transfor-

mations and modifications. For any map f : X → Y in AG, we get an induced pseudo-natural

transformation

f ∗ : SetY⨿ → SetX⨿

and we define Ĉ(f) to be the map

(f ∗)∗ : [i∗ SetX⨿ , C]→ [i∗ SetY⨿, C]

and a straightforward unwinding of definitions shows that

Ĉ(f) ◦ Ĉ(g) = ((f ◦ g)∗)∗

whenever f and g are composable and so pseudo-functoriality is immediate from the fact that AG

is a bicategory.
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If f, g : X → Y are 1-cells in AG and γ : f ⇒ g is a 2-cell then we get induced 2-cells

γ∗ : f ∗ ⇒ g∗ and (γ∗)∗ : (f ∗)∗ ⇒ (g∗)∗ which serve the role of Ĉ(γ). Again, these 2-cells have all

the necessary coherence because AG is a bicategory.

Thus we have a co-cartesian categorical Mackey functor Ĉ : AG → Cat and the identification

Ĉ(G/G) ∼= CommG(C)

is immediate from the definition and Theorem 4.4.1. It remains to define the functor α : Ĉ → C

and show that this satisfies the claimed universal property.

To define α, let X be a finite G-set and let SetX⨿,iso be the categorical Mackey functor of Exam-

ple 4.2.8 defined by

SetX⨿,iso(Y ) = AG
(2,1)(X, Y )

for all Y ∈ AG
iso. By the bicategorical Yoneda lemma [JY21, Section 8.3] there are equivalences

of categories

eX : [SetX⨿,iso, C]
∼=−→ C(X),

which are natural in X , where eX sends a pseudo-natural transformation β to βX(idX) ∈ C(X).

For all X we have an obvious inclusion functor jX : SetX⨿,iso → i∗ SetX⨿ and these inclusion com-

mute with the transfers and restrictions. Thus at all X we get functors

Ĉ(X) = [i∗ SetX⨿ , C]
j∗X−→ [SetX⨿,iso, C]

eX−→ C(X)

and these give the components of α : i∗Ĉ ⇒ C.

Finally, to see that this construction is universal, suppose that D is a co-cartesian categorical

Mackey functor and β : i∗D → C is a product preserving pseudo-natural transformation. We claim

the functor

i∗ : [SetX⨿ ,D]→ [i∗ SetX⨿ , i
∗(D)] (4.11)
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is an equivalence of categories. Granting this, we have that

ΦX : D(X) = [SetX⨿ ,D]
i∗−→ [i∗ SetX⨿ , i

∗(D)] = (̂i∗D)(X)

is an equivalence of categories for all X . The ΦX assemble into a pseudo-natural equivalence

Φ: D → î∗D and so the functor

Φ∗ : [î∗D, Ĉ]→ [D, Ĉ]

is an equivalence of categories. Thus the functor

β∗ : î∗D → Ĉ

determines, up to modification isomorphism, a pseudo-natural transformation β̂ : D → Ĉ. Un-

winding the definitions we see that the diagram

i∗D

i∗î∗D i∗Ĉ

i∗D C

=

i∗β̂
i∗Φ

i∗αD

i∗β∗

αC

β

commutes and so we are done once we show the functor (4.11) is an equivalence of categories.

The functor i∗ is faithful since, by the same argument as the proof of Theorem 4.4.3, the

modifications m making up the morphisms in both categories are determined entirely by the the

source, the domain, and the morphism µX = mX,idX .

To see the functor is full, suppose that

m ∈ [i∗ SetX⨿ , i
∗(D)]

is some modification. A modification m′ ∈ [SetX⨿ ,D] will satisfy i∗m′ = m if and only if m′
X,idX

=
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mX,idX . Thus it suffices to show that there is some modification m′ with this property. But mX,idX

is a morphism in (i∗D)(X) so the equivalence

(i∗D)(X) = D(X) ∼= [SetX⨿ ,D]

proves that such an m′ exists.

Finally, to see i∗ is essentially surjective note that every product preserving pseudo-natural

transformation γ : i∗ SetX⨿ → i∗D is determined up to modification equivalence by the object

d = γX(idX). To see this, one simply repeats the proof of the ordinary Yoneda lemma, using the

fact that the element idX ∈ i∗ SetX⨿ (X) generates every object in SetX⨿ (Y ) for all Y . On the other

hand, this object d determines a pesudo-natural transformation d̂ : SetX⨿ ⇒ D, which is essentially

unique with respect to the property that d̂X(idX) = d and i∗(d̂) ∼= γ.

We end with an application. A consequence of Theorem 4.5.3 is that the G-commutative

monoids of a categorical Mackey functor fit into a categorical Mackey functor of their own, namely

Ĉ(X) = [SetX⨿ , C],

which happens to be co-cartesian. Moreover, the transfers and restrictions of Ĉ are the same as

those of C. Because Ĉ is co-cartesian, the transfers and restrictions are adjoint to one another, with

transfers as the left adjoints. This provides, among other things, an immediate proof of Proposition

3.1.8.
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