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Chapter 1  

 

Introduction 
 

Overview of Clostridioides difficile  

In 1935, Ivan C. Hall and Elizabeth O’Toole recorded the first description of the obligate anaerobe and 

Gram-positive bacterium Clostridioides difficile (1, 2). The researchers isolated C. difficile from the stool of 

newborn infants and unexpectedly found the bacterium was pathogenic to rabbits and guinea pigs due to 

the activity of an unknown heat-labile toxin (1). However, as the bacterium was present in the stool of 

multiple healthy newborns, Hall and O’Toole speculated that C. difficile was not likely a concern for 

human health and simply a component of the collection of microbial organisms we refer to today as the 

microbiome. This view of C. difficile persisted until the late 1970s, when it was determined that C. difficile 

was an etiological cause of pseudomembranous colitis (PMC) (3–5). PMC presents in individuals as severe 

inflammation along the colonic mucosa with pseudomembranes composed of mucus, necrotic epithelial 

cells, fibrin, and immune cell infiltrates such as leukocytes and neutrophils (6). The heat-labile toxin 

inferred by Hall and O’Toole decades prior was associated with the occurrence of PMC and identified as 

two individual protein toxins, toxin A (TcdA) and toxin B (TcdB) (8–10)(7–9). C. difficile infections 

(CDI) are associated with the use of antibiotics, which can alter the colonic microbiome and increase host 

susceptibility to C. difficile colonization (10–12). Clinical symptoms associated with CDI span from mild 

and recurrent diarrhea to life-threatening PMC, sepsis, toxic megacolon, and bowel perforation (6, 13–

15). The annual healthcare burden of C. difficile in the United States of America in modern times are an 

estimated 223,900 infections and 12,800 deaths per year (16). 

The life cycle of C. difficile can consist of two unique stages—a metabolically active vegetative cell and a 

metabolically inactive endospore (17). C. difficile transitions between these stages through cellular 

differentiation pathways called germination and sporulation (17–20). The germination pathway 

transitions an endospore into a vegetative cell, whereas the sporulation pathway transitions a vegetative 

cell into an endospore (17, 20). The endospores represent the infectious form of C. difficile and are shed 

from hosts through feces (21, 22). Endospores can persist in the environment for years due to their 

resistance to heat and common disinfectants used in hospitals (23–25). Importantly, these endospores can 
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withstand exposure to atmospheric concentrations of oxygen that are lethal to vegetative C. difficile (26, 

27).  

The transmission of C. difficile between hosts occurs through the fecal-oral route, although successful 

infections in humans typically require exposure to risk factors. These risk factors include the use of 

antibiotics, the use of proton-pump inhibitors, hospitalization, age, and immunodeficiencies (28–32). 

Exposure to these risk factors alter the gut microbiome’s ability to resist colonization to C. difficile (12, 

33). Ingested endospores will traverse the stomach and will initiate germination in the small intestine 

upon exposure to primary bile acids (34, 35). In susceptible hosts, vegetative C. difficile will colonize the 

colon and produce TcdA and TcdB (36). The activity of these toxins damages the intestinal mucosa, 

allowing C. difficile to acquire nutrients for growth and reproduction (37, 38). Throughout the infection, 

a sub-population of C. difficile will undergo sporulation to produce endospores that will be shed into the 

environment (20). For most cases, treatment of CDI involves the administration of vancomycin, an 

antibiotic that inhibits cell wall biosynthesis (39, 40). Recurrent infections occur in 5-20% of patients, 

requiring additional administration of vancomycin or the use of experimental treatments such as fecal 

microbiota transplantation (39, 41). In severe cases of CDI with fulminant colitis, an ileostomy or total 

colectomy may be performed (39). While most C. difficile infections occur in hospitals and long-term care 

facilities, cases of community-acquired infections associated with farms and unknown causes have been 

reported (42). 

The identification of C. difficile as a mediator of pseudomembranous colitis  

During the 1970s, researchers were determined to identify the cause of antibiotic-induced PMC; a rapidly 

spreading disease with reported mortality rates as high as 10% (11, 43–45). In the prior decades, case 

studies had revealed as many as 1 in 5 postoperative patients on antibiotics experienced symptoms of 

antibiotic-induced diarrhea that could develop into potentially fatal PMC (46–48). A study reported by 

Altemeier et al. suggested the disease was mediated by Staphylococcus aureus, but noted that they could 

only isolate the pathogen from 53 out of total 155 patients (48). Further evidence linking the disease to 

bacteria was a report showing that most patients could be cured of disease when given oral vancomycin 

(49). While the treatment was successful, many researchers were not convinced that S. aureus was the cause 

of PMC (6, 50). Alternative hypotheses predicted that disease was mediated either by an unknown 

pathogen or by an adverse host reaction to clindamycin, an antibiotic introduced in the 1970s to treat 
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anaerobic infections that coincided with the rising cases of antibiotic-induced PMC (6, 10, 43, 47, 51). 

Initial studies testing these hypotheses were performed by screening the stool of diseased patients for 

pathogens and by conducting longitudinal studies that tracked the use of antibiotics and disease 

development. From these initial studies, it was found that although pathogens associated with diarrhea 

could be isolated from some patients with antibiotic-induced PMC, an association with a specific 

pathogen across a larger cohort of patients could not be found (52, 53). Moreover, while the use of 

clindamycin could be associated with the development of PMC, a longitudinal study revealed that patients 

taking ampicillin could also develop the disease (10, 44, 51, 53). Although these data revealed that 

clindamycin alone was not responsible for mediating disease, it also suggested that a pathogen other than 

S. aureus was responsible for antibiotic-induced PMC. 

As researchers had failed to identify a bacterium responsible for mediating PMC, some researchers asked 

if the disease could be mediated by a virus. In a study performed by Harold E. Larson and colleagues, the 

researchers attempted to isolate a virus for the stool from a 12-year-old child presenting with the disease 

(9). While their search for a virus ultimately ended in failure, their characterization of the stool would 

provide the first evidence that antibiotic-induced PMC was a toxin mediated disease. In their study, 

Larson and colleagues observed that the patient’s stool was capable of inducing a cytopathic, or cell 

rounding, response on tissue culture cells (Figure 1-1) (9). While viruses are also capable of inducing 

cytopathic effects on cells, their further characterization of the cytopathic factor from the stool suggested 

it was a protein toxin, not a virus (9). As the disease is associated with the use of antibiotics and bacteria 

were a known source of protein toxins, Larson et al. concluded that a bacterial toxin was responsible for 

mediating PMC.  

Although Larson and colleagues predicted that a bacterium was responsible for producing the toxin, 

their attempts to isolate a toxin producing bacterium were unsuccessful (9). A series of publications by 

John G. Bartlett and colleagues would soon establish the role of C. difficile and its toxins towards this 

disease. Their first hints at identifying the pathogen came from the hamster model of antibiotic-induced 

enterocolitis, a model of spontaneous enterocolitis following antibiotic treatment (54, 55). In their first 

study, Bartlett and colleagues demonstrated that clindamycin-induced enterocolitis in hamsters could be 

treated using vancomycin, which suggested that the disease was likely mediated by a bacterium (55). In a 

follow-up report, Bartlett and colleagues screened stool from similarly diseased hamsters for anaerobic   
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Figure 1-1. An example cytopathic response in 2D-cell cultures. 

Caco-2 were intoxicated with 10 pM TcdB and imaged at 20X magnification after 4 hours. Cells treated 
with TcdB display a cytopathic response. Personal unpublished images acquired on a Cytation 5 imager.  
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bacteria and isolated a Gram-positive Clostridium with striking resemblance to C. difficile that alone could 

mediate disease (56). The Clostridium isolate was resistant to clindamycin and produced a toxin in its 

culture supernatants that was capable of inducing enterocolitis in hamsters as well (56). These data 

provided a mechanism for antibiotic-induced enterocolitis in hamsters that suggested an antibiotic 

resistant Clostridium was responsible for mediating disease via a secreted protein toxin.  

Despite the fact that hamsters provided a convenient model for studying antibiotic-induced enterocolitis, 

it remained unclear if any disease mechanisms in hamsters would translate to disease in humans. For 

example, as C. difficile was not recognized as a human pathogen, the Clostridium isolate from Bartlett et 

al. that resembled C. difficile could be irrelevant for human disease (3). However, data from Bartlett et al. 

provided insight that the disease mechanism in hamsters may in fact be relevant to human health. 

Specifically, the researchers found that anti-serum generated against gas gangrene clostridial toxins could 

neutralize the cytotoxin’s activity in hamsters (56, 57). These toxins, produced by various clostridial 

species, are mediators of clostridial gas gangrene, a potentially lethal infection of soft tissue that was and 

still remains a human health concern (58–60). These findings from Bartlett et al. allowed researchers to 

hypothesize that the cytotoxin(s) present in the stool of PMC patients were produced by a Clostridium 

capable causing of gas gangrene. Studies by Larson et al. and Rifkin et al. tested this hypothesis by treating 

the stool of PMC patients with anti-serum generated against individual clostridial gas gangrene toxins 

(61, 62). Collectively, these studies revealed that the cytotoxin(s) present in the stool of PMC patients 

could be neutralized with anti-serum generated against Paeniclostridium sordellii (formerly Clostridium 

sordellii) toxins (61, 62). As a result, Larson, Rifkin, and colleagues concluded that P. sordellii was the 

likely mediator of antibiotic-induced PMC.  

Although the discoveries by Larson et al. and Rifkin et al. implied that P. sordellii was responsible for 

mediating antibiotic-induced PMC in humans, P. sordellii was not known to cause gastrointestinal disease 

in humans and was never isolated from the stool of PMC patients (61, 62). At the time, the only study 

linking P. sordellii toxins to colitis was a similarly performed toxin neutralization study in canines (63). 

Without evidence showing that P. sordellii was present in the stool of PMC patients or demonstrating 

that disease could be mediated by the bacterium, some researchers speculated if the results were a red 

herring. An alternative explanation considered by Bartlett and colleagues was that the Clostridium isolate 

from their hamster model was responsible for mediating disease in humans. The observation that anti-
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serum against P. sordellii toxins neutralized the cytotoxin(s) in the stool of PMC patients could be 

explained by the possibility that the Clostridium produces a homologous toxin. Bartlett and colleagues 

tested this alternative hypothesis by characterizing bacterial isolates isolated from the stool of five patients 

with antibiotic-induced diarrhea, four of whom presented symptoms of PMC (64). From these stool 

samples, Bartlett et al. isolated twenty-five clostridia, four of which produced a toxin whose activity could 

be neutralized by anti-serum against gas gangrene toxins (64). Notably, the toxin producing Clostridium 

was only present in the stool samples of patients presenting with PMC (64). The researchers also found 

that these toxin producing isolates were capable of causing enterocolitis in hamsters (64). Taxonomic 

characterization performed by Bartlett and colleagues identified the isolates as C. difficile (64). From these 

data, Bartlett et al. concluded that antibiotic-induced PMC was mediated by opportunistic C. difficile 

infections and its disease was mediated through a toxin(s) with antigenic features similar to P. sordellii 

toxins (65).  

Historical perspectives of  C. difficile toxins TcdA and TcdB in disease 

The discovery of C. difficile as the mediator of antibiotic-induced PMC in hamsters and humans was 

further corroborated by multiple researchers, including Larson and colleagues (5, 66–69). The collective 

work of these pioneering studies suggested that a heat-labile protein toxin was responsible for disease. 

However, as researchers began their work to isolate and characterize the toxin, confounding results were 

reported between studies. These confounding data included differences in molecular weight, the presence 

and absence of enterotoxic activity in vivo, as well as differences in cytotoxic activity in vitro (70–72). 

These differences were soon explained, however, by the finding that independent research groups had 

unknowingly purified two unique toxins from C. difficile supernatants (7, 8, 73–76).  

In 1981, reports by Taylor et al. and Banno et al. revealed that two unique toxins could be isolated from 

the supernatants of C. difficile (7, 76). The names introduced by Taylor et al., toxin A and toxin B, were 

adopted by the field (7). These names were aptly derived from the order by which the toxins eluted from 

an anion-exchange column during purification, where TcdA is eluted earlier than TcdB (7). The initial 

characterization of the toxins in Taylor et al. suggested that TcdA was responsible for mediating disease 

in animals while TcdB was responsible for mediating the cytopathic response on cells (7). This observation 

was corroborated by other studies that also showed TcdA injections in animals caused fluid accumulation, 

edema, and significant injuries to the intestinal mucosa while little to no symptoms could be observed with 
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TcdB (7, 8, 73, 76). As a result of these observations, TcdA is historically referred to as an enterotoxin 

while TcdB is historically referred to as a cytotoxin (8).  

While many of these early investigations suggested TcdA alone was sufficient for mediating disease, there 

were reports that suggested otherwise during the context of infection. For example, a vaccine study 

performed soon after the discovery of the toxins by Tracey Wilkins and colleagues revealed that hamsters 

could be fully protected from CDI and its disease only when vaccinated against both TcdA and TcdB 

(77). If a hamster was vaccinated against a single toxin, those hamsters would die and suffer from disease 

(77). While the data could not reveal a mechanism of how this occurred, it suggested that TcdB 

contributes to disease during infections. To gain further insight into a potential mechanism, the same 

research group hypothesized that TcdB could synergize with TcdA during infections to promote disease 

(78). The researchers tested this hypothesis by treating hamsters intragastrically with non-lethal 

concentrations of TcdA together with TcdB (78). Their study revealed that the combination of both 

toxins was lethal to all hamsters and suggested that TcdB does synergize with TcdA to promote disease. 

As TcdB had not been shown to facilitate injuries to the intestinal epithelium in animals, one mechanism 

proposed by Wilkens and colleagues was that TcdB would injure tissue outside of the intestines once 

TcdA injures the intestinal mucosa (6). In support of this model, the researchers would later show that 

the lethal dose of TcdA and TcdB were essentially identical if administered intraperitoneally or 

intravenously into mice or infant rhesus monkeys (79, 80). Their proposed mechanism would be supported 

by most of the C. difficile field for decades as to how disease was mediated by TcdA and TcdB.  

While the conclusions of Wilkins and colleagues were logical, a clear mechanism of how each toxin 

contributed to disease was lacking. How did the injection of TcdA into intestinal tissue cause fluid 

secretion and epithelial damage? Additionally, how does the activity of TcdB contribute to disease? An 

initial hypothesis was that TcdA mediates diarrhea through mechanisms similar to that of cholera toxin 

from Vibrio cholerae and heat-labile toxin of enterotoxigenic Escherichia coli (81). The activity of both of 

these toxins results in the elevation of cyclic adenosine monophosphate (cAMP) within the cytosol of 

intoxicated cells (82, 83). The elevated levels of cAMP disrupts ion-transport function which ultimately 

drives secretory diarrhea during infection (84). However, experiments failed to detect changes in cAMP 

levels from tissue intoxicated with TcdA (81). If TcdA did not induce disease through the elevation of 

cAMP, an alternative mechanism considered by some was that disease was mediated through the immune 
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response. Researchers such as John LaMont and colleagues first considered this hypothesis after observing 

that rabbit ileal loops injected with TcdA contained massive amounts of neutrophils (85). As neutrophils 

are known to contain inflammatory cytokines that are capable of causing injury and fluid secretion, 

LaMont and colleagues speculated that the neutrophils, and not TcdA, would drive the symptoms of 

disease (85). In support of this hypothesis, the researchers found that TcdA was unable to cause injury to 

rabbit intestinal explants (85). Therefore, without the involvement of the host immune response, TcdA 

itself did not appear capable of mediating disease symptoms alone. Moreover, the researchers also 

demonstrated that TcdA, and not TcdB, could elicit a strong chemotactic response to neutrophils in vitro 

(86, 87). Macrophages, another immune cell population found in C. difficile infected tissue, was also found 

to be stimulated by TcdA (88). Together, these data suggested that TcdA can promote intestinal injury 

and potentially facilitate diarrhea through the recruitment and activity of immune cells during infection.  

As LaMont and colleagues continued to explore the role of these toxins in disease, they would later report 

that both TcdA and TcdB were capable of altering intestinal epithelial cell barrier function—a property 

of polarized cells mediated by cell junctions—in vitro by disrupting the actin cytoskeleton of cells (89–91). 

Loss of barrier function in intestinal epithelial cells is believed to promote diarrhea by affecting the ion 

gradient or solute gradient across a cell (92). Although these observations were from tissue culture cells, 

LaMont would also make the surprising observation that TcdB was in fact more potent than TcdA on 

human colonic explants (93). By measuring the permeability and resistance of the epithelium during 

intoxication with either TcdA or TcdB, the researchers determined that TcdB was approximately 10 times 

more potent than TcdA (93). Furthermore, both toxins were capable of injuring epithelial cells, an 

observation that had not been seen in rabbit, mouse, rat, or hamster tissue (7, 8, 73, 76, 78, 93). As the 

study utilized explant, these observations would be independent of any contributions from neutrophils and 

macrophages. These observations suggested that TcdB may in fact be more relevant to human disease 

than previously thought.  

The mechanism of disease proposed by Wilkins and colleagues in the late 1980s was modified to 

incorporate these new observations. By the mid-1990s, both TcdA and TcdB were proposed to contribute 

to epithelial cell injury, but TcdA would facilitate more injury by recruiting innate immune cells. Although 

questions remained on how the activity of the toxins mediated diarrhea, the requirement of TcdA for the 

disease in humans and animals was so far considered essential. This view was challenged in the year 2000 
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when two studies reported an outbreak of antibiotic-induced PMC in patients infected with C. difficile 

that was TcdA negative and TcdB positive (94, 95). Historically, strains of C. difficile producing only 

TcdB were not thought to cause disease in humans or animals (96, 97). Further characterization of the 

TcdB produced by this strain of C. difficile would demonstrate it was capable of inducing enterotoxic 

effects and enterocolitis on human intestinal xenographs (98). If disease could be mediated by TcdB alone, 

as the outbreak of antibiotic-induced PMC suggested, the working model of how the toxins mediate 

disease was incorrect.  

An obvious approach that could establish a mechanism for TcdA and TcdB in disease would be to generate 

knockouts of each toxin and perform an infection in animals. However, genetic techniques capable of 

generating a stable gene knockout in C. difficile were only developed in the mid-2000s (99, 100). With 

these new genetic approaches, researchers would soon investigate the role each toxin in disease. In a study 

reported by Lyras et al., TcdB was determined to be a mediator of lethality in hamsters during CDI (101). 

Surprisingly, Lyras et al. found that almost all hamsters infected with C. difficileΔtcdA (the Greek letter Δ 

represents genetic disruption) died while mostly all hamsters infected with C. difficileΔtcdB survived, 

suggesting that: (1) TcdA was not required for mediating disease in hamsters, (2) TcdB alone was 

sufficient for mediating disease in hamsters, and (3) the role of TcdA is unclear in the hamster model of 

CDI (101). These results disrupted the long-held model of C. difficile toxins proposed by Wilkins and 

colleagues and suggested that the use of recombinant toxins alone cannot predict the role of each toxin.  

A year after the publication of the Lyras et al. study, a report by Kuehne et al. determined C. difficile 

expressing either TcdA or TcdB could cause a lethal infection in hamsters and that loss of TcdB only 

attenuated the disease (102). Importantly, disruption of both toxins failed to cause any disease in the 

hamsters. While these findings suggested that TcdB likely contributes more to disease than TcdA, it also 

revealed that the TcdA could contribute to disease in hamsters. It should be noted, however, that 

differences in institutional animal use regulations allowed the study by Lyras et al. to use animal death as 

an endpoint while the study by Kuehne et al. could only use humane death as determined by percent 

weight loss or signs of lethargy (101, 102). Therefore, the differences observed between the two groups 

could possibly be explained by factors such as how each group measured death, potential differences in 

genetic approaches used to generate the knockouts, and even differences in intestinal microbiomes 

between institutions (103, 104).  
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As the debate continued, Kuehne et al. performed another hamster infection using isogenic knockouts in 

another strain of C. difficile, reporting the same observations and again showed that TcdA was important 

for mediating disease (105). Dena Lyras and colleagues would go on to do the same as well, but this time 

also investigating their role in mice in addition to hamsters (106). In this study, Lyras and colleagues also 

used the same percent weight loss metric for a humane endpoint used in the studies from Kuehne et al. 

(102, 105, 106). With the modified metric for death, Lyras and colleagues observed that hamsters could 

indeed suffer severe disease when infected with C. difficileΔtcdB, although the time to death was slower 

than that of a wild-type (WT) infection or C. difficileΔtcdA (106). From the mice infections, Lyras and 

colleagues demonstrated that TcdB, and not TcdA, was essential for mediating multiple metrics of disease 

(106). Specifically, C. difficile expressing only TcdB during infection exhibited greater weight loss, had 

worse survival, and worse pathologies than C. difficile expressing only TcdA (106). Although C. 

difficileΔtcdB could promote some weight loss and pathology, the disease induced by C. difficileΔtcdA was 

nearly identical to that of a WT infection (106). While these data suggest that TcdB alone is capable of 

mediating all disease symptoms, it should be noted that most C. difficile isolates are capable of expressing 

both TcdA and TcdB (107). As TcdA is likely produced during most cases of CDI, its contributions 

towards disease should not be ignored (108, 109). Recent studies from Christopher Peritore-Galve of the 

Lacy Laboratory and others have shown that the enzymatic activities of the toxins synergize with each 

other to promote diarrhea in mice, suggesting that both toxins are required for severe diarrhea typically 

observed during CDI (110). With these collective observations, both toxins can possibly facilitate disease 

by intoxicating the host colonic mucosa and inducing secondary damage by stimulating the production of 

cytokines from the innate immune system. Although current experimental observations suggests that 

TcdB is more pathogenic than TcdA, both toxins are likely important for disease progression in hosts.  

In addition to TcdA and TcdB, some strains of C. difficile can express a third toxin, C. difficile transferase 

(CDT), which is an actin modifying adenosine diphosphate (ADP) ribosyltransferase toxin (CDT) (111). 

CDT is a binary AB toxin consisting of an enzymatic A component (CDTa) and a binding and 

translocation component (CDTb) (112). Although the global prevalence of C. difficile that express CDT 

has decreased since the mid-2000s, these strains are associated with greater disease severity and mortality 

(105, 113, 114). The ADP-ribosyltransferase activity of CDT induces ADP-ribosylation of G-actin in 

cells, causing a cytopathic response in cell monolayers (112, 115). The toxin, however, is not capable of 

causing significant injuries or disease on its own during CDI in hamsters or mice (105, 106, 110). These 
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observations have suggested that CDT likely synergizes with TcdA and TcdB during infection, although 

the mechanism is currently unknown. In addition to its cytotoxic properties, CDT may enhance C. difficile 

virulence by suppressing cytokine production in eosinophils, leading to altered colonic mucus production 

and enhanced epithelial disruption during CDI (116–118). Another proposed mechanism of how CDT 

enhances C. difficile virulence is by promoting bacterial adhesion to the epithelium (119, 120). 

Interestingly, colonic epithelial cells intoxicated with CDT produce multiple septin guided, microtubule-

based protrusions that are enriched with fibronectin along their cell edges that are capable of binding C. 

difficile in vitro (119–121). Moreover, these in vitro studies have shown that CDT intoxicated cells bind 

approximately 5-times more C. difficile than non-intoxicated cells (119, 120). Although these protrusions 

have not been observed in vivo, these protrusions are predicted to enhance C. difficile colonization during 

the initial stages of infection (119).  

An overview of the structure and function of TcdA and TcdB 

TcdA (308 kDa) and TcdB (270 kDa) are members of the large clostridial toxins (LCTs), a family of 

homologous toxins with similar structure and function. Members of the LCTs includes the hemorrhagic 

(TcsH) and lethal (TcsL) toxins from P. sordellii, the large cytotoxin (TpeL) from C. perfringens, and the 

alpha-toxin (Tcn⍺) from Clostridium novyi. These LCTs are multidomain AB toxins, containing a toxic 

A-component and a receptor binding B-component across a single polypeptide chain (Figure 1-2A) (122). 

The A-component of most LCTs contains a glucosyltransferase domain (GTD) that covalently modifies 

Ras homologue family member-(Rho) and Ras-family GTPases with a glucose moiety from uridine 

diphosphate (UDP) glucose (123–128). However, for the two LCTs that can utilize UDP-N-acetyl-

glucosamine (GlcNAc), TpeL and Tcn⍺, the domain is instead called the glycosyltransferase domain 

(128–130).  Nonetheless, the GTPases are modified by the GTD on a threonine residue (Thr37 on RhoA, 

RhoB, and RhoC and Thr35 of Rac1, Cdc42, Ral, and Ras) within their switch I region; a domain 

involved in GTP and Mg2+ binding (Figure 1-2A) (123–128, 131). With the glucosylated GTPase now 

unable to change into an active conformation, it becomes functionally inactive which results in the 

disruption of the actin cytoskeleton, tight junction instability, cytokine production and apoptotic cell death 

(125, 131–134). A table of the LCTs and their common substrates and targets are summarized in Table 

1-1. 

The receptor binding B-component of LCTs contain multiple domains that contribute to receptor  
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Figure 1-2. Common domains of the large clostridial toxins. 

A) A cartoon model of conserved domains of large clostridial toxins (LCTs) domains. LCTs are 
multidomain AB toxins containing a toxic A-component and receptor binding B-component across a 
single polypeptide. The N-terminal A-component of most LCTs contains a toxic glucosyltransferase 
domain (GTD). The B-component of LCTs contain an autoprotease domain (APD), a delivery 
domain, and a combined repetitive oligopeptides (CROPs) domain. In order for LCTs to properly 
intoxicate cells, the GTD must be released from the B-component. For example, with TcdB, the 
proteolytic activity of the APD will cleave the GTD from the polypeptide chain between amino acids 
543-544 upon binding InsP6. The released GTD will covalently inactivate Rho family GTPases by 
mono-glucosylating a threonine in the switch I region (Thr-37 of RhoA, Thr-35 of Cdc42, Rac1, 
Ral, and Ras) of the GTPase.  

B) Crystal structures of TcdA1-1832 (Protein Data Bank (PDB) identifier (ID) 4R04) at 3.26 Å resolution 
and TcdA CROPs1833-2481 (PDB ID 7U1Z) at 3.18 Å resolution docked into an electron density map 
of the TcdA holotoxin from Pruitt et al. (135).  

C)  Crystal structure of TcdB (PDB ID 6OQ5) at pH 5.2 and 3.87 Å resolution 
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binding, pore-formation, and autoprocessing of the GTD from the polypeptide chain. These domains are 

called the autoprotease domain (APD), the delivery domain, and the combined repetitive oligopeptides 

(CROPs) domain—TpeL lacks the CROPs domain (Figure 1-2A) (135–138). The APD is classically 

considered to be a cysteine protease whose primary function is to facilitate the release of the GTD into 

the cytosol of cells (139, 140). Its autoprocessing activity is activated upon binding inositol 

hexakisphosphate (InsP6), a compound enriched in the cytosol, resulting in the proteolytic cleavage of the 

GTD from the polypeptide chain (139–142). Although initial experiments had suggested that the APD 

is a cysteine protease, the proteolytic activity is dependent on a zinc ion bound to the cysteine in the active 

site of the APD (139, 143, 144). This observation suggests that the APD could be a zinc protease instead 

of a cysteine protease. The delivery domain is the pore-forming domain that facilitates the delivery of the 

APD and GTD into the cytosol of cells (137, 145). Although the exact mechanism of how pore-formation 

and translocation is unknown, the process is dependent on pH-dependent conformational changes that 

occur within the endosome (137, 145). 

The final domain of the B-component is the CROPs domain. Before the identification of CROPs-

independent receptors for TcdA and TcdB, the CROPs domain was considered to be the sole receptor 

binding domain of each toxin and a regulator of the APD (146, 147). The CROPs domain is a rigid 

structure that can adopt multiple conformations as evident in the crystal structures of TcdA and TcdB 

(Figure 1-2B & C) (135, 143, 148, 149). These conformational changes may be dependent on the pH, 

where more acidic pH causes the CROPs domain to adopt the conformation observed in the TcdB crystal 

structure (135, 148–151). In TcdB, these conformational changes have been suggested to regulate receptor 

interactions, however, the significance of these conformational changes for other LCTs remain unknown 

(151). Moreover, the CROPs domain of TcdA and TcdB have been shown to bind a variety of glycans, 

which may increase the diversity of cells the toxins can target during an infection (152). 

As my thesis investigated the role of TcdB interactions with receptors, the remaining sections of this 

chapter are dedicated to TcdB. 	  
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Table	1-1	A	summary	of	the	large	clostridial	toxin	family	

Organism Toxin Molecular 
Weight 

Targets Substrate Ref 

Clostridioides difficile TcdA 308 kDa Rho, Rac, 
Cdc42, Rap UDP-Glu (123, 138) 

Clostridioides difficile TcdB 270 kDa Rho, Rac, Cdc42 UDP-Glu (124, 125) 
Paeniclostridium sordellii TcsH 300 kDa Rho, Rac, Cdc42 UDP-Glu (126) 

Paeniclostridium sordellii TcsL 270 kDa Rac, Ras, Ral, 
Rap UDP-Glu (126, 127, 

153) 
Clostridium perfringens TpeL 191 kDa Rac, Ras, Ral, 

Rap 
UDP-Glu, 
UDP-GlcNAc (128) 

Clostridium novyi Tcnɑ 250 kDa Rho, Rac, Cdc42 UDP-GlcNAc (129) 
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Mechanism of action for TcdB 

A model for TcdB intoxication of cells can be summarized through the following steps: (1) receptor 

binding on the cell surface and (2) clathrin-mediated endocytosis, (3) acidification of the endosome, 

resulting in (4) pore-formation and translocation of the APD and GTD across the endosomal membrane 

into the cell cytosol, (5) autoprocessing and release of the GTD from the holotoxin and (6) glucosylation 

of Rho-family GTPases (Figure 1-3A). Four classes of protein receptors have been identified for TcdB, 

which include chondroitin sulfate proteoglycan 4 (CSPG4), Frizzled (FZD) 1, FZD2, FZD7, Nectin-3, 

and tissue factor pathway inhibitor (TFPI) (154–158). Each receptor was identified from genetic screens 

and loss of each receptor attenuates TcdB cytotoxicity or its cell rounding kinetics (154–158). The 

interactions between these receptors and TcdB are only predicted to result in clathrin mediated 

endocytosis of TcdB (154–158). Some recent reports even suggest that three of these receptors, CSPG4, 

Nectin-3, and FZD proteins, are not endocytosed in the presence of TcdB (159). Without a clear 

mechanism and understanding of their contributions to intoxication, the importance of TcdB interactions 

with these receptors on cells and tissue remains unknown.  

Crystal structures and cryogenic (cryo)- electron microscopy (EM) structures have been determined for 

TcdB with CSPG4, FZD, and TFPI (Figure 1-3B) (148, 157, 160, 161). These co-structures have 

revealed the binding interfaces between TcdB and receptors can occur within at a conserved interface in 

the delivery domain—as in the case for FZDs and TFPI (Figure 1-3Bi)—and at an interface containing 

the delivery domain, APD, and CROPS domain—as in the case for CSPG4 (Figure 1-3Bii) (157, 160, 

161). These structures will be discussed in more detail in later sections.  

TcdB variants 

One explanation as to why TcdB is capable of interacting with multiple receptors may be explained by the 

existence of TcdB variants (107, 162, 163). While researchers were aware of various infectious C. difficile 

strains and TcdB variants since the mid 1990s, most had predicted these variants were associated with 

increased virulence (164–168). The most notable of these TcdB variants was produced by the epidemic C. 

difficile PCR ribotype (RT) 027 that emerged in North America and Western Europe in the early to mid 

2000s (114, 169–171). Due to the use of multiple classification techniques for C. difficile isolates, this 

strain may also be referred to as North American pulsed-field gel electrophoresis type (NAP) 1 or 

restriction endonuclease analysis (REA) group BI (170–172). The full name of these epidemic strains are   
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Figure 1-3. Intoxication mechanism of TcdB and receptor binding sites 

A) The intoxication of cells with TcdB begins with receptor binding on the cell surface. Four classes of 
protein receptors have been identified for TcdB: Chondroitin sulfate proteoglycan 4 (CSPG4), 
Frizzled (FZD) 1, FZD2, FZD7, tissue factor pathway inhibitor (TFPI), and Nectin-3. (1) 
Engagement of the toxin with these receptors is predicted to result in (2) clathrin-mediated 
endocytosis. (3) During endosomal maturation, the pH of the endosome becomes acidic. This is 
predicted (4) to cause  conformational changes of the delivery domain, leading to the pore-formation 
and translocation of the APD and GTD across the endosomal membrane and in into the cell cytosol. 
(5) Inositol hexakisphosphate (InsP6), present with the cytosol of the cell, activates the APD, resulting 
in the autoprocessing and release of the GTD from the holotoxin. (6) The GTD localizes to the cell 
membrane and glucosylates Rho family GTPases, inhibiting their function. As a result, the GTPases 
are inactivated, leading to the disruption of the actin cytoskeleton, tight junction instability, cytokine 
production and cell death through apoptosis. 

B) A structure of TcdB (PDB ID 60Q5, 3.87 Å crystal structure) resolution with receptors CSPG4411-458 
(PDB ID 7ML7, 3.17 Å cryo-EM structure), FZD235-155 (PDB 6C0B, 2.5 Å X-ray crystal structure), 
and TFPI120-178 (PDB ID 7V1N, 3.20 Å cryo-EM structure) docked into their binding sites. TcdB 
and its domains are represented as a surface mesh and color coded as indicated in panel A. CSPG4 
(pink), FZD2 (gray), and TFPI (cyan) are modeled as ribbons. The black boxes indicate the location 
of zoomed panels. i) A zoomed in view showing FZD2 and TFPI occupying the same binding site 
within the delivery domain. ii) A zoomed in view showing that CSPG4 interacts with the delivery 
domain, APD, CROPs domain.  
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thus commonly referred to as BI/NAP1/027 (170–172). The epidemic strains, hereafter referred to as 

RT027, were initially considered hypervirulent as epidemiological studies had suggested they were 

associated with higher mortality as well as being capable of producing all three toxins, TcdA, TcdB, and 

CDT (170, 171, 173). However, more recent studies have reported that the RT027 C. difficile is not any 

more virulent than other ribotypes of C. difficile (174). Nevertheless, soon after TcdB was shown to 

mediate disease in animal models of CDI, researchers began asking if mutations present in these TcdB 

variants could affect its virulence (165–167). Although only ~7.9% of residues in TcdB from RT027 C. 

difficile are changed compared to a historic pre-epidemic strain, TcdB from RT027 was reported to induce 

a faster cytopathic response on cells and induce stronger pro-inflammatory responses on tissue than the 

pre-epidemic reference TcdB (165–167, 175). These observations suggest that variations in TcdB can 

indeed impact its virulence. 

While the epidemic of CDI was mediated by C. difficile RT027 strains in the 2000s, subsequent studies 

revealed that other strains of C. difficile could also mediate severe disease (114, 174). Furthermore, a more 

advanced classification approach known as multiple locus sequence typing (MLST) revealed the existence 

of five TcdB sequence type (ST) clades present in circulating clinical isolates (109, 176). Unfortunately, 

while sequence typing can be used to classify bacteria when utilized together with MLST, drawing 

conclusions of function using limited sequence resolution (sequence typing only utilizes a small portion of 

the gene) or lack of functional information (sequence typing for TcdB utilizes only a small portion of the 

CROPs domain) is a limitation of the approach (109). Although there was a short period of time where 

TcdB toxinotyping utilized sequence typing—the method revealed the existence of hundreds of TcdB 

variants in a total of 5 unique clades during its use—biochemical studies revealed that TcdB interactions 

with receptors could be CROPs-independent and thus, the method was unable to predict TcdB receptor 

interactions  (107, 154, 156, 157, 162). More recently, toxinotyping of C. difficile toxins is based on 

phylogenetic analysis using the entire sequence of TcdB (107, 162). This approach has revealed the 

existence of 12 distinct clades of TcdB with varying cytotoxicity in animal models and cell lines (107, 162). 

TcdB sequences typed with this method are simply annotated as TcdB1-12. As to be discussed later, work 

performed by myself, colleagues, and other research groups have shown that these differences can be 

attributed to differences in receptor interaction profiles (163, 177–179). Finally, these phylogenetic 

analyses have also suggested that recombination and domain shuffling events gave rise to the multiple 

TcdB variants (107, 162). It has been speculated that these variants may have formed due to selective 
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pressures from C. difficile hosts that could differ in receptor expression (107, 162). As C. difficile can infect 

a variety of hosts, it is possible that TcdB evolved to interact with multiple receptors to ensure it is capable 

of mediating disease. 

CSPG4 and its interactions with TcdB 

CSPG4 (240–700 kDa) is a complex transmembrane proteoglycan (PG) with a variety of signaling 

functions due to its ability to interact with over 40 ligands (180). Alternative names for CSPG4 include 

neural-glial antigen 2 (NG2), melanoma cell surface proteoglycan (MCSP), and high molecular weight-

melanoma associated antigen (HMW-MAA) (181–185). As the multiple names for CSPG4 suggest, the 

protein was originally identified by independent groups investigating neurons, glial cells, and melanomas 

(181–185). Since its discovery, the protein has been shown to facilitate multiple functions, including cell 

migration, proliferation, angiogenesis, neurogenesis, wound healing, and cancer metastasis (186–190). 

Due to the roles of CSPG4 in cell proliferation, angiogenesis, and cell motility, the protein is commonly 

found to be upregulated after neoplastic cell transformations, which results in aggressive tumor growth in 

a variety of cancers (189, 191, 192). Intriguingly, deletion of CSPG4 in mice is not embryonically lethal 

and mice can develop into adults without any obvious phenotypes (193). However, it has been reported 

that mice lacking CSPG4 have defective wound healing, a process that stimulates angiogenesis and 

neuronal outgrowth (186, 194–197). The protein is expressed throughout the human body by fibroblast 

cells, including telocytes and myofibroblasts in the large intestine, by pericytes along capillaries and by 

oligodendrocytes associated with neurons (187, 198–202). The protein is not expressed by epithelial cells 

of the intestines, which suggests that the protein is not directly involved in TcdB mediated injuries to 

epithelial cells during CDI (203).  

CSPG4 is predicted to consist of three extracellular subdomains (D1-3), a single transmembrane domain, 

and a cytoplasmic tail (Figure 1-4A) (204–206). The N-terminal D1 subdomain (1-640 amino acids (aa)) 

contains two laminin G-type regions (LGR)—a structural motif that is predicted to facilitate heparin 

binding—and a single chondroitin sulfate proteoglycan (CSPG) repeat—a structural motif of chondroitin 

sulfate proteoglycans (Figure 1-4B) (207). In addition to heparin binding, the D1 subdomain has been 

reported to bind receptor tyrosine kinases (RTKs) such as platelet-derived growth factor receptors 

(PDGFRs) alpha and beta, fibroblast growth factor receptors (FGFR) 1 and 3, integrins, components of   
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Figure 1-4. Predicted structural organization of CSPG4 and ligand interactions. 

A) The individual domains of CSPG4 with amino acid positions and the predicted AlphaFold model of 
CSPG4 (PDB ID AF-Q6UVK1-F1-model_v4) (205, 206). CSPG42183-2322 was rotated from its 
original orientation to generate the transmembrane and cytoplasmic domains. The color of each 
domain in the linear cartoon correponds to its color in the AlphaFold model.  

B) A cartoon model of CSPG4 highlighting its two laminin G-type repeats (LGR) within the D1 
subdomain in yellow and its 15 chondroitin sulfate proteoglycan (CSPG) repeats along D1, D2, and 
D3 subdomains in blue. The AlphaFold model of CSPG4 is colored to show the locations of each of 
these motifs. 

C)  A cartoon model of CSPG4 indicating its subdomains, structural motifs, and example ligands for each 
subdomain with matched colors from panels A and B. The red X’s represent cleavage sites of that 
result in the release of CSPG4 from the plasma membrane. The cleavage site in D1 is within residues 
490-500, while the two cleavage sites in D3 result in the release of the full ectodomain.  

D) The AlphaFold CSPG4 model is color-coded by its per-residue confidence score (pLDDT), which 
scales between 0-100, where 100 is the highest confidence. This indicates a confidence level for the 
predicted model for CSPG4 is at a per residue level. The TcdB binding site is highlighted in pink and 
was generated by docking the 3.17 Å cryo-EM model of CSPG4 bound to TcdB (PDB: 7ML7) into 
the AlphaFold CSPG4 model. 
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the extracellular matrix (ECM), and TcdB (Figure 1-4C & D) (160, 186, 208–212). The D2 subdomain 

(641-1590 aa) consists of 11 CSPG repeats and three putative glycosylation sites for chains of chondroitin 

sulfates (CS) (30-60 kDa), a sulfated glycosaminoglycan (GAG) (Figure 1-4A & B) (204, 213, 214). Only 

a single residue, Ser-999 (Ser-995 in humans), has been experimentally demonstrated to be post- 

translationally modified, however (215). These chains of sulfated GAGs can be of variable length and 

appear to regulate the distribution of CSPG4 along the cell membrane (215, 216). For example, CSPG4 

on the trailing edges of cells apparently lacks CS chains while CSPG4 along filopodia are enriched with 

CS chains (215, 216). The D2 subdomain interacts with type V and type VI collagens, platelet-derived 

growth factor (PDGF)-AA, and fibroblast growth factors (FGFs) (Figure 1-4C) (193, 208, 217–219). 

The D3 subdomain (1591-2225 aa) contains four CSPG repeats and can interact with β1-integrins, 

galectin-3 and potentially P-selectin (Figure 1-4B & 4C) (186, 188, 220). While the interactions between 

β1-integrins, galectin-3 and CSPG4 have been demonstrated biochemically, its interaction with P-

selectin has not and is therefore speculated to be facilitated by indirect interactions (180, 186, 188). It is 

interesting to note that P-selectin can interact with carbohydrates such as CS, sialyl Lewis X, and sialyl 

Lewis A—both sialyl Lewis X and A antigens are carbohydrates that can interact with TcdA and TcdB 

at micromolar affinities (152, 188, 221). Finally, the cytoplasmic domain (2251-2322 aa) of CSPG4 

contains a proline-rich region (PRR), a postsynaptic density-95, discs-large, zonula occludens 1 (ZO-1) 

(PDZ) protein domain, and two threonine phosphoacceptor sites for protein kinase C alpha (PKC⍺) and 

extracellular signal-regulated kinases (ERK) 1 and 2 (Figure 1-4B & 4C) (222–226). While there are no 

known roles for the PRR domain of CSPG4, PRR domains regulate protein interactions and trafficking 

in other proteins (223, 226). PDZ domains facilitate interactions with cytosolic scaffold proteins that 

orchestrate signaling events (222, 227). For CSPG4, the PDZ domain promotes interactions with scaffold 

proteins GRIP1 and MUPP1 (225). 

Similar to integrins, CSPG4 is proposed to facilitate bi-direction inside-out and outside-in signaling (180, 

228). Unlike integrins, however, CSPG4 achieves this without any intrinsic signaling activity of its own 

(229). Instead of signaling on its own, researchers have proposed that CSPG4 serves as an extracellular 

scaffold for proteins that signal (204, 230). CSPG4 is proposed act by capturing ligands within the ECM 

using its large and flexible extracellular domain (ECD) and presenting captured ligands to their cognate 

RTKs or integrins (204, 230). These interactions are predicted to form ternary complexes of 

CSPG4/ligand/receptors, resulting in sustained and enhanced integrin-regulated focal adhesion kinase 
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(FAK) signaling, RTK-regulated mitogen-activated protein kinase (MAPK) signaling, and downstream 

ERK1/2 signaling (186, 193, 208, 219). For RTKs such as PDGFR⍺, the formation of a ternary complex 

between these proteins and platelet derived growth factor (PDGF)-AA, a stimulatory ligand of PDGFR⍺, 

is likely essential for the function of the RTK (193, 209). In fact, without CSPG4, PDGF-AA is unable 

to stimulate PDGFR⍺ auto-phosphorylation (193, 209). These and other similar interactions between 

CSPG4 and growth factors are predicted to be essential for mediating CSPG4-dependent MAPK and 

ERK1/2 signaling that stimulates proliferative responses within cells (224). Interactions between CSPG4, 

components of the ECM such as collagen types V and VI are reported to directly stimulate integrins to 

activate FAK signaling, resulting in cell migration mediated by cytoskeletal rearrangements, cell 

proliferation, and growth (186, 187, 231). The two cytoplasmic threonine phosphoacceptor sites in 

CSPG4 for PKC⍺ and ERK1/2 likely influences integrin mediated signaling, as differential 

phosphorylation of these residues impact cell motility (224). With the various signaling pathways involved 

in cell migration, growth, and proliferation that CSPG4 can influence, these collective observations may 

explain why CSPG4 is commonly upregulated in various cancers (186, 189, 191, 192, 209, 224).  

Although CSPG4 is expressed as a membrane bound protein, CSPG4 is commonly shed from the plasma 

membrane into its extracellular environment through the activities of various matrix metalloproteinases 

(MMPs), membrane-type(MT)-MMPs and a disintegrin and metalloprotease (ADAM)-10 (232–240). 

Shed forms of CSPG4 can range in sizes, consisting of potentially the entire CSPG4-ECD (240-290 

kDa) to smaller forms that only include only the majority of the D1 domain (Figure 1-4C) (232–239). 

CSPG4 shedding has been observed in both diseased and healthy tissue, as well as in tissue culture, 

suggesting that CSPG4 shedding is a normal process (189, 203, 235, 239). While the role of shed CSPG4 

is unknown, CSPG4 is actively shed during injuries to the brain and can be found in the blood of some 

cancer patients (240, 241). Moreover, shed CSPG4-ECD is capable of stimulating cell migration via 

integrin signaling by binding components of the ECM and integrin-β1 (186, 238). The variable lengths 

of shed CSPG4 may be dependent on the cell type. For example, while the larger molecular weight forms 

of shed CSPG4 have been observed in pericytes, a shorter form consisting of only the D1 subdomain have 

only been observed from macrophages and oligodendrocyte progenitor cells (189). Therefore, while the 

functional significance of shed CSPG4 remains unclear, these data suggests that the shedding process is 

regulated.  
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As a putative entry receptor for TcdB, knockout of CSPG4 on tissue culture cells confers greater 

protection than loss of Fzd1/2/7 (154, 158). While knockout of CSPG4 impacts cytopathic responses for 

the majority of TcdB variants, it does not affect cytopathic responses mediated by TcdB4, TcdB6, and 

TcdB12 (158). Interactions between TcdB and CSPG4 are high affinity (dissociation constant (KD) ~15.2 

nM) and are predicted to result in their endocytosis, although a recent report has suggested this does not 

occur (155, 159). CSPG4 is expressed by stromal cells that line the epithelium of the intestines and not 

believed to be expressed by any epithelial cell population (203). Nonetheless, CSPG4 knockout (-/-) mice 

have reduced pathologies when infected with C. difficile expressing TcdB, including reduced epithelial 

injury and reduced edema (160). In 2021, Rongsheng Jin and colleagues published a cryo-EM structure 

of TcdB11-1967 bound to CSPG430-764 (Figure 1-3ii) at  3.17 Å (160). The model revealed that CSPG repeat 

1 of CSPG4 (Figure 1-4D) binds TcdB at an interface containing the APD, delivery domain, and CROPs 

domain (Figure 1-5A) (160). Across CSPG4, its interaction with TcdB occurs over three sites that 

encompass a surface area of ~2715 Å2 (Figure 1-5B) (160). Site 1 encompasses residues 448-457 of 

CSPG4 that mediates interactions with residues within 564-621 of the APD using hydrogen bonds, 

electrostatic interactions, and hydrophobic interactions (Figure 1-5C) (160). Site 2 involves residues 466-

503 of CSPG4 and CROPs residues 1816-1850 that interact using hydrogen bonds and hydrophobic 

interactions (Figure 1-5D) (160). Finally, site 3 contains residues 457-466 and 527 of CSPG4 and TcdB 

residues within the APD (573 & 575 aa) and the delivery domain (1754-1812 aa) and interact through 

electrostatic interactions, hydrogen bonding, and hydrophobic interactions (Figure 1-5E) (160). The 

region of the delivery domain and CROPs domain that CSPG4 interacts with is referred to as the hinge 

(1792-1834 aa) because it facilitates its flexible dynamics (Figure 1-3B) (148). As the residues within the 

hinge are only accessible to CSPG4 when the CROPs domain is flipped outwards as seen in the structure, 

it is interesting to speculate that the interactions between CSPG4 will have functional consequences for 

TcdB by locking the CROPs domain into a single conformation (148, 160).  
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Figure	1-5.	The	structural	interface	of	CSPG4	and	TcdB	

A) A zoomed in view of the cryo-EM structure TcdB1 and CSPG4411-458 (PDB ID 7ML7, 3.17 Å cryo-
EM structure, pink) revealing the association of CSPG4 with the APD (orange), the delivery domain 
(DD) (purple), and CROPs domain (blue). CSPG4 is shown as a surface mesh while the TcdB 
domains are shown as ribbons.  

B) A surface model of CSPG4411-458 with highlighted residues that mediate its interactions with TcdB. 
The matching surface colors and boxes indicate the location of each site used in panels C-E. Site 1 is 
pink, site 2 is red, and site 3 is blue.  

C-E) Zoomed in view of sites 1-3 of the interface between TcdB and CSPG4. Electrostatic interactions 
and hydrogen bonding are shown as dashed lines. Amino acids implicated or experimentally tested to 
faciliate these interactions are shown as sticks models. CSPG4 (Pink), APD (orange), DD (purple), 
CROPs (blue). 

 

	

  



28	

	

FZD and its interactions with TcdB 

The FZD proteins are a family of Wnt receptors conserved across the animal kingdom (242–244). They 

each share a conserved architecture consisting of an extracellular cysteine-rich domain (CRD), a seven-

pass transmembrane domain, and a variable cytoplasmic region that contains a KTXXXW motif (243, 

245–247). The CRD domain facilitates high affinity interactions with Wnt ligands and the receptor’s 

signaling abilities are mediated by the KTXXXW motif, a PDZ domain (243, 245–251). Interaction 

between FZD receptors and Wnt ligands leads to the activation of canonical (β-catenin-dependent) or 

non-canonical (β-catenin-independent) Wnt pathways involved in cell polarity, cell motility, 

proliferation, as well as promoting stem cell function and maintenance, tissue differentiation, and the 

regulation of embryonic development (252–259). TcdB1 was shown to bind the conserved CRD domain 

of Fzd1/2/7. Since FZD1/2/7 have been shown to be expressed by epithelial cells of the colon, the FZD 

receptors are predicted to facilitate epithelial injuries mediated by TcdB (260–262). In support of this 

prediction, TcdB injected into the colon of FZD7-/- mice and TcdB FZD binding mutants injected into 

the colon are partially protected from pathology (154, 161). However, as full protection was not observed 

in either experiment, these data suggest that TcdB can mediate pathologies independently of FZD 

interactions.  

The TcdB delivery domain interacts with the FZD1/2/7 CRDs with high affinity (Figure 1-3i)  (KD=~19-

32 nM) (154, 161). The interaction reportedly inhibits canonical Wnt signaling and can potentially cause 

cell death in colonic stem cells via mechanisms independent of TcdB glucosyltransferase activities (154). 

The canonical Wnt signaling pathway promotes the stabilization and translocation of cytoplasmic β-

catenin into the nucleus of cells, inducing the expression of Wnt target genes (Figure 1-6A) (263–265). 

Although β-catenin was originally discovered as an adherens junction protein, nuclear localized β-catenin 

can facilitate the removal of transcriptional repressors and acts as a transcriptional co-activator of Wnt 

target genes through associations with T cell factor (TCF)/lymphoid enhancer factor family (LEF) 

transcription factors (Figure 1-6A) (263, 264, 266, 267). In the absence of Wnt stimulation, newly 

expressed β-catenin will continually associate with the destruction complex, which consists of glycogen 

synthase kinase 3 (GSK3β), casein kinase 1⍺ (CK1⍺), axin, and adenomatous polyposis coli (APC), 

resulting in its phosphorylation, ubiquitination, and subsequent proteasomal degradation (Figure 1-6A) 

(265, 268–271). During canonical Wnt signaling, a single Wnt ligand binds the FZD-CRD and the Wnt  
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Figure	1-6.	Canonical	Wnt	Signaling	is	inhibited	by	TcdB.	

A) A cartoon of the canonical Wnt signaling pathway in its inactive (- Wnt) and active (+ Wnt) states. In 
the absence of signaling, β-catenin associates with the destruction complex, which consists of glycogen 
synthase kinase 3 (GSK3β), casein kinase 1⍺ (CK1⍺), axin, and adenomatous polyposis coli (APC). 
β-catenin associated with the destruction complex are phosphorylated (represented as P) and 
ubiquitinated (represented is Ub) and will be degraded by the proteosome. Canonical Wnt signaling 
is facilitated by Wnt binding to the CRD of FZD and lipoprotein receptor-related protein (LRP)-5 
LRP6. This interaction promotes the recruitment of Dishevelled to the conserved KTxxxW motif 
within the PDZ domain of FZD, promoting the phosphorylation of LRP5/6 and the inhibition of 
the destruction complex. As a result, β-catenin accumulates within the cytosol and is translocated into 
the nucleus where it promotes Wnt target gene expression by associating with the T cell 
factor/lymphoid enhancer factor family (TCF)/(LEF) transcription factors. 

B)  A crystal structure of Wnt-81-150 (PDB ID 4F0A, 3.25 Å X-ray crystal structure) was docked into the 
Wnt binding pocket of the CRD of FZD235-155 (PDB ID 6C0B, 2.5 Å X-ray crystal structure, co-
crystal structure of FZD2 and TcdB) to provide an example of how the interactions between the FZD2 
and Wnt ligands occur (272). TcdB (PDB ID 4F0A) interactions with the FZD CRD are predicted 
to inhibit Wnt signaling by either preventing Wnt from binding simply associating with the CRD or 
by blocking Fzd2-CRD interactions with co-Wnt receptors LRP5/6. The colors of each protein 
corresponds with the color of the text. 
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co-receptor low-density lipoprotein receptor-related protein (LRP)-5 or LRP-6 (Figure 1-6A) (273–

278). The formation of this ternary complex promotes the recruitment of Dishevelled (DVL) to the PDZ 

domain of FZD, leading to the phosphorylation of LRP5/6 and the recruitment and inhibition of the 

destruction complex to DVL and LRP5/6 (Figure 1-6A) (247, 279–281). Due to the inhibition of the 

destruction complex, β-catenin will begin to accumulate in the cytosol and will translocate into the nucleus 

to drive Wnt target gene expression as aforementioned (Figure 1-6A) (263–265). TcdB is predicted to 

disrupt canonical Wnt signaling by preventing Wnt ligands from binding the FZD CRD or by preventing 

interactions with the co-receptor LRP5/6, however the exact mechanism remains unclear (Figure 1-6B) 

(154, 161, 282). Finally, while TcdB utilizes clathrin-mediated endocytosis to intoxicate cells, there are 

reports that have shown that FZDs undergo caveolae-mediated endocytosis to mediate canonical Wnt 

signaling and clathrin-mediated endocytosis for non-canonical Wnt signaling (283–286). As endocytosis 

of FZD proteins are regulated by their signaling, it is difficult to predict how TcdB interactions with 

FZDs would stimulate endocytosis.  

Nectin-3 and its role in TcdB mediated cytotoxicity 

Nectin-3 is a member of the Nectin family (Nectin-1, -2, -3, -4) of adhesion proteins that regulate the 

formation of cell-to-cell junctions (287). As a component of adherens junctions, Nectins initiate the initial 

contacts between cells by forming homophilic (weak) and heterophilic (strong) interactions with other 

Nectin family members (Figure 1-7A) (288). The adhesive properties of Nectin-3 are mediated by its 

three ECDs that each contain immunoglobulin (Ig)-like folds (289) (Figure 1-7B). For Nectin-3, the D1 

subdomain facilitates homo- and heterophilic interactions with other Nectin molecules via its Ig-like folds 

(Figure 1-7B) (289). A non-Nectin protein that can interact with the extracellular domain of Nectin-3 is 

PDGFR⍺ (290). This interaction can reportedly suppress apoptosis by stabilizing PDGFR⍺	localization 

to the adherens junction, which results in sustained and robust PDGFR⍺ signaling (290). Nectin-3 is 

anchored to the plasma membrane through a cytosolic tail that contains an afadin binding motif—a 

conserved motif in Nectins that allow them to interact with the actin filament (F-actin) binding protein 

afadin (291, 292). Afadin is an adapter protein for Nectin molecules that allows Nectins to interact with 

the actin cytoskeleton (291, 292). The cytosolic tail of Nectin-3 can also interact with partitioning 

defective-3 (PAR-3), a protein that localizes to the tight junctions of cells to regulate cell polarity (293, 

294). Genetic deletion of Nectin-3 in mice results in the defective development of the auditory, visual,  
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Figure	1-7.	Nectin-3	mediates	the	formation	of	adherens	junctions.	

A) A cartoon model of the tight junction and adherens junction. The tight junction is located at the apical 
membrane and is formed by the junctional proteins JAMs, occludins, and claudins, and ZO-1 (not 
pictured). The adherens junctions are located below the tight junctions and are formed by Nectins and 
E-cadherin. The cartoon was made in Biorender. 

B)  A homophilic dimer of Nectin-3 (PDB ID 4FOM, 3.98 Å resolution, X-ray crystallography) showing 
the dimerization interface is mediated by the D1 subdomain. Carbohydrates representative of post-
translational modifications are shown as sticks. The subdomains are labeled above each Ig-like fold.  
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and reproductive systems but is not embryonic lethal (295–298). Within the intestines of mice, deletion 

of Nectin-3 does not cause any apparent defects in its development, structure, or function (299). 

Nonetheless, Nectin-3 is expressed by epithelial cells of the colon which suggests that Nectin-3 

interactions with TcdB may facilitate direct injuries to the colonic mucosa (299). 

TcdB has been shown to bind Nectin 3 with high affinity (KD = 17-53 nM). Knockout of Nectin-3 results 

in the reduction of TcdB-mediated cytotoxicity but does not affect the cytopathic response (156). The 

cytotoxic response of TcdB is a necrotic cell death response that is independent of the GTD and APD 

activities of TcdB but dependent on delivery domain-mediated pore-formation. It results from the over-

production of reactive oxygen species from a nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase (NOX) complex and is specific to TcdB concentrations greater than or equal to 100 pM (145, 

300–302) (Figure 1-8). While cytopathic responses mediated by TcdB will eventually result in apoptosis 

over a 24-48-hour period, necrotic cell death is a rapid cell death response that can occur within a few 

hours after exposure to TcdB (300–302). This response has been observed in a variety of conditions, 

including on human and porcine colonic explants (301, 302). Out of the four classes of TcdB receptors, 

only Nectin-3 and CSPG4 have been tested and shown to contribute to TcdB-dependent cytotoxic 

responses on tissue culture cells (155, 156). The role of FZD proteins and TFPI in mediating cytotoxicity 

are unknown. 

Research Objectives 

When I joined the Lacy Lab, I was interested in understanding and discovering cellular factors involved 

in mediating TcdB cytotoxicity and cytopathic responses. Mitch LaFrance, a former graduate student in 

the Lacy Lab, had identified Nectin-3 as a receptor involved in mediating TcdB cytotoxicity on epithelial 

cells (156). The only additional receptor for TcdB at the time that was known to mediated cytotoxicity 

was CSPG4, but its relevance was unclear as the protein was not expected to be expressed by colonic 

epithelial cells (155, 156, 203). Our model for how TcdB engaged receptors to cause disease was simple: 

Nectin-3 would mediate epithelial injury and CSPG4 would mediate injuries within the submucosa. Soon 

after joining the lab, however, another class of receptors was identified for TcdB, the FZD1/2/7 proteins 

(154). Importantly, knockout of FZD1/2/7 was shown to impact the cytopathic response. As knockout of 

Nectin-3 impacted the cytotoxic response, one model that we had considered to incorporate this discovery 

was that TcdB utilizes separate cytotoxic receptors and cytopathic receptors to injure the host. While this  
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Figure	1-8.	TcdB	cytotoxicity	is	mediated	by	necrotic	cell	death	

TcdB can induce necrotic cell death at concentrations greater than or equal to 100 pM. (1) CSPG4 and 
Nectin-3 are the two TcdB receptors that have shown to impact TcdB cytotoxicity. Upon binding these 
receptors, the TcdB is (2) endocytosed through clathrin-mediated endocytosis. (3) Through an unknown 
mechanism, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) complex, which 
is made of multiple proteins, is assembled (for simplification, the NOX complex is shown to be within 
the TcdB endosome, however, this may occur elsewhere). The NOX complex oxidizes NADPH into 
NADP+ to generate superoxide anion radicals. (4) Pore-formation mediated by the delivery domain of 
TcdB activates the NOX complex which results in the overproduction of reactive oxygen species that is 
toxic to the cell and ultimately ends in (5) necrotic cell death.  
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potential mechanism could still apply, our many attempts to identify TcdB residues involved in Nectin-3 

interactions were unsuccessful. However, one day, I decided to compare TcdB sequence variants to 

facilitate the discovery of potential residues involved in receptor interactions. While this did not yield 

anything interesting for putative Nectin-3 interactions, I noticed that many residues within the 

FZD1/2/7-CRD binding domain of TcdB1 were mutated in TcdB2. In Chapter II, I will discuss the 

importance of these mutations for Fzd interactions, showing that TcdB2 (referred to as TcdBRT027 at the 

time) is unable to inhibit canonical Wnt signaling and that the activities of TcdB2 are identical to that of 

TcdB1 (referred to as TcdBVPI) on host tissue. In Chapter III, I propose novel roles of CSPG4 and Nectin-

3 on epithelial cells of the intestines. I show that CSPG4 shed by fibroblasts can potentiate the activity of 

TcdB on colonic epithelial cells and provide supporting evidence that this process occurs in vivo in both 

humans and mice. I also show that Nectin-3 associates with microvilli on epithelial cells in addition to the 

cell junctions. By serendipitously discovering a cell line capable of visualizing TcdB, a historically 

challenging issue, I was also able to determine that both CSPG4 and Nectin-3 interact with TcdB on 

cells. Mechanistically, I propose that Nectin-3 interactions with TcdB on microvilli and shed CSPG4-

ECD interactions with TcdB along cell junctions will facilitate the intoxication of the colonic epithelium. 

In Chapter IV, I will discuss some final remarks, conclusions, and future directions. 
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Chapter 2  

 

TcdB From RT027 Clostridioides difficile Does Not Use Frizzleds as Receptors 
Adapted with permission: Mileto S.J.*, Jardé T.*, Childress K.O.*, Jensen J.L., Rogers A.P., Kerr G., Hutton 
M.L., Sheedlo M.J., Bloch S.C., Shupe J.A., Horvay K., Flores T., Engel R., Wilkins S., McMurrick P.J., Lacy 
D.B., Abud H.E., Lyras D. (2020) Clostridioides difficile infection damages colonic stem cells via TcdB, 
impairing epithelial repair and recovery from disease. Proceedings of the National Academy of Sciences. DOI: 
10.1073/pnas.1915255117 *Co-first authors 
 

Introduction 

Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. 

While intestinal stem cells are critical for this regeneration process, how they are impacted by enteric 

infections remains poorly defined (303, 304). This chapter is a modification of publication from a 

collaboration between the Lacy, Lyras, and Abud laboratories published in 2020 in PNAS. The overall 

goal of this collaboration was to investigate infection-mediated damage to the colonic stem cell 

compartment and how this affects epithelial repair and recovery from infection. I was particularly 

interested in the role of FZD receptor interactions with TcdB during CDI. Using the pathogen 

Clostridioides difficile, we show that infection disrupts murine intestinal cellular organization and 

integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-

mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their 

function during infection, which diminishes their ability to repair the injured epithelium, shown by altered 

stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from 

infected mice. With the aid of the Lyras and Abud labs, we show using both mouse and human colonic 

organoids that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit 

this dysfunctional stem cell state. Furthermore, I show that Frizzled interactions with TcdB are not 

required for cytotoxic responses on cells and pathologies in hosts.  
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Results 

Disease outcome during CDI is dictated by toxin titer and depth of colonic epithelium damage 

The changing epidemiology of CDI and diversity of strains, coupled with the heightened disease severity 

associated with ribotype (RT) 027, 017, 126 and 244 C. difficile strains, among others, has resulted in 

more CDI cases involving life-threatening complications and prolonged disease (305–310). Differences 

in disease severity are seemingly associated with C. difficile strains from different clades, however, how 

genetically diverse C. difficile strains affect the host, and particularly the stem cell compartment, during 

infection is poorly characterized (311, 312). Here, using a mouse model of CDI, we show that three 

genetically and geographically distinct RT027 strains (M7404, R20291 and DLL3109) and the RT003 

strain VPI10463 are capable of inducing severe and devastating colonic damage that penetrates deep into 

the epithelium, characterized by damage to the base of the colonic crypts, severe inflammation and edema 

(Figure 2-1a). Interestingly, infection with the prototypical C. difficile strain 630 (the PaLoc of which has 

99% sequence identity to VPI10463 PaLoc) and strain AI35, a naturally occurring TcdA-TcdB+CDT+ 

strain which encodes a variant TcdB, as well as strain JGS6133, a RT078 animal isolate, were unable to 

induce damage beyond the surface of the colonic epithelium (Figure 2-1a). Strains capable of producing 

increased amounts of toxin during infection were able to induce damage deep into the epithelium. We 

suggest that higher toxin production during infection damages the epithelium at a rate higher than normal 

cellular turnover or repair, leading to progressive damage through the mucosa, which can then reach the 

crypt base. Thus, it appears that the capacity for a strain to induce a collapse in intestinal integrity and 

expose cells deep within the colonic epithelium is critical to poor disease outcome in CDI. 

TcdB mediates severe intestinal damage, disrupting intestinal integrity and exposing stem cells deep 

within the colonic crypt to intoxication 

To gain a better understanding of the deep epithelial damage seen during CDI, we next focused on 

examining the disruption to tissue integrity over time during CDI. Junctional complexes, including tight-

junctions, adherens-junctions, desmosomes and gap-junctions, play an important role in maintaining 

epithelial integrity, and control the movement of molecules or microorganisms through the epithelial layer 

(313, 314). Several pathogens, including Clostridium perfringens and Helicobacter pylori, target intercellular 

junctions to penetrate deeper into the epithelium and exacerbate disease (314). Previous in vitro work has 

shown that TcdA and TcdB alter tight-junction permeability, however, toxin-mediated effects on  
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Figure	2-1.	C.	difficile	induces	severe	and	deep	epithelial	damage	through	TcdB	alterations	in	
adherens-junction	formation	and	cellular	polarity.	

a) Mice were infected with a panel of genetically distinct C. difficile isolates and monitored for disease 
severity and colonic damage through PAS/Alcian blue staining. Representative images of swiss-rolled 
colonic tissue are shown. The colonic mucosa (red bracket), and more specifically the crypts of 
Lieberkühn (red box), comprised of colonic epithelial cells and goblet cells (red circle), sit above the 
submucosa and muscle layers (yellow bracket) of the colon. Arrow=inflammation; Arrowhead=crypt 
damage/goblet cell loss; Asterisk=edema. n≥5; Scale Bar = 100µm (black). b-c) Colonic tissues were 
collected at 12, 24 and 48-hours post-infection with M7404 (WT), and the isogenic toxin mutants of 
this strain; TcdA-B+, TcdA+B-, and TcdA-B- C. difficile or from uninfected mice (48 hours). A 
representative image of tissues stained for b) β-catenin (Green) and E-cadherin (Red) (Merge=Yellow) 
or c) Ezrin (Green) is shown, with nuclei stained with DAPI (Blue). n≥5; Scale Bar = 50µm (white).  
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β-catenin/E-cadherin adherens-junctions have not been reported (89, 315, 316). Cellular polarity is also 

essential for intestinal integrity. Ezrin, an ERM protein, assists in linking trans-membrane proteins with 

the actin cytoskeleton and coordinating apical/basolateral receptor localization, among other functions in 

cytoskeletal stabilization and regulation (317). Ezrin also interacts with Rho-GTPases, which aid in actin 

cytoskeleton maintenance, and importantly, are the primary targets of TcdA/TcdB (318, 319). Thus, to 

analyze changes in intestinal integrity during CDI in more detail, mice were infected with either M7404 

(WT; RT027), which produces TcdA, TcdB and CDT, or an isogenic mutant strain lacking either TcdA 

(DLL3045, hereafter TcdA-B+), TcdB (DLL3101, hereafter TcdA+B-), or TcdA and TcdB (DLL3121, 

hereafter TcdA-B-) and euthanized at either 12, 24 or 48-hours post-infection, to track the progression of 

intestinal integrity collapse (106). At 12-hours post-infection, β-catenin/E-cadherin interactions and 

ezrin localization appeared intact and similar to those in uninfected tissues, regardless of the infecting 

strain (Figure 2-1b, c). At 24-hours, β-catenin/E-cadherin immunostaining remained unchanged (Figure 

2-1b), however, the apical distribution of ezrin in the colon was altered in mice infected with TcdB-

producing strains (Figure 2-1c). This loss of cellular polarity staining seemingly initiates the collapse in 

intestinal integrity that begins to expose the deeper regions of the colonic epithelium, since by the 48-

hour time point, mice infected with WT or TcdA-B+ strains displayed dramatic TcdB-mediated changes 

to both the adherens-junctions and cellular polarity (Figure 2-1b, c). Specifically, β-catenin/E-cadherin 

staining was severely disrupted, and ezrin was undetectable in tissues from mice infected with TcdB-

producing strains suggesting a collapse in adherens-junctions and cellular polarity of differentiated cells 

within the colonic epithelium, that would otherwise function to protect the stem cell compartment at the 

base of the crypt from intoxication (Figure 2-1b, c). By contrast, β-catenin/E-cadherin and ezrin 

localization were indistinguishable between uninfected mice and those infected with TcdA+B- or TcdA-

B- strains (Figure 2-1b, c), suggesting that TcdA and CDT do not play a role in altering the integrity of 

the intestinal barrier during CDI.  

RT027 TcdB induces stem cell damage in a Frizzled independent manner 

Since a number of TcdB receptors have previously been identified, we next examined their possible 

contributions to the disease phenotypes observed within the context of the infected gut. Recent work using 

purified TcdB together with cell lines and mice has identified FZD1/2/7 as potential TcdB receptors, 

however the contribution of these interactions to stem cell damage during CDI has not been reported 
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(154). Under normal conditions, expression of FZD1/2 in the colon is very low or undetectable, with 

increased expression seen in colonic cancers (320, 321). Importantly, as FZD7 is known to function as a 

WNT receptor in small-intestinal stem cells, it may function as a TcdB receptor in the colon (262, 322). 

As such, we wanted to confirm that FZD7 was expressed within the stem cell compartment of the colon. 

Using qPCR, we confirmed the expression of Fzd7 in colonic stem cells and immediate daughter cells 

from LGR5-GFP mice where stem and progenitor cells can be isolated by levels of GFP expression, and 

showed that Fzd7 is highly expressed in LGR5+ stem cells and decreased in expression in progeny cells, at 

a similar level to Lgr5 (Figure 2-2) (259). We also analyzed Lrp1 and Pvrl3 (NECTIN-3 hereafter) 

expression in colonic stem cells and daughter cells from LGR5-GFP mice, both of which are putative 

TcdB receptors, with expression levels similar to Lgr5 seen for each receptor, across all cell types (Figure 

2-2) (156, 159). Several attempts were also made to detect Cspg4 expression in both mouse colonic and 

small intestinal tissues, however, all were unsuccessful, suggesting that CSPG4 (another reported TcdB 

receptor) is unlikely to act as a TcdB receptor on mouse intestinal epithelial and stem cells since it is not 

expressed in these tissues (Figure 2-2) (155). Given the loss of stem cell function and reduced capacity to 

regenerate the colonic epithelium following RT027 TcdB-mediated intestinal assault, I further 

characterized the underlying mechanism of stem cell damage during CDI, and compared this to 

VPI10463 TcdB, which was also capable of inducing severe damage deep into the colonic mucosa in our 

in vivo modelling. As FZD7 is a well characterized WNT receptor, I expected that RT027 TcdB binding 

to FZD proteins on colonic stem cells would be responsible for the observed stem cell dysfunction in vivo 

(262). Strikingly, examination of the key residues for TcdB- FZD2 interaction identified in a crystal 

structure of the VPI10463 TcdB delivery domain bound to the FZD2-cysteine-rich domain (CRD) 

revealed that many of the TcdB contact residues are not conserved in the RT027 TcdB sequence from C. 

difficile M7404 (Figure 2-3a i), confirming recent observations regarding TcdB sequence variations in 

binding regions (161, 178). A phylogenic analysis of TcdB from annotated RT027 strains deposited onto 

the NCBI database revealed a complete clonal conservation of TcdB within RT027 strains, suggesting 

that these differences exist for all RT027 strains (Figure 2-4a). 

As these sequence differences may affect the binding affinity of TcdB for FZD, or any of the other 

reported receptors, Dr. Sheedlo, Dr. Jensen, and I purified TcdB toxins from VPI10463 (TcdB10463) 

(RT003; previously used to identify and characterize the CSPG4, FZD1/2/7, and NECTIN-3 receptors) 

and M7404 (TcdB027) and used microscale thermophoresis (MST) to determine the binding affinity of  
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Figure 2-2. Colonic stem cells and their daughter cells express TcdB receptors 

Colonic cells from adult LGR5-eGFP-IRES-CreERT2 mice were isolated, stained and sorted prior to 
RNA isolation and cDNA synthesis. qPCR was then used to quantify the expression levels of Lgr5, Fzd7, 
Lrp1 and Nectin3 in differentiated cells (LGR5-neg), progenitor cells (LGR5-low and LGR5 medium 
(med)), colonic stem cells (LGR5-high) and total epithelial cells. n=3. Data are represented as mean + 
S.E.M * p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001, **** p≤ 0.0001. See also, Figure 2-3. 

	  



44	

	

 



45	

	

Figure	2-3.	RT027	C.	difficile	TcdB	does	not	interact	with	FZD	receptors,	but	still	induces	
stem	cell	death	and	dysfunction	

a) i) An alignment of the FZD binding domain of TcdB10463 and TcdB027 with TcdB10463 contact residues 
(blue) and non-conserved TcdB027 residues (red). ii) MST binding curves of TcdB10463 (black), TcdB027 
(blue), and TcdB10463

GFE (red) to FZD2-CRD. The residuals with regards to the fit of the binding 
curve are depicted in the bottom panel (n=3). ND = not determined iii) TOPFlash assay performed in 
HEK293 STF cells incubated with 1:5 molar ratio of WNT3a and TcdB (n=4). iv) Mice were given 
50 µg of TcdB intrarectally and were sacrificed after 4 hours post intoxication. Descending colon from 
each mouse was collected and stained with H&E (n=5). b) Equal numbers of colonic crypts were 
isolated from uninfected mice and then exposed to toxin, with or without recombinant receptor prior 
to organoid seeding. i) Representative images of organoids (arrowhead) cultured from crypts incubated 
for four hours with 5 nM of TcdB10463 or 100 nM TcdB027. Blocking was conducted with 50nM or 
1000 nM, respectively, of either recombinant LGR5, FZD2, FZD7, CSPG4 or NECTIN-3 ii) with 
cell viability assessed via a PrestoBlue assay. n≥3. Data are represented as mean + S.E.M. * p≤ 0.05. ** 
p≤ 0.01, *** p≤ 0.001. Scale bars = 500 µm.  
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Figure	2-4.	TcdB027	does	not	bind	FZD	proteins,	but	still	induces	severe	colonic	damage.	

a) A phylogenetic tree was generated from an alignment of TcdB amino acid sequences from annotated 
C. difficile genomes deposited in NCBI. The blue shade highlights RT027 strains of C. difficile and 
reveals that these strains have identical TcdB sequences. b) Dose-response curves of TcdBs titrated 
against a 16-step serial dilution of i) FZD2-CRD, ii) NECTIN-3 and iii) CSPG4 titrated against 
serial dilutions of TcdBs. Curves were fitted to a one-site binding model to determine KD values (nM). 
The confidence intervals were calculated from three independent experiments in PALMIST using the 
variance-covariance method. iv) KD values between TcdBs and their receptors determined by MST. 
ND = not determined. c) Individual scoring of mice colon exposed for 4 hours with PBS or 50 µg TcdB 
as described by i) total histopathology, ii) epithelial injury, iii) edema, and iv) inflammation. v) 
Representative H&E images of tissue from mice injected with either PBS or 50 µg of TcdB. Scale bar 
= 100 µM. n=5. Data are represented as mean + S.E.M. p≤ 0.05, ** p≤ 0.01, One-way Kruskal-Wallis 
with Dunn’s post-hoc test for multiple comparisons.  
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each toxin to the purified ectodomains of CSPG4, FZD2-CRD, and NECTIN-3 (154–156, 159, 323). 

While the binding between TcdB10463 and FZD2-CRD could be reproducibly measured with a KD of 

36 nM, the interactions of FZD2-CRD with TcdB027 or TcdB10463GFE (a TcdB10463 mutant lacking 

residues required for FZD2 binding) were weak and did not permit the calculation of KD (161). The 

affinities of TcdB027 for CSPG4 and NECTIN-3 were similar to those with TcdB10463 suggesting that 

the amino acid differences at the FZD binding site do not prevent the interaction of TcdB027 with other 

reported receptors (Figure 2-3a i, Figure 2-4b). As FZD1/2/7 are identical in the residues that contact 

TcdB10463 these data suggest that TcdB027 does not interact with FZD1/2/7 but retains the capacity to 

interact with CSGP4 and NECTIN-3 (Figure 2-4b) (161). Although TcdB10463 was able to inhibit 

WNT-signaling in a TOP-Flash assay and TcdB027 and the FZD-binding mutant, TcdB10463GFE, 

could not (Figure 2-3a iii), our in vivo data indicate that TcdB027 is still capable of altering WNT-

signaling in vivo, likely as a consequence of inducing cell death at the crypt base, where the stem cell 

compartment resides. To further test this hypothesis, I used a rectal instillation mouse toxicity model with 

the help with J Shupe of the Lacy laboratory and found that there were no significant differences in 

histological scoring between toxins that could or could not interact with FZD as measured by injury, 

edema, and inflammation (Figure 2-3a iv, Figure 2-4c). These data indicate that TcdB can damage the 

colonic epithelium via receptors other than FZD and that there are likely multiple receptors that allow for 

TcdB entry into cells on the colonic epithelium, and more specifically colonic stem cells, altering their 

regenerative capacity. 

To further define the concentration at which TcdB10463 and TcdB027 induces murine stem cell death, we 

were able to perform a dose response from 0.5 nM to 10 nM for TcdB10463 and 1 nM to 100 nM for 

TcdB027 with the help of the Lyras and Abud laboratories (Figure 2-5a). Crypts from uninfected mice 

were isolated and intoxicated with purified TcdB10463 and TcdB027 toxins for 4 hours, before washing and 

using in organoid seeding. After 7 days, organoid viability was measured, to establish at what 

concentration each toxin could induce near complete stem cell death. These data indicated that 5 nM of 

TcdB10463 and 100 nM of TcdB027 were sufficient to induce a similar level of stem cell death, without 

complete ablation of organoid seeding, with organoid viability counts around 10% of that detected for 

untreated control organoids (Figure 2-5a). 
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Figure 2-5. TcdB10463 and TcdB027 can bind to cells in FZD dependent and independent mechanisms. 

a) Equal numbers of colonic crypts were isolated from uninfected mice and then exposed to a range of 
TcdB10463 and TcdB027 doses (0.5 – 10 nM and 1 – 100 nM, respectively) to identify a suitable dose for 
intoxication blocking experiments. b) Equal numbers of dissociated human colonic organoid cells were 
exposed to toxin, with or without recombinant receptor prior to organoid seeding. i) Representative 
images of organoids cultured from cells for four hours with 1 nM of TcdB10463 or 100 nM TcdB027. 
Blocking was conducted with 10nM or 1000 nM, respectively, of recombinant FZD7. n=3, scale bar = 
400 µM. ii) cell viability as assessed via a PrestoBlue assay.  c) Vero cells seeded at 104 cell/per well 
were cultured following a four-hour exposure to TcdB10463 and TcdB027 that was treated with either 
PBS, BSA, or recombinant receptor using a range of TcdB concentrations (1 pM, 0.5 pM and 0.25 
pM) in a ratio of 1:100 of toxin to added protein or left untreated (media alone). d) Hela and Caco-2 
cells seeded at 7.5 x 103 and 5 x 103 cells per well, respectively, were cultured following exposure to 
TcdB10463 (black), TcdB10463

GFE (dark grey), and TcdB027 (light grey) at a range of concentrations (0.1 
nM, 1 nM, 10 nM and 100 nM). Cell viability was measured using an ATP viability indicator 
(CellTiterGlo) at i) 2.5 hours of exposure on Hela cells or ii) 24 hours on Caco-2 cells. n = 3; Data are 
represented as mean + S.E.M. See also Figure 2-3. 
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To examine this differential receptor binding in the context of our in vivo infection data, colonic crypts 

from uninfected mice were isolated, and intoxicated with purified TcdB10463 and TcdB027 toxins (at 5 

nM and 100 nM, respectively) to induce crypt death. These crypts were also pre-treated with purified 

recombinant soluble CSPG4, FZD2, FZD7, NECTIN-3 and LGR5 (at 50 nM and 1000 nM for each 

respective toxin), for 30 minutes, and used in organoid seeding, to assess if stem cell intoxication could be 

prevented by blocking toxin binding. Only unintoxicated intestinal stem cells that survive will generate 

mature organoids. Thus, these assays serve as a functional readout of the potential for TcdB to kill stem 

cells and the ability of each purified receptor to prevent this. Treatment with each receptor alone did not 

significantly alter organoid seeding, with similar numbers of mature organoids in each control condition 

(Figure 2-3b). TcdB10463 and TcdB027 treatment alone induced crypt death, with a lack of viable 

organoids following intoxication, and little to no cell viability detected (Figure 2-3b).  

Pre-treatment with FZD2 and FZD7 blocked TcdB10463-mediated stem cell intoxication, indicated by 

increased mature organoid formation and cell viability at a significantly higher level than PBS treated 

TcdB10463-exposed crypts (p=0.0286; Figure 2-3b). However, soluble CSPG4, NECTIN-3 and LGR5 

had no effect in modifying TcdB10463 toxicity, and may reflect low cell surface expression levels of these 

alternate receptors (Figure 2-3b). As predicted, pre-treatment with FZD2 and FZD7 did not block 

TcdB027-mediated stem cell intoxication, indicated by the similar levels of mature colonic organoids and 

cell viability between the FZD2/7 treated and PBS treated TcdB027-exposed groups (Figure 2-3b). 

Furthermore, soluble CSPG4, NECTIN-3 and LGR5 also had no effect in modifying TcdB027 toxicity, 

and as such, TcdB027 may bind to a previously unknown receptor on colonic stem cells. Similar blocking 

experiments were performed on human colonic organoids, indicating that FZD7 can prevent TcdB10463 

but not TcdB027 intoxication of colonic stem cells, evidenced by a significant increase in organoid viability 

and organoid numbers in FZD7 treated TcdB10463 intoxicated stem cells (p=0.0021; Figure 2-5b). 

However, similar assays performed on Vero cells indicated that despite being protective in organoid 

culture, FZD7 could not prevent TcdB10463-mediated Vero cell rounding, with levels of cell rounding 

consistent across all test conditions (Figure 2-5c). I also measured the toxicity of TcdB10463, 

TcdB10463GFE and TcdB027-in HeLa and Caco-2 cells, two cell lines that differ in their receptor 

profiles. HeLa cells are known to express high levels of CSPG4 but low levels of FZD1/2/7, and can differ 

in whether or not NECTIN-3 is present (323). Caco-2 cells express NECTIN-3 and low levels of 

FZD1/2/7 but have little to no CSPG4 (323). Cells were treated with 0.1, 1, 10, and 100 nM of each 



51	

	

toxin, assessing viability after 2.5 hours (HeLa) or 24 hours (Caco-2). In HeLa cells, all of the toxins are 

equally active in the presence of the shared HeLa-dominant receptor CSPG4, implying that interaction 

with FZD1/2/7 is not required for this toxicity (Figure 2-5d i). In contrast, TcdB10463 had significantly 

higher cytotoxicity than TcdB10463GFE and TcdB027 in Caco-2 cells that correlated with the capacity 

to bind FZD1/2/7, evidenced by cells treated with TcdB10463GFE and TcdB027 exhibiting an increased 

viability over the concentration range of 0.1 nM to 10 nM TcdB (p<0.05; Fig. 2-5d ii). Taken together, 

our data indicate TcdB027 is able to induce stem cell death during infection but this does not result from 

binding to FZD. Additionally, these observations appear to be relevant in both human and mouse colonic 

stem cells. 

Discussion  

Although multiple receptors have been identified to interact with TcdB, little is known of their 

contributions to disease during infection. Through a successful collaboration with the Lyras and Abud 

laboratories from Monash University, we show that FZD interactions with TcdB are dispensable for 

mediating epithelial injuries and severe disease during CDI. These collaborations were necessary as the 

Lacy laboratory did have the capabilities of easily performing C. difficile infections at the time, and thus 

our collaboration with the Lyras laboratory allowed us to investigate CDI. Dena Lyras in turn introduced 

us to the Abud laboratory and convinced us to utilize and test the activities of TcdB on human and mouse 

derived organoids.  

While the primary mechanism is unknown, I found that TcdB from our tested RT027 strain (R20291) 

does not interact with FZD proteins (Figure 2-3a ii). I predict that this loss of interaction is mediated by 

mutations within the FZD binding interface (Figure 2-3a i). Interestingly, I found that this loss of 

interaction does not impact the potency of TcdB on HeLa cells (Figure 2-5d i) and intestinal epithelial 

cells in vivo (Figure 2-3a iv). Furthermore, C. difficile that produces only TcdB from RT027 is still capable 

of inducing severe disease in the mouse model of CDI (Figure 2-1a). Mechanistically, this can be 

explained by the possibility that TcdB can utilize receptors other than FZDs for mediating epithelial 

injuries. While we were unable to block the activity of TcdB RT027 with Nectin-3 on organoids, I found, 

with the aid of my fellow lab member Dr. Jaime Jensen and Dr. Sheedlo, that TcdB RT027 is capable of 

interacting with Nectin-3 with nanomolar affinities (Figure 2-4b ii). Therefore, it is possible that TcdB 

RT027 can interact with Nectin-3 on the intestinal mucosa to mediate intestinal injuries. The lack of 
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neutralization of TcdB RT027 with Nectin-3 ectodomain can potentially be explained by (1) a fast 

dissociation of the Nectin-3:TcdB RT027 complex in solution and (2) the ability of this complex to 

interact with an alternative unknown receptor.  

Another implication of these findings is the possibility the C. difficile toxins display receptor tropism 

between its clades. Receptor tropism has been observed in toxins such as S. aureus leukocidin, Salmonella 

typhoid toxin, and Clostridium botulinum neurotoxins to promote tissue and host specificity (324–326). It 

is possible that some strains of C. difficile utilize FZDs as receptors in specific hosts to mediate epithelial 

injuries. C. difficile can infect a variety of hosts, including humans, mice, hamsters, dogs, rabbits, chickens, 

pigs, and horses (327). Thus, C. difficile TcdB may have evolved interactions with FZDs to allow it to 

intoxicate colonic tissue in hosts where its primary receptor is absent. The attenuation of TcdB RT027 

activity relative to TcdB VPI10463 on Caco-2 cells (Figure 2-5d ii) but not on HeLa cells (Figure 2-5d 

i) supports this hypothesis. Interestingly, sequence typing has revealed the existence of five TcdB clades 

(109, 176). Future studies are needed to determine if receptor tropism and potency differ across TcdB 

clades.  

Materials and Methods 

Bacterial strains, growth conditions, cell lines and reagents 

C. difficile strains (Table 2-1) were cultured on HIS-T agar (heart infusion (HI) (Oxoid) supplemented 

with 1.5% glucose, 0.1% (w/v) L-cysteine, 1.5% (w/v) agar and 0.1% (w/v) sodium taurocholate (New 

Zealand Pharmaceuticals)), prior to inoculation into 500 mL Tryptone Yeast (TY) broth (3% tryptone 

(Oxoid), 2% yeast extract (Oxoid) and 0.1% sodium thioglycolate (Sigma-Aldrich)) and grown for seven 

days anaerobically at 37°C. Spores were harvested by centrifugation at 10,000 g for 20 minutes at 4°C, 

washed eight times with chilled dH2O and resuspended in Phosphate Buffered Saline (PBS) containing 

0.05% Tween-80 (PBS-T) prior to heat-shocking at 65°C for 20 minutes.  

Recombinant protein cloning, expression and purification. 

Site directed mutagenesis was used to generate VPI10463 TcdBGFE (pBL881) in pHis1622-VPI10463-

TcdB-C-term-8X-His (pBL377) with primers F-GAAAGTATGAATATAAAAAGTATTTTCGGATTCGA-

GAATATTAAGTTTATA and R-CTTATTATAAAATTAGCATCTAATATAAACTTAATATTCTCGAATCC-

GAAAATACTTTTTAT. pHis1622-M7404-TcdB-C-term-6X-His plasmid (pBL598) was a gift from Dr. 
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J. Ballard (University of Oklahoma Health Sciences Center). Recombinant TcdB proteins were expressed 

in Bacillus megaterium and purified as previously described (328).  

PNGase F expression vector pOPH6 (pBL831) was a gift from Shaun Lott (Addgene plasmid # 40315). 

pOPH6 was transformed into E. coli BL21 DE3 cells. Overnight cultures were prepared in 5 mL Luria 

Broth (LB) at 37°C and inoculated into 250 mL LB the following day. This culture was shaken at 220 

rpm at 37°C and grown to an OD600 of 0.6. Expression of PNGase F was induced with 0.25 mM IPTG, 

followed by an overnight incubation at 18°C. PNGase F was purified as outlined (329).  

FZD2-CRD (residues 24-156), CSPG4 (residues 400-764), and NECTIN-3 (residues 58-302) DNA 

was cloned into pCDNA3.4 with an N-terminal human serum albumin secretion peptide 

(MKWVTFISLLFLFSSAYS) and a C-terminal TEV protease site and 6X-His tag (Thermo Fisher 

Scientific) to generate the plasmids pBL808, pBL790, and pBL787 respectively. The receptors were 

expressed in ExpiCHO cells (Thermo Fisher Scientific) in 25 mL according to the manufacturer’s 

protocol. ExpiCHO supernatant was collected, and receptors were purified using cobalt-nitriloacetic acid 

resin (GE) and concentrated to 1 mL using 3 kDa or 10 kDa molecular weight cutoff filters 

(MilliporeSigma). FZD2-CRD and CSPG4 were treated with a 1:10 molar ratio of PNGaseF to receptor 

for 16 hours at 37°C. The receptors were further purified using size exclusion chromatography with an S-

75 column. The receptors were stored in 20 mM HEPES pH 8.0, 100 mM NaCl.  

Microscale Thermophoresis  

Microscale thermophoresis (MST) experiments were performed on a NanoTemper Monolith NT.115 

(NanoTemper Technologies GmbH, Munich, Germany). VPI TcdB10463, TcdB027, VPI TcdB10463
GFE, 

FZD2-CRD, CSPG4, and NECTIN-3 were equilibrated prior to labelling with size exclusion 

chromatography using either a Superdex 200 10/300 or Superdex 75 10/300 column (GE) with 20 mM 

HEPES pH 8.0, 100 mM NaCl. Toxins, CSPG4, and NECTIN-3 were labelled with the Monolith NT 

His-tag Labelling Kit RED-tris-NTA, following the manufacturer’s instructions. TcdB or receptor 

concentration was held constant at 50 nM. Serial dilutions of FZD2-CRD or TcdB were prepared using 

a 1:1 dilution from 3-10 µM to 90-300 pM in 20 mM HEPES pH 8.0, 100 mM NaCl, 0.05% Tween-

20, and protease inhibitor cocktail for His-tagged proteins (Sigma). Samples were loaded into Monolith 

NT.115 capillaries (NanoTemper), and measurements carried out at 21°C with 40% MST power and 60% 

excitation power. MO.Control v1.6 was used for data collection, and MO.Affinity Analysis v2.3 and 
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PALMIST were used for data analysis (330). The KD constants were calculated in PALMIST utilizing 

the saturation binding curve at equilibrium.  

Animal model of C. difficile infection 

Animal handling and experimentation was performed according to Victorian State Government 

regulations, approved by the Monash University Animal Ethics Committee (Monash University AEC no. 

SOBSB/M/2010/25 and MARP/2014/135). Time-course animal infections were conducted using the 

Monash mouse model of CDI as previously described with the following modifications (106, 331). Three 

days prior to infection, at the completion of the seven day antibiotic cocktail pre-treatment described 

previously, mice were switched to water containing cefaclor (300 µg/mL), ad libitum, and returned to 

untreated water on the day of infection (106, 331). Male, six to eight week old, C57BL/6J mice (Walter 

and Eliza Hall Institute of Medical Research) were challenged with 106 spores of a single strain of C. 

difficile by gastric inoculation and were monitored twice daily as described previously for disease signs 

(including weight loss, behavioral changes and diarrhea) (106). For the time course of infection 

experiments, mice were euthanized at either 12, 24 or 48-hours post-infection or upon reaching the 

following endpoints for the genetically diverse strains comparison: acute weight loss of greater than 10% 

relative to the day of infection (day zero) in the first 24-hours or chronic weight loss of greater than 15% 

relative to day zero thereafter, or on animals becoming moribund, showing low activity, labored breathing, 

severe diarrhea, and a scruffy coat. For the recovery model of infection, mice that reached a weight loss of 

greater than 10% relative to the day of infection but less than 15% relative to day zero at the peak of 

infection (48-hours) were allowed to recover for either 7 days or 14 days before being euthanized. Fecal 

pellets were collected from all animals and resuspended at 100 mg/mL in sterile PBS before culturing on 

supplemented Heart Infusion agar, as previously described (331). Weight loss relative to day zero (D0) 

was plotted for each group/time-point and analyzed with Graph Pad Prism 7 using a one-way ANOVA 

and Tukey’s test. For the panel of clinical and animal C. difficile strains, feces collected at 24 hours post 

infection was further diluted to 50 mg/ml in PBS. The diluted feces were used to determine toxin levels 

within the infected mice. To do this, these preparations were filter sterilized using 0.45 µm and 0.22 µm 

filters (Sartorius) and two-fold serial dilutions of the fecal supernatants were prepared in Minimal 

Essential Medium (MEM) α (Gibco, ThermoFisher Scientific) or McCoy’s 5A (modified) Medium 

(Gibco, ThermoFisher Scientific) supplemented with 1% (v/v) heat inactivated fetal calf serum (HI-FCS). 
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Vero and HT-29 cells were cultured and prepared as previously described (101). Cells were seeded in 96-

well plates at 1 x 104 cells/well, and incubated for 24 hours at 37°C in 5% CO2 prior to exposing these 

cells to the filtered fecal content. All conditions were prepared in technical duplicated and at least four 

biological replicates. Morphological changes were observed after 18 hours using an Olympus 1X71 

inverted microscope at 20x magnification. The toxin titre was evaluated as the final dilution at with 100% 

cell rounding, in comparison to the negative control wells, and was scored before analyzing with Graph 

Pad Prism 7 using a Mann-Whitney U test. 

Four micron sections of formalin fixed (10% neutral buffered), Swiss-rolled colon and caecum were 

periodic acid–Schiff/Alcian blue stained by the Monash Histology Platform and assessed using a 

previously described scoring system (106). Stained sections were scanned for visualization using an Aperio 

Scanscope AT Turbo, at 20x magnification. For recovery mice, crypt length was measured for 30 

crypts/mouse at equal points across the entire length of the colon, using the measure tool within Aperio 

ImageScope. All histopathological analysis was performed blind and analyzed with Graph Pad Prism 7 

using a Mann-Whitney U test. 

Animal model of C. difficile intoxication 

All mouse experiments were approved by Vanderbilt Institutional Animal Care and Use Committee 

(IACUC). Female, five to eight-week old C57BL/6 mice (Jackson Laboratories) were housed five to a 

cage with free access to food and water. After a four-day acclimation period, mice were switched to water 

containing cefoperazone (500 µg/mL) for five days, with changes every 48-hours. After five days, 

cefoperazone treated water was switched back to untreated water and a 48-hour recovery period was 

allowed before being intoxicated with a 200 µL volume of 50 µg TcdB (VPI10463, VPI10463 GFE, or 

027) or PBS as a control.   

For the intoxication procedure, mice were anesthetized with isoflurane. A 21 gauge flexible gavage was 

inserted approximately 2 cm in via the rectum and each condition was slowly administered. Rectal pressure 

was applied for 30 seconds to prevent immediate leakage, and mice were placed in a clean cage to recover. 

After four hours, the mice were euthanized by CO2 gas, the abdomens were opened up, and colons 

extracted. Each colon was flushed with PBS, Swiss-rolled, and fixed in 10% formalin. After embedding 

in paraffin, the colonic tissue was sliced, mounted to a microscope slide, and stained with H&E by the 
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Translational Pathology Shared Resource (TPSR) center at Vanderbilt University Medical Center. The 

tissue was then scored for edema, inflammation, and epithelial injury as previously described by a 

pathologist blinded to the experimental conditions (332). 

Immunohistochemistry and Immunofluorescence analysis 

Paraffin-embedded colonic tissues were processed using standard procedures. Slides were de-waxed and 

antigen retrieval was performed using 10 mM citrate (Sigma-Aldrich) buffer, with 0.05% Tween-20 

(Amresco), pH 6.0. Slides were blocked for 60 minutes with CAS-Block™ (Thermo-Fisher Scientific) at 

room temperature. For immunofluorescence staining, slides were incubated with either mouse anti-ezrin 

(Thermo-Fisher Scientific; 1:200 dilution in 1% Bovine serum albumin (BSA; Sigma Aldrich) in PBS) 

or mouse anti-β-catenin (BD; 1:200 dilution in 1% BSA) and rabbit anti-E-cadherin (Cell Signaling; 

1:200 dilution in 1% BSA) overnight at 4°C. Slides were rinsed three times in PBS before incubation with 

secondary antibodies for 60 minutes at room temperature. For ezrin and β-catenin, goat anti-mouse IgG, 

Alexa Fluor® 488 (Thermo-Fisher Scientific; 1:1000 dilution in 1% BSA) was used, for E-cadherin goat 

anti-rabbit IgG, Alexa Fluor® 568 (Thermo-Fisher Scientific; 1:1000 dilution in 1% BSA) was used. 

Slides were washed three times in PBS before staining the nuclei with DAPI (300 nM, Thermo Fisher). 

Slides were mounted with ProLong® Gold (Thermo Fisher), sealed and imaged using a Leica SP8 

Confocal Invert microscope on a 20x/1.0 oil objective with LasX Software (Leica).  

Colonic stem cell sorting and quantitative PCR for stem cell and TcdB receptors 

Mouse colonic crypt isolation and organoid establishment were based on protocols previously described 

(333–335). Intact, dissected colons from adult LGR5-eGFP-IRES-CreERT2 mice (a pool of 10 colons 

was used per biological replicate) were flushed with 50 mL of cold PBS to remove luminal contents, cut 

longitudinally and scraped with a glass cover slip to remove epithelial fragments, mucus and feces (259). 

Colons were cut into 5 mm pieces and washed in cold PBS before digestion with 4 mM EDTA. To isolate 

crypts, the tissue fragments were vigorously suspended in cold PBS using a 10 mL pipette. This procedure 

was repeated a total of three times. Crypts were pelleted by centrifugation at 240 g for five minutes, at 

4°C. The collected crypts were then dissociated in TrypLE Express (Invitrogen) supplemented with 10 

µM Y-27632 Rock inhibitor (Abcam) and DNAse 1 (Sigma-Aldrich) for four minutes at 37°C. Cell 

clumps and mucus were removed using a 70 µm cell strainer (BD Biosciences). The remaining dissociated 

cells were washed twice with PBS and collected by centrifugation at 4°C at 240 g for five minutes. 
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Antibody labelling step as well as the final resuspension of the sample were performed with PBS 

supplemented with 2 mM EDTA, 2% FBS and 10 µM Y-27632 Rock inhibitor. As previously described, 

cellularized crypts were incubated with anti-CD31-BV510 (1:200, clone: MEC 13.3, BD Horizon), anti-

CD45-BV510 (1:200, clone: 30-F11, BD Horizon) and anti-CD24-PeCy7 (1:100, clone: M1/69, 

eBioscience) antibodies in a 500 µL volume for 15 minutes on ice (334). After washing twice with PBS, 

the cells were resuspended in a final volume of 1 mL, passed through a 70 µm strainer and transferred into 

appropriate FACS tubes containing propidium idodine (PI) at a concentration of 2 µg/mL. Cell sorting 

was carried out with a 100 µm nozzle on an Influx instrument (BD Biosciences). Aggregates, debris, dead 

cells (PI+), and CD45+/CD31+ hematopoietic/endothelial contaminates were depleted. For the LGR5-

GFPhigh cell population, around 2% of the CD24+ LGR5-GFP brightest cells were selected. The 

subsequent 2% of the CD24+ LGR5-GFP+ cells were considered as LGR5-GFPmed and LGR5-

GFPlow cell populations. A fully differentiated cell population, identified as CD24- LGR5-, was also 

isolated. Purity of collected fractions was confirmed by reanalysis of a small fraction of the sorted cells.  

Following FACS, cells were centrifuged at 240 g for five minutes at 4°C and resuspended in RLT buffer. 

RNA was then extracted using the Qiagen RNeasy Microkit following the manufacturer's instructions, 

and used to synthesize cDNA, using a QuantiTect Reverse Transcription kit (Qiagen), using 70 ng of 

RNA. The cDNA was quantified using the QIAExpert prior to dilution for use in quantitative PCR 

(qPCR). The qPCR was conducted as previously described, normalizing to β-2-microglobulin (B2m) and 

β-actin (Actb), using the corresponding forward and reverse primers: Actb, F-

TGTTACCAACTGGGACGACA, R-GGGGTGTTGAAGGTCTCAAA; B2m, F-

CTTTCTGGTGCTTGTCTCACTG, R-AGCATTTGGATTTCAATGTGAG; Cspg4, F-

CCTGGTAGGCTGCATAGAAGAT, R-CCAGGGTGGAGAAAGTTTCATA; Fzd7, F-

AGAGATTTGGGGCGAGAGAT, R-CAGTTAGCATCGTCCTGCAA; Lgr5, F-

CCTTGGCCCTGAACAAAATA, R-ATTTCTTTCCCAGGGAGTGG; Lrp1, F-

GACCAGGTGTTGGACACAGATG, R-AGTCGTTGTCTCCGTCACACTTC; Nectin3, F-

TTGCCCTTTCCTTTGTCAAC, R-GCATGTCTGATGGTGGAATG (336). 

RNA extraction, cDNA preparation and digital droplet PCR-analysis 

Colonic tissues collected from infected mice were placed in RNAlater™ (Ambion) prior to RNA 

extraction. The tissues were then homogenized and total RNA was extracted using the RNeasy mini kit 



58	

	

(Qiagen). One microgram of RNA was used for cDNA synthesis using a QuantiTect Reverse 

Transcription kit (Qiagen). The cDNA was quantified using the QIAExpert prior to dilution for use in 

digital droplet PCR (ddPCR). The ddPCR was conducted as previously described, normalizing to β-2-

microglobulin (B2m), using the corresponding forward and reverse primers, as follows:  

Ascl2, F-CAGGAGCTGCTTGACTTTTCCA, R-GGGCTAGAAGCAGGTAGGTCCA; Axin1, 

F-GCAGCTCAGCAAAAAGGGAAAT, R-TACATGGGGAGCACTGTCTCGT; B2m, F-

CTTTCTGGTGCTTGTCTCACTG, R-AGCATTTGGATTTCAATGTGAG; Bmi1, F-

ATGCATCGAACAACCAGAATC, R-GTCTGGTTTTGTGAACCTGGA; c-myc, F-

CTAGTGCTGCATGAGGAGACAC, R-GTAGTTGTGCTGGTGAGTGGAG; Ephb2, F-

AGAATGGTGCCATCTTCCAG, R-GCACATCCACTTCTTCAGCA; Fzd7, F-

AGAGATTTGGGGCGAGAGAT, R-CAGTTAGCATCGTCCTGCAA; Lgr5, F-

CCTTGGCCCTGAACAAAATA, R-ATTTCTTTCCCAGGGAGTGG (336). 

Following this, ddPCR was performed using 2x QX200 ddPCR EvaGreen Supermix (Bio-Rad), and 100 

nM of each corresponding forward and reverse primer, as above. For each PCR reaction variable quantities 

of template cDNA were used (target gene dependent), with each reaction being performed in a final 

volume of 25 µL. From this, 20 µL was added to a DG8™ Cartridge for droplet generation using QX200 

Droplet Generation Oil for EvaGreen (Bio-Rad). The generated droplets were transferred to a 96-well 

PCR-plate (Eppendorf) and subjected to thermo-cycling as previously described (336). Transcript levels 

were quantified and adjusted to copies per 10 µg of cDNA before normalizing to the housekeeping gene 

B2m. The adjusted transcript levels were plotted as a fold-change relative to uninfected using GraphPad 

Prism 7, with statistical significance assessed using a Mann Whitney U test. 

Growth of murine colonic-organoids from C. difficile infected mice 

Mouse colonic crypt isolation and organoid establishment were based on protocols previously 

described(333, 334). Intact, dissected colons from C57BL/6J mice (MARP) were flushed and scraped, as 

above. Colons were cut into 5 mm pieces and washed in cold PBS before digestion with 4 mM EDTA. 

Crypts were isolated from the tissues through vigorous re-suspension in cold PBS using a 10 mL pipette. 

This procedure was repeated a total of three times. Crypts were pelleted by centrifugation at 240 g for five 

minutes, at 4°C. The crypt pellet was resuspended in PBS, passed through a 70 µm cell strainer (BD) and 
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centrifuged. The supernatant was discarded and the pellet containing the crypts was resuspended in 

matrigel (BD). Equal numbers of crypts in matrigel were seeded into each well of a 48-well plate (Nunc) 

and incubated for 10 minutes at 37°C until solidified. Crypt culture media (DMEM/F12 supplemented 

with B27 (Gibco), Glutamax (Gibco), N2 (Gibco), 10 mM HEPES (Gibco), Fungizone (Gibco), 

50 ng/mL EGF (Peprotech), 100 ng/mL Noggin (Peprotech), penicillin/streptomycin (Gibco), 2.5 µM 

CHIR99021 (Bioscientific), 10 µM Y-27632 Rock inhibitor (Abcam), 10% R-spondin 1 conditioned 

media, and 50% WNT3a conditioned media) was added to each well. Organoid forming ability was 

assessed using the reazurin-based PrestoBlue reagent (Life Technologies), as previously described (336). 

Cell viability was measured according to the manufacturer’s instructions and organoids were imaged using 

an EVOS FL Auto Cell Imaging System (Invitrogen). Viability was plotted using GraphPad Prism 7, 

with statistical significance assessed using a Mann Whitney U test. 

TOPFlash assay  

500,000 HEK 293 STF cells were seeded in a 12 well dish for 18 hours. The media was then replaced 

with 1 mL of pre-warmed media with or without combinations of 1:5 molar ratio of human WNT3a (100 

ng/mL, 2.67 nM, StemRD) to toxin (13.35 nM) for 20 hours. Following the incubation, the media was 

removed and cells were lysed in 110 µL of Passive Lysis Buffer (Promega) for 15 minutes while shaking. 

The solubilized supernatant was collected and immediately used for the determination of the TOPFlash 

luciferase activities with the Steady-Glo Luciferase assay (Promega) and CellTiter Glo (Promega). 

Treatment of colonic crypts with purified toxins and receptor-blocking proteins, and assessment of 

organoid formation  

Colonic crypts were isolated from C57BL/6J mouse tissues as described previously. The crypt pellets were 

resuspended in PBS containing 1% fetal bovine serum (FBS) and supplemented with 5 nM purified 

VPI10463TcdB (Abcam) or 100 nM purified RT-027 TcdB. Blocking of toxin variants was conducted 

with respectively 50 nM or 1000 nM of either recombinant human FZD2 (see above), recombinant 

human FZD7 Fc chimera (R&D Systems), recombinant human CSPG4 (see above), recombinant human 

NECTIN-3 (see above), recombinant human LGR5 Fc chimera (R&D Systems). After four hours at 

4°C, the crypt pellets were washed twice with PBS and resuspended in Matrigel (BD), and 12 µL were 

seeded into each well of a 48-well plate (Nunc) and incubated for 10 minutes at 37°C until solidified. The 

crypt culture media described above was added to each well. After 3 days, the medium was replaced with 
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fresh culture medium without Y-27632 Rock inhibitor. After four days in culture, cell viability was 

measured using the PrestoBlue reagent (Life Technologies) and imaged using an EVOS FL Auto Cell 

Imaging System (Invitrogen). Viability was plotted using GraphPad Prism 7, with statistical significance 

assessed using a Mann Whitney U test. 

Treatment of colonic crypts with purified toxins and receptor-blocking proteins, and assessment of 

organoid formation  

Colonic crypts were isolated from C57BL/6J mouse tissues as described previously. The crypt pellets were 

resuspended in PBS containing 1% FBS and supplemented with 5 nM purified VPI10463TcdB (Abcam) 

or 100 nM purified RT-027 TcdB. Blocking of toxin variants was conducted with respectively 50 nM or 

1000 nM of either recombinant human FZD2 (see above), recombinant human FZD7 Fc chimera (R&D 

Systems), recombinant human CSPG4 (see above), recombinant human NECTIN-3 (see above), 

recombinant human LGR5 Fc chimera (R&D Systems). After four hours at 4°C, the crypt pellets were 

washed twice with PBS and resuspended in Matrigel (BD), and 12 µL were seeded into each well of a 48-

well plate (Nunc) and incubated for 10 minutes at 37°C until solidified. The crypt culture media described 

above was added to each well. After 3 days, the medium was replaced with fresh culture medium without 

Y-27632 Rock inhibitor. After four days in culture, cell viability was measured using the PrestoBlue 

reagent (Life Technologies) and imaged using an EVOS FL Auto Cell Imaging System (Invitrogen). 

Viability was plotted using GraphPad Prism 7, with statistical significance assessed using a Mann Whitney 

U test. 

Treatment of human colonic-organoids with C. difficile TcdB 

Surgically resected normal colon samples were obtained following written informed consent from four 

patients at Cabrini hospital, Malvern, Australia. This study was approved by the Cabrini Human Research 

Ethics Committee (CHREC 04-19-01-15) and the Monash Human Research Ethics committee 

(MHREC ID 2518 CF15/332-2015000160). Patient recruitment was led by the colorectal surgeons in 

the Cabrini Monash University Department of Surgery. Tissue was washed and underlying muscle layers 

were removed with surgical scissors. Tissue was cut into 5 mm pieces and washed eight times in cold 

chelation buffer (distilled water with 5.6 mM/L Na2HPO4, 8.0 mM/L KH2PO4, 96.2 mM/L NaCl, 

1.6 mM/L KCl, 43.4 mM/L sucrose, 54.9 mM/L D-sorbitol). Following incubation for 45 minutes at 

4°C in 4 mM EDTA in chelation buffer, intestinal crypts were released from colonic tissue fragments by 
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mechanically pipetting them with a 10 mL pipette in PBS as above. This procedure was repeated a total 

of three times. Crypts were pelleted by centrifugation at 240g for 5 minutes, at 4°C. The crypt pellet was 

resuspended in PBS, passed through a 100 µm cell strainer and centrifuged. The supernatant was discarded 

and the pellet containing the crypts was resuspended in matrigel (BD). Matrigel was seeded into each well 

of a 48 well plate and incubated until solidified. Crypt culture media (advanced DMEM/F12 

supplemented with B27 (Gibco), Glutamax (Gibco), N2 (Gibco), 10 mM HEPES (Gibco), 100 µg/mL 

Primocin (InvivoGen), 100 ng/mL Noggin (Peprotech), 50 ng/ml EGF (Peprotech), 10 nM Gastrin 

(Sigma Aldrich), 500 nM A83-01 (Torcis), 10 µM SB2002190 (Sigma Aldrich), 2.5 µM CHIR99021 

(Bioscientific), 10% R-spondin 1 conditioned media, and 50% Wnt3a conditioned media) was added to 

each well. Ten micromoles of Y-27632 dihydrochloride kinase inhibitor (Torcis) was added after initial 

seeding for two days. 

After the establishment of four human colonic-organoid lines, organoids were dissociated using TrypLE 

Express enzyme (Life technology). After dissociation, cells were pelleted and were resuspended in PBS 

containing 1% FBS and supplemented with 1 nM purified VPI10463 TcdB (Abcam) or 100 nM purified 

RT-027 TcdB. Blocking of toxin variants was conducted with 10 nM or 1000 nM of recombinant human 

FZD7 (R&D Systems), respectively. After four hours at 4°C, the cells were washed twice with PBS and 

resuspended in Matrigel (BD), and re-seeded into 48 well plates. Organoids were cultured in crypt culture 

media for eight days before imaging using an EVOS FL Auto Cell Imaging System (Invitrogen). 

Additionally, cell viability was measured using the PrestoBlue reagent (Life Technologies). The 

experiments were performed in technical triplicate, per organoid line. Viability was plotted using 

GraphPad Prism 7, with statistical significance assessed using a One-way ANOVA and Tukey’s multiple 

comparisons test. 

Treatment of Vero cells with C. difficile TcdB 

Vero cells were cultured and prepared as previously described (101). Cells were seeded in 96-well plates 

at 1 x 104 cells/well, and incubated for 24 hours at 37°C in 5% CO2. Purified TcdB from strain VPI10463 

(Abcam) or purified RT-027 TcdB was diluted in MEM-α containing 1% (v/v) FCS to concentrations 

of 1 pM, 0.5 pM, and 0.25 pM. Toxin preparations were incubated for 30 minutes on ice with either 

recombinant human FZD2 (see above), recombinant human FZD7 Fc chimera (R&D Systems), 

recombinant human CSPG4 (see above), recombinant human NECTIN-3 (see above), recombinant 
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human LGR5 Fc chimera (R&D Systems) or Bovine Serum Albumin (Sigma) each at concentrations of 

100 pM, 50 pM, or 25 pM, to give a final ratio of 1:100 toxin:recombinant protein. The toxin or 

toxin/recombinant protein complexes were added to the Vero cells (100 µL/well) and incubated for four 

hours prior to removal, rinsing with PBS and replacement with fresh media. Cells treated with media 

alone were used as negative controls. All conditions were prepared in technical and biological triplicate. 

Morphological changes were observed after 18 hours using an Olympus 1X71 inverted microscope at 20x 

magnification. The cytopathic effect was determined as a percentage of rounded cells in comparison to 

the negative control wells. 

Treatment of HeLa and Caco-2 cells with TcdB 

HeLa cells were plated at 7,500 cells per well in a 100 µl volume into 96 well dishes and grown for 18 

hours prior to intoxication. Caco-2 cells were plated at 5000 cells per well in a 50 µl volume and grown 

for 48 hours before intoxication. Cells were maintained in Dulbecco’s Modified Eagle’s medium 

(DMEM; Gibco) in 10% fetal bovine serum (FBS; Atlanta Biologicals), and were grown in a humidified 

incubator at 37 °C with 5% CO2 atmosphere. HeLa cells were treated with TcdB (TcdB10463, 

TcdB10463GFE and TcdB027) for 2.5 hours before measuring viability, while Caco-2 cells were treated 

for 24 hours before measuring viability by a CellTiterGlo (Promega) viability assay. CellTiterGlo assays 

were performed according to the manufacturer’s protocol and were normalized to untreated conditions. 

Viability was plotted using GraphPad Prism 7, with statistical significance assessed using a Two-way 

ANOVA with comparisons made with respect to TcdB10463 using Dunnett’s multiple comparisons test. 

Sequence Analysis and Phylogeny 

Fully annotated genomes of C. difficile strains deposited on the National Center for Biotechnology 

Information (NCBI) was used as the source of sequences in this study. As of the time of writing, 78 

annotated sequences have been deposited into the NCBI. The C. difficile PubMLST database 

(https://pubmlst.org/cdifficile/) was used to define the C. difficile sequence types for these 78 annotated 

sequences (109, 337). Redundant strains or strains that could not be sequence typed were excluded from 

sequence analysis. The tcdB gene from the unannotated C. difficile VPI 10463 strain used in this study was 

also included in the alignment, amounting to a total of 65 strains for analysis. The loci corresponding to 

tcdB from these 65 strains were translated to determine their TcdB amino acid sequence (338). The TcdB 

sequences were aligned using the ClustalW algorithm within the R package msa version 1.14.0 (339). The 
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distance and relationships of these aligned sequences was then determined using the FastME V2 NJ Tree 

algorithm associated with the GrapeTree Python 2.7 package (340). A dendrogram and alignment was 

created using the Interactive Tree of Life (341). 
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Table	2-1.	Strains	and	Characteristics	

Strain Characteristics Reference 

M7404  tcdA+/tcdB+/cdtAB+, Clade 2, Ribotype 027, human clinical 
isolate, Canada, 2005. 

(342) 

DLL3045 (TcdA-B+)  M7404 derivative (M7404 tcdA TargeTron) tcdA-

/tcdB+/cdtAB+ 
 

DLL3101 (TcdA+B-) M7404 derivative (M7404ΩtcdB TargeTron) tcdA+/tcdB-

/cdtAB+ 
(106) 

DLL3121 (TcdA-B-) M7404 derivative (M7404ΩtcdA TargeTron, Ω tcdB 
TargeTron), tcdA-/tcdB-/cdtAB+. 

(106) 

R20291 tcdA+/tcdB+/cdtAB+, Clade 2, Ribotype 027, human clinical 
isolate, United Kingdom, 2006. 

(343) 

DLL3109 tcdA+/tcdB+/cdtAB+, Clade 2, Ribotype 027, human clinical 
isolate, Australia, 2010. 

(308, 344, 

345) 

VPI10463 tcdA+/tcdB+/cdtAB-, Clade 1, Ribotype 003, Human isolate, 
reference strain, America, before 1982. 

(74, 346) 

630 tcdA+/tcdB+/cdtAB-, Clade 1, Ribotype 012, human clinical 
isolate, Switzerland, 1982. 

(347, 348) 

JGS6133 tcdA+/tcdB+/cdtAB+, Clade 5, Ribotype 078, porcine isolate, 
America, before 2013. 

(349) 

AI35 tcdA-/tcdB+(variant)/cdtAB+, Clade 5, Ribotype 237, porcine 
isolate, Australia, 2013. 

(349) 

CD133 tcdA-/tcdB-/cdtAB-, Clade 1, AUS-ribotype 091*, human 
clinical isolate, Australia, 2008.  

This Study 
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Chapter 3  

 

Nectin-3 and Shed Forms of CSPG4 Can Serve as Epithelial Cell Receptors for Clostridioides difficile 
TcdB 

Adapted from: Childress K.O., Cencer C.S., Tyska M.J., Lacy D.B. Nectin-3 and Shed Forms of CSPG4 Can 
Serve as Epithelial Cell Receptors for Clostridioides difficile TcdB. Submitted 
	

Abstract  

Clostridioides difficile is a Gram-positive bacterium that can cause mild to severe diarrhea, inflammation, 

and colonic tissue damage in animal hosts. Symptoms of disease can be attributed to the activity of TcdB 

secreted by C. difficile during infection. TcdB can engage multiple host cell surface receptors in vitro, 

however, little is known about where these receptors localize on colonic tissue and how these interactions 

promote disease. In this chapter, I used immunofluorescence microscopy to first visualize TcdB 

interactions with two of the reported receptors, CSPG4 and Nectin-3, on cells in vitro. In cells expressing 

both receptors, I found that TcdB preferentially interacts with CSPG4 and stimulates CSPG4 entry. In 

host colonic tissue, I observed novel localization of Nectin-3 within the brush border of epithelial cells 

and CSPG4 localization at epithelial cell junctions. The unexpected junctional CSPG4 signal led me to 

the hypothesis that the signal could represent a soluble form of the CSPG4 extracellular domain (ECD) 

being shed from fibroblasts in the underlying stromal layer of the tissue. To test this hypothesis, I set up 

a co-culture of epithelial cells and fibroblasts separated by transwell inserts. I observed CSPG4-ECD shed 

into the media of cultured fibroblasts and an accumulation in epithelial cells following co-culture. I also 

found that soluble CSPG4-ECD present in the conditioned media from fibroblasts can potentiate TcdB 

mediated cytopathic responses in epithelial cells lacking CSPG4 expression. Based on these observations, 

I propose that Nectin-3 can facilitate binding of TcdB at the epithelial surface and that a soluble form of 

CSPG4 derived from stromal cells can contribute to TcdB intoxication of epithelial cells in vivo. 
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Importance 

Toxin B (TcdB) is a major virulence factor of C. difficile, a Gram-positive pathogen that is a leading cause 

of hospital-acquired diarrhea. While previous studies have established that TcdB can engage multiple cell 

surface receptors in vitro, little is known of how these interactions promote disease and where these 

receptors localize on colonic tissue. Here, I used immunofluorescence microscopy to visualize Nectin-3 

and CSPG4 on tissue, revealing unexpected localization of both receptors on colonic epithelial cells. I 

show that Nectin-3, which was previously characterized as an adherens junction protein, also localized to 

the brush border of colonocytes. Staining for CSPG4 revealed it is present along epithelial cell junctions, 

suggesting that it is shed by fibroblasts along the crypt-surface axis. Collectively, my study provides new 

insights into how TcdB can gain access to the receptors Nectin-3 and CSPG4 to intoxicate colonic 

epithelial cells.  

Introduction 

Clostridioides difficile is a Gram-positive, spore-forming anaerobe and is a leading cause of hospital-

acquired diarrhea in the United States and Europe. While various antibiotic stewardship efforts have 

reduced cases of C. difficile infection (CDI) worldwide, there are still an estimated 462,000 infections 

annually in the United States alone, resulting in $1 billion dollars in excess healthcare costs (16, 350). Two 

major virulence factors of C. difficile are toxin A (TcdA) and toxin B (TcdB). These exotoxins damage the 

host epithelia and promote inflammation in the large intestine, causing symptoms ranging from diarrhea 

and inflammation in mild cases to pseudomembranous colitis, toxic megacolon, and death in severe cases. 

While TcdA contributes to symptoms of CDI, the activity of TcdB is necessary and sufficient for severe 

disease outcomes in various models of infection (101, 105, 110).  

The intoxication of cells with TcdB begins with host receptor binding and endocytosis (286, 328). 

Acidification of the endosome facilitates the delivery of the toxin’s N-terminal glucosyltransferase domain 

(GTD) into the cytosol which can target and inactivate Rho family GTPases such as RhoA, Rac1, and 

Cdc42. The inactivation of these GTPases results in cytopathic responses such as cell rounding, disruption 

of tight junctions, and apoptotic cell death (89, 302). In addition to an ability to bind glycans, multiple 

protein cell surface receptors for TcdB have been identified: chondroitin sulfate proteoglycan 4 (CSPG4), 

Frizzled (FZD) 1, FZD2, FZD7, Nectin-3, and tissue factor pathway inhibitor (TFPI) (152, 154–158). 

The receptor specificity can vary depending on toxinotype as there is significant TcdB sequence variation 
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among C. difficile strains. A recent analysis of 3,269 C. difficile genomes led to the classification of TcdB 

into 8 subtypes and concluded that TcdB was undergoing accelerated evolution to maximize diversity 

(162). Among the 8 subtypes, TcdB1, TcdB2, TcdB3 are the most potent when injected into mice, and 

the most prevalent among isolates with sequenced genomes (162). TcdB1 can be found in VPI10463, a 

commonly used lab strain, and has been shown to bind CSPG4, FZD1/2/7, and Nectin-3 with nanomolar 

affinities (177). The binding sites for CSPG4 and FZD1/2/7 are distinct and, in concept, can be engaged 

simultaneously, while the binding site for Nectin-3 remains unclear (160, 161). TcdB2 can be found in 

the epidemic ribotype 027 (RT027) strains and has been shown to bind CSPG4 and Nectin-3, but not 

FZD1/2/7 (163, 177, 178). TcdB3 can be found in ribotype 078 (RT078) strains and has been reported 

to bind TFPI (157, 158). While the knockout of each receptor can reduce TcdB mediated cytopathic or 

cytotoxic effects in cell lines, the role of each receptor in the physiological context of infection remains 

unclear.  

The Nectins are a family of four transmembrane proteins (Nectin-1, -2, -3, -4) that are involved in the 

regulation of cell-cell adhesions. They are expressed in many cell types and contribute to the formation of 

apical-basal polarity in epithelial cells. The adhesion properties are mediated through three extracellular 

immunoglobulin-like domains, and the proteins are anchored by a cytosolic tail that can bind filamentous 

(F)-actin-binding protein afadin and the cell polarity protein partitioning defective-3 (PAR3) (293, 351). 

Nectin-3 (previously known as poliovirus receptor-like protein 3 or PVRL3) was identified as a receptor 

involved in TcdB mediated cytotoxic responses in epithelial cell lines (156, 351). Nectin-3 binds TcdB1 

and TcdB2 with affinities of 53 nM and 17 nM, respectively, but the interaction does not facilitate the 

cytopathic response, leading some to propose that Nectin-3 promotes cellular cytotoxic responses through 

cell surface signaling events (159, 177). While possible, Nectin-3 is known to undergo cellular entry and 

recycling, and so the question of why Nectin-3 does not promote cytopathic responses in vitro is unclear 

(352). In addition, other members of the Nectin family serve as entry receptors for a variety of viruses, 

including the measles virus, herpes simplex virus, morbillivirus, and poliovirus (353–357).  

Of the known host proteins that interact with TcdB, genetic deletion of CSPG4 confers the greatest 

protection from TcdB mediated cell rounding (154). CSPG4, also known as neural-glial antigen 2 (NG2), 

is a ~300 kDa transmembrane protein involved in cell survival, migration, and angiogenesis. It has been 

primarily characterized for its roles in the regulation of neuronal networks, endothelial and pericyte 



68	

	

function, and tumor progression in some forms of cancer (180, 230). The large extracellular domain 

(ECD) is post-translationally modified by chondroitin sulfate glycosaminoglycan chains and disulfide 

bonds and can serve as a scaffold for extracellular ligands or stimuli and amplifies their signals into the cell 

(230). For example, CSPG4 can bind platelet derived growth factors (PDGFs) and fibroblast growth 

factors (FGFs) and amplify their cognate receptor tyrosine kinase activities through direct interactions 

(193, 208, 209, 219). Other interactions of CSPG4 include the various components of the extracellular 

matrix and integrins, whose interactions with CSPG4 promote cell motility during angiogenesis and 

neuronal development (186, 187, 217).  

Our initial goal in this study was to characterize TcdB interactions with Nectin-3 and CSPG4 on cells 

using confocal microscopy. As visualization of TcdB has been historically challenging, we screened various 

cell lines and identified 18Co, a human colonic fibroblast cell line, for robust TcdB binding and 

visualization. In these cells, TcdB preferentially co-localized with CSPG4 and could promote CSPG4 

endocytosis. I next wanted to visualize the localization of Nectin-3 and CSPG4 in vivo, as the 

physiological roles of these proteins in the colon have not been fully established. In both human and mouse 

colonic tissue, I observed Nectin-3 at adherens junctions (as expected) but also on the apical surface as 

part of the brush border. I also observed co-localization of TcdB and Nectin-3 in intoxicated tissue, 

suggesting that Nectin-3 could have a role in capturing or concentrating TcdB at the apical surface of the 

epithelium. I observed CSPG4 localization in fibroblasts (as expected) but also in epithelial junctions, 

leading us to wonder whether this protein could represent CSPG4-ECD shed from the underlying 

stromal cells. I show that fibroblast derived CSPG4-ECD can accumulate in epithelial cells and potentiate 

TcdB cytopathic effects. Together, these observations advance the mechanistic understanding of how 

specific TcdB-receptor interactions may contribute to the pathogenesis of C. difficile infection. 
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Results 

Visualization of TcdB with receptors on 18Co cells 

In the Lacy Lab and for many other researchers in the C. difficile field (personal communications), the 

visualization of TcdB on cells has been challenging. For example, when Caco-2 cells are intoxicated with 

10 nM Janelia Fluor 669-labeled TcdB1 (JF669-TcdB1) at 37°C for 30 minutes, no TcdB signal can be 

observed (Figure 3-1A). Knowing that cell lines can differ significantly in their cell surface protein profiles, 

I analyzed published transcriptomic datasets using the GEO RNA-seq Experiments Interactive Navigator 

to search for a cell line that expresses abundant levels of the reported TcdB receptors (358). I identified 

18Co cells, derived from human colonic myofibroblasts, as cells that express all reported TcdB receptors 

(Figure S3-1) (359–361). When imaged, I found that 18Co cells intoxicated with 10 nM JF669-TcdB1 

contained abundant levels of TcdB signal (Figure 3-1A). While previous approaches used to visualize 

TcdB have required conditions with cold temperatures and long incubation periods, 18Co cells simply 

needed to be treated with labeled TcdB and incubated at 37°C (328). 

With the ability to now visualize TcdB on 18Co cells, I looked for TcdB co-localization with Nectin-3 

and CSPG4 using immunofluorescence microscopy (Figure 3-2). To quantify colocalization, I measured 

the overlap of receptors and TcdB signal using Manders’ Coefficients (M1=Receptor:TcdB and 

M2=TcdB:Receptor) and the correlation of receptor signal with TcdB using the Pearson correlation 

coefficient (PCC). Analysis of confocal images of intoxicated 18Co cells immunostained for Nectin-3 

revealed small levels of colocalization (average M1 = 0.31, M2 = 0.35) and positive correlation with TcdB 

(average PCC = 0.31) (Figures 3-2A, 2C-D). Analysis of CSPG4 and TcdB revealed medium to large 

levels of colocalization (average M1 = 0.33, M2 = 0.68) and positive signal correlation (PCC = 0.44) 

(Figures 3-2B, 2C-D). Thus, while Nectin-3 can colocalize with TcdB1 on 18Co cells, my analysis 

suggests that CSPG4 is the preferred interaction. 

TcdB receptors undergo passive and active endocytosis 

A previous study using mouse embryonic fibroblasts reported that neither Nectin-3 or CSPG4 are 

endocytosed, even in the presence of TcdB, during a typical intoxication period (159). Those observations   
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Figure	3-1.	18Co	cells	can	be	used	to	visualize	TcdB 

Confocal images comparing Caco-2 and 18Co cells intoxicated with 10 nM JF-669 TcdB1 (white) for 30 
minutes and labeled with DAPI (blue). TcdB is not detected in Caco-2 cells while it is detected in 18Co 
cells. Images are shown as max intensity projections while the zoomed panel is shown as a single Z-plane. 
Scale bars, 50 µm and 5 µm (zoom).  
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Figure	 S3-1.	 Transcriptional	 analysis	 of	 18Co	 cells	 indicates	 the	 expression	 of	 all	 TcdB	
receptors	

Normalized transcripts of TcdB receptors in 18Co cells were obtained from the GSE89124 dataset and 
analyzed with GREIN. The log2 transformed counts per million (CPM) are presented on the y-axis and 
the individual genes are on the x-axis. Individual data points are expression levels of each sample and error 
bars represent the standard deviation. **P<0.01.  
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Figure	3-2.	TcdB	primarily	colocalizes	with	CSPG4	on	18Co	cells	

A) Confocal image of 18Co cells immunostained for Nectin-3 and treated with JF669-TcdB1 for 30 
minutes. Dashed box represents location of zoomed panels. The main image is presented as a max 
intensity projection while the zoomed panels are shown as a single Z-plane. Scale bars, 30 µm and 10 
µm (zoom). Arrows indicate locations of colocalized signal. 

B) Confocal image of 18Co cells treated with JF669-TcdB1 for 30 minutes and immunostained for 
CSPG4. Dashed box represents location of zoomed panels. The main image is presented as a max 
intensity projection while the zoomed panels are shown as single Z planes. Scale bars, 30 µm and 10 
µm (zoom). Arrows indicate locations of colocalized signal. 

C) Manders’ coefficient analyses of Receptor signal overlap with TcdB (M1) or TcdB signal overlap with 
Receptors (M2). Points represent individual Manders’ coefficients. The error bar in red represents the 
mean and standard deviation. ****P<0.0001, Kruskal-Wallis ANOVA test and corrected for multiple 
comparisons using Dunn’s post-hoc test. N=5 

D) Pearson correlation coefficient analysis of TcdB colocalization with Nectin-3 or CSPG4. Points 
represent individual Pearson coefficients. The error bar in red represents the mean and standard 
deviation. ****P<0.0001, Mann-Whitney U Test. N=5 
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led to a proposal that CSPG4 and Nectin-3 sequester TcdB to the cell surface before transferring TcdB 

to its entry receptor. I performed a similar endocytosis assay on 18Co cells using reversible cell surface 

biotinylation to characterize the significance of the TcdB colocalization with its receptors. Briefly, 18Co 

cells were chilled at 4°C for an hour to inhibit endocytosis and then treated with a cell membrane-

impermeant reducible biotinylation reagent. Next, biotinylated cells were treated with TcdB2 to avoid 

endocytic responses mediated by FZDs at 37°C for 20 minutes to allow for endocytosis (177). Cells were 

then treated with a cell membrane-impermeant reducing reagent to remove biotin from non-endocytosed 

proteins, lysed, and a pulldown using streptavidin beads was performed to capture endocytosed 

biotinylated proteins. PDGF-AA, a ligand reported to interact with CSPG4, was used as a control ligand 

while detection of LRP1, a constitutively endocytosed protein, was used to confirm the removal of surface 

biotin. Western blot analysis of endocytosed cargo revealed that both Nectin-3 and CSPG4 are recycled 

over a 20-minute period in the absence of any stimuli (Figure 3-3). I did not observe any TcdB-dependent 

enhancement in the levels of endocytosed Nectin-3 (Figure 3-3A). However, endocytosed CSPG4 was 

significantly increased in the presence of TcdB (Figure 3-3B). These data suggest that in 18Co cells, 

Nectin-3 and CSPG4 could provide either passive or active entry mechanisms for toxin.  

Nectin-3 Localizes to the Colonic Epithelial Brush Border and Apical Cell Junctions 

Nectin-3 belongs to a family of adhesion proteins that promote the formation of adherens junctions during 

the initial interactions between polarized cells (362). Since the 18Co cells do not form polarized junctions, 

I decided to turn to the epithelial cells of colonic tissue for imaging TcdB interactions with Nectin-3. 

Previous studies have established that Nectin-3 is expressed in vivo on mouse colonic epithelial cells with 

epifluorescence microscopy (363). I attempted to replicate these previous studies using human colonic 

tissue. As expected, we observed Nectin-3 signal at the epithelial cell junctions (Figure 3-4A). In addition, 

Nectin-3 signal was present along the apical surface of the cell, potentially within the brush border (Figure 

3-4A, zoomed panels). The brush border is an array of microvilli supported internally by bundles of actin 

and organized externally by adhesion proteins (364). To acquire higher resolution images, I collaborated 

with a graduate student from Matthew J. Tyska’s Lab, Caroline S. Cencer, here at Vanderbilt University 

to more clearly resolve the brush border localized Nectin-3 signal using structured illumination microscopy 

(Figure 3-4B, zoom). These images revealed that Nectin-3 is indeed present within the brush border on 

colonic epithelial cells. While the role of Nectin-3 within the microvilli is unresolved, Nectin-3 can also  
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Figure 3-3. CSPG4 endocytosis is enhanced in the presence of TcdB 

A) Western blot analysis from an endocytosis assay probed for Nectin-3. Levels of endocytosed Nectin-3 
were determined using densitometry and normalized to levels of Nectin-3 at 20 minutes in cells treated 
with buffer alone. N=2 

B) Western blot analysis from an endocytosis assay probed for CSPG4. Levels of endocytosed CSPG4 
were determined using densitometry and normalized to levels of CSPG4 at 20 minutes in cells treated 
with buffer alone. Statistical analysis performed using a Kruskal-Wallis ANOVA test and corrected 
for multiple comparisons using Dunn’s post-hoc test. *P<0.05, N=2 
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Figure	3-4.	NECTIN-3	localizes	to	the	brush	border	on	colonic	epithelium	

A) Confocal image of human colonic tissue stained for Nectin-3, F-actin, and DAPI. Dashed boxes 
represent origin of zoomed image. Arrowheads indicate signal localized to apical surface of cells while 
arrows indicate areas of junction. Scale bars, 50 µm and 20 µm (zoom).  

B) Structured illumination microscopy image of human colonic epithelium stained for Nectin-3 and F-
actin. Dashed boxes represent origin of zoomed imaged. The main image is presented as a max 
intensity projection while the zoomed panels are shown as a single Z-plane. Scale bars, 10 µm and 2 
µm (zoom). Credit: C.S. Cencer from M.J. Tyska’s Lab with permission. 

C) Confocal image of a human colonic explant intoxicated with JF669-TcdB1 and stained for Nectin-3. 
Scale bar, 30 µm. 
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be observed within the brush border of polarized Caco-2 cells (Figure S3-2). These findings suggest that 

Nectin-3, and perhaps other Nectin family proteins, has a role in brush border structure and function. 

With the unexpected finding that Nectin-3 localizes to the brush border of colonic epithelial cells, I 

wanted to determine if TcdB could interact with Nectin-3 on colonic tissue. I intoxicated human colonic 

explants with JF669-TcdB1 and immunostained the tissue for Nectin-3 (Figure 3-4C). While detection 

of JF669-TcdB1 was infrequently observed, colocalization between Nectin-3 and JF669-TcdB1 was 

observed along the apical surface of the colonic epithelium. These data suggest a role for Nectin-3 in 

binding to TcdB along the luminal surface of cells. 

Colonic Epithelial Tissue is CSPG4(+) 

While single cell sequencing studies have consistently shown CSPG4 expression among various fibroblast 

populations along the crypt-surface axis of the intestines (Figure 3-5A), there is no evidence for CSPG4 

expression in colonic epithelial cells (199, 365). I analyzed a published single cell RNA-sequencing 

(scRNA-seq) dataset from the Human Gut Cell Atlas derived from 77,341 EPCAM+ epithelial cells from 

the small intestine, large intestine, appendix, and rectum of healthy adults to determine if CSPG4 

expression could be found in any epithelial cell populations (260). Among these epithelial populations, I 

was unable to detect CSPG4 expression, confirming that CSPG4 expression is isolated to stromal 

populations in the colon (Figure 3-5B). 

While imaging CSPG4 on mouse colonic tissue, I observed the predicted CSPG4 signal in fibroblasts 

that line the crypt surface axis (Figure 3-5C, zoom). However, to our surprise, I also observed CSPG4 

signal along the junctions of epithelial cells. To verify this staining pattern, I stained colonic tissue from 

CSPG4-/- mice for CSPG4 (Figure S3-3). These mice lacked CSPG4 signal on both fibroblasts and the 

junctions of colonic epithelial cells. I also stained human colonic tissue for CSPG4 and found that both 

fibroblasts and epithelial tissue stained positive for CSPG4 (Figure 3-5D). These data led us to wonder 

whether fibroblasts along the crypt-surface axis could shed CSPG4 extracellular domain (ECD) that 

would then associate with the epithelium. 
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Figure	S3-2.	NECTIN-3	localizes	to	the	brush	border	and	cell	junctions	in	Caco-2	cells.	

Confocal image of Caco-2 cells stained for F-actin, Nectin-3, and ZO-1 or stained with only secondary 

antibodies and F-actin. Dashed box represents location of zoomed image. Dashed lines in zoom panel 

indicate location of orthogonal views. Arrowheads indicate Nectin-3 signal localized to the brush border 

and arrows indicate Nectin-3 signal in junctions. Scale bars, 30 µm and 5 µm (zoom). 
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Figure	3-5.	Mouse	and	human	colonic	epithelial	cells	stain	positive	for	CSPG4.	

A) Model of the colonic crypt-surface axis 

B) Analysis of single cell RNA expression data from human adult intestinal epithelial cells (Gut Cell Atlas) 
reveals that cspg4 is not expressed in epithelial cells of human intestines.  

C) Confocal images of wild-type B57/C6 mouse colon stained for CSPG4. Mouse epithelial cells and 
fibroblasts stained positive for CSPG4. Dashed boxes indicate location of zoomed images. Scale bars, 
50 µm and 30 µm (Zoom) 

D) Confocal images of a cross section of human ascending colon stained for CSPG4. Both fibroblasts and 
epithelial cells stained positive for CSPG4. Scale bars, 50 µm  
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Figure	S3-3.	CSPG4	stains	epithelial	cells	and	fibroblasts	in	the	colon.	

Confocal images of wild-type B57/C6 mouse (from Figure 5C) or CSPG4 knockout mouse colon stained 

for CSPG4. Epithelial cells and fibroblasts stain positive for CSPG4 in wild-type colon tissue while 

staining is absent in CSPG4 knockout mice. Scale bars, 50 µm. 

	 	



83	

	

Caco-2 Cells Accumulate Fibroblast Derived CSPG4-ECD 

The extracellular domain (ECD) of CSPG4 can be targeted by various proteinases, resulting in its release 

from the cell surface (232–234, 239). In various cancer cell lines, this can include what is essentially the 

full length CSPG4-ECD (238). I isolated and lysed crypts from mouse colons to determine if I could 

detect any cleaved forms of CSPG4 by Western blot (Figure 3-6A). Analysis of these lysates revealed that 

CSPG4 exists as two primary species, with one band >250 kDa matching the mature molecular weight of 

CSPG4 found in 18Co cells and another approximately 240 kDa band that is consistent with the size of 

the cleaved CSPG4-ECD.  

A possible source of shed CSPG4 could be from stromal cells such as myofibroblasts found along the 

crypt-surface axis. As 18Co cells are a normal, non-transformed colonic myofibroblast cell line, I analyzed 

its conditioned media by Western blot to determine if these cells were capable of shedding CSPG4-ECD 

into its environment (Figure 3-6B). Conditioned media were collected and filtered after culturing the cells 

in complete DMEM for 5 days. The analysis revealed that soluble CSPG4-ECD is indeed present in 

conditioned media. I also verified that CSPG4-ECD is not a component of complete culture media 

(Figure 3-6B).  

I next asked if this 18Co derived CSPG4-ECD could be transferred to Caco-2 cells, a human colonic 

epithelial cell line through co-culture. Caco-2 cells were grown in cell inserts above 18Co cells for 5 days 

before collecting and lysing the Caco-2 cells. A control condition of Caco-2 cells grown for 5 days without 

18Co cells was included. Over a 5-day period, I observed increasing intensities of CSPG4 in the Caco-2 

lysates (Figure 3-6C). Over the same period, I was unable to detect CSPG4 in the Caco-2 cells grown 

without 18Co cells. As fibroblasts of the crypts express CSPG4 and line the crypt-surface axis, these data 

suggest colonic epithelial cells possibly derive CSPG4-ECD from fibroblasts though an endocytic 

mechanism. I then stained Caco-2 cells for CSGP4 after growing them 5 days on cell inserts above 18Co 

cells. CSPG4 signal in Caco-2 cells grown above 18Co cells localized to the cytosolic compartment of the 

Caco-2 cells (Figure 3-6D). These data suggest that CSPG4-ECD derived from 18Co cells can enter 

Caco-2 cells.  

	  



84	

	

 

  



85	

	

Figure	3-6.	Fibroblasts	derived	CSPG4	is	endocytosed	by	Caco-2	cells	

A) A CSPG4 fragment corresponding to the putative MW of a full length CSPG4-ECD is present in 
purified human colonic crypt lysates. Lysates from 18Co cells was used as a reference for the full length 
CSPG4.  

B) 18Co cells were grown for 5 days and the conditioned media was analyzed for CSPG4 by Western 
blot. To resolve clearer bands of CSPG4 from the conditioned media, the media was diluted to 0.2X 
or 0.04X. Complete media, DMEM + 10% FBS, was also analyzed for CSPG4 by Western blot. 
CSPG4 was detected only in 18Co lysates and conditioned media. 

C) Caco-2 cells were grown above 18Co cells in transwells and were collected and lysed on days 1, 3, and 
5 and analyzed for CSPG4 by Western blot. Caco-2 lysates grown with 18Co cells contained CSPG4, 
while the negative condition grown without 18Co cells did not.  

D) Confocal images of 5-day post confluency Caco-2 cells grown above 18Co cells in transwells and 
stained for CSPG4. Dashed boxes indicate the origin of zoomed panels and are shown as max 
projections in both xy and xz.  
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CSPG4(+) Conditioned Media Potentiates Cell Rounding 

Given our observation that CSPG4-ECD can associate with Caco-2 cells, I next asked if the 18Co-

derived CSPG4-ECD would promote TcdB-induced cytopathic effects in Caco-2 cells. For these studies, 

I used TcdB2 to eliminate any FZD 1/2/7 responses. I intoxicated Caco-2 cells with 1 pM TcdB2 and 

18Co conditioned media and found that these intoxicated cells rounded faster in the presence of 

conditioned media (data not shown). To determine if this rounding was dependent on CSPG4-ECD, I 

collected conditioned media from 18Co cells treated with siRNA targeting CSPG4 or with a non-targeting 

control. Treatment of 18Co cells with siRNA targeting CSPG4 was effective at depleting CSPG4 in the 

media (Figure 3-7A). I then intoxicated Caco-2 cells with 1 pM TcdB2 in CSPG4(+) or CSPG4(-) 18Co 

conditioned media and observed that this potentiation of cell rounding was CSPG4-dependent (Figure 

3-7A, top). I also asked if I could block CSPG4-ECD from interacting with cells by adding antibodies 

targeting CSPG4 to the conditioned media. Pre-incubation of conditioned media with an anti-CSPG4 

antibody prior to intoxication of cells with 1 pM TcdB2 was sufficient at inhibiting potentiation of 

rounding (Figure 3-7B). Together, these data suggest that soluble CSPG4 can enhance the cytopathic 

effects of TcdB on epithelial cells, even in the absence of epithelial CSPG4 transcript expression.  

Discussion 

TcdB is a key virulence factor in C. difficile infection (CDI). It is expressed by C. difficile in the lumen of 

the colon, and therefore the epithelial cells that form the barrier between the host and microbiota are 

expected to represent the first cells that the toxin will encounter. As intoxication requires receptor-

mediated endocytosis, multiple studies have focused on the identification of epithelial cell surface proteins 

that can serve as TcdB receptors. The studies have largely been conducted in vitro using a combination of 

cell-based genetic screens and biochemical analyses and have led to the identification of multiple cell 

surface proteins that could be contributing to TcdB-induced symptoms (154–158). However, the 

understanding of if and how each receptor may contribute to intoxication in vivo, has been unclear for 

several reasons. First, the receptors that have been identified are not thought to be expressed on the apical 

surface of polarized cells. FZD 1/2/7, Nectin-3, and TFPI have all been reported to have lateral or 

basolateral expression, and CSPG4 is not thought to be expressed at all in epithelial cells. The proteins 

could still serve as receptors for TcdB that passes the barrier of the polarized epithelium, but the question 

of how the toxin makes initial contact with the epithelium has been unclear. Second, TcdB is a highly   
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Figure	3-7.	Fibroblast	derived	conditioned	media	containing	CSPG4	promotes	rounding	in	
cells	lacking	CSPG4	

A) Caco-2 cells were intoxicated with 1 pM TcdB2 in complete media (DMEM) or conditioned media 

from siRNA treated 18Co cells targeting a non-targeting control (Control siRNA) or CSPG4. Rounding 

was quantified from images acquired over the course of the experiment. Images to the right are 

representative images from these experiments. Statistical analysis performed using a two tailed ANOVA 

with a Sidak Post-hoc test for multiple comparisons. N=3 *P<0.05, ****P<0.001.  

B) Conditioned media (CM) from 18Co cells was treated with antibodies targeting CSPG4 prior to the 

intoxication of Caco-2 cells with 1 pM TcdB2. Conditioned media lacking antibodies targeting CSPG4 

rounded over a 24-hour period. Representative images from these assays are shown on the right. Statistical 

analysis performed using a two tailed ANOVA with a Sidak Post-hoc test for multiple comparisons. 

Images to the right of the graph are representative images from these experiments. N=3 *P<0.05 

	  



88	

	

potent toxin capable of inducing cytopathic responses with EC50 values in the fM-pM range, depending 

on the cell type. The protein receptors identified to date, each bind TcdB with nM affinities. While these 

affinities are tight by some standards, they are weak when considering the potency of TcdB. The potency 

of TcdB suggests the need for co-receptor interactions, but it is unclear which receptor pairs are co-

expressed and co-localized in the same cells to be available for binding to TcdB. Lastly, the question of 

endocytosis has largely been examined indirectly, using the cytopathic rounding response as a proxy for 

cellular endocytosis. The direct visualization of TcdB requires high concentrations that are rapidly 

cytotoxic and likely not representative of what one would find in an early stage of CDI.  

In this study, we characterized the localization of Nectin-3 and CSPG4 within the colon using 

immunofluorescence confocal microscopy. Our initial predictions that Nectin-3 would localize to the 

junctions of epithelial cells and CSPG4 would localize to fibroblasts below the crypt-surface axis were 

confirmed. However, I also found that Nectin-3 and CSPG4 localized to additional and unexpected 

locations on epithelial cells. In addition to the epithelial cell junctions (Figure 3-4A), I found Nectin-3 

localized at the epithelial brush border in microvilli (Figure 3-4B). With CSPG4, I saw robust localization 

with fibroblasts along the crypt-surface axis but also at the junctions of epithelial cells (Figure 3-5C). 

Since epithelial cells do not express CSPG4 transcripts (Figure 3-5B), I reasoned that the CSPG4 signal 

represented soluble CSPG4-ECD shed by the underlying fibroblasts. Indeed, I showed that a shed form 

of CSPG4 is present in lysates from murine colonic crypts (Figure 3-6A), similar to an observation 

reported in another study showing that a shed form of CSPG4 is present in lysates from the small intestine 

of mice (203). 

Since both receptors are capable of binding TcdB, I attempted to visualize fluorescently labeled TcdB 

with receptors on colonic tissue. While I could show evidence that TcdB colocalizes with Nectin-3 on 

colonic explants intoxicated with TcdB (Figure 3-4C), the TcdB signal was infrequent, consistent with 

the challenge of trying to visualize a potent toxin in vivo. Therefore, I used cell culture models to ask if 

TcdB is capable of colocalizing with these receptors. Historically, visualization of TcdB is challenging, 

with various cell lines showing little to no signal after intoxication (328). I show that 18Co cells provided 

strong signal for TcdB (Figure 3-1) and that both Nectin-3 and CSPG4 are capable of colocalizing with 

TcdB with modest to high levels of correlation (Figure 3-2D). Our measurement of colocalization using 

the Manders’ correlation coefficient showed that on average 68% TcdB signal overlapped with CSPG4 
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(Figure 3-2C), revealing that CSPG4 is the preferred receptor on 18Co cells. The observation that TcdB 

had greater levels of colocalization with CSPG4 than Nectin-3 was surprising, as both receptors have 

similar reported affinities with TcdB. In considering the possible explanations for this difference, it could 

be that the receptors differ in their accessibility at the cell surface or that the affinity of TcdB for CSPG4 

on the cell surface is tighter than what was observed with a recombinant fragment of the protein (155, 

177). Alternatively, a higher affinity interaction between TcdB and CSPG4 could be mediated through 

co-receptor interactions with glycans on CSPG4 or with the various proteins CSPG4 interacts with along 

the cell surface (152, 180). Of note, while both CSPG4 and Nectin-3 appeared to enter 18Co cells, TcdB 

appeared to stimulate an increase in CSPG4 entry, suggesting either the engagement of co-receptors or a 

signaling component associated with the TcdB-CSPG4 interaction (Figure 3-3).  

The observation that a shed form of CSPG4 exists within the colon led us to test if shed forms of CSPG4-

ECD contribute to TcdB mediated cytopathic effects. I found that 18Co cells shed abundant levels of 

CSPG4 into the media over time (Figure 3-6B). I noted that Caco-2 cells, which lack CSPG4 expression, 

accumulate CSPG4 when supported by 18Co cells on transwells (Figure 3-6C). Moreover, I found that 

18Co conditioned media containing shed CSPG4 potentiated Caco2 cell rounding in response to 

concentrations of TcdB2 that typically do not induce a cytopathic response (Figure 3-7A). The presence 

of CSPG4 in the conditioned media was required for this potentiation, as conditioned media derived from 

18Co cells treated with siRNA targeting CSPG4 (Figure 3-7A) or incubated with an antibody targeting 

CSPG4 (Figure 3-7B) were unable to promote cell rounding. Together, these data suggest that shed 

forms of CSPG4-ECD can bind the cellular junctions of epithelial cells and could contribute to TcdB 

intoxication in vivo.  

The observations of this study raise a new series of questions, however. First, while the co-localization of 

TcdB and Nectin-3 on the brush border provides conceptual evidence that Nectin-3 could represent a 

readily accessible binding partner for TcdB being made in the colon, I still do not know if Nectin-3 can 

mediate TcdB entry and intoxication in vivo. Further studies to map the Nectin-3-TcdB binding 

interaction are needed to dissect the functional importance of this interaction. 

Second, while I showed CSPG4 localized at epithelial junctions in vivo and that shed CSPG4-ECD can 

potentiate TcdB-induced cytopathic responses on epithelial cells in vitro, I still do not know if shed 

CSPG4-ECD potentiates TcdB intoxication of the epithelial layer in vivo. However, such a mechanism 
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would be consistent with studies showing that cspg4-/- mice infected with C. difficile or wild-type mice 

challenged with mutant TcdB lacking the ability to interact with CSPG4 experience significantly lower 

epithelial injury and overall disease (160).  

Third, if the shed CSPG4 ectodomain is, in fact, acting as a TcdB receptor on epithelial cells, then what 

molecules are responsible for the binding and entry of TcdB-bound CSPG4-ECD? Given the vast 

number of known CSPG4 binding partners, which include growth factors as well as type V or VI 

collagens, perlecan, ⍺-integrins, and Galectin-3 (186, 211, 217), I was not able to tackle this question in 

the scope of this study. However, it is also possible that the localization of CSPG4-ECD at the junctions 

provides TcdB with the necessary co-receptor pairing for Nectin-3, FZD1/2/7, and or TFPI- mediated 

events. Such pairings would not be plausible when considering cellular receptor expression profiles in 

isolation but could become relevant in the environment of colonic tissue. Further studies to examine these 

complex interactions in vivo are needed in the effort to identify the key intervention points for blocking 

TcdB-induced pathology in CDI.  

Materials and Methods 

Cell Lines and Reagents 

18Co (CCD-18Co, ATCC), HEK293T cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM), with high glucose, sodium pyruvate, L-glutamine (Gibco), and 10% fetal bovine serum (FBS, 

Corning). Caco-2 (C2BBe1, ATCC) cells were cultured with Eagle’s Minimum Essential Medium 

(EMEM, ATCC) in 20% FBS. Cells were cultured in a humidified incubator at 37°C at 5% CO2. 

Lentiviral Production  

psPAX2 was a gift from Didier Trono (Addgene plasmid # 12260 ; http://n2t.net/addgene:12260 ; 

RRID:Addgene_12260). pMD2.G was a gift from Didier Trono (Addgene plasmid # 12259 ; 

http://n2t.net/addgene:12259 ; RRID:Addgene_12259). pLenti CMV GFP Puro (658-5) was a gift from 

Eric Campeau & Paul Kaufman (Addgene plasmid # 17448 ; http://n2t.net/addgene:17448 ; 

RRID:Addgene_17448). H2B-mCherry was a gift from Robert Benezra (Addgene plasmid # 20972 ; 

http://n2t.net/addgene:20972 ; RRID:Addgene_20972). To propagate lentiviruses, 2,000,000 HEK293T 

cells were seeded into T25 flasks in 5 ml of complete DMEM. The following day, 755 ng of psPAX2, 

377 ng of pMD2.G, and 1.5 µg of H2B-mCherry or eGFP plasmids were mixed together and brought to 
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50.66 µl in serum free DMEM. A total of 21.67 µl of 1 mg/ml PEI, linear MW 25,000, was added to the 

plasmids and incubated for 10 minutes at room temperature to complex DNA. The complexed DNA:PEI 

mixture was then added to 2.7 ml of prewarmed complete DMEM. Media from the T25 flasks were 

replaced with this fresh media containing DNA:PEI to transfect HEK293T cells. Cells were grown for 

72 hours, and the culture supernatant was collected. The supernatant was pelleted at 300·g for 10 minutes 

and filtered through a 0.45 µm filter. The filtered lentivirus preparations were aliquoted and stored at -

70°C until needed.  

Transduction of Caco-2 Cells for H2B-mCherry and GFP expression 

Caco-2 cells were seeded into 100 mm dishes, grown to 60% confluency, and the media were removed. 

Volumes of 2 ml, 1 ml, 0.5 ml, and 0.2 ml of GFP expressing lentiviruses aliquots were adjusted to 4 ml 

volumes in complete EMEM and added to cells. Cells were given fresh complete media after 24 hours. 

After 48 hours post-transduction, cells were treated with 10 µg/ml of puromycin and maintained in these 

conditions for 96 hours. Transduction conditions that resulted in a maximal viability of 10-30 % relative 

to an untreated control were kept while cells that resulted in higher viabilities or lower viabilities were 

discarded. The transduction of GFP expressing Caco-2 cells with H2B-mCherry was performed with the 

same method. However, transduced cells were selected with 2.5 µg/ml blasticidin and 10 µg/ml 

puromycin. Again, cells that resulted in a maximal viability of 10-30 % relative to an untreated control 

were kept. These cells were propagated and maintained in 10 µg/ml puromycin and 2.5 µg/ml puromycin 

and used for cell rounding assays.  

Protein Expression and Purification 

The vector for expressing TcdB2 (pBL598) was a gift from Dr. J Ballard (University of Oklahoma Health 

Sciences Center). Recombinant TcdB1 and TcdB2 were expressed and purified from Bacillus megaterium 

as previously described (328).  

Labelling TcdB 

TcdB1 was purified as described above but with modifications. TcdB was isolated over an S200 column 

in 20 mM HEPES pH 8.3 in 50 mM NaCl. Fractions containing TcdB were pooled and concentrated to 

20-25 µM using a 100 kDa MWCO filter (MilliporeSigma). A 20-molar excess of NHS-JF-669 (Tocris) 

was added to TcdB and incubated at room temperature in the dark with occasional pipetting for 2 hours. 
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The labeling reaction was quenched with 50 mM Tris pH 8.0 and 50 mM NaCl for 10 minutes and 

applied through a PD-10 column (Cytiva) equilibrated with the same buffer to remove aggregates and 

unreacted dyes. Eluted samples were applied through an S200 column and collected in 20 mM HEPES 

pH 8 and 50 mM NaCl. Preparations of labeled TcdB resulted in no greater than1.5 labels moles of dye 

per mole of TcdB were used.  

Tissue Preparation 

Human colonic tissue was obtained from the Cooperative Human Tissue Network from consenting and 

deidentified donors under Institutional Review Board-approved protocol 031078. To prepare human 

frozen colonic tissue samples, ascending colon tissue was first dissected into sections and washed with 

PBS supplemented with 1.2 mM CaCl2 and 1 mM MgCl2. Sections were then incubated in Tissue-Tek 

optimal cutting temperature (OCT) compound and snap-frozen in a dry ice-cooled ethanol bath. Mouse 

colonic tissue from wild type and CSPG4 knockout mice were prepared by flushing luminal contents with 

PBS supplemented with 1.2 mM CaCl2 and 1 mM MgCl2. Colons were cut along their length and fixed 

in 2% paraformaldehyde in PBS for 2 hours at room temperature with gentle agitation. Tissues were then 

washed three times in PBS and incubated overnight at 4°C in PBS supplemented with 30% sucrose and 

1% sodium azide. The following day, samples were quickly dipped in the OCT compound, rolled along 

their length, submerged in OCT, and snap-frozen in a dry ice-cooled ethanol bath. All OCT embedded 

samples were cut into 10 µm sections and mounted onto positively charged slides for immunofluorescence 

staining and confocal microscopy. 

Antibody Staining 

18Co cells were intoxicated with 10 nM JF669-TcdB1 for 30 minutes at 37°C. After intoxication, cells 

were washed once in PBS and fixed in 4% paraformaldehyde in PBS for 15 minutes. Fixed samples were 

washed 4 times in PBS with 5 minutes of incubation per wash and blocked in 5% normal donkey serum 

(NDS, Jackson ImmunoResearch Labs) in PBS with 0.3% Triton-X 100 for 1 hour at 37°C for samples 

to be stained for Nectin-3 or in 5% normal goat serum (NGS, Jackson ImmunoResearch Labs) in PBS 

with 0.3% Triton-X 100 for 1 hour at 37°C for samples to be stained for CSPG4. Coverslips were washed 

once in PBS prior to incubating overnight with primary antibodies. Staining was performed using 

antibodies targeting Nectin-3 (Thermo Fisher Scientific, 1:40) prepared in 1% NDS in PBS with 0.3% 

TritonX-100 or CSPG4 (abcam, 1:250) prepared in 1% NGS in PBS with 0.3% TritonX-100 overnight 
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at 4°C. Coverslips were washed 3 times in PBS for at least 5 minutes per wash. Coverslips were then 

incubated in secondary antibody Alexa Fluor-488 donkey anti-goat (Thermo Fisher Scientific, 1:1000) in 

1% NDS in PBS with 0.3% TritonX-100 or Alexa Fluor-488 goat anti-rabbit (Thermo Fisher Scientific, 

1:1000) secondary antibody in 1% NGS in PBS with 0.3% TritonX-100 for 1 hour at room temperature. 

Next, coverslips were washed four times in PBS with at least 5 minutes per wash, stained with DAPI, 

mounted onto slides using ProLong Gold antifade (Thermo Fisher Scientific) and cured overnight in the 

dark. Images of 18Co cells are shown as max intensity projections unless otherwise noted in zoomed 

panels. 

OCT from human and mouse colonic sections were removed by incubating sections in PBS for 5 minutes. 

For human tissue, slides were fixed in 4% paraformaldehyde for 10 minutes and washed 3 times in PBS 

with 5 minutes per wash. Human sections that were to be stained for Nectin-3 were blocked in 5% NDS 

in PBS with 0.3% Triton-X 100 for 1 hour. Human and mouse tissue sections that were to be stained for 

CSPG4 were blocked in 5% NGS in PBS with 0.3% TritonX-100 for 1 hour at room temperature. 

Sections were briefly washed in PBS and then incubated overnight in primary antibodies targeting Nectin-

3 (Thermo Fisher Scientific, 1:40) in 1% NDS in PBS with 0.3% TritonX-100 or in primary antibodies 

targeting CSPG4 (abcam, 1:250) in 1% NGS in PBS with 0.3% TritonX-100 at 4°C. The following day, 

slides were washed 3 times in PBS with 5 minutes per wash and incubated in secondary antibody Alexa 

Fluor-488 donkey anti-goat (Thermo Fisher Scientific, 1:200) and Alexa Fluor-546 phalloidin in 1% 

NDS in PBS with 0.3% TritonX-100 for slides stained for Nectin-3 or in secondary antibody Alexa Fluor-

488 goat anti-rabbit (Thermo Fisher Scientific, 1:200) and Alexa Fluor-647 phalloidin (Thermo Fisher 

Scientific, 1:200) in 1% NGS in PBS with 0.3% TritonX-100 for slides stained for CSGP4 for 1 hour at 

room temperature. Finally, sections were briefly stained with DAPI and washed 4 times in PBS with 5 

minutes per wash. Stained tissues were mounted in ProLong Gold antifade (Thermo Fisher Scientific), 

covered with 1.5 coverglass and cured overnight. 

Caco-2 cells on coverslips were grown for 20 days before washing once in PBS and fixed in ice-cold 1:1 

acetone:methanol at -20°C for 15 minutes. Fixed cells were washed 4 times in PBS with 3.5 minutes of 

incubation per wash and blocked in 5% NDS in PBS with 0.3% Triton-X 100 for 1 hour at 37°C. 

Coverslips were washed once in PBS prior to incubating overnight with primary antibodies. Staining was 

performed using antibodies targeting Nectin-3 (Thermo Fisher Scientific, 1:40) and ZO-1 (Thermo 
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Fisher Scientific, 1:50) prepared in 1% NDS in PBS with 0.3% TritonX-100 overnight at 4°C. Coverslips 

were washed 3 times in PBS for at least 5 minutes per wash. Coverslips were then incubated in Alexa 

Fluor-488 donkey anti-rabbit (Thermo Fisher Scientific, 1:1000), Alexa Fluor-555 donkey anti-goat 

(Thermo Fisher Scientific, 1:1000), and Alexa Fluor-647 phalloidin (Thermo Fisher Scientific, 1:200) in 

1% NDS in PBS with 0.3% TritonX-100. Next, coverslips were washed four times in PBS with at least 5 

minutes per wash and mounted onto slides using ProLong Gold antifade (Thermo Fisher Scientific) and 

cured overnight. Images are shown as max intensity projections and contrast enhanced using ImageJ 

(NIH). Orthogonal views were generated in ImageJ.  

Caco-2 cells on transwell membranes that were fixed and permeabilized were blocked for 1 hour in 5% 

NGS in PBS with 0.3% TritonX-100 for 1 hour at room temperature and briefly washed in PBS by 

removing the supernatant by inverting of the transwell insert. Blocked transwells were incubated in 

antibodies targeting CSPG4 (abcam, 1:250) overnight in 1% bovine serum albumin fraction V (BSA, 

VWR) in PBS with 0.3% TritonX-100 at 4°C. The following day, the membranes were washed in PBS 

3 times at 5 minutes per wash and incubated in secondary antibody Alexa Fluor-546 goat anti-rabbit 

(Thermo Fisher Scientific, 1:1000) and Alexa Fluor Plus-405 phalloidin (Thermo Fisher Scientific, 1:200) 

in 1% BSA in PBS with 0.3% TritonX-100 for 1 hour at room temperature. Transwells were then washed 

four times in PBS, and the membrane was excised from the transwell insert using a scalpel. Membranes 

were placed on a slide and a 1.5 coverslip containing Prolong Gold antifade (Thermo Fisher Scientific) 

was placed onto each membrane. Mounted membranes were cured overnight in the dark. Images are 

shown as max intensity projections as en face views of the entire cell and contrast enhanced using ImageJ 

(NIH). Cropped planes and X-Z images are shown as max projections along a single cell in the monolayer 

to present intracellular CSPG4 signal within the cell.  

Confocal and Super-resolution Microscopy 

Confocal imaging of Caco-2 cells and 18Co cells intoxicated with only JF669-TcdB1 was conducted using 

a Zeiss LSM 710 META inverted microscope equipped with a Plan-Apochromat (Apo) 63X/1.4 NA 

objective lens and 405 and 633 nM excitation LASERs. Confocal imaging of Nectin-3 or CSPG4 

immunostained human tissue and 18Co cells immunostained for receptors and intoxicated with JF669-

TcdB1 were imaged using a Nikon Spinning Disk microscope equipped with a Plan-Apo 60X/1.4 NA 

objective lens and 405, 488, 561, and 647 nm excitation LASERs. Confocal imaging of CSPG4 
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immunostained mouse tissue, Caco-2 cells immunostained for Nectin-3, or Caco-2 cells grown on 

transwells and immunostained for CSPG4 was performed using a Zeiss LSM980 microscope with 

Airyscan 2 equipped with a Plan-Apo 63X/1.4 NA objective lens, an Airyscan detector, and 405, 445, 

488, 514, 561, and 639 nm excitation LASERs. Super-resolution imaging of human colonic tissue stained 

for Nectin-3 was performed using a Nikon Structured Illumination microscope equipped with an Andor 

DU-897 EMCCD camera, a 100X/1.49 NA TIRF oil immersion objective, and 405, 488, 561, and 647 

nm LASERs. The Nikon Elements software was used to reconstruct images. LASER intensities and 

camera gain were matched between samples for each experimental condition. 

Analysis of Colocalization of Receptors and TcdB in 18Co Cells 

Confocal images were analyzed in ImageJ (NIH) using the EZcolocalization plugin (366). Images 

generated from the same imaging experiments were thresholded with the same values prior to quantifying 

colocalization using Ezcolocalization. No region of interest was used in this analysis. Manders’ and 

Pearson correlation coefficients generated from Ezcolocalization was plotted in R (v4.2.0) using the R 

packages ggplot2 (v3.4.0), ggbeeswarm (v0.6.0) and ggprism (v1.0.4) (367–370). 

Cell Surface Endocytosis Assays 

Endocytic assays were performed as previously described but with some modifications (371). Briefly, 18Co 

cell were seeded into 100 mm dishes and grown to 80-90% confluency. Cells were washed three times in 

PBS supplemented with 100 mg/L MgCl2 and 100 mg/L CaCl2 (PBS-CM) and chilled for 1 hour at 4°C 

in PBS-CM. After 1 hour, the PBS-CM was aspirated and cells were incubated with ice-cold HBSS 

containing 0.5 mg/ml EZ-Link Sulfo-NHS-SS-Biotin (Thermo Fisher Scientific) and incubated at 4°C 

for 30 minutes with gentle rocking. Unreacted EZ-Link Sulfo-NHS-SS-Biotin was quenched by 6 ml of 

ice-cold 50 mM Tris pH 8.0 for 10 minutes. After 10 minutes, cells were washed again in 6 ml of ice-

cold 50 mM Tris pH 8.0 for 5 minutes. Biotinylated cells were then treated for 30 minutes with 2.5 ml of 

pre-warmed HBSS containing 10 nM TcdB2 or 100 ng/ml PDGF-AA (STEMCELL Technologies) at 

37°C. A condition that wasn’t biotinylated and a condition that was biotinylated but treated for 0 minutes 

were included as controls. Following treatment, cells were washed 3X in PBS-CM and cell-surface 

biotinylated proteins were reduced by adding 6 ml of an ice-cold solution containing 50 mM reduced 

glutathione, 75 mM NaCl, and 75 mM NaOH and incubating cells for 15 minutes at 4°C. This step was 

repeated for an additional 15 minutes. Next, the reduced cell surfaces were quenched by incubating cells 
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in with 6 ml of a solution containing 50 mM iodoacetamide and 1% bovine serum albumin in PBS-CM 

for 15 minutes at 4°C twice. Next, the cells were lysed in 500 µl of TritonX-100 lysis buffer containing 

Halt Protease inhibitor (Thermo Fisher Scientific). Dishes were scraped to ensure all cells were lysed and 

incubated for 30 minutes at 4°C. Finally, lysates were collected and pelleted at 14,000·g for 30 minutes at 

4°C. Soluble lysates were collected and 20 µl of these lysates were removed to keep as an input sample. A 

BCA assay was performed to quantify total protein concentration in each sample. Next, 400 µg of cell 

lysates were added to 50 of magnetic streptavidin beads (NEB, cat#S1420S) pre-washed with TBS buffer 

and 0.1% Tween-20 (TBST). This mixture was rotated at room temperature for 20 minutes. Samples 

were then briefly pelleted, and beads were enriched using magnet racks. The supernatant was removed, 

and the beads were washed in 200 µl of TBST five times with five minutes per wash. Each wash rotating 

samples at room temperature and separating the supernatant from the beads using a magnetic rack. Finally, 

the magnetic streptavidin beads for each sample were resuspended in 50 µl of TBST and added into new 

tubes. 10 µl of 6X Laemmli buffer were added to each sample as well as 0.7 µl of 14.2 M 2-

mercaptoethanol. Samples were boiled for 10 minutes at 95°C, and the magnetic beads were separated 

from the sample using a magnetic rack. The supernatant was collected and analyzed by Western Blot for 

CSPG4 and TcdB. 

siRNA knockdown of CSPG4 

All siRNA stocks were resuspended to 10 µM and purchased from Horizon Discovery. To prepare the 

siRNA for transfection, 2 µl of the 10 µM stocks of non-targeting control siRNA (D-001210-2) or siRNA 

targeting CSPG4 (L-011632-01) were diluted into 18 µl of serum free DMEM. Meanwhile, 12 µl of 

RNAiMax (Thermo Fisher Scientific) was added to 388 µl of serum free DMEM. The transfection 

reagent mixture was then mixed with the siRNA and allowed incubated at room temperature for 15 

minutes. This siRNA:RNAiMax solution was transferred into a 6 well dish and a suspension of 170000 

18Co cells in 1.6 ml complete media was added. The molarity of siRNA in these conditions were 10 nM. 

After 24 hours, the media was replaced with fresh media and grown for an additional 48 hours. 

Knockdowns were confirmed by Western blot from cells lysed with TritonX-100 lysis buffer, consisting 

of 50 mM Tris pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1% SDS and HALT protease inhibitor 

(Thermo Fisher Scientific).  
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18Co Conditioned Media Collection 

18Co cells were seeded into 6 well dishes at 170,000 cells per well in 2 ml of complete media. The 

conditioned media from all conditions were collected at 72 hours and the cellular debris was pelleted at 

300·g for 10 minutes in a swinging-bucket centrifuge (372). The supernatant was filtered with a 0.45 µm 

filter and stored at -20°C for short term storage or at -70°C for long term storage.  

Caco-2 CSPG4-ECD Uptake Assays 

For experiments analyzed by Western blotting, 70,000 Caco-2 cells were seeded on 12 mm polycarbonate 

cell inserts with 8.0 µm pores (Millipore) and 100,0000 18Co cells were seeded into the bottom wells of 

the dish. The cell inserts were collected on days 1, 3, and 5 and lysed in 35 µl of TritonX-100 lysis buffer. 

Caco-2 cells grown for 5 days on the cell inserts were used as a negative control. The entire volume of cell 

lysates collected from these experiments were analyzed by Western blot. For imaging experiments, 70,000 

Caco-2 cells were seeded into transwells made with 12 mm polyester membranes with 0.4 µm pores 

(Corning) and grown above 100,000 18Co cells for 5 days. Caco-2 cells on Transwells were washed twice 

in PBS and fixed for 20 minutes in 4% paraformaldehyde in PBS. Washes and removal of any reagents 

were performed by inverting the insert as mechanical forces could result in loss of the cell monolayer. After 

fixation, the cells were washed in PBS with 5 minutes per wash, permeabilized for 15 minutes using 0.3% 

TritonX-100 in PBS and stained as described in the Antibody Staining section. 

Mouse Crypt Isolation 

Crypt isolation was performed as previously described but with modifications (373). Mouse colonic tissue 

was prepared by first washing luminal contents with cold PBS to remove fecal pellets. The colon was then 

opened longitudinally and washed at least three times with cold PBS. Next, the samples were washed 

twice in cold 25 mM EDTA for approximately 3 minutes per wash. Colonic tissue was incubated in cold 

25 mM EDTA on ice for 30 minutes with occasional inversions. After 30 minutes, the samples in 25 mM 

EDTA were shaken, and the supernatant was collected and kept on ice. This process was repeated two 

additional times. Collected supernatant was strained through a 70 µm mesh filter and pelleted at 600·g 

for 5 minutes. These crypt pellets were resuspended in PBS and visualized on a brightfield microscope at 

10X magnification. Crypts were once again pelleted, and the supernatant was removed. Isolated crypts 

were then lysed in TritonX-100 lysis buffer and analyzed by Western Blot for CSPG4.  
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Intoxication of Caco-2 for Cell Rounding 

Caco-2 expressing GFP and H2B-mCherry were seeded into a 96 well plate at 25,000 cells per well in 

complete EMEM. After growing cells for 48 hours, media from wells were removed and replaced with 90 

µl with complete DMEM, or, for experiments using 18Co conditioned media, with 90 µl of siNTC media 

or 90 µl siCSPG4 media. Finally, 10 µl of a stock solution of 10 pM TcdB2 was added to cells. After 

intoxication, brightfield, and fluorescence images were collected every 45 minutes on a Cytation 5 imager 

(BioTek) with an atmosphere of 5% CO2 and 37°C temperatures. Detailed methods and   

CSPG4 Antibody Blocking Experiments 

Caco-2 cells expressing GFP and H2B-mCherry were plated into 96 well dishes at a density of 25,000 

cells per well. After 48 hours, an antibody targeting CSPG4 (SantaCruz, 20 µg/ml) was added to the 

conditioned media and incubated at room temperature for 30 minutes. Untreated conditioned media or 

antibody treated conditioned media was added to cells, and cells were intoxicated with 1 pM TcdB as 

previously described and imaged as previously described.  

Western Blotting 

Cell lysate concentrations were determined with a BCA Protein Assay Kit (Thermo Fisher Scientific). 

Unless specified, 20 µg of protein from cell lysates were boiled in Laemmli buffer prior to loading on 4-

20% Mini-PROTEAN TGX stain-free gels (BioRad) for SDS-PAGE. Stain-free gels were activated and 

imaged on a BioRad Gel Doc EZ or a BioRad ChemiDoc MP prior to transfer. Proteins were transferred 

onto PVDF at 100V for 70 minutes in Towbin buffer lacking methanol and membranes were blocked in 

5% milk in PBS for 1 hour. Membranes were incubated overnight in primary antibodies against CSPG4 

(abcam, 1:2000), GAPDH (CST, 1:5000), or TcdB (ListLabs, 1:2000) at 4°C in 5% milk in PBST. 

Membranes were washed three times in PBST, with 5 minutes per wash, and incubated for 1 hour in 

secondary antibodies Dylight-680 goat anti-mouse (CST, 1:10000), DyLight-800 goat anti-rabbit (CST, 

1:10000) or horseradish peroxidase (HRP) goat anti-Chicken (Jackson ImmunoResearch Labs, 1:10000) 

in 5% Milk in PBST for 1 hour at room temperature. Membranes were washed three times in PBST and 

once in PBS prior to protein detection on a Licor Odyssey imager or imaged on film after activating the 

HRP with Immobilon Western Chemiluminescent HRP substrate (MilliporeSigma). Film generated 

from experiments were scanned at 600 DPI in color and converted to grayscale using ImageJ (NIH).  
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Single Cell RNA Sequencing Analysis 

Pre-processed datasets of human colonic epithelial tissue was procured from the Space-Time Gut Cell 

Atlas (https://www.gutcellatlas.org/) (260). ScanPy (v1.9.1), NumPy (v1.22.4), Anndata (v0.8.0), Pandas 

(v1.1.2), and bbknn (v1.5.1) were used to analyze this published dataset as previously described (374–378). 

Cells annotated as healthy adult tissue from the appendix, large intestine, rectum, and small intestines 

were subsetted from the original dataset. Cell-type annotations were included by the original authors of 

the dataset and methods were verified for consistency. Epithelial cells along the intestines were plotted for 

CSPG4 or EPCAM expression using ScanPy dotplot function. Dot plot figures were generated with 

ScanPy using a standard_scale=var and vmax=0.8. Human mesenchymal cells dataset was obtained from 

GSE114374. Genes were initially filtered in ScanPy to be detected in at least 3 cells, and all cells were 

filtered to have at least 250 genes expressed. Cells were further filtered to have less that 5% mitochondrial 

reads prior to scaling and normalizing the data as previously described. Highly variable genes were 

identified using a min_mean=0.0125, a max_mean=4, and min_disp=0.5 and total counts and percent 

mitochondrial counts were regressed. The data were scaled with a max_value=10 and principal component 

was performed using arpack. Neighbors were identified using n_neighbors=10 and n_pcs=20. Next, 

dimensionality reduction was calculated using a UMAP. Finally, clusters were identified using the 

Louvain clustering with a resolution=0.1 and clusters were named from gene markers of known markers 

(365). Stromal cells along the intestines were plotted for CSPG4 or PDGFRA expression using ScanPy 

dotplot function using standard_scale=var and dot_max=0.8.  

18Co RNA Sequencing Analysis 

The 18Co transcriptomic dataset was acquired from the National Center for Biotechnology Information 

Gene Expression Omnibus (GEO) series GSE89124 (379). This dataset was processed by the GEO 

RNA-seq Experiments Interactive Navigator (GREIN) web platform hosted on the National Institutes 

of Health Library of Integrated Network-Based Cellular Signatures (358). The counts table was exported 

as normalized expression as counts per million (CPM) or trimmed mean of m-values (TMM) in GREIN. 

The normalized expression of CSPG4, NECTIN3, FZD1/2/7, and TFPI from the untreated control 

samples was log2 transformed and plotted in R (v4.2.0) using the R packages ggplot2 (v3.4.0), 

ggbeeswarm (v0.6.0) and ggprism (v1.0.4) (367–370). 
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Cell Rounding Quantification 

Images acquired from cell rounding experiments were analyzed using an automated cell rounding analysis 

pipeline developed in the open source software CellProfiler (v4.2.1) using machine learning cell 

segmentation models from Cellpose (v2.0.5) and cell rounding classifiers generated in CellProfiler Analyst 

(v3.0.4) (380–382). To generate classifier models that differentiate round cells from non-round cells in 

Caco-2 cells, grayscale GFP and Texas Red images were imported into CellProfiler. Briefly, the 

RunCellpose module was applied using Cellpose’s cyto2 detection model using GFP images. The nuclear 

images corresponding to the H2B-mCherry from the Texas Red images were used here. Cells were 

calculated to have an expected diameter of 40 and cell probability was set to -3. A flow threshold of 1 was 

used as well as a minimal size of 30. Other settings were kept at default settings. The size and shapes of 

classified objects were then filtered to have a MinFeretDiamter of minimally 17 and a maximal of 60. 

Objects touching the edges of images were filtered out as well. Next, objects were measured for size, shape, 

intensity of GFP and H2B-mCherry and their intensity distribution, and finally colocalization of GFP 

and H2B-mCherry within cells. Objects corresponding to segmented cells were then classified in 

CellProfiler Analyst as described earlier. The corresponding machine learning Gradient Boost model was 

then added to the end of the original Caco-2 cell segmentation pipeline to classify round cells from non-

round cells. When needed, areas of images that were too bright to segment accurately were masked using 

CellProfiler prior to using RunCellpose. Images contained at least 500 cells per image. Finally, the 

percentage of round cells were calculated as previously described (155). These CellProfiler pipelines and 

the CellProfiler Analyst model are available on https://github.com/kochild/Cell-Rounding-Pipelines-

and-Models.  
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Table	3-1.	Bacterial	Strains	and	plasmids	

Plasmid or Strain Relevant genotype or features Source, construction, or 
reference 

Strains   

B. megaterium   

bm003 TcdB1 expression strain containing  (138) 

 bm074 TcdB2 expression strain containing pBL598 J. Ballard 

Plasmids   

 pBL598 TcdB2 expression vector J. Ballard 

 pLenti CMV 
GFP Puro 
(658-5) 

Lentiviral expression vector encoding GFP 
under a CMV promoter 

(383) 

 H2B-
mCherry 

Lentiviral expression vector encoding H2B 
fused to mCherry  

(384) 

 psPAX2 2nd Generation lentiviral packaging plasmid Cat#12260,Addgene; RRID: 
Addgene_12260 

 pMD2.G VSV-G envelope expressing plasmid Cat#12259, Addgene; RRID: 
Addgene_12259 

	

Table	3-2.	Materials	and	Reagents	

Reagent Source Identifier 

Antibodies and Cell Stains   

Rabbit monoclonal anti-CSPG4 Abc
am 

Cat#ab255811; 
RRID: N/A 

Mouse monoclonal anti-CSPG4 Santa Cruz Biotechnology Cat#sc-53389; 
RRID: AB_784821 

Rabbit monoclonal anti-GAPDH Cell Signaling Technology Cat#2118; RRID: 
AB_561053 

Rabbit anti-ZO-1 Thermo Fisher Scientific Cat#61-7300; 

RRID: 

AB_2533938 
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Chicken polyclonal anti-TcdB List Labs Cat#754A; RRID: 
AB_2909446 

Goat anti Nectin-3 Thermo Fisher Scientific Cat#PA5-47441; 

RRID: 

AB_2577074 

Goat anti-chicken HRP Jackson ImmunoResearch Cat#103-035-155; 
RRID: AB_2337381 

Goat anti-rabbit 488 Thermo Fisher Scientific Cat#A-11008; 
RRID: AB_143165 

Goat anti-rabbit 546 Thermo Fisher Scientific Cat# A-11035; 
RRID: AB_2534093 

Goat anti-mouse DyLight 680 Cell Signaling Technology Cat#5470; RRID: 
AB_10696895 

Goat anti-rabbit DyLight 800 Cell Signaling Technology Cat# 5151; RRID: 
AB_10697505 

Donkey anti-rabbit 488 Thermo Fisher Scientific Cat#A-21206; 

RRID: 

AB_2535792 

Donkey anti-goat 555 Thermo Fisher Scientific Cat#A-21432; 

RRID: 

AB_2535853 

Alexa Fluor Plus 405 Phalloidin Thermo Fisher Scientific Cat#A30104 

Alexa Fluor 546 Phalloidin Thermo Fisher Scientific Cat#A22283 

Alexa Fluor 647 Phalloidin Thermo Fisher Scientific Cat#A22287 

Chemicals    

NHS-Janelia Fluor 669 Tocris Cat#6420 

EZ-Link Sulfo-NHS-SS-Biotin Thermo Fisher Scientific Cat#21331 

Cell Culture Reagents   

PDGF-AA STEMCELL Technologies Cat#78095 
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Final Discussion, Conclusions and Future Directions 
	

Introduction 

C. difficile infection continues to be a leading cause of antibiotic-associated diarrhea worldwide (114). As 

the clinical symptoms of the disease are mediated by its toxins, many researchers have worked to identify 

cell surface proteins involved in the intoxication process. While their efforts identified multiple proteins 

and glycans involved in the cytotoxic and cytopathic responses of the toxins, none of these cellular factors 

were demonstrated to facilitate the entry of the toxin into cells (152, 154–158, 221, 385–389). In fact, 

some of these interactions have been proposed to only promote toxin binding to the cell surface and are 

not involved in toxin endocytosis (159). If the interactions between the toxins and cellular factors do result 

in endocytosis, the use of the term receptor becomes ambiguous and suggests there is a need to distinguish 

between cell surface binding receptors and toxin entry receptors. However, some researchers have argued 

that even though the interactions between toxins and some receptors do not facilitate an immediate 

endocytic response, any toxin associated with a surface protein will likely be endocytosed over time through 

endocytic recycling pathways (36, 390). Therefore, even toxin interactions with so-call cell surface binding 

receptors are still predicted to enter the cell.  

While the overall role of toxin binding to the cell surface is unknown, what was known when I began my 

thesis was that endocytosis of the toxin was necessary for mediating the toxin’s cytotoxic and cytopathic 

activities (138, 145, 286, 328, 391). At that time, there were only two protein receptors for TcdB, Nectin-

3 and CSPG4 (155, 156). My initial goal was to investigate how TcdB interactions with these receptors 

would promote the pathogenesis of the toxin in cells and hosts. Importantly, within the colon, these 

receptors were predicted to be localized to two distinct locations: (1) Nectin-3 was predicted to be 

expressed within epithelial adherens junctions and (2) CSPG4 was predicted to be expressed by fibroblasts 

along the crypt-villus axis (203, 299). I hypothesized that Nectin-3 would facilitate TcdB-mediated 

epithelial injuries alone and that CSPG4 would facilitate TcdB-mediated injuries to stromal cells. 

However, soon after I began testing this hypothesis, FZD1/2/7 was identified as an additional class of 

TcdB receptors (154). The FZD1/2/7 receptors were predicted to be expressed by colonic epithelial cells, 
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but unlike Nectin-3, their interactions with TcdB were shown to contribute to the cytopathic response 

(154, 156).  

While the discovery of FZD1/2/7 as TcdB receptors did not negate my initial hypothesis, it was clear that 

I had to consider the contributions of FZDs in the overall intoxication mechanism of epithelial cells. As 

knockout of Nectin-3 was shown to result in decreased TcdB-mediated cytotoxicity on colonic epithelial 

cell lines, I had hypothesized that Nectin-3 served as a cytotoxic receptor and FZD1/2/7 proteins served 

as cytopathic receptors. As I began investigating these interactions, I performed a sequence alignment of 

the various annotated TcdB variants uploaded on NCBI GEO in hopes that I would identify conserved 

residues that were important for receptor interactions. These TcdB variants at the time were predicted to 

impact their virulence (165, 166, 343, 392). This investigation happened to coincide with the publication 

of a co-crystal structure of a portion of TcdB bound to the CRD of FZD2 (161). As the structure revealed 

many key residues that mediate TcdB interactions with FZD1/2/7, I inspected those sequences in my 

alignment. To my surprise, the alignment revealed mutations in six residues that mediate FZD 

interactions with TcdB1 were not conserved in TcdB2. While I did not expect that most of these 

mutations would be deleterious to the interaction with FZDs, I hypothesized that the F1597S mutation 

in TcdB2 would disrupt the hydrophobic interactions between TcdB2 and FZD1/2/7. As shown in 

Chapter 2, we were unable to detect any measurable binding between TcdB2 and the CRD of FZD2. 

Additionally, we found that TcdB2 is unable to inhibit the canonical Wnt signaling, a pathway that we 

confirmed to be inhibited by TcdB1. However, we saw that TcdB2 was as potent as TcdB1 and TcdB1GFE 

(a FZD binding mutant) when rectally instilled into mice, with all toxins inducing similar pathologies. 

Finally, we found through a collaboration with Dena Lyras and Helen Abud that TcdB2 can still 

intoxicate stem cells independently of FZD interactions to perturb stem cell function.  

With these findings, I became interested in the potential utility of immunofluorescence microscopy for 

characterizing TcdB and its receptor interactions. Although this may seem like a simple task, the 

visualization of TcdB was extremely challenging due to the toxin being undetectable in most contexts 

(328). However, if I could successfully apply the technique, I would be able to investigate TcdB 

interactions with receptors directly on cells. As shown in Chapter 3, I was able to identify 18Co cells as a 

cell line where TcdB could be visualized. In these cells, I found that TcdB1 colocalized with both CSPG4 

and Nectin-3 and obtained evidence that both receptors are endocytosed in the presence of TcdB1. 
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Having developed a method for visualizing TcdB on cells, I next asked if I could use colonic tissue to 

investigate TcdB interactions with receptors. While imaging human colonic tissue sections 

immunostained for Nectin-3 and CSPG4 with confocal microscopy, I made two unexpected observations 

on the actual localization of the receptors. The first observation was that Nectin-3 localized to the colonic 

brush border in addition to cell junctions, and the second observation was that CSPG4 localized to 

epithelial cell junctions in addition to fibroblasts below the crypt-surface axis. While I found it very 

difficult to detect TcdB1 on intoxicated colonic tissue, I observed TcdB1 colocalization with Nectin-3 

within the apical region of colonocytes. This result suggests that Nectin-3 may facilitate TcdB interactions 

on the colonic epithelial cells by binding TcdB within the brush border. As for the CSPG4 signal along 

the epithelial junctions, I found evidence that this signal is likely from CSPG4 shed by fibroblasts that 

line the crypt-surface axis. Specifically, I found that CSPG4 shed by fibroblasts can associate with 

epithelial cells grown in transwells. Surprisingly, this shed form of CSPG4 can potentiate the activity of 

TcdB2. Based on these observations, I propose that a soluble form of CSPG4 derived from stromal cells 

can serve as an epithelial receptor for TcdB. The observation of Nectin-3 in the brush border and shed 

CSPG4 on epithelial cells opens many exciting avenues for both epithelial biology and our understanding 

of TcdB mechanisms.  

Future directions 

Characterizing the relationship between TcdB interactions with receptor and cytotoxicity 

Although my research revealed multiple unexpected results, I consider the lack of FZD interactions with 

TcdB2 to be the most surprising. While differences in receptor tropism has been observed in other toxins 

(e.g., Botulinum neurotoxins), TcdB2 was proposed to be more potent than historical variants and capable 

of inducing the severe symptoms associated with the epidemic of the 2000s in the United States (114, 

169–171). How then could a toxin that lacked a receptor interaction be more potent? One potential 

explanation could be that TcdB2 interacts with an alternative receptor instead of FZDs. This may explain 

why I observed that TcdB2 is as potent as TcdB1 on mouse colonic tissue (Figure 2-3, Figure S2-4). 

Hoping to address this, I decided to first test the claim that TcdB2 is more potent than TcdB1. A simple 

metric for TcdB potency is the measurement of ATP present in cells following intoxication with necrotic 

concentrations of TcdB. As a control for TcdB2, I used TcdB1GFE to prevent FZD interactions in the 

historical strain. If TcdB2 had only lost the ability to interact with FZD, I predicted that its cytotoxic 
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response should be identical to that of TcdB1GFE. However, if TcdB2 had gained the ability to interact 

with an unknown receptor to compensate for the loss of FZD interactions, the cytotoxicity mediated by 

TcdB2 should be equivalent to or greater than that of TcdB1. On Caco-2 cells treated with these toxins, 

I found TcdB2-mediated cytotoxicity was nearly identical to that of TcdB1GFE and that both TcdB2 and 

TcdB1GFE were less cytotoxic than TcdB1 (Figure 4-1A). This suggests that TcdB2 has only lost the 

ability to interact with FZD receptors and that it is not more potent than TcdB1 as previously reported 

(343). However, when I repeated this experiment on HeLa cells, the activities of the toxins were identical 

(Figure 4-1B). These differences would suggest that the activities of TcdB1 and TcdB2 can be identical 

under specific contexts. In this case, the major difference is the expression of CSPG4 in HeLa cells and 

the absence of its expression in Caco-2 cells. Furthermore, while FZDs appear to not facilitate TcdB 

cytotoxicity in HeLa cells, the opposite is true in Caco-2 cells. These data suggest that the cytotoxic 

responses mediated by TcdB are cell line dependent. Indeed, similar observations have been reported for 

TcdB-mediated cytopathic responses (178). As Nectin-3 interactions with TcdB were originally reported 

to facilitate TcdB cytotoxicity in Caco-2 cells, it would be interesting to test the cytotoxicity of TcdB2 on 

a Nectin-3 knockout cell line. I would predict that TcdB2 would be completely non-toxic on these cells. 

Recent phylogenetic studies have suggested that TcdB1 and TcdB2 have evolved from unique evolutionary 

paths (107). Sequencing analysis suggests that TcdB variants evolved from a TcdB1-like ancestor (type i) 

or a TcdB7-like ancestor (type ii) (107). The TcdB variants that evolved from the type i ancestor 

(TcdB1/5/6) reportedly all bind FZDs, while the TcdB variants that evolved from the type ii ancestor 

(TcdB4/7) do not (158). Instead, the TcdB variants that evolved from the type ii ancestor utilize TFPI as 

its putative receptor (157, 158). The remaining TcdB variants evolved through recombination events from 

both historical type i and type ii ancestors (107). While the TcdB1 variant is a direct descendent of the 

type i ancestor, the TcdB2 variant is predicted to have formed by fusion of the N-terminus from the type 

i ancestor (the GTD and APD) with the C-terminus from the type ii ancestor (the DD and CROPs) 

(107). However, even though the C-terminus of TcdB2 evolved from the predicted type ii TcdB ancestor, 

it does not interact with TFPI (158). This suggests that throughout the evolution of the TcdB2, the toxin 

acquired the C-terminus of the type ii ancestor prior to these variants evolving interactions with TFPI. 

Interestingly, CSPG4 interactions with TcdB is conserved across most TcdB variants with both type i and 

type ii ancestors (158).  
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Figure	4-1.	The	cytotoxic	properties	of	TcdB2	are	cell	line	specific	and	CSPG4	dependent	

A) Caco-2 cells were intoxicated with TcdB1, TcdB1GFE, and TcdB2 for 4.5 hours before measuring ATP 
levels with CellTiter-Glo (Promega). N=3. *P<0.05, **P<0.01. Two-way ANOVA, corrected for 
multiple comparisons with Dunnett’s test 

B)  HeLa cells were intoxicated with TcdB1, TcdB1GFE, and TcdB2 for 4.5 hours before measuring ATP 
levels with CellTiter-Glo (Promega). N=3. **P<0.01. Two-way ANOVA, corrected for multiple 
comparisons with Dunnett’s test 
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Is there a connection between CSPG4 and Nectin-3 expression? 

While investigating TcdB receptor interactions, I generated knockouts of both Nectin-3 and CSPG4 in 

HeLa cells using CRISPR-cas9. When I intoxicated these cells with TcdB2, I found that while both 

CSPG4 knockout clones were protected from TcdB2, only one of my two Nectin-3 knockout clones was 

significantly protected (Figure 4-2). A Western blot analysis using cell lysates of these Nectin-3 knockout 

cells revealed varying levels of CSPG4 (Figure 4-2). Importantly, the Nectin-3 knockout clone with 

significant protection, clone 2, contained almost no detectable CSPG4 signal. Additionally, the Nectin-3 

knockout clone with no significant protection, clone 1, also appeared to contain less CSPG4. The two 

CSPG4 knockout clones did not have any obvious changes in Nectin-3. While the differences in CSPG4 

expression can possibly be explained by natural variations in cells, Nectin-3 is reported to regulate the 

localization of some transmembrane proteins on cells (290). One specific protein whose location is 

regulated by Nectin-3 is PDGFR⍺. PDGFR⍺ is also a protein that CSPG4 can associate with on cells 

through direct interactions (193, 209). It would be interesting to determine if knockout of Nectin-3 also 

perturbs the localization of PDGFR⍺ and CSPG4 on HeLa cells. This could be visualized through 

immunofluorescence microscopy. Additionally, even though knockout of CSPG4 did not appear to affect 

the concentration of Nectin-3 in cell lysates, it would be useful to determine if knockout of CSPG4 had 

any effects on the localization of Nectin-3 and PDGFR⍺. 

Nectin-3 and its role in the brush border 

The involvement of Nectin-3 in the development of various organs and cell architectures has been 

demonstrated using Nectin3-/- knockout and knockdown mice. These mice exhibit defects in cochlear hair 

cell organization, develop microphthalmia, have impaired neuronal synapse formation, and develop male-

specific infertility (295, 296, 393–395). The localization of Nectin-3 in intestinal epithelium is influenced 

by afadin, a cytosolic protein that links Nectin proteins to the actin cytoskeleton (363). However, loss of 

Nectin-3 reportedly does not affect the architecture of the intestinal epithelium or its barrier function, a 

phenotype that may be attributed to compensatory interactions between other Nectin proteins (363). In 

addition to afadin, Nectin-1 and Nectin-3 can interact with the PAR complex, a ternary complex 

consisting of Par-3, Par-6, and aPKC that is required for cell polarity (293, 396). Nectin-1 and Nectin-

2 have also been shown to interact with Patj via their PDZ domains using pulldowns (397). A recent 

study has shown that components of the Par complex and Patj are localized along the base and length of   
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Figure 4-2  Knockout of Nectin-3 and CSPG4 in HeLa cells confers protection from TcdB2.  

Clone 2 of NECTIN3 KO and clones 1 and 2 of CSPG4 knockout are significantly protected in the 
presence of RT027 TcdB. N=3 **P<0.01, *** P<0.001, ****P<0.0001. Two-way ANOVA, Dunnett’s 
Multiple Comparison Test. The bottom panel is a representative Western blot (WB) confirming the 
knockout of either CSPG4 or Nectin-3.  
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microvilli in polarized Caco-2 cells. While Nectin-3 has not been demonstrated to interact with Patj, its 

PDZ domain is identical to Nectin-1 (398). Future studies will address if the interactions between Nectins 

and these cytosolic proteins are involved in the localization of Nectins to the microvilli. While we are 

unaware of other studies reporting the localization of Nectin proteins to microvilli along intestinal 

epithelial cells, Nectin-2 is reportedly present on the microvilli-like extensions found in oocytes (399). I 

have briefly investigated some of the proteins Nectin-3 possibly interacts with within the brush border. 

The most obvious proteins would be other Nectins. On a cell line commonly used to investigate the 

development of the brush border, I found that Nectin-1 and Nectin-3 colocalize with each other within 

the microvilli (Figure 4-3). This finding suggests that Nectin proteins could be involved in microvilli 

assembly, a field of research that is under active investigation. It was recently determined that microvilli 

assembly is regulated by the interactions of cadherin-like molecules (400, 401). Like the role of cadherins 

in cellular junctions, these cadherin-like molecules present throughout microvilli are proposed to interact 

with each other to facilitate the linkages between nascent microvilli (364). As Nectins can also form 

interactions with other Nectins, an attractive hypothesis is that these molecules facilitate a similar function.  

What are the potential consequences of TcdB interactions with Nectin-3 if they occur in the microvilli? 

Although we lack a complete understanding of what residues in Nectin-3 facilitate its interactions with 

TcdB, we have data that suggests this occurs within the D1 subdomain. Additionally, the D1 subdomain 

is the region of Nectin-3 that facilitates its interactions with other Nectins (289). Therefore, one 

interesting hypothesis is that TcdB interactions with Nectin-3 could prevent it from interacting with other 

Nectins. If this occurs, TcdB interactions with Nectin-3 within the brush border could impact the 

assembly or stability of the brush border. These events could cause disease symptoms such as diarrhea due 

to the importance of brush border assembly in fluid absorption (401, 402).  

CSPG4 and its interactions with the colonic epithelium 

One important yet unresolved question is the source of shed CSPG4 in vivo. Multiple cell types within 

the colonic submucosa can express CSPG4 (Figure 4-4). From an analysis of a published sc-RNA seq 

dataset from mouse intestinal stromal cells, we can see that essentially all fibroblast populations along the 

crypt-surface axis can express CSPG4. Cell types such as pericytes and vascular smooth muscle cells 

(SMC) express the greatest amounts of CSPG4 transcripts. These data provide a starting point for future 

investigation. They also provide insight into the possible cell types TcdB can target within the submucosa. 
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Figure	4-3	Nectin-1	and	Nectin-3	colocalize	with	each	other	in	the	microvilli.	

W4 cells were immunostained for Nectin-1, Nectin-3 and stained with phalloidin. Images were acquired 
on a Nikon Spinning Disk microscope at 60X. The white dashed box around the brush border outlines 
the location of the zoomed image. 
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Figure	4-4.	scRNA-seq	reveals	the	expression	of	CSPG4	expressing	cells	in	the	colon.	

scRNA-seq (GSE149859) analysis was performed using the same labels and clustering methods as 
previously described (403). CSPG4 expression per cell was plotted in Seurat (404). The clusters each 
represent individual fibroblast populations that are present along the crypt-surface axis. The terms base, 
middle, and apex, refer to the location of these fibroblast populations along the crypt surface axis. 
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The pericytes and vascular SMC are interesting due to their role in vasculature leakage during CDI (405). 

While other proteoglycans are secreted directly into the extracellular environment, CSPG4 is expressed 

as a transmembrane protein and requires the activity of metalloproteinases to be shed into the extracellular 

environment (232–234, 406). Cleavage can occur within the D3 membrane proximal subdomain of 

CSPG4 (residues 1591-2221), producing a near equivalent of the full-length CSPG4 ectodomain (235, 

238). Our data suggest that TcdB interactions with a shed form of CSPG4 promote cytopathic responses 

in vitro. However, we have not determined how endocytosis of this putative TcdB-CSPG4 ECD complex 

occurs. This complex may utilize the various signaling pathways the CSPG4 ECD domain can activate. 

Functionally, shed forms of CSPG4 have been shown to stimulate cell migration via the activation of β1-

class integrin signaling (186). Additionally, interactions between the CSPG4 ECD with growth factors 

and receptor tyrosine kinases are predicted to still occur in vivo (230). Our future studies will address the 

contributions of various surface protein interactions of CSPG4 ECD for the endocytosis of TcdB. 

Finally, it is interesting to speculate the role of shed CSPG4 ECD during CDI. As mentioned in Chapter 

1, a recent study demonstrated that CSPG4-/- mice infected with C. difficile exhibited less epithelial injury 

and pathologies (160). The study also revealed that mouse ceca injected with TcdB1 that contained 

mutations that prevent CSPG4 interactions had reduced epithelial injuries and pathologies (160). I predict 

that shed forms of CSPG4 that associates with the colonic epithelium are responsible for mediating these 

reported CSPG4-dependent epithelial injuries in mice. In support of this prediction, it was determined 

that the inhibitory activity of bezlotoxumab, an anti-TcdB antibody approved by the United States Food 

and Drug Administration for the treatment of recurrent CDI, against TcdB is mediated by blocking TcdB 

interactions with CSPG4 (160, 407). Mice ceca injected with TcdB1 and bezlotoxumab are reported to 

have less epithelial injury and overall pathologies, a result that can be explained by my finding that soluble 

CSPG4 serves as an epithelial receptor for TcdB (160). With CSPG4 serving as a receptor for most TcdB 

variants, the development of drugs that block their interaction should protect hosts from the activity of 

TcdB (158).  
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