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CHAPTER 1 

Introduction 

Structural health monitoring (SHM) is used to evaluate structural integrity and performance 

and guide decisions regarding maintenance, repair, and future operational limits of the structure. 

The diagnosis of damage in a structural system involves damage detection, localization, 

classification (of damage type), and/or quantification. In the past, both model-based and model-

free methodologies have been used in SHM [1]. In general, SHM consists of four stages: detection, 

localization, assessment, and prediction [2]. The first stage, detection, indicates that damage exists 

in the structure. Localization next provides information on the location(s) of damage within the 

structure. In the next stage, assessment estimates the extent of current damage; this information is 

then used in the prediction stage by assessing the growth of damage and the system's strength and 

safety in the future. This work focuses on localization and crack extent estimation for alkali-silica 

reaction-induced internal cracks in concrete structures. 

Alkali-silica reaction (ASR) is a critical degradation mechanism of concern for concrete 

structures (bridges, dams, primary/secondary containment in nuclear power plants (NPPs), reactor 

buildings in chemical plants, etc.). For example, as most existing nuclear power plants (NPPs) 

continue to operate beyond their initial license periods, the passive structures, systems, and 

components of NPPs as they continue to operate, suffer deterioration that influences structural 

integrity and performance. Monitoring the conditions of these elements of NPPs is essential for 

ensuring that their conditions meet performance and safety requirements over the entire expected 

plant lifespan. 

ASR is a reaction in concrete between the alkali hydroxides (K+ and Na+) in the pore solution and 
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the reactive non-crystalline (amorphous) silica (S2+) found in many common aggregates, given 

sufficient moisture, is called ASR. This reaction occurs over time and causes the expansion of the 

altered aggregate by the formation of a swelling gel of calcium silicate hydrate (C-S-H). Reactive silica 

is mainly provided by reactive aggregates and the alkalis by the cement clinker. Swelling from an ASR 

is a result of the relative volume increase between the product and reactant phases involved in the 

chemical reaction. First, the products expand in pores and microcracks of the cementitious matrix. 

Once this free expansion space is filled, the swelling is restrained, and the product phases exert local 

pressure on the surrounding concrete skeleton [3], [4].  With water presence, the ASR gel increases in 

volume and exerts an expansive pressure inside the material, causing spalling micro-to macro-cracks 

(due to nonhomogeneous swelling related to non-uniform moisture distribution). As a result, ASR 

reduces the stiffness and tensile strength of concrete, because these properties are particularly sensitive 

to micro-cracking. ASR also can cause serious cracking in concrete, resulting in critical structural 

problems that can even force the demolition of a particular structure. The serviceability of concrete 

structures includes the resistance to excessive deflections, as well as a host of other durability concerns 

that can shorten the service life of a structure. Large surface crack widths and deep penetration of open 

surface cracks promote ingress moisture and any dissolved aggressive agents, such as chlorides. 

Additionally, the loss of concrete stiffness and potential for reinforcement yield are concerns for 

concrete deflection capabilities. 

ASR is a complex chemical phenomenon, the rate and extent of which depend on a number of 

material and environmental parameters, for which the interactions among parameters is not fully 

understood. This critical nature of ASR on premature concrete deterioration requires the quantitative 

assessment of ASR structural effects during service life (both in time and space). In particular, a 

combined experimental modeling investigation method is required to evaluate the impact of ASR on 
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the dimensional stability of concrete structures. Although ASR has been identified as a cause of 

deterioration of numerous concrete structures and research has yielded some understanding of the 

mechanism of the reaction, the structural effects of ASR and how to best assess the extent of damage 

to existing structures remain major topics of ongoing research. This is because the expansion and 

cracking patterns (the most obvious sign of distress) caused by ASR affect both the concrete and the 

reinforcing steel, but similar crack patterns can also be produced by other distress mechanisms (i.e., 

drying shrinkage and sulfate attack). 

In the nuclear industry, a scoping study of ASR in concrete is performed to support future 

activities that include evaluating the effects of ASR on structural capacity. From a safety 

perspective, the remaining capacity of a structure exhibiting distress due to ASR is an important 

factor in operational and maintenance management decisions. This is a challenging task for various 

reasons. First, the extent of the degradation will vary throughout the element as a function of the 

moisture content and of the degree of restraint provided by steel reinforcement. Also, predicting 

the properties of the concrete using certain testing results taken from the structure may be difficult. 

The size of the defects caused by ASR may be large compared to a small structure such as the 

cylinder, resulting in anomalously-low tested strength, but the defects would be small compared 

to the larger structure (suggesting there may be sufficient capacity). In addition, there is no reliable 

nondestructive means of estimating the degree of the reaction in an existing concrete structure. To 

ensure satisfactory performance and safety over the expected lifespan of a structure, nondestructive 

evaluation (NDE) techniques are studied to diagnose the presence, location, and extent of ASR 

damage (or its effect, distributed micro/macro cracking) in concrete structures [5]. 

Damage localization and estimation are essential for structural health evaluation and 

management. In previous studies, NDE methods have focused only on the detection of ASR 
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damage in concrete structures. Model-based NDE methods utilize structural behavior models to 

simulate and/or learn the behavior of healthy and damaged structural systems. Model-free 

diagnosis methodologies aim to diagnose damage by post-processing/analyzing the sensor data 

without requiring a structural system behavior model. A simple and commonly used model-free 

method is a visual inspection of observed surface cracking and gel extrusion from damaged 

concrete components. This is a qualitative NDE method, and it can detect the ASR damage only 

after the damage progression is in an advanced stage; thus, it is not useful for early detection. 

Visual inspection does not monitor ASR-induced damage over time, thus limiting the possibility 

of repair. Quantitative NDE methods for ASR detection can be broadly classified as deformation 

measurement methods, vibration-based methods (acoustic methods), and thermal imaging 

methods (Figure 1) [5]. Deformation measurement techniques aim to measure the expansion of 

concrete caused due to the characteristic expansion of the ASR gel; this is a global measurement 

of ASR's effect. Acoustic methods detect damage by evaluating a damage-sensitive dynamic 

response characteristic of the concrete structure (e.g., resonance frequency shift). Thermal imaging 

methods aim to detect micro-cracking-induced thermal load path discontinuities as indicators of 

ASR damage. Figure 1 provides a simplified catalog of these methods. 
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Figure 1. NDE techniques for detecting ASR in concrete structures. 

 

Mechanical deformation measurements are useful for damage detection by measuring the 

expansion of concrete components but are not used to localize damage [6]. A concrete component's 

mechanical deformation can be measured using either a contact or a non-contact deformation 

measurement technique. Contact measurement techniques use calipers or an extensometer to 

measure the NDE specimen's deformation along multiple directions. Digital image correlation 

(DIC) is an optical, non-contact NDE technique capable of measuring the deformation, 

displacement, and strain of a structure [7]. Acoustic methods are the main focus of this work. 

Acoustic methods can be further classified into active and passive acoustic methods. Passive 

acoustic methods include acoustic emission to detect and classify cracks due to ASR [8]. Acoustic 

emission can be interpreted as transient stress waves produced by the sudden release of energy, 

such as crack formation or growth [9]. Active acoustic methods can be further classified as linear 

acoustic and nonlinear acoustic methods. In linear acoustic methods, the resonant frequency shift 

method is used to compute the concrete component's dynamic elastic modulus [10]. The pulse 

velocity method uses the experimentally-measured estimate of the compression stress wave speed 
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(using a pitch-catch set up) to detect ASR damage [11]. Together, the micro-cracking and loss of 

stiffness caused by ASR damage result in reducing the compression wave speed [11]–[13]. 

Khazanovich et al. [14] proposed using a Hilbert transform indicator (HTI) and an array of 

ultrasonic transducers to detect ASR damage in concrete slabs.  In general, linear acoustic methods 

are less sensitive to ASR damage than nonlinear acoustic methods [15].  

Nonlinear acoustic methods exploit the material (constitutive) or geometric nonlinearity in the 

damaged component to detect damage. Nonlinear impact resonance-acoustic spectroscopy 

(NIRAS) has been used to characterize ASR-induced cracks in concrete [15]–[17] by measuring 

the downward shift in the resonant frequency based on cracking-induced nonlinearity detection. It 

is a global vibrational response technique (i.e., it measures shifts in resonant frequency) and is 

better suited for small laboratory specimens than large structures. The material and/or geometric 

nonlinearity introduced by ASR damage promotes higher harmonics of the excitation frequency 

in the dynamic response spectrum [18]. The damage detection method based on harmonics 

generation evaluates the ratio of second harmonic amplitude to the square of the first harmonic 

amplitude, referred commonly in literature as the damage parameter β [19]–[21]. The material 

nonlinearity induced by ASR damage has been shown to increase the magnitude of the β. 

Laboratory experiments on composite plates with delamination have demonstrated that the higher-

harmonic-based damage parameter (β) is less sensitive to micro-cracking-induced geometric 

nonlinearity than the wave-modulation-based damage parameter [22]. A technique that utilizes the 

shift in the arrival of high-frequency waves created by (impact-induced) low-frequency vibrations 

and nonlinear material behavior has also been shown to successfully detect the ASR damage in 

concrete specimen [23]. 

Thermal methods gauge the temperature distribution on a surface of the concrete component 
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using infrared (IR) thermography to estimate discontinuities (caused by cracking, spalling, 

delamination, etc.). Kobayashi and Banthia [24] combined induction heating with infrared 

thermography to detect corrosion in reinforced concrete. The technique is more effective with 

larger bar diameters and smaller cover depths. Bayesian methods have been used to optimize the 

image processing parameters and quantify uncertainty using infrared thermography [25]; however, 

the need for heat sources that can initiate a detectable temperature field in thick concrete structures 

may create practical difficulties in the field implementation of this method. 

The vibro-acoustic modulation (VAM) method belongs to a family of NDE methods utilized 

as the primary indicator of damage to the spectral signature of a particular kind of nonlinear 

dynamic behavior occurring at a breathing, weakly bonded interface in a vibrating component. The 

nonlinear dynamic interactions at a crack or delamination interface can be induced using either a 

bi-harmonic excitation. The method depends on detecting peaks around the high-frequency in the 

collected dynamic response's spectra, referred to as sidebands. The bi-harmonic excitation induces 

forced vibrations for both the modulator (lower frequency) and modulated (higher frequency) 

waves. This method has shown particular promise in detecting ASR-related degradation (or 

damage) in concrete [16], [26], as well as cracks and debonding in metals and composites [19], 

[20], [27]–[33].  In past research, the VAM technique's effectiveness in localizing (in 3-

dimensions) ASR damage in concrete specimens of varying sizes has yet to be studied. 

Furthermore, a VAM-based, probabilistic damage localization methodology has not been 

investigated. This research examines the application of VAM to multiple thick concrete specimens 

and determine the ideal damage metric for VAM-based damage localization in thick composites 

such as concrete. Main contributions of this research include: 

• Localization of ASR-related damage in concrete specimens using VAM. 
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• The use of physics informed machine learning (PIML) to classify binary damage state 

at a sensor. 

• Bayesian damage diagnosis for a ML prediction model built to give a posterior for 

damage depth. 

• Investigation of transfer learning to combine PIML training data of multiple fidelities.  

• Localization of damage in plain and reinforced concrete specimens with dispersed and 

unknown ASR damage inducement. 

 

1.1. Research Objectives 

The overall goal of the conducted research was to localize damage in concrete specimens. To 

do this, we first examined the application of VAM to a plain concrete specimen with known areas 

of ASR damage inducement. Next, we developed machine learning models using finite element 

analysis (FEA) data for training to build a better model for damage detection and localization in 

the plain concrete specimen. Since three-dimensional (3D) FEA models for mechanical vibrations 

are computationally expensive, we trained the diagnosis models with a large amount of two-

dimensional (2D) FEA data. Next, we explored improving this model by using multi-fidelity 

physics-informed modeling to combine the 2D FEA data with a smaller amount of 3D FEA data 

and evaluated the resulting machine learning-based diagnosis model performance and the 

computational cost of simulating the training data. After this, the model was verified for the plain 

concrete specimen with known localized inducement of ASR damage. Lastly, we implemented 

these techniques to validate similarly constructed diagnosis models for different sized plain and 

reinforced concrete specimens with dispersed ASR damage inducement throughout.  
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The research is divided into four objectives: 

1. Damage diagnosis using vibro-acoustic modulation for a plain concrete specimen with 

damage inducement at known locations; 

2. Damage localization in a plain concrete specimen using 2D physics model-informed 

machine learning; 

3. Multi-fidelity physics informed machine learning for damage localization using 2D and 

3D finite element models; and 

4. Damage localization in plain and reinforced concrete specimens with distributed 

damage inducement (unknown damage locations). 

This dissertation is split into 6 chapters. Chapters 2-5 relate to the four research objectives. 

Chapter 2 develops the VAM testing procedure for ASR-damage localization in concrete 

specimens. This study is one of the first to localize this damage in concrete specimens.  We 

examine the fusion of damage-metric localization results from multiple VAM tests by using both 

an averaging and a Bayesian technique. Both of these damage localization approaches are 

validated for a plain concrete specimen with localized ASR-induced damage. Chapter 3 extends 

this methodology by training a damage prediction model using machine learning techniques using 

input-output data from 2D FE simulations. The resulting artificial neural network (ANN) models 

provide a probabilistic value for the presence or absence of damage at each sensor location (lacking 

in the averaging approach from Chapter 2), do not depend on a damage threshold provided by an 

expert analyst (necessary for the Bayesian fusion approach from Chapter 2), and provide a means 

for depth prediction given a crack size and location in the X-Y plane. In Chapter 4 we explore 

improving the models built in Chapter 3. We train diagnosis models using 2D simulations, 3D 

simulations, and pursues a multi-fidelity approach that uses transfer learning to combine the 2D 
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FE training data with select 3D FE simulations for training. From this study, we discover that our 

computational resources are best expended for the creation of additional 2D FE simulations. In 

Chapter 5 we examine the fourth and final objective of applying the aforementioned localization 

techniques for specimens with dispersed ASR damage inducement (i.e., with unknown damage 

locations), with a different geometry (from the specimen used for validation in Chapters 2, 3 and 

4) and rebar reinforcement. The machine learning models for VAM-based damage diagnosis are 

validated using experimental specimens that were destructively tested to determine the presence 

and extent of ASR-induced damage. The extent of the ASR-induced damage is quantified using a 

petrographic method, damage rating index (DRI).  We find the models trained in this approach 

successful for ASR-induced damage localization of the specimens. Finally, in Chapter 6, we 

summarize the accomplishments of this study and discuss future research needs, including 

automation of the proposed methodology. 
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CHAPTER 2 

 

Damage Diagnosis using Vibro-Acoustic Modulation for a Plain Concrete Specimen with 

Localized Damage Inducement 

 

2.1. Motivation 

Vibro-acoustic modulation (VAM), also known as nonlinear wave modulation spectroscopy, 

is a nondestructive evaluation (NDE) technique that relies on detecting nonlinear structural 

behavior's dynamic signature as the primary indicator of damage. Most of the previous work on 

VAM-based diagnosis has focused on detecting damage based on sidebands in the spectrum of the 

structure's dynamic response. Singh et al. [34] showed that VAM testing could be used for damage 

localization or damage mapping. They hypothesized that the effect of (geometric or material) 

nonlinearities is pronounced near the flaw's location. The relative magnitude of a sidebands-based 

damage index may enable localization of the flaw. Suppose the spatial distribution showing the 

variation of the damage index is obtained using a sensor grid. In that case, the damage is located 

in the neighborhood of sensors exhibiting higher magnitudes of the damage index. They tested 

their hypothesis using numerical simulations of VAM in delaminated composite plates. They 

studied damage indices based on various characteristics of the plate's dynamic response spectrum, 

establishing the feasibility of VAM-based damage localization. Pieczonka et al. [22] performed 

sidebands-based damage imaging to localize impact damage in a composite plate in a laboratory 

set-up. They used laser scanning vibrometry to collect the dynamic response on the surface of the 

composite plate. Their experimental damage mapping results show that sideband-based damage 

mapping performs better than the previously known higher-harmonics-based damage mapping. 
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Thus, the damage mapping scheme's utility has been studied for homogeneous, anisotropic, thin 

composite plates by performing numerical or laboratory experiments. However, the applicability 

of VAM-based damage mapping to detect and localize cracks in structural concrete components 

has not been investigated. In particular, thick, heterogeneous structural concrete components 

present significant challenges for VAM test set-up, data analytics, and damage mapping  

The investigation of VAM for damage localization in concrete structures is the first objective 

of this research. The focus of past experimental studies on VAM-based damage localization was 

related to impact damage in thin composite plates [34]. Application of the VAM method for thick 

concrete specimens entails ensuring that the entire test specimen receives sufficiently strong 

vibration despite the high material and geometric attenuation and a (relatively) coarse grid of 

accelerometers to localize damage. We performed VAM tests in the laboratory using different test 

parameters. We applied a Bayesian data fusion algorithm to assimilate the diagnostic information 

obtained from multiple VAM tests and constructed a damage probability map. We used a cement 

slab with pockets of reactive aggregate (at known locations) and cured under aggressive conditions 

to promote accelerated ASR). We implemented damage mapping and data fusion algorithms on 

the VAM test data obtained from the laboratory experiments. 

 

2.2. Relevant Background 

In the VAM technique, the structural component of interest is excited simultaneously using 

two signals of specific frequencies. The dynamic response is measured at various locations using 

acoustic sensors (accelerometers). The low-frequency input is termed the “pump,” and the high-

frequency input is termed the “probe” [32]. It is assumed that ASR-induced cracks introduce 

nonlinear structural behavior due to variable contact area at the surfaces of cracks. If the structure 
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undergoes damped, linear vibration, then the frequency spectrum of the steady state response 

shows peaks at the two forcing frequencies (𝑓𝑝𝑟𝑜𝑏𝑒,𝑓𝑝𝑢𝑚𝑝) (Figure 2(a), (b)). The natural 

frequencies of the structure participate in the transient phase, but eventually die out due to 

damping. For a structure undergoing damped, nonlinear vibration, the frequency spectrum of the 

steady state response (Figure 2(c), (d)) shows additional peaks at higher harmonics of the pumping 

frequency (𝑖 ∗ 𝑓𝑝𝑢𝑚𝑝, 𝑖 = 1,2,3 …), and at sideband frequencies 𝑓𝑝𝑟𝑜𝑏𝑒 ±  𝑓𝑝𝑢𝑚𝑝 [18]. The peaks 

around the probe frequency in the frequency spectra of the measured response (referred to as 

sidebands, see Figure 2(d)) appear due to modulation of the probing frequency by the pumping 

frequency. For illustration, the linear spectrum (LS) of the recorded acceleration at a sensor is 

shown in Figure 2. The spectral magnitude at sideband frequencies (peaks in the LS at 𝑓𝑝𝑟𝑜𝑏𝑒 ±

𝑓𝑝𝑢𝑚𝑝) are denoted by AmpS1 and AmpS2.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 
Figure 2: Time series data and linear spectrum (LS) plots for two different cases. (a): time history 

of acceleration for linear response (undamaged case); (b) LS of acceleration for linear response 

(undamaged case); (c) time history of acceleration for the nonlinear response (damaged case) with 

frequency modulation; (d) LS of acceleration for the nonlinear response (damaged case) with 

frequency modulation. 

 

In this research, we discuss the mapping of ASR-induced cracks based on a damage parameter 

that is calculated using the sum of spectral amplitudes (AmpS1 and AmpS2) at sideband 

frequencies in the linear spectra of the recorded dynamic response (acceleration) can be defined as 

𝑆𝐵𝑆𝑢𝑚 = 𝐴𝑚𝑝𝑆1 + 𝐴𝑚𝑝𝑆2. (1) 

The use of VAM-based damage localization for thick concrete structures faces several 

challenges. The operating environment as well as test conditions for real-world concrete structures 

may introduce significant measurement noise in the test data. The damage diagnosis methodology 

should be able to perform well in the presence of measurement noise. Two data processing schemes 

that help alleviate the problem of noisy data in VAM tests are briefly described in subsection 2.3.1. 
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A detailed analysis of these methods for various signal-to-noise ratios can be found in Karve and 

Mahadevan [35]. In thick elastic concrete slabs with material damping, only the region in the 

vicinity of pump/probe actuators may receive sufficiently strong vibration to induce detectable 

SBSum values. Furthermore, the magnitude of SBSum may depend (among other things) on the 

amplitude of the wave motion experienced at the damaged (cracked) location. Thus, false negative 

(and false positive) results are expected when the damage location/size is not known and only a 

single VAM test is performed. Our numerical experiments on elastic slabs have shown that the 

sensitivity of the VAM test increases when the pump/probe are located near the damaged zone, 

and that VAM tests with a given probing frequency (wavelength) are sensitive to damage with 

characteristic size of about 70% of the probing wavelength [35]. In the real-world application of 

VAM tests, where the damage size and location are not known, there are advantages to performing 

VAM tests with multiple pump/probe locations and multiple probing frequencies (wavelengths). 

Furthermore, flaws of different sizes may show better resolution at different probing frequencies. 

Thus, different locations, frequencies, and amplitudes of the pumping and probing excitations 

provide different VAM test results, with varying information about the state of damage in the 

vicinity of each sensor. Consequently, a methodology is needed to fuse the results of multiple tests 

and provide the damage estimates at different sensor locations. Fusion of diagnostic information 

obtained from VAM tests with different test parameters can help alleviate false negative results 

due to inactivation of amplitude-dependent non-linear mechanisms associated with damage (the 

inactivation can occur for a few combinations of excitation frequencies, amplitudes, and 

pump/probe locations, and these combinations cannot be determined before conducting a VAM 

test as the damage state is unknown).  
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2.3. Methodology 

The proposed methodology thus consists of four elements: a) VAM test data processing, b) 

damage mapping and localization using VAM test data, c) fusion of information obtained from 

multiple VAM tests with different test parameters, and d) validation of VAM-based damage 

localization using petrographic and chemical studies. The following subsections describe each of 

these four elements. 

 

2.3.1. VAM data processing 

Various practical aspects of the VAM methodology encountered during field or laboratory 

testing of concrete structures have not been studied previously. One of the key challenges in data 

processing for field or laboratory tests is distinguishing physically meaningful (nonlinearity-

induced) sidebands (peaks) from noise-induced peaks at the specified frequencies (𝑓𝑝𝑟𝑜𝑏𝑒 ±

𝑓𝑝𝑢𝑚𝑝) in the linear spectrum. For experimentally collected data, the linear spectra in neighborhood 

of the sidebands may not show near-zero amplitudes for all sensors, and an automated sideband 

detection algorithm might identify the ambient noise values at (𝑓𝑝𝑟𝑜𝑏𝑒 ± 𝑓𝑝𝑢𝑚𝑝) as sidebands. This 

means the ordinates of LS at (𝑓𝑝𝑟𝑜𝑏𝑒 ± 𝑓𝑝𝑢𝑚𝑝) need to be adjusted for the baseline value of LS in 

the neighborhood of sideband locations. In this study, we subtract the mean of the ambient noise 

in the LS ordinates in the neighborhood of the sidebands from the values calculated from the LS 

(Figure 3 (a)). The regions used to calculate the mean of LS amplitudes are shown by red boxes in 

Figure 3 (a). The width of the region is equal to the pump frequency. Thus, the peaks in the LS 

that are of the order of the mean LS amplitudes in the highlighted region are not counted as 

significantly high sideband values during data processing.  

Furthermore, an automated SBSum calculation process may be misled by considering 
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ordinates at sideband frequencies that are not peaks (and hence do not indicate nonlinear structural 

behavior). To ensure that the values being used to calculate SBSum are physically meaningful 

sidebands, a method for finding local peaks in the data can be implemented. In this method, 

whether the sideband value for a given frequency is a local peak is determined first. Next, whether 

the sideband was a maximum value within a window (Figure 3 (b)) centered at the sideband 

frequency of interest is checked. As a result of the nonlinearity at the crack surface, a second pair 

of sidebands may be seen in the linear spectrum of the acceleration at frequency, 𝑓 =  𝑓𝑝𝑟𝑜𝑏𝑒 ±

2 ∗ 𝑓𝑝𝑢𝑚𝑝 [18]. The pump frequency can thus be safely used as the window size that does not 

interfere with the second pair of sidebands. In this work, a 1000–Hz-wide window (approximately 

equal to the pump frequency in our laboratory experiments) is used. The ordinate value at a given 

frequency is selected as a sideband (AmpS1 or AmpS2) only if it satisfies both the above-

mentioned conditions. The utility of the aforementioned data processing techniques has been 

discussed by Karve and Mahadevan [35] in the context of numerical simulations of VAM tests. 

Here, these techniques are put to use for processing noisy data obtained from physical (laboratory) 

experiments. 

 

(a) 

 

(b) 

  
Figure 3: Linear Spectrum plot for a damaged structure: (a) the red boxes represent the window 

where the average of the linear spectrum was calculated; (b) the blue box shows the window used 

to identify local peaks around a sideband. 
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2.3.2. Damage mapping 

In this section, a damage index (using the SBSum metric) that captures the essence of the key 

idea behind the damage localization method is defined. In VAM-based damage localization, 

sensors showing higher SBSum values (compared to other sensors in the same test) are assumed 

to be the sensors located near the damage zone. Hence, a damage index that classifies a given 

sensor as the one indicating or not indicating damage is defined here. Specifically, the damage 

index at sensor “i”, Di, can be computed as: 

 

Di = 1   if SBSumi ≥
1

 Nsens
∑ SBSumi

Nsens

i=1

 , 

 

                            = 0, otherwise,                                                                 (2) 

where Nsens denotes the total number for sensors used in a VAM test. If the SBsum value at a 

given sensor is higher than the mean SBsum value (for all sensors) for that VAM test, then the 

sensor is considered to be indicating damage [35]. The observed damage index represents, in 

essence, the key concept behind VAM-based damage localization. That is, the data informs that 

damage is present at/near a sensor if the SBSum value at that sensor is relatively higher than the 

SBSum values at other sensors. We remark that a numerical analysis of performance of the damage 

localization method for elastic slabs using the damage index defined in equation (2) has been 

discussed in Karve and Mahadevan [35]. 

 

2.3.3. VAM data fusion using Bayesian inference 

For VAM testing of concrete structural components, it is desirable to conduct VAM tests for 

multiple values of the test parameters. In this section, a methodology for integrating VAM test 

data obtained from multiple tests to obtain a damage probability map is discussed. The proposed 
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method uses Bayesian updating to infer the regions that consistently show (relatively) high SBSum 

values, i.e., the regions that are most likely to be near a damaged zone. The Bayesian approach 

pursues a formal representation of the state of knowledge about the values of unknown parameters 

of interest through the use of probability distribution functions. The updated knowledge (i.e., the 

posterior distribution) about a parameter is obtained by combining prior knowledge (based on 

intuition, experience, model prediction, prior data, etc.) and observed data. The observed data is 

included in the (Bayesian) inference algorithm by computing the likelihood of observing the data 

for a given value of the parameter. In order to use Bayesian inference for VAM-based damage 

diagnosis, we need: a) definition of experimentally observed data and the associated measurement 

uncertainty, b) definition of the damage parameter that gives the state of damage in the 

neighborhood of each sensor, and the associated uncertainty due to lack of knowledge about its 

value (i.e., the prior distribution), and c) a method (typically, a computational model of the 

experimental procedure) to compute the likelihood of observing a given value of data for a given 

value of the damage parameter. These aspects of the Bayesian updating for VAM tests are 

discussed next. 

For the Bayesian updating algorithm, the damage index Di is the data obtained from 

experiments, as defined in equation (2). The observed damage index is a discrete random variable 

with two possible values (Di = 1 or Di = 0). If damage is indicated at a sensor, then Di = 1, 

else Di = 0. Similarly, the actual damage parameter at sensor “i” is defined as θi. θi is a discrete 

random variable that denotes whether damage is actually present (θi = 1), or absent (θi = 0) 

at/near the i-th sensor. With the above definitions, Baye’s rule for the damage index θi at each 

sensor can be written as: 

P(θi|Di)  ∝  P(Di|θi) ∗ P(θi) , (3) 
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where P(θi|Di) is the posterior probability mass function (PMF) of variable θi, P(θi) is the prior 

PMF of θi, and P(Di|θi) is the likelihood of observing the data (Di = 1 or Di = 0) for a given 

value of the unknown parameter (θi = 1 or θi = 0). The Bayesian update equations for a sensor 

where damage is indicated and for a sensor where damage is not indicated are: 

P(θi = 1|Di = 1) =
P(Di = 1|θi = 1) ∗ P(θi = 1)

P(Di = 1|θi = 1) ∗ P(θi = 1) + P(Di = 1|θi = 0) ∗ P(θi = 0)
, (4) 

P(θi = 1|Di = 0) =
P(Di = 0|θi = 1) ∗ P(θi = 1)

P(Di = 0|θi = 1) ∗ P(θi = 1) + P(Di = 0|θi = 0) ∗ P(θi = 0)
. (5) 

Note that in the ideal case, P(Di = 1|θi = 1) = 1, and P(Di = 0|θi = 1) = 0, i.e., the test does 

not show any false positive or false negative results. However, in actual physical experiments, the 

VAM test may exhibit false positives as well as false negatives. If, for example, an antinode of 

structural vibration lies at/near a sensor location, the SBSum value at that sensor may be small 

even if it is located near the damaged zone. On the other hand, the wave component corresponding 

to sideband frequencies (𝑓𝑝𝑟𝑜𝑏𝑒 ± 𝑓𝑝𝑢𝑚𝑝) may travel away from the damage and excite a sensor 

located away from the damage zone. Furthermore, measurement noise may create false positive 

and false negative data (in spite of the noise treatment strategies discussed above). In those cases, 

to compute the likelihood function, we must evaluate the sensitivity (true positive rate) and 

specificity (true negative rate) of VAM tests for thick elastic media containing breathing cracks. 

This can be done using numerical simulation of the test procedure.  

In a numerical simulation of the VAM test, the value of the damage parameter (θi) is known 

and the value of the observed damage index can be obtained using the computed dynamic response 

(displacement time history). For the experiments reported in this article, numerical simulation of 

VAM tests implies modeling the nonlinear wave propagation in concrete slabs/blocks containing 



21 

 

cracks for multiple crack locations, pump and probe amplitudes, and probe frequencies. (The pump 

frequency is fixed at the first resonance frequency of the specimen). Modeling wave propagation 

in a heterogeneous medium like concrete (with cement paste and randomly distributed aggregate) 

is a computationally challenging task. Therefore,  the material heterogeneity is ignored, and  wave 

propagation in a homogeneous elastic specimen with smeared concrete-like properties [36] is 

simulated. Even with this simplification, simulating nonlinear wave propagation in three-

dimensional media is computationally expensive. Geometric nonlinearity at the crack interface 

necessitates the use of an implicit time integration scheme for the simulations, which increases the 

computational burden significantly. To overcome this difficulty, wave propagation in a two-

dimensional media is modeled, under plane strain assumptions. Our previous work [35] indicates 

that this model is suitable for computing the sensitivity and specificity of VAM tests with different 

test parameters as well as measurement noise. We remark that typically, the likelihood of 

observing the data for a given value of the parameter of interest is computed for each sensor using 

a numerical model of the underlying physical phenomenon. Since a two-dimensional model is to 

be used for computing the approximate likelihood for sensors installed on the (three-dimensional) 

slab, sensor-specific likelihood computation is not possible. Instead, the average values of true 

positive rate (sensitivity) and true negative rate (specificity) observed in our numerical simulations 

with different damage locations and VAM test parameters can be used as approximate likelihood 

values. For the first test, a uniform prior (P(θi = 1) = P(θi = 0) = 0.5) can be assumed, and the 

damage parameter at each sensor location can be updated using the experimental data for the first 

VAM laboratory test. For the subsequent tests, the posterior from the previous test can be used as 

the prior and obtain the posterior using the equations (2)-(4). In this manner, the observed damage 

index, damage parameter definitions (equation (1)), and an approximate likelihood function can 
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be utilized to perform Bayesian fusion of information obtained from VAM tests with different test 

parameters to arrive at the ASR damage probability maps for concrete test specimens. 

 

2.3.4. Validation 

The proposed damage mapping methodology is validated in multiple ways by performing 

dynamic, chemical and petrographic studies on a cement slab with pockets of reactive aggregate 

at specified locations. The slab is cast and cured in an aggressive environment conducive to ASR 

for an extended period of time. The onset of ASR in the slab can be ascertained using deformation 

measurements and NIRAS tests. The NIRAS tests indicate excitation-amplitude-dependent shifts 

in the resonant frequency of the slab when there is nonlinearity due to (ASR) damage. Further 

evidence of ASR initiation and progress can be collected by performing inductively coupled 

plasma-optical emission spectroscopy on the effluents seeping out of the slab. These preliminary 

tests establish the presence of ASR due to the combination of reactive aggregate, alkali loading, 

and aggressive curing environment. 

Next, in order to accomplish and validate the localization, VAM tests are first performed on 

the specimen using the methodology discussed in sections 2.3.1 to 2.3.3, to obtain ASR damage 

maps. The damage maps highlight the high-damage-probability areas of the slab. Next, in order to 

validate the damage maps, core samples are taken from the locations where aggregates were 

placed. Petrographic examination of the cores is performed to establish the presence of ASR. 

Specifically, three tests are performed to confirm ASR damage in the core samples: a) optical 

imaging to confirm the presence of micro cracks in the aggregates, b) scanning electron 

microscopy (SEM) with backscatter electron (BSE) imaging to visualize the cracking, and c) SEM 

with energy dispersive spectroscopy (EDS) to confirm the presence of elements that are typically 
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present in the ASR (silicon, calcium, potassium, etc.). The results of the petrographic examination 

provide information regarding the presence of ASR byproducts and ASR-induced micro/macro 

cracking, and validate the damage localization results of the VAM methodology. 

 

2.4. Laboratory Experiment 

The cement slab specimen with localized inducement of ASR damage was cast and cured at 

Vanderbilt University. The specimen had known locations of reactive aggregate (possible sites of 

ASR initiation) (EXP-A). We first discuss the details of casting and curing the test specimen. 

 

2.4.1. Cement slab with localized inducement of ASR damage 

A plain cement slab specimen (EXP-A) of dimensions of 60.96 × 60.96 × 15.24 cm3 (24 x 24 

x 6 in3) was cast and cured at the Laboratory for Systems Integrity and Reliability (LASIR) at 

Vanderbilt University.  The water-to-cementitious material ratio of 0.4 was used for casting the 

slab to achieve adequate workability in the cement paste. Four types of aggregate, including three 

coarse aggregates known to be susceptible to alkali-silica reaction, as well as pure silica powder, 

were placed at known locations in (cylindrical) pockets of approximately 10 cm (4 in.) diameter 

in the four quadrants of the specimen, as shown in Figure 4. The aggregates were placed in pockets 

instead of being dispersed throughout the specimen so that the possible locations of ASR are 

known. The known locations of the aggregate pockets were used to obtain core samples that 

provided validation data for the VAM-based localization of ASR damage. The four types of 

aggregates are: (a) pure amorphous silica, (b) coarse aggregate from Maine (donated by The 

University of Alabama), (c) coarse aggregate from New Mexico (donated by The University of 

Alabama), (d) coarse aggregate from Ontario, Canada (donated by the Ontario Ministry of 
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Transportation). A boosting agent, sodium hydroxide (NaOH) was added to the mix water in the 

cement to boost the alkali loading to 5.25 kg/m3 to accelerate ASR. EXP-A was cured in an 

environmental chamber maintained at 60 °C and ~100% relative humidity. After 10 months of 

curing, the onset and progress of ASR were confirmed by performing preliminary ASR detection 

tests (section 2.5.2). EXP-A was cured further for six additional months. After confirming the 

presence of ASR, VAM tests were performed on the specimen. The details of these tests are given 

in the next section. 

 

 

Figure 4: Pockets of aggregate in the specimen during casting. 

 

2.4.2. VAM test framework 

In this section, we discuss the setup used for conducting VAM tests on EXP-A. In VAM tests, 

we deliver the pump and probe excitations using piezo-stack actuators. We vary the locations of 

these actuators, as well as the frequencies at which they operate (i.e., the pump and probe 

frequencies). We measure the acceleration time history at various locations on the surface of the 

test specimen using a finite number of accelerometers. The relative magnitudes of sidebands at 
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various accelerometer locations are used to map the damage (ASR-induced cracks) in the 

component. We discuss the choice of various test parameters below.  

2.4.2.1. Probe frequency 

It has been suggested in the literature that the probe frequency should be 10 to 20 times the 

pump frequency [34]. This ensures that VAM-induced sidebands do not interfere with the first few 

natural frequencies, as well as higher harmonics of the pumping frequency. However, attenuation 

and test equipment (sampling frequency) capabilities may limit the highest usable probing 

frequency. Considering these factors, we used probe frequencies ranging from 10 kHz to 21 kHz 

(incremented by 1000 Hz) in our experiments, given that the pump frequency is 920 Hz. The 

probing frequency is related to the smallest detectable flaw size [35]. Typically, higher frequencies 

provide better resolution, but they also suffer from higher attenuation. In this study, we use a range 

of probing frequencies to perform the VAM tests on EXP-A.  

2.4.2.2. Pump and probe excitation amplitudes 

In VAM tests, the probe excitation amplitude should be much lower than the pump excitation 

amplitude [34]. An effective VAM is achieved when a low-amplitude probing wave rides the high-

amplitude pumping wave. However, for a thick concrete specimen, if a low-amplitude probe 

excitation is used as an input, then the probing excitation energy at the damage site may be 

negligible due to high material attenuation experienced at the higher (probe) frequency. Thus, we 

experimented with pump-to-probe excitation amplitude ratios of 1, 2, 5, and 10. In our 

experiments, the pump and probe excitations were delivered using piezo-stack actuators. The ratio 

of pump and probe amplitudes was controlled by varying the voltage input given to the actuator. 

That is, we changed the peak-to-peak voltage output for the function generator used to excite the 

probing piezo stack actuator to experiment with different ratios of pump-to-probe amplitude. We 
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used four amplitudes for the peak-to-peak voltage difference provided by the probing signal 

generator: 500 mV, 250 mV, 100 mV, and 50 mV. The output voltage difference for the pumping 

signal generator was maintained at 500 mV. The pumping and probing signals were amplified 

using an amplifier and sent to the piezo-stack actuator. A constant amplification factor (+28 dB) 

was maintained for all tests, corresponding to the maximum capacity of the amplifier.  

2.4.2.3. Pumping and probing excitation actuators 

As mentioned in Section 2.3, for VAM-base damage localization in thick concrete specimens, 

material and geometric attenuation can pose a significant challenge. In addition, practical 

considerations such as equipment limitations or safety considerations limit the maximum pump 

and probe excitation amplitudes that can be used in a VAM test. In this work, we address these 

issues by applying the pump and probe excitations at multiple locations (referred to as 

configurations) on the accessible surface of EXP-A. The pump and probe actuators are placed 

close to each other to ensure that the region surrounding the actuators receives sufficient dual-

frequency excitation. If sufficiently strong actuators are available, then the pump actuator could 

be placed at a fixed location near the centroid of the test surface, and the probe actuator could be 

moved to test different regions of a large concrete structural component. 

2.4.2.4. Specimen instrumentation and data processing 

To test the damage mapping capabilities of the VAM-based damage localization 

methodology, EXP-A  was divided into two halves, and VAM tests were performed with a grid of 

21 accelerometers (PCB Piezotronics accelerometers, model numbers PCB352C68 and 

PCB352C65) for each half. The accelerometers were calibrated before testing to ensure accuracy. 

Calibration was performed by applying excitations directly to the accelerometer using a handheld 

shaker and ensuring that the accelerometer reading was the same as the shaker output. The 
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sensitivity of all accelerometers, obtained by testing in the calibration shaker, was used in the data 

acquisition program to account for minor changes in the same. The accelerometers were attached 

to the specimen using wax. The pump and the probe actuators (PCB Piezotronics piezoelectric 

disk actuators, model number PCB712A02) were placed at the center of each quadrant and the 

center of the specimen (Figure 5). In Figure 5 (a), the blue and green circles represent the pump 

and probe actuators respectively. The pump and probe locations form the test configurations and 

are numbered 1 to 5 in Figure 5 (a). For example, in configuration 5, shown in Figure 5 (b), the 

pump and probe are located at the centroid of the top surface of the slab and the slab is instrumented 

with 21 accelerometers on the top half of the slab. For each configuration, the data is recorded by 

first populating the top half, and then populating the bottom half with accelerometers. At each 

accelerometer, acceleration response is measured five times, each (acceleration response) record was 

0.2 s long, and the sampling frequency is 128 kHz. As the recorded acceleration time histories 

contain measurement noise, Welch’s method [37] and a Nuttall-defined, 2048-point, four-term, 

symmetric, Blackman-Harris window [38] is used to compute the linear spectrum (LS)  for each 

recorded acceleration time history. The LS for the five measurements is averaged and the values of 

AmpS1 and AmpS2 (Figure 6) were used to calculate the SBSum. 
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(a) 

 

(b)  

 

Figure 5: (a) Pump, probe, and accelerometer locations for EXP-A, (b) accelerometers on the top 

half of EXP-A (configuration 5). 

 

 

Figure 6. LS Plot for an accelerometer labeled to show the values used in calculating SBSum.  

 

2.5. Results  

In this section, we first discuss numerical simulation results used to compute the approximate 

likelihood function for Bayesian data fusion. Next, we discuss the results of preliminary tests 

performed to confirm the presence of ASR, petrographic examination, and VAM-based damage 

localization.  
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2.5.1. Likelihood computation for Bayesian data fusion 

In this section, we discuss the details of the numerical modeling used to compute the model-

based likelihood function. As discussed in Section 2.3.3, we use a two-dimensional domain with 

internal breathing cracks as the numerical model for computing the likelihood function. The 

domain geometry, the crack locations, and the pump and probe locations used in our numerical 

simulations are shown in Figure 7. The computational domain is 60.96 cm wide and 15.24 cm 

thick. It contains a crack of length 12.7 cm at mid-thickness (7.62 cm from the top surface). We 

use a commercial finite element program (Abaqus [39]) to perform numerical simulation. We 

discretize the domain using a structured mesh of 8-noded finite elements. We employ an implicit 

scheme for time integration of the governing equations and ensure that at least 10 computational 

nodes are available over the smallest wavelength. We model the interaction at the crack interface 

using a hard, frictionless contact condition. The material properties used in our simulations are 

given in Table 1 [36]. 

 

Figure 7: Two-dimensional domain showing crack locations and pump/probe locations used for 

likelihood computation. 
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Table 1: Material properties used in numerical simulation for likelihood computation. 

Material property Value 

Young’s modulus (E) 27 GPa 

Density (ρ) 2400 kg/m3 

Poisson’s ratio (ν) 0.15 

Mass proportional Rayleigh damping parameter (a) 2120.04 

Stiffness proportional Rayleigh damping parameter (b) 1.787× 10-7 

 

We simulate the nonlinear wave propagation for different combinations of pump/probe 

locations (labeled as P1, P2, and P3 in Figure 7), crack locations, probe frequency, and probe/pump 

amplitude ratios (Ampprobe / Amppump). We apply point loads in the (negative) Y direction at two 

neighboring finite element nodes to simulate the dual frequency excitation provided by two 

actuators. We record the time history of displacements on the top surface at all computational 

nodes and compute the SBSum metric and the damage index for all nodes. In a given simulation, 

the nodes located directly above the crack are the nodes for which the damage parameter value θi 

= 1, otherwise θi= 0. Thus, we know the “truth” about the damage parameter and we compute the 

damage index (Di) at each computational node. In this manner, we can arrive at false positives and 

false negative results at each node for each numerical VAM test. The matrix of VAM test 

parameters used in our numerical simulations are given in Table 2. 

 

Table 2: VAM test parameters used for likelihood computation. 

Variable Values 

Crack location Crack 1, Crack 2, Crack 3 (Figure 7) 

Probe frequency 10000Hz, 12000Hz, 14000Hz, 16000Hz, 18000Hz, 20000Hz 

Ampprobe / Amppump 1, 0.5, 0.2, 0.1 

Pump/Probe location P1, P2, P3 (Figure 7) 

 

In this manner, we compute the Di values for known θi values for 216 VAM tests with 

different test parameters (three crack locations, three pump/probe locations, six probe frequencies, 
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and four probe to pump amplitude ratios). We count the false positives, false negatives, true 

positives, and true negatives for these tests to arrive at the following (approximate) values for the 

likelihood function displayed in Table 3. 

 

Table 3: Approximate values for likelihood functions. 

 

 

VAM tests were conducted on a plain concrete slab specimen to perform ASR damage 

localization. Details of the test procedure are described next. In VAM tests, the pump and probe 

excitations are delivered using piezo-stack actuators. The locations of these actuators and the 

frequencies at which they operate (i.e., the pump and probe frequencies) are varied. The structural 

component of interest's response is measured using a finite number of accelerometers placed on 

the element's surface. The relative magnitude of a sidebands-based metric at various accelerometer 

locations are used to map the damage (ASR-induced cracks) in the component. The VAM test's 

performance depends on the values of parameters used, as well as on the methodology used for 

processing the data collected during a VAM test. The first fundamental frequency (920 Hz) of the 

specimen is used as the 𝑓𝑝𝑢𝑚𝑝.  

It has been reported in the literature that the probing frequency, 𝑓𝑝𝑟𝑜𝑏𝑒, should be at least 10 

to 20 times the pumping frequency [34]. When the 𝑓𝑝𝑟𝑜𝑏𝑒 is N times the pumping frequency, it 

allows for the crack to open and close N times in a pumping cycle. Thus, the ratio between the 

pump and probe decides the opportunity (number of times per cycle of pumping vibrations) for 

Likelihood Functions Approximate Values 

P(Di = 1|θi = 1) 0.653 

P(Di = 0|θi = 1) 0.338 

P(Di = 1|θi = 0) 0.347 

P(Di = 0|θi = 0) 0.662 
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modulation to occur. Following these guidelines, probing frequencies ranging from 10 to 21 kHz 

were used in our experiments. Different probing frequencies are associated with the different wave 

lengths that can detect different sized cracks. Higher frequencies can detect smaller cracks. A study 

by Karve [35] showed the ideal probing frequency to be about 25 times higher than the pumping 

frequency. The highest frequency we could use, given our acquisition system and the sensor 

sensitivity, was 21 kHz. The amplitude and location of the probing actuation were also varied in 

different experiments. Specifically, we used four amplitudes for the output voltage of the probing 

signal generator: 500, 250, 100, or 50 mV. The output voltage of the pumping signal generator 

was maintained at 500 mV. The pumping and probing signals were amplified and sent to the 

piezo-stack actuator, and a constant amplification factor (+28 dB) was maintained for all tests. 

Tests using multiple frequencies and configurations were conducted to ensure the cracks were 

being consistently captured and to decrease uncertainty in localization. A maximum of 21 

accelerometers was placed on the concrete specimen and connected to the data acquisition system. 

The locations of these accelerometers were varied for each experiment. The accelerometers had a 

sensitivity of 100 mV/g.  

 

2.5.2. Preliminary test to confirm the onset of ASR 

The details of EXP-A used to conduct and validate the proposed VAM-based based damage 

localization were discussed in Section 2.4.1. Here, we provide results of preliminary ASR 

detection tests performed to confirm onset of ASR in the specimen. After curing the specimen in 

aggressive (high temperature, high humidity) environment, the first indication of ASR damage 

was detected using NIRAS. For NIRAS tests, EXP-A was excited using an impact hammer at four 

different locations near the four corners of the top surface. Five different excitation (impact) 
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amplitudes were used. The NIRAS technique showed amplitude-dependent shift in resonant 

frequency (Figure 8). 

 

 
Figure 8: Results of NIRAS test confirming the excitation-amplitude-dependent shift in the 

resonant frequency of the specimen. The plots show PSD of time history of acceleration at a point 

on the surface of EXP-A. 

 

The deformation measurements of EXP-A were not significant (as expected), since the 

aggregates were only in a single layer mid-thickness at four locations in the slab (significant ASR-

related expansion is only expected when the aggregates are distributed throughout the slab). 

Hairline cracks were then observed on the surface of the specimen, and a gel effluent seeped out 

of the sides of the specimen at three locations. In Figure 9, the red squares identify the three 

locations where seepage of the gel effluent was observed. Figure 9 also shows images of the gel 

effluent on the sides of the specimen. The gel effluent was dissolved in 10 mL of 2% nitric acid, 

and concentration of various chemical elements in the solution was obtained using inductively 

coupled plasma-optical emission spectroscopy (Table 4). The elements typically found in the ASR 

gel [40], [41] were found in the gel  effluent, confirming that the substance was a product of ASR 

(the high concentration of sodium is due to the addition of NaOH solution). 
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(a) 

 

(b) 

 

 

(c) 

 

 

(d) 

 

Figure 9: Preliminary indicators of ASR (a) Visually observed ASR gel and powder exudation 

sites 1,2, and 3, as well as surface cracks on the top surface of EXP-A (shown with red lines); (b), 

(c), (d) ASR gel and powder effluent observed at the locations noted in (a). 

 

Table 4. Results of inductively coupled plasma-optical emission spectroscopy. 

Element Concentration (mg/L) 

Aluminum 1.3 

Calcium 3.3 

Potassium 520.0 

Sodium 1,100.0 

Sulfur 2.0 

Silicon 1,600.0 

 

 

2.5.3. Petrographic study 

After confirming the presence of ASR (as discussed in section 2.5.2), VAM tests were 

conducted on EXP-A to obtain damage maps. After collecting VAM data for multiple test 

parameters, the petrographic examination was performed to validate results of VAM tests. Here, 

the results of petrographic examination are discussed first, before the VAM test results, in order to 

3 

1 

2 
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ease the future discussion of VAM test validation. Thus, approximately three years after casting, 

core samples intersecting the aggregate pockets were extracted from the cement paste slab (see 

Figure 10 (c), compare with Figure 4).  

 

(a) 

 

(c) 

 

(d) 

 

(b) 

 

(e) 

 

Figure 10: (a) Specimen after removing the core sample from quadrant 2. The large gap, where the 

silica layer was placed, is seen at mid-depth of EXP-A, (b) core sample removed from quadrant 3, 

(c) EXP-A after removing the core sample from four quadrants, (d) core sample removed from 

quadrant 1, (e) core sample removed from quadrant 4. 

 

Cores taken through the Maine aggregate (quadrant 1) and amorphous silica (quadrant 2) 

pockets were unsuitable for analysis; the amorphous silica appeared to have completely reacted, 

leaving a large void in the sample. No aggregate particles were identified in the Maine core. 

However, trace evidence of ASR gel was observed lining a void on a fracture surface of the Maine 

core, indicating that the aggregate had moved from its initial location during casting. A 

petrographic examination conducted on the cores taken through the pockets containing the Ontario 

and New Mexico aggregates (Quadrants 3 and 4 respectively in Figure 10) confirmed that the 

significant damage and gel exudations observed were the result of ASR occurring in these 

aggregate pockets. The examination was conducted using optical microscopes with reflected 
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(polished section) as well as transmitted polarized light (thin section); and a scanning electron 

microscope with backscatter emission (BSE) as well as energy dispersive spectroscopy (SEM-

EDS) (thin section).  

Examples of observed ASR-induced cracking and reaction products (gel) are shown in Figure 

11 (Ontario aggregate, quadrant 3) and Figure 12 (New Mexico aggregate, quadrant 4). Numerous 

microcracks were observed traveling from the aggregates into the paste, bridging between particles 

and extending to the sides of the cores parallel to the surface in both cores.  Perpendicular cracks 

traveled from the aggregate pockets to the top and bottom of the cores as well.  The abundance 

and width of cracking was greater in the core containing the New Mexico aggregate.  ASR gel and 

crystalline ASR product comprised of silicon, potassium, calcium, and a trace amount of sodium 

were present in cracks within the aggregate, in cracks that extend into the paste, along the 

paste/aggregate interface, and filling air voids in the paste.  The calcium content of ASR gel at the 

paste/aggregate interface and within the cement paste is known to increase over time as the 

potassium and sodium are leached out and replaced by calcium from the cement paste, a 

phenomenon known as alkali recycling [42], [43].  An example of gel that has experienced 

significant exchange of alkalis for calcium is shown in the lower right of Figure 12.  ASR gel can 

also crystallize over time when there is a loss of access to water. Crystalline ASR products such 

as that shown in Figure 11 were observed in cracks within both the aggregates and the paste in 

both cores; this is consistent with the slab being stored in a dry laboratory environment for 

approximately two years prior to coring. Cool and dry conditions do not promote the development 

of ASR or continued swelling of gels, thus the reaction would have likely ceased after being 

removed from the environmental chamber for an extended period, during which continued drying 

of the slab would also have promoted crystallization of ASR gel. 
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Figure 11: Top: Micrograph in fluorescent light of thin section taken from Ontario aggregate core 

showing extensive ASR-induced microcracking extending both between and within aggregate 

particles. Lower left and lower right: Backscatter electron (BSE) images of an area of interest 

highlighted by white box in top image, and EDS point spectra of ASR gel on the left and crystalline 

ASR product on the right at two locations within a crack in the limestone aggregate. 
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Figure 12: Top: Micrograph in plane-polarized light of thin section taken from New Mexico 

aggregate core showing extensive ASR-induced microcracking. The large (yellow) epoxy-filled 

crack extending across the full field of view shows a fracture through a limestone aggregate 

particle which extends into the paste on either side. Lower left and right: Backscatter electron 

(BSE) images showing oblique microcracking extending from the main fracture, and EDS point 

spectrum of ASR gel lining one side of the highlighted crack. 
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2.5.4. VAM Test Results 

In this section, we report the results of VAM-based damage localization for EXP-A. As 

described in section 2.4.2, due to the limited number of accelerometers available for conducting 

tests, we divide the slab surface into two halves. We record acceleration time history for each half 

using 21 accelerometers, compute the corresponding linear spectra, and obtain the SBSum metric. 

We then plot the variation of the SBSum metric over each half using linear interpolation of the 

SBSum metric obtained at the accelerometer locations. We juxtapose the damage maps for the two 

halves in order to obtain a damage map for the entire specimen. Since there is no overlapping of 

sensors in the two halves, it is assumed that this is reasonable. This is especially true for damage 

mapping using the damage index defined above (equation 1), because the damage index is based 

on the relative SBSum values for a given test. Next, we discuss the results of VAM tests conducted 

on EXP-A in the context of: (a) the utility of the proposed Bayesian data fusion method, (b) 

selection of suitable probe frequencies for concrete (or concrete-like) specimens, and (c) Bayesian 

data fusion results showing damage locations in the slab.  
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(a)

 

(b)

 

(c)

 

(d)

 

(e)

 

(f)

 

Figure 13: Variation of SBSum over the top surface of EXP-A for pump frequency of 920 Hz, 

probe frequency of 19 kHz, and probe amplitude of 250 mV; (a)-(e): SBSum plots for the five 

configurations of pump and probe, (f) average of SBSum values plotted in (a)-(e). The pump/probe 

locations are denoted by letter “P”, the ASR gel/powder exudation locations are denoted by 

numbers (1, 2, and 3), and the locations of core samples taken for petrographic examination are 

denoted by dashed circles. 

 

VAM test results for the probe frequency of 19 kHz, and probe amplitude of 250 mV (peak-

to-peak) are shown in Figure 13. Subfigures (a) to (e) show the variation of SBSum on the surface 

of the slab obtained by interpolating the SBSum values at 42 sensor locations for all five 

configurations (i.e., pump/probe locations). The SBSum distribution changes with configuration, 

affirming that different steady state vibration patterns (nodes and antinodes of the standing waves) 

as well as attenuation are at play. Different configurations identify different possible damage 

locations (ASR gel/powder exudation points or surface cracks) by showing relatively higher 

SBSum values at/near the damage sites. Subfigure (f) shows the average SBSum plot obtained by 
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averaging the values of SBSum at each sensor over all the five different pump/probe locations 

(configurations). Figure 13 shows a simple method (mean of SBSum data) for fusing data from 

multiple test configurations. It can be seen that some of the test configurations show damage on 

the top half of the slab, however after computing the mean, damage is seen only on the bottom half 

of the slab.   

We next compare two candidate alternatives of assimilating information from multiple VAM 

tests: (a) computing the mean of SBSum data obtained from VAM tests (Figure 14), (b) Bayesian 

data fusion described in 2.3.3 (Figure 15).  

 

(a)

 

(b)

 

(c)

 

Figure 14: Variation of SBSum over the top surface of EXP-A for all five configurations (average), 

pump frequency of 920 Hz, and probe amplitude of 250 mV; (a) probe frequency = 16 kHz, (b) 

probe frequency = 19 kHz, (c) average of SBSum values from (a) and (b). 
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(a)

 

 (b)

 

(c) 

 

Figure 15: Variation of damage probability (computed using Bayesian information fusion method 

detailed in section 2.3.3) over the top surface of the slab for all five configurations, pump frequency 

of 920 Hz, and probe amplitude of 250 mV; (a) probe frequency = 16 kHz, (b) probe frequency = 

19 kHz, (c) fusion of information from (a) and (b). 

 

Figure 14 depicts the simple averaging scheme to combine VAM test data from two tests that 

used different probing frequencies. Different frequencies may illuminate flaws of different sizes 

and help enrich the diagnostic information obtained using a VAM test, making this approach useful 

for solving real-world diagnostic problems. However, it can be seen in Figure 14 (a) and (b) that 

the magnitudes of SBSum values for these two test cases are different – the highest SBSum value 

for the 19–kHz-case is about fifteen times higher than that for the 16-kHz-case. The averaged 

(fused) damage map depicted in Figure 14 (c) appears to lose the information from the 16 kHz 

damage map. Specifically, the higher SBSum values near (x,y) ~ (40, 35) cm seen in Figure 14 (a) 

are drowned by the high SBSum values in the bottom half of the slab in Figure 14 (b). The 

magnitudes of SBSum are different for different configurations. In an average-based data fusion 

procedure, the high magnitude SBSum values from one configuration dominate the low magnitude 

SBSum values from other configurations. This leads to loss of information. The key concept in 

VAM-based damage localization is, however, the relative degree of SBSum values in a given 

VAM test (not across different VAM tests). Therefore, it is not informative to average the SBSum 

data in its raw form across multiple tests. This difficulty is overcome by the proposed Bayesian 
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data fusion method. In this method, first, the damage map in a given test is developed using the 

observed damage index, then the results from different tests are fused using Bayesian updating, as 

described in Section 2.3.3. The result of Bayesian data fusion for two tests (at probe frequencies 

16 kHz and 19 kHz) is shown in Figure 15. A careful observation of Figure 15 (c) shows that this 

approach indicates high damage probability around (x,y) ~ (40, 35) cm. Thus, the proposed 

Bayesian methodology prevents loss of diagnostic information while performing information 

fusion. 

 

(a)

 

(b)

 

(c)

 

Figure 16: Damage probability maps for EXP-A (a) probe frequency = 10 kHz; (b) probe frequency 

= 15 kHz; (c) probe frequency = 20 kHz. 

 

Figure 16 shows the damage probability maps obtained by fusion of data from tests with four 

probe amplitudes and five pump/probe locations, at three probe frequencies (10 kHz, 15 kHz, and 

20 kHz). This figure represents the general trend in the damage probability plots as the probing 

frequency increases. It can be seen that the lower frequency is unable to detect any damage. The 

wavelengths corresponding to lower frequencies are longer than those corresponding to higher 

frequencies. Thus, the low frequency waves may be unable to detect flaws of small size. Our 

numerical experiments suggest that in the VAM test, a true positive rate higher than 70% is 

achievable if the ratio of flaw size to the shear wavelength in the material is greater than 0.7 [35]. 



44 

 

The damage probability at a sensor location is dependent on the consistency of occurrence of a 

high-enough SBSum value at that sensor location. The plots showing low damage probability for 

lower probing frequency imply that the higher SBSum values do not occur consistently at the same 

sensor locations. The Bayesian updating algorithm correctly assigns lower damage probability to 

these test results. Based on this observation, we use the data (five configurations and four probe 

amplitudes) obtained for six probe frequencies (16 kHz, 17 kHz, 18 kHz, 19 kHz, 20 kHz, and 21 

kHz) to arrive at the aggregated VAM -based damage maps for the slab (Figure 17). Figure 17 also 

shows the results of data fusion using an average of SBSum values for all the tests. 

The results obtained from the two data fusion techniques are subjected to validation 

assessment using the ASR damage information obtained from petrographic examination 

(discussed in section 3.1). According to the petrographic examination, only trace amount of ASR 

damage was found in quadrant 1 (Maine). Diffused macro/micro cracking was not observed in the 

core sample taken from this quadrant. In quadrant 2 (silica, Figure 10(a)), the core sample showed 

a large (about 1 cm thick) gap where silica was placed while casting the slab. Cracks of this size 

are typically not created by ASR gel expansion around aggregates. The applied pump excitation 

was not strong enough to induce opening and closing of this large gap. Thus, it is not reasonable 

to expect the proposed VAM-based methodology to detect this large gap. Characteristic, diffused 

cracking was also absent in quadrant 2 as there were no aggregates in this quadrant. Core samples 

taken from quadrants 3 and 4 showed characteristic diffused macro cracking, as well as ample 

evidence of ASR. Thus, the damage localization methodology should be able to detect surface 

cracks (Figure 9), and diffused cracking in quadrants 3 and 4. In fact, both damage maps in Figure 

17 show high damage probability at/near the visible surface cracks (Figure 9) as well as in 

quadrants 3 and 4. Overall, the damage localization method is able to locate damage at the expected 
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damage sites (quadrants 3 and 4). It can also be seen that the Bayesian information fusion technique 

produced the sharpest damage map. We remark that if the computational modeling required to 

obtain approximate likelihood values is prohibitive (due to the computational cost), the average of 

SBSum values can, potentially, be used for damage localization. However, this approach may be 

susceptible to false positive results (as seen in the top half of Figure 17 (a)). 

 

 

Figure 17: Damage maps for EXP-A: (a) average of SBSum; (b) Bayesian fusion of the damage 

index. 

 

2.6. Conclusion 

In this chapter, the VAM technique was used to detect and localize ASR-related damage in a 

concrete specimen exposed to accelerated aging conditions in a laboratory setting. Specifically, 

the VAM technique was applied to EXP-A, a cement slab cast with four pockets of reactive 

aggregates (known specific locations). A damage index based on sidebands present in the linear 

spectrum of nonlinear dynamic structural response (acceleration) was used to map the distribution 

of damage in the concrete specimen. We studied several practical aspects of data processing and 

noise reduction involved in VAM testing for real structures. We experimented with important test 

parameters that affect the VAM results, such as locations, frequencies, and amplitudes of the probe 

and pump excitations. For the slab specimen containing pockets of reactive aggregate at known 

(a)

 

(b)
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locations, VAM-based damage mapping revealed damage signatures at locations that showed 

visible signs of ASR-induced cracking (that could open and close due to the applied pumping 

excitation). We proposed a Bayesian data fusion methodology to assimilate the information gained 

from the VAM tests with different test parameters and compared the results of this method against 

simpler average-based data fusion methods. The proposed Bayesian methodology can be utilized 

with features of ASR-damage-induced nonlinear dynamic structural response other than the 

sidebands-based metric considered in this work. The VAM-based damage localization technique 

was able to identify most of the known damage sites for the slab, as confirmed by petrographic 

and chemical validation experiments.  

We remark that if a damage mechanism other than ASR induces nonlinear structural behavior 

that creates sidebands in the spectra of the recorded response, the proposed method cannot 

differentiate between the sidebands induced by this other mechanism and those induced by ASR. 

However, it may be of interest to know the extent and growth of this other damage mechanism as 

well. Thus, the proposed methodology may be applicable for localization of sideband-inducing 

damage mechanisms other than the ASR. Work needs to focus on scaling up the technique to larger 

scale, field implementation of VAM-based diagnosis in realistic size concrete structures such as 

those found in nuclear power plants. Consideration of realistic structures also requires the study of 

reinforced concrete, extending from the plain cement slab considered here. One of the key 

challenges is the number of sensors (accelerometers) needed to localize the damage. For a large 

structure, it is not feasible to use a large number of accelerometers; therefore, the number of sensors 

needs to be minimized. Wave sources that can illuminate parts of a real-world concrete structure 

with sufficiently strong vibration (to cause detectable VAM) also present challenges in the field 

application of VAM-based damage diagnosis.  
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CHAPTER 3 

 

Damage Localization in a Plain Concrete Specimen Using 2D Physics Model-Informed 

Machine Learning 

 

3.1. Motivation 

Both model-based and model-free methodologies have been used in SHM studies for damage 

diagnosis [1] [44]–[47], as discussed in Chapter 1. The model-free approach discussed in Chapter 

2 for VAM-based damage localization [48] suffers from the following limitations: a) the 

methodology relies on relative values of damage indices measured at different sensor locations, 

and hence requires the analyst’s judgment to define the damage index threshold for damage 

classification and localization; b) in Bayesian diagnosis, computation of the likelihood of damage 

at a sensor location given the damage index value and the threshold is expensive (the methodology 

above used an approximate, averaged likelihood-based method); and c) the methodology localizes 

damage along two (surface) dimensions of the component but does not provide the location along 

the third (depth) dimension. This objective investigates whether the above limitations could be 

overcome by using supervised machine learning techniques and nonlinear wave physics models.  

 

3.2. Relevant Background 

Machine learning (ML) models have an enormous capacity to learn complex, nonlinear 

phenomena [49]. Hence, they are well-suited for modeling nonlinear dynamics for complex, 

heterogeneous materials like concrete. Both supervised and unsupervised techniques have been 
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studied for concrete SHM [1]. Unsupervised learning is typically used to extract damage sensitive 

features from diagnostic data [50]–[56]. In supervised learning, labeled training data consisting of 

the chosen model inputs (damage sensitive features) at different damage levels for the real-world 

structure of interest is needed. As this data is typically not available, most of the past studies have 

used numerical simulations or scaled-down laboratory specimens for generating training as well 

as validation datasets to localize damage in 2-dimensions [51], [56]–[58]. Some investigations 

considered real-world structures and were limited to building and validating machine learning 

models for structures for which labeled training data is available [52]. 

State of the art for damage index-based SHM can be broadly categorized into: (a) simple rules 

(e.g., thresholds) determined by domain experts by studying physics simulations of the test 

procedure or laboratory test data for the test in question [34], [48], [59], (b) ML-based pattern 

recognition using field or laboratory experiment data [58], [60], [61], and (c) ML-based pattern 

recognition using data generated by simulation models for the diagnostic test process (different 

test parameters, damage severity levels, damage locations, etc.) [52], [62]. The first category relies 

on the expert’s ability to assimilate information from experimental data and physics models. The 

second category requires labeled training data corresponding to known damage severities and test 

conditions, which is typically difficult, expensive, and often impossible to obtain. Here, we 

investigate the utility of a hybrid approach, where physics-informed machine learning models 

(models trained using simulation data) are used for the NDE of a laboratory specimen.  An 

overview of various physics-informed ML (PIML) strategies that could be used for SHM is 

provided next. 

PIML has mostly been used for building forward prediction models [60], [63]–[65]: these 

could be used in prognosis to predict the quantity of interest or in diagnosis to compute the 
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likelihood function while solving the inverse problem. This chapter, on the other hand, investigates 

PIML for the more complex damage index-based diagnosis problem, which is tantamount to 

learning the task performed by solving an inverse problem [63], [64] without explicitly computing 

the likelihood function. That is, the complex relationship between the damage index and damage 

estimate, in effect, captures what a solution of the related inverse problem would have achieved. 

Different types of approaches have been pursued in the literature for training forward prediction 

PIML models [66], such as: (a) impose constraints established by the physics model on the loss 

function while training the machine learning model [63], [65], [67], [68]; (b) use physics model 

estimates as additional inputs to the ML model;  (c) incorporate data obtained from a computational 

simulation of the governing physics into the pool of training data  [62], [69], [70]; and d) train an 

initial ML model using data generated by the physics model, and then update, retrain or correct 

this initial model with observation data [12]. In this work, we use the third approach for damage 

index-based diagnosis. We provide next a review of past PIML efforts for SHM. 

Yuan et al.[63] used a PIML model for beam vibration as the forward model to be used in an 

(iterative) inverse problem solution for beam structure health monitoring. They used artificial 

neural networks (ANNs) as the ML model and used the laws of physics to guide the back-

propagation process. Similarly, Raissi et al. [64] implemented an artificial neural network (ANN) 

training with observation data augmented by data from physics model runs, for solving inverse 

problems in SHM. Rai and Mitra [62] used physics (finite element) models to extract damage-

sensitive features to train a feed-forward neural network for localizing damage in a simulated thin 

aluminum plate. Here, the knowledge gained from governing physics simulations is implicitly used 

to train the ML model (to decide the damage indices or the inputs to the ML model). Seventekidis 

et al. [70] use physics model simulation data to train a health state classification ML model. They 
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used a single fidelity physics model, which was calibrated with experimental data before 

generating the training data. The resulting classification ML model was shown to be adequately 

accurate in identifying simple damage states. Note that Yuan et al. [63] have provided a review of 

PIML methods for SHM. PIML has shown promise for applications in SHM and in vibration-

based damage localization. Much of the previous work has focused on building PIML models to 

be used as forward models in the inverse problem solution for relatively simple physics (e.g., linear 

vibrations of a beam). For complex (three-dimensional) structures, with complex diagnostic tests 

involving nonlinear system behavior, the damage index-based approach is desirable.  

 There are thus two main objectives in this chapter: investigate whether the aforementioned 

drawbacks of VAM-based damage localization could be overcome using ML (data-driven model-

based SHM), and explore the utility of physics-based ML for tackling the training data related 

challenges faced by data-driven model-based SHM methods. We use computational physics 

simulations to generate data for training the ML models. The computational cost involved in 

numerical simulation of the nonlinear phenomenon of interest, for heterogeneous, three-

dimensional (3D) domains could also be prohibitive in real-world applications. Hence, in this 

research, the governing wave physics is simulated for two-dimensional (2D) domains (under plane 

strain conditions). The response data obtained from 2D finite element analysis (FEA) are used to 

compute the corresponding values of SBSum (damage sensitive feature), which are then used in 

the training data for supervised ML models.  

One example of a popular data-driven surrogate model is an ANN. These networks use a series 

of connected layers with multiple nodes and neurons, intended to represent synapse connections 

in the brain. The models do not require previous knowledge or empirical formulas, making them 

desirable for many applications such as image and speech recognition, video games, consumer use 
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predictions, and damage estimation. Input values feed into the ANN and pass through the hidden 

layers before arriving at the output value(s) for that set of inputs. Each time the input travels 

through a layer, it is assigned a different weight. The learning method is called backpropagation, 

where the difference between the output of the network and the actual output is minimized [71]. 

The process is repeated, and the weights are updated until either the desired number of runs 

(epochs) are completed, or the value of a loss function converges. Figure 18 shows a shallow neural 

network with only one hidden layer.  

 

 

Figure 18: Example of an artificial neural network. 

 

Machine learning models have been used to estimate damage, durability, and service life of 

reinforced concrete and other composite structures [57].  The models can be either supervised or 

unsupervised. In supervised learning, the desired output is a known target. Estimating supervised 

continuous target variables is known as regression, whereas the estimation of discrete target 

variables, such as in this experiment, is known as classification. In unsupervised, learning the 
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output is unknown, so the model identifies patterns and relationships within the data [49]. Unlike 

physics models, machine-learning models allow for additional input variables to be easily 

incorporated in the estimation model.  

The simulation-based training data is used in this study to construct two feed-forward artificial 

neural networks (ANNs). The first ANN is used to predict the value of the damage index (SBSum). 

Since the damage index is a continuous variable, this ANN is a prediction model that estimates 

SBSum value at any given sensor location given test parameters and damage location as well as 

extent. This model is referenced as the prediction model. The second ANN classifies the region in 

the given sensor's neighborhood into two discrete categories, damage present or damaged absent. 

This ANN is a damage classification model. The performance of the trained machine learning 

models is evaluated using simulation test data (2D FEA models) and laboratory test data (a cement 

slab specimen previously investigated in [48]). The methodology aims to overcome the 

aforementioned drawbacks of VAM-based damage localization methodology by building physics 

model-informed machine learning models to perform damage classification by learning the 

damage index threshold from the training data, to facilitate computation of the likelihood of 

damage given damage index data, and to estimate damage location in the depth dimension.  

 

3.3. Methodology 

This section provides the details of the computational model used to generate training data 

and the proposed supervised ML models that facilitate VAM-based damage diagnosis. Chapter 2 

sections 2.3 and 2.4 , discuss the details of VAM, the experiments that are being used for validation 

(EXP-A), and the details of the test parameters used. 

Past research on damage localization using VAM in thick concrete slabs has primarily relied 
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on either a fully data-based (model-free) approach or a physics model-based approach [35], [48]. 

In a deterministic setting, an analyst-defined statistical metric (e.g., mean) of SBSum values was 

used in previous work as the threshold SBSum value. This threshold was used to determine which 

sensors indicated damage and to obtain the damage map. Here we explore whether for a given 

damage metric (e.g., SBSum), supervised ML could be used to perform binary classification 

(damage present v. absent) and thus implicitly infer a damage index threshold given multiple 

parameters without the analyst having to select a threshold. Further, a probabilistic (e.g., Bayesian) 

damage localization approach relies on physics models to obtain the likelihood function. Due to 

the computational expense of simulating the complex governing physics, approximate (averaged) 

likelihoods have been used in previous work [48]. Note that this is a common aspect of many 

damage diagnosis algorithms. These involve the solution of an inverse problem, which necessitates 

multiple evaluations of the forward model (to compute the error between estimated and measured 

damage indices in a deterministic approach, or to compute the likelihood of observed damage 

index value given a damage state in a probabilistic approach). In this work, we investigate the 

utility of a computationally inexpensive ANN-based surrogate (forward model) to aid the 

likelihood estimation. In this manner, the classification model is a ML-based generalization of 

damage detection for concrete SHM. In contrast, the regression model can be thought of as an 

application of the well-known surrogate modeling approach, subsequently used in a Bayesian 

estimation methodology for damage localization.  

 

3.3.1. Physics-informed, supervised machine learning for VAM-based damage diagnosis 

Two VAM test simulation data-driven models are constructed for damage diagnosis. The first 

approach builds a regression model that estimates the SBSum value at a sensor location. The 
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regression model and VAM test (SBSum) data are used in a Bayesian damage diagnosis algorithm, 

where a search is done for the damage locations that best-fit the observed VAM test (SBSum) data. 

The second approach employs the VAM test parameters as well as the measured SBSum values at 

a particular sensor to classify the sensors as either indicating or not indicating the presence of 

damage. This is the classification approach, where each sensor location is classified into one of 

the two categories: (1) damage present, or (0) damage absent. The details of the two models are 

discussed in the following sections. 

3.3.1.1. Model structure and training 

The choice of the ML model inputs and outputs is a critical consideration for successful 

damage diagnosis. In this work, the choice is made based on a phenomenological understanding 

of the VAM test setup and the wave physics governing the problem of interest. The two ML models 

built to facilitate damage diagnosis have different purposes. The regression model aims to estimate 

the damage index (SBSum) value for a given damage state and test configuration at a given sensor. 

The output of this model is thus the SBSum value at a given sensor location. The input should 

include all parameters that affect the SBSum value: VAM test parameters as well as damage 

location and size. The SBSum value at a sensor may also be affected by the distance of the sensor 

from the pump/probe excitation location. This effect can be accounted for in the model by 

providing the sensor’s location to the regression model. Note that the constitutive behavior of the 

test specimen may also affect SBSum values. However, it is unlikely that precise knowledge 

regarding the material state and constitutive behavior in the structural component to be tested will 

be available for performing damage diagnosis. Hence, the regression model estimates the damage 

index value given the test parameters, crack location, crack extent, and the sensor location relative 

to actuator locations. This model can then be used to determine the location of damage by solving 
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the inverse problem, given experimental data of SBSum values at different sensors for a given dual 

excitation.  

The classification model, on the other hand, aims to directly identify the presence or absence 

of damage in the vicinity of a sensor. The output of the model is thus a binary indicator (1: damage 

present, 0: damage absent). The input includes important test parameters, location of the sensor, 

and the damage index (SBSum). In addition to these quantities, the classification model needs to 

assess the relative SBSum value at the sensor in question compared with other sensors in the VAM 

test. VAM-based damage localization works by finding the sensors that have relatively higher 

SBSum values in a test. To provide this information, a statistical metric (e.g., mean) of the SBSum 

values could be provided to the classifier. Note that it is not specified that an SBSum value above 

the mean SBSum value implies the presence of damage. Instead, the classifier learns the 

(potentially test-parameter-dependent and sensor-location dependent) SBSum threshold value 

from the training data.  

The importance of the inputs chosen for both ML models is confirmed by performing an 

analysis of variance (ANOVA). In this manner, the structure of the two ML models is decided 

based on insights obtained from the physics of the VAM test process as well as statistical analysis 

(ANOVA). Practical considerations in manufacturing and testing slab specimens with hidden 

cracks situated in predetermined locations make it difficult to develop a supervised learning model 

using only experimental data. Hence, in this work, a computational physics model is used to 

simulate VAM tests with different damage configurations and VAM test parameters. A brief 

summary of this model is provided next.  

3.3.1.2. Computational physics models for vibro-acoustic modulation 

In this section, we describe the nonlinear wave propagation model used to simulate VAM tests 
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in this work. Various nonlinear crack–wave interaction models, such as classical nonlinear 

elasticity, stiffness asymmetry (bilinear stiffness), hysteresis, nonlinear dissipation have been 

reported in the literature [72], [73]. Here, we employ a contact acoustic nonlinearity (bilinear 

stiffness) model, to simulate a brittle, frictionless, internal (hidden) crack. We model the geometric 

nonlinearity at the crack faces as a contact nonlinearity that does not exhibit cohesion between the 

contact surfaces. The equations governing wave propagation in the 2D domain of interest (Ω) are 

given by [34]: 

𝛁 ∙ 𝝈 = 𝜌𝒖 for 𝒙 ∈  Ω, (6) 

𝝈 ⋅ 𝒏 = 𝑻𝑁 for 𝒙 ∈ ΓN, (7) 

𝐮 = 𝒖𝐷for 𝒙 ∈ ΓD, (8)   

where 𝝈(𝒙, 𝑡) is the Cauchy stress, 𝒖(𝒙, 𝑡) is the displacement, 𝜌 is the density, 𝑻𝑁(𝒙, 𝑡) is the 

prescribed traction at the Neumann boundary, 𝒖𝐷(𝒙, 𝑡) is the prescribed displacement at the 

Dirichlet boundary, and dependance on spatial and temporal coordinates is dropped for brevity in 

the governing equations. We use linear elastic strain-displacement as well as constitutive model 

for the material. For the brittle, frictionless crack, the displacement-dependent (nonlinear) 

boundary condition is modeled by specifying 𝑻𝑁 = 𝟎, when the crack is open and 𝑻𝑁 = 𝜏𝒏, when 

the crack is closed, where 𝜏 is the magnitude of the compressive force. Analytically, this 

corresponds to a hard contact condition, where the two crack faces do not impart force on each 

other when they are not in contact. The surfaces can impart any amount of pressure (compressive 

force) on each other when they are in contact, and penetration of one crack face into another is not 

allowed. Note that the frictionless contact implies that the interaction force between two crack 

faces is applied only in the normal direction (and not in the tangential direction). The governing 

equations are cast in their weak form, and upon spatial discretization using the finite element 
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method, we arrive at the discretized system of equations. We solve the governing equations using 

a commercial finite element program (Abaqus [39]). Further details about the computational model 

can be found in [35]. A detailed discussion of different (finite element) modeling techniques for 

contact acoustic nonlinearity can be found in [18].  

Even with a few simplifying assumptions (e.g., homogeneity with smeared properties), the 

simulation of nonlinear wave propagation in three-dimensional media is computationally 

expensive. The geometric nonlinearity at the crack interface necessitates the employment of an 

implicit time-integration scheme for the simulations, which increases the computational burden 

significantly. For the slab specimens considered in this work, finite element simulation of one 

VAM test for a 2D domain (Ω representing a vertical cross-section of the slab), which does not 

fully capture the true (3D) nonlinear wave propagation, takes approximately 1 hour. On the other 

hand, finite element simulation of a VAM test for a 3D domain (Ω representing the entire slab) 

takes about 45 hours. One of the goals of this study is to evaluate whether damage index variation 

pattern (across sensors) learned from the approximate (2D) simulation model could be used for 

damage localization in real-world (3D) structures, given the prohibitive computational effort of a 

3D simulation. To this end, we simulate the governing nonlinear wave physics for a 2D domain. 

This approximate model is used for generating training data for supervised learning models used 

for diagnosis and discussed in the next section. 

3.3.1.3. Damage localization using the regression model 

In this approach, a surrogate model is built for the phenomenon (nonlinear dynamics in the 

present case) underlying the diagnostic test procedure. This model uses the (candidate) flaw 

locations and test parameters to predict the damage index (SBSum) value at different sensor 

locations. Thus, the regression model is a surrogate for the forward model. To perform diagnosis, 
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an inverse problem needs to be resolved. In this article, the regression model is coupled with a 

Bayesian estimation algorithm to diagnose the location and extent of damage in the domain of 

interest. The Bayesian approach represents the state of knowledge about the values of parameters 

of interest through the use of probability distribution functions. The updated knowledge (i.e., the 

posterior distribution) about a parameter is obtained by combining prior knowledge (based on 

intuition, experience, model prediction, prior data, etc.) and observed data. The observed data is 

included in the (Bayesian) inference algorithm by computing the likelihood of observing the data 

for a given value of the parameter.  

In this work, the location of the centroid of the crack (Xcrack ), the crack length (Lcrack ), and 

the crack depth (Zcrack), are the quantities to be estimated. The Bayesian update equation for this 

estimation can be written as: 

𝑃(𝜽|𝑆𝐵𝑆𝑢𝑚) ∝ 𝑃(𝑆𝐵𝑆𝑢𝑚|𝜽) ∗ 𝑃(𝜽), (9) 

where 𝑃(𝜽) is the prior distribution of the parameters 𝜽 to be estimated, 𝑃(𝑆𝐵𝑆𝑢𝑚|𝜽) is the 

likelihood, and 𝑃(𝜽|𝑆𝐵𝑆𝑢𝑚) is the posterior distribution of 𝜽.  Here 𝜽 is a vector, with three 

components, i.e., θ1= Xcrack , θ2= Lcrack ,θ3= Zcrack are the three model inputs to be calibrated (Figure 

19). We use uniform priors spanning the extent of the test specimen for P (θ1), P(θ2), and P(θ3) 

since we do not know the crack location, length, and depth a priori. Using the prediction ANN 

model and Markov Chain Monte Carlo (MCMC) simulations, the posterior distribution of θ1, θ2, 

and θ3 is computed. MCMC algorithms are sequential sampling methods commonly used in 

solving complex integration and optimization problems. Samples from a continuous random 

variable are used to evaluate a variable’s posterior; the Metropolis-Hastings (MH) algorithm is 

used here for sampling[74], [75]. 

VAM-based damage localization fuses damage state information obtained from multiple 
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VAM tests with different test parameters (i.e., excitation frequencies, amplitude ratios, etc.). 

Bayesian estimation incorporates information from various VAM tests when evaluating a 

variable’s posterior. Damage maps are created for the crack's location by sampling the crack’s 

posteriors and taking an average of the sampled damage locations. This method is computationally 

expensive since three parameters are estimated in MCMC simulation.  

 

 

Figure 19: Computational domain with a single crack and geometric parameters that define crack 

location and size 

 

3.3.1.4. Damage localization using the classification model 

This model uses the damage index (SBSum) and other relevant test parameters to determine 

whether damage is present or absent in the vicinity of the given sensor. The model needs to learn 

the relationship that separates the damage index observed at a sensor in the vicinity of the damage 

from a sensor away from the damage while considering the context provided by test parameters 

and other relevant information (e.g., SBSum values in the neighborhood). In supervised learning 

for a classifier, the inputs need to be carefully chosen. A large input space may increase the training 

time, and not including important variables as inputs may lead to poor accuracy.  

In a training data set, where multiple inputs and corresponding outputs are available, analysis 

of variance (ANOVA), a type of statistical hypothesis testing, could be used to determine the 
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importance of each input parameter. In selecting inputs for the model, we use a p-value threshold 

of 0.05 in this paper, i.e., if the p-value for any input is less than 0.05, it is included in the model. 

The damage identification model thus incorporates selected VAM test parameters and the damage 

metric (SBSum) as the input, and the damage indicator as the output. The damage indicator has a 

value of 0 or 1, where 1 indicates the presence of damage, and 0 indicates the absence of damage. 

The training data are obtained from numerical simulations. The details of training data generation 

are discussed in section 3.4.1. 

Due to physical (geometric and material attenuation) and practical (measurement noise, sensor 

density, equipment limitations, etc.) considerations [35], [48], VAM-based damage localization 

has to rely on assimilating damage state information obtained from multiple VAM tests with 

different test parameters. The damage classification model provides damage state information at 

each sensor for all VAM tests. A methodology is thus needed to assimilate the damage diagnosis 

for all VAM tests performed on the specimen of interest. To this end, the classification results 

(damage = 0 or 1) from all VAM tests are averaged at all sensor locations. If this average is greater 

than 0.5, that location is identified as damaged. In creating the damage map, the region between 

adjacent sensors that indicate damage is also assumed to be damaged. The centroid of the cluster 

of adjacent sensors showing signs of damage is used to estimate the crack centroid along the x-

axis, and the distance between the extremities of the cluster is used to approximate the crack length. 

The classification model is thus used to estimate the hidden crack location as well as size.  

The classification model only provides damage location along the x-y (horizontal) plane (no 

estimate of damage depth), whereas the regression model also provides the damage depth (in 

addition to the damage location in the horizontal plane). The classification model-based diagnosis 

is computationally inexpensive (i.e., a few seconds to perform diagnosis), whereas the regression 
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model-based diagnosis is computationally expensive (i.e., about 30-32 hours to perform diagnosis 

due to the use of Markov chain Monte Carlo sampling for constructing the posterior distribution). 

A combined approach is thus utilized, which involves obtaining the damage location first on the 

x-y plane using the classification model and then the damage depth using the regression model 

(described in the previous subsection). To this end, the parameters θ1 and θ2 (defined in section 

3.3.1.3 above) are fixed at the estimated crack location and length from the classification model, 

and Bayesian estimation is performed (using the regression model for likelihood computation) to 

estimate the third parameter, damage depth, θ3. This technique is computationally less expensive 

than the procedure outlined in section 3.3.1.3 since only one parameter is estimated using MCMC 

simulations. 

In summary, two damage diagnosis approaches are investigated (Figure 20). In the first 

approach, Bayesian estimation is used (along with the trained SBSum regression model) to 

determine the posterior probability distributions of the crack centroid, length, and depth. The 

second approach is a combined approach, where the damage classification model is used to 

determine the centroid for the crack and crack length, and then Bayesian estimation is applied 

using the regression model to determine the posterior for damage depth. The second approach is 

computationally cheaper than the first approach.  

 

 

Figure 20: Two different damage diagnosis approaches to determine the damage map. The top row 

shows the Bayesian Estimation approach using only the prediction model, whereas the bottom row 

shows the approach using both classification and Bayesian estimation. 



62 

 

 

3.3.2. Validation Methodology 

The proposed methodology is validated by performing VAM tests on a cement slab containing 

pockets of reactive aggregate at known locations (EXP-A). The slab was cast and cured in an 

aggressive (ASR-inducing) environment in the laboratory. The ASR gel formation and the 

subsequent expansion around the reactive aggregates induce internal macro/micro-cracking in the 

slab. The occurrence of ASR in the slab was confirmed by performing chemical tests on the gel 

effluent [48]. VAM tests were then carried out to collect test data, which are used in this paper for 

validation of the ML models. After completing the VAM tests, cylindrical cores were drilled out 

of the slab, and a petrographic examination of the cores was performed. The petrographic study 

revealed the approximate locations of the internal micro/macro cracks due to ASR. The details of 

slab casting, curing, chemical testing, petrographic study, as well as the VAM tests performed on 

this slab, can be found in section 2.4.  

The VAM test data for this slab was collected using a rectangular grid of sensors 

(accelerometers) placed on the surface of the slab. The ground truth about damage 

presence/absence for the laboratory slab specimen is obtained by performing petrographic study 

[48] and destructive testing (breaking the slab open) as described above. As the data used for 

training the ML models are obtained using a 2D finite element model, the damage in the cement 

slab specimen is diagnosed along each vertical slice containing a row of sensors on the top edge. 

That is, each row of sensors installed on the surface of the slab is evaluated separately, and then 

the results are synthesized to create the damage map. Based on the ground truth regarding damage 

presence/absence, the accuracy, sensitivity and specificity of the proposed methodology, when 

applied to the experimental specimen, is evaluated. The mathematical definitions of these metrics 
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are given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎 𝑃𝑜𝑖𝑛𝑡𝑠
 , (10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 , (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 . (12) 

A practical challenge in using simulation-based training data for diagnosing damage in a 

laboratory specimen is that the exact magnitude of the dual-frequency force applied in laboratory 

experiments is unknown. Furthermore, the geometric attenuation in 2D models vs. 3D specimens 

is different in magnitude, and it is difficult to quantify this ratio for all sensors using a simple 

analysis. As a result, the damage indices (SBSum values) for training data and real-world data may 

differ by an order of magnitude. We overcome this challenge by leveraging the key principle 

underlying VAM-based damage localization: the methodology relies on relative values of the 

damage index at all sensors in a given VAM test (and not on the absolute values). Keeping this in 

mind, the SBSum values obtained from the 2D model runs are simply scaled up or down to match 

the experimentally obtained SBSum values. A series of FE analyses are performed at multiple 

excitation amplitudes, and a linear regression model showing the relationship between the 

excitation amplitude and the SBSum is built. The FEA data can then be appropriately scaled so 

that the experimental SBSum values and FEA SBSum values are of the same order of magnitude.  

 

3.4. Supervised Machine Learning 

3.4.1. Training data generation 

As described in Section 3.3, two-dimensional (2D) finite element models simulating VAM 
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tests for multiple crack sizes and locations are used to generate the training data. ANN models are 

trained using data obtained from this 2D analysis. The domain geometry and the pump and probe 

excitation locations used in the numerical simulations are shown in Figure 19. The pump and probe 

actuators are placed at the same location for each simulation. The computational domain is 

60.96 cm wide and 15.24 cm thick. It contains a single crack, placed at different locations and of 

varying lengths. All of the locations for the single cracks used are displayed in Figure 22. The 

commercial finite-element program Abaqus was used to perform numerical simulations. The 

domain was discretized using a structured mesh of 8-noded finite elements. An implicit scheme 

was employed for time integration of the governing equations and ensured that at least ten 

computational nodes were available over the smallest wavelength (0.068 m). The interaction at the 

crack interface was modeled using a hard, frictionless contact condition. The material properties 

used in these simulations are given in Table 5. The parameters used in conducting VAM tests on 

this numerical specimen can be found in  

Table 6. Our past research [35] reported studies that evaluated the diagnostic performance of 

VAM tests for different ratios of flaw size to probing wavelength. The study showed that VAM-

based hidden crack diagnosis shows acceptable values of sensitivity and specificity when the crack 

length is approximately equal to or longer than the smallest probing wavelength (0.068 m in this 

case). Hence, most of the crack lengths in  

Table 6 are greater than or equal to 0.06 m. Acceleration time-history data is recorded at 

sensors located along the top edge of the specimen and is used to calculate SBSum values [35]. 

Since the proposed methodology is to be validated using data obtained from actual VAM 

experiments performed on a cement slab, the SBSum values for a given laboratory test 

configuration (probe excitation amplitude, probe excitation location, etc.) are compared with 
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corresponding SBSum values from the numerical simulations. It is found that the experimentally 

measured SBSum values are higher than the 2D FEA-based values. These higher SBSum values 

are due to the physics model discrepancy, as well as the difference in input excitation magnitudes. 

In this work, we do not quantify the physics model discrepancy. Instead, we (indirectly, through 

scaling of the data) adjust the excitation amplitude for simulations to ensure that SBSum values 

for training (simulation) data and validation (experimental test) data are similar in magnitude. Note 

that the damage diagnosis process depends on the relative values of the damage index (SBSum), 

and if all SBSum values for all tests are multiplied by a scalar, the diagnosis results will not be 

affected. To establish that input excitation magnitudes indeed affect SBSum values, the correlation 

between SBSum values in a VAM test, and the probe excitation amplitudes (the pump excitation 

amplitude was constant across all tests) is studied for numerical simulations (see Figure 21). These 

two quantities show a strong positive correlation, with a Pearson correlation coefficient of 1. This 

implies that SBSum values of magnitudes similar to those obtained from simulation data could be 

obtained using laboratory tests by reducing the probe excitation amplitude by a scalar factor (less 

than 1). As re-testing the specimen with different probe excitation amplitudes is a time-consuming 

process, in this work, we scaled the simulation-based SBSum values by a scalar factor (greater 

than 1). Given the range of experimental SBSum values, the approximate value of this the scalar 

multiplier is found to be 1000. Since the relationship between the excitation amplitude and SBSum 

is linear and shows a very strong positive correlation, all the SBSum values from simulation were 

multiplied by 1000. After the scaling, the simulation-based training data SBSum values and 

laboratory test SBSum values exhibit the same order of magnitude.  
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Figure 21: Scaling the 2D simulation model outputs: data and regression fit. 

 

Table 5: Material properties used in the 2D FEA model. 

Material property Value 

Young’s modulus (E) 27 GPa 

Density (𝜌) 0.15 

Poisson’s ratio (𝜈) 2400 kg/m3 

Mass proportional Rayleigh damping parameter (a) 2120.04 

Stiffness proportional Rayleigh damping parameter (b) 1.787× 10-7 

 

Table 6: Test parameters for the 2D FEA model. 

Crack 

# 

Centroid (x-

direction) 

[m] 

Length 

[m] 

Depth from 

Surface (z-

direction) 

[m] 

Amplitude Ratio 

(probe/pump) 

Ramp 

Frequency Ratio 

(probe/pump) 

Rfreq 

Pump/Probe 

Actuator Location 

[m] 

1 -0.1524 0.12 0.0762 1, 0.5, 0.2, 0.1 10,12,14,16,18,20 -0.1524, 0.0, 0.1524 

2 0 0.12 0.0762 1, 0.5, 0.2, 0.1 10,12,14,16,18,20 -0.1524, 0.0, 0.1524 

3 0.1524 0.12 0.0762 1, 0.5, 0.2, 0.1 10,12,14,16,18,20 -0.1524, 0.0, 0.1524 

4 -0.1016 0.12 0.1016 1, 0.5, 0.2, 0.1 10,12,14,16,18,20 -0.1524, 0.0, 0.1524 

6 -0.1016 0.12 0.0762 1, 0.5, 0.2, 0.1 10,12,14,16,18,20 0.0 

7 -0.1025 0.06 0.0762 1, 0.5, 0.2, 0.1 10,12,14,16,18,20 -0.1524, 0.0, 0.1524 

8 0.0752 0.06 0.0762 1, 0.5, 0.2, 0.1 10,12,14,16,18,20 -0.1524, 0.0, 0.1524 

9 -0.1524 0.06 0.1016 1, 0.5, 0.2, 0.1 10,12,14,16,18,20 -0.1524, 0.0, 0.1524 

10 0.1524 0.02 0.1016 1, 0.5, 0.2, 0.1 16,18,20 -0.1524, 0.0, 0.1524 

11 0.1016 0.09 0.0762 1, 0.5, 0.2, 0.1 16,18,20 -0.1524, 0.0, 0.1524 

12 -0.05 0.02 0.085 1, 0.5, 0.2, 0.1 18,20 0.0 

13 0.03 0.06 0.085 1, 0.5, 0.2, 0.1 18,20 0.0 

14 0.1016 0.09 0.085 1, 0.1 18,20 0.1524 

15 0.1016 0.09 0.095 1, 0.1 18,20 0.1524 

16 0.1016 0.09 0.1016 1, 0.1 18,20 0.1524 

17 0.1016 0.09 0.0508 1, 0.1 20 0.1524 

18 0.1016 0.09 0.02 1,0.1 18,20 -0.1524, 0.0, 0.1524 

19 -0.1016 0.09 0.02 1, 0.5, 0.2, 0.1 18 -0.1524 
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(a) 

 

(b) 

  

(c) 

 
 

Figure 22: The domain geometry and crack locations used in the numerical simulations, only one 

crack is present in the specimen domain for a given simulation. 

 

3.4.2. ANN model training evaluation 

As mentioned in Section 3.3, two feed-forward ANN models are constructed. The first model 

estimates the SBSum value for a candidate crack location. The second model classifies the given 

sensor as showing the presence or absence of damage. In training both the neural networks, first, 

the weights were randomly initialized as values between -1 and 1 for the given inputs. Both models 

were trained using a learning rate of 0.1. The number of layers and the number of neurons in each 

layer are optimized to decrease errors in predicting the testing data. In order to train the 

0

0.04

0.08

0.12

-0.3048 -0.1524 0 0.1524 0.3048

z 
[m

]

x [m]

Crack 1

Crack 2

Crack 3

Crack 4

0

0.04

0.08

0.12

-0.3048 -0.1524 0 0.1524 0.3048

z 
[m

]

x [m]

Crack 7

Crack 8

Crack 9

Crack 10

Crack 12

Crack 13

0

0.04

0.08

0.12

-0.3048 -0.1524 0 0.1524 0.3048

z 
[m

]

x [m]

Crack 6
Crack 11
Crack 15
Crack 14
Crack 16
Crack 17
Crack 18
Crack 19



68 

 

classification and regression models, the available (115,538) data points for cracks 1-4 and 6-19 

(Figure 22) were randomly split into training (70%), testing (15%), and validation data (15%). Due 

to the random splitting of the data, information for any one given crack location could be present 

in all three data sets since the 115,538 data points were obtained using combinations of 6 excitation 

frequency ratios, 4 excitation amplitude ratios, 3 pump/ probe locations, and SBSum values at 

varying numbers of sensor locations (149 to 197 sensors depending on the number of nodes on the 

top edge (mesh-dependent)) in each VAM test simulation for 18 different crack locations.  

For the regression neural network, the accuracy is quantified using the mean squared error 

(MSE). MSE is the average squared difference between the ANN-predicted values of SBSum and 

the FEA-generated values. For the damage classification neural network, the accuracy is calculated 

using the metrics defined in equations (10), (11) and (12). A grid search is used in optimizing the 

hyperparameters of the ANN models; the set of hyperparameters that yield the highest cross-

validation accuracy are selected. 

3.4.2.1. Regression Model 

The inputs for this model include the frequency ratio (Rfreq) of the pump and probe excitations, 

the amplitude ratio (Ramp)  of the pump and probe excitations, the location (Xcrack, Figure 19) of the 

centroid of the crack, the depth of the crack from the surface (Zcrack, Figure 19), the crack length, 

the location of the pump/probe excitations (Xpp) and the location of the sensor (Xsensor).  See  

Table 6 for various combinations of the inputs. The output is the SBSum value. In the data 

pre-processing phase, all inputs and outputs are normalized to zero mean and unit standard 

deviation. ANOVA was conducted on this data to determine the importance of each input 

parameter. Figure 23 displays the p-values for each input and their interactions.  All the inputs had 

p-values less than 4x10-4, confirming that all 7 inputs are important and need to be used in the 
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regression model. The prediction feed-forward neural network to estimate SBSum (Figure 24) 

consists of two layers. The first layer has 16 nodes, and the second has 8. The Levenberg-

Marquardt method was used as the training algorithm with a least squares loss function  [76], [77]. 

This network converged after 488 epochs. Early stopping [78], using information about the error 

of the cross-validation data, was used to prevent the ANN model from overfitting to the training 

data. Using the 15% randomly selected cross-validation data, the cross-validation error was found 

to be approximately 25%.  
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Figure 23: p-values results for each input and their interactions using ANOVA. 
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Figure 24: Regression model with seven inputs (VAM test and damage parameters), one output 

(SBSum), and two hidden layers of five neurons each. 

 

3.4.2.2. Classification Model 

ANOVA was conducted on many possible model inputs, including SBSum, excitation 

frequency ratio (Rfreq), excitation amplitude ratio (Ramp), pump and probe excitation actuator 

locations (Xpp), mean SBSum for each test (𝜇𝑆𝐵𝑆𝑢𝑚), and sensor location (Xsensor), with the output 

being the damage indicator {0,1}. Figure 25 displays the p-values for each input and their 

interactions. Although the X location of the sensor, pump and probe location, and frequency ratio 

are not significant for damage prediction on their own, their combined effects are very significant 

in the damage prediction model. All of these inputs had p-values smaller than 0.05, indicating that 

all were significant in damage estimation. The input parameters with the smallest p-values were 

SBSum and Ramp, which had values smaller than 1x10-5. The damage classification model thus 

incorporates selected VAM test parameters, the damage metric (SBSum), and the mean SBSum of 

each sensor for every VAM test, as inputs to the model. The use of mean SBSum allows the model 

to learn if a sensor had a relatively high SBSum compared to other sensors in the same VAM test.  
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Figure 25: p-values results for each input and their interactions using ANOVA. 

 

All crack sizes used for generating the training data are smaller than about a quarter (0.1524 

m) of the computational domain length (0.6096 m). This results in a fewer number of nodes lying 

directly above a crack in the training data, which implies that there is a class imbalance in training 

data. Specifically, about 84 % of nodes in the training data belong to class 0 (damage absent), 

whereas only 16 % of nodes belong to the other class 1 (damage present). To alleviate the effects 

of class imbalance on model training, we downsample the training data. If ND denotes the number 

of nodes (sensors) directly above a crack (showing the presence of damage (Figure 26)), we 

sampled the same number of sensors from the areas in which no damage was present (A and B in 

Figure 26). The number of sensors located in zone D is approximately equal to the number of 
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sensors selected (downsampled) from zones A and B combined (ND ≈ NA + NB). The total number 

of data points after downsampling from the 18 crack locations is 38,370.  

 

 

Figure 26: Downsampling scheme used to alleviate class imbalance in the training data. 

 

The ANN used for classification was a supervised pattern recognition network. The network 

classified the outputs as a probability of damage. In training the neural network, first the weights 

were initialized for the inputs. Next the signals were activated for each input—this step is referred 

to as the forward propagation of the model. The final step of the network is back propagation. In 

this step, the gradients in the model were computed and stochastic gradient descent was used to 

calibrate the weights over each iteration. The model had a learning rate of 10%, meaning the 

weights were updated for every 10% of the data. This entire process of forward and backward 

propagation was repeated until convergence [79].  

The damage classification feed-forward neural network (Figure 27) consists of two layers with 

32 nodes in the first layer and 16 in the second layer. The conjugate gradient method with 

Powell/Beale Restart algorithm [80] was used as the training algorithm and cross-entropy loss 

function was used. Cross entropy loss measures the performance of a classification model with 

probabilities between 0 and 1. It is a logarithmic function that measures the distance between the 
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estimated probability and the true value. Since our true values for the outputs were 0 and 1, the 

cross entropy can be treated like a percent error between the estimated and actual outputs. The 

SoftMax [81] activation function was applied to the output. This model converged at 306 epochs 

and had a training accuracy of 84%, sensitivity of 90%, specificity of 78%, as well as a cross-

validation accuracy of 84% (using the 15% randomly selected cross-validation data).  

 

 

Figure 27: Classification model with six inputs (VAM test parameters and data), an output (damage 

present (1) or absent (0)), and two hidden layers. 

 

3.5. Validation Results 

The prediction and classification models developed in Section 3.4 are first verified using 

numerical experiments (with separately generated comparison data using two-dimensional FE 

models). The models are then used to diagnose ASR-induced cracks in a cement slab specimen 

and validated with petrographic analysis of cores taken from the slab specimen. 
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3.5.1. Verification of diagnostic methodology using simulation experiments 

The proposed physics-informed ML models were first validated by using simulation data for 

a crack of size and location that was not used in the models’ training. The location of this crack 

and testing parameters are described in Figure 19 and Table 7. For both of the diagnosis 

methodologies (Figure 20), data from 15 sensor locations on the top edge of the computational 

domain (15 equally spaced finite element nodes) is used. Note that the wavelengths of shear waves 

corresponding to the probing frequencies (18 kHz – 22 kHz) are in the range of 0.083 m – 0.068 

m. According to the analysis performed in [35], the model-free method is able to provide a 

sensitivity of around 0.45 – 0.60 for this shear wavelength to crack length ratio.    

 

Table 7: Test parameters used in the 2D FE model for validation test data generation for crack 22. 

Parameter Values 

Frequency Ratio (probe/pump) (Rfreq) 18,20,22 

Amplitude Ratio (probe/pump) (Ramp) 1, 0.5, 0.2, 0.1 

Pump/Probe Location (xpp) (m) -0.1524, 0, 0.1524 

Crack Centroid (Xcrack) (m) -0.1448 

Crack Depth from Surface (Zcrack) (m) 0.0508 

Crack Size (Lcrack) (m) 0.03 

 

 

3.5.1.1. Damage localization using the SBSum regression model 

Bayesian estimation, with the SBSum regression model, was used to determine the posterior 

probability distributions of the crack centroid, length, and depth of Crack 22. The prior distribution 

for the centroid was uniformly distributed over the entire length of the specimen (-.03048, 0.3048); 

the prior for crack size was assumed uniform for values between 0.01 to 0.3048 m (half of the 

specimen length), and the prior for the depth was uniformly distributed over the thickness of the 
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entire slab. 3000 MH samples were used in MCMC simulations with a 20% burn-in. Gaussian 

measurement noise was assumed with zero mean and a standard deviation of 0.1. Simulations were 

conducted using 15 sensor locations along the surface (Figure 28).  

 

(a) 

 

(b) 

 

(c)

 

Figure 28: Bayesian estimation of damage for validation crack 22 at 15 sensors; (a) Damage 

centroid probability density functions (pdfs) (prior and posterior); (b) Damage depth pdfs (prior 

and posterior); (c) Damage length pdfs (prior and posterior). 

 

With the results of the above Bayesian damage diagnosis, the posteriors of the centroid and 

crack length are sampled 1000 times to create 1000 different damage maps. Every sensor located 

within half the length of the crack on each side of the centroid is considered to be damaged (1), 

and all other locations are assumed to be undamaged (0). These damage maps are averaged to 

obtain an overall damage probability (Figure 29). The resulting damage map shows remarkably 

accurate crack localization and crack length estimation results for crack 22. 
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Figure 29: Damage probability estimation using Monte Carlo samples of the posterior distributions 

for crack centroid and crack length (validation test, crack 22). 

 

3.5.1.2. Damage localization using the classification model 

The classification model is constructed to determine crack centroid and crack length, as 

described in Sections 2 and 3. This model used all Rfreq, all Ramp, and all xpp for crack 22. Two 

models were built and validated using crack 22. One model was trained using all available data, 

the other was trained only with the downsampled data. The model trained with the downsampled 

data was selected as the classification model given the validation accuracy and high sensitivity 

(Table 8). 

 

Table 8: Model structure and validation test results of the two damage classification models for 

crack 22. 

Model 

Label 

Inputs 

Downsampling 

Validation test results 

fprobe,in/ 

fpump,in 

 

Aprobe,in/ 

Apump,in 

 

Xpp XSensor SBSum μSBSum Accuracy Sensitivity Specificity 

A X X X X X X  0.89 0.61 0.92 

B X X X X X X X 0.76 1.00 0.73 

  

 



78 

 

Estimation of the crack centroid and length were conducted using the downsampled 

classification model described in section 3.4.2.2 and Model B in Table 8, and validated on crack 

22. The damage identification results using the deterministic classification output (i.e., damage 

absent (0) or present (1)) were averaged for all 36 different VAM tests (Table 7) at the 15 sensors 

(Figure 30 (a)). Additionally, diagnosis was performed by averaging the probability values 

provided by the SoftMax layer in the classification neural network (results shown in Figure 30 

(a)). It can be seen in Figure 30 that considering the probability obtained from the SoftMax layer, 

the overall diagnosis results do not change significantly compare with Figure 30(a), where 

deterministic classification results are averaged. In either case (Figure 30 (a)) using a probability 

threshold (e.g., 0.5) provides the same damage location/extent result. The estimated crack centroid 

is -0.147 m (-0.1448 m), and the length is 0.123 m (0.03 m).  

Next, per the combined approach described in section 3.3.1.4, Bayesian estimation of damage 

depth used the SBSum values for the tests using Rfreq of 20, all amplitudes, and all xpp for the 

validation crack. The estimated crack centroid and length from the classification model were also 

used to calculate the posterior for the crack depth. The crack depth prior was assumed to be 

uniformly distributed over the entire thickness of the specimen. The model used 1000 MCMC 

(Metropolis-Hastings) samples and a 20% burn-in. Figure 30(b) shows the results for the pdf of 

the damage depth using Rfreq 20, all Ramp, and all xpp at 15 sensors. Even for a relatively small (3 

cm long) crack, the classification model was able to localize the crack centroid and estimate its 

size accurately using 15 sensors. The computational cost for the combined approach is about 4 

hours, thus providing good savings in computational effort. 
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(a) 

  

(b) 

 

Figure 30: (a) Average of deterministic classification from 36 tests at 15 sensor locations for 

validation crack 22 and damage probability obtained by the SoftMax layer (average of 36 tests at 

15 sensor locations); (b) Damage depth pdfs (prior and posterior) using Bayesian estimation for 

crack 22. The true depth is 0.0508 m below the top surface. 

 

The crack length reported by the probabilistic diagnostic method depends on a) the accuracy 

of the method, b) the sensor spacing, and c) the probability threshold chosen to classify the area 

around a given sensor as damaged. For example, in Figure 31, if two sensors lie directly above a 

0.03 m long crack (labeled B and C in Figure 31), when the sensor spacing is 0.04 m, and if two 

additional neighboring sensors (labeled A and D in Figure 31) show probability of damage slightly 

higher than the threshold, then a region of length 0.12 m (three times the sensor spacing) would be 

identified as damaged. In VAM tests, sensors in the neighborhood of the damage (but not directly 

above the damage) typically show higher SBSum values. Thus, the false positive results for these 

sensors have a relatively higher likelihood. The regression model, which is used to determine the 

crack depth, has learned that false positive at a sensor in the neighborhood of the crack is a high 

likelihood event. Hence it gives less importance to the (potentially erroneous, longer) crack length 

provided as input, and yet arrives at the correct depth estimate. 
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Figure 31: Sensors spaced every 0.04m on the surface of a specimen containing a 0.03m crack. 

 

3.5.2. Validation of diagnostic methodology using EXP-A 

The proposed methodology is validated by performing physical VAM tests on a cement slab 

(dimensions 60.96 cm X 60.96 cm X 15.24 cm) containing pockets of reactive (ASR-inducing) 

aggregate or silica (EXP-A). The details of the concrete test specimen and VAM tests performed 

on this specimen can be found in section 2.4. PCB Piezotronics accelerometers (model numbers 

PCB352C68 and PCB352C65) were used to conduct VAM tests. The pump and the probe actuators 

(PCB Piezotronics piezoelectric disk actuators, model number PCB712A02) were placed at the 

center of each quadrant and the center of the specimen. The VAM tests used five different pump 

and probe actuator locations, four Ramps (1, 0.5, 0.2, 0.1), and six different probing frequencies (16, 

17, 18, 19, 20, 21 kHz), with a pumping frequency of 920 Hz. For each test at each accelerometer, 

acceleration response is measured five times, the duration of each (acceleration response) record 

is 0.2 s, and the sampling frequency is 128 kHz. Four cores were taken in the center of each of the 

four quadrants of the specimen. The locations of these cores, as well as the approximate locations 

of the aggregates after curing are shown in Figure 32 (a). (The approximate locations of the 

aggregates were determined by breaking the specimen after taking the cores and visually observing 

the approximate locations of the aggregates in each area). Alkali-silica reaction damage was found 

in cores Q3 and Q4. Q1 failed to contain any aggregates at their original locations (because of the 

shifting of the aggregates away from the center during casting), so there was no ASR damage 
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present in the core taken from Q1. Core Q2 did show signs of ASR; however, the area occupied 

by silica showed a large void that would not be diagnosed using VAM (since VAM is only suitable 

for detecting breathing cracks, not voids [48]). Damage in this quadrant could be localized along 

the edges of the aggregate area, where the crack is small enough to breathe open and close due to 

the applied excitation.  

Note that the ML models in section 3.4 were trained using 2D FEA analyses. To apply these 

models to the 3D cement slab specimen, six slices were taken along sensor locations (parallel to 

the x-axis) in the specimen (Figure 7 and Figure 32 (a)). There are 7 sensors located on the top 

surface of each vertical slice. The damage probability using model-free (averaged likelihood) 

approach discussed in [48] is provided in Figure 32 (c). Damage location identification using only 

the regression model to estimate all three parameters and damage localization using both the 

classification model (crack centroid and length) and the regression model (damage depth) is 

performed for each slice.  

 

(a) 

 

 

(b) 

 

(c) 

 

 

Figure 32: (a) Vertical slice locations; (b) Damage indicators at sensors; (c) Damage probability 

estimated using model-free (averaged likelihood) approach [48]). 
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In classification models, the assessment of model performance is given by metrics such as 

accuracy, sensitivity etc., based on the confusion matrix.  Note that the proposed damage diagnosis 

methodology provides a probabilistic estimate of damage presence at/near a given sensor. The 

ground truth about damage presence in our numerical or laboratory experiments is deterministic 

(a fixed value at each sensor, i.e., either damaged or undamaged), as shown for the laboratory 

(slab) specimen (Figure 32 (b)). 

Bayesian estimation using the regression model was performed for each slice to determine the 

posteriors for estimating the crack centroid, length, and depth. This analysis does not use the 

damage classification model. The model used the experimentally observed SBSum values for the 

crack given VAM test parameters of the Rfreq of 20, all Ramp, and all xpp (x-direction). The prior for 

the centroid was assumed to be uniformly distributed over the entire length of the specimen [-

.03048, 0.3048], the prior for crack size was assumed as uniform from 0.01 to 0.3048 m (half of 

the specimen length), and the prior for crack depth was uniform over the entire depth. The standard 

deviation for error was assumed to be 0.1. 1000 MH samples were used in MCMC simulations 

with a 20% burn-in.  

 

(a) 

 

(b) 

 

(c) 

 

Figure 33: Bayesian estimation of damage for slice 6 using Rfreq of 20, all Ramp, and all xpp at 7 

sensors; (a) Damage centroid pdfs (prior and posterior); (b) Damage depth pdfs (prior and 

posterior); (c) Damage length pdfs (prior and posterior). 
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With the results of Bayesian estimation (Figure 33), the same methodology used in section 0 

is applied to create 1000 damage maps along each slice. These damage maps are averaged and 

damage probability for points between the slices is interpolated to obtain the overall damage 

probability map (Figure 34(a)). 

 

(a) 

 

(b)

 

Figure 34: (a)Damage probability map using Bayesian estimation and the (SBSum) regression 

model;(b) Damage map based on all the slices of the slab specimen, using the classification model. 

 

In Figure 34(a), the results for quadrant 3 and 4 (bottom half of the specimen) are consistent 

with damage probability using model-free (averaged likelihood) approach (Figure 32 (c)), 

petrography results for the specimen (Figure 10, Figure 11, Figure 12 ) and visual inspection after 

breaking the slab. The damage predicted in the bottom right corner of quadrant 1, at the location 

of the core in quadrant 1, and in between quadrants 1 and 2, indicate a damage probability higher 

than that indicated by the model-free data-driven approach (Figure 32 (c)). The low sensor density 

(7 sensors along the length of the slice), as well as the use of (vertical) 2D slices for damage 

diagnosis, may be possible reasons for the observed difference. The model did successfully predict 
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damage around the edges of the void in quadrant 2, as visually observed after breaking the slab. 

Next, the classification model is analyzed for sensors located along each slice. The μSBSum 

used for each slice is the μSBSum for all 42 sensors for a given VAM test, not just for the sensors 

along that slice. This ensured that the diagnosis process for each slice has average SBSum 

information for the entire test surface. Damage location predictions for all the slices are combined 

to create an overall damage map (Figure 34(b)).  

Overall, the classification model estimate shows a lower probability of damage as compared 

to the regression model results. The model successfully localized damage in quadrants 3 and 4. 

However, the area of damage in quadrant 2 is larger than we expect to detect with VAM, and the 

high-probability damaged area appears to be in quadrant 1. The core of quadrant 1 showed no ASR 

damage or cracking, and there was no noticeable surface cracking in this area. The errors in the 

2D-model-based ML models could be due to the reduced dimensionality of the physics models, 

lower sensor density, and the approximate process of stitching together the results of multiple 2D 

cross-sections of a slab to obtain a damage map. 

In order to facilitate comparison with discrete indicators of true damage (damage present (1) 

or absent (0)) at each sensor (Figure 32 (b)), the damage probabilities provided by the diagnostic 

method are converted into a binary result at each sensor (damage present or absent). For this 

purpose, we have chosen a threshold probability of 0.5. That is, after fusing information from 

multiple VAM tests, if the method yields a damage probability greater than or equal to 0.5 at a 

sensor, we label the (region near the) sensor as “damaged,” otherwise the (region near the) sensor 

is said to be undamaged. As a result, since the damage states for both the actual case and diagnosis 

method output are now binary variables, sensitivity and specificity metrics can now be calculated 

to provide a quantitative assessment of the methodology (Table 9). It can be seen in Table 9 that 
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both models exhibit good specificity and accuracy, but suffer from low sensitivity.  

 

Table 9: Validation results for the experimental slab specimen. 

 Classification Model Regression Model 

Accuracy 0.64 0.59 

Sensitivity 0.25 0.38 

Specificity 0.88 0.73 

 

 

In this chapter, we discussed the validation of VAM-based damage diagnosis using ML 

models.  The regression model is a forward model that estimates the damage index for given values 

of test parameters, damage location, and damage extent. Thus, the regression model needs to be 

used in conjunction with a parameter estimation methodology (such as Bayesian estimation), 

which can estimate the damage location and extent given the VAM test data. It is computationally 

expensive to use this model for damage diagnosis. The classification model is a diagnostic model, 

which provides the state of damage at a sensor location given the damage index value recorded at 

the sensor and other relevant VAM test parameters. It provides damage location in the plane of the 

(2D) testing surface; however, it does not provide damage location information in the direction 

perpendicular to the testing plane. The damage depth thus needs to be estimated using the 

regression model and a parameter estimation algorithm. If only the damage presence and damage 

extent are to be ascertained, the classification model can quickly provide the estimates.  

 The performance of the proposed diagnosis methods was evaluated using numerical 

experiments and previously reported data-driven model-free damage localization approach. Both 

methods performed well when validated against numerical simulation data. Note that the data used 

for validation was not used for training the model. Even relatively small cracks were successfully 
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diagnosed in the numerical experiments. For the plain concrete slab used in validation tests, the 

machine-learning model results for the bottom half of the slab matched better than the top half of 

the previously reported results (section 2.5)[48]. Of the two models studied, the regression model 

performs slightly better than the classification model with respect to the bottom half of the 

specimen. Both prediction and classification model-based damage diagnosis indicate high damage 

probability regions in the top half of the slab. These regions were not highlighted as damaged 

zones by the previously investigated model-free approach. Note that the damage in quadrants 1 

and 2 is difficult to detect using VAM, since the aggregates in quadrant 1 shifted, leaving pure 

cement paste with no visible cracks in the core sample, and since silica in quadrant 2 left a large 

void that would be unable to open and close to produce frequency modulation. However, VAM 

should be able to detect the damage along the edge of the silica aggregate in quadrant 2 (Figure 

31(a)), specifically location 1, where ASR gel seeped out from a small crack on the edge of the 

specimen. Thus, the damage locations that could be diagnosed using VAM (quadrant 3, quadrant 

4, and the top left corner of quadrant 1) have been highlighted in both model-based techniques. 

 

3.6. Conclusion 

This chapter presented a physics-informed ML approach to facilitate nonlinear dynamics-

based damage localization of internal, breathing cracks in concrete structures. The key difficulty 

of sparse training data availability for ML applications in SHM was overcome by using 

(approximate) physics simulation-based data for training the ML models. Two different neural 

network models for estimating damage, namely regression model and classification model, were 

trained solely with 2D FEA data. The 2D FEA simulation of one VAM test takes approximately 1 

hour and data from about 250 VAM (simulation) tests was used for training. The computational 
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effort for training data generation could be significant, depending on the dimensionality of the 

simulation domain and the amount of data. Numerical experiments showed that both techniques 

successfully localize damage. The trained models were then used to localize damage in a cement 

slab (a 3D specimen) by considering multiple 2D slices and interpolating damage estimation 

between analyzed sections. Both methods for damage localization successfully estimated damage 

in the validation specimen (accuracy of 60 – 64%). The classification model eliminates the need 

for analyst intervention to define the damage index threshold for diagnosing damage. Both the 

regression, as well as the classification model, use computationally inexpensive neural networks 

to accelerate the damage diagnosis process.  Additionally, the regression model enables hidden 

crack depth estimation, which has not been reported by previous VAM-based damage localization 

studies. This work has also automated the process of collecting and analyzing the SBSum data 

from multiple VAM tests for each pump/probe actuator location. A real-time damage probability 

map could be developed for a tested specimen’s surface using the classification model. 
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CHAPTER 4 

 

Multi-Fidelity Physics-Informed Machine Learning for Damage Localization using 2D and 

3D Finite Element Models 

 

4.1. Motivation 

In the previous chapter, two different neural network models for estimating damage, namely 

prediction model and classification model, were trained solely with 2D FEA data since generating 

3D FEA data is computationally expensive. The 2D FEA simulation of one VAM test takes 

approximately 1 hour on a desktop computer, and data from about 250 simulated VAM tests were 

used for training. 3D FEA simulation of one VAM test takes approximately 45 hours on a desktop 

computer. The computational effort for training data generation could be significant with 3D FEA 

simulation, depending on the simulation domain's dimensionality and the amount of data. This 

chapter will augment the low fidelity data from 2D FEA simulations with a few higher fidelity 3D 

FEA simulations for generating a multi-fidelity training data set. The accuracy will be compared 

to the computation cost to determine which FE models we should allocate time to running. We 

look to explore whether a higher fidelity physics model simulations for generating training data 

will help build a more accurate machine learning-based SHM framework.  Additionally, we create 

a classification model that mimics the methodology in Chapter 2, where the damage index is the 

only value being used for prediction.  
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4.2. Relevant Background 

The selected PIML approach (Section 2.2), requires expertise to build simulation models of 

the test procedure (at the required level of fidelity) and the computational resources to execute 

these models for different damage severities and locations. Model fidelity, i.e., a model’s ability 

to simulate reality faithfully, is an important consideration in this process. Low-fidelity models 

typically require low computational resources and may be able to provide a large amount of 

simulation data for training the ML models, but with potentially large model errors. High-fidelity 

models are computationally expensive but may be better at capturing important phenomena for 

accurate damage diagnosis. Therefore, this chapter investigates the ability of PIML models, trained 

using physics models of different fidelity, to learn the relationships between true damage and the 

damage index for complex (nonlinear) physics-based diagnostic tests. The focus of the multi-

fidelity modeling in this work is on building diagnostic multi-fidelity models. Most previous 

literature on multi-fidelity modeling [82]–[88] is regarding prognostic modeling. We also analyze 

the tradeoff between the computational cost of higher-fidelity simulation and the potential 

improvement in the accuracy of PIML-based diagnosis.  

In the numerical implementation of this chapter’s methodology, we consider the problem of 

localizing hidden cracks in concrete slabs for our investigation. In Chapter 3 [89], we investigated 

the performance of two PIML models for learning damage index patterns for vibro-acoustic 

modulation (VAM) tests of concrete structures in different test settings. The PIML models were 

trained using data from nonlinear dynamics simulation of the VAM test procedure for two-

dimensional (2D) domains containing an internal crack. The physics model includes simulation of 

a geometric nonlinearity at the crack interface and hence requires the solution of a nonlinear system 

of equations. The 2D model does not capture the real-world three-dimensional wave propagation 
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and is termed the low-fidelity simulation. The low-fidelity physics-informed ML models showed 

moderate success in localizing damage in laboratory tests conducted on concrete specimens 

containing hidden cracks. It is reasonable to expect that nonlinear wave physics simulations for 

3D domains, which capture geometric attenuation in the domain of interest and are a more faithful 

representation of the real-world VAM test set-up, would provide a more realistic and richer 

training data set. In the current paper, we investigate whether incorporating information from high-

fidelity (nonlinear wave physics in 3D domains) simulations improves the diagnosis accuracy. 

However, the simulation of nonlinear wave physics for 3D domains using the finite element 

method is computationally demanding. Therefore, a multi-fidelity approach, where the training 

data is obtained from both low- and high-fidelity simulations while adhering to a computational 

resource budget, may be desirable.  We investigate whether incorporating a small number of high-

fidelity training runs provides a more accurate diagnostic model compared to the training data set 

generated from a large number of low-fidelity physics runs.   

We investigate the performance of PIML models for the diagnosis of an internal crack in a 

concrete slab using VAM-based diagnostic tests when computational physics models of two 

different levels of fidelity are used to generate the data for training the PIML models. The diagnosis 

model is a classification model that uses damage index values from a VAM test and separates the 

sensor locations into two classes (damaged and undamaged). The threshold for separating damage 

index values is not specified by an expert but is learned from the physics simulation-generated 

training data provided to train the machine learning model. The training data are generated by 

finite element (physics) simulations of the test procedure for different damage locations, severities 

(crack lengths), and test parameters. The diagnostic performance of three types of models is 

investigated: one trained with data from only low-fidelity models, one trained with data from only 
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high-fidelity models, and different multi-fidelity models trained with different combinations of 

data from low- and high-fidelity models. The computational resource budget required for each 

diagnostic model is reported to enable informed decisions for practical application. The main 

methodological contributions of the work in this chapter include: a) development of multi-fidelity 

physics-informed machine learning models for structural damage diagnosis, using the transfer 

learning approach; and b) analysis of the trade-off between computational cost (to perform the 

computational physics simulations used to train the diagnostic model) and model performance in 

damage diagnosis. 

 

4.3. Methodology 

In this section, we discuss the methodology for supervised training of PIML models that 

facilitate damage localization. We also provide a brief overview of the computational physics 

models used to build the physics-informed ML models and the method of evaluating the 

performance of PIML models built using physics models of different fidelity.  

 

4.3.1. Training data for diagnostic PIML 

Damage identification methodologies for SHM vary based on the application; however, each 

methodology is composed of three important steps; (a) signal acquisition, (b) signal processing, 

and (c) signal interpretation [90]. Signal acquisition refers to the means by which the structure’s 

response to active or passive excitations is monitored during a diagnostic test. Different excitations 

such as static/dynamic mechanical loading, heat exchange, optical illumination, etc., could be 

used; and different quantities such as strain, acceleration, temperature, thermal/optical images 

could be measured or acquired. The signal processing step refers to processing the signal for noise 
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reduction. This includes filtering and/or averaging techniques that attempt to remove measurement 

noise. After noise reduction, we enter the signal interpretation phase, where the large (temporal) 

dimension of the measured signal is typically reduced by extracting a few important damage-

sensitive features or damage indices from the signal [48], [59], [91].  A damage index is a statistical 

indicator that is sensitive to the subtle changes in the measured signal from the original 

(undamaged) state to the damaged state [92]. An anomalous damage index may not always be 

interpreted as high damage probability because of measurement noise and the complexities of the 

diagnostic test process. These include variability in the set-up of the diagnostic test apparatus, the 

effect of environmental factors (not related to the damage) on signal acquisition, human errors, 

etc. A carefully trained supervised PIML model is thus needed for ascertaining damage 

presence/location/severity given the damage index. 

The main difficulty in training the diagnostic ML models is obtaining a sufficient amount of 

labeled training data, which requires all three steps listed above (signal acquisition, processing, 

and interpretation) for known damage conditions. In the context of SHM, signal acquisition is 

traditionally conducted on real-life structural specimens. Given cost limitations, a large number of 

realistic experimental specimens to train the models used in signal interpretation are not always 

available. Some researchers have used computer-simulated diagnostic test data as training data 

[52], [93], [94]. Simulated data, however, poses its own challenges. High-fidelity simulations of 

the physics governing the diagnostic test (linear/nonlinear dynamics, heat conduction) have a high 

computational resource demand. Note that in this chapter, the computational cost or demand refers 

to the time needed for generating the training data, i.e., the time required for performing 

computational physics simulations using available computing resources. The time needed for 

performing a single (low- or high-fidelity) computational physics simulation is recorded, and as 
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more training data is acquired by performing more simulations, the computational cost increases 

linearly. Some previous studies have reduced the computational cost by using low-fidelity physics 

models. A low-fidelity model can be created by neglecting some of the physics involved, by 

reducing the dimensionality of the computational domain (use one- or two-dimensional domains 

instead of three-dimensional domains), by neglecting the heterogeneity and anisotropy of materials 

[18], [70], [89]. This chapter examines the effect of using physics simulations for computational 

domains of different dimensionality for training a PIML model for damage diagnosis. 

 The main issue investigated in this work with respect to fidelity is related to the 

dimensionality of the simulation domain used for generating training data for the PIML models. 

Nonlinear wave physics simulations in two-dimensional (2D) domains are termed low-fidelity 

simulations as they neglect the important geometric attenuation phenomenon that occurs in real-

world three-dimensional (3D) structures. Nonlinear wave physics simulations in 3D domains, on 

the other hand, are referred to as high-fidelity simulations. The validity of using the low- and high-

fidelity models for damage localization using relative damage index values has been established 

in our previous publications  [48], [89]. In this chapter, we seek to answer this question: given 

computational physics models of two fidelities and the associated computational cost, what is the 

best strategy to generate training data for effective PIML-based diagnostic models? There are three 

options: a) use numerous low-fidelity model runs to generate a large amount of training data, b) 

use many low-fidelity model runs, and a few high-fidelity model runs to generate a moderate 

amount of, potentially richer, training data, and c) use a few high-fidelity model runs to generate 

a small amount of, potentially richest, training data. We build diagnostic PIML models (Figure 35) 

using the three alternatives described above and study their performance using both numerical and 

laboratory experiments. 
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Figure 35: Proposed approach to build PIML model for damage diagnosis. 

 

4.3.2. Training of PIML model using multi-fidelity data 

There are multiple ways to use data from two different sources, such as data from 2D and 3D 

computational physics models, for training the ML models. Note that in most cases, when 

combining data from different sources for training ML models, the literature refers to different 

sensors or specimens and not to data from physics models of different fidelities [95]. In some 

cases, multi-fidelity models are built for the forward prediction of the system response to input 

excitation and are composed of a low- and a high-fidelity model, with an additive model correction 

term [96]–[98]. These models estimate a numerical response quantity, and such an additive 

approach cannot be used in a straightforward manner to build multi-fidelity diagnosis models that 

provide a damage classification result that is categorical.  

Many different ML model architectures (artificial neural networks (ANNs), support vector 

machines (SVM), convolutional neural networks (CNNs), recurrent neural networks (RNNs)) are 

available to build classification models. Artificial neural network (ANN) models are the most 

suitable for transfer learning because they allow for the addition of new layers of neurons to be 

trained with newly acquired data. SVM and decision trees would only allow us to use a single data 

set, containing information from both high- and low-fidelity models. CNN and RNN are very 
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popular and powerful machine learning model architectures; however, CNN is best suited for 

classification of an entire image, not the sensor-by-sensor approach being explored in this study. 

The RNN architecture is typically employed for sequence-to-sequence (e.g., time series, text, etc.) 

modeling and is not suitable for the scalar inputs here. Hence, we choose feed-forward ANN model 

architecture in this work. The ANN is to be trained using the simulation-generated values of the 

damage index (input) at the sensors for a given diagnostic test, the mean value of damage index 

for all sensors (input), and the true damage state (i.e., presence/absence; output) as the training 

data. The model learns the relationship between the damage index observed at the sensor in the 

vicinity of damage in the context of the mean value of the damage index for the diagnostic test. 

For a future test, the model can then be used to classify each sensor location as either showing or 

not showing signs of damage. 

In this work, a method similar to the transfer learning approach [56], [94], [99] (used in image 

processing) is employed to train a model using multi-fidelity training data. This approach is 

especially well-suited for SHM applications, where the initial diagnostic model needs to be 

updated using the newly acquired data. To build the multi-fidelity PIML model, the ANN model 

is first trained using only the low-fidelity data (Figure 36 (a)). A layer of neurons is then added to 

the trained model, and this additional layer is trained using only the high-fidelity data (while 

keeping the previously trained layer parameters unchanged) (Figure 36 (b)). The transferred 

layer(s) extract feature information from the first model and implement it in the training of the 

second model [100], [101]. 
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(a) 

  

(b) 

  

Figure 36: ML model architecture: (a) model trained using training data from low-fidelity physics 

model; (b) model trained using training data from low- as well as high-fidelity physics models. 

 

In training the neural networks with low- and high-fidelity physics simulation data, the 

weights for each layer of the neural network need to be initialized; a common choice in the 

literature is to use random values between -1 and 1. A SoftMax layer is used as the activation 

function for the final layer of the model to normalize the output layer to a probability distribution 

[81]. In the next section, we discuss methodological details of signal acquisition, processing, and 

interpretation involved in VAM-based localization of hidden cracks in concrete. 

 

4.3.3. Damage diagnosis with the PIML model 

In Chapter 3, we developed machine learning models for hidden crack localization in concrete 

slabs using VAM. The PIML models used a damage index (SBSum value, see Eq. 1) and other 

relevant VAM test parameters as inputs and helped determine whether the damage is present or 

absent in the neighborhood of a given sensor. The focus of the previous work was on minimizing 

analyst intervention by learning damage index patterns from VAM test simulations of a single 

fidelity (all ML models were trained using 2D simulations of VAM tests). The current work 

investigates whether additional simulation data from a few 3D simulations to build the enhanced 
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PIML model shown in Figure 36 (b) improves the diagnostic performance. Note that this 

classification model only localizes the damage in the plane of the sensors (x-y plane); it does not 

localize the damage in the depth dimension (z direction) within the specimen. A different PIML 

model was developed earlier (section 3.3.1.3)[89] for depth quantification; the model uses the 

crack location and size identified by the classification model and the SBSum value at that location 

to determine the depth of the crack.  

There are two approaches for obtaining damage probability at each sensor location. The first 

approach is to calculate the average of the classification results (values 1 or 0) from a significant 

number of VAM tests. The second approach is to directly use the probability provided by the 

SoftMax layer. Our previous work, (Figure 30) showed that the probability obtained from the 

SoftMax layer model provided similar results as those obtained by averaging the classification 

results from a large number of VAM tests. Hence, if only a small number of VAM tests are 

available to perform diagnosis, the probability given by the SoftMax layer can be used to as the 

damage probability. We next discuss the methodology used for the performance evaluation of the 

various diagnostic PIML models built. 

 

4.3.4. Evaluation of diagnostic PIML model performance 

The multi-fidelity diagnostic PIML methodology is evaluated using an experimental test 

specimen. The ground truth regarding damage presence/absence at each sensor in the validation 

specimen is needed to evaluate the performance of the proposed models. This may be obtained by 

performing destructive tests on the specimen. The damage presence/absence at each sensor is 

ascertained using the machine learning models and compared with the ground truth using four 

metrics: sensitivity (eq. 10), specificity (eq. 11), accuracy (eq. 12), and F1 score. The values of 
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these metrics range from 0 to 1, with one being the best. The mathematical definitions of F1 score: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +
1
2 (𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) 

 , (13) 

The above metrics are used to evaluate each model’s performance for damage diagnosis using 

numerical tests and laboratory test specimens (EXP-A). Accuracy represents the fraction of the 

times the model correctly classifies the presence or absence of damage at a sensor; it is a combined 

metric that assimilates the information in the sensitivity and specificity metrics. However, a high 

accuracy value does not always mean the model has desirable performance because, for example, 

the accuracy metric could be easily biased by a large number of correctly identified (true) negative 

results in a structure containing damage localized in a small region. The F1 score is another 

combined metric that helps to alleviate the problem caused by the disproportionately high number 

of true negative values by taking the harmonic mean of sensitivity and precision. The F1 score is 

the harmonic mean of precision and sensitivity, where precision, also known as the positive 

prediction rate, is defined as the number of true positives divided by the total number of true and 

false positive values.  The F1 score does not account for true negatives; however, it is a metric that 

ensures that high specificity does not lead to a disproportionately better model performance metric. 

 

4.4. Diagnostic PIML model for concrete slab specimen 

The aforementioned methodology is demonstrated using the dynamics-based SHM technique, 

VAM. This section examines the generation of the numerical training data for PIML and the details 

of training of the supervised machine learning models.  
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4.4.1. Training data generation 

The details of generating training data using 2D and 3D finite element analysis (FEA) 

representing a concrete slab specimen are discussed below. The computational domains used for 

simulating the VAM tests are shown in Figure 37. 

 

(a) 

 

(b)

  

Figure 37: (a) The domain, the three pump/probe excitation locations, and crack locations used in 

2D FE simulations; (b) The domain and the pump/probe excitation location used in the 3D FE 

simulations. 

 

4.4.1.1. 2D FEA 

2D FE models simulating VAM tests for multiple crack sizes and locations are used to 

generate the low-fidelity training data. The computational domain of the 2D specimen is 60.96 cm 

wide and 15.24 cm thick. The domain geometry and the pump and probe excitation locations used 

in the numerical simulations are shown in Figure 37 (a). The pump and probe actuators are placed 

at one of the three locations for each simulation x = {-0.1524, 0.0, 0.1524} m, y = 0.1524 m. Each 

2D simulation domain contains a single crack, placed at different locations and of varying lengths. 

All of the locations for the simulated cracks and the parameters used in conducting the VAM tests 

on this numerical specimen can be found in Table 10. Various combinations of these parameter 

values are used to obtain 50 simulated VAM tests. The commercial finite-element program Abaqus 
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was used to perform the numerical simulations. Material properties used in these simulations are 

provided in Table 11. The domain is discretized using a structured mesh of 8-noded finite 

elements, and additional details of the finite element analysis can be found in section 3.3.1.2. 

Acceleration time-history data are recorded at sensors located on the top edge of the 2D domain. 

These data are used in calculating the SBSum values [35]. 

 

Table 10: VAM test parameters for the 2D FE simulations. 

Crack 

Case 

Centroid (x-

direction) 

[m] 

Total 

Training 

Points for 

Crack 

Length 

[m] 

Depth from 

Surface (z-

direction) 

[m] 

Ramp Rfreq 

Pump/Probe 

Actuator Location 

[m] 

A -0.1025 13,896 0.06 0.0762 1, 0.5, 0.2, 0.1 20 -0.1524, 0.0, 0.1524 

B -0.1524 13,896 0.06 0.1016 1, 0.5, 0.2, 0.1 20 -0.1524, 0.0, 0.1524 

C 0.1524 6,369 0.02 0.1016 1, 0.5, 0.2, 0.1 20 -0.1524, 0.0, 0.1524 

D 0.03 1,560 0.06 0.085 1, 0.5, 0.2, 0.1 20 0.0 

E 0.1016 780 0.09 0.0508 1, 0.1 20 0.1524 

F 0.1016 2,340 0.09 0.02 1,0.1 20 0.0, 0.1524 

 

 

Table 11. Material properties used in the 2D FEA model. 

Material property Value 

Young’s modulus (E) 27 GPa 

Density (𝜌) 0.15 

Poisson’s ratio (𝜈) 2400 kg/m3 

Mass proportional Rayleigh damping parameter (a) 2120.04 

Stiffness proportional Rayleigh damping parameter (b) 1.787× 10-7 

 

 

4.4.1.2. 3D FEA 

A three-dimensional (3D) finite element model simulating VAM tests for a single crack 

location is used to generate the training data. The 3D computational domain is 60.96 cm wide, 

60.96 cm long, and 15.24 cm thick. The domain geometry and one of the pump and probe 

excitation locations used in the numerical simulation are shown in Figure 37 (b). These are chosen 

to match the cement slab specimen used for validation experiments. Pump and probe actuators are 
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placed at the same locations as those used in validation experiments [48]. The parameters used for 

simulating VAM tests can be found in Table 12. Similar to the 2D simulations, Abaqus was used 

to perform numerical simulations. The material properties used in these simulations are given in 

Table 11. Acceleration time-history data are recorded at the sensors on the top surface of the 3D 

specimen in the X-Y plane and used in calculating the damage index values [35].  

 

Table 12: VAM test parameters for 3D FE simulations. 

Case Diameter [m] Centroid [m] 

Total 

Training 

Points for 

Crack 

Depth from 

Surface (z-

direction) 

[m] 

Rfreq Ramp 

Pump/Probe 

Actuator 

Location [m] 

1 0.127 [-.1524,.1524] 4,471 0.0762 20 0.1 5 

2 0.127 [-.1524,.1524] 4.471 0.0762 20 1.0 5 

3 0.127 [-.1524,.1524] 4,463 0.0762 20 0.1 1 

4 0.127 [-.1524,.1524] 4,463 0.0762 16 0.1 1 

5 0.127 [-.1524,.1524] 4,471 0.0762 20 1.0 2 

 

 

4.4.2. ANN Model Training Evaluation 

As mentioned in section 4.3.1, three feed-forward ANN classification models are trained and 

evaluated (LF, HF and MF models).  All models determine whether a given sensor is showing 

signs of damage or not. The SoftMax [81] activation function was applied to the output with two 

output classes, damage present (1) and damage absent (0). As discussed in section 4.3.2, the models 

have two inputs: the damage index (SBSum) at each sensor for a given diagnostic test and the 

mean value of damage index for all sensors (μSBSum). The output of the model is the classification 

of the damage state (i.e., presence/absence).  The relevance of these inputs has been studied in [89] 

based on physics simulations. The model should be able to learn the relationship between the 

damage index observed at the sensor and the mean value of the damage index in the test when the 
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damage is present or absent in the vicinity of the sensor location. 

4.4.2.1. Classification model trained using low-fidelity (2D) simulation data 

The model trained using the 2D FEA low-fidelity training data is named Model LF. Model 

LF (Figure 38) is a feed-forward neural network consisting of 2 layers. The first layer has 16 nodes 

and the second layer has 8. Model LF was found to have a training accuracy of 0.70, F1 score of 

0.68, sensitivity of 0.67, and specificity of 0.74. 

 

 

Figure 38: LF ANN model with 2 inputs (damage index) and two outputs (damage present (1) or 

absent (0)), with two hidden layers the first with 16 nodes, the second with 8. (The HF ANN model 

also has 2 layers, but with 20 and 8 nodes, respectively). 

 

4.4.2.2. Classification model trained using high-fidelity (3D) simulation data 

The model trained using the 3D FEA high-fidelity training data is named Model HF. Model 

HF (Similar to Figure 38) is a feed-forward neural network consisting of 2 layers. The first layer 

has 20 nodes and the second layer has 8. Model HF was found to have a training accuracy of 0.93, 

F1 score of 0.30, sensitivity of 0.18, and specificity of 0.997. 
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4.4.2.3. Classification model trained using multi-fidelity simulation data 

The multi-fidelity data-based classification model (Model MF) is built by augmenting Model 

LF, trained on low-fidelity (2D FEA) data, with an additional layer of neurons. The additional 

(third) layer of model MF is trained using 3D FEA data; however, the weights and biases for the 

first two layers are kept the same as the trained weights and biases from previously trained Model 

LF. The MF model uses the same inputs as Model LF: the SBSum and mean SBSum for each test 

(μSBSum, test). The model is trained using one 3D FEA VAM test.  Multiple MF models were trained 

using 3D FE simulations with different settings representing different VAM tests. Based on the 

VAM diagnosis studies reported in [35], the VAM test shown as Case 1 in Table 12 should give a 

higher damage index and high sensitivity. This study showed that a probing excitation frequency 

20-25 times larger than the pumping excitation frequency and probing excitation amplitude ratio 

of 1/10th of the pumping excitation gave the best damage localization results. Additionally, the 

pumping and probing excitation actuators are located in the center of the specimen, allowing for 

the wave to uniformly illuminate the entire specimen.  

The MF model (Figure 39) thus consists of 3 layers; the first layer has 16 nodes, the second 

layer has 8 nodes, and the third has 6 nodes. The weights and biases for the first two layers are set 

to the converged values of the two layers of Model LF. Model MF was found to have a training 

accuracy of 0.93, F1 score of 0.279, sensitivity of 0.65, and specificity of 0.93. 
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(a) (b) 

 

Figure 39: (a) Model LF with 2 inputs (damage index), and two outputs (damage present (1) or 

absent (0)) trained using 2D FEA; (b) Model MF with 2 inputs (damage index), and two outputs 

(damage present (1) or absent (0)). For the first two layers, weights and biases are transferred from 

the previously trained LF model. Only the third layer's weights and biases are trained using the 3D 

FE simulation data. 

 

4.5. Performance evaluation of diagnostic PIML models 

In this section, the three models trained and discussed in section 4.4.2 are evaluated using 

laboratory test specimens. First, laboratory experiments are discussed, and then results for the 

diagnostic PIML models are presented. 

 

4.5.1. Numerical and Laboratory experiments 

The PIML model performance is first assessed using a 3D FEA numerical simulation of a 

VAM test with a different crack location than that used to train the models. The simulation used 

for training contained a circular crack with a centroid at (45.72, 45.72) cm, a diameter of 0.127 

cm, and a depth located at 7.62 cm from the top surface. The probing excitation frequency is 20 

kHz, the pumping excitation frequency is 1 kHz, the probing excitation amplitude ratio is 1/10th 

the pumping excitation amplitude, and the pump and probe actuators are located at (30.48, 30.48) 

cm, the center of the specimen. The numerical specimen (FEA) has a few hundred computational 
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nodes on the top surface, and acceleration can be recorded at all these locations. However, it is not 

feasible to have these many sensors on a structure in practice. A grid of 100 (10 by 10) sensors is 

thus created on the top surface, and it is assumed that measurement data is available only at these 

100 sensor locations. Figure 40 (a) is the true damage location of the crack in the 3D FEA 

simulation. Figure 40 (b) is the raw SBSum map for the model with a 10 x10 sensor grid. 

 

(a) 

 

 

(b) 

 

 

Figure 40. (a)  True damage for the numerical experiment; (b) SBSum values with a 10x10 sensor 

grid. 

 

The PIML models are evaluated by performing physical VAM tests on a cement slab specimen 

containing pockets of reactive aggregates at known locations [89]. A cement paste slab with 

reactive aggregate pockets at known locations and dimensions of 60.69 × 60.69 × 15.24 cm3 was 

cast and cured at Vanderbilt University. The details of this specimen's casting and curing process 

are discussed in detail in section 2.4.1. This slab was cast and cured in an aggressive environment 

to produce alkali-silica reaction (ASR) induced cracking in the slab. Various VAM (non-

destructive) as well as destructive (petrographic and visual inspection of broken sample) tests were 

performed on this specimen to develop and validate the VAM-based ASR damage localization 

methods. The approximate aggregate locations, core locations for petrographic testing and other 
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destructive testing results are shown in Figure 41 (a). Figure 41 (a) also shows the sensor locations 

for VAM tests conducted on the specimen and the presence/absence of damage at each sensor, 

based on the known aggregate locations, chemical and physical tests, and petrographic studies. In 

laboratory experiments, the pump and probe excitations were delivered using piezo-stack 

actuators. The locations of these actuators and the frequencies at which they operate (i.e., the pump 

and probe frequencies) were varied. This resulted in 120 VAM tests discussed in section 2.4.2. 

Figure 41 (b) is the average SBSum across all 120 VAM tests. 

 

(a)  

       

(b) 

 

Figure 41. (a) Experimental specimen aggregate, core, and sensor locations. Red sensors are 

assumed damage presence at these sensor locations, blue sensors are assumed no damage present; 

(b) Average of scaled SBSum for validation specimen across all test parameters. 

 

4.5.2. PIML model performance results 

Damage localization on the surface of the numerical and laboratory test specimens was 

conducted using the three (LF, HF and MF) PIML models, and the results are discussed below.  

4.5.2.1. Numerical experiment results 

The damage probability results for the numerical experiment using Model LF, Model HF, and 

Model MF are displayed in Figure 42. The damage maps in Figure 42 are based on the SoftMax 
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layer output for each PIML model. Only one test is being evaluated, and the SoftMax layer output 

is used to obtain the damage probability (discussed in section 4.3.2).  The metrics quantifying the 

performance of each model can be found in Table 13.  

 

(a) 

 

(b) 

  

(c) 

   

Figure 42. Damage probability results: (a) Model LF (b) Model HF; (c) Model MF. 

 

Table 13: PIML model performance for the numerical experiment. 

Model Sensitivity Specificity Accuracy F1 Score 

LF 0.343 0.859 0.808 0.261 

HF 0.166 0.977 0.928 0.278 

MF 0.177 0.996 0.927 0.290 

 

 

The damage probability results for all three models show a high probability of damage at the 

true damage location. For the numerical experiment, all three models show high accuracy (greater 

than 0.80), as shown in Table 13. The LF model shows the highest sensitivity; thus, it is more 

likely to find damaged areas; however, that comes at the cost of reduced specificity, which means 

it is also more likely to give false positives (i.e., identify undamaged areas as damaged). The MF 

model shows the highest accuracy as well as the highest F1 score; however, it is more likely to 

miss some of the damaged areas due to its low sensitivity score. 
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4.5.2.2. Laboratory experiment results 

The three PIML models are evaluated using the true damage locations from Figure 41 (a). To 

this end, experimental VAM test data from 120 VAM tests conducted on the laboratory specimen 

is used as diagnostic data. The damage index (SBSum) is extracted from the measured signal at 

each sensor for each VAM test. These SBSum values are provided as inputs to the PIML models. 

The damage probability is calculated as the average of 120 classification results, and is displayed 

in Figure 43 for all three models. The performance metrics for each model for the laboratory test 

specimen are displayed in Table 14. This table also contains performance results for two additional 

models, trained without using the transfer learning approach, to better demonstrate the value of 

transfer learning. Specifically, for these models, (named ‘50 LF + 1 HF’ and ‘196 LF + 5 HF’) the 

data from the indicated number of LF and HF simulations is pooled together, and the model is 

trained in a single shot. 

 

(a) 

   

(b) 

  

(c) 

  

Figure 43. Damage probability results: (a) Model LF; (b) Model HF; (c) Model MF. 
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Table 14: PIML model performance for the laboratory test experiment over 42 sensors for 120 

tests (i.e., 5040 validation points). 

Model Sensitivity Specificity Accuracy F1 Score 

LF 0.293 0.788 0.599 0.357 

HF 0.000 1.000 0.619 0.000 

MF (transfer 

learning) 
0.228 0.864 0.622 0.315 

50 LF+1 HF 0.009 0.991 0.617 0.017 

196 LF + 5 HF 0 0.999 0.619 0 

 

 

Model HF (Figure 43 (b)) is unable to correctly localize damage. Both Model LF (Figure 43 

(a)) and Model MF (Figure 43 (c)) successfully capture the damage locations in the laboratory test 

specimen. This is a promising result for performing actionable, probabilistic diagnoses. Both the 

LF and MF models have high F1 scores and provide good damage diagnoses. In this case, although 

the HF model has a higher accuracy score, it is only because of the high specificity. It is clear from 

its F1 score (zero) that Model HF performs poorly overall. This is likely because the model is 

trained using data from only a single simulated VAM test (i.e., one set of damage and test 

parameters). A single VAM test 3D simulation test is not able to provide sufficiently diverse 

information regarding the damage index values in different test/damage conditions. It may be 

necessary to perform multiple, computationally expensive 3D VAM tests to improve the diversity 

of the training data. It is also apparent that the transfer learning approach provides the best 

performance (the highest F1 score) of the three MF models considered here. In the next section, 

we investigate whether adding more training data improves the performance of PIML models. 

 

4.5.3. Analysis of computational effort for training data generation and diagnostic PIML 

model performance 

We further evaluated the PIML model performance by training multiple PIML models for 
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each fidelity (LF, HF, MF) using training data from increasing number of (2D and 3D) simulations 

in order to analyze the tradeoff between computational effort and diagnostic model performance. 

For model LF 50 to 196 simulated VAM tests with 1,888 to 15,114 training data points were 

considered and for Model HF 1 to 5 simulated VAM tests with 4,471 to 22,339 training data points 

were considered. For Model MF, LF model training data (50 to 196 simulated VAM tests with 

1,888 to 15,114 training data points) is used to train the first two layers, and HF model training 

data (1 to 5 tests with 4,471 to 22,339 training points) is used to train the third layer. Recall that 

the 2D FE simulation of one VAM test of a concrete slab specimen (see Section 4.4.1.1 for details) 

takes approximately 1 hour on a desktop computer, while the 3D FE simulation of one VAM test 

(see Section 4.4.1.2 for details) takes about 45 hours on a desktop computer [89]. The 

computational effort related to training data generation for models trained using different mount 

of LF and/or HF training data points can, therefore, be measured in terms of hours of computer 

run time. The accuracy and F1 scores for the different models (using different mounts of training 

data from models of different fidelities) are plotted against the computational effort (in hours) 

needed for generating training data for these models for the laboratory experiment (Figure 45).  

Degradation in performance after adding cases 3 and 4 can also be seen in the F1 scores of the 

MF models for the laboratory experiment (Figure 45 (b)). The MF model’s F1 score decreases 

dramatically with the addition of Cases 3 and 4 (Table 12). This is likely because in Case 3, SBSum 

values are high in regions without damage, and in Case 4, SBSum values are really low in the 

damaged region.  This is not unexpected for VAM tests. In our previous research [48], we have 

encountered a few of these misleading VAM test results, and discussed the importance of using 

information obtained from many VAM tests to improve the diagnosis accuracy. We have shown 

[19] that the damage localization accuracy is dependent upon the testing parameters used in VAM. 



111 

 

For example, the distance of the pump and probe actuator from the location of the crack can affect 

diagnostic performance. The previous research demonstrated how some test settings help diagnosis 

more than others. This is also true for generating simulation data for training ML models: some 

test/damage set ups are better than the others for a given validation test case. Ideally, the additional 

training data could be chosen by solving an optimization problem aimed at maximizing the 

information gain. However, solution of this optimization problem is computationally unaffordable. 

Here, we studied the model performance under realistic (sub-optimal), computational resource-

constrained conditions. In this setting, it is expected to have model performance degradation by 

addition of data that is not relevant for the testing case. 

For the numerical experiment, the HF models showed consistently higher accuracy (for low 

as well as high computational expense for generating the training data) (Figure 44 (a)). This is 

likely because the numerical experiment is fairly similar (in terms of VAM test parameters) to the 

VAM test simulation used for training data generation. Additionally, the damage size and 

specimen geometry are identical for training and numerical experiment (but the damage location 

is not the same). Accuracy is high for these cases because of the high number of true negatives and 

a low number of false positives. The F1 score, which does not consider the effect of true negative 

results, is, however, low. For the numerical experiment (Figure 44 (b)), it is evident that model LF 

has the best F1 score, indicating it is the most sensitive damage diagnosis model. The MF model’s 

F1 score decreases dramatically with the addition of Cases 3 and 4 (Table 12). This is likely 

because in Case 3, SBSum values are high in regions without damage, and in Case 4, SBSum 

values are really low in the damaged region.  This is not unexpected for VAM tests. In our previous 

research [102], we have encountered a few of these misleading VAM test results, and discussed 

the importance of using information obtained from many VAM tests to improve the diagnosis 
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accuracy. This degradation in performance after adding cases 3 and 4 can also be seen in the F1 

scores of the MF models for the laboratory experiment (Figure 45 (b)). From the F1 scores for the 

laboratory tests, it is clear that the LF models provide the best damage diagnosis results. The 

addition of one HF simulation exhibiting a damage map with high SBSum values in damaged areas 

and low SBSum values in undamaged areas (case 1 and 2) can also increase the F1 scores to 

improve diagnostic performance; however, using that computational effort to provide 45 additional 

LF tests leads to significant additional improvement in the diagnostic performed. This is because 

the additional LF simulations are able to provide a better coverage of the VAM test parameter 

space as well as damage configuration space, leading to more generalizable PIML models. 

 

(a) 

 

(b) 

  

Figure 44. Numerical experiment to evaluate diagnostic PIML models: (a) Accuracy vs 

computational effort to generate training data; (b) F1 score vs computational effort to generate 

training data. 
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(a) 

   

(b) 

  

Figure 45. Laboratory experiment to evaluate diagnostic PIML models: (a) Accuracy vs 

computational effort to generate training data; (b) F1 score vs computational effort to generate 

training data. 

 

4.6. Conclusion 

This chapter investigated the performance of damage index-based (direct) diagnostic PIML 

models trained using data obtained from physics models of different fidelity. The term fidelity here 

refers to the computational domain's dimensionality used to simulate the physical phenomenon 

(nonlinear wave propagation) underlying the diagnostic test procedure (diagnostic signal 

acquisition phase). We built and evaluated three PIML models (LF, HF, and MF) for VAM-based 

diagnosis of hidden cracks in concrete slabs. In general, the diagnostic PIML models showed good 

performance in terms of identifying the damage locations. We found that information gained from 

additional low-fidelity simulations increases accuracy and F1 score more than adding a high-

fidelity simulation to the training data. The addition of a single HF simulation-based training data 

to the training data from 50 LF simulations improved the diagnostic performance in numerical 

experiments. However, using the equivalent number of computational resources to obtain 

additional training data from 45 LF simulations improved the diagnostic performance even more. 

The transfer learning-based MF PIML approach is found to perform better than the simple HF and 
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LF training data pooling-based approach. The transfer learning-based PIML approach can be 

improved in the future by using an adaptive learning approach to select the test/damage parameters 

for additional HF simulations. Additionally, this research showed that using the F1 score for 

damage diagnosis model performance provides better information about the model’s performance 

than standard accuracy calculations when the damage is localized in a small region (which is 

typically the case). Overall, the diagnostic performance evaluation results showed that, for this 

particular application, about 50 LF physics simulations with varying damage and test parameters 

could capture the information (or patterns) needed for damage index-based diagnosis using PIML.  
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Chapter 5 

 

Damage Localization in Plain and Reinforced Concrete Specimens with Distributed 

Damage Inducement 

 

5.1. Motivation 

In this chapter, we evaluate the performance of the diagnostic PIML models developed in 

previous chapters for concrete specimens containing steel reinforcement and ASR-inducing 

reactive aggregates dispersed evenly throughout (which implies unknown damage locations). 

Several new issues need to be addressed for VAM-based hidden crack diagnosis in reinforced 

concrete specimens. Firstly, the suitable testing parameters (actuator locations, actuation 

frequencies) to accurately detect and localize hidden cracks in reinforced concrete specimen have 

not been identified. Secondly, the utility of the nonlinear diagnostic technique in the presence of 

an additional source of geometric nonlinearity (at the interface of steel reinforcement and concrete) 

needs to be investigated. Furthermore, we also evaluate the performance of the PIML-based 

diagnosis process for concrete specimens whose geometry is different from the computational 

model geometry used for generating the training data. Similar to the procedure followed in 

preceding chapters, we cast concrete specimens (control specimen as well as specimens with alkali 

load boosting in the cement and reactive aggregates), conduct VAM tests in the laboratory, 

diagnose damage using the PIML-based method, and take cores from multiple locations. 

Petrographic examination is performed for each core, and a quantitative ASR damage metric 

known as the damage rating index (DRI) is used to ascertain the ground truth regarding ASR 
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damage at the core location and validate the PIML-based diagnostic result.  

 

5.2.  Relevant Background 

In this research, PIML models were trained using damage and SBSum values obtained from 

computational (finite element) simulations of the nonlinear dynamics-based, VAM test procedure. 

The computational effort needed for generating the simulated data can vary based on the fidelity 

of the simulation (FE) model. With the computational effort being a constraint for this research, 

given the information learned from Chapter 4, this chapter will focus on training ML models using 

only 2D FE simulations. Although the FE models used for generating the training data are 2D FE 

(low-fidelity) models, in this chapter, we investigate the performance of PIML models built using 

the multi-fidelity, transfer learning approach discussed in Section 4.3.2, but by using experimental 

data.  In addition to simulation data, we include the data from VAM tests and true damage state 

for the plain concrete slab (EXP-A Section 2.4.1). The transfer learning approach for training 

models from both simulated  and experimental data has been previously investigated for image 

processing applications [93]. The models in this chapter also combine simulation-based training 

data from simulated test specimen of different geometry. This is important since it is not feasible 

to simulate a computational domain for every specimen geometry to be tested in real-world 

application. The PIML extracts information about the relative damage index and models the 

complex relationship between the damage index and the presence/absence of damage at a sensor 

location for a few geometries incorporated in the training data generation. Here, we investigate the 

accuracy of PIML models for test specimens having geometries different than those used for 

performing data generating simulations.    

Chapter 4 combined VAM with PIML models to provide a probabilistic damage localization 
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result for a thick concrete specimen containing pockets of reactive aggregate at a few known 

locations [48]. In this chapter, we examine the application of this PIML to concrete specimens 

with the ASR-inducing (reactive) aggregates dispersed throughout the specimen instead of in 

known pockets). The DRI is used to help quantify the severity of ASR-induced damage [103] at 

select core locations and these values are compared to the PIML performance. As mentioned in 

Chapter 2, most ASR techniques have been used for damage detection, not localization [104]. 

Frequency-banded synthetic aperture focusing techniques (FB-SAFT) have been used in ASR 

localization of thick reinforced specimens with dispersed ASR-induced damage, however; these 

approaches fail to provide a probabilistic value and difficulty in the presence of rebar (i.e., they 

show the location of rebar as a possible damage location) [105], [106].  

In summary, the focus of this chapter is to study the performance of PIML models using the 

VAM damage index (SBSum) to diagnose damage in concrete specimens that resemble the 

conditions in real-world, reinforced concrete structural members. This chapter considers 

specimens with uniformly dispersed reactive aggregates to induce ASR, and considers reinforced 

specimens in addition to plain specimens.  

 

5.3. Methodology 

This section discusses transfer learning approaches used in building the PIML classification 

models for damage diagnosis. Specifically, we examine combining the physics simulation data 

with experimental test data to train a model.  

 

5.3.1. Classification model 

We continue to pursue the ANN architecture similar to previous chapters. As discussed in 
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Chapters 3 and 4, the inputs to the classification model are the damage index value at a particular 

sensor and the average damage index value for the VAM test. The output of the classification 

model is a binary variable indicating the presence or absence of damage in the neighborhood of 

the sensor: an output of 1 means that there is damage in the vicinity of the sensor, and an output 

of zero means that there is no damage in the sensor neighborhood. The data used for training such 

classification model consists of model inputs and the corresponding output values obtained from 

physics simulations or experimental tests. In this chapter, the training data is obtained from physics 

simulations for three types of 2D domains (Section 5.4.1: Figure 48, Figure 49, and Figure 50). 

The data can be combined using two main approaches. The first is by combining the data directly 

into a single training pool, regardless of the simulation domain from which the information comes 

(Figure 46). The second approach uses the multi-layered approach discussed in Section 4.3.2. In 

this approach, the three simulated training data sets are considered separately, with the lowest 

fidelity being i and the highest, iii. The lowest fidelity data set (i) is used to train a model with M 

layers of L nodes each (Figure 47 (a)). The parameter values from these M layers are then imported 

as the parameters for the first M layers in a second model, which will be trained using the medium-

fidelity dataset (ii). The parameters (weights and biases) for the first M layers are kept unchanged 

as additional N layers are added and trained (Figure 47 (b)). The parameters for these N layers are 

trained using the medium fidelity dataset (ii). Lastly, a third model is trained using the highest 

fidelity data (iii). The parameters for the first M and N layers are fixed at the values obtained by 

training the first three models and the parameters are kept unchanged. The last O layers are added 

to the model and trained using the highest fidelity data set (iii) (Figure 47 (c)). The output of this 

model is the damage prediction at each sensor using inputs of multiple fidelities. Additional models 

are built by combining the data directly into a single training pool, the transfer learning FEA 
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approach, and a combination of the two, where one layer may contain multiple simulation domains.  

Note that for all models, the inputs for the classification model are normalized with a mean of zero 

and standard deviation of 1. The weights are then initialized as random values between -1 and 1. 

The SoftMax layer, as the final layer, normalizes the output to a probability distribution [81]. Note 

that the classification model only diagnoses damage along the surface of the specimen, where 

sensors are installed. The diagnosis provides damage location information in terms of the 

coordinates on this surface (e.g., the X-Y plane). 

 

 

Figure 46: Model architecture for classification model using inputs from all simulated training 

data. M layers (M=1) and L=5 nodes. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 47: Multi-fidelity classification model architecture: (a) model trained with M layers of L=5 

nodes using fidelity i simulation input data; (b) ANN classification model with M (M=1) layers 

set with fixed weights and biases from the previous model and N (N=1) layers trained with fidelity 

ii data; (C) ANN classification model with M (M=1) and N (N=1) layers set with fixed weights 

and biases from the previous model and O (O=1) layers trained with fidelity iii data. 
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5.3.2. Multi-fidelity model: combining experimental and simulated data 

As discussed previously and in Chapter 4, the transfer learning framework combines data from 

different training sources (fidelities) to diagnose the damage. This research aims to build a ML 

model for dispersed ASR-induced damage localization using training input data from both the 2D 

FEA simulated VAM data and VAM data from an experimental specimen with localized ASR-

induced damage (EXP-A Section 2.4.1). Damage locations in the experimental specimen were 

confirmed with destructive testing. This approach combines the 2D simulated data to train M layers 

with L nodes (Figure 47(a)). The information from these M layers is then set as the first M layers 

in a next model, and it is trained using the experimental training dataset (EXP-A). The M layers 

parameters (weights and biases) are kept unchanged as additional N layers are added and trained 

(Figure 47(b)).  

 

5.3.3. Depth prediction using a regression model 

This methodology uses a regression model from all the VAM parameters to predict the 

damage index SBSum (Figure 24) (Section 3.4.2.1). The input parameters for this model include 

testing parameters such as the Rfreq and xsensor, and damage parameters including damage location, 

crack size, and the depth of damage. Using the classification models detailed in Section 5.3.1, the 

approximate damage location and crack size can be calculated, leaving only one unknown 

parameter, damage depth (𝜃).  

This regression model is a surrogate for the forward problem; we explore the inverse problem 

to perform depth diagnosis. Similar to Chapter 3, we use the Bayesian approach [89]  to update 

the posterior by combining prior knowledge with the observed data. Theta, θ, represents the 

unknown parameter, damage depth. The likelihood is estimated as 𝑃(𝑆𝐵𝑆𝑢𝑚|𝜃). Our prior 
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knowledge distribution, 𝑃(𝜃), is the entire depth of the specimen being analyzed. (For the 

validation specimens discussed in Section 5.6 the prior is a uniform distribution U[0, 0.3048] m.) 

Using the regression surrogate model and Markov Chain Monte Carlo (MCMC) simulations the 

posterior distributions for the depth (𝑃(𝜃|𝑆𝐵𝑆𝑢𝑚)) are calculated. These simulations use a 

“random walk” technique, the Metropolis Hastings (MH) algorithm, as the sampling method to 

evaluate the posterior. This sampling method is computationally expensive since the surrogate 

model is run from 1000 to 5000 times for proper convergence, causing the depth model to have a 

significantly higher computation cost than the classification model. 

 

5.4. Training Data for Physics-Informed Machine Learning for Localization  

This section discusses the two types of training data used for the machine learning models in 

this chapter. The first data set is obtained using 2D FE simulations of VAM test. The damage and 

VAM test parameters are varied to obtain different VAM tests for different damage and test 

configurations. The second data set is obtained by conducting VAM experiments on EXP-A the 

plain cement slab with induced ASR damage (at a few locations) (Chapter 2, Sections 2.4 and 

2.5.3).  

 

5.4.1. Numerical Simulations of VAM test 

As discussed in previous research, the computational cost for simulating 3-dimensional (3D) 

numerical training data is nearly 50 times higher than simulating mechanical vibrations for a 2-

dimensional specimen (2D). Additionally, the information gained from the 50 2D models was 

more than one 3D model when added to the training data of the machine learning model. For this 

reason, we focus on training the machine learning model with 2D FEA data.  
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Three types of 2D FEA models are built to generate training data for the ML models. The first 

is a homogeneous elastic computation domain (simulating the behavior of a plain concrete 

specimen) 60.96 cm wide and 15.24 cm thick (2D-A) (Figure 48). The material properties for the 

homogeneous elastic material 9plain concrete) are given in Table 15. This is the same domain 

geometry and composition as the 2D FE simulations for Chapter 3 and 4 (Sections 3.4.1 and 

4.4.1.1) [107]. The second domain (2D-B) is also a plain concrete specimen with a width of 60.96 

cm and 30.48 cm thick (Figure 49). The third and last domain (2D-BR) is the same as the second 

in dimensions, a width of 60.96 cm and a depth of 30.48 cm, but contains six circular inclusions 

(diameter 2.2 cm)  at x= {17.46, 30.48, 43.5} cm for both y= {7.32, 23.16} cm, to simulate the 

effect of rebar reinforcement in the specimen (Figure 50).  The material properties of steel rebar 

are given in Table 15. Delamination was not modeled between the steel inclusion and plain 

concrete contact surface. The pumping and probing excitation actuators were placed at one of the 

three locations for each computational domain (2D-A, 2D-B, 2D-BR); x= {-0.1524, 0.0, 0.1524} 

m, y=0.1524 m. Only a single hidden crack was model for each simulation at different locations 

and lengths. Table 16 shows the locations for each of the simulated cracks and the parameters used 

to conduct the VAM tests in these numerical specimens. Fifty different VAM test simulations were 

made for each computational domain (2D-A, 2D-B, 2D-BR) for varying cracks and test 

parameters. The commercial software Abaqus was used to conduct the numerical simulations. The 

domain for all models was discretized using a structured mesh of 8-noded finite elements. 

Additional details on the simulation of domain 2D-A can be found in [108]. Simulations for 2D-B 

and 2D-BR were conducted in the same manner, with the only differences being the size of the 

domains and the addition of rebar.  

 



123 

 

 

Table 15:Material properties used in the 2D FEA model. 

Material property Value for Concrete Value for Steel Rebar 

Young’s modulus (E) 27 GPa 200 GPa 

Density (𝜌) 2400 kg/m3 7850 kg/m3 

Poisson’s ratio (𝜈) 0.15 0.44 

Mass proportional Rayleigh damping parameter (a) 2120.04 40.06 

Stiffness proportional Rayleigh damping parameter (b) 1.787× 10-7 -1.434× 10-8 

 

 

 

Figure 48: The domain, the three pump/probe excitation locations, and crack locations used in FE 

simulation 2D-A. 

 

 

Figure 49: The domain, the three pump/probe excitation locations, and crack locations used in FE 

simulation 2D-B. 
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Figure 50: The domain, the three pump/probe excitation locations, and crack locations used in FE 

simulation 2D-BR 

 

Table 16: VAM test parameters for the FEM simulations. 

Crack 

Case 

Centroid 

(x-dir) 

[m] 

Total 

Training 

Points 

for 

Crack 

Length 

[m] 

Depth 

from 

Surface 

(z-dir) 

[m] 

Ramp Rfreq 
Pump/Probe Actuator 

Location [m] 

2D-A-1 -0.1025 13,896 0.06 0.0762 

1, 0.5, 

0.2, 0.1 20 -0.1524, 0.0, 0.1524 

2D-A-2 -0.1524 13,896 0.06 0.1016 

1, 0.5, 

0.2, 0.1 20 -0.1524, 0.0, 0.1524 

2D-A-3 0.1524 6,369 0.02 0.1016 

1, 0.5, 

0.2, 0.1 20 -0.1524, 0.0, 0.1524 

2D-A-4 0.0300 1,560 0.06 0.0850 

1, 0.5, 

0.2, 0.1 20 0.0 

2D-A-5 0.1016 780 0.09 0.0508 1, 0.1 20 0.1524 

2D-A-6 0.1016 2,340 0.09 0.0200 1, 0.1 20 0.0, 0.1524 

2D-B-1 0.1024 5,256 0.06 0.2200 1, 0.1 18, 20, 22 -0.1524, 0.0, 0.1524 

2D-B-2 -0.2000 2,316 0.09 0.2400 1, 0.1 18, 20, 22 -0.1524, 0.0, 0.1524 

2D-B-3 0.0500 1,576 0.08 0.1700 1, 0.5 20, 22 -0.1524, 0.0, 0.1524 

2D-B-4 -0.1600 2,352 0.06 0.0900 1, 0.1 18, 20 -0.1524, 0.0, 0.1524 

2D-BR1 -0.1025 4,680 0.09 0.1824 1, 0.1 16, 18, 20, 22 -0.1524, 0.0, 0.1524 

2D-BR- -0.0150 2,340 0.06 0.0200 1, 0.1 18, 20, 22 -0.1524, 0.0, 0.1524 

2D-BR-3 0.2000 2,730 0.08 0.1700 0.5, 0.1 18, 20, 22 -0.1524, 0.0, 0.1524 
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5.4.2. Laboratory specimen 

The laboratory specimen (EXP-A) that was used for validation in Chapter 2, 3 and 4 is used 

in this study as a source of training data. Since this is a laboratory specimen and not simulated, the 

data is treated as the highest fidelity data source for training the ML models. This 60.96 x 60.96 x 

15.24 cm concrete specimen was cast and cured in ASR-inducing environment at Vanderbilt 

University and contained pockets of reactive specimen at four known locations. Numerous VAM 

tests were performed on this specimen by installing accelerometers (sensors) on its top surface and 

by varying VAM test parameters (see Chapter 2, Section 2.4.2). To use EXP-A for training, each 

sensor used in VAM tests needs to be identified as a sensor in the vicinity of damage or not in the 

vicinity of damage {1,0}. Using the known information about the specimen, the cores taken, and 

observations of internal slab surface after breaking open the plain concrete slab [107], the true 

damage indicator value at each sensor is ascertained. Figure 32 (b) shows the true damage 

classification results to be used in training the ML models in this Chapter. Experimental test 

parameters used for this specimen can be found in Table 17. Additional information about this 

specimen and the tests conducted in it can be found in Section 2.4. 

 

Table 17: The 240 VAM test configurations run on EXP-A. 

Amplitude Ratio 

(probe/pump) Ramp 

Frequency 

Ratio 

(probe/pump) 

Rfreq 

Pump/Probe 

Actuator 

Location [m] 

1, 0.5, 0.2, 0.1 

10.87, 11.96, 

13.04, 14.13, 

15.21, 16.30, 

17.39, 18.48, 

19.57, 20.65, 

21.74 

(0.4572, 0.4572), 

(0.1524, 0.4572), 

(0.1524, 0.1524), 

(0.4572, 0.1524), 

(0.3048,  0.3048) 
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5.4.3. Numerical simulation data for Verification of the Classification models 

A 3D FE model simulating VAM tests for a single hidden crack is used to generate data for 

model verification. The size of 3D computational domain is 60.96 X 30.48 cm X 30.48 cm. The 

domain geometry and one of the pump and probe excitation locations used in the numerical 

simulation are shown in Figure 51. These are chosen to match the cement slab specimen used for 

validation experiments. The VAM parameters used for verification test were:  an 𝑅𝑓𝑟𝑒𝑞 of 20, 

an 𝑅𝑎𝑚𝑝 of 1, and pumping and probing excitation actuators are placed at the center of the 

specimen (0, 0, 0) cm. The location of true damage had a centroid of (-15.24, 0) cm and a depth of 

15.24 cm from the surface. Abaqus was used to perform numerical simulations, and the material 

properties can be found in Table 15. 

 

 

Figure 51: FE simulation for model verification, domain geometry and the location of pumping 

and probing excitation actuators. 

 

5.4.4. Damage diagnosis and Evaluation of PIML Models 

The presence/absence of damage at each sensor is established by comparing the results using 

the machine learning models to the ground truth. Four metrics were used: sensitivity, specificity, 

accuracy, and F1 score. Descriptions and formulas for these values can be found in Sections 3.3.2 

and 4.3.4. 
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5.5. PIMLs for Damage Diagnosis 

5.5.1. Classification model for crack diagnosis on X-Y plane 

The classification models were built using a combination of methodologies, described in 

Section 5.3.1. All of the classification models in this section have 3 hidden layers or less. 20% of 

this data was then randomly selected to be used for cross-validation and not included within the 

training data.  For all models, the conjugate gradient method with Powell/Beale Restart algorithm 

[80] was used as the training algorithm and the cross-entropy loss function was used. The SoftMax 

[81] activation function was applied to the output. Model I consists of 2 layers with 16 nodes in 

the first and 8 in the second and is trained with only 2D-A data. Model II is trained by combining 

2D-A and 2D-B. It has 2 layers with 16 nodes in the first and 10 in the second. Model III is trained 

using the transfer learning approach, with the first two layers (16 and 8 nodes) being trained with 

2D-A (Model I) and the last layer being trained by 2D-B with 7 nodes. Model IV is a multi-fidelity 

model with the first two layers being Model II and the last layer being trained by EXP-A with 8 

nodes. Model V trains by combing the data sets using the multi-fidelity approach. Layer 1, trained 

used 2D-A has 20 nodes, layer 2 trained using 2D-B has 14 nodes, and layer 3 trained using 2D-

BR has 8 nodes. Model VI is combined using the multi-fidelity approach with the first two layers 

being Model II and the last layer being trained by 2D-BR with 8 nodes. Model VII combines all 

2D FE simulations with 2 layers of 18 and 11 nodes each. Model VIII is a multi-fidelity model 

with the first two layers being Model VII and the last layer being trained by EXP-A with 8 nodes. 

The training and verification evaluation metrics for all models can be found in Table 18. Models 

I-III are similar to the models trained in Chapter 3, where the input is a non-reinforced 2D concrete 

domain with a single crack.  These models perform well for both training and verification. The 

multi-fidelity approach explored in training of Models III and IV have a lower F1 score for the 
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training performance, but a higher F1 score for verification. The decrease in the training F1 score 

for all models after Model I, is due to the addition of different computational domains and data 

sources. As we add varying training information to the input data, we expect the training 

performance to decrease because the relationship between the input and output has become more 

complex. In contrast, the verification model performance increases with the addition of the new 

training data because these inputs come from domains that are more similar to the domain being 

verified (depth, dimensionality). The addition of simulation data from the 2D-BR model in the 

training process for Models V, VI and VII does not significantly improve the diagnostic 

performance of the PIML models. Although the models had a high verification accuracy and F1 

score in some cases, the training values were very poor. It is important that we examine how these 

models perform for the validation of the reinforced specimens (reinforcement is not considered in 

the verification model). Since the excitation frequencies are propagating through both concrete 

and reinforcement in 2D-BR FE simulation, the signal dissipates differently than if there was no 

reinforcement at all (2D-A and 2D-B).  
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Table 18: Model training and verification performance. The top value (red) is for the cross-

validation values calculated when training the model, the values below (green) are the verification 

results. 

 

 

 

 

 

5.5.2. Regression model for depth diagnosis 

The regression model uses the VAM input parameters as the inputs to predict the VAM 

damage index SBSum. The inputs for the model are determined by their importance in predicting 

the SBSum using analysis of variance (ANOVA). ANOVA results indicated that all of the input 

parameters examined were statistically significant, having a p-value less than 0.05 (Section 3.4.2). 

Thus a surrogate model for the VAM test  is built using 7 inputs: the ratio of 𝑓𝑝𝑟𝑜𝑏𝑒 to 𝑓𝑝𝑢𝑚𝑝 

(𝑅𝑓𝑟𝑒𝑞), the ratio of the amplitude of the probing excitation frequency (𝐴𝑚𝑝𝑝𝑟𝑜𝑏𝑒) to the amplitude 

Machine Learning Model Model Evaluation 

Label 
Hidden 

Layer 1 

Hidden 

Layer 2 

Hidden 

Layer 3 
Sensitivity Specificity Accuracy 

F1 

Score 

I 2D-A - 
0.648 

0.489 

0.811 

0.868 

0.727 

0.798 

0.710 

0.472 

II 

2D-A 

+ 

2D-B 

- 
0.289 

0.438 

0.972 

0.913 

0.849 

0.825 

0.408 

0.480 

III 2D-A 2D-B 
0.209 

0.512 

0.977 

0.918 

0.880 

0.853 

0.306 

0.526 

IV 

2D-A 

+ 

2D-B 

Exp-A 
0.145 

0.557 

0.939 

0.899 

0.636 

0.845 

0.234 

0.533 

V 2D-A 2D-B 2D-BR 
0.038 

0.305 

0.999 

0.983 

0.869 

0.875 

0.073 

0.437 

VI 

2D-A 

+ 

2D-B 

2D-BR 
0.045 

0.458 

0.996 

0.938 

0.868 

0.862 

0.084 

0.513 

VII 
2D-A + 2D-B 

+ 2D-BR 
- 

0.163 

0.350 

0.981 

0.941 

0.849 

0.832 

0.259 

0.434 

VIII 
2D-A + 2D-B 

+ 2D-BR 
EXP-A 

0.088 

0.305 

0.969 

0.981 

0.633 

0.874 

0.154 

0.435 
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of the pumping excitation frequency (𝐴𝑚𝑝𝑝𝑢𝑚𝑝) (𝑅𝐴𝑚𝑝), the location of the crack (𝑥𝑐𝑟𝑎𝑐𝑘), the 

length of the crack (𝐿𝑐𝑟𝑎𝑐𝑘), the depth of the crack (𝑧𝑐𝑟𝑎𝑐𝑘), the location of the pumping and 

probing excitation frequency (𝑥𝑝𝑝), and the location of the sensor (𝑥𝑠𝑒𝑛𝑠𝑜𝑟). Given these inputs 

defining the damage and test parameters as well as the sensor location, the output is the damage 

index (SBSum) at the sensor on interest. The architecture for the model can be seen in Figure 52. 

Note that this technique provides crack depth prediction (Z-direction) for a (2D) cross section of a 

3D specimen.  Therefore, for a 3D test specimen multiple regression model-based diagnoses need 

to be performed for multiple vertical cross-sections.  

 

 

Figure 52: Regression model with seven inputs (VAM test and damage parameters), two hidden 

layers, the first with 16 nodes and the second with 12, and 1 output of the SBSum. 

 

During training data pre-processing, all input and output values were normalized with a mean 

of zero and a standard deviation of 1. Multiple training algorithms, the number of layers, and nodes 

in each layer were examined to determine the best model. This model was trained by combining 
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all of the data for the 2-D training data (2D-A, 2D-B, 2D-BR) into one data set. 20% of this data 

was then randomly selected to be used for cross-validation and not included within the training 

data.  There were 18,486 data points for training and 4621 used for cross-validation. The best 

training algorithm was the Levenberg-Marquardt method, with a learning rate of 0.1 and the least 

squares loss function [76], [77]. There were two layers trained, with 16 nodes in the first layer and 

12 in the second. The model converged after 230 epochs. Early stopping [78], using information 

about the error of the cross-validation, was used to prevent overfitting. The best value of mean 

square error was found to be approximately 0.326. 

 

5.6. Validation 

This section examines four different experimental specimens used in validating the machine 

learning models. The first specimen is referred to as the control specimen. The control specimen 

is a plain concrete specimen with reactive aggregates evenly distributed throughout, but no 

boosting agent (NaOH) added to induce ASR. The other three specimens contained reactive 

aggregates distributed throughout and sodium hydroxide (NaOH) to boost the alkali loading to 

5.25 kg/m3 to accelerate the production of ASR.   For the casting of all the specimens, conventional 

concrete mixtures prepared in a rotating drum mixer was used. The aggregates were distributed 

throughout the blocks. All four specimens were of size 60.96 × 30.48 × 30.48 cm and contained 

25 mm coarse aggregates known to be susceptible to ASR (reactive) combined with a non-reactive 

crushed dolomite/calcite fine aggregate. All four specimens contained a reactive crushed 

greenschist from North Carolina. All four specimens contained low-alkali cement (0.46% 

Na2Oeq), while three contained added sodium hydroxide (NaOH) to boost the alkali loading to 

5.25 kg/m3 to accelerate ASR and the control specimen did not. Two of the boosted specimens 
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were reinforced with rebar, the first unidirectionally and the second bidirectionally. The specimens 

are labeled as such; control (reactive aggregates, not boosted), ASR non-reinforced (reactive 

aggregates, boosted), ASR unidirectionally reinforced (reactive aggregates, boosted), and ASR 

bidirectionally reinforced (reactive aggregates, boosted), and are discussed below. 

In conducting VAM testing on these specimens, compared to the slab specimen tested in [48], 

the crack locations are less likely to be concentrated in known quadrants. To account for this, and 

given the key conclusions from our previous work [108] where the SBSum was best used for 

damage localization when the pumping and probing actuators were located above a damage 

location, 10 pumping and probing configurations were used for each specimen. The locations of 

the actuators and sensors are displayed in Figure 53. We measure the response of the structural 

component of interest using 21 accelerometers (100 mV/g) placed on the component's surface. The 

relative magnitudes of sidebands at various accelerometer locations are calculated. The sensors 

were calibrated between different testing specimens to ensure that they provide accurate 

measurements. In these experiments, we used pumping frequency, 𝑓𝑝𝑢𝑚𝑝  of 1 kHz. For the given 

specimens, the fundamental frequency was much higher than the specimen testing in [48], meaning 

the ideal probing excitation frequency, 𝑓𝑝𝑟𝑜𝑏𝑒, 20 times larger than 𝑓𝑝𝑢𝑚𝑝  would be too large for 

our actuators to read accurately. We conducted the experiments using 𝑓𝑝𝑟𝑜𝑏𝑒 of 16, 17, 18, 19, 20, 

and 21 kHz. We kept the amplitude of the pumping excitation constant and varied the probing 

excitation amplitude (1/2, 1/5, and 1/10 times the pumping excitation amplitude). The presence 

and severity of ASR-induced damage in each of the specimens was validated using the 

petrographic method, damage rating index, (DRI) 
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a. 

 

b. 

 

Figure 53: Locations of accelerometers and pumping and probing excitation actuators on the 

surface of the validation specimens: (a) diagram of the surface of the specimens with all 21 sensors 

tables, and all 10 pumping and probing excitation actuator locations; (b)experimental setup on the 

surface of the specimen for pumping and probing excitation actuator location 8. 

 

5.6.1. Damage Rating Index 

In order to establish the ground truth for each validation specimen, we need to establish 

damage presence or absence in the vicinity of the sensor. We use a well-known ASR damage 

metric, namely, damage rating index (DRI), to determine the severity of ASR-induced damage in 

select core locations for each specimen.  

The DRI metric is obtained by a petrographic analysis method to quantify the extent of damage 

in ASR-affected concrete. The core samples were photographed and examined visually and using 

stereo-optical microscopy. A cross-sectioned core was cut, and the cut face was coated with 

fluorescent-dyed epoxy and then polished for optical microscopy examination. DRI analysis was 

performed on the bottom 6” portion of the polished cross-section slabs following the procedure 

outlined by Grattan-Bellew[109]. Using a stereo binocular microscope at 15x, features indicative 

of ASR reaction were identified and weighted according to values listed in Table 19. The results 

were normalized for an area of 100 cm2. The features in this table are based on typical 

characteristics of ASR reaction products, and procedures for the petrographic examination are 
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outlined in ASTM C 856 [110]. A reaction rim is when the exterior edge of the aggregate that is 

in contact with the paste reacts with the alkalis in the pore solution. The ASR forms along the outer 

edge or rim of the aggregate.  Additional definitions can be found in [111].   

In general, DRI values above 50 suggest significant damage due to ASR. DRI can have 

variable results as different petrographic examiners examine samples. These specimens were all 

evaluated by the same petrographer, which helps reduce this variability and allows us to compare 

DRI values across all the cores. A study by Sanchez 2020 [103] showed a correlation between the 

DRI number and expansion levels attained by the specimens. Using this information, we assume 

that a core with a higher index contains more ASR-induced damage, with damage over 50 being 

associated with severely damaged areas.  

 

Table 19: Weighting factors for DRI. 

Feature Weight Factor 

Cracks in coarse aggregate 0.75 

Cracks in coarse aggregate + gel 2.00 

Open cracks in coarse aggregate 4.00 

Reaction rims 0.50 

Coarse aggregate debonded 3.00 

Paste with cracks 2.00 

Paste with cracks + gel 4.00 

Gel in air voids 0.50 

 

 

5.6.2. Control Specimen 

The control specimen was cast using conventional concrete mixtures prepared in a rotating 

drum mixer, contained no additional boosting induce ASR and cured under ASR-inducing 

conditions (high heat and humidity) at The University of Nebraska-Lincoln, Omaha, Nebraska. 

Four steel ties remained in the specimen from the formwork. This specimen did not show 
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significant expansion during the curing process (-0.004%). Since specimen expansion is a key 

characteristic of ASR gel production in a concrete specimen, it is assumed that ASR damage wasn’t 

present in the specimen.  

 

5.6.3. Alkali-boosted Non-reinforced Specimen 

This specimen was cast using conventional concrete mixtures prepared in a rotating drum 

mixer with boosting to induce ASR, and cured under ASR-inducing conditions (high heat and 

humidity) at the University of Alabama, Tuscaloosa, Alabama. The specimen showed significant 

mechanical expansion over the curing process (0.424%). After conducting VAM tests on the 

specimen, two cores (Figure 54) were taken out and sent for petrographic analysis at the R.J. Lee 

group in Monroeville, Pennsylvania. The core locations for this specimen are noted in Table 20. 

The DRI for core 1 (EXP-B-C1) was 73, and for core 2 (EXP-B-C2) was 58. The petrographic 

analysis showed severe ASR-induced damage at both core locations.  

 

 

Figure 54: Core locations for the alkali-boosted non-reinforced concrete specimen (cm). 

 

5.6.4. Alkali-boosted Unidirectionally Reinforced Specimen 

This specimen was cast using conventional concrete mixtures prepared in a rotating drum 

mixer with boosting to induce ASR, and cured under ASR-inducing conditions (high heat and 
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humidity) at The University of Nebraska-Lincoln, Omaha, Nebraska. Four steel ties remained in 

the specimen from the formwork. The locations of the rebar reinforcement can be seen in Figure 

55. The specimen showed significant expansion over the curing process (0.349%). After 

conducting VAM tests on the specimen, two cores (Figure 56) were sent for petrographic. The 

core locations for this specimen are noted in Table 20. The DRI for core 3 (EXP-BR1-C3) was 29, 

and for core 4 (EXP-BR1-C4) was 34. The petrographic analysis showed a small amount of ASR-

induced damage at each core location. 

 

 

Figure 55: Rebar locations for the alkali-boosted unidirectionally reinforced concrete specimen. 

 

 

Figure 56: Core locations for the alkali-boosted unidirectionally reinforced concrete specimen 

(cm). 
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5.6.5. Alkali-boosted Bidirectionally Reinforced Specimen 

This specimen was cast using conventional concrete mixtures prepared in a rotating drum 

mixer with boosting to induce ASR, and cured under ASR-inducing conditions (high heat and 

humidity) at The University of Nebraska-Lincoln, Omaha, Nebraska. Four steel ties remained in 

the specimen from the formwork. The locations of the rebar reinforcement can be seen in Figure 

57 and Figure 58. The specimen showed significant expansion over the curing process (0.452%). 

After conducting VAM tests on the specimen, two cores (Figure 59) were sent for petrographic 

analysis. The core locations for this specimen are noted in Table 20. The DRI for core 5 (EXP-

BR2-C5) was 70, and for core 6 (EXP-BR2-C6) was 51. The petrographic analysis showed both 

core locations were severely damaged by ASR.   

 

 

Figure 57: Rebar locations for the alkali-boosted bidirectionally reinforced concrete specimen. 
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Figure 58: Plan view of two-directional rebar reinforcement (with ties) for the alkali-boosted 

bidirectionally reinforced concrete specimen. 

 

 

Figure 59: Core locations for the alkali-boosted bidirectionally reinforced concrete specimen (cm). 

 

Table 20: Core locations for each specimen and DRIs. 

Core Label Centroid (cm) DRI 

EXP-B-C1 (20.32, 15.24) 73 

EXP-B-C2 (35.00, 22.86) 58 

EXP-BR1-C3 (21.59, 15.24) 29 

EXP-BR1-C4 (42.55, 20.17) 34 

EXP-BR2-C5 (22.86, 15.24) 70 

EXP-BR2-C6 (38.10, 15.24) 51 

 

 

5.7. Performance Evaluation of PIML Model 

5.7.1. Laboratory Experiments 

In conducting VAM testing on these experimental specimens, compared to the slab specimen 

tested in [48], the ASR-induced cracks are not likely to be present near a pocket of reactive 
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aggregates, but could be present anywhere in the specimen. To account for this, and given the key 

conclusions from [108] where the SBSum was best used for damage localization when the 

pumping and probing actuators were located above a damage location, 10 pumping and probing 

configurations were used for each specimen. The probing excitation frequency was {16, 17, 18, 

19, 20} kHz and the pumping excitation frequency was 1kHz for all specimens, The amplitude 

ratios used were {1, 0.5, 0.2, 0.1} probe/pump. 

 

5.7.2. Control 

Each of the eight classification models trained in Section 5.5.1 were evaluated on the control 

specimen. The results are displayed in Figure 60. Since the specimen showed no deformation or 

signs of ASR-induced damage, we expect to see a low to no damage probability. It is clear that 

Model I performed poorly, as it identified damage. The reason Model I provides a high damage 

probability is because the model is trained to look at the relationship between the SBSum and the 

mean of the SBSum for that specimen without accounting for the true value of the SBSum. 

Although the value of SBSum is small in this case, the relationship between the value at a given 

sensor and the mean value causes the model to predict the presence of damage at some sensors. 

The model was not trained for the zero-probability case.  Models V and VI performed the best and 

had damage probabilities of zero. All other models also successfully did not identify much damage. 
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Model I 

 

Model II 

 

Model III 

 

Model IV 

 

Model V 

 

Model VI 

 

Model VII 

 

Model VIII

 

Figure 60: Results of the eight classification models evaluated on the control specimen. 
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5.7.3. Alkali-boosted Non-reinforced Specimen 

Each of the eight classification models trained in Section 5.5.1 was evaluated on the alkali-

boosted non-reinforced specimen. The results are displayed in Figure 61. Since the specimen had 

a DRI of 73 for core 1 and 58 for core 2, we expect to detect a high probability of damage over 

core 1, and a slightly lower value near core 2. Model V and VI performed the worst as almost no 

damage was predicted about core 1. Model I performed the best, and the other models had a higher 

probability above core 1, despite their low probabilities overall.  

 

Model I 

 

Model II 

 

Model III 

 

Model IV 

 

Model V 

 

Model VI 
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Model VII 

 

Model VIII 

 

Figure 61: Results of the eight classification models evaluated on the alkali-boosted non-reinforced 

specimen. 

 

Given the damage probability map for Model I, a crack is assumed to be located near the 

region of high damage probability. As per the methodology discussed in Section 3.3.1.4 a vertical 

slice is taken along the center of the specimen (containing the selected crack) at y=15.24 cm 

(Figure 62 (a)). The centroid is 20.32 cm in the x-direction, and the length is estimated as 10.16 

cm. Figure 62 (b) shows the vertical slice cross-section containing the crack with the unknown 

depth, zcrack. 5000 MH samples are taken, and the prior of zcrack is assumed to be a uniform 

distribution, U[0.00001, 30.48] cm. The crack's depth is estimated at about 13 cm from the surface 

(Figure 63). 

 

(a) 

 

(b) 

  

Figure 62: (a) Damage probability map for Model I with a vertical slice at y=15.24 cm; (b) Cross-

section of the vertical slice with a 10.16 cm crack at centroid x=20.32 cm and an unknown depth, 

zcrack. 
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Figure 63: Posterior for damage depth of a crack estimated in the alkali-boosted non-reinforced 

specimen. 

 

5.7.4. Alkali-boosted Unidirectionally Reinforced Specimen 

Each of the eight classification models trained in Section 5.5.1 was evaluated on the 

unidirectionally reinforced specimen. The results are displayed in Figure 64. Since the specimen 

had a DRI of 29 for core 3 and 34 for core 4, we expect to detect a low probability of damage at 

both core locations. Models V and VII show almost no damage probability for the specimen. 

Model 1 has a fairly high damage probability, but that is to be expected since significant ASR 

damage is present in the specimen. The remaining models show a much higher damage probability 

at the core 3 location but otherwise detect very little damage elsewhere in the specimen. 
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Model I 

 

Model II 

 

Model III 

 

Model IV 

 

Model V 

 

Model VI 

 

Model VII 

 

Model V III 

 

Figure 64: Results of the eight classification models evaluated on the alkali-boosted 

unidirectionally reinforced specimen. 
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Given the damage probability map for Model I, a crack is assumed to be located near the 

region of high damage probability. A vertical slice is taken along the center of the specimen 

(containing the selected crack) at y=15.24 cm (Figure 65 (a)). The centroid is 23 cm in the x-

direction, and the length is estimated as 7.6 cm. Figure 65 (b) shows the vertical slice cross-section 

containing the crack with the unknown depth, zcrack. 5000 MH samples are taken, and the prior of 

zcrack is assumed to be a uniform distribution, U[0.00001, 30.48] cm. The crack's depth is estimated 

at 10 cm from the surface (Figure 66). 

 

(a) 

 

(b) 

  

Figure 65: (a) Damage probability map for Model I with a vertical slice at y=15.24 cm; (b) Cross-

section of the vertical slice with a 7.6 cm crack at centroid x=23 cm and an unknown depth, zcrack. 

 

 

Figure 66: Posterior for damage depth of a crack estimated in the alkali-boosted unidirectionally 

reinforced specimen. 
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5.7.5. Alkali-boosted Bidirectionally Reinforced Specimen 

Each of the eight classification models trained in Section 5.5.1 was evaluated on the 

unidirectionally reinforced specimen. The results are displayed in Figure 67. Since the specimen 

had a DRI of 70 for core 5 and 51 for core 6, we expect to detect a high probability of damage at 

both core locations, especially at core 5. Model I performs best for damage localization. Models 

II, III, and IV also have fairly high damage probabilities, and they are higher than the 

unidirectionally reinforced case, which is what we expect given the DRI values.  

 

Model I 

 

Model II 

 

Model III 

 

Model IV 

 

Model V 

 

Model VI 
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Model VII 

 

Model V III 

 

Figure 67: Results of the eight classification models evaluated on the alkali-boosted bidirectionally 

reinforced specimen. 

 

Given the damage probability map for Model I, a crack is assumed to be located near the 

region of high damage probability. A vertical slice is taken along the center of the specimen 

(containing the selected crack) at y=15.24 cm (Figure 68 (a)). The centroid is 22 cm in the x-

direction, and the length is estimated as 7.6 cm. Figure 68 (b) shows the vertical slice cross-section 

containing the crack with the unknown depth, zcrack. 5000 MH samples are taken, and the prior of 

zcrack is assumed to be a uniform distribution, U[0.00001, 30.48] cm. The crack's depth is estimated 

at 6.5 cm from the surface (Figure 69). 

 

(a) 

 

(b) 

 

Figure 68: (a) Damage probability map for Model I with a vertical slice at y=15.24 cm; (b) Cross-

section of the vertical slice with a 7.6 cm crack at centroid x=22 cm and an unknown depth, zcrack. 
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Figure 69: Posterior for damage depth of a crack estimated in the alkali-boosted bidirectionally 

reinforced specimen. 

 

5.7.6. Discussion of Results 

The damage probability calculated from the PIML models for each core location is compared 

to the DRI for that core in Table 21. Since DRI values above 50 are generally indicative of severe 

ASR-induced damage in concrete, we can expect the best-performing models to have a high 

probability of damage at the core locations that have DRI values over 50. Using this metric for 

comparison, Model I performs the best for localizing the ASR-induced damage. That is, the 

damage probability value at the core location (in percentage) is high when the DRI value for the 

core is high. Additionally, the damage probabilities for Models II, III, IV, VII, and VIII are smaller 

for the significantly damaged cores than Model I; however, the relationship between a higher 

probability of damage and a higher DRI is still present. Model I has a higher damage probability 

because the training data was less “diluted” with other VAM test parameters. The training data for 

Model I had more information coming from VAM tests of different cracks and not just other 

parameters (Rfreq, Ramp, etc.), which may not be as important in the ML models as the variation 

in damage locations. The main drawback of Model I is its poor performance for the control 
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specimen; the model predicted a fairly high damage probability. It can be noted that the absolute 

value of SBSum is an order of magnitude smaller in the control specimen than in all of the 

specimens with induced damage. A filter can be applied before the data is analyzed with the ML 

model to ensure the SBSum value is high enough to continue with the model, or an additional input 

adjusting for the difference between SBSum values across samples needs to be included. Note that 

the damage depth predicted using regression models indicates that the damage was closer to the 

top surface (in the top half of the core, Figure 63, Figure 66, and Figure 69). The cracks modeled 

in 2D-B and 2D-BR are primarily located deeper within the specimen. Additional finite element 

simulations for shallower cracks in the two computational domains (2D-B and 2D-BR) should be 

included within the training data to improve these models.  

 

Table 21: Damage probability for each PIML model compared to the DRI at each core. 

Specimen 
Core 

Number 

Model 

Number 

Damage Probability 

(from PIML) 
DRI 

Non-Reinforced 

 

(EXP-B) 

 

1 

I 0.76 

73 

II 0.23 

III 0.22 

IV 0.23 

V 0.01 

VI 0.00 

VII 0.19 

VIII 0.20 

2 

I 0.64 

58 

II 0.07 

III 0.08 

IV 0.13 

V 0.01 

VI 0.00 

VII 0.05 

VIII 0.04 

Unidirectional 

Reinforcement 

(EXP-BR1) 

3 

I 0.73 

29 

II 0.44 

III 0.42 

IV 0.46 

V 0.01 

VI 0.01 

VII 0.34 

VIII 0.34 
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4 

I 0.47 

34 

II 0.17 

III 0.16 

IV 0.17 

V 0.00 

VI 0.00 

VII 0.07 

VIII 0.07 

Bidirectional 

Reinforcement 

(EXP-BR2) 

 

5 

I 0.75 

70 

II 0.52 

III 0.50 

IV 0.52 

V 0.01 

VI 0.00 

VII 0.42 

VIII 0.44 

6 

I 0.39 

51 

II 0.06 

III 0.06 

IV 0.05 

V 0.00 

VI 0.00 

VII 0.03 

VIII 0.03 

 

 

5.8. Conclusion 

Damage localization in concrete is a complex problem in which machine learning can help to 

aid in automation and accuracy. This chapter investigated the performance of PIML models using 

VAM on realistic concrete structures. We examined classification and regression models trained 

using 2-dimensional FE simulations and some experimental test data to localize hidden cracks in 

(3-dimensional) concrete test specimens, with dispersed reactive aggregates and with 

unidirectional and bidirectional steel reinforcement. Overall, rebar did not appear to adversely 

affect the diagnostic performance; however, when adding rebars in the 2D FE simulations, model 

performance decreased in validation. Model I, trained using numerous low-fidelity (2D) FE 

simulation data (and no experimental data), appeared to perform the best on all validation 

specimens except the control specimen. This might be because data in 2D-A contained many 
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different crack locations with less variability in the other testing parameters (such as Rfreq); more 

damage locations trained a stronger model. Although some additional models did not yield 

accurate results for all cases, the addition of 2D-B and EXP-A data did improve the verification 

results. These models were able to identify the areas of higher damage probability.  

To improve this methodology for real world applications, the process needs to be automated, 

and damage prediction results should be reported in real-time. Currently, giving the classification 

result on the surface can happen quickly for a VAM test, but the depth prediction model is 

computationally expensive. The high cost for MCMC sampling could be decreased by exploring 

a different sampling technique, such as No U-Turn Sampler. Additionally, the models could be 

improved with the continued addition of physical specimens representing real-world, concrete 

structures used in training and examining an additional input or filter to ensure a low damage 

probability when no damage is present (in the entire specimen).  
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Chapter 6 

 

Summary and Future work 

 

6.1. Summary of accomplishments  

This dissertation research investigated VAM for ASR-induced damage detection in concrete 

structures as large as 0.057 m3 with unknown damage locations and rebar reinforcement. As noted 

in the literature review, a probabilistic localization of ASR induced damage in concrete had not 

been developed in earlier studies. The majority of techniques could only detect ASR induced 

damage or give a (qualitative, non-probabilistic) zone of possible damage.  Thus, we focused on 

quantitative, probabilistic localization of ASR-induced damage in concrete structures. In Chapter 

2 we examined the utility of VAM for a 15.24 cm thick plain concrete specimen with known 

damage locations and fused the damage index data for all different test parameters to identify the 

damage locations. The averaging and Bayesian fusion techniques localized the damage based on 

the sum of magnitudes of side-bands (SBSum) but still had a few drawbacks. The averaging 

technique did not provide a probabilistic value, and the Bayesian fusion method needed an expert 

analyst's input to decide a threshold value for SBSum. We addressed this problem in Chapter 3, 

which developed a classification- and regression-based PIML approach for damage prediction. 

Since 3D FEA calculations are computationally expensive, the models in this chapter were trained 

with 2D FE simulations. Both classification and regression models successfully localized the 

damage for the 15.24 cm thick specimen with localized areas of ASR damage inducement; the 

regression model also allowed us to localize damage in all three dimensions. Chapter 4 attempted 
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to improve the models from Chapter 3 by adding data from 3D FE simulations, and investigated 

how to optimize the computational effort in adding additional simulation data to a training set. We 

found that adding 50 additional low-fidelity (LF) simulations improved the diagnosis performance 

more than adding one high-fidelity simulation to the training data. We also discovered that 50 LF 

simulations were enough to localize the damage correctly. In Chapter 5, we applied the PIML 

methodology to plain and reinforced concrete specimens with uniformly dispersed aggregates, i.e., 

unknown ASR damage locations. In Chapter 5 we built the ML models with training data from 

additional 2D FE simulations for specimens of a larger depth and with simulated rebar 

reinforcement to successfully localize ASR-induced damage in both plain and reinforced concrete 

structures with dispersed ASR damage inducement.  

Notable contributions of this research include: 

• Localized ASR-related damage in a concrete specimen using VAM. 

• Examined the optimization of test parameters to improve VAM damage localization 

in large concrete specimens. 

• Built ML models to facilitate VAM internal damage localization. 

• Computational physics simulations were used to obtain adequate training data for the 

ML models.  

• Utilized 2D-simulation-data-driven ML models to perform damage diagnosis for real-

world (3D) structural components. 

• Built a discriminative ML model that classifies binary damage state at a sensor 

location to minimize analyst intervention (i.e., selecting the threshold). 

• Investigated the utility of performing Bayesian damage diagnosis for an ML prediction 

model built to expedite damage likelihood computation given VAM test data.  
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• Developed a multi-fidelity PIML model for structural damage diagnosis using a 

transfer learning approach. 

• Analyzed of the trade-offs between computational cost (to perform the computational 

physics simulations used to train the diagnostic model) and model performance in 

damage diagnosis. 

• Localized damage in plain and reinforced concrete specimens with dispersed and 

unknown ASR damage inducement. 

 

6.2. Automation 

An important aspect of the work conducted and future work discussed in Section 6.3 is the 

automation of the methodology to localize damage in large concrete specimens. The optimal VAM 

test parameters (Rfreq, Ramp, pump/probe actuator locations) depend on the location and size of the 

damage. Since this is typically unknown at the time of performing the test, the proposed 

methodology employs a multi-configuration approach. That is, VAM tests are performed for 

multiple test parameter values, and the diagnostic information obtained from multiple VAM tests 

is fused using a Bayesian method or a simple averaging method to obtain the damage map. To 

facilitate the multi-configuration testing approach, efforts were made to automate the VAM testing 

process and minimize human intervention during testing. A MATLAB® program, which 

communicates with the testing hardware (actuators and accelerometers) and sweeps through the 

pre-defined values of test parameters (probe frequencies and pump/probe amplitudes) was 

developed.  Thus, after the physical setup of testing equipment is completed, the test engineer can 

execute the program to obtain the test data corresponding to desired test parameters. The program 

also provides instant visualization of the VAM test results, as shown in Figure 70. 
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Figure 70: Display of the automated testing process: test status and results 

 

In the above automated test procedure, the testing engineer’s involvement is still needed to 

install accelerometers and actuators on the specimen. A fully automated, non-contact sensing 

system could be developed using laser Doppler velocimetry. In this case, test engineer intervention 

may only be required to install the pump/probe actuator at a few locations on the testing surface.  

 

6.3. Future work 

The VAM technique, enhanced by ML, is, in general, showing promise in terms of identifying 

the damage locations. In the future, both diagnostic models (classification and regression) could 

be improved by adding training data by including different VAM test parameters and additional 

crack locations and sizes. From an application perspective, future work needs to focus on scaling 

the technique to field implementation for damage diagnosis in real-size concrete structures. One 

of the key challenges is the number of sensors (accelerometers) needed. It is not feasible for a large 

structure to use many accelerometers; therefore, non-contact sensing and full-field observation 
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techniques (such as laser velocimetry) might be beneficial. Another challenge in testing larger 

structures is attenuation. VAM tests on larger structures will require higher amplitudes or multiple 

pump/probe actuator locations to ensure sufficiently strong signals. From a methodological 

perspective, future work needs to augment the low-fidelity data from 2D FE analyses with a few 

higher-fidelity 3D FE analyses for generating a multi-fidelity training data set. Including multi-

fidelity physics model simulation for generating training data will help build a more accurate 

machine, learning-based SHM framework; however, as seen in Chapter 4, the selection of the high-

fidelity simulation settings makes a substantial difference. 

In Chapter 4, the diagnostic test and damage parameters for the high-fidelity physics 

simulations were selected based on expert knowledge and past research. Future research could 

formulate and solve an optimization problem for the systematic selection of parameters defining 

the high-fidelity physics simulations used for training the models to maximize the diagnostic 

performance within the computational resource constraints. The high-fidelity simulations have a 

large parameter space, and the criteria for optimal parameter selection involve diagnostic 

performance, thus making the optimization more complex; previous studies on optimizing the 

high-fidelity runs have been for forward prediction models [97], [98]. Additionally, this research 

can be extended by including multiple damage locations and types and varying specimen shapes 

for generating physics simulation-based training data. The multi-fidelity framework also allows 

for the inclusion of experimental data for training an additional layer while constructing the multi-

fidelity model. All of these analyses will help improve the confidence in applying the developed 

PIML methodology to the damage diagnosis of real-world structures. 

To improve this methodology for real world applications, the process needs to be automated, 

and damage diagnosis results need to be reported in real-time. Currently, the damage localization 
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on the 2D plane is fast for a VAM test, but the depth prediction model is computationally expensive 

due to the use of Bayesian inference and MCMC sampling. The high cost of MCMC sampling 

could be decreased by exploring a different sampling technique, such as a No U-Turn Sampler. 

Additionally, the models could be improved with the continued addition of physical specimens 

representing real-world, concrete structures used in training.  

It should be noted that VAM only detects breathing cracks; it cannot detect voids or large 

openings. Also, it is not possible to determine whether the damage is due to ASR, delamination, 

shrinkage, or mechanical loading (such as seismic load, large live load, etc.). Fusing information 

gained from multiple damage diagnosis approaches can help better understand the type and extent 

of the damage for further localization, damage size estimation, and prognosis. 
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