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CHAPTER 1

Introduction

In the series of papers [1] [2], [3], [4] written by Murray and von Neumann, they

introduce the notion of Rings of Operators (now called von Neumann algebras) and

their basic properties. One of the most studied classes of von Neumann algebras

is the class of group von Neumann algebras [4], which consists of a von Neumann

algebra LΓ associated to every group Γ. One of the main questions in the theory of

von Neumann algebras is to identify properties of a group that are “remembered” by

the respective group von Neumann algebra.

In [5], Gromov introduced the notion of measure equivalence for groups as a mea-

surable analogue of quasi-isometry. This notion has been studied by many [6], es-

pecially, the invariant properties of groups under measure equivalence. For example,

in [7], Ornstein and Weiss showed that all amenable groups are measure equivalent.

Also, from work by Furman [8] and Popa [9], we know that property (T) is invariant

under measure equivalence.

Recently, Ishan, Peterson and Ruth introduced the notion of von Neumann equiv-

alence for groups and von Neumann algebras [10]. See section 5 for the definition of

von Neumann equivalence. This notion is a generalization of measure equivalence for

groups, which they also extended to the von Neumann algebra setting. One of the

interesting properties of von Neumann equivalence for groups is that many analytic

properties such as amenability, property (T) and Haagerup property are invariant

under this equivalence relation. All these properties have a characterization that

uses unitary representations, and this proof relies on inducing representations via the

equivalence. We use a similar technique in the von Neumann algebra setting using

bimodules, to show that all the above properties for von Neumann algebras are stable
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under von Neumann equivalence.

In Chapter 2, we present some basic definitions and results about von Neumann

algebras. We also discuss some basic properties about bimodules, such as weak-

containment, mixingness etc. since we need those to define approximation properties

such as property (T), amenability and Haagerup property. We give definitions of

those properties using bimodules which we will later use in Chapter 4.

In chapter 3, we give the definition of von Neumann equivalence for groups and

von Neumann algebras from [10]. We also present some basic properties of these

notions and present the proof of the theorem from [10] that states two groups are

von Neumann equivalent if and only if their group von Neumann algebras are von

Neumann equivalent.

Theorem 1. Property (T), amenability and Haagerup property for von Neumann

algebras are von Neumann equivalent invariant.

If we have an N -N -bimodule H, we present a way to construct a new M -M -

bimodule through the von Neumann equivalence. Since all the above mentioned

properties have characterizations using bimodules, we use this induction of bimodules

method to show the stability of these properties under von Neumann equivalence.

We also show that L2 rigidity is a von Neumann equivalence invariant:

Theorem 2. The property L2-rigidity is von Neumann equivalent invariant.

The notion of L2-rigidity is due to Peterson [11], as an analog of vanishing first ℓ2-

Betti number, defined using derivations and their induced Markov deformations. We

first introduce a way to induce malleable deformations and we show that the induced

deformations uniformly converge if and only if the original deformations uniformly

converge. This proof also extends to L2-deformations. And since L2-rigidity is defined

by the uniform convergence of L2-deformations, this shows us that the L2-rigidity is

von Neumann equivalence invariant.
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The notion of proper proximality for groups is due to Rémi Boutonnet, Adrian

Ioana and Jesse Peterson and first appeared in [12]. This class of countable groups

contain all non-amenable bi-exact groups and non-elementary convergence groups

but they don’t contain any inner-amenable groups. In [10], Ishan, Peterson and

Ruth showed that proper proximality is invariant under von Neumann equivalence.

At the time, a similar notion for von Neumann algebras did not exist. But Ding,

Kunnawalkam Elayavalli, and Peterson in [13] extended this notion to von Neumann

algebras. We give the definition of proper proximality for von Neumann algebras that

uses strong bimodules developed by Magajna in [14], [15], [16]. We show that this

notion is von Nuemann equivalent invariant.

Theorem 3. Proper proximality for von Neumann algebras is von Neumann equiva-

lence invariant.

This thesis is based on the joint work with Dr. Peterson and Dr. Ding.
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CHAPTER 2

Preliminaries

We first introduce some definitions and basic properties of von Neumann algebras.

Proofs of the propositions in this chapter can be found in [17] and [18].

2.1 Von Neumann Algebras

Let H be a Hilbert space. We define the weak operator topology (wot) and the

strong operator topology (sot) on B(H) as the topologies induced by the seminorms

{x 7→ |⟨xξ, η⟩| : ξ, η ∈ H} and {x 7→ ∥xξ∥ : ξ ∈ H} respectively.

A ∗-subalgebra M ⊂ B(H) with 1 ∈ M is called a von Neumann algebra if

M = M
wot

. We can equivalently define a von Neumann algebra by considering the

strong operator topology instead of the weak operator topology. This is an immediate

result of the von Neumann bicommutant theorem, which we state below.

Let H be a Hilbert space and S ⊂ B(H) be a set. The commutant of S, is the set

S′ = {x ∈ B(H) : Sx = xS, ∀S ∈ S}.

Now let K ⊂ H be a subspace. For x ∈ B(H), K is said to be invariant for x (or K is

x-invariant) if xK ⊂ K. K is said to be reducing for x if it is invariant for x and x∗.

For a ∗-subalgebra M ⊂ B(H), K is said to be reducing for M (or K is M-invariant)

if MK ⊂ K.

Theorem 2.1.1 (von Neumann). Let M ⊂ B(H) be a ∗-algebra with 1 ∈ M . Then

we have M
sot

=M
wot

=M ′′.

We define two new topologies on B(H) called σ-strong and σ-weak topology, or
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σ-sot and σ-wot. They are induced by the collections of seminorms

{
x 7→

( ∞∑
n=1

∥xξn∥2
)1/2

: {ξn} ∈ ℓ2(N,H)

}

and {
x 7→

∣∣∣ ∞∑
n=1

⟨xξn, ηn⟩
∣∣∣ : {ξn}, {ηn} ∈ ℓ2(N,H)

}
respectively. If we embed B(H) in B(H⊗̄ℓ2N) by x 7→ x⊗ id, then the σ-wot (resp.

σ-sot) is the subspace topology induced by the wot (resp. sot) on B(H⊗̄ℓ2N). Also

on (norm) bounded sets, wot (resp. sot) and σ-wot (resp. σ-wot) coincide with

each other.

A linear functional ϕ : M → C on a von Neumann algebra M is called normal if

it is continuous with respect to the σ-wot. Also ϕ is called positive if ϕ(x∗x) ≥ 0

for each x ∈ M . It can be seen that if ϕ is positive, then it is bounded. We also see

that ϕ : M → C is positive if and only if ∥ϕ∥ = ϕ(1). A tracial state (or simply, a

trace) on a von Neumann algebra M is a positive linear functional τ , with ∥τ∥ = 1

and τ(xy) = τ(yx) for x, y ∈M .

A von Neumann algebra M is said to be tracial if there is a normal trace τ on

M such that τ is faithful: x = 0 whenever τ(x∗x) = 0. A von Neumann algebra M

is said to be finite if there is a normal faithful center-valued trace on M , i.e., there

exists a unital linear map τ :M → Z(M) such that

(i) τ(x∗x) ≥ 0 for each x ∈M , and τ(x∗x) = 0 implies x = 0,

(ii) τ(zx) = zτ(x) for each z ∈ Z(M) and x ∈M ,

(iii) for any increasing bounded net xi ∈M+, τ(supxi) = sup τ(xi),

(iv) τ(xy) = τ(yx) for x, y ∈M .

Also a separable von Neumann algebra M is said to be semi-finite if there is a
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faithful, normal, semi-finite tracial weight on M+, i.e., there is a map Tr : M+ →

[0,∞] such that

(i) Tr(λx+ y) = λTr(x) + Tr(y), for x, y ∈ M+, λ > 0,

(ii) Tr(x∗x) = Tr(xx∗) for x ∈ M,

(iii) for every x ∈ M+ \ {0}, there exist y ∈ M+ \ {0} with y ≤ x and Tr(y) <∞,

(iv) Tr(supxi) = supTr(xi) for every bounded increasing net xi ∈ M+,

(v) Tr(x) = 0 if and only if x = 0.

Define nTr = {x ∈ A | Tr(x∗x) <∞} . The definition domain of Tr is defined as

mTr =

{ n∑
i=1

y∗i xi | xi, yi ∈ nTr

}
.

Tr is extends to mTr as a linear map.

If M is a von Neumann algebra, then we denote by Mop the opposite algebra,

which we will identify as a von Neumann subalgebra of B(L2(M)) via the formula

xop = Jx∗J , where J is Tomita conjugation. On occasion we will have to consider

von Neumann algebras M that contain isomorphic copies of both M and Mop for a

finite von Neumann algebra M . In this situation if a ∈ M , then we will write ao for

the corresponding element in Mop ⊂ M, and we will write aop for the corresponding

element in Mop ⊂ B(L2(M)). In doing so we we hope to avoid cumbersome notation

and confusion as much as possible.

The left-regular and right-regular representations of a group Γ are the represen-

tations λ : Γ → U(ℓ2Γ) and ρ : Γ → U(ℓ2Γ) given by

(λgξ)(·) = ξ(g−1·)
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and

(ρgξ)(·) = ξ(·g)

respectively. The (left) group von Neumann algebra is defined as LΓ = λ(Γ)′′. Simi-

larly, we define RΓ = ρ(Γ)′′.

Proposition 2.1.2. Let Γ be a discrete group. Then τ(x) = ⟨xδe, δe⟩ defines a normal

faithful trace on LΓ. In particular, LΓ is a finite von Neumann algebra.

Let M be a tracial von Neumann algebra, B ⊂ M a von Neumann subalgebra

and let eB ∈ B(L2M) be the projection onto L2B ⊂ L2M . The von Neumann algebra

⟨M, eB⟩ generated by M and by the projection eB is called the extension of M by B,

or the Jone’s basic construction for B ⊂M .

2.2 Hilbert Modules

The notion of Hilbert modules were first developed by Paschke [19] and Rieffel [20]

in order to develop the non-commutative analogue of fiber bundles over topological

spaces.

Let A be a C∗-algebra. A (right) pre-Hilbert module over A consists of a complex

vector space X which is an algebraic right A-module, equipped with an A-valued

inner-product ⟨·, ·⟩ such that for all ξ, η, ζ ∈ X, λ ∈ C, and a ∈ A we have:

(i) ⟨ξ, ξ⟩ ≥ 0 and ⟨ξ, ξ⟩ = 0 if and only if ξ = 0,

(ii) ⟨ξ, η + λζ⟩ = ⟨ξ, η⟩+ λ⟨ξ, ζ⟩,

(iii) ⟨ξ, ηa⟩ = ⟨ξ, η⟩a,

(iv) ⟨ξ, η⟩∗ = ⟨η, ξ⟩.

Lemma 2.2.1. For all ξ, η ∈ X, we have ⟨ξ, η⟩⟨η, ξ⟩ ≤ ∥⟨η, η⟩∥⟨ξ, ξ⟩.
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Now set ∥ξ∥ = ∥⟨ξ, ξ⟩∥1/2. Then from the previous lemma ∥⟨ξ, η⟩∥ ≤ ∥ξ∥∥η∥, and

therefore it follows that ∥ · ∥ gives a norm on X. Moreover, for ξ ∈ X and a ∈ A we

have ∥ξa∥ = ∥a∗⟨ξ, ξ⟩a∥1/2 ≤ ∥ξ∥∥a∥. Thus X is a normed A-module.

A pre-Hilbert module X over A is a Hilbert A-module if it is complete with respect

to the norm ∥ξ∥ = ∥⟨ξ, ξ⟩A∥1/2.

Example. If A is a C∗-algebra, choose X = A with the inner product ⟨ξ, η⟩ = ξ∗η.

Then this is a Hilbert A-module.

Let E ⊂ B(K1) and F ⊂ B(K2) be two operator spaces, i.e., closed subspaces in

B(Ki). Now embed E ⊗ F ⊂ B(K1⊗K2). We denote by E ⊗min F , the C∗-closure

of E ⊗ F and in the case where both E and F are weakly-closed, E⊗F , the σ-wot

closure of E ⊗ F . Also if we have two operator spaces E and F , then we can show

that the algebra of completely bounded maps from E to F , denoted CB(E,F ), is

again an operator space using Ruan’s axioms ([21]). So it is now easy to see that any

Hilbert space H ∼= CB(C,H) has an operator space structure.

Suppose M is a von Neumann algebra and H is a Hilbert space. Then on the

algebraic tensor product M ⊗H we can define an M -valued inner product given by

⟨x ⊗ ξ, y ⊗ η⟩M = ⟨η, ξ⟩y∗x. This inner product extends continuously to M ⊗min H.

Then the HilbertM -module structure onM⊗minH extends toM⊗H such that ⟨·, ·⟩M

is separately σ-weakly continuous.

2.3 Bimodules

Let M and N be tracial von Neumann algebras. A (left) M-module is a Hilbert

space H together with a normal unital ∗-homomorphism (not necessarily injective)

π : M → B(H). If π is faithful, we say the M -module is faithful. A right M-module

is a Hilbert space H together with a normal unital ∗-homorphism ρ :Mop → B(H).

An M-N-bimodule (also called a correspondence from M to N) is a Hilbert space

H together with normal unital ∗-homomorphisms π : M → B(H) and ρ : Nop →
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B(H) such that π(M) and ρ(Nop) commutes. We refer to π as the left action and to

ρ as the right action. Also we use the notation aξb := π(a)ρ(bop)ξ, for a ∈M , b ∈ N

and ξ ∈ H. An M -N -bimodule H is sometimes denoted by MHN . Also we denote

the collection of all the M -N -bimodules by Bimod(M,N).

For a von Neumann algebra M the trivial M-M-bimodule is the bimodule L2M

with the left and right actions given by x · ẑ · y = x̂zy for x, y ∈ M and ẑ ∈ L2M .

The coarse M-M-bimodule is the bimodule defined by L2M⊗̄L2M with actions x ·

(ξ ⊗ η) · y = xξ ⊗ ηy where x, y ∈M and ξ, η ∈ L2M .

Suppose MHM is an M -M -bimodule. We say a non-zero vector ξ ∈ H is a central

vector (orM-central vector) if xξ = ξx for all x ∈M . A sequence of non-zero vectors

{ξn} in H is said to be almost central (or almost M-central) if ∥xξn − ξnx∥ → 0 for

all x ∈M . These are the equivalent notions to invariant and almost invariant vectors

in the group case.

Let M and N be von Neumann algebras and let H be an M -N bimodule, i.e., H

is a Hilbert space endowed with commuting normal ∗-representations of M and Nop

on H.

We fix a normal faithful state φ on N , and let L2(N,φ) be the corresponding

GNS-construction with canonical cyclic vector 1φ. We let HL
φ denote the space of left

bounded vectors (with respect to φ), i.e., ξ ∈ HL
φ if and only if there is K > 0 such

that ∥ξx∥ ≤ K∥x1φ∥, for all x ∈ N . In this case we may define the bounded operator

Lξ : L
2(N,φ) → H by Lξ(x1φ) = ξx. We also set

HL =
{
Lξ | ξ ∈ HL

φ

}
= BNop(L2(N,φ),H),

the space of Nop-modular operators in B(L2(N,φ),H). The bimodule structure on

HL is then given by pre and post composition and hence this is a dual normal M -N

operator bimodule.
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We may check that L∗
ξLη ∈ JNJ ′ ∩B(L2(N,φ)) = N and so we endow an (linear

in the second variable) N -valued inner-product on HL by

⟨ξ, η⟩N = L∗
ξLη.

In this way we may view HL as a dual Hilbert N -module that is a normal left M -

module.

Conversely, if K is a normal Hilbert N -module and we have a normal representa-

tion of M in BN(K) then we may consider the Hilbert space K⊗NL
2(N,φ), which is

a normal Hilbert M -N bimodule.

Let M and N be two tracial von Neumann algebras, H ∈ Bimod(M,N), ε >

0, E ⊂ M and F ⊂ N be finite sets and S = {ξ1, . . . , ξn} ⊂ H. Then define

V (H; ε, E, F, S) as the set of all K ∈ Bimod(M,N) where ∃η1, . . . , ηn ∈ K such that∣∣⟨xξiy, ξj⟩ − ⟨xηiy, ηj⟩
∣∣ < ε, ∀x ∈ E, y ∈ F, ∀i, j. The Fell topology on Bimod(M,N)

is induced by the basic sets of the form V (H; ε, E, F, S).

Now we define weak-containment for bimodules as follows:

Let H and K be two M -M -bimodules. We say that H is weakly contained in K,

denoted by H ≺ K, if H ∈ {K⊕∞} in the Fell topology on Bimod(M,N). Notice

that this is equivalent to the statement: for any ξ, η ∈ H and F ⊂M where |F | <∞,

there exists ξn, ηn ∈ K such that ⟨xξy, η⟩ =
∑

⟨xξny, ηn⟩ for every x, y ∈M .

And we also give the definition for mixingness for bimodules, which is due to

Peterson and Sinclair [22]. This definition is inspired by the mixing representations

in the group setting. We say that an M -M -bimodule H is mixing if for any net

ui ∈ U(M) with ui → 0 weakly, we have

lim
i→∞

sup
∥x∥≤1

∣∣⟨uiξx, η⟩∣∣ = lim
i→∞

sup
∥x∥≤1

∣∣⟨xξui, η⟩∣∣ = 0

for all ξ, η ∈ H. If B ⊂M is a von Neumann subalgebra we say H is mixing relative

10



to B if for any net ui ∈ U(M) with ∥EB(auib)∥2 → 0 for every a, b ∈M , we have

lim
i→∞

sup
∥x∥≤1

∣∣⟨uiξx, η⟩∣∣ = lim
i→∞

sup
∥x∥≤1

∣∣⟨xξui, η⟩∣∣ = 0

for every ξ, η ∈ H.

2.4 Approximation Properties

Property (T)

Let N ⊂M be a trace preserving inclusion of tracial von Neumann algebrasM and N

with trace τ . The inclusionN ⊂M said to have the relative property (T) (or thatN ⊂

M is a rigid embedding, or N is a relatively rigid von Neumann subalgebra of M) if for

any ε > 0, there exists a finite subset F ⊂M and δ > 0 with the following property:

If ϕ : M → M is a trace preserving u.c.p. map satisfying maxx∈F ∥ϕ(x) − x∥2 ≤ δ,

then ∥ϕ(a) − a∥2 < ε∥a∥ for all a ∈ N . We say M has property (T) if the identity

inclusion M ⊂ M has property (T). This definition is independent of the choice of

trace on M .

The condition that ϕ be unital and τ -preserving can be relaxed in the following

way: If ϕ : M → M is a c.p. map such that ϕ(1) ≤ 1 and τ ◦ ϕ ≤ τ , then the map

ϕ̃ :M →M defined by

ϕ̃(x) = ϕ(x) +
(τ − τ ◦ ϕ)(x)
1− τ ◦ ϕ(1)

(
1− ϕ(1)

)
(ϕ̃ = ϕ + τ − τ ◦ ϕ if ϕ(1) = 1) is a u.c.p. map such that τ ◦ ϕ̃ = τ . Also note that

by Kadison’s inequality, τ ◦ ϕ ≤ τ implies

∥ϕ(a)∥2 = τ
(
ϕ(a)∗ϕ(a)

)1/2 ≤ τ
(
ϕ(a∗a)

)1/2 ≤ τ(a∗a)1/2 = ∥a∥2

for each a ∈M . In particular, ϕ is normal.
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The definition of property (T) for von Neumann algebras is due to Connes and

Jones [23], and the relative property (T) is due to Popa [24], see also [9]. This notion

is consistent with property (T) for groups, i.e, a group Γ has property (T) if and only

if LΓ has property (T).

There is another characterization of property (T) for von Neumann algebras using

bimodules. This characterization aligns well with the way we defined property (T) for

groups using representations since bimodules are the direct counterpart for unitary

representations in the world of von Neumann algebras. The following theorem gives

us another way to define property (T):

Theorem 2.4.1. Suppose M is a II1 factor. The following are equivalent:

(i) M has property (T);

(ii) If H is an M-M-bimodule with almost M-central vectors, then H contains an

M-central vector;

(iii) If H is an M-M-bimodule with almost M-central vectors {ξn} and ⟨xξn, ξn⟩ =

⟨ξnx, ξn⟩ = τ(x) for all x ∈M , then there exists {ηn} ⊂ H such that each ηn is

M-central and ∥ξn − ηn∥ → 0.

Amenability

We say a von Neumann algebra M is amenable if it has a concrete representation as

a von Neumann subalgebra of some B(H) such that there exists a conditional expec-

tation E : B(H) → M . The existence of E does not depend on the representation

M ⊂ B(H). We also have that a countable group Γ is amenable if and only if LΓ is

amenable.

Amenability for groups can be defined in terms of representations: we say a group

Γ is amenable if the trivial representation 1Γ is weakly contained in the left regu-

lar representation, i.e., 1Γ ≺ λΓ. There is an analogue of this characterization of
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amenability for von Neumann algebras given by the following theorem:

Theorem 2.4.2. Suppose M is a finite von Neumann algebra. Then we have M is

amenable if and only if the trivial bimodule is weakly contained in the coarse bimodule,

i.e., L2M ≺ L2M ⊗ L2M .

Haagerup Property

For groups, Haagerup property is defined as follows: A group Γ has the Haagerup

property if Γ has a mixing representation which has almost invariant vectors. Notice

that this notion is, in a way, at the ‘opposite’ end of the spectrum to property (T)

since mixing representations don’t contain invariant vectors. And we define Haagerup

property for von Neumann algebras simlarly: We say a finite von Neumann algebra

has the Haagerup property ifM has a mixing bimodule with almostM -central vectors.

Of course these two definitions are compatible with each other, i.e., a group Γ has

the Haagerup property if and only if LΓ has Haagerup property.
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CHAPTER 3

Von Neumann Equivalence

In this section we present some basic results about von Neumann equivalence for

groups and von Neumann algebras. The notion of von Neumann equivalence is first

introduced by Ishan Ishan, Jesse Peterson and Lauren Ruth in [10].

3.1 For Groups

Let σ : Γ ↷ M be an action of a discrete group Γ on a von Neumann algebra M. A

fundamental domain for the action is a projection p ∈ M, such that {σg(p)}g∈Γ gives

a partition of unity, i.e., {σg(p)}g∈Γ is a collection of orthogonal projections which

add up to 1.

A von Neumann coupling between two countable groups Γ and Λ consists of a

semi-finite von Neumann algebra (M,Tr) and a trace preserving action Γ × Λ ↷ M

such that there are finite trace fundamental domains p and q, for Γ and Λ-actions

respectively. And we say Γ and Λ are von Neumann equivalent if there is a von

Neumann coupling between them. This is denoted by Γ ∼vNE Λ.

This is in fact an equivalence relation. Reflexivity can be seen by looking at the

Γ-coupling ℓ∞Γ and symmetry is obvious. The following proposition gives us the

transitivity:

Proposition 3.1.1. Let Γ, Λ and Σ be three countable groups and assume the semifi-

nite von Neumann algebras M and N are (Γ,Λ) and (Λ,Σ) couplings respectively.

Consider the natural actions of Γ and Σ on M⊗N and the diagonal action of Λ on

M⊗N. Then M⊗N has a Λ fundamental domain and the induced semi-finite trace

on (M⊗N)Λ gives a (Γ,Σ) von Neumann coupling.

Suppose σ : Λ ↷ M is a trace preserving action of a discrete group Λ on a semi-
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finite von Neumann algebra M which has a finite trace fundamental domain p and

π : Λ → U(H) is a unitary representation. We can give a dual M-structure for M⊗H

by defining the M-valued inner product,

⟨a⊗ ξ, b⊗ η⟩M = ⟨η, ξ⟩a∗b; for a, b ∈ M and ξ, η ∈ H.

So for s ∈ Λ and x, y ∈ M⊗H, ⟨(σs ⊗ πs)x, (σs ⊗ πs)y⟩M = σs(⟨x, y⟩M). Thus the

space of fixed points (M⊗H)Λ is a dual Hilbert MΛ-module. So there is a normal rep-

resentation of M on M⊗H given by the left multiplication and thus we can represent

MΛ on (M⊗H)Λ.

If Γ ↷ M is another trace-preserving action of a discrete group Γ on M which

commutes with the action of Λ, there is a Γ-invariant trace τ on MΛ (Proposition

4.2 in [10]). Define a scalar-valued inner product on (M⊗H)Λ by ⟨y, x⟩ = τ(⟨x, y⟩M).

Denote the corresponding Hilbert space completion as (M⊗H)Λτ . Now we denote by

πM the unitary representation Γ ↷ (M⊗H)Λτ . In this way we can induce unitary

representations through von Neumann equivalence.

Proposition 3.1.2 (Prop 6.15, [10]). Let π : Λ → U(H) and ρ : Λ → U(K) be two

unitary representations of the group Λ and let Γ × Λ ↷ (M,Tr) be a von Neumann

coupling. If π ≺ ρ, then we have πM ≺ ρM, and if π is weak-mixing, then πM

has no non-zero invariant vectors. Moreover, λM is a multiple of the left-regular

representation of Γ.

Proposition 3.1.3. Let M be a von Neumann coupling for Γ and Λ. If Γ has property

(T), then so is Λ.

Proof. Let π be a unitary representation of Λ which has almost invariant vectors, or

equivalently, 1Λ ≺ π. Then 1Γ ⊂ (1Λ)M ≺ πM. But since Γ has property (T), πM

contains non zero Γ-invariant vectors. So π is not weak-mixing implying π has a finite

dimensional Λ-invariant sub representation. So Λ has property (T).

15



Proposition 3.1.4. Let M be a von Neumann coupling for Γ and Λ. If Γ is amenable,

then so is Λ.

Proof. Notice that if Λ is amenable, then 1Λ ≺ λΛ. Then 1Γ ⊂ (1Λ)M ≺ (λΛ)M. But

since (λΛ)M is a multiple of the left regular representation for Γ, we have that Γ is

amenable.

3.2 For von Neumann Algebras

LetM ⊂ M be an inclusion of semi-finite von Neumann algebras where M is a factor.

A fundamental domain for M inside M is a realization of the standard representation

M ⊂ B(L2M) as an intermediate von Neumann subalgebra M ⊂ B(L2M) ⊂ M, i.e.,

an embedding θ : B(L2M) ↪→ M such that θ|M = id. The fundamental domain is

finite if finite-rank projections in B(L2M) are mapped to finite projections in M.

Notice that if P = B(L2M)′ ∩M, then we have M ∼= B(L2M)⊗P . In fact this is

given by the map B(L2M)⊗P ∋ T ⊗ x 7→ Tx ∈ M.

Definition. A von Neumann coupling between two finite, countably decomposable

von Neumann algebras M and N consists of a semi-finite von Neumann algebra M

together with embeddings of M and Nop into M such that Nop ⊂ M ′ ∩M and such

that each inclusion M ⊂ M and Nop ⊂ M has finite fundamental domains. A von

Neumann coupling M between M and N is denoted by MMN .

Two von Neumann couplings MMN and MNN are isomorphic if there is an iso-

morphism Φ between M and N such that Φ|M = Φ|Nop = id.

For simplicity of the proofs, we assume the semi-finite von Neumann algebra M

in the above definition is in fact a factor. But most of the properties work even when

M is not a factor.

Definition. Two finite, countably decomposable von Neumann algebras M and N

are said to be von Neumann equivalent, denoted by M ∼vNE N if there exists a von

Neumann coupling between them.
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Suppose MMN and NNQ are M -N and N -Q von Neumann couplings respectively.

Let θM : B(L2N) → M and θN : B(L2N) → N be fundamental domains for Nop ⊂ M

and N ⊂ N respectively, and set P1 = θM
(
B(L2N)

)′ ∩M and P2 = θN
(
B(L2N)

)′ ∩N.

Then we have isomorphisms θ̃M : P1⊗B(L2N) → M and θ̃N : B(L2N)⊗P2 → N with

θ̃M(a ⊗ x) = aθM(x) and θ̃N(x ⊗ b) = θN(x)b for a ∈ P1, b ∈ P2 and x ∈ B(L2N).

Now define the composition of the couplings MMN and NNQ to consist of the von

Neumann algebra

M⊗NN = P1⊗B(L2N)⊗P2.

Notice that M ↪→ M⊗NN and N ↪→ M⊗NN respectively by θ̃−1
M × 1 and 1 × θ̃−1

N .

Since Z(M) ⊂ P1 and Z(N) ⊂ P2, we have Z(M)⊗Z(N) ⊂ M⊗NN.

From the above construction we can show that von Neumann equivalence for von

Neumann algebras is in fact an equivalence relation, which we give the proof below:

Proof. For any finite, countably decomposable M and N , notice M ∼vNE M by

considering the trivial von Neumann coupling B(L2M) with standard embeddings of

M and Mop. This gives us the reflexivity. If MMN is a von Neumann a coupling

between M and N , then Mop gives us a von Neumann coupling between N and M .

Thus the relation is symmetric.

Now supposeM ∼vNE N and N ∼vNE Q realized by the couplings MMN and NNQ

respectively. Then consider the composition coupling M⊗NN constructed above.

Using the same notation in the construction, notice that we have isomorphisms

M⊗NN ∼= M⊗P2
∼= P1⊗N. Since P1 and P2 are finite, M⊗NN with the embed-

dings given in the construction gives us a finite fundamental domains for M and Qop.

Also notice

(θ̃−1
M ⊗ 1)(M) ⊂ (θ̃−1

M ⊗ 1)((Nop)′ ∩M) = P1⊗N⊗1

and

(1⊗ θ̃−1
N )(Qop) ⊂ (1⊗ θ̃−1

M )(N ′ ∩N) = 1⊗Nop⊗P2.
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Therefore, the copies of M and Q commute with each other. So M⊗NN is a von

Neumann coupling between M and Q and, hence M ∼vNE Q.

These definitions for groups and von Neumann algebras behave well with each

other:

Theorem 3.2.1 (1.5 in [10]). Let Γ and Λ be two countable groups. Then Γ ∼vNE Λ

if and only if LΓ ∼vNE LΛ.

Proof. SupposeM is an LΓ-LΛ von Neumann coupling. Identify Γ and Λ as subgroups

of U(LΓ) and U(LΛ) respectively, and consider the conjugation actions of Γ and Λ on

M. Since we have a fundamental domain LΓ ⊂ B(ℓ2Γ) ⊂ M, the rank-one projection

[δe] spanned by δe ∈ ℓ2Γ gives us a finite trace fundamental domain for the conjugation

action of Γ. Similarly, we get a finite trace fundamental domain for the action of Λ

on M.

Conversely suppose M is a Γ-Λ von Neumann coupling. Set N = M ⋊ (Γ × Λ),

and then we have embeddings LΓ, LΛ ⊂ N. Suppose p is a fundamental domain

for the action σ : Γ ↷ M, then the embedding θ : ℓ∞Γ ↪→ M given by θ(f) =∑
g∈Γ f(g)σg−1(p) is Γ-equivariant, and now consider the embedding,

B(ℓ2Γ) ∼= ℓ∞Γ⋊ Γ ⊂ M⋊ Γ ⊂ N.

Thus this is a fundamental domain for LΓ inside N. Also notice that by looking at

the isomorphism B(ℓ2Γ) ∼= ℓ∞Γ⋊ Γ and θ, all finite-rank projections in B(ℓ2Γ) have

finite trace in M, and hence they are finite in N. Therefore this fundamental domain

is finite. Similarly, we have a finite fundamental domain for LΛ in N and therefore,

N is an LΓ-LΛ von Neumann coupling.
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CHAPTER 4

Invariant Properties

4.1 Inducing bimodules via von Neumann equivalence

A general abstract approach

Suppose M is a von Neumann algebra and we have an embedding Nop ⊂ M. Suppose

also that H is an N -correspondence. We let HR
0 denote the space of right bounded

vectors, i.e., ξ ∈ HR
0 if there exists C > 0 such that ∥xξ∥ ≤ C∥x∥2. We let HR =

BN(L
2N,H) denote the space of left N -modular bounded operators. Each ξ ∈ HR

0

gives rise to a corresponding operator Rξ ∈ HR given by Rξ(x) = xξ, and it is well

known that every operator in HR is of this form.

The operator space HR is then a left N -Hilbert module, which we may view as

an Nop-Hilbert module, and M is a Hilbert M-module with a normal representation

of Nop on M given by left multiplication. We may therefore construct the normal

Hilbert M-module as the relative tensor product

HR ⊗Nop M = BMop(L2(M,Tr),H⊗Nop L2(M,Tr)).

If ξ ∈ HR
0 and T ∈ M then the operator Rξ ⊗Nop T ∈ HR ⊗Nop M is given

by (Rξ ⊗Nop T )(Ẑ) = ξ ⊗Nop T̂Z. The span of such operators is weakly dense in

HR ⊗Nop M. Note that since we are considering the Connes-fusion with respect to

Nop it follows that if ξ ∈ HR
0 , T ∈ M and x ∈ N then we have

Rxξ ⊗Nop T = Rξ ⊗Nop xopT.

Note that Nop acts on L2(M,Tr) via left-multiplication and that the right action

of N on H gives a left action of Nop on HR ⊗Nop L2(M,Tr).
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We let

Ind∞
M(H) = BNop−Mop(L2(M,Tr),H⊗Nop L2(M,Tr)) (4.1)

denote the space of Nop-intertwiners in HR ⊗Nop M, i.e., T ∈ Ind∞
M(H) if

(xop ⊗ 1)T = Txop (4.2)

for all x ∈ N . If S, T ∈ Ind∞
M(H) we then have

⟨S, T ⟩M := S∗T ∈ (Nop)′ ∩M.

It therefore follows that Ind∞
M(H) is a dual normal Hilbert (Nop)′ ∩M-module. Note

that we also have a normal left (Nop)′ ∩M action on Ind∞
M(H) via the maps (1⊗ x).

A concrete approach

We now suppose that we have a fundamental domain Nop ⊂ B(L2(N)) ⊂ M. We

then also have a copy of N ⊂ B(L2(N)) ⊂ M. Recall that in this setting if we are

given a ∈ M , then we write aop to denote the corresponding element in Nop ⊂ M,

while we will use ao if we view a as an element in M and consider the corresponding

element in Mop.

The fundamental domain then gives a decomposition M = B(L2(N,φ))⊗P where

P = B(L2(N,φ))′ ∩M. We then have a unitary

V : L2(N)⊗L2(P )⊗L2(N) → L2(M,Tr)

taking x̂ ⊗ ẑ ⊗ ŷ to (xP1̂y) ⊗ ẑ, for x, y ∈ N and z ∈ P . More generally, given a

N -correspondence H we have the following.
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Lemma 4.1.1. There exists a unitary

V : H⊗L2(P )⊗L2(N) → H⊗Nop L2(M,Tr)

taking ξ ⊗ ẑ ⊗ ŷ to ξ ⊗Nop ((P1̂y)⊗ ẑ), for y ∈ N , z ∈ P , and ξ ∈ H.

Proof. Notice that for ξ, η ∈ H, z1, z2 ∈ P and y1, y2 ∈ N ,

⟨V(ξ ⊗ z1 ⊗ y1),V(η ⊗ z2 ⊗ y2)⟩ = ⟨ξ ⊗Nop (P1̂y1 ⊗ z1), η ⊗Nop (P1̂y2 ⊗ z2)⟩

=
〈
P1̂y1, (L

∗
ξLη)P1̂y2

〉
L2N⊗L2N

⟨z1, z2⟩L2P

= ⟨ξ, η⟩H⟨y1, y2⟩L2N⟨z1, z2⟩L2P .

And we can check that the above equality holds for any finite linear combination

of such elements and then we can extend the map to the whole space.

Proposition 4.1.2. Using the notation above, we have an isomorphism of ((Nop)′ ∩

M)-((Nop)′ ∩M) bimodules ϕ : HL ⊗P → Ind∞
M(H) that satisfies

ϕ(Lξ ⊗ x) = V(Lξ ⊗ x⊗ 1)V ∗,

for ξ ∈ HL and x ∈ P .

Proof. Note that by tensoring with the identity we may view HL ⊗P as the space

of operators in B(L2(N)⊗L2(P )⊗L2(N),H⊗L2(P )⊗L2(N)) that intertwine the

operators ao ⊗ cop ⊗ S, where a ∈ N , c ∈ P , and S ∈ B(L2N). We may then

define the isometric map ϕ : HL ⊗P → B(L2(M,Tr),H⊗Nop L2(M,Tr)) by setting

ϕ(T ) = VTV ∗.
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Note that if a, b, c, y ∈ N , d, z ∈ P , and ξ ∈ H, then we have

ao ⊗ ((bP1̂c)⊗ d)opV(ξ ⊗ ẑ ⊗ ŷ) = ao ⊗ ((bP1̂c)⊗ d)op(ξ ⊗Nop ((P1̂y)⊗ z))

= ξa⊗Nop (τ(yb)P1̂c⊗ zd)

= V(ao ⊗ dop ⊗ cP1̂b)(ξ ⊗ ẑ ⊗ ŷ).

Hence we have

ao ⊗ ((bP1̂c)⊗ d)opV = V(ao ⊗ dop ⊗ cP1̂b). (4.3)

We similarly have

(ao ⊗ 1)(bP1̂c)⊗ d)opV = V (ao ⊗ dop ⊗ cP1̂b) (4.4)

From (4.3) and (4.4) it then follows that an operator

T ∈ B(L2(N)⊗L2(P )⊗L2(N),H⊗L2(P )⊗L2(N))

intertwines the actions of Nop ⊂ M and Mop if and only if VTV intertwines the

actions of Nop and P op⊗B(L2N), i.e., T ∈ HL ⊗P if and only if VTV ∈ Ind∞
M(H).

Hence ϕ : HL ⊗P → Ind∞
M(H) is a well-defined isometric bijection.

Moreover, as V and V both intertwine (Nop)′ ∩ M it follows that the map ϕ is

(Nop)′ ∩M-bimodular.

We now suppose that we have a finite von Neumann algebra M ⊂ (Nop)′ ∩ M.

We then let IndM(H) denote theM -M correspondence Ind∞
M(H)⊗ML

2(M). In other

words, take the closure of Ind∞
M(H) with respect to the norm ∥ · ∥τ which is induced

by the inner product given by ⟨S, T ⟩ = τ(S∗T ) where τ is the trace on (Nop)′ ∩M.

Then by the above proposition we have IndM(H) ∼= H⊗L2P as M -M -bimodules.
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4.2 Property (T), Amenability and Haagerup Property

Using the previous proposition, we get the following straightforward result about

almost central vectors:

Proposition 4.2.1. If H has bi-tracial almost central vectors then so does IndM(H).

Proof. Indeed, if we take the second perspective above then if ξn are almost N -central

we have ξn ⊗ 1 are almost N⊗P -central and hence are almost M -central.

The following proposition gives us a way to show obtain central vectors in our

original bimodule, given that the induced bimodule contains a central vector.

Proposition 4.2.2. Suppose η0 ∈ H and ξ0 = ϕ(η0⊗1). If there is aM-central vector

ξ ∈ IndM(H), then there is a Nop-central vector η ∈ H such that ∥η− η0∥ ≤ ∥ξ− ξ0∥.

Proof. Suppose ξ ∈ IndM(H) is a non-trivial M -central vector, we can choose this ξ

to be in Ind∞
M(H). Indeed, choose ξ0 ∈ Ind∞

M(H) such that ∥ξ− ξ0∥τ < 1
2
∥ξ∥τ and let

η be the element with minimal ∥ · ∥τ -norm in the ∥ · ∥τ -closure of the convex hull of

{uξ0u∗ : u ∈ U(M)}. Then η is M -central and is non-zero since ∥ξ − η∥τ < 1
2
∥ξ∥τ .

Thus we can assume ξ ∈ Ind∞
M(H).

So

ξ ∈ BNop−(M ′∩M)(L
2(M ′ ∩M),H ⊗Nop L2(M ′ ∩M)).

Considering the decomposition L2(M,Tr) ≃ L2(M ′ ∩ M)⊗L2M and the fact that

Nop ⊂M ′ ∩M we see that V PL2N⊗1̂⊗1̂ maps into L2(M ′ ∩M). Define

η := PH⊗1̂⊗1̂V
∗ξV PL2N⊗1̂⊗1̂ ∈ BNop−Nop(L2N,H) ≃ HNop

and also notice that η0 = PH⊗1̂⊗1̂V
∗ξ0V PL2N⊗1̂⊗1̂. Thus we have

∥η − η0∥2 ≤ ∥V∗(ξ − ξ0)V ∥2 = ∥V ∗(ξ − ξ0)
∗(ξ − ξ0)V ∥ = ∥ξ − ξ0∥2.

23



Now we can state the following theorem:

Theorem 4.2.3. Property (T) for von Neumann algebras is a von Neumann equiv-

alent invariant.

Proof. Let M , N be two finite von Neumann algebras that are von Neumann equiv-

alent through M and suppose M has property (T). Let H be an N -bimodule with

almost central bi-tracial vectors ηn, then IndM(H) is anM -bimodule with almost cen-

tral bi-tracial vectors ξn := ηn ⊗ 1 by Proposition 4.2.1. By property (T) of M , there

exists M -central vectors ξ̃n such that limn→∞ ∥ξn − ξ̃n∥ = 0. It follows from Proposi-

tion 4.2.2 that there exists N -central vectors η̃n with limn→∞ ∥ηn − η̃n∥ = 0.

The following lemma will help us prove the mixingness of the induced bimodule

whenever the original bimodule is mixing, which in turn will give us the stability of

the Haagerup property under von Neumann equivalence.

Lemma 4.2.4. Suppose A and B are von Neumann subalgebras of Ñ and let K be

an Ñ-Ñ bimodule which is mixing relative to B. If the A-A bimodule L2⟨Ñ , eB⟩ is

mixing, then so is AKA.

Proof. Let un ∈ U(A) be a sequence that converges to 0 weakly, ξ, η ∈ K. Since

L2⟨Ñ , eB⟩ is mixing we have for all a, b ∈ Ñ ,

∥EB(aunb)∥22 = τ
(
EB(aunb)EB(b

∗u∗na
∗)
)
= τ

(
aunbEB(b

∗u∗na
∗)
)

= Tr
(
aunbeBEB(b

∗u∗na
∗)
)
= Tr(unbeBb

∗u∗na
∗eBa)

=
〈
unb̂eBb∗u

∗
n, âeBa

∗
〉
Tr

≤ sup
x∈(A)1

∣∣⟨unb̂eBb∗x, âeBa∗⟩Tr∣∣ → 0.

Also becauseK is mixing relative to B as an Ñ -Ñ bimodule, supy∈(Ñ)1

∣∣⟨unξy, η⟩∣∣ → 0.

Therefore supy∈(A)1

∣∣⟨unξy, η⟩∣∣ ≤ supy∈(Ñ)1

∣∣⟨unξy, η⟩∣∣ → 0.

Note the above computation shows that if M ∼vNE N through M, with N having
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finite fundamental domain Q, then for any un ∈ U(M) converging to 0 weakly, we

have ∥EQ(xuny)∥2 → 0 for any x, y ∈ N⊗Q.

Proposition 4.2.5. LetM and N be finite von Neumann algebras such thatM ∼vNE

N through M. Given normal N-N bimodules K and H, the following hold:

(i) If K ≺ H, then IndM(K) ≺ IndM(H).

(ii) If H is a mixing N-bimodule, then IndM(H) is a mixing M-bimodule.

(iii) IndM(L
2(N)⊗L2(N)) is a multiple of the coarse bimodule of M .

Proof. Suppose first that K ≺ H. Replacing H with H⊕∞, we may assume that H

has infinite multiplicity. Since K ≺ H, for any ξ, η ∈ KL, there exist nets {ξi} and

{ηi} ⊂ H such that ⟨xξiy, ηi⟩ → ⟨xξy, η⟩ for any x, y ∈ N . As HL is dense in H, for

each i, we may choose sequences {ξi,n}n and {ηi,n}n inside HL which converge to ξi

and ηi, respectively. It’s easy to see that for any p, q ∈ P and a, b ∈ N⊗P , we have

⟨a(ξi,n⊗ p)b, ηi,n⊗ q⟩ → ⟨a(ξ⊗ p)b, η⊗ q⟩. As elements of the form ξ⊗ p span a dense

subspace of IndM(K), this then shows (1).

Suppose H is a mixing N -bimodule. Then it’s clear that H⊗L2(P ) = IndM(H) is

mixing relative to P as a N⊗P -bimoudle. Notice that

L2(⟨N ⊗ P, eP ⟩) = L2(B(L2N)⊗P ) ∼= L2(M)

and hence it follows from Lemma 4.2.4 that IndM(H) is mixing as an M -bimodule.

For (3), a direct computation shows that

IndM(L
2(N)⊗L2(N)) ∼= L2(N)⊗L2(P )⊗L2(N) ∼= L2(M)⊗L2(Q)⊗L2(M)

as M -M bimodules, where Q is given by the fundamental domain of M ⊂ M. There-

fore IndM(L
2N⊗L2N) ∼= (L2(M)⊗L2(M))⊕∞.
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Theorem 4.2.6. Amenability and Haagerup property for von Neumann algebras are

von Neumann equivalent invariant.

Proof. Amenability is characterized by having the trivial bimodule weakly contianed

in the coares bimodule, thus this follows from (1) and (3) of Proposition 4.2.5.

Haagerup property is characterized by having a mixing bimodule with almost

central vectors. This is a direct consequence of (1) and (2) of Proposition 4.2.5.

4.3 Deformations and L2-Rigidity

First, we give brief introduction to malleable deformations. Let M ⊂ M̃ be a trace

preserving inclusion of finite von Neumann algebras.

• A malleable deformation α of M inside M̃ is a group homomorphism α : R →

Aut(M̃) such that ∥αt(x)− x∥2 → 0 as t→ 0 for each x ∈ M̃ .

• An s-malleable deformation (α, β) of M inside M̃ is α as above, together with

β ∈ Aut(M̃) satisfying β|M = id, β2 = id and βαt = α−tβ for all t ∈ R.

We say that the malleable deformation αt ∈ Aut(M̃) converges uniformly on (M)1

if supx∈(M)1 ∥αt(x)−x∥2 → 0 as t→ 0. Notice that we have the following basic result

about malleable deformations:

Proposition 4.3.1. Let (M, τ) be a tracial von Neumann algebra and αt : M → M

for t ∈ R a one-parameter group of trace preserving automorphisms of M . The

following are equivalent:

(i) t 7→ αt is pointwise sot-continuous.

(ii) t 7→ αt pointwise strong∗ topology continuous.

(iii) t 7→ αt is pointwise continuous in ∥ · ∥2.
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The following result allows us to induce malleable deformations using von Neu-

mann equivalence and show that these induced deformations converge uniformly if

and only if the original deformations converge uniformly.

Proposition 4.3.2. Let M and N ⊂ Ñ be finite von Neumann algebras such that

M ∼vNE N through M. Let {αt}t ⊂ Aut(Ñ) be a deformation for Ñ and set α̃t :=

αt ⊗ id ∈ Aut(Ñ⊗P ). If α̃t converges to id uniformly on (M)1 if and only if αt

converges to id uniformly on (N)1.

Proof. First note that it suffices to consider the case Ñ = N as we may replace αt

with EN ◦αt ◦EN . Denote by (Ht, ηt) the Stinespring dilation coming from αt, where

ηt = 1̂⊗ 1̂. Notice that

∥αt(x)− x∥22 = τ(αt(x)
∗αt(x)) + τ(x∗x)− τ(αt(x)

∗x)− τ(αt(x)x
∗)

≤ τ(αt(x
∗x)) + τ(x∗x)− τ(αt(x

∗)x)− τ(αt(x)x
∗)

= ∥xηt − ηtx∥2Ht

for x ∈ N . It is straightforward to check that the Stinespring dilation (Kt, ξt) of

α̃t coincides with (Ht⊗L2P, ηt ⊗ 1), which is the induced bimodule IndM(Ht) of Ht

through the von Neumann equivalence.

For each t, let ξ̃t ∈ conv∥·∥2{uξtu∗ | u ∈ U(M)} be the vector with minimal norm.

Then ξ̃ is a M -central vector in Ht⊗L2P . Since ϵ(t) := supx∈(M)1 ∥α̃t(x) − x∥2 → 0

as t → 0, we see that ∥ξt − ξ̃t∥ ≤ ϵ(t). Then it follows from Proposition 4.2.2 that

∥ηt− η̃t∥ ≤ ϵ(t), which implies that limt→0 supx∈(N)1 ∥αt(x)−x∥2 = 0. In fact we have

∥αt(x)− x∥2 ≤ ∥xηt − ηtx∥Ht

≤ ∥x(ηt − η̃t)∥Ht + ∥(η̃t − ηt)x∥Ht

≤ 2∥x∥∥η − η̃∥Ht .
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for x ∈ N .

Notice that we also have the converse of the above result. In fact, if αt converges

uniformly on (N)1, then α̃t = αt ⊗ id converges uniformly on (N⊗P )1 which in turn

gives us α̃t converges uniformly on (M)1.

The notion of L2-rigidity for von Neumann algebras was introduced in [11] and

can be thought of as the von Neumann algebra counterpart of the vanishing of 1-

cohomology in the left regular representation of groups. The definition of L2-rigidity

which we introduced below is from [22], which is a slight modification from the original

definition in [11].

Let M be a finite von Neumann algebra and let H be M -M bimodule. Then a

derivation δ is an unbounded operator δ : L2M → H such that the domain D(δ) is

a ∥ · ∥2-dense, ∗-subalgebra of M and δ(xy) = xδ(y) + δ(x)y for each x, y ∈ D(δ). A

derivation δ is closable and real if δ is closable as an unbounded operator and there

is an anti-linear involution J on H such that J(xξy) = y∗J(ξ)x∗ and J(δ(z)) = δ(z∗)

for x, y ∈M , ξ ∈ H, z ∈ D(δ).

If δ is closable, then it is well known that D(δ) ∩M is again a ∗-subalgebra and

δ restricted to D(δ) ∩M is also a derivation.

Now we define the u.c.p. map Φt : M → M by Φt(x) := exp(−tδ∗δ) for t > 0

and x ∈ D(δ) ∩M . The collection of these trace preserving u.c.p. maps is known

as the Markov semigroup (since Φt ◦ Φs = Φt+s for t, s > 0), and we have that

∥Φt(x)− x∥2 → 0 as t→ 0 for all x ∈M .

Definition. A finite von Neumann algebra M is L2-rigid if for any trace preserving

inclusion of finite von Neumann algebras M ⊂ M̃ , a M̃ -M̃ bimodule H such that H

embeds in (L2M⊗L2M)⊕∞ when viewed as anM -M bimodule, and any real closable

derivation δ : M̃ → H, we have that the induced Markov semigroup {Φt} converges
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uniformly on (M)1, i.e.,

lim
t→0

sup
x∈(M)1

∥Φt(x)− x∥2 = 0.

The deformations coming from the derivations are known as L2-deformations. We

say that a group Γ is L2-rigid if its von Neumann algebra LΓ is L2-rigid. In [22], it

is shown that L2-rigidity is stable under orbit equivalence, i.e., if two groups Γ and

Λ have free, ergodic, measure preserving actions which are orbit equivalent and if Λ

is L2-rigid, then so is Γ. But since von Neumann equivalence is closely related to

measure equivalence, and hence orbit equivalence in the group setting, it is a natural

question to ask whether the L2-rigidity is stable under von Neumann equivalence. As

it turns out, the answer to this question is yes.

Theorem 4.3.3. Let M and N be two finite von Neumann algebras with M ∼vNE N .

If M is L2-rigid, then so is N .

Proof. Suppose N ⊂ Ñ and let δ : Ñ → H be a closable real derivation where

H embeds in the coarse bimodule of N when viewed as an N -N bimodule. Let P

be the finite von Neumann algebra coming from the finite fundamental domain for

N such that M ⊂ N⊗P . Then we define the derivation δ̃ : Ñ⊗P → H⊗L2P by

δ̃(x⊗ y) = δ(x)⊗ y for x ∈ Ñ , y ∈ P . Clearly we have H⊗L2P ↪→ (L2M⊗L2M)⊕∞

when viewed as anM -M bimodule. Notice that if the L2-deformations coming from δ

is {ηt}, then δ̃ induces deformations of the form {ηt⊗ id}. But sinceM is L2-rigid, we

have that {ηt⊗ id} converges uniformaly on (M)1 and by 4.3.2 we have {ηt} converges

uniformly on (N)1 giving us the L2-rigidity of N .

4.4 Proper Proximality

We first give some basic definitions. For further reading on properly proximal von

Neumann algebras and their properties we refer the reader to [13]. An operator system

is a subspace X ⊂ B(H) such that 1 ∈ A and A∗ = A. Suppose A is a unital C∗-

algebra and suppose π : A → B(H) is a unital ∗-homomorphism. We say that X
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is an operator A-system if X is a π(A)-π(A)-bimodule with the bimodule structure

is induced by operator composition. For a von Neumann algebra M , an operator

M -system X ⊂ B(H) is said to be normal if the above homomorphism π can be

chosen to be normal and faithful.

IfX is a normal operatorM -system we define theM-topology onX as the topology

induced by the seminorms:

sρ,ω(x) = inf
x=a∗yb
a,b∈M

{
ρ(a∗a)1/2∥y∥ω(b∗b)1/2

}

where ω and ρ are positive linear functionals on M . We denote by X♯, the space

of bounded linear functionals φ in X∗ such that (a, b) 7→ φ(axb) is separately ultra-

weakly continuous for each x ∈ X. It is known that if X is a normal operator

M -system, then X♯ coincides with the linear functionals that are continuous with the

M -topology defined above.

Lemma 4.4.1. Let M be a von Neumann algebra, let F be a normal M-system and

let E ⊂ F be an M-subsystem. If η ∈ E♯, then there exists an extension η̃ ∈ F ♯ so

that ∥η̃∥ = ∥η∥.

Proof. Take η ∈ E♯ with ∥η∥ = 1. Then there exist Hilbert spaces Hi, unit vectors

ξi ∈ Hi, normal representations πi : M → B(Hi), and an M -bimodular complete

contraction ϕ : E → B(H2,H1) so that for a, b ∈M and x ∈ E we have

η(axb) = ⟨π1(a)ϕ(x)π2(b)ξ2, ξ1⟩.

We let ϕ̃ : F → B(H2,H1) be a completely contractive M -bimodular extension (see

[25]), and then define η̃ ∈ F ∗ to be an extension of η with ∥η̃∥ ≤ 1 by η̃(x) =

⟨ϕ(x)ξ2, ξ1⟩. Since ϕ̃ is M -bimodular, for a, b ∈ M and x ∈ F we have η̃(axb) =

⟨π1(a)ϕ̃(x)π2(b)ξ2, ξ1⟩, and since π1 and π2 are normal we then see that η̃ ∈ F ♯.
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Corollary 4.4.2. LetM be a von Neumann algebra and let F be a normalM-system.

Then F ♯ is spanned by states in F ♯.

Proof. We let A be a normal M -C∗-algebra that contains F as an M -subsystem. By

Lemma 5.3 in [13] we have that A♯ is spanned by states in A♯. The result then follows

from Lemma 4.4.1

Lemma 4.4.3. Let M and N be von Neumann algebras and let E and F be normal

M and N-systems, respectively. If ϕ : E → F is completely positive such that the

restriction of ϕ to M defines a normal map from M to N , then ϕ is a continuous

map between E with the weak M-topology, and F with the weak N-topology.

Proof. To prove that ϕ is continuous with respect to the weak M -topology and weak

N -topology we need to check that if η ∈ F ♯ then η ◦ ϕ ∈ E♯. Note that if η ∈ F ♯ is

a state, then η|N is normal and hence (η ◦ ϕ)|M is normal, from which it follows that

η ◦ ϕ ∈ E♯. By Corollary 4.4.2 every linear functional in E♯ is in the span of states,

and the general result then follows.

Suppose M is a von Neumann algebra, then we define the norm ∥ · ∥∞,1 on M

by looking at elements in M as operators going from M into L1M and taking the

operator norm. We denote by K∞,1 the ∥ · ∥∞,1-closure of the compact operators

K(L2M) on L2M . Now define

S(M) =
{
T ∈ B(L2M) : [T, JxJ ] ∈ K∞,1, ∀x ∈M

}
.

Notice that clearly we haveM ⊂ S(M). We say a von Neumann algebraM is properly

proximal if there is no M -central state φ on S(M) such that φ|M is normal.

Theorem 4.4.4. LetM N be two finite von Neumann algebras that are von Neumann

equivalent through M. If M is properly proximal, then so is N .
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Proof. Since M ∼vNE N , we have M ∼= B(L2M)⊗Q ∼= B(L2N)⊗P , M ⊂ N⊗P and

Nop ⊂Mop⊗Q, where P and Q are both finite. Denote by K0
Tr(M) the norm closure

of the definition ideal mTr of M and let KTr(M) be the M -M and Mop⊗Q-Mop⊗Q

closure of K0
Tr(M).

Consider S(M) ↪→ S(M)⊗ 1Q ⊂ M and under this embedding we have

S(M) ⊂ {T ∈ M | [T, x] ∈ KTr(M), for any x ∈Mop⊗Q},

which lies in S(N ;M) := {T ∈ M | [T, x] ∈ KTr(M), for any x ∈ Nop}.

We claim that id⊗τP : S(N ;M) → S(N). Indeed, it suffices to show id⊗τP :

KTr(M) → K∞,1(N). Since id⊗τP is trace preserving, we have id⊗τP : K0
Tr(M) →

K(L2N), and hence it suffices to show that id ⊗ τP is continuous between M with

the weak M and weak Mop⊗Q-topologies and B(L2N) with the weak N and Nop-

topologies. This then follows from Lemma 4.4.3 once we observe that the restriction

of id⊗ τP defines a normal map from M to N and Mop⊗Q to Nop.

Now suppose N is not properly proximal, i.e., there exists φ ∈ S(N)∗ that is

N -central and φ|N = τN . Then ψ := φ ◦ (id⊗τP ) : S(N ;M) → C is N⊗P -central

with ψ|N⊗P = τN⊗P and hence restricting to S(M) gives an M -central state with

ψ|M = τM .
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