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CHAPTER 1

Background and Motivation

1.1 Big data and systems biology

Big data has become increasingly important in the field of biology, particularly in research and development

of precision medicine. Advances in technology have enabled researchers to generate large amounts of data

from genomic, transcriptomic, and proteomic profiling of human tissue (Gerdes et al., 2013; Klein et al.,

2015; Ståhl et al., 2016; Cao et al., 2018; Wang et al., 2018; Rodriques et al., 2019; Black et al., 2021).

With the help of powerful computational tools, these large datasets can be analyzed and mined for insights

into disease mechanisms, potential drug targets, and patient outcomes (Suvà and Tirosh, 2019; Yoosuf et al.,

2020).

One of the most promising applications of data science methods to the field of medicine is patient strati-

fication and targeted drug discovery, which manifest themselves in precision diagnostics and individualized

treatments, respectively. By analyzing large datasets of patient information, including genomic and clinical

metadata, researchers and clinicians can identify specific biomarkers and genetic mutations that can be tar-

geted with precision therapies (Mckenna et al., 2018). This approach has the potential to improve patient

outcomes and reduce healthcare costs, as treatments can be tailored to the specific needs of each patient.

Furthermore, the use of big data in precision medicine could lead to the development of new drugs and ther-

apies that are more effective and have fewer side effects, as researchers gain a deeper understanding of the

underlying biology of diseases.

1.1.1 Data quality and reproducibility

In the field of biomedical data science and machine learning, quality control and reproducibility are critical

for ensuring accurate and reliable results. In order to draw meaningful conclusions from large datasets, it is

essential to ensure that the data is of high quality and that any errors or biases are identified and corrected

(Simmons and Lau, 2017, 2022). This requires rigorous quality control measures, including careful data

cleaning and normalization, as well as the use of appropriate statistical methods to control for confounding

variables.

Reproducibility is also key to the validity of scientific findings in this field. The ability to reproduce

results from different datasets and across multiple modalities is essential for confirming the robustness of

scientific findings and for building confidence in the accuracy of the results and models for which they serve

as inputs (Luecken and Theis, 2019; Harris et al., 2022; Schapiro et al., 2022). In the context of machine
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Figure 1.1: Processing single-cell RNA-seq data for dimension reduction-based analyses using open-source
tools. Adapted from Chen et al., 2021a.

learning, reproducibility is critical for validating different algorithms and models, and for comparing their

performance against one another. By prioritizing quality control and reproducibility, researchers and clin-

icians can ensure that their findings are accurate, reliable, and meaningful, which is essential for driving

progress and innovation in this rapidly evolving field (Gutierrez et al., 2018; Chen et al., 2021a; Bao et al.,

2021; Figure 1.1).

1.2 Systems-level analysis uncovers key patterns underlying biological complexity

Systems biology is an interdisciplinary field that seeks to understand complex biological systems by studying

their interactions and dynamics rather than solely focusing on individual components. Unlike traditional

reductionist approaches, which aim to break down biological systems into smaller parts for analysis, systems

biology considers the system as a whole and seeks to understand how its components interact with each

other and with the environment (Huang, 2012; Beger et al., 2016; Marabita et al., 2022). Systems biology
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often involves the integration of multiple types of data, including genomics, transcriptomics, proteomics, and

metabolomics, and the development of computational models to simulate and predict system behavior (Leduc

et al., 2011).

Emerging high-dimensional single-cell and spatial technologies enable systems biology by providing a

more comprehensive view of biological systems. Single-cell technologies allow researchers to study the be-

havior and interactions of individual cells, revealing cell-to-cell heterogeneity and enabling the identification

of rare cell types and states in human health and disease (Han et al., 2018; Nagle et al., 2021). Spatial tech-

nologies provide information on the organization and context of cells within a tissue, allowing researchers to

study the relationships between different cell types and their microenvironment (Moor and Itzkovitz, 2017;

Wu et al., 2022a). By integrating these high-dimensional datasets, systems biologists can construct detailed

models of complex biological systems that can be used to predict how they will respond to perturbations or

treatments.

Large, atlas-style systems biology studies of human tissues and diseases such as cancer are providing

unprecedented insights into the underlying mechanisms of disease and potential therapeutic targets (Regev

et al., 2017; Rozenblatt-Rosen et al., 2020). These studies are generating comprehensive maps of the cel-

lular and molecular landscapes of tissues and diseases, revealing previously unknown cell types, signaling

pathways, and genetic alterations. By analyzing these maps, systems biologists are identifying new biomark-

ers for disease diagnosis and prognosis and developing personalized treatment strategies (Stunnenberg et al.,

2019; Lukowski et al., 2019; Aizarani et al., 2019; Luca et al., 2021; Cheng et al., 2021). Additionally, these

studies are providing a framework for understanding how different diseases are related and how they can be

classified based on underlying biological mechanisms rather than traditional clinical criteria. Overall, sys-

tems biology offers a suite of powerful computational approaches to understand complex biological systems

and developing more effective treatments for a range of diseases.

1.2.1 Integrative modeling of cancer progression across resolutions

The advent of single-cell and spatial molecular assays has provided tools for unbiased interrogation of tis-

sue, lending insight to cellular activity and signaling in the context of populational heterogeneity and tissue

morphology. These methods have disadvantages in efficiency and depth compared to traditional bulk mea-

surements, but may complement one another through modality-specific strengths. Mutual and independent

information offered by features of fluorescence microscopy and single-cell and spatial transcriptomics can

be used to augment and enhance the aggregate dataset through linear and mixture models and matrix de-

composition methods. Using regional genomic, transcriptomic, and proteomic measurements, we can map

co-evolution of tumor and immune cells along spatially informed pseudotime of colorectal cancer (CRC)
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Figure 1.2: Integrated spatial and single-cell data will allow for characterization of co-evolving tumor and
immune cells in CRC. Clonal mutations shown as colored fractions of tumor through space and time. Adapted
from Sottoriva et al., 2015.

progression (Figure 1.2). A resulting understanding of the mutual progression of tumor and immune com-

partments has the potential to impact patient treatment decisions and contribute to cancer immunotherapy

development (Rao et al., 2021; Lewis et al., 2021; Palla et al., 2022a).

An early proposal (ca. 2019) for the current work is detailed in Figure 1.3. Since the conception of

this project, many technologies have emerged to address gaps in the field that our original aims focused on.

For instance, image fusion models improve the resolution of spatial transcriptomics (ST) using registered

brightfield and fluorescence data (Bergenstråhle et al., 2020), and deconvolution tools have been developed

to distinguish cellular admixtures in ST (Andersson et al., 2020; Elosua-Bayes et al., 2021; Cable et al.,

2021; Kleshchevnikov et al., 2022). For the purpose of this phylogeographical atlas, the general experimental

design remained relatively unchanged, and successful integration of multiple spatially resolved modalities has

yielded a valuable resource in the characterization of tumor evolution and microenvironmental interactions

in CRC (Chapter 5; Figure 5.1).

A major challenge in building models across ST, multiplex immunofluorescence (MxIF), histology, and

multiregional sequencing is accounting for differences in spatial resolution (Figure 1.4). Untargeted ST

captures mRNA from up to dozens of single cells per microwell, necessitating the deconvolution of the
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Figure 1.3: Graphical abstract for original data integration aims proposal.
(A) Schematic of image fusion to improve spatial resolution of one modality through modeling against an-
other.
(B) Matrix representation of reference NMF (refNMF) for deconvolution of spatial transcriptomics to single-
cell resolution.
(C) Diagram of single-cell segmentation from multiplex protein imaging.
(D) Application of multimodal spatial experiment detailed in A-C to map tissue dynamics in human colorec-
tal tumors through serial sectioning of FFPE blocks.

resulting cell-type admixures. On the other hand, paired MxIF images offer subcellular resolution, and can

be segmented into single-cell masks in order to validate ST deconvolution (McKinley et al., 2022; Figure

1.3C). Likewise, multiregional exome sequencing via laser capture microdissection (LCM-WES) requires

large swaths of tissue for genome-scale profiling of somatic mutations and copy number variations (CNVs).

However, ST offers the opportunity to confirm cancer cell fraction and CNVs within LCM regions of interest

(ROIs; Satas et al., 2021). In the present studies, data integration approaches take advantage of mutual and

independent information between modalities with varying spatial and cellular resolution in order to learn

relationships between genes, proteins, and mutational drivers (Heiser et al., 2023; Chapter 5).

1.2.2 Impact on digital pathology and precision oncology

Spatially resolved technologies have particular relevance to digital pathology, which involves the use of

high-dimensional images and computational tools to comprehensively profile tissues and diagnose disease
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Figure 1.4: Effective spatial resolutions of various molecular assays used in these studies.

(Bankhead et al., 2017; Javed et al., 2020). With these assays, researchers can generate detailed molecular

profiles of tumors, which can be used to identify specific biomarkers for diagnosis, prognosis, and patient

stratification (Rana et al., 2018; Moehlin et al., 2021; Lin et al., 2023). Additionally, the information pro-

vided by these assays can be used to develop new diagnostic tools and therapies that are tailored to the specific

molecular characteristics of individual tumors.

The work presented herein culminates in a phylogeographical atlas of CRC (Heiser et al., 2023; Chapter

5). Building on the big data principles and methods discussed in Chapters 2-4, we collected and integrated

spatial multi-omic data, constructing patient-specific phylogeographic landscapes of tumor evolution and

global trajectories from normal colonic tissue to malignancy. In doing so, we revealed microenvironmental

and clonal dynamics along tumor progression and identified key genes and cell states associated with im-

mune exclusion in CRC. We expect this atlas dataset and the associated multi-scale modeling techniques to

serve as a valuable resource for future data mining efforts related to stratification and targeted treatment of

CRC. Overall, we demonstrated the potential of computational systems biology approaches to drive precision

oncology.

As genomic, transcriptomic, and proteomic profiling technologies continue to advance in sensitivity and

scale, the volume and complexity of generated data describing human health and disease will expand ex-

ponentially. This enormous challenge necessitates the development, validation, and continual refinement

of mathematical and computational techniques for automated, reproducible, and interpretable modeling of

molecular dynamics at multiple resolutions. Overall, big data and systems biology approaches offer valuable
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tools for advancing our understanding of cancer biology and developing more effective cancer treatments. By

providing detailed information about the molecular characteristics of tumors and their microenvironments,

these approaches help researchers identify new therapeutic targets and prognostic biomarkers. As such, they

have the potential to revolutionize cancer diagnosis and treatment and to improve patient outcomes.
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CHAPTER 2

A quantitative framework for evaluating single-cell data structure preservation by dimensionality

reduction techniques

Adapted from:

Heiser, C. N. and Lau, K. S. (2020). A Quantitative Framework for Evaluating Single-Cell Data Structure

Preservation by Dimensionality Reduction Techniques. Cell Reports, 31(5):107576

Figure 2.1: Heiser and Lau, 2020 graphical abstract

2.1 Summary

High-dimensional data, such as those generated by single-cell RNA sequencing (scRNA-seq), present chal-

lenges in interpretation and visualization. Numerical and computational methods for dimensionality reduc-

tion allow for low-dimensional representation of genome-scale expression data for downstream clustering,

trajectory reconstruction, and biological interpretation. However, a comprehensive and quantitative evalua-

tion of the performance of these techniques has not been established. We present an unbiased framework that

defines metrics of global and local structure preservation in dimensionality reduction transformations. Using
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discrete and continuous real-world and synthetic scRNA-seq datasets, we show how input cell distribution

and method parameters are largely determinant of global, local, and organizational data structure preservation

by 11 common dimensionality reduction methods.

2.2 Introduction

Single-cell RNA sequencing (scRNA-seq) offers parallel, genome-scale measurement of tens of thousands of

transcripts for thousands of cells (Klein et al., 2015; Macosko et al., 2015). Data of this magnitude provide

powerful insight toward cell identity and developmental trajectory – states and fates – which are used to inter-

rogate tissue heterogeneity and characterize disease progression (Regev et al., 2017; Wagner et al., 2018). Yet,

extracting meaningful information from such high-dimensional data presents a massive challenge. Numeri-

cal and computational methods for dimensionality reduction have been developed to reconstruct underlying

distributions from native “gene space” and provide low-dimensional representations of single-cell data for

more intuitive downstream interpretation. Basic linear transformations such as principal component analysis

(PCA) have proven to be valuable tools in this field (Sorzano et al., 2014; Tsuyuzaki et al., 2020). How-

ever, given the distribution and sparsity of scRNA-seq data, complex, nonlinear transformations are often

required to capture and visualize expression patterns. Unsupervised machine learning techniques are being

rapidly developed to assist researchers in single-cell transcriptomic analysis (Van der Maaten and Hinton,

2008; Pierson and Yau, 2015; Wang et al., 2017; Linderman et al., 2017; Becht et al., 2018; Ding et al.,

2018; Lopez et al., 2018; McInnes et al., 2018; Risso et al., 2018; Eraslan et al., 2019; Townes et al., 2019).

Because these techniques condense cell features in the native space to a small number of latent dimensions,

lost information can result in exaggerated or dampened cell-cell similarity. Furthermore, depending on input

data and user-defined parameters, the structure of resulting embeddings can vary greatly, potentially altering

biological interpretation (Kobak and Linderman, 2019).

With a deluge of computational techniques for dimension reduction, the field is lacking a comprehen-

sive assessment of native organizational distortion consequential to such methods. We present an unbiased,

quantitative framework for evaluation of data structure preservation by dimensionality reduction transforma-

tions. We propose metrics for broad characterization of these methods based on cell-cell distance in native,

high-dimensional space. Initial benchmarking of eleven published software tools on discrete and continuous

cell distributions shows global, local, and organizational data structure conservation under different param-

eter and input conditions. Applying our framework to additional data types underscores the modality- and

dataset-specific nature of dimension reduction performance.
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Figure 2.2: Cell distance distributions describe global structure of high-dimensional data.
(A) Representation of scRNA-seq counts matrix.
(B) Cell-cell distances in native gene space are calculated to generate an m x m matrix, where m is the total
number of cells. K nearest-neighbors (Knn) graph is constructed from these distances as a binary m x m
matrix.
(C) Upon transformation to low-dimensional space, a distance matrix and Knn graph can be calculated as in
B.
(D) Distance matrices from native (B) and latent (C) spaces are used to build cumulative probability density
distributions, which can be compared to one another by Earth Mover’s Distance (EMD, left). Unique cell-
cell distances are correlated (right), and Knn preservation represents element-wise comparison of nearest-
neighbor graph matrices in each space. See also Figure S2.
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2.3 Results

2.3.1 Cell distance distributions describe global structure of high-dimensional data

In order to evaluate dimensionality reduction techniques, Euclidean cell-cell distance in native, high-dimensional

space is used as a quantitative standard. In scRNA-seq, counts of unique molecular identifiers (UMI) for each

gene make up the features of the dataset, while every observation represents a single cell (Figure 2.2A). In

this way, transcriptomic data is represented as an m x n matrix (observations x features).

Global data structure in the native space can be constructed by first calculating an m x m matrix containing

the pairwise distances between all observations in n dimensions (Figure 2.2B, top). The upper triangle of this

symmetric distance matrix contains unique cell distances in the dataset, which can then be represented by a

probability density distribution as in Figure 2.2D. From these distances, local “neighborhoods” can be defined

in the form of a K nearest-neighbor (Knn) graph. The Knn graph is represented as a binary m x m matrix that

defines the K cells with the shortest distances to each cell in the dataset (Figure 2.2B, bottom). Similarly, a

distance distribution and Knn graph can be constructed from a low-dimensional latent space resulting from

dimensionality reduction (Figure 2.2C).

Preservation of unique distances following dimension reduction is measured by direct Pearson correlation,

while structural alteration of the cell distance distribution is quantified by the Wasserstein metric or Earth-

Mover’s Distance (EMD; Figure 2.2D). Widely applied to image processing, EMD determines the energy

cost associated with shifting one distribution to another (Werman et al., 1985; Rubner et al., 1998; Levina

and Bickel, 2001). This metric is ideal for our application as it scales linearly with separation of the means

of two continuous distributions – in contrast to similar Cramér-von Mises or Kolmogorov-Smirnov distances

– and therefore captures maximum variability (Cramér, 1928; Kolmogorov, 1933). Finally, preservation of

a Knn graph before and after low-dimensional embedding can also be quantified as the percentage of total

matrix elements conserved in order to describe maintenance of local substructures in the data.

2.3.2 Discrete and continuous cell distributions exemplify common biological patterns

A major consideration for testing dimensionality reduction techniques is the true structure of the input data

in native, high-dimensional space. For the scope of our evaluation, we identify two overarching classes of

scRNA-seq data for proof-of-principal: discrete and continuous. Discrete single-cell data are comprised of

differentiated cell types with unique, highly discernable gene expression profiles. These data include classic

PBMC experiments and neuronal datasets which can be easily clustered into distinct cell types (Zeisel et al.,

2015; Rheaume et al., 2018). Conversely, continuous data contain multi-faceted expression gradients present

during cell development and differentiation, and are commonly associated with dynamic systems such as

erythropoiesis or embryonic development (Tusi et al., 2018; Wagner et al., 2018).
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Figure 2.3: Discrete and continuous cell distributions exemplify common biological patterns.
(A) Relative expression of top genes in each cluster for mouse retina dataset.
(B) t-SNE embedding primed with 100 principal components of retina dataset with overlay of consensus
clusters.
(C) t-SNE projection from B with overlay of marker genes used to identify cell types in A.
(D-F) Same as in A-C, for mouse colonic epithelium dataset. See also Figure S3.

Mouse retina cells, analyzed using Drop-seq by Macosko and coworkers, provide a discrete cell distribu-

tion for our analysis (Macosko et al., 2015). Counts data from 20,478 genes for 1,326 cells were analyzed

using Louvain clustering to determine cell clusters (Figure 2.3A; Levine et al., 2015). We performed rela-

tively coarse clustering, ignoring subtype heterogeneity in favor of clusters reflecting principal cell identity

amenable to our downstream analyses (see Appendix A2.1). A t-SNE projection primed with 100 principal

components (PCs) of all transcript counts allows for visualization of the data structure and represented cell

types (Figure 2.3B). As evident from the 2D embedding, these data are highly discrete, and constituent cell

clusters are easily distinguished by expression of marker genes identified in Macosko et al., 2015 (Figure

2.3C, Figure S3A).

Mouse colon data, representing a continuous distribution of actively differentiating cells along the crypt

axis of the colonic epithelium, were generated using inDrops scRNA-seq (Herring et al., 2018). Counts data

from 25,504 genes for 1,117 cells were similarly clustered and embedded using t-SNE to visualize continuous
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data structure (Figure 2.3D,E). The six clusters form a branching continuum of cell states identified by expres-

sion markers (Figure 2.3F, Figure S3B), resolving two major lineages in the colon: absorptive and secretory

cells (Lepourcelet et al., 2005; Tamura et al., 2007; Larsson et al., 2012). These clusters are linked together

by pseudotemporal trajectories and thus their arrangement is expected to be conserved upon low-dimensional

embedding.

2.3.3 Input cell distribution determines performance of global structure preservation

Using metrics outlined in Figure 2.2, we compared eleven dimensionality reduction techniques applied to

continuous and discrete datasets. To allow for direct input to these tools and comparison with linear PCA in

the following analyses, raw counts for both datasets were feature-selected to the 500 most variable genes. Al-

ternatively, a common preprocessing approach is initial dimension reduction with PCA, and we compare 500

PCs to our 500 variable genes (VGs) to demonstrate how this may affect downstream structure preservation

(Figure S4A). Though our framework measures structure preservation relative to the input cell distribution,

performance of dimension reduction methods is expected to vary under different preprocessing conditions,

and we encourage the use of our metrics to evaluate not only the tools themselves, but also upstream handling

of the data.

Calculating our metrics on all cells in the dataset, we first assess global structure preservation following

transformation to a latent space. Representative examples of 2D projections and their corresponding distance

distributions and correlations using SIMLR for the retina dataset and UMAP for the colon dataset are shown

in Figure 2.4A and Figure 2.4H, respectively. Notably, the largest discrepancy in structural preservation is be-

tween the two datasets, highlighting the significance of input cell distribution to overall method performance.

For example, Knn preservation is intuitively higher for most methods when applied to the colon dataset, re-

flecting the notion of continuous neighborhoods – a moving window of expression gradients – connecting all

cells through developmental pseudotime. Another important observation regarding the dimension-reduced

spaces involves the directionality of the cell distance distribution shift. A compression of distances from

native to latent space is indicated by a shift left in the cumulative distance distribution (Figure 2.4B,J, Figure

S2A) or below the identity line in the unique distance correlation (Figure 2.4D,L, Figure S2B). Alternatively,

a shift right in the cumulative distance distribution or above the identity line of the distance correlation signi-

fies an exaggeration of native distances. These phenomena are important in the context of global versus local

structure preservation. For example, UMAP appears to compress small, local distances to a greater extent

than t-SNE, while both methods maintain relative global structure as indicated by a favorable correlation of

large distances. Although this characteristic of UMAP embeddings causes greater information loss reflected

in less favorable preservation metrics (Figure 2.4C,K), clusters within the resulting projections tend to be
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visually condensed and perhaps more easily interpreted (Figure S4B,C).

These findings are particularly important when considering datasets and data types beyond the scope of

this study. For instance, other single-cell technologies such as assay for transposase-accessible chromatin

(scATAC-seq) and mass cytometry (CyTOF) have expectedly diverse distributions of cell-cell distances due

to technical differences in dynamic range, dropout rate, and noise. Applying our structural preservation

framework to two datasets used to benchmark UMAP against t-SNE, FIt-SNE, and scvis (Becht et al., 2018;

Figure S5), we identify a clear distinction between these CyTOF and scRNA-seq datasets that is deterministic

of method performance (see Appendix A2.1: Theoretical basis for difference in dimension reduction perfor-

mance across single-cell modalities). Indeed, we assert that input data structure is highly variable across

single-cell technologies and biological samples (Figure S4D), and we recommend evaluating dimensionality

reduction tools in the context of their intended application.

2.3.4 Parameter optimization plays key role in structural preservation

User-defined parameters for unsupervised algorithms often present themselves as “black-box” knobs with

unknown consequences. Tuning these parameters can be a daunting task for the single-cell analyst, but is

known to be crucial to algorithm performance (Belkina et al., 2018; Kobak and Linderman, 2019; Tsuyuzaki

et al., 2020). Using our proposed metrics, we evaluated global structure preservation across a range of

perplexity (n-neighbors) values for t-SNE and UMAP applied to both discrete and continuous data. Through

a balance of distance correlation, EMD, and Knn preservation, we can identify an initial range of optimal

perplexity values between 3 and 10 percent of the total number of cells in the dataset (Figure S4E).

Additionally, as our framework is agnostic to the distance metric and neighborhood size (K) chosen for

evaluation, we can perform cursory comparisons of possible alternatives to Euclidean distance (Figure S4F)

and titrate the value of K to determine its effect on observed preservation values (Figure S4G). Here we

observe optimal K between 3 and 10 percent of the dataset size to reliably discriminate between methods, in

accordance with the perplexity parameter.

2.3.5 Substructure analysis elucidates contribution to global performance

To corroborate results of global structure preservation and dissect contribution of local (within cluster) and

organizational (between cluster) distances to overall dimension reduction performance, clusters were isolated

for targeted substructure quantification. Here, we can measure distance preservation of individual clusters as

well as distances between clusters to emphasize local arrangement (Figure S2C,D).

Retinal cone cells (Figure 2.3A, cluster 4, n = 94) were used as an example of local distances in the

discrete dataset, while mature colonocytes (Figure 2.3D, cluster 1, n = 273) were isolated in the colon dataset
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(Figure 2.4E,M). Local distance compression represents the overarching trend for the eleven evaluated tools,

indicated by a correlation shift below the identity line (Figure S4H,J). The latent spaces from scVI and 10-

component PCA are notable exceptions, yielding the two lowest EMD values for each dataset (Figure S4M).

This most likely results from the 10-dimensional latent spaces of these methods capturing more cellular

variability than 2D projections, and these two embeddings should be considered with this caveat in the context

of our larger analysis. Added noise in the SIMLR latent space of mouse retina cells indicates a disagreement

with Louvain cluster membership, and may be attributed to the truncated, 500-feature input used for our

analysis (Figure S4H). Moreover, this observation suggests that discrete, “on-off” expression patterns are

less robust to dropouts that cause mis-assignment of cell type than continuous gradients of gene expression.

Besides maintenance of local structure, dimensionality reduction methods are also tasked with preserving

cellular neighborhoods, or relationships between clusters. By calculating the distribution of distances from

cells in one cluster to those in another, we can evaluate these associations to investigate organization of data

substructures (Figure S2C, Figure 2.4F,N). In the mouse retina dataset, distances between bipolar cells, rod

cells, and amacrine cells (Figure 2.3A, clusters 0, 1, 2, n = 309, 281, 258) are marked largely by compression,

with some tools altering the arrangement of the three clusters (Figure S4K, red boxes). For example, the

bipolar and amacrine clusters are closest to one another in the native gene space, but bipolar cells are closer

to rod cells in the UMAP embedding, indicated by the ordering of each distribution. Conversely, relative

distances between three adjacent clusters along the goblet cell lineage (Figure 2.3D, clusters 0, 3 and 4, n =

274, 140 and 135) are more highly conserved by all embeddings. These results confirm that related cells in

continuous scRNA-seq data are tethered to their neighbors through intermediate expression states, resulting

Figure 2.4 (preceding page): Global and local structure preservation analysis.
(A) Example 2D projection of mouse retina data using SIMLR with cluster overlay (top). Cumulative distance
distributions for native and latent spaces (bottom left) and 2D histogram representing correlation between
unique distances (bottom right).
(B) Cumulative distance distributions of evaluated projections of retina data.
(C) Summary of structure preservation metrics for retina data.
(D) 2D histograms of cell distance correlations for retina data.
(E) Example 2D projection of retina data using ZINB-WaVE and overlay of cone cells (left) and 2D histogram
representing correlation between the two sets of unique distances (right).
(F) Same as in E for distances between bipolar, amacrine, and rod cell clusters, using scvis projection.
(G) Example graph representation of cluster topology for retina dataset, using t-SNE projection primed with
scVI latent space. Red edges represent those not present in minimum spanning tree of native graph.
(H) Same as in A, with UMAP projection of mouse colon data.
(J-L) Same as in B-D, for colon data.
(M) Same as in E, with DCA projection of mature colonocytes.
(N) Same as in F for distances between immature, developing, and mature goblet cell clusters, using ZIFA
projection.
(P) Same as in G for colon dataset, using GLM-PCA projection.
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in improved structure preservation upon latent projection (Figure S4L,N).

To further capture substructure rearrangement in low-dimensional embeddings, we construct a coarse

graphical representation of our native and latent spaces, with minimum spanning trees (MSTs) connecting

nearest neighbor cluster centroids (Figure 2.4G,P). Comparing the edges of each graph allows us to evaluate

latent cluster topology relative to the native space, as permuted edges indicate rearrangement of substruc-

tures following dimension reduction. Once again, we see a global increase in topological preservation of

continuous versus discrete data, corroborating previous observations (Figure S4P-R).

2.3.6 Simulated datasets with defined topology validate observations

Single-cell data with expected global topology were simulated using Splatter (Zappia et al., 2017). Three

distinct lineages, equally separated in high dimensional space, originate from a common state. A discrete

simulation was generated by removing the central shared state (Figure 2.5A), while the continuous dataset

maintains complete connectivity between the three developmental paths (Figure 2.5F). Pseudotime (PT) val-

ues, assigned to each cell by the simulation, should correlate directly to distance in the embedding and can

thus be used as an alternative ground-truth native structural distribution for our framework. Both simula-

tions were processed by previously evaluated dimensionality reduction tools (Figure 2.5B,C,G,H), and latent

distances between cells from the three defined paths were correlated to pairwise sums of corresponding PT

values (Figure 2.5D,E,J,K). In this way, large PT sums between cells at the ends of each simulated path and

small PT sums between cells near the shared central state should have the largest and smallest distances from

one another in an ideal latent embedding, respectively. Again, dimension reduction of discrete data performs

poorly compared to the entirely continuous simulation. All embeddings generally cluster each path prop-

erly (Figure 2.5B), but misorientation of these clusters from their shared center results in negative structural

correlation for some embeddings including t-SNE and UMAP (Figure 2.5C,E).

2.4 Discussion

As high-dimensional data become increasingly pervasive in systems biology, computational tools for reliable

and reproducible analysis of these data are tremendous assets to discovery. Dimensionality reduction tech-

niques allow for embedding cellular observations with tens of thousands of features into a low-dimensional

space for visualization and downstream processing. We present an unbiased, quantitative framework based

on native cell distance to evaluate data structure preservation by these tools.

We identified dispersion trends in local and global distance distributions that denote expansion and con-

traction of native cell distances. This allowed us to evaluate general performance of dimensionality reduction

methods on entire single-cell datasets and take a deeper dive to examine how distances within or between
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Figure 2.5: Simulated datasets with defined topology validate observations.
(A) Diagram of discrete synthetic data with ground-truth topology defined by three, equally spaced develop-
mental paths along directional pseudotime (PT) from a common source state (removed to discretize paths).
(B) 2D embeddings by 11 dimensionality reduction tools showing unique paths defined in simulation.
(C) Same as in B, with overlay of PT values for each cell as defined in simulation.
(D) 2D histograms showing correlation of pairwise distances between cells in each of the three developmental
paths with the sum of PT values between each pair of cells as ground-truth topology.
(E) Summary of correlation and EMD values between cells in each path for all dimensionality reduction
methods.
(F-K) Same as in A-E for continuous simulation. See also Figure S5.
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clusters contribute to the global structure of a low-dimensional embedding (Figure 2.4, Figure S4). With

a goal of grouping cells by their gene expression profiles, most dimension reduction tools evaluated herein

compress local distances, embellishing cluster similarity, while maintaining or expanding global distances,

exaggerating cluster distinction. These characteristics of dimensionality reduction methods are desirable for

most applications. However, resolution of rare cell types and sub-cluster heterogeneity may be lost, stressing

the importance of preprocessing, feature selection, and user-defined parameters (Figure S4).

Discrete scRNA-seq data are more susceptible to structural perturbation by downstream dimension re-

duction, as indicated by larger EMD values and lower distance correlations in the retina dataset than colonic

epithelial data (Figure 2.4). We also observed cluster rearrangement within the retina dataset, suggesting that

relative substructure organization is poorly defined for discrete datasets while continuous cell distributions

are more robust to these effects (Figure S4). Cursory exploration of perplexity and K parameters in t-SNE

and UMAP – as well as alternative preprocessing approaches – reveals a range of optimal values that yield

favorable structure preservation metrics, endorsing the need for parameter and preprocessing optimization

for dimensionality reduction of single-cell datasets (Figure S4E,G). The above observations were confirmed

using simulated datasets with defined global topology that could be quantified in place of native cell distances

(Figure 2.5).

Finally, a careful look at additional synthetic and real-world data confirms that behavior of dimensionality

reduction methods is primarily driven by the input cell distance distribution that is modality- and dataset-

specific (Appendix A2.1, Figure S5). Our findings challenge the context in which dimensionality reduction

methods are benchmarked and indicate that performance characterization is often not universally extensible.

Consequently, we encourage evaluation of such tools on data types, datasets, and preprocessing approaches

specific to the user’s intended application.
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CHAPTER 3

Automated quality control and cell identification of droplet-based single-cell data using dropkick

Adapted from:

Heiser, C. N., Wang, V. M., Chen, B., Hughey, J. J., and Lau, K. S. (2021). Automated quality control and

cell identification of droplet-based single-cell data using dropkick. Genome Research, 31(10):1742–1752

3.1 Summary

A major challenge for droplet-based single-cell sequencing technologies is distinguishing true cells from

uninformative barcodes in data sets with disparate library sizes confounded by high technical noise (i.e.,

batch-specific ambient RNA). We present dropkick, a fully automated software tool for quality control and

filtering of single-cell RNA sequencing (scRNA-seq) data with a focus on excluding ambient barcodes and

recovering real cells bordering the quality threshold. By automatically determining data set–specific train-

ing labels based on predictive global heuristics, dropkick learns a gene-based representation of real cells

and ambient noise, calculating a cell probability score for each barcode. Using simulated and real-world

scRNA-seq data, we benchmarked dropkick against conventional thresholding approaches and EmptyDrops,

a popular computational method, showing greater recovery of rare cell types and exclusion of empty droplets

and noisy, uninformative barcodes. We show for both low- and high-background data sets that dropkick’s

weakly supervised model reliably learns which genes are enriched in ambient barcodes and draws a mul-

tidimensional boundary that is more robust to data set–specific variation than existing filtering approaches.

dropkick provides a fast, automated tool for reproducible cell identification from scRNA-seq data that is

critical to downstream analysis and compatible with popular single-cell Python packages.

3.2 Introduction

Single-cell RNA sequencing (scRNA-seq) allows for untargeted profiling of genome-scale expression in thou-

sands of individual cells, providing insights into tissue heterogeneity and population dynamics. Droplet-based

platforms that involve microfluidic encapsulation of cells in water-oil emulsions (Klein et al., 2015; Macosko

et al., 2015; Zheng et al., 2017) have grown widely popular for their robustness and throughput. The use

of barcoded poly-thymidine capture oligonucleotides provides information for assigning eventual sequencing

reads to each droplet downstream of bulk library preparation. Due to the low cellular density required to avoid

doublets (i.e., two or more cells captured in the same droplet), the vast majority of droplets are empty, ideally

containing only tissue dissociation buffer and a barcoded RNA-capture bead with no cellular RNA. However,
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during the tissue dissociation process, cell death, lysis, and leakage result in the shedding of ambient mRNA

into the supernatant solution, which is then captured as background in droplets containing individual cells and

so-called “empty droplet” reactions. Ultimately, a droplet-based scRNA-seq dataset contains up to hundreds

of thousands of barcodes that correspond to these “empty droplets” which include sequenced material from

ambient RNA alone.

In order to prepare these data for downstream analysis, empty droplets and other uninformative barcodes

with little to no molecular information must be removed. Often, computational biologists will define manual

thresholds on global heuristics such as total counts of unique molecular identifiers (UMI) or the total number

of genes detected in each barcode in order to isolate high-quality cells. While these hard cutoffs may generally

yield expected cell populations and remove the bulk of populational noise in low-background samples, they

are highly arbitrary, batch-specific, and generally biased against cell types with low RNA content or genetic

diversity (Lun et al., 2019). Furthermore, lenient thresholds often yield filtered datasets with populations of

dead and dying cells or empty droplets with high ambient RNA content, especially in encapsulations with

high background resulting from tissue-specific cell viability and dissociation protocols. These cell clusters

may be gated out manually by the experienced single-cell biologist, but they will distort dimension-reduced

embeddings and alter statistical testing for differential gene expression if left unchecked.

Here we introduce dropkick, a fully automated machine learning software tool for data-driven filtering

of droplet-based scRNA-seq data. dropkick provides a quality control (QC) module for initial evaluation of

global distributions that define barcode populations (real cells vs. empty droplets) and quantifies the batch-

specific ambient gene profile. The dropkick filtering module establishes initial thresholds on predictive global

heuristics using an automated gradient-descent method, then trains a gene-based logistic regression model to

assign confidence scores to all barcodes in the dataset. dropkick model coefficients are sparse and biologically

informative, identifying a minimal number of gene features associated with empty droplets and low-quality

cells in a weakly supervised fashion. The following study aims to show how dropkick outperforms basic

threshold-based filtering and a similar data-driven model (Lun et al., 2019) in recovery of expected cell types

and exclusion of empty droplets, with robustness and reproducibility across encapsulation platforms, samples,

and varying degrees of noise from ambient RNA.

3.3 Results

3.3.1 Evaluating dataset quality with the dropkick QC module

Global data quality and predominance of ambient RNA affect both reliable cell identification as well as

downstream analyses including clustering, cell type annotation, and trajectory inference in scRNA-seq data

(Young and Behjati, 2018; Fleming et al., 2019; Yang et al., 2020). Single-cell data with a low signal-to-noise
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Figure 3.1: Evaluating dataset quality with the dropkick QC module.
(A) Profile of total counts (black trace) and genes (green points) detected per ranked barcode in the 4k pan-T
cell dataset (10x Genomics). Percentage of mitochondrial (red) and ambient (blue) reads for each barcode
included to denote quality along dataset profile.
(B) Profile of dropout rate per ranked gene. Ambient genes are identified by dropkick and used to calculate
ambient percentage in A.

ratio due to high ambient background can result in information loss that may ultimately confound cell type

and cell state identification and related statistical analyses (Zhang et al., 2019). For instance, a scRNA-seq

encapsulation with a high degree of cell lysis can cause marker genes from abundant cell types to be present

in the ambient RNA profile that contaminates all cell barcodes. In this scenario, global differences between

cell populations would be diminished by the common detection of ambient noise, leading to loss of resolution

in inference of cell identity and state.

In order to quantify ambient contamination that reduces this batch-specific signal-to-noise ratio, we have

developed a comprehensive quality control report for unfiltered, post-alignment UMI counts matrices. Figure

1 provides an example dropkick QC report for a human T cell dataset encapsulated using the 10x Genomics

Chromium platform (Zheng et al., 2017). This sample is exemplary of a low-background dataset, as the cells

isolated from human blood do not require dissociation that causes cell stress and lysis in other tissues (Figure

S6). Barcodes are ranked by total counts to yield a profile that describes the expected number of high-quality

cells, empty droplets, and uninformative barcodes (Figure 3.1A; Fleming et al., 2019). The number of genes

detected per barcode follows a similar distribution to total counts, which informs our choice of dropkick

training thresholds in the following sections. The first plateau in the total counts profile of the T cell dataset

indicates approximately 4,000 high-quality cells, followed by a sharp drop in the distribution (Figure 3.1A).
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This drop-off in total UMI content signifies an estimated location for a manual cutoff as seen in the 10x

CellRanger version 2 analysis software (Lun et al., 2019).

dropkick next defines a subset of ambient genes using the dropout rate, or the fraction of barcodes in

which each gene is not detected. Ranking genes in ascending order by dropout rate (Figure 3.1B), dropkick

labels those with dropout rates lower than the top ten as “ambient”. High-background datasets may have many

(¿ 10) genes that are detected in nearly every barcode (dropout rate 0; Figure S6). The dropkick definition

of an ambient profile thus ensures that all relevant genes are included. The contribution of this ambient

subset to the total counts of each barcode can then be calculated, shown as blue points in the dropkick QC

report (Figure 3.1A). Similarly, an overlay of mitochondrial read percentage indicates dead or dying cells

undergoing apoptosis (Tait and Green, 2010). Indeed, the ambient and mitochondrial contributions to the

empty droplets in the second plateau of the total counts log-rank curve is markedly higher than the first plateau

(Figure 3.1A). Another noteworthy observation is that dropkick defines an ambient profile that is distinct from

the subset of mitochondrial genes. This is important for assessing cell quality in downstream clustering and

dimension reduction, as any empty droplets that remain in the dataset post-filtering often cluster together

in low-dimensional embeddings and can be highlighted by their enrichment in ambient genes. As stated

previously, marker genes from abundant cell types may show up in the ambient gene set due to excessive

lysis of these common cells during tissue preparation (Young and Behjati, 2018; Fleming et al., 2019; Yang

et al., 2020; Figure S6). Accordingly, analysts should be cognizant of background expression levels that

contaminate adjacent cell populations and confound cell type identification during subsequent analysis.

As each scRNA-seq dataset has unique, batch-specific ambient RNA profiles and barcode distributions,

the dropkick QC module allows for estimation of global data quality. Mouse colonic mucosa dissociated and

encapsulated in parallel using inDrop and 10x Genomics platforms (Figure S6) exemplifies high-background

scRNA-seq data, as indicated by elevated RNA levels in the second plateau of the total counts and genes

curves. Moreover, marker genes Car1 and Muc2 from abundant colonocytes and goblet cells, respectively,

are identified by dropkick as ambient genes for these data. This signifies lysis of common epithelial cell pop-

ulations during tissue preparation and dissociation. Given the dropkick QC report, the user should thus expect

background expression across all barcodes, which could prove pivotal to downstream processing and biolog-

ical interpretation. Taken together, dropkick can estimate the number of high-quality cells in our dataset,

determine average background noise from ambient RNA, and thus predict performance of filtering and ensu-

ing analysis based on global data quality.

23



Figure 3.2: Description of dropkick filtering method.
(A) Diagram of scRNA-seq counts matrix with initial cell confidence for each barcode based solely on total
genes detected (n-genes), depicted by color (red = empty droplet, blue = real cell).
(B) Histogram showing the distribution of barcodes by their n-genes value. Black lines indicate automated
thresholds for training the dropkick model.
(C) log(n-genes) vs. log(rank) representation of barcode distribution as in dropkick QC report (Figure 1A).
Thresholds from B are superimposed.
(D) Thresholds in heuristic space (B-C) are used to define initial training labels for logistic regression.
(E) dropkick chooses an optimal regularization strength through cross-validation, then assigns cell probabili-
ties and labels to all barcodes using the trained model in gene space.

3.3.2 Description of dropkick filtering method

dropkick uses weakly supervised machine learning to build a model of single-cell gene expression in order to

score and classify barcodes as real cells or empty droplets within individual scRNA-seq datasets. To construct

a training set for this model, dropkick begins by calculating batch-specific global metrics that are generally

predictive of barcode quality, such as the total number of genes detected (n-genes; Figure 3.2A) which was

chosen as the default training heuristic for dropkick by testing concordance with three alternative cell labels

across 46 scRNA-seq samples (Figure S7). A dataset similar to the 10x Genomics human T cell encapsulation

(Figure 3.1) will exhibit a multimodal distribution of n-genes across all barcodes (Figure 3.2B) where the

peaks of the distribution match the plateaus seen in the log-rank representation (Figure 3.2C). Next, dropkick

performs multi-level thresholding on the n-genes histogram using Otsu’s method (Otsu, 1979; Figure 3.2B,C).
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This automated gradient-descent technique divides the barcode distribution into three levels in this “heuristic

space”: a lower level containing uninformative barcodes (which are thrown away), an upper level containing

barcodes with very high cell probability based on n-genes, and an intermediate level that consists of both

high-RNA empty droplets and relatively low-RNA cells. The upper and intermediate barcode populations

are labeled as real cells and putative empty droplets, respectively, for initial dropkick model training. These

weakly self-supervised labels based on threshold cutoffs in “heuristic space” are expected to be noisy, and

the goal of the next step in the dropkick pipeline is to re-draw these rough boundaries in “gene space” using

logistic regression in order to recover real cells from the intermediate barcode cohort while removing ambient

barcodes from the upper plateau (Figure 3.2D,E).

The logistic regression model employed by dropkick uses elastic net regularization (Zou and Hastie,

2005), which balances feature selection and grouping by preserving or removing correlated genes from the

model in concert. The motivation for choosing this regularization method is two-fold. First, the resulting

model exists in “gene space”, maintaining the relative dimensionality of the dataset and providing biologically

interpretable coefficients that describe barcode quality. Second, the model is penalized for complexity, which

yields the simplest model (sparse coefficients) that adjusts the noisy initial labels while compensating for

expected collinearities and errors in measurement.

3.3.3 Evaluating dropkick filtering performance with synthetic data

We tested dropkick filtering on single-cell data simulations that define both empty droplets and real cells, pro-

viding ground-truth labels for comparison to dropkick outputs (Fleming et al., 2019). These synthetic datasets

modeled ambient RNA noise in the cell populations to confound filtering, as seen in real-world datasets. We

simulated both low (Figure 3.3A,B) and high (Figure 3.3C,D) background scenarios (see Appendix A3.1:

Synthetic scRNA-seq data simulation).

To demonstrate the utility of the dropkick model over one-dimensional thresholding and an analogous

data-driven filtering model, we ran dropkick, 10x Genomics CellRanger version 2 (CellRanger-2) and the

EmptyDrops R package (Lun et al., 2019) on ten iterations of low and high-background simulations. An

example UMAP embedding of all barcodes kept by dropkick-label (dropkick score ¿= 0.5) and the two anal-

ogous methods shows that all three methods excluded empty droplets (assigned cluster 0 from the simulation),

with a single false negative (FN) barcode highlighted in the EmptyDrops label set (Figure 3.3A). An UpSet

plot (Figure 3.3B; Lex et al., 2014) tabulating shared barcode sets across ten low-background simulations

reveals nearly perfect specificity, sensitivity, and area under the receiver operating characteristic curve (AU-

ROC) for all three methods in the low-background scenario (Figure S8A,B,D).

Conversely, the high-background simulations produced a large number of false positives (FP) in the
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Figure 3.3: Evaluating dropkick filtering performance with synthetic data.
(A) UMAP embedding of all barcodes kept by dropkick-label, CellRanger-2 and EmptyDrops for an example
low-background simulation. Points colored by each of the three filtering labels, as well as ground-truth
clusters determined by the simulation and dropkick score (cell probability). Arrow highlights a single false
negative (FN) barcode in the EmptyDrops label set for this replicate.
(B) UpSet plot showing mean size of shared barcode sets across dropkick-label, CellRanger-2, EmptyDrops,
and true labels for ten simulations. Error bars represent standard deviation. Unique sets show false positive
(FP) barcodes labeled by dropkick and false negative (FN) barcodes excluded by EmptyDrops. Inset shows
log-rank representation of the low-background simulation in A.
(C) Same as in B, for ten high-background simulations. Inset shows log-rank representation of the high-
background simulation in D.
(D) Same as in A, for an example high-background simulation. Arrow highlights cluster 0, designated as
“empty droplets” by simulation (see Appendix A3.1: Synthetic scRNA-seq data simulation).
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CellRanger-2 and EmptyDrops labels (Figure 3.3C), as ambient barcodes with high RNA content lie above

the total counts threshold identified by CellRanger and the inflection point used as a testing cutoff by Emp-

tyDrops (Lun et al., 2019). A UMAP embedding of an example high-background simulation reveals a large

population of empty droplets (assigned cluster 0 by the simulation) that dropkick-label removes from the final

dataset (Figure 3.3D). Accordingly, dropkick displayed overall specificity and AUROC of 0.9999 +/- 0.0002

and 0.9998 +/- 0.0002 for the high-background simulations compared to 0.9910 +/- 0.0018 and 0.9955 +/-

0.0009 for CellRanger-2 and 0.9838 +/- 0.0133 and 0.9917 +/-0.0071 for EmptyDrops, respectively (Figure

S8E,F,H).

We also compared outputs from the trained model (dropkick-label) to automated dropkick training labels

(thresholding on n-genes) in both low- and high-background scenarios to further demonstrate the utility of

dropkick’s machine learning model over heuristic cutoffs alone. Similar to CellRanger-2, the dropkick thresh-

old performed favorably for the low background simulation, where real cells are separated distinctly from

empty droplets in heuristic space – indicated by a sharp drop-off in total counts and genes in the dropkick QC

log-rank plot (Figure 3.3B, inset). This one-dimensional thresholding resulted in sensitivity, specificity, and

AUROC of 0.9986 +/- 0.0007, 0.997 +/- 0.0006, and 0.9978 +/- 0.0005, respectively for ten low-background

simulations (Figure S8C). The trained dropkick model, on the other hand, recovered all real cells (sensitivity

1.0), with a perfect average AUROC of 1.0 +/- 0.0 (Figure S8D). This modest improvement indicates the

utility of the dropkick model for sensitively discerning real cells from ambient barcodes over simple heuristic

thresholding, even in a relatively low-background sample. In the high-background simulations, sensitivity

of dropkick training labels fell to 0.8762 +/- 0.0092 with an average AUROC of 0.9074 +/- 0.0043 (Fig-

ure S8G). Following model training, dropkick’s sensitivity and AUROC once again improved to 0.9995 +/-

0.0004 and 0.9998 +/- 0.0002, respectively (Figure S8H). These data further signify that the dropkick logistic

regression model results in enhanced performance over one-dimensional heuristic thresholding, especially in

the presence of high ambient noise in the training set.

3.3.4 Benchmarking dropkick performance on simulated high-background data

Next, we aimed to further confirm dropkick’s utility in filtering high-background data by simulating extremely

high-ambient droplets to overlay on the 10x Genomics human PBMC dataset. This data is particularly clean

and easy to filter in its raw state, as the suspended cells from human blood were minimally agitated prior to

encapsulation. In order to imitate empty droplets with high mRNA content, we combined all reads in barcodes

with less than 100 total UMI counts and used the resulting pseudo-bulk as weightings for a random generation

of count vectors from a multinomial distribution with UMI sums between 10 and 5,000 total counts. We added

2,000 of these count vectors back to the original matrix, modeling high-background empty droplets (Figure
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Figure 3.4: Benchmarking dropkick performance on simulated high-background data.
(A) Log-rank total counts curve for the high-background PBMC simulation. The horizontal dashed line indi-
cates the threshold below which ground-truth empty droplets were used to build simulated barcodes from a
multinomial distribution (100 total counts). Gold rug plot indicates the location along the total counts curve
of 2,000 simulated high-UMI droplets (see Appendix A3.1: High-background PBMC simulation).
(B) Genes in PBMC simulation ranked by dropout rate. Top 10 ambient genes are listed, defining ambient
profile used to calculate percentage in A.
(C) UMAP embedding of all barcodes kept by dropkick-label, CellRanger-2 and EmptyDrops. Points col-
ored by each of the three filtering labels, Leiden clusters determined by NMF analysis, dropkick score (cell
probability), and select cell-type metagene usages from NMF. Top seven gene loadings for each NMF factor
are printed on their respective plots, in axis order from top to bottom. Circled area shows independent cluster
of simulated empty droplets.
(D) Table and bar graph enumerating the total number of barcodes detected by each algorithm in all NMF
clusters. Significant cluster enrichment as determined by sc-UniFrac is denoted by brackets.

3.4A). Upon filtering with dropkick, CellRanger version 2, and EmptyDrops, a large subset of the simulated

ambient barcodes remained in the latter two label sets, while discarded entirely by dropkick (Figure 3.4C,D).

We jointly processed all barcodes kept by the three filtering tools using nonnegative matrix factorization

(NMF; Kotliar et al., 2019) to define cell clusters and corresponding cell type metagene scores (Figure 3.4C;

Figure S9). dropkick recovered significantly more lymphoid progenitors, monocytes, and T and B cells

than both EmptyDrops and CellRanger according to sc-UniFrac (Liu et al., 2018) analysis, indicating that it

successfully parsed the noise introduced by the simulated droplets (Figure 3.4D). dropkick also completely

excluded Leiden cluster 1, the simulated barcodes with high NMF scores for usage 9, which contained high

loadings for several ambient genes (Figure 3.4B,C; Figure S9B). This result both confirmed the effectiveness

of the pseudo-bulk multinomial simulation, and further established dropkick’s robustness in filtering high-

background data.
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Figure 3.5: dropkick recovers expected cell populations and eliminates low-quality barcodes in experimental
data.
(A) Plot of coefficient values for 2,000 highly variable genes (top) and mean binomial deviance and SEM
(bottom) for five-fold cross-validation along the lambda regularization path defined by dropkick. Top and
bottom three coefficients are shown, in axis order, along with total model sparsity representing the percent-
age of coefficients with values of zero (top). Chosen lambda value indicated by dashed vertical line.
(B) Joint plot showing scatter of percent ambient counts versus arcsinh-transformed genes detected per bar-
code, with histogram distributions plotted on margins. Initial dropkick thresholds defining the training set are
shown as dashed vertical lines. Each point (barcode) is colored by its final dropkick score after model fitting.
(C) UMAP embedding of all barcodes kept by dropkick-label, CellRanger-2 and EmptyDrops. Points colored
by each of the three filtering labels, as well as Leiden clusters determined by NMF analysis, dropkick score
(cell probability), and percent counts mitochondrial. Circled area shows high mitochondrial enrichment in a
population discarded by dropkick.
(D) Dot plot showing top differentially expressed genes for each NMF cluster. The size of each dot indicates
the percentage of cells in the population with nonzero expression for the given gene, while the color indicates
the average normalized expression value in that population. Bracketed genes indicate significantly enriched
populations in EmptyDrops compared to dropkick-label as shown in E.
(E) Table and bar graph enumerating the total number of barcodes detected by each algorithm in all NMF
clusters. Significant cluster enrichment as determined by sc-UniFrac is denoted by brackets.

3.3.5 dropkick recovers expected cell populations and eliminates low-quality barcodes in experimen-

tal data

To evaluate dropkick’s performance against existing scRNA-seq filtering algorithms with real-world data,

we processed a human T cell dataset from 10x Genomics (Figure 3.1) and again compared default dropkick

results (dropkick-label) to CellRanger version 2 and EmptyDrops. The final dropkick coefficients and chosen

regularization strength (lambda; Figure 3.5A) reveal that the model is sparse – with nearly 98 percent of all

coefficient values equal to zero – offering an interpretable gene-based output. Without prior training or su-

pervision, dropkick identified higher counts of mitochondrial genes, which are markers of cell death and poor

barcode quality (Tait and Green, 2010), as predictive of empty droplets (Figure 3.5A). To visualize heuristic
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distributions within the T cell dataset, the number of detected genes and the percentage of ambient counts

per barcode are shown along with dropkick’s automatic training thresholds (Figure 3.5B). Uninformative

barcodes below the lower n-genes threshold were discarded before model training and assigned a dropkick

score of zero. Barcodes between the two thresholds were initially assigned a label indicating putative empty

droplets, while those above the upper threshold were labeled as real cells for model training. The dropkick

score overlay illustrates how dropkick re-drew label boundaries in gene space (Figure 3.5B). dropkick scores

are noticeably lower for barcodes with high ambient RNA content, while some putative empty droplets with

lower background are “rescued” and labeled as real cells by the trained dropkick model. It is important to

note that this high-dimensional boundary was learned by dropkick with no prior labeling of “ambient” tran-

scripts. Rather, dropkick’s weakly-supervised algorithm excluded barcodes with high ambient content based

solely on their transcriptional similarity to the least informative barcodes (lower n-genes) in the training set.

We again jointly processed all barcodes kept by dropkick-label (dropkick score ¿= 0.5), CellRanger-2,

and EmptyDrops using nonnegative matrix factorization (NMF; Kotliar et al., 2019) to define cell clusters,

and sc-UniFrac (Liu et al., 2018) to determine population differences across labeled barcode sets. A UMAP

embedding of these barcodes reveals a population of cells with high mitochondrial content that is mostly

excluded by dropkick (Figure 3.5C). This area is enriched in clusters 3 and 5 from NMF analysis, which

carry exclusively mitochondrial genes as their top differentially expressed features (Figure 3.5D). Based on

sc-UniFrac, these two clusters constitute the only statistically significant differences between EmptyDrops

and dropkick (Figure 3.5E). These data indicate that dropkick recovers as many or more real cells in expected

populations than previous algorithms, while also identifying and excluding low-quality dead or dying cells

with high mitochondrial RNA content.

3.3.6 dropkick outperforms analogous methods on challenging datasets

To challenge the robustness of the model, we next used dropkick to filter real-world samples with more

complex cell types and higher noise. Human colorectal carcinoma (3907-S2) and adjacent normal colonic

mucosa (3907-S1) samples were dissociated and encapsulated using the inDrop scRNA-seq platform (Klein

et al., 2015). In contrast to the 10x Genomics pan-T cell dataset (Figure 3.1; Figure 3.5), these samples

exhibited high levels of background, containing empty droplets with thousands of UMI counts detected per

barcode and up to 40 percent ambient RNA in expected cell barcodes (Figure S11A,D). Because of this

dominant ambient profile, infiltrating immune populations with lower mRNA content than epithelial cells

can be lost among empty droplets. Indeed, CellRanger-2 and EmptyDrops show depletion in T cells (cluster

7) and macrophages (cluster 11) compared to dropkick (Figure 3.6A,B). Prevalence of high-RNA empty

droplets also yields a population with low genetic diversity and mitochondrial gene enrichment (cluster 4;
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Figure 3.6A) that is kept by the one-dimensional thresholding of CellRanger-2 but discarded by dropkick. sc-

UniFrac analysis confirmed that dropkick recovers significantly more cells from rare populations than both

CellRanger-2 and EmptyDrops in this pair of high-background datasets dominated by ambient RNA from

dead and dying colonic epithelial cells (Figure 3.6C; Figure S11). Meanwhile, dropkick also identified and

removed significantly more dead cells (cluster 4) than both CellRanger-2 and EmptyDrops (Figure 3.6C) by

designating mitochondrial and ambient genes as negative coefficients (Figure S11B,E).

3.3.7 dropkick filters reproducibly across scRNA-seq batches

We also applied dropkick to a combined human placenta dataset from six patients to show robustness of

the model to batch-specific variation. dropkick learned the distribution of genes and ambient RNA spe-

cific to each dataset and filtered them accordingly (Figure S12A), with a resulting AUROC of 0.9956 +/-

0.0051 across all six replicates compared to EmptyDrops labels. We also performed two types of manual cell

labeling as well as the CellBender remove-background model (Fleming, Marioni and Babadi 2019) to pro-

vide additional alternative filtering labels to compare to dropkick (Figure S12B,D,E,F,G,H,J; see Appendix

A3.1: CellRanger 2, EmptyDrops, CellBender, and manual filtering of real-world scRNA-seq datasets). The

CellBender remove-background package primarily aims to subtract ambient background from single-cell ex-

pression datasets rather than filter alone. This resulted in the addition of a large population of high-ambient

barcodes unique from those labeled by dropkick, EmptyDrops, and CellRanger 2, warranting further assess-

ment of the efficacy of background-removal methods in the context of consensus cell labels beyond the scope

of this paper (Figure S12B-E).

Extending this analysis to a larger cohort of scRNA-seq samples from both 10x Genomics (n = 13) and

inDrop (n = 33) encapsulation platforms, we see that dropkick is highly concordant with CellRanger version

2 (AUROC 0.9656 +/- 0.0271) and EmptyDrops (AUROC 0.9817 +/- 0.012), suggesting global recovery

Figure 3.6 (preceding page): dropkick outperforms analogous methods on challenging datasets.
(A) UMAP embedding of all barcodes kept by dropkick-label (dropkick score ¿= 0.5), CellRanger-2 and
EmptyDrops for human colorectal carcinoma inDrop samples. Points colored by each of the three filtering
labels, as well as clusters determined by NMF analysis, dropkick score (cell probability), arcsinh-transformed
total genes detected, percent counts mitochondrial, and original batch. 3907-S1 is normal human colonic
mucosa and 3907-S2 is colorectal carcinoma from the same patient.
(B) Dot plot showing top differentially expressed genes for each NMF cluster. The size of each dot indicates
the percentage of cells in the population with nonzero expression for the given gene, while the color indicates
the average expression value in that population. Bracketed genes indicate significantly enriched or depleted
populations in dropkick compared to CellRanger-2 and/or EmptyDrops labels as shown in C.
(C) Table and bar graph enumerating the total number of barcodes detected by each algorithm in all NMF
clusters for the combined dataset. Significant cluster enrichment as determined by sc-UniFrac is denoted by
brackets.
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of major cell populations (Figure S13A,B,E,F). dropkick filtering for 33 inDrop samples yielded an AU-

ROC of 0.9729 +/- 0.0335 compared to manually curated labels using an inflection point cutoff followed

by dimension-reduced cluster gating (Chen et al., 2021b; Figure S13C). For all 46 scRNA-seq samples, we

also performed bivariate thresholding on total UMI counts and percent mitochondrial transcripts per droplet,

mimicking another popular preprocessing technique. Again, dropkick’s AUROC averaged 0.9805 +/- 0.0194,

confirming the model’s utility for robust filtering across several unique datasets (Figure S13D,H). Finally,

we measured the total run time of dropkick, which was appreciably faster than both CellBender remove-

background and the EmptyDrops R package on average, running to completion in 40.56 +/- 25.97 seconds

across ten replicates of all 46 samples when utilizing five CPUs with dropkick’s built-in parallelization (Fig-

ure S13J).

3.4 Discussion

Barcode filtering is a key preprocessing step in analyzing droplet-based single-cell expression data. Reliable

filtering is confounded by distributions of global heuristics such as total UMI counts, total genes, and ambient

RNA that can be highly variable across batches and encapsulation platforms. We have developed dropkick,

a fully automated machine learning software tool that assigns confidence scores and labels to barcodes from

unfiltered scRNA-seq counts matrices. By automatically curating a training set using predictive heuristics and

training a gene-based logistic regression model, dropkick ensures that ambient barcodes (“empty droplets”)

are removed from the filtered dataset while recovering rare, low-RNA cell types that may be lost in ambient

noise. We showed that unlike previous filtering approaches including one-dimensional thresholding (Cell-

Ranger 2) and a Dirichlet-multinomial model (EmptyDrops), dropkick is robust to the level of ambient RNA,

performing favorably in both low and high-background scenarios across simulated and real-world datasets.

Although we have demonstrated that dropkick is more robust to varying degrees of ambient background

than existing filtering methods, the dropkick model is still limited by the input dataset. As stated previously

(see results: Evaluating dataset quality with dropkick QC module), the profile of ranked total counts/genes

and the global contribution of ambient reads are vital to analysis of single-cell sequencing data, including

cell filtering. Data with weak separation between high-quality cells and empty droplets (i.e. a unimodal

distribution of n-genes lacking distinct plateaus in the log-rank curve) will perform poorly in inflection-point

thresholding as well as data-driven models such as EmptyDrops and dropkick due to the similarity between

theoretically “high-confidence” barcodes and ambient background droplets. Moreover, datasets dominated

by expression of ambient genes ( 40 percent average ambient counts across all barcodes) will also perform

poorly in automated filtering. While such data artifacts may be handled by dropkick’s heavy feature selection

conferred by HVG calculation and elastic net regularization, there will also be circumstances that cause
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dropkick – as well as CellRanger and EmptyDrops – to return an over- or under-filtered dataset. Scenarios

such as those described should be considered QC failures, and further analysis should not be performed. For

this reason, the dropkick QC module is extremely beneficial in post-alignment evaluation of scRNA-seq data

quality and should be applied to all datasets prior to filtering.

The dropkick Python package provides a fast, user-friendly interface that integrates seamlessly with the

scanpy (Wolf et al., 2018) single-cell analysis suite for ease of workflow implementation. dropkick is

available for installation through the Python Package Index (pypi.org/project/dropkick/), and source code is

hosted on GitHub (github.com/KenLauLab/dropkick).
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CHAPTER 4

Consensus tissue domain detection in spatial multi-omics data using MILWRM

Adapted from:

Kaur, H., Heiser, C. N., McKinley, E. T., Antunes, L. V., Harris, C. R., Roland, J. T., Shrubsole, M. J., Coffey,

R. J., Lau, K., and Vandekar, S. N. (2023). Consensus tissue domain detection in spatial -omics data using

MILWRM. bioRxiv, page 2023.02.02.526900

4.1 Summary

Spatially resolved molecular assays provide high dimensional genetic, transcriptomic, proteomic, and epi-

genetic information in situ and at various resolutions. Pairing these data across modalities with histological

features enables powerful studies of tissue pathology in the context of an intact microenvironment and tissue

structure. Increasing dimensions across molecular analytes and samples require new data science approaches

to functionally annotate spatially resolved molecular data. A specific challenge is data-driven cross-sample

domain detection that allows for analysis within and between consensus tissue compartments across high

volumes of multiplex datasets stemming from tissue atlasing efforts. Here, we present MILWRM – multiplex

image labeling with regional morphology – a Python package for rapid, multi-scale tissue domain detection

and annotation. We demonstrate MILWRM’s utility in identifying histologically distinct compartments in

human colonic polyps and mouse brain slices through spatially-informed clustering in two different spatial

data modalities. Additionally, we used tissue domains detected in human colonic polyps to elucidate molec-

ular distinction between polyp subtypes. We also explored the ability of MILWRM to identify anatomical

regions of mouse brain and their respective distinct molecular profiles.

4.2 Introduction

The advent of spatially resolved molecular assays has enabled access to high dimensional genetic, tran-

scriptomic, proteomic, and even epigenetic information in situ while preserving the spatial information lost

in single-cell or bulk molecular assays (Black et al., 2021; Gerdes et al., 2013; Moses and Pachter, 2022;

Schapiro et al., 2022). Spatially resolved data can provide powerful insight into interactions between cell

types, progressive changes in tissue architecture in diseases such as cancer, or interactions between differ-

ent structures in tissue such as lymphoid follicles and blood vessels (Ruddle, 2016; Sipos and Muzes, 2011;

Hickey et al., 2021). Biological insights can be derived from recurring spatial patterns extracted using quan-

titative analysis on spatial data.
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Many current methods attempt to complement single-cell analyses, essentially taking a bottom-up approach

to reconstruct tissue domains, architectures, and communities from individual cells. In general, individual

cells can be identified from high dimensional imaging data by segmentation. Cellular segmentation and anno-

tation are the most challenging step in this kind of approach. There are various methods available for cellular

segmentation (McKinley et al., 2022; Greenwald et al., 2021), annotation (Liu et al., 2022) and neighborhood

analysis (Warchol et al., 2022; Kim et al., 2022; Chen et al., 2020). Widely used lower resolution imaging

data such as spatial transcriptomics (ST) and imaging mass spectrometry data are analyzed using cellular

deconvolution algorithms to approximate single-cell composition. Most of these algorithms require a parallel

single-cell dataset for use as reference (Cable et al., 2020; Andersson et al., 2020). Different cell types are

then arranged into interaction networks based on their spatial distributions and/or molecular interactions, and

these networks are assembled into larger spatial structures that identify tissue- or organ-level domains. This

type of analysis has been used for identifying cellular communities in various cancer types associated with

patient prognosis (Keren et al., 2018; Schürch et al., 2020; Andersson et al., 2021; Jackson et al., 2020).

Another perspective comes from the pathology field, where spatial domains and architectures are first

identified, followed by instances of cell identification by morphology, which is known as the top-down ap-

proach (Lin et al., 2023). Since this approach focuses directly on pixel-level information instead of recon-

struction from single-cell data, it can identify both extracellular structures and cellular communities over a

range of micro- to macro-scale. Pixel-based analysis also forms the basis of modern artificial intelligence

learning from imaging, and thus paves the way for more complex learning algorithms to be applied to multi-

plex tissue data (Piccinini et al., 2017; Amitay et al., 2022; Wu et al., 2022b).

Various methods are currently available for pixel-based spatial domain detection from ST data (Alexan-

drov and Kobarg, 2011; Zhao et al., 2021; Townes and Engelhardt, 2021). However, they lack the scalability

to work across batches and samples. Attempts to apply these methods across samples fail to yield global

consensus domains, and instead identify regional domains that are sample-specific or confounded by batch

effects. To decipher true emergent properties within spatial tissue domains, it is imperative that findings can

be generalized across many samples at different resolutions. Here, we present multiplex image labeling with

regional morphology (MILWRM) that is designed specifically for consensus tissue domain characterization

across large sample sets with potential differing orientations and resolutions.

4.3 Results

4.3.1 The MILWRM pipeline generates consensus tissue domains across specimens

Whereas most spatial analysis algorithms focus on individual specimens, MILWRM aims to identify con-

sensus tissue domains across samples with spatially resolved molecular data (e.g., multiplexed immunoflu-

36



Figure 4.1: The workflow of MILWRM pipeline.
(A) MILWRM begins with constructing a tissue labeler object from all the sample slides that undergoes
data preprocessing, serialization and subsampling to create a randomly subsampled dataset used for Kmeans
model construction. This subsampled data is used to find optimal number of tissue domains – K selection
using adjusted inertia method. Finally, a Kmeans model is constructed, and each pixel is assigned a tissue
domain. Each tissue domain has a distinct domain profile describing the molecular feature. MILWRM also
provides quality control metrics such as confidence score.
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orescence [mIF] and ST). The MILWRM pipeline can be broadly categorized into three major steps: data

preprocessing, tissue domain identification, and tissue domain analysis (Figure 4.1). To generalize pixel

neighborhood information across batches, data preprocessing incorporates down-sampling, normalization,

data smoothing, and dimensionality reduction. Preprocessing steps differ slightly for mIF and ST (Appendix

A4.1). After preprocessing, tissue domains are identified using unsupervised K-means clustering by subsam-

pling data across all samples (Appendix A4.1). The number of tissue domains is adjusted by inertia analysis

(Clarke and Greenacre, 1985). Each pixel is assigned a tissue domain based on the nearest centroid. Domain

profiles are calculated by MILWRM from the initial feature space to molecularly describe each tissue do-

main, which is useful for downstream annotation. Finally, MILWRM computes a variety of metrics to assess

the quality of identified tissue domains (Appendix A4.1). Overall, MILWRM is a comprehensive, easy to

use pipeline for tissue domain detection, providing interpretable results for biological analysis and quality

assessment.

4.3.2 MILWRM identifies canonical tissue layers of the colonic mucosa

We applied MILWRM to mIF data generated for the Human Tumor Atlas Network (HTAN) consisting of

human normal colon and different colonic pre-cancer subtypes (conventional adenomas – AD and serrated

polyps – SER) (Chen et al., 2021b). These data comprised multichannel fluorescent images from 37 biospec-

imens consisting of tissues with different morphologies and pathological classification confirmed by two

pathologists (Table S1). We performed low resolution application of MILWRM using a smoothing parameter

(σ ) of 2 after downsampling the images to an isotropic resolution of 5.6 µm/pixel and the penalty parameter

of 0.05 that resulted in three tissue domains according to adjusted inertia, as illustrated by three representative

samples (Figure 4.2A-B; Figure S15A). According to domain profiles (Figure 4.2C), the epithelial monolayer

compartment was identified by markers such as CDX2, β -catenin, Na+-K+ ATPase, and proliferative marker

PCNA, consistent with a high turnover hind-gut epithelium (McKinley et al., 2017; Herring et al., 2018).

The mucus layer was enriched in MUC2, a secreted mucin (Tytgat et al., 1994; Allen et al., 1998; Karlsson

et al., 1996). The lamina propria region, where stromal cells are prominent, was identified by Vimentin and

Collagen (Vega et al., 2022). The results from MILWRM analysis are consistent with the tissue architecture

of the colonic mucosa, as well as other mucosal tissues in the body.

MILWRM consistently identified these regions across the 37 tissue samples (Figure 4.2D), and pixel level

data over the samples intermixed in UMAP-embedded space illustrating removal of batch effects between

images (Figure 4.2E), demonstrating the ability of MILWRM to identify consensus regions over multiple

samples. MILWRM was able to capture about 80% of the variance in the multidimensional imaging data

without any notable outliers, demonstrating that information within the imaging data is retained after MIL-

38



Figure 4.2: MILWRM detects canonical tissue domains in human colon mIF data.
(A) Three representative colon mIF images with labelled tissue domains (α = 0.05)
(B) Estimated number of tissue domains in Adjusted inertia plot
(C) Domain profile describing marker composition of each tissue domain
(D) Proportion of each tissue domain across 38 samples
(E) UMAP of pixel data used for model building with batch labels
(F) Percentage variance explained by Kmeans
(G) Three representative colon mIF images with confidence score overlayed
(H) mean confidence score in each image for each tissue domain.

WRM analysis (Figure 4.2F). To assess the quality of tissue domain identification, MILWRM calculates a

modified silhouette-based confidence score per pixel, which evaluates the deviation of each pixel from the

centroid of the matched tissue domain relative to the closest Kmeans centroid. Most pixels across all samples

have high confidence scores apart from a few in the epithelial and mucus tissue domains (Figure 4.2G-H; Fig-

ure S16A-B). Low confidence scores can be attributed to inherent biological heterogeneity within epithelial

domains, as the analysis is performed over samples from mixed pathological categories (normal, AD, SER).

Thus, MILWRM performed on a cohort of 37 biospecimens was able to provide physiologically relevant

tissue domains with high confidence.
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Figure 4.3: MILWRM tissue domains describe the molecular distinction between human colon adenoma pre-
cancer subtypes.
(A) Three representative colon mIF images with labelled tissue domains (α = 0.02)
(B) Estimated number of tissue domains in Adjusted inertia plot
(C) Domain profile describing marker composition of each tissue domain
(D) GEE model results for association between tissue domains and pre-cancer subtype
(E) GEE model results for association between size of connected components in tissue domains and pre-
cancer subtype.
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4.3.3 MILWRM identifies tissue domains that molecularly distinguish disease subtypes

To obtain more refined tissue domains that appropriately stratify the heterogenous pathological categories

of our samples (normal, AD, SER), we next performed MILWRM with a reduced penalty parameter (α

= 0.02). We obtained nine tissue domains that further broke down the epithelial compartment into stem

(SOX9, PCNA, CDX2), differentiated (Na+-K+ ATPase, PANCK, β -catenin), mucus (MUC2), abnormal

(MUC5AC+/PANCK+), and crypt lumen (OLFM4+), and the non-epithelial compartment into smooth mus-

cle, pericryptal stroma, and proximal and deep lamina propria (Figure 4.3A-C; Figure S17A). These refined

tissue domains were spatially localized appropriately. For instance, the stem and crypt lumen regions were

located at the crypt base while the differentiated regions were located at the colonic surface. Interestingly,

pericryptal stroma was identified with a mixture of epithelial and stromal markers and labeled a thin layer

of fibroblasts that comprise telocytes constituting the stem cell niche (Figure 4.3A-C; Figure S18A-E; Aoki

et al., 2016; Shoshkes-Carmel et al., 2018).

Table 4.1: Coefficient summary table for association between pixel size of tissue domain and pre-cancer
subtype

Pixel size of tissue domain Estimate SE Chi-square p-value RESI pFDR
Differentiated tissue domain 0.412 2.12e-01 3.774 0.052 0.430 0.130
Pericryptal Stroma 0.240 1.31e-01 3.366 0.067 0.397 0.133
Smooth Muscle -0.341 2.83e-01 1.449 0.229 0.173 0.381
Mucus 0.036 1.68e-01 0.046 0.830 0.000 0.922
Deep Lamina Propria 0.010 2.10e-01 0.002 0.962 0.000 0.962
Abnormal Layer 0.996 4.68e-01 4.534 0.033 0.485 0.130
Proximal Lamina Propria 0.145 1.87e-01 0.604 0.437 0.000 0.581
Crypt Lumen -1.116 5.65e-01 3.904 0.048 0.440 0.130
Stem Layer -0.680 1.48e-01 21.220 0.000 1.161 0.000
Total 50593.575 6.92e+04 0.535 0.464 0.000 0.581

We then asked whether the two pre-cancer subtypes, AD and SER, have any differences in organization

of MILWRM tissue domains. We used generalized estimating equations (GEE) to model the association

of MILWRM tissue domain proportions with tumor type and found a significant association between MIL-

WRM proportions for crypt lumen, abnormal, and stem classes (Table 4.1; Figure 4.3D). Specifically, ADs

were associated with higher proportions of pixels labelled as stem and crypt lumen classes, consistent with

their characteristic increased stemness driven by WNT-signaling (Chen et al., 2021b; Becker et al., 2022).

In contrast, serrated polyps were associated with increased pixel proportions of the abnormal class marked

by MUC5AC; MUC5AC is a foregut endoderm mucin characteristic of metaplasia associated with serrated

polyps (Sakamoto et al., 2017). AD arises from stem cell expansion which inevitably fill the entirety of

abnormal crypts (Chen et al., 2021b). Thus, we also hypothesized that the stem MILWRM domain will be

significantly more connected compared with SER tissues. We again used GEE to estimate the population
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average effect of pre-cancer subtype on MILWRM the maximum size of tissue-connected components (Ta-

ble 4.2; Figure 4.3E) and found a significant association between connectedness of stem and mucus tissue

domains and pre-cancer type. Stem domain was expectedly more connected in AD subtype whereas higher

connectedness in mucus domain was associated with SER pre-cancer type. ADs have defects in differentia-

tion of goblet cells that inherently depletes the mucus layer (Leow et al., 2004; Yang et al., 2008; Femia et al.,

2007; Pretlow and Pretlow, 2005; Pietro Femia et al., 2004; Blache et al., 2004). This aligns with association

of AD with decreased connected mucus components (Figure 4.3E). There was no such association observed

for connectedness of the abnormal MUC5AC+ domain since it comprises sporadic abnormal cells associated

with secretion. These results align with recent atlas results demonstrating that ADs arose from stem cell

expansion and serrated polyps from pyloric metaplasia (Chen et al., 2021b; Sakamoto et al., 2017).

Table 4.2: Coefficient summary table for association between size of maximum connected component of each
tissue domain and pre-cancer type

Maximum pixel size of connected com-
ponents in tissue domain

Estimate SE Chi-square p-value RESI pFDR

Differentiated tissue domain 0.045 0.178 0.065 0.798 0.000 0.898
Pericryptal Stroma 0.012 0.136 0.008 0.929 0.000 0.929
Smooth Muscle -0.164 0.144 1.299 0.254 0.141 0.357
Mucus 0.535 0.105 25.849 0.000 1.287 0.000
Deep Lamina Propria 0.114 0.084 1.836 0.175 0.236 0.357
Abnormal Layer 0.275 0.254 1.177 0.278 0.109 0.357
Proximal Lamina Propria -0.142 0.112 1.595 0.207 0.199 0.357
Crypt Lumen -0.262 0.193 1.850 0.174 0.238 0.357
Stem Layer -0.435 0.175 6.164 0.013 0.587 0.059

4.3.4 MILWRM applied to spatial transcriptomics reliably identify tissue domains across different

mouse brain cross-sections

We applied MILWRM to a publicly available 10X Genomics Visium dataset comprising seven mouse brain

samples including three coronal, two sagittal anterior, and two sagittal posterior slices (Figure 4.4A; Figure

S19A-B) (10x Genomics, 2022b,a,g,f,e,d,c). We used the penalty parameter 0.02 for high resolution domain

detection similar to the above for mIF data to distinguish functionally relevant brain regions (Figure 4.3B).

We identified thirteen tissue domains in the brain ST data, and manually annotated them using histological

information with a reference atlas from the Allen Brain Institute (Figure 4.4A – middle column) (Sunkin

et al., 2013). Confidence score overlays demonstrate high quality and robust identification of most tissue

domains (Figure 4.4A – right column). Notably, MILWRM identified consensus domains despite differences

in the orientations and cuts of brain slices. For example, MILWRM was able to capture tissue domains that

are unique only to certain slices, such as cerebellum specific to sagittal-posterior cut, as well as domains with
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Figure 4.4: MILWRM detects consensus tissue domains in ST data from different mouse brain cross-sections.
(A) MILWRM detected tissue domains (at α = 0.02, middle) in mouse brain ST data (H&E, left) and confi-
dence scores (right)
(B) Proportion of tissue domains in slides
(C) Percentage variance explained by Kmeans
(D) Reference (left) and MILWRM scores (right) for Thalamus, Striatum and Cerebellum (top to bottom
respectively)
(E) Overall correlation between MILWRM and reference scores for each tissue domain and anatomical region
across all spots.

diverse shapes and sizes due to orientation differences, such as the striatum that is small in the coronal slice,

large in the sagittal-anterior slice, and absent in the sagittal-posterior cut (Figure 4.4A-B). The MILWRM

model captures approximately 70% of variance in ST data, similar to mIF results (Figure 4.4C; Figure S19C).

After histologically annotating the tissue domains using the reference atlas, we evaluated the ability of

MILWRM to identify known domain distinguishing genes for potential use in unsupervised analysis. To

achieve that, we curated a reference gene list for the corresponding histological regions from differential

expression lists available at the Allen Brain Atlas obtained from ISH data 52. Reference lists for histolog-

ical regions not available in Allen Brain Atlas were curated from the molecular atlas of mouse brain (Ortiz

et al., 2020), which was generated from ST data. We first compared MILWRM domain-specific gene lists to

curated reference gene lists for the corresponding histological regions. To validate the reference gene lists,

43



we computed a signature score for each curated reference gene list per brain region, and then overlaid these

signatures onto ST data. Reference gene signatures were expectedly highly specific to their respective brain

regions (Figure 4.4D – left column; Figure S20A-G). In a similar vein, we also computed and overlaid MIL-

WRM domain-specific signature scores and found that they were highly specific and accurately marked each

histological brain region (Figure 4.4D – right column; Figure S21A-G). To quantify the performance between

reference gene signatures and MILWRM signatures, we calculated a spot-by-spot correlation of the two sets

of signature scores across all slides. High correlation between the MILWRM and reference scores was ob-

served on a brain region-specific basis (Figure 4.4E). These results illustrate that the MILWRM approach can

be effectively applied to genome-scale ST data for extracting tissue domain-specific molecular information.

4.3.5 MILWRM performs favorably when compared to SpaGCN

While there is a paucity of methods to identify and enumerate spatial domains across samples, we compared

MILWRM to recently published SpaGCN, which is one of the only algorithms that can detect spatial domains

on ST data over multiple samples (Hu et al., 2021). MILWRM and SpaGCN were performed on five brain

ST slides analyzed above with effectively the same resolution (MILWRM α = 0.01, SpaGCN res = 0.52, p =

0.5) (Figure 4.5A). MILWRM was able to further sub-classify previously detected tissue domains into sub-

regions. For instance, isocortex was divided into three additional layers and cerebellum into two layers, which

corresponded to brain anatomy in the reference atlas (Figure 4.5A - middle column, Figure 4.5B). These finer

sub-classifications were detected across multiple slices by MILWRM. In contrast, SpaGCN was unable to

detect consensus spatial domains across all slides. Only common domains detected in similarly oriented cuts

were identified, whereas the same domain across uniquely sliced slides were identified separately (Figure

4.5A – right column). SpaGCN, when performed at varying resolutions, was also unable to identify consensus

domains across replicates slides (Figure 4.5C - Colored arrows). Although a consensus can be reached by

searching for the right parameters, it is not consistent for all domains. These results further illustrate the

ability of MILWRM as one of the only algorithms to robustly identify consensus tissue domains across slides

with pixel information.

While SpaGCN was only designed for ST data, we still compared its performance on mIF data, as there

are currently no existing algorithms for domain detection for more than one sample in mIF data. To enable

SpaGCN which only works on low resolution ST data, we performed SpaGCN spatial detection on two

mIF slides downsampled to 1/32 resolution with p = 0.5, res = 0.5. While the entire tissue in pixel space

was classified into MILWRM domains, there were missing tissue portions in domains detected by SpaGCN

(Figure 4.5D – left column). Additionally, SpaGCN detected twelve consensus spatial domains across MxIF

slides, but many of these domains were spurious; only three domains predominantly represented real tissue
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Figure 4.5: MILWRM performs better than SpaGCN.
(A) MILWRM (middle) and SpaGCN (right) detected tissue domains in mouse brain ST data
(B) Stratified layers in Isocortex and Cerebellum from Allen brain atlas (top) and MILWRM domains (bot-
tom)
(C) SpaGCN domains at different resolutions (res 0.3, 0.52 and 1), colored arrows point the domains that
should be consensus
(D) SpaGCN (left) and MILWRM domains (right) in two colon mIF specimens
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regions. Furthermore, SpaGCN was unable to capture tissue domains that classify disease tissue subtypes

(SER versus normal, for example), which was apparent in the MILWRM analysis across the two slides

(Figure 4.5D – right column). Overall, MILWRM offers a robust and flexible approach for consensus domain

identification across specimens that is generally applicable to different spatial molecular data types.

4.4 Discussion

Pixel-based tissue domain detection forms the basis of the top-down approach to spatial data analysis. Current

methods of tissue domain detection are either based on a bottom-up approach, that is, building cellular neigh-

borhoods using segmented single-cell data (Warchol et al., 2022; Kim et al., 2022; Chen et al., 2020) and/or

lack scalability across samples (Alexandrov and Kobarg, 2011; Zhao et al., 2021; Townes and Engelhardt,

2021; Hu et al., 2021). Here, we addressed this gap by developing MILWRM, an algorithm to detect spatial

domains across samples through a top-down, pixel-based approach. We demonstrated applicability of MIL-

WRM to find relevant biological phenotypes in multiple data modalities (MxIF and ST) in an unsupervised

way without manual thresholding and annotation.

An important demonstration of MILWRM is its ability to discern organizational differences in tissue

domains related to disease subtypes. While abnormal tissues can be distinguished from normal tissues within

a slide using other methods, MILWRM application across slides has significant value. There are specimens

that are completely composed of abnormal tissues. In those circumstances, comparison between specimens

(normal vs abnormal) is the only way to distinguish between disease states. In addition, MILWRM’s ability

to identify consensus tissue domains across specimens makes it possible to classify patients into disease

subtypes based on tissue features. Finally, MILWRM was able to identify consensus domains and gene lists

that match with organ anatomical features despite different cuts and orientations. This is important because

the tissue structure from individual cuts may appear morphologically different but is functionally identical.

These examples showed the real-world application of MILWRM in pathological diagnosis of disease subtypes

and anatomic classification and characterization.

mIF data present additional pixel analysis obstacles. First, due to lower marker dimensionality, marker

selection and management is of utmost importance. Unlike ST data where vectors of genes define programs

and phenotypes, mIF phenotypes are usually defined by single markers. Highly expressed markers may mask

lower expression markers if suboptimal preprocessing is performed, thus preventing some tissue domains

from being detected. Secondly, high resolution microscopy data are generally incompatible with pixel-based

algorithms built for low resolution ST data, such as SpaGCN. Creation of image tiles or large-scale down-

sampling is needed to satisfy speed and memory requirements. In contrast to most state-of-the-art methods

for pixel-based analysis that are data type-specific, MILWRM is adaptable to multiple imaging data types and
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is scalable to many samples. While SpaGCN is a scalable method for spatial domain detection, it failed to

discern disease-specific differences in tissues from the tissue domains it identified. Additionally, the domains

identified by SpaGCN in ST data were not robust since they failed to reach consensus at different clustering

resolutions. Additionally, MILWRM also provides various QC metrics which can be used to assess the quality

of domain detection and ability to perform tissue clustering at different levels of smoothing, downsampling,

and cluster resolution.
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CHAPTER 5

Molecular cartography uncovers evolutionary and microenvironmental dynamics in sporadic

colorectal tumors

Adapted from:

Heiser, C. N., Simmons, A. J., Revetta, F., McKinley, E. T., Ramirez-Solano, M. A., Wang, J., Shao, J., Ayers,

G. D., Wang, Y., Glass, S. E., Kaur, H., Rolong, A., Chen, B., Vega, P. N., Drewes, J. L., Saleh, N., Vandekar,

S., Jones, A. L., Washington, M. K., Roland, J. T., Sears, C. L., Liu, Q., Shrubsole, M. J., Coffey, R. J.,

and Lau, K. S. (2023). Molecular cartography uncovers evolutionary and microenvironmental dynamics in

sporadic colorectal tumors. bioRxiv, page 2023.03.09.530832

5.1 Summary

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor le-

sions toward malignancy. Leveraging spatial molecular information to construct a phylogeographic map of

tumor evolution can reveal individualized growth trajectories with diagnostic and therapeutic potential. In-

tegrative analysis of spatial multi-omic data from 31 colorectal specimens revealed simultaneous microenvi-

ronmental and clonal alterations as a function of progression. Copy number variation served to re-stratify mi-

crosatellite stable and unstable tumors into chromosomally unstable (CIN+) and hypermutated (HM) classes.

Phylogeographical maps classified tumors by their evolutionary dynamics, and clonal regions were placed

along a global pseudotemporal progression trajectory. Cell-state discovery from a single-cell cohort revealed

recurring epithelial gene signatures and infiltrating immune states in spatial transcriptomics. Charting these

states along progression pseudotime, we observed a transition to immune exclusion in CIN+ tumors as char-

acterized by a novel gene expression signature comprised of DDR1, TGFBI, PAK4, and DPEP1. We demon-

strated how these genes and their protein products are key regulators of extracellular matrix components,

are associated with lower cytotoxic immune infiltration, and show prog- nostic value in external cohorts.

Through high-dimensional data integration, this atlas provides insights into co-evolution of tumors and their

microenvironments, serving as a resource for stratification and targeted treatment of CRC.

5.2 Introduction

The genetic model of colorectal cancer (CRC) progression defines a sequence of cumulative mutational bur-

den that drives dysplasia and malignancy in human colonic epithelium (Fearon and Vogelstein, 1990). This

conventional adenoma-carcinoma trajectory involves alteration of driver genes APC, KRAS, and TP53, result-
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ing in chromosomal instability (CIN) (Stoler et al., 1999). Alternatively, a subset of CRCs which arise from

the so-called serrated pathway, are more likely to be BRAF-driven and microsatellite unstable (MSI-H) due

to hypermethylation of MLH1 and other mismatch repair (MMR) genes, causing hypermutation (Rhee et al.,

2017; Nouri Nojadeh et al., 2018). Ensuing decades of investigation have yielded additional CRC subtyping

that elucidates alternative pathways to invasion and metastasis, as well as characterization of pre-malignant

lesions and their clinical prognoses (Conteduca et al., 2013; Obuch et al., 2015; Guinney et al., 2015). More

recently, the advent of single-cell and spatial molecular assays has uncovered various degrees of intratumoral

heterogeneity at high resolution, suggesting that previously proposed linear tumor progression along the con-

ventional or serrated pathway cannot fully explain the evolutionary dynamics of the second leading cause of

cancer-related mortality worldwide (Bray et al., 2018; Chen et al., 2021b; Joanito et al., 2022; Gil Vasquez

et al., 2022). Moreover, layered molecular information from spatially resolved assays can be used to build

models relating gene and protein expression, or cell ”state”, to clonal identity across tumor regions (Ji et al.,

2020; Moncada et al., 2020; Wu et al., 2022a; Risom et al., 2022). Exploration of tumor phylogeography in

this way allows for deeper profiling of evolutionary relationships while accounting for regional heterogeneity

(Shibata, 2020).

Beyond, and perhaps fundamental to, genetic evolution of malignant cells themselves lies additional

complexity introduced by interactions between tumor epithelium and infiltrating immune cells, which pro-

vide immunogenic selection pressure that profoundly impacts tumor evolution and prognosis (Rooney et al.,

2015; Milo et al., 2018; Lee et al., 2020). Indeed, characterization of the immune compartment of solid

tumors has been shown to be a better predictor of patient prognosis than traditional pathological staging,

and tumor immunophenotype is a valuable measure in forecasting response to immune checkpoint inhibi-

tion (ICI) in several cancers (Galon et al., 2006; Charoentong et al., 2017). Furthermore, distinct pathways

from initiation to malignancy confound these tumor characteristics, as serrated lesions and MSI-H CRCs are

more immunogenic than their conventional adenoma and microsatellite stable (MSS) counterparts on average

(Nouri Nojadeh et al., 2018; Chen et al., 2021b). Importantly, several types of advanced solid tumors have

been shown to exhibit immune exclusion or evasion, by mechanisms both intrinsic to cancer cells and ob-

served microenvironmentally, which shortens overall patient survival and confers ICI resistance (Feig et al.,

2013; Roh et al., 2017; Lazarus et al., 2018; Luke et al., 2019; Abril-Rodriguez et al., 2019; Sun et al., 2021;

Pelka et al., 2021; Baldominos et al., 2022). In CRC, an observed suppression of cytotoxic immunity that

trends with an increased stem cell signature in late-stage carcinoma raises a critical question surrounding

immune exclusion and the potential connection to tumor progression (Chen et al., 2021b).

In order to map the co-evolution of colorectal tumor cells and their microenvironments, we leveraged

spatial multi-omics to build a phylogeographical atlas of CRC progression from pre-cancer to adenocarci-
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noma. We have generated a novel, spatially resolved dataset from a heterogeneous set of sporadic colorectal

tumors, wherein distinct tumor regions represent snapshots of cancer evolution. Multiregional mutational

profiling, untargeted spatial transcriptomics (ST), and multiplexed protein imaging offer high-dimensional

paired measurements of layered molecular information while maintaining tissue contexts (Ryser et al., 2018;

Kather et al., 2018; Barkley et al., 2022).

Combining spatial data with single-cell RNA sequencing (scRNA-seq) to enumerate consensus cell states,

we projected tumor programs and microenvironmental features onto a generalized progression pseudotime

(PPT) derived from regional copy number variants (CNVs) and somatic mutational profiles amongst a cohort

of tumors. These efforts enabled discovery of multiple pathways that are distinctly altered during the progres-

sion of chromosomally unstable (CIN+) and hypermutated (HM) CRCs. This study presents a patient-centric

roadmap of CRC evolution and progression arising from integrative, atlas-wide analyses across a unique and

heterogeneous set of human CRC specimens.

5.3 Results

5.3.1 Spatial atlas queries layers of molecular heterogeneity in sporadic colorectal tumors

To model CRC progression through spatial heterogeneity, we selected human colonic specimens with re-

gional morphologies representing transitions between tumor progression stages. Samples with concurrent

pre-malignant, malignant, and invasive regions were identified by a pathologist (Appendix A5.1: Sample

procurement). A diversity of tumor stages, grades, and locations was represented (Figure 5.1A-B) with fairly

equal selection of MSS (n = 12) and MSI-H (n = 10) CRCs and pre-cancerous polyp subtypes (n = 8; 4 SS-

L/HP and 4 TA/TVA). Along with a normal colon sample as control, these specimens provide a representative

spectrum of disease states along the two major pathways to malignancy in the colon (Figure 5.1A-B).

For each of these 31 formalin-fixed, paraffin-embedded (FFPE) specimens, we collected serial tissue sec-

tions for parallel processing by molecular profiling assays. Multiplex immunofluorescence (MxIF) analysis

with a 33-marker panel provided whole-slide protein expression at subcellular resolution (Gerdes et al., 2013;

Figure 5.1C). We cut serial sections into one or more capture areas of 10X Genomics Visium spatial transcrip-

tomics (ST) slides (Ståhl et al., 2016; Vickovic et al., 2019). Large tumors (¿7 mm diameter) were trimmed to

regions of interest (ROIs) targeting dysplastic epithelium and minimizing stromal areas. H&E images were

collected to align gene expression with tissue morphology and provide fiducial markers for spatial registration

to MxIF. We employed laser capture microdissection followed by whole-exome sequencing (LCM-WES) on

additional serial sections to genetically profile ~2 mm ROIs in spatially distinct regions of individual tumors

(Figure 5.1C). Dissociative single-cell RNA sequencing (scRNA-seq) for a subset of specimens provided a

reference for expected cellular composition (Klein et al., 2015; Chen et al., 2021b).
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Figure 5.1: Spatial atlas queries layers of molecular heterogeneity in sporadic colorectal tumors.
(A) Diagram detailing colorectal specimens chosen for atlas experiments.
(B) Patient-level information from A in table format. Large CRCs (¿7 mm diameter; 12 MSS, 10 MSI-H)
have at least 1 spatial transcriptomics (ST) replicate tiling the tissue. TA/TVAs (4), HP/SSLs (4), and NL (1)
have 1 ST replicate each. All specimens have whole-slide MxIF imaging and bulk or multiregional WES.
(C) Experimental design consisting of layered spatial molecular assays from serial sections of FFPE tissue
blocks.
(D) Diagram of phylogeographical cartography from multiregional sequencing (LCM-WES) data, layered
with ST and MxIF images. Black arrows represent progression pseudotime (PPT) inferred from the phyloge-
netic relationships between ROIs.
(E) Summary of gene signature scores by tumor type (left), ST patient (middle), and matched scRNA-seq pa-
tient (right). Patient ID colors represent tumor type (MMR status). Mean signature expression scaled across
groups. In this dotplot and hereafter, size of dots represents expression frequency, while shade represents
intensity.
(F) Somatic mutations detected in LCM-WES samples, summarized by patient and grouped by biological
pathway. Top barplot represents overall TMB breakdown by mutation class per patient.
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The data procured from multi-modal analysis of adjacent sections present trade-offs across large ranges of

spatial resolution and molecular specificity: MxIF offers subcellular (¡0.5 µm) imaging of dozens of molecu-

lar features, ST captures up to 19,000 mRNA transcripts at 100 µm spatial resolution, and LCM-WES profiles

somatic mutations for large (1-2 mm) regions of tissue. We used image processing software to register ge-

netic, transcriptomic, and proteomic organizational layers, modeling these molecular mixtures at varying

spatial scales (Appendix A5.1: Spatial registration). We use these spatial features to infer relationships of

tumor progression and evolution (Figure 5.1D), and thus provide a ”scaffold” for phylogenetic cartography

and subsequent modeling of gene, protein, and cellular features (Shibata, 2020).

RNA expression data from 48 ST samples and a subset of 13 matched scRNA-seq samples largely exhib-

ited expected gene expression trends across tumor class and grade when analyzed at the bulk level. Conven-

tional TA/TVA polyps and MSS CRCs were enriched for stemness, intrinsic consensus molecular subtype 2

(iCMS2) epithelial signature, and an inflammatory immune response signature (CD4+ T lymphocytes), while

SSL/HP and MSI-H CRCs were comprised of metaplastic and iCMS3 signatures accompanied by cytotoxic

(CD8+ T cell) immunity (Chen et al., 2021b; Joanito et al., 2022; Figure 5.1E). Additionally, aggregating

multiregional exome sequencing into bulk analyses per patient revealed APC, KRAS, and TP53 mutations in

TA/TVA/MSS tumors, consistent with the conventional adenoma-carcinoma sequence, and BRAF variants

in SSL/HP/MSI-H samples (Figure 5.1F). Similar to previous observations, MSI-H CRCs exhibit hyper-

mutation that is absent in their SSL/HP counterparts, delineating that this transition occurs after serrated

pre-malignancy (Chen et al., 2021b). Moreover, a small subset of conventional pathway tumors (1 TVA -

HTA11 01938 and 1 MSS - PAT15211) can be identified as hypermutated (HM), consistent with previous

observations, likely due to deficiency in proofreading polymerases (POLE, POLD1; Bourdais et al., 2017;

Figure 5.1F).

5.3.2 CNV inference establishes spatially resolved tumor clones and their phylogenetic relationships

A hallmark of the conventional adenoma-carcinoma sequence that gives rise to MSS CRC is chromosomal

instability (CIN) which results in somatic gains, losses, and rearrangements of large segments of DNA herita-

ble to cellular progeny (Nouri Nojadeh et al., 2018; Drews et al., 2022). Thus, cumulative increases in CNVs

can be used to order tumor progression events amongst tumor regions if measured spatially (Erickson et al.,

2022).

We inferred CNVs from ST data, quantifying levels of CIN across the atlas with support from orthogonal

measurements including scRNA-seq, WES, and WGS data (Puram et al., 2017). Dimension reduction and

embedding of inferred CNV profiles from epithelial ST microwells yields tumor-specific clustering indicative

of unique somatic CNVs (Figure 5.2A). A subset of patients with matched scRNA-seq (n = 11) exhibited sim-
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Figure 5.2: CNV inference establishes spatially resolved tumor clones and their phylogenetic relationships.
(A) UMAP embeddings generated from inferred CNV profiles of all ST samples colored by tumor type, CNV
score, Patient, and PAT71397 CNV clone to accompany panels E-H. Individual points represent ST microw-
ells, which were subsetted to major clone regions prior to embedding.
(B) Boxplots of CNV scores for all ST microwells in major CNV clone regions across atlas, grouped by
sample type. CRC n = 48,439; NL n = 1,067; SSL/HP n = 1,735; TA/TVA n = 1,951.
(C) Boxplots of CNV scores for epithelial cells from Chen, et al. cohort, grouped by sample type. CRC n =
11,982; NL n = 31,917; SSL/HP n = 11,896; TA/TVA n = 21,275.
(D) Summary of MxIF intensities, cell activity, and immune gene signatures by major tissue domains deter-
mined through CNV inference.
(E) CNV scores (left) and tumor clone regions (right) for PAT71397.
(F) MxIF with inferred progression trajectory for PAT71397. Scale bars 500 µm.
(G) Summary of TMB, CNV score, and gene signatures for CNV clone regions of PAT71397.
(H) Heatmap of inferred CNVs for PAT71397 ST, corresponding to E-G (top), as well as CNVs measured by
WGS and WES for PAT71397 blocks and additional selected pre-malignant tumors (bottom). Brackets con-
nect WES and WGS from PAT71397 malignant (MSS) and benign (TVA) blocks to dominant CNV clones in
respective ST to show similarity of measured and inferred CNV profiles.
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ilar CNV profiles inferred from both scRNA-seq and ST, with exception of CIN-low pre-malignant tumors

whose inferred copy number changes consisted of mostly background noise (Figure S22A-D). To quantify

this copy number validation between gene expression modalities, we calculated pairwise cosine similarities

between inferred CNV profiles of all cells (scRNA-seq) and microwells (ST) assigned to major clones in

each tumor (Appendix A5.1: CNV inference from ST and scRNA-seq). The resulting distributions of these

CNV similarities describes the confidence of inferred somatic copy number calls, as chromosomally unsta-

ble (CIN+) tumors have cosine similarity distributions approaching 1.0, while CIN- specimens have cosine

similarities centered around 0.0 or less (Figure S22B-D). These results derive from the fact that CIN- spec-

imens have so few somatic CNVs that the attempted inference of such rearrangements by expression yields

low-confidence, noisy results in both modalities (Figure S22D).

To further validate these results using direct measurements of genomic alterations, we performed whole-

genome (WGS) and/or whole-exome (WES) sequencing on a subset of tumors from this atlas, as well as

additional pre-malignant lesions and CRCs from a larger cohort (Chen et al., 2021b). CNVs called in these

data confirmed somatic copy number alteration patterns inferred by ST and scRNA-seq in overlapping sam-

ples (Figure S22E; Appendix A5.1: CNV calling from WES and WGS).

Several studies have demonstrated that APC dysfunction causes CIN due to the protein’s interaction

with microtubules in the spindle and contractile ring during cytokinesis (Tighe et al., 2001; Rusan and Peifer,

2008). Thus, CIN has been thought to arise as an early event in tumorigenesis, potentially when APC function

is lost during initial adenoma formation, as implicated in mouse models (Alberici et al., 2007). However,

human studies using limited numbers of specimens do not provide a clear confirmation (Sieber et al., 2002;

Cardoso et al., 2006). To address the relationship between APC and CIN on a broader basis in humans,

we summarized CNV scores across our ST atlas and a large cohort of scRNA-seq derived from CRCs and

pre-cancers (Chen et al., 2021b; n = 85), demonstrating that conventional adenomas (TA/TVA) harboring

APC mutations exhibited low CIN comparable to serrated polyps (SSL/HP) and baseline normal epithelium

(Figure 5.2B-C). We performed WGS (n = 35) and WES (n = 18) on a selected subset of tumors and similarly

calculated total CNV scores from these data, which validated the lack of CIN in TA/TVAs inferred from gene

expression (Figure 5.2H; Figure S22E-F; Appendix A5.1: CNV calling from WES and WGS).

Taken together, these data suggest that the onset of CIN occurs later in carcinoma development than

previously assumed, and that MSS tumors are more likely to become CIN+ than MSI-H carcinomas are

(Stoler et al., 1999; Woodford-Richens et al., 2001; Sieber et al., 2002; Sheffer et al., 2009; Pino and Chung,

2010). We do, however, observe some MSI-H tumors that gain CIN, likely coincident with an observed

transformation to a stem-like, iCMS2 phenotype (Chen et al., 2021b; Figure S22F-H). In fact, three MSI-H

tumors in this atlas (SG00001, SG00002, PAT73458) exhibited high CNV scores, and were thus classified
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as CIN+. These exceptions are analogous to the hypermutated (HM) TA/TVA/MSS tumors (Figure 5.1F),

suggesting that alternative pathways to CIN and HM will emerge in some cases.

In ST data, CNV inference provides tumor clone regions that spatially align with tissue domains annotated

by histology as well as gene signatures enriched in dysplastic epithelium (Figure 5.2D). Specifically, ST CNV

profiles cluster into major tumor clones based on similarity, while normal mucosa and stromal regions are

aggregated into a background cluster (”S”; Figure 5.2D-H). Additionally, CNV inference identifies a tumor

edge domain (”E”) resulting from a mixture of epithelium and surrounding stroma in ST microwells that

dampens the CNV signal. These regions are useful for characterizing epithelial activity occurring at tumor

borders such as epithelial-mesenchymal transition (EMT) and tumor cell invasion, as well as interactions with

the tumor microenvironment (TME) including antigen presentation, lymphocyte exhaustion, cytotoxicity, and

neutrophil recruitment (Figure 5.2D,G). Major clone regions can be ordered and labeled according to their

inferred progression stages within each tumor, determined by a combination of CNV profile and mutational

burden (TMB), as well as their relationships to one another (PAT71397 clone regions ”1”, ”2”, ”3”; Figure

5.2E-H). Finally, ordering of CNV clones on an individual tumor basis is validated by tissue characteristics

that trend with malignancy and progression, exemplified in PAT71397 by an increase in TMB, CD4+ T cell

and suppressive T reg infiltration, and gene signature scores including iCMS2, stem, and CytoTRACE (Figure

5.2G).

5.3.3 Multiregional somatic mutational profiles provide phylogeographical topology

Phylogenetic reconstruction provides insight into tumor progression from a snapshot in time, namely the mo-

ment of tumor resection and fixation. Our analysis revealed spatially informed clonal heterogeneity within tu-

mors. We first called somatic mutations using bulk germline WES from each patient as a baseline (Appendix

A5.1: Somatic mutational profiling with LCM-WES). Results from 22 patients with LCM-WES exhibited

observable phylogeny across three or more regions of interest (ROIs), deciphered using public, shared, and

private mutations detected in spatially distinct tumor regions (Figure 5.3A-C; Figure S23A-W). Common

and unique genetic alterations between ROIs allowed for the reconstruction of evolutionary relationships be-

tween tumor regions, which can follow one of several proposed evolutionary models (Sottoriva et al., 2015;

Venkatesan and Swanton, 2016; Turajlic et al., 2019; Ryser et al., 2020; West et al., 2021. Our data were

consistent with three major models of tumor evolution (Figure 5.3D).

Linear or punctuated evolution consists of stepwise increases in fitness that result in periodic ”clonal

sweeps” that replace the dominant makeup of the tumor (Gould and Eldredge, 1977). These tumors typically

exhibit low degrees of heterogeneity across regions with many shared or public mutations (Turajlic et al.,

2019). The neutral or ”big bang” model of tumor evolution consists of many subclones with near-equal fitness
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Figure 5.3: Multiregional somatic mutational profiles provide phylogeographical topology.
(A) Oncoplot of detected driver mutations within spatially sampled LCM ROIs of PAT71397.
(B) Phylogenetic tree for PAT71397. Length of branches are proportional to the number of shared or private
somatic mutations in each LCM ROI.
(C) Diagram of LCM ROIs in PAT71397 blocks, overlaid on CNV clone regions identified in ST. Black arrow
represents inferred progression trajectory from CNVs and mutational phylogeny in B.
(D) Diagram of observed modes of tumor evolution. Example phylogenetic trees from representative atlas
samples shown to the right of each diagram. Patient ID colors represent tumor type (MMR status).
(E) Tumor regions and their clinical and mutational metadata divided by class and ordered left-to-right by
corresponding PPT (CNV score for CIN+, TMB for HM).
(F) Summary of gene signatures across all tumor regions grouped by evolutionary mode from D.
(G) CIN index versus PPT for tumor regions from E. Points are colored by tumor class, except pre-malignant
and normal regions, which are colored according to tumor type as in Figure 5.1A-B. Points are colored by
tumor class. Point shape corresponds to regions with detected TP53 mutation.
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due to early bursts of mutational events that persist throughout the life of the lesion (Sottoriva et al., 2015).

Similarly, branching evolution is characterized by co-existing subclones that exhibit hierarchical relationships

between one another.

When categorizing carcinomas in the atlas by phylogenetic structure, we observed that 8/22 tumors ex-

hibited linear evolution characterized by many public mutations and low regional heterogeneity. Of the

remaining 14 carcinomas, we classified six as neutral - effectively the opposite of linear, with few public

mutations and high regional heterogeneity - and eight as branching. Interestingly, we classified the evolution

of only 2/15 CIN+ tumors as linear. Conversely, linear evolution dominated the HM cohort (6/8 cases; Fig-

ure 5.3E; Figure S23X; Appendix A5.1: Global PPT ordering and classification of tumor regions). Indeed,

CIN+ signatures such as iCMS2, stem, CD4 T cells, and high CNV score are enriched in tumors with neutral

and branching evolution, while HM markers including iCMS3, metaplasia, and T cell exhaustion are highly

expressed by tumors undergoing linear evolution (Figure 5.3F). Despite a limited sample size, we speculate

that hypermutation confers stronger and more protracted stepwise gains of clonal fitness, resulting in linear or

punctuated evolution, whereas CIN promotes high-frequency, continual genetic alterations that yield minor,

hierarchical differences between co-existing subclones in a branching or neutral evolutionary pattern (Grist

et al., 1992; Jackson and Loeb, 1998; De Nooij-van Dalen et al., 2001; Nowak et al., 2002).

Given two distinct indicators of regional tumor progression, CNVs and somatic mutations, we next dis-

tinguished the major classes of colorectal tumors whose regional progression pseudotime (PPT) are best

quantified by these indicators, respectively. Chromosomally unstable (CIN+) tumors, most likely MSS aris-

ing from the conventional adenoma pathway, should exhibit CNV profiles that reliably describe regional

clonal relationships that recapitulate tumor progression topology. Hypermutated (HM) tumors, most likely

arising from the serrated pathway, would conversely be MSI-H and chromosomally stable. Therefore, clonal

progression is best described by regional TMB in the HM case.

To demonstrate these principles, we established PPT ordering and calculated a CIN index (quantifying the

comparative degree of CIN and hypermutation) for tumor regions defined as a combination of LCM ROIs and

CNV clones (Figure 5.3E,G; Appendix A5.1: Global PPT ordering and classification of tumor regions). PPT

ranking allowed for atlas-level integration and modeling of spatial information along a global indicator of

progression from normal mucosa and pre-malignant adenoma to invasive adenocarcinoma. Advanced tumor

regions (PPT ¿ 0.4) with positive and negative CIN indices were classified as CIN+ and HM, respectively, un-

covering spatial heterogeneity that describes transitions from MSI-H to CIN+ and MSS to HM. Importantly,

we note that TP53 mutations were more enriched than APC mutations in tumor regions with high CIN index,

corroborating our observation that CIN emerges later in CRC development (Fearon and Vogelstein, 1990;

Figure 5.3G; Figure S23Y).

57



Figure 5.4: Cell-state deconvolution reveals pseudotemporal tissue dynamics.
(A) Example whole slide MxIF surrounded by refNMF usages for seven cell states as well as MILWRM
tissue domain projected onto PAT30884 histology. Scale bar 500 µm.
(B) refNMF usages of normal absorptive colonocyte (ABS), normal fibroblast (FIB2), serrated-specific cell
(SSC), and goblet cell (GOB) states for HTA11 08622 A.
(C) MxIF image of HTA11 08622 A. Scale bar 500 µm.
(D) MILWRM tissue domains for HTA11 08622 A, surrounded by top cell-state loadings for SSL (D0),
normal epithelium (D5), and submucosa (D6) domains.
(E) Proportions of MILWRM domains detected in ST from each patient. Patient ID colors represent tumor
class.
(F) refNMF states grouped by compartment and summarized across tumor stage, tumor class, MILWRM
domain, and patient for all ST samples. Patient ID colors represent tumor class.
(G) Heatmap of GAM fits for refNMF states in all ST tumor regions ordered by PPT for HM (left) and CIN+
(right) tumors. Color represents scaled expression within each tumor class.
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5.3.4 Cell-state deconvolution reveals pseudotemporal tissue dynamics

Using a previously published scRNA-seq dataset from 128 specimens consisting of CRCs, pre-malignant

lesions, and adjacent normal mucosa (Chen et al., 2021b), we used non-negative matrix factorization (NMF;

Kotliar et al., 2019; Figure S24A-B) to construct a consensus reference of 30 distinct cell states found in

epithelial and stromal compartments and characterized by top-loaded genes and their associated pathway

enrichment terms (Figure S24C-D). These cell states include normal mucosal cells such as tuft (TUF), en-

teroendocrine (EE1-2), and goblet (GOB), tumor-specific states derived from serrated lesions (SSC) and

carcinomas (CRC1-4), and infiltrating immune populations including helper T cells (TL1), cytotoxic T cells

(TL2), and neutrophils (MYE4), amongst others (Figure S24C-D).

To calculate cell-state contributions to each ST pixel, we used reference (ref) NMF to extract consen-

sus states from ST expression matrices, effectively inferring fractional abundance of these states in each

ST microwell (Appendix A5.1: refNMF cell-state discovery and deconvolution). Deconvolved cell-state

fractions correlated with selected MxIF cell-type marker expression in registered serial tissue sections, as

well as expression of literature-based cell-type and cell-activity gene signatures (Nirmal et al., 2018; Gulati

et al., 2020; Chen et al., 2021b; Combes et al., 2022; Joanito et al., 2022; Barkley et al., 2022; Gil Vasquez

et al., 2022; Figure 5.4A-C; Figure S24E-G; Appendix A5.1: refNMF validation). For example, GOB, ABS

(absorptive colonocytes), and CT (crypt-top colonocyte) enrichment aligns with high MUC2 IF staining in

normal epithelium, MYE1 (M1 macrophages) coincides with CD11B staining, and CRC2/STM-rich regions

(CIN+ tumor cells and stem-like cells) express PCNA and OLFM4 in PAT30884 (Figure 5.4A). The SSL,

HTA11 08622 A, further validates refNMF states such as ABS, FIB2, and serrated-specific cells (SSCs) by

their spatial distribution in the mucosa and submucosa layers and correspondence to MUC5AC and AQP5 IF

staining (Figure 5.4B-C).

Application of cell-cell interaction community reconstruction algorithms to ST data provided inaccu-

rate results due to low spatial resolution and large distances between microwells. Focusing on pixel-based

community detection, we employed refNMF usages as predictors for a MILWRM model to divide tissue

into consensus domains based on cell-state makeup (Kaur et al., 2023; Figure 5.4D). The MILWRM model

yielded eight domains (D0-D8) that correspond to CIN+ epithelium (D4 - high in CRC2 and STM), nor-

mal mucosa (D5 - enriched in ABS and CT), and sessile-serrated epithelium (D0 - high in SSC and GOB),

amongst others, all of which spatially align with regional histology (Figure 5.4A-E; Figure S24H).

When summarizing refNMF abundances across MILWRM domains and tumor classes, we can identify

epithelial cell states enriched by unique populations (CRC1 = HM; CRC2 = CIN+) and gain a coarse under-

standing of microenvironmental makeup of each tumor (TL2 [cytotoxic] = SSL/HP/HM; MYE4 [neutrophils]
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and MYE5 [DCs] = CIN+; Figure 5.4F). Finally, we note that MILWRM domain D1 is characteristic of HM,

while D4 is characteristic of CIN+ tumors (Figure 5.4E). Applying these approaches to ST data enables vali-

dated mapping of consensus tumor and non-tumor cell populations across the atlas, and specifically provided

the spatial distributions of low-abundance cell states such as infiltrating immune cells.

Using PPT ordering from CNV scores and TMB in CIN+ and HM tumors, respectively, we tracked

changes in refNMF states across a global indicator of tumor progression and built generalized additive mod-

els (GAMs) that ascribe statistical significance to cell-state dynamics during CRC evolution (Figure 5.4G;

Appendix A5.1: Modeling expression dynamics along PPT). We observed a replacement of normal cells

(ABS, CT, STM, TUF, and EE) with carcinoma-specific epithelial states (CRC1-4) following the transition

from pre-cancer to CRC in both the CIN+ and HM pathways. Along CIN+ PPT, STM-dominated early le-

sions give rise to CRC2, while HM tumors progress from metaplastic SSCs to mucinous CRC (GOB and

CRC1), likely due to the respective cells-of-origin of CIN+ and HM tumors (Chen et al., 2021b). Consistent

with prior knowledge, we observed an increase in most infiltrating immune populations with development

of HM tumors, but a striking decrease in immune states in the tumor epithelium of CIN+ CRCs, coincident

with the strong increase in CRC2 abundance (Figure 5.4G). This observation, in the context of global PPT,

suggests that an epithelial-intrinsic program emerges in CIN+ CRCs to exclude or evade the host immune

system.

5.3.5 Gene expression features of CIN+ CRCs predict immune exclusion

Immune exclusion correlates with poor patient outcomes in multiple cancer types and negatively predicts

immune checkpoint inhibitor (ICI) response (Lazarus et al., 2018; Zhou et al., 2019; Gunnarsson et al., 2020;

Lee et al., 2020; Bortolomeazzi et al., 2021; Pelka et al., 2021; Combes et al., 2022). Immune exclusion

mechanisms provide potential therapeutic targets that may open the door for MSS CRCs to respond to ICI

(Llosa et al., 2015; Lang et al., 2022). Biomarkers of immune exclusion may likewise act as predictors of the

roughly 30 - 60 % of ICI non-responders in the MSI-H group that are currently immunotherapy candidates

(Motta et al., 2021).

To further investigate the link between CIN+ tumor progression and immune exclusion, we extended

GAM analysis to untargeted gene expression from ST atlas data. We identified genes with statistically signif-

icant dynamics within and between PPT trajectories for HM and CIN+ CRCs and grouped them by biological

pathway or function (Figure 5.5A). Specifically, we identified genes that were significantly elevated in late

CIN+ PPT, which formed a functional module for extracellular matrix (ECM) signaling and organization

(DDR1, TGFBI, and PAK4). These genes originate from epithelial cells, which implicated a mechanism of

microenvironmental modulation by the tumor itself. Each of these genes has also been shown to associate
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with immune exclusion in several solid tumor types, providing an interesting, concerted signature that po-

tentially creates an immune-tolerant environment in CIN+ CRC (Ween et al., 2012; Abril-Rodriguez et al.,

2019; Sun et al., 2021; Duan et al., 2022).

Additionally, we observed a significant increase in DPEP1 expression with CIN+ PPT, a gene which

was also highly enriched in the CRC2 epithelial state (Figure 5.5A; Figure 5.4H; Figure S24C-D). We added

DPEP1 to the signature with DDR1, TGFBI, and PAK4 for analysis of immune exclusion in this atlas as it is

implicated in neutrophil recruitment, which could lead to lymphocyte exclusion in the TME (Germann et al.,

2020; Wang, 2022), and has been shown to be secreted by tumor cells in extracellular vesicles, thus offering

a promising circulating biomarker in CRC patients (Zhang et al., 2021).

These four genes proved to be highly co-expressed by tumor epithelium (Figure S25A-B), and when com-

bined into an Immune Exclusion Signature (IES), exhibited spatial correlation with iCMS2 and CNV score,

and were enriched in the CIN+-specific MILWRM domain D4, corroborating prior studies (Roh et al., 2017;

Luke et al., 2019; Joanito et al., 2022; Figure 5.5B-C). Surveying other gene signatures, we identified addi-

tional programs that coincided with IES such as pEMT and oxidative metabolism, which are hallmarks of

advanced cancer and upregulated during tumor progression, validating the emergence of IES in late PPT (Fig-

Figure 5.5 (preceding page): Gene expression features of CIN+ CRCs predict immune exclusion.
(A) Heatmap of GAM fits for top genes summarized across all ST tumor regions. Color represents scaled
expression within each tumor class. Genes are grouped by biological function. Bracket denotes IES genes.
(B) Pairwise Pearson correlations between progression indicators (CNV score and iCMS2), IES, cytotoxic T
cell refNMF state (TL2), and CD8 T cell gene signature in all CIN+ tumor regions.
(C) Genes, gene signatures, and refNMF states grouped into pseudotime indicators (”PPT”), immune exclu-
sion markers (”Excl.”), microenvironmental cells (”uEnv.”), infiltrating immune cells (”Inf.”), tumor activity
(”Act.”), and epithelial-specific markers of MSS, MSI-H, and normal mucosa summarized by MILWRM do-
main, tumor class, and patient for all ST samples. Patient ID colors represent tumor class.
(D) PAT71662 ST with annotated tissue domains from MILWRM (left) and CNV clone regions (right).
(E) Expression overlay and spatial co-occurrence analysis for IES, helper T cells (TL1), and cytotoxic T cells
(TL2) in PAT71662. Line plots at right indicate the conditional probability of high signature or cell-state
expression as a function of distance from CNV clone 1 microwells (Appendix A5.1: Spatial co-occurrence
analysis from ST).
(F) PAT71662 MxIF showing collagen, CDX2 (marking MSS epithelium), and lymphocytes (CD3 and CD8).
Inset highlights CD3/CD8+ cells sequestered to stroma. Scale bars 500 µm.
(G) Centroids of segmented single cells from PAT71662 MxIF plotted in whole-slide space, split into lym-
phoid and myeloid compartments.
(H) Same as F for PAT73458. PCNA and MUC5AC mark tumor epithelium. Inset highlights CD8+ cells
invading epithelium. Scale bars 500 µm.
(I) Same as in G, for PAT73458.
(J-K) Same as in D-E, for PAT73458. TL3 represents γδ IELs.
(L) Census of infiltrating immune cells in PAT71662 (bottom) and PAT73458 (top) from G and I summarized
by CNV clone region (Appendix A5.1: MxIF immune-exclusion analysis).
(M) Number of infiltrating CD8+ T cells detected in MxIF plotted against IES score for all tumor regions.
Points are colored by tumor class and sized according to PPT ranking.
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ure 5.5C; Figure S25B). Moreover, fibrosis and hypoxia signatures correlated with IES at the patient-level,

lending credence to the involvement of constituent genes in ECM signaling and regulation as these character-

istics are implicated in microenvironmental immunosuppression (Ween et al., 2012; Abril-Rodriguez et al.,

2019; Sun et al., 2021; Duan et al., 2022; Zeng et al., 2022; Figure 5.5C; Figure S25D). Most importantly,

this four-gene IES had a negative correlation with cytotoxic T cells (TL2) and with the CD8 T cell signature

score across all tumor regions in the dataset, indicating its value as a predictor of immune exclusion (Combes

et al., 2022; Figure 5.5B).

An example from this atlas of immune-excluded CRC is PAT71662, which contains a single major CNV

clone region that delineates the epithelial compartment in ST (clone region ”1”; Figure 5.5D). We note that the

majority of the area of this MSS tumor belongs to MILWRM D4, and is correspondingly high in CRC2, stem,

fibrosis, and oxidative metabolism (Figure 5.5C-D). Spatial co-occurrence analysis revealed that this tumor

exhibited enrichment of the epithelial-intrinsic IES in the tumor core, while excluding T lymphocytes from

the CNV clone 1 region (Figure 5.5E). We confirmed the exclusion of CD8+ cells using spatially registered

MxIF data, demonstrating how immune infiltrates are sequestered to the collagen-rich stroma (Figure 5.5F-

G). Conversely, immune-infiltrated tumors such as PAT73458 exhibited much lower epithelial expression of

IES while clear infiltration of cytotoxic (TL2) and γδ (TL3) T cells is seen in ST and MxIF data (Figure

5.5C,H-K).

We next expanded immune-exclusion analysis using MxIF data to validate ST findings. Following single-

cell segmentation (McKinley et al., 2022), we identified immune cell subsets by the presence of various

marker protein stains quantified in each cell. We then masked the MxIF slides with CNV clone regions so we

could enumerate the abundance and distribution of infiltrating immune cells in each major tumor compartment

(Appendix A5.1: MxIF immune-exclusion analysis). We note that immune-excluded PAT71662 has more

immune cells in its stroma (”S”) than tumor epithelium (”E” and ”1”), while the infiltrated tumor, PAT73458,

exhibits not only higher levels of cytotoxic (CD3+/CD8+) and helper (CD3+/CD4+) T cells overall, but also a

larger proportion of all infiltrating immune cells in the tumor edge and tumor core regions (Figure 5.5F-I,L).

Extending these analyses to the entire spatial atlas, we observe a negative correlation between IES and T

cells (CD8+ and CD4+) in tumor clone regions as identified by high-resolution MxIF imaging (Figure 5.5M;

Figure S25C).

In HM/iCMS3 tumors with low IES, we observed a corresponding increase in other microenvironmental

cell states that have been implicated in immune tolerant microenvironments, suggesting that HM CRCs follow

an alternative path to immune evasion and potential ICI non-response compared with CIN+ CRCs. Cancer-

associated fibroblasts (CAFs) expressing FAP and CXCL12 (FIB3), and SPP1+ myeloid cells (MYE2) have

been shown to foster an immunosuppressive niche in CRC and other solid tumors such as pancreatic cancer
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(Feig et al., 2013; Calon et al., 2015; Qi et al., 2022; Figure 5.5C; Figure S25E). Moreover, CXCL14+ CAFs

(FIB2) are suspected to counteract the immune-silencing effect of CXCL12+/FAP+ fibroblasts and are more

prominent in MSI-H/iCMS3/HM tumors (Pelka et al., 2021). Since these three microenvironmental cell states

emerge in immune infiltrated tumors (Figure 5.5C) and seem to trend positively with regional HM progression

(Figure 5.6A), we hypothesize that this emergent struggle between immune evasive and immunogenic TMEs

represents intracellular signaling complexity in late-stage CRC, and that tipping the scales of such interactions

may explain the subset of MMR-deficient HM tumors that do not respond to ICI therapy (Qi et al., 2022).

5.3.6 IES trends with tumor progression and predicts poor patient outcomes

To further explore the link between tumor progression and immune exclusion, we modeled scoring of CIN+

epithelial-intrinsic IES, HM-enriched FIB2 and FIB3 CAFs and MYE2 macrophages, as well as infiltrating

immune cell states and cancer progression signatures against PPT for all tumor regions across the atlas,

confirming that IES is enriched in CIN+ tumors and trends proportionally to CNV-informed PPT, iCMS2 and

CRC2 enrichment (Figure 5.6A; Appendix A5.1: Modeling expression dynamics along PPT).

We next set out to validate this expression signature as a predictor of immune exclusion by highlighting

its translational utility in predicting patient outcomes in external cohorts with larger sample sizes. The IES

score was significantly enriched in MSS (CIN+) vs. MSI-H (HM) TCGA COAD and READ samples (p

= 6.04 × 10−8 ; Figure 5.6B; Figure S26A), consistent with the distinct immunosuppressive mechanisms

between the two tumor subtypes. High IES expression yielded a statistically significant drop in progression-

free survival (PFS) for patients with high-scoring tumors compared to those with low-scoring tumors from

the entire TCGA cohort (p = 0.015; Figure 5.6C) as well as the subset of MSS tumors in TCGA (p = 0.035;

Figure S26B). Furthermore, only TGFBI exhibited a similar reduction in PFS by itself (Figure S26C-D),

indicating that the epithelial-intrinsic IES score has prognostic value in identifying immune-cold CRCs with

poor disease-free survival, and that the aggregate signature is more informative than the sum of its parts.

Finally, to increase the translational value of this signature, we investigated whether protein expression

corroborated results obtained by gene expression in CRC such that immunohistochemistry (IHC) can be

reliably used to predict immune exclusion. From IHC staining of a tumor microarray (TMA) consisting of

163 colorectal adenocarcinoma samples, we observed higher overall DDR1 and TGFBI protein expression

in MSS versus MSI-H tumors, consistent with findings above (Figure 5.6D-F). Survival analysis on this

TMA IHC cohort revealed significantly lower PFS (p = 0.00034; Figure 5.6G) and overall survival (OS;

p = 0.0011; Figure S26E) for tumors with high IHC staining for both DDR1 and TGFBI, corroborating

our TCGA query. Once more, this combination of IES markers yielded a statistically greater stratification

of patient survival than the individual proteins (Figure S26F-G), confirming the utility of this expression
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Figure 5.6: IES trends with tumor progression and predicts poor patient outcomes.
(A) Heatmap of GAM fits for genes, gene signatures, and refNMF cell states summarized across all ST tumor
regions. Color represents scaled expression within each tumor class. Bracket denotes constituent genes in
IES.
(B) Boxplots of IES scores in TCGA COAD and READ samples, stratified by MMR status (MSS n = 301;
MSI-H n = 45). Student’s T-test with Bonferroni correction yielded p = 6.04×10−8

(C) Kaplan-Meier PFS curves for TCGA COAD and READ samples from B with high (+) and low (-) IES
scores.
(D) MxIF images showing epithelial (top) and immune (bottom) markers from representative IES+ cores
from the CRC TMA. Scale bars 100 µm.
(E) Same as in D, for representative IES- cores.
(F) Venn diagram of the number of CRC TMA cores with high-scoring DDR1 and TGFBI IHC staining (left;
total n = 163), and stratified by MMR status (middle, n = 86; right, n = 22).
(G) Kaplan-Meier PFS curves for CRC TMA cores with high (+) and low (-) IHC staining of both DDR1 and
TGFBI.
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signature as a prognostic indicator in both mRNA and protein assays.

5.4 Discussion

Evolution of spatially resolved tumor clones in human CRC presents an opportunity to use spatial technolo-

gies to investigate cellular and microenvironmental heterogeneity along a trajectory of cancer progression.

Whereas the probability of any particular polyp progressing to malignancy is inherently low (Conteduca

et al., 2013; Colom et al., 2021), this spatial strategy of mapping evolution in pre-selected carcinomas with

less advanced components offers a glimpse into the biology of malignant transitions that can inform diagnos-

tic stratification and early intervention (Sottoriva et al., 2015; Ryser et al., 2018; Shibata, 2020; Househam

et al., 2022; Lomakin et al., 2022). The phylogeographical atlas presented herein comprises spatially resolved

genomic, transcriptomic, and protein profiling of 31 patients spanning normal mucosa, pre-cancerous lesions,

and invasive adenocarcinoma. Spatial assays in each of these molecular domains recapitulated findings re-

lated to TA/TVA and SSL/HP progression to MSS and MSI-H CRCs from initial WNT activation and gastric

metaplasia, respectively, to more advanced iCMS states (Chen et al., 2021b; Joanito et al., 2022).

Using CNV and LCM-WES analysis, we classified tumors as CIN+ or HM, and confirmed that the latter

group displays a cytotoxic immune microenvironment while the former are more likely to be immune-cold

(Guinney et al., 2015; Nouri Nojadeh et al., 2018; Luke et al., 2019. While previous work documented a

mechanism by which APC loss-of-function leads to aneuploidy and chromosomal instability (Tighe et al.,

2001; Alberici et al., 2007; Rusan and Peifer, 2008, our multi-modal CNV analysis supports that most CIN

occurs as a late-onset characteristic within the adenoma-carcinoma sequence, likely following TP53 loss and

transition to malignancy (Sigurdsson et al., 2000; Dalton et al., 2010; Foijer et al., 2014; Bronder et al., 2021).

In this regard, some MSI-H tumors (SG00001, SG00002, PAT73458) gain CIN through APC-independent

mechanisms. Likewise, some MSS cases display an HM phenotype (HTA11 01938, PAT15211), likely driven

by mutations in proofreading polymerases such as POLE and POLD1 (Bourdais et al., 2017). Phenotypic

manifestations are more consistent with CIN+ and HM classifications than microsatellite status, exemplified

by MSI-H/CIN+ tumors transitioning to a stem-like, iCMS2 state (Chen et al., 2021b).

Multiregional somatic mutational profiling matched CNV phylogeography in CIN+ CRCs, provided high-

confidence PPT for HM tumors, and allowed us to stratify patients based on evolutionary dynamics. In

this atlas, we observed CRCs that underwent neutral or hierarchical evolution, exhibiting high degrees of

regional heterogeneity, as well as tumors that displayed linear or punctuated evolution with many public driver

mutations and relatively low clonal divergence (Sottoriva et al., 2015; Turajlic et al., 2019). We found that

neutral and branching evolution dominated CIN+ tumors, while the majority of HM CRCs exhibited linear

or punctuated evolution. Although our dataset lacks sufficient sample size to draw confident conclusions, we
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speculate that this dichotomy of evolutionary dynamics stems from the discrepancy between somatic mutation

rate in HM CRCs and genomic structural alterations due to CIN, resulting in large, stepwise increases in

clonal fitness and smaller, more frequent subclonal branching, respectively (Grist et al., 1992; Jackson and

Loeb, 1998; De Nooij-van Dalen et al., 2001; Nowak et al., 2002). Furthermore, tumors driven by distinct

mutational processes may recruit unique TMEs that further restrict clonal evolution, such as distinct immune

cells or CAFs that suppress or promote tumor progression (Gerlinger et al., 2012; Calon et al., 2015; Sun et al.,

2017; Lazarus et al., 2018). Nevertheless, observed evolutionary dynamics in this atlas serve to characterize

overall tumor heterogeneity and enable pseudotemporal placement along a global progression trajectory.

Generalized additive modeling (GAM) along global PPT elucidated tumor and microenvironmental pro-

grams such as altered metabolism that drive or result from tumor progression (Brahimi-Horn et al., 2007;

Ashton et al., 2018). Of specific interest are gene programs that modulate tumor-microenvironment interac-

tions. We focused on an immune-exclusion mechanism specific to CIN+ tumors with an iCMS2/stem-like

epithelial phenotype marked by the CRC2 refNMF state. Previous work from our group and others has

demonstrated a transition into a stem-like tumor state as a function of progression, resulting in immunosup-

pression (Becker et al., 2021; Chen et al., 2021b). PPT models enabled the unbiased identification of gene

programs relevant to tissue dynamics along tumor development, and allowed us to assemble an epithelial-

intrinsic Immune Exclusion Signature (IES) defined by expression of DDR1, TGFBI, PAK4, and DPEP1.

This aggregated signature is highly informative, as these genes have been implicated separately as immune

modulators but not always in the context of CRC (Abril-Rodriguez et al., 2019; Lecker et al., 2021; Chen

et al., 2021c; Duan et al., 2022).

DDR1 has been reported to align collagen fibers in a way that excludes T cells from the breast TME

(Sun et al., 2021). These findings, coupled with DDR1’s role in fibrotic kidney disease and breast cancer,

validate the observation that IES coincides with fibrosis and hypoxia in advanced CIN+ CRCs and suggest that

microenvironmental signaling and collagen remodeling in the ECM are involved directly in immune evasion

(Takai et al., 2018; Borza et al., 2022). TGFBI is associated with an immunosuppressive microenvironment in

ovarian cancer where it is released from macrophages, but mechanistic details are lacking (Steitz et al., 2020).

DPEP1 is an endothelial adhesion receptor for neutrophils and monocytes during inflammation, and while

a direct role for DPEP1 in CRC immune evasion has not been reported, it has been shown that neutrophil

infiltration can lead to T cell exclusion in the colon (Germann et al., 2020; Wang, 2022). We note that

neutrophil infiltration increased with PPT in our dataset, highlighting the importance of DPEP1 in CRC

progression.

A confluence of these immunomodulatory processes has also been observed in a recent tumor microbiome

study, where advanced, microbially-infiltrated CRC regions are aneuploid, hypoxic, and immunosuppressive
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in a neutrophil-dependent manner (Galeano Niño et al., 2022). Altogether, these molecules play distinct yet

complementary roles in immune exclusion that will be the focus of future studies.

HM tumors, on the other hand, exhibited a stromal dichotomy of immune surveillance escape driven by

CXCL12+ CAFs and SPP1+ myeloid cells (Qi et al., 2022), and CXCL14+ iCAFs that have been shown to

be MSI-H-specific and immunogenic (Pelka et al., 2021). Importantly, we note that the prevalence of these

tumor-immune interaction networks trends directly with HM PPT, suggesting a link to CRC development

analogous to IES in the CIN+ cohort.

The immune exclusion biomarkers identified herein carry several clinically relevant implications for de-

tection, prognosis, and potential treatment of CRC. IES genes and their protein products in aggregate offer a

robust prognostic indicator of progression-free survival in CRC. Additionally, this expression signature may

stratify patients by ICI response potential: identifying ICI responders in the CIN+/MSS cohort as well as

ICI non-responders in the HM/MSI-H group. Moreover, these biomarkers may act as potential targets for

adjuvant therapy to ICI, depending on tumor stage and CIN status, as the breakdown of immune evasive

mechanisms could expose tumors to more effective immunotherapy.

Here we present a rich, spatially resolved dataset comprised of genetic, transcriptomic, and proteomic

layers of molecular information. Integrated analyses herein aimed to map recurring cell states and signa-

tures across patient-specific phylogeographical landscapes to uncover global pseudotemporal dynamics of

tumor progression from a snapshot in time. However, there is yet much more to be learned regarding CRC

progression, and these data will therefore prove to be a valuable resource in the further characterization of

tumor-microenvironmental co-evolution.
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CHAPTER 6

Discussion and future directions

6.1 Contributions to the computational biology ecosystem through open-source tool development

6.1.1 Understanding high-dimensional data structure for informing dimension reduction techniques

My early work addressed several technical issues in the field of computational systems biology from a tool-

development perspective. First, we presented a comprehensive and unbiased framework that defines metrics

of global and local structure preservation in dimensionality reduction transformations (Heiser and Lau, 2020;

Chapter 2). We found that the input cell distribution and dynamic range of the underlying measurements

are paramount to the preservation of data structure, which can greatly impact downstream clustering and

trajectory reconstruction (Herring et al., 2018; Traag et al., 2019; Van den Berge et al., 2020). Moreover, we

offered a valuable framework and code base for unbiased comparison and selection of appropriate methods

and parameters for specific datasets, data types, and applications, informing the development of single-cell

data processing and visualization pipelines.

6.1.2 Quality control and cell optimization in scRNA-seq using linear models

Next, we built dropkick, a fully automated software tool for quality control and filtering of scRNA-seq data

with a focus on excluding ambient barcodes and recovering real cells bordering the quality threshold (Heiser

et al., 2021; Chapter 3). We defined quality control metrics for evaluating batch-specific background, which

is imperative to the integration of large, atlas-style datasets (Regev et al., 2017; Rozenblatt-Rosen et al.,

2020). Using simulated and real-world data, we benchmarked dropkick against conventional thresholding

approaches and EmptyDrops, a popular computational method, demonstrating greater recovery of rare cell

types and exclusion of empty droplets and noisy, uninformative barcodes. We showed that for both low and

high-background datasets that dropkick’s weakly supervised model reliably learns which genes are enriched

in ambient barcodes and draws a multidimensional boundary that is more robust to dataset-specific variation

than existing filtering approaches. Moreover, dropkick is computationally efficient and compatible with pop-

ular single-cell Python packages (Wolf et al., 2018, 2019). As such, dropkick has the potential to become a

valuable tool for researchers working with scRNA-seq data, can facilitate more accurate and reliable down-

stream analysis through automated, reproducible, and unbiased preprocessing, and has gained traction in the

field as a preprocessing and QC method.
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6.1.3 Tissue domain detection in spatial multi-omics for digital pathology

Most recently, we shifted our method development efforts from single-cell to spatial technologies. We de-

veloped MILWRM – multiplex image labeling with regional morphology – a Python package for rapid,

multi-scale tissue domain detection and annotation (Kaur et al., 2023; Chapter 4). Here, we addressed the

challenge of data-driven cross-sample domain detection, and demonstrated the utility of MILWRM in iden-

tifying histologically distinct tissue compartments through an untargeted clustering model. We were able to

exhibit MILWRM modeling on two distinct data modalities and showcase its utility in the analysis of high

volumes of multiplex spatial datasets from tissue atlasing efforts (Chen et al., 2021b). The ability to identify

distinct molecular profiles of different tissue domains in situ is essential for understanding tissue organiza-

tion and pathology. MILWRM has demonstrated utility in identifying histologically distinct compartments

in human colonic tumor data (Heiser et al., 2023; Chapter 5), and will undoubtedly prove to be a valuable

resource in future spatial -omics projects.

6.1.4 Open-source code ecosystems enable computational biology

The importance of building, validating, and sharing code-based tools and packages for biomolecular data

analysis and visualization cannot be overstated. When consensus methods and pipelines for reproducible

and robust analyses of unique data modalities and applications are built and distributed via open-source

programming ecosystems, the effects on the field of biology as a whole are immeasurable (Wolf et al., 2018;

Chen et al., 2021a; Schapiro et al., 2022). Collaboration and version-control tools such as Git and their

associated online platforms (e.g. GitHub: https://github.com/) allow computational biologists to share and

modify code at scale, providing a powerful resource for modular and iterative improvement upon prior work.

Indeed, tool development and distribution will continue to be imperative to the advancement of systems

biology when coupled with the emergence of new molecular technologies.

6.2 Phylogeographical cartography reveals immune exclusion mechanisms in CRC

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor

lesions toward malignancy. Leveraging spatial molecular information to construct a phylogeographic map

of tumor evolution can reveal individualized growth trajectories with diagnostic and therapeutic potential.

Integrative analysis of spatial multi-omic data from 31 colorectal specimens revealed simultaneous microen-

vironmental and clonal alterations as a function of progression (Heiser et al., 2023; Chapter 5). Copy number

variation served to re-stratify microsatellite stable and unstable tumors into chromosomally unstable (CIN+)

and hypermutated (HM) classes. Phylogeographical maps classified tumors by their evolutionary dynamics,

and clonal regions were placed along a global pseudotemporal progression trajectory from normal tissue to
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invasive adenocarcinoma.

Cell-state discovery from a single-cell cohort revealed recurring epithelial gene signatures and infiltrating

immune states in spatially resolved transcriptomics. Charting these states along progression pseudotime,

we observed a transition to immune exclusion in CIN+ tumors as characterized by a novel gene expression

signature comprised of DDR1, TGFBI, PAK4, and DPEP1 (IES). We demonstrated how these genes and their

protein products are key regulators of extracellular matrix components, are associated with lower cytotoxic

immune infiltration, and show prognostic value in external cohorts (Figure 6.1A; Figure 5.6; Figure S26).

Alternatively, HM tumors exhibited an increase in stromal cell states that have been implicated in immune

tolerant microenvironments, indicating that HM CRCs have an alternative path to immune exclusion and ICI

non-response compared with CIN+ tumors (Figure 6.1B). FAP+ and CXCL12+ cancer-associated fibroblasts

(CAFs), along with SPP1+ myeloid cells have been shown to foster an immunosuppressive niche in CRC

and other solid tumors such as pancreatic cancer (Feig et al., 2013; Calon et al., 2015; Pelka et al., 2021; Qi

et al., 2022). Importantly, we note that the prevalence of these stromal cell states trends directly with HM

PPT in our atlas, suggesting a link to CRC development analogous to IES in the CIN+ cohort. Thus, we

hypothesize that colorectal tumors developing along CIN+ and HM pathways have distinct mechanisms of

immune exclusion and evasion at late stages.

Figure 6.1: Major classes of CRC exhibit unique paths to immune exclusion.
(A) Diagram of early-to-late CIN+ CRC development, highlighting proposed IES mechanism.
(B) Diagram of early-to-late HM CRC.

6.2.1 Open questions around IES and development of clinical biomarkers

Future directions include functional validation studies to determine the mechanisms underlying this im-

mune exclusion phenotype in CRC, with potential extension to other solid tumors. For instance, how is

the iCMS2/stem-like epithelial phenotype of CIN+ CRC linked to IES, through epigenetics or cell signaling

(Roh et al., 2017; Luke et al., 2019; Pinyol et al., 2019)? What is the mechanism of DDR1, TGFBI, and

PAK4 in ECM remodeling that renders tumors immune-excluded (Tumbarello et al., 2012; Lee et al., 2019;
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Abril-Rodriguez et al., 2019; Sun et al., 2021; Chen et al., 2021c; Duan et al., 2022; Su et al., 2022)? What

other factors might influence immunogenicity or immune evasion in late-stage cancer, and how might they

be linked to a metastatic niche (Tu et al., 2019; Nikolos et al., 2022; Krishnamurty et al., 2022)?

There is also a large amount of interest in the development of these biomarkers into diagnostic tools for

translation to the clinic. As an example, can DPEP1 or TGFBI protein released by CRCs in extracellular vesi-

cles (EVs) be detected in the plasma as a liquid biopsy or treatment monitoring device (Zhang et al., 2021)?

Finally, IES and its constituent markers suggest possible therapeutic targets for CRC and other tumors prone

to immune exclusion. Once mechanism is more clearly defined, perhaps drugs can be designed to neutral-

ize the barriers to cytotoxic immunity, enhancing survival and allowing for more effective immunotherapy

(Angelova et al., 2015; Luoma et al., 2020; Bortolomeazzi et al., 2021; Shi et al., 2022).

6.2.2 Atlas resource for systems-level investigation and impact on precision medicine

These findings carry clinically relevant implications for detection, prognosis, and targeted treatment of CRC.

The identified gene expression signature (IES) in CIN+ tumors and immunosuppressive cell states in HM

CRCs may be used to stratify patients by ICI response potential: identifying ICI responders in the CIN+/MSS

cohort as well as ICI non-responders in the HM/MSI-H group. Moreover, these biomarkers offer potential

targets for adjuvant cancer therapy, as the breakdown of immune evasive mechanisms could expose tumors

to more effective immuno- or chemotherapy.

These studies have significant impact on the fields of computational systems biology and precision oncol-

ogy by demonstrating the potential of spatial multi-omic data integration to construct phylogeographic maps

of tumor-microenvironmental co-evolution. In this work, we provide new insights into the tissue dynamics

underlying tumor progression, and demonstrate the utility of atlas-style analyses in identifying potential tar-

gets for oncology. Overall, these studies highlight the capacity of computational systems biology approaches

to drive precision medicine, and serve as an important resource for future research in this area.
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A2 Appendix for Chapter 2: A quantitative framework for evaluating single-cell data structure

preservation by dimensionality reduction techniques

A2.1 Methods

A2.1.1 Resource Availability

The code generated during this study is available at https://github.com/KenLauLab/DR-structure-preservation.

A2.1.2 Cell Filtering

Raw counts expression matrices downloaded from GEO (accession IDs GSM1626793, GSM2743164) were

filtered for high-quality cells prior to downstream analysis. The cumulative sum of total UMI counts for

each cell was plotted along with the slope of the secant line to the curve as a function of rank-ordered cell.

The distance between these two curves was used as a metric for determining the rate of diminishing cell

quality. The cell number at which this distance was 50 % of its maximum was chosen as a cutoff, with cells

contributing less UMI counts were removed. Next, a 100-component PCA and UMAP with n neighbors

value of 0.5 % of the total cells in the dataset were used to visualize cell populations and manually gate

out clusters containing high mitochondrial counts, indicating dead cells. Analysis performed using scanpy

(Wolf et al., 2018).

A2.1.3 Clustering

PhenoGraph (Levine et al., 2015) was used to perform Louvain clustering on both datasets in Python. To

create coarse, ground-truth clusters, the algorithm was run on 100 principal components of all genes in each

dataset. For the retina data, 100 PCs of 20,478 genes explained 33.5 % of the variance in the dataset. For the

colon data, 100 PCs of 25,505 genes explained 54.0 % of the variance. k values of 50 and 100 for generating

the Knn graph to seed the Louvain algorithm for the retina and colon datasets, respectively, were chosen to

provide coarse clustering of major cell types. Nine resulting clusters for the retina dataset and six resulting

clusters in the colon dataset were analyzed by Seurat’s FindAllMarkers and DoHeatmap functions (Butler

et al., 2018) to obtain visualizations of up- and down-regulated genes in each cluster (Figure 2.3A,D).

A2.1.4 Dimensionality Reduction

All dimensionality reduction was performed on feature-selected data containing the most variable genes in

each dataset. Genes were rank-ordered by variance using the Pandas (version 0.22.0) (Mckinney, 2010)

DataFrame.var function in Python, and the top 500 were chosen. Each dimensionality reduction technique

was run ”out-of-the-box” with default parameters on the feature-selected data. DCA, scvis, scVI, ZINB-

WaVE and GLM-PCA take raw, unnormalized counts as input. Developers of ZIFA recommend a log2
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transformation of counts, which we first normalized to the maximum UMI count within each cell. Arcsinh-

transformed counts normalized to the maximum UMI count in each cell were used for all other methods

(t-SNE, FIt-SNE, UMAP, SIMLR, PCA).

A2.1.5 Visualization

Cumulative cell distance distributions were plotted from the upper triangle of symmetrical cell distance ma-

trices (using triu indices function from the numpy Python package (version 1.16.3) (Oliphant, 2007)).

The histogram and cumsum functions from numpy were used to plot cumulative distribution functions using

n/100 bins, where n is the length of the flattened distance vector. Unique distance correlation was visualized

using the JointGrid and kdeplot functions from the seaborn package (version 0.9.0) (Waskom et al., 2014),

as well as the pyplot.hist2d function from the matplotlib package (version 3.0.3) (Hunter, 2007).

Cluster topology graphs were plotted using the network function draw networkx.

A2.1.6 Splatter Simulation

Simulated single-cell datasets were generated using the Splatter package (1.8.0) (Zappia et al., 2017).

Continuous dataset was generated with 500 features (nGenes) and 3060 observations (batchCells), with

a lib.loc value of 10 and lib.scale value of 0.05 to generate data close to observed counts distribu-

tions from scRNA-seq. The simulation defined three paths with equal group.prob values (0.3333333)

originating at the same state (path.from = c(0,0,0)). Each path had path.nSteps value of 1000

indicating as many possible continuous expression states emanating from the common origin state. These

step values are used as pseudotime (PT) measures in our analysis. Discrete simulation data was generated

by simply excluding all cells with PT values less than 400, eliminating the common central state. The re-

sulting dataset had 1873 observations for the 500 features of the continuous simulation. When evaluating

embeddings of these simulated data, native cell-cell distance distributions were replaced with cell-cell PT

sums normalized in the same fashion. These analyses were only performed pairwise between cells in each of

the three developmental paths.

A2.1.7 Theoretical basis for difference in dimension reduction performance across single-cell modal-

ities

Based on prior evidence and common practice in the field, we aim to validate our metrics and address the

challenges our results pose to current conceptions about popular dimensionality reduction tools. UMAP was

benchmarked against t-SNE, FIt-SNE and scvis on three datasets (Becht et al., 2018): two CyTOF – Samusik

and Wong – and one scRNA-seq – Han mouse cell atlas. We applied our structural preservation framework to
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the Samusik and Han datasets (Weber and Robinson, 2016; Han et al., 2018), making interesting observations

that both substantiate our metrics and emphasize a major takeaway from this study.

Figure S5A compares t-SNE to UMAP on the hematopoietic subset of the Han scRNA-seq dataset. In-

terestingly, the two methods perform very similarly, with UMAP slightly outperforming t-SNE as described

in Becht et al., 2018 Figure S5B-D reflect a similar analysis of the Samusik CyTOF dataset, where there is

a clear improvement in unique distance preservation by UMAP over t-SNE, indicated by a strong increase

in cell-cell distance correlation. Again, this result agrees with Becht and coworkers, who also correlated cell

distances to show vast improvement over t-SNE and other methods. Nonetheless, our framework identifies a

marginal increase in EMD for UMAP over t-SNE, indicating a higher degree of global structural distortion,

likely due to more compact clustering by UMAP (Figure S5B). We propose that improved performance of

UMAP applied to CyTOF data is due to the input cell distribution.

Because mass cytometry measurements have a larger dynamic range and lower dropout rate than scRNA-

seq, the overall variance of cell distance distributions from CyTOF is greater (Figure S4D). This allows for

better discrimination between ”large” (global) and ”small” (local) distances in the native space. With this in

mind, we can explore the mathematical basis for global distance preservation in UMAP versus t-SNE to help

explain why these advantages may not always be clearly observed when applied to scRNA-seq data.

First, t-SNE models the conditional probability that any two points xi,x j would be neighbors if neighbors

were chosen in proportion to a Gaussian probability density function at xi (Van der Maaten and Hinton,

2008). We can simplify this probability density function to Equation S1 under the right parameter conditions.

Conditional probability for low-dimensional distances between points yi,y j, is modeled by the Student t-

distribution, simplified in Equation S2.

pi j = exp

(
−
∥∥xi − x j

∥∥2

2σ2

)
≈ exp

(
−
∥∥xi − x j

∥∥2
)

(S1)

qi j =
(

1+
∥∥yi − y j

∥∥2
)−1

(S2)

UMAP models distance probabilities very similarly. Equations S3 and S5 show simplification of high-

dimensional conditional probabilities given the defined symmetrization used by UMAP (Equation S4). Equa-

tion S6 shows UMAP’s low-dimensional distance probability model, which is not exactly the Student t-

distribution, but approximates to it under the right parameters a and b (McInnes et al., 2018).

pi| j = exp

(
−
∥∥xi − x j

∥∥−ρi

σi

)
≈ exp

(
−
∥∥xi − x j

∥∥) (S3)
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pi j = pi| j + p j|i − pi| j p j|i (S4)

pi j ≈ 2exp
(
−
∥∥xi − x j

∥∥)− exp
(
−
∥∥xi − x j

∥∥−∥∥x j − xi
∥∥)≈ 2exp

(
−
∥∥xi − x j

∥∥)≈ exp
(
−
∥∥xi − x j

∥∥2
)

(S5)

qi j =
(

1+a
∥∥yi − y j

∥∥2b
)−1

≈
(

1+
∥∥yi − y j

∥∥2
)−1

(S6)

The cost function for optimization of t-SNE coordinates is Kullback-Leibler divergence (DKL), defined

in Equation S7 for X representing the set of cell-cell distances in the high-dimensional (native) space, and Y

representing the set of corresponding distances in the low-dimensional (latent) space. We additionally notate

pi j and qi j as P(X) and Q(Y ) for all xi,x j ∈ X and yi,y j ∈ Y , respectively. The first term of this equation is

close to 0 for both large and small X , so you can approximate DKL by the second term alone and substitute

pi j and qi j from Equations S5 and S6 for P(X) and Q(Y ) (Equation S8).

DKL(X ,Y ) = P(X)log
(

P(X)

Q(Y )

)
= P(X)logP(X)−P(X)logQ(Y ) (S7)

DKL(X ,Y )≈−P(X)logQ(Y )≈ e−X2
log
(
1+Y 2) (S8)

Evaluating the limits of DKL in Equation S8, there is a large penalty at small X and large Y , but for large

X the penalty is marginal regardless of Y (Equations S9, S10).

lim
x→0

DKL(X ,Y )≈ log
(
1+Y 2) (S9)

lim
x→∞

DKL(X ,Y )≈ 0 (S10)

On the other hand, UMAP uses cross entropy (CE) as its cost function (Equation S11). This function

behaves the same as t-SNE for small X , shown in Equations S12 and S13. The difference arises at large X ,

where the penalty becomes very large for small Y (Equation S14).

CE(X ,Y ) = P(X)log
(

P(X)

Q(Y )

)
+(1−P(X)) log

(
1−P(X)

1−Q(Y )

)
(S11)
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CE(X ,Y )≈ e−X2
log
(
1+Y 2)+(1− e−X2

)
log
(

1+Y 2

Y 2

)
(S12)

lim
x→0

CE(X ,Y )≈ log
(
1+Y 2) (S13)

lim
x→∞

CE(X ,Y )≈ log
(

1+Y 2

Y 2

)
(S14)

Undoubtedly, the CE cost function has theoretical advantages over DKL, and strikes a balance between

local and global distance preservation for more uniformly distributed samples. So why is performance seem-

ingly equivalent on scRNA-seq data such as our colon and retina datasets, as well as the Han hematopoietic

dataset evaluated by Becht et al., 2018? We propose that the negative binomial nature of scRNA-seq data

causes the native set of cell distances X to have a small variance (even following normalization and log or

arcsinh transformation), resulting in a similar cost function profile in both t-SNE and UMAP. Conversely,

CyTOF data with more variant cell distances are predisposed to favorable optimization by the CE cost func-

tion. To further test this hypothesis with a simpler example, we generated a synthetic dataset consisting of

two 1,000-point Gaussians in three-dimensional space (Figure S5J). The resulting cell distance distribution

is bimodal, consisting of local distances between cells in each Gaussian and global distances from one point-

cloud to the other. UMAP outperformed t-SNE drastically in correlation and EMD values, with only a slight

loss in Knn preservation (to be expected, as t-SNE favors small distances in its optimization) (Figure S5K,L).

This result corroborates prior evidence that UMAP distinguishes itself greatly on datasets with clear ”local”

and ”global” distance populations, owing to its cost function. Consequently, we assert that behavior of dimen-

sionality reduction methods is predominantly governed by the input data itself, and we encourage evaluation

of these techniques on data types, datasets, and normalization and preprocessing approaches specific to an

intended application.

A2.1.8 Distance Metric Calculations

Pearson correlation was performed for Euclidean cell-cell distance preservation analysis using the scipy.

stats.pearsonr function from the scipy package (version 1.1.0) (Oliphant, 2007). The wasserstein

1d function from the POT package (version 0.6.0) (Flamary and Courty, 2017) was used to calculate the

Earth Mover’s Distance between vectors containing unique distances between all cells in the dataset (upper

triangle of distance matrix), except for local comparisons between clusters, where the entire flattened matrix

was used as the cell-cell distance matrices are not symmetrical. K nearest-neighbor graphs were constructed
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using the scikit-learn (version 0.20.0) (Pedregosa et al., 2011) function sklearn.neighbors.

kneighbors graph. Knn preservation was calculated as the percentage of elements in the Knn graph

matrix that are conserved. Cluster centroid topology graphs and minimum spanning trees were generated

using networkx (version 2.2) (Hagberg et al., 2008).

A2.2 Supplemental tables and figures

Figure S2: Interpretation of data structure preservation analyses.
(A) Small distances in cumulative distance distribution represent local cell similarity (within cluster), while
large distances represent global relationships and arrangement of data (between clusters). A distribution shift
left indicates compression of distances from native to latent space, while a shift right results from expansion
or exaggeration of native distances.
(B) Correlation of latent to native distances; dispersion below identity line (dashed) indicates compression
of distances from native to latent space, while dispersion above identity results from expansion of native
distances in low-dimensional space.
(C) Substructure analysis uses same framework as Figure 1 on isolated subset of data to measure intra-cluster
distance preservation and determine contribution to global structure.
(D) Distribution of distances from all cells in one cluster to another define relative substructure. Inter-cluster
distances are measured pairwise to interrogate cluster arrangement in latent compared to native space.
(E) Evaluation of coarse global cluster topology using minimum spanning tree (MST) graph constructed from
cluster centroids and their pairwise distances in native and latent dimensions. Black edges between centroids
denote MST. Edges not present in native MST graph are highlighted red, indicating relative rearrangement of
clusters following dimension reduction.
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Figure S3: t-SNE visualizations from Figure 2.3 with overlay of arcsinh-normalized expression of marker
genes (Macosko et al., 2015; Herring et al., 2018) used to assign cell type to Louvain clusters for retina (A)
and colon (B) datasets.
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Figure S5 (preceding page): Application of framework to datasets from Becht et al., 2018 and 3D synthetic
datasets with intuitive structure.
(A) Hematopoietic subset of mouse cell atlas (Han et al., 2018); 14 combined scRNA-seq samples from
blood and bone marrow totaling 51,252 cells. Data were normalized and preprocessed with 100-component
PCA prior to embedding with t-SNE and UMAP (top) as in Han et al., 2018. 2D histograms of cell distance
correlation (middle) and summary metrics (bottom).
(B) Comparison of naı̈ve Louvain clustering and previously published cell annotations via MST topological
analysis for Samusik 01 CyTOF data (86,864 cells from mouse bone marrow, 39 features) preprocessed as in
Weber and Robinson, 2016.
(C) 2D histograms of cell distance correlation (top) and summary metrics (bottom) for t-SNE and UMAP
embeddings of dataset (both shown in A).
(D) Comparison of cluster definition as in B, using neighborhood analysis measuring distance distributions
between classical monocytes, IgD+ IgM+ B cells, and granulocyte-monocyte progenitors (GMPs).
(E) Example 3-dimensional swiss roll dataset with 10,000 randomly placed points generated using
sklearn.datasets.make swiss roll function with 0 noise (vertically away from manifold).
(F) Example 2D embeddings of data from A using PCA, t-SNE, and UMAP. Points are colored by their po-
sition along the manifold to show expected order.
(G) Correlation, EMD, and Knn preservation metrics (k=30) for swiss roll datasets as in E with increasing
number of points.
(H) Processing time for structural preservation framework (calculating R, EMD, and Knn pres. from distance
matrices) for up to 10,000 cells.
(J) 3D dataset consisting of two Gaussian point clouds (1,000 points each) generated using
sklearn.datasets.make gaussian quantiles.
(K) UMAP and t-SNE embeddings of data from J with points colored by their distance from center of their
respective Gaussian distribution in 3D space.
(L) Summary of structural preservation metrics for t-SNE and UMAP of data from J.
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A3 Appendix for Chapter 3: Automated quality control and cell identification of droplet-based single-

cell data using dropkick

A3.1 Methods

A3.1.1 inDrop data generation

The human colorectal carcinoma inDrop data – deposited to the Gene Expression Omnibus (GEO) to accom-

pany this manuscript (GSE158636) - were generated according to published protocols (Southard-Smith et al.,

2020; Banerjee et al., 2020).

A3.1.2 Quality control and ambient RNA quantification with the dropkick QC module

The dropkick QC module begins by calculating global heuristics per barcode (observation) and gene (vari-

able) using the scanpy (Wolf et al., 2018) pp.calculate qc metrics function. These metrics are

used to order barcodes by decreasing total counts (black curve in Figure 3.1A) and order genes by increasing

dropout rate (Figure 3.1B). The nth gene ranked by dropout rate determines the cutoff for calling “ambient”

genes, with n determined by the n ambient parameter in the dropkick.qc summary function. All

genes with dropout rates less than or equal to this threshold are labeled “ambient”. In a sample with many

(¿ n) genes detected in all barcodes, this ensures that the entire ambient profile is identified. Through ob-

servation of samples used in this study, we set the default n ambient = 10. To compile the dropkick QC

summary report, the log-total counts versus log-ranked barcodes (Figure 3.1A black curve) are plotted along

with total genes detected for each barcode (Figure 3.1A green points), percent counts from “ambient” genes

in each barcode (Figure 3.1A blue points), and percent counts from mitochondrial genes in each barcode

(Figure 3.1A red points).

A3.1.3 Labeling training set with the dropkick filtering module

The dropkick filtering module also begins by calculating global heuristics per barcode (observation) and gene

(variable) using the scanpy (Wolf et al., 2018) pp.calculate qc metrics function. Next, training

thresholds are calculated on the histogram of the chosen heuristic(s); arcsinh-transformed n genes by de-

fault. dropkick then uses the scikit-image function filters.threshold multiotsu to identify

two local minima in the n genes histogram that represent the transitions from uninformative barcodes to

“empty droplets” and from “empty droplets” to real cells. These locations are also characterized by the two

expected drop-offs in the total counts/genes profiles as shown in the dropkick QC report (Figure 3.1, Figure

S6). To label barcodes for dropkick model training, barcodes with fewer genes detected than the first multi-

Otsu threshold are discarded due to their lack of molecular information. dropkick then labels barcodes below

the second threshold as “empty”, and remaining barcodes above the second threshold as real cells for initial
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training. These inputs to the dropkick logistic regression model represent the “noisy” boundary in heuristic

space that is to be replaced with a learned cell boundary in gene space.

A3.1.4 Training and optimizing the dropkick filtering model

The dropkick filtering model uses logistic regression with elastic net regularization (Zou and Hastie, 2005),

and is fit as described in Friedman et al., 2010. The elastic net combines ridge and lasso (least absolute

shrinkage and selection operator) penalties for optimal regularization of model coefficients. The ridge re-

gression penalty pushes all coefficients toward zero while allowing multiple correlated predictors to borrow

strength from one another, ideal for a scenario like scRNA-seq with several expected collinearities (Hoerl

and Kennard, 1970). The lasso penalty on the other hand, favors model sparsity, driving coefficients to zero

and thus selecting informative features (Tibshirani, 1996). The combined elastic net balances feature selec-

tion and grouping by preserving or removing correlated features from the model in concert (Zou and Hastie,

2005).

The fraction α ∈ [0,1] (alpha) represents the balance between the lasso and ridge penalties for the elastic

net model. If α = 0, the regularization would be entirely ridge, while if α = 1, it would be entirely lasso. By

default, dropkick fixes this alpha value at 0.1, but the user may alter this parameter or provide multiple alpha

values to optimize through cross-validation (with lambda; explained below) at the expense of slightly longer

computational time. All default dropkick results in this manuscript used α = 0.1, and we also ran dropkick

on all 46 samples with given alpha values [0.1, 0.25, 0.5, 0.75, 0.9]. Only 9 of 46 models chose a value other

than α = 0.1.

For a desired length of “lambda path,” n (default n = 100 for dropkick), the model is fit n + 1 times, where

the first pass determines the values of lambda (regularization strength) to test, and subsequent fits determine

model performance using cross-validation (CV; default 5-fold for dropkick). Each fit involves selection of

highly-variable genes (HVGs; scanpy pp.highly variable genes; default 2,000 for dropkick) from

the training set. For both the first pass and the final model, the training set consists of all available barcodes,

while training the model along the lambda path uses only the current training fold as to not bias model fitting

with information from the test set. The lambda path is scored using mean deviance from the training labels

for all cross-validation folds. The largest value of lambda such that its mean CV deviance is less than or equal

to one standard error above the minimum deviance is chosen as the final regularization strength for the model

in order to further minimize overfitting. Finally, dropkick fits a logistic regression model using all training

labels and the chosen lambda value and assigns cell probability (dropkick score) to all barcodes. By

default, the resulting dropkick label is positive (1; real cell) for barcodes with dropkick score ≥

0.5, but the user may define a stricter or more lenient threshold for particular applications.
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A3.1.5 Synthetic scRNA-seq data simulation

We used CellBender (Fleming et al., 2019) to build synthetic single-cell datasets. We generated a basic

count matrix with 30,000 features (n genes), 12,000 total droplets (including 3,000 n cells and 9,000

n empty), and 6 clusters. The default ratio between the cell size scale factor and the empty droplet size scale

factor – d cell at 10,000 and d empty at 200 – created an unrealistic gap between the empty droplets and

the real cells but built a foundation on which to produce more realistic simulations. By adjusting these

parameters, we simulated two different scenarios with the number of features, total droplets, and clusters

held constant. The first scenario modeled a “low background” dataset, with a realistic n genes and total

counts profile and relatively low ambient RNA. We set the cell size scale factor (d cell) to 10,000, and the

empty droplet size scale factor (d empty) to 1,000. These settings produced a small gap between the real

cells and the empty droplets, yet still mimicked a low background droplet profile. We then modeled a “high

background” scenario, which had much higher ambient RNA content. For this simulation we set d cell

to 10,000, and d empty to 2,000. This simulation mimicked a real scRNA-seq dataset with a high ambient

profile, as it had a smaller gap between real cells and empty droplets. Taken together, these simulations

recapitulate real-world single-cell data and were tested by dropkick to compare their ground-truth labels to

those determined by dropkick filtering.

A3.1.6 High-background PBMC simulation

To imitate empty droplets with high mRNA content over a relatively low-background sample, we used the

10x Genomics 4k human PBMC dataset. Because this encapsulation was derived from suspended blood cells,

there was negligible lysis and ambient contamination, and empty droplets are very clearly distinguished from

real cells based on their mRNA content alone. Combining reads from the bottom 1,000 genes by dropout rate

across all barcodes with less than 100 total UMIs, we normalized this pseudo-bulk as probabilistic weightings

for a random generation of count vectors. We drew 2,000 random integers between 10 and 5,000 to determine

the total number of counts for each simulated barcode, then drew that number of random integers from

a multinomial distribution using the random.default rng.multinomial function from the numpy

Python package, with pvals equal to the weightings determined from the true empty droplet pseudo-bulk. We

then added these 2,000 count vectors back to the original matrix, labeling them as “simulated” for downstream

comparison (Figure 3.4A).

A3.1.7 CellRanger 2, EmptyDrops, CellBender, and manual filtering of real-world scRNA-seq datasets

CellRanger and EmptyDrops filtering algorithms were derived from Lun et al., 2019, with CellRanger 2

described by the function DefaultDrops (from the repository github.com/MarioniLab/EmptyDrops2017),
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and EmptyDrops by the EmptyDrops function within the DropletUtils R package (v1.8.0). All 10x datasets

were processed as in Lun et al., 2019 (github.com/MarioniLab/EmptyDrops2017). EmptyDrops was run for

all inDrop datasets using the “inflection point” from CellRanger 2 analysis as the minimum non-ambient

UMI threshold as in Lun et al., 2019 (github.com/MarioniLab/EmptyDrops2017).

Further investigation of user-defined parameters for both methods was performed by titrating the “lower”

parameter, which describe the lower proportion of total barcodes to ignore when calculating the inflection

point for CellRanger 2, and the maximum total UMI counts under which all barcodes are considered ground-

truth empty droplets for EmptyDrops. We compared dropkick scores to the resulting labels (Figure S14),

noting that sub-optimal parameter values led to lower concordance.

CellBender remove-background, while primarily an ambient RNA subtraction model, also provides cell

labels from raw scRNA-seq counts matrices (Fleming et al., 2019). With the caveat that CellBender likely

retains more previously high-background droplets after regressing out ambient reads, CellBender was per-

formed on 10x Genomics samples using the same expected cell number used for EmptyDrops in Lun et al.,

2019, and concordance was tested with dropkick labels as before, showing a slightly lower average AUROC

of 0.9585 ± 0.0596 for 13 10x Genomics samples (Figure S13G).

Manual filtering was performed for each inDrop sample by initial thresholding beyond the inflection

point detected in the first curve of the ranked barcodes profile (as in Figure 3.1A). Then, following standard

dimension reduction and high-resolution Leiden clustering, clusters with low quality cells (high mitochondri-

al/ambient percentage, low total counts/genes) were manually gated out of the final dataset. These manually

curated labels were used as an orthogonal “gold standard” for benchmarking automated thresholding methods

(Figure S7A) and final AUROC (Figure S10D). Further description of this manual filtering method in Chen

et al., 2021b.

Bivariate thresholding was performed for all samples using total UMI counts and percent mitochondrial

counts, keeping barcodes that have greater than or equal to the minimum total count threshold and less than

40 % mitochondrial reads.

A3.1.8 sc-UniFrac analysis of shared populations between dropkick, CellRanger 2, and EmptyDrops

labels

In order to evaluate the preservation of expected cell clusters between dropkick and alternative labels, we

employed sc-UniFrac (Liu et al., 2018) to determine the global and populational differences between the

label sets. We used nonnegative matrix factorization (NMF) to analyze the union of barcodes kept by

dropkick label, CellRanger 2, and EmptyDrops in order to reduce dimensions into cell identity and

activity “metagenes” (Kotliar et al., 2019). We then clustered this low-dimensional space using the Leiden

109

github.com/MarioniLab/EmptyDrops2017
github.com/MarioniLab/EmptyDrops2017


algorithm (Traag et al., 2019) to define consensus cell populations for sc-UniFrac analysis. We then ran sc-

UniFrac (v0.9.6) to evaluate statistically significant cluster differences based on both cluster membership and

gene expression hierarchies between clusters. The global sc-UniFrac distance quantified the overall similarity

of hierarchical trees across barcode label sets.

A3.1.9 Dimension reduction, clustering, projection, and differential expression analysis

We used Consensus Nonnegative Matrix Factorization (cNMF; Kotliar et al., 2019) for initial dimension

reduction. The optimal number of factors, k, was determined by maximizing stability and minimizing er-

ror across all tested values after 30 iterations of each. We then built a nearest-neighbors graph in scanpy

(pp.neighbors function) from the NMF usage scores for consensus factors in all cells, where we set

n neighbors to the square root of the total number of cells in the dataset. We then clustered cells with the

Leiden algorithm (scanpy tl.leiden function; Traag et al., 2019) applied to this graph. Resulting clus-

ters were used in sc-UniFrac analysis, differential expression, and visualization. We performed differential

expression analysis using a Student’s t-test with Benjamini-Hochberg p-value correction for multiple test-

ing (scanpy tl.rank genes groups). To visualize datasets in 2D space, we ran partition-based graph

abstraction (PAGA; Wolf et al., 2019; scanpy tl.paga) on this nearest-neighbors graph and associated

Leiden clustering in order to create a simple representation of cluster similarity. Finally, a UMAP projection

(McInnes et al., 2018) seeded with these PAGA positions provided a two-dimensional embedding of all cells

in the dataset (scanpy tl.umap with init pos = ”paga”).

A3.1.10 Data Access

All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene Expres-

sion Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE158636. All publicly

available datasets are listed in the Table S2.

A3.1.11 Software Availability

The dropkick Python package is available for download via “pip” from the Python Package Index (PyPI)

at https://pypi.org/project/dropkick/. Source code for the package is also available on GitHub at https://

github.com/KenLauLab/dropkick. Scripts for reproducing analyses in this manuscript are hosted on GitHub

at https://github.com/codyheiser/dropkick-manuscript.
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A3.2 Supplemental tables and figures

Figure S6: dropkick QC reports for a mouse colonic epithelium sample analyzed by both 10x Genomics (A)
and inDrop (B) scRNA-seq. In contrast to Figure 3.1, this is considered a high-background sample due to
the height (increased total counts) of the second plateau (empty droplets) and presence of epithelial marker
genes (Car1, Muc2) in the ambient profile.
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Figure S7: Optimal heuristics and thresholding for determination of dropkick training set.
(A) Barcode set differences between initial dropkick thresholding and manual filtering of 33 inDrop scRNA-
seq datasets. Four automated thresholding techniques were used to label cells based on the distribution of
arcsinh-transformed genes detected alone (genes), or the combination of genes and percent ambient counts
as calculated by the dropkick QC module (genes/ambient).
(B) Same as in A for 13 10x Genomics scRNA-seq datasets, with set differences compared to CellRanger 2.
(C) Same as in B, with set differences compared to EmptyDrops.

Figure S8: Evaluating dropkick filtering performance with synthetic data.
(A) Receiver operating characteristic (ROC) curves for CellRanger 2 vs. ground truth in ten low-background
simulations.
(B) ROC curves for EmptyDrops vs. ground truth in ten low-background simulations.
(C) ROC curves for dropkick training labels (threshold) vs. ground truth in ten low-background simulations.
(D) ROC curves for final dropkick score vs. ground truth in ten low-background simulations.
(E-H) Same as in A-D, for ten high-background simulations.
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Figure S9: Benchmarking dropkick performance on simulated high-background data.
(A) UMAP embedding of all barcodes kept by dropkick, CellRanger 2, and EmptyDrops. NMF results were
used to generate leiden clusters; usage scores shown with a description of each cell type they represent and
top 7 gene loadings for each.
(B) Top 20 gene loadings for each NMF metagene.
(C) Top 5 differentially expressed genes in the 8 leiden clusters.
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Figure S10: Barcode set differences for 4k pan-T cell dataset.
(A) UpSet plot showing global set differences between dropkick label (dropkick score ≥ 0.5), Cell-
Ranger 2 and EmptyDrops.
(B) Histograms showing global distribution of heuristics (arcsinh-transformed genes, left, percent ambient
counts, middle, and percent mitochondrial counts, right) in barcodes kept by dropkick label and Cell-
Ranger 2. Distribution of barcodes unique to each label set also overlaid to show difference.
(C) Same as in B, for dropkick label compared to EmptyDrops.
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Figure S11: dropkick plots and barcode set differences for human colorectal carcinoma (CRC) inDrop sam-
ples.
(A) dropkick QC report for human normal colonic mucosa, 3907 S1 and CRC, 3907 S2.
(B) dropkick coefficient plots, showing coefficient values (top) and binomial deviance (bottom) along the
tested lambda regularization path. Dashed line indicates chosen lambda value of trained model. Top and
bottom three genes by coefficient value and total model sparsity noted in top plot.
(C) dropkick score plot showing scatter of percent counts ambient versus arcsinh-transformed total genes de-
tected per barcode. Dashed lines indicate location of automated dropkick thresholds used for model training.
Points colored by final dropkick score. D-F) Same as in A-C, but for adjacent human normal colonic mucosa
sample, 3907 S2.
(G) UpSet plot showing global set differences between dropkick label (dropkick score ≥ 0.5), Cell-
Ranger 2 and EmptyDrops.
(H) Histograms showing global distribution of heuristics (arcsinh-transformed genes, left, percent ambient
counts, middle, and percent mitochondrial counts, right) in barcodes kept by dropkick label and Cell-
Ranger 2. Distribution of barcodes unique to each label set also overlaid to show difference.
(J) Same as in H, for dropkick label compared to EmptyDrops.
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Figure S12: dropkick filters reproducibly across scRNA-seq batches.
(A) dropkick score plots for six placenta replicates.
(B) PAGA graph and UMAP embedding of all barcodes kept by dropkick label (dropkick score ≥ 0.5),
CellRanger 2, EmptyDrops, CellBender, and bivariate thresholding for the aggregate placenta dataset. Points
colored by each of the five filtering labels as well as original batch, tissue of origin, Leiden clusters, drop-
kick score (cell probability), percent counts ambient, and percent counts mitochondrial.
(C) Dot plot showing top five differentially expressed genes for each cluster. The size of each dot indicates
the percentage of cells in the population with nonzero expression for the given gene, while the color indicates
the average expression value in that population.
(D) Table and bar graph enumerating the total number of barcodes detected by each algorithm in all clusters.
(E) UpSet plot showing global set differences between dropkick label, CellRanger 2, EmptyDrops,
CellBender, and bivariate thresholding.
(F) Histograms showing global distribution of heuristics (arcsinh-transformed genes, left, and percent mito-
chondrial counts, right) in barcodes kept by dropkick label and CellRanger 2. Distribution of barcodes
unique to each label set also overlaid to show difference.
(G) Same as in F, for dropkick label compared to EmptyDrops.
(H) Same as in F, for dropkick label compared to CellBender.
(J) Same as in F, for dropkick label compared to bivariate thresholding.
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Figure S13: Comparing dropkick probability scores to five alternative cell labels using receiver operating
characteristic (ROC) curves. AUC = area under the ROC curve.
(A) ROC curves for 33 inDrop scRNA-seq datasets, using CellRanger 2 as reference.
(B) Same as in A, with EmptyDrops as reference.
(C) Same as in A, with manually curated cell labels as reference.
(D) Same as in A, with bivariate thresholding as a reference.
(E) ROC curves for 13 10x Genomics scRNA-seq datasets, using CellRanger 2 as reference.
(F) Same as in E, with EmptyDrops labels as reference.
(G) Same as in E, with CellBender remove-background labels as a reference.
(H) Same as in E, with bivariate thresholding as a reference.
(J) Total run time, in seconds, for EmptyDrops, CellBender remove-background, and dropkick. EmptyDrops
and dropkick were run ten times on all datasets; CellBender was run once on 10x Genomics samples. Points
represent single replicates.

117



Figure S14: Comparing dropkick probability scores to titrations of CellRanger 2 (A) and EmptyDrops (B)
parameters using receiver operating characteristic (ROC) curves. AUC = area under the ROC curve. Results
shown for 46 scRNA-seq datasets from 10x Genomics (n = 13) and inDrop (n = 33) encapsulation plat-
forms. The lower prop parameter in CellRanger version 2 (A) is used to exclude a bottom fraction of
total barcodes prior to calculating the knee point of the log-rank total counts curve. The ”lower” parameter
in EmptyDrops is used to determine the total UMI cutoff below which all droplets are considered empty for
model building.
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A4 Appendix for Chapter 4: Consensus tissue domain detection in spatial multi-omics data using

MILWRM

A4.1 Methods

A4.1.1 Resource Availability

The package is available to be installed directly from pypi website (https://pypi.org/project/MILWRM/). The

source code for the package and code for the figures can be found on github (https://github.com/Ken-Lau-Lab/

MILWRM).

A4.1.2 MILWRM workflow details

A4.1.2.1 Data preprocessing

Spatial-omics data differ in their acquisition and technological artifacts across modalities, so these prepro-

cessing steps are data type specific. It is important for the user to understand and apply methods that are

reasonable for their modality before using MILWRM, otherwise results can be corrupted by batch effects.

A4.1.2.2 Multiplex Immunofluorescence (mIF)

Prior to preprocessing, mIF data were scaled from uint8 (0 to 255) to float (0 to 1) and downsampled by a

factor 1/16th resolution to speed computation and normalization process. There is no sacrifice in the quality

of the neighborhood identification by downsampling as mIF data have subcellular spatial resolution and

MILWRM is designed to identify broad tissue domains. After downsampling we created tissue masks for each

image as described in mIF tissue mask generation with MILWRM. Finally, we applied image normalization

at slide-level using the formula y = log x
µx

+1, where x is the unnormalized data and µx is the mean of

non-zero pixels in the image, per marker. This normalization was a modification of an existing method

evaluated in segmented mIF data. Here, we implemented the mean of non-zero pixels to accommodate

channels with sparse signal intensities Harris et al., 2022. The downsampling performed on images prior

to this normalization step also aligns with the unbiased grid-based normalization framework described by

Graf et al., 2022 Graf et al., 2021. In order to incorporate broader spatial information within each pixel,

after normalization, we applied gaussian smoothing. The radius of blurring can be controlled by adjusting σ

parameter in MILWRM for mIF modality. Here, we use σ = 2 for smoothing.

A4.1.2.3 Spatial Transcriptomics (ST)

The above-described steps differ slightly between mIF and ST modality. For ST data the first step is to

reduce the dimensionality of the transcriptomics data. For the analysis shown in this paper, we used Principal

Component Analysis (PCA) for dimensionally reduction, but other methods can also be used with MILWRM
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such as Non-Negative Matrix Factorization (NMF) Kotliar et al., 2019. We used Harmony Korsunsky et al.,

2019 to correct technical variation between the samples. As in mIF, blurring is applied to the ST slides

to preserve spatial information. To perform blurring, each central spot is assigned the average value for

the selected reduced components (PCs in this case) across the spots within the neighborhood of the central

spot. The spatial neighborhoods are computed using the squidpy Python package Palla et al., 2022b. The

neighborhood distance can be controlled by adjusting the n rings parameter. Here, we use n rings = 1

for smoothing in ST data.

A4.1.2.4 Identification of tissue domains

The tissue domains in the data are identified across slides by performing unsupervised K-means clustering

on the preprocessed data. MILWRM reduced computation time by randomly subsampling pixels for mIF

modality. The fraction of pixels (default 0.2, used here) and all the spots are serialized to build the K-means

model. If the dimension reduction is performed, then the input data are the PCs, otherwise the input is

the batch-adjusted marker channels. Prior to performing K-means, the data are Z-normalized to ensure that

the mean and variances are similar across the different channels/PCs of the input data. The k-selection for

K-means is done by estimating adjusted inertia metric. Adjusted inertia is inertia weighted by a penalty

parameter that controls the number of clusters Clarke and Greenacre, 1985. For MILWRM, the parameter

can be adjusted to control the resolution of tissue domains identified.

After performing K-means classification, tissue domains are identified in the full dataset by assigning the

tissue domain for the closest cluster centroid from the K-means model. The mean and variance computed for

subsampled data is used to Z-normalize the original image data. By performing K-means model estimation

in the subsample, MILWRM can reduce computational demand for mIF modality. Kmeans is performed on

entire dataset in ST modality.

A4.1.2.5 Quality control and tissue labeling

Once the regions are identified it is useful to label the tissue domains based on their marker expression profile

and assess the quality of clustering. The cluster centroids for each tissue domain are plotted in marker or PCA

component space to label the tissue cluster based on its expression profile. The centroids can also be plotted in

gene space for ST modality or other dimensionally reduced components. The quality of clustering is assessed

at the whole slide and pixel levels. To assess the whole slide fit, we compute the variance explained and

mean square error within each slide. These metrics allow the user to flag slides for manual review where the

overall fit might be bad. We also compute pixel-level confidence score using the formula y = distx,c2−distx,c
distx,c2

where dist is the Euclidean distance between pixel or spot, x, assigned centroid, c, and the second closest
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centroid c. The confidence scores take values between zero and one where higher values indicate smaller

distance between the assigned centroid and closest centroid thus, better fit. This metric is a fast simplification

of the Silhouette index.

A4.1.2.6 mIF tissue mask generation with MILWRM

MILWRM has a designated function to perform creation of tissue masks through the MILWRM pipeline

described above. Each preprocessing step is performed on individual images including log normalization and

smoothing with a gaussian filter (σ = 2). Finally, the mask is created using Kmeans clustering with n = 2.

The Kmeans cluster centers are then z-normalized and the cluster center with a mean smaller or equal to zero

is set as background.

A4.1.3 Imaging data, acquisition, and basic image processing

The mIF data were generated for the Human Tumor Atlas Network (HTAN) consisting of human normal

colon and different colonic pre-cancer subtypes (conventional adenomas - AD and serrated polyps - SER)

Chen et al., 2021b. These data comprised multichannel fluorescent images from 37 biospecimen consisting of

tissues with different morphologies and pathological classification, as confirmed by 2 pathologists (Table S1).

Cyclical antibody staining, detection, and dye inactivation was performed as described previously Gerdes

et al., 2013. In brief, fluorescent images were acquired at 200x magnification on a GE In Cell Analyzer 2500

using the Cell DIVE platform. Exposure times were determined for each antibody. Dye inactivation was

accomplished with an alkaline peroxide solution, and background images were collected after each round

of staining to ensure fluorophore inactivation. Staining sequence, conditions, and exposure times are as

described in Chen et al., 2021b. Following acquisition, images were processed as described McKinley et al.,

2017. Briefly, DAPI images for each round were registered to a common baseline, and autofluorescence in

staining rounds was removed by subtracting the previous background image for each position.

A4.1.4 Method evaluation and statistical analysis

In order to assess the sensitivity of MILWRM regions to biological differences between precancer subtypes

we computed tissue proportions and connected component statistics for each tissue domain within the tumor

region of each image and used generalized estimating equations (GEEs) to model how these variables were

associated with precancer subtypes. Connected components were estimated for each image in Python using

the label function in scipy.ndimage.measurements module. For the tissue proportions, we modeled

each tissue proportion separately using a binomial family model assuming that images from the same slide

had an exchangeable correlation structure. We modeled the maximum connected component size in order
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to quantify how the size and connectedness of different tissue domains differed across precancer subtypes.

In these analyses, we used log transformation in a gaussian family model with a log transformation on the

maximum connected component size and included log of the total tissue volume as a covariate. In all models,

we weighted each region by its total image size so that results were not affected by noisy estimates from

smaller images. Statistical analyses were performed in R using the geepack package Halekoh et al., 2006.

We performed plot all results with unadjusted significant p-values and report adjusted p-values using the

Benjamini-Hochberg procedure and a robust effect size index Benjamini and Hochberg, 1995; Vandekar

et al., 2020 (Tables 4.1 and 4.2).

A4.1.5 Tissue domain signature scores for ST data

The manual annotation for tissue domains in ST data were verified by generating signature gene scores

specific to each brain region. For this purpose, we extracted differentially expressed genes from Allen brain

atlas for all available brain regions and molecular atlas of adult mouse brain for fiber tract and ventricles.

MILWRM also identified a set of genes for each tissue domain. We computed a score for both reference

signature set and MILWRM gene set using scanpy Wolf et al., 2018.

122



A4.2 Supplemental tables and figures

Table S1: Summary table for human colonic adenoma sample metadata

Batch name Slide region Tissue category Broad precancer type
HTA11 10167 0000 01 01 region 001 normal SSL
HTA11 10167 0000 01 01 region 002 normal SSL
HTA11 10167 0000 01 01 region 003 Tumor SSL
HTA11 10623 0000 01 01 region 001 normal AD
HTA11 10623 0000 01 01 region 002 normal AD
HTA11 10623 0000 01 01 region 003 normal AD
HTA11 10623 0000 01 01 region 004 Tumor AD
HTA11 10623 0000 01 01 region 005 normal AD
HTA11 10623 0000 01 01 region 006 normal AD
HTA11 10711 0000 01 01 region 001 Tumor AD
HTA11 4255 0000 02 02 region 001 Tumor SSL
HTA11 4255 0000 02 02 region 002 normal SSL
HTA11 6298 0000 04A 03 region 001 Tumor AD
HTA11 6298 0000 04A 03 region 002 Tumor AD
HTA11 6298 0000 04A 03 region 003 normal AD
HTA11 6801 0000 01 01 region 001 Tumor SSL
HTA11 7179 0000 02 02 region 001 Tumor AD
HTA11 7862 0000 02 02 region 001 Tumor AD
HTA11 7862 0000 02 02 region 002 normal AD
HTA11 7956 0000 02 05 region 001 normal SSL
HTA11 7956 0000 02 05 region 002 Tumor SSL
HTA11 7956 0000 02 05 region 003 Tumor SSL
HTA11 8099 0000 02 01 region 001 normal SSL
HTA11 8099 0000 02 01 region 002 normal SSL
HTA11 8099 0000 02 01 region 003 normal SSL
HTA11 8099 0000 02 01 region 004 normal SSL
HTA11 8099 0000 02 01 region 005 Tumor SSL
HTA11 8099 0000 02 01 region 006 normal SSL
HTA11 8622 0000 01E 01 region 001 normal SSL
HTA11 8622 0000 01E 01 region 002 Tumor SSL
HTA11 8622 0000 01E 01 region 003 Tumor SSL
HTA11 8622 0000 01E 01 region 004 Tumor SSL
HTA11 8622 0000 01E 01 region 005 normal SSL
HTA11 866 0000 02 03 region 001 Tumor AD
HTA11 8920 0000 02 02 region 001 Tumor SSL
HTA11 9341 0000 01A 01 region 001 Tumor SSL
HTA11 9408 0000 02A 05 region 001 Tumor AD
HTA11 9408 0000 02A 05 region 002 Tumor AD
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Figure S15: Tissue domain labels for human colonic-adenoma (α = 0.05).
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Figure S16: MILWRM QC metrics related to Figure 4.2.
(A) Mean Square error for each tissue domain
(B) UMAP with tissue domains.
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Figure S17: Tissue domain labels for human colonic-adenoma (α = 0.02).
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Figure S18: MILWRM QC metrics related to Figure 4.3.
(A) Mean Square error for each tissue domain
(B) Confidence score overlaid on three representative tissues
(C) mean confidence score for each tissue domain for all colonic adenoma samples
(D) Proportion of each tissue domain in each slide
(E) Variance explained by the Kmeans model.
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Figure S19: Domain profile for mouse brain tissue domains and MILWRM QC metrics.
(A) Domain profile for tissue domains in mouse brain ST
(B) Estimated number of tissue domains in Adjusted inertia plot
(C) Mean square error for each tissue domain.
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Figure S20: Reference score profiles for all mouse brain samples.
(A) Scores from Allen brain atlas anatomical regions coronal slice
(B) Scores from Allen brain atlas anatomical regions coronal slice replicate
(C) Scores from Allen brain atlas anatomical regions coronal slice 2
(D) Scores from Allen brain atlas anatomical regions sagittal anterior slice
(E) Scores from Allen brain atlas anatomical regions sagittal anterior slice replicate
(F) Scores from Allen brain atlas anatomical regions sagittal posterior slice
(G) Scores from Allen brain atlas anatomical regions sagittal posterior slice replicate.
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Figure S21: MILWRM domain score profiles for all mouse brain samples.
(A) Scores for MILWRM domains coronal slice
(B) Scores for MILWRM domains coronal slice replicate
(C) Scores for MILWRM domains coronal slice 2
(D) Scores for MILWRM domains sagittal anterior slice
(E) Scores for MILWRM domains sagittal anterior slice replicate
(F) Scores for MILWRM domains sagittal posterior slice
(G) Scores for MILWRM domains sagittal posterior slice replicate.
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A5 Appendix for Chapter 5: Molecular cartography uncovers evolutionary and microenvironmental

dynamics in sporadic colorectal tumors

A5.1 Methods

A5.1.1 Data and code availability

Data have been deposited to the HTAN Data Coordinating Center Data Portal at the National Cancer Institute:

https://data.humantumoratlas.org/ (under the HTAN Vanderbilt Atlas).

A5.1.2 Sample procurement

These specimens were procured through the collaborative human tissue network (CHTN) as formalin-fixed,

paraffin-embedded (FFPE) tissue blocks with accompanying pathology reports.

A5.1.3 Visium ST sample handling

Regions of interest (ROIs) for ST were chosen based on histological annotation of FFPE blocks, targeting

tumor areas with morphology indicative of various stages of malignancy, and transition points between them.

Tissue sections were cut and trimmed (if necessary) into 6.5 mm × 6.5 mm capture areas of 10X Genomics

Visium FFPE spatial gene expression slides (Table S2). Serial tissue sections were collected simultaneously

for whole-slide MxIF staining and laser capture microdissection.

Visium FFPE spatial gene expression slides were temporarily coverslipped, stained with hematoxylin and

eosin (H&E; Table S2), and brightfield imaged at 20X objective prior to tissue permeabilization, probing, and

library prep according to the 10X Genomics protocol. Sample libraries were sequenced on an Illumina No-

vaSeq targeting 125M reads per capture area. Resulting sequencing data were aligned using 10X Genomics

Space Ranger software version 1.3.0 (Table S2).

A5.1.4 Visium TMA building

A subset of FFPE blocks was chosen for building tissue microarrays (TMAs), where three to five 1 mm

punches were collected and arrayed in a 3 × 3 format for sectioning into 6.5 mm × 6.5 mm capture areas

of 10X Genomics Visium FFPE spatial gene expression slides (Table S2). Adjacent 1 mm punches to each

TMA region of interest (ROI) were collected in tubes for direct DNA extraction and whole-exome sequencing

(WES) library preparation, providing analogous molecular information to LCM-WES data.

A5.1.5 Multiplex immunofluorescence (MxIF) imaging

A cyclic staining, imaging, fluorophore inactivation protocol for multiplexed protein imaging was employed

as shown previously Gerdes et al., 2013. A panel of 33 antibodies was used for staining, as detailed in Table

S2.
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Virtual H&E stains were generated from autofluorescence (AF) images for each block, and are used to

orient Visium data to whole-slide tissue morphology following spatial registration.

A5.1.6 Spatial registration

We developed a custom Python plugin for napari, a multidimensional viewer for biological images Sofroniew

et al., 2022, which allowed us to perform affine transformation and scaling on Visium brightfield images in

order to spatially align morphology features of the tissue with whole-slide MxIF. The napari plugin exports

affine matrices and final image sizes, which can be applied directly to MxIF to align pixels with Visium ST

microwells, or applied in reverse to Visium spots to cast them into whole-slide space on top of MxIF images.

Registration of LCM-WES with ST was performed manually by creating masks for each LCM ROI in the

10X Genomics Loupe Browser that were used to subset Visium microwells to LCM ROIs for downstream

analysis.

A5.1.7 Gene signature scoring

Gene expression signatures were curated from the literature to interrogate cellular identity and activity in

scRNA-seq and ST samples Nirmal et al., 2018; Gulati et al., 2020; Chen et al., 2021b; Combes et al., 2022;

Joanito et al., 2022; Barkley et al., 2022; Gil Vasquez et al., 2022. Lists of genes were passed to the scanpy

function score genes, with default parameters. There were two exceptions:

• ”CytoTRACE” scores were calculated using the CytoTRACE R package version 0.3.3 Gulati et al.,

2020

• When scoring ”iCMS2” and ”iCMS3” tumor epithelial signatures from Joanito, et al., genes from the

”Up” list were scored against genes from the ”Down” list from each respective iCMS classification

by restricting the gene pool parameter of the score genes function to the combined ”Up” and

”Down” gene lists Joanito et al., 2022

A5.1.8 CNV inference from ST and scRNA-seq

We used the infercnvpy Python package to infer somatic CNVs from scRNA-seq and ST gene expres-

sion Patel et al., 2014. Analysis was performed separately on scRNA-seq and ST. For scRNA-seq analysis,

we used all normal epithelial and stromal cells from each patient, as labeled in Chen et al., 2021b, to pro-

vide a normal background for calling CNVs in malignant cells derived from the same patient. In ST, we

grouped Visium microwells by patient and used stromal regions and adjacent normal epithelium, manually

annotated in the 10X Genomics Loupe Browser, to provide a normal background for calling CNVs in tumor

regions. For patient samples lacking sufficient stromal/normal surface area (mostly pre-malignant polyps
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and TMAs), we grouped multiple patients with the normal human Swiss roll sample (SR00001), which pro-

vided a chromosomally-stable reference for inferCNV analysis. Grouped samples included SR00001 (NL),

HTA11 01938 (TVA), WD33469 (TMA), WD33473 (TMA), and WD33474 (TMA).

A5.1.9 CNV calling from WES and WGS

FFPE curls were treated with the truXTRAC FFPE total NA kit from Covaris (Table S2) to extract DNA prior

to library preparation. Whole-genome (WGS) libraries were prepared using a modified Twist Bioscience

Human Genome Panel (Table S2) and sequenced on an Illumina NovaSeq, targeting 50X coverage genome-

wide. Whole-exome libraries were prepared using the Twist Bioscience Human Comprehensive Exome Panel

(Table S2) and sequenced on an Illumina NovaSeq, targeting 50X coverage exome-wide.

Somatic CNVs were called following GATK4 Best Practices workflow and annotated with GATK4 Fun-

cotator data sources v1.6. We used the CNVkit Python package to summarize and visualize somatic CNVs

in WES and WGS samples Talevich et al., 2016.

A5.1.10 Somatic mutational profiling with LCM-WES

We performed laser capture microdissection (LCM) on FFPE sections serial to Visium ST samples using

the Arcturus XT LCM system from Thermo Fisher Scientific. Circular ROIs 1.5 mm - 2.0 mm in diameter

were collected from spatially distinct tissue regions, targeting abnormal tumor epithelium with morphology

indicative of various stages of malignancy, and transition points between them. For samples lacking adjacent

normal colon biopsies or whole-blood samples for bulk WES, we dissected additional ROI(s) from adjacent

normal epithelium or stroma present in the FFPE sections to use as germline reference for mutation calling.

We extracted DNA from dissected FFPE ROIs using the Arcturus PicoPure DNA Extraction Kit from

Applied Biosystems (Table S2). Alternatively, FFPE cores from Visium TMAs were treated with the truX-

TRAC FFPE total NA kit from Covaris (Table S2) to extract DNA prior to library preparation. Whole-exome

libraries were prepared using the Twist Bioscience Human Comprehensive Exome Panel (Table S2) and se-

quenced on an Illumina NovaSeq, targeting 50X coverage exome-wide.

FASTQ reads were trimmed to remove adapter sequences using Cutadapt v2.10. Quality control on

both raw reads and adapter-trimmed reads was performed using FastQC v0.11.9. The reads were then

aligned to the human reference genome hg19 using BWA v0.7.17. Duplicated reads were removed and the

alignments were refined with GATK4 Mark Duplicates and Base Quality Score Recalibration tools. Somatic

variants were called using GATK4 Mutect2 in “normal-tumor” paired mode and annotated with ANNOVAR

Wang et al., 2010 (2019/Dec/05 version).
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A5.1.11 Phylogenetic tree construction from LCM-WES

Mutation Annotation Format (MAF) output files from WES alignment and mutation calling were processed

with the maftools R package to generate oncoplots and summarize mutations within and between samples

Mayakonda et al., 2018. We then used the MesKit R package to generate phylogenetic trees for each patient

Liu et al., 2021.

A5.1.12 Global PPT ordering and classification of tumor regions

Following spatial registration of ST and LCM-WES, we divided tumors into areas of overlap between ST

CNV clones (non-”E” and non-”S” regions) and LCM ROI masks (referred to as ”tumor regions”), in order

to provide paired mutational and CNV information for each region. Tumor regions containing less than

30 microwells were disposed for reliable summarization of cell states, genes, and gene signatures. Pre-

malignant tumors (TA/TVA and SSL/HP) were simply subset to their major CNV clone region, as their

WES data was collected in bulk due to small size of the lesions preventing LCM analysis. The normal

colon specimen (SR00001) was also subset to its epithelial area using the two CNV clone regions detected.

Additionally, we removed HTA11 01938 from tumor region ordering due to extreme hypermutation likely

resulting from compromised DNA excision repair and proofreading machinery (Figure 5.1F). Exclusion of

this outlier prevents skewing of cell states and gene expression by a pre-malignant polyp assigned to late HM

PPT.

Resulting tumor regions comprising groups of ST microwells sub-divided each macro tumor into smaller,

epithelial-only regions which could be summarized based on average expression of genes, gene signatures,

and cell states. We then calculated CIN+ PPT, defined as CNV score scaled between 0 and 1 using sklearn.

preprocessing.MinMaxScaler Pedregosa et al., 2011 across all tumor regions. Likewise, HM PPT

was calculated as TMB scaled between 0 and 1 using sklearn.preprocessing.MinMaxScaler Pe-

dregosa et al., 2011 across all tumor regions. Next, we created a quantitative ”CIN index” for each tumor

region, calculated as the difference between CIN+ PPT and HM PPT. In this way, tumor regions with a CIN

index greater than zero are more chromosomally unstable than hypermutated, and regions with a negative

CIN index are conversely more hypermutated.

We then classified these CNV clone-LCM ROI overlap regions as CIN+ or HM based on their tumor type

(MMR status and pathological annotation) coupled with their CIN index. All tumor regions with PPT values

less than 0.4 were assigned to tumor classes according to the tumor type they were derived from (NL, TA/TVA

and MSS = CIN+; SSL/HP and MSI-H = HM). Seven late-stage (PPT > 0.4) MSI-H tumor regions had CIN

indices > 0.0 (2/4 regions from SG0001, 2/3 regions from SG00002, and 3/4 regions from PAT73458), and

were thus labeled CIN+ for downstream GAM modeling and analysis (Figure 5.3E,G; Figure S23X-Y).
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We assigned CIN+ tumor class to SG00001, SG00002, and PAT73458 for the purposes of patient-level

summarization and downstream analyses (Figure 5.4F-G; Figure 5.5C), as the majority of the tumor area of

these MSI-H CRCs had transitioned to CIN+. Additionally, one tumor that was excluded from tumor region

analysis above due to low number of ST microwells available for each CNV clone-LCM ROI overlap region,

PAT15211, was categorized as HM due to high TMB (low CIN index). All other analyses were performed

at the tumor region level and employed classifications described above (Figure 5.4H; Figure 5.5A-B; Figure

S25A; Figure 5.6A).

Finally, we ordered all tumor regions along PPT according to their tumor class (Figure 5.3E; Figure

S23X). These rankings provided a pseudotemporal basis for GAM fitting along two tumor growth trajectories

representing the major classes of CRC (CIN+ and HM).

A5.1.13 refNMF cell-state discovery and deconvolution

Cell states from tumors and normal colonic mucosa were discovered in the VUMC scRNA-seq cohort Chen

et al., 2021b using the cNMF Python package Kotliar et al., 2019. Normal and abnormal epithelial cells

plus stromal and immune cells curated from Chen, et al. were combined prior to cNMF analysis, and genes

were subset to the union of all genes detected in all 40 ST samples Chen et al., 2021b. The consensus NMF

factorization was performed at an optimal k = 30 to yield representative cell-type factors as well as factors

that describe cell-state subtypes. We factored the gene loading matrix from scRNA-seq consensus NMF out

of the ST expression matrices using the sklearn.decomposition.NMF function Pedregosa et al., 2011.

This reference NMF (”refNMF”) factorization provided fractional usages of each of the 30 cell-state factors

in every ST spot.

A5.1.14 refNMF validation

MxIF stains registered to ST data were averaged within each Visium microwell area for all markers separately.

Visium microwells were then blurred using the squidpy.gr.spatial neighbors function with a

radius value of 1 to capture local spatial neighborhood information of MxIF markers, refNMF cell-state

fractions, and gene signature scores Palla et al., 2022b. The blurred values were correlated with one another

across all Visium microwells from all tumors in the atlas in order to highlight protein markers and cell

identity/activity signature scores that confirm refNMF state characterizations (Figure S24E-G).

A5.1.15 Tissue domain detection with MILWRM

We employed refNMF cell states as predictors for a MILWRM model of macro-level consensus tissue do-

mains across all ST slides Kaur et al., 2023. We only included states from epithelial and stromal compart-
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ments (Figure 5.4G), excluding immune states to limit predictors to markers of tissue architecture. We used

a radius of 1 Visium ST ring for smoothing predictor values, and an α of 0.02 for regularization of scaled

inertia during k optimization.

A5.1.16 Modeling expression dynamics along PPT

We built generalized additive models (GAMs) for genes, gene signatures, and refNMF cell states along global

PPT using the tradeSeq R package Van den Berge et al., 2020. The pseudotime (PT) value given to the

model was defined as CNV score for CIN+ tumors and TMB (number of somatic mutations detected per

tumor region) for HM tumors. GAMs were built separately for CIN+ and HM PPT, treating each tumor class

as a unique trajectory. We employed the startVsEndTest to detect genes, gene signatures, and cell states

with differential expression between early and late PPT in both tumor classes, as well as the diffEndTest

for statistically significant differences in late-PPT expression between the two classes. Resulting significant

features from the two tests were curated for heatmap plotting (Figure 5.4H; Figure 5.5A; Figure 5.6A).

A5.1.17 Spatial co-occurrence analysis from ST

We employed the squidpy Python package for spatial co-occurrence analysis of IES and infiltrating im-

mune cell states Palla et al., 2022b. We first thresholded the signature or cell state of interest to label mi-

crowells with ”high” expression. Then, we used major CNV clone regions as a reference label to measure

co-occurrence with ”high” values of the signature or cell state in question. We also employed the stromal

(”S”) CNV clone region as a negative control (Figure 5.5E,K).

A5.1.18 MxIF immune-exclusion analysis

We segmented MxIF images into single cells using the MIRIAM segmentation algorithm McKinley et al.,

2022. Thresholds were manually determined for all markers on a slide-by-slide basis in order to call posi-

tive and negative pixels for each marker while avoiding slide-specific illumination or staining batch effects.

Within each single cell area, markers were further binarized based on 50 % pixel area or greater, reducing

markers to present or absent per single cell segment. Immune cells were then identified by co-expression of

the following markers (Figure 5.5G,I):

• T helper - CD3D and CD4

• T reg - CD3D, CD4, and FOXP3

• T cytotoxic - CD3D and CD8

• Myeloid - CD11B
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• Macrophage - CD11B and CD68

• Macrophage M1 - CD11B, CD68, and Lysozyme

ST data for each corresponding slide were transformed into MxIF space using an affine transformation ac-

cording to napari-based spatial registration between MxIF and ST. Segmented MxIF data, consisting of

cell centroids as x-y pixel coordinates and cell-type IDs (subset to immune cells only, identified with markers

above), were then counted for each CNV clone region in the transformed ST data based on centroid pixel

coordinates and ST CNV clone masks (Figure 5.5L-M; Figure S25C).

A5.1.19 TCGA immune exclusion and survival analysis

Normalized expression data (RSEM TPM) and matched clinical information from TCGA COAD and READ

samples were accessed and integrated from cBioPortal. Corresponding MMR status (MSS vs. MSI-H) were

extracted from GDC Data Portal. Samples with NA values for any of the IES genes were filtered out, yielding

301 total tumors for IES scoring. For stratification by MMR status and survival analysis, these samples were

further filtered, removing additional tumors with NA values in any of the metadata columns ”Age”, ”Gender”,

”Race”, or ”Disease progressive event and time”. Final sample sizes for survival analysis stratified by MMR

status were 244 MSS and 45 MSI-H.

IES scores were calculated as the average TPM expression of DDR1, TGFBI, PAK4, and DPEP1. Survival

analyses were then performed with the survival R package (version 3.4-0) (Figure 5.6B-C; Figure S26A-

D).

A5.1.20 Antibody conjugation and immunohistochemical (IHC) imaging

Human CRC TMA slides were cut at 5 µm on positively charged slides. The slides were de-paraffinized

in three changes of xylene and hydrated to water in graded alcohol. The slides underwent antigen retrieval

using a citrate buffer (Ph 6.0) solution at 105◦C in a pressure cooker for 20 minutes followed by a bench cool

down for 10 minutes. The slides were washed in distilled water and placed in TBST wash buffer solution for

continuation of the staining protocol. Endogenous enzymes were blocked using a 0.03% (H2O2) peroxidase

block solution for 5 minutes, rinsed in wash buffer and incubated for one hour in the primary antibodies

(PAK4 Santa Cruz Biotechnology sc-390507 1:75 primary dilution, TGFBI Abcam ab170874 1:300 primary

dilution, DDR1 Cell Signaling #5583 primary dilution 1:2000; Table S2). The slides were gently rinsed and

a peroxidase labelled polymer was applied utilizing Dako EnVision + System -HRP labeled polymer for a

30 incubation period. After a gentle rinse, the slides were treated with a DAB+ Substrate-Chromogen for

5 minutes to complete the staining protocol. The slides were washed in distilled water, counterstained in
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Mayer’s Hematoxylin, blued in running tap water, dehydrated in 3 changes of absolute alcohol, and cleared

in xylene prior to cover-slipping.

A5.1.21 IHC immune exclusion and survival analysis

From a CRC TMA representing tumors from 163 patients, 149 patients had at least one IHC marker mea-

surement, and 147 of those had clinical data. These tumors were filtered to the subset where DDR1, DPEP1,

or TGFBI staining was detected (n = 108, 86 MSS and 22 MSI-H). Each stain was graded as 0, 1, 2, or 3

by a pathologist based on increasing expression intensity, and cores were labeled ”+” for scores of 2 or 3

and ”-” otherwise (Figure 5.6F). Survival analyses were performed with the survival R package (version

3.4-0), comparing ”+” to ”-” expression for single markers or combinations of markers (Figure 5.6G; Figure

S26E-G).
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A5.2 Supplemental tables and figures

Figure S22: CNV inference establishes spatially resolved tumor clones and their phylogenetic relationships.
(A) Representative SSL, TVA, MSI-H, and MSS tumors from the CNV heatmap in B, showing histology
alongside CNV score and CNV clone regions.
(B) Heatmap of inferred CNV profiles in the subset of ST samples with matched scRNA-seq. Samples are
grouped by patient (left colorbar) and tumor type (right colorbar).
(C) Same as in B for scRNA-seq.
(D) Distribution of cosine similarity scores between the inferred CNV profiles of ST microwells (B) and
single cells (C) derived from each patient. Both modalities were subset to major clone regions/clusters prior
to comparison to exclude stroma and adjacent normal epithelium.
(E) Heatmap of CNVs detected in WES and WGS of select patients from ST atlas and Chen, et al. cohort of
pre-cancerous polyps. Samples are colored by patient (left colorbar) and tumor type (right colorbar).
(F) Boxplots of CNV scores for WES and WGS samples in E, grouped by tumor type.
(G) Boxplots of CNV scores for all ST samples, grouped by tumor type.
(H) Boxplots of CNV scores for all scRNA-seq samples, grouped by tumor type.
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Figure S24: Cell-state deconvolution reveals pseudotemporal tissue dynamics.
(A) Diagram of linear algebraic doconvolution of ST expression mixtures using cell states (”factors”) discov-
ered by NMF of scRNA-seq. These reference states (SC Factors) are factorized out of the ST matrix to assign
fractional scores for all cell states to each microwell (ST Usages).
(B) Example ground-truth NMF factors in Chen, et al. scRNA-seq cohort profiling cell states in normal ep-
ithelial (top), abnormal/dysplastic epithelial (middle), and stromal (bottom) tissue compartments.
(C) refNMF cell-state gene loadings, showing top 25 genes for each of the 30 consensus states.
(D) KEGG term enrichment for the top 200 genes from each cell state in C. Top 2,000 genes were used for
CRC3 to yield associated pathway terms.
(E) Spatial correlation matrix between refNMF cell-state usages (left) and average marker intensity from
MxIF data spatially registered to ST from a serial tissue section (bottom).
(F) Same as in E, using cell identity gene signatures.
(G) Same as in E, using cell activity gene signatures.
(H) Tissue domain coefficients for MILWRM model built from all ST data in atlas.
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Figure S25: Gene expression features of CIN+ CRCs predict immune exclusion.
(A) Pairwise Pearson correlations between IES genes and progression indicators (CNV score and iCMS2) in
all CIN+ tumor regions.
(B) Genes, gene signatures, and refNMF cell states grouped into pseudotime indicators (”PPT”), immune
exclusion markers (”Excl.”), microenvironmental cells (”uEnv.”), infiltrating immune cells (”Inf.”), tumor
activity (”Act.”), and epithelial-specific markers of MSS, MSI-H, and normal mucosa summarized across
CNV tissue domain for all ST samples.
(C) Number of infiltrating immune cells detected in MxIF plotted against average IES score for all CNV
clones in atlas. Points are colored by tumor class and sized according to their respective normalized PPT.
(D) Diagram of early-to-late CIN+ CRC development, highlighting proposed IES mechanism.
(E) Diagram of early-to-late HM CRC.
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Figure S26: IES trends with tumor progression and predicts poor patient outcomes.
(A) Boxplots of IES scores and expression of individual constituent genes in TCGA COAD and READ
samples, stratified by MMR status (MSS n = 244; MSI-H n = 45). Statistics shown represent Student’s T-test
with Bonferroni correction.
(B) Kaplan-Meier PFS curves for TCGA COAD and READ samples from A with high (+) and low (-) IES
scores, subset to MSS tumors only (n = 244).
(C) Kaplan-Meier PFS curves for TCGA COAD and READ samples (n = 301) with high (+) and low (-)
expression of individual constituent genes from IES (DDR1, TGFBI, PAK4, DPEP1).
(D) Same as in C, for MSS tumors only (n = 244).
(E) Kaplan-Meier PFS curves for CRC TMA cores with high (+) and low (-) DDR1 IHC staining.
(F) Same as in E, for TGFBI.
(G) Kaplan-Meier OS curves for CRC TMA cores with high (+) and low (-) IHC staining of both DDR1 and
TGFBI.
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A6 Key resources

Table S2: Key reagents, datasets, and software packages used in these studies

REAGENT or RESOURCE SOURCE IDENTIFIER

Laboratory Reagents

Mayer’s Hematoxylin Sigma MHS16

Alcoholic Eosin Sigma HT110116

Bluing Buffer Dako CS702

UltraPure Glycerol Invitrogen 15514-011

Visium Spatial for FFPE Gene

Expression Kit, Human

Transcriptome

10X Genomics 1000336

DAPI Sigma-Aldrich T9284

MUC2 Antibody (F-2) Santa Cruz sc-515032

Collagen Antibody (CHP) 3Helix R-CHP

SNA Antibody (Lectin) Vector CL-1305-1

CD11B Antibody (C67F154) Abcam ab133357

CD20 Antibody (D-10) Santa Cruz sc-393894

PCNA Antibody (PC-10) Santa Cruz sc-56

BCATENIN Antibody (12F751) Vanderbilt Antibody

and Protein Resource

PSTAT3 Antibody (D3A7) Cell Signaling 4324S

PEGFR Antibody (EP774Y) Abcam ab205828

CGA Antibody (C-12) Santa Cruz sc-393941

CD4 Antibody (EPR6855) Abcam ab133616

COX2 Antibody (D5H5) Cell Signaling 13596S

CD3D Antibody (EP4426) Abcam ab208514

HLAA Antibody (EP1395Y) Abcam ab199837

Continued on next page
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Table S2: Key reagents, datasets, and software packages used in these studies (Continued)

REAGENT or RESOURCE SOURCE IDENTIFIER

PANCK Antibody (AE1/AE3) ThermoFisher 53-9003-82

OLFM4 Antibody (D1E4M) Cell Signaling Custom (87240BC)

CD8 Antibody (C8/114B) Biolegend 13983

ACTININ Antibody (EPR2533(2)) Abcam ab198608

CD68 Antibody (KP1) Santa Cruz sc-20060

NAKATPASE Antibody (EP1845Y) Abcam ab198367

VIMENTIN Antibody (E-5) Santa Cruz sc-373717

SOX9 Antibody (EPR14335) Abcam ab202516

FOXP3 Antibody (206D) Biolegend 320113

LYSOZYME Antibody (E-5) Santa Cruz sc-518012

SMA Antibody (1A4) Santa Cruz sc-53015

ERBB2 Antibody (MAb414) Abcam ab225510

CD45 Antibody (H130) Biolegend 304020

ACTG1 Antibody (1-17’) Santa Cruz sc-65638

MUC5AC Antibody (E309I) Cell Signaling Custom (43937BC)

CDX2 Antibody (D11D10) Cell Signaling Custom (84638BC)

DDR1 Antibody (D1G6) Cell Signaling 5583

TGFBI Antibody (EPR12078(B)) Abcam ab170874

PAK4 Antibody (B-3) Santa Cruz sc-390507

Arcturus PicoPure DNA Extraction

Kit

Applied Biosystems KIT0103

truXTRAC FFPE total NA kit Covaris 520262

Human Comprehensive Exome

Panel

Twist Bioscience 102033

Human Genome Panel Twist Bioscience custom protocol

Continued on next page
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Table S2: Key reagents, datasets, and software packages used in these studies (Continued)

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Mouse retina scRNA-seq Macosko et al., 2015 GEO: GSM1626793

Mouse colon scRNA-seq Herring, Banerjee, et

al., 2018

GEO: GSM2743164

Mouse bone marrow cyTOF Weber Robinson, 2016 FlowRepository FR-FCM-ZZPH

Mouse bone marrow/blood

scRNA-seq

Han, et al., 2018 Figshare 865e694ad06d5857db4b

293T Cells
Zheng, et al. 2017

support.10xgenomics.com/single-

cell-gene-expression/datasets

Jurkat Cells

9k Neurons

10x Genomics

900 Neurons

4k PBMCs

4k Pan-T Cells

Placenta

3907 S1 3907 S2 Heiser, et al., 2021 GSE158636

Human colon ST

Heiser, et al., 2023 humantumoratlas.org/explore
Human colon multiregional WES

Human colon MxIF

Human CRC TMA

Human colonic-adenoma mIF data HTAN project humantumoratlas.org/explore

Mouse brain ST data 10X Genomics 10xgenomics.com/resources/datasets

Human colon scRNA-seq

Chen et al., 2021 humantumoratlas.org/exploreHuman colon bulk WES

Human colon MxIF
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Table S2: Key reagents, datasets, and software packages used in these studies (Continued)

REAGENT or RESOURCE SOURCE IDENTIFIER

TCGA COAD READ RNA-seq

clinical data

cBioportal cbioportal.org

TCGA COAD READ MMR status NCI GDC Data Portal portal.gdc.cancer.gov

Software and Algorithms

Space Ranger version 1.3.0 10X Genomics support.10xgenomics.com/spatial-

gene-expression/software/downloads

Loupe Browser version 6.4.0 10X Genomics 10xgenomics.com/products/loupe-

browser/downloads

Python version 3.8.10 Python Software

Foundation

python.org

R version 4.2.2 The R Foundation r-project.org

FastQC v0.11.9 Andrews, 2010 bioinformatics.babraham.ac.uk/

projects/fastqc/

Cutadapt v2.10 DOI:10.14806/ej.17.1.200 cutadapt.readthedocs.io

BWA v0.7.17 Li Durbin, 2010 bio-bwa.sourceforge.net

GATK v4.1.8.1 Van der Auwera

O’Connor, 2020

gatk.broadinstitute.org

Annovar v2019/Dec/05 Wang, Li, Hakonarson,

2010

annovar.openbioinformatics.org

Software (Python Packages)

DCA version 0.2.3 Eraslan et al., 2019 github.com/theislab/dca

FIt-SNE Linderman et al., 2019 github.com/KlugerLab/FIt-SNE

networkx version 2.2 Hagberg, Schult, Swart

2008

networkx.github.io

PhenoGraph 1.5.2 Levine et al., 2015 github.com/jacoblevine/PhenoGraph

POT version 0.6.0 Flamary et al., 2021 github.com/rflamary/POT
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Table S2: Key reagents, datasets, and software packages used in these studies (Continued)

REAGENT or RESOURCE SOURCE IDENTIFIER

scVI version 0.5.0 Lopez et al., 2018 github.com/YosefLab/scVI

Scvis version 0.1.0 Ding, Condon and

Shah, 2018

github.com/shahcompbio/scvis

umap-learn version 0.3.10 Mcinnes and Healy,

2018

github.com/lmcinnes/umap

ZIFA version 0.1 Pierson and Yau, 2015 github.com/epierson9/ZIFA

dropkick version 1.2.3 Heiser, et al., 2021 pypi.org/project/dropkick/

MILWRM version 1.1.0 Kaur Heiser, et al., 2023 pypi.org/project/MILWRM/

napari version 0.4.16 Sofroniew et al., 2022 napari.org

scanpy version 1.9.1 Wolf, Angerer and

Theis, 2018

github.com/theislab/scanpy

matplotlib version 3.0.3 Hunter, 2007 matplotlib.org

numpy version 1.22.4 Oliphant, 2006 numpy.org

pandas version 1.4.2 McKinney et al., 2010 pandas.pydata.org

scipy version 1.8.1 Oliphant, 2007 scipy.org

seaborn version 0.11.2 Waskom, et al., 2014 seaborn.pydata.org

scikit-learn version 1.1.1 Pedregosa et al., 2011 scikit-learn.org

scikit-image version 0.19.2 van der Walt, et al.,

2014

scikit-image.org

infercnvpy version 0.4.0 Patel et al., 2014 github.com/icbi-lab/infercnvpy

cnvkit version 0.9.9 Talevich et al., 2016 github.com/etal/cnvkit

squidpy version 1.2.2 Palla et al., 2022 github.com/scverse/squidpy

Software (R Packages)

Seurat version 3.0.0 Butler et al., 2018 satijalab.org/seurat

SIMLR version 1.8.1 Wang et al., 2017 github.com/BatzoglouLabSU/SIMLR
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Table S2: Key reagents, datasets, and software packages used in these studies (Continued)

REAGENT or RESOURCE SOURCE IDENTIFIER

GLM-PCA Townes et al., 2019 github.com/willtownes/scrna2019

ZINB-WaVE version 1.4.2 Risso et al., 2018 bioconductor.org/packages/zinbwave

splatter version 1.8.0 Zappia, Phipson,

Oshlack, 2017

DOI: 10.18129/B9.bioc.splatter

DropletUtils version 3.11 Lun, et al. 2019 10.18129/B9.bioc.DropletUtils

CellBender version 0.2.0 Fleming et al., 2019 github.com/broadinstitute/CellBender

UpSetR version 1.4.0 Lex, et al. 2014 doi:10.1109/TVCG.2014.2346248

sc-UniFrac version 0.9.6 Liu, et al. 2018 github.com/liuqivandy/scUnifrac

geepack version 1.3.9 Halekoh, et al., 2006 jstatsoft.org/article/view/v015i02

CytoTRACE version 0.3.3 Gulati et al., 2020 cytotrace.stanford.edu

maftools version 2.12.0 Mayakonda et al., 2018 bioconductor.org/packages/maftools

MesKit version 1.6.0 Liu et al., 2021 bioconductor.org/packages/MesKit

tradeSeq version 1.8.0 Van den Berge et al.,

2020

bioconductor.org/packages/tradeSeq

survival version 3.4-0 Therneau et al., 2009 github.com/therneau/survival
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