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CHAPTER 1

Introduction: Public transportation and imbalanced learning

1.1 Introduction and Backgrounds

Public transit provides critical services that enable residents of a city, especially those without personal cars,

to commute to work and access essential services Lao et al. (2016). As a result, public transportation is a

crucial determinant of the quality of life for the urban and suburban population. Cities strive to maximize the

coverage of transportation services under budgetary constraints. However, optimizing the spatial and tempo-

ral distribution of transit is a complex multi-dimensional stochastic optimization problem. Uncertainty in the

problem domain arises from various factors; on the one hand, ridership patterns themselves are uncertain, and

on the other, urban environments are highly dynamic. Further, catastrophic events like the novel coronavirus

disease (COVID-19) pandemic and subsequent mitigation efforts have created powerful new challenges for

public transit systems Tirachini (2020).

Higher population density and connectivity can also aid the spread of pandemics Olmo and Sanso-Navarro

(2020); Medo (2020). One of the most effective measures for slowing down or stopping the spread of a con-

tagious disease is social distancing, that is, reducing the number of times that people come into close contact

with each other Brooks et al. (2021). To minimize contact between passengers and drivers, agencies switch

to fare-free operations and block front-door boarding. To reduce contact between passengers, they limit pas-

senger capacity. In some cases, the agencies are also decreasing the frequency of the fixed-route service as

ridership has declined. While these ad-hoc changes are reducing the number of close contacts between pas-

sengers, they are also affecting people that have higher socio-economic vulnerabilities Brough et al. (2020).

Indeed, the effects of COVID-19 on public transit ridership are not uniform across demographic, spatial, and

temporal variations Hu and Chen (2021).

One of the pre-requisites for optimizing public transit is to accurately estimate ridership and occupancy de-

mand. Historical occupancy data can be used to forecast expected demand in the future, which in turn can be

used to optimize some utility function (e.g., total demand-weighted coverage or waiting time) that captures

the requirements of the concerned transit agency. Estimating ridership demand also helps passengers make

informed choices. However, the changes introduced to counter pandemic concerns have made these predic-

tion tasks difficult. While some transit agencies have partnered with software developers to estimate ridership
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patterns and inform commuters through smartphone applications Darsena et al. (2020); Couture et al. (2020),

such approaches are largely ad-hoc and myopic. As a result, commuters end up planning their travel under

considerable uncertainty.

Forecasting ridership is challenging. Indeed, as we show in later sections and chapters, even well-established

statistical and algorithmic approaches to data-driven learning fail to estimate ridership demand at high spatial

and temporal resolutions accurately. A significant challenge in predicting demand is the high propensity of

zero counts in the data. For example, consider ridership patterns in Chattanooga, which has a population of

about 180,000. In figure 1.1, we present hourly ridership data in fixed-line buses in Chattanooga grouped

by month from 2019 to mid-2020. An important finding is the high volume of zero counts; even though

we try to depict the historical data through its quartiles graphically, most box plots barely rise above zero.

As Mukhopadhyay et al. (2020) points out, standard statistical models for count-based data (e.g., Poisson

regression) fail to work well in such scenarios.

Prior work has explored several different aspects of forecasting transit ridership. For example, Karnberger

and Antoniou (2020) provide an insight into the relationship between public transit ridership and Spatio-

temporal influences from exogenous events. Zhou et al. (2017) explore the impact of daily weather condition

changes on the usage of public transit. There has also been work that attempts to predict passenger occu-

pancy on public transportation in the near future by using real-time information from smart cards Van Oort

et al. (2015); Nuzzolo et al. (2013). This manuscript describes statistical and algorithmic models to forecast

ridership based on automated passenger counting (APC) and transit data from the General Transit Feed Spec-

ification (GTFS), while considering and assessing the uncertainty of the input data (trend changes and zero

counts) by exploring different probability distributions.

One approach to circumvent the high zero counts is to learn forecasting models over coarse spatial and tem-

poral resolutions. Naturally, aggregating data across space and time reduces the number of zero occurrences.

However, transit agencies often require fine-grained forecasts to optimize daily transit schedules, dispatch

secondary vehicles in case of over-crowding, and inform riders about potential delays and occupancy. In-

stead, we focus on designing principled data-driven approaches to estimate ridership and occupancy at high

spatial-temporal resolutions. Our method is based on combining zero-inflated models (a widely used statisti-

cal model for handling excess zero counts) with ensemble learning. We also explore how neural networks can

be used in this context. We evaluate such methods along with well-known statistical models such as Poisson

regression, negative binomial regression, and others. Our analysis is based on real-world transit data from
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Nashville and Chattanooga, USA and our findings reveal that the choice of model depends to a large extent

on the dependent variable under consideration and the proportion of zero counts in the data.

Figure 1.1: Board count box-plots grouped by month and hour of the day across all trips and bus stops. There
is a high dispersion in data as can be seen by the small (almost invisible) bands of the box plots.

1.2 Challenges in Public Transportation Modeling

In developed countries, public transportation has faced challenges increasing its ridership or demand. In par-

ticular, the possibility to afford a car has been been one of the main reasons. The rates of car ownership have

been increasing as incomes rise and cars become more affordable. The continuing decentralization of cities

into suburban and exurban areas has generated land-use patterns and trips that are difficult for public transport

systems to serve Buehler and Pucher (2012). But this trend is not uniform across developed countries, for

example, Germans are five times more likely than Americans to use public transportation, which means that

zero counts are less prevalent in Germany and there are computational and modeling challenges to model

public transportation demand in the United States.

According to the International Association of Public Transport, the ridership in developed countries has in-

creased by at least 18% since 2000. The United States still has a low demand, and has the lowest number of

journeys per capita between all the participant countries. There is a historical relationship between poverty

and public transportation Sanchez (2008) in The United States. Also, bus routes do not necessarily connect

3



residential and working locations Blackley (1990). Thus, it is important to explore new alternatives to im-

prove (and optimize) public transportation and increase quality and demand. Also, it is crucial to take into

account the data noise, which comes from instrument imprecision.

This manuscript does not address the causes related to low demand in public transportation in the United

States. Instead, it proposes a new method to predict boarding counts (and maximum occupancy) in the pres-

ence of high proportion of zero counts. This is not a trivial task since standard modeling approaches such

as Poisson regression use the concept of average to estimate its parameters and these averages will tend to

zero as the proportion zero counts gets closer to one. Consequently, all the predictions from a model of these

characteristics will be influenced by the high proportion of zero counts. Then, these predictions will tend to

zero as well, which will not provide meaningful information about the boarding counts.

Considering this situation, transit authorities in Nashville and Chattanooga have been forced to provide ad-

hoc solutions, relaying on the experience and expertise of transit agents, but not taking advantage of the

recorded data.

1.3 Imbalanced Learning

Addressing the modeling and computational challenges related to the high proportion of zero counts is im-

portant to improve public transportation quality. The ability to accurately predict zero boardings (i.e., the

number of passengers taking a particular at a particular location) and boarding counts is crucial for better and

optimized bus dispatching.

In the context of Machine Learning, when the dependent variable does not have a similar class proportion, it

is known as an imbalanced learning problem, that is, the learning process for data representation and infor-

mation extraction with severe data distribution skews to develop effective decision boundaries to support the

decision-making process. He and Ma (2013). The main negative effect with the imbalanced learning problem

is the ability of imbalanced data to significantly compromise the performance of most standard learning and

mining algorithms He and Ma (2013).

Our proposed solution creates new dependent variables that only has two classes: zero-counts and counts.

That is, we train a classifier to predict zero-counts from counts. Then, we train a regression model to predict

the boarding counts. Therefore, we require a classifiers or learners that with high predictive accuracy for both

the minority and majority classes on the dataset. Nonetheless, in our dataset we found that the proportion of
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zero counts is greater than 90%, and depending on the route and direction characteristics it can be as high as

97%. This means that the boarding counts represent, at best, only the 10% of the dataset.

There are multiple approaches to the imbalanced learning problem, and in this manuscript we focus on modi-

fying the sampling method to provide a balanced distribution of classes. That is, we randomly oversample the

underrepresented classes (i.e., boarding counts), while we randomly undersample the overrepresented class

(zero counts).

In the next section, we present a literature review about related work and approaches. This part provides

information about the main differences, in terms of advantages and disadvantages, between previous work

and our approach. Then, we explain our problem formalization and link it with our research hypothesis.

5



CHAPTER 2

Related Work and Problem Formalization

2.1 Literature Review

In cities where public transportation demand is highly, predicting the number of passengers at different spatial

and temporal aggregates have offered valuable insights for improving the service Horažďovskỳ et al. (2018);

Wilbur et al. (2020). In contrast, cities that do not have a high a demand tend to use static itineraries that can

be valid for months Ceder (1984). However, the increasing demand in public transportation around the world

represents an opportunity to train predictive models to provide a better service. In this section, we present a

literature review about related modeling approaches.

Ceder (1984) proposed a statistical method to calculate peak load factors to determine policy headways (or

bus frequency dispatching), but this method aggregates boarding counts by days and only uses boarding count

data. The main problem of this approach is that it is fundamentally deterministic and does not provide infor-

mation about the hourly fluctuations of boarding counts and maximum occupancies, and does not integrate

other variables that may be relevant such as temperature and precipitation.

Hofmann and O’Mahony (2005) explored the how adverse weather conditions impacted on urban bus per-

formance measures in Ireland. They created a dataset using electronic fare collection for boarding counts

and environmental variables such as Date, Hour, Precipitation, and Temperature. Then, the datasets were

joined using the date and hour of both the passenger boarding and the meteorological data set. The authors

calculated aggregated averages (e.g., 4pm - 6pm) for most of the meteorological variables, and transformed

the precipitation variable from continuous to dichotomous (rain or no rain). While the incorporation of me-

teorological or environmental variables improved the accuracy of boarding counts, the proposed approach is

not able to capture the hourly fluctuations of ridership, it can only predict changes in total daily ridership

given some meteorological variables.

Similarly, Guo et al. (2007) and Stover and McCormack (2012) explored the relationship between ridership

and environmental conditions in Chicago (Illinois) and Percy County (Washington), and these studies found

that environmental variables have an important predictive power on ridership, which is promising given the

differences in population sizes of these two locations.
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Recently, Zhou et al. (2017) suggested that it is important to explore the impact of weather on public transit

at fine-grained temporal and spatial scales to improve our understanding of the relationship between weather

and travel behavior. Moreover, the authors found a strong statistical associations between intra-day variations

in public transit ridership, both system-wide and at station level, and the changes in weather conditions.

Nuzzolo et al. (2013), Van Oort et al. (2015), and Horažďovskỳ et al. (2018) proposed to study passenger

data from a Big Data perspective taking advantage of smart card systems, automated vehicle location, and

instruments for Automatic Passenger Counting (APC). The studies highlighted the need to move from ad-

hoc approaches for decision making to taking advantage of the large amount of information. The proposed

method provided valuable information for planners since they were able to explore a significant number of

scenarios, which improved their ability of real-time decision making.

The previous studies provided valuable insights about the data public transportation demand and occupancy

in terms of the relevant variables, the importance of using fine-grained spatio-temporal models, and the large

amount of information that can be gathered on a daily basis. However, these studies did not provide explicit

and clear analysis about the relationship between the dependent variables (boarding counts or maximum

occupancy) and their explanatory, nor suggested reasonable modeling approaches to predict the future values

of these variables. In the next section, we present the problem formalization and give context to define our

proposed dependent variables. Then, we present our research hypothesis and two modeling strategies.

2.2 Problem Formalization

Consider a transit agency that operates a set of busesV . Each bus ν ∈ V follows a fixed-line route h ∈ H ,

where H is the set of all possible routes in operation. Let S represent the set of all bus stops and garages,

with si ∈ S denoting a particular stop. Then, any directed graph connecting a subset of S is a possible bus

route, and H represents the set of all possible directed graphs over S . Note that two graphs traversing the

same nodes in different directions represent different bus routes. The set of specific trips made daily by all

vehicles V is denoted by T . Trips are usually set and controlled by a master schedule created by the agency.

Each trip t ∈ T involves a particular vehicle that follows a specific route h ∈ H . For each trip, the arrival

time tarrival
s of the bus at a stop s ∈S serving the trip is retrieved from the GTFS feed. We define the number

of passengers boarding the bus in trip t ∈T at stop si as γt(si). As an example, 1.1 shows the registered board

counts for the busiest route in Chattanooga. The number of passengers getting off at si during trip t ∈ T is

denoted by αt(si).
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Figure 2.1: Routes represented by directed graphs. Each route and direction have a specific sequence of bus
stops {si}.

Formally, we denote conditional distributions over board and alight counts by Fb and Fa respectively. Our

goal is to learn Fb(γt(si) |W ) and Fa(αt(si) |W ), where W is a set of features that characterize conditions at

location si at time t. For example, W can include weather, time of day, and ridership data from previous trips.

Our model starts from a predicted demand at the origin of the trip (we use the predicted board count at the

origin as a proxy for this demand). As the bus follows its route, we sample from the distributions Fb and Fa to

generate board and alight counts at every stop, thereby simulating an entire trip made by a vehicle. Note that

Fb and Fa vary with time of day, bus stop, weather, occupancy of the bus, and other relevant determinants. In

practice, the samples drawn from the distributions must follow practical constraints. For example, the total

number of passengers that leave a bus cannot be more than the number of people on board.

We model the occupancy of a bus as a random integer L, which denotes the total number of passengers inside

the bus at a given point in time. The occupancy on trip t at location si, denoted by Lt(si), can be calculated

from models of the boarding and alighting processes. We model occupancy as an autoregressive process:

Lt(si) = Lt(si−1)+ γt(si)−αt(si) (2.1)

If we group the trip data by date and hour of the day, we can define an expression for the maximum occupancy

of trip t, denoted by Ltmax , using equation 2.1. Specifically,

Ltmax = max{Lt(si)} (2.2)

We aim to combine multiple data streams to estimate boarding counts at different stops and maximum occu-

pancy on each trip. A wide range of temporal granularity can be used to learn such models. One approach is
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to learn a model for each unique trip directly. However, each trip contributes relatively little data to learning;

consequently, individual models can overfit historical data. On the other hand, learning a universal model

for all trips (conditional on a set of features) ignores the information in nearby trips that are not explicitly

modeled in the feature space (where nearby denotes proximity in abstract feature space). As a result, we

choose a discretization that is mid-way – we group trips according to the hour of the day. Consequently, our

problem is reduced to estimating occupancy (and maximum occupancy) on stops and trips.

2.3 Research Hypothesis

We point out that it is unnecessary to model board counts, alight counts, and occupancy separately. Note

that it is sufficient to know any two of the three variables to estimate the third variable automatically. For

example, suppose the initial occupancy at the start of the trip is known. In that case, modeling the board

count and alight count at every stop automatically results in a model for estimating occupancy. We choose

to model board counts and occupancy directly; alight counts can be calculated using the learned models over

board counts and occupancy. We use a set of well-known statistical and algorithmic approaches to data-driven

learning to estimate occupancy in trips. Statistical methods assume the existence of a stochastic data model

that generates the data Breiman (2001b). Algorithmic strategies, on the other hand, focus on finding a func-

tion that takes as input the set of features W and predicts the concerned output (e.g., γt ) Breiman (2001b).

Also, we use a stratified sampling approach to subdivide the data into two parts: a train set to train the models

and tune the model parameters, and a test set to compute their test RMSEs. We start by briefly describing the

statistical models first and then explain our proposed algorithmic approach.

Statistical Models: We use five statistical models, namely the Poisson, negative binomial, zero-inflated Pois-

son, zero-inflated negative binomial, and hurdle (binomial and Poisson) models to estimate the distribution of

board and occupancy counts. For the sake of brevity, we describe these well-known approaches to statistical

modeling only briefly. The Poisson distribution is one of the most widely used approaches for modeling

count data Menon and Lee (2017). Each event (a single passenger boarding a bus given a trip and a stop) is

considered a result of an independent Bernoulli trial. As the number of trials increases and the probability

of success decreases, the count of the number of successes (total passengers boarding or alighting) takes the

form of a Poisson distribution. To model the set of features W , the regression model assumes that the loga-

rithm of the expected value (mean) of the dependent random variable (e.g., board counts) can be modeled as

a linear function.

A shortcoming of the Poisson model is the assumption that the variance and mean of the distribution are
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the same. The negative binomial model (essentially a hierarchical Poisson model where the mean parameter

follows a gamma distribution) has been shown to be more flexible Mukhopadhyay et al. (2020). As with

many real-world datasets that model counts of events, ridership data consists of many zeros, i.e., during many

trips and at many stops, no passengers board or get down from the vehicles. Zero-inflated models can handle

excess zeros that standard count-based models cannot explain by considering a separate state in the underly-

ing statistical process Mukhopadhyay et al. (2020). Essentially, two processes govern the generation of the

observed data. The first process generates zero counts. The second process can be modeled by a count-based

discrete distribution such as a Poisson distribution. The second random process generates counts for the

events, some of which can be zeros. The negative binomial model can also be used as the count-based model.

We use both the zero-inflated Poisson and the zero-inflated negative binomial model in our analysis.

We also use hurdle models to account for the excess zeros. Hurdle models are similar to zero-inflated models

in principle but have an important difference. A hurdle model also has two different processes to model the

random variable of interest. The first process is used to account for all the observed zero counts. The second

process generates the non-zero counts only and is a distribution truncated at 0. The zero-generating process is

assumed to be a hurdle that must be overcome to attain non-zero values. For example, as in the seminal work

regarding hurdle models Cragg (1971), a truncated Gaussian distribution can be used to model the non-zero

counts, and a probit model can be used for the zero counts.

Figure 2.2: (a) Random fern classifier on the binary label (zero or not-zero). (b) The trained classifier is first
used on an unseen data point. If the output is non-zero, the trained regressor is used to predict the final output.

Algorithmic Approaches: Unlike statistical approaches to modeling, algorithmic approaches1 treat the data

generating process as complex and partly unknown. Such approaches aim to find a function that can take w

(a specific realization of the feature set W ) as input and output the dependent variable of interest. The under-

lying assumption is that such a function would be a good predictor for any arbitrary ŵ in the future (naturally,
1while such approaches are also known as machine learning-based approaches, we follow the terminology introduced by

Breiman Breiman (2001a)
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the belief is conditional on ŵ and w being drawn from the same, although unknown, distribution). We use

random forests as our baseline algorithmic approach to learning, which constructs an ensemble of decision

trees at training time to fit the observed data Breiman (2001a). The model’s output is calculated by taking the

mean or average prediction of the individual trees in case of regression. In case of classification problems, a

vote is taken using the outputs of all the learned trees. Random forests are known to work on a wide variety

of data and prevent overfitting, unlike decision trees.

The performance of random forest regression on data that has a high frequency of zero values is unexplored,

to the best of our knowledge. We propose zero-inflated or hierarchical random forest regression, which uses

two models (both based on random forests) to account for the excess zeros. We show our approach in Figure

2.2. First, we learn a random forest (using the random ferns algorithm) classifier that categorizes an arbi-

trary w to one of two classes — a class denoting zero-count and another denoting non-zero count. From the

perspective of hierarchical modeling, the classifier can be interpreted as a top-level process. Then, a random

forest regressor (using the ranger algorithm) produces an output for data points classified to the non-zero class

by the top-level process. To learn the zero-inflated random forest model, we first convert observed outcomes

(e.g., board counts) to a binary variable by labeling all non-zero observations as 1. Then, we train a classifier

on this transformed data. For training the regressor, we only use data with non-zero observations. Note that in

principle, the regressor can still predict zeros for an arbitrary ŵ. However, our training mechanism segregates

the two processes that generate zeros and non-zero observations.

Neural networks are computational models that use multiple processing layers to learn abstract representa-

tions of data LeCun et al. (2015). Neural networks contain an input layer which maps to the input data (w

in our case), a set of hidden layers, and an output layer. Each layer consists of a set of computational nodes

called neurons. In feed-forward networks, which were used in this analysis, neurons accept an intermediate

computation from nodes in the previous layer, pass it through an activation function, and pass it on to the

nodes in the next layer. Gradient based approaches can be used to optimize the network based on a prede-

fined loss function. The neural network was designed to predict the board count at a particular stop as well

as maximum occupancy for trips using a linear activation in the output layer and sigmoid activation in all the

hidden layers.
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CHAPTER 3

Methodology

This chapter covers a wide range of topics, it explains the main data sources, their relevant variables (and

keys), and how all the datasets were merged to build one database that can be used for modeling purposes.

Also, section 3.1 explains how the proposed data preprocessing can be replicated or applied to different cities

with access to APC and GTFS datasets.

Moreover, we explianed how to transform and create new variables with the existing datasets that can im-

prove the predictive power of the models. Also, it is assumed that the observed board and alight counts are

independent, and thus, we can perform random k-fold cross-validation. Also, one of the main ideas of this

research was to study the effect of lockdown (and its derived decrease in ridership) on modeling accuracy for

both pre-lockdown and post-lockdown conditions.

3.1 Data

There are two sources of information in this study: General Transit Feed Specification (GTFS) and Auto-

mated Passenger Count (APC). GTFS allows public transit agencies to share and publish their transit data,

such as bus stop locations and route patterns, in a structured format for software application purposes. This

dataset tends to be accurate and most information is spatially indexed. Also, GTFS requires that the published

data has to be valid for at least the next seven days, trying to keep a valid information system.

In contrast, APC data could be noisy and requires preprocessing and transformation. The data is generated

from electronic devices installed on vehicles to register boarding and alighting data. The pattern in which the

infrared light beam is interrupted by a passenger determines if the person is entering or exiting the vehicle.

However, these devices are not completely accurate and can lead to negative occupancies. Therefore, most of

the uncertainty comes from boarding and alighting counts. Besides that, the occupancy or number of passen-

gers between two consecutive bus stops is not generated by counting the current number of passengers, and

thus, this variable is calculated from the board and alight counts.

During the preprocessing stage the raw APC and GTFS data are cleaned. The first step is to look for dupli-

cates, misspellings, and erroneous information, such as contradictory date or time values for a sequence of

bus stops. Also, the date and time information is organized in a proper or standard format that can be easier
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to manipulate.

The GTFS dataset has several tables related to the paths that buses have to cover:

• routes: Describe the routes of a given transit agency.

• stops: Spatial location of all the bus stops covered by a given transit agency.

• shapes: The spatial geometry of all the routes of the given transit agency.

• trips: It relates each trip of a transit agency to a unique route, direction, service, and shape id.

Figure 3.1 shows the most relevant variables of each dataset before preprocessing. Clearly, neither APC

nor GTFS have all the required variables for modeling purposes. For instance, APC has all the information

about boarding counts at a given bus stop on a given date of the year. However, it is not easy to derive

spatial-temporal patterns of boarding counts since APC does not have further information about routes and

their spatial shapes. Therefore, it is necessary to combine the APC and GTFS datasets based on route_id,

direction_id, and stop_id to get a unified dataset (and schema) to add spatio-temporal information

to the APC data.

Figure 3.1: The APC and GTFS datasets. Each table or entity has a key that can be used for joins.

The weather dataset gathered data from multiple stations across Tennessee and its surrounding states. These

stations measure different environmental variables every 1.5 seconds (40 measurements per minute). Figure

3.2 (left figure) shows the spatial distribution of the weather stations that were considered in this study. Also,

it shows the selected weather stations based on proximity to Chattanooga:
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Figure 3.2: Left figure: Spatial distribution of the weather stations considered in this study. Right figure: bus
stops in Chattanooga in blue and considered weather station in red.

Clearly, not all the weather stations were considered in this study given that the minimum distance between

weather stations exceeded the maximum distance between bus stops. Therefore, we selected the closest

weather station to each bus stop. For instance, figure 3.3 shows the temperature and precipitation patterns in

Nashville from late 2019 to early 2022 from the closest weather station:

Figure 3.3: Variation of temperature and precipitation in Nashville, TN. These two environmental variables
were considered as predictors in the models.

Before merging the weather data with the APC and GTFS dataset, we aggregated the temperature and precip-

itation by hour of the day to get hourly averages of these two variables for each date in the APC and GTFS

dataset. Then, we merged the weather with the unified APC and GTFS dataset based on the arrival time hour

of the buses to the bus stops. We collected weather data from Dark Sky and Weatherbit. In other words,

we combined public transportation data and its spatio-temporal patterns with environmental variables such as

temperature and precipitation.

Table 3.1 presents a schema for the processed data, in which it is possible to relate the variables or fields with

their sources and some relevant description.

Once the datasets are cleaned, they are merged to create a final unified dataset that can be used for modeling
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purposes and data queries. The following section presents a data schema of the processed data from APC and

GTFS.

Field Source Description
trip_id APC, GTFS unique trip identifier

scheduled_arrival_time APC, GTFS time when vehicle was scheduled to arrive at stop
hour:min:sec

stop_id APC, GTFS unique stop identifier
stop_sequence GTFS each trip has an ordered sequence of stops visited, this

is the sequence number of stop: stop_id in trip:
trip_id

stop_lat GTFS latitude of this pickup location (stop)
stop_lon GTFS longitude of this pickup location (stop)
route_id GTFS unique route identifier

direction_id GTFS direction of travel along this route. 0 is outbound, 1 is
inbound

board_count APC number of passengers boarding at this stop
alight_count APC number of passengers exiting vehicle at this stop
occupancy APC number of passengers on vehicle after vehicle leaves

this stop
direction_desc APC same as direction_id but in string format. Should

be either OUTBOUND or INBOUND.
service_period APC either Weekday or Weekend

date APC date of vehicle arriving at this stop year-month-day
scheduled_datetime APC, GTFS date + time of vehicle’s scheduled arrival at this stop

year-month-day hour:min:sec
actual_arrival_datetime APC date + time of vehicle’s actual arrival at this stop

year-month-day hour:min:sec
trip_start_time APC represents the time at which this trip started. should be

the same for all stops visited for a given trip
day_of_week APC the day of the week (0, 1, .... 6)
trip_date APC similar to trip_start_time, this is the date at

which this trip started. Note that CARTA operates trips
that cross over midnight, so trip_date can be dif-
ferent than date field

hour APC hour of the day (0, 1 ... 23)
Estimated_temp Dark Sky Aggregated mean temperature by hour of the day.
Estimated_precip Dark Sky Aggregated mean precipitation by hour of the day.

Table 3.1: Data schema for the processed dataset.

3.1.1 Data Preparation

As part of the preprocessing stage, some column names are changed. For instance, ’PASSENGERS_ON’ is

changed to ’board_count’, ’PASSENGERS_IN’ to ’occupancy’, and ’LONGITUDE’ to ’stop_lon’,

which could be more informative or less ambiguous. This process is important to maintain a unique schema.

Also, the datasets are sorted by date and stored for further analysis.
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Part of the main goal of this research was to assess the performance of the models before and afternoon

lockdown conditions were imposed, pre- and post-lockdown, respectively. Imbalanced data or excess of zero

counts in public transportation can be exacerbated if lockdown conditions are imposed. Therefore, we iden-

tified the dates on which the ridership dropped drastically due to COVID-19 restrictions to identify the dates

that reflected these new conditions. Then, we split the data into pre-lockdown and post-lockdown datasets.

We consider data from 2019-01-02 to mid 2021 from both Nashville and Chattanooga. According to Wilbur

et al. (2020), lockdown restrictions affected the ridership in Nashville in Chattanooga on the following dates:

• Nashville:

– Pre-lockdown data: date < 2020-04-19

– Post-lockdown data: date >= 2020-04-19

• Chattanooga:

– Pre-lockdown data: date < 2020-03-05

– Post-lockdown data: date >= 2020-03-05

For every route, direction, and bus stop, we created a new variable called surrounding board counts or sur-

rounding alight counts to take into account the number of boarding or alighting events that happened an hour

before a targeted hour within a half-mile radius with respect to a given bus stop.

We defined two dependent variables that will be defined in the following sections of the document. Also,

these sections explain how these variables are generated from the dataset.

3.1.1.1 Demand: Board Counts

Public transportation demand can be modeled by board counts. As explained in table 3.1, each boarding event

has information of its date-time, route, direction, trip number, and bus stop. Also, there is information about

precipitation and temperature during the boarding event. Therefore, the dataset has potential explanatory

variables that can be used in machine learning models to predict board counts. However, the zero counts are

the dominant proportion, and figure 3.4 shows that zero counts can be higher than the 90% of the observations:
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Figure 3.4: Board count distribution of routes 2, 28, and 7 from the Chattanooga public transportation system.

Imbalanced data is a clear challenge in machine learning He and Ma (2013). If this is not addressed, the

models will have poor predictive performances. Therefore, the distributions of board counts per bus route,

direction, and bus stop need to be assessed. Figure 3.5 compares the empirical and theoretical distributions

(using Poisson distributions) of the board counts of routes 2, 28, and 7. The obtained rates are around 0.10

approximately, which reflects the influence of the proportion of zeros:

Figure 3.5: Comparison of the empirical and theoretial distributions of board counts.

The goodness of fit of these distributions can be assessed using a Kolmogorov-Smirnov test. The results

indicate that as the proportion of zero counts increases, the test suggests that the data do not come from a
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Poisson distribution. Moreover, the Negative Binomial distribution was considered in cases with overdisper-

sion. However, hypothesis tests also suggest that the high proportion of zero counts affects the quality of

goodness of fit.

It is also important to perform an exhaustive data exploration analysis to identify trends in the boarding

counts. For instance, figure 3.6 shows the distribution of board counts as box plots across all the bus stops

covered by route 2:

Figure 3.6: Board count across all the bus stops of route.

The overwhelming majority of the counts are regarded as outliers, and just in some specific cases, the third

quartile indicates a boarding count of only one passenger. The rest of them are box plots whose first and third

quartiles are equal to zero.

If the data exploration analysis is restricted to bus stop 166 from route 2, it can be seen that board counts have

a pattern that might be governed by time, or hour of the day as shown by figure 3.7. The same analysis was

repeated at multiple bus stops from different routes suggesting that aggregating board counts by hours (at the

bus stop level) reflects the fluctuations of public transportation demand.
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Figure 3.7: Board count by hour id the day of bus stop 166 from route 2.

Also, we performed a more detailed aggregation (every 15 minutes), and as anticipated, the proportion of

counts decreased substantially. Furthermore, aggregating the board counts by time frames of the day (e.g.,

morning, noon, afternoon, and evening) increased the proportion of counts but the information provided by

the models was not useful for practical purposes, or decision-making for public transportation authorities.

3.1.1.2 Maximum Occupancy

One of the major challenges of public transportation during the pandemic was crowd avoidance or control as

a mechanism to reduce possible social distancing violations at a bus or trip level. In this case, we consider

trips as the units of analysis instead of bus stops (for the case of public transportation demand). Figure 3.8

shows the distribution of the maximum occupancies observed for all the trips from routes 2, 28, and 7:
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Figure 3.8: Maximum occupancy distribution for three routes of the Chattanooga public transportation sys-
tem.

Clearly, the proportion of zeros, in this case representing the event of a trip with a maximum occupancy is

zero, that is a trip that never has passengers goes to zero. In other words, the trips from these routes had at

least one passenger during their commute time. For Chattanooga only, the number of zero counts is reduced

and we only observe a 4.4% of zeros in maximum occupancy in trips in our data. Therefore, we can train a

model f that allows us to predict maximum occupancies with the highest possible accuracy.

Maximum occupancy is particularly important since it gives meaningful information about the maximum

number of passengers in a bus, which could lead to social distancing violations. Therefore, we constructed

a new dependent variable called maximum occupancy (max_occupancy) that represented the maximum

number of passengers on a trip.

The trip_id variable has information about its route and direction. Also, each trip has a working schedule

defined by the GTFS dataset. To generate this variable we grouped the data by date, trip_id, and hour to

get the maximum occupancy value across all the bus stops covered by a trip as presented by equation (2.2).

The main goal is to predict the maximum number of passengers on any given trip on any segment of its

commute path. Also, we consider the same machine learning methods for both maximum occupancy and
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demand to assess their performance under both situations.

3.1.2 Data Storage and Paths

We can increase the efficiency and performance of the computations by dividing and storing the dataset in

different compartments. For instance, if we plan to train a set of machine learning models to predict the

demand on route 1 from Chattanooga as seen in figure 3.9, it becomes clear that any information from route

4, 9, or any other route different than 1 is not relevant. Thereby, we can split the data by routes and direction

values to optimize computational resources. Similarly, if we want to model the demand of route 1, we can

decide to concentrate efforts on any of its directions, keeping order without losing information.

Figure 3.9: Hierarchical structure for the data based on transit agency, route, direction, and bus stop.

Also, we can think of routes and directions in a hierarchical structure: a transit agency has routes, all routes

have two directions, and all directions have a set of bus stops. Therefore, we propose the same hierarchical

structure to store all relevant data and machine learning models. For instance, an access path for the pre-

lockdown test dataset, (pre_lock_test_data.csv), of bus route 1, direction 0, bus stop 12 is:

route_1/direction0/bus_stop_12/pre_lock_test_data.csv
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3.2 Proposed Solution

We considered a wide range of methods that could cope with (a) count data, and (b) zero-inflated data.

Considering the overwhelming evidence of zero-inflated counts, we wanted to assess their generalization

error or relative performance using the Test Root Mean Square Error (RMSE) as the loss function:

L(y, f̂ (X)) =

√
∑

N
i=1(y− f̂ (X))

N︸ ︷︷ ︸
RMSETest

(3.1)

where N representes the number of sample in the test dataset; y and f̂ (X) indicate the vectors of observations

and predictions, respectively.

Moreover, we considered a set of benchmark methods (instead of one) since we were facing count data

inflated in zero, and we generated a dataset for each combination of route, direction, and bus stop. Therefore,

we needed a broad range of methods to cope with the particularities of each case. Moreover, previous studies

reported that not modeling imbalanced data can lead to undesirable predictions Feng (2021). Therefore, we

performed a stratified sampling approach to generate train and test sets based on the proportion of zeros and

counts for each combination of route, direction, and bus stop (or trip). This process can be done in R using

the caret package by Kuhn (2022) as follows:

index <- createDataPartition(y, p = 0.8, list = FALSE)

where y represents a binary dependent categorical variable that indicates if the observed outcome is a zero or

a count. This process was repeated for each trip in any given route and direction combination, and also, for

every bus stop for any given combination of route and direction. Also, the index variable would contain the

row numbers of the training dataset.

The proposed solution was not a unique model, since the datasets had varying overdispersion and proportions

of zero counts. Instead, we proposed to link two Random Forest models that could work in sequence to

provide accurate results as explained in subsection 3.3.4.

We considered a set of explanatory variables to model the time dependency of public transportation and de-

mand and maximum occupancy such as hour of the day, month, and service kind (weekday or weekend).

Also, we considered hourly mean temperature and precipitation to take into account environmental informa-

tion in the models and predictions as described by Stover and McCormack (2012). The combined information
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of these two types of variables has been important to explain the decrease in ridership during extreme weather

conditions Miao et al. (2019).

Besides that, we found that the aggregated average of monthly board counts is an important predictor of board

counts. For instance, the monthly average of board counts in May of 2019 and 2020 are very different due to

lockdown restrictions. Therefore, we considered this variable as an explanatory variable to model and predict

board counts.

Similarly, the ridership of a given area during a given time frame can provide important insights into ridership

patterns Montero-Lamas et al. (2022). Figure 3.10 shows bus stop 1391 in Chattanooga and its surrounding

bus stops in purple. Therefore, we considered the surrounding board counts (board counts in nearby bus stops

within a half-mile radius) in the previous hour. That is, we considered the aggregated mean board counts from

surrounding bus stops at a given hour of the day to predict the board counts in the following hour of a bus

stop of interest.

Figure 3.10: Bus stop 1391 in red and all the bus stops within a half-mile radius.

The maximum occupancy models only used hour of the day, mean temperature, and precipitation (aggregated

by the hour of the day). In cases when the commute time of the trip was less than an hour, only mean

temperature and precipitation were used.

3.3 Approaches to Modeling the Data

There are many possible ways to approach statistical (and machine learning) modeling of this data set. We

examined a number of different kinds of models and compared them to determine which approach produced
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the best predictions (or best generalization error). To avoid overfitting, we used k-fold cross-validation to

compare the models and identify the one that performed the best.

The proposed modeling approaches were carefully reviewed based on the characteristics (empirical distribu-

tion and dispersion) of the dependent variables of the trips and each combination of route/direction/bus-stop

in Nashville and Chattanooga. Poisson and Negative Binomial regression models are widely considered as

based models for count data, and thus, we considered them as baseline models. Moreover, previous data

exploration analysis showed that even for the routes with the highest demand, there was an excess of ze-

ros as shown in figure 3.11, and the majority of bus stops recorded zero board counts as seen in figure 3.4.

Therefore, we added Zero-Inflated and Hurdle regression models to the set of baseline models.

Figure 3.11: Board counts histograms of three different bus stops in Chattanooga.

Also, figure 3.11 represents the board counts of the three routes with the highest demand in Chattanooga, and

thus, other bus stops had a higher proportion of zero counts, which could be beyond the capabilities of more

traditional models like Poisson regression, and even Hurdle models.

The considered models were trained using a random search in repeated k-fold cross-validation with five folds

and two repetitions as shown in the code below:

control <- trainControl(method = ’repeatedcv’,

number = 5,

repeats = 2,

search = ’random’)

There were training datsets that had less than 150 observations, and thus, dividing the data in the standard ten

folds would lead to small datasets to determine hyperparameters. In contrast, five folds increase the number
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of observations per fold, and the repetition of this process, balances the small number of folds.

The following subsections describe the main attributes of the models and how they are implemented in R.

Generalized Linear Models (in subsection 3.3.1) are used as baseline (or benchmark) models. Hurdle and

Zero-Inflated models are also included as baseline models. Then, subsection 3.3.4 describes the random

forest algorithms: a vanilla version of the method using (ranger) Wright and Ziegler (2015), and zero-inflated

version using Random Ferns by Kursa (2014) for classification that is then link to another ranger model for

regression. Finally, a Neural Network with a pre-defined architecture.

3.3.1 Generalized Linear Models

These models are built on the basis that the dependent variable, y, and a set of regressors, w, by their condi-

tional distribution, yi|wi with a probability density function:

f (y; λ , θ) = exp
(

y ·λ −b(y)
θ

+ c(y, θ)

)
(3.2)

where λ is the canonical parameter whose value depends on the regressors, w, by a linear predictor, and θ is a

dispersion parameter that needs to be tuned (or estimated using maximum likelihood). Also, the functions b()

and c() are pre-defined probability distributions (e. g., Binomial, Poisson, or Negative Binomial). Moreover,

the conditional mean, E[yi|wi] = µi, depends on the set of regressors wi by the link function (g()):

g(µi) = wT
i β (3.3)

The subindex i indicates that the observations are grouped by a parameter such us hour of the day. Therefore,

yi and µi indicate the board counts and mean board count during the i-th hour of the day, respectively.

Poisson regression models are a good choice for count data that follow a Poisson distribution. This approach

models the intensity parameter, µ , with a set of covariates or explanatory variables such as the hour of the

day and day of the week. The intensity or rate parameter can describe the number of events of interest per

unit of time (e.g., number of board counts per hour for a given combination route/direction/bus stop). If the

relationship between µ and its covariates is parametrically exact and only involves exogenous covariates but

no other source of stochastic variation, then, the model is known as a standard Poisson regression. However,

if the relationship is stochastic and involves an underlying (and unknown) random process, then, the model

is known as a mixed Poisson regression Cameron and Trivedi (2013).
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If we aggregate the number of board counts by hour (i = 0, 1, . . . , 23), the Poisson regression will establish

a relationship between the number of board counts per hour, yi (i.e., board counts or maximum occupancy),

with a set of linearly independent covariates (which are also aggregated by hour of the day) w, through a

continuous function µ (yi, β ) such that (the expected value) E [yi|wi] = µ (yi, β ). The vector β represents

a vector with the coefficients of the covariates, which are estimated by maximum likelihood. Also, each

observation yi given wi follows a Poisson distribution (and Probability Mass Function):

f (yi|wi) =
e−µi µ

yi
i

yi!
(3.4)

Typically, µi > 0 for hours with high public transportation demand, and µi ≈ 0 for hours with low public

transportation demand. Also, the rate of board count per hour is parameterized as:

µi = exp(wT
i β ) (3.5)

This parametric relationship will ensure that µ > 0. Figure 3.12 shows the distribution of board counts for

three different combinations of route, direction, and bus stops for the city of Chattanooga. Their distribution

suggests that Poisson property of Var [yi|wi] = E [yi|wi] could be a good approximation for some cases in

which the mean board count increases with their respective interquartile range:

Figure 3.12: Board counts aggregated by hour of the day, route, direction, and bus stop in Chattanooga.

Moreover, figure 3.12 shows a significant overdispersion when the data is grouped by hour of the day. In

some cases, the first quartile is zero due to the excess of zeros, which leads to an average of zero board counts

per hour. High overdispersion and excess of zero counts are beyond the Poisson model assumptions, and thus,

other approaches are more appropriate such as Negative Binomial or Hurdel models. For instance, the Neg-
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ative Binomial model is built as a mixture of Gamma and Poisson distributions, which can be parameterized

as a probability density function:

f (y; µ, θ) =
Γ(y+θ)

Γ(θ) · y!
· µy ·θ θ

(µ +θ)y+θ
(3.6)

where θ is shape parameter. If θ = 1, then we get the geometric model. Both β and θ are estimated using

maximum likelihood. The variance incorporates the shape parameter to cope with substantial overdispersion

in the data:

Var(yi|wi) = µi +
µ2

i
θ

(3.7)

Equation 3.7 is able to handle stronger overdispersion in the data with the additional term µ2
i /θ .

There is a package in R called stats that can fit or train Poisson regression model by using the glm()

function and specifying the parameter family=poisson R Core Team (2013). Similarly, the package

mass can fit a Negative Binomial model using the glm() and setting the Negative Binomial distribution

and a value for θ : family=negative.binomial(theta = 2) Venables and Ripley (2002).

3.3.2 Hurdle Models

Hurdle models used a left-truncated count component with a right-censored hurdle component Mullahy

(1986). This model can cope with more zero observations than the Poisson or Negative Binomial models

Zeileis et al. (2008); Feng (2021). This approach has two components, a truncated count component, such as

Poisson to model (positive) counts, and a hurdle component that models zero or larger counts. For the latter,

a binomial model is generally used Zeileis et al. (2008).

This modeling approach combines a probability density function for the counts, fcount(y; w, β ), which is left

truncated at y = 1, and a right-censored (at y = 1) zero hurdle model, fzero(y; z, γ) (which is often a Binomial

distribution), whose regressors are represented by z:

fhurdle(y; w, z, β , γ) =

 fzero(0; z, γ), i f y = 0

(1− fzero(0; z, y)) · fcount(y; w, β )/(1− fcount(0; w, β )), i f y > 0
(3.8)

The parameters of the model (β and γ) are estimated using maximum likelihood as any other generalized
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linear model. Also, the mean regression relationship is given by

log(µi) = wT
i β + log(1− fzero(0; z, y))− log(1− fcount(0; w, β )) (3.9)

Hurdle models can have a different set of regressors for fzero(0; z, y) and fcount(0; w, β ) models. For instance,

if the regressors for these two models are the same (xi = zi), a hypothesis test can be used to decide if the hur-

dle model is needed or not. The strength of this model is its capability to model the probability of observing

a zero count using the zero hurdle model instead of using a simple shape parameter for overdispersion. In

general, Poisson and Negative Binomial models assume that the observations (zeros and counts) are realiza-

tions of the same random process, whereas hurdle models assign a different model for zeros acknowledging

that there are two underlying random processes controlling the observed zero and counts Feng (2021).

The pscl package by Jackman (2010) has the hurdle() function to train hurdle models. It requires the

specification of certain parameters as follows:

hurdle(formula, data, subset, na.action, weights, offset,

dist = "poisson", zero.dist = "binomial", link = "logit",

control = hurdle.control(...),

model = TRUE, y = TRUE, x = FALSE, ...)

This function has a distinctive input for the formula parameter, the regressors for the count and zero models

have to be separated by a conditional symbol | as follows:

formula = y ˜ w1 + w2 | z1 + z2

where w1 and w2 are the regressors for the count model. Similarly, z1 and z2 are the regressors for the zero

model. Also, the default link function is “logit”, but other functions are supported Jackman (2010).

3.3.3 Zero-Inflated Models (Generalized Linear Models Version)

Zero Inflated models use a mixture of models that combine a count component and a point mass at zero. A

Poisson, Geometric, or Negative Binomial distribution can model the count distribution. The count distri-

bution also models the zeros (or values in excess). Therefore, the overall zero-inflated probability density

function, fzeroin f l(y; w, z, β , γ), is a mixture of a point mass at zero, I0(y), a count distribution fcount(y; w, β ),

and the probability of observing a zero count is also modeled, and thus, augmented by π = fzero(0; z, γ)

Zeileis et al. (2008).

fzeroin f l(y; w, z, β , γ) = fzero(0; z, γ) · I0(y)+(1− fzero(0; z, y)) · fcount(y; w, β ) (3.10)
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The corresponding regression equation for the mean is:

µi = πi ·0+(1−πi) · exp(wT
i β ) (3.11)

Similarly, the regressors for the zero and count components can be the same, but there is no restriction for

their selection. Also, the default link function g(π) (using the Binomial distribution) is the logit link function,

but other functions can be used for this purpose. Moreover, this approach does not have a separate distribution

for the zero counts, it simply uses a binomial distribution in the zero-inflation component Zeileis et al. (2008).

In general, Zero-Inflated and Hurdle models differ based on their conceptualization of the zeros and inter-

pretation of model parameters Feng (2021). The Zero-Inflated model assumes that zero counts come from a

mixture of two probability distributions, in which one always produces zero counts. These zero counts are

also known as excessive zeros or structural zeros.

There is another important distinction between the Zero-Inflated and Hurdle models. The latter is more ca-

pable of handling zero-deflation Min and Agresti (2005). Therefore, the relative performance of these two

approaches depends on the percentage of the zero-deflated data points in the data, and the possible differences

in the data-generating processes between the structural zeros and sampling zeros Feng (2021). However, there

is no clear threshold for the percentage of zeros to define a better model. Moreover, their relative performance

also depends on the selected explanatory variables.

The pscl package also has the zeroinfl() function to train zero-inflated models. It requires the specifi-

cation of certain parameters as follows:

zeroinfl(formula, data, subset, na.action, weights, offset,

dist = "poisson", link = "logit",

control = zeroinfl.control(...), model = TRUE,

y = TRUE, x = FALSE, ...)

The main difference between the hurlde() and zeroinfl() functions is that the latter does not have

the zero.dist argument because a Binomial model is always used to model the zero-inflated component

Jackman (2010).
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3.3.4 Random Forest

The original idea about trees was conceived by Leo Breiman Breiman et al. (1984), and then this idea was

expanded to random forest by Breiman in Breiman (2001a). Tree-based methods use recursive splitting by

stratifying the explanatory variable space into a number of regions. The algorithm uses Residual Sum of

Squares (RSS) or Gini index to define the regions that minimize the differences between observations of a

given region, and maximize the differences between observations from different regions Rhys (2020).

Once a tree is completely grown, it is possible to make predictions (for a given observation) by considering the

mean (for the continuous region) or mode (for the discrete case) value in the region to which it would belong

James et al. (2013). This algorithm has the ability to train an ensemble of decision trees using random subsets

of features or explanatory variables to avoid correlation between other trees or learners. Then, it combines

the information of multiple weak learners (trees) to generate a strong learner (random forest). Also, random

forest methods have a greedy approach, since the node (or region) splits are not globally optimum, they only

consider locally optimal splits, given that, it is computationally infeasible to consider every possible partition

of the feature space.

Figure 3.13: Ensemble of trees.

There are some problems with this approach since it cannot guarantee that a tree learns a globally optimum

model. Also, the recursive partitioning can go on until it reaches maximum purity (by having one observa-

tion) in their leaves leading to overfitting. Moreover, growing trees can be computationally expensive in large

datasets. Therefore, high-dimensionality represents a problem for this algorithm.

In 2015 M. Wright optimized the algorithm for high dimensional data in R in a software package called RAN-
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dom forest GEneRator (ranger) Wright and Ziegler (2015). Most of the regressors are categorical variables

that need to be transformed into dummy variables increasing the number of dimensions, which can lead to

problems when tuning the hyperparameters. Therefore, we selected this algorithm for regression because it

provides high throughput and accuracy.

The hyperparameters of the ranger algorithm are:

• Number of trees (submodels or weak learners).

• Sample size: Minimum number of observations (generated by random sampling) needed to grow a tree.

• Number of independent variables.

• mtry: Number of predictors considered for each split of the tree.

• Target node size: Number of observations in the internal nodes.

The caret package has a function called train() that can be used to train Random Forest models by

simply specifying the desired algorithm in the parameter method="ranger":

rf_reg_ranger <- train(y ˜ .,

data = train_data,

method = ’ranger’,

metric = ’RMSE’,

tuneLength = 20,

trControl = control)

Random Ferns is a powerful tree-based algorithm developed for classification purposes that performs an over-

sampling of the under-represented class, that is, counts (or any integer greater than one) so that the number

of elements of each class is equal on each bag Kursa (2014). This algorithm has the capability to identify

patterns in the under-represented class that could lead to more accurate predictions. Therefore, this algorithm

has the capability to detect patterns in the data that could lead to accurate predictions of zeros and counts.

This method uses k random selections of D features out of P possible features or explanatory variables, that

is, jk ∈
{

X1, X2, . . . ,Xp
}

, k = 1, . . . , K, to grow ferns:

Y p
i = arg max

y
∏

k
P
(
Xi, jk |Yi = y

)
(3.12)
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Equation 3.12 shows that the predictions of the ferns are combined in naive way, resembling the naive Bayes

classifier. The option of taking subsets of the D features instead of the total number of features enables the

method to represent more complex interactions and patterns in the data, which can lead to higher accuracy

than in the purely naive case Ozuysal et al. (2007).

The conditional probabilities P
(
Xi, jk |Yi = y

)
are estimated using the empirical probabilities calculated from

a training dataset (or fold) (X (t)
i, j , Y (t)

i ) of size n(t)× p. This means, that they represent relative frequencies of

class in each subspace of the feature space.

Moreover, each fern performs a partition of the feature space into regions corresponding to all possible com-

binations of values of attributes jk. Since the attribute subsets jk are generated randomly, the random ferns

classifier is equivalent to a random subspace ensemble of K constrained decision trees with the ability to

oversample the underrepresented class, and thus balancing the number of observations of each class on each

bag.

This algorithm has two hyperparameters that need to be tuned: the number of ferns (which is equivalent to the

number of trees) and the depth of each one Kursa (2014). These two hyperparameters have to be determined

via cross-validation.

This algorithm can be implemented in R by using the rFerns package, which can also be used through the

caret package as follows:

rf_random <- train(y_clf_train ˜ .,

data = Board_train_clf,

method = ’rFerns’,

metric = ’Accuracy’,

tuneLength = 20,

trControl = control)

Finally, these two algorithms can be used in sequence to first predict a zero or a count using random ferns, and

then, ranger to predict the count number in case the predicted class is a count. Figure 3.14 shows a schematic

representation of the proposed algorithm (solution) and how it can used sequentially:
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Figure 3.14: Algorithm for the proposed Zero-Inflated Random Forest model.

Also, the proposed solution can be automatized by creating a function in R to apply this method to any new

set of observations. The appendix section (6) shows the complete code to run this function.

3.3.5 Artificial Neural Networks

Artificial Neural Networks are powerful methods that can take a wide variety of inputs
{

X1, . . . , Xp
}

(also

known as input layer) to use linear combinations of these independent variables to model the dependent vari-

able. These linear combinations can be done in different ways depending on the architecture of the Network

and its activation functions. They are highly flexible and can handle complex nonlinear patterns.

There can be multiple linear combinations of subsets of features, each one of these are called hidden units.

This unit assigns weights to the considered features to represent the importance of the features in the linear

combination. The set of hidden units that operate in parallel is called hidden layer. The number of hidden

layers need to be estimated using cross-validation.

A small number of hidden units will decrease the flexibility of the model, in contrast, a large number of

hidden units increases the flexibility of the model and its predictive power. However, setting a large number

of number of hidden units can lead to overfitting Hastie et al. (2009).

During the forward propagation the method computes values by successively transforming the the input data

(as features) through the layers, that is, the output of each layer is the input of the next layer layer. Figure

3.15 shows the acyclic graph structure of a neural network that uses forward propagation with two hidden

layers with three hidden units per layer Ghatak (2019):
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Figure 3.15: Representation of a two hidden layer artificial neural network Ghatak (2019).

Artificial neural networks can overfit the data easily, and thus require high signal-to-noise ratio to be ef-

fective. Also, the method is overparametrized and the optimization problems (to calculate the weights) are

nonconvex. Therefore, it has some constraints with sample size and computer capabilities.

3.4 Model Selection

After training the eight models mentioned in the previous section we need to select the best model using an

objective metric. The main purpose is to estimate the generalization performance (or error) of the models

to determine their predictive power on independent test data. This metric will provide information about the

relative performance of the models. In this section, we present the performance metric and how it was used

to select the models.

There are many ways to compare model performances. The Akaike Information Criterion (AIC) measures

the goodness of fit (accuracy) of the predictions and observations and then contrasts that with the complexity

or number of parameters estimated by the model Akaike (1998). The preferred model is the one with the

lowest AIC value, and more recent information criteria inherited this way of measuring the performance of

the models. The main advantage of this approach is that it will provide information to select between models

that can be accurate but are highly complex, and models that are less accurate but less complex (or easier to

train). This is particularly important when hyperparameter tuning requires considerable computational power.

Nonetheless, AIC is only valid when the models are trained using maximization of the log-likelihood func-

tion. Moreover, its performance decreases with the number of parameters (or dimensionality) of the models
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leading to unsatisfactory results Bedrick and Tsai (1994).

The sample size, n, is another relevant factor that affects the performance of any criterion. For instance, the

vector-corrected Kullback Information Criterion (KICvc) and AIC tend to give accurate information about

model selection when n is small. In contrast, the multivariate Bayesian Information Criterion (MBIC) gives

the best information when n is large Wu et al. (2013). However, these model selection approaches are de-

signed for models that maximize the likelihood function, that is, they are built for parametric or regular

models only. For instance, the maximum likelihood estimator diverges when applied to singular models

(nonregular models), which can lead to overestimation of the generalization error.

Therefore, we consider cross-validation to estimate the generalization error of the models. The main advan-

tage of this approach is that it can use any loss function and it can apply to models with different levels of

complexity, ranging from generalized linear models to random forest methods. However, this approach gives

information about the predictive power of the models and does not penalize the complexity or flexibility of

the models.

K-Fold cross-validation is a popular approach to estimating the generalization error (and model hyperparam-

eters or tuning). However, it requires repeated model fits and it can lead to problems when dealing with sparse

data Gelman et al. (2014). Moreover, it is not clear if cross-validation estimates have an asymptotic behavior

Watanabe and Opper (2010). In general, information criteria estimates can have unexpected behaviors when

applied to singular models such as random forest or neural networks Watanabe (2001).

Figure 3.16 presents a schematic representation of a five-fold cross-validation. In this process, the training

dataset is randomly divided into five folds using stratified sampling to keep similar proportions of zeros and

counts across the folds:
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Figure 3.16: A five-fold (K = 5) cross-validation representation.

In the case of generalized linear models, which do not have hyperparameters to tune, we fit the model using

folds 2 through 5. Also, we use fold 1 as an independent set to predict the outcomes of fold 1. Then, we

calculate the RMSE for the predictions of the model on fold 1. This process is repeated iteratively until all

the folds are used as independent folds.

Cross-Validation can also be used to tune hyperparameters. For instance, Random forest algorithms have

hyperparameters to tune, and the number of tuning hyperparameters will define the hyperparameter space.

Naturally, there is an infinite number of possible estimates for a given continuous (and discrete in some cases)

hyperparameter, and thus, it is important to define optimum sampling plans to ensure that we are using rep-

resentative samples of this hyperparameter space.

In this study, we consider a random search (i.e, using a uniform random distribution) of the hyperparameter

space given that there was not any relevant information about the possible distribution of the tuned hyperpa-

rameters, θ . Also, we predefined the number of samples per hyperparameter to control the hyperparamter

exploration considering computational time and resources as the main constraints. For instance, the ranger

algorithm has five hyperparameters and if we predefined the sample size for the hyperparameters to 20, then

there will be 205 samples points and the cross-validation method will have to test the performance of the

model using 205 different combinations of hyperparameters. Despite the size of the sample size, there is no

guarantee that this approach will find the true hyperparameter vector θ . This approach only gives an estimate

or approximation of the true hyperparameters (θ̂ ).

Equation 3.13 shows how k-fold cross-validation is applied to a candidate model f̂ considering a vector of
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hyperparamter values θ using any loss function:

CV ( f̂ , θ) =
1
N

N

∑
i=1

L(yi, f̂−κ(i)(xi, θ)) (3.13)

The function CV ( f̂ , θ) gives an estimate of the test error and information about θ̂ that minimizes it. The

length or dimension of the θ will vary with the number of hyperparameters of the models.
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CHAPTER 4

Results and Discussion

4.1 Demand: Board counts at the bus stop level

Setup and hyper-parameter tuning: Data collected through automated passenger counting devices can be

noisy. For example, some trips in our data showed negative occupancy and some had unexpectedly high val-

ues. Buses operated by CARTA have a maximum capacity of 32 but at times, we observed occupancy close

to 50. We assigned 0 to all negative occupancy values and replaced any value greater than the maximum

capacity of a bus with its maximum capacity. We used a repeated (3 times) five-fold cross-validation with

stratified sampling to tune hyper-parameters for our models.

Also, we tested a neural network model that had an input layer, two hidden layers, and one output neuron to

predict board counts for the trip at the stop. In the input layer, there was one neuron for each predictor vari-

able. The two dense hidden layers have 15, and 5 neurons, respectively. We use linear activation in the output

layer and sigmoid activation in all the hidden layers. We optimize the model using the Adam optimizer with

learning rate 0.001. For forecasting maximum occupancy, we modify the number of neurons in the dense

hidden layers to 40 and 15 respectively. The parameters were chosen based on cross-validation. The neural

networks were implemented using tensorflow-keras Abadi et al. (2015).

We use ranger, a fast implementation of random forests for high dimensional data Wright and Ziegler (2015)

to train the random forest regressors. For classifiers based on random forests, we use random ferns Kursa

(2014), that typically outperform other tree-based classifiers while learning on imbalanced data. Random

ferns internally enforce the balance of impact made by each class by a process that resembles the standard

procedure of oversampling under-represented classes so that the number of objects of each class stays similar

Kursa (2014). For random forest models, we tuned the depth of the tree, minimum node size (minimum num-

ber of observations in the terminal nodes), the number of randomly drawn candidate variables out of which

each split is selected when growing a tree, and the split rule (a categorical hyper-parameter that assesses

splitting criteria in the nodes).

Null models were also considered as baseline models to assess the relative performance of the models. That

is, we were able to compare specialized and flexible methods such as Hurdle and Random Forest models
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with models without any predictors. We computed the mean board count and maximum occupancy from

each training set. Then, we use these averages to determine the test RMSEs considering the board counts and

maximum occupancies from the test sets.

4.2 Results

We start with presenting root mean squared errors in estimating board counts. We present aggregated results

in the paper for the sake of brevity. Results on test data on pre-lockdown and post-lockdown periods are

shown in Figures 4.1 and 4.2 respectively. We see that zero-inflated random forest models outperform other

approaches, including neural networks in all cases. We also observe that in general, machine learning (or

algorithmic) approaches to data-driven learning outperform statistical models.

Also, we observe that the zero-inflated random forest has the least variance in forecasts in the test set. Our

results show that while random forest regression has been shown to be particularly powerful in learning com-

plex forecasting models using heterogeneous data Fawagreh et al. (2014), the performance of such models

can be compromised due to highly imbalanced or sparse data (where we define sparsity as the prevalence of

zero counts). While Meller et al. Mellor et al. (2015) explored the effect of imbalanced data on ensemble

learning methods such as random forests, we show that the combining powerful algorithmic regression mod-

els with ideas from the statistical modeling such as hierarchical learning can help improve accuracy.

We can see in figure 4.1 that our proposed approach, zero-inflated random forest modeling outperforms other

approaches, including neural networks in all cases. We also observe that in general, machine learning (or

algorithmic) approaches to data-driven learning outperform statistical models.

Null models do not necessarily underperform when compared with the considered models. The high pro-

portion of zero counts in the data forces the central tendency statistics to be zero or close to zero. Besides

that, the dependent variables have asymmetric distributions, and thus, the magnitude of their RMSE values

reflects the difference between the observed board counts and the calculated mean (or mode) board counts.

In particular, null models can outperform full or complete models in cases where there are few board counts

and their value do not exceed one.

Figure 4.1 shows that the performance of null models for the routes with the highest demand can be similar

or even better than Negative Binomial and Poisson models. Also, this figure shows that the performances of

the Neural Network and null models are very similar in route 4 and direction 1.
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Figure 4.1: Aggregated root mean square errors on unseen data (test set) for bus stops grouped according to
route and direction on pre-lockdown time period.

As with the results on pre-lockdown data shown in Figure 4.1, we see that our proposed approach, zero-

inflated random forest modeling outperforms other approaches, including neural networks in all cases.

Likewise, we use the null model for comparison purposes. The proportion of zero counts is higher during

post-lockdown conditions, and thus, the detection or prediction of counts is more challenging for all the

models. Therefore, the test log-RMSEs of the null models tend to be lower. For instance, figure 4.2 shows

that the median log-RMSE of the null model was lower than the proposed Zero-Inflated Random Forest model

in route 9 and direction 0.
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Figure 4.2: Aggregated root mean square errors on unseen demand data (test set) for bus stops grouped
according to route and direction on post-lockdown time period.

Next, we present results on estimating maximum occupancy in trips. We present aggregated results on the

entire dataset in Figure 6 (we present aggregated results for the sake of brevity). Our first observation is

that statistical models perform significantly better on estimating maximum occupancy than the problem of

estimating boarding counts. In fact, their performance is on par with ensemble learning. Also, neural net-

works perform considerably worse than all other models. We hypothesize that the poor performance is due

to the lack of extensive training data. As we aggregate data from stops to calculate maximum occupancy, the

volume of data shrinks. We also observe that standard random forest regression model generally outperforms

its hierarchical (zero-inflated) counterpart.

4.3 Maximum Occupancy: Maximum load at a trip level

We summarize our key findings next. 1) Our experimental analysis using real-world transit data reveals that

standard statistical and algorithmic approaches to modeling are not accurate to estimate boarding events in

public transit due to the extremely high concentration of zero counts in such data. 2) We observe this be-
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havior even with zero-inflated statistical models (e.g., zero-inflated Poisson regression), that are specifically

designed to handle data which show an increased presence of zeros. We hypothesize that such models do not

work on transit data since the presence of zeros is not only larger than usual but also dominating (> 90%). 3)

We also find that zero-inflated random forests can successfully be used for such data. Our proposed approach

first learns a classifier based on random forests to identify potential non-zero outputs and then uses a random

forest regression model (ranger by Wright and Ziegler (2015)) based on random forests to predict counts

greater than zeros. 4) While modeling maximum occupancy in trips, we observe that zero-inflated models

do not necessarily outperform standard approaches to forecasting because the number of zeros observed in

the data is significantly lesser. Nonetheless, their overall performance is similar to other models such random

forest and Poisson regression models. 5) Based on our findings, we recommend that practitioners combine

the zero-inflated modeling paradigm with other machine learning based approaches when they observe an

extremely high volume of zero counts in data, but revert back to standard modeling paradigms when zero

counts are lesser.

Figure 4.3 shows that the zero-inflated random forest approach does not perform as well as it does on estimat-

ing board counts, most likely due to the reduction in the number of zeros. Also, the performance of standard

statistical models also improves with the reduction of zero counts.

We also measure the performance of the null models to gain more insights into the relative performance of

the models. Figure 4.3 also shows the aggregated test RMSE values for routes 1, 4, and 9. These results sug-

gest that the performance of the null models is similar to the statistical and algorithmic methods, and in most

cases, the null models outperform the Neural Networks. Nonetheless, there is a significant overlap between

the null models and the considered methods.

Clearly, algorithmic approaches such as Neural Networks and Random Forests are more flexible than null

models. However, the quantity and quality of the explanatory variables always affect any model’s perfor-

mance. Therefore, these results suggest that the models need better explanatory variables to improve their

relative performance Hao et al. (2022). That is, hour of the day, temperature, and precipitation may not be

enough to explain the maximum occupancies across the trips.
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Figure 4.3: Performance of all the forecasting models on estimating maximum occupancy in trips on unseen
(test) data.
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CHAPTER 5

Conclusions

Estimating ridership patterns is imperative for planning and optimizing public transit. This exercise is par-

ticularly relevant when the world is dealing with a pandemic since social distancing norms must be strictly

followed. However, estimating ridership patterns such as board counts and maximum occupancy during trips

is not trivial. We show how standard approaches to statistical and algorithmic modeling can perform poorly on

estimating board counts due to the high concentration of zeros in real-world data. We propose zero-inflated

random forests, an approach that combines the hierarchical modeling paradigm of zero-inflated statistical

models with the flexibility of ensemble learning. We show that the proposed approach outperforms state-of-

the-art statistical and algorithmic approaches to data-driven modeling, including neural networks. We also

observe that the proportion of zero counts in transit data is significantly reduced when maximum occupancy

is modeled instead of board counts at individual stops. In such a scenario, we find that zero-inflated models

perform (relatively) poorly in comparison with other approaches. The main disadvantage of the proposed

approach is that it requires more computational time than the zero-inflated models. Our implementation is

completely open-source for transportation engineers and urban planners to use.
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CHAPTER 6

Appendix

The complete code is available on the following GitHub page:

• https://github.com/smarttransit-ai/transit-occupancy-analysis/tree/master/app/analysis

The following section simply describes the developed function written in R to train the proposed Zero-Inflated

Random Forest model. There are multiple notebooks that describe the data preparation process (some of them

written in Python) and model training.

The indentation of the following code has been changed to fit the margins of the page.

6.1 Proposed Solution: Code

RF_Ferns_and_Ranger <- function(rt, di, st, part){

library(randomForest)

library(mlbench)

library(caret)

library(e1071)

library(dplyr)

library(tidyr)

library(readr)

library(ranger)

library(janitor)

library(rFerns)

library(ordinalForest)

library(RRF)

library(foreach)

library(doParallel)

path = paste0(’data’, ’/’, ’jmartinez’, ’/’, ’Data_for_RF_Models’,

’/’, ’Board_Counts’, ’/’,

paste(’route’, rt, sep = ’_’), ’/’,

paste(’direction’, di, sep = ’’), ’/’,

paste(’bus_stop’, st, sep = ’_’), ’/’)
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if(part == ’pre’){

file_path_train = paste(path, ’pre_lock_train_data.csv’, sep = ’/’)

file_path_test = paste(path, ’pre_lock_test_data.csv’, sep = ’/’)

board_train = read_csv(file_path_train)

board_test = read_csv(file_path_test)

board_train$month = factor(board_train$month)

board_train$service_kind = factor(board_train$service_kind)

board_train$hour = factor(board_train$hour)

board_test$month = factor(board_test$month)

board_test$service_kind = factor(board_test$service_kind)

board_test$hour = factor(board_test$hour)

else if(part == ’post’){

file_path_train = paste(path, ’post_lock_train_data.csv’, sep = ’/’)

file_path_test = paste(path, ’post_lock_test_data.csv’, sep = ’/’)

board_train = read_csv(file_path_train)

board_test = read_csv(file_path_test)

board_train$month = factor(board_train$month)

board_train$service_kind = factor(board_train$service_kind)

board_train$hour = factor(board_train$hour)

board_test$month = factor(board_test$month)

board_test$service_kind = factor(board_test$service_kind)

board_test$hour = factor(board_test$hour)

}

else{

file_path_train = paste(path, ’train_data.csv’, sep = ’/’)

file_path_test = paste(path, ’test_data.csv’, sep = ’/’)

board_train = read_csv(file_path_train)

board_test = read_csv(file_path_test)

board_train$month = factor(board_train$month)

board_train$service_kind = factor(board_train$service_kind)

board_train$hour = factor(board_train$hour)

board_test$month = factor(board_test$month)

board_test$service_kind = factor(board_test$service_kind)
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board_test$hour = factor(board_test$hour)

}

train_month_levels = length(levels(board_train$month))

train_service_kind_levels = length(levels(board_train$service_kind))

train_hour_levels = length(levels(board_train$hour))

board_test = board_test %>%

filter(hour %in% intersect(unique(board_test$hour),

unique(board_train$hour)))

if(train_month_levels > 1){

if(train_service_kind_levels > 1){

if(train_hour_levels > 1){

board_train = board_train

board_test = board_test

}

else{

board_train = board_train[,

-which(names(board_train) == ’hour’)]

board_test = board_test[,

-which(names(board_test) == ’hour’)]

}

}

else{

if(train_hour_levels > 1){

board_train = board_train[,

-which(names(board_train) == ’service_kind’)]

board_test = board_test[,

-which(names(board_test) == ’service_kind’)]

}

else{

board_train = board_train[,

-which(names(board_train) == c(’service_kind’, ’hour’))]

board_test = board_test[,

-which(names(board_test) == c(’service_kind’, ’hour’))]
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}

}

}

else{

if(train_service_kind_levels > 1){

if(train_hour_levels > 1){

board_train = board_train[,

-which(names(board_train) == ’month’)]

board_test = board_test[,

-which(names(board_test) == ’month’)]

}

else{

board_train = board_train[,

-which(names(board_train) %in% c(’month’, ’hour’))]

board_test = board_test[,

-which(names(board_test) %in% c(’month’, ’hour’))]

}

}

else{

if(train_hour_levels > 1){

board_train = board_train[,

-which(names(board_train) == c(’month’, ’service_kind’))]

board_test = board_test[,

-which(names(board_test) == c(’month’, ’service_kind’))]

}

else{

board_train = board_train[,

-which(names(board_train) == c(’month’,

’service_kind’, ’hour’))]

board_test = board_test[,

-which(names(board_test) == c(’month’,

’service_kind’, ’hour’))]

}

}

}
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board_train = remove_empty(board_train,

which = c(’cols’), quiet = TRUE)

board_test = remove_empty(board_test,

which = c(’cols’), quiet = TRUE)

train_board_counts = unique(board_train$board_count)

test_board_counts = unique(board_test$board_count)

n_row_train = nrow(board_train)

if(n_row_train < 60){

return(’Insufficient data for analysis!’)

}

else if(n_row_train >= 60){

if(length(train_board_counts) > 1){

y_clf_train = board_train$board_count

y_clf_train = factor(if_else(y_clf_train == 0, 0, 1))

y_clf_test = board_test$board_count

y_clf_test = factor(if_else(y_clf_test == 0, 0, 1))

Board_train_clf <- data.frame(cbind(y_clf_train,

board_train[, -c(1)]))

Board_test_clf <- data.frame(cbind(y_clf_test,

board_test[, -c(1)]))

#---------------------------------------------------

# Training characteristics for model tuning:

#---------------------------------------------------

control <- trainControl(method = ’repeatedcv’,

number = 5,

repeats = 2,

search = ’random’)

#---------------------------------------------------
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# Classification using Random Ferns:

#---------------------------------------------------

set.seed(1)

rf_random <- train(y_clf_train ˜ .,

data = Board_train_clf,

method = ’rFerns’,

metric = ’Accuracy’,

tuneLength = 20,

trControl = control)

RF_Ferns <- print(rf_random)

rf_random_pred <- predict(rf_random,

newdata = Board_test_clf)

rf_random_conf_mat <- confusionMatrix(y_clf_test,

rf_random_pred)

rf_random_conf_mat <- data.frame(rf_random_conf_mat[4])

colnames(rf_random_conf_mat) <- c(’Value’)

# Index for regression data:

index_for_reg <- which(rf_random_pred == ’1’, arr.ind = T)

#--------------------------------------------------------

# Regression Model using Ranger:

set.seed(1)

rf_reg_ranger <- train(board_count ˜ .,

data = (board_train %>% filter(board_count > 0)),

method = ’ranger’,

metric = ’RMSE’,

tuneLength = 20,

trControl = control)

RF_Ranger <- print(rf_reg_ranger)

#--------------------------------------------------------

# Validation:
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Board_Test_Val = board_test

nrow_test = (1:nrow(board_test))

Board_Test_Val$index = nrow_test

Board_test_reg = Board_Test_Val[index_for_reg, ]

rf_reg_ranger_pred <- predict(rf_reg_ranger,

newdata = Board_test_reg)

Board_test_reg$Ranger_Pred = rf_reg_ranger_pred

Board_Test_Val = left_join(Board_Test_Val,

Board_test_reg, by = ’index’)

Board_Test_Val = Board_Test_Val %>%

mutate(RF_Pred = if_else(is.na(Ranger_Pred) == T,

0, Ranger_Pred))

board_test$RF_Pred = Board_Test_Val$RF_Pred

RF_test_RMSE = sqrt(mean((board_test$board_count -

board_test$RF_Pred)ˆ{2}))

if(part == ’pre’){

file_path_clf = paste(path, ’pre_lock_RF_Fern.txt’, sep = ’/’)

file_path_clf_conf_mat = paste(path,

’pre_Conf_Mat_RF_Fern.csv’,

sep = ’/’)

file_path_reg = paste(path, ’pre_lock_RF_Reg.txt’, sep = ’/’)

file_path_RF_Chart = paste(path, ’pre_RF_Chart.csv’, sep = ’/’)

final_clf_model = paste(path,

’Pre_Random_Ferns_model.rds’)

final_reg_model = paste(path,

’Pre_Random_Forest_RANGER_model.rds’)
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write.table(RF_Ferns, file_path_clf)

write.csv(rf_random_conf_mat, file_path_clf_conf_mat)

write.table(RF_Ranger, file_path_reg)

write.csv(board_test, file_path_RF_Chart)

saveRDS(rf_random, final_clf_model)

saveRDS(rf_reg_ranger, final_reg_model)

}

else if(part == ’post’){

file_path_clf = paste(path,

’post_lock_RF_Fern.txt’, sep = ’/’)

file_path_clf_conf_mat = paste(path,

’post_Conf_Mat_RF_Fern.csv’,

sep = ’/’)

file_path_reg = paste(path,

’post_lock_RF_Reg.txt’, sep = ’/’)

file_path_RF_Chart = paste(path,

’post_RF_Chart.csv’, sep = ’/’)

final_clf_model = paste(path,

’Post_Random_Ferns_model.rds’)

final_reg_model = paste(path,

’Post_Random_Forest_RANGER_model.rds’)

write.table(RF_Ferns, file_path_clf)

write.csv(rf_random_conf_mat, file_path_clf_conf_mat)

write.table(RF_Ranger, file_path_reg)

write.csv(board_test, file_path_RF_Chart)

saveRDS(rf_random, final_clf_model)

saveRDS(rf_reg_ranger, final_reg_model)

}

else{

file_path_clf = paste(path, ’RF_Fern.txt’, sep = ’/’)

file_path_clf_conf_mat = paste(path, ’Conf_Mat_RF_Fern.csv’,

52



sep = ’/’)

file_path_reg = paste(path, ’RF_Reg.txt’, sep = ’/’)

file_path_RF_Chart = paste(path, ’pre_RF_Chart.csv’, sep = ’/’)

final_clf_model = paste(path, ’Random_Ferns_model.rds’)

final_reg_model = paste(path, ’Random_Forest_RANGER_model.rds’)

write.table(RF_Ferns, file_path_clf)

write.csv(rf_random_conf_mat, file_path_clf_conf_mat)

write.table(RF_Ranger, file_path_reg)

write.csv(board_test, file_path_RF_Chart)

saveRDS(rf_random, final_clf_model)

saveRDS(rf_reg_ranger, final_reg_model)

}

return(’Done!’)

}

else{

return(’This bus stop does not have variability in the response variable.’)

}

}

}

]

}
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