
Model Architectures and Algorithms for Frugal Deep Learning Applications

By

Zhongwei Teng

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

December 17, 2022

Nashville, Tennessee

Approved:

Jules White, Ph.D.

Douglas C. Schmidt, Ph.D.

Aniruddha Gokhale, Ph.D.

Peng Zhang, Ph.D.

Maria Powell, Ph.D.

To my beloved parents, who support my decisions in each stage of my life.

ii

ACKNOWLEDGMENTS

First and foremost, I would like to express my most genuine respect and gratitude to

my advisor, Prof. Jules White, for his patient instructions and generous financial sup-

port throughout my Ph.D. journey. Dr. White guided me with comprehensive research

directions on numerous research projects and opportunities, providing much help in my

publications.

I would like to thank my committee members, Prof. Douglas C. Schmidt, Prof. Peng

Zhang, Prof. Aniruddha Gokhale, and Prof. Maria Powell, for serving on the committee

of my dissertation. They have helped me with many projects and courses and offered

constructive insights into my research work in the past few years. It is my great honor to

have such a supportive and responsible committee. I also wish to thank Dr. Cui for his

supportive mentorship during my summer internship at Meta.

I would like to express my special thanks to my parents, Mr. Maoping Teng and Mrs.

Wenzhu Xu, for their unconditional love and enormous support in every stage in my life. I

want to also thank my dearest friends my friends and colleagues, Quchen Fu, Carlos Olea,

Michael Sandborn, Pengfei Wang, Zhuangwei Kang, Ziran Min, Shuang Zhou, Xiaosi

Zhang, Ziteng Liu, Yubo Fan, Baiting Luo, and many others who have always encouraged

me and backed me up during in my incredible journey.

iii

Chapter 1

Introduction

Research works in deep learning have shown promising results in solving real-world

problems in various domains with distinct human inputs, such as images[1], natural lan-

guages [2], speeches [3], and motions [4]. With novel ideas on model structure, such as

ResNet [5] and Transformer [6], evaluation results on problem benchmarks keep reaching

better performance. On the other side, industry attendance at international AI conferences

indicates that the trending works of on-the-edge deep learning are also applied in real-world

applications [7], extending from pure research to in-the-wild context. As a result, deep

learning theory is usually combined with engineering experience to build the in-the-wild

best practice. For example, researchers and developers often publish guidance books to

help engineers improve working efficiency and better understand strategy in deep learning

applications [8, 9].

As the connections between research and applications become stronger, besides sig-

nificant challenges in research fields in the deep learning community, such as model per-

formance and model explainability [10, 11], challenges related to in-the-wild tasks appear

and become more and more prevalent. For example, when extending from pure research

environments to applications, compared to static evaluation datasets, there are higher ex-

pectations of models’ robustness towards unexpected, noisy human inputs and lower model

inference latency [12]. Thus, when generalizing from research ideas to user-orientated ap-

plications, practical case-based challenges usually need to be solved to make applications

work. The gaps often happen outside the research environments, such as scalability[13],

reliability, efficiency[12], robustness[14], and usability[15].

Among those research-to-application gap challenges, a notable but relatively under-

discussed question is the costs of designing well-performed machine learning applica-

iv

tions [16]. In many scenarios, it is impractical to directly apply state-of-the-art models in

business systems due to limitations in computational cost. For example, due to healthcare

privacy policy, it is better to perform computations of machine learning models on wearable

devices, such as smartwatches, and thus raises additional demands on model complexity.

On the other hand, the cost limitation also exists when applying deep learning models

with novel ideas to solve specific problems, such as exploring human-computer interaction

with novel inputs. In this scenario, a commonly available research dataset usually can not

be directly applied to target applications, which requires developers to prepare their dataset.

However, human work on labeling can be expensive in generating large-scale datasets,

which are required for most deep learning models, especially when domain knowledge

is necessary for labeling works. For example, to detect common language vulnerabilities

with a deep learning model, the labeler must have a solid cyber-security background to

build a trustful dataset. As a result, collecting a large amount of data in the initial stage of

the problem is almost infeasible. Furthermore, the developer needs more data to validate

model performance effectively.

Thus, the frugality of designing machine learning applications remains a challenge in

both data and model complexity.

Research questions: What are frugality concerns in deep learning applications,

and how do we build model architectures and algorithms to improve the frugality of

deep learning applications? Frugality in deep learning is a relatively underrepresented

problem in research publications and lacks comprehensive reviews. It requires a balance

between better model performance and increasing cost demands. As a broad question,

interpretations of frugality are case-based and thus highly depend on inputs and the context

of specific deep learning applications.

In this thesis research, we will focus on different stages of optimizing deep learning ap-

plications with clear use cases and discuss their frugality challenges. As shown in figure1.1,

we will discuss the frugality problem in different stages during developing deep learning

v

Figure 1.1: Stages of developing deep learning applications.

applications.

1. Problem Formulation and Dataset Preparation. At the beginning of development,

we must formulate a real-world problem into a machine-learning problem. We of-

ten have challenges that the data needs to be more/ or we need an eligible dataset.

It is straightforward to collect high-quality data which are human-labeled. At the

same time, this high-cost solution also prevents validating research ideas and further

improving model performance due to the scalability of human-labeled methods.

2. Better performance with minor computation cost. For the given research problem,

we need to improve the model performance on the target dataset. Models with more

parameters usually reach better results. Especially for in-the-wild problems, models

need to be robust to handle much more noisy data. To apply more complex models,

the computational costs can be a challenge in real applications. How to solve a

machine learning problem with less computation cost has become more and more

critical.

3. Multiple models in complex machine learning problems. A machine learning system

may contain multiple independent models to solve complex problems as a pipeline

structure. The final results are decided by an ensemble or cascaded ways via predic-

vi

tions from submodels. Improving overall performance and inference efficiency with

the results of all submodels is the major problem we need to focus on.

To better investigate challenges across different stages, we will discuss frugality prob-

lems based on three specific use cases, including automatic programming and speaker ver-

ification tasks. Discussion in each use case will focus on frugality concerns in a specific

aspect, from data preparation to model complexity. The three use cases include:

1. Automatic programming problem.

Drawing is a natural way for users to express their programming goals without spec-

ifying domain terminologies since hand-drawn sketches are rich in information. For

instance, describing a workflow by drawing a diagram is more intuitive than explain-

ing it verbally. By leveraging sketches as a type of input for automatic programming,

we could potentially make it easier for domain experts and untrained professionals

to realize systems without manually writing code.

2. The ASVSpoof problem.

Automatic speaker verification (ASV) models have been adopted widely in acoustic

applications. However, potential spoofing attacks (e.g., synthetic speech, speech re-

ply) propose challenges to the models’ robustness. Therefore, CounterMeasture(CM)

systems are developed as independent models to protect ASV systems. The ASVSpoof

problem focus on developing a classifier to distinguish bonafide human speech with

various unseen spoof attacks.

3. The SASV problem.

The development of ASV systems and CM systems is usually independent, and the

evaluation of CM systems is based on results from fixed ASV systems. Therefore, the

Spoofing Aware Speaker Verification (SASV) problem is proposed to achieve better

results by jointly optimizing ASV and CM systems. The problem focuses on reaching

vii

a single score based on the outputs of ASV and CM systems to determine if a speech

is from target speakers and avoid the risks of spoofing attacks simultaneously.

1.1 Understand Research Challenges

This section discusses the critical frugality challenges in developing deep learning ap-

plications, which arise in different stages of development. The rapid development of deep

learning research benefits from the volume of datasets and computational resources. As

discussed in the previous section, the frugality challenge is a trade-off between achieved

performance and costs.

1.1.1 Challenge 1: Expensive dataset preparation in domain-specific and non-trivial tasks

Progress in popular deep learning questions, such as image recognition, inspires re-

searchers and developers to explore new ideas to apply the state-of-the-art model in domain-

specific use cases. With well-performed model architectures and algorithms, deep learning

is ubiquitous. It can be integrated into almost any user-oriented application to improve ef-

ficiency, security, and reliability in real-world problems For example, general image recog-

nition models can be used in applications determining the type of mushrooms.

However, the domain-specific questions are usually case-based, so most of the time,

available resources, such as the public dataset, can not be used as the training dataset. In

this case, good models exist, but the solutions do not. The application development needs

dataset preparation and benchmarks for performance evaluation, where great human efforts

are necessary. Moreover, these challenges can be costly if the labeling work is a task that

requires domain experts to create datasets. For example, in the NLC2CMD challenge, En-

glish descriptions need to be translated into Bash commands with machine learning models.

IBM contributed an initial dataset by hiring bash experts clean data collected from Stack-

Overflow. Even though the current dataset in NLC2CMD contains 9,305 NL/Bash pairs,

it is still a relatively small number for a deep-learning problem. The method used to pro-

viii

duce the NLC2CMD dataset is too expensive to scale up because it requires manual editing

by Bash experts. As a result, the performance of the NLC2CMD application is primarily

affected by the data volume.

The difficulty in data preparation indicates a gap between theoretical models and domain-

specific applications. Even though it is believed that an algorithm is a solution to solve a

real-world problem, data limitations often prevent researchers from further validating their

ideas. Thus, improving frugality in data preparation becomes a critical challenge in many

domain-specific deep learning problems.

1.1.2 Challenge 2: Better model performance requires higher computational costs

. A significant metric to evaluate deep learning models is the quality of prediction

results, such as accuracy or equal error rate. The promising results are usually derived from

research challenges, without consideration of noisy in-the-wild environments, where model

performance is expected to be more robust and stable for unseen data or even malicious

attacks. Thus, we have higher demands on deep learning models towards unexpected inputs

in given tasks. To achieve better model performance, researchers typically design a more

complex model architecture, such as deeper networks, with higher computational costs.

For example, in image recognition tasks, by adapting the ResNet architecture, layers of the

convolution network are boosted to 50, even 101, and reach better performance on various

tasks, improving the results of smaller networks.

Conversely to developing a single deep network, another prevalent solution is to im-

prove model performance with hybrid models and inputs. Multiple models towards the

same tasks are trained independently and final results can be calculated. This method is

preferable when input data has more than one representation, such as speech-related tasks.

Each independent model benefits from its input signal and thus can complement each other,

hugely improving models’ stability towards unseen inputs. For example, speech signals

with different frequency filters focus on different parts of the raw waveform, and energy

ix

loss is inevitable during signal processing. As a result, the ensemble model can take ad-

vantage of both inputs and submodel structure characteristics.

Single deeper, or hybrid models are preferable in algorithm selections for better pre-

diction quality. However, both solutions tend to have more training parameters, propos-

ing potential challenges in model complexity. When the computational resources or data

transmission are limited, the model complexity may become a bottleneck for better perfor-

mance. For example, wearable application applications may only be allowed to use local

computational resources due to healthcare privacy concerns.

1.1.3 Challenge 3: Increased complexity of systems with multiple models

Systems of deep learning applications tend to become more complex to adapt to new in-

the-wild challenges. Each submodel can contribute to a specific part of the overall problem

and then make final predictions. For example, at the beginning of the face recognition

problem, it has less concern about synthetic face images. However, with the development

of deep fake technology, face recognition systems need to add a model to detect spoofing

images to solve risks caused by malicious deep fake attacks.

Robust deep learning applications rely on various submodels designed under different

research contexts. In many scenarios, different components in a machine learning system

take homogeneous inputs (e.g., images, speech, or natural languages) with different data

distributions, so that submodels can be optimized on specific evaluation metrics. When

applications need to solve a new problem, the system usually needs to supplement new

models into existing pipelines. Empirical results indicate that more submodels and ap-

propriate fusion strategies, such as embedding-based methods, can lead to better accuracy

performance.

In the meantime, potential challenges in efficiency and computational costs arise due to

the increased number of system components. Restraining a system to be simple can be a

more challenging problem compared to building a complicated system.

x

1.2 Understand Use Cases

1.2.1 Overview: Human Sketch to Visualization(Sketch2Vis)

Data visualization is a vital tool that enables people to better understand the driving

forces behind real-world phenomena [17]. These visualizations help provide insights by

creating graphical representations of data element relationships, trends, and dominant fea-

tures. Many visualization tools are available, ranging from programming-based visualiza-

tion libraries (such as Matplotlib [18] and D3 [19]) to user-friendly graphical user interface

(GUI) apps (such as Tableau [20]) for building visualizations interactively.

Building good data visualizations from raw data is hard. Programmers need training to

use data visualization tools competently, including tools that use GUI-based interfaces [21].

A consequence of this need for training is that domain experts who need visualizations to

understand physical systems (e.g., power grids, pedestrian traffic, or healthcare processes)

often team up with a visualization drafter (e.g., a software engineer or data scientist) to

build a data visualization collaboratively [22].

For example, consider a scenario where a physician unfamiliar with data visualiza-

tion tools needs several visualizations produced to understand how data (e.g., heart rate,

pulse oxygen, blood glucose data) from medical devices attached to a patient correlate

with changes in the patient’s blood pressure. The physician could state these requirements

to the drafter and describe the format they want the medical device data presented in, which

could then be used to generate the visualizations. The physician might also draw a sketch

to describe roughly what they expect the final visualization to look like.

In this scenario, the sketch would provide an abstract representation or set of constraints

that the final visualization of the data is expected to adhere to (e.g., a drawing of a line plot

with separate series for each of heart rate, pulse oxygen, blood glucose vs. blood pressure).

The drafter would take the high-level sketch of the requirements describing the type of

visualization and a description of the data to use (e.g., provided by the labels of the sketch).

xi

They could then instantiate a concrete visualization in source code and connect it to the

appropriate data corresponding to labels in the sketch.

Research question: Can deep learning be used to generate visualizations from

hand-drawn sketches automatically? Drawing is a natural way for domain experts to

express their visualization goals since hand-drawn sketches are rich in information without

specifying visualization terminologies. By leveraging sketches as a type of input for data

visualization, visualization tools could potentially make it easier for domain experts and

untrained professionals to explore data sets. Moreover, as a natural way to interact with

mobile devices, sketches can be integrated into mobile data exploration tools [23] to help

users operate visualization features easier on mobile devices. At current stage, we focus on

the generation of the source code to realize the visualization-only.

Progresses in deep learning has shown great promise in solving a number of unstruc-

tured problems, such as identifying the content of images or writing essays as if they were

written by a human. Deep learning provides us a potential way to improve current au-

tomatic programming approaches. For example, neural networks, such as convolutional

neural networks (CNNs) and recurrent neural networks (RNNs), have been adopted in var-

ious domains, such as machine translation and image recognition, due to their ability to

understanding images and natural language. Deep learning advances will help make this

next step in automatic programming possible by raising the level of abstraction and making

the coding process be more declarative using languages that are closer to the flexibility of

human languages.

1.2.2 Overview:Automatic Speaker Verification Spoofing and Countermeasures Chal-

lenge(ASVSpoof) Challenge

Automatic speaker verification (ASV) is a widely used bimetirc authentication in many

acoustic-related applications, such as awaking mobile devices, or IoT applications. It can

be regarded as a gate to subsequent speech recognition tasks. ASV systems provide a

xii

usable and reliable authentication methods, even for in-the-wild context, for users without

extra tokens. However, compared to high performance on bonafide human speech, ASV

systems are vulnerable to presentation attacks, where attackers can spoof the system by

masquerading target speakers with synthetic speech or replayed speech.

A countermeasure system is developed to protect ASV systems’ resistance from ma-

licious spoofing attacks. A CM system is a binary classifier to distinguish bonafide and

spoof speech, filtering both zero-effort and spoofed impostors for subsequent works.

Due to the continuous development of speech synthesis technology, the exact nature

of spoofing attacks could hardly be interpretable. Generalization becomes a significant

demand for countermeasures systems to process unseen spoofing attacks. However, the

uncertainty of in-the-wild environments proposes a big challenge for the ASVSpoof prob-

lem when using a single classic speech signal as input features. Considering inevitable

energy loss during the calculation of speech signals, ensemble models with multiple inputs

always show better performance. In addition, a deep complex convolution network shows

its ability to process raw waveform. Due to less energy loss, it could be more suitable

for the ASVSpoof problem. Both of the solutions would primarily increase the model’s

computational costs.

As discussed in the previous section, when the ASV system is developed on smaller de-

vices with limitations on computational resources, the model complexity becomes another

concern.

1.2.3 Overview: spoofing aware speaker verification (SASV) Challenge

Empirical study shows that the ASV and CM systems show promising performance

for in-the-wild acoustic environments. The minimum tandem detection cost function (t-

DCF) is used to evaluate CM systems’ impact on ASV systems when confronting spoofing

attacks. However, training and evaluation of the CM system are based on fixed ASV sys-

tems. In other words, the development of the ASV system and CM are independent.

xiii

Table 1.1: Research challenges and proposed approaches in the research

Challenge Approach Section

Expensive Dataset preparation
in domain-specific and non-trivial tasks

Automatic dataset generation
with reverse captioning
in Sketch2Vis problem

2.5

Better model performance requires
higher computational costs

Auxiliary strategy of
hybrid models
in ASVSpoof problem

3.3

Increased complexity of
systems with multiple models

Single SASV model based
on generalization of different
types of speech data

4.3

The SASV challenge extends prior research and tries to achieve better results by con-

sidering ASV and CM models as a single integrated system, bridging the gap between the

ASV and CM systems. In the SASV problem, the system can deliver one single score from

input speech, recognizing target speakers’ information and considering the risks of spoofed

utterances at the same time.

1.3 Overview of The Research

Table 1.1 shows the challenges and proposed approaches, as well as section locations

in this dissertation research.

Figure 1.2 shows an overview of our research work. As shown in the figure, we will

discuss frugality challenges with 3 use cases.

Contribution 1: Proposing an scalable dataset generation solution for code gener-

ation problems using reverse captioning and validating the feasibility of the solution

in the Sketch2Vis Challenges.

A common challenge in automatic code generation problems is the limitation of the

training dataset. Due to the requirements on domain knowledge of programming languages,

each code generation application needs an entirely different training dataset. Traditionally,

specific programming language experts are hired to manually translate input data (e.g., En-

xiv

Figure 1.2: Overview of the research work.

glish descriptions, image descriptions) into functional code. Thus, high-quality datasets are

generated expensively, lacking the scability to enlarge data volume. It prevents researchers

from effectively solving the problem in deep learning models.

To build a training dataset frugally, we proposed a reverse captioning solution for the

automatic code generation problem. Labels of inputs/code pair can be generated first, and

execution results of generated code will be processed with style transfer or image augmen-

tation techniques as training features. A smaller-sized human-labeled data will be used for

validating model performance.

In this dissertation research, we implement our reverse captioning solution in the Sketch2Vis

problem, where a model needs to translate human sketches into visualization code. We

automatically combine Domain-Specific Language (DSL) with style transfer to generate

sketch-styled training data with corresponding visualization code. The proposed solution

overcomes the challenge of sourcing a data set of paired hand-drawn sketches with data

visualization source code. Moreover, the results show that models trained on this syntheti-

cally generated data effectively generalize to hand-drawn sketches.

We trained a transformer-based model on our generated dataset and validated model

performance on the human-labeled validation set. The results demonstrate the feasibility

of using transformer models with the generated dataset to reach the desired accuracy of

xv

generated visualization code.

Contribution 2: Proposing a hypothesis towards speech-related problem to lever-

age multiple speech signals in hybrid models frugally and validating the hypothesis

with an implementation model structure, ARawNet, in the ASVSpoof challenge, im-

proving model performance with less model complexity.

An emerging trend in audio processing is capturing low-level speech representations

from raw waveforms. These representations have shown promising results on a variety of

tasks, such as speech recognition and speech separation. Compared to handcrafted features,

learning speech features via backpropagation can potentially provide the model greater

flexibility in how it represents data for different tasks. However, results from empirical

studies show that, in some tasks, such as spoof speech detection, handcrafted features still

currently outperform learned features.

In this dissertation research, instead of evaluating handcrafted features and raw wave-

forms independently, we proposes an Auxiliary Rawnet model to complement handcrafted

features with features learned from raw waveforms for spoof speech detection. A key ben-

efit of the approach is that it can improve accuracy at a relatively low computational cost.

The proposed Auxiliary Rawnet model is tested using the ASVspoof 2019 dataset and the

results reaches best performance with smaller model complexity.

Results from this dataset indicate that a lightweight waveform encoder can boost the

performance of handcrafted-features-based encoders for 10 types of spoof attacks, includ-

ing 3 challenging attacks, in exchange for a small amount of additional computational

work.

Contribution 3: Discussing solutions for the SASV problem and proposing a joint-

training structure with multiple loss functions to simplify the system complexity with

a single training stage.

Research in the past several years has boosted the performance of automatic speaker

verification systems and countermeasure systems to deliver low Equal Error Rates (EERs)

xvi

on each system. However, research on joint optimization of both systems is still limited.

The SASV 2022 challenge was proposed to encourage the development of integrated spoof-

ing aware speaker verification system (SASV) with new metrics to evaluate joint model

performance.

To improve system frugality in SASV problem, we propose an ensemble-free end-to-

end solution, SA-SASV, to build a SASV system with multi-task classifiers, which are

optimized by multiple losses and has more flexible requirements in training set. The pro-

posed system is trained on the ASVSpoof 2019 LA dataset, a spoof verification dataset

with small number of bonafide speakers, and improves the performance of baseline sys-

tems from 8.76% to 4.86% in SASV-EER. Results of SV-EER and SPF-EER indicates

that, the model performance can be further improved by training in complete ASV and CM

dataset

Dissertation Outline. The remainder of the dissertation is organized as follows: Chap-

ter 2 proposed a reverse-captioning solution to generate data efficiently in the Sketch2Vis

problem. Chapter 3 presents a hypothesis in speech-oriented hybrid deep learning models

and proposed a hybrid model called ARawNet in ASVSpoof challenges. Chapter 4 discuss

the feasibility of joint training ASV and ASVSpoof model with multiple decoders to sim-

plify model complexity. Concluding remarks and future works are discussed in Chapter

5.

xvii

Chapter 2

Case study: Generating Data Visualizations from Hand-drawn Sketches with Deep

Learning

This chapter is adapted from ”Sketch2Vis: Generating Data Visualizations from Hand-

drawn Sketches with Deep Learning.” published in 2021 20th IEEE International Confer-

ence on Machine Learning and Applications (ICMLA) and has been reproduced with the

permission of the publisher and my co-authors Quchen Fu, Jules White, and Douglas C.

Schmidt.

• Teng, Zhongwei, Quchen Fu, Jules White, and Douglas C. Schmidt. ”Sketch2Vis:

Generating Data Visualizations from Hand-drawn Sketches with Deep Learning.” In

2021 20th IEEE International Conference on Machine Learning and Applications

(ICMLA), pp. 853-858. IEEE, 2021.

2.1 Problem Overview

Data visualization is a vital tool that enables people to better understand the driving

forces behind real-world phenomena [17]. These visualizations help provide insights by

creating graphical representations of data element relationships, trends, and dominant fea-

tures. Many visualization tools are available, ranging from programming-based visualiza-

tion libraries (such as Matplotlib [18] and D3 [19]) to user-friendly graphical user interface

(GUI) apps (such as Tableau [20]) for building visualizations interactively.

Building good data visualizations from raw data is hard. Programmers need training to

use data visualization tools competently, including tools that use GUI-based interfaces [21].

A consequence of this need for training is that domain experts who need visualizations to

understand physical systems (e.g., power grids, pedestrian traffic, or healthcare processes)

xviii

Figure 2.1: A Scenario of the Sketch2Vis Problem in Mobile Devices.

often team up with a visualization drafter (e.g., a software engineer or data scientist) to

build a data visualization collaboratively [22].

For example, consider a scenario where a physician unfamiliar with data visualiza-

tion tools needs several visualizations produced to understand how data (e.g., heart rate,

pulse oxygen, blood glucose data) from medical devices attached to a patient correlate

with changes in the patient’s blood pressure. The physician could state these requirements

to the drafter and describe the format they want the medical device data presented in, which

could then be used to generate the visualizations. The physician might also draw a sketch

to describe roughly what they expect the final visualization to look like.

In this scenario, the sketch would provide an abstract representation or set of constraints

that the final visualization of the data is expected to adhere to (e.g., a drawing of a line plot

with separate series for each of heart rate, pulse oxygen, blood glucose vs. blood pressure).

The drafter would take the high-level sketch of the requirements describing the type of

visualization and a description of the data to use (e.g., provided by the labels of the sketch).

They could then instantiate a concrete visualization in source code and connect it to the

appropriate data corresponding to labels in the sketch.

Research question: Can deep learning be used to generate visualizations from

hand-drawn sketches automatically? Drawing is a natural way for domain experts to

express their visualization goals since hand-drawn sketches are rich in information without

xix

specifying visualization terminologies. By leveraging sketches as a type of input for data

visualization, visualization tools could potentially make it easier for domain experts and

untrained professionals to explore data sets. Moreover, as a natural way to interact with

mobile devices, sketches can be integrated into mobile data exploration tools [23] to help

users operate visualization features easier on mobile devices.

This dissertation presents “Sketch2Vis,“ which is the first deep learning solution for

translating human sketches into data visualization source code. Figure 2.1 shows a scenario

of applying the Sketch2Vis problem on mobile apps. As shown in this figure, users can

draw sketches on a mobile device without specifying visualization implementation details

and a deep learning model can then generate source code for the desired visualization in

multiple target visualization libraries. We focus on the generation of the source code to

realize the visualization-only at this point.

The results of our research shows the capability of deep learning networks in gener-

ating multi-platform visualization code from hand-drawn sketches via a domain-specific

language. The key research contributions of this dissertation include:

• Showing how data visualization code generated from a hand-drawn sketch can be

modeled as an image captioning problem and test our method with three baseline

models. Our empirical results demonstrate that Transformer models can achieve 95%

structural accuracy in correct source code generation for hand-drawn sketches.

• Describing a novel approach for using style transfer and automated code generation

to generate visualization sketches that look like they were drawn by a human and have

accompanying source code as labels. Empirical results show that models trained on

this synthetically generated sketch and source code labeled data generalize to real

hand-drawn sketches by humans.

• We propose new evaluation metrics to score generated visualizations that are tailored

to the domain of generating data visualizations from sketches. These metrics over-

xx

come challenges (such as classification accuracy) encountered using conventional

metrics.

• We compare and evaluate the performance of recurrent neural network (RNN)-based

and Transformer-based networks on the Sketch2Vis problem. Our empirical results

provide insights into what model architectures and domain-specific language (DSL)

designs perform best on the Sketch2Vis problem.

This chapter focuses only on the generation of source code to realize the visualization

(e.g., render a line plot with the correct number of series, colors, etc.). Generating complex

queries from natural language to select data for the plot is a separate and rich domain of

research [24, 25, 26, 27]. Although combining these approaches could fully automate the

selection and visualization of data, this chapter assumes a manual process for selecting data

and automatically generating source code that renders the data visualization with the input

data.

The remainder of this dissertation is organized as follows: Section 2.2 discusses key

challenges of building a model to translate hand-drawn sketches into multi-platform visu-

alization code; Section 2.3 analyzes the feasibility of the Sketch2Vis problem in terms of

dataset construction; Section 2.4 discusses different approaches for evaluating deep learn-

ing model performance on the Sketch2Vis problem and proposes new evaluation metrics;

Section 2.5 analyzes empirical results from experiments we conducted on two key deep

learning architectures: RNN and Transformer models; Section 2.6 compares related work

with the techniques we explore in the dissertation; and Section 2.7 presents concluding

remarks and lessons learned.

2.2 Research Challenges

Deep learning networks, such as convolutional neural networks (CNNs) and recurrent

neural networks (RNNs), have shown great promise in understanding images and natural

xxi

language. An interesting question is whether the performance they exhibit in other domains

translates to the Sketch2Vis problem. This section discusses challenges specific to this

problem that a deep learning model must address.

2.2.1 Challenges 1: Source Code is Platform-specific

A deep learning model should ideally be able to generate sketches using a variety of vi-

sualization libraries. However, source code for visualization libraries is typically platform-

specific (e.g., Java vs. JavaScript, D3 vs. Tableau). To convert directly from sketch to data

visualization, therefore, the machine learning (ML) model must be trained how to produce

visualizations using the underlying visualization library to achieve the desired goal(s), i.e.,

the ML model must learn the syntax, grammar, and semantics of the underlying visualiza-

tion tool. For example, if D3.js is used as the target visualization platform, the ML model

needs to understand how to produce valid JavaScript code that will achieve a visualization

corresponding to a sketch.

Although two data visualizations may appear similar to a human, if different program-

ming languages or libraries are used to create them, the actual implementations can vary

greatly, depending on the underlying platforms and programming languages. For example,

the axis and plot type in a line graph are explicit to a human, regardless of whether or not

a person has data visualization knowledge. However, different plotting libraries specify

axes via different mechanisms, such as JavaScript arrays vs. Python lists. Users therefore

need to produce separate implementations for the same visual representation each time a

visualization is instantiated on a different platform and/or with a different programming

language.

To train a deep learning model, a dataset is needed that associates (i.e., “pairs”) images

of sketches with the concrete source code to realize the appropriate visualization for the

sketch. If the dataset is platform-specific (e.g., the source code targets a particular library),

the model must be retrained for each individual target visualization platform. Moreover,

xxii

variations in the target languages and frameworks may make this training process easier or

harder.

2.2.2 Challenges 2: Sketches and Paired Source Code are Expensive to Obtain

Deep learning models require large volumes of data to increase their robustness and

generalize effectively to as-yet unseen problems. Public datasets for most image process-

ing problems typically contain over 100,000 training images and labels. For example,

ImageNet [28] has 1,281,167 images with 21,841 labels and the Open Images Dataset [29]

has 9,011,219 images with more than 5,000 labels.

To train a deep learning model to turn sketches into source code, a dataset that pairs

hand-drawn sketches with the source code to instantiate the appropriate visualization is

needed. There is no available dataset containing both hand-drawn visualizations and the

corresponding source code representation. It is therefore hard to train and experiment with

these models since producing a large dataset of paired sketches and source code requires

working with data visualization experts, which is prohibitively expensive relative to other

domains, such as labeling what is in an image (e.g., cats, dogs, flowers, etc.).

For example, 10,000 sketches and associated source code would be needed to train

models on the low-end of data volume scale. Obtaining these types of datasets is not easily

crowd-sourced. Moreover, even if the dataset is somehow crowd-sourced, ensuring that

the source code labels are correct is a much harder problem than simply determining if a

bicycle or street light is in a picture using the mechanisms (such as captchas) applied in

related work.

2.2.3 Challenges 3: Correlations Among Human-drawn Visualizations

There is large variation in how a human may sketch a particular visualization. Each type

of visualization must therefore be drawn numerous times in the training set for models to

learn. For example, if we want a 20,000-image dataset supporting five visualization types,

xxiii

4,000 images for each type of visualizations should be drawn repeatedly.

In contrast, human drawn sketches are affected by personal style, e.g., sketches drawn

by same person are often similar, especially when the target visualizations are simple. In

this case, even if the goals of data volume can be achieved, getting variation in drawing

style still requires a very large number of human drawers. A quality dataset must, therefore,

provide as much randomness as possible in the sample sketches.

2.2.4 Challenges 4: Evaluation of Generated Code

Deep learning models rely on automated scoring of their outputs to learn and improve

throughout the training process. It is hard, however, to score data visualization quality au-

tomatically. The performance of generated natural language captions, which is the type of

model we used to attack the problem, is often evaluated by n-gram matching metrics [30],

such as Bleu [31] and METEOR [32]. Unfortunately, evaluating the predicted code snip-

pets for a data visualization (which are the outputs of a deep learning model) focus on

low-level details that may map poorly to visualization features.

In particular, the importance of different visualization features must be considered to

enhance the usability of visualization implementations. For example, in a visualization

code block, legend selections may contribute more than color selections to the validity of

the visualization. Therefore, although many prior scoring mechanisms have been applied

in prior natural language deep learning work, it is not clear if they are sufficient or effective

on the Sketch2Vis problem.

2.3 Generating Data Visualization Source Code from Hand-drawn Sketches

Image captioning is the process of producing a textual representation of an image (e.g.,

a car parked in front of a copse of trees). In recent work, a number of problems have

been phrased as image captioning, such as the generation of HTML for a sketch of a web

page layout [33]. This section describes how we investigated the feasibility of phrasing

xxiv

the Sketch2Vis problem as an image captioning problem. It also explores a key challenge

of obtaining data and explains how we overcame this challenge by developing a novel

approach using a domain-specific language (DSL) and style transfer, which is a computa-

tional process that makes an image appear as if it was produced by a human artist rather

than a computer.

2.3.1 Developing a Training Dataset

Preparing a large volume of hand-drawn images paired with source code to realize

corresponding visualizations is hard. A dataset that pairs hand-drawn sketches with the

source code to instantiate the appropriate visualization is needed to train a deep learning

model to convert sketches into source code. There is no available dataset containing both

hand-drawn visualizations and the corresponding source code representation. It is therefore

hard to train and experiment with these models since producing a large dataset of paired

sketches and source code requires working with data visualization experts, which is pro-

hibitively expensive relative to other domains, such as labeling what is in an image (e.g.,

cats, dogs, flowers, etc.).

Style transfer has emerged as an active area of research. Deep learning style transfer

models can take images and make them look like they were drawn in a particular human

artistic style. Significant progress has been made to advance style transfer capabilities,

particularly in the domain of deep learning [34]. Some visualization libraries, such as

Matplotlib, have also added simple style transfer mechanisms to make charts look hand-

drawn.

We propose a solution to the training data set problem that applies (1) a domain-specific

language (DSL) and its grammar to generate source code for data visualizations randomly

and (2) a variety of style transfer approaches to convert these computer-rendered visualiza-

tions into images that appear hand-drawn. Our dataset creation process inverts the normal

dataset curation process of obtaining raw data and then labeling it with a human. Instead,

xxv

the approach we employ operates as follows:

1. Generate the source code (label),

2. Execute the source code to render the visualization and export it as an image (semi-

raw data), and

3. Apply style transfer and image augmentation techniques to produce sketches of the

visualization that look like they were drawn by humans (raw data).

As discussed in Section 2.2.1, a key advantage of using a DSL is that it makes the

training process independent of the target visualization library. Likewise, the language

design can be tailored to facilitate faster learning. Compared with sketches hand-drawn

by human artists, synthesized images that appear hand-drawn have several advantages,

including:

1. Scalable rendering of highly variable sketches. A problem with a human-driven

approach is that each human tends to produce sketches with a similar style. Using

hand-made sketches to train not only requires a large number of hand-drawn images,

but also a large number of people to ensure the dataset shows sufficient variation to

generalize to the larger population. Our DSL-based approach enables a much wider

variation in visualization features/types through randomization.

2. Balanced training data distribution. Since the dataset is created in a semi-random

way, we can manipulate the distribution of the training data. Our approach avoids

potential deep learning challenges caused by imbalanced datasets, which can yield

models that generalize poorly.

3. Dramatically lower cost. A large volume of source code labels can be prepared

through source code generation from the DSL without relying on time-consuming

and costly manual creation of source code for each visualization. Hiring data visual-

xxvi

ization engineers to produce source code for sketches is prohibitively expensive and

difficult to crowd-source.

2.3.2 From DSL to Visualization Code

As described in Section 2.2.1, a key problem in generating programming language code

from sketches is that the models must be trained on each programming language that they

target, which is suboptimal. To overcome this challenge—and to support realization of the

sketch using multiple visualization platforms—we employ an intermediate DSL model that

represents the abstract goals of the user with a simple syntax that can be learned readily

by a deep learning model. The deep learning model produces code using our DSL and

then code generators translate that DSL code into the implementation details of a specific

visualization library.

Our DSL uses an XML-based syntax as shown in Figure 2.2. A token dictionary (called

Figure 2.2: An Example of Describing a Pie Chart Instance with the DSL Model.

a token pool) is built and updated for the DSL model, as shown in Figure 2.3. Visualiza-

tion characteristics are described by tokens enclosed by starting and closing tags, such as

”< type >” and ”< /type >”. These tokens are categorical values tokens, such as visual-

ization type (e.g., scatter plot), indicating visualization feature candidates. A visualization

specification is built from a sequence of tokens and the appropriate enclosing tags. The

complete DSL grammar used in the experiments is available in the supplementary materi-

als referenced at the end of the dissertation.

Images in a dataset are generated by different visualization tools. Therefore, the corre-

xxvii

sponding visualization features in our DSL may vary, i.e., features supported by some tool

A may not be supported by another tool B. This syntax enables us to assign a visualization

type with flexible features in our DSL (instead of a fixed length of features), such that each

feature is independent. In this case, only supported features in the target visualization tool

must be considered during dataset preparation.

As shown in Figure 2.3, after a DSL specification for a visualization is produced, we

can apply a code generation adapter to produce the native visualization code needed to

render the visualization on the target platform (e.g., matplot, D3, etc.). Adopting an inter-

mediate DSL (rather than directly relying on native visualization code for the visualization

specification) enables us to decouple the deep learning model from the generation of the

source code.

Different code generators can be plugged into target different visualization platforms

without retraining the underlying deep learning model. However, if a new platform has

visualization capabilities that were not captured in the DSL language and trained tokens,

additional training data is needed to support these new visualization features that were not

trained on previously.

In summary, our DSL-based approach has the following key benefits:

• Source code generators can produce visualizations for several platforms using

a single model inference. Since model outputs describe sketches independently of

the concrete implementation, the deep learning model must only learn one syntax

during the training process. A single inference from the model can be run through

multiple code generators to target different platforms. The model and the source code

generators can be shared and reused more easily.

• The dataset can be updated and expanded easily. When a training dataset must be

enlarged to train more complex plots, new tags can be added to the token dictionary.

After a model is trained that can interpret sketches and produce DSL instances, a

code adaptor can be built for different target platforms without retraining the original

xxviii

models.

2.3.3 Dataset Construction and Expansion

To ensure high quality training images and reduce the possibility of overfitting, pairs

of images and DSL instances in the dataset must be produced from multiple visualization

tools. The goal is to ensure the rendered sketches of visualizations have different styles and

wider variation that better match the variations in how humans sketch. Figure 2.3 shows

these steps to initialize and extend the training dataset with new visualization tools.

Figure 2.3: Diagram of the Dataset Construction Mechanism.

2.3.4 Adding New Visualization Capabilities to the Training Dataset

Before a new visualization tool is used to generate images for the training dataset, the

supported plotting arguments for the tool must be enumerated carefully. All data used

to generate the training images must be stored for future use. This data is referred to as

metadata, which represents the implementation of the native visualization tool and influ-

ences the design of an updated DSL by creating structural tokens and allowed values for

the tokens, as discussed in Section 2.3.2.

xxix

Since the new tool’s visualization metadata is likely different from the prior visualiza-

tion tools used to create the training visualizations, the expected data formats and naming

convention of visualization features may also be different. Figure 2.3 shows how a DSL to-

ken pool playing a role of word vocabulary is introduced to ensure a unified format for the

DSL. Instead of generating new DSL tokens directly from the metadata, the new features

must be compared with existing tokens in the DSL token pool and mapped to equivalent

tokens wherever possible to eliminate semantic duplication across tokens.

By separating the metadata and DSL syntax, we can ensure data differentiation without

introducing excess tokens and reduce the size of the word vocabulary, which is important

for the deep learning models. Unused information in the metadata, such as the textual

name for axes, can be saved for potential future use. For example, we can train the model

to recognize and label text in sketches so that the model can communicate with data directly

without requiring users to input this information manually.

2.3.5 Image Corpus Differentiation

To enhance the robustness of the synthesized hand-drawn image corpus—thereby over-

coming the challenge we discussed in Section 2.2.4—we applied randomization to generate

a widely varying corpus of images, including the following:

1. Visualization type. The types of visualizations (such as line plot, bar plot, and pie

plot) are generated randomly.

2. Specifications to the visualizations. The parameters sent to the underlying visu-

alization libraries for the visualization type of visualization are randomized. For

example, the parameters of a bar chart may include the height of the bars, color of

the bar faces, color of bar edges, and legend position.

3. Selections of the style transfer. Style transfer approaches often have range of argu-

ments that impact rendering style. We achieve this capability by generating images

xxx

from (1) multiple visualization tools, which support style transfer functions, and (2)

sketch style transfer deep learning models, which are trained based on real hand-

drawn sketches of various instances.

4. Text differentiation. To ensure randomness in the textual elements in images, we

randomize the labels applied to visualization elements.

5. Multiple visualization instances. A single sketch may contain multiple visualiza-

tions, so we randomized how different visualizations were shown in a sketch.

Using our randomization approach, a wide variety of sketches can be generated that

appear hand-drawn and cover a large number of visualizations. Samples of our generated

sketches are shown in Figure 2.4. Figure 2.4(a) depicts four visualization types generated

Figure 2.4: Examples of Synthetically Generated Training Images Using Style Transfer

via D3.js/RoughViz [35] on web browsers . Figure 2.4(b) shows five single visualiza-

tion types and a visualization instance containing multiple visualization type generated via

xxxi

XKCD() function supported by Matplotlib [36]. Figure 2.4(c) shows sketches transferred

by Photo-Sketching [34] based on images generated by visualization tools.

2.4 Sketch2Vis Evaluation Metrics Exploration

A key question explored by our research was what deep learning architectures were

most promising for the Sketch2Vis problem. RNN [37, 38, 39] and Transformer [40, 41]

models have each shown excellent results on image captioning problems. We experimented

with a number of RNN and Transformer architectures and present the best performing

architectures that we found and their accompanying results on the Sketch2Vis problem.

One challenge of our architectural analysis was determining an appropriate scoring

metric to use. We initially looked to establish metrics from the domain of machine transla-

tion since we were translating images into text. In translation problems, such as English to

German translation, n-gram matching metrics[30] that split a string into n-length substrings

have been widely used. For example, the Bleu score [31] is widely used in evaluation of

translated sentences.

In contrast to natural language translations, n-gram matching is not well-suited to eval-

uate the generated DSL code since there are natural differences in contribution to code

quality among different tokens. N-gram matching focuses on semantic similarities between

the ground truth translation and the generated translation. In contrast, when evaluating the

generated DSL code, execution must be considered since the DSL code must execute cor-

rectly and generate the desired visualization. For example, generated DSL code snippets

that execute without run time errors should be considered more accurate than DSL code

snippets with higher similarity scores that cannot be executed.

Previous work on natural language to code generation with deep learning considered

both the output code blocks and execution output as metrics in the evaluation [27]. For

example, prior work on GUI code generation [33] that used GUI screenshots as inputs

evaluated models based on classification errors. That prior work evaluated a model’s ability

xxxii

to correctly classify the GUI components in images.

The performance of natural language to SQL models has also been evaluated by the

accuracy of the executed query results [27]. That approach reflected the model’s ability to

retrieve the correct data since even the generated SQL queries may be different from the

ground truth.

Our approach presented in this dissertation evaluates models in the Sketch2Vis problem

with one accuracy metric (Acccls) from prior research and two additional metrics (Accstr and

Accdec) that we devised to overcome gaps observed when scoring generated visualizations.

Each of these three metrics are described below:

1. Classification accuracy. Acccls considers the results as a classification problem, cal-

culating differences between model output and ground truth DSL code. Outputs are

penalized for producing tokens differing from the ground truth and token sequences

differing in length from the ground truth. Acccls can be calculated with Equation 2.1,

where Tf alse is false predicted token and ∆(Lendsl) is the difference in length between

the predicted DSL sequence and the ground truth DSL sequence.

Acccls = 1− ∑(Tf alse)+∆(Lendsl)

Lendsl
(2.1)

2. Structural accuracy. Accstr evaluates DSL mistakes that can result in structural er-

rors, including syntax errors and incorrect visualization types. For example, a model

that predicts the wrong visualization type or gives an invalid feature token to a cer-

tain visualization type will receive a low structural accuracy score, no matter how

accurate the predicted DSL code is in other areas. Accstr can be calculated with

Equation2.2;

Accstr =


0, if wrong semantic/plotting type

1, otherwise
(2.2)

xxxiii

3. Decoration accuracy. Accdec scores the model’s ability to understand local visu-

alization features in the images, such as the desired color of lines or positions of

legends, i.e., we want to evaluate if the model can choose the correct decoration to-

kens after generating the DSL structure. Accdec can be calculated with Equation2.3,

where T̂dec is a false predicted decoration token.

Accdec =
∑ T̂dec

∑Tdec
(2.3)

2.5 Experimental Results

The dataset used in our experiments with RNN and Transformer architectures was con-

structed from the three sources described in Table 2.1. We validated these tools with a

smaller number of hand-drawn sketches. Table 2.1 shows the visualization features and

augmentation methods we applied to generate the dataset.

We used style transfer mechanisms to create images that looked hand-drawn via (1) vi-

sualization tools (such as Matplotlib [36] and RougViz. js [35]) and (2) Photo-Sketching [34],

which is a style transfer deep learning model. Likewise, we used Matplotlib to generate

Line, Bar, Box, Scatter and Pie plots and RougViz. js to generate Line, Bar and Pie plots,

as shown in Table 2.1. For simple style transfer approaches, we employed the ”sketch-

style” function ”xkcd()” and for Javascript visualizations we used RoughViz.js’s human-

styling capabilities. We also employed Deep learning style transfer with Photo-Sketching

on source images generated by Matplotlib. We adopted Photo-Sketching [34] in our dataset

to generate simple monochromatic sketches, which is a different style compared to the vi-

sualizations generated with Matplotlib, shown in Figure 2.4. This dataset can be extended

by adding more plotting types and parameters.

xxxiv

Visualization Tools Plots #Meta Parameters #DSL Tokens
Matplotlib Line 4 51

Bar 7 28
Box 5 9

Scatter 3 46
Pie 6 21

RoughViz+React Pie 8 28
Line 9 20
Bar 9 22

Scatter 8 15
Photo-Sketching Line \ 10

Bar \ 10
Box \ 10

Scatter \ 6
Pie \ 10

Table 2.1: Sketch2Vis Dataset Single Plot Parameter Description

2.5.1 Dataset Statistics

The dataset used in our experiments with RNN and Transformer architectures was con-

structed from two visualization tools described in Section 2.3.3. We validated these tools

with a smaller number of hand-drawn sketches. Table 2.1 shows the visualization features

and augmentation methods we used to generate the dataset.

We used style transfer mechanisms to create images that looked hand-drawn via (1) vi-

sualization tools (such as Matplotlib [36] and RougViz. js [35]) and (2) Photo-Sketching [34],

which is a style transfer deep learning model. We used Matplotlib to generate Line, Bar,

Box, Scatter and Pie plots and RougViz. js to generate Line, Bar and Pie plots, as shown

in Table 2.1. Deep learning style transfer was performed with Photo-Sketching on sources

images generated by Matplotlib.

Matplotlib is a popular Python 2D visualization library that generates quality visual-

izations [36]. The project is widely used and the source code repository on GitHub has

10,800 watchers and 55,800 questions on StackOverflow. Matplotlib includes a ”sketch-

style” function, xkcd(), which can convert any Matplotlib graph into a hand-drawn format.

xxxv

We used the xkcd() function to generate hand-drawn style plots randomly using Python.

For browser-based visualizations, we used RougViz. js to generate hand-drawn style visu-

alizations with D3. js.

Unlike style transfer functions provided by visualization tools, deep learning mecha-

nisms use a dataset containing hand-drawn sketches [42, 34] to learn to transfer a scene

into a sketch. These models capture complex variations in how humans draw and can

reproduce images that mimic these variations. We adopted Photo-Sketching [34] in our

dataset to generate simple monochromatic sketches, which is a different style compared to

the visualizations generated with Matplotlib.

Both source visualization tools (Matplotlib and RoughViz. js in our experiments) share

the same mechanism for producing the randomized metadata. The number of meta pa-

rameters and tokens is determined by the variability in the underlying visualization feature.

For example, compared to color-related DSL tokens that can have a wide range of values, a

DSL token indicating if a Bar chart is horizontal has only two possible values: ”True” and

”False.”

Photo-Sketching focuses on preserving the contours of images. Deep learning transfer

may lose some visual information when applied to a visualization. For example, colors

or data point styles in the original visualization will be omitted by the Photo-Sketching

style transfer model and only the core features, such as the visualization type are retained.

Therefore, the size of the DSL token pool will be reduced correspondingly compared to

sketches generated by visualization tools. In particular, the information in metadata may

not be rendered in generated sketches.

As a result, our current dataset contains both images with individually colored data

series and rich visualization information and scrawled black and white sketches with basic

visualization features. Moreover, to help avoid overfitting during training, we also include

images containing multiple visualization instances, which helped our models generalize

better.

xxxvi

Table 2.2 shows the number of tokens in the current DSL files and their distribution,

which corresponds to the usage of different visualization features in the training set. As

#Token #Tdec #Avg Tdec Avg DSL length
1718138 438460 6 22

Table 2.2: Sketch2Vis Dataset Description

discussed in Section 2.4, we categorized our DSL tokens into structural tokens(Tstr) and

decoration tokens(Tdec). Table 2.2 shows there are 438,460 Tdec in the dataset, which com-

prises 25.5% of all tokens. On average, every image contains 6 Tdec and 16 Tstr, which

indicates that Acccls will more likely be affected by Tstr.

Figure 2.5 shows the distribution of detailed DSL tokens based on token types. This

Figure 2.5: Distributions of DSL Tokens in the Sketch2Vis Dataset

dataset has balanced decoration tokens, stemming from the use of synthetic data generation,

The dataset was split into training, validation, and test sets. The number of samples in each

of these split datasets is shown in Table 2.3.

#All #Train #Valid #Test
76942 63945 7105 5892

Table 2.3: Sketch2Vis Dataset Split Description

xxxvii

2.5.2 Deep Learning Architectures Explored

Sketch2Vis uses an encoder-decoder architecture, where the encoder extracts image

features from input sketches via a feature extractor, which is often a Convolutional Neural

Network (CNN). Image features may then be processed by a Recurrent Neural Network

(RNN). The decoder portion is next applied to output sequences of DSL tokens.

Baseline model construction in our experiments was based on different pairings of en-

coders and decoders. We constructed and compared three baseline models based on two

primary methods of processing sequenced data [43, 6, 44, 45], RNNs and Transformers, as

shown in Figure ?? and described below.

Figure 2.6: Sketch2Vis Baseline Model Construction and Comparison

2.5.2.1 RNN Model Construction

Figure ??(a) shows the RNN model construction process [46]. At each timestamp in

the encoder portion of an RNN, the output from the image feature extractor is split by its

xxxviii

row and fed into recurrent units recursively. A token at time t, Tt , is predicted based on

previous tokens, Tt−i,Tt−i+1, . . .Tt−1, where i is the number of previous tokens in the DSL

grammar. as shown in the following equation:

Tt = Out put(Tt−i,Tt−i+1, ...Tt−1|Fimage) (2.4)

This model keeps predicting the next token in the sequence until it reaches a terminating

operator.

2.5.2.2 Transformer Model Construction

Figure ??(b) shows the Transformer model construction process [47]. Encoded inputs

are used to calculate a self-attention matrix to combine with attentions from output se-

quences. This approach allows models to generate outputs with context.

It is not clear in the literature whether it is effective to use a Transformer to process the

output of a CNN applied to a sketch image, which is not a sequenced input. In particular,

prior research has not validated whether self-attention mechanisms in Transformer encoder

should be applied in features extracted by a CNN. To address this question we next compare

the performance of model architectures, as shown in Figure ??.

2.5.3 Model Architecture Comparison Results

Model construction. Table 2.4 shows empirical results from baseline models we built

using different selections of encoders and decoders on evaluation dataset of single plot.

In general, the CNN Encoder and Transformer Decoder models show promising results in

Table 2.4: Evaluation Results of Baseline Models on Single-plot

Encoder Decoder Acccls Accstr Accd
CNN/RNN RNN 0.94 0.98 0.75
CNN/Linear Transformer 0.95 0.97 0.78
CNN/Transformer Transformer 0.77 0.74 0.49

xxxix

generating visualization DSL code with the current dataset. Inaccurately predicted visual-

ization instances were caused primarily by challenges in processing visualization features

that comprised a smaller amount of visual information in the sketches (i.e., a smaller num-

ber of pixels), as well as visualization features with more options.

The Transformer architecture generally showed better performance than RNN archi-

tectures in the field of natural language processing [6, 48]. By comparing RNN- and

Transformer-based models in our test set, however, we found the RNN-based models per-

formed similarly on the Sketch2Vis. In particular, both models reached a score of ∼0.97

on structural accuracy, which means ∼97% of predictions are legal DSL expressions and

the correct visualization type, i.e., ∼97% of the predictions produced valid executable

code that generated the correct visualization. Decoration accuracy reaches 0.78, which

means 78% of visualization decoration features are legal decorations for the visualization

type and are predicted correctly.

Moreover, inspired by results in image captioning problems, we also adopted the Trans-

former as a part of an encoder to process output features of the CNN, as shown in Figure ??.

However, our results show that image features encoded by a Transformer can hurt overall

performance in the Sketch2Vis problem.

Figure 2.7: Distribution of Mispredicted Decoration Tokens

xl

Error Analysis. Figure 2.7 shows the distribution of the incorrectly predicted visual-

ization features in 3 models.

Errors in other visualization features are distributed more evenly and vary based on the

size of the visualization feature’s token vocabulary. The smaller a visualization feature’s

token vocabulary, the fewer errors the models make. For example, it is harder to predict the

correct < marker >, which is the style of marker used for the data points in the visualiza-

tion.

In contrast, < is line legends > indicates if legends are visible in the visualization

and performs much better since legends provide more information (e.g., cover a larger

percentage of pixels) than the style of dots used for points. A trade-off exists between the

model’s usability (wider visualization capabilities in terms of the types of visualizations

supported) and the model’s accuracy. This trade-off shows the need to refine the DSL

token vocabulary during dataset construction to only use tokens absolutely required for the

needed visualizations.

The results in Figure 2.7 also indicate that we can combine the strengths of RNN and

Transformer-based models into an ensemble to better support a wide range of visualization

features and improve model performance. For example, a correcting mechanism can be

appended to the model prediction stage, that weights both model’s decisions.

Table 2.5 shows examples of the inputs and outputs in our experiments and the user-

desired visualization. The ”Training Sketch” shows an input created from Rough.Viz for

encoder-decoder model training. The ”Validation Sketch” shows a real hand-drawn sketch,

where concrete text information is omitted. The ”Generated DSL” is the predicted DSL

code, which describes the visualization features, but is independent of the dataset spec-

ification (the data mapped to each axis, series, etc. can be plugged in separately). The

”Generated Visualization” is a concrete visualization generated from our DSL using Mat-

plotlib.

xli

Training Sketch

Validation Sketch

Generated DSL

Generated Visualization

Table 2.5: Examples of Model Input and Output

2.5.4 Results Discussion and Performance on Hand-drawn Sketches

In addition to evaluating on the generated test set using a combination of style transfer

approaches in Section 2.5.3, as discussed in Section 2.5.1, we also prepared 100 hand-

drawn visualizations drawn on mobile devices for validation purposes. Each visualization

was manually labeled with its matching DSL code. Examples of hand-drawn sketches are

shown in Figure 2.8, where half of the sketches are scrawled and the other half are colored.

For images generated with style transfer mechanisms each sketch has an exact DSL

description already determined. In contrast, sketches drawn by humans are hard to evaluate

with Accdec since there multiple valid DSL source code implementations may exist. In this

case, evaluation on Accdec relies on user feedback. We currently only test Accstr on real

hand-drawn sketch sets for validation purposes.

We include multi-visualization sketches in the training set. The model may therefore

predict DSL code containing multiple visualization instances, even if there is only one

xlii

Figure 2.8: Examples of Hand-drawn Sketches from Humans in the Validation Set

visualization instance in the image. If multiple visualizations are generated, users can select

a visualization instance from the predicted options. For scoring purposes, when evaluating

the hand-drawn sketches, any predictions containing the correct visualization DSL code are

considered as correct in the calculation of Accstr.

Table 2.6 shows the results of Accstr from the different models.

Encoder Decoder Accstr
CNN/RNN RNN 0.66
CNN/Linear Transformer 0.95

Table 2.6: Evaluation Results on Hand-drawn Images

This table shows how the Transformer-based model exhibits the best performance in

processing real hand-drawn sketches, achieving 95% accuracy in identifying the visualiza-

tion and correctly generating the correct code to implement the visualization. Although the

RNN-based model performed well on the test set, it does not generalize well to hand-drawn

sketches. This result indicates that the Transformer-based model is better at generalizing

from style transfer images to real hand-drawn images.

An important result from our analysis is that the Accstr is similar for both images

generated using a style transfer approach and the hand-drawn images. This result-

ing accuracy indicates that generating the training images via style transfer is an effective

xliii

approach for overcoming the challenge of obtaining human-labeled sketches. Since Trans-

former models were able to generalize to hand-drawn data using synthetic style transfer

data, future work can be simplified significantly by relying on a much larger corpus of syn-

thetically generated data for training and smaller sets of human-labeled data for validation.

Although we could not automatically evaluate the decoration accuracy (e.g., colors, line

style), Accd , user feedback indicated that decoration accuracy was similar in accuracy to

the synthetic dataset (we are validating this result in future work with human studies).

Integrating more style transfer mechanisms into our current dataset is essential to en-

hance the model robustness. We also incur bias in our current evaluation on real hand-

drawn sketches due to the limited number of drawers. To enhance the accuracy of our

evaluations we are collecting sketches from more people, as discussed in Section 2.7.

2.6 Related Work

This section compares related work with the techniques explored in the dissertation.

Data Visualization Efficiency. As an emerging capability in data-driven applications,

data visualization has drawn attention far beyond the visualization community, in nearly

every domain, ranging from healthcare to smart cities. Due to the broad expansion of

users, data visualization efficiency has become a critical requirement. Various applications

have been designed to reduce the visualization learning curve and enhance usability for

engineers who interact with visualization tools.

For example, FlowSense [49] allows users to construct dataflow diagrams from English

sentences. Arjun [23] implemented a tablet-based data exploration tool with multimodal

(i.e., pen, touch and voice) interactions. NL4DV [50] is a Python tool that helps developers

create specifications by taking natural language(s) as input. Data2Vis [51] adopted Vega-

Lite [52] as an interpreter to generate visualizations automatically from data specifications

to visualization specifications. Qin [53] explored three paths to enhance efficiency in data

visualization:

xliv

1. Improve the designation and input of visualization specifications,

2. Provide various approaches for data visualization, and

3. Automatically correct or refine users’ generated visualization.

Our work builds upon achievements in path #1 and mainly focuses on path #2. We are also

adding complementary mechanisms to our current model inspired by path #3. Our goal

is to produce adequately detailed visualizations from hand-drawn sketches, thereby saving

time producing the initial visualization implementation that can be later refined manually.

Sequenced Output in Deep Learning. Prior research on human-computer interactions

via natural means (such as sketches) relied on enforcing strict constraints on users due to

the challenge of processing informal human input by machines [54]. For example, earlier

pen-based computer interactions required users to learn an unnatural way to draw sketch

diagrams so computers can understand them [55, 56]. To overcome this challenge, shape

recognizers were proposed to interpret pen strokes in human-drawn sketches and trained

via a cluster-based approach that groups streams of pen strokes [54, 57]. Shape recognizers

grant computers the ability to read users’ drawing with more flexibility and can be extended

by improving recognizers with additional types of supporting shapes.

Deep learning networks provide a solution for computers to extract features from natu-

ral human input, such as images, text, and voices [5, 58, 48, 59]. Beyond image classifica-

tion, researchers attempt to use images to explain more complex human-comprehensible

output, such as natural language expressions [60]. The encoder-decoder structure was

adopted in the image captioning problem [37], thereby combining advantages of CNNs

in processing images and RNNs in processing sequences of natural language expressions.

As an object detection mechanism, faster R-CNNs [61] were introduced for models

to output captions in the context of classified objects. Transformers [6] further enhanced

model performance and training speed by substituting RNNs as encoder and decoder. In

contrast, the image-to-code problem shows significant compatibility with GUI components.

xlv

For example, pix2code [33] was proposed to transfer UI screenshots of web applications

into HTML components and was further extended to mobile app development[62].

2.7 Concluding Remarks

This dissertation analyzed the feasibility of generating data visualizations from hand-

drawn sketches, a problem that we call Sketch2Vis. As shown in this dissertation, DSLs and

style transfer approaches can be combined to help generate labeled sketches with associated

source code. This combination helps to overcome the key challenge of scalably obtaining

a dataset for training. Our experiments showed models capable of reaching 95% structural

accuracy on hand-drawn sketches. In addition, the results show that synthetically generated

images that use style transfer to make them look hand-drawn is an effective approach for

generating a labeled training set.

The following is a summary of the lessons we learned from conducting the research

presented in this dissertation:

• Models can learn and generalize from synthetically generated sketches pro-

duced with style transfer approaches. The models achieved an structural accu-

racy of 97% on this style transfer training set and 95% structural accuracy on the

hand-drawn validation set – indicating that models can train on and generalize using

synthetically produced sketches.

• The CNN-Transformer structures performed best. The results of on our exper-

iments with RNN and Transformer models showed that a CNN-Transformer struc-

ture model had the best performance in processing input from multiple sources and

generally demonstrated the feasibility of generating simple data visualizations from

sketches. Even though more real hand-drawn sketches are needed for solid valida-

tion.

• Labeling visualization instances with a DSL was a scalable way to address visu-

xlvi

alization automation problems with deep learning. Dataset construction methods

in our experiments showed how describing visualization images with DSL instances

enabled deep learning models to extract features from single plot, and potentially

allow users to create subplots.

xlvii

Chapter 3

Case study: A Lightweight Solution for Leveraging Raw Waveforms in Spoof Speech

Detection

This chapter is adapted from ”Arawnet: A lightweight solution for leveraging raw

waveforms in spoof speech detection” published in IEEE ICPR 2022 26TH International

Conference on Pattern Recognition (ICPR) and has been reproduced with the permission

of the publisher and my co-authors Quchen Fu, Jules White, Maria Powell, and Douglas C.

Schmidt.

• Zhongwei Teng, Quchen Fu, Jules White, Maria Powell, and Douglas C. Schmidt.

Arawnet: A lightweight solution for leveraging raw waveforms in spoof speech de-

tection. In IEEE ICPR 2022 26TH International Conference on Pattern Recognition

(ICPR). IEEE, 2022

3.1 Problem Overview

Fixed, handcrafted audio features, such as Mel-filter banks [63], have shown great per-

formance in capturing strong audio features in aspects of both auditory and machine learn-

ing [64, 65]. However, since handcrafted features are often designed based on specific

tasks, such as speech recognition, using these features to solve problems that they were

not designed for may not be optimal. For example, Mel-filter banks [63] apply triangular

filter banks on a Mel-scale to spectrograms calculated using short-term Fourier transform

(STFT) to represent the non-linear perception of the human hearing. The Mel-scale is

derived from a set of perception experiments on humans. As a result, Mel-filter banks are

coarse-grained at high-frequencies since humans are less sensitive to high frequency sound.

This loss of signal energy (information) in high frequencies may lead to poor performance

xlviii

on tasks that rely on information in these higher frequencies [65].

Extracting audio features with backpropagation provides an alternative way to represent

raw waveforms by using deep neural networks to learn task-specific features. Task-specific

features can be learned for many problems, such as voice recognition[66, 67] or automatic

speaker verification (ASV) [68]. Directly learning features from raw waveforms grants

greater flexibility in handling unknown tasks and, thus, overcomes some of the challenges

of handcrafted features, which may lose signal energy needed by a specific task. Previous

research indicates that representations learned from waveforms still have limitations on

signal energy loss compared to the original raw signals they were learned from [64]. In the

spoof speech detection task, models based on only raw waveforms perform better in specific

spoof attacks, while shows weaker performance on other attacks compared to model based

on handcrafted data [69, 70].

Instead of relying on raw waveforms independently, a potential option is to design a so-

lution that can take advantage of both handcrafted and learned features. For example, lost

phase information in handcrafted features can be complemented by features learned from

raw waveforms. However, building an end-to-end CounterMeasure (CM) systems, contain-

ing multiple encoders to process raw waveforms and hand-crafted features independently,

can result in big challenges in model size and complexity.

In this chapter, we propose the Auxiliary Rawnet (ARNet) architecture to combine

learned features from raw waveforms with existing handcrafted features, by designing a

lightweight auxiliary encoder. The proposed model was tested on the ASV Spoof 2019

dataset [71], where the model needs to defend against speech spoofing attacks from a va-

riety of sources. The model shows promise in boosting the performance of handcrafted

feature-based networks that warrants further investigation on additional data sets and tasks.

The key contributions of this chapter are as follows:

• We elaborate on the problem of concatenating raw waveforms and handcrafted fea-

tures in the speech field and propose assumptions to solve this problem efficiently.

xlix

• Based on our assumption, we introduce the Auxiliary Rawnet architecture that can be

used to attach a lightweight auxiliary encoder to a model that relies on handcrafted

features, so that raw waveform data can supplement the information in handcrafted

features.

• We show results that indicate that, by introducing the auxiliary raw encoder, model

performance is boosted on the ASV spoof 2019 dataset. A light-weight auxiliary en-

coder boosts model performance over 10 of 13 spoof attacks, including 3 challenging

attacks.

• We describe how our results show the potential of combining a light-weight wave-

form encoder with other encoders, providing an approach to balance the trade-off be-

tween performance and model complexity for models containing multiple encoders.

The remainder of this chapter is organized as follows: Section3.2 discusses prior work

in audio signal feature representation. Section3.3 explains the problem analyzed in this

chapter and describes the Auxiliary Rawnet structure. Section3.4 introduces the experimen-

tal dataset and tasks used in this chapter. Experimental results are analyzed in Section3.5.

Section3.6 presents concluding remarks and lessons learned.

3.2 Related Work

Prior work has shown how the ”front-end” of models, which extract features from raw

data, can be improved by using deep neural networks [64, 72, 67, 65, 73] to directly learn

features from raw signal data. Directly applying standard CNNs to process raw wave-

forms [74] has shown promising results in speech recognition, spoofing detection, and

speech separation. Convolutions on time-domain raw waveforms can be explained as fi-

nite impulse response filter banks [64]. Structured filters are applied to optimize standard

CNNs based on digital signal processing theory, by initializing the first convolutional layer,

which is believed to be the most important part, with known filter families [73, 75, 76], so

l

that a custom filter bank can be designed for a specific task. Filter-based waveforms net-

works are emerging as excellent front-ends for many tasks [69, 65]. However, a theoretical

analysis from Joakim et al. [64] has shown that signal energy loss is still inevitable for fea-

tures extracted from raw waveforms by a CNN. Their results show extracted features can

carry up to 94.5% signal energy compared to the original waveforms. On the other hand,

empirical research also indicates that handcrafted features are still competitive in specific

questions, such as speech commands [65], spoof speech detection [71, 77], and instrument

classification [65].

In prior work on spoof detection, a deep neural network, called RawNet2 [69], used

raw waveforms to enhance the performance of CM systems against certain types of spoof

attacks, but at the expense of increased model size and computational complexity. The

prior work showed that models relying solely on raw waveforms showed weaker perfor-

mance on many types of spoof attacks, resulting in worse overall performance on spoof

detection according to the ASV spoof dataset[69]. It is challenging to create an end-to-end

network, which can take both raw waveforms and hand-crafted features as input due to the

increase in model size that accompanies raw waveform use. This chapter considers the use

of raw waveforms as a supplement to handcrafted features, rather than the main input, for

spoof detection and investigates their potential to boost performance with little additional

computational cost. To the best of our knowledge, our work is the first study on the bot-

tleneck structure of hand-crafted features and raw waveforms in deep learning models for

spoof detection. The chapter also presents the first architecture to apply both hand-crafted

features and raw waveforms in an end-to-end model for spoof detection tasks.

3.3 Auxiliary RawNet

This section elaborates the research problem on combining raw waveforms and hand-

crafted features and explains the structure of the ARNet architecture.

The proposed network architecture applies a light-weight encoder to process raw wave-

li

Figure 3.1: The ARNet Architecture. EA contains one strided CNN, 3 continuous max-
pooling layers and a GRU. A TDNN-based model is illustrated here as an example of the
EM. lii

forms with low computational cost as learned features, which are combined with existing

speech classification models (Figure 3.1). To produce disentangled representations from

different encoders, a narrow bottleneck is leveraged in the raw waveforms encoder without

damaging the performance of the handcrafted encoder, as shown in Figure 3.2.

3.3.1 Problem Formulation

Before introducing the ARNet architecture, we first formalize the problem that it is

intended to solve. Denote Fw as features of a raw waveform, and p as a problem to solve.

We assume there is a constructive function f , which can map Fpmag , Fpphase and Spnoise into

Fw, as described in Equation 3.1, where Fpmag is the ideal magnitude information needed to

solve p, Fpphase is the ideal phase information needed to solve p, and Spnoise are signals with

limited contribution to solving p (e.g., background noise).

Fw = f (Fpmag ,Fpphase ,Spnoise) (3.1)

Empirical studies [65] have shown the ability of handcrafted features to represent the

strongest audio features for a variety of problems. Based on our assumption, the calcula-

tion of handcrafted features can be denoted as a mapping function g, which can retrieve

approximations of Fpmag or Fpphase . For example, mel-spectragrams can be described by the

following equation:

Fpmag ≈ Fmel = gmel(|ST FT (Fw)|2)) (3.2)

When concatenating raw waveform data and handcrafted features to enhance model

performance, our work is essentially to find a function, h, so that the total loss of g(Fw) and

h(Fw) is smaller than a single g(Fw). In other words, we want to find representations closer

liii

to the ideal solution Fpmag +Fpphase , as describe in Equation 3.3.

concat(g(Fw),h(Fw))≈ Fpmag +Fpphase > g(Fw) (3.3)

However, it is not clear how g(Fw) interacts with h(Fw). Inspired by observations from

results regarding g(Fw) and h(Fw) on various tasks [65, 69], we make the following as-

sumption about combining learned features and handcrafted features:

Assumption 1 (A1): If a handcrafted feature, g(Fw) shows strong results solving problem

p, then there exists a h(Fw) with size less than N in concat(g(Fw),h(Fw)) that will enhance

overall performance. In other words, h(Fw) can be an auxiliary component of g(Fw) to

improve performance with a bounded cost.

3.3.2 The Auxiliary RawNet Structure

Based on the assumptions presented in section 3.3.1, we propose the ARNet architec-

ture. An overview of the ARNet architecture is shown in Figure 3.1. EA, which processes

the raw waveform, has a smaller bottleneck than EM which processes handcrafted audio

features, to make the raw waveforms play a supplementary role and bound the computa-

tional cost (e.g., bound N).

The Encoders. There are 3 encoders in the ARNet: the Main Encoder(EM), Auxiliary

Encoder(EA), and Concatenate Encoder(EC). EM denotes the main encoder, whose inputs

are the original handcrafted features that have shown good performance in solving the

target problem. EA is the encoder used to encode the raw waveforms in a light-weight way

to compress Fw into Fa, where Fa are the features extracted by the auxiliary encoder. Fa and

Fm (hand crafted features from the main encoder) are then concatenated in channels and

further encoded by EC.

Figure 3.1 shows details of the encoders used in our experiments on the ASVspoof 2019

dataset. We select the strided convolutional layer[67] as the first layer to directly process

liv

Figure 3.2: Overview of the ARawNet Architecture. The model consists of a Main
Encoder(EM), Auxiliary Encoder(EA), and Concatenate Encoder(EC). EA has a smaller
bottleneck than EM.

the raw waveforms. However, unlike previous raw waveforms networks, which include

multiple CNN blocks with large kernels, the strided convolutional layer is only followed

by 3 continuous pooling blocks to collapse vectors and remove any frame variance without

further convolution. A GRU is used to encode frame-level features into utterance-level

embeddings by keeping output vectors from the last time step.

The main encoder keeps layers before the statistical pooling layer, which will output

utterance-level embeddings. Based on our assumption 1, we chose a narrow bottleneck

for EA. The dimension of the utterance-level embedding from EA is designed to be smaller

than the output dimension from EM. In the end, EC only contains a single Conv1d to encode

concatenated results from EA and EM.

The full architecture and model hyper-parameters are explained in Table 3.1.

The Decoder. In our problem, the decoder is a linear classifier layer that decodes

embeddings from EC to target classification.

lv

Encoders Blocks
Auxiliary Encoder Conv(3,3,128)

BN&LeakyReLu
MaxPooling

BN&LeakyReLu
GRU(512)

Concatenate Encoder BN
Conv1D(1,1,256)

Table 3.1: The architecture of Auxiliary Encoder and Concatenate Encoder.

3.3.3 Why does a light-weight encoded raw waveforms augment handcrafted features?

(1) Compared to the current filter-based architectures as discussed in Section 3.2, we

chose the strided convolutional receptive field, which is a standard CNN, as the first layer

to process the raw waveforms. The strided convolutional layer consists of a set of time-

domain convolutions, where all parameters(CNN kernel), are learned from the data. Cal-

culation of the first CNN layer can be described as the following Equation [73], where x[n]

is raw waveforms, h[n] is the filter and y[n] is filtered output:

y[n] = x[n]∗h[n] =
L−1

∑
0

x[l] ·h[n− l] (3.4)

As discussed in Section 3.3.1, concatenating g(Fw) and h(Fw) requires each encoder

to have different attention to features in the raw waveforms so that they can complement

each other. The standard convolutional layer with small kernels gives the EA the least

information about the signal processing mechanisms in g(Fw), and thus potentially grants

it the most flexibility to extract features, which do not overlap with g(Fw).

(2) In contrast to previous waveform-based networks [67, 69], the CNN blocks used in

between the strided convolution layer and the GRU are completely removed, and only 3

continuous max-pooling layers with batch normalization are kept to collapse frame-level

features step-by-step.

The first convolutional layer is considered the most critical part in processing raw wave-

lvi

forms. In deep networks it is also the most vulnerable to problems, such as vanishing gradi-

ents, without initializing filters [73]. However, based on our assumption 1, only significant

frame-level features need to be kept, indicating networks without deep CNN blocks can be

used for EA. Max pooling layers are used to collapse vectors and find significant pattern

information that can be visualized after 3 pooling layers, as shown in Figure 3.3.

(3) We test our assumption 1 based on the Theorem [78] from speech conversion prob-

lems, that if information bottlenecks between different encoders are precisely set, the model

will decompose and produce disentangled representations of input speech signals. In our

model, this Theorem can be described by the following equation:

EM(Fw) = g(Fw),EA(Fw) = h(Fw) (3.5)

Thus, a narrow bottleneck is designed for EA, which means the dimension of utterance-

level embeddings dimEA is much smaller than dimEM .

(4) Output embeddings from EM and EA are concatenated in the utterance level, where

segment-level layers in single encoder are removed and are replaced with concatenate en-

coder EC. This is a critical features for the ARawNet, as well as for our assumption 1, that

original bottleneck layers from EM and EA should be replaced with a EC. We concluded the

following hypothesis as we designed the network:

Assumption 2 (A2): Given raw waveform Fw and hand-crafted features h(F(w)), segment-

level layers need to be designed after the concatenating layer to represent disentangled

representations.

3.4 Experimental Setup

3.4.1 Experimental Dataset

The ASVspoof 2019 logical access (LA) dataset was developed to improve research on

the growing threat of voice spoofing attacks on automated speech verification systems [71].

lvii

Figure 3.3: Outputs visualization of the strided convolution layer and pooling layers. Out-
puts after 3 pooling layers(d) shows signification pattern information.

This dataset contains human-recorded audios and spoof audios generated from 19 sources

(A01 - A19), including speech synthesis, voice conversion, and hybrid algorithms.

50,224 records in the training and development data consist of spoof attacks generated

by A01-A06. Another 71,237 spoof audio files in the evaluation data are generated by

A07-A19, which are unpredictable spoofing attacks for CounterMeasure (CM) systems.

Detailed statistics of the ASVSpoof 2019 is shown in Table 3.2.

Subsets #Bonafide #Spoofed Spoof Source
Training 2580 22800 A01-A06

Development 2548 22296 A01-A06
Evaluation 7355 63882 A07-A19

Table 3.2: Statistics of the ASV2019 dataset

We chose the ASVspoof 2019 LA dataset to validate the performance of our proposed

model since:

lviii

• The performance of handcrafted features is limited by the difference in spoofing

sources between the training and evaluation data. Spoofing types are highly unpre-

dictable while the performance of CM systems relies on known spoofing attacks in

training data and shows worse performance on unknown spoof attacks.

• Current results on the ASVspoof 2019 challenge [71, 69] indicate that correct hand-

crafted features still provide the most competitive results from a single model com-

pared raw waveforms approaches.

• Waveforms-based network outperforms on specific types of spoof attacks with worse

pooling results compared to handcrafted feature based networks [69].

3.4.2 Evaluation Metrics

Two metrics are used to evaluate the ASVspoof 2019 LA dataset including min t-DCF

as the primary metric and EqualErrorRate(EER) as a secondary metric, as described

in [71]:

3.4.2.1 min t-DCF

The Tandem Detection Cost Function (t-DCF) [79] extends the conventional Detection

Cost Function (DCF) in voice verification systems for spoofing attacks. The t-DCF mea-

sures the overall effect of CM systems combined with existing ASV systems. The CM

system acts as a gateway for the ASV system and this metric measures the overlapping

of the two, a smaller value indicates better protection against spoofing. min t-DCF can be

calculated in Equation 3.6 [79], where Pcm
miss(s) is the CM miss and Pcm

fa (s) is the false alarm

rates.

t−DCFmin
norm = min

s
{βPcm

miss(s)+Pcm
fa (s)} (3.6)

lix

Table 3.3: Model Performance by Spoof Category.

Spoof Attack [71] A7 A8 A9

Category TTS TTS TTS

Acoustic mode LSTM-RNN AR LSTM-RNN LSTM-RNN

Waveform generator WORLD+GAN Neural source-filter Vocaine

EER

CQT+Aux 0.28521 2.4786 0.08149

CQT 0.3667 1.72823 0.146

Effect(%) 22.2 -43.4 44.1

min-tDCF

CQT+Aux 0.00895 0.07071 0.0022

CQT 0.01168 0.04895 0.00424

Effect(%) 23 -44 48

Spoof Attack [71] A10 A11 A12

Category TTS TTS TTS

Acoustic mode Attention seq2seq Attention seq2seq -

Waveform generator WaveRNN Grin-Lim WaveNet

EER

CQT+Aux 0.46516 0.30218 0.24447

CQT 0.79111 0.77414 0.3667

Effect(%) 41.2 60.9 33.3

min-tDCF

CQT+Aux 0.01351 0.00951 0.00703

CQT 0.02326 0.02527 0.01226

Effect(%) 41 62 42

Spoof Attack [71] A13 A14 A15

Category TTS-VC TTS-VC TTS-VC

Acoustic mode Moment matching NN LSTM-RNN LSTM-RNN

lx

Waveform generator Waveform filtering STRAIGHT WaveNet

EER

CQT+Aux 0.12223 0.12223 0.30218

CQT 0.22069 0.28521 0.5127

Effect(%) 44.6 57.1 41

min-tDCF

CQT+Aux 0.00376 0.00376 0.00907

CQT 0.00702 0.00874 0.01654

Effect(%) 46 56 45

Spoof Attack [71] A16 A17 A18

Category TTS VC VC

Acoustic mode - VAE i-vector/PLDA

Waveform generator Waveform concat Waveform filtering
MFCC-to-

waveform

EER

CQT+Aux 0.24447 3.11354 0.8726

CQT 0.22069 2.40391 5.28996

Effect(%) -10.7 -29.5 83.5

min-tDCF

CQT+Aux 0.00768 0.09041 0.02837

CQT 0.00649 0.07587 0.16156

Effect(%) -18 -19 82

Spoof Attack [71] A19

Category VC

Acoustic mode GMM-UBM

Waveform generator Spectral filtering

EER

CQT+Aux 1.05935

CQT 2.09493

lxi

Effect(%) 49.4

min-tDCF

CQT+Aux 0.0361

CQT 0.06432

Effect(%) 43

3.4.2.2 EER

EER indicates the threshold of a CM system where the false positive and false negative

rates are equal each to other.

3.4.3 Hand-crafted feature selection

To validate assumption 1, as well as the performance of our ARawNet implementation,

hand-crafted features need to be selected carefully in our experiments. According to our

assumption, it is important to ensure that the selected hand-crafted features show strong

results on the target dataset, so that we can use a lightweight network to enhance the overall

performance without a large increase in network complexity.

To reduce the performance bias of a single hand-crafted feature in our experiment and

choose appropriate features, we carefully reviewed prior work on the ASVspoof 2019 chal-

lenge and chose the state-of-the-art model as our benchmark, so that the features we se-

lected have validated performance on the ASVspoof 2019 dataset. By choosing validated

hand-crafted features with state-of-the-art performance, we can be more confident in the

analysis and exploration of our assumption on augmentation with raw waveforms.

Specifically, 3 hand-crafted features were selected in our experiments as described be-

low:

• Mel-Spectrogram. Mel-Spectrogram is a Short-Time Fourier Transform (STFT)

based frontend, which is used to represent the non-linearity of the human ear’s sen-

sitivity to different frequencies by applying filters in a mel-scale, as shown in Equa-

lxii

tion 3.7.

m = 2595log10

(
1+

f
700

)
(3.7)

• Mel-frequency cepstral coefficients(MFCC). MFCC is a popular feature for speech

recognition, which is a set of coefficients of the mel-frequency cepstrum. MFCC is

calculated by applying Discrete Cosine Transform (DCT) to Mel-Spectrograms to

decorrelate them.

• Constant Q Transform (CQT). CQT is a feature to improve downstream tasks,

where mel-scale does not perform well, such as music recognition. The CQT center

frequency calculation is shown in Equation 3.8 [80].

fk = f02
k
B (3.8)

3.4.4 Baseline Setup

Our experiments include one handcrafted feature-based system and one raw waveform-

based system respectively:

• Res2net Architecture. The Res2net architecture [70] is the state-of-the-art single

system in the ASVspoof 2019 challenge, which tested the performance of 3 hand-

crafted features: log power magnitude spectrogram (Spec), linear frequency cepstral

coefficients (LFCC), and constant-Q transform (CQT).

• RawNet2. The RawNet2 [69] is the first anti-spoofing model, which only relies on

the raw waveforms as input.

3.5 Results and Analysis

Table 3.4 shows the experimental results of the ARawNet on the ASVSpoof 2019

dataset.

lxiii

Front-end Main Encoder EA EER min-tDCF Improve
Spec[70] Res2Net[70] - 8.783 0.2237

LFCC[70] - 2.869 0.0786
CQT[70] - 2.502 0.0743

Raw waveforms[69] Rawnet2[69] - 5.13 0.1175

Mel-Spectrogram XVector ✓ 1.32 0.03894 43%
- 2.39320 0.06875

Mel-Spectrogram ECAPA-TDNN ✓ 1.39 0.04316 32.8%
- 2.11 0.06425

CQT XVector ✓ 1.74 0.05194 45.3%
- 3.39875 0.09510

CQT ECAPA-TDNN ✓ 1.11 0.03645 28.2%
. - 1.72667 0.05077

MFCC XVector ✓ 1.39 0.03830 45.1%
. - 2.45 0.06981

MFCC ECAPA-TDNN ✓ 1.33 0.04260 37.7%
. - 2.41 0.06838

Table 3.4: Results on the ASVspoof 2019 dataset

• Results demonstrate the effectiveness of adding a light-weight auxiliary encoder

to the main encoder. Three handcrafted features, Mel-spectrogram, CQT [80] and

MFCC, as well as two state-of-the-art models in the speaker verification problem

(XVector [81, 82] and ECAPA-TDNN [83, 82]) are selected as main encoders in

the ARNet architecture. Without modifying the hyper-parameters in the main en-

coder, we add the auxiliary encoder, as described in Table 3.1, in the network to

evaluate our assumption. Overall, by introducing the auxiliary encoder, both pooled

EER and min− tDCF are reduced by 5̃0% in all combinations of front-end and main

encoders. Specifically, CQT/ECAPA-TDNN with auxiliar encoder reaches the best

performance on EER of 1.11% and min− tDCF of 0.0364, which is reasonable since

single CQT perform best in given benchmark[70].

• Performance of the CM system on challenging attacks (A10, A13, and A18) is

boosted when using CQT as an input feature. Table 3.3 explains the category

of different attacks in the evaluation set and breaks down the performance of our

model in a different subset of spoof attacks. Overall, detection of 10 of 13 spoof

attacks was improved with the lightweight auxiliary model, and the auxiliary model

lxiv

boosts detection of most attacks generated from LSTM-based models. Among those

attacks, A10 [84], A13 [85], and A18 [86] are considered as high risks to ASV sys-

tems as well as challenging attacks for CM systems to detect [71]. As shown in

Table 3.3, the ARawNet largely decreased the EER and the min-tDCF for A10, A13,

and A18. Especially for attack A18, model performance improves by over 80%,

the EER reduced from 5.29% to 0.87% and min-tDCF reduced from 0.162 to 0.028.

However, we also noticed that there are negative effects of including a light-weight

raw waveform encoder on certain spoof attacks. For example, the A17 attack, which

is generated by variational autoencoder(VAE) [87], is hard for CM systems to detect

even though it is a minor threat to the ASV system [71]. Prior works show that a

raw waveform-based network with deep layers shows a better performance on this

type of attack [69]. This result indicates that we may need to enlarge the network to

enhance model performance on specific types of spoof attacks.

• By introducing the lightweight raw-waveform encoder, the model is less sensitive

to highly non-linear information from hand-crafted features. Mel-spectrograms

have become more popular than MFCCs in recent research, since deep neural net-

works are less likely to be weakened by highly correlated input. After whitening the

mel-spectrogram, highly non-linear information is removed in MFCCs, which may

be useful for networks. Results in our experiments show that, without raw wave-

forms, mel-spectrogram shows better performance than the MFCC, indicating that

highly non-linear information plays an important role in recognizing spoof attacks.

While results of both features tend to be similar after introducing the lightweight raw-

waveform encoder. It implies that the auxiliary encoder disentangles raw waveforms

and helps the model complement lost highly correlated information in MFCCs.

• Improper concatenation of the raw waveform encoder output and hand-crafted

encoder output can lead to worse results. Table 3.5 shows the performance com-

lxv

Features Concatenate EER min-tDCF Parameters

CQT
Before segment layer 1.11 0.03645 10.4 M
After segment layer 1.36 0.04052 7.18 M

Table 3.5: Model Performance with different Concatenating Layers

parison of models with different concatenating strategies. As we discussed in hy-

pothesis 2, in spoof attack tasks, segment-level layers need to be placed after concate-

nating utterance-level features from different encoders. Using CQT as features and

ECAPA-TDNN as the main encoder, we adjust the model by concatenating segment-

level features rather than utterance-level features. Results shows EER increased by

36% with 45% increment on the trainable parameters.

• ARawNet adds raw waveform information to the spoof detection tasks with a

smaller network size than prior approaches. Table 3.6 compares the number of

trainable parameters, model complexity, and multiply-and-accumulates (MACs) in

our experiments. Compared to encoding handcrafted features (Res2Net), directly

encoding raw waveforms (Rawnet2) increases model size and complexity by 2400%

and 600%. On the other hand, our auxiliary waveforms encoder only takes up 1.15M

trainable parameters, which is a 19% increase in ECAPA-TDNN and the model com-

plexity increases from 2.36 GMac to 3.19 GMac. In other words, the performance of

our model increases by 28.2% with increments of 35.1% MACs.

The smaller network size allows us to train the model on 2 Nvidia 2080 Ti GPUs

with the batch size set to 24.

3.6 Concluding Remarks

This chapter discussed the problem of combining learned and handcrafted features to

build deep neural networks for the spoof voice detection task. Based on our assumption

that hand-crafted features and raw waveforms may complement each other without sacri-

lxvi

Main Encoder Auxiliary Encoder Parameters MACs
Rawnet2 - 25.43 M 7.61 GMac
Res2Net - 0.92 M 1.11 GMac
XVector ✓ 5.81 M 2.71 GMac
XVector - 4.66M 1.88 GMac

ECAPA-TDNN ✓ 7.18 M 3.19 GMac
ECAPA-TDNN - 6.03M 2.36 GMac

Table 3.6: Comparison of model complexity (MACs) of various spoof detection systems

ficing model complexity, we investigated the concatenation of multiple encoders and pro-

posed ARawNet, which includes both hand-crafted features and raw waveforms as inputs,

while maintaining a relatively small network size. We tested 3 hand-crafted features (Mel-

spectrogram, MFCC, an CQT) and 2 state-of-the-art models (XVector and ECAPA-TDNN)

as the main encoder with our Auxiliary Encoder. Experiment results show raw waveforms

have the ability to complement CQT for detection of most spoof attacks in the ASVspoof

2019 dataset, as well as its ability to complement the highly non-linear information for

MFCC features.

lxvii

Chapter 4

Case study: An End-to-End Spoof-Aggregated Spoofing-Aware Speaker Verification

System

This chapter is adapted from ”SA-SASV: An end-to-end spoof-aggregated spoofing-

aware speaker verification system” published in Interspeech 2022-23rd Annual Conference

of the International Speech Communication Association. ISCA, 2022 and has been repro-

duced with the permission of the publisher and my co-authors Quchen Fu, Jules White,

Maria Powell, and Douglas C. Schmidt.

• Zhongwei Teng, Quchen Fu, Jules White, Maria Powell, and Douglas C. Schmidt.

SA-SASV: An end-to-end spoof-aggregated spoofing-aware speaker verification sys-

tem. In Interspeech 2022-23rd Annual Conference of the International Speech Com-

munication Association. ISCA, 2022

4.1 Problem Overview

Automatic speaker verification (ASV) systems have shown the ability to provide bio-

metric authentication of users for applications that require robust reliability in changing

acoustic environments, including resistance to malicious attacks [88, 89, 81, 83]. How-

ever, current ASV systems are still vulnerable to spoofing attacks, such as text-to-speech

(TTS) [90, 91, 92] and voice conversion (VC) [93]. ASV systems can also be deceived and

manipulated by malicious entities using generated speech.

To overcome bottlenecks in spoofing and countermeasure research for ASVs, a series

of ASVSpoof challenges have been proposed since 2015 to help encourage the develop-

ment of robust countermeasure (CM) systems [94, 95, 71, 96], which can complement

ASV systems with an anti-spoof model. The anti-spoof model provides a ”spoof confi-

lxviii

dence” score to help filter out spoofing attacks. Metrics on the ASVSpoof challenge are

based on the minimum tandem detection cost function (t-DCF) [97], which can evaluate

the performance of CM systems on fixed ASV systems with pre-determined output scores.

Rather than developing CM and ASV systems independently, a neglected research ques-

tion is whether we can develop an integrated system where CM and ASV system can be

optimized together, so that a single verification score is able to determine whether an input

speech sample is a target speaker, while also accounting for potential spoofing attacks.

To encourage research on integrated Spoofing-Aware Speaker Verification (SASV) sys-

tems, the SASV Challenge 2022 [98] was proposed using the ASVSpoof 2019 Logical

Access Dataset with new metrics, SASV-EER. In the challenge, a single score determines

if the input speech sample is the target speaker. Non-target inputs include zero-effort and

spoofed impostors. The SASV challenge provides two baseline systems by applying dif-

ferent fusion strategies (score-level fusion and embedding-level fusion) to pre-trained ASV

and CM systems.

Figure 4.1 shows potential solutions to the SASV problem. Red/green lines indicate the

following training stages: (a) Cascaded ASV/CM systems, (b) Fusions of scoring predic-

tion, (c)Fusions of scoring and feature embedding, (d)Fusions of feature embedding, and

(e)End-to-End SASV systems.

This chapter proposes a fully trainable end-to-end SASV system, called Spoof-Aggregated

Spoofing Aware Speaker Verification System (SA-SASV), that combines a pre-trained

ASV system with a lightweight raw waveform encoder to form the overall encoder [99].

This chapter expands upon our prior experience that showed how encoding can be a key

aspect of these types of anomaly detection problems [99, 100, 101]. Multiple classifiers

and spoof-source-based triplet loss functions are employed to enhance model performance

in generating the shared SASV feature space.

The remainder of the chapter is organized as follows: Section 4.2 reviews related re-

search on SASV systems; Section 4.3 discusses the model architecture of our SA-SASV

lxix

Figure 4.1: Feasible Solutions to Build Integrated SASV Systems.

lxx

Systems; Section 4.4 analyzes experiment results; and Section 4.5 presents concluding re-

marks.

4.2 Related Work

A SASV system aims to build a single system to reject utterances from zero-effort and

spoofed speech. Previous work focused on two solutions to this problem: ensemble SASV

solutions and integrated single system solutions.

Ensemble SASV solutions take fixed outputs from pre-trained ASV and CM systems

and apply varying fusion strategies to generate a single SASV score for both tasks. Sizov

et al. [102] was the first to apply i-vectors and a PLDA back-end for joint modeling of

speaker verification and spoof detection. At the score level, Todisco et al. [103] proposed a

two-dimensional score modeling method to get a single score threshold for both ASV and

CM systems.

Shim et al. [104] discusses a back-End modular approach to train embeddings from

pre-trained fixed ASV systems and spoofing predictions from CM systems to predict fi-

nal SASV scores. In addition to scoring ensembles, fusions based on embeddings from

different models have also been tested. For example, Gomez-Alanis et al. [105] proposed

DNN-based integration methods to train three types of embeddings from ASV and CM

systems jointly.

The target task of an integrated single SASV system is to build an end-to-end system

that simultaneously classifies speech based on whether or not it is from the target speaker

and is authentic non-spoofed speech. Zhao et al. [106] built an SR-ASV system with two

classifiers to get CM scores and ASV scores from shared layers and the final decision is

based on both the CM and ASV scores. Li et al. [107] applied speaker-based triplet loss to

train multi-task classification networks to make a joint decision on anti-spoofing and ASV.

As a form of integrated single SASV system, our method explores the shared feature

space of SASV tasks. To obtain proper embeddings for speech from the multiple encoders

lxxi

that we employ, both hand-crafted features and raw waveforms are input into SA-SASV. We

first discuss the feasibility of optimizing the SASV feature space by aggregating spoofed

voice samples based on their spoofing sources. The proposed model was trained with

multiple loss functions, including spoof source-based triplet loss. The final decision by our

model is based on cosine similarity and CM scores from same model.

4.3 SA-SASV Model Architecture

Compared to independent CM and ASV models, the ideal feature space learned from

SASV models should have the following characteristics: (1) spoofed and bonafide speech

should be densely aggregated so that obvious margins can be drawn to separate them and

(2) in the clusters of bonafide speech sources from different speakers should be sparsely

distributed so that models can distinguish between different speakers. Figure 4.2 shows

how the SASV system integrates the CM and ASV systems so that there are two types of

boundaries to separate spoof/bonafide speech and target/non-target speakers.

Figure 4.2: Desired Speech Sample Classification Distribution of Different Spoof Detec-
tion Systems.

To achieve optimized feature space in a SASV system, we propose the so-called SA-

SASV model,, whose decode consists of three parts: multi-task classifiers, spoof aggrega-

tors, and spoof-source-based triplet loss, as shown in Figure 4.3. This figure shows how

lxxii

Figure 4.3: Model Structure of the SA-SASV System.

lxxiii

shared embedding is fed into multiple classifiers and how the feature space from the en-

coders is optimized by combinations of various loss functions. This fully trainable model

takes both raw waveforms and hand-crafted features as input and multiple losses are used

to optimize feature embedding.

4.3.1 The ARawNet Encoder

Previous research shows that the best-performing ASV systems [83] and CM sys-

tems [108], take hand-crafted features and raw waveforms, respectively, indicating distinc-

tive features among each type of input that are useful for identifying speakers and spoofing

attacks. It is hard, however, to simply merge existing state-of-the-art ASV and CM systems

together to develop an end-to-end model, due to the resulting large model size and high

computational complexity. We use our previously published ARawNet architecture [99] to

help overcome this limitation. Our encoder combines a pre-trained ASV system (ECAPA-

TDNN) and a lightweight raw waveform encoder to enable simultaneous analysis of both

learned features and raw wave forms.

We denote input utterance as U . An utterance’s embedding, Eu, can be described as

shown in Equation 4.1, where Fasv is a pre-trained ECAPA-TDNN, Fraw is an un-trained

auxiliary raw encoder, and Fc is a concatenating encoder that handles outputs from Fasv and

Fraw.

Eu = Fc(Fasv(U),Fraw(U)) (4.1)

4.3.2 Multi-task Classifiers

Since end-to-end SASV systems need to determine if input speech is bonafide—and

if so, if it is the target speaker—this problem is formulated as a multi-task classification

problem. Two classifiers are used to predict spoof attacks and speaker id independently,

with shared feature embeddings from the encoder. The CM classifier Ccm receives all inputs

lxxiv

and predicts confidence scores, indicating if the input is believed to represent a spoofing

attack. A bonafide mask layer is placed before the ASV classifier, Casv, so that losses

produced by the ASV classifier are only from bonafide speech. Binary cross entropy(BCE)

loss and AAM-softmax loss are used for the CM and ASV classifiers, as described in

Equation 4.3 and Equation 4.2[109] respectively.

Lasv =− 1
N

Σ
N
i=1log

es(cos(θyi,i)+m)

es(cos(θyi,i)+m)+Σ
j
j=1, j ̸=ie

s(cos(θ j,i))
(4.2)

Lcm =− 1
N

Σ
N
i=1ycm

i logCcm(E)+(1− ycm
i)log(1−Ccm(E)) (4.3)

4.3.3 Spoof Aggregator

In the SASV task, utterances, U , consist of spoof attack samples, Us, and bonafide

speech samples, Ub. As shown in Figure 4.2, Us should have a relatively dense distribution

in the shared feature space. It is hard, however, to aggregate the various spoofing attacks

together due to their intrinsic differences in speech generation methods. This inherent dif-

ficulty in separating the two is evidenced by analyzing Us from different sources using

agglomerative clustering [110], as shown in Figure 4.4. These results indicate that Utts

(which represents produced with Text-to-Speech(TTS)) and Uvc (which represents samples

from Voice Conversion(VC)), tend to be closer in corresponding feature space. We there-

fore conjecture that Utts and Uvc should be aggregated into two clusters in the feature space

of SASV systems.

We use two adversarial learning layers to construct a spoof aggregator so that Utts and

Uvc aggregate separately. We labeled the Us as A1 . . .A6, representing the spoof type, where

A1 to A4 are from Utts and A5 to A6 are from Uvc. Followed by a masking layer, Etts and

Evc are sent to Ctts and Cvc, where each independently attempts to predict what spoof type

lxxv

Figure 4.4: Results of Agglomerative Clustering on the ASVSpoof 2019 LA Dataset.

Us corresponds to. The cross entropy loss for both classifiers is shown in Equation 4.4

Ltts = Lvc =
1
N

Σ
N
i yA

i logCspoo f (E) (4.4)

Since we want our embedding, E, to mix spoof attacks from the same types of gener-

ation mechanisms together, so that Ctts and Cvc fail to distinguish different spoofing attack

types, a gradient reverse layer(GRL) is added before the classifiers to maximize Ltts and

Lvc.

4.3.4 Spoof source based triplet loss

The shared feature space from SASV systems tends to be differentiated by Utts, Uvc,

and different speakers Uspki . In other words, the goal is for E with the same labels to

be relatively compactly clustered and the overall cluster separated from E samples with

lxxvi

Subsets #Bonafide
Spoofed

#TTS #VC

Training 2580
A1-A4
15200

A5-A6
7600

Development 2548
A1-A4
14864

A5-A6
7432

Evaluation 7335
A7-A16
49140

A17-A19
14742

Table 4.1: Statistics of ASVSpoof 2019 LA Dataset

different labels. Boundaries between the E samples with different labels should be distinct.

To help achieve this outcome, rather than applying speaker-based triplet loss, we applied

spoof source-based Triplet loss. Conventional triplet loss is described as Equation 4.5:

Lt = ∥Ea −E p∥−∥Ea −En +m∥ (4.5)

As shown in Figure 4.3, Ei is labeled as T T S, VC and SPKi, where SPKi indicates the

ith speaker. The goal is to cluster, Ei samples, with same labels as densely as possible and

scatter SPKi to make it far away from SPK j , T T S and VC, as shown in Figure 4.5. This

figure shows that positive samples (utterances with the same labels) are pulled closer and

negative samples are pushed away. Thus, for an utterance from speaker i, Uspki , the spoof

source based triplet loss is updated as shown in Equation 4.6.

Lst = Lt(Ea,Ep,Etts)+Lt(Ea,Ep,Evc)

+Σ
N
j=0Lt(Ea,Ep,Espk j)i ̸= j

(4.6)

lxxvii

Figure 4.5: Training Based on Spoof-source Based Triplet Loss.

lxxviii

4.3.5 Overall Loss Function

As shown in Figure 4.3, the overall loss for SA-SASV is determined by all of its con-

stituent decoders, which includes five different loss functions, as shown in Equation 4.7.

Lsasasv = Lcm +λ1Lasv +λ2Ltts +λ3Lvc +λ4Lts (4.7)

4.4 Analysis of Experimental Results

This section analyzes the results of the experiments we conducted. We analyze our

model performance with an ablation study and compare the obtained results with prior

research in the SASV problem.

4.4.1 Experiment Setting

Table 4.2: Comparison on characteristics and performance of different SASV systems.

Models

SASV

Baseline1

[98]

SASV

Baseline2

[98]

Cascaded

CM/ASV

[105]

2-stage

PLDA

[105, 102]

Inputs

raw

waveforms,

Fbanks

raw

waveforms,

Fbanks

MFCC

STFT
MFCC

Encoders

ECAPA-

TDNN,

AASIST

ECAPA-

TDNN,

AASIST

LC-GRNN,

X-Vector
X-Vector

Training
Phase1

ASV,

CM

systems

ASV,

CM

systems

ASV,

CM

systems

PLDA

lxxix

Phase2 \
concatenated

embeddings
\ PLDA

Ensemble Score Embeddings \ \

EER-SASV 19.15 8.76 7.67 28.40

Models

Triplet

TDNN

[105, 107]

INN(AUE)

[105]
SA-SASV

Inputs
MFCC,

CQCC

MFCC,

STFT

raw

waveforms,

Fbanks

Encoders TDNN
LC-GRNN,

B-Vector

ECAPA-

TDNN

ARawNet

Training
Phase1 TDNN

ASV,

CM

systems

SA-SASV

Phase2

PLDA

(CM),

PLDA

(ASV)

concatenated

embeddings
\

Ensemble Score Embeddings \

EER-SASV 8.99 6.05 4.86

Dataset. The SASV challenge permits the VoxCeleb2 dataset [111] and the ASVspoof

2019 LA dataset [71] for training the ASV and CM models. The VoxCeleb2 database

consists of over 1 million utterances from 6,112 speakers and is designed for the ASV task,

lxxx

without spoofed data. The ASVspoof 2019 LA dataset, on the other hand, is prepared

for the CM tasks, containing 6 types of spoof attacks in the training set and another 11

types of spoof attacks in the evaluation set, where the SASV models are tested. We use

the VoxCeleb2 dataset to pre-train the ECAPA-TDNN and our model is fine-tuned on the

ASVspoof 2019 LA dataset. As shown in Table 4.1, the models need to generalize training

attacks (A1-A6) to unseen attacks (A7-A19).

Metrics. We evaluated our model performance based on the SASV-EER, which is

the primary metric in the SASV challenge. As shown in Table 4.3, only target speakers are

labeled as positive and both non-target bonafide and spoof attacks are labeled as negative in

the SASV-EER. The SV-EER and SPF-EER, are complements to SASV-EER, and reflect

models’ capability in different subsets of the full trials. Compared to the EER used in

the ASVSpoof challenge, the SPF-EER only tests model performance in trials based on

bonafide target speakers with spoofed speech.

Target Non-target Spoof
SV-EER + -
SPF-EER + -
SASV-EER + - -

Table 4.3: Metrics to evaluate SASV systems.

Baseline. The SASV challenge provides two baseline models using state-of-the-art

ASV and CM systems with different fusion strategies. Baseline1 adopts a score-sum en-

semble, which uses a naive sum function to integrate non-calibrated scores from the ASV

and CM systems. While this method does not consider the difference between scores from

different systems, scores of ASV systems are cosine similarity and scores of CM systems

are from classifiers. Baseline2 uses an extra network as a fusion strategy that takes embed-

dings from pre-trained ASV and CM systems to produce the final scores.

lxxxi

Configuration SASV SV SPF

ECAPA-TDNN 22.38 0.83 29.32
SASV-Baseline1 19.15 35.1 0.5
SASV-Baseline2 8.75 16.01 12.23

Ours

SA-SASV 4.86 8.06 0.50
w/o triplet 5.82 9.14 2.12
w/o spoof
aggregator 5.90 9.96 0.68

naive
multi-task classifier 5.58 9.05 0.83

Table 4.4: Ablation study on the AS-SASV system.

4.4.2 Results Discussion

4.4.2.1 Ablation Study on the Proposed Model

Configuration. An ablation study was conducted to investigate the effects of the differ-

ent components on the performance of the SA-SASV system. As shown in Table 4.4, we

evaluated our model with varying configurations of (1) just spoof source-based triplet loss,

(2) just spoof aggregator, (3) and the two combined. Results indicate the absence of either

component will reduce the SASV-EER of the SA-SASV model and configurations with all

proposed sub-structures provide the best results on the ASVSpoof 2019 Dataset. By com-

paring SPF-EER, we can find spoof-source-based triplet loss boosts model performance in

the countermeasure task in multi-task classification model. Our best results improve all

three metrics and the SASV-ERR was improved from 8.75% (baseline) to 4.86%.

The proposed model shows different generalization capabilities in SV and SPF

tasks. Even though the SV-EER of the model reaches 0 in the training stage, it has limited

ability to generalize the SV task to the evaluation set, which only contains unseen speakers.

As a result, the overall model performance drastically decreased due to SV-EER. We also

noticed that, due to the overfitting problem, compared to SPF-EER, SV-EER in all models

with different configurations tends to have unstable results. However, the SPF-EER of the

lxxxii

model shows consistency from training to evaluation set, the best SPF-EER reaches 0.5,

which is better than the baseline single CM system.

In conclusion, the model can detect unseen spoof attacks and has trouble distinguishing

unknown speakers in the evaluation set. We conjecture the performance difference stems

from data distribution in the training set. Only 40 speakers are contained in the training set

and the ASV task usually requires a larger number of speakers to build features of human

utterance, e.g., 5,994 speakers are included in the VoxCeleb2 dataset.

Although parts of our encoder are pre-trained on the VoxCeleb2 dataset, it only gave

our model a feasible initializing strategy. During the training stage, the bonafide cluster in

our new feature space is highly overfitted. The results of SPF-EER and SV-EER therefore

show a different tendency in the training and evaluation stages. We believe it is a reasonable

solution to train end-to-end SASV systems on complete ASV and CM datasets to avoid the

overfitting problem.

Visualization. To observe the updates of the features space produced by our encoder,

we visualized utterances in the evaluation set using the t-SNE, as shown in Figure 4.6. The

Figure 4.6: Visualization of the Feature Space in SA-SASV Using t-SNE.

left side (labeled (a)) shows the distribution of samples from the naive multi-task classifier

lxxxiii

without spoof-source-based triplet loss and the spoof aggregator. The right side (labeled

(b)) shows the updated distribution using SA-SASV on the evaluation set. Compared to

naive the multi-task classifier, both spoof attacks from TTS and VC tend to have denser

clustering and cleaner boundaries, making TTS, VC, and bonafide easier to differentiate.

4.4.2.2 Model Comparison with other SASV systems

We compared the characteristics and performance on the ASVSpoof 2019 LA dataset of

SA-SASV with other SASV systems as shown in Table 4.2. Compared to other ensemble-

based systems, SA-SASV takes advantage of a single training phase, intending to build

a single representation in the feature space for utterances from different sources.Our SA-

SASV improves SASV-EER from 6.05% (the prior best-performed INN(AUE) system) to

4.86%.

4.5 Concluding Remarks

We proposed an end-to-end SA-SASV model, which is optimized with multiple loss

functions to aggregate TTS, VC, and different speakers separately. Results show that the

feature space of SA-SASV is better able to distinguish spoof attacks and identify speakers

versus prior published approaches. Further, the SASV-EER is improved from the 6.05%

produced by prior state of the art approaches to 4.86% without an ensembling strategy. A

larger dataset and different encoders would likely boost the performance of the SV-EER

and we will explore this in future work.

lxxxiv

Chapter 5

Conclusion

Deep learning research has transitioned from a research context to an industry environ-

ment, and deep learning applications have become ubiquitous. As one of the in-the-wild

challenges, frugality pursues a balance between costs and performance, reaching better

model predictions with fewer costs. This thesis research formulates frugality challenges by

discussing different development stages of deep learning applications and identifies them

as three key research challenges. 1) Solving new in-the-wild problems with deep learning

requires expensive costs for data generation, especially for domain-specific applications.

2) In pursuit of better performance, deep learning applications tend to have more complex

structures or ensemble models, which require higher computational costs. 3) Deep learn-

ing applications tend to become a multi-model structure to solve new challenges when

problems become more complex. A summary of our research contributions are discussed

below.

5.1 Summary of the Research Contributions

• An scalable dataset generation solution for Sketch2Vis problems.

1. Propose and formulate the Sketch2Vis challenges, translating hand-drawn sketches

into visualization code.

2. Present a novel approach for combining a Domain-Specific Language (DSL)

and style transfer to generate training data for the Sketch2Vis challenge auto-

matically.

3. Validate that models trained on synthetically generated data can effectively gen-

eralize to hand-drawn sketches.

lxxxv

4. Compare and evaluate the performance of the recurrent neural network (RNN)-

based and Transformer-based networks on the Sketch2Vis problem, built the

baseline model of Sketch2Vis with a transformer-based approach.

5. Discuss challenges in existing evaluation metrics and propose new evaluation

metrics to score generated visualizations.

6. Conclude the proposed solution as a reverse engineering method, which can be

generalized to dataset generation for other programming language generation

problems.

• A solution for reducing the computation complexity of ensemble models in the ASVSpoof

problem.

1. Propose assumptions to concatenate raw waveforms and handcrafted features

in a single model to reach less model complexity.

2. Introduce the Auxiliary Rawnet model architecture to use the raw waveform

and handcrafted features in the ASVSpoof problem with a lightweight encoder

to process raw waveform.

3. Improve models’ resistance towards 10 of 13 spoof attacks in ASVSpoof 2019

challenges.

4. The model performance is similar to Stage-of-the-art models with minor com-

putation complexity.

5. Discuss the potentiality of combining a lightweight waveform encoder with

multiple encoders in other speech problems with unexpected inputs.

• A model structure to simplify system complexity for the SASV problem.

1. Discuss a generalization solution to fuse multiple models with the same type of

inputs in multi-module problems.

lxxxvi

2. Propose a fully trainable end-to-end model structure, SA-SASV, to aggregate

spoofing attacks with multiple loss functions.

3. Show the feasibility of simplifying the SASV problem into a single training

stage.

5.2 Future Work

5.2.1 Automatic data generation and the Sketch2Vis Challenge

Our future work focuses on optimizing and extending our current dataset by integrating

more visualization tools to enlarge sketch styles for the Sketch2Vis model. In our current

work, we did not focus on textual processing information (such as variable names) and still

use a manual mapping step to map these textual names to data series. In future work, we

intend to work on automatically translating axis and series labels into data queries. We

are also refining feature selections in our DSL model by investigating human demands and

problems during the visualization process from online communities (such as StackOver-

flow) to enhance our model’s usability by enlarging its supported features without signif-

icantly expanding the DSL vocabulary size. Finally, we are preparing more hand-drawn

sketches for validation.

5.2.2 Lightweight ensemble solution and the ASVSpoof Challenge

Evaluate proposed model to similar speech-related challenges. In our research, we

implemented ARawNet to validate our assumption on combining raw waveform and hand-

crafted features. The model shows excellent performance on the ASVSpoof problem in

distinguishing spoofing attacks and bonafide speeches, reaching the state-of-the-art when

we publish our work. However, we need more experiments and model implementation in

the context of different problems to validate our assumptions further.

Investigate relationship between model performance and different spoof types. Even

lxxxvii

though the overall performance (pooled-EER) of the ARawNet model is excellent, there

are unexplainable parts in our performance evaluations by spoof category. We expected

our model to enhance the performance of the primary encoder in all spoofing attacks. In

contrast, the performance of the complementary models is still inadequate in three types

of attacks. In the future, we must investigate our model performance based on different

acoustic models.

5.2.3 Simplified multi-module structure and the SASV Challenge

The overfitting problem limits experimental results in our research and a potential sim-

plification in other multi-module problems. A large, better-balanced dataset remains a

challenge for our SA-SASV models. End-to-end SASV systems need to be trained on

complete ASV and CM datasets to avoid the overfitting problem. In the future, we need to

explore how to generate a dataset containing an appropriate ratio of bonafide speakers and

spoofing attacks.

5.3 Summary of Publications

1. Zhongwei Teng, Quchen Fu, Jules White, Maria Powell, and Douglas C. Schmidt.

Sa-sasv: An end-to-end spoof-aggregated spoofing-aware speaker verification sys-

tem. In Interspeech 2022-23rd Annual Conference of the International Speech Com-

munication Association. ISCA, 2022

2. Quchen Fu, Zhongwei Teng, Jules White, Maria E Powell, and Douglas C Schmidt.

Fastaudio: A learnable audio front-end for spoof speech detection. In ICASSP 2022-

2022 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 3693–3697. IEEE, 2022

3. Zhongwei Teng, Quchen Fu, Jules White, Maria Powell, and Douglas C. Schmidt.

Arawnet: A lightweight solution for leveraging raw waveforms in spoof speech de-

lxxxviii

tection. In IEEE ICPR 2022 26TH International Conference on Pattern Recognition

(ICPR). IEEE, 2022

4. Zhongwei Teng, Fu Quchen, White Jules, and Douglas C Schmidt. Sketch2vis: Gen-

erating data visualizations from hand-drawn sketches with deep learning. In 2021

20th IEEE International Conference on Machine Learning and Applications(ICMLA).

IEEE, 2021

5. Zhongwei Teng, Peng Zhang, Xiao Li, William Nock, Denis Gilmore, Marcelino

Rodriguez-Cancio, Jules White, Jonathan Carl Nesbitt, and Douglas Craig Schmidt.

Authentication & integration approaches for mhealth apps from a usability view.

Advances in Electrical and Electronic Engineering, 19(1):74–89, 2021

6. Zhongwei Teng, Peng Zhang, Xiao Li, William Nock, Marcelino Rodriguez-Cancio,

Jules White, Douglas C Schmidt, Denis Gilmore, and Jonathan C Nesbitt. Authen-

tication and usability in mhealth apps. In 2018 IEEE 20th International Conference

on e-Health Networking, Applications and Services (Healthcom), pages 1–6. IEEE,

2018

7. Zhongwei Teng, William Nock, and White Jules. Checklist usage secure software

development. In 10th International Conference on Software Engineering and Appli-

cations (SEAPP 2021), 2021

8. Yao Pan, Fangzhou Sun, Zhongwei Teng, Jules White, Douglas C Schmidt, Jacob

Staples, and Lee Krause. Detecting web attacks with end-to-end deep learning. Jour-

nal of Internet Services and Applications, 10(1):1–22, 2019

9. Mayank Agarwal, Tathagata Chakraborti, Quchen Fu, David Gros, Xi Victoria Lin,

Jaron Maene, Kartik Tala-madupula, Zhongwei Teng, and Jules White. Neurips 2020

nlc2cmd competition: Translating natural language to bash commands. In PMLR

Volume 133: NeurIPS 2020 Competition and Demonstration Track, 2021

lxxxix

10. Fu Quchen, Zhongwei Teng, White Jules, and Douglas Schmidt. A transformer-

based approach for translating natural language to bash commands. In 2021 20th

IEEE International Conference on Machine Learning and Applications(ICMLA).

IEEE, 2021

11. Quchen Fu, Ramesh Chukka, Keith Achorn, Thomas Atta-fosu, Deepak R Canchi,

Zhongwei Teng, Jules White, and Douglas C Schmidt. Deep learning models on

cpus: A methodology for efficient training. arXiv preprint arXiv:2206.10034, 2022

12. Quchen Fu, Zhongwei Teng, Marco Georgaklis, Jules White and Douglas C. Schmidt.

NL2CMD: An Updated Workflow for Natural Language to Bash Commands Trans-

lation. Journal of Machine Learning Theory, Applications and Practice (Accepted)

xc

BIBLIOGRAPHY

[1] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,

Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic

image generation and editing with text-guided diffusion models. arXiv preprint

arXiv:2112.10741, 2021.

[2] Michael Groves and Klaus Mundt. Friend or foe? google translate in language for

academic purposes. English for Specific Purposes, 37:112–121, 2015.

[3] Veton Këpuska and Gamal Bohouta. Comparing speech recognition systems (mi-

crosoft api, google api and cmu sphinx). Int. J. Eng. Res. Appl, 7(03):20–24, 2017.

[4] Yong Bai and Yinggang Chen. Human motion analysis and action scoring technol-

ogy for sports training based on computer vision features. Journal of Intelligent &

Fuzzy Systems, (Preprint):1–9, 2021.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

arXiv preprint arXiv:1706.03762, 2017.

[7] Thilo Stadelmann, Mohammadreza Amirian, Ismail Arabaci, Marek Arnold,

Gilbert François Duivesteijn, Ismail Elezi, Melanie Geiger, Stefan Lörwald, Ben-

jamin Bruno Meier, Katharina Rombach, et al. Deep learning in the wild. In

IAPR Workshop on Artificial Neural Networks in Pattern Recognition, pages 17–38.

Springer, 2018.

xci

[8] Andrew Ng. Machine learning yearning. URL: http://www. mlyearning. org/(96),

139, 2017.

[9] Carlos Perez. The deep learning AI playbook. Lulu. com, 2017.

[10] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable artifi-

cial intelligence: Understanding, visualizing and interpreting deep learning models.

arXiv preprint arXiv:1708.08296, 2017.

[11] Jaegul Choo and Shixia Liu. Visual analytics for explainable deep learning. IEEE

computer graphics and applications, 38(4):84–92, 2018.

[12] Sushil Kumar Singh, Young-Sik Jeong, and Jong Hyuk Park. A deep learning-based

iot-oriented infrastructure for secure smart city. Sustainable Cities and Society,

60:102252, 2020.

[13] Saba Amiri, Sara Salimzadeh, and Adam SZ Belloum. A survey of scalable deep

learning frameworks. In 2019 15th International Conference on eScience (eScience),

pages 650–651. IEEE, 2019.

[14] Eunkyeong Kim, Jinyong Kim, Hansoo Lee, and Sungshin Kim. Adaptive data

augmentation to achieve noise robustness and overcome data deficiency for deep

learning. Applied Sciences, 11(12):5586, 2021.

[15] Erdenebayar Urtnasan, Jung Hun Lee, Byungjin Moon, Hee Young Lee, Kyuhee

Lee, Hyun Youk, et al. Noninvasive screening tool for hyperkalemia using a single-

lead electrocardiogram and deep learning: Development and usability study. JMIR

Medical Informatics, 10(6):e34724, 2022.

[16] Mikhail Evchenko, Joaquin Vanschoren, Holger H Hoos, Marc Schoenauer, and

Michèle Sebag. Frugal machine learning. arXiv preprint arXiv:2111.03731, 2021.

xcii

[17] Michael Friendly. A brief history of data visualization. In Handbook of data visual-

ization, pages 15–56. Springer, 2008.

[18] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose

code generation. arXiv preprint arXiv:1704.01696, 2017.

[19] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven docu-

ments. IEEE transactions on visualization and computer graphics, 17(12):2301–

2309, 2011.

[20] tableau. Tableau. https://www.tableau.com/, 2019.

[21] Michael Diamond and Angela Mattia. Data visualization: An exploratory study into

the software tools used by businesses. Journal of Instructional Pedagogies, 18, 2017.

[22] Jagoda Walny, Christian Frisson, Mieka West, Doris Kosminsky, Søren Knudsen,

Sheelagh Carpendale, and Wesley Willett. Data changes everything: Challenges and

opportunities in data visualization design handoff. IEEE transactions on visualiza-

tion and computer graphics, 26(1):12–22, 2019.

[23] Arjun Srinivasan, Bongshin Lee, Nathalie Henry Riche, Steven M Drucker, and Ken

Hinckley. Inchorus: Designing consistent multimodal interactions for data visual-

ization on tablet devices. In Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems, pages 1–13, 2020.

[24] Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries from

natural language without reinforcement learning. arXiv preprint arXiv:1711.04436,

2017.

[25] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: query

synthesis from natural language. Proceedings of the ACM on Programming Lan-

guages, 1(OOPSLA):1–26, 2017.

xciii

[26] Prasetya Utama, Nathaniel Weir, Fuat Basik, Carsten Binnig, Ugur Çetintemel, Ben-

jamin Hättasch, Amir Ilkhechi, Shekar Ramaswamy, and Arif Usta. An end-to-end

neural natural language interface for databases. arXiv preprint arXiv:1804.00401,

2018.

[27] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating struc-

tured queries from natural language using reinforcement learning. arXiv preprint

arXiv:1709.00103, 2017.

[28] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[29] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi

Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov,

et al. The open images dataset v4. International Journal of Computer Vision, pages

1–26, 2020.

[30] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Se-

mantic propositional image caption evaluation. In European conference on computer

vision, pages 382–398. Springer, 2016.

[31] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method

for automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, pages 311–318, 2002.

[32] Michael Denkowski and Alon Lavie. Meteor universal: Language specific transla-

tion evaluation for any target language. In Proceedings of the ninth workshop on

statistical machine translation, pages 376–380, 2014.

[33] Tony Beltramelli. pix2code: Generating code from a graphical user interface screen-

xciv

shot. In Proceedings of the ACM SIGCHI Symposium on Engineering Interactive

Computing Systems, page 3. ACM, 2018.

[34] Mengtian Li, Zhe Lin, Radomı́r Mˇ ech, , Ersin Yumer, and Deva Ramanan. Photo-

sketching: Inferring contour drawings from images. WACV, 2019.

[35] Jared Wilber. roughviz.

[36] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007.

[37] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and

tell: Lessons learned from the 2015 mscoco image captioning challenge. IEEE

transactions on pattern analysis and machine intelligence, 39(4):652–663, 2016.

[38] Xu Jia, Efstratios Gavves, Basura Fernando, and Tinne Tuytelaars. Guiding the

long-short term memory model for image caption generation. In Proceedings of the

IEEE international conference on computer vision, pages 2407–2415, 2015.

[39] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,

Stephen Gould, and Lei Zhang. Bottom-up and top-down attention for image cap-

tioning and visual question answering. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 6077–6086, 2018.

[40] Xinxin Zhu, Lixiang Li, Jing Liu, Haipeng Peng, and Xinxin Niu. Captioning trans-

former with stacked attention modules. Applied Sciences, 8(5):739, 2018.

[41] Jun Yu, Jing Li, Zhou Yu, and Qingming Huang. Multimodal transformer with multi-

view visual representation for image captioning. IEEE transactions on circuits and

systems for video technology, 30(12):4467–4480, 2019.

[42] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The sketchy

xcv

database: learning to retrieve badly drawn bunnies. ACM Transactions on Graphics

(TOG), 35(4):1–12, 2016.

[43] Yuntian Deng, Anssi Kanervisto, and Alexander M Rush. What you get is what

you see: A visual markup decompiler. arXiv preprint arXiv:1609.04938, 10:32–37,

2016.

[44] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,

David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence

modeling. In Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

[45] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush.

OpenNMT: Open-source toolkit for neural machine translation. In Proceedings of

ACL 2017, System Demonstrations, pages 67–72, Vancouver, Canada, July 2017.

Association for Computational Linguistics.

[46] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M Rush. Image-to-

markup generation with coarse-to-fine attention. In International Conference on

Machine Learning, pages 980–989. PMLR, 2017.

[47] Christoph Stumpf Martin Krasser. Image captioning transformer.

https://github.com/krasserm/fairseq-image-captionin, 2020.

[48] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[49] Bowen Yu and Cláudio T Silva. Flowsense: A natural language interface for visual

data exploration within a dataflow system. IEEE transactions on visualization and

computer graphics, 26(1):1–11, 2019.

xcvi

[50] Arpit Narechania, Arjun Srinivasan, and John Stasko. Nl4dv: A toolkit for gen-

erating analytic specifications for data visualization from natural language queries.

IEEE Transactions on Visualization and Computer Graphics, 2020.

[51] Victor Dibia and Çağatay Demiralp. Data2vis: Automatic generation of data visu-

alizations using sequence-to-sequence recurrent neural networks. IEEE computer

graphics and applications, 39(5):33–46, 2019.

[52] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.

Vega-lite: A grammar of interactive graphics. IEEE transactions on visualization

and computer graphics, 23(1):341–350, 2016.

[53] Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. Making data visualization more

efficient and effective: a survey. The VLDB Journal, 29(1):93–117, 2020.

[54] Levent Burak Kara and Thomas F Stahovich. Hierarchical parsing and recognition

of hand-sketched diagrams. In Proceedings of the 17th annual ACM symposium on

User interface software and technology, pages 13–22, 2004.

[55] Manuel J Fonseca, César Pimentel, and Joaquim A Jorge. Cali: An online scribble

recognizer for calligraphic interfaces. In AAAI spring symposium on sketch under-

standing, pages 51–58, 2002.

[56] James A Landay and Brad A Myers. Sketching interfaces: Toward more human

interface design. Computer, 34(3):56–64, 2001.

[57] Brandon Paulson and Tracy Hammond. Paleosketch: accurate primitive sketch

recognition and beautification. In Proceedings of the 13th international conference

on Intelligent user interfaces, pages 1–10, 2008.

[58] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

xcvii

[59] Shinji Takaki and Junichi Yamagishi. A deep auto-encoder based low-dimensional

feature extraction from fft spectral envelopes for statistical parametric speech syn-

thesis. In 2016 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 5535–5539. IEEE, 2016.

[60] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga. A

comprehensive survey of deep learning for image captioning. ACM Computing Sur-

veys (CsUR), 51(6):1–36, 2019.

[61] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[62] Sen Chen, Lingling Fan, Ting Su, Lei Ma, Yang Liu, and Lihua Xu. Automated

cross-platform gui code generation for mobile apps. In 2019 IEEE 1st International

Workshop on Artificial Intelligence for Mobile (AI4Mobile), pages 13–16. IEEE,

2019.

[63] Gustav Fechner. Elements of psychophysics. vol. i. 1966.

[64] Joakim Andén and Stéphane Mallat. Deep scattering spectrum. IEEE Transactions

on Signal Processing, 62(16):4114–4128, 2014.

[65] Neil Zeghidour, Olivier Teboul, Félix de Chaumont Quitry, and Marco Tagliasac-

chi. Leaf: A learnable frontend for audio classification. arXiv preprint

arXiv:2101.08596, 2021.

[66] Jee-Weon Jung, Hee-Soo Heo, IL-Ho Yang, Hye-Jin Shim, and Ha-Jin Yu. Avoid-

ing speaker overfitting in end-to-end dnns using raw waveform for text-independent

speaker verification. extraction, 8(12):23–24, 2018.

xcviii

[67] Jee-weon Jung, Hee-Soo Heo, Ju-ho Kim, Hye-jin Shim, and Ha-Jin Yu.

Rawnet: Advanced end-to-end deep neural network using raw waveforms for text-

independent speaker verification. arXiv preprint arXiv:1904.08104, 2019.

[68] Andy T Liu, Shang-Wen Li, and Hung-yi Lee. Tera: Self-supervised learning of

transformer encoder representation for speech. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 2021.

[69] Hemlata Tak, Jose Patino, Massimiliano Todisco, Andreas Nautsch, Nicholas Evans,

and Anthony Larcher. End-to-end anti-spoofing with rawnet2. In ICASSP 2021-

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6369–6373. IEEE, 2021.

[70] Xu Li, Na Li, Chao Weng, Xunying Liu, Dan Su, Dong Yu, and Helen Meng. Re-

play and synthetic speech detection with res2net architecture. In ICASSP 2021-

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6354–6358. IEEE, 2021.

[71] Massimiliano Todisco, Xin Wang, Ville Vestman, Md Sahidullah, Héctor Del-

gado, Andreas Nautsch, Junichi Yamagishi, Nicholas Evans, Tomi Kinnunen, and

Kong Aik Lee. Asvspoof 2019: Future horizons in spoofed and fake audio detec-

tion. arXiv preprint arXiv:1904.05441, 2019.

[72] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec:

Unsupervised pre-training for speech recognition. arXiv preprint arXiv:1904.05862,

2019.

[73] Mirco Ravanelli and Yoshua Bengio. Speaker recognition from raw waveform with

sincnet. In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 1021–

1028. IEEE, 2018.

xcix

[74] Dimitri Palaz, Mathew Magimai Doss, and Ronan Collobert. Convolutional neu-

ral networks-based continuous speech recognition using raw speech signal. In

2015 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 4295–4299. IEEE, 2015.

[75] Paul-Gauthier Noé, Titouan Parcollet, and Mohamed Morchid. Cgcnn: Complex

gabor convolutional neural network on raw speech. In ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 7724–7728. IEEE, 2020.

[76] Randall Balestriero, Romain Cosentino, Hervé Glotin, and Richard Baraniuk. Spline

filters for end-to-end deep learning. In International conference on machine learn-

ing, pages 364–373. PMLR, 2018.

[77] Quchen Fu, Zhongwei Teng, Jules White, Maria E Powell, and Douglas C Schmidt.

Fastaudio: A learnable audio front-end for spoof speech detection. In ICASSP 2022-

2022 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 3693–3697. IEEE, 2022.

[78] Kaizhi Qian, Yang Zhang, Shiyu Chang, Mark Hasegawa-Johnson, and David Cox.

Unsupervised speech decomposition via triple information bottleneck. In Interna-

tional Conference on Machine Learning, pages 7836–7846. PMLR, 2020.

[79] Tomi Kinnunen, Kong Aik Lee, Héctor Delgado, Nicholas Evans, Massimiliano

Todisco, Md Sahidullah, Junichi Yamagishi, and Douglas A Reynolds. t-dcf: a

detection cost function for the tandem assessment of spoofing countermeasures and

automatic speaker verification. arXiv preprint arXiv:1804.09618, 2018.

[80] Christian Schörkhuber and Anssi Klapuri. Constant-q transform toolbox for music

processing. In 7th sound and music computing conference, Barcelona, Spain, pages

3–64, 2010.

c

[81] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev

Khudanpur. X-vectors: Robust dnn embeddings for speaker recognition. In

2018 IEEE international conference on acoustics, speech and signal processing

(ICASSP), pages 5329–5333. IEEE, 2018.

[82] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cornell,

Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdelwahab Heba, Jianyuan

Zhong, Ju-Chieh Chou, Sung-Lin Yeh, Szu-Wei Fu, Chien-Feng Liao, Elena Ras-

torgueva, François Grondin, William Aris, Hwidong Na, Yan Gao, Renato De

Mori, and Yoshua Bengio. SpeechBrain: A general-purpose speech toolkit, 2021.

arXiv:2106.04624.

[83] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. Ecapa-tdnn: Empha-

sized channel attention, propagation and aggregation in tdnn based speaker verifica-

tion. arXiv preprint arXiv:2005.07143, 2020.

[84] Ye Jia, Yu Zhang, Ron J Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng Chen,

Patrick Nguyen, Ruoming Pang, Ignacio Lopez Moreno, et al. Transfer learning

from speaker verification to multispeaker text-to-speech synthesis. arXiv preprint

arXiv:1806.04558, 2018.

[85] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks.

In International Conference on Machine Learning, pages 1718–1727. PMLR, 2015.

[86] Tomi Kinnunen, Lauri Juvela, Paavo Alku, and Junichi Yamagishi. Non-parallel

voice conversion using i-vector plda: Towards unifying speaker verification and

transformation. In 2017 IEEE international conference on acoustics, speech and

signal processing (ICASSP), pages 5535–5539. IEEE, 2017.

[87] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, and Hsin-Min Wang.

ci

Voice conversion from unaligned corpora using variational autoencoding wasserstein

generative adversarial networks. arXiv preprint arXiv:1704.00849, 2017.

[88] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouel-

let. Front-end factor analysis for speaker verification. IEEE Transactions on Audio,

Speech, and Language Processing, 19(4):788–798, 2010.

[89] Georg Heigold, Ignacio Moreno, Samy Bengio, and Noam Shazeer. End-to-end text-

dependent speaker verification. In 2016 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 5115–5119. IEEE, 2016.

[90] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:

A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[91] Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. World: a vocoder-based

high-quality speech synthesis system for real-time applications. IEICE TRANSAC-

TIONS on Information and Systems, 99(7):1877–1884, 2016.

[92] Marc Schröder, Marcela Charfuelan, Sathish Pammi, and Ingmar Steiner. Open

source voice creation toolkit for the mary tts platform. In 12th Annual Conference

of the International Speech Communication Association-Interspeech 2011, pages

3253–3256. ISCA, 2011.

[93] Driss Matrouf, J-F Bonastre, and Corinne Fredouille. Effect of speech transforma-

tion on impostor acceptance. In 2006 IEEE International Conference on Acoustics

Speech and Signal Processing Proceedings, volume 1, pages I–I. IEEE, 2006.

[94] Zhizheng Wu, Tomi Kinnunen, Nicholas Evans, Junichi Yamagishi, Cemal Hanilçi,

Md Sahidullah, and Aleksandr Sizov. Asvspoof 2015: the first automatic speaker

verification spoofing and countermeasures challenge. In Sixteenth annual conference

of the international speech communication association, 2015.

cii

[95] Tomi Kinnunen, Md Sahidullah, Héctor Delgado, Massimiliano Todisco, Nicholas

Evans, Junichi Yamagishi, and Kong Aik Lee. The asvspoof 2017 challenge: As-

sessing the limits of replay spoofing attack detection. 2017.

[96] Junichi Yamagishi, Xin Wang, Massimiliano Todisco, Md Sahidullah, Jose Patino,

Andreas Nautsch, Xuechen Liu, Kong Aik Lee, Tomi Kinnunen, Nicholas Evans,

et al. Asvspoof 2021: accelerating progress in spoofed and deepfake speech detec-

tion. arXiv preprint arXiv:2109.00537, 2021.

[97] Tomi Kinnunen, Héctor Delgado, Nicholas Evans, Kong Aik Lee, Ville Vestman,

Andreas Nautsch, Massimiliano Todisco, Xin Wang, Md Sahidullah, Junichi Yam-

agishi, et al. Tandem assessment of spoofing countermeasures and automatic speaker

verification: Fundamentals. IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, 28:2195–2210, 2020.

[98] Jee-weon Jung, Hemlata Tak, Hye-jin Shim, Hee-Soo Heo, Bong-Jin Lee, Soo-

Whan Chung, Hong-Goo Kang, Ha-Jin Yu, Nicholas Evans, and Tomi Kinnunen.

Sasv challenge 2022: A spoofing aware speaker verification challenge evaluation

plan. arXiv preprint arXiv:2201.10283, 2022.

[99] Zhongwei Teng, Quchen Fu, Jules White, Maria Powell, and Douglas C Schmidt.

Complementing handcrafted features with raw waveform using a light-weight aux-

iliary model. arXiv preprint arXiv:2109.02773, 2021.

[100] Yao Pan, Fangzhou Sun, Zhongwei Teng, Jules White, Douglas C Schmidt, Jacob

Staples, and Lee Krause. Detecting web attacks with end-to-end deep learning.

Journal of Internet Services and Applications, 10(1):1–22, 2019.

[101] Quchen Fu, Zhongwei Teng, Jules White, Maria Powell, and Douglas C Schmidt.

Fastaudio: A learnable audio front-end for spoof speech detection. arXiv preprint

arXiv:2109.02774, 2021.

ciii

[102] Aleksandr Sizov, Elie Khoury, Tomi Kinnunen, Zhizheng Wu, and Sébastien Marcel.

Joint speaker verification and antispoofing in the i-vector space. IEEE Transactions

on Information Forensics and Security, 10(4):821–832, 2015.

[103] Massimiliano Todisco, Héctor Delgado, Kong Aik Lee, Md Sahidullah, Nicholas

Evans, Tomi Kinnunen, and Junichi Yamagishi. Integrated presentation attack de-

tection and automatic speaker verification: Common features and gaussian back-end

fusion. In Interspeech 2018-19th Annual Conference of the International Speech

Communication Association. ISCA, 2018.

[104] Hye-jin Shim, Jee-weon Jung, Ju-ho Kim, and Ha-jin Yu. Integrated replay spoofing-

aware text-independent speaker verification. Applied Sciences, 10(18):6292, 2020.

[105] Alejandro Gomez-Alanis, Jose A Gonzalez-Lopez, S Pavankumar Dubagunta, An-

tonio M Peinado, and Mathew Magimai Doss. On joint optimization of automatic

speaker verification and anti-spoofing in the embedding space. IEEE Transactions

on Information Forensics and Security, 16:1579–1593, 2020.

[106] Yuanjun Zhao, Roberto Togneri, and Victor Sreeram. Multi-task learning-based

spoofing-robust automatic speaker verification system. Circuits, Systems, and Signal

Processing, pages 1–22, 2022.

[107] Jiakang Li, Meng Sun, Xiongwei Zhang, and Yimin Wang. Joint decision of anti-

spoofing and automatic speaker verification by multi-task learning with contrastive

loss. IEEE Access, 8:7907–7915, 2020.

[108] Jee-weon Jung, Hee-Soo Heo, Hemlata Tak, Hye-jin Shim, Joon Son Chung, Bong-

Jin Lee, Ha-Jin Yu, and Nicholas Evans. Aasist: Audio anti-spoofing using inte-

grated spectro-temporal graph attention networks. arXiv preprint arXiv:2110.01200,

2021.

civ

[109] Xu Xiang, Shuai Wang, Houjun Huang, Yanmin Qian, and Kai Yu. Margin matters:

Towards more discriminative deep neural network embeddings for speaker recogni-

tion. In 2019 Asia-Pacific Signal and Information Processing Association Annual

Summit and Conference (APSIPA ASC), pages 1652–1656. IEEE, 2019.

[110] Xin Wang, Junichi Yamagishi, Massimiliano Todisco, Héctor Delgado, Andreas

Nautsch, Nicholas Evans, Md Sahidullah, Ville Vestman, Tomi Kinnunen, Kong Aik

Lee, et al. Asvspoof 2019: A large-scale public database of synthesized, converted

and replayed speech. Computer Speech & Language, 64:101114, 2020.

[111] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. Voxceleb2: Deep speaker

recognition. arXiv preprint arXiv:1806.05622, 2018.

cv

Appendix A

Sketch2Vis Dataset DSL Grammar Notebook

The Sketch2Vis adopts multiple synthetic mechanisms to generate hand-drawn-style

data visualizations to overcome dataset challenges in training deep learning models. This

appendix shows the complete DSL grammar of the current dataset used in our experiments

with examples.

By adopting this idea, the Sketch2Vis dataset can be easily extended from the current

configuration by implementing more complex visualization types and parameters.

The DSLs in our experiments are generated with the following sources

1. Matplotlib

<p l o t >

< s t r u c t u r e >

<type> l i n e </ type>

<marker> X </ marker>

< l i n e s t y l e > −− </ l i n e s t y l e >

< i s l i n e l e g e n d s > F a l s e </ i s l i n e l e g e n d s >

</ s t r u c t u r e >

</ p l o t >

2. roughViz

<p l o t >

< s t r u c t u r e >

<type> b a r </ type>

< s i m p l i f i c a t i o n > 0 . 5 </ s i m p l i f i c a t i o n >

<hBar> F a l s e </hBar>

cvi

< f i l l S t y l e > z i g z a g </ f i l l S t y l e >

</ s t r u c t u r e >

</ p l o t >

3. Photo-Sketching

<p l o t >

< s t r u c t u r e >

<type> box </ type>

<mono> True </mono>

<v e r t > True </ v e r t >

</ s t r u c t u r e >

</ p l o t >

Name Description

<plot> Starter of a Sketch2Vis DSL file

<structure>

Starter of a visualization instance,

which works when there are multiple

visualizations in one plot.

<type> Plotting type of a visualization instance.

A.1 Tokens and Grammar

Matplotlib

Matplotlib is a popular Python 2D visualization library. We apply XKCD() function to

generate hand-drawn style visualization.

The following Table shows available parameters in our current dataset. Unpredictable

parameters are used to generate random visualization.

cvii

Parameter Description Values Apply Predictable

align

Alignment of the

bars to the

x coordinates

[’center’,

’edge’]
Bar True

color

The colors of

the bar/marker

faces

[’b’,’g’,’r’,

’c’,’m’,’y’,

’k’]

Bar,

Scatter
True

edgecolor
The colors of

the edges.

[’b’,’g’,’r’,

’c’,’m’,’y’,

’k’,’w’,

’face’, ’none’]

Bar,

Box
True

line style
Style of

plotted line

[’-’, ’–’, ’-.’,

’:’, ”]
Line True

line color
Color of

plotted line

[’b’, ’g’, ’r’,

’c’, ’m’, ’y’,

’k’]

Line True

line marker
Style of

plotted marker

[”.”, ”,”, ”o”,

”v”, ”ˆ”, ”<”,

”>”, ”1”, ”2”,

”3”, ”4”, ”8”,

”s”, ”p”, ”P”,

”*”, ”h”, ”H”,

”+”, ”x”, ”X”,

”D”, ”d”, ””,

” ”, None]

Line,

Scatter
True

islinelegends
Show legends

in plots
[True, False] Line True

cviii

explode
Offsetting a

pie slice
[True, False] Pie True

ring
Pie chart or

donut chart
[True, False] Pie True

sketch
Draw pie chart

without color
[True, False] Pie True

shadow
Draw a shadow

beneath the pie
[True, False] Pie True

vert

Vertical boxes

or

horizontal boxes

[True, False] Box True

title Title of visualization random text

Bar,

Line,

Box

False

x label
Labels of

x variables
random text

Bar,

Line
False

y label
Labels of

y variables
random text

Bar,

Line
False

line legends
Text of legends in

Line charts
random text Line False

notch

Notched box plot

or

rectangular boxplot

[True, False] Box False

showfliers
Show the outliers

beyond the caps
[True, False] Box False

cix

startangle

The angle by which

the start of the pie is

rotated,

counterclockwise

from the x-axis.

Number

from

0 to 90

Pie False

fontSize Size of font
Number of

font size

Bar,

Line,

Box,

Pie,

Scatter

False

font
Handwriting-style

font

String of

font

Bar,

Line,

Box,

Pie,

Scatter

False

textPosition Position of text

Position

based

on (x,y)

Bar,

Line,

Box,

Pie,

Scatter

False

RoughViz

roughViz.js is a JavaScript library to generate hand-drawn style visualizations.

The following table shows available parameters in our current dataset. Unpredictable

parameters are used to generate random visualization.

cx

Parameter Description Values Apply Predictable

simplification Chart simplification

[0.2,

0.5,

0.85]

Bar,

Line,

Pie

True

hBar
Vertical bars

or horizontal bars
[True, False] Bar True

fillStyle Bar/Pie fill-style

[’hachure’,

’cross-hatch’,

’zigzag’,

’dashed’,

’solid’,

’zigzag-line’]

Bar,

Pie
True

legend
Show legends

in plots
[True, False]

Line,

Pie
True

marker
Whether or not to

add circles to chart.
[none, circle] Line True

legendPosition Position of legends [left, right]
Line,

Pie
True

ring
Pie charts

or donuts charts
[True, False] Pie True

color Colors for markers

[’coral’,

’skyblue’,

’tan’,

’#8da0cb’,

’/’, ’tan’,

’orange’]

Scatter True

cxi

point-radius
Radius of

circles points
[2, 5, 8] Scatter True

xLabel Labels of x axis random text
Line,

Scatter
False

yLabel Labels of y axis random text
Line,

Scatter
False

title Title of charts random text

Line,

Scatter,

Bar,

Pie

False

roughness
Roughness

level of chart

Number from

1 to 10

Line,

Scatter,

Bar,

Pie

False

axisRoughness
Roughness for

x and y axes

Number from

1 to 10

Line,

Scatter
False

circleRoughness Roughness of circles
Number from

1 to 10
Line False

fillWeight
Weight of inner

paths’ color

Number from

0 to 1

Line,

Scatter,

Bar,

Pie

False

font Font-family to use
Handwriting

Font

Line,

Scatter,

Bar,

Pie

False

cxii

stroke Color of lines’ stroke
String of

a color
Line False

Photo-Sketching

Photo-Sketching is a style transfer deep learning model that we performed on sources

images generated by Matplotlib to create simple monochromatic sketches.

Parameter Description Values Apply Predictable

mono
This is a

monochromatic sketches
[True]

Scatter,

Pie,

Bar,

Box,

Line

True

ring Pie charts or donut charts [True, False] Pie True

align
Alignment of the bars

to the x coordinates
[center, edge] Bar True

vert
Vertical boxes

or horizontal boxes
[True, False] Box True

islinelegends Show legends in plots [True, False] Line True

cxiii

