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CHAPTER 1

Introduction

1.1 Overview

The cochlear implant (CI) is a widely successful neural prosthetic device and is the preferred method of

treatment for severe to profound hearing loss. Implants available today produce remarkable results for the

vast majority of recipients with average postoperative word and sentence recognition approximating 60%

and 70% correct, respectively, for unilaterally implanted recipients and 70% and 80% correct for bilateral

recipients(1; 2; 3; 4; 5). However, patient outcomes remain highly variable, and there is a substantial fraction

of individuals who experience poor speech recognition outcomes with CIs. CIs use an array of electrodes

surgically implanted in the cochlea to directly stimulate the auditory nerve, inducing the sensation of hearing.

When electrodes are close to their neural stimulation sites, spread of excitation is relatively small, and the

electrodes stimulate more localized regions of the auditory nerve. (6; 7) This is important because previous

research (8; 9; 10; 11; 12; 13)has shown positioning the electrodes close to the nerves is one of several factors

associated with better speech recognition with CIs. Other factors include demographics, such as younger age

and shorter duration of hearing loss, as well as scalar location of the electrode array in the cochlea, where

perimodiolar positioning within the scala tympani is associated with better outcomes for pre-curved arrays.

1.2 Generic Markers for CI Insertion

With the traditional surgical approach, the array is threaded into a small opening into the cochlea with most

of its intra-cochlear path as well as its ultimate position in the cochlea blind to the surgeon. A system

of markers on the array lead proximal to the electrodes is used to visually indicate when the generically

recommended overall insertion depth of the array has been realized once the markers reach the cochlear entry

site. However, these generic guidelines do not account for high variability in cochlear size and shape (8; 9).

The result is that most pre-curved arrays are not well positioned.(13; 14) Techniques have been proposed

for determining an optimal, patient-customized insertion vector and depth.(14; 15) The same studies also

showed that using the patient-specific insertion depth was needed to avoid over- or under-insertion of the

array.(14; 15) Under-inserted arrays result in shallow depth of the tip of the array and sub-optimal cochlear

coverage, and over-inserted arrays have electrodes lifted away from the modiolar surface where they would

be more effective (see Figure 1.1). Such sub-optimal positioning has been shown to be associated with poorer

hearing outcomes.(12; 13)
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Figure 1.1: Example of electrode insertion depths that are too deep (left) and too shallow (right) for two
patients in our database. The black electrode arrays are the actual electrode positions for these patients. The
green electrode arrays show the positioning of the same array type that is optimized to well match the shape
of the modiolar wall (indicated by blue curve) using the optimal insertion vector (orange). The actual array
positions (black) are sub-optimal due to incorrect insertion depths.

1.3 Segmentation of the Chorda Tympani

Furthermore, when performing percutaneous cochlear access, a single hole through the skull surface is drilled

to provide direct access to the cochlea where the CI can be threaded. The trajectory of this insertion typically

involves passing through the facial recess, a region approximately 1.0–3.5 mm in width bounded posteriorly

by the facial nerve and anteriorly by the chorda tympani (Figure 1.2). The determination of a safe drilling

trajectory is highly important, as damage to these structures during surgery may result in a loss of taste

(chorda) or facial paralysis (facial nerve). The use of image-guided techniques to determine safe trajectories

therefore relies heavily on accurate segmentations of the chorda to operate effectively(15). Additionally, the

understanding of inter-subject variability of spatial relationships between ear structures, such as the chorda,

is helpful for the design of electrode array insertion guidelines for more optimal CI placement (16).

Figure 1.2: 3-D rendering of the facial recess with chorda and facial nerve labelled
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1.4 Validation of the Active Shape Model for Intra-Cochlear Segmentation

Ultimately, the CI is placed within the cochlea with preference to the scala tympani as the location of the

electrodes over the scala vestibuli. As such, proper segmentation of both scala is useful for creating insertion

plans that achieve this desired result. Furthermore, understanding the shape of the intracochlear anatomy with

respect to the locations of electrode positions is useful for determining on a patient specific basis the proper

activation of electrodes in techniques such as image guided cochlear implant programming. To this end, active

shape models (ASM) have been demonstrated by (17) to provide such intra-cochlear segmentations, even

though clinical CT images normally lack the resolution to observe delineating features such as the osseous

spiral lamina. The method has been shown to be quite robust, additionally being used in large scale studies

to investigate the relationship between intra-cochlear electrode position and hearing outcomes (9) and for use

in image guided cochlear implant planning and programming techniques (15; 18; 19). However, the ASM’s

ability to capture population variability, its quantitative accuracy, and the effectiveness of its parameters have

not been fully explored and were evaluated on a limited dataset of only 5 µCT/CT pairs due to the limited

availability of specimens.

1.5 Limitations of the Active Shape Model

Active shape models (20) (ASMs) themselves have been an effective technique for medical image segmenta-

tion, particularly in these situations with limited availability of training samples. To accomplish this goal, the

basic framework of the ASM as described by Cootes (20) involves representing shape variations across all

the global-pose-normalized training exemplars in a single, linear vector space. This resulting ‘shape space’ is

then used in an iterative process that alternates between 1) searching for a noisy segmentation from an image

search and 2) refining the segmentation to the closest ‘plausible’ shape as defined by the learned shape space.

While effective, complexities in shape variation that are not well suited to the described model creation

process, such as non-linear shape variations or localized rotations, will be difficult to capture by the ASM,

particularly in low-sample-size situations. Similar to (21), we show a hypothetical example of a shape com-

prised of two fixed location rectangles. Each rectangle contains a single mode of variation, but each box

is allowed to rotate independently. The resulting shape variation modeled by the single linear vector space

of a traditional ASM will be rather complex and have difficulty in producing an accurate fit to a new ex-

emplar from the population. Meanwhile, a model composed of two weighted-ASMs could each place their

importance weighting on a different rectangle in the shape. The resulting shape variations modeled by each

ASM would be correct for the rectangle with the higher importance weighting, but still skewed for the lower

importance weighted rectangle. However, when the estimates from each weighted-ASM are aggregated, the

correct overall shape is produced by the combined model. (Figure 1.3)
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Figure 1.3: Example of two independently rotating boxes (Top) A traditional ASM, due to the single linear
vector space will produce complex eigenmodes and thus an incorrect fit when given a new example. (Bottom)
A model involving two ASMs that utilize importance weightings on a different box will produce estimates
that, when combined, will produce the desired fit.

1.6 Organization of Work

The work presented in this dissertation addresses these stated issues regarding clinical outcomes of CI re-

cipients. The organization of this work is presented as follows: Chapter 2 is an overview of related work

regarding these topics. Chapter 3 aims to study the variability in the position of landmarks that can be used to

determine insertion depth relative to the location of the modiolar wall which the array wraps around. Chapter

4 shows a generative adversarial network and weak supervision approach to chorda segmentation in clinical

CT images. Chapter 5 is a validation study of the intra-cochlear ASM by leveraging an expanded dataset of 16

specimens. Chapter 6 shows a novel extension to the traditional ASM framework called the “multi-element

ASM” for use in high-dimension low-sample-size scenarios. Finally, Chapter 7 presents the conclusions of

this work.
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CHAPTER 2

Related Work

2.1 Determining CI Placement from Cochlear Measurements

Several studies from multiple groups have studied the geometry of the various CI devices available and

discuss implications for electrode positioning (22; 23). Particular interest has been placed on understanding

correlations with angular insertion depth, with studies describing variation in angular depth of lateral wall

and precurved electrodes (24) and others describing the insertion depth where surgeons encounter resistance.

(25) Other studies quantify the effects of cochlear size on final insertion depth angle. (26; 27; 28; 29; 30; 31;

32; 17) Other studies propose methods to estimate cochlear duct length from the diameter of the basal turn in

order to select the most appropriate CI array length (31).

2.2 Segmentation of the Chorda Tympani

Little related work exists for automatic segmentation of the chorda tympani. A semi-automatic method exists

in (32) that utilizes probabilistic active shape models (PASM), but requires manual initialization by the user

to select a few points on the chorda. (17) is the first fully automatic method for adults with (33) extending this

work for paediatric cases. These utilize a minimum cost path to extract the medial-axis of the chorda based

on trained models of intensity appearance. Finally, (34) uses a U-net architecture to initialize segmentation

of the chorda and multiple other ear structures, and then refine those results with a PASM. The authors report

low dice scores of <0.5 for the chorda, however a direct comparison with the results here are difficult, as we

are more concerned with the location of the chorda rather than its very thin width, thus treating the chorda as

a contour rather than a volume.

2.3 Segmentation of the Intra-Cochlear Anatomy

Many different approaches exist in the literature regarding image segmentation of the cochlea; see (35) for

an extensive survey. Traditional image processing algorithms have been described for this purpose, with

automatic region growing and level set methods in (36), and semi-automatic active contours and level sets

utilized in (37) and (38; 39) respectively. Atlas based methods also exist in (40; 41) to predict the shape of the

cochlea in the target image by projecting a known atlas segmentation through the registration transformation.

As mentioned earlier, subtle details of the cochlea required for accurate segmentation are difficult to differ-

entiate in clinical images, thus leading to the necessity of training a model to constrain the segmentation to

be a valid shape. Using a shape prior, i.e. learning “plausible” shapes from training data, one can regularize
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segmentations obtained from noisy images; the first formal application of this concept in cochlear segmen-

tation utilized active shape models in (42) for pre-implantation CT’s, with expansions to post-implantation

CT’s in (43) and a multi-region approach in (44). An evaluation of the active shape model’s candidate search

strategy was performed in (45). In addition, (46; 47) also use the idea of shape priors to constrain the solu-

tions from their level set algorithm and a random walk model respectively, though their segmentation task is

for the entire inner-ear rather than intra-cochlear anatomy. (48), on the other hand, uses statistical modeling

to represent both shape and image appearance for use in intra-cochlear segmentation. Alternatively, instead

of learning valid shapes, statistical approaches can learn valid deformations of a reference shape. Using a

statistical deformation model with a dataset of 18 samples, (49) reports the best Dice scores and max surface

errors, but their samples are comprised of much higher resolution and contrast CT images than our study. Fi-

nally, deep learning has been a popular approach in other image processing applications, but its requirement

of large training sizes poses a difficulty in this domain; cochlear specimens, particularly those containing a

high resolution µCT, remain difficult to obtain and manually segment. Nonetheless, (50) shows a successful

application of deep learning in cochlear segmentation, producing the best mean surface error, even when

utilizing a limited training set. However, the failure cases displayed in that approach produce shapes that are

clearly impossible, whereas statistical models will, by construction, always produce a valid shape even in

the worst case. A comparison of the various statistical modeling approaches for segmenting intra-cochlear

anatomy in pre-operative CTs can be seen in Table 2.1.

2.4 Variations on Statistical Shape Models

Different approaches to statistical shape modeling exist in the literature, with numerous survey papers (51;

52; 53; 54; 55; 56; 57; 58; 59; 60; 61; 62) covering statistical shape models and the many variations arising out

of each aspect of the shape modeling pipeline. At its core, the active shape model (ASM) proposed (20) and

applied to cochlear segmentation in (42) rely on creating a global shape model with linear shape variations.

Method Number of
Samples ST Dice Score SV Dice Score Mean Surface

Error (mm)
(42) 6 0.77 0.72 0.21
(48) 9 0.77 0.73 0.12
(49) 18 0.88* 0.88* 0.11
(50) 11 0.87 0.86 0.08

Table 2.1: Comparison of the different methods for segmenting intra-cochlear anatomy in pre-operative CT
images, along with our optimized ASM. Methods are compared based on the number of training samples,
surface errors, and the Dice score for each ST/SV. Mean surface errors are calculated from the aggregated
ST/SV. (N/R) indicates not reported, while * indicates that the mean Dice score was reported instead of for
individual ST/SV.
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Subsequent variations on shape modeling, such as the one proposed in this work, focus on capturing non-

linear shape variations with the goal of increasing model flexibility. We highlight the different methods under

their mathematical representations of shapes and shape spaces.

2.5 Modeling Shape

While some methods deal with shape through direct interaction with the images and deformation fields

(63; 64; 65; 66; 67; 68; 69), most variations on shape representation still consider using original surface

representing the modeled object. A natural extension to a simple point based model would be to use different

families of functions to approximate the object’s surface (70; 71; 72; 73; 74; 75; 76; 77). Furthermore, domain

constraints can be integrated through the particular choice of shape representation; (78) explicitly considers

the selection of their PDM landmarks to account for the modeling of tubular structures, while derived features

from the original vertices provide anatomical constraints (79) or particular classes of transformation invari-

ance (80; 81). Geometric constraints are implicitly modeled in (82; 83; 84) by considering the landmark

connectivity of the original shape as the vertices and edges in a probabilistic graphical model.

Though the current work uses the original 3-D landmarks as shape representation, we note the use of

alternate shape encoding methods attempt to also model local and global shape variations; (75) and (76)

capture local and global structure by respectively utilizing polynomials and localized kernels in their surface

parameterization. Other approaches to simultaneous global/local shape modeling utilize a coarse-to-fine

strategy; wavelet methods (68; 85; 86; 87; 88; 89; 90; 91; 92; 93; 94; 95) are a common example, as localized

decompositions similar to Fourier analysis are used. Alternatively, medial-representations (m-reps) (96; 97;

98; 99; 100; 101; 102; 103) represent shape as a skeleton of points with linkages that traverse the interior of

the object; depending on the scale and type of structure under analysis, different numbers of linkages can be

used to capture different levels of variation. (100; 102) also extend this m-rep idea to multi-organ structures.

Regardless of the shape encoding method used, a local/global understanding of shape is captured by some

methods with a hierarchical approach. Models that utilize a multi-resolution approach (88; 90; 100; 104; 105;

106; 107; 108; 109; 110; 111; 112) exemplify this philosophy; local variations are captured by models at finer

resolutions while global shape dependencies are captured at coarser resolutions.

Within these hierarchical approaches, methods that are particularly relevant to the current work explic-

itly try to model localized 3-D regions of shape anatomy. (111) utilize a piecewise approach that groups

together regions with similar variation, while (104; 112), use polyaffine trees to break the anatomy into dif-

ferent hierarchical clusters based on the singular value decomposition of the 3-D spatial arrangement of the

landmark points. Furthermore, hierarchical clustering approaches have also focused on creating clusters of

salient landmarks (110) or shape points (105; 90).
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2.6 Modeling Shape Spaces

As mentioned earlier, in the original active shape model, shapes were assumed to be drawn from a single

gaussian in a linear subspace. Relaxing either of these constraints leads to another avenue through which

statistical shape models achieve additional flexibility. Spaces modeled using polynomials (113; 114), Hilbert

spaces (115), or different non-linear manifolds (116; 117; 118; 119; 120; 121; 122; 123; 124) have been

proposed to relax the constraint of the linear subspace. Other approaches focus on altering the distribution of

shapes by creating alternate probability models using gaussian mixtures (115; 125; 126), Boltzman machines

(127; 128; 129), other Bayesian-style approaches (116; 69; 77), or the integration of prior knowledge (130;

131). Deep learning methods to shape modeling and image segmentation (129; 132; 133; 134; 135; 136;

137; 138) have also been applied, but without special treatment, generally still require many samples to be

effective.

An indirect approach to modeling the underlying shape space, as is taken in this work, is to modify

the importance weighting of landmarks during the modeling and segmentation phases of the active shape

model. A mass-spring system (139) uses weighting to model geometric relationships, while local image

appearance (140; 141; 142) drives the weights to mitigate outliers in the segmentation process. (143) shares

the most similarity with our approach of using importance weighting to achieve spatial locality; however,

their approach considers localized weighting at each landmark in the shape and only during the segmentation

process. Similarly, (144) applies localized weighting for both training and segmentation in a multi-organ

framework, but considers only considers local regions as defined by individual organs instead of arbitrarily

sized and located regions in 3-D space.

Our method uses the original decomposition of the shape space using principal components analysis

(PCA). We further mention other variations on shape space decomposition utilized by other methods. As

the general goal of shape space decomposition is dimensionality reduction, sparsity techniques (145; 146;

147; 148; 149; 150; 151; 152; 153; 154; 155; 156) are a natural approach. Additionally, PCA itself has been

generalized to tensors (157; 68), kernels (158; 159), or geodesics (64; 96; 98; 101; 102; 103; 118; 160), as

well as a localized PCA model (161), robust variants (162; 163), or decompositions involving eigenfunctions

(63). Related decompositions of maximum autocorrelation analysis (164) and canonical correlation analysis

has also been used on its own to model unobserved landmarks (165) or with a generalized PCA to model

multi-organ structures (166). (126) also uses a mixture of PCA models but still performs the analysis within

the context of a hierarchical framework.
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2.7 Shape Modeling and Small Sample Sizes

Because some medical applications have difficulty obtaining samples for analysis, an additional complication

is introduced of trying to model high dimensional complex structures with very limited data. While our

method indirectly addresses this problem by finding compact representations of local regions with relatively

simple radial basis functions, other methods address this problem from a data augmentation approach; (167)

compares some of these techniques with respect to cardiac data. An example approach to data augmentation

involves generating additional examples by creating perturbations in the original training set mesh (168; 169;

170). In contrast, (171) shuffles local patches from different training samples to create new examples. Other

methods of data augmentation try to combine datasets with no point correspondence (172) or from different

modalities (173) to increase the dataset size. Meanwhile, the method in (174) mitigates the problem of high

dimensionality by modeling shape with as few manual landmarks as possible.
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CHAPTER 3

Insertion Depth for Optimized Positioning of Pre-Curved Cochlear Implant Electrodes

This work was published in: Banalagay RA, Labadie RF, Chakravorti S, Noble JH. Insertion Depth for

Optimized Positioning of Precurved Cochlear Implant Electrodes. Otol Neurotol. 2020 Sep;41(8):1066-

1071. doi: 10.1097/MAO.0000000000002726. PMID: 32569133; PMCID: PMC8054969.

3.1 Abstract

Hypothesis: Generic guidelines for insertion depth of pre-curved electrodes are sub-optimal for many indi-

viduals.

Background: Insertion depths that are too shallow result in decreased cochlear coverage, and ones that

are too deep lift electrodes away from the modiolus and degrade the electro-neural interface. Guidelines for

insertion depth are generically applied to all individuals using insertion depth markers on the array that can

be referenced against anatomical landmarks.

Methods: To normalize our measurements, we determined the optimal position and insertion vector where

a pre-curved array best fits the cochlea for each patient in an IRB approved, N=131 subject CT database. The

distances from the most basal electrode on an optimally placed array to anatomical landmarks, including the

round window (RW) and facial recess (FR), was measured for all patients.

Results: The standard deviations of the distance from the most basal electrode to the FR and RW are

0.65mm and 0.26 mm, respectively. Due to the high variability in FR distance, using the FR as a landmark

to determine insertion depth results in >0.5mm difference with ideal depth in 44% of cases. Alignment of

either of the two most proximal RW markers with the RW would result in over-insertion failures for >80% of

cases, whereas the use of the third, most medial marker would result in under-insertion in only 19% of cases.

Conclusions: Normalized measurements using the optimized insertion vector show low variance in dis-

tance from the basal electrode position to the RW, thereby suggesting it as a better landmark for determining

insertion depth than the FR.

3.2 Introduction

The cochlear implant (CI) is a widely successful neural prosthetic device and is the preferred method of

treatment for severe to profound hearing loss. Implants available today produce remarkable results for the

vast majority of recipients with average postoperative word and sentence recognition approximating 60%

and 70% correct, respectively, for unilaterally implanted recipients and 70% and 80% correct for bilateral
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recipients (1; 3; 4; 5). However, patient outcomes remain highly variable, and there is a substantial fraction

of individuals who experience poor speech recognition outcomes with CIs. CIs use an array of electrodes

surgically implanted in the cochlea to directly stimulate the auditory nerve, inducing the sensation of hearing.

The types of electrode arrays available today can be broadly divided into two classes – straight (aka lateral

wall) and precurved (aka perimodiolar). Straight arrays position the electrodes along the outer (‘lateral’) wall

of the cochlea, whereas precurved arrays are advanced into the cochlea off of a straightening stylet, or out of

a straightening sheath, and coil to attempt to match the shape of the inner (‘modiolar’) wall of the cochlea.

The coiled shape of precurved arrays is designed to position the electrodes against the modiolus because this

is where the auditory nerves are housed. When electrodes are close to their neural stimulation sites, spread

of excitation is relatively small, and the electrodes stimulate more localized regions of the auditory nerve.

(6; 7) This is important because previous research (8; 9; 10; 11; 12; 13) has shown positioning the electrodes

close to the nerves is one of several factors associated with better speech recognition with CIs. Other factors

include demographics, such as younger age and shorter duration of hearing loss, as well as scalar location of

the electrode array in the cochlea, where perimodiolar positioning within the scala tympani is associated with

better outcomes for pre-curved arrays.

With the traditional surgical approach, the array is threaded into a small opening into the cochlea with

most of its intra-cochlear path as well as its ultimate position in the cochlea blind to the surgeon. A system

of markers on the array lead proximal to the electrodes is used to visually indicate when the generically

recommended overall insertion depth of the array has been realized once the markers reach the cochlear entry

site. However, these generic guidelines do not account for high variability in cochlear size and shape (8; 9).

The result is that most pre-curved arrays are not well positioned. (13; 14) Techniques have been proposed

for determining an optimal, patient-customized insertion vector and depth.(14; 15) The approach is to align a

geometric model of an electrode array with the patient’s scala tympani, estimated using the pre-operative CT,

such that the array positioning best agrees with the inner wall of the scala tympani and uses a round window

or extended round window entry site. Example results of this process are shown in Figure 4. The aligned

model shows the position where the natural shape of the array is in best agreement with the shape of the

inner wall of the patient’s ST. The depth of the aligned model thus implies the insertion depth that should be

used for this patient’s unique cochlea shape when the array insertion vector is collinear with the base of the

aligned array model. The same studies also showed that using the patient-specific insertion depth was needed

to avoid over- or under-insertion of the array. (14; 15) Under-inserted arrays result in shallow depth of the

tip of the array and sub-optimal cochlear coverage, and over-inserted arrays have electrodes lifted away from

the modiolar surface where they would be more effective (see Figure 3.1). Such sub-optimal positioning has

been shown to be associated with poorer hearing outcomes. (12; 13)
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In this work, we aim to study the variability in the position of landmarks that can be used to determine

insertion depth relative to the location of the modiolar wall which the array wraps around. This relationship

is important because if, for example, the distance from the modiolar wall to a depth landmark is highly

variable across patients, then inserting the precurved array until a generic depth marker reaches the landmark

will lead to over- or under-insertion for many individuals. Conventionally, the round window is used as a

landmark, which is an obvious choice as this is where the array enters the cochlea. As such, all currently

available electrode arrays are equipped with visual markers that the surgeon can reference against the round

window landmark for insertion depth information. A recently marketed array, the Cochlear ™ (Sydney,

Australia) 532/632 electrode array (referred to as “E1” in the remainder of the manuscript), is equipped with

both a round window marker as well as another more proximal marker used to deploy the electrode from

the straightening sheath, which often aligns with the facial recess when the array is fully inserted. We have

learned through discussions among surgeons from several institutions that some are relying on the alignment

of this proximal marker with the facial recess, or using a notch in the facial recess narrower than the protruding

marker to secure the marker just medial or lateral to the facial recess, in order to determine final insertion

depth. Thus, in this study, we investigate the reliability of using the facial recess, as well as positions lateral

and medial to the facial recess, as a depth landmark in comparison with the round window. Inter-patient

variability in the relative locations of these landmarks could motivate the use of patient-customized insertion

depths. Conversely, landmarks found to have low variability with the optimal depth would suggest that the

same insertion depth can be generically applied to all patients.

Figure 3.1: Example of electrode insertion depths that are too deep (left) and too shallow (right) for two
patients in our database. The black electrode arrays are the actual electrode positions for these patients. The
green electrode arrays show the positioning of the same array type that is optimized to well match the shape
of the modiolar wall (indicated by blue curve) using the optimal insertion vector (orange). The actual array
positions (black) are sub-optimal due to incorrect insertion depths.
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3.3 Materials and Methods

In this study, we rely on a retrospective dataset of CT scans of 131 cochlear implant patients obtained with

local IRB approval to study variability in optimal insertion depth of pre-curved arrays. The CTs were pre-

implantation CTs obtained with standard multi-slice temporal bone protocol acquisitions with voxel size

around 0.25 x 0.25 x 0.4 mm3. For each CT scan, we used previously published “active shape model” (20)

methods to accurately localize the scala tympani (ST), scala vestibuli, and modiolus (42); and other model-

based techniques (17) to localize the FN for each of the patient CTs. These methods have been validated

extensively and shown to be highly accurate.

Since the modiolar wall has complex 3D geometry, it is not possible to directly measure variability in

distance between it and the round window or facial recess in a meaningful way. Thus, in this work, we

leverage the previously proposed approach to align a geometric model of an electrode array with the patient’s

scala tympani. (15) This approach defines the optimal depth as the depth of the aligned model. We can

then measure variability of the position of depth landmarks to this optimized electrode position for individual

patients. It is of note that optimal electrode depth can differ for a specific cochlea when varying entry site

or insertion angle. For example, in Figure 3.2 the central marker would represent the preferred depth to the

round window when inserting the array through the center of the round window approaching from a superior

angle, whereas the distal marker would be preferred for an extended round window insertion from an inferior

angle. Herein, we define the optimal depth as the one when using the optimized insertion vector as defined

above.

Figure 3.2: Example of differing optimal insertion depths for different insertion plans into the same cochlea.
The light grey electrode array has an optimal insertion depth aligned with the central RW depth marker.
However, a different insertion plan (darker grey) will have an optimal depth aligned with the distal depth
marker

We align a shape model of array E1 with the cochlear modiolus in each of the 131 CT scans in our

dataset. E1 is outfitted with three insertion depth markers that the surgeon can choose to align with the round

window (RW) cochlear entry site once the generically recommended insertion depth is reached (see Figure
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3.3). These markers are white in color and do not protrude from the lead on E1, but we indicate their position

using protruding ribs in the 3D surface models shown in the figures in this paper. E1 is also equipped with a

secondary marker that we hypothesize might well align with the facial recess (FR) when the array has reached

the generically recommended depth of insertion (Figure 3.3).

Figure 3.3: Facial nerve, scala tympani, scala vestibuli, and an electrode array placed in the ideal location.
Relevant locations and coordinate frames for analysis are indicated in the figure. When calculating the posi-
tion of −→t F

FR, the region of the FN searched as possible candidates are between the thicker dotted lines on the
FN. Actual marker distances on E1 with respect to the array base are marked at the bottom.

3.3.1 Measuring Ideal Marker Depths Relative to Anatomical Landmarks

A detailed diagram of all relevant locations and measurements can be found in Figure 3.3. To compare

the ideal depth of insertion to the generic depth recommended using the RW markers, we simply measure

the distance from each of the medial, −→p M
rw, central, −→p F

rw, and lateral, −→p L
rw, RW markers on the registered

E1 model to the point on the electrode array axis q̂ closest to the center of the RW membrane of the ST,
−→t RW . To compare ideal depth of insertion to the depth indicated by aligning the FR marker, −→p FR, with the

center of the FR, or 1mm medial or 1 mm lateral to this position, we measure the distance from −→p FR to

the point on the electrode array axis q̂ closest to the center of the FR, −→t F
FR, as well as 1mm medial, −→t M

FR,

or 1 mm lateral, −→t L
FR, to this position along q̂. While the FR is shaped by surgical resection and thus is

subject to inter-surgeon variability, we assume that positioning the notched marker medial or lateral to the

facial recess will need to fall at least 1mm medial or lateral to the facial nerve. Mathematical details about

how these landmarks and marker positions are found are included in the Appendix. Because the distances are

measured relative to positions along q̂, we can measure signed distances, where positive distances indicate

the generically recommended depth is lateral to ideal (which would lead to an insertion that is too shallow),
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and negative distances indicate the generically recommended depth is medial to ideal (which would lead to

an insertion that is too deep).

We then measure the mean and standard deviation of these signed distances across our entire dataset. As

such, a mean close to zero for a given marker would indicate that it is, on average, very close to a landmark

when optimally placed. More importantly, however, a low standard deviation for a given marker would

indicate that its position relative to a landmark is highly consistent when optimally placed. A marker with a

consistent position relative to a landmark can serve as a reliable depth indicator even if its mean distance to

the landmark is non-zero.

3.4 Results

Mean +/- standard deviation of the distances from the most basal electrode on the ideally positioned E1 to

the FR and RW sites were 9.49mm +/- 0.65mm and 2.28 +/- 0.26mm respectively. Given the FR marker

is 9.5 mm and the RW markers are 2, 3, and 4 mm from the most basal electrode on E1, the FR and RW

markers are, on average, very well located to align with both anatomical landmarks. However, it is of note

that the standard deviation is much larger for FR distance than RW distance. Thus, the RW is a more reliable

anatomical landmark than the FR for determining insertion depth.

In previous temporal bone studies where a custom depth relative to the RW was planned, it was found

that an experienced surgeon could achieve a preplanned depth accurate to within 0.5mm on average (15).

Thus, we consider a failure case to be one in which the use of a generic depth marker would lead to absolute

depth difference from ideal exceeding 0.5mm, and thus could be improved with a custom depth. A count of

failure cases when using each of the marker options is presented in Tables 3.1 and 3.2. As the mean distance∥∥∥−→t F
FR −

−→
b
∥∥∥ from the base electrode to the FR across all cases is in almost exact agreement with the generic

marker distance (9.5 mm), the number of over and under-inserted failure cases are approximately the same.

However, the effects of a larger variance in −→t F
FR are apparent, as even when simulating a marker placed at

the average FR distance, using the FR as a depth landmark would result in failures in 44% of cases. This

percentage of failure cases further increases to 79% when lateral −→t L
FR or medial −→t M

FR positioning of the FR

marker is used. On the other hand, the lower variance of RW distances allow many fewer failures, as only 5%

of cases would fail when using a simulated marker placed at the average RW distance
∥∥∥−→t RW −

−→
b
∥∥∥. If using

the generic markers, −→p F
rw or −→p L

rw, insertion depths tend to be too deep, with over-insertion occurring in 80%

and 100% of cases, respectively. Meanwhile, using −→p M
rw results in a 19% under-insertion failure rate.

In 3.4, we show boxplots of the distances of the most basal electrode to the FR, −→t F
FR, and RW, −→t RW , for

each patient. For both RW and FR, the distributions are highly symmetric with very few outliers. Also shown

for reference are the distances of both the medial RW −→p F
rw and secondary −→p FR markers of E1. As can be
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seen in the figure and discussed in the last paragraph, positioning the marker flush with the FR is already in

good agreement with the average ideal position. Therefore, positioning the current secondary marker medial

or lateral to the facial nerve (with no slack in the array lead) would produce less than ideal results. Lastly,

the generic location of −→p F
rw, is not well positioned with respect to the average RW depth. An alignment of

the RW between −→p F
rw and −→p M

rw at 2.28mm from the array base electrode would agree more with the dataset

average.

Figure 3.4: Boxplots of distances from the most basal electrode to the anatomical locations of the FR and
RW. For reference, the generic markers of −→p M

rw, and −→p FR are marked.

3.5 Discussion

Several studies from multiple groups have studied the geometry of the various CI devices available and

discuss implications for electrode positioning (22; 23). Particular interest has been placed on understanding

correlations with angular insertion depth, with studies describing variation in angular depth of straight and

precurved electrodes (24) and others describing the insertion depth where surgeons encounter resistance. (25)

Other studies quantify the effects of cochlear size on final insertion depth angle. (26; 27; 28; 29; 30) Other

studies propose methods to estimate cochlear duct length from the diameter of the basal turn in order to select

the most appropriate CI array length (31).

In contrast with prior work, in this work, we have investigated variance in ideal electrode insertion depth

of pre-curved arrays when using optimized electrode entry site and insertion vectors. We have found that

overall, the RW is a more reliable positioning landmark than the FN because variability in the position of the

Failure Type t⃗M
FN t⃗F

FN t⃗L
FN p̄FN

Deep 78% 21% 1% 21%
Shallow 1% 22% 78% 23%

Table 3.1: Percentage of failure cases (N=131) that would lead to insertions that are too deep ( ≤−0.5 mm)
or too shallow (≥ 0.5 mm) when aligning the secondary marker located 9.5mm from the E1 base medially
−→t M

FN , flush −→t F
FN , or laterally −→t L

FN to the FR. pFN shows failure rates if the secondary marker was instead
placed at the mean FN distance and aligned flush with each patient’s FN.
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RW relative to the ideal electrode position is much smaller than variability in the position of the FN (Figure

3.4). Due to this contrast in variance, a 5% failure rate is estimated to occur if using a RW marker placed at the

ideal generic position as opposed to a 44% failure rate when using a FR marker at the ideal generic position

(Table 2). While our analyses rely on one particular array (E1) as a reference, these data are indicative of

the effect of general variability of available anatomical landmarks (the round window and the facial recess)

relative to the modiolar wall, and thus are applicable for other precurved electrode arrays in general. While

the result that the RW is more reliable a landmark than the FR is intuitive, this is the first study to the best of

our knowledge to confirm this intuition, and to provide data informing surgeons who may be using the FR as

a depth landmark.

When using an ideal electrode insertion trajectory, which is associated with reduced rates of scalar translo-

cation with other precurved arrays (15), the population mean ideal depth to the RW for the array is ˜2.28mm

from the most basal electrode, which corresponds to aligning the RW closer to the distal than the middle

marker. For the FR marker, positioning it laterally to the facial nerve would lead to few overinsertion errors

but would often lead to underinsertion and reduced cochlear coverage. However, positioning the FR marker

at the mid-point of the FN is often difficult as it’s notched nature (being used to deploy off of the straightening

stylet), causes it to rest either medial or lateral to the nerve. One limitation of this work is that we assume

a medial or lateral positioning of the FR marker to be +/- 1mm to the facial nerve. In reality this is likely

an underestimation in the variability of these points since the boundaries of the FR are created by surgical

resection. As such, the reported variability in depth when placing the marker lateral or medial to the facial

recess is likely underestimated.

In a number of cases, the optimal insertion vector was very close to, and in some cases slightly intersected,

the facial nerve. The closest realizable trajectory can be found by adjusting the insertion vector angle in the

anterior direction towards the facial recess. Fortunately, optimal depth is likely highly insensitive to slight

adjustment of this vector in the anterior direction when using the pre-planned optimal entry site because

this will cause the array to deflect slightly on the floor of the scala tympani upon entering the cochlea. As

the scala tympani is narrow in the anterior-posterior direction, small deflections from the floor of the scala

Failure Type t⃗M
RW t⃗F

RW t⃗L
RW t̄RW

Deep 0% 80% 100% 2%
Shallow 19% 0% 0% 3%

Table 3.2: Table 2: Percentage of failure cases (N=131) that would lead to insertions that are too deep (
≤ −0.5 mm) or too shallow (≥ 0.5 mm) when aligning the patient RW with the three depth markers −→p M

rw,
−→p F

rw, and −→p L
rw located at 2mm, 3mm, and 4mm from the E1 base. tF

RW shows failure rates for a depth marker
located at the average RW location and aligned with each patient’s RW.
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tympani likely do not significantly impact the intra-cochlear path of the array.

While information presented in this work is directly relevant with the use of an ideal insertion trajectory,

ideal depth is likely highly sensitive to the entry site and angle of the insertion vector in the superior-inferior

direction. As shown in Figure 3.2, with slight adjustment of the entry site and superior-inferior insertion

angle, optimal insertion depth changes dramatically. Thus, while ideal depth is relatively consistent when

implementing an optimized, pre-planned insertion vector, this property may not hold when not using pre-

planned trajectories. In separate work we are investigating preplanning of the optimal insertion vector. The

results of this work imply that when using the optimized vector, in 95% of cases a generic insertion depth

relative to the RW would be successful. This represents an important step towards optimizing placement of

the electrodes. It is possible that the same insertion depth is also optimal when using non-optimized insertion

trajectories, but this will need to be investigated in future work.

3.6 Appendix

3.6.1 Measuring distances from landmarks to markers

To determine coordinate locations for −→t F
FR, −→t L

FR, and −→t M
FR, we define a coordinate system using three

orthonormal vectors q̂, r̂, ŝ originating at the location of the most basal electrode
−→
b of the registered E1

model. q̂ is defined as a unit vector pointing along the axis of the electrode array laterally towards the facial

recess. r̂ is defined as a vector orthonormal to q̂ pointing in the superior direction. ŝ is defined as a vector

orthonormal to q̂ and r̂ pointing in the posterior direction.
−→t F

FR, the location along q̂ that is even with the middle of the FR in the medial-to-lateral direction is found

by finding the closest point along q̂ to the facial nerve by solving:

mina,
−→
fi

∣∣∣−→b +aq̂−−→
fi

∣∣∣2
where

−→
fi is a vertex on the mesh of the FN. To consider only the portion of the FN adjacent to the facial

recess when finding −→t F
FR, the elements

−→
fi are constrained to be those vertices in the FN that fall within 20◦

of the plane normal to r̂ and containing
−→
b . The closed form solution for a is given by

a =
(−→

fi −
−→
b
)
· q̂

Finally, the coordinate location for −→t F
FR is defined as

−→t F
FR =

−→
b +aq̂.

In cases where the q̂ axis intersects the facial nerve, a is chosen to correspond to the midpoint between

the entry and exit intersection points of the q̂ axis with the facial nerve.
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The distances from the array base location,
−→
b , to the −→p FR FR marker location is 9.5 mm and to the −→p M

rw,

−→p F
rw, and −→p L

rw RW marker locations are 2, 3, and 4 mm along q̂, the ideal insertion vector. Thus, the signed

distance between a generic RW marker location,
−→
b +sα q̂, and the ideal location −→t RW is

(−→t RW −
−→
b
)
· q̂−sα ,

where α ∈ [M,F,L], s[M,F,L] = [2, 3, 4], and · indicates the vector dot product. Similarly, the signed distance

between the ideal FR marker locations and the generic recommendations are
(−→t α

FR −
−→
b
)
· q̂−9.5.
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CHAPTER 4

Segmentation of the Chorda Tympani Using a Weakly Supervised GAN

4.1 Introduction

Cochlear implants (CI) are a widely successful neural-prosthetic device for improving quality of life for indi-

viduals experiencing severe to profound hearing loss. These devices operate by directly stimulating the nerve

fibres inside the cochlea to create the sensation of hearing. As such, the placement of these devices within the

cochlea requires surgical procedures. One such minimally invasive technique, percutaneous cochlear access,

involves drilling a single hole through the skull surface to provide direct access to the cochlea where the CI

can be threaded. The trajectory of this insertion typically involves passing through the facial recess, a region

approximately 1.0–3.5 mm in width bounded posteriorly by the facial nerve and anteriorly by the chorda

tympani (Figure 4.1). The determination of a safe drilling trajectory is highly important, as damage to these

structures during surgery may result in a loss of taste (chorda) or facial paralysis (facial nerve). The use of

image-guided techniques to determine safe trajectories therefore relies heavily on accurate segmentations of

the chorda to operate effectively(15). Furthermore, the understanding of inter-subject variability of spatial

relationships between ear structures, such as the chorda, is helpful for the design of electrode array insertion

guidelines for more optimal CI placement (16).

Figure 4.1: Example 3-D rendering of facial recess, with chorda and facial nerve labelled.

Automated methods have been developed in previous work (17; 33) for the segmentation of these struc-

tures. These techniques have been integrated into our current clinical workflow which, while helpful, still

typically requires some manual intervention by the user to correct some inaccuracies from the segmentation

result. In particular, the segmentation of the chorda tympani is a difficult problem for traditional image pro-
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cessing techniques, as its thin nature leads to a very faint appearance in CT scans and can easily be confused

with air pockets from the surrounding pneumatized bone. (Figure 4.2)

Figure 4.2: Example image of a chorda in CT images (outlined in green). Note the faint appearance of the
structure along with similar image features occurring from pneumatized bone

The use of deep learning techniques, particularly generative adversarial networks (GAN), may provide

some benefit in this area, as they have been successfully employed to a wide range of segmentation tasks

in other medical image domains. However, the typical issue with employing a deep learning solution is

the requirement of sufficiently large quantities of labelled training data. This can be problematic, as the

creation of high-quality manual segmentations of this structure quickly becomes tedious and time-consuming.

However, the acquisition of weakly-labelled data that is only of moderate quality, can easily be attained in

large quantities from the use of other automated techniques such as atlas-based methods. Therefore, we

propose using weak supervision to augment a relatively small dataset of manually segmented images with

automatically segmented images from our large patient CT database. The goal of this work is to leverage this

idea, along with a GAN architecture to create an improved automatic segmentation method for the chorda

tympani.

4.2 Related Work

Little related work exists for automatic segmentation of the chorda tympani. A semi-automatic method exists

in (32) that utilizes probabilistic active shape models (PASM), but requires manual initialization by the user

to select a few points on the chorda. (17) is the first fully automatic method for adults with (33) extending this

work for paediatric cases. These utilize a minimum cost path to extract the medial-axis of the chorda based

on trained models of intensity appearance. Finally, (34) uses a U-net architecture to initialize segmentation

of the chorda and multiple other ear structures, and then refine those results with a PASM. The authors report

low dice scores of <0.5 for the chorda, however a direct comparison with the results here are difficult, as we

are more concerned with the location of the chorda rather than its very thin width, thus treating the chorda as

a contour rather than a volume.
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4.3 Methods

4.3.1 Dataset

Our overall dataset consists of 146 patient CT scans (anisotropic voxel size ˜0.3mm). To create our strongly

labelled dataset we create a contour representing the medial-axis of the chorda for 16 of these images. We

put these segmentations in point correspondence by evenly resampling 20 points on a spline interpolated

representation of these contours. These curves then serve as the ground-truth segmentations for our dataset.

One of these samples is reserved as an atlas image that is utilized in the training for all methods but excluded

from testing.

The remaining 130 images are then used as our weakly labeled dataset. To create these weak segmenta-

tions, we take the image from the atlas sample and automatically register it to each of these CT scans using

an existing mutual-information based approach (175; 176). The ground-truth contour from the atlas sample

is then projected through the found transformation to create our weak segmentation labels.

4.3.2 Network

Our network architecture remains consistent with the traditional GAN approach of training two competing

networks: a generator and discriminator. The generator network uses a U-net variant that employs residual

blocks as described in (177). For the discriminator network, we employ an architecture that is the same as

the encoder portion of our U-net. Detailed illustrations of each of the networks can be found in Figure 4.3.

4.3.3 Training

Regardless of whether the sample is weak or strongly labeled, the input image I ∈ R1x32x32x32 to the gen-

erator is a single channel 32x32x32 region of interest (ROI) around the sample’s chorda segmentation with

anisotropic voxel size of .3125x.3125x.625. Data augmentation is achieved by random translation and rota-

tion of this ROI with respect to the original image. The output of the generator IG ∈ R3x32x32x32 is a 3-channel

probability map each with dimension 32x32x32. The first channel in IG is a probability map of the chorda

body while the second and third channels are probability maps of the superior and inferior ends of the chorda

respectively. Example images and corresponding probability map for each of the channels can be found in

Figure 4.4. While ultimately, we will only use the body channel in the creation of our final segmentation

contours, we found during our testing that adding the extra tasks of localizing the endpoints of the chorda

was helpful for the overall chorda segmentation process.

The target of the generator Itarget ∈ R3x32x32x32 is created from the image sample via distance maps. Let

−→x i, j,k ∈ R3 be the 3-D world coordinates of the (i, j,k)th voxel in I. The probability value for voxel (i, j,k)

in channel 0 is defined as:
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Figure 4.3: Illustrations of the networks used in our GAN setup. Numbers above blocks indicate number of
channels in that layer

Itarget
0 (i, j,k) = exp

(
−0.5∗—−→x i, j,k −−→s close—2)

Where −→s close is the closest location on the contour to −→x i, j,k. The values the other channels, Itarget
1 and

Itarget
2 are defined similarly, with −→s close being replaced with the fixed 3-D coordinates of the most superior

and inferior vertices on the contour respectively. The final target Itarget of the generator network is then

defined as the concatenation of Itarget
0 , Itarget

1 , and Itarget
2 along the channel dimension.

The loss function for the generator is then defined as

LG = k ∗ BCEweak
(
IG, Itarget)+BCEstrong

(
IG, Itarget)−D

([
I, IG])

Where BCEweak,strong(·, ·) are the binary cross entropy loss functions depending on whether I was taken

from the weak or strongly labelled dataset. [·, ·] represents the concatenation operator along the channel

dimension, and therefore D
([

I, IG
])

∈ R is the output of the Discriminator network when given the con-

catenation of I and IG as input. Since we know that the probability maps that are created from the weakly

labelled dataset are not entirely accurate, we do not wish to incentivize the generator to completely match

those probability maps. Thus, we down weight the value of BCEweak in the loss function with a user defined
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Figure 4.4: Example images with corresponding probability maps for each channel. For visualization pur-
poses, colored outlines in each image represent an isosurface of 0.5 from the probability maps. Note also
how the contours in the weak labels are close, but not quite accurate to the true chorda position.

value k.

The discriminator network takes a 4-channel image where the probability maps of the chorda body and

endpoints are concatenated with the original image along the channel dimension. The output of the discrim-

inator Dout ∈ R3 is a vector indicating the probability that each channel in input tensor was created by the

generator network or was taken from the strongly labelled dataset. The idea is that we would like the network

to produce high quality maps of all three channels due to the features learned from the image rather than

producing a result that would ‘pass’ the discriminator purely because the network learned the correct spatial

relationship between the body and endpoints. Furthermore, setting up the discriminator output in this manner

allows for the future possibility of mixing real and fake images for each of the channel to further increase

network robustness. However, for this work, the target value Dtarget is defined as [0,0,0]T if taken from the

generator, or [1,1,1]T if taken from the probability maps created from the strongly labelled dataset. The loss

function of the discriminator is then defined as

LD = BCE
(
Dout ,Dtarget)

With BCE(·, ·) again representing the binary cross entropy function.

With these two loss functions, the adversarial learning objective of each network is then set up as the

discriminator network trying to distinguish if an image and its corresponding probability map segmentation
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come from the generator or the strongly labeled dataset. The competing goal of the generator is then to ‘fake’

segmentations from the input images that ‘convince’ the discriminator into classifying it as coming from the

strongly labelled dataset.

4.3.4 Testing

During testing, we use only the generator network to create the probability maps from the input image. We

then threshold the produced probability map for the chorda body and apply medial-axis extraction via voxel

thinning (178). The resulting skeleton is then converted to a contour via spline interpolation between the

locations of the remaining voxels and then placed in point correspondence with the rest of the labelled dataset

by resampling the curve to 20 equally placed positions along the contour. With this point-corresponding

contour, we can now make comparisons with the ground truth contour from our dataset.

4.3.5 Implementation Details

For the generator we use a batch size of 17. It should be helpful for training to ensure at least one strongly

labeled image existed in each batch when taking an optimization step. Therefore, for each batch, 16 images

are taken from the weakly labelled dataset and the remaining image is taken from the strongly labelled dataset.

Additionally, we use k = .01. as the down weighting value for the weak label loss. Due to the small sizes

of the images and discriminator network, we were able to fit the entire dataset into GPU memory and not

need to use batches for training. Furthermore, since the discriminator network will tend to learn much faster

than the generator, we set the discriminator to take only one optimization step for every 10 epochs stepped

by the generator. Both networks are trained using the Adam optimizer (179) with a learning rate of 1e-4 for

the generator and 1e-5 for the discriminator. Lastly, as recommended in (180) weights for batch norm and

convolutional layers are initialized from a normal distribution of mean 0 and standard deviation of 0.02.

4.3.6 Evaluation

To evaluate our method, we take the 16 images from our strongly labelled dataset and perform 2-fold cross

validation. Eight samples are taken for training and tested on the remaining samples and vice versa. As

mentioned previously, the atlas sample is used during training for its corresponding fold but excluded from

testing. As a point of comparison, we further create automatic segmentations using the existing method (17)

for the 15 non-atlas images. We then report mean symmetric surface distance between the segmentations

produced by each method and the ground truth contours for the evaluation.
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4.4 Results

Boxplots of overall and paired surface segmentation errors can be seen in Figures 4.5 and 4.6. Our proposed

method produces a mean surface segmentation error of 0.49mm +/- 0.18mm, which is lower than the original

method of 0.96mm +/- 0.55mm. The mean paired difference of 0.47mm translates to a 49% improvement

in mean segmentation performance of our method over the original method. A Wilcoxon signed-rank test

further shows this to be statistically significant. Only in 3 of the 15 cases tested did the proposed method

perform slightly worse than the original. However, we note that the original method performed unusually

well for these cases, and the segmentation error from our method was still quite low at 0.83mm, 0.59mm,

and 0.39mm. Mean surface error for each vertex using our proposed method show the largest errors to occur

at the endpoints. However, even in the worst case, mean surface error for a vertex is still sub-millimeter at

0.82mm. (Figure 4.7) Visual examples of the best and worst performing cases for our method can be found

in Figure 4.8 .

Figure 4.5: Boxplot of mean surface segmentation errors for the original automatic method (Original) and
our proposed GAN method (Proposed)

4.5 Discussion

In this work we have proposed a GAN based method for improving the automatic segmentation of the chorda

tympani. We have described a weakly supervised training process for our method that can leverage automatic

segmentations from a large dataset to create an effective network even when only few manual segmentations

exist. On our dataset of 130 weakly labelled images and 16 manually labelled images, we have shown that
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Figure 4.6: Boxplot of paired differences (Original - Proposed) in surface segmentation error between the
original automatic method and our proposed GAN method

networks utilizing only 8 manual segmentations can produce mean surface segmentation errors of 0.49mm

and significantly outperforms the existing technique. As mentioned in (181; 182) for 1mm drill bits, safe tra-

jectories must lie at least 1mm away from the facial nerve and chorda, with (183) using a 2.5mm facial recess

size for their 1.8mm robotic procedure. Therefore, since our mean segmentation errors are sub-millimeter

even in the worst case, such results are encouraging for use in trajectory planning in clinical settings. Since

these worst-case errors occur at the endpoints of the chorda, immediate future work should focus on inte-

grating the information learned by the network for the localization of these endpoints into the final chorda

segmentation. That, along with an extension of this method for use with the facial nerve will help increase

the flexibility of choosing robust and safe drilling trajectories for cochlear implant surgery.
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Figure 4.7: Mean surface error for each vertex in our proposed segmentation method. Larger vertex indices
indicate more inferior positions along the chorda. Bars represent +/- 1 standard deviation

Figure 4.8: Example segmentations of the best (top) and worst (bottom) cases from our proposed method.
Green is ground truth, Red is the result from the original segmentation method, and blue is the result from
our proposed method. For visualization purposes, we show each contour as a tube with radius of 0.1mm
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CHAPTER 5

Validation of Active Shape Model Techniques for Intra-Cochlear Anatomy Segmentation in CT

Images

5.1 Abstract

Purpose: Cochlear implants (CIs) have been shown to be highly effective restorative devices for patients

suffering from severe-to-profound hearing loss. Hearing outcomes with CIs depend on electrode positions

with respect to intra-cochlear anatomy. Intra-cochlear anatomy can only be directly visualized using high

resolution modalities such as µCT, which cannot be used in vivo. However, active shape models (ASM)

have been shown to be robust and effective for segmenting intra-cochlear anatomy in large scale datasets of

patient CTs. In this study, we present an extended dataset of µCT specimens and aim to evaluate the ASM’s

performance more comprehensively than has been previously possible.

Approach: Using a dataset of 16 manually segmented cochlea specimens on µCTs we found parameters

that optimize mean CT segmentation performance and then evaluate the effect of library size on the ASM.

The optimized ASM was further evaluated on a clinical dataset of 134 CT images to assess method reliability

Results: Optimized parameters lead to mean CT segmentation performance to 0.36mm point-to-point

error, 0.10mm surface error, and 0.83 Dice score. Larger library sizes provide diminishing returns on seg-

mentation performance and total variance captured by the ASM. We found our method to be clinically reliable

with the main performance limitation was found to be the candidate search process rather than model repre-

sentation.

Conclusions: We have presented a validation of the ASM for use in intra-cochlear anatomy segmenta-

tion. These results are critical to understand the limitations of the method for clinical use and for future

development.

5.2 Introduction

Cochlear implants (CIs) have been shown to be highly effective restorative devices for patients suffering from

severe-to-profound hearing loss. Hearing outcomes with CIs are dependent on many factors, including the

positions of the electrodes with respect to intra-cochlear anatomy (6; 2) . In recent studies, we have shown

that when the audiologist, who programs the patient’s CI by selecting a number of stimulation parameters,

is provided an estimation of the intra-cochlear positioning of the electrodes, patient-customized programs

can be created that significantly improve hearing outcomes (184; 185; 18; 19). We call this Image-Guided

CI Programming (IGCIP). To enable IGCIP, we have developed an active-shape model (ASM) (20) based
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solution for localizing the intra-cochlear anatomy, including the scala tympani (ST), scala vestibuli (SV), and

modiolus in patient CT images (42).The method has been shown to be robust as it has been used in large

scale studies to investigate the relationship between intra-cochlear electrode position and hearing outcomes

(186; 187; 188; 189; 13; 9), despite the fact that micron-level intra-cochlear structures being localized by the

ASM, such as the Osseous Spiral Lamina (OSL), which separates the ST and SV, are so small that they are

not visible in CT images (Figure 5.1). Since clinical MRI of the temporal bone at resolutions obtainable by

CT remains unsolved, CT is currently the best in vivo modality for imaging of the cochlea. However, it is

inadequate for construction of an intra-cochlear ASM because fine-scale structures such as the OSL are not

visible.

Figure 5.1: Example µCT (left) and registered CT slice (right) showing ground truth segmentations of the
scala tympani (red), scala vestibuli (blue) and modiolus (green). Labeled also is the Osseous Spiral Lamina
(OSL)

The approach originally proposed in (42) was to construct the ASM using a dataset of µCTs of 6 cochleae

specimens. The µCT modality cannot be used in vivo but has high enough resolution to visualize fine-scale

intra-cochlear anatomy in specimens. The ASM constructed using specimens could then be registered to

new patient CTs. Nonrigid image registration-based methods were proposed to automatically initialize the

ASM. While highly reliable for this task, atlas image registration alone was not accurate enough to directly

provide an accurate segmentation of the cochlea. Thus, after initialization, the ASM was optimized using the

standard method of iteratively identifying candidate positions for model points and fitting the ASM to those

candidates until convergence (20). In the fitting procedure, two types of model points were weighted with

different importance. The points in the ASM that correspond to the external walls of the cochlea, termed

“edge” points, have strong gradients in the image as shown in Figure 5.2. For these points, a line search was

performed along the surface normal to find a candidate with the strongest image gradient. The remaining

points, termed “non-edge” points, correspond to locations that have no salient image features. In the original

implementation, the ASM was found to be less likely to converge to errant local minima of the edge features

if the non-edge points were fitted to their initialization positions provided by nonrigid registration with the

atlas instead of searching for new candidates for these points. The fit of the edge points, which are driven

30



by image features, was weighted with very high importance relative to non-edge points, which were only

weighted with enough importance to ensure the ASM does not diverge to solutions far from the initialization

position.

Figure 5.2: Example ASM segmentation with labeling of exterior (blue) vs.interior (red) points of the cochlea.
Note that the exterior points generally correspond to stronger image gradients in the corresponding CT.

While the method has been robust when applied to large scale datasets, its ability to capture popula-

tion variability, its quantitative accuracy, and the effectiveness of its parameters were evaluated on a limited

dataset of only 5 µCT/CT pairs due to the limited availability of manually segmented µCTs of specimens

in the original study (42). In this study, we expand the dataset to 16 specimens and aim to evaluate the

method’s performance more comprehensively. More specifically, our goals are to determine: 1) optimized

ASM parameters, 2) the effect of training size on performance, and 3) the viability of using the ASM with

our determined parameters on a diverse population of clinical CT images. These issues are critical to under-

stand the limitations of the method for use in IGCIP and other studies evaluating the relationship between

intra-cochlear electrode position and outcomes.

5.2.1 Related Work

Different approaches exist in the literature regarding image segmentation of the cochlea; see (35) for an ex-

tensive survey. Traditional image processing algorithms have been described for this purpose, with automatic

region growing and level set methods in (36), and semi-automatic active contours and level sets utilized in
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(37) and (38; 39), respectively. Atlas-based methods are also proposed in (40; 41; 190) to predict the shape

of the cochlea in the target image by projecting a known atlas segmentation through a registration transfor-

mation. Each of those methods, while effective at segmenting the high contrast bones of the inner ear, do

not deal specifically with the segmentation problem of the intra-cochlear anatomy. As mentioned earlier, the

fine-scale structures of the intra-cochlear anatomy required to accurately differentiate between the ST/SV

are difficult if not impossible to see in clinical images, thus leading to the necessity of training a model to

estimate the location of invisible structures from the location of visible landmarks.

Using a shape prior, i.e. learning “plausible” shapes from training data, enables regularizing segmen-

tations obtained from noisy or partially occluded images. The first formal application of this concept in

intra-cochlear segmentation utilized active shape models by Noble et al. (42) for pre-implantation CT’s,

with extensions to post-implantation CT’s in Reda et al. (43) and a multi-region approach by Romera et al.

(44). An evaluation of the active shape model’s candidate search strategy was performed Gaa et al. (45). A

shape prior approach used to constrain the solution of a level set of the entire cochlear labyrinth, but not the

intra-cochlear anatomy, was developed by Zhu et al. (46), while Pujadas et al. (65) developed a solution for

intra-cochlear anatomy but only for segmenting µCT images. Demarcy et al. (48) propose using statistical

modeling to represent a shape parameterization and image appearance for use in intra-cochlear segmentation.

Further, Kjer et al. (49) propose a statistical deformation model with a dataset of 18 samples that results in

strong Dice scores and max surface errors in their validation study, but a direct comparison to our method is

difficult as the much higher quality and resolution of the CTs used in their study may also be a factor enabling

the relatively high performance of their method. Finally, deep learning has been a popular approach in other

image processing applications, but its requirement of large training sizes poses a difficulty in this domain.

High resolution µCTs of cochlear specimens remain difficult to obtain and manually segment. Nonetheless,

Zhang et al. (50) propose a successful deep learning cochlear segmentation architecture that produces results

with impressive mean surface errors, even when utilizing a limited training set. However, one limitation of

the approach is that in the small number of failure cases that occur, the approach tends to fail dramatically and

produce shapes that are clearly impossible. In contrast, the ASM approach leverages statistical regularization

to ensure highly robust performance with far fewer failures on large datasets. A performance comparison

of the various statistical modeling approaches for segmenting intra-cochlear anatomy in pre-operative CTs,

along with our current model, will be presented in the results section.
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5.3 Approach

5.3.1 Overview

Our approach for validation of the ASM-based method for segmentation of intra-cochlear anatomy consists of

three separate studies. First, we first conduct a parameter sensitivity study to determine how the various user-

defined parameters in the ASM affect segmentation performance. Using the parameters that optimize mean

segmentation errors, second, we then perform a study on the training library size, with the goal of determining

how model performance changes with the size of the training set. Finally, we perform a robustness study, in

which we use an ASM with optimized parameters to create segmentations on a large dataset of patient CTs

and compare the results with expert verified segmentations. A visual outline of our study is shown in Figure

5.3. The following sections detail our approach.

Figure 5.3: Graphical overview of the experiments conducted in this study

5.3.2 ASM training

Given a set of T training shapes, we define a shape Si as the collection of the N 3-D points {−→p i j}
N
j=1 such that

the jth point in the ith shape, −→p i j, is in point correspondence with the jth point in the kth shape, −→p k j, for all

i,k ∈ {1 . . .T}. Our use of the ASM in cochlear segmentation then generally follows the procedure described

by 7. We first choose a single shape from the training set S0 and perform a point registration between the

reference and remaining T − 1 training shapes. The function ΓSi,Sk(·) that registers shape Si to shape Sk is

defined by the rotation R, scale s, and translation −→t that solves

ΓSi,Sk = argminR,s,−→t

N

∑
j=1

w2
j ∥ sR−→p i j +

−→t −−→p k j ∥2

where w j is used to define the importance weighting for the jth point. In the context of intracochlear
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segmentation, w j is defined as w for point indices labeled edge points or (1−w) for those that are labeled

non-edge points. We further consider the parameter ξ = {similarity, rigid} to determine the form of the

transformations used when computing ΓSi,Sk . The scale factor s is optimized for the case of ξ = similarity

but constrained to s = 1 when ξ = rigid.

An initial mean shape is computed as S
′
= 1

T ∑
T
i=1 ΓSi,S0 (Si) followed by further improvement by iterating

S
′
= 1

T ∑
T
i=1 Γ

Si,S
′ (Si) until convergence to the final mean shape Y . We then register each shape in the training

set to Y to create a registered training set of shapes {Yi}T
i=1. The corresponding shape vector representations

for the mean shape y ∈ R3N and registered training shapes −→y i∈1...T ∈ R3N are defined as the concatenation of

the N points of the respective shape into a single vector. The resulting covariance matrix for the training set is

then calculated as C = 1
T ∑

T
i=1(

−→y i −y)(−→y i −y)T . The ASM is then fully defined by y and the T −1 non-zero

eigenvalues λi and corresponding eigenvectors −→e i of C, respectively. For our implementation of the ASM,

to ensure numerical stability, we discard any eigenmodes with eigenvalues λi ≤ 10−8

5.3.3 ASM estimation

Using the shape vector representation of a candidate shape −→
κ ∈ R3N we first register −→κ from the CT image

space to the ASM mean shape y to create a registered candidate shape κ̂ . The form of the registration function

matches the value of ξ used in the training process. The ASM’s estimate of the shape space coordinates

b̂ ∈ RT−1 is calculated using weighted least squares.

b̂ = (PTW TWP)−1PTW TW (κ̂ − y)

Where P =

[
−→e 1

−→e 2 . . . −→e T−1

]
is the concatenation of the eigenvectors of the ASM into a matrix

and W = diag([w1w1w1 . . .w jw jw j . . .wNwNwN ]) is the diagonal matrix W ∈ R3Nx3N of importance weight-

ings w j defined as before. To enforce the user-selected constraint that valid shapes have a Mahalanobis

distance that falls within σ standard deviations of the mean shape, the coefficients of b̂ are scaled to satisfy

∑
T−1
j=1

b2
j

|λ j| < σ2. The final fitted shape can then be reconstructed as y+Pb̂ and projected back into the target

image space as the segmentation estimate.

5.3.4 Image segmentation with the ASM

The segmentation is initialized using atlas-based segmentation techniques that rely on affine and nonlinear

image registration between the patient CT and an atlas CT. These registration methods are described in

(175; 176). The pre-defined cochlea surface of the atlas is first projected through the resulting non-rigid

transformation from the atlas to the patient CT. This atlas-based segmentation is then fitted to the ASM, and

the resulting estimate serves as the initial segmentation of the image.
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To determine new candidate update positions for each vertex and from a candidate shape −→
κ , vertex

locations are moved according to their classification as edge or non-edge points. If the point is classified as

an edge point, we use the location of the strongest image gradient observed in a line search along the surface

normal over a range of ±1 mm as the new candidate position. The gradients are computed using 0.1 mm

wide central differences on linearly interpolated image intensities. Alternatively, vertices classified as non-

edge points are not searched but are always set to their original positions determined from the initial atlas

registration. The candidate vertex locations for the mesh are subsequently fit to the ASM to create a new

shape estimate. This segmentation is then iteratively improved by repeating this process of alternating line

searches and ASM fits until convergence or a maximum of 100 iterations is completed.

5.3.5 Evaluation metrics

For our tests, we use three different error criteria: point-to-point error, symmetric surface error(191), and

Dice score (192). The point-to-point error epoint
j is defined as the Euclidean distance epoint

j =
∥∥∥−→p est

j −−→p gt
j

∥∥∥
of the corresponding jth 3-D vertex locations in both meshes. Furthermore, the surface error esur f

j of the jth

vertex is the Euclidean distance esur f
j =

∥∥∥−→p est
j −−→s gt

j

∥∥∥, where −→s gt
j is the closest location on the surface of

the ground truth mesh to the jth estimated vertex −→v est
j . As the surface error is asymmetric from estimate to

ground-truth and vice-versa, we also include backwards distance egt
j =

∥∥∥−→p gt
j −−→s est

j

∥∥∥ of the ground-truth to

estimate as part of our surface error calculations. Thus, the reported mesh-based errors for our evaluation

are the mean point-to-point error 1
N ∑

N
j=1 epoint

j and mean symmetric surface error 1
2N ∑

N
j=1

(
esur f

j + egt
j

)
. For

the volume-based Dice score calculations we convert the ground truth and estimated meshes into binarized

volumes Iest and Igt respectively. Dice scores for each estimated structure was calculated as D = 2·#(Iest∩Igt )
#(Iest )+#(Igt )

where #(·) is the number of foreground voxels in the volume contained in the argument.

5.3.6 Parameter sensitivity study

The goal of this experiment is to find the optimal user-selected parameters for use in intra-cochlear segmen-

tation. We investigate the effect of the following parameters on ASM performance: the edge point weighting

factor w, the Mahalanobis distance constraint σ , and whether a rigid or similarity transformations is used, ξ .

A range of values for {w, σ , ξ} are exhaustively evaluated using a leave-one-out validation approach. (see

Table 5.1) ASMs were trained with 15 of the samples to segment the remaining sample’s CT. Since only 11

of the samples had a clinical CT available, we note that only 11 train/test splits could be properly evaluated

for each parameter combination.
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5.3.7 Library size study

Since µCT images of cochlear specimens are costly to acquire, this library size experiment is designed to

demonstrate the number of samples needed for the ASM to achieve different levels of performance. We

evaluate the effect of the training library size on ASM segmentation performance through a sweep of all

ASM training sizes t ∈ {1 . . .15}. At each training size, we create an ASM with t samples and segment the

CT image of one of the remaining 16− t samples. Furthermore, we evaluate the segmentation performance

of each model when using only the eigenmodes that correspond to the largest 80%, 90%, 95% and 100%

of the total variation in the dataset. This training size and eigenvalue sweep is performed exhaustively for

t ∈ {1, 2, 14, 15}. To limit computation for the other training set sizes, we randomly sampled 100 train/test

pairs for t ∈ {3 . . .13}. Furthermore, since no eigenmodes exist for t = 1 we use the single training sample

as a “mean-shape” and directly register this mean-shape to the candidate CT points at each segmentation

iteration. As will be elaborated on in the results section, we conducted all tests using the best results from the

parameter optimization study, which were registration type ξ = rigid, distance constraint σ = 2, and edge

point weighting w = 1.

5.3.8 Robustness study

We validated the robustness of our ASM when trained on the full dataset of 16 samples and using the opti-

mal parameters found in the parameter sensitivity study discussed above. A previous ASM generated from

(42) had been used to create automatic segmentations of the intracochlear anatomy on a clinical CT database

of 137 ear volumes. No high-resolution ground truth segmentations exist for these volumes, but the auto-

matic segmentations were all visually verified to be clinically usable. We used our new model to re-segment

these images and compared the mean point-to-point distance between the two meshes. Any segmentations

produced by our new ASM that differ by a mean point-to-point error greater than 0.5mm were selected for

further visual inspection by an expert Otologist. For each case, the expert was presented with both our op-

timized ASM segmentation and the segmentation created using the original, unoptimized ASM, masked to

their identity. The expert was asked to assess the clinical viability of both segmentations and asked to assess

which one was more accurate in a forced choice evaluation. A high rate of viability and quality assessment

over the unoptimized ASM would indicate high robustness of our optimized ASM.

5.4 Results

5.4.1 Parameter sensitivity study

Boxplots for our parameter study can be seen in Figures 5.4 - 5.6. The effect of w on the mean segmentation

accuracy appears to be consistent across different combinations of ξ and σ . Furthermore, when w > .9
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the plots show a consistent outlier in the surface error and Dice score metrics as seen in Figure 5.5 and

5.6. This outlier corresponds to one case that had a poorer initialization than the other cases in our dataset

(Figure 5.7). Nonetheless, there is generally an improvement to mean segmentation performance across all

metrics when using larger w values. Given these observations on (w,ξ ,σ) we decided on parameters that

yielded the smallest mean point-to-point segmentation error over our dataset as shown in Table 5.1. While

we noted that the improvements from ξ and σ in terms of absolute segmentation accuracy are small, a

Wilcoxcon signed rank test (193) at w = 1 does show a statistically significant improvement in point-to-

point accuracy of (ξ ,σ) = (rigid,2) over (rigid,3) and (similarity,3) when using the Bonferroni corrected

(194) α = .05/3 = .017. A full listing of the calculated p-values for the comparisons of results between

(ξ ,σ) = (rigid,2) and results using the different parameter combinations of (ξ ,σ) at w = 1 is shown in

Table 5.2.

5.4.2 Library size study

Segmentation and fitting performance for our library size study can be seen in Figure 5.8 and Figure 5.9

respectively. Surface errors are generally small, as the segmentation surface errors of ˜0.10mm of 15 sample

ASMs approaches the corresponding fitting errors of ˜0.08mm. Point-to-point errors, however, have a much

larger discrepancy, since 15 sample ASMs have a segmentation error of ˜0.40mm with a corresponding fitting

error of ˜0.20mm. Overall, there appears to be a general trend of diminishing returns on both the segmentation

and fitting performance as training size increases. Such decreasing benefits to the ASM from more samples

can further be seen in plots of the mean total variation (Figure 5.10) and in the mean number of eigenmodes

(Figure 5.11). Indeed, the addition of more samples does little to increase the mean number of eigenmodes

in the model since 15 sample ASMs only have 9 effective eigenmodes to represent the intracochlear anatomy

(Figure 5.11). While such models would be expected to have 15− 1 = 14 eigenmodes, 5 eigenmodes on

average are discarded since they have eigenvalues below our threshold of λi ≤ 10−8.

Despite the diminishing returns from more samples, we do find that ASM segmentation performance is

Tested Values Optimal Value

Edge point weight-
ing w

0.0, 0.0001, 0.01, 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99,
0.999, 1.0

1.0

Registration type ξ Rigid, Similarity Rigid
Mahalanobis Dis-
tance Constraint σ

2,3 2

% Variation Cutoff
in ASM 80%, 90%, 95%, 100%, 90%

Table 5.1: Tested and optimized parameter settings for the ASM
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Figure 5.4: Boxplots of segmentation point-to-point errors for the parameter tuning study. Means are marked
with green triangles.

increased when using the largest 90% of the eigenmodes in a 15 sample ASM. This leads to an optimized

ASM performance of 0.36mm point-to-point error, 0.10mm surface error, and 0.83 Dice score. In Figure

5.12, we show a heatmap of mean performance errors of our optimized 15-sample ASM on our ground truth

dataset. We find that larger surface errors tend to localize at the basal end of the cochlea, while the large point-

to-point errors are distributed across the basal end and the first turn of the cochlea (Figure 5.12). Observing

point-to-point error in the basal turn where surface errors are low indicates point-to-point errors tend to be

tangential to the surface in this region.

5.4.3 Robustness study

Out of the 137 ear volumes tested, we found 11 cases that diverged in mean surface distance from the original

automatic solution by 0.5mm. In our masked qualitative evaluation experiment with these 11 cases, the clin-

ξ = rigid, σ = 3 ξ = similarity, σ = 2 ξ = similarity, σ = 3
Mean point-to-point 0.001 0.034 0.001
Mean Surface 0.034 0.483 0.139
Mean Dice 0.027 0.650 0.207

Table 5.2: One-sided Wilcoxon signed rank p-values of the paired samples at w = 1 comparing (ξ = rigid,
σ = 2) performing better than the other combinations of ξ and σ . Significant p-values (p < .017) are shown
in bold
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Figure 5.5: Boxplots of segmentation surface errors for the parameter tuning study. Means are marked with
green triangles.

ician found all segmentations produced by our optimized ASM to be clinically viable. Further, the clinician

preferred the segmentations produced by our proposed optimized ASM over the original ASM for 7 of the

11 cases (Table 5.3). While the experiment was performed with forced choice, the expert mentioned that

for many cases the two segmentations were virtually equivalent. In the 4 cases where the optimized ASM

result was not selected (shown as bold rows in the table), mean-surface differences between the original and

optimized ASM segmentations were among the smallest of all 11 cases, implying that for these cases the two

results were likely nearly equally accurate. Representative cases that visually demonstrate this are shown in

Figure 5.13.

5.5 Discussion

In this work, we have used our dataset of 16 specimens to comprehensively validate the ASM’s use in intra-

cochlear anatomy segmentation. We found optimal parameter settings of w = 1, ξ = rigid, and σ = 2

as our optimal parameter settings for the ASM. We further found that segmentation performance is most

optimized when using the eigenmodes representing largest 90% of the variation. These settings lead to an

optimized ASM performance of 0.36mm point-to-point error, 0.10mm surface error, and 0.83 Dice score.

We tested this optimized ASM on our clinical dataset of 137 volumes and found that it was quite robust

by producing clinically viable results in all cases. Though 4 cases were not preferred by a clinician over
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Figure 5.6: Boxplots of segmentation Dice scores for the parameter tuning study. Means are marked with
green triangles.

the original ASM segmentation, it should be noted that those cases had the lowest mean surface difference

between both segmentations. In these cases, the shapes produced by both methods were visually similar

where one segmentation would be only slightly preferred over the other. Meanwhile, for those cases that had

the largest discrepancies, the clinician preferred the result of our parameter-tuned model, thereby suggesting

those differences as clear visual improvements to the segmentation result over the original ASM.

While the acquisition of more samples would generally lead to better performance and more captured

shape variation, our results from our library size study suggest the onset of diminishing returns for larger

training sizes. Indeed, the total number of eigenmodes in our models still resembles a linearly increasing trend

with more samples, but we note that the effective number of eigenmodes utilized by ASMs trained with T

samples is much lower than the theoretical T −1 eigenmodes that should exist in those models. For example,

a 15 sample ASM has, on average, only 9 eigenmodes with eigenvalues greater than our threshold of 1e-8.

Furthermore, the converging trend of fitting errors and mean total variation suggests progressively less shape

variation is added to the model with the addition of more samples. Finally, when considering segmentation

performance across all our metrics, the observed converging trends suggests progressively fewer benefits

provided by larger training sizes to the accuracy of the segmentation result.

However, our results do show some limitations to our current implementation of the ASM. From our

outlier case found in our parameter study and depicted in Figure 5.7, we find that segmentation performance
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Figure 5.7: Comparison of initialization positions for a typical case (left) and the observed outlier case in our
parameter sensitivity study (right). Ground truth is shown in green while the initialization position is shown
in red.

can still be adversely affected from bad atlas initializations to the ASM. While the ASM is designed to offer

a level of robustness to some noisy candidate locations, a highly incorrect initialization will be less likely to

lead to an accurate ASM segmentation.

Another limitation to our approach stems from the rotational symmetry of the cochlea’s shape. We found

that segmentation surface errors are generally quite small, even achieving rough parity with the fitting errors.

However, point-to-point errors are much larger and have a higher discrepancy between measured segmen-

tation and fitting performance. These results suggest that the overall surface shape of the intra-cochlear

anatomy is accurate, but the vertex locations are shifted tangentially on the surface. Such behavior shows the

limitation of our simple line search method since candidate locations are chosen without considering infor-

mation in the tangent plane of the surface. Instead, candidates are chosen with line searches and intensity

gradients measured normal to the surface. Therefore, for a very rotationally symmetric shape such as the

cochlea, these edge gradients would indeed be on the surface, but would be ambiguous as to where on the

surface the correct location should be. The estimate surface produced by the ASM would then match very

closely to the true cochlea surface but would be rotated about the axis of symmetry. This effect can be clearly

seen by the localization of larger surface errors predominantly in the basal end of the cochlea.

A comparison of our optimized ASM with the other results from the literature can be seen in Table 4.

Overall, the mean performance numbers compare favorably to the other methods. The Dice score improves

upon the scores of (42; 48) and the mean surface errors are slightly better to that of (48; 49). As the Dice score

reported in (49) was calculated for a model with a combined ST/SV volume, we cannot directly compare our
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Figure 5.8: Mean segmentation performance for the library size study at different percentage thresholds of
model variation. (Clockwise from top left): Point-to-point errors, surface errors, Dice scores

Dice results which were calculated for each individual scala. However, we do note that our method was able

to slightly outperform that method in terms of surface errors despite our method using fewer samples and

segmenting lower resolution CT images. Finally, while the results from (50) still provides the best overall

performance across all metrics, we note that the method sometimes fails under difficult image conditions. In

contrast, our optimized ASM can produce clinically viable segmentations for images with a range of different

image qualities.

Overall, the level of performance achieved with our optimized model achieves similar performance to the

rest of the literature and is robust enough for use in clinical applications such as IGCIP. However, due to the

rotational errors resulting from our line search method, care should be taken in applications that require high

localization accuracy of landmarks in the basal end of the cochlea. While the acquisition of more samples and

larger library sizes will generally lead to better performance, our results suggest that future work in improving

ASM segmentation performance should be more focused on improvements to the candidate searching strategy
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Figure 5.9: Mean fitting errors for the library size study at different percentage thresholds of model variation.
(Left) Point-to-point errors (Right) Surface errors

Figure 5.10: Mean total variance explained by an ASM for different training sizes. Total variance for an ASM
is obtained by taking the sum of the eigenvalues in that model. Vertical bars represent 1 standard deviation.

and atlas initialization method.
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Figure 5.11: Mean number of eigenmodes present in an ASM when at different percentage thresholds of
model variation. Vertical bars represent 1 standard deviation

Figure 5.12: Heatmap of mean surface (top) and point-to-point errors (bottom) when validating 15 sample
ASMs with our optimized settings from Table 5.1
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Figure 5.13: Example segmentation slices from our robustness study where the new ASM segmentation
differed by >0.5mm from the original ASM result. Segmentations shown in green were produced by the
original automatic method and the segmentations produced by our optimized ASM are shown in red. (Left)
A result where the clinician selected the new ASM segmentation. (Right) One of the 4 results where the
clinician selected the original ASM segmentation.

Case
Number

Mean Point-
to-Point
Difference
(mm)

Mean
Surface
Distance
(mm)

Selected By
Clinician

Clinically
Viable

1 0.522 0.102 N Y
2 0.517 0.173 Y Y
3 0.544 0.110 N Y
4 0.600 0.195 Y Y
5 0.522 0.102 N Y
6 0.668 0.144 Y Y
7 0.544 0.139 N Y
8 0.711 0.170 Y Y
9 0.576 0.158 Y Y
10 0.883 0.224 Y Y
11 0.513 0.139 Y Y

Table 5.3: Results of the 11 cases where the optimized ASM produced a segmentation that differed from the
original ASM segmentation by 0.5mm point-to-point when performing our robustness study over 137 cases.
In bold are the 4 cases where the clinician preferred the result of the original ASM segmentation over the
result produced by the new model.
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Method Number of
Samples ST Dice Score SV Dice Score Mean Surface

Error (mm)
(42) 6 0.77 0.72 0.21
(48) 9 0.77 0.73 0.12
(49) 18 0.88* 0.88* 0.11
(50) 11 0.87 0.86 0.08
Optimized
ASM 16 0.83 0.83 0.10

Table 5.4: Comparison of the different methods for segmenting intra-cochlear anatomy in pre-operative CT
images, along with our optimized ASM. Methods are compared based on the number of training samples,
surface errors, and the Dice score for each ST/SV. Mean surface errors are calculated from the aggregated
ST/SV. (N/R) indicates not reported, while * indicates that the mean Dice score was reported instead of for
individual ST/SV.
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CHAPTER 6

An Active Shape Model with Locally Weighted Elements

6.1 Abstract

While state-of-the-art deep learning methods consistently provide the most accurate image segmentation

results when sufficient training datasets are available, in some applications large datasets are difficult to

acquire. Active shape models (ASM) have been a successful technique in medical image segmentation and

require less extensive datasets for training. However, the ability of the ASM framework to capture complex

shape variation is limited by representing variations across all T global-pose-normalized training exemplars

in a single, linear vector space. In this work, we describe a novel non-linear extension to the ASM in the form

of a mixture of landmark weighted ASMs. We describe the training procedure and demonstrate the advantage

of this approach with a synthetic box dataset and 3 real-world datasets of the cochlear labyrinth, full ear, and

chest. The trained models appear to use the limited training data efficiently by capturing simple intuitive

regions of the overall shape. We find that our proposed model can outperform a traditional ASM with similar

sample sizes in a variety of scenarios and can leverage information from surrounding structures to display

robust performance against anatomical outliers. These results show the method’s potential advantages in

applications that are limited by small shape libraries.

6.2 Introduction

While the current state-of-the art trend for achieving high-accuracy segmentations typically involves deep

learning approaches with sufficiently sized datasets, achieving good accuracy with these techniques on smaller

sample size applications is not particularly straightforward (195). These cases of limited training sample

availability are still relevant, however. For example, a model for inner ear structures can only be constructed

by ex vivo specimen imaging modalities such as µCT (42), and manual segmentations on a large scale can

make dataset acquisition costly and time consuming.

Active shape models (20) (ASMs) have been an effective technique for medical image segmentation,

particularly in these situations with limited availability of training samples. To accomplish this goal, the basic

framework of the ASM as described by (20) involves representing shape variations across all the global-pose-

normalized training exemplars in a single, linear vector space. This resulting ‘shape space’ is then used in an

iterative process that alternates between 1) searching for a noisy segmentation from an image search and 2)

refining the segmentation to the closest ‘plausible’ shape as defined by the learned shape space.

While effective, complexities in shape variation that are not well suited to the described model creation
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process, such as non-linear shape variations or localized rotations, will be difficult to capture by the ASM,

particularly in low-sample-size situations. Similar to (21), we show a hypothetical example of a shape com-

prised of two fixed location rectangles. Each rectangle contains a single mode of variation, but each box

is allowed to rotate independently. The resulting shape variation modeled by the single linear vector space

of a traditional ASM will be rather complex and have difficulty in producing an accurate fit to a new ex-

emplar from the population. Meanwhile, a model composed of two weighted-ASMs could each place their

importance weighting on a different rectangle in the shape. The resulting shape variations modeled by each

ASM would be correct for the rectangle with the higher importance weighting, but still skewed for the lower

importance weighted rectangle. However, when the estimates from each weighted-ASM are aggregated, the

correct overall shape is produced by the combined model. (Figure 6.1)

The goal of this work is to this multiple weighted-ASM idea to address the limitations of the traditional

ASM described above. We propose the ‘multi-element ASM’ as an extension to the ASM framework. In

our model, we describe a way of increasing the degrees of freedom in the model while determining those

degrees of freedom using anatomical variations that exist within the dataset, rather than, e.g., adding random

variance. This is accomplished by determining regions of the shape that can be best described with specialized

weighted-ASMs which we label as “elements” and combining the estimates of these elements into a global

shape. In doing so, we aim to use our limited training samples to represent shape variation as efficiently as

possible.

When given a high dimension, low sample size scenario involving a complex shape with many landmarks

and a small training library, there exists the possibility of determining spurious correlations between distant

unrelated regions due to random chance. A traditional ASM will be more likely in this scenario to capture

such relationships between uncorrelated parts of the shape as all landmark variation will be modelled by a

single linear vector space. As shown by our box example, the traditional ASM modeled a linear correlation

between both rotating boxes since there were insufficient samples, and therefore degrees of freedom in the

linear vector space, for the ASM to fully ‘understand’ the independent rotations of each constituent box.

Our multi-element model can reduce this type of error as we 1) increase the model degrees of freedom with

multiple elements and 2) use the intuition that points in closer proximity will tend to have more meaningful

correlations with each other than more distant points. The use of the locally weighted ASMs in our box

example shows how the added degrees of freedom introduced by each element allowed for the flexibility to

each capture the true local correlations of each sub region and combine their estimates together to produce the

correct result. Furthermore, the ability for an element to still place non-zero weight to distant points provides

the capacity to model correlations between distant points as needed. An advantage of our approach is that we

determine these importance weightings for each element in a data-driven way through the minimization of
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fitting error on a left-out sample in the training set.

There is a tradeoff, though, between model flexibility and robustness. The addition of more degrees of

freedom is useful for capturing more shape variation present in complex shapes, thereby providing more

accurate segmentation estimates when given good candidate points. However, too many degrees of freedom

run the risk of falling into poor optima during segmentation, as the model not only fits to the shape described

by the candidate points, but also the noise present in those points from the image. This can be particularly

true in cases where there is little extra shape variation to be gained from additional degrees of freedom. For

example, if we were to have a shape comprising of just one of our boxes, a traditional ASM would perform

well here by capturing the single mode of variation. A multi-element ASM would add more degrees of

freedom than the traditional ASM but would be more likely to produce worse estimates during segmentation

time since those degrees of freedom would be used to fit to any noise present in the candidate points.

With our multi-element ASM, we propose a method that balances this flexibility/robustness tradeoff. We

use a data-driven approach in our specialized training process to optimize elements that capture robust regions

described from localized rotations. We further test our model against a traditional ASM on a variety of dataset

scenarios to better understand instances where our model would provide the most benefit. Taken together,

this gives the framework for using the multi-element ASM as a tool in analyzing and segmenting small shape

libraries.

6.2.1 Related Work

Different approaches to statistical shape modeling exist in the literature, with numerous survey papers (57;

53; 54; 55; 56; 52; 58; 59; 60; 61; 62; 51) highlighting statistical shape models and the many variations arising

out of each aspect of the shape modeling pipeline.

The concept of using gaussian mixture models within the ASM has been proposed in (125) to use as a

way of modelling the space of valid shapes in shape space. While our work does use gaussians to draw the

importance weighting for different elements, the shape space for each element still utilizes a single linear

vector space. Furthermore, weighted ASMs have been proposed in various forms such as (140), (196). This

concept is used heavily in our method by allowing for the weighting of landmark points so that weighted

least squares can be used rather than regular least squares fit to the shape space as in the traditional ASM.

However, on its own, the weighted-ASM still uses a single linear vector space to describe shape variation.

Partitioning approaches are taken in (21), (196) to separate the overall shape into distinct sub-regions for

modelling by different ASMs. Like our work, these partitions are determined through optimization of an

objective function. However, interactions between different ASMs are limited, effectively capturing the shape

variability of different regions independently from one another. Hierarchical models such as (196; 88; 110)

49



utilize multiple ASMs to represent shape variation in a coarse to fine manner. These increasing degrees of

locality do impose relationships between models, but this is not the approach that we use in this work. In

our approach, multiple element-ASMs can have importance weighting that overlap across landmarks, thereby

allowing for interactions between different element-ASMs in predicting landmark location. However, we do

not impose any hierarchical relationships between these models, instead allowing each element to determine

its own level of locality needed to produce the best estimate in concert with the other elements in the model.

As opposed to the hierarchical or partitioning approaches described above, our model uses weighted

elements to determine regions that can be modeled with localized rotations. We hypothesize our model

performing well for bony structures where shape variation of different regions can be intuitively seen in

this localized manner rather than as acting part of an overarching hierarchical structure. Furthermore, the

use of weighted elements throughout all points does allow for the interaction between different regions,

thereby providing robustness through interactions that would otherwise not be present when using multiple

independently working models.

6.3 Multi-Element ASM

6.3.1 Overview

Our proposed muti-element ASM framework uses multiple, weighted-ASMs to capture regional shape vari-

ation. For clarity, we will refer to an individual weighted-ASM in our model as an “element”. Each element

utilizes its own unique set of optimized importance weights for all N 3-D points defining the shape. There-

fore, each point will have a different importance weighting, and thus estimated position, based on the element.

By combining these different estimates for the point to create the final location, we allow for the modeling of

a point’s location from the interaction of multiple ASM elements rather than the responsibility of any single

ASM. Finally, our model can be easily implemented in the readily available deep-learning frameworks such

as Pytorch (197). Doing so allows us to leverage the automatic differentiation features already available in

these frameworks to easily optimize the weights of each of these elements.

A straightforward method to determine the N importance weights for each of the M elements in our model

would be an optimization method where all N ∗M values are selected to minimize the overall fitting error on

a training set. However, our initial experiments showed that such a formulation is a difficult optimization that

is too prone to poor-performing local minima to be a viable approach. Therefore, we use a gradual method

that first performs a simpler optimization requiring fewer parameters to select the importance weights for

the M elements. Those determined importance weights are then used as the initialization point of the full

optimization method involving all N ∗M importance weights as free parameters.

For the initial optimization, we simplify the number of free parameters by introducing the concept of
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a gaussian-shaped element. For these elements, we constrain the distribution of its importance weighting

by modeling it with a full-covariance gaussian placed in 3-D space with respect to an atlas shape. As a

result, the importance weighting of a single gaussian-shaped element is fully defined by the optimization of a

mean vector −→µ ∈ R3 and covariance parameters −→c ∈ R6. Therefore, a multi-element ASM utilizing multiple

gaussian-shaped elements can capture the shape variability of different contiguous regions while keeping the

optimization manageable. We additionally add a single global element with N free parameters at this stage

to help model any correlated disjoint regions or portions of the shape which are not given high importance

weighting from any of the gaussian-shaped elements.

In the following, we will first describe how individual ASM elements are defined, and then we show how a

final shape estimate is created from a multi-element ASM comprised of M elements. We then describe the full

optimization process of the multi-element ASM for single and multi-structure settings. Finally, we describe

our segmentation and evaluation methods for our different datasets: simulated boxes, cochlear labyrinth,

multiple ear structures, and multiple chest structures.

6.3.2 ASM Element Creation

For a multi-element ASM comprised of M elements, if the ith element is a gaussian-shaped element, we

define a 3-D gaussian with mean vector −→µi ∈ R3 and covariance matrix Γi ∈ R3x3 with respect to an atlas

shape. Therefore, the importance weighting wi, j of the jth point in this ith element is calculated as

wi, j = exp
(
−
(−→

µi −−→aj
)T

Γ
−1
i
(−→

µi −−→aj
))

Where −→a j∈1...N are the 3-D coordinates of the jth atlas point. Since this calculation will be part of an

optimization process, we utilize a log-cholesky parameterization for Γ
−1
i . Using a parameter vector −→γi =

[γi,1γi,2 . . .γi,6], we create the lower triangular matrix Li as

Li =


eγi,1 0 0

γi,2 eγi,4 0

γi,3 γi,5 eγi,6


The resulting inverse covariance matrix Γ

−1
i = LiLi

T used in the calculation of wi, j will have the required

property of being symmetric positive semi-definite while remaining uniquely defined by the unconstrained

parameter vector −→γi

Global elements, in contrast, have N free parameters φi, j ∈ R which we constrain with a differentiable

mapping for optimization purposes to importance weights in the range of (0, 1) via the sigmoid function.
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wi, j =
1

1+ e−φi, j

Regardless of the type of element, the training of the ith element then proceeds similarly to the original

ASM formulation as described by [3], but we use as the values of the calculated wi, j as the importance

weighting during the Procrustes shape registration. We choose a shape from the T samples in the training

set as reference and register the remaining T −1 training shapes to it in a weighted least squares sense using

rigid transformations. The registered training shapes −→y i, t∈1...T are then used to iteratively create a mean

shape yi =
1
T ∑

T
t=1

−→y i,t for this ASM element. We note that −→y i,t and yi are 3N shape vectors created from the

concatenation of the N 3-D points in their corresponding shapes. Furthermore, unlike the covariance matrix

used in the original ASM formulation, we calculate a weighted covariance matrix

C =
1
T

T

∑
t=1

(−→y i,t −yi
)

WiW T
i
(−→y i,t −yi

)T

Where the diagonal matrix Wi = diag([wi,1wi,1wi,1 . . .wi,Nwi,Nwi,N ]) is formed from the learned impor-

tance weights wi, j. By using this weighting of the covariance matrix, we focus the variation captured by

the resulting eigenmodes on those regions of the overall shape that are more highly weighted for this ASM

element. The ith element in our multi-element ASM is fully defined with the resulting T − 1 eigenvectors

−→e i,t with non-zero corresponding eigenvalues λi,t of C along with the mean shape yi.

6.3.3 Shape Estimation with the Multi-Element ASM

Given a candidate shape −→c ∈ R3N we produce the ith shape estimate x̂i ∈ R3N from the ith element by first

rigidly registering −→c to yi to create a registered candidate shape ĉi. Since we used a weighted covariance

matrix in the creation of the element, we calculate the shape space coordinates b̂i ∈ RT−1 from this element

using the weighted displacements from the mean shape d̂xi =Wi (ĉi −yi) and using weighted least squares

b̂i =
(
Pi

TWi
TWiPi

)−1
PT

i W T
i Wi(d̂xi)

Where Pi =
[−→e i,1

−→e i,2 . . .
−→e i,T−1

]
is the concatenation of the eigenvectors of the ith element, and Wi is the

same diagonal importance weighting matrix used in the element’s creation. Each of the coefficients of b̂i are

then clamped to fall into the range of user selected number of standard deviations σ . The fitted shape is then

created by yi +Pib̂i and then projected back into the original space of −→c to create the shape estimate x̂i for

this element. The final position estimate x̂j ∈ R3 of the jth point in the shape is achieved by
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x̂j =
M

∑
i=1

(
w

′
i, j · x̂i,j

)
Where x̂i,j is the ith element estimate of the jth shape point and w

′
i, j are the L1 normalized importance

weights across all M elements for the jth shape point given by:

w
′
i, j =

wi, j

∑
M
k=1 —wk, j—

With these normalized weights, the final shape estimate x̂ is therefore calculated as the weighted average

of the shape estimates x̂i produced by each element in our multi-element ASM.

6.3.4 Training the Full Multi-Element ASM

As mentioned in the methods overview, the optimization of the M element ASM starts with a simpler model

comprised of M −1 gaussian-shaped elements and a single global element. We will use the convention that

the first M−1 elements are gaussian-shaped elements and the Mth element in the model is the global element.

The gaussian-shaped elements are initialized with a spherical k-means clustering with M−1 clusters on

the N 3-D points in the atlas shape. The means of each of the found clusters are used as the initial mean

parameters −→
µ i∈1...M−1. Since we will be optimizing the log-cholesky parameters of the inverse covariance

matrix, the radius ri∈1...M−1 of the ith cluster results in an initial parameter −→γi vector for the ith element as:

−→
γi =

[
ln(1/ri) 0 0 ln(1/ri) 0 ln(1/ri)

]
The global component, conversely, is initialized with φM, j∈{1...N} = 0. At each training epoch we use

a leave-one-out strategy so that a sample xt serves as the validation shape and the remaining T − 1 samples

train the M components as described above. To mitigate overfitting and to simulate noisy candidate shapes

that would be encountered during segmentation, instead of fitting the noiseless validation sample xt to the

resulting model, it is helpful to create a noisy validation shape xt+
−→
ε by adding a spherical, zero mean

gaussian noise vector −→ε ∈ R3N with radius on the order of the search range bounds that will be used in the

segmentation process.

The noisy validation shape xt+
−→
ε is then fit to the overall model to produce a shape estimate x̂t. The

objective function is then the mean squared point-to-point fitting error over all leave-one-out splits

L =
1

T N

T

∑
t=1

N

∑
j=1

—x̂t,j −xt,j—2

The gradients with respect to the model parameters are computed using the automatic differentiation
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mechanism in PyTorch [22] and then optimized with the Adam optimizer (179) until convergence.

Once converged, the resulting wi, j are used as the starting point for a final refinement optimization. How-

ever, in this process, the first M − 1 elements are no longer treated as gaussian-shaped elements, and the

optimization of the M element ASM proceeds as containing all global elements with all N ∗M importance

weights as free parameters. Since global elements use the sigmoid function to constrain elements in the range

[0, 1] the φi, j for this optimization stage should be initialized as

φi, j = log

(
winitial

i, j

1−winitial
i, j

)

Where winitial
i, j is the importance weight learned from the initial optimization. The optimization process

for this stage then continues as before, still using the mean squared point-to-point error over all leave-one-out

splits as the objective. Once converged, the learned importance weightings are used as the final values for the

wi, j used in our multi-element ASM.

6.3.5 Segmentation with the Multi-Element ASM

Segmentation of a new image with a trained multi-element ASM involves an iterative process that begins

with an initial segmentation. The specifics of each dataset’s initialization will be elaborated in the evaluation

section when describing each of our datasets in greater depth. Regardless, the initial segmentation is first fit

to the multi-element ASM. New candidate points are found with line searches within a specified range along

the surface normal as in the traditional ASM. For our line searches, we use the normalized derivative intensity

profiles method described in (198) to find improved candidate locations from the image. We then repeat the

process of fitting the candidate shape to our multi-ASM mixture and finding new candidate points from the

image until convergence.

6.3.6 Extension to Multi-Structure Settings

For shapes comprising of multiple known structures, such as the chest and full ear datasets that will be de-

scribed later, we can extend our multi-element ASM framework to integrate the information of surrounding

structures in the modeling of an individual structure. Suppose the shape is comprised of Ψ anatomical struc-

tures Λs∈{1...Ψ}. If we wish to create a structure-specific multi-element ASM for the sth structure Λs, we start

with the initial spherical k-means clustering only on the points contained in Λs to create the initial parameter

vectors −→µi and −→
γi for each element. The optimization then continues for both stages as before, with weights

wi, j being optimized regardless of whether the jth point belongs to Λs. However, the objective is modified to

optimize only the mean squared point-to-point error for the points belonging to Λs
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L =
1

T ∗#(Λs)

T

∑
t=1

∑
j∈Λs

∣∣x̂t,j −xt,j
∣∣2

Where #(Λs) is the number of points belonging to Λs. With this modified optimization, shape variation

captured by our model is mainly focused on the individual structure. However, due to the optimization of

wi, j regardless of structure, information provided by the surrounding structures that may be beneficial to the

modeling of Λs can still be retained.

During segmentation, we still perform the iterative process of line-searching and fitting candidate points

to create the final estimate of all structures in the shape. However, in this case, we can use all Ms∈{1...Ψ}

multi-element models simultaneously, where Ms is the structure-specific multi-element ASM for Λs. At

iteration τ the estimate of the full shape from the previous iteration x̂τ−1∈R3N is comprised of the N points

x̂τ−1
j ∈ R3. A line-search in the image from those points then create updated positions

−→
xτ

j ∈ R3. We then

create Ψ estimates by fitting candidate shapes
−→
cτ

s to each corresponding model Ms. For each candidate shape
−→
cτ

s , the N points −→ps,j comprising that shape are defined as:

−→ps,j =


−→
xτ

j i f j ∈ Λs

x̂τ−1
j otherwise

The resulting Ψ number of fits x̂τ
s , are then combined to create the final estimate x̂τ for this iteration by

taking only the points corresponding to Λs from each structure-specific estimate x̂τ
s . By performing segmen-

tation in this round-robin manner we are leveraging the most recent values of surrounding structures to help in

the estimation of each individual structure without having to consider to the order of the estimates performed.

6.4 Evaluation

6.4.1 Synthetic Box Dataset

We demonstrate the multi-element concept by creating a synthetic dataset that extends the rectangle example

to 3-D. We generate 100 random shapes where each shape consists of two boxes whose centers are located

at (40, 40, 40) and (60, 60, 60). Each box has a fixed width of 5 units and a normally distributed height

with a mean of 15 units and standard deviation of 7 units. Each box is then given a random rotation about

its own center. This setup imitates our rectangle scenario in that each box has a single mode of variation

(i.e. the height) and an independent rotation in space. We then divide the dataset into a 50/50 train/test split.

The training set is further divided into non-overlapping sets of 5 samples. Each smaller subset then trains

a traditional ASM and a multi-element ASM initialized with 2 gaussian elements. Since a multi-element

ASM would be initialized with a k-means clustering, this would create an initialization that would produce
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the already correct result for this setup. As such, we randomly initialize the gaussians in a 10-unit standard

deviation neighborhood around each box and initialize the covariance parameters with a normal distribution

of mean 0.05 and standard deviation 0.1. We perform this random initialization over 15 tests and choose the

model that has the lowest training error on that smaller subset. We then report fitting errors of the testing set

on each of the models created by the training subsets.

6.4.2 Labyrinth Dataset

The labyrinth dataset consists of 18 patient CT (voxel size ˜.3mm anisotropic) scans of the right ear with

associated hand segmentations of the labyrinth created in a prior study [25]. These point corresponding

segmentations across all our samples serve as our ground truth. We evaluate the segmentation performance

of multi-element ASMs with M ∈ {4, 8, 12, 16} using 2- and 3-fold cross validation to correspond with

respective training set sizes T ∈ {6, 9}. For each training subset we create the multi-element ASMs and a

traditional ASM and test on the remaining 18−T images.

6.4.3 Full Ear Dataset

Our multi-structure dataset of the ear consists of 4 structures: the labyrinth, facial nerve, ear canal, and

the ossicles. Hand segmentations for each of these structures are created for 10 patient CT images (voxel

size ˜.3mm anisotropic) to serve as the ground truth. Due to the arbitrary boundary that defines the lateral

side of the ear canal, any variability captured by a shape model would reflect inconsistencies in boundary

interpretation rather than true shape variation. To minimize this effect, we create a mask that forces the

vertices in this region to always have an importance weighting of zero. Furthermore, these points do not

factor into our error metrics for evaluation. A depiction of this mask can be seen in Figure 6.2.

One of the 10 samples is reserved as an atlas image. The remaining 9 samples are split into two groups

where one group serves as the training set to test on the opposite group and vice versa. Since the segmentation

process begins with a registration from the atlas, we only use the atlas sample as always added to the training

set but omitted from the testing set.

We first evaluate the performance of our multi-element ASM in a scenario where we are given a complex

shape but have no a priori knowledge of any delineations that may exist between points. For clarity, we will

call this a “structure-agnostic” scenario. As such, we treat the vertices in our dataset as a single shape with-

out any structure-specific knowledge and compare the segmentation performance of a multi-element ASM

consisting of M ∈ {2, 4, 8, 12} against a traditional ASM. In our second assessment, we look at perfor-

mance when there are known groupings of vertices for each structure. Again, for clarity, we will call this

a “structure-specific” scenario. For this scenario we compare structure-specific multi-element ASMs com-
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posed of M ∈ {2, 4, 8, 12} for each structure against traditional ASMs that target each individual structure

separately.

Additionally, we have a database of 132 clinical CT images that have already been automatically seg-

mented with previously developed algorithms. These results have all been visually verified to be acceptable

for clinical use. As a test of our multi-element ASM’s robustness we train 8-element ASMs for each structure

using all 10 of our original hand-segmented samples. These models are used to create automatic segmen-

tations of our 132 clinical CT images. We then visually examine for clinical viability the cases where the

multi-element segmentation has the largest discrepancy with respect to surface distance from the original

automatic segmentation for each structure.

6.4.4 Chest Dataset

The chest dataset is taken from the JSRT database [26] of 247 chest radiographs with a resolution of 2048x2048

and an isotropic pixel size of 0.175mm. Point corresponding hand segmentations of the lungs, clavicles, and

heart for each of the images are taken from [27]. In keeping with the same segmentation approach taken in

[27], our segmentation process will utilize a multi-resolution approach based on a standard image pyramid.

We use 5 resolution levels starting from 32x32 at the coarsest resolution until 512x512 at the finest resolution.

For our evaluation, we discard 132 of the images due to the structures being too close to the image border

and thus adding complications to the segmentation method that are outside of the scope of this paper. With

the remaining subset of 115 images, we evaluate the segmentation performance of multi-element ASMs at

different training sizes T ∈ {5, 10}. We randomly divide our dataset into a train/test split of 40 training im-

ages and 75 testing images. The training set is then further split into 8 and 4 non-overlapping sets for T = 5

and T = 10 respectively. Our evaluation for this dataset again looks at two scenarios depending on whether

anatomical structure information is present (“structure-specific”) or absent (“structure-agnostic”) to the user.

To simulate how model parameter selection would work in a practical small-sample size situation, for

each T we select one of the smaller subsets and perform leave-one-out validation on that subset for both

the “structure-agnostic” and “structure-specific” scenarios. For the “structure agnostic” scenario we test

M ∈ {2, 4, 6, . . . , 16} and M ∈ {2, 3, 4, 5} for the “structure-specific” case. We choose the number of

elements used in our final evaluation based on the best performing models with respect to surface error from

this smaller test. As we will show in the results section, for the “structure-agnostic” scenario we will choose

8 and 14 elements for T = 5 and T = 10 respectively. For the “structure-specific” scenario we choose M = 5

for both sample sizes.

Using each of the subsets of the full training set, we train a multi-element ASM with the found opti-

mal parameters for that training set size, a traditional ASM for each individual anatomical structure, and a
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traditional ASM for the entire combined shape. We then evaluate the segmentation performance of each of

these models on the testing set. Each segmentation is initialized from the mean-shape of that respective train-

ing subset at our coarsest resolution of 32x32. ASM segmentation proceeds using only a traditional global

ASM for progressively finer resolutions until our highest resolution of 512x512. We found that the increased

degrees of freedom provided by the traditional structure-specific ASM and our multi-element ASMs easily

fall into very poor local minima on difficult structures such as the clavicles and heart and thus need better

initialization locations than the original mean-shape. Therefore, we only perform the segmentations for these

models at the 512x512 resolution starting from the segmentation result of the traditional global ASM.

6.4.5 Implementation Details

For all tests, we use the Adam optimizer and set the learning rates to 0.1 for −→
µ i∈1...M−1 and 1e-3 for

−→
γ i∈1...M−1 in the gaussian-shaped elements, while for all global elements in both optimization rounds the

learning rate is set to 1e-4. Furthermore, a summary of the specific ASM settings used for each dataset can

be found in Table 6.1.

6.5 Results

6.5.1 Synthetic Box Dataset

Fitting errors for our box dataset can be found in Figure 6.3. The multi-element clearly outperforms the

original ASM with a fitting error of 5.46e-3mm. As mentioned in the training results section, the correct

importance weighting distributions have been found for each of the elements, thus producing the nearly

perfect result. It should be mentioned that a perfect result is not actually possible with our current setup, as

the use of exponentials to have smooth differentiable functions for optimization mean that a weight can never

be equal to zero. Therefore, there will always exist a very small importance weighting placed on the box with

low importance weighting and still exerts some influence on the result.

Dataset

Standard
deviation
of ε used
in train-
ing (mm)

Shape
space
cutoff
threshold
σ

Size of
intensity
profile
(mm)

Number
of points
in in-
tensity
profile

Length
of line
search
in image
(mm)

Number
of lo-
cations
evaluated
within
search
range

Max
number
of seg-
mentation
iterations

Boxes 0.01 - - - - - -
Labyrinth/Ear 0.5 3 2 21 2 21 100
Chest 1 2.5 10* 11 4* 5 20

Table 6.1: ASM settings used for segmentation in our experiments. Numbers marked with * are multiplied
by the pixel size per resolution level.
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6.5.2 Labyrinth Dataset

Boxplots of mean surface segmentation errors for our multi-element ASMs and a traditional ASM can be

found in Figure 6.4. Our multi-element ASMs do improve segmentation performance over their regular ASM

counterparts for both training sizes tested, with progressively better performance associated with the use of

more elements in the model. Furthermore, the increased degrees of freedom provided by our multi-element

ASM appears to utilize the limited training set more efficiently than the traditional ASM, as all multi-element

ASMs trained on 6 samples outperform a traditional ASM trained with 9 samples. However, there does appear

to be a converging trend in performance improvements with respect to the number of elements. This can be

seen in both sample size cases, since the addition of 4 elements from 12 to 16 provides smaller mean benefits

to performance than the change of 4 to 8 elements. Regardless, the best results of 0.104mm and 0.097mm

occur when using a 16 element ASM for both training sizes of 6 and 9 respectively. These values both

translate to an improvement of 26% over their traditional ASM counterparts. Paired difference comparison

using the Wilcoxon signed-rank test further show these improvements to be statistically significant (p < 0.05).

(Figure 6.5)

A heatmap showing the paired differences between a traditional ASM and our best performing 16 element

ASMs for both sample sizes can be seen in Figure 6.6. The regions where one model outperforms the other

model appear similar for both sample sizes. The multi-element ASM has better surface error for much of the

labyrinth, particularly in the semi-circular canals, while the traditional ASM has better segmentation results

in only a few isolated pockets in the structure.

6.5.3 Full Ear Dataset

Overall mean surface segmentation errors can be found in Figure 6.7. Generally, the “structure-specific”

scenario produces better overall performance regardless of the type of ASM. However, for both scenarios,

the multi-element ASM does outperform its traditional ASM counterpart, with a general trend of better mean

performance when using more elements in the model. In the “structure-agnostic” scenario a multi-element

ASM with 12 elements performs best, with a mean surface error of 0.246mm. For the “structure-specific”

scenario, the best results of 0.214mm occur with structure-specific multi-element ASMs containing 8 ele-

ments. A paired difference analysis further shows that these multi-element ASMs are significantly better than

their traditional ASM counterparts (p < 0.05), leading to a 14% mean improvement in overall segmentation

performance for both scenarios. (Figure 6.8)

For the “structure-specific” scenario, we further show a breakdown of segmentation performance with

regards to each of the ear structures. Boxplots of segmentation errors and paired differences compared to

the use of traditional structure-specific ASMs can be found in Figure 6.9 and Figure 6.10. Using structure-
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specific multi-element ASMs with 12 elements provide the best mean segmentation performance on the

ossicles and labyrinth of 0.142mm and 0.145mm respectively. For the facial nerve and ear canal, the best

respective mean results of 0.295mm and 0.261mm occur with multi-element ASMs utilizing 8 elements.

These values correspond to performance improvements over traditional structure-specific ASMs of 0.103mm

for the ossicles, 0.026mm for the labyrinth, 0.011mm for the facial nerve, and 0.048mm for the ear canal.

While these values translate to respective paired difference improvements of 42%, 15%, 3%, and 15%, only

the ossicles meet the Bonferroni corrected significance threshold of 0.05/4 = 0.013. We further note the

relatively poor mean performance of a traditional ASM on the ossicles due to the large outlier at 0.900mm.

Further investigation into this case points to the relatively abnormal ossicle anatomy of the subject, thus

leading to a poor solution when using the traditional ASM method. However, all multi-element ASMs tested

remained robust to this abnormality and still produced reasonable results for the ossicles. (Figure 6.11)

A heatmap of paired surface errors comparing traditional structure-specific ASMs with the overall best

performing model, the 8-element structure-specific ASMs can be seen in Figure 6.12. Qualitatively, our

model does provide benefits in regions where one would expect correlations between points belonging to

nearby structures. For example, the contact point of ossicles and the labyrinth (Region A), or the contact

point of the tympanic membrane with the ossicles (Region B). Particularly in Region A, we observe a large

improvement over a traditional ASM due to the multi-element ASM’s robustness against the outlier case

mentioned previously. However, for regions that are not expected to correlate well with other structures, such

as the body of the facial nerve (Region C), or the inferior part of the ear canal (Region D) we observe a worse

result than the traditional ASM, as the added degrees of freedom provided by our model are likely susceptible

to noise.

For our robustness test using 8-element structure specific models on our clinical database of 132 CT

images, we show boxplots of mean surface differences between the original automatic segmentations and our

proposed model in Figure 6.13. Mean discrepancies are 0.19mm for the ossicles, 0.11mm for the labyrinth,

0.70mm for the facial nerve, and 0.40mm for the ear canal. From previous experience using these original

segmentations in clinical practice, these discrepancies are already clinically acceptable. However, when

visually inspecting the cases of highest difference between the two automatic segmentation methods, we find

that our multi-element model has a better segmentation overall. Visual examples of the largest discrepancies

between both segmentation methods can be found in Figure 6.14

6.5.4 Chest Dataset

Boxplots of the results of our parameter pilot study can be found in Figure 6.15 and Figure 6.16. For the

“structure-agnostic” scenario, we find that an 8-element model and a 14-element model produce the best

60



overall mean surface errors of 4.96mm and 3.90mm for the 4-sample and 9-sample case respectively. For

the “structure-specific” scenario, the 5-element model performs the best for both 4 and 9-sample cases. This

results in a mean surface error of 5.02mm for the 4-sample case and 3.96mm for the 9-sample case.

From the results of our pilot parameter study, we therefore choose an 8-element and 14-element model

for the “structure-agnostic” scenario involving 5 and 10 samples respectively. For the “structure-specific”

scenario, we choose a 5-element model for both sample sizes. Figure 6.17 shows the overall mean seg-

mentation errors and paired differences (Figure 6.18) when using this setup for the full dataset. We find

the multi-element ASM outperforms its traditional ASM counterparts for both scenarios and for all training

sizes tested. When structure-specific information is not present, the multi-element ASMs produce a mean

surface segmentation error of 4.83mm for the 5-sample training set and 3.33mm for the 10-sample training

set. This improves over their respective traditional ASM counterparts by 0.05mm and 0.30mm. For the

structure-specific scenario, the 5-element ASM produces a mean surface segmentation error of 4.83mm and

3.23mm or an improvement of 0.01mm and 0.05mm over the traditional structure-specific ASMs for a 5 and

10 training size case respectively. Though these are relatively small improvements in overall segmentation

error, a Wilcoxon paired difference test shows them to be statistically significant (p < 0.05)

For the structure-specific scenario, the boxplots of surface segmentation errors and paired differences

broken down by each structure can be found in Figure 6.19 and Figure 6.20. For a training set size of 5

samples, mean surface segmentation errors are 4.37mm and 4.99mm for the left and right lungs, 3.54mm and

3.58mm for the left and right clavicles, and 7.51mm for the heart. These result in 1-2% improvements for

all structures except for the heart, where the multi-element ASM results in a 2% decrease in performance.

However, paired difference testing shows statistical significance for both lungs and the left clavicle under

the Bonferroni corrected value of p<.05/5 = .01. Meanwhile, for a training set size of 10, mean surface

segmentation errors are 3.30mm and 2.82mm for the left and right lungs, 2.33mm and 2.28mm for the left

and right clavicles, and 6.02mm for the heart. These result in 2-3% improvement over the structure specific

traditional ASM for the lungs, <1% for the clavicles, and 1% for the heart. Only the right lung meets the

significance threshold of p < .01.

A heatmap comparing the paired surface error distances between the 5-element structure specific ASMs

and a traditional structure-specific ASM can be seen in Figure 6.21. Our multi-element ASM seems to

perform well in regions that have clear boundaries such as the bottom and side portions of the lungs, and very

poorly in the difficult to segment areas of the clavicles and heart. The latter regions are generally associated

with very noisy features in the image, thus suggesting that the added degrees of freedom introduced by our

model are prone to capturing poor local minima in these regions.
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6.5.5 Model Training

Some visual examples of the training process can be found in 6.22. In the initial phase of training, the

locations of the gaussian elements remain relatively close to their initialization positions and do not tend to

migrate to distant regions of the shape from where they started. Instead, gaussian elements increase their

regional influence via shaping of the covariance matrix. Interestingly, the resulting alignment of the principal

axes for each of these elements seems to correlate with local region under the gaussian’s influence. For

example, in the labyrinth dataset there are gaussian elements that seem to align with the contours of the semi-

circular canals. In the ear dataset, two of the elements align with the primary axis of the facial nerve body,

while another two elements are aligned with the ‘bend’ in the inferior part of the ear canal. The same is true

for the chest, where elements are aligned with the clavicles and the bottom parts of the lungs and heart. In the

box dataset, the gaussians are generally aligned with each box, but since this would already produce a correct

distribution of importance weighting for each of the boxes, seems to have converged on this local minimum.

For the final stage of training, there seems to be only subtle changes to the regions under each element

in the model. The box dataset, as mentioned, has already converged to a local minimum that produces the

correct importance weighting distribution for the boxes so little more optimizations can occur in the final

training stage. For the remaining datasets, the regions with highest importance for each element appears to

be consistent with their corresponding regions from the gaussian optimization stage which suggests that our

training process has converged to a stable solution.

We further show the number of the largest eigenmodes needed to represent 95% of the variation for both

traditional ASMs and each of the elements in our multi-element models. As mentioned in our 2-D rectangle

example and shown by the multi-element models in the 3-D synthetic box dataset, simpler models using

fewer eigenmodes would be more likely to capture more meaningful shape variation and thus use its limited

training set much more efficiently. The full eigenmode comparison involving our best performing multi-

element models for each dataset and scenario can be found in Tables 6.2-6.7. Though a direct statistical

comparison of these quantities between the multi-element model and their traditional ASM counterparts is

not possible due to the small number of trained models, there appears to be a general trend of multi-element

models requiring less eigenmodes to represent 95% of the variation per element than their traditional ASM

counterparts. Furthermore, chest dataset appears to be a much simpler dataset than the labyrinth or the full

ear, since a traditional ASM already requires relatively few samples with respect to the training size (Tables

6.6 and 6.7).
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6.6 Discussion

In this work, we have introduced the multi-element ASM as an extension to the traditional ASM, particularly

for small sample size applications. We have described the optimization process for this model and how it can

be adapted for analysing and segmenting complex single or multi-structure shapes. Furthermore, we have

validated the model on 4 different datasets to show the broad applicability of this approach. We found that

across all the datasets, our optimization method produces stable and intuitive regions of influence for each

of the elements in the model. Particularly in our box dataset, we show that our training process can indeed

find the correct distribution of importance weights for each model element. Furthermore, our multi-element

model produces elements that capture simpler modes of variation due to the fewer eigenmodes needed to

reach the 95% model variation threshold. Such training results do provide confidence that each element is

able to model real variation that exists in the shape rather than spurious correlations that may exist between

different landmarks.

For each of our datasets, we show our multi-element ASM can outperform the traditional ASM in both

single-structure and multi-structure scenarios. For the labyrinth dataset, we found a 16-element ASM pro-

duces a mean surface segmentation error of ˜0.1mm for both sample sizes tested, thereby significantly improv-

ing segmentation performance by 26%. For our ear dataset, the comparison of structure agnostic traditional

ASMs and multi-element ASMs lead to a 14% improvement in overall segmentation performance. In the

structure-specific case, we get the best results from an 8 or 12 element ASM producing segmentation errors

of ˜0.15mm for the labyrinth and ossicles, ˜0.25mm for the ear canal, and ˜0.3mm for the facial nerve. Fur-

thermore, we found that our method’s use of surrounding structures in a “structure-specific” scenario was

beneficial in providing robustness in an abnormal ossicle segmentation. Overall, for the chest dataset, our

model was confirmed to have robust performance in a larger clinical dataset of 132 patient CT images. Finally

in our chest dataset, our model provided a 10% improvement in the “structure-agnostic” scenario when using

a training set size of 10 samples, but generally provided small 1-3% improvements in the remaining cases.

For the labyrinth dataset, we see a clear advantage of our approach. In this dataset, salient boundary

features exist for the landmarks, thereby making the added degrees of freedom provided by our model bene-

ficial. A traditional ASM would fail to capitalize on the good candidate locations found by an image search

Training Set
Size

Global
ASM

2-Element
Model

5 2.9 0*

Table 6.2: Comparison of the mean number of the largest eigenmodes needed to represent 95% of the total
variance captured in a particular element and a traditional global ASM on the synthetic boxes dataset. 0*
indicates that the largest eigenmode already captures >95% of the variation in the model.
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due to the limited representational power of a single linear vector space. On the other hand, a multi-element

model can distribute different regions to each element, thereby increasing the overall degrees of freedom of

the model. As shown in Figure 6.22, the presence of elements that capture shape variation in the semi-circular

canals help model what would otherwise be complex geometry for a single ASM to capture at low sample

sizes. Therefore, when given good candidate locations from the image search, the multi-element model can

use the extra degrees of freedom to produce more accurate segmentations.

This reasoning can be extended to the rest of the datasets, particularly when observing the better per-

formance of the multi-element ASM in structure-agnostic scenarios. For these cases, we treat all landmarks

as coming from a single shape, thereby creating a highly complex geometry that a traditional ASM would

have difficulty modelling with a single linear vector space. Though the image saliency of individual land-

marks may vary across the shape, overall, the image search is able to find enough good candidates for the

multi-element ASM to use its increased representational ability to provide better segmentation results.

Another benefit of our approach in structure-specific settings can be seen when segmenting the region

around the ossicles near the contact point of the tympanic membrane and labyrinth (Regions A and B in

Figure 6.12). Since these regions must be in contact as part of the function of the ear, we would expect the

landmark variations of these regions to be highly correlated and predictive of each other. Indeed, the increased

performance of our structure-specific multi-element ASMs in this region confirm this hypothesis, as elements

can place some importance weighting to surrounding structures when creating the model. Therefore, the

information provided by surrounding structures can help provide robustness during the segmentation process.

The clear example of this interplay can be seen from our improved segmentation result for the ossicle outlier

case in Figure 6.11.

However, some of the structure specific cases of the ear and chest dataset do highlight some limitations of

our approach. Since we are operating on a particular structure, the modes of variation are simpler than what

would otherwise be required for a full structure-agnostic case. Furthermore, in the case of the chest dataset,

we see that a traditional ASM requires relatively few eigenmodes compared to the training size to represent

95% of the shape variation for both scenarios (Tables 6.6 and 6.7). Therefore, for these cases a traditional

ASM would already be able to represent the shape variation on its own and any additional degrees of freedom

Training Set
Size

Global
ASM

16-Element
Model

6 3.67 3.27
9 5.5 5.13

Table 6.3: Comparison of the mean number of the largest eigenmodes needed to represent 95% of the total
variance captured in a particular element and a traditional global ASM on the labyrinth dataset
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introduced by our model would be prone to image noise. Additionally, for regions where we would not expect

any correlation with surrounding structures, such as the base of the facial nerve (Region C) or the inferior

region of the ear canal (Region D) there will be little information to constrain solutions when provided poor

candidate positions. Therefore, the poorer performance of our model in these regions suggest that the degrees

of freedom provided by our model are falling into poor local minima from image noise. Another example

of poor results due to noise can be seen in the heart segmentation of our chest dataset (Figure 6.21). Since

landmarks in this region have few visible features from the image, the noisy candidate locations found by the

image search produce poorer results with our model.

Overall, our method demonstrates itself to be a viable extension to the traditional ASM framework, pro-

viding benefits to segmentation performance across a variety of different shape libraries, particularly when

constrained by limited training data. Our results suggest that landmark saliency in the image is the main

contributing factor in the quality of segmentations produced by our model. Therefore, future work will be

focused on integrating image feature saliency as part of the optimization in our model. Since to our knowl-

edge there are no publicly available implementations of the other mentioned extensions to the ASM, further

future work will involve implementing and testing those methods for comparison with our framework. Doing

so will further increase and understand scenarios where our approach can be best utilized.

Training Set
Size

Global
ASM

16-Element
Model

5 3 2.62
6 3 3.37

Table 6.4: Comparison of the mean number of the largest eigenmodes needed to represent 95% of the total
variance captured in a particular element and a traditional global ASM on the full ear dataset in a ”structure-
agnostic” scenario
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Training Set Size Structure Traditional SS ASM 8-Element SS Models

5

Ossicles 3.00 2.87
Facial Nerve 3.00 2.62

Labyrinth 3.00 2.50
Ear Canal 3.00 2.50

6

Ossicles 4.00 3.50
Facial Nerve 3.00 3.37

Labyrinth 4.00 2.62
Ear Canal 3.00 3.00

Table 6.5: Comparision of the mean number of the largest eigenmodes needed to represent 95% of the total
variance captured in a particular element and an individual structure specific (SS) ASM on the full ear dataset
in a ”structure-specific” scenario

Training Set
Size

Global
ASM

8-Element
ASM

14-Element
ASM

5 2.25 1.64 -
10 4.75 - 2.23

Table 6.6: Comparison of the mean number of the largest eigenmodes needed to represent 95% of the total
variance captured in a particular element and a traditional global ASM on the chest dataset in a ”structure-
agnostic” scenario

Training Set Size Structure Traditional SS ASM 8-Element SS Models

5

Heart 1.75 1.53
Left Clavicle 1.88 1.63

Right Clavicle 1.75 1.48
Left Lung 2.00 1.63

Right Lung 1.88 1.45

10

Heart 3.00 2.75
Left Clavicle 2.50 2.95

Right Clavicle 2.50 2.90
Left Lung 3.25 3.20

Right Lung 2.75 2.65

Table 6.7: Comparision of the mean number of the largest eigenmodes needed to represent 95% of the total
variance captured in a particular element and an individual structure specific (SS) ASM on the chest dataset
in a ”structure-specific” scenario
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Figure 6.1: Example of two independently rotating boxes (Top) A traditional ASM, due to the single linear
vector space will produce complex eigenmodes and thus an incorrect fit when given a new example. (Bottom)
A model involving two ASMs that utilize importance weightings on a different box will produce estimates
that, when combined, will produce the desired fit.
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Figure 6.2: Mask utilized in the full ear dataset. As the lateral region of the ear canal is an arbitrary boundary,
the points labeled in blue are not used in the training and evaluation stages of any of our models.

Figure 6.3: Boxplot of fitting errors comparing a traditional vs. multi-element ASM for our boxes dataset.

Figure 6.4: Boxplot of mean surface segmentation error for the labyrinth dataset
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Figure 6.5: Boxplot of surface segmentation error paired differences for the labyrinth dataset when comparing
a multi-element ASM to a traditional ASM. More positive values indicate better performance for the multi-
element model.

Figure 6.6: Heatmap of mean paired surface errors comparing the 16-element ASM vs a traditional ASM for
a training set size of 6 (top row) and 9 (bottom row). Each row shows two views of the labyrinth. Negative
values (red hues) indicate better performance of a traditional ASM while positive values (blue hues) indicate
better performance for the multi-element model.
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Figure 6.7: Boxplot of overall mean segmentation error when not using structure-specific ASMs (No) or
using structure-specific ASMs (Yes)

Figure 6.8: Paired differences for the two structure-specific scenarios with the ear dataset. For the ‘No’ case,
paired differences are compared with a traditional ASM. For the ‘Yes’ case, paired differences are calculated
against a traditional ASM created for each individual structure. For both scenarios, more positive numbers
indicate better performance of the multi-element ASM. Red asterisk indicates statistical significance (p <
.05)
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Figure 6.9: Boxplot of mean surface segmentation error for each structure in the ear when structure groupings
of points are known

Figure 6.10: Boxplot of surface segmentation error paired differences between different structure-specific
multi-element ASMs compared with a traditional ASM for each structure. More positive values indicate a
better performance for the multi-element ASM. Red asterisk indicates significance at Bonferoni corrected
level of (p < 0.013)
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Figure 6.11: Example segmentation of the ossicle outlier case in our structure-specific scenario. Green is
ground truth. Blue is the segmentation result of the multi-element ASM. Red is the result of the traditional
structure-specific ASM for the ossicles.

Figure 6.12: Heatmap of mean paired surface errors comparing the 8-element structure-specific multi-element
ASM to a traditional ASM targeting each individual structure. Negative values (red hues) indicate better
performance of the individual structure specific ASM while positive values (blue hues) indicate better per-
formance for the multi-element model. Regions of interest are circled in green. (Region A) Contact point of
ossicles with labyrinth. (Region B) Contact point of ossicles with ear canal. (Region C) Body of facial nerve.
(Region D) Inferior region of the ear canal.
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Figure 6.13: Boxplot of surface segmentation differences between our 8-element structure-specific ASMs
and the original automatic segmentations of our clinical dataset of 132 patient CTs.

Figure 6.14: Example sagittal slices of the largest discrepancies in surface error between the original seg-
mentations (Blue) and the 8-element structure specific segmentations (Orange) in our robustness test.
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Figure 6.15: Mean surface segmentation errors for the parameter pilot study in our chest dataset when deter-
mining the optimal number of elements to use in a multi-element ASM for a structure agnostic case.

Figure 6.16: Overall mean surface segmentation errors for the parameter pilot study in the chest dataset when
determining the optimal number of elements to use for the multi-element ASM in the structure specific case.
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Figure 6.17: Boxplot of overall surface error comparing the multi-element ASM against its corresponding
traditional ASM counterpart. (Left) A structure-agnostic scenario where the traditional ASM is compared
against a multi-element ASM with the number of elements determined from the parameter pilot study. (Right)
Structure specific scenario comparing traditional structure-specific ASMs against a 5-element multi-element
ASM.

Figure 6.18: Boxplot of paired differences comparing the multi-element ASM against its corresponding
traditional ASM counterpart. (Left) A structure-agnostic scenario where the traditional ASM is compared
against a multi-element ASM with the number of elements determined from the parameter pilot study. (Right)
Structure specific scenario comparing traditional structure-specific ASMs against a 5-element multi-element
ASM. More positive values indicate better performance for the multi-element ASM. Red asterisk indicates
statistical significance (p < 0.05)

75



Figure 6.19: Boxplot of mean surface error for each of the chest structures when comparing a 5-element
structure specific ASM against a structure-specific traditional ASM for each structure.

Figure 6.20: Boxplot of paired differences comparing surface segmentation error of a 5-element structure
specific ASM against a structure-specific traditional ASM for each structure. More positive values indicate
better performance for the multi-element ASM. Red asterisk indicates significance under Bonferroni cor-
rected (p < .01)

76



Figure 6.21: Heatmap of mean paired surface errors comparing the 5-element structure specific ASM and
traditional structure-specific ASMs. Redder hues indicate better performance of the structure-specific tradi-
tional ASMs and bluer hues indicate better performance of the 5-element model. (Left) comparison of both
models when using a training set size of 5 samples. (Right) comparison of both models when using a training
set size of 10 samples.

Figure 6.22: Examples of training for each of the 4 datasets in this study. Left column is the initialization of
the gaussian elements. Middle column is the result of the gaussian elements after the initial training stage.
Colors shown in left/middle columns are the mixing weight of the global element in the model. Right column
is the mixing weights for each of the models after the final stage of training.
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CHAPTER 7

Conclusion

In this dissertation we have addressed various issues for improving outcomes for CI recipients with a variety

of image processing techniques. In Chapter 3 we investigated generic insertion depth guidelines for pre-

curved arrays and found the round window to be a more reliable marker than the facial recess for achieving

the correct insertion depth when using the optimal insertion trajectory. Furthermore, a round window marker

placed at the population mean of 2.28 mm would produce fewer over or under insertions than the current

round window markers when using the ideal trajectory. In Chapter 4 we demonstrated a weakly-supervised

approach to automatic chorda segmentation using a GAN architecture. We showed that our proposed ap-

proach performs significantly better than the current automatic method in use for chorda segmentation. In

Chapter 5 we used an expanded dataset of 16 samples to perform an extensive validation of the active shape

model for use in segmenting the intra-cochlear anatomy. We found optimal parameters for the model and

showed robust performance over a large database of clinical CT images. We found that additional training

samples would lead to only diminishing returns on segmentation performance and future work in that area

should be focused on the candidate search process in the image. Finally, in Chapter 6 we proposed the multi-

element ASM as an extension to the ASM framework. We showed its efficacy on datasets of synthetic boxes,

cochlear labyrinth, full ear, and chest. Our results suggest the model’s viability for improving segmentation

performance in scenarios involving small shape libraries. Taken together, this work represents a contribution

to improving outcomes for CI recipients. The work in Chapter 3 now provides evidence for better CI inser-

tion guidelines to minimize poor outcomes in patients. The improved chorda tympani segmentation provided

by our GAN in Chapter 4 provides the possibility of safer and more robust insertion planning techniques.

The validation of the ASM in Chapter 5 now gives optimal parameters for intra-cochlear segmentation and

provides evidence for its robust performance in clinical settings. Finally, the multi-element ASM proposed in

Chapter 7 not only provides better segmentation performance over traditional ASM techniques for relevant

ear structures, but also gives a general method for the modeling and segmentation of structures when faced

with a small shape library constraint.
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for cochlea segmentation in ex vivo CT.,” International journal of computer assisted radiology and
surgery, vol. 11, pp. 1647–1659, Sept. 2016.

[48] T. Demarcy, Segmentation and study of anatomical variability of the cochlea from medical images.
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[79] R. Blanc, M. M. Reyes, C. Seiler, and G. Székely, “Conditional Variability of Statistical Shape Models
Based on Surrogate Variables,” Medical image computing and computer-assisted intervention : MIC-
CAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention,
vol. 12, no. Pt, pp. 84–91, 2009.

[80] K. Lekadir, R. Merrifield, and G. Yang, “Outlier Detection and Handling for Robust 3-D Active Shape
Models Search,” IEEE Transactions on Medical Imaging, vol. 26, pp. 212–222, Feb. 2007.

[81] C. Zhang, J. Liang, J. Zhang, and H. Zhao, “A new shape prior model with rotation invariance,” Pattern
Recognition Letters, vol. 54, pp. 82–88, Mar. 2015.

[82] B. Xiang, “Knowledge-based image segmentation using sparse shape priors and high-order MRFs,”
2013.

[83] M. Yamada, H. Hontani, and H. Matsuzoe, “A Study on Model Selection from the q-Exponential
Distribution for Constructing an Organ Point Distribution Model,” in Image and Video Technology
– PSIVT 2015 Workshops (F. Huang and A. Sugimoto, eds.), Lecture Notes in Computer Science,
pp. 258–269, Springer International Publishing, 2016.

[84] S. R. Arashloo, “Incorporating higher-order point distribution model priors into MRFs using convex
quadratic programming,” Machine Vision and Applications, vol. 27, pp. 821–832, Aug. 2016.

[85] J. J. Cerrolaza, M. Reyes, R. M. Summers, M. González-Ballester, and M. G. Linguraru, “Automatic
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