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CHAPTER 1

Introduction

No one believes the model except the analyst.

Everyone believes the measurements except the experimentalist.

–Unknown

1.1 Overview

In the design of complex systems, physics-based modeling and simulation are increasingly relied upon to explore,

understand, and optimize. This optimization may be in terms of performance, cost, weight, reliability, and/or

safety of the products they represent. A driving force behind the increased use of these models is to decrease the

costs and timescales relative to physical test-focused research and development. However, the quality of decisions

made using a model depends on how well it represents the actual physical system. Such issues require careful

consideration in high-consequence systems when significant investment or human lives are at stake.

The goal of developing and exploiting physics models is to predict and understand the behaviors of an en-

gineered system to an adequate level of accuracy. The models – conceptual, mathematical, computational –

incorporate many simplifying assumptions and approximations, and thus introduce many possible sources of er-

ror and uncertainty. Therefore, physical testing remains an important source of truth to ensure the validity of the

model-based design. However, the test and measurement of complex systems also provides imperfect information

due to constraints in the representation of the full system, the operational environment, and measurement error

and uncertainty.

These have driven advancements over the last few decades in rigorous methods for verification (estimation

of numerical errors) and validation (estimation of physics errors). Due to the many sources of uncertainty in

both the physics model and measurements used in the validation process, the topics of verification and validation

(V&V) and uncertainty quantification (UQ) are increasingly considered together when assessing model accuracy

and credibility [1–7]. For convenience in this research the acronym VVUQ is used to refer to the collection of

steps and methods covered in verification, validation, uncertainty quantification, and related related areas such as

surrogate modeling, dimension reduction, and model calibration. The process and methodologies of VVUQ seek

to combine two imperfect sources of information – models and measurements – and derive decision-making value

by addressing the uncertainty in both.

Despite significant advances in the many facets of VVUQ methodologies over the last few decades, studies

illustrating applications to challenging, practical engineering problems have been limited. Published work tends
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to focus on certain individual aspects of the process. Further, the application of a more holistic VVUQ process

requires significant expertise to piece together the various methods and tools needed to complete all the steps.

Therefore, the overarching goal of this research is to extend VVUQ methods to practical applications of high

dimensional and multivariate engineering models. By applying these methods to develop a practical VVUQ

framework (Chapter 7), sources of uncertainty will be identified and aggregated, while improving model quality

and credibility through additional insights gained at each step of the process. Toward this end, a representative

physics-based heat transfer model is used to guide the selection of methods and for demonstration. The model is

used to predict metal temperatures of a gas turbine engine high-pressure turbine disc during operation.

When pursuing VVUQ for practical modeling and simulation, one must consider how the various sources of

uncertainty will be aggregated so that the model prediction – the model’s intended use – may be given mean-

ingful error bounds. These sources may include aleatory (random, irreducible) uncertainty and epistemic (lack

of knowledge, reducible) uncertainty. There are several approaches toward estimating uncertainty bounds that

include classical confidence intervals [8], several non-probabilistic methods including interval analysis [9, 10],

fuzzy theory [11], possibility theory [12], and probabilistic approaches such as probability bounds analysis (PBA)

[3] and Bayesian methods [5, 13]. The probabilistic/Bayesian approach is used in this research due to its strength

in the estimation of model parameter uncertainty and discrepancy through Bayesian inference, the ability to in-

tegrate probability-based validation metrics, and it enables a robust uncertainty aggregation process. Despite the

maturity of probabilistic approaches, the application of VVUQ to complex and computationally expensive engi-

neering simulations presents many challenges that have not been resolved. A few of these are addressed in this

research, as outlined later in this section. Before introducing the research objectives, definitions for the steps of

VVUQ are discussed.

1.2 Definitions for the VVUQ process

A process/framework for VVUQ, based on six primary steps, is introduced in Chapter 7 of this dissertation.

Several of the individual steps are considered in depth in Chapters 2-6. Therefore, ‘working definitions’ for the

steps of the proposed VVUQ process are given below, which are an amalgamation of several prior works [1, 2, 6,

7, 14] with some adaptation (and in some cases extension) for the purpose of this research. The relationship of

these steps to the individual chapters is given in the next subsection.

Step 1. Model definition. This step ensures that a model is defined in support of a specific problem and stated

requirements that are mutually agreed between a decision-maker, a subject matter expert (SME), ana-

lyst/practitioner, VVUQ team, and other stakeholders1. The physical phenomenon and model type are
1Depending on the application, additional stakeholders may be involved at this stage, or all of these may be a single person. In the

remainder of this dissertation, it is assumed that the analyst/practitioner is an SME in the physics of interest (heat transfer) and has sufficient
expertise to drive the VVUQ process.
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selected by the SME with the goal of meeting the accuracy requirements while balancing cost and risk

(model use risks, i.e., the risk of making decisions based on the results and conclusions of a model. See,

e.g., [6, 14]). An example of the model definition process is given in Chapter 2.

Step 2. Verification. This is “the process of assessing software correctness and numerical accuracy of the so-

lution to a given mathematical model” [2]. In the literature, model verification typically includes two

activities: (i) code verification, which identifies coding mistakes in the computational model; (ii) solution

verification, which estimates numerical errors that arise from the formulation of a discrete solution to the

continuum mathematical model.

Step 3. Model reduction. This step is focused on developing a simplified representation of the physics model

to speed up computationally intensive VVUQ simulations. Surrogate modeling and dimension reduction

techniques are used to reduce the computational effort; both introduce additional numerical errors that

must be quantified and included in the uncertainty aggregation process. (Note that reduced-order models

commonly used in mechanics problems, such as aeroelasticity [15], use the same mathematical tools as

the dimension reduction techniques pursued here; thus, the quantification of truncation error in reduced-

order models can follow the same approach discussed w.r.t. dimension reduction in later chapters).

Step 4. Calibration. Physics models often have parameters that are not directly measurable; they need to be

estimated indirectly by aligning model outputs to measured system outputs. This inverse process is

mathematically challenging due to issues such as uncertainty in the measurements, model errors, and

non-identifiability between parameters (e.g., different parameter sets may result in similar model out-

puts, depending on how the model is parameterized). In addition to finding a parameter set solution, this

epistemic uncertainty source needs to be included in the uncertainty aggregation process.

Step 5. Validation. This is “the process of determining the degree to which a model is an accurate representation

of the real world from the perspective of the intended uses of the model.” [1, 16]. Validation often

involves a comparison of model outputs to physical experimental measurements using a validation metric

[2, 5, 17], and the decision-making process of whether the model is adequate for its intended use.

Step 6. Prediction. When a model is deemed adequate (‘validated’ for its intended use), the model is used to

predict the quantity of interest (QoI). If the prediction is in a regime that has not been tested, it is extrapo-

lation. The uncertainty due to this extrapolation should be considered in addition to all of the uncertainty

quantified through the previous steps, in order to quantify ‘error bounds’ on the prediction of the QoI.
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1.3 Research objectives and organization of the dissertation

The motivation for this research is to advance the application of VVUQ methodologies to real-world engineer-

ing models. Thus, Chapter 2 introduces a representative physics-based model to provide a context and realistic

‘sandbox’ in which to test and apply the methods proposed in this dissertation. Then, Chapters 3-7 address the

five main research objectives, which are summarized below.

Chapter 3. Solution verification for adaptively refined meshes

The representative model in this research (Chapter 2) uses adaptive mesh and time-step refinement

for the finite element solution. Recovery-based discretization error estimators are used to drive the

refinement process. However, they are known to be inadequate representations of the magnitude of

error that is required when performing VVUQ. Existing verification methods focus on uniform re-

finement to quantify this source of uncertainty, and are therefore incompatible with adaptive meshing.

This chapter therefore develops an estimator for the adaptively refined FE solution for inclusion in an

uncertainty aggregation framework.

Chapter 4. Efficient calibration of physics-based models

Physics-based models often require the calibration of unmeasurable model parameters to improve

agreement between the model outputs and corresponding physical measurements. A popular choice

for calibration in the context of VVUQ is Bayesian inference. The Monte Carlo based solution meth-

ods require a large number of model runs which can be prohibitive, and so the physics model is

typically replaced by a faster surrogate model. Many available surrogate model methods support only

univariate output and perform poorly with high-dimensional inputs. This chapter develops an efficient

model calibration approach and novel surrogate model that operate within a transformed, dimension

reduced subspace of the model’s inputs and outputs.

Chapter 5. Discrepancy modeling for model calibration with multivariate output

Due to complexities of replicating real-world systems, physics-based models may exhibit bias (aka,

model discrepancy) relative to corresponding measurements. This model bias is caused by model form

error which results in uncertainty about predictions made with the model. Neglecting this bias during

model calibration may result in over-fitting the physics model parameters and therefore poor predictive

capability of the model. Treatment of model discrepancy during calibration with an additive discrep-

ancy function/model has been widely studied on lower dimensional, and typically univariate, model

outputs. This chapter investigates the advantages, challenges, and application of a model discrepancy

function formulated within the transformed subspace of the multivariate model outputs.

4



Chapter 6. Multi-metric validation under uncertainty for multivariate model outputs and limited measurements

Model validation for real-world systems is challenging due to many sources of uncertainty, limited

measurements, and multivariate model outputs. There is a wide array of possible validation metrics

with which to assess the model. However, many of these are univariate and no single metric (univariate

or multivariate) provides adequate information for decision-making. Therefore, the objective of this

chapter is to adapt and extend three different validation metrics to (i) improve the decision-making

process with respect to the validation assessment through a multi-metric approach, and (ii) extend a

multivariate validation metric that enables an overall model assessment that is incorporated into the

uncertainty aggregation framework in Chapter 7.

Chapter 7. Uncertainty aggregation through model development and assessment towards prediction

Uncertainty quantified throughout various analyses in the VVUQ process should be combined and

carried forward when making predictions with the validated model. Several studies have tried to

combine the contributions of different sources of error and uncertainty. However, gaps exist when

attempting to apply these frameworks in industrial applications. This research therefore pursues a

Bayesian paradigm for end-to-end aggregation of multiple sources of error and uncertainty, consider-

ing all the steps of verification, validation, and uncertainty quantification. The steps of the proposed

framework/process are defined in the next section, and are demonstrated in Chapter 7 for a practical

application (the model from Chapter 2).

Finally, a summary of the contributions of this dissertation and recommendations for future work are discussed

in Chapter 8.
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CHAPTER 2

Model definition (context and application of the research)

This is a sparring program.... It has the same basic rules, rules like gravity.

–Morpheus, The Matrix (1999)

2.1 An engineering physics model for application of the research methodologies

In order to demonstrate the proposed methods throughout this dissertation, a heat transfer physics model was

selected that provides an adequate level of model complexity, while remaining manageable in terms of run time.

The model represents the high-pressure turbine disc of a commercial aircraft turbofan engine, such as the one

shown in Figure 2.1. The model is based on the finite element (FE) method [18], which is used extensively in

the design of gas turbine engines [19–21]. For example, following verification, calibration, and validation, the

FE model would be used to predict temperatures, which can be used for downstream calculation of quantities of

interest such as thermally induced stress in the turbine and compressor discs [20], thermo-mechanically induced

expansion of rotor and casings to determine blade tip clearance [21], and maximum component temperatures to

guide material selection [19].

Drive 
cone

Drive 
arm

Combustor
(not shown)

Turbine 
disc bore

Compressor 
offtake

Turbine 
disc rim

Turbine disc 
diaphragm

Figure 2.1: A typical gas turbine engine (left) and high pressure sub-system (right). The blue circle highlights the
location of the high-pressure sub-system, which is comprised of a 3-stage compressor connected through a drive shaft to
the turbine disc. The combustor (where the combustion process occurs) would be positioned between these components,
but is not included in the diagram.

A sector cut through the core of the engine in Figure 2.1 (in the region highlighted by the blue circle) would

look similar to the simplified 3D model shown on the right side of the figure, which shows the ‘hot section’ of

the engine. The continuous combustion process of the gas turbine engine, the Brayton cycle, is achieved with
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four main engine components, the first three of which are shown on the right-hand side of Figure 2.1: (1) an axial

multi-stage compressor to provide compressed air, (2) a combustion chamber which mixes fuel with compressed

air, and (3) turbine to extract the energy of the combustion process, (4) and a nozzle to accelerate the air and

provide thrust [22].

The focus for heat transfer modeling is the turbine disc, which undergoes significant thermo-mechanical load-

ing during engine operation due to high rotational speeds and heating/cooling induced during take-off, flight, and

landing. Due to this, the turbine disc is considered a ‘critical component’ from a safety standpoint, and must un-

dergo careful design, analysis (including modeling and simulation), and physical testing. Because of complexity

in both modeling and physical testing within the engine environment, both must be used together to gain the best

understanding of the design and ensure safe operation. The purpose of this chapter is to define this heat trans-

fer model and its associated measurements, and thereby to also demonstrate the model definition step within the

proposed VVUQ framework (Chapter 7).

2.1.1 Basic model requirements

In this application, the basic modeling requirements are to (i) develop an FE model for the prediction of the turbine

disc temperatures for test running, (ii) perform the steps of VVUQ to ensure that the model is adequate for its

intended use, (iii) predict rim-to-average disc response (as a preliminary indicator of stress sensitivity). There are

three quantities of interest (QoI); the first two relate to the steady-state and transient temperature prediction in (i).

The third QoI is the prediction of rim-to-average temperature in (iii). This QoI is the ultimate (primary) intended

use of the model in this example. Thus, the steps in (ii) ensure the quality and accuracy of the model before

making the final prediction. Chapters 3-6 focus on particular aspects of the VVUQ process, whereas Chapter 7

develops an end-to-end VVUQ framework for the purpose of uncertainty aggregation. This VVUQ framework is

demonstrated for quantifying uncertainty in the prediction of the primary QoI.

Once the basic model requirements are defined, they are used to form a conceptual model that will enable

predictions to the required level of accuracy. The conceptual model incorporates the assumptions and approxi-

mations regarding the physics of the system. A mathematical model is then produced based on the conceptual

model, typically based on differential equations such as conservation of mass, momentum, energy, etc. Finally,

these equations are translated into a numerical computational model, a discretized version that can be programmed

into a computer code (e.g., FE model) [1, 2]. These modeling steps are briefly discussed in the next few sections

in the context of the heat transfer model.

The FE model produces many outputs at many locations, considering the size of the mesh and the length of

simulated engine running time. For the purpose of VVUQ, a subset of multivariate outputs at sensor locations

is still sufficiently high to prove challenging for many existing statistical methods. Furthermore, the number of
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model inputs and parameters can be prohibitively high (e.g., multiple boundary conditions, each with many inputs

and parameters, inputs from other models, material inputs). Therefore, the objectives of the model definition

step is to ensure that the right physics are modeled, but to balance complexity with sufficiency in meeting the

requirements to an acceptable level of uncertainty.

2.2 Conceptual model

The conceptual model determines the physical phenomena that should be included and the level of model fidelity

(e.g., 2D or 3D, steady-state or transient) that is required to meet the modeling objectives. The conceptual model

is typically formulated by a subject matter expert (SME) by consideration of the QoI and the important physical

phenomena that are expected to influence these QoI. These choices made by the SME result in the model form.

Part of the purpose of this and the other steps within the VVUQ process is to ensure that the correct model form

has been identified. In this section, the system and its operational environment are defined, then the phenomena

are identified.

2.2.1 System description and operation

The first step to determining the physical phenomena involved is to describe the system and its operation. In the

case of the turbine disc, model complexities arise due to the spatio-temporal nature of the analysis and the extreme

environment and nonlinear behavior due to high rotational speeds and temperatures. As the engine is maneuvered

through different operating conditions (or states) during aircraft flight, such as idle, max take off (MTO), and

cruise, significant mechanical and thermal stresses occur in the turbine disc.

The system in Figure 2.1 is given further details during the conceptual modeling step, which in this case

is the model geometry and an illustration of the air flows around the turbine disc (Figure 2.2), and the engine

test cycle which defines the operating conditions (Figure 2.3). The model includes a 3-stage compressor and a

single stage turbine. The combustor is not explicitly modeled in this work but sits within the space between these

other two subsystems. The compressor and turbine are connected through the drive arm so that a portion of the

extracted combustion energy drives the compressor. Outside of this primary cycle (the gaspath), secondary air

flows are ‘bled’ off the compressor and used to purge cavities around the discs, purge rim cavities of the turbine

disc, and supply air to internally cooled airfoils. The air temperature heats up significantly through the combustor

and provides the heat source to the rim of the turbine disc. The compressor and turbine temperature profiles are

indicated in the figure since they are key inputs to the model. They are also sources of uncertainty since it is

difficult to accurately measure the temperature profile.

For the purpose of model calibration and validation, the engine testing includes a simplified running maneuver

called a square cycle (Figure 2.3). The engine is run to idle and MTO conditions until stabilization (which occurs
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at t = 2000 and t = 6000 seconds for idle, t = 4000 seconds for MTO), with rapid acceleration/deceleration

maneuvers in between conditions (Figure 2.3, bottom). This provides both steady-state and transient temperature

characteristics for evaluation of the model (Figure 2.3, top). Model results for this maneuver are the focus of

this research; however, after completion of the VVUQ process, heat transfer model predictions would typically

include running a simulated flight cycle, which could then be used for further stress analysis.

𝑟

𝑇

Thermocouple Locations

Secondary Flows
Primary Cycle

Temperature Radial Profile

Thermocouple Locations

Secondary Flows
Primary Cycle

Temperature Radial Profile

𝑟

𝑇

Combustor not shown

Figure 2.2: Turbine disc 2D axisymmetric FE model, primary and secondary flow paths, and thermocouple measure-
ment locations at which results are extracted for the purpose of model calibration and validation.

Figure 2.3: Turbine engine square cycle maneuver used for heat transfer model testing. Bottom: engine speed at idle
and high power conditions. Top: typical transient temperature response.
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2.2.2 Phenomena identification and ranking table (PIRT)

In this section, physical phenomena are selected and recorded for the turbine disc modeling. These are organized

using the phenomena identification and ranking table (PIRT) [1, 2, 23] shown below in Figure 2.4. The heat

sources for the turbine disc are from the hot gases from the combustor (indicated by the right-hand radial tem-

perature profile in Figure 2.2) which result in conduction at the turbine disc rim (phenomena 1-3) and possible

hot gas inflow around the rim (phenomena 4). Convection heat transfer (phenomena 5-7) occurs between the

hot turbine disc and the cooling air from the compressor (indicated by the left-hand radial temperature profile in

Figure 2.2). Other heat sources include radiation between components in within the engine (phenomena 8) and

the frictional heating of the rotating disc due to drag from the surrounding air (phenomena 9). Note that some

of these phenomena rely on the additional components included in the model to formulate appropriate boundary

conditions. For example, the compressor is included since it supplies cooling air to the turbine, both around the

forward side (left-hand) of the disc and around the bores, by bleeding off air from the primary cycle flow.

Figure 2.4: Phenomena identification and ranking table (PIRT) records the identified physical phenomena involved and
ranks them based on the impact to QoI using expert judgment.

The highest score across QoI (Figure 2.4, Total) represents the SME’s importance ranking, which helps to

prioritize modeling efforts. The level of confidence in the modeling of a given phenomenon may also be included

to weight the scores [1]. This ranking is engineering judgment, and further work in the VVUQ process will

confirm or correct these assumptions. For example, phenomena 2 comes out on top. However, it is later shown

using sensitivity analysis in Chapter 7 that the model is insensitive to this particular assumption and the factor is

removed. Of course, caution and possibly further understanding is warranted when this seeming inconsistency

occurs, since this may be the result of assumptions in the computational model (Section 2.4).
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2.3 Mathematical model

The physical phenomena identified in Figure 2.4 are then used to formulate a mathematical model of the problem,

which translates the conceptual model into equation form and includes appropriately defined boundary conditions,

initial conditions, and associated inputs and parameters that enable solution of these equations. In industrial

settings, it is typical that the mathematical model has already been developed and embedded into commercial

or in-house software. For the sake of illustration of the modeling process and explanation of important model

parameters, the heat conduction problem is shown (as described by Zabaras [24], Chapter 17). The mathematical

model is defined over domain D, boundary Γ, and time interval t ∈ [0, tmax] as

ρCp
∂T

∂t
= ∇ · (km∇T ) in domain D (2.1)

T (x, t) = Tg on boundary Γg (2.2)

km
∂T (x, t)

∂n
= qh on boundary Γh (2.3)

km
∂T (x, t)

∂n
= q0 on boundary Γ0 (2.4)

where ρCp is the volumetric heat capacity, km is the thermal conductivity of the disc material, and n is the vector

normal to the surface. These material properties, along with Eq. 2.1, address phenomena 1 in Figure 2.4. Part of

the boundary is specified with known heat flux qh, e.g., phenomena 3 (heat source from the main flowpath), while

other parts of the boundary have an unknown heat flux q0, e.g., phenomena 5 (convection heat transfer). In the

latter case, the unknown heat flux due to convection is written

k
∂T (x, t)

∂n
= q0 = θhc

(
T∞ − T (x, t)

)∣∣∣
x=Γ0

(2.5)

where hc is the heat transfer coefficient, θ is a scaling parameter, and T∞ is the ambient temperature. The convec-

tion coefficient hc may be defined either by using high-fidelity computational fluid dynamics (CFD) modeling or

through lower-fidelity empirical modeling. In gas turbine heat transfer applications, the low-fidelity approach is

common (likely informed with limited CFD) due to the need to reduce model run-times when performing transient

simulations, e.g., during the phases of aircraft flight. A common empirical model used in this application is based

on the relationship called the Nusselt number Nu = hcL/kf = f(Re, Pr), which is a function of Reynolds

number Re and Prandtl number Pr; L is characteristic length and kf is the thermal conductivity of the fluid. For

example, a rotating disc heat transfer correlation developed by Northrop and Owen [25] is,

Nu = 0.0197(b+ 2.6)0.2Pr0.6Re0.8 (2.6)
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which is based on a power law ∆T = crb, where c and b are constants and r is radius.

2.3.1 Uncertainty identification

Uncertainty is introduced through the use of the empirically-based approximations described above. Parameters

such as θ in Eq. 2.5 are included to allow for adjustments during model calibration. Similar parameters may be

applied to other aspects of the model boundary conditions, such as air friction heat generation. The adjustment of

these parameters is accomplished through calibration methods such as least squares, maximum likelihood, maxi-

mum a posteriori [26, 27], and Bayesian inference [13, 28, 29]. The Bayesian approach is adopted in this research

since it quantifies the uncertainty in the model parameters, expressed through prior and posterior probability

distributions. The efficient implementation of Bayesian calibration is the topic of Chapters 4 and 5.

The model inputs, such as material properties, air properties, geometry, and known heat flux qh, are defined

directly based on either available measurements or results from other models. Both of these types of inputs

will include uncertainty. For example, in a typical calibration problem it is assumed that the inputs are well-

characterized through measurements during testing. In some cases however, the measurements may only be

partially-characterized due to measurement limitations. An example of this situation is given in Chapter 7.

These sources of uncertainty (parameters and inputs) may be categorized as aleatory (random, irreducible) or

epistemic (lack of knowledge, reducible). The model parameters are an epistemic source of uncertainty since ob-

taining additional measurements (or measurements with reduced uncertainty) for model calibration would reduce

the posterior uncertainty. The inputs may involve both aleatory and epistemic sources, where an example of the

latter was described for partially-characterized measurements.

A physics-based model may contain dozens or hundreds of inputs and parameters (variables). The job of the

practitioner is to determine the subset of these that are significant sources of uncertainty. To start, engineering

judgment is often required. Manual studies may be used to inform engineering judgment (varying a parameter

to two different settings). Then, a more structured approach based on design of experiments (DOE) techniques

such as screening designs, factorial designs, or space-filling DOE [30, 31] may be used. In DOE, the model

inputs/parameters are varied through a meaningful range and the model is run many times to obtain a set of

model input/parameter-output pairs. This data set enables further down-selection through input/parameter selec-

tion methods (e.g., a sensitivity analysis method is used in Section 7.3.3).

In the remainder of this dissertation, the set of px inputs and p parameters are denoted x ∈ Rpx and θ ∈ Rp,

respectively. In Chapter 5, a model discrepancy function with q additional parameters is introduced to capture the

effect of model form error, resulting in a total parameter set of r = p + q model and discrepancy parameters. In

order to demonstrate the research objectives in Chapters 4 and 5, a small subset of representative model parameters

were selected based on SME experience (Tables 4.1). For the VVUQ framework demonstration in Chapter 7,
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a larger subset of model inputs and parameters is chosen (Table 7.2) and refined using sensitivity analysis to

illustrate a more realistic uncertainty identification process.

2.4 Computational model

For typical engineering problems, the mathematical model is solved with numerical algorithms, i.e., with a com-

putational model. As is common in many engineering applications, an existing in-house software code is used in

this study. The model equations described in the previous section are discretized with the finite element method in

space and finite difference in time using standard formulations, e.g., [18]. The code is capable of running solutions

on rectangular or triangular 2D grids or the equivalent brick or tetrahedral 3D grids, but it has a built-in meshing

capability which produces 3-node or 6-node triangles for 2D applications and 4-node or 12-node tetrahedral 3D

elements.

In this application, the SME expects that a 2D axisymmetric model, as shown in Figure 2.2, is sufficient for

predicting component metal temperatures of the turbine disc for the intended use of the results. Therefore, the

built-in mesh generator’s 6-noded triangular elements are used, and automatic mesh and time-stepping refinement

are performed to a user-defined temperature accuracy. Additional details regarding mesh refinement accuracy and

the estimation of discretization errors are discussed in Chapter 3 (An example of an automatically refined mesh is

included in Figure 3.7b.) Model verification should be performed prior to calibration and validation.

Although the emphasis at this stage is on capturing the physical phenomena and turning that into a com-

putational model, a surrogate model [32, 33] is typically needed to perform the many model runs required for

VVUQ methods. The surrogate model approach is therefore considered along with model output processing and

measurements in the next sub-sections.

2.4.1 Multivariate model output

The FE model solution produces many outputs: spatially across the set of nodes defining the model and temporally

through the square cycle (Figure 2.3). However, for the purpose of model calibration and validation, a subset of

the spatial output (model temperature output at all nodes) is only post-processed at nℓ discrete thermocouple

locations, which are indicated on Figure 2.2 (in the figure, nℓ = 9; measurements are discussed in the next

section). The temperature output at these locations is a time series similar to the one shown in Figure 2.3 (top),

which contains nts time steps (nts ranges from 120-170 steps in this research). Despite this initial reduction from

many nodes to nℓ locations, the output dimension could still be up to n = nℓ × nts = 1530.

As noted above, a surrogate model is required to speed up the model runtimes. Since surrogate models

usually map the inputs/parameters to a single output, separate surrogate models must be defined for each of these

n outputs. Some surrogate models are computationally inexpensive to train, but training n models may still be
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expensive. An alternative is to train a time-based surrogate such as ‘long short-term memory’ [34], but this method

is computationally expensive due to the amount of data required for training.

However, due to the autocorrelation that is present in the time series output at each individual location, the

dimension of the time series output can be reduced by extracting nc meaningful ‘features’ of the time-dependent

response (reducing from Rnts → Rnc ). This is a form of model reduction (see Section 7.3.3), which helps to

reduce the computational burden for the purpose of VVUQ analysis. Two approaches to defining these features

are used in this research1, as discussed next.

The first approach, used in Chapter 4 and 5, is to post-process the transient output at each thermocouple

location to extract nc = 4 characteristic quantities: stabilized idle temperature (T idle), stabilized maximum take-

off temperature (Tmto), heating rate (τmto), and cooling rate (τ idle). The last two represent time constants that

are computed by solving for τ in

T (t) = Tstart + (Tend − Tstart)
[
1− exp(−t/τ)

]
(2.7)

by finding t and T (t) such that
(
T (t) − Tstart

)
/
(
Tend − Tstart

)
≈ 0.632. This value implies t = τ since

1 − exp(−t/τ) ≈ 0.632. In Eq. 2.7, Tstart and Tend represent the idle and MTO stabilized temperatures (or

vice versa, depending on whether evaluating the heating or cooling case). The four extracted quantities at the

thermocouple positions are grouped into the multivariate model output vector y, where n = nℓ × nc. Since the

VVUQ process relies on DOE and Monte Carlo methods, in this research we treat y ∈ RN×n as a matrix of N

rows of the model runs/samples.

The second approach, used in Chapter 7, is to simply extract results at a reduced set of manually selected time

instants. The time instants include the two stabilized temperature time points (t = 2000 and t = 4000 seconds for

idle and MTO, respectively) are selected as above to characterize the steady-state response. Then an additional

12 time instants are selected during the transient response to characterize the heating and cooling rates. Thus, in

this approach, the multivariate model output now has nc = 14 (and again the total output size is n = nℓ × nc).

2.5 Test measurements for model calibration and validation

It has been noted in sections above that thermocouple measurements are made during physical testing for the

purpose of calibrating and validating the heat transfer model. The time series produced from the measurements at

each of the nℓ locations are processed in the same way as the model results processing described in the previous

section. Thus, the measured outputs are denoted yd ∈ RNd×n, where as above n = nℓ × nc (using either of

the two approaches to extract nc quantities per location). Nd is the number of measurement replicates. In the

1An alternative approach is to apply PCA to the entire time series [35, 36] or to the combined spatio-temporal model outputs [37],
although the reduced outputs size nc is useful when considering the validation problem in physical space (Chapter 6).
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heat transfer model example, due to the expense of a single engine test, there is unlikely to be engine-to-engine

replicates. However, the engine is fitted with two thermocouples at each of the nℓ locations, spaced circumferen-

tially 180o apart. This is done primarily for redundancy against thermocouple failure. Due to symmetry the two

measurements may also be considered ‘replicate’ measurements. Thus, Nd = 2 in general in this research, unless

otherwise noted.

Due to the limited number of replicates (samples), there is additional uncertainty in the measured outputs re-

garding the true mean value. There are also too few samples from which to estimate the measurement uncertainty.

Therefore, it is assumed in this research that a ‘known’ (prescribed) measurement uncertainty is available, based

on previous information or experience, in the form of a standard deviation σd. This value describes the random

and systematic errors of a given measurement system, as might be derived using an engineering standard such

as ASME PTC 19.1-2018 [38]. In lieu of further information, we assume zero-mean Gaussian-distributed errors

that are independent. Thus, for multivariate outputs yd this measurement uncertainty is described by a covariance

matrix Σd = diag[σ2
d1, . . . , σ

2
dn], where each output may have a different prescribed measurement uncertainty.

For the examples in this dissertation, synthetic measurements are derived by choosing a set of ‘true’ input and

parameter values, x∗ and θ∗, respectively. The model is run, the outputs are post-processed as described in the

previous section, and then zero-mean Gaussian measurement uncertainty is added σ∗
d to obtain Nd replicates.

In Chapters 4 and 5, the focus is model calibration only. In Chapter 7, calibration and validation are both

performed. It is a commonly agreed principle in model definition (e.g., machine learning context [39] or the

physics-based model context [1]) that these two activities should be performed using separate datasets in order to

better assess the predictive capability of the model. For many engineering applications including the present one,

it is challenging to obtain a single dataset, let alone two. There is therefore a spectrum of possible calibration/val-

idation measurement scenarios that result in varying levels of validation quality [40] and add to the complexity of

the VVUQ process. A full discussion of this topic is considered beyond the scope of the present work, but a few

example scenarios of practical interest are given below in Table 2.1.

Table 2.1: Calibration and validation measurement scenarios

Scenario Measurements Physics Model

1 1 engine / test 1 model
2 1 engine, 2 sequential tests 1 model
3 2 engines / tests, different engine configs. 2 model configs., same governing eqns.
4 2 engines / tests, nominally identical engines 1 model

(configs = geometry, boundary conditions, loading, etc.)

If there is sufficient instrumentation in the first scenario, a cross-validation [39] approach may be possible,

considering that there are multiple measurement locations. For example, if leave-one-out cross validation were
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used, this would be carried out through a repeated calibration process where individual measurement locations are

removed from the dataset one at a time. The resulting set of calibrated model parameters could be summarized

either through a parameter posterior weighting [41] (see Section 7.3.5.3) or simply combined through averaging.

In the second scenario, the same engine is run through two different test cycles, for example, the square cycle

discussed above and another modified set of engine maneuvers. In this case, calibration may be performed using

measurements from the first maneuver and validation using the measurements from the second. In the third and

fourth scenarios, one test is used for calibration and the second test for validation. The fourth scenario provides

the best2 information since both tests relate most closely to the design configuration. In gas turbine engine testing,

it is likely that calibration and validation will need to be performed under one of the first two scenarios, given the

expense and time to test an engine. However, for the purposes of demonstrating the VVUQ framework in Chapter

7, it is assumed that sufficient measurements exist such that the fourth scenario applies.

2.6 Conclusion

The model defined in this section is used in the remainder of this dissertation. In Section 1.2 we referred to this

process as the model definition step of the VVUQ framework, which is to be discussed in Chapter 7. Although

the framework is presented as a series of sequential steps to simplify the explanation, model definition is an

iterative process as feedback from later VVUQ steps is obtained. For example, after an initial model is selected

and defined, solution verification should be performed (Chapter 3). The solution verification process itself is

dependent on the selected model and input/parameter settings. After the verification step, the calibration (Chapter

4) and/or validation (Chapter 6) steps may indicate that the model form is incorrect and that the model should be

revised. Thus, the verification step must be revisited. However, through this iterative process of model refinement,

the model errors and sources of uncertainty are systematically identified and reduced, resulting in better model

predictions.

2Of course, none of these scenarios provides perfect information. Even if two engines are tested it does not provide a statistical sample
of the population. And, there is additional uncertainty in extrapolation from ground testing to prediction under flight conditions. These issues
of measurement quality/accuracy and extrapolation require further consideration in future research.
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CHAPTER 3

Solution verification for adaptively refined meshes

3.1 Introduction

In the context of computational models, verification is “the process of assessing software correctness and nu-

merical accuracy of the solution to a given mathematical model” [2]. In the model V&V literature, this is split

into code verification and solution verification1. Code verification seeks to identify errors in the computational

computer code that describes the model, and often includes comparison against known solutions and benchmark

models. In this research, the perspective is from that of a code user who builds a model using an existing in-house

or commercial code. Thus, for the current discussion, it is assumed that the code developer has performed code

verification2. Solution verification involves the estimation of numerical errors in a specific application of the code

and includes discretization errors (time and space), iterative convergence errors, and round-off errors. Of these,

the most significant contributor is discretization errors [3]. Therefore, this chapter focus on the estimation of this

quantity for the purpose of uncertainty aggregation.

Discretization occurs in the process of solving the underlying mathematical equations (that describe a contin-

uum) using numerical methods that are solved with a computer, which requires solutions at a finite number of ‘grid

points’ throughout the physical domain. Discretization error is the difference between this discretized solution

and the exact solution, and it is estimated for the purpose of uncertainty quantification or for guiding automatic

mesh refinement [42]. Methods for estimating discretization error are either a priori which are based on the math-

ematical problem statement or a posteriori which are based on the model solution on one or more numerical grids.

A posteriori estimators are considered more useful for estimating the magnitude of the numerical solution errors

[43], and may be further subdivided into extrapolation-based and finite element-based error estimators [42, 44].

One of the most widely used extrapolation-based methods in engineering is Richardson extrapolation (RE), which

is introduced further in the next section. A common finite element-based method is the recovery method, which

computes gradients from the solution on a single grid to estimate mesh errors at each node throughout the mesh

[42, 43, 45]. Extrapolation-based approaches are considered more accurate than finite element-based methods for

the purposes of uncertainty quantification [16, 46], but the latter are useful for adaptive mesh refinement.

An important motivation for developing discretization error estimators is that simply using the relative dif-

ference between two solutions with different element sizes may be misleading [2]. The reasoning for this is

1As noted in [5], estimating the errors in the surrogate model is another form of verification. This is addressed in the proposed framework
under model reduction, see Sections 2.4.1 and 7.3.3.

2Of course, this must not be simply assumed, but evidence should be supplied by the code developer that code verification has been
completed. For further discussion on code verification, see [2, 42]
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illustrated in Figure 3.1, which shows the difficulty of relating the relative error to the true error. The relative error

ϵh,rel between two solutions f1 and f2 will only approximate the true error ϵ∗h as the solutions asymptotically

approach the true continuum solution f∗ (h is used to generically represent element size). In general, ϵh,rel ̸= ϵ∗h

and should only be used when there are no other options available (this is referred to as the “emergency method”

in [47], in which case it is recommended to multiply the result by a safety factor of 3).
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Figure 3.1: Illustration of how relative error ϵh,rel may give a misleading estimate of true error ϵ∗h.

[48]

3.1.1 Richardson extrapolation

Richardson extrapolation is the prevailing method in the VVUQ literature for estimating discretization error [2,

5, 16, 23, 42, 48–50]. Adapting the notation in [42], the standard RE method assumes that the discretization error

fk − f∗ for mesh level k takes the form of a power series expansion as a function of element size hk,

fk − f∗ = c1hk + c2h
2
k +HOT (3.1)

fk − f̂ = c1hk + c2h
2
k (3.2)

where c1 and c2 are coefficients and HOT in Eq. 3.1 represents higher order terms that have been truncated.

Additional terms may be retained for greater accuracy, but this requires additional mesh levels to determine the

additional coefficients ci. The results from two mesh levels are used to solve Eq. 3.2 for the estimated exact

solution f̂ ≈ f∗. The HOT are negligible when hk is within the so-called asymptotic range, i.e., the HOT

are relatively small compared to the retained terms. It is further assumed in RE that the mesh levels are defined

using systematic mesh refinement, which relies on a uniform refinement ratio (not necessarily a uniform mesh)

and “consistent quality” across the mesh levels [2].

In RE, it is important to show that the observed order of accuracy (an outcome of a mesh refinement study) is

equivalent to the formal order of accuracy of the discretization scheme. The formal order of accuracy is “the value

of the exponent of the leading term of the power series expansion of the truncation error” [1] of the discretized

model equations. The observed order of accuracy is estimated using the solution for f̂ in Eq. 3.2 as follows.
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Three uniformly refined meshes (fine=1, medium=2, and coarse=3) are generated using a constant refinement

ratio, rx = hk+1/hk, which is rx = h2/h1 = h3/h2 for the three mesh case.

For an unstructured mesh, this refinement ratio may be computed from the number of elements of each mesh,

rx = (Bk+1/Bk)
1/d, where Bk is the number of elements in mesh level k, and d = 1, 2 or 3 depending on the

dimension of the model. The model is run on each of the three meshes to obtain the solution outputs fk at selected

locations around the domain, or as a global function of the model. The observed order of accuracy for each output

is computed

â =
ln
(
f3−f2
f2−f1

)
ln(rx)

(3.3)

and the RE estimate of the exact continuum solution is,

f∗ ≈ f̂ = f1 +
f1 − f2
râx − 1

(3.4)

To determine an error estimate for uncertainty quantification, the grid convergence index (GCI) was proposed by

Roache [49]. This is computed as the difference between f̂ and a given mesh solution fk,

GCI = Fs|f̂ − fk| (3.5)

where Fs is a factor of safety. If the observed order of accuracy is similar to the formal order of accuracy

Fs = 1.25 is suggested, otherwise Fs = 3. It is also recommended to limit the range of the observed order of

accuracy in the computation of this bound to 0.5 ≤ â ≤ a∗ the where a∗ is the formal order of accuracy [2].

3.1.2 Challenges with Richardson extrapolation

In practice, the standard RE methodology can be quite challenging due to the small element size required (thus

high computational expense) to achieve the asymptotic range [46]. Due to this, it is also difficult to show that the

observed order of accuracy is similar to the formal order. Oscillatory (non-monotonic) convergence due to coarser

meshes indicates that the asymptotic range has not been achieved, and estimation of errors for coarse meshes is

not well understood for RE [2]. Another significant issue is the requirement of uniform refinement, which pre-

cludes the use of adaptive meshing. Besides loss of the advantages of adaptive mesh refinement (which have

fewer elements and are therefore more efficient in computational effort and storage space), uniform refinement is

challenging to apply to structured meshes and is even more difficult in unstructured meshes with irregular geome-

try. Some meshing tools do not offer sufficient control over element size to enforce uniformity, or may only allow

uniform refinement for a uniform mesh, which results in higher mesh density than is required throughout much of

the mesh. Since adaptive refinement is incompatible with RE, the GCI error estimator is also not applicable.
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Several researchers have proposed improvements to RE to partially alleviate these issues. Kammer et al [51]

replaced the power series with rational functions which require fewer terms (therefore, mesh levels) to achieve

a similar level of error (the reference above also considers a joint surrogate for discretization error and physics

model). Eça and Hoekstra [46] proposed a least squares RE and GCI to reduce the effects of scatter in the RE

solution. Logan and Nitta [52] discuss ten approaches related to RE, some of which are aimed at dealing with

non-monotonic convergence. Thomas et al [53] suggest the use of ‘windows’ and ‘downscaling’, which takes a

region of the mesh and refines semi-locally to enable uniform refinement such that asymptotic behavior may be

achieved. Rangavajhala et al [54] proposed fitting a Gaussian process (GP) model to the grid refinement results

and then using this fit to estimate the error as element size is reduced.

While several of the approaches for discretization error estimation in the previous section require an initial

assumption on the functional form (e.g., Eq. 3.2), GPs are more flexible and their form is learned from the

available data [55], which in this case are solutions fk from the mesh refinement study. In addition, the GP

naturally offers error bounds on predicted values. A potential downside in the use of GP is that it is generally

considered to perform poorly in extrapolation, and extrapolation from finite h to h = 0 is the goal of discretization

error estimation methods. However, GP is adopted in this chapter, and as discussed in the next section, the

extrapolation in this application is ‘bounded’ in a practical way.

The use of the GP alleviates the practical challenges in RE for the present application in two ways. First,

the work by Rangavajhala estimated discretization error for multidisciplinary meshes and mesh interfaces using

uniform refinement. In this chapter, the use of GP is extended to the case of estimation of discretization errors

for adaptively refined meshes for use within an uncertainty aggregation framework. Second, even for uniform

element size refinement, the meshes cannot be easily confirmed to achieve the asymptotic range due to practical

constraints of the mesh tool and geometry. Therefore, by using GP, this constraint is relaxed.

3.2 Methodology

The basic approach proposed in this section is to first fit a GP3 to a model output fk for several levels k of adap-

tively refined meshes, then extrapolate the GP toward the estimated continuum solution f̂ . At this extrapolated

point, the GP variance σ2
f̂

and bias relative to mesh level k, bf̂ = f̂ − fk, are use to define an error estima-

tor referred to in this research as the GP-based discretization error (GPDE) estimate, or ϵhg . This result could

be used directly in place of ϵh, however, there is additional uncertainty in the discretization error due to model

input/parameter uncertainty. Thus, in a final step ϵhg is further scaled to incorporate this additional source of

uncertainty.

The code used for heat transfer analysis of the model in Chapter 2 is an in-house finite element (FE) analysis

3Implemented with MATLAB® function fitrgp with defaults, including the ARD squared exponential covariance function [56]
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tool at Rolls-Royce with adaptive mesh and time stepping capability. The tool provides access to the results of

the finite element recovery-based error estimator ϵhr that is used for automatic refinement (and is available at all

time steps and spatial locations in the FE solution). However, as noted in the introduction, finite element based

methods are not considered useful for quantifying the magnitude of the discretization errors. Therefore, the goal

of this section is to develop a new discretization error estimator ϵh for this adaptively refined mesh. Rather than

using the estimate of f∗ directly (as in [5]), the resulting ϵh is treated as a source of uncertainty within the VVUQ

framework presented later in Chapter 7.

This section proceeds as follows. Section 3.2.1 discusses how mesh levels are defined using the mesh tool,

both for the case of an adaptively refined mesh and a uniformly refined mesh. Then, Section 3.2.2 outlines the

proposed GP-based approach to estimate discretization errors. This approach is applied to both a uniformly refined

mesh in Section 3.2.3.1 (for comparison to the RE/GCI-based method), and an adaptively refined mesh in Section

3.2.3.2 (which is the main focus of this chapter, for the estimation of discretization error used in the VVUQ

framework of Chapter 7). Finally, Section 3.3 shows how additional error due to input/parameter uncertainty is

incorporated into the final discretization error result ϵh. The chapter is concluded in Section 3.4.

3.2.1 Setting mesh levels

Discretization error estimates are generated in the next section for the two different mesh refinement studies:

uniform refinement and adaptive refinement. The adaptive mesh and time-stepping routines of the in-house code

are controlled by error limits that are set by the user. In the following discussion, these error limits are referred

to as Ex and Et for spatial and temporal adaptive refinement, respectively. They are defined in temperature units

(Kelvin). The uniformly refined mesh levels may be defined in the in-house code by turning off the adaptive

meshing and specifying a characteristic element size h, which is applied uniformly across the mesh. However,

the adaptive time-step cannot be turned off, thus the uniform refinement only applies to the spatial aspect and Et

must also be specified, as described next.

To address the relationship betweenEx andEt (in the adaptive case) and h andEt (in the uniform case) during

refinement, the approach by Richards [57] is extended for application to these error limits. Richards related the

uniform time-stepping refinement ratio rt = ∆tk/∆tk+1 to the uniform spatial refinement ratio as rt = rγx ,

where γ is the ratio of the spatial and temporal formal order of accuracy of the numerical schemes (γ = 2 in this

problem). For the present work, the extension is to define rt using the adaptive time-step error limit settings for

two mesh levels, rt = Ek+1
t /Ekt .

In order to perform an adaptive refinement study, mesh levels are defined as follows (the uniform refinement

study is similarly defined, except that Ekx is replaced by hk and adaptive spatial refinement is turned off):
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Step i. Choose desired spatial refinement ratio rx

Step ii. Generate an initial mesh with mesh settings E1
x and E1

t

Step iii. Compute the number of elements B1

Step iv. Choose Ek+1
x and rx, then generate a new mesh with Ek+1

t = Ekt · r2x

Step v. Compute the number of elements Bk+1

Step vi. Repeat Steps iii-v to achieve (Bk/Bk+1)
1/2 equivalent to the chosen rx in Step i

Step vii. Repeat Steps iii-vi to obtain the desired number of mesh levels

3.2.2 GP based discretization error estimation (GPDE)

Using the series of meshes defined above, the proposed GPDE approach to estimation of discretization error is

carried out as follows for either the adaptive or uniform refinement studies. The process is described for a single

model output, but is repeated for the number of outputs.

Step 1. Define a series of refined meshes by modifying error limits Ekx and Ekt (adaptive study) or hk and
Ekt (uniform study), as described in Section 3.2.1.

Step 2. Fit a GP to the model solutions from each of these meshes (for each output of interest) as a function
of Ekx (adaptive) or hk. The GPs assume a zero-mean basis function, (as in [54]).

Step 3. Estimate the exact solution approximation f̂ by extrapolating to Ex = 0 (or h = 0 for the uniform
study), along with its standard deviation σf̂ (based on GP uncertainty) and the bias bk = f̂ − fk.

Step 4. Combine these values into the GPDE,

ϵhg ∼ N
(
0, σ2

f̂
+ b2k

)
(3.6)

which is a zero-mean Gaussian distribution with variance σ2
hg := σ2

f̂
+ b2k.

3.2.3 Demonstration of GPDE

In the next two subsections, GPDE is demonstrated first for the case of three uniformly refined mesh levels

(Section 3.2.3.1), then for five adaptively refined mesh levels (Chapter 3.2.3.2) using the heat transfer model from

Section 2.4. The geometry is shown in Figure 3.2 with nℓ = 9 numbered output locations for reference in the

results (and a typical adaptively refined mesh). Discretization errors will be computed for each location.
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Figure 3.2: Turbine disc thermal model discretization error estimation locations (thermocouple positions).

3.2.3.1 GPDE for uniform refinement compared to Richardson extrapolation

Mesh settings were iteratively modified to achieve the refinement ratio rx ≈ 1.62 (rt ≈ 2.62) which results in the

three mesh level settings for h and Et listed in Table 3.1. FE solutions for each mesh were computed and outputs

were extracted at the 9 thermocouple locations at time t = 2010 seconds4. Then, GP models were fit to the three

solutions as a function of h, which are shown in Figure 3.3.

Table 3.1: Uniform refinement discretization error study settings for element size h and adaptive time step error limit
Et.

Mesh Level units 1 2 3

Characteristic element size, h mm 3.04 4.91 7.96
Temporal error limit, Et K 0.73 1.91 5

Figure 3.3: GP fit of temperature as a function of average element size [mm] for uniformly refined meshes at locations
P1-P9 shown in Figure 3.2. The red point is f̂ at h = 0.

4This time was chosen since it occurs during the transient maneuver of the square cycle (Figure 2.3), where errors are near their worst.
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In cases where the GPs in Figure 3.3 are less well-defined in the extrapolation region h → 0 (e.g., P1, P6,

P7, P9), it is observed that the estimate for f̂ (red point) drifts towards the mean of the three mesh level values

fk and its standard deviation grows toward the standard deviation of the three values fk. This ‘saturation’ is most

obvious and complete in the case of P1, which fails to find a good fit due to lack of a clear trend. Although

tighter uncertainty bounds is preferred, this ‘failure’ mechanism is a reasonable default when there is no clear

convergence toward f̂ . In the RE/GCI approach, such behavior precludes the use of the estimate altogether.

The GPDE estimate Eq. 3.6 was computed from these results at mesh level 2 and compared to the RE-

based GCI (computed using the same meshes) and ϵhr in Figure 3.4. The RE computations did not achieve

agreement between the observed and formal order of convergence5 due to challenges with achieving refinement

in the asymptotic range (location P8 is at a relatively thin structure which prevents uniform refinement; P1 is

near boundary conditions that induced high temperature gradients). The recovery based solution (ϵhr) results in a

substantially error than either the GP or GCI approach, which may supports the guidance in [16, 46] that recovery

based discretization error estimators are not useful in magnitude for VVUQ. Finally, the comparison between

GCI and GPDE is not perfect, but since the GCI results were not within the asymptotic range, it was decided they

were satisfactory enough to carry forward with the adaptively refined mesh study. Future work should consider

applying this approach to simpler geometry in order to demonstrate observed order of accuracy.
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Figure 3.4: Comparison of three discretization error estimators for uniformly refined mesh: RE-based GCI, GP, and
the recovery-based error estimator standard deviation σhr . These represent 1σ errors (Fs = 1).

3.2.3.2 GPDE for adaptive refinement

Next, to perform the adaptive refinement discretization study, five cases were defined. Based on SME experience,

an upper bound of Ex = 5 K and lower bound of Ex = 1 K were chosen, resulting in a spatial refinement ratio

rx ≈ 1.5 and temporal refinement ratio rt = r2x ≈ 2.24. The settings for Ex and Et are listed in Table 3.2. A

minimum of Et = 0.45 K was set to avoid excessive time steps. The FE solutions were obtained at the locations

P1-P9 and GP models fit as a function of Ex. These GPs are are shown in Figure 3.5 along with the estimated f̂

5Thus, the GCI approach suggests that a safety factor of Fs = 3 is applied when using the results for UQ studies. However, for this
comparisons below no safety factor is applied (Fs = 1).
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(red dot), obtained by extrapolation to Ex = 0.

Table 3.2: Adaptive refinement discretization error study with adaptive error limit settings.

Mesh Level units 1 2 3 4 5

Spatial error limit, Ex K 1 1.50 2.24 3.34 5
Temporal error limit, Et K 0.45 1.01 2.25 5.03 11.25

Figure 3.5: GP fit of temperature as a function of adaptive refinement accuracy [K] for adaptively refined meshes at
locations P1-P9 shown in Figure 3.2. The red point is f̂ at Ex = 0.

The GP bias (bk = f̂ − fk), GP standard deviation (σf̂ ), and the GPDE standard deviation (σhg) are tabulated

in the first three rows of Table 3.3. The third mesh level (k = 3) is chosen for the purpose of demonstration in

this study (in practical situations the finest mesh may not be chosen in order to balance runtime and accuracy).

For comparison, the table includes the standard deviation and range of fk for the five mesh levels. At most of the

locations (except P6), the GP’s standard deviation is smaller than the 5-solution standard deviation (σf̂ < Std[fk]),

indicating that the extrapolation has not reached saturation.

Table 3.3: GP discretization error study results for adaptive refinement (in Kelvin, at t = 2010 sec.).

Location → 1 2 3 4 5 6 7 8 9

GP mean bias, b3 = f̂ − f3 1.84 0.18 0.85 2.52 1.15 0.11 0.18 0.89 0.12
GP std. dev., σf̂ 1.31 0.49 0.87 1.01 0.55 0.19 0.69 0.33 0.36
GPDE std. dev., σhg 2.26 0.52 1.21 2.71 1.28 0.22 0.72 0.95 0.38

5-solution std. dev. 1.66 1.08 0.98 1.47 0.98 0.19 0.88 0.65 0.39
5-solution range 4.87 3.00 2.88 4.24 2.80 0.45 2.16 1.78 1.15
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3.2.3.3 Comparison of GPDE for uniform and adaptive refinement

The uniform and adaptive refinement study results are compared in Figure 3.6. The adaptive results (Figure 3.5)

show a higher level of non-monotonicity relative to uniform refinement (Figure 3.3), as one might expect due to

local refinement effects. This also results in larger GPDE than the uniform case at several locations, as Figure 3.6

highlights. These results are again compared to ϵhr, which again show its potential limitations as an estimator for

use in UQ. However, as is shown in the next section, due to its availability throughout the FE solution domain

(space and time), it will be used to obtain the additional uncertainty due to parameter dependence.
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Figure 3.6: Comparison of uniform and adaptive refinement discretization errors for GP and the recovery-based error
estimator standard deviation σhr . These represent 1σ errors (Fs = 1).

The medium (mid-level) meshes from the uniform and adaptive refinement studies are shown in Figure 3.7.

While the adapted mesh errors are higher in some locations, the number of elements is substantially smaller. This

reflects the trade-off between analysis speed and accuracy that the user must choose between. The adaptively

refined mesh errors could be reduced by choosing mesh level 1 or 2 (rather than 3).

(a) (b)

Figure 3.7: Comparison of (a) uniformly refined and (b) adaptively refined meshes. The medium (middle) mesh level
is shown for each from the two studies.
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3.3 Discretization errors and uncertainty aggregation

Now that the GPDE is computed for the adaptively refined meshes, it may be included in the estimate of total dis-

cretization error ϵh, which will be used later in this dissertation for the purpose of uncertainty aggregation. Thus,

the final step is to consider the additional uncertainty due to variation in the model inputs/parameters. To account

for variability in the inputs/parameters using the GPDE approach directly would be computationally expensive:

new GPs would need to be re-fit across five meshes for every set of considered input/parameter combinations

(e.g., using DOE). Instead, we propose to obtain this variability using the recovery-based error ϵhr = N (0, σ2
hr),

which is available at all solution points as previously noted6. Thus, the total discretization error ϵh combines the

recovery-based estimated parameter/input variability contribution ϵhr with the GPDE estimate ϵhg as follows (for

each output):

Step 1. Obtain the variance from the GPDE estimate, σ2
hg (Eq. 3.6) and FE solution σ2

hr.

Step 2. Define an average scaling factor across the nℓ output locations,

β =
1

nℓ

nℓ∑
i=1

σhg,i
σhr,i

(3.7)

Step 3. Perform a DOE over model inputs/parameters and compute the variance of the recovery-based es-
timate ϵhr computed for each DOE run (i.e., the variance of σhr). Let the the total variance in the
recovery-based solution be defined as follows, where the second term is from the DOE results

σ̃2
h = σ2

hr + Var[σhr] (3.8)

Step 4. Define the total discretization error as a zero-mean Gaussian with a scaled standard deviation that
combines the result of Step 2 and Step 3, i.e., σh = βσ̃h,

ϵh ∼ N (0, σ2
h) (3.9)

The results for these steps are summarized in Table 3.4. The DOE variation Var[σhr] contributed an additional

22% of the nominal σhr, on average over the nine locations. Also, β ≈ 3.72 in the study.

Table 3.4: Discretization error standard deviation σh, estimated from the GPDE and FEA recovery-based errors (in
Kelvin, at t = 2010 sec.).

Std. Dev. ↓ Location → 1 2 3 4 5 6 7 8 9

GPDE σhg 2.26 0.52 1.21 2.71 1.28 0.22 0.72 0.95 0.38
FEA error σhr 0.23 0.17 0.69 0.29 0.58 0.62 0.47 0.37 0.13
DOE error Std[σhr] 0.08 0.1 0.16 0.11 0.15 0.13 0.09 0.02 0.04
FEA & DOE error σ̃h 0.25 0.16 0.71 0.31 0.60 0.64 0.48 0.37 0.14

Total discr. error σh 0.92 0.61 2.64 1.15 2.22 2.37 1.77 1.36 0.52

6The value reported from the FE tool is interpreted as a standard deviation, σhr , based on the tool’s documentation
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3.4 Conclusion

Discretization error estimation is fraught with significant challenges. The prevailing RE-based methods have

stringent requirements that may preclude their usefulness in many practical applications due to the need for the

mesh to be in the asymptotic range, and when adaptive refinement is used. The estimates are sensitive to the model

definition including input/parameter uncertainty, which means that the estimated discretization errors based on a

given set of inputs/parameters is not a deterministic quantity. The GP-based approach explored in this chapter

shows promise as a pragmatic way forward, allowing additional flexibility for adaptively refined meshes in both

space and time. The incorporation of additional uncertainty for variation of the inputs and parameters was also

demonstrated.

Benefits of using the GP for the estimation of discretization errors are that specifying a functional form (e.g.,

polynomial) is avoided and monotonicity (i.e., the asymptotic range) is not mandatory, as is the case for Richard-

son extrapolation-based methods. There is no strict requirement of refinement within the asymptotic range. It was

also shown that the extrapolation properties of the GP (with a zero-mean basis function) ‘saturates’ to the mean

and standard deviation of the solutions fk of the k mesh levels. This is a sort of fail-safe that, at worst, reflects the

variability in the obtained solutions. It is easy to check if this has occurred and the analyst may decide whether

performing additional mesh levels would be advantageous.

The results shown in this chapter provide an estimate at the selected time instant (t = 2010 seconds). This

could be repeated over all solution time steps if required. However, to simplify the application of this error in a

conservative manner, results at this time instant are applied to all time steps. This discretization error estimate is

used later (Chapter 7) during calibration, validation, and prediction by randomly sampling the normal distribution

in Eq. 3.9.

Future improvements to the discretization error estimation process include:

• To gain further confidence in the application of the GPDE approach, it is recommended that a rigorous

comparison to RE is performed on simpler geometries with structured/unstructured-uniformly refined, and

unstructured-adaptive meshes. The study should consider element sizes from within the asymptotic range

to sizes outside the asymptotic range (more practical element sizes, as investigated in this chapter).

• The proposed approach addresses errors at the thermocouple locations. Improved propagation across space

and time could be developed by taking advantage of ϵhr which is available at all nodes and time steps.

• The GP fits were based on a zero-mean basis function, which gave favorable properties when extrapolation

reached saturation. However, it is worth investigating a hybrid approach: fit a GP with alternative mean

functions, for example one based on the power series used in RE. Alternative kernel functions may also be

considered.
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• The methodology for quantifying the uncertainty in the discretization error estimate due to dependence on

inputs/parameters (which are uncertain) relied on the recovery-based errors available in the FE solution

DOE results. Where computational effort allows, the GPDE could be computed during each DOE run. In

that case, the surrogate and discretization error GP may be combined as in [51].

29



CHAPTER 4

Efficient calibration of physics-based models1

4.1 Introduction

Physics-based engineering models are subject to many sources of uncertainty, including model form (Section 2.2),

inputs and parameters (Section 2.3.1), discretization errors (Chapter 3), and measurements due to limited samples

or sparsity (Section 2.5). In this chapter, we develop a computationally efficient approach to model calibration

within a Bayesian framework, using the heat transfer model example from Chapter 2.

Model calibration is an inverse problem which may be accomplished with methods such as ordinary least

squares (OLS), maximum likelihood estimate (MLE), maximum a posteriori (MAP) estimation, or Tikhonov reg-

ularization [26, 27]. All of these result in the best point estimate through some form of optimization. By contrast,

the Bayesian calibration [28] approach results in parameter estimates in terms of probability distributions that

reflect epistemic uncertainty due to other sources of uncertainty (e.g., measurement uncertainty) and parameter

unidentifiability. In this chapter, therefore, Bayesian calibration is applied to the turbine disc model introduced in

Chapter 2 so that sources of uncertainty will be accounted for and the resulting parameter probability distribution

may be used for further analysis, as discussed in Chapter 7.

Bayesian calibration has been demonstrated by researchers in the context of spatially varying parameters [59],

reliability analysis [60], simplified heat transfer modeling [61], gas turbine compressor heat transfer modeling

[62], nuclear fuel performance modeling [35], multi-fidelity modeling [63], hypersonic flight model calibration

including Active Subspace [64, 65]. Much of this work has used the pioneering framework of Kennedy and

O’Hagan [13, 66]. Bayesian calibration is based on Bayes’ rule, P (θ|yd) ∝ P (yd|θ)P (θ), which states that

the product of the prior probability of the parameters P (θ) and a likelihood function L(θ) is proportional to the

posterior probability of the parameters P (θ|yd), where the notation indicates that the posterior is conditioned on

the measurements yd. This will be discussed in more detail in Section 4.4.1.

Bayesian calibration often relies on Markov Chain Monte Carlo (MCMC) sampling [67–69], which draws

samples from the joint parameter posterior probability distribution. Each of the thousands-to-millions of MCMC

samples requires an evaluation of the heat transfer model; thus, as noted in Chapter 2, it is common to replace the

physics model with a fast-running surrogate model to reduce the computational effort. The surrogate model can

be ‘trained’ using smaller set of model runs. These runs are typically based on input/parameter settings defined

using a space-filling design of experiments (DOE) [30], such as Latin Hypercube Sampling (LHS) [31].

This chapter considers problems with high-dimensional inputs and outputs, and proposes a novel dimension-

1Adapted from [58]
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reduced surrogate modeling approach to achieve computational efficiency in Bayesian model calibration. The

proposed surrogate modeling approach involves three primary steps. First, since the thermal model outputs are

multivariate and correlated [35, 59], a dimension reduction method called principal component analysis (PCA)

[70–72] is used to transform the correlated model outputs to an uncorrelated set of outputs (which are linear

combinations of the original outputs). In the transformed space, the dataset can be represented with substantially

fewer dimensions than the original outputs, while preserving most of the information in the dataset (through the

variance) [73]. This new set of lower-dimensional outputs, which are called principal components (PCs), offer

three benefits: (i) Reducing the dimensionality of the outputs means that fewer surrogate models are required. (ii)

Most surrogate modeling methods require a scalar response. Since the outputs are uncorrelated, any of the scalar

output-based methods may be used. (iii) For Bayesian calibration, the now uncorrelated outputs also simplify

the computation of the likelihood function to the product of statistically independent distributions, based on the

multiplication rule of probability theory [74].

Second, another dimension reduction method called active subspace (AS) is applied to the dataset’s gradient-

space [64, 65, 75] to form a reduced set of active variables from linear combinations of the original model input-

s/parameters. In this chapter, only the model parameters are varied (model inputs are treated deterministically),

thus AS forms a reduced set of ‘active parameters’. A single active parameter is chosen in this case for each PC

output, although additional active parameters may be required depending on model complexity.

Finally, regression models (quadratic is used in this research) are fit to the PC-AS transformed dataset, which

maps one active parameter to one PC. Thus, the overall surrogate model is formed by the collection of these 1-to-1

mappings and we refer to this as the PC-AS surrogate model.

After formulating the PC-AS surrogate model, we demonstrate Bayesian calibration of a gas turbine disc

FE thermal model, followed by forward propagation of the parameter uncertainties using standard Monte Carlo

simulation. These steps are summarized as follows, and shown in Figure 4.1. The nomenclature and terminology

will be clarified in subsequent sections.

Step 1. Select FE model parameters and prior probability distributions
Step 2. Run FE model through a space-filling DOE to generate outputs
Step 3. Perform PCA on the FE outputs to remove correlations and for dimension reduction
Step 4. Perform AS to reduce input dimension
Step 5. Generate the PC-AS surrogate models
Step 6. Measure physical outputs
Step 7. Transform measurements to the PC-space of the model
Step 8. Formulate the likelihood function in the PC-space
Step 9. Solve for parameter posteriors using MCMC
Step 10. Propagate parameter posteriors through the model to obtain output uncertainty

31



𝒚!

Methodology for Bayesian Calibration, 
v3

Run Model

𝜽′

Measure Data

Perform PCA 
𝒚"𝑈 → 𝒚#$

𝒚#$

𝒚"

Active Subspace 

To PC-space 
𝒚!𝑈 → 𝒚!

#$
𝑈

Define 
Likelihood

Posteriors (MCMC)

Propagate 𝜽′′

Choose Priors

𝒚!
#$

𝒙

1

2

3

4

7

8

9

10

Fit Surrogate 
𝒚#$ ≈ 𝑓% 𝒘&𝜽, 𝒙 𝒇%

5

6

ℒ 𝜽

𝜽′′

Figure 4.1: Proposed calibration methodology

The rest of this chapter is organized as follows: Section 4.2 discusses the FE model (steps 1 and 2) and mea-

surements (steps 6 and 7) used in the application. Section 4.3 discusses the model transformations and resulting

PC-AS surrogate model (steps 3-5). Section 4.4 demonstrates Bayesian calibration of the FE model using the

PC-AS surrogate model (steps 8-10). Conclusions and future work are discussed in Section 4.5.

4.2 Model definition

The methodology is presented using the heat transfer model dataset presented in Chapter 2. The specific model

details for this chapter are described in this section before defining the dataset for the demonstration of the PC-

AS surrogate and its use in the model calibration example. Figure 4.2 repeats Figure 2.2 except that a set of

parameters are indicated for the analysis in this chapter and the number of output locations is nℓ = 12 (three

additional thermocouples on the compressor). As discussed in Chapter 2.2, a model variable down-selection

process is typically required before calibration to determine the driving variables and ensure that the calibration

process is tractable. However, in order to focus this chapter on the proposed methodology, a small subset of the

possible model parameters θ ∈ Rp were selected. These p = 5 parameters are also listed in Table 4.1.
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Figure 4.2: Heat transfer FE model showing selected model parameters (in red), and thermocouple locations used in
calibration (results will be shown in Section 4.4.4 for the four named thermocouple locations)

The parameter set includes two heat transfer coefficient (HTC) factors, fhdiaf applied to a free disc HTC

and fhcob2 applied to the disc bore, which uses an HTC that is a combination of free disc and duct flow. Factor

fwdiaf is applied to a frictional heating (windage) HTC. Two boundary temperature factors ftau and fthp3

are used to calibrate the source temperatures feeding into the secondary air cavities around the disc. The factor

ftau modifies the time constant of the air supplied to the compressor disc bores, which is calibrated due to

uncertainties from missing engine geometry. Factor fthp3 modifies the temperature of the air drawn off the hub

of the final compressor rotor, which is calibrated due to uncertainties in temperature profile measurements near

the hub. These five parameters are given the ranges shown in Table 4.1 [θmin, θmax] for the purpose of performing

the DOE. These ranges are also used to define uniform prior distributions during Bayesian calibration (see Section

4.4). The range is based on engineering experience. The posterior parameter distributions may provide feedback

in the event that selection of this initial choice was poor, e.g., if the posterior results in a tight distribution around

the boundary of the uniform prior. Finally, in order to demonstrate the methodology, the column of ‘true’ values

θ∗ in Table 4.1 is used to generate model outputs which are used as synthetic measurements.
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Table 4.1: Calibration parameters

Name Description [θmin, θmax] θ∗

θ1 fhcob2 HTC, cob/bore ID [0.5, 2.0] 1.7
θ2 fhdiaf HTC, fwd. diaphragm [0.5, 2.0] 0.7
θ3 ftau Temp, time lag [0.5, 2.5] 2.0
θ4 fthp3 Temp, compr. offtake [0.8, 1.2] 1.1
θ5 fwdiaf Windage, fwd. diaphragm [0.5, 2.0] 1.5

4.2.1 Heat transfer model outputs

The multivariate output of the FE model was described in Section 2.4.1. In this chapter, the 6-noded triangu-

lar element mesh contains 10,071 nodes (710 for the turbine disc only, the darker gray domain in Figure 4.2).

However, measurements yd are only available at the nℓ = 12 discrete locations and so model outputs y are ex-

tracted from this set of locations for the purpose of calibration. The thermocouple locations are selected based on

both practical considerations and parameter sensitivities. An engine test may have thousands of instrumentation

channels but only a small subset of these will be dedicated to any single component. The thermocouples must be

routed through the engine and out to the test stand, which requires a telemetry system for rotating components.

Ideally, the locations are also optimized based on parameter sensitivities [59], but this process is not included in

this research.

The time step histories for four representative thermocouple locations (out of the nℓ = 12) are plotted in

Figure 4.3 to illustrate how the turbine disc temperatures change through the engine test square cycle. These time

series contain nts = 123 time steps each, resulting in total output dimension n = nℓ × nts = 1476. As described

in Section 2.4.1, this is reduced to n = nℓ × nc by defining nc = 4 characteristic quantities: two stabilized

temperatures (Tmto and T idle) and two calculated time constant quantities (τmto represents the heating rate of

change and τ idle represents the cooling rate). The time constants are defined from Eq. 2.7. Thus, the reduced

output set is comprised of n = nℓ × nc = 12× 4 = 48 outputs (rather than 1476 outputs).

Figure 4.3: Representative FE model transient temperature outputs for four selected thermocouple locations (square
cycle).
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Then, a LHS DOE was performed to obtain N = 200 model runs for the creation of the surrogate model,

which provides generous sampling given the five model parameters. In this case, the model runtime was fast

(13 seconds per run of 16 models run in parallel, one model run per computer core). After calculating the time

constants, the n outputs from the DOE are combined into the output matrix y for further analysis,

y = [y1,y2, ...,yn] =


Tmto1 T idle1 τmto1 τ idle1

...
...

...
...

TmtoN T idleN τmtoN τ idleN

 ∈ RN×n (4.1)

It was noted in Section 2.4 that solution verification must be performed prior to calibration. The FE code

used in this analysis has adaptive mesh and time-stepping refinement capability to meet a chosen error threshold.

However, for the present work a manual verification study was carried out by refining the mesh to a regular mesh

sizing of approximately 10 mm edge lengths, relative to a turbine disc radius of 300 mm. The spatial errors were

determined to be generally less than 1 K and the worst transient error at the rim thermocouple position was 1.4

K. Temporal accuracy convergence was estimated to be less than 4 K with back-to-back model runs at refinement

thresholds of 5 K and 1 K. For the purpose of this study, these errors were deemed acceptable and were not carried

forward into the calibration step. A more rigorous approach is considered in Chapter 3 and this discretization error

is treated as a source of epistemic uncertainty within the VVUQ aggregation framework described in Chapter 7.

4.2.2 Synthetic test measurements

The process introduced in Section 2.5 is used to generate synthetic measurements using the known parameters

values θ∗ shown in Table 4.1 and known σ∗
d . Results are first extracted at the nℓ = 12 thermocouple locations

and then post-processed to obtain the same n = 48 outputs as the model output described in the previous section.

Since there are two types of outputs, the σ∗
d measurement uncertainty is comprised of two values called σ∗

T

for temperature and σ∗
τ for time constant. The temperature errors were defined as zero-mean Gaussian i.i.d.

measurement error with a standard deviation σ∗
T = 3 K. The time constant measurement error σ∗

τ was related to

the temperature uncertainty using a first order Taylor series approximation on the relationship τ = g(T ) from Eq.

2.7. At at a given σ∗
T and mean temperature µ∗

T the first order Taylor series approximation is,

(σ∗
τ )

2 = Var[τ ] ≈
(
g′(µ∗

T )
)2(

σ∗
T

)2
(4.2)

As discussed in the last section, the overall number of measurement locations is selected based on practical

considerations and the potential information gain from the experiment. For the purpose of demonstration in this

example, the selected 12 locations did not include any optimization. In addition to the locations in Figure 4.2,
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it is typical in gas turbine engine testing to replicate measurements at these locations in the tangential direction

(into the page in Figure 4.2), as a safeguard against thermocouple failure. Often, only two replicates Nd = 2 are

available at a given axial-radial position due to the cost of instrumentation and measurement channel limitations.

Since synthetic data is used in this analysis, Nd = 2 will be compared with Nd = 10.

4.3 Efficient surrogate modeling

The basic approach to the PC-AS model was described in Section 4.1 and is now described in detail using the

dataset generated from the DOE in Section 4.2.

4.3.1 Output transformation with principal component analysis (PCA)

Principal component analysis (PCA) is a matrix transformation that ‘rotates’ the dataset to derive new outputs,

called principal components (PCs). These new outputs are linear combinations of the original outputs that maxi-

mize variance in each of the new directions. This is done by solving the finite eigenvalue problem of the covariance

matrix of the dataset [70, 71],

Σy =
1

N − 1
yT0 y0 = UKUT (4.3)

where y0 is a standardized version of the model outputs (outputs have their mean subtracted and are normalized

by their standard deviation), U ∈ Rn×n (PCA coefficients) is a matrix containing the eigenvectors, and K is a

diagonal matrix (also n×n) containing the eigenvalues. These eigenvalues are the variances of the PCs. The PCs

are formed from the eigenvalue-ordered columns of

ypc = y0U (4.4)

where the first PC (column) has the largest variance. The first PC therefore represents the largest proportion of

the data. Back-transformation is accomplished by matrix multiplication by the transpose of U , y0 = ypcUT .

In typical applications of this method, dimension reduction is achieved by splitting the eigenvector/eigenvalues

into two sets. The first set retains npc eigenvectors in U1 ∈ Rn×npc which form the retained PCs ŷpc = y0U1 ∈

RN×npc . The second set U2 ∈ Rn×(n−npc) represents the discarded (truncated) PCs y0U2. Often, the reduction

is significant such that npc ≪ n, where npc must be chosen heuristically either using the variance explained, or

by computing the truncation error. These are computed next for this example.

The percentage of variance explained is the sum of variances of retained PCs to the total variance (see relative

variance ‘Rel Var’ in Figure 4.4). If the eigenvalues exhibit a rapid decrease, as shown after the fifth PC in Figure

4.4, we truncate to npc < n. In this example, the compression of the output space to npc = 5 retains 99.5% of the

original total variance (i.e., the sum of the first 5 percentage contribution values, shown red in Figure 4.4). These
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U1 ∈ Rn×npc form a new orthonormal basis for the reduced npc-dimension subspace over the Rn output space,

which become the PCs,

Truncation error is the difference between the original dataset and the truncated dataset, which is reconstructed

to recover the approximate original outputs. Reconstruction is achieved by back-transforming the truncated set

ŷpc to the original space, ŷ0 = ŷpcUT1 , where U1 ∈ RN×npc is the reduced set of eigenvectors. Then, the

error is computed as (y0 − ŷ0) ⊙ Sy , where Sy = [σ′
y1,σ

′
y2, . . . ,σ

′
yn] ∈ RN×n is a matrix with N rows, each

containing a copy of the standard deviations of the original outputs, and ⊙ is the Hadamard product (element-wise

multiplication).

Finally, since calibration will be performed in the PC-space, the test data is also transformed to the PC-space

of the model. The data yd are first standardized with the model output column means and standard deviations to

obtain standardized yd0, then transformed using the eigenvectors from the model transformation similar to Eq.

4.4)

ypcd = yd0U (4.5)

which may again be truncated by using U1 in place of U .

Figure 4.4: Percentage contribution of PCs to the total variance (red), and maximum output reconstruction error of
temperatures (T , K) and time constants (τ , s).

4.3.2 Input transformation with active subspace (AS)

The transformed model outputs result in a mapping F : Rp → R of the parameter set θ ∈ Rp to a given PC

(ypck ), to which the AS method [65] is applied (F is used here for a generic function to simplify notation in this

section). If this mapping F is differentiable and square integrable, a symmetric positive semi-definite matrix may
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be defined with the eigenvalue decomposition,

C =

∫
θ

∇F(θ)∇F(θ)T ρ(θ)dθ =WΞWT (4.6)

where W = [w1, . . . , wp] ∈ Rp×p is an orthogonal matrix of the eigenvectors, Ξ = diag[ξ1, . . . , ξp] ∈ Rp×p are

magnitude-ordered eigenvalues, ρ(θ) is the sampling density. The parameters θ are scaled to a [−1, 1]p hypercube.

Since LHS has been used, ρ(θ) is interpreted as a uniform distribution of the random variables θ, as in prior work

[76–79]. Another interpretation of Eq. 4.6, based on the definition of expectation E[x] =
∫
xρ(x)dx [80], is

that,

C = E
[
∇F∇FT

]
(4.7)

which is to say, C is the expected value (average) of the gradient outer product. The eigenspace of C defines

important directions in the domain of F . Ordering the eigenpairs [ξi,wi] of this result in decreasing magnitude of

ξi indicates that w1 is the most important direction, followed by w2, etc. Identifying these important directions

has the potential for dramatic computational implications when considering quadrature rules for integration [81],

optimization to minimize or maximize F [76–79, 82], or approximation of F [76, 78, 79, 82, 83]. By means

analogous to PCA above, a heuristic based on eigenvalue magnitudes is used to truncate to pa < p such that a

pa-dimensional partition of W , the active subspace Wa = [w1, . . . ,wa], captures the majority of the change in

the function. The remaining columns of W are the inactive subspace. The function approximation Fa : Rpa → R

is called a ridge approximation over the active subspace [84],

F(θ) ≈ Fa(WT
a θ) (4.8)

Plots of the model parameters and PC outputs based on Eq. 4.8 are known as shadow plots [85]. In the case that

strong trends over the first one or two important directions are observed [75–78, 82, 83], the ability to visualize

how the function changes in these important directions allows better selection of the most appropriate type of

approximation, i.e., providing strong empirical evidence that a function is predominately linear, quadratic, or more

complicated. Moreover, this change of variables is simply pa linear combinations of the p original parameters.

Therefore, the entries of the eigenvectors may be considered as weights indicating the importance of a particular

parameter ordered by the corresponding eigenvalue. Thus, the magnitude of the entries of the first eigenvector

offers a sensitivity analysis. More information on the sensitivity analysis interpretations can be found in [86].

The definition of Eq. 4.6 depends on gradients, which are often not available in standard FE tools. Therefore,

gradient approximations will be based on the space-filling model samples. In this problem, a global linear gradient

approximation is assumed for a single eigenvector (see Algorithm 1.3 in [65]). This eigenvector w1 is calculated

38



from the linear gradients b asw1 = b/||b||, resulting in active parameterswT
k θ, where the subscript of this single

eigenvector is repurposed from here on to represent PC k.

4.3.3 The resulting PC-AS surrogate model

By this combination of PCA and AS, the surrogate modeling problem has been significantly simplified: the

5-input and 48-output problem is compressed into five 1-input and 1-output quadratic surrogate models. Further-

more, AS dimension reduction makes visualization of the surrogate models feasible as shown by the five shadow

plots in Figure 4.5. The shadow plots are the PC-space outputs ypck plotted as a function of the active subspace

parameters wT
k θ (blue dots), which are fit with quadratic polynomial regression surrogate models (red curves).

The measurements are also transformed into the model’s PC-space using Eq. 4.5 (green horizontal lines). The

goal of calibration is to find the best values of wT
k θ which result in a surrogate model output equivalent to the

data, i.e. the intersection of the green and red lines for all k PC-AS shown in Figure 4.5. Re-fitting the PC-AS

surrogate model for different numbers of N (retaining 50 test points) and npc resulted in R2 > 0.95 for N > 20

and npc ≥ 5.

Figure 4.5: Active subspace shadow plots for the first 5 PCs (blue dots), surrogate model fits (red line), and measure-
ments in PC-space (green lines).

4.3.4 Sensitivity analysis of PCs vs eigenvector

Another benefit discussed in Section 4.3.2 is that the eigenvectors of the active parameters provide first-order

parameter sensitivity analysis for each PC. These eigenvectors are plotted in Figure 4.6 and are compared to first

order Sobol’ indices. The first order Sobol’ index for θi and PC k was generated using a modularized sample-

based method [87],

Ski =
Var

[
E[ypck |θi]

]
Var[ypck ]

(4.9)

where the expectation is taken over samples within bins of each θi to determine the variance of ypck due to θi.

Both approaches use the available 200 LHS samples from the FE model. The magnitude of these two first order

sensitivity measures are in good agreement, but the AS approach requires no additional calculation.

Note that in both methods, the sensitivity results are computed for outputs in PC-space. Alternatively, sensi-
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tivity results could be calculated for all physical outputs. Calculating sensitivities for all outputs results in many

conflicting relationships when the objective is dimension reduction, i.e., parameters that are important to one out-

put may not be important to another output. By computing sensitivity results for the PCs, the affect of a parameter

is considered across all outputs. And, in this case there are only 5 PCs versus 48 physical outputs, potentially

improving interpretability of the results. How to best use the sensitivity analysis of multivariate outputs merits

further investigation (e.g., [88, 89], particularly as the dimensionality of the output space increases (i.e. more

thermocouples). An approach toward combining these into a single Pareto chart of importance ranking is shown

later in Figure 7.7. Furthermore, interaction effects may be of interest, which requires the calculation of higher

order Sobol’ indices.

Figure 4.6: First-order Sobol’ indices (top) compared to active subspace eigenvectors (bottom) for each PC.

4.4 Application of the PC-AS surrogate in Bayesian calibration

Model calibration is an inverse problem that seeks to align the model outputs y with the measurements yd by

adjusting model parameters θ. This process is illustrated in Figure 4.7. Traditional ‘model matching’ of complex

engineering models has often been either a manual process or optimization-based process [26, 27] that seeks to

reduce model to measurement errors below an experience-based tolerance c, e.g., |y−yd| ≤ c. These approaches

generally do not account for other sources of model uncertainty and result in a point estimate for the parameters.

Furthermore, they are challenging when y is multivariate.

As stated in the introduction, the Bayesian approach is used in this research since it treats the parameters as

probability distributions (i.e., replaces θ with P (θ)), which enables integration of the calibration process with

the other VVUQ process steps (Chapter 7) and allows for incorporating other sources of model, input, and mea-

surement uncertainty. The sources of uncertainty will be reflected in the posterior probability of the parameters.

For example, generally, more data and better data (lower measurement uncertainty) will reduce the parameter

uncertainties, providing a trade-off between cost of data collection and model uncertainty reduction. The affects
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of the number of measurement replicates is considered in the study below.

Figure 4.7: Diagram of the model calibration process, where the dashed arrow represents calibration by adjusting θ to
improve agreement between model y = g(x,θ) and measurements yd = gd(x).

4.4.1 Bayes’ rule and setting up the calibration problem

Bayes’ Rule relates the parameter posterior distribution P (θ|yd) to the prior distribution P (θ) and the likeli-

hood P (yd|θ) = L(θ), which is proportional to the probability of observing the measurements given a set of

parameters. This relationship is formally stated,

P (θ|yd) =
P (yd|θ)P (θ)∫
P (yd|θ)P (θ)dθ

(4.10)

The integral in the denominator is a normalizing constant and is difficult to calculate for medium to high Nd. For-

tunately, Markov Chain Monte Carlo (MCMC) solution methods [67–69, 90, 91] are based on the proportionality

of this expression, P (θ|yd) ∝ L(θ)P (θ), and so the task only requires that the likelihood and prior distributions

are specified. An MCMC method will be discussed briefly in the next section.

The likelihood definition depends on the model assumptions and sources of uncertainty involved. Similar to

Figure 4.7, the model output yd = gd(x) is compared to the measured data y = g(x,θ), including sources of

uncertainty as [13, 59, 60],

g(x,θ) + ϵ(x) = gd(x) + ϵd(x) (4.11)

where ϵ(x) represents model error and ϵd(x) is measurement error, which may also depend on x. Both of these

may be a function of the inputs. The model error may contain several sources of uncertainty, ϵ = ϵδ+ϵh+ϵs+ϵp,

where ϵδ = δ(x,ϕ) is model discrepancy due to model form error, ϵh represents discretization error, ϵs is

surrogate model error, and ϵp is truncation error due to the use of dimension reduction techniques such as active

subspace and PCA. Discretization errors were the focus of Chapter 3, and the extension of discrepancy functions

[13, 61, 92, 93] to the PC space is the focus of Chapter 5. For the purpose of this chapter, ϵs (error in PC-AS) and

ϵd are included during calibration. The other sources of error are discussed in more depth in Chapters 5 and 7.

Measurement errors are defined as discussed in Section 2.5, where ϵd ∼ N (0,Σd), and Σd is a diagonal matrix

with n entries. In this chapter, two types of output are used in the calibration. Thus, the first half of the diagonal

entries of Σd are for temperature measurement (σ2
T ) and the other half are for the time constant uncertainty (σ2

τ ),

where the latter are derived from Eq. 4.2. Note that in some Bayesian calibration applications where there is
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sufficient measurement data (e.g., [59, 61]), σT and στ would be calibrated along with θ. However, in the gas

turbine heat transfer application, there will typically not be repeated testing from which the measurement may be

estimated.

Next, the problem in Eq. 4.11 is recast into the PC-space to use the PC-AS surrogate model. First, the physics

model y is replaced with the PC-AS surrogate y ≈ gs(x,θ) + ϵs, where a Gaussian approximation is made for

the surrogate model errors ϵs ∼ N (0, σs) from the residuals of the fit in Figure 4.5. Next, the measurements are

transformed to PC space according to Eq. 4.5. Then, since PCA is a linear transformation, the covariance matrix

of the measurements Σd transformed into PC space is also Gaussian [94] with Σpcd = UT [diag(σy)−2 Σd]U . The

factor diag(σy)−2 is included due to the use of standardized outputs (Section 4.3.1). Thus,

gs(x, θ) + ϵs = y
pc
d (x) + ϵpcd (4.12)

Based on these errors, a zero-mean2 multivariate Gaussian likelihood function is assumed with covariance Σpc =

σ2
sI + Σpcd , where I ∈ Rn×n is the identity matrix. Assuming there are Nd replicate measurements, and npc

uncorrelated PCs, the overall likelihood is the product of multivariate Gaussian distributions

Lpc(θ) ∼ 1√
(2π)npc |Σpc|

exp
(
−1

2
(ypc − ypcd )

T
(Σpc)−1 (ypc − ypcd )

)
(4.13)

Finally, the joint probability distribution of the parameter priors P (θ) is defined as uniform distributions with

limits based on Table 4.1.

4.4.2 Markov chain Monte Carlo sampling

Various methods are available for the solution of Bayes’ Rule, depending on the complexity of the posterior

distribution. In this chapter, we use a standard Metropolis-Hastings MCMC [28, 90, 91] sampling approach and

compare the result to the maximum a posteriori (MAP) point estimate. The MAP is found by maximizing the

right hand side of Eq. 4.10, which amounts to maximizing the proportion, P (θ|yd) ∝ L(θ)P (θ). On the other

hand, the Metropolis-Hastings algorithm generates samples from the right hand side of Eq. 4.10, which is known

as the target distribution in MCMC literature, Pmh(θ) := L(θ)P (θ). Since the form of the target distribution is

not known a priori, it is sampled indirectly using a proposal distribution Qmh with each sample conditioned on

the previous sample, i.e. Qmh(θi|θi−1). This generates a Markov chain of “one-step memory” samples that are

either accepted or rejected based on the acceptance ratio,

rmh = min
(
1,

Pmh(θi)

Pmh(θi−1)
· Qmh(θi−1|θi)
Qmh(θi|θi−1)

)
= (1, α) (4.14)

2This assumes there is no discrepancy model to account for model error.
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If α ≥ 1, a new sample is drawn; if α < 1, α is compared with a new random number to determine whether to

accept or reject a sample. With sufficient samples the chain converges to the posterior distribution. In this chapter,

we select a Gaussian proposal Qmh(θi|θi−1) = N (θi−1, σθ), which results in α = Pmh(θnew)/Pmh(θ) in Eq.

4.14 due to symmetry. This form of the Metropolis-Hastings algorithm is known as Random Walk Metropolis

[90] and each sample is centered on the previous sample in the chain. The proposal distribution standard deviation

is used to tune the algorithm to the specific problem, and in this analysis was specified as a fraction of the width

of the parameter prior, σθ = cθ(θmax − θmin). Tuning was based on targeting an acceptance rate of 30%, based

on suggestions in the literature, e.g., 10-50% [91] or 25-40% [90].

4.4.3 Bayesian calibration results

Next, using the approach outlined above, Bayesian calibration is performed for four cases. These cases considered

different measurement scenarios by varying the number of measurements replicates Nd and the level of measure-

ment uncertainty, both the ‘true’ value σ∗
T and the prescribed uncertainty σT since the two may differ in practical

problems. The four cases are listed in Table 4.2 as a triplet in the header row, where the measurement uncertainty

is given in Kelvin (results in the table are discussed further below).

Table 4.2: Calibration posterior parameter results compared to θ∗i (σT in units K)

Case I II III IV
(σ∗

T , σT , Nd) (0,1,10) (3,1,10) (3,3,10) (3,3,2)

fhcob2 MAP 1.72 1.78 1.78 1.63
θ∗1 = 1.7 µ 1.72 1.78 1.77 1.55

σ/µ 0.02 0.02 0.06 0.12

fhdiaf MAP 0.68 0.70 0.70 0.75
θ∗2 = 0.7 µ 0.68 0.70 0.70 0.72

σ/µ 0.03 0.03 0.06 0.11

ftau MAP 1.94 2.13 2.13 2.31
θ∗3 = 2.0 µ 1.94 2.13 2.11 2.09

σ/µ 0.04 0.03 0.09 0.13

fthp3 MAP 1.09 1.10 1.10 1.10
θ∗4 = 1.1 µ 1.09 1.10 1.10 1.10

σ/µ 0.01 0.01 0.01 0.03

fwdiaf MAP 1.57 1.46 1.46 1.28
θ∗5 = 1.5 µ 1.57 1.46 1.46 1.25

σ/µ 0.03 0.03 0.08 0.20

In Case I, synthetic measurement noise σ∗
T = 0 K, representing perfect data; thus, Case I represents a lower

bound of posterior uncertainty among the four cases. Case II demonstrates the result when this measurement noise

is non-zero. In both Case I and II, the assumed measurement noise in the likelihood σT is set low (σT = 1K)

to avoid division by zero. Case III assumes an increase in the prescribed uncertainty σT , relative to Case II, so
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that it is equal to the true measurement noise. Case IV, compared to Case III, demonstrates the impact of the

low-replicate measurements that are typically available in a gas turbine heat transfer application by assuming

Nd = 2.

The calibration results (posteriors) are summarized in Table 4.2 and the marginal posterior distributions are

plotted in Figure 4.8 for each of these cases. The table includes the MAP, the marginal posterior mean (µ), and

marginal posterior coefficient of variation (CoV= σ/µ). For comparison, the ‘true’ solution θ∗i is shown for each

parameter (and is indicated in Figure 4.8 as a black triangle). The MAP for each case was calculated to use as the

starting point of each MCMC solution and these results are also included in the table.

The results for Case I and II show that Case I has the least bias in the posterior mean value relative to the true

solution. The measurement noise added in Case II results in a small bias relative to the true solution in some of

the parameters, but otherwise the difference between these first two cases is small.

Next, the increase in σT for Case III doubles or triples the CoV for all parameters except fthp3, but does

not change the mean value of the distributions. fthp3 was shown to be the most sensitive parameter in output

PC1 (Figure 4.6), so this parameter is least sensitive to the calibration assumptions in the four cases. Since σT is

not calibrated in this application, it is clear from this result that this quantity must be carefully defined to obtain

accurate posterior parameter results, or more measurements are required.

Finally, Case IV decreases the number of replicate measurements to Nd = 2. As expected, compared to Case

III with Nd = 10, the uncertainty and the bias increase in the calibrated parameter posteriors due to reduced

‘information’ available for calibration. The importance of good prior definitions increases as the number of

measurements decrease. Also, because gas turbine tests typically have a low Nd, it might be advantageous to

optimize thermocouple locations [59] to improve posterior results.

Figure 4.8: Parameter posterior marginal distributions from the four MCMC cases.
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4.4.4 Forward propagation of the parameter posteriors

The updated parameter uncertainty represented by the MCMC samples for the four cases was propagated through

the surrogate model to obtain the model output uncertainty. Marginal distributions are shown in Figure 4.9. The

parameter priors are independent, but some correlation emerges during calibration which is included when running

the samples through the surrogate model. For example, the two largest pairwise linear correlation coefficients

calculated for Case IV were ρfthp3,fwdiaf = −0.76, followed by ρftau,fhdiaf = 0.54 (where ρX,Y is the

correlation coefficient between two random variables X and Y ). Fig. 8 shows four rows representing the four

quantities extracted from the transient response (Tmto, T idle,τmto, and τ idle) and four columns representing the

four locations from the right hand side of Figure 4.3 (rim, bore, diaf, and arm). These locations are shown to

demonstrate the response; the other locations are omitted due to space constraints. The 10 measurements are

shown as black dots on the horizontal axis, with the two-measurement subset of Case IV shown in red.

Figure 4.9: Model output posterior predictions showing the four extracted output quantities (rows) and the four selected
thermocouple locations (columns). Red yd are the Nd = 2 subset used for Case IV.

The outputs follow similar trends as observed in the parameters, comparing the different cases. The posterior

variance of each output was significantly smaller than the prior in all cases. In Figure 4.9, the posterior mean is
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observed to be much closer to the true value than the prior mean. Case I shows the least bias of the posterior mean

relative to the true value, which is defined by running the model at θ∗. The noise in the measurements (Case II)

and the increased variance (Case III) are clearly propagated into the results and show the same trends. Case IV

has an increased bias since only two measurements are available (indicated by the two red dots).

4.4.5 Summary of the analysis process

Finally, to summarize the analysis process for each step shown in Figure 4.1, the application to the heat transfer

model was as follows:

Step 1. Selected 5 parameters with uniform priors based on engineering experience (Table 4.1).

Step 2. The FE model was run 200 times based on LHS DOE. Four outputs (temperatures and time con-
stants) were used to characterize the 123 time-step transient temperature response at each thermo-
couple location. These 4 outputs and the 12 thermocouple locations shown in Figure 4.3 result in
48 total outputs.

Step 3. The 48 outputs were transformed with PCA (Eq. 4.3) to an uncorrelated space, which also allowed
dimension reduction. The 5 PCs with the largest eigenvalues were selected from the original 48
PCs, capturing 99.5% of the total variance.

Step 4. Active Subspace (Eq. 4.6) dimension reduction for the inputs was performed using the 5 individual
PCs and the 5 model parameters, resulting in a set of 5 PC-AS univariate sample sets.

Step 5. The 5 sample sets were fit with quadratic polynomials to form the PC-AS surrogate (Figure 4.5).

Step 6. Synthetic measurements were derived as discussed in Section 4.2.

Step 7. The synthetic measurements were transformed into the model’s PC-space for calibration.

Step 8. The likelihood was defined within the PC-space assuming a multivariate normal due to Eq. 4.12.

Step 9. The MCMC calculations were performed with a total of 535,000 accepted samples from the surro-
gate model, of which 50,000 were retained as posterior samples after 1:10 thinning and a burn-in
of the first 35,000 samples. Convergence was considered successful with autocorrelation decay
within 100 samples and an acceptance rate of 30%. Thus, in total, almost 2 million samples were
generated, taking only 1-2 minutes on a laptop with an Intel Core i7 2.7GHz and 16GB of memory
(Matlab® R2018b). The resulting posterior marginals are shown in Figure 4.8

Step 10. The 50,000 posterior samples were propagated through the surrogate model, to obtain the results
shown in Figure 4.9.

4.5 Conclusion

This chapter has shown how the use of PCA and active subspace together enables a robust PC-AS surrogate

modeling method by reducing the dimensionality of the problem. The PC-AS surrogate model enables efficient

Bayesian calibration solutions by MCMC, which was demonstrated on a typical gas turbine engine disc heat
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transfer model. In the context of the VVUQ process, the efficiency of calibration using surrogate models frees the

engineer to spend more time improving the model physics and less time performing model calibration by manual

parameter tuning. Because surrogate-enabled Bayesian approach accounts for data and model uncertainties, it

provides a richer simulation output for developing robust engineering designs. Incorporating model discrepancy

into the calibration step is considered next in Chapter 5. Including parameter uncertainty within the broader

context of uncertainty aggregation is treated in Chapter 7, which develops an end-to-end VVUQ framework.

Future research pursuits motivated by this chapter include:

• The PC-AS surrogate model accuracy was high in the studied example (R2 = 0.95 for N > 20 samples).

However, in the next chapter, where additional PCs are necessary for the addition of a discrepancy function,

it was found that PC-AS accuracy was not as good when npc > 5. Similar challenges were noted in [95].

These issues may stem from the simplification to a single active variable and linear gradient estimation.

Further investigation is required for where PC-AS may be most applicable and whether the use of more

advanced AS definitions (more active variables, improved gradient estimation) could increase the generality

of the approach. Even if accuracy is not as high as other methods, it offers potential advantages due to the

computationally inexpensive surrogate training relative to other methods such as GP and neural networks.

• The ability to handle more general transient maneuvers (perhaps through including all time points in the

PCA [59]), through the use of dynamic active subspace methods [96], or more advanced time-dependent

surrogate modeling would be advantageous.

• Optimization of sensor placement [59] could be used to identify better measurement locations for maximiz-

ing the information gained from sparse measurements.

• The use of sensitivity analysis to guide calibration parameter selection in the case of multivariate outputs

is not straightforward [88, 89]. In this chapter, Sobol’ indices were computed for PCs rather than physical

outputs, which seems to offer advantages in down-selecting parameters for multivariate outputs3. Other

works have taken advantage of this to some extent [95, 97], however, more general guidance is needed on

how to combine information across PCs.

3One application is demonstrated in the next chapter in Section 5.4.2.
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CHAPTER 5

Discrepancy modeling for model calibration with multivariate output1

5.1 Introduction

In Chapter 4, the use of Bayesian calibration was focused on model parameter estimation. This chapter focuses

on the quantification of model form error (MFE, also known as ‘missing physics’) which was not addressed in

Chapter 4. MFE may result in an observed discrepancy (also referred to as bias) between the model outputs and

measured values. Besides simply correcting the physics modeling before calibrating the model [99] (which may

not always be possible in complex models), researchers have proposed alternative approaches for correcting the

model: (i) augment the model outputs with a discrepancy function [13, 100], (ii) modify the model parameters

during calibration (augment the parameters) [101], (iii) modify the model parameter distribution after calibration

by using quantified validation results [5, 41], or (iv) augment the governing differential equations with model

form error terms [102, 103]. In all of these approaches, the objective is to either improve the model predictions or

to obtain a more accurate estimate of physically meaningful model parameters [93, 102, 104–106].

The second and third approaches result in expansion of the model parameter uncertainty. This may not enable

the model correction to address model bias. The fourth approach may be applied either within the governing equa-

tions [102] or indirectly through a recently published ‘black box’ approach [103]. In this work, we focus on the

first method of correction (augmenting the output with a discrepancy term), which has received the most attention

due to the original work by Kennedy and O’Hagan [13] (KOH). The KOH approach simultaneously calibrates

the physics model parameters along with an additive discrepancy function. The physics model is replaced with

a Gaussian process (GP) [55, 107] surrogate model to speed up the solution method and a second GP is used to

represent the discrepancy function. Derivative works include engineering applications and variations on this idea

considering both univariate [99, 100, 108] and multivariate model output [36, 59, 61, 109, 110].

Despite the popularity of the additive discrepancy approach, there are challenges in its application: (1) defini-

tion of the discrepancy function and its priors [92, 93], (2) non-identifiability of the physics model and discrepancy

function parameters [92, 93, 110–112], (3) solution methodology (simultaneous vs. modular) [108, 113], (4) ap-

plication to multivariate model outputs [36, 61, 109], and (5) calibration with the discrepancy function makes

the final model dependent on the discrepancy function. Additive discrepancy functions are typically phenomeno-

logical since the missing physics is unknown, therefore making it difficult to generalize for predictions [101],

particularly when the measurements are sparse.

The first and second challenges are closely related since the definition of the discrepancy function will impact

1Adapted from [98]
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the identifiability of the parameters. Thus, non-identifiability is an important topic in this chapter. There are two

forms of non-identifiability2 [92, 115, 116]: structural non-identifiability is related to the model parameterization,

independent from the measurements, in which the influence of two or more parameters on the model output may

be indistinguishable [26, 115]; practical non-identifiability relates to the quality and quantity of the measurements

[92, 116]. Sahu and Gelfand [117] note that structural non-identifiability does not prohibit Bayesian learning, but

the resulting parameter posteriors are not separable. As a simple example, consider the calibration of the parame-

ters θ in y = (θ1 + θ2)x for data (xd,yd). The parameters are clearly non-identifiable. If Bayesian inference is

used to find the posterior distribution P (θ|yd), the marginal distributions will exhibit a lack of convergence, but

their combination θ̃ = θ1 + θ2 will produce a meaningful result.

The third challenge relates to whether the discrepancy function parameters are calibrated at the same time as

the physics model parameters or separately in a ‘modular’ fashion. The latter has been widely used to overcome

the non-identifiability issue [106, 108, 110, 113, 114, 118–121]. However, in the modular approach the error

between the prior prediction and measurements is used as the starting point for calibration of the discrepancy

function. This may bias the discrepancy function parameters towards this ‘prior’ (which may or may not be

desired). In this work, we favor a simultaneous approach where admitted by the problem. Techniques to improve

the simultaneous solution are to define more informative priors [61, 93, 100, 122] (i.e., add more information to the

problem [26, 117]), or propose alternative (potentially simpler [92]) non-GP surrogate models of the discrepancy

function [36, 99].

Regarding the fourth challenge, multivariate applications of KOH have used PCA (Section 4.3.1) or similar

methods to reduce the dimensionality of the surrogate models [59, 61, 109]. However, in these works Bayesian

calibration was performed in the physical space (PCA is used only for reducing the number of surrogate models).

Another approach is to perform model calibration within PC space by transforming both the model outputs (or

surrogate model) and measurements into this space, which offers dimension reduction for the likelihood. This was

explored in [36, 58, 123]. However, only [36] considered including a discrepancy function in PC space, which in

that case was a simple zero-mean Gaussian.

To the authors’ knowledge, there have been no previous investigations of model discrepancy functions in

PC space. Therefore, in this work we adopt the approach of calibration in the PC space to explore alternative

discrepancy functions. We then investigate the potential benefits of the formation and calibration of discrepancy

functions within this subspace for addressing the dimensionality challenge and the previous three challenges.

The fifth challenge stated above is not fully considered here. Instead, preliminary thoughts are given on how

discrepancy functions may be useful for model diagnosis.

2A related issue is that the model output may exhibit a lack of sensitivity to certain parameters [114], meaning that they are non-
identifiable, though the converse is not necessarily true [115]
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The remaining sections are organized as follows. Section 5.2 provides a few mathematical and notational

preliminaries. Section 5.3 discusses the methodology for calibration, selection, and evaluation of discrepancy

functions in PC space. An illustrative model is used to highlight key challenges and considerations. Then, the

methodology is applied to a gas turbine engine heat transfer model calibration problem in Section 5.4 and the

chapter is concluded in Section 5.5.

5.2 Background

The Bayesian calibration problem is considered in the next section with additional parameters from a discrepancy

function. Then, an overview of the non-identifiability assessment used in this chapter is presented in Section 5.2.2.

As in Chapter 4, the calibration problem is again considered in PC space. PCA was introduced in Section 4.3.1.

Recall that the PCs are formed by the eigenvalue decomposition of the model’s covariance matrix Σy , resulting in

eigenvectors U and eigenvalues κk in the diagonal of K.

5.2.1 Bayesian calibration with additive discrepancy

The calibration problem was described in Section 4.4.1 (Eq. 4.11) by equating the model to the measurements

along with their respective sources of uncertainty. Measurements were defined as zero-mean Gaussian distribu-

tions with covariance Σd = diag(σ2
d1, σ

2
d2, · · · , σ2

dn), defined based on guidance from a measurement expert.

Model errors ϵ(x) include several sources, ϵ = ϵδ + ϵh + ϵs + ϵp, that were previously defined. In this chapter,

we focus on the first of these, which we define as a model discrepancy function ϵδ := δ(x,ϕ), which is due to

model form error and has parameters ϕ ∈ Rq . A GP surrogate model is used in Section 5.4 and so ϵs is also

included as a zero-mean Gaussian with covariance Σs. The remaining sources of model error are not included for

the present purposes (there will be more discussion on this in Chapter 7).

When considering non-identifiability in subsequent analysis (e.g., Section 5.2.2), the combined (corrected)

model is also written [92],

Y = [Y1, . . . ,Yn] := g(x,θ) + δ(x,ϕ) (5.1)

where will group the physics model and discrepancy function parameters intoψ := {θ,ϕ} ∈ Rr where r := p+q.

Using this notation, Bayes’ theorem is P (ψ|yd) = P (yd|ψ)P (ψ)/P (yd). For convenience later in this chapter,

the condensed notation for prior ψ′ := P (ψ), posterior ψ′′ := P (ψ|yd), and likelihood L(ψ) := P (yd|ψ) are

also used. Due to the nature of measurement and surrogate modeling errors, we again make the common choice

[13, 100, 105, 109] of a Gaussian likelihood, L(ψ) ∼ N (0,Σ), which in multivariate form with discrepancy is
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expressed

L(ψ) ∼ 1√
(2π)n|Σ|

exp
(
−1

2

(
y − yd + δ̄

)T
Σ−1

(
y − yd + δ̄

))
(5.2)

where the covariance matrix is Σ := Σd + Σs. It is assumed that each of these error sources are independent

resulting in a diagonal Σ. The mean of the discrepancy function is denoted δ̄ := E [δ(x,ϕ)]. In Section 5.3.1,

this Bayesian calibration problem is transformed into PC space.

5.2.2 Assessing non-identifiability

There are several ways to assess non-identifiability in inverse problems. For example, profile likelihood (Raue et al

and Kreutz [116, 124]) computes the MLE of all parameters as a function of one parameter ψi fixed at several val-

ues through its support, the profile likelihood is computed: argmaxψi̸=j
L(ψ∼i). This is repeated for each param-

eter and non-identifiability is assessed from the flatness of the generated profiles. Alternatively, Arendt et al [112]

focuses on the posterior parameter marginal variance reduction relative to the prior, cov[P (ψi|yd)]/cov[P (ψi)].

A third option, which we use in this chapter similar to [92], is based on inspection of the rank of the Jacobian

(or sensitivity matrix [26]). We therefore refer to this as the rank-based method. The Jacobian arises in the in-

verse solution of linear or linearized systems, such as the inverse solution by Gauss linearization [26]. For the

multivariate combined outputs3 from Eq. 5.1, the linearization around ψ̂ is,


Y1

...
Yn


ψ

≈


Y1

...
Yn


ψ̂

+


∇Y1

∣∣T
ψ̂

...

∇Yn
∣∣T
ψ̂


︸ ︷︷ ︸

X

(ψ − ψ̂) (5.3)

Y ≈ Ŷ +X(ψ − ψ̂) (5.4)

where the Jacobian X is formed by partial derivatives ∇Yk at ψ̂ with ∇ = [∂/∂ψ1, · · · , ∂/∂ψr]T , and Ŷ

represents Y evaluated at ψ̂. Equating the model approximation to the measurements, Yd ≈ Ŷ +X(ψ− ψ̂), the

parameters are solved in the least squares sense according to the normal equations,

ψ − ψ̂ = (XTX)−1XT (Yd − Ŷ) (5.5)

for which (XTX)−1 clearly must exist, requiring also that X has columns that are linearly independent. Thus,

non-identifiability is present when there are linearly dependent columns, or equivalently, |XTX| = 0 or rank(X) <

r. In practice, the discriminant may not need to be exactly zero for there to be non-identifiability. As a further

3Note that for the identifiability assessment in Eq. 5.3, etc., Y has been transposed implicitly to simplify notation. The dimensions are
clear from the context in the remainder of the chapter.
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step to the check above, Ling and Mahadevan [92] suggested an algorithm to iteratively remove parameters from

the problem to discover which contribute to non-identifiability.

The rank-based approach relies on the invertibility of XTX , stronger prior information improves identifia-

bility [26, 125]. This has been observed in the application of KOH [61, 93, 100, 126]. One way to see this is by

comparing OLS (Eq. 5.5) or MLE (replaceXTX withXTΣ−1
d X in Eq. 5.5) to the MAP estimate [26],

ψ − ψ̂ = (XTΣ−1
d X + V −1)−1XT (Yd − Ŷ) (5.6)

where V is the covariance of the priors. Thus, V −1, which is diagonal due to the assumption of independent

priors, adds a regularizing ‘ridge’ to the diagonal ofXTΣ−1
d X = 1

σ2
d
XTX . If the priors are normally distributed

as N (0, τ2), this is equivalent to ridge regression (or Tikhonov regularization) with V −1 = λI , where λ = σ2
d/τ

2

[125]. In this case, the solution may exist when n < r [26]. Although this is also true for Bayesian inference, in

the application of Section 5.4, we assume weakly informative (uniform) priors and therefore only use (XTX)−1

as the basis of the number of feasible parameters ψ = {θ,ϕ} that can be calibrated.

5.3 Methodology

In this section, the calibration problem and non-identifiability assessments from Section 5.2 are transformed into

PC space in Sections 5.3.1 and 5.3.2.1. Then, appropriate discrepancy functions are selected in Section 5.3.2.3 to

address the challenges raised in Section 5.1 regarding the KOH approach with additive discrepancy. Evaluation

criteria for the selection discrepancy functions are established in Section 5.3.3. An illustrative model is introduced

to highlight several of the challenges and opportunities before applying the approach to a heat transfer model in

Section 5.4.

5.3.1 Bayesian calibration problem in PC space

In order to consider model discrepancy in PC space during calibration, the problem is cast into PC space as shown

in Chapter 4.4.1. Assuming that y = g(x,θ) and yd = gd(x) are first standardized4, the model outputs are

transformed as ypc = yU , measurements as ypcd = ydU , and model discrepancy δpc(ϕ) = δ(x,ϕ)U . Defining

measurement uncertainty ϵpcd ∼ N (0,Σpcd ), Eq. 4.11 in PC space becomes

ypc(θ) + δpc(ϕ) = ypcd + ϵpcd (5.7)

PCA is a linear transformation, thus covariance is transformed Σpcd = UT [diag(σy)−2 Σd]U , where the factor

diag(σy)−2 is for standardization, and the likelihood from Eq. 5.2 remains multivariate normal [94] in the PC

4To simplify notation, the subscript 0 denoting standardization is omitted.
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space

Lpc(θ,ϕ) ∼ 1√
(2π)npc |Σpc|

exp
(
−1

2

(
ypc − ypcd + δ̄pc

)T
(Σpc)−1

(
ypc − ypcd + δ̄pc

))
(5.8)

with a covariance matrix Σpc = Σpcd + Σpcs . The discrepancy mean value is denoted δ̄pc = E [δ(ϕ)]. If there are

i.i.d. replicate measurements ypcdj for j = 1 . . . Nd, then Eq. 5.8 becomes a product over these replicates.

5.3.2 Selecting discrepancy functions in PC space

The selection of discrepancy functions within the PC space is guided by limitations on the total number of param-

eters r = p+ q (identifiability condition) and limitations within the PC space on the functional form.

5.3.2.1 Non-identifiability assessment in PC space

First, the rank-based identifiability approach from Section 5.2.2 is transformed into the PC space. The combined

model output Yk in PC space is Ypck := YkU . Based on linearity of the derivative and PCA transformation [127],

the Jacobian in PC space at ψ̂ is therefore defined,

Xpc = UT


∇Y1

∣∣T
...

∇Yn
∣∣T

ψ̂

=


∂Y1

∂θ1
· · · ∂Y1

∂θq
∂Y1

∂ϕ1
· · · ∂Y1

∂ϕp

...
. . .

...
...

. . .
...

∂Ynpc

∂θ1
· · · ∂Ynpc

∂θp

∂Ynpc

∂ϕ1
· · · ∂Ynpc

∂ϕq


ψ̂

∈ Rnpc×r (5.9)

As previously shown Section 4.3.1, the application of PCA allows for truncation to npc ≪ n outputs, based

on the decreasing magnitude of the eigenvalues in K. Therefore, the number of rows in Xpc is significantly less

than X . In other words, the amount of ‘information’ contained in y is actually less than its n dimensions due to

correlation between the outputs [70] (this is the basic idea behind data compression). To ensure an identifiable

solution for the combined set of model parameters ψ ∈ Rr requires that r ≤ npc and the r columns ofXpc must

also be linearly independent, i.e., rank(Xpc) = r. The result, under the assumption of weakly informative priors,

is that npc restricts the number of ‘free’ parameters that are available for defining the discrepancy function in the

PC space. This is demonstrated with the illustrative model in Section 5.3.4.4.

5.3.2.2 Functional dependence in PC space

In physical space, it may be possible to determine an expected trend function or to define a GP that is dependent

on x, potentially improving the discrepancy fit and reducing the number of parameters required5. However, since

the PCs are linear combinations of the multivariate outputs through the multiplication with U , the dependence

on inputs x is implicit (note that x is omitted from Eq. 5.7 since it encodes different output locations and/or

5Developing a trend function may be challenging when the measurements are sparse, as is the case in the examples later in this section
(e.g., Figure 5.1) and the heat transfer model in Section 5.4.
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quantities). To show this more concretely, consider the transformation of a discrepancy function δ(x,ϕ) when

n = 4. The resulting discrepancy vector δpci is no longer dependent on x,

δpc = δ(x,ϕ)U =


δ1(x1, ϕ1)

δ2(x2, ϕ2)

δ3(x3, ϕ3)

δ4(x4, ϕ4)


T 

u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

 =


δpc1 (ϕ1)

δpc2 (ϕ2)

δpc3 (ϕ3)

δpc4 (ϕ4)


T

(5.10)

The discrepancy functions are therefore limited to dependence on ϕ and θ.

5.3.2.3 Selected discrepancy functions

Based on the two limitations above, the options for defining the form of the discrepancy function are reduced. On

the other hand, these limitations may be seen as advantages since they simplify the definition of the discrepancy

functions and allow for a simultaneous calibration process. In view of these considerations, we limit our inves-

tigation to the following functional forms for the subsequent analysis (a simplified model in Section 5.3.4.4 and

the heat transfer model in Section 5.4),

δpci (θ,ϕ) = ϕi0 +
∑
j∈q∗

ϕijθj (5.11)

where j ≤ p (recall that p is the number of physics model parameters). In order to choose among possible terms

to limit the number of total parameters, the importance of each θj on the model output will first be assessed using

sensitivity analysis. This assessment results in several possible discrepancy functions which are then evaluated

against criteria established in the next section.

5.3.3 Evaluating the selected discrepancy functions

To assess the selected discrepancy function, three convergence criteria are specified in this chapter. We refer to

the ‘true’ solution as g(x,θ∗) + h(x), where θ∗ are a set of ‘true’ (known) model parameters and h(x) is a

known functional form representing missing physics in g(x,θ) (the physics model). As was noted in Section

5.1, the goal of including a discrepancy function is either to obtain an unbiased estimate of the parameters or to

improve model predictions. The first criteria below is minimized along with parameter bias (relative to the true

solution), while the third criteria addresses improved (corrected) predictions at the measurement locations6 The

second criteria considers the impact on the underlying (uncorrected) physics model predictions.

6Prediction errors here are only evaluated against the calibration dataset. However, since synthetic measurements are used, the calibration
and validation data would be from the same population.

54



Criteria 1. The posterior parameters should converge toward the true parameters,
E
[
θ′′

]
≈ θ∗

Criteria 2. The uncorrected posterior predictions should converge toward the model output evaluated at θ∗,
E
[
g(x,θ′′)

]
≈ g(x,θ∗)

Criteria 3. The discrepancy-corrected posterior predictions should converge toward the true solution,
E
[
Y(ψ′′)

]
= E

[
g(x,θ′′) + δ(x,ϕ′′)

]
≈ g(x,θ∗) + h(x)

Of course, these criteria are only appropriate for the evaluation in this chapter, in which the true solution is

known. Relative to an unknown true solution (i.e., the real world), these criteria are not applicable but one may

instead (i) test candidate models for parameter non-identifiability, (ii) check uncorrected model posterior variance,

(iii) compare predictions using the posteriors and corrected model to a ‘hold out’ validation dataset if available.

However, the intent of this chapter is to determine whether the PC space approach works for a known situation.

These criteria will be illustrated with simple model in Section 5.3.4 and the heat transfer model in Section 5.4,

along with the following numerical metrics for the latter.

Performance metrics are employed to evaluate the above criteria when assessing discrepancy formulations for

the heat transfer model (Section 5.4). Since the model calibration is performed in PC space, a natural metric for

the evaluation of Criteria 2 and 3 (related to the model outputs) is the PCA area metric [128]. This metric is based

on (i) converting the model outputs and measurements into PC space, (ii) applying the univariate area metric [129]

to each PC separately (Eq. 5.12), then (iii) combining these individual PC area metrics by weighting them by their

corresponding eigenvalues (Eq. 5.13). This metric is summarized in the following equations

Ak =

∫ ∞

−∞

∣∣Fk(ξ)− Fdk(ξ)
∣∣dξ (5.12)

Apc =
1

Tr(K)

npc∑
k=1

κkAk (5.13)

where Fk(ξ) and Fdk(ξ) are the cumulative distributions functions (CDF) of the model outputs and measurements

in PC space (ypc and ypcd ), ξ is a dummy variable for integration, and κk is the eigenvalue of the kth PC.

Assessing Criteria 1 requires a different metric due to the lack of correlation in the prior parameters (indepen-

dent uniform marginals are prescribed). In this case, the parameter posteriors π(θ) are compared to a reference

solution πo(θ) using the Kullback-Leibler divergence [130]. In this chapter, the multivariate normal approxima-

tion [131] is used for computational convenience,

DKL(π||πo) =
∑
x∈X

π(x)log
πo(x)

π(x)

≈ 1

2

(
Tr(Σ−1

πo
Σπ) + (µπo

− µπ)
TΣ−1

πo
(µπo

− µπ)− p+ log
Det Σπo

Det Σπ

)
(5.14)
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The reference solution πo(θ) is generated by calibrating to synthetic data generated using the true parameter

set θ∗ without prescribed model discrepancy. This represents the best solution possible for P (θ|yd) given the

assumptions in the defined likelihood (Eq. 5.8).

5.3.4 An illustrative model

Before application to the heat transfer model in Section 5.4, several of the above points are illustrated using a sim-

ple model. The model is defined with missing physics and first calibrated without including a discrepancy func-

tion. Next, a discrepancy function with too many parameters is added without consideration of non-identifiability.

Then, an identifiable discrepancy function is calibrated. Finally, the model dataset is transformed into PC space

before carrying out the calibration as proposed above.

Consider a ‘multivariate’ output y := g(x,θ) ∈ R4 that has parameters θ = [θ0, θ1, θ2]. The model is to be

calibrated using the data collected at four sensor locations S1, S2, S3, and S4 along the x coordinate,

y := g(x,θ) = θ0 + θ1x+ θ2x
3 (5.15)

The parameter priors θ′ = P (θ) are specified as uniform distributions centered on θ̄ = [1, 2, 5]T with bounds

θ0 ∈ [0, 2], θ1 ∈ [1, 3], and θ2 ∈ [2, 8], respectively. Corresponding measurements at the four sensor locations are

generated synthetically by first defining a true function with θ∗ = [1, 2, 5]T and h(x) := −sin(6x),

ytrue := g(x,θ
∗) + h(x) = 1 + 2x+ 5x3 − sin(6x) (5.16)

Then, Nd = 30 random samples are generated with zero-mean Gaussian noise, which has covariance Σ∗ where

the diagonal elements are defined (σ∗)2 = 0.252,

yd := gd(x) = ytrue +N (0,Σ∗) (5.17)

The model and measurements for the case calibrated without a discrepancy function are plotted in Figure 5.1a,

which shares a common layout with the next several figures. The N = 100 samples of the prior predictive

distribution g(x,θ′) are shown as light gray lines (and points) and the Nd = 30 measurement samples are shown

as black points at the sensor locations. The uncorrected (blue) and corrected (red) true outputs used to generate

the data are indicated for comparison to the calibrated solution, which is discussed next.

The models were calibrated to the measurements using a standard Metropolis random walk MCMC algorithm

[132]. A total of 5×104 posterior samples were retained after 2.5×104 samples of ‘burn-in’ and a 1 in 5 thinning

to reduce the autocorrelation between samples. The marginal sample traces from the MCMC computations of the
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first case are shown in Figure 5.1 column (c). The posterior samples represent θ′′ = P (θ|yd) and are summarized

in (d) as histograms and bivariate scatter plots. Propagating the posterior samples through the model produces the

posterior prediction g(x,θ′′), shown in panel (a) and at the four sensor locations in row (b).

5.3.4.1 No discrepancy function (original space)

The model calibrated with no discrepancy function is shown in Figure 5.1. A few observations can be made

regarding this model fit to motivate the need for a model discrepancy function. The most obvious is that the

posteriors represented in the histograms of Figure 5.1 (d) do not agree with the true parameters, or θ′′ ̸= θ∗. This

also results in the posterior prediction disagreeing with the true solution, g(x,θ′′) ̸= g(x,θ∗). As observed in

panels (a,b), the posterior predictions (blue) do not align with the blue dashed reference lines. Another observation

is the uncertainty of the posteriors do not reflect the model form error (MFE), resulting in posteriors that are

‘strong and wrong’ (which violates Criteria 1, Section 5.3.3). Furthermore, with limited measurements along the

x-axis, there is insufficient information for discerning the functional form of δ(x,ϕ). As we will see in Section

5.4, this issue is even more difficult in the engineering application in which x represents non-trivial 2D geometry

locations and different engine operating conditions. Discerning the form of the missing physics from the model

errors directly may also be misleading, depending on whether the prior model under-fits (as in the present case)

or over-fits the measurements (if the model were over-fit, prior residuals would be near zero).

Figure 5.1: Calibration without the discrepancy term: (a) Models shown for the prior prediction g(x,θ′), posterior
prediction g(x,θ′′), true solution g(x,θ∗) + h(x), and the model evaluated at the true parameters g(x,θ∗). (b)
Measurements and model predictions histograms at each sensor (the horizontal axis limits are set to the range of the
prior prediction). Part (c) and (d) summarize the MCMC posterior parameter samples: (c) Posterior sample traces. (d)
This lower triangular grid of plots includes histograms of the posterior samples on the diagonal and bivariate scatter
plots between pairs of parameters (axis limits are set to the range of the priors). The red dashed lines indicate the true
parameters values.

5.3.4.2 Non-identifiable discrepancy function (original space)

Next, an additive discrepancy function is defined by including a simple unknown constant to each output location,
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δ(x,ϕ) :=


ϕ0, x = x1

ϕ1, x = x2

ϕ2, x = x3

ϕ3, x = x4

(5.18)

The result of calibrating with this discrepancy function is shown in Figure 5.2. The mean results of g(x,θ′′) and

g(x,ϕ′′) + δ(ϕ′′) improve considerably, but at the cost of greater prediction uncertainty, which is represented

by the blue shading (99th percentiles) around g(x,θ′′) in (a). Increased uncertainty is due to non-identifiability.

In particular, θ1 and θ2 are ill-defined (see histograms of θ′′ in panel (d)). Thus, introducing too much flexibility

results in non-identifiability since there are now seven parameters to calibrate with the same amount of data. This

is evident from the posterior marginal distributions as pointed out by Arendt [112].

The rank-based approach (Section 5.2.2) was also performed to assess the discrepancy function in Eq. 5.18

for non-identifiability. In this case, the terms ∂δk
∂ϕj

|k=j = 1, and are otherwise zero. The resulting JacobianX is

X =


∇Y1

∣∣T
...

∇Yn
∣∣T

ψ̂

=


∂g1
∂θ0

∂g1
∂θ1

∂g1
∂θ2

∂δ1
∂ϕ0

· · · ∂δ1
∂ϕ3

...
...

...
...

. . .
...

∂g4
∂θ0

∂g4
∂θ1

∂g4
∂θ2

∂δ4
∂ϕ0

· · · ∂δ4
∂ϕ3


ψ̂

=


1 x1 x31 1 0 0 0
1 x2 x32 0 1 0 0
1 x3 x33 0 0 1 0
1 x4 x34 0 0 0 1

 (5.19)

where gk = g(xk,θ) represents a single output. The vertical rule in the matrix indicates two blocks that separate

Yk into dependence on θ and dependence on ϕ. For this discrepancy function, the result is rank(X) = 4 which is

less than the total number of parameters r. This model and dataset can only afford a single additional discrepancy

parameter.

Another observation in Figure 5.2 is that the corrected posterior solution agrees very well with the true solu-

tion, i.e., the red prediction histograms are centered on the red dashed true solution line in panel (b). However,

there is large uncertainty in the uncorrected model, g(x,θ′′). The added flexibility of the discrepancy function

enables the corrected solution to produce good results, but if the intent is to rely on g(x,θ′′) for making future

predictions, the result has relatively high uncertainty in this case.
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Figure 5.2: Calibration with a partially identifiable discrepancy constant added to each output

5.3.4.3 Identifiable discrepancy function (original space)

In order to reduce the number of parameters and therefore reduce the non-identifiability observed in Figure

5.2, information may be added by means of a functional form (dependent on x). The sparse measurements

do not clearly indicate an appropriate functional form for the trend in discrepancy shown in Figure 5.1 or

5.2. However, to illustrate how an informative discrepancy model performs with fewer parameters, we choose

δ(x,θ) = ϕ0sin(6x), which agrees perfectly with the true h(x) up to a multiplicative constant. This is identi-

fiable since ∂δk
∂ϕ = sin(6xk) results in a column [0.56, 0.97,−0.98,−0.55]T which would replace the right four

columns of X in Eq. 5.19, resulting in full rank(X) = 4 = r. The result of the calibration is shown in Figure

5.3. The results are favorable since: θ′′ ≈ θ∗ in panels (c,d), the posterior predictions g(x,θ′′) ≈ g(x,θ∗), and

g(x,θ′′) + δ(x,ϕ′′) ≈ g(x,θ∗) + h(x) in panels (a,b). That is, the criteria from Section 5.3.3 are met.

Figure 5.3: Calibration with an identifiable discrepancy function equivalent to the true MFE (up to unknown parameter
ϕ0), δ(x, ϕ) = ϕ0sin(6x)
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5.3.4.4 Discrepancy function in PC space (non-identifiable)

A final calibration is performed by transforming the model outputs (Eq. 5.15) at the four sensor locations into

PC space, as described in Section 5.3.1. The resulting eigenvalues contribute 85.2%, 14.2%, %0.6, and 0% to

the total variance explained. This suggests that two PCs should be retained. If a constant discrepancy function

is included, δpc(ϕ) = ϕ, the problem definition is non-identifiable since rank(Xpc) = 3 < r and the system

is therefore under-determined. The results also indicate this with substantial prediction uncertainty, as shown in

Figure 5.4. For example, see the strong correlation between parameters θ0 and ϕ0 in the bivariate plot of Part (d).

This example also shows that calibration in PC space will only work if there is sufficient model complexity to

require enough PCs such that additional discrepancy parameters may be calibrated. For simpler models like this,

PCA is not advantageous.

Figure 5.4: Calibration with a non-identifiable constant PC space discrepancy function, δpc(ϕ) = ϕ

5.3.5 Use of the calibrated discrepancy

The introduction discussed five challenges in the application of the additive discrepancy approach to dealing with

MFE. The fifth was related to how the results with additive discrepancy should be used after calibration. It was

also noted that the purpose of calibration with an additive discrepancy function is to either improve the model

predictions or to obtain a more accurate estimate of physically meaningful model parameters [93, 102, 104–

106]. When accurate parameters is the goal, Figure 5.3 shows that including an accurate discrepancy function

improves the parameter estimate. Conversely, substantial error in the parameter estimate is incurred if discrepancy

is neglected (Figure 5.1). However, if correction of the model outputs is the goal, there are two concerns. First,

the uncorrected model will still have significant error as shown in the histograms of Figure 5.2b. The uncorrected

model and its uncertainty lie mostly outside the distribution of measurements. Second, the corrected model

(including the discrepancy function) will only be applicable within the domain of the ‘training data’, that is, at

measurement locations and for the inputs at which the discrepancy function was trained.
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Many practical calibration applications will be based on limited measured locations, and therefore using the

discrepancy function to correct other outputs that were not included during calibration (interpolation or extrap-

olation) is unlikely to be trustworthy. It is similarly risky to interpolate or extrapolate the model to other input

settings that were not used during calibration, due to limited measurements. Therefore, when this methodology is

applied to a physics model with limited measurements, we propose using the discrepancy function as a diagnostic

tool rather than for the purpose of correcting the model predictions. We suggest two practical uses:

1. Parameter shifts: Calibrate the model with and without the discrepancy function. Look for shifts in the

parameter posteriors between the two results. Parameters that change substantially may reveal related model

physics that require further improvement.

2. Discrepancy magnitude: Calibrate the model with a discrepancy function and compare the magnitude |δk|

(or |δpci |) to a positive threshold value δthr. There are two possibilities: (i) |δk| < δthr indicating that the

calibrated parameters θ may be used directly while ignoring the discrepancy; (ii) |δk| > δthr indicating that

the physics model must be refined to reduce the MFE.

In the application that follows, we briefly demonstrate these diagnostic approaches.

5.4 Application to the heat transfer model

The discrepancy functions defined in this chapter are now applied to the 2D axisymmetric heat transfer model

presented in Chapter 2. The general set up of the calibration problem is largely the same as Chapter 4, with a

few modifications as described earlier in this chapter. The model is shown in Figure 5.5 with nℓ = 9 numbered

measurement locations (the compressor locations are omitted in this chapter) and indicated boundary condition

calibration factors θ, which are also listed in Table 4.1. Additional discrepancy function parameters are described

in Section 5.4.2, which discusses the selection of appropriate discrepancy functions.

The multivariate model outputs are processed as described in Chapter 2.4 and 4.2.1, the transient multivariate

model outputs are dimension-reduced by first extracting 4 features (Tmto, T idle, τmto, τ idle) at each thermocouple

position and then performing PCA on the dataset y ∈ RN×n. The first 5 of these PCs contained 50.0%, 31.3%,

10.8%, 5.0%, and 2.6% of the variance, respectively, and the remaining 4 total 0.3%.

Based on the findings in Section 5.3.2.1, the non-identifiability assessment of the Jacobian suggests we aim to

retain as many PCs as possible7. It was found that the PC-AS models used in Chapter 4 do not capture the small

PC values as well as PC-GP (GP fit to PCs) surrogate models, especially for these smaller PCs (this identified an

7This may seem counter-intuitive to the use of dimension reduction. However, the goal of dimension reduction is to make surrogate mod-
eling more feasible. Furthermore, as noted in Section 5.3.2.1, adding more outputs would not necessarily increase the amount of information
(and thus PCs) due to the correlation between model outputs.
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area for further research on the PC-AS). Furthermore, the GPs failed to fit after the first 9 PCs, and so npc = 9

PCs were retained.

𝜽𝟐, 𝜽𝟓

𝜽𝟑

𝜽𝟒

𝜽𝟏

Thermocouple Locations
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Factored Temperature BC
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Figure 5.5: Turbine disc heat transfer model, parameters, and measurement locations8

5.4.1 Synthetic measurements and model form error

Measurements were generated synthetically for this chapter similar to the approach in Chapter 4. The FE model

was run with the ‘true’ parameter values in Table 4.1. Then, Gaussian noise with σ∗ = 3 Kelvin was added to the

temperatures to produce Nd = 2 replicate samples for each output. Similar noise is included for the time constant

outputs by propagation of σ∗ as described in Section 4.2.2.

For this study, two measurement datasets were created as a way9 to represent a case without model form error

(MFE) and a case where MFE is present due to additional physics h(x). To simplify the notation in this section

C1 and C2 are used (instead of yd) for the two cases, respectively. These cases are defined similar to Eq. 5.16

and 5.17,

C1 := g(x,θ∗) +N (0,Σ∗) (model has no MFE) (5.20)

C2 := g(x,θ∗) + h(x) +N (0,Σ∗) (model with MFE) (5.21)

In this example, h(x) represents an added radiation heat transfer boundary condition10 that was applied along

the red line indicated for θ2 and θ5 in Figure 5.5. For the comparison of selected model discrepancy functions,

C2 represents the primary dataset. Calibration of the original model against C2 represents the case with MFE.

Calibration against C1 serves as a datum solution since there is no MFE. Figure 5.6 shows C1 (left) and the

8The location number order in Chapters 5 and 6 are the same, but inadvertently different than the ordering in Chapters 3 and 7.
9To simplify the analysis, two measurement datasets were created rather than creating two different models.

10This location also includes boundary conditions for convection and heat generation from air friction.
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difference C2 −C1 (right) at the MTO stabilized condition.

Figure 5.6: Temperature contours forC1 (left) and ‘true’ temperature discrepancy h(x) = C2 −C1 (right) in Kelvin
at MTO. The difference contours represent the ‘true’ value of h(x) over the entire domain, which is only observed as
g(x,θ)−C2 ≈ h(x) at the 9 measurement locations.

5.4.2 Selecting discrepancy functions

In this section, several discrepancy function cases are defined for further analysis based on the findings in Section

5.3.2, including non-identifiability and functional dependence. The discrepancy functions are down-selected from

the general linear forms defined in Eq. 5.11 based on the sensitivity of model parameters θ (determined by

sensitivity analysis) and an assessment of non-identifiability. Then, a number of cases are defined in Table 5.1

to compare the performance for a different number of linear terms, the number of PCs to which discrepancy is

applied, and the assumptions regarding priors. The table also shows the results of computing the metrics defined

in Section 5.3.3.

It was found in the previous section that up to npc = 9 PCs could be retained given the information in the

dataset. Since there are p = 5 model parameters, the number of discrepancy function parameters is limited to

q ≤ 4, in order to ensure that the solution is identifiable (recall r = p + q). Since we are limited to q ≤ 4

terms, only terms in Eq. 5.11 that include important parameters are retained, where importance is determined

through global sensitivity analysis. The same efficient first-order Sobol’ index method [87] used in Chapter 4 is

also adopted in this chapter to make use of the available 200 DOE samples, however, the indices are recomputed

since the number of outputs was reduced from nℓ = 12 to nℓ = 9. Separate sets of Sobol’ indices were computed

for each PC11 (since the sensitivity analysis method is w.r.t. a single dependent variable) and are shown in Figure

5.7. The results were computed 5000 times based on bootstrapping[125] of the 200 original samples in order to

estimate sampling error (due to the limited number of samples). Thus, the bar with error whiskers in Figure 5.7

represents the bootstrap mean and one standard deviation, respectively.

11Note that, by performing sensitivity analysis using the PCs rather than the 36 physical outputs, a more concise summary of important
parameters is given. For example, since parameters θ2 and θ4 are important factors in the first two PCs, and these two PCs explain 81.3% of
the model variance, these two factors are likely the most important parameters overall, followed by θ1, etc.
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Figure 5.7: First order Sobol’ indices for each of the first 9 out of 36 PCs including ±1std bootstrap error bars.

The results in Figure 5.7 indicate that there are only one or two significant model parameters per PC for

most of the PCs. This information was used to reduce the number of terms from Eq. 5.11 to include only these

significant model parameters,

δpc(θ) =



ϕ10 + ϕ12θ2 + ϕ14θ4 PC1
ϕ20 + ϕ22θ2 + ϕ24θ4 PC2
ϕ30 + ϕ31θ1 + ϕ33θ3 PC3
ϕ40 + ϕ41θ1 + ϕ45θ5 PC4
0 otherwise

(5.22)

Finally, subsets of the terms in Eq. 5.22 were selected as cases for further investigation, where each case has

q ≤ 4 parameters ϕij . The selected subsets/cases are tabulated in Table 5.1 further below. For example, one case

includes the first constant term ϕi0 on the first four PCs (Case 24), another includes the first two terms ϕi0+ϕijθj

applied to the first 2 PCs (Case 29 and 37), etc. The remaining cases are described below Eq. 5.23.

To assess the discrepancy functions for identifiability based on Eq. 5.9, the partial derivatives for the model

parameters were estimated using finite differences around the nominal values, ψ̂ = [1, 1, 1, 1, 1, 0, 0, 0, 0]T . An

example of how non-identifiability is assessed is shown in Eq. 5.23 alongside the partial derivatives of the linear

discrepancy models ∂Yi/∂ϕi0 = 1 and ∂Yi/∂ϕij = θj . This Jacobian represents Case 24 with ϕi0 on the first

four PCs (equivalently, the same Jacobian would result if ϕijθj were used for the first four PCs, since θj = 1),

and is a full-rank and invertible matrix, i.e., rank(Xpc) = 9, suggesting it is structurally identifiable. The other

cases can be evaluated similarly.
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Xpc =


∇Y1

∣∣T
...

∇Y9

∣∣T

ψ̂

=



−0.349 3.092 −0.988 39.965 1.704 1 0 0 0
−1.142 −7.507 2.975 10.357 1.613 0 1 0 0
−2.817 1.993 3.453 −2.174 −1.304 0 0 1 0
−2.962 0.416 −1.536 0.373 1.702 0 0 0 1
−0.891 −0.438 −0.789 1.727 −2.999 0 0 0 0
−0.053 −0.145 −0.120 −0.825 −0.143 0 0 0 0
−0.483 −0.432 0.242 −1.785 −0.408 0 0 0 0
0.096 0.132 0.011 −0.483 0.062 0 0 0 0

−0.052 0.200 0.042 −0.012 −0.045 0 0 0 0


ψ̂

(5.23)

Having used the identifiability assessment to narrow the range of possible discrepancy function cases, we

now describe the cases selected for further analysis in Table 5.1. The cases are grouped into four ‘Sets’ in order

to highlight features of the results. Set 1 represents calibration without a discrepancy function. Set 2 cases are

calibrated with a discrepancy function but there is no MFE. Set 3 cases are calibrated with a simple additive scalar

discrepancy. Set 4 considers calibration with different function types (including GP) and the parameter priors.

The ‘Case’ numbers are for reference in the discussion below. The ‘MFE?’ column indicates whether MFE is

present (recall from Section 5.4.1 thatC1 = no MFE orC2 = MFE). Under the heading ‘Discrepancy Function’,

ϕ̄′ij represents the choice of prior, δpci is the discrepancy functional form for PCi using terms from Eq. 5.22, and

nδ is the number of PCs to which a discrepancy function was applied. The priors are Gaussian with two choices

of mean: zero and non-zero. The non-zero mean was determined using the following steps:

1. Compute the prior model’s discrepancy ȳd − y′i, where y′i is the prior prediction for output i.

2. Transform this discrepancy to PC space.

3. Fit linear regression models to this discrepancy as a function of θ to obtain coefficients of selected ϕij .

4. Use the resulting fit’s mean coefficients E
[
ϕ′ij

]
= ϕ̄′ij to be the prior mean of the discrepancy parameters.

5. Use the standard error (SE) of the fit to set the prior standard deviation as b×SE (b = 10 was found to work
well in most cases, but b = 1 was used for the more flexible discrepancy functions in Case 29 and 37).

For cases that have prior ϕ̄′ij = 0 (zero mean), the prior standard deviation was computed as in step (5). To

illustrate how a more flexible function compares to the simple linear functions, Case 39 is based on fitting a GP

model to δ̄pci as a function of θ. The remaining columns present evaluation metric results (from Section 5.3.3)

which are discussed in the next section.
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Table 5.1: Selected discrepancy function cases and posterior metrics

Discrepancy Function Posterior Metrics

Case12 MFE? ϕ̄′
ij δpci nδ θ′′ ypc(θ′′) Ypc(ψ′′)

Set 1 1 N – – 0 0 9 –
21 Y – – 0 69 59 –

Set 2 3 N 0 ϕi0 2 51 46 77
11 N ̸= 0 ϕi0 2 556 108 76

Set 3 22 Y 0 ϕi0 1 49 39 13
23 Y 0 ϕi0 2 91 56 14
24 Y 0 ϕi0 4 245 73 14

Set 4 23 Y 0 ϕi0 2 91 56 14
26 Y 0 ϕijθj 2 60 44 13
29 Y 0 ϕi0 + ϕijθj 2 20 30 15
31 Y ̸= 0 ϕi0 2 687 128 13
34 Y ̸= 0 ϕijθj 2 1017 137 13
37 Y ̸= 0 ϕi0 + ϕijθj 2 1394 163 12
39 Y ̸= 0 GP 2 1165 175 3

5.4.3 Evaluating the discrepancy functions

The performance results are shown in Table 5.1 under columns ‘Posterior Metrics’. The first column is the result

of computing the Kullback-Leibler divergence (Eq. 5.14) between the posteriors θ′′ of the given case and the

reference case (Case 1) posteriors, as described in Section 5.3.3. The second column is the result of the PCA area

metric (Eq. 5.12) of the comparison between the uncorrected posterior prediction g(x,θ′′) and the true solution

ypc(θ∗). The third column is the result of computing the PCA area metric between the corrected posterior

prediction Ypc(ψ′′) := ypc(θ′′) + δpc(ϕ′′) and the true solution ypc(θ∗) + hpc, where hpc is the PC transform

of h(x).

The third column shows the largest result for Set 2 where there is no MFE but a discrepancy function is used

anyway; in this case, the discrepancy term only adds noise to the results. For the remaining cases (Set 3 and 4),

there is low uncertainty in the corrected prediction due to the flexibility of the discrepancy function, even when

there is large uncertainty in the marginal distributions. Thus, the corrected output does not provide the primary

feedback on the calibration performance of the discrepancy function. Therefore, in this analysis we focus on the

uncorrected posterior prediction results in the column labeled ypc(θ′′) (but still wish to see low values in the third

column).

The next several paragraphs discuss the results of the first two columns. Figures 5.8, 5.9, and 5.10 (see

further below) plot the marginal posterior distributions for the parameters, PCs 1 to 4, and four physical outputs,

respectively. Only Set 1 and Set 4 are plotted due to space constraints.

12Several cases were considered but only a few are discussed in this chapter, which is why the case numbers are non-consecutive
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Set 1 Cases: calibration without a discrepancy function

Case 1 serves as an ideal reference (no MFE) solution only for the purpose of evaluating the parameter per-

formance using the Kullback-Leibler. In contrast, Case 21 includes MFE like most of the other cases, but no

discrepancy function. So Case 21 serves as the reference solution against which to compare discrepancy function

performance. As Figure 5.8 shows, the posterior parameters of Case 21 are biased (see especially θ4), and the

posterior predictions in Figures 5.9 and 5.10 are also biased away from the true output (red dashed line). In other

words, ignoring discrepancy may result in both biased parameters, and it does not guarantee an unbiased model

output.

Set 2 Cases: calibration with a discrepancy function (no MFE)

These cases compare the two options for discrepancy function priors when the constant discrepancy function ϕi0

is used but there is not actually any MFE. The expected result is that their metrics should resemble Case 1 (ideal)

and that the calibrated discrepancy term is near zero, if it has discovered the fact that there is no MFE. Case 3

has a zero-mean prior and Case 11 has a non-zero mean prior centered on the initial model discrepancy, ȳd − y′.

However, both cases showed a worse result relative to Case 1, although the metric values for Case 3 are less than

Case 21 and significantly less than Case 11. These cases suggest that the non-zero prior performs poorly. This

same trend is observed in Set 4.

Set 3 Cases: calibration with an additive scalar discrepancy

This set considers the behavior of the additive scalar discrepancy function when it is applied to nδ = 1, 2, or 4

PCs. Interestingly, the best results occur when this discrepancy function is only applied to 1 PC. This result may

be due to increased practical identifiability due to fewer parameters.

Set 4 Cases: calibration with different function types and priors

Lastly, Set 4 compares combinations of function type and discrepancy parameter priors when applied to 2 PCs

(nδ = 2). The trend from Set 2 is again observed in the metrics of Table 5.1, that is, the non-zero priors for

Cases 31, 34, 37, and 39 result in poor agreement with the true solution. This can also be observed as bias in the

posterior parameters in Figure 5.8 and larger posterior prediction uncertainty in Figures 5.9 and 5.10.

Case 29 is the best performing overall, based on the metrics and plotted distributions (Cases 22 and 26 follow

closely in second and third place). The fact that there is still bias for θ4 in Figure 5.8 may be due to the use of the

smaller prior standard deviation (b × SE, with b = 1). However, the posterior prediction plots (Figures 5.9 and

5.10) show that this reduced prior also reduces the posterior variance.

Case 22 is the second best performing. It includes just a single constant discrepancy term on PC1. This good

performance may be related to the nature of the true MFE h(x), i.e., radiation. The radiation boundary condition
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affects the overall steady-state temperature levels. The eigenvector of PC1 have the largest terms for the steady-

state temperature output. Therefore, if the MFE were instead something that impacted the transient output (such

as missing physics related to convection around the disc), a constant adder may be insufficient as a discrepancy

model.

Case 39 is one of the two worst performing. This case uses the GP discrepancy function. Poor performance is

likely due to fitting the GP around the prior prediction discrepancy. Interestingly, despite large uncertainty in the

discrepancy function parameters, the added flexibility allows the metric for Ypc(ψ′′) (the discrepancy-corrected

model output) to be extremely low. This illustrates the potential issues of relying on the discrepancy-corrected

solution when making predictions.

Figure 5.8: Parameter prior and posterior marginal distributions compared to the true value θ∗ (Set 1 & 4)

Figure 5.9: Model outputs marginal distributions in PC space for prior predictions, posterior predictions, and corrected
posterior predictions. The two posterior solutions are assessed against the true values ypc(θ∗) (blue dashed line) and
ypc(θ∗) + hpc (red dashed line), respectively. Note that a discrepancy function is applied to PC1 and PC2 only, so the
remaining PCs remain unchanged as expected. (Set 1 & 4)
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Figure 5.10: Model output marginal distributions in physical space for prior predictions, posterior predictions, and
corrected posterior predictions. The two posterior solutions are assessed against the true values g(x,θ∗) (blue dashed
line) and g(x,θ∗) + h(x) (red dashed line), respectively. (Set 1 & 4)

5.4.4 Use of the calibrated discrepancy for physics model diagnosis

It was stated in Section 5.1 that we aimed to investigate how model discrepancy influences predictions. It was

further shown in Section 5.3 through the simple example that making predictions that are corrected by a discrep-

ancy function is not straightforward due to interpolation/extrapolation issues (discrepancy functions are defined

only at sensor locations). Therefore, it was proposed to instead use model discrepancy for diagnostic purposes in

this application: perform a back-to-back calibration of the model with and without a model discrepancy function

included, then review the shifts in the posteriors and posterior predictions to look for boundary conditions that

contribute to the source of missing physics in the model.

First, we assume that a good discrepancy function has been obtained, such as Case 29. Then, for example, the

shift seen for θ4 and θ5 when comparing Case 21 (no discrepancy function) to Case 29 (includes a discrepancy

function), which are the most significant parameters that drive output in the region with MFE. For the model

outputs, Figure 5.10 Case 29 shows that Output 1 corrected solution (red distribution) is still far from the mea-

surement (red dashed line), but the correction performs better at Outputs 2, 5, and 9. This suggests the MFE is

nearest the region of Output 1 (which is indeed where the model was in error).

5.5 Conclusion

The main contribution of this chapter is the definition of additive discrepancy functions for multivariate models

within the PC space of the model outputs. This work included the identification of possible functional forms

in the PC space through a rank-based identifiability assessment and through performing term selection using

multivariate sensitivity analysis. The proposed methodology was partially demonstrated for a simple model and

then further extended to a multivariate output (36 outputs) heat transfer model. These demonstrations highlighted

the dichotomy of the importance of including a model discrepancy term to avoid bias in the calibrated model

parameters and the challenges presented when considering multivariate model output.
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In the engineering application example, the best discrepancy functional form was found to be a simple linear

function applied to just the first two PCs (Case 29). The simplest discrepancy function option of adding a constant

term to only the first PC (Case 22) performed nearly as well as or better than more complex functions. The results

also showed that the zero-mean priors for model discrepancy performed better than priors based on the initial

prior model discrepancy, which simplifies definition of the priors. These results show that a model discrepancy

term can be included for multivariate models using simple function definitions, enabling simultaneous calibration

with the model parameters to reduce model parameter bias. This behavior was demonstrated in the results for the

most important parameter (θ4). However, for other parameters that had less influence on the model output (e.g.,

θ5), the practical non-identifiability may have interfered such that the bias was made worse.

In Section 5.4.4, the challenges with using the calibrated discrepancy functions during model predictions were

discussed. An approach to using model discrepancy as a diagnostic tool was recommended. The recommended

approach is to perform a back-to-back calibration with and without the discrepancy function and then compare

the two sets of results to determine where the model physics may require refinement. This was demonstrated for

the heat transfer application.

There are several areas for further investigation.

• Model refinements may not be an option due to time or practical constraints. In this case, rather than using

the back-to-back results described above for diagnosis, the parameter posteriors from both sets of results

could be used as an additional source of epistemic uncertainty when making model predictions.

• Other types of missing physics (e.g., flow conditions around the turbine disc rather than the radiation used

in the example) and how they influence the calibration performance of the proposed discrepancy functions

should be considered.

• Inclusion of more of the original time series in the data set before performing PCA [36] may improve surro-

gate model results. Adding more data to the PCA transformation might increase the number of meaningful

PCs and consequently require an increased number of discrepancy parameters (although, it was noted that,

due to correlations, this is likely to have diminishing returns).

• Finally, Subramanian and Mahadevan demonstrate an alternative to the model output discrepancy approach

with intrusive [133] and non-intrusive [103] methods that estimate model form error in the governing equa-

tions. The benefit is that it facilitates a more rigorous approach for prediction/extrapolation (e.g., for loca-

tions in the model other than the sensor positions). This approach could be compared for the heat transfer

application to determine the best option when considering complex engineering models.
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CHAPTER 6

Multi-metric validation under uncertainty for multivariate model outputs and limited measurements1

6.1 Introduction

The main focus of this chapter is model validation assessment, which is part of the validation step of the VVUQ

framework introduced in Section 1.2. In the framework, model validation is performed after verification (Chapter

3) and calibration (Chapter 4 and 5), but before prediction (Chapter 7). Details regarding the VVUQ process and

how these steps interact is the focus of the next chapter.

Given the challenge of modeling the complexity of real-world systems, there have been significant efforts

towards improved processes for assessing whether a physics model is ‘valid’ for its intended use in light of

the many sources of uncertainty that affect the model prediction. Several standards and guidelines have been

developed in recent years, e.g., [1, 16, 134, 135], that are aimed at model verification and validation (V&V) and

uncertainty quantification (UQ), and more recently at assessing model credibility [6, 14], which relates to whether

or how much the model can be trusted for the intended application. “The concern of V&V is to assess the accuracy

of a computational simulation” [16] and involves code verification, solution verification, and model validation.

As previously discussed, UQ is aimed at estimating the uncertainty arising from different sources in the models

and measurements, propagating and aggregating the multiple types of uncertainty through the model to estimate

the uncertainty in the model prediction. It is worth noting that V&V and UQ are not independent processes; each

contributes to the other (thus the use of the combined acronym VVUQ). These sources of uncertainty must also

be addressed during model validation, as discussed in this chapter.

Model validation is defined within the ASME standards and guides as, “the process of determining the degree

to which a model is an accurate representation of the real world from the perspective of the intended uses of

the model” [1, 16]. The objective is two-fold: make a decision about the model’s adequacy based on a validation

assessment, and to evaluate the extent of extrapolation from the model’s validation performance to its intended use

[2]. The first part, validation assessment, involves conducting validation experiments and computing quantitative

validation metrics to assess the difference between model prediction and experimental measurements. A decision

about the appropriateness of the model for making predictions may be aided by setting an appropriate validation

metric threshold. The second part, evaluation for intended use, typically involves prediction, which inherently

results in some amount of extrapolation [129] from the experimental condition to the usage condition. This chapter

focuses on validation metrics. Setting thresholds and extrapolation are not considered. It is recognized that both

of these issues regarding intended use are challenging and often application specific [1].

1Adapted from [17]
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Despite the research on validation metrics over the past few decades, challenges remain when applying these

to practical engineering systems. There is limited guidance in the standards on how the validation assessment

should be performed and used in subsequent analysis. For example, the ASME guide for computational fluid

dynamics and heat transfer (V&V 20-2009) [16] provides a clear process for computing validation uncertainty

and an associated model error interval, but it is not evident how the use of dimension reduction techniques should

be addressed, or how correlated parameter uncertainty (e.g., derived through Bayesian calibration as in Chapter

4) should be incorporated, or how the resulting error interval should be applied to model predictions (Chapter 7).

A similar guide for computational solid mechanics (V&V 10-2019) offers valuable insights to the V&V process

but only provides reference to a few scalar validation metrics, states that validation metrics are an active area of

research, and does not clarify how they should be used to influence model use.

This chapter therefore seeks to advance the utility of existing validation metrics (Section 6.2) for engineering

applications in three directions: (i) a multi-metric approach to the validation assessment of models with multivari-

ate outputs, (ii) consideration of limited number of measurement samples, (iii) improved interpretability of metric

results (Section 6.3). The extended metrics are demonstrated on a 2D numerical example (Section 6.3.4) and the

gas turbine engine heat transfer model (Chapter 2) with multiple outputs (Section 6.4). In the latter problem, the

multiple outputs are the same physical quantity but at different locations, at steady state; extension to transient

multivariate model output is considered in Chapter 7. The chapter’s findings and conclusions are summarized in

Section 6.5.

6.2 Background

Validation metrics must be capable of quantitatively assessing the difference between measurement and model

prediction, both of which are uncertain. Sources of model uncertainty include numerical discretization errors,

input uncertainty, model parameter uncertainty, and model form error. Additionally, the computational methods

used in UQ often rely on replacing the time-consuming physics models by faster surrogate models, which adds

another source of model uncertainty. Sources of measurement uncertainty include instrumentation calibration,

installation effects, experimental conditions, operator error, and sample size error due to limited measurements

(which may be quantified with statistical methods [38, 136] and incorporated into the validation assessment [137]).

Several quantitative validation metrics have been proposed in the literature and a few of these are discussed

below. More work has been done for univariate model output, although several multivariate metrics have been

considered. Assessing multiple physics model outputs simultaneously is a key point of interest in this chapter to

address correlation among the outputs. Also, much of the existing work on validation metrics has assumed that

‘fully characterized’ [138] validation experiments have been performed and that there is sufficient replication (re-

peated measurements) to quantify the measurement uncertainty. These assumptions are often not met in practice
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and therefore the deployment of the existing validation metrics for practical applications can be challenging.

6.2.1 Features of interest for the selection of validation metrics

The engineering literature notes desirable properties that validation metrics should possess [2, 5, 139–142] and

ways to classify types of validation metrics [7, 138, 143–147]. Due to the many available metrics and varied

applications, these properties and classification criteria are not always consistent or comprehensive, thus making

the metric selection process challenging. For example, Gardner et al [147] classify metrics into two main cate-

gories: probabilistic ratios (f -divergences) and probabilistic differences (integral probability metrics). Riedmaier

et al [7] instead categorize metrics based on the validation quantity of interest (deterministic vs distributional)

and the metric result (Boolean, probabilistic, or real-valued). However, neither of these classifications consider

multivariate validation metrics, which combine the validation assessment across many model outputs and result

in a single metric value.

The following requirements are considered important for the selection of validation metrics in this chapter:

Requirement 1. The validation metric should allow for both univariate and multivariate assessments.

Requirement 2. The validation metric should address uncertainty in model predictions and measurements.

Requirement 3. The validation metric should produce an output that is both interpretable by the end-user
to assist decision-making and applicable for downstream use, such as model selection or
model prediction.

Requirement 4. The validation metric should incorporate correlations among model outputs during multi-
variate evaluation.

As pointed out in [147], a single metric may not meet all of these objectives. For example, in the first require-

ment, a multivariate metric provides an overall summary assessment of model validation over multiple outputs,

whereas a univariate metric assesses individual outputs and may be more useful for model diagnosis. Therefore,

the discussion below (the next two sections) considers several metrics in the selection process and groups them

into univariate and multivariate metrics.

6.2.2 Univariate validation metrics

A few of the more popular univariate metrics in the V&V literature were compared by Liu et al [143] and Ling and

Mahadevan [138]: classical hypothesis test p-values [118, 119, 148], Bayes’ factor [149], area metric [2, 129],

‘frequentist’ or confidence interval [139, 146] (Liu et al only), and model reliability metric [150] (Ling and

Mahadevan only). All of these address requirements 1 (univariate) and 2.

The confidence interval approach provides bounds on a distribution statistic (such as the mean), but does not

compare the entire distribution. The classical hypothesis test result is pass/fail, whereas metrics with probability-
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based output provides a “degree of validity” [142] that may also be used to carry the validation result into the

predictions [5] or to be used in measurement resource allocation [137]. Examples of metric outputs that are

probability-based include Bayes’ factor and the model reliability metric. The Bayes’ factor requires the definition

of a “prior model probability” which is often difficult to prescribe. Alternatively, the model reliability metric

does not require a prior model, and it is interpretable since it may be related to the engineering units of the

validation quantity of interest through an accuracy requirement or ‘tolerance’. It evaluates the probability that

the difference between the model prediction and measurement is greater than this accuracy requirement. Thus,

the model reliability metric addresses both aspects of requirement 3 and is selected for further extension in this

chapter. It is further introduced below (Section 6.2.2.2).

Another validation metric approach is to compare the cumulative distribution functions (CDFs) of the model

output and measurements. The area metric (introduced in Section 5.3.3) does this by computing the absolute

difference between the CDFs, which may be analytical or empirical. The ability to assess empirical distributions

means that it does not depend on distribution assumptions [2] and can easily be used with sample-based distri-

butions. The metric’s resulting area is in units of the validation quantity of interest, 1 × y = y [139], making

it interpretable. For example, the user may be able to relate the metric output to existing engineering tolerances

in the same units. This metric therefore addresses the interpretability aspect of requirement 3 and is introduced

below.

6.2.2.1 Area metric

Let the model output distribution be denoted y and the measurements yd. The area metric compares the mismatch

between corresponding CDFs F (y) and Fd(y), respectively, as

A =

∫ ∞

−∞

∣∣∣F (y)− Fd(y)
∣∣∣dy (6.1)

When A = 0, there is “no evidence for a mismatch” between the two distributions [2]. The metric is unbounded

for positive values, A ≥ 0. For cases of significant bias such that the CDFs do not overlap, the area metric result

is approximately equal to the difference between distribution means [151], i.e., A ≈ |ȳ − ȳd|.
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6.2.2.2 Model reliability metric

The model reliability metric computes the probability that |y − yd| is within a specified accuracy requirement2 λ,

which may be written as follows where P (·) represents probability

R = P
(
|y − yd| < λ

)
(6.2)

Thus λ relates the metric result to engineering units, but in contrast to the area metric, the model reliability metric’s

output R is a probability value between 0 and 1.

6.2.3 Multivariate validation metrics

Multivariate metrics evaluate the differences between model and measurement for many outputs simultaneously

and return a single numerical result. A few available metrics are briefly introduced. The Kullback-Liebler (K-L)

divergence and the related Jensen-Shannon distance may be computed for either univariate or multivariate model

output [145, 152]. The K-L divergence is unbounded and non-symmetric. The Jensen-Shannon distance is derived

from the K-L divergence to address these issues, but both metrics result in units that are non-intuitive, and they

are computationally challenging in higher dimensions.

Several multivariate extensions have been proposed for the area metric described in the previous section, such

as U-pooling [129], PIT area metric [153], and PCA area metric [128]. All the extensions first combine the outputs

and then apply the univariate area metric to this combined ‘univariate’ result. U-pooling uses the concept of the

univariate probability integral transform (PIT) theorem [8] to transform measurement samples into a common

‘u-space’ (probability space). This ‘pooled’ CDF is compared to a uniform CDF using the area metric, which

then reflects the level of disagreement between model response and measurements. However, this procedure does

not address correlation between the outputs. Therefore, Li et al [153] used a multivariate PIT that accounts for

these correlations. This method is challenging to implement since it requires estimating joint CDFs of the model

outputs, which may not be possible for high-dimensional model outputs [128]. For this reason, Li and Lu [128]

proposed a PCA-based area metric, which combines the multivariate outputs by first transforming them into an

uncorrelated principal component space, and then aggregating these uncorrelated outputs through a weighting

based on their eigenvalues. This metric was used for model-to-model comparisons to assess discrepancy function

performance in Chapter 5. It was shown that the PCA area metric is straightforward to compute (Eq. 5.13),

but the resulting units are non-intuitive (they are eigen-value weighted linear combinations of the original model

outputs), and therefore setting thresholds is more challenging. The PCA area metric may be more useful for

2The accuracy requirement is a tolerance on the difference y− yd, whereas a threshold on the resulting probability R may still be needed
by the decision-maker. Thresholds are beyond the scope of this dissertation. However, Ling and Mahadevan [138] related the threshold
probability value of this metric to thresholds in p-value, z-test, and t-test (under the assumption of Gaussian model output and measurement
uncertainty).
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relative comparisons, as in the previous chapter, where a threshold is not required. In this chapter this metric is

not pursued since the present objective is to evaluate a single model to measurements. Thus, these multivariate

extensions to the area metric do not address the need for an interpretable metric that also accounts for correlation

among multivariate model outputs. For the purpose of this chapter, it was therefore concluded not to use a

multivariate area metric in the multi-metric approach (an alternative is considered in the next section).

Finally, the univariate model reliability metric has been extended to a multivariate model reliability metric

[141]. Similar to the univariate version, it compares the difference between model output and measurements

to an accuracy requirement. The multivariate Mahalanobis distance (MD) [154] is used for this purpose since

it accounts for correlation between outputs. This property of the multivariate model reliability metric, when

combined with the univariate metrics, means that all four of the above requirements are met. Therefore, this

metric has been chosen for further extension, along with the univariate area metric and univariate model reliability

metric in Section 6.3, and its mathematical definition is given below.

6.2.3.1 Multivariate model reliability metric

The multivariate model reliability metric compares multivariate distributions of the model y and measurements

yd using the MD, denotedMj for measurement j. The MD is compared to a multivariate accuracy requirement,

RMj = P
(
Mj ≤ λM

)
(6.3)

λM =
√
λT Σ̃−1λ (6.4)

where λM combines the univariate requirements for n outputs λ = [λ1, λ2, · · · , λn] and transforms this vector

into the MD space using the covariance matrix Σ̃ = Σy+Σd, where Σy and Σd are the covariance matrices of the

model outputs and measurements, respectively [141]. This λM (with Σ̃) defines a hyperellipse, which is shown

below in the numerical examples (Section 6.3.4). The MD is computed between the jth measurement replicate

ydj and ith model sample yi, also using Σ̃ as

Mij =

√
(yi − ydj)T Σ̃−1(yi − ydj) (6.5)

in whichMij is a scalar value andMj is the distribution (over the model samples) for measurement replicate j. A

value of RMj is computed for each replicate, thus the distribution of RM (over the measurement samples) is due

to measurement uncertainty. An example of this distribution is shown in Figure 6.1. If measurement uncertainty is

reduced or more measurements are available (which reduces the sampling error), the uncertainty in RM likewise

decreases. As noted above, this uncertainty may then be reflected in the post-validation model predictions as
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shown in [5, 137]. For the purpose of the examples in this chapter, we simply report the mean of this distribution

R̄M by integrating out measurement uncertainty. Use of the full distribution for modifying the posteriors for

prediction is demonstrated in Chapter 7 (see Section 7.3.5.3).

Figure 6.1: An example histogram distribution of RM for multiple measurement distribution samples j. The mean
R̄M is indicated by the vertical dashed line.

6.3 Methodology

The objective of this section is to extend the area metric, model reliability metric, and multivariate model reliabil-

ity metric. As previously stated, the intent is to perform the validation assessment simultaneously with multiple

metrics (these two types) to meet the metric requirements in Section 6.2.1 and thereby improve the decision made

from the assessment. Section 6.3.1 introduces the distributions that are compared in the validation assessment,

which is schematically illustrated in Figure 6.2. Then, issues with the existing metrics are highlighted and ex-

tensions are proposed in Sections 6.3.2 and 6.3.3. A simple 2D numerical example is used to demonstrate these

extensions in Section 6.3.4 before application to the heat transfer model in Section 6.4.
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Figure 6.2: The validation process results in computed metrics A, R, and RM (and their extensions). The model
g(x, θ) and measurement gd(x) include sources of uncertainty that affect the validation assessment.

6.3.1 Distributions used in the validation comparison

In the context of VVUQ, the validation assessment compares a model output y = g(x, θ) to a measurement

yd = gd(x) as shown in Figure 6.2, both of which include various sources of uncertainty. The impact of these

sources of uncertainty on the form of the probability distributions y and yd are discussed in this section and
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expanded distributions are defined as z and D, respectively.

6.3.1.1 Measurement distribution

The measurements include the system output quantity yd used for validation and system inputs x that define that

state/condition during test (the inputs are also used in defining the model). Both types of measurements include

uncertainty that affect the validation assessment. In this section, we focus on how the system output measurement

distribution is defined. It is assumed that the input uncertainty is reflected in both y and yd.

It is common in engineering applications that there are few measurement samples (replicates) at a given

sensor location, perhaps only one or two. Thus, measurement variability cannot be computed directly from the

test samples but must be supplied independently (‘prescribed’) based on previous information or experience. This

is represented by a standard deviation3 σd that represents the combination of random and systematic uncertainty

of a given measurement system [38]. In the multivariate case this is defined Σd = diag[σ2
d1, · · · , σ2

dn]. It is

assumed that the distribution of measurements takes the form of a multivariate Gaussian4:

D ∼ N (ȳd,ΣD) (6.6)

where the combined variance is ΣD = diag[σ2
d + σ2

d/Nd, · · · , σ2
d + σ2

d/Nd], which includes uncertainty in the

sample mean. The result in Eq. 6.6 therefore describes the approximate population of expected measurement

samples (and not just the mean value).

6.3.1.2 Model output distribution

As shown in Figure 6.2, the model output distribution y includes the contribution of model parameter uncertainty,

model form error, numerical errors, and uncertainty in the inputs. It is assumed that the distribution y (and

multivariate y) is sample-based as the result of uncertainty propagation using Monte Carlo simulation methods.

For example, parameter uncertainty may be characterized through Markov chain Monte Carlo (MCMC) during

Bayesian inference [58] (however, the validation approach proposed in this chapter is not dependent on the use

of Bayesian inference). To compare to the distributionD, the zero-mean Gaussian measurement uncertainty with

variance Σd is included with the model output as

z ∼ y +N (0,Σd) (6.7)

3The terminology ‘standard uncertainty’ is used in [38].
4Mullins et al [137] treated error in the mean value for model validation using the t-distribution, but we use Gaussian since the t-

distribution is undefined for a single degree of freedom.
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which has covariance Σz = Σy+Σd. The motivation for this addition to the model output is that we are predicting

the full distribution of what we would measure, if there were enough measurements [28]. This is explained through

the following four scenarios discussed below and schematically shown in Figure 6.3. For this discussion, assume

(i) there is no input uncertainty, (ii) but there is uncertainty in the measured output (characterized by prescribed

σd), and (iii) there is either one or very few measurement samples.

(a) The first scenario compares a single measurement sample yd to a deterministic model output y. The model
output is perfectly known since there is no input uncertainty or model uncertainty.

(b) This scenario adds to the single measurement in (a) zero-mean Gaussian measurement uncertainty to repre-
sent the measurement distribution D (sampling error is ignored). In order to compare the model prediction
to D, the same measurement uncertainty must be added to y, resulting in z.

(c) This scenario is the same as (b) except that sampling error is accounted for. D is now represented by the
mean ȳd (which could still be a single measurement) and an increased variance. The model distribution z
remains the same since sampling error does not apply.

(d) In this final scenario, D is the same as in (c) but now z incorporates sources of model uncertainty. This
scenario represents the final result for Eq. 6.6 and 6.7 used in the validation assessment in this chapter.
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Figure 6.3: Scenarios to motivate the use of the expanded distributions D and z in the validation comparison.

Further motivation for comparingD to z in the validation assessment may be seen by considering issues with

the existing validation metrics, which are discussed below separately for the area metric (in Section 6.3.2.1) and

the model reliability metric (in Section 6.3.3.1).

6.3.2 Extensions to the area metric

There are two issues related to the original area metric that we seek to address in this chapter. The first relates

to the discussion above when comparing the model CDF to the measurement CDF based on limited samples.

Second, there is confounding between errors in distribution bias and shape when comparing the two CDFs.

6.3.2.1 Limited measurement samples

This first issue was the initial motivation for the definitions of D and z given in the previous section. When the

measurement CDF is based on limited measurements, the area metric is less informative. For instance, consider
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computing the area metric between a single measurement yd compared to a model output distribution y. Two cases

are shown in Figure 6.4a/d where the case in the bottom row has a larger model output variance. In either case,

it is unclear whether there is agreement in the distribution shapes [129] and only a comparison of mean values

can performed. In Figure 6.4b/e the measurement yd is expanded to D (Eq. 6.6), which shows that the model

output and measurement uncertainty are different. However, the comparison is still inconclusive since the model

output distribution may have low uncertainty (for example, if the model and input uncertainty are low). In fact,

comparison to z in Figure 6.4c shows that the model and measurement distributions are not substantially different,

whereas the opposite conclusion is drawn in Figure 6.4f. By expanding the two sets of CDFs the comparison using

the area metric is clarified, so Eq. 6.1 becomes:

Ao =

∫ ∞

−∞

∣∣∣F (z)− FD(z)
∣∣∣dz (6.8)

where this may be written Aok for the kth output of a multivariate output.

Top row: Var[D] ∼ Var[z], Bottom row: Var[D] < Var[z]

Figure 6.4: Illustration of how limited measurement samples results in an ambiguous distribution comparison. By
incorporating the prescribed σd to compare D to z (dashed), the validation assessment improves.

6.3.2.2 Confounding of results between distribution bias and shape

Second, even if there is no sampling error, it is not clear whether a non-zero area metric result is due to difference

in distribution bias or shape, i.e., the two are confounded. Figure 6.5 shows a similar comparison to the previous

two figures, where this time a single measurement is shown only to simplify the comparison. The main point

of this figure is to show that the same area metric result is possible where one is due to bias (a) and the other is

due to increased variance in the model output (b). The same outcome could also be shown when there are many

measurements.
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Figure 6.5: Illustration of confounding in the area metric where two different scenarios result in A = 10, even though
(a) is due to bias and (b) is due to increased uncertainty.

To address the confounding issue in the area metric, two further extensions are proposed for the original area

metric, denoted Ab and Ac. The first provides information regarding model bias. Ab is computed in Eq. 6.9

similar to Ao (Eq. 6.8), except with the absolute value removed from the integrand,

Ab =

∫ ∞

−∞

(
F (z)− FD(z)

)
dz (6.9)

which may be written Abk as noted above for multivariate output. This simple modification assesses the model

bias by integrating both the positive and negative areas, rather than their absolute values. If the result sums to

zero (Ab ≈ 0), this gives an indication that there is no bias between the distributions (even if their shapes are

different). A positive or negative result indicates the direction of model output bias, e.g., if both outputs are

positive, a positive result for Ab means that that model is over-predicting relative to the measurements. If there is

no overlap between the distributions, the result of Ab will be equivalent to Ao (except that Ao is always positive).

The second modification is Ac which assesses whether the distribution shapes are different (after ‘centering’

the two distributions to remove bias by shifting the model output distribution at its mean to the mean of the

measurements). It is evaluated as in Eq. 6.10 similar to Ao after shifting the model output distribution. The

centered distribution is denoted z′ and its CDF is F ′(z),

Ac =

∫ ∞

−∞

∣∣∣F ′(z)− FD(z)
∣∣∣dz (6.10)

Again, this may be written Ack for multivariate output. These extensions will be demonstrated in Section 6.3.4

with a bivariate output.

The components of the expanded area metric may be implemented and interpreted as follows. Ao is computed

first; if it is high, this indicates significant error between the model output and measurement. The metrics Ab and

Ac may then be compared. If Ab is larger than Ac, it indicates that the error is mostly due to bias, and vice versa.
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6.3.3 Extensions to the model reliability metrics

Next, the issues identified above (limited measurement samples and confounding between distribution bias and

shape) also apply to the model reliability metric but are treated in a slightly different ways due to the way the

metric is computed. These are described in Sections 6.3.2.1 and 6.3.3.2. There is a third issue for the model

reliability metric discussed in Section 6.3.3.3, which is how to set the accuracy requirement in both the univariate

and multivariate case.

6.3.3.1 Limited measurement samples

When the model reliability metric is computed using model output and measurement samples (rather than an-

alytically), a probability value is generated at each measurement sample, i.e., Rj and RMj for univariate and

multivariate, respectively. First considering the univariate case, when there are limited measurement samples (and

measurement uncertainty is not accounted for), the result may be more optimistic since the distribution of y − yd

has variance σ2
y rather than σ2

y + σ2
d.

The multivariate case is similarly affected, but when model outputs are strongly correlated the computation

of Σ̃−1 in Eq. 6.3 may be ill-conditioned and/or result in sensitivity to model bias due to a distorted accuracy

requirement hyperellipse. This distorted hyperellipse is shown for a 2D case in Figure 6.6a with Nd = 1 mea-

surement and strongly correlated outputs, resulting in RMj = 0. Figure 6.6b shows a similar case but now with

Nd = 2 measurement samples (the mean is indicated by the triangle). This case shows the sensitivity to bias in

the case of strong correlation since RM1 = 0 (sample at [-5,5]) and RM2 = 1 (sample at [5,-5]), leading to an

overall ambiguous result (as noted above, this metric is evaluated at each measurement sample with the accuracy

ellipse is re-centered at the measurement). The expanded distributions proposed in Section 6.3.1 improve these

results by comparing D to z, and adjusting the hyperellipse for λM based on the redefined covariance matrix

Σ̃ = ΣD +Σz (Figure 6.6c). The metric in Eq. 6.3 is now defined

Mo
ij =

√
(zi −Dj)T Σ̃−1(zi −Dj)

RoMj = P
(
Mj ≤ λM

) (6.11)

The univariate equivalent to Eq. 6.2 based on σ2 = σ2
D + σ2

z is

Ro = P
(
|z −D| < λ

)
(6.12)

which is also written Rok when indexing through multivariate outputs.
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Figure 6.6: Illustration of the issues when there are limited measurement samples and high correlation in the multi-
variate metric: (a) one sample, (b) two samples (triangle = mean), (c) evaluation based on z and D. Accuracy ellipse is
shown at the mean value, but is centered on individual measurements during the calculation.

6.3.3.2 Confounding of results between distribution bias and shape

Similar to the area metric, the model reliability metric also suffers from confounding between distribution bias

and shape. This is illustrated in Figure 6.7, which shows two different scenarios for the distribution of z −D that

both result in probability R = 0.5. The model in scenario (a) is biased, whereas scenario (b) is unbiased but has

more uncertainty. A similar situation applies to the multivariate case.

Figure 6.7: Illustration of confounding in the model reliability metric where two different scenarios result in probability
R = 0.5, even though (a) is due to bias and (b) is due to increased uncertainty.

To address this issue of confounding, two extensions are made to the model reliability metrics, similar to

those made for the area metrics. The extended metrics for bias and distribution shape are denoted Rb and Rc

(univariate) and RbM and RcM (multivariate), respectively. In order to reduce duplication, only the multivariate

reliability metric is discussed; however, the univariate metric is obtained in a similar manner.

Due to the way the reliability metric is computed, the approach is slightly different to the area metric modifi-

cation when considering bias. In order to isolate the bias effect, RbMj evaluates the model reliability metric based

on the model output, and a shifted copy of the model output z − z′, where z′ = [z′1, · · · , z′k, · · · , z′n] represents

the model output distribution shifted to the mean of the measurement distribution. This eliminates any differences

due to distribution shape while maintaining the original correlation structure of the model outputs. Since the dis-

tribution z − z′ is compared rather than z −D, a revised covariance matrix Σzz = Σz + Σz is required in Eq.

6.13 to compute both the Mahalanobis distance M b
j and the modified accuracy requirement λbM . Thus, RbMj is
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defined

M b
j =

√
(z − z′)TΣ−1

zz (z − z′)

RbMj = P
(
M b
j ≤ λbM

) (6.13)

Thus, RbM will evaluate to a higher probability value when the distributions are unbiased and this will diminish as

bias increases. When correlation between the outputs is strong, the metric will be sensitive to the direction of bias,

i.e., when bias occurs in directions that are not aligned with the covariance structure of the data (this is illustrated

in the numerical example below, Figure 6.10).

Next, RcM is defined to evaluate the difference due to distribution shape by removing the difference between

the means of the two distributions. This is achieved by evaluating the distribution z′ − D, where the model

output distribution is again shifted (‘centered’) to the measurement distribution mean (although RbM also uses z′,

RcM compares this shifted distribution to the measurements D rather than z). This modification is similar to the

approach used in the area metric and is defined as

M c
j =

√
(z′ −D)T Σ̃−1(z′ −D)

RcMj = P
(
M c
j ≤ λM

) (6.14)

where the distribution of z′ −D has the same covariance Σ̃ as RoM and therefore uses the same accuracy require-

ment λM . Note that RcM will evaluate to the same result as RoM if there is no bias present.

Regarding interpretation of the extended model reliability metrics, when the probability value of RoM is low it

indicates error in the model relative to the measurements. If either RbM or RcM are lower than the other, the lower

of the two indicates whether bias or shape is driving the decrease in RoM . If both are low, then the error is likely a

combination of both bias and distribution shape differences.

6.3.3.3 Setting the accuracy requirement (univariate)

The model reliability metric accuracy requirement represents a tolerance on the model to measurement error.

This tolerance is defined by the user in the same units as the validation quantity of interest, which makes the

metric result interpretable by the user. However, although a user may have some sense for how to relate this to

an existing deterministic comparison tolerance, it may not be clear how it should be defined in the presence of

uncertainty. In previous work, setting the accuracy requirement for the model reliability metric was left to the

decision-maker. We propose specifying the accuracy requirement using probability intervals that are based on the

provided/estimated measurement uncertainty that was discussed in Section 6.3.1.1. Note that this is different than

a threshold probability value of Ro or RoM , which the decision-maker will still need to determine. Thresholds for

the model reliability metric and area metric require further work and are not addressed in this chapter. However,
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once the model reliability metric’s accuracy requirement is established, the decision-maker is more informed

about how to set an appropriate threshold for the probability value.

To define the accuracy requirement, we start with the univariate case with distribution z − D, which has a

total variance σ2
z + σ2

D. Larger values of this variance will result in a smaller probability that z −D falls within

λ. Therefore, it is reasonable to set the value of λ based on an appropriate reference value for the variance.

For this reference variance, we propose to use the measurement uncertainty as σ2
D + σ2

D = 2σ2
D, where the

factor of 2 is due to the comparison of two distributions. Making this assumption suggests that a good metric

value should result when the model and measurement distributions are similar, which is the basis on which the

area metric operates (i.e., the area metric returns A ≈ 0 when the two distributions are similar). Finally, using

2σ2
D by itself is equivalent to setting λ at the one standard deviation-level. Therefore, an expansion factor h1 is

applied to achieve the desired target probability level. For example, in the Gaussian case, h1 = 1.96 provides

a two-standard deviation accuracy such that perfect agreement will return R = 0.95. Therefore, the accuracy

requirement is defined as

λ = hn

√
2σ2

D = hn

√
2

(
σ2
d

Nd
+ σ2

d

)
(6.15)

where n = 1 represents a univariate output (n > 1 is considered in the multivariate extension, Section 6.3.3.4) and

σD was previously defined in Section 6.3.1 as having variance σ2
d + σ2

d/Nd, the second term of which addresses

the sampling error in the computed mean value. Also note that the above result must be modified when computing

Rb since the distribution is altered to estimate bias. In that case, the appropriate reference variance is 2σ2
z and the

accuracy requirement is λb = hn
√
2σ2

z (again, with n = 1).

6.3.3.4 Setting the accuracy requirement (multivariate)

Next we consider the extension of Eq. 6.15 to the multivariate reliability metric accuracy requirement. Recall that

from Section 6.2.3.1 that the multivariate accuracy requirement is λM =
√
λT Σ̃−1λ, into which Eq. 6.15 may

be inserted. However, there are two required adjustments needed in the n-dimensional case to achieve the desired

probability level. The corrected multivariate accuracy requirement is denoted λ′M :

λ′M =
hn/h1√
σT Σ̃−1σ

√
λT Σ̃−1λ (6.16)

where σ2 = diag(Σ̃). The first factor, hn/h1 simply replaces the univariate factor h1 (that is already included in

Eq. 6.15) with the n-dimensional equivalent expansion factor hn (n > 1) based on results from Wang et al [155].

Their work shows that to achieve a probability of 0.95, the univariate value h1 = 1.96 must increase in higher

dimensions, e.g., h2 = 2.4477, h3 = 2.7955, etc.

The second factor,
√
σT Σ̃−1σ, accounts for the projection of vector λ into a single hyperellipse of radius
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λ′M . A simple 2D example illustrates why this is required. Let the accuracy requirements be the same in each

dimension. Also, let the model output have equal variances σ in each dimension. Computing the original λM (Eq.

6.4) results in,

λM =
√
λT Σ̃−1λ =

√[
λ λ

] [1/σ2 0
0 1/σ2

] [
λ
λ

]
=

√
2
λ

σ
(6.17)

The
√
2 in this result is eliminated when dividing this additional factor since it can be shown that,

√
σT Σ̃−1σ =

√
2. When Σ̃ includes non-zero covariance terms,

√
σT Σ̃−1σ <

√
n but the same cancellation occurs.

A simple bivariate dataset is used in the next section to demonstrate the extended area metric and model

reliability metrics. This is followed by a higher-dimensional example for the heat transfer model in Section 6.4.

6.3.4 Bivariate example of the extended metrics

Three model distribution cases are defined in Table 6.1 for comparison to the same measurement distribution to

show the behavior of the extended area metric and model reliability metrics. There are two main objectives in this

demonstration: Case I is used to compare results across the different metrics, and Case II and III demonstrate the

behavior of the multivariate model reliability metric (which addresses correlation between the outputs). However,

results are shown for all metrics in Table 6.2 for the three cases.

Table 6.1 defines the three cases as bivariate Gaussian distributions for the model outputs and measurements,

which only differ in the model mean value ȳ = [ȳ1, ȳ2]. The model outputs have standard deviations σy =

[σy1, σy2] and correlation coefficient ρ. The measurements are similarly defined, and it is assumed that there

are Nd = 2 replicate measurements. N = 500 samples were used to define model outputs z and the expanded

measurement distributionD.

The bivariate distributions for Case I are shown in Figure 6.8a and the corresponding marginal distributions

are plotted in Figure 6.9a/d. Figure 6.8b/c show the modified distributions that are used to compute the extended

metrics (Sections 6.3.2 and 6.3.3). Figure 6.10a/b show distributions corresponding to Case II and III (similar to

the Case I in Figure 6.8a). Each case is discussed further in the next two subsections.

Table 6.1: Definition of bivariate distribution example Cases I-III (N = 500) for the model and measurements.

Model outputs (y,z) Measurements (yd,D)

ȳ σy ρ ȳd σd ρd Nd

Case I [10, 0] [7.5, 10] 0.9 [0, 0] [3, 3] 0 2
Case II [10, 10] [7.5, 10] 0.9 [0, 0] [3, 3] 0 2
Case III [10,−10] [7.5, 10] 0.9 [0, 0] [3, 3] 0 2
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Figure 6.8: Bivariate example Case I (a) distributions z and D used to compute Ro, Ro
M . (b) distributions z and z′

used to compute Rb, Rb
M , (c) distributions z′ and D used to compute Rc, Rc

M . Accuracy requirements for the
univariate are shown at ±λ and multivariate as a red ellipse based on λM . Black triangle = model output mean.

Figure 6.9: Bivariate example Case I (a,d) marginal distributions of z and D from Table 6.1. (b,e) z − D PDF and
model reliability metrics (c,f) z and D CDFs and area metrics. The dashed lines in (c,f) are used for computing Ac.

Figure 6.10: Bivariate example (a) Case II with model bias ȳ = [10, 10] that is approximately aligned to the direction
of model output correlation. (b) Case III with model bias ȳ = [10,−10] that is approximately orthogonal with model
output correlation. Black triangle = model output mean.

6.3.4.1 Case I univariate metric results for the bivariate model

The marginal distributions of the Case I distribution are plotted in Figure 6.9a/d. The corresponding difference

distribution z −D and the computed model reliability metric based on Eq. 6.12 is shown in Figure 6.9b/e. The

two CDFs are shown in 6.9c/f, along with the computed area metric based on Eq. 6.8. The computed metric

results are summarized in Table 6.2 under Case I ‘original’. For the model reliability metric, λ1 = λ2 ≈ 10.2
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(computed from Eq. 6.15 based on Nd = 2, σd = 3, and h1 = 1.96).

The related Case I bias and shape metrics are also computed using the appropriate definitions above. As shown

for Case I in Table 6.1, there is a 10 unit bias in z1. This bias is reflected in the computed metrics for output 1,

since the magnitudes of the bias metrics are ‘worse’ than those of the shape metrics. For instance, model reliability

metric results are Rb1 = 0.78 and Rc1 = 0.84, which suggests that bias is to blame for lowering the probability of

the original metric Ro1 = 0.51. Similarly, the area metrics Ab1 = 10.1 compared to Ac1 = 2.2 show that bias is the

cause of the Ao1 = 10.1 result (since bias is significant, Ab1 and Ao1 are equivalent). A low value of Ac1 suggests

there is only a small difference due to distribution shape. In the second output z2, the results are favorable since

model reliability metric probability is high Ro2 = 0.95 (this is the target probability as defined in Eq. 6.15 with

h1 = 1.96) and the area metric result is very low Ao2 = 0.3 ≈ 0. The assessment is therefore given both in terms

of probability and engineering units which helps with interpreting the results and relating it to the magnitude of

the physical output. However, the univariate results should be considered along with the multivariate output to

ensure correlation is considered in the assessment.

Table 6.2: Bivariate example validation metric results. Case I: results for distributions in Figure 6.8 (original metrics
computed for univariate case in Figure 6.9). Case II & III: results for distributions in Figure 6.10 (a) and (b), respec-
tively.

Case I: ȳ = [10, 0] Case II: ȳ = [10,−10] Case III: ȳ = [10, 10]

Metric original b (bias) c (shape) original b (bias) c (shape) original b (bias) c (shape)

R1 0.51 0.78 0.84 0.51 0.78 0.84 0.51 0.78 0.84
R2 0.78 0.95 0.78 0.48 0.84 0.78 0.52 0.86 0.78
RM 0.37 0.70 0.75 0.43 0.83 0.75 0.10 0.29 0.75

A1 10.1 10.1 2.2 10.1 10.1 2.2 10.1 10.1 2.2
A2 3.3 0.3 3.3 10.3 10.3 3.3 9.7 -9.7 3.3

6.3.4.2 Case I, II, and III multivariate metric results for the bivariate model

As previously discussed, the multivariate model reliability metric is useful for providing an overall sense of the

model validation assessment and it includes the effects of correlation between outputs. In Case I, the metric

results in slightly lower value of RbM = 0.70 than RcM = 0.75, indicating that bias is a more significant factor

than distribution shape in lowering the original metric RoM .

In order to highlight the affects of correlation during the validation assessment, Case II and III were produced

using the same model and measurements defined in Table 6.1 except for changes in the imposed model bias. Case

II shown in Figure 6.10a has model bias that is aligned with correlation of the dataset. Thus, even though there is

now bias in both dimensions, the overall value of RM increases relative to Case I (from 0.37 to 0.43). Conversely,

Case III shown in Figure 6.10b has model bias that is not aligned with the correlation of the dataset, returning

RM = 0.1. This is the lowest between the three cases and is worse since the model outputs are biased and the
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measurements are not in agreement with the data set’s correlation structure.

To summarize the methodology, we have selected and extended the area metric and model reliability met-

rics in a way that together address the desirable features given in Section 6.2.1. Namely, the effect of limited

measurements on metric interpretation was improved through the proposed resampling process; output correla-

tion is considered through the Mahalanobis distance-based model reliability metric; and the interpretability of

the metrics’ results are improved through augmenting the original metrics with additional versions showing the

contributions of bias and distribution shape. By using both metric types together, a model may be diagnosed at

individual outputs (or at individual measurement locations) and also given an overall validation assessment.

6.4 Application to the heat transfer model

The proposed methodology is demonstrated in this section on the gas turbine disc heat transfer model that was

introduced in Chapter 2. The 2D axisymmetric finite element (FE) model geometry is again shown for reference

in Figure 6.11. It includes the same nℓ = 9 thermocouple positions and numbering used in Figure 5.5. These rep-

resent measurement positions in the corresponding physical engine, which is used for validation testing. Results

were extracted from the thermal FE solution at these same locations to perform the validation assessment.

Figure 6.11: Turbine disc 2D axisymmetric FE heat transfer model geometry showing temperature output locations
that correspond to thermocouple measurement positions in the physical test.

Typically for model calibration and/or validation, the FE model would be run transiently through several en-

gine conditions (speeds) to evaluate both stabilized temperatures and time-dependent heating and cooling rates.

The validation metrics described in this chapter are applied to the stabilized conditions to demonstrate the ap-

proach. Thus, when considering the multivariate model response, only spatial correlations are included in this

chapter. A feature-based approach for the temporal component was used for model calibration in Chapter 4 [58]

and Chapter 5 [98] that could also be used for the validation comparison (by compare time-constants). An alterna-

tive approach is demonstrated in Chapter 7 where results from the transient response are extracted at multiple time

instants (thus the outputs are all temperature). Other authors have explored an extension of reliability metrics to

dynamics applications as discussed in [156]. However, validation of more complicated transient response remains
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an area for further work (e.g., when the transient response is not from a square cycle) and is beyond the present

scope.

Furthermore, we clarify that model calibration is not a prerequisite for the application of the validation metrics

proposed in this chapter. However, the model in this case has been calibrated using one set of measurements (top

row of Table 6.4) and therefore separate measurements are used for validation. A Bayesian calibration approach

was used, (similar to Chapters 4 and 5), and therefore the model outputs y represent posterior prediction samples.

6.4.1 Predicted model outputs

To demonstrate the methodology, stabilized MTO temperatures were predicted assuming a model that has uncer-

tainty in the response. These predictions are given in Table 6.3. As discussed in Section 6.3.1, the resampled

model predictions z (rather than y) are used in the proposed validation process. The correlation coefficients be-

tween the outputs of both y and z are shown in Figure 6.12 (a) and (c), respectively. To illustrate the behavior of

a specific set of outputs, scatter plots of outputs 8 and 9 are also shown in panel (b) for y and (d) for z. The high

correlation between locations 8 and 9 in panel (b) may cause challenges in the matrix inversion for the multivariate

model reliability metric. This has been alleviated by use of the predictive distribution, as shown in (d), due to the

additional diagonal terms included in Σ̃.

Table 6.3: Summary of model predictions used in validation. Calibrated model outputs are y and the corresponding
posterior predictive distribution is z with σd = 4.3K. Calibration measurements are shown in Table 6.4.

MTO Predicted Temperatures by location [Kelvin]

statistic 1 2 3 4 5 6 7 8 9

y ȳ 707.7 581.2 574.4 571.1 770.0 687.5 591.0 793.0 820.8
σy 5.3 1.6 1.4 1.3 4.6 2.2 2.7 6.3 6.8

z z̄ 707.8 581.1 574.4 571.2 770.3 687.5 591.1 793.1 820.9
σz 6.8 4.5 4.4 4.5 6.2 4.8 5.0 7.4 8.0
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Figure 6.12: Calibrated model output correlation. The scatter plots show correlation coefficient for y (a) and z (c).
The corresponding scatter plots for outputs 8 and 9 are also shown for y (b) and z (d).

6.4.2 System response measurements

The measurements used in this demonstration are summarized in Table 6.4. The model was calibrated to Nd = 4

synthetic replicate measurements yCd (with Gaussian noise of 1% added). The sample standard deviation of these

calibration measurements is listed in Table 6.4.

To explore the behavior of the validation metrics, several synthetic validation datasets are compared (they are

given set numbers, e.g.,DV 1 is set 1, where the expandedD is used, as defined in Section 6.3). In the validation

shown here, it is assumed there is a single replicate (Nd = 1) due to instrumentation limitations, but σd ≈ 4.3K

was provided by measurement experts (λ ≈ 16.7K based on Eq. 6.15). To facilitate demonstration of the metrics,

the different model validation cases are generated by modifying the synthetic measurements rather than modifying

the model.

The validation baseline (no bias) measurement set is DV 0. The next two validation cases DV 1 and DV 2

have 10K bias imparted at outputs 8 and 9 near the disc rim (see Figure 6.11) to show the effect of ‘orthogonal’

(opposite sign) and ‘aligned’ (same sign) bias, similar to the 2D example shown in Figure 6.10. Orthogonal bias is

demonstrated inDV 1 and aligned bias inDV 2. The next validation caseDV 3 imparts bias at all outputs of +10K

to demonstrate the effects of bias at a greater number of outputs. Finally, case DV 4 has the same mean as DV 1,

but the assumed measurement uncertainty was reduced by one half to demonstrate a more significant difference

in the distribution shapes between model and measurements (which also means that λ ≈ 8.3K for this case).
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Table 6.4: Calibration and validation measurements summary. Calibration and validation data are based on different
tests. Sufficient replication of the calibration test allowed for estimation of the standard deviation. The validation
data standard deviation was provided by expert opinion due to inadequate replication (the same value is used for cases
DV 0 −DV 3). Bold text indicates differences in the validation cases relative to the baselineDV 0.

MTO Measured Temperatures by location [Kelvin]

Meas. Set statistic Nd 1 2 3 4 5 6 7 8 9

yC
d µ 4 705.9 574.2 571.7 573.8 768.0 690.8 594.4 789.6 826.7

σ 4 2.7 10.3 6.6 2.6 12.1 4.8 11.4 6.9 10.9

DV 0 µ 1 708.1 581.4 574.5 571.3 772.6 689.0 590.6 797.8 826.1
DV 1 µ 1 708.1 581.4 574.5 571.3 772.6 689.0 590.6 807.8 816.1
DV 2 µ 1 708.1 581.4 574.5 571.3 772.6 689.0 590.6 807.8 836.1
DV 3 µ 1 718.1 591.4 584.5 581.3 782.6 699.0 600.6 807.8 836.1

σ * 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3

DV 4 µ 1 708.1 581.4 574.5 571.3 772.6 689.0 590.6 797.8 826.1
σ * 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

6.4.3 Validation assessments and discussion

In this section, the proposed multi-metric validation approach presented in Section 6.3 is applied to the heat

transfer model datasets. Results are compared first for the model reliability metrics and then for the area metric.

The cases are organized such that Figure 6.13 (model reliability) corresponds to Figure 6.15 (area metric), and

these consider imposed bias in just two of the rim thermocouples (cases DV 1 and DV 2). Similarly, Figure 6.14

(model reliability) corresponds to Figure 6.16 (area metric), and these cases show the effect of a bias (DV 3 ) and

a shape difference (DV 4) across all locations.

6.4.3.1 Model reliability metrics

The model reliability metric results in Figures 6.13 and 6.14 include the univariate and multivariate results in

three panels, one per case. Panel (a) of both figures is the baseline case DV 0. In each panel, the horizontal axis

includes univariate outputs 1-9 and a final entry for the multivariate output labeled ‘M’. The vertical axis is proba-

bility. Based on the accuracy requirement definition (Eq. 6.15), a probability R = 0.95 implies perfect agreement

between the model predictions and measurements, which is indicated by the red line (where R generically repre-

sents the reliability metric probability result, and Rk and RM are generic univariate and multivariate results). In

this example, Nd = 1 which increases λ, giving the results a larger target, and showing the importance of good

estimates of measurement uncertainty when replication is low. If there is a large disparity in the covariance or if

the model bias is non-zero, as will typically be the case, then the result is R < 0.95 and a threshold should be

defined to determine how low is acceptable. For the purpose of this application, the decision-maker treats DV 0

as producing acceptable model validation results (this may represent historical test data and models) and sets the

threshold to a probability value of TR = 0.8.
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Figure 6.13 compares DV 1 (b) and DV 2 (c), to which additional bias was introduced at the rim locations

8 and 9, relative to DV 0. In DV 1, the bias has opposite sign5 (location 8 is -10K and location 9 is +10K).

Since location 8 and 9 are in close proximity (Figure 6.11) they are highly correlated (Figure 6.12). The bias in

this case is therefore ‘orthogonal’ to the correlation and Rb8 and RbM both show values outside of TR, indicating

that the error is due to bias (Rb9 is satisfactory due to offsetting errors). In contrast, case DV 2 panel (c) shows

results when both locations 8 and 9 are given the same bias of +10K, which is consistent with the strong positive

correlation between the outputs. Thus, while we see both Rb8 and Rb9 < TR, it is observed that the multivariate

result is RbM > TR forDV 2, which is a better outcome than inDV 1 panel (b). Since only the bias was modified,

Rc metrics are unaffected relative to DV 0. The decision-maker’s interpretation of these results will, of course,

depend on the intended use of the model. For example, if the results are used to determine thermal stresses, it may

be more important to achieve consistency in correlation (captured via RM ) than getting the absolute temperature

level at a given location (captured by Rk) below a bias threshold.

Figure 6.13: Model reliability metric results for CasesDV 0 (a),DV 1 (b), andDV 2 (c) as defined in Table 6.4

Figure 6.14 comparesDV 3 (b) andDV 4 (c) to show the impact of bias at more locations (DV 3) and the impact

of a greater disparity in variance (DV 4). Validation results in panel (b) show that bias imposed at all locations

results in a low metric. All but location 1 fall outside of the acceptance limit TR. It is not unexpected that the

result will be low since the model overall performs poorly and not all of the correlations shown in Figure 6.12 are

positive. Since only bias is present in the case shown in panel (b), Rc results are acceptable. Validation results in

panel (c) show case DV 4, which has no imposed bias, but the measurement uncertainty assumption was reduced

to 0.5σd so that model variance was higher in a relative sense. This results in in failed Rc for locations 1, 8, and

9.

5This bias is relative to the measurements; it could be considered model bias by changing the signs to +10K and -10K, respectively
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Figure 6.14: Model reliability metric results for CasesDV 0 (a),DV 3 (b), andDV 4 (c) as defined in Table 6.4

6.4.3.2 Area metrics

The area metric results in Figures 6.15 and 6.16 are based on the same comparisons made with the model re-

liability metrics. In this case, there is no multivariate metric. Along with the proposed area metrics, the mean

difference between the model response and measurements (ȳ− ȳd) is included. It is observed that this difference

aligns closely with the bias metric Ab as noted before. Note that, bias is imposed in Table 6.4 relative to the

measurements, but these plots are shown as y − yd out of convention, giving the opposite sign (typically, one

thinks of bias in the model rather than measurements). Furthermore, the decision-maker’s threshold of TA = 12

K is included for reference (shown as gray bands).

Figure 6.15 (a) plotsDV 0,DV 1 (b), andDV 2 (c). Similar to the results for the model reliability metric, panel

(b) shows that the proposed area metric for bias Ab8 indicates poor model performance, and the sign of the metric

agrees with with y − yd (as compared to Ao which is always positive). Panel (c) shows that Ab8 and Ab9 are both

biased in the same direction. If one considers only these univariate cases, it would be tempting to consider the

result of panel (b) as superior to panel (c) – just the opposite as concluded from the model reliability metric. Thus,

considering both metrics together provides a clearer overall perspective on the quality of the model validation

results for the decision-maker.

Figure 6.15: Area metric results for CasesDV 0 (a),DV 1 (b), andDV 2 (c) as defined in Table 6.4

Figure 6.16 (b) shows conclusions similar to the univariate model reliability metrics for case DV 3 where
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all outputs are biased with +10K. There are several outputs (1-4, and 7) that are on the edge of the threshold,

while locations 5, 6, 8, and 9 have all exceeded TA. Panel (c) shows case DV 4 (with an increased disparity in

the variance). In contrast to the model reliability metric conclusions in Figure 6.14, the area metric indicates an

acceptable outcome. It appears to have a lower sensitivity to distribution shape differences, when compared to the

model reliability metric, which showed results below the threshold for outputs 8 and 9.

Figure 6.16: Area metric results for CasesDV 0 (a),DV 3 (b), andDV 4 (c) as defined in Table 6.4

6.5 Conclusion

The topic of quantitative model validation has grown in importance as engineering decision-making increasingly

relies on computer simulation, especially for complex systems. However, in practice, quantitative approaches

have generally seen limited use, or the decision-making benefits have not yet been shown to be of significant

value. Considering these challenges, in this chapter we have selected and extended two validation metrics (area

and univariate/multivariate model reliability) that together address the desirable metric features that were listed in

Section 6.2.1. We have addressed the effect of sample size on the metric interpretation through the a resampling

procedure (Section 6.3.1). The output correlation was considered by the use of the Mahalanobis distance-based

model reliability metric (Section 6.3.3). The interpretability of the results are improved through augmenting the

original metrics with additional versions that indicate the contributions bias and distribution shape (Section 6.3.2

and 6.3.3). The proposed extensions to the validation metrics are demonstrated on a simple numerical example in

Section 6.3.4.

Finally, the extended area metric and model reliability metrics were used together for the validation assess-

ment of a gas turbine FE model. The overall assessment using the multivariate metric was augmented with the

assessment at individual locations, allowing problem areas in the model to be identified. By using both the area

metric and univariate model reliability metric, this location-by-location diagnosis may be given in terms of metric

outputs in engineering units or probability, improving interpretability. From the area metric, the user has a more

intuitive understanding of the error magnitude relative to the physical quantity. The probability-based model relia-

bility metric provides a physically meaningful interpretation (with probability values bounded between 0 and 1) to
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summarize the individual and the overall model validation result (using the multivariate model reliability metric).

The probability result for the multivariate metric may also be used for further work within a VVUQ framework,

for propagating the validation result to predictions with the validated model [5]. This is demonstrated using the

VVUQ framework developed in Chapter 7.

Two potential application-specific issues may arise when using the proposed multivariate metric and should be

considered by the practitioner. First, there is a practical trade-off between the magnitude of the correlation (from

Cov[y]) on one hand and the magnitude of measurement uncertainty σd on the other. The goal of introducing the

multivariate model reliability metric is to capture output correlation, which is achieved by using the Mahalanobis

distance (MD). However, it was noted in Section 6.6 that extreme correlation may cause numerical issues or

practical issues (such as metric sensitivity to limited samples, shown in Figure 6.6a/b). By adding measurement

uncertainty when defining z (Section 6.3.1), these numerical and practical issues are reduced (see Figure 6.6c and

Figure 6.12). However, if measurement uncertainty is relatively high, it will tend to ‘wash out’ these correlations

between outputs in z. In the limit of increasing measurement uncertainty, the computed MD effectively becomes

equivalent to a scaled Euclidean distance, because the covariance matrix becomes more and more diagonal (small

covariance terms).

The second issue is related to the use of covariance when computing the MD. While the proposed metrics

do not make any assumption about the distributions of model output and measurement, it should be considered

whether covariance is a good ‘statistic’ for characterizing the distance from the distribution when the model

output distribution is non-normal. This is analogous to the use of variance to characterize a distribution in the

univariate case. If the model output distribution is very non-normal and ‘skewed’ (which may be determined by

various multivariate normality tests, e.g. [157]), it is possible that the use of covariance is inappropriate or that

transformations [158] should be made to the model output before evaluating the multivariate metric. This is an

advanced statistical topic that is outside the scope of this dissertation.

In addition to further exploration and developing more specific guidance on the two issues raised above, other

directions for future research include setting metric thresholds and applying the multivariate metric to higher-

dimensional datasets. The time-dependent output was not explicitly included in this chapter and, although it is

advanced further in Chapter 7, it deserves further attention. Since the multivariate metric provides an overall as-

sessment of the model, it could be investigated for application to model selection [159–161] and sensor placement

optimization [59, 162, 163].
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CHAPTER 7

Uncertainty aggregation through model development and assessment towards prediction

Expect everything, and the unexpected will never happen.

–Norton Juster, The Phantom Tollbooth

7.1 Introduction

It was discussed at the beginning of this dissertation that there has been significant development of rigorous

verification and validation (V&V) and uncertainty quantification (UQ) methodologies in the last 20 years. Despite

significant advances in the many facets of VVUQ methodologies, studies illustrating applications to challenging,

practical engineering problems have been limited. Demonstrations that exist tend to focus on certain individual

aspects of the process, and application of a more holistic process requires significant expertise to piece together

the methods and tools in all the steps. Therefore, the goal of this chapter is to pursue uncertainty aggregation (the

accumulation of uncertainty) through all the steps of VVUQ that were introduced in Section 1.2, and apply the

methodology to the multivariate predictions of the computational model introduced in Chapter 2. The intent of

the methodology is to not only identify and aggregate the uncertainty sources, but also to provide several points

of feedback for the purpose of improving the model. In this way, information and uncertainty from the model and

test measurements are accounted for when assessing the accuracy and usefulness of the model.

The chapter is organized as follows. Section 7.2 introduces a few existing uncertainty aggregation studies

and identifies gaps that are addressed in this research. Section 7.3 presents a proposed VVUQ framework with

application to the heat transfer model from Chapter 2. Conclusions and recommendations for further work are

discussed in Section 7.4.

7.2 Background

The process and methodologies of VVUQ seek to combine two imperfect sources of information – models and

measurements – and derive decision-making value by addressing the uncertainty in both. Individual steps of

the VVUQ process have been studied by many authors, as recently reviewed by Riedmaier et al [7], resulting

in a “heterogeneous landscape” of methodologies. Most of the methodologies are focused on individual aspects

of model V&V and/or UQ and only a few consider the aggregation of uncertainty in a comprehensive VVUQ

process. Two of the more complete methodologies for uncertainty aggregation as noted by Riedmaier et al are

the “Frequentist” approach (which we refer to as the probability bounds analysis, PBA) by Roy and Oberkampf

[3] and the “Bayesian” approach by Sankararaman and Mahadevan [5]. Several organizations have also published
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guides and standards for V&V of models to improve the quality and credibility of engineering computational

models [1, 6, 14, 16, 40, 134, 164]. The guidance is generally useful but is often high-level, leaving the practitioner

to fill in the gaps in their own application in order to select among competing techniques for individual VVUQ

steps. Furthermore, important concepts are not addressed in these guides and standards, such as the uncertainty

resulting from model calibration and the errors that arise from the use of surrogate models to speed up the VVUQ

analysis.

Drawing from the above references, four steps are common in VVUQ analysis: model definition (which

includes the conceptual model, mathematical model, and computational model), verification, validation, and pre-

diction. A fifth important step is model calibration. A sixth step, model reduction, is also included in the proposed

framework to more clearly include the model simplifications that are typically required, such as surrogate model-

ing and dimension reduction. These six steps of VVUQ were defined in Section 1.2 and several have already been

discussed in detail in previous chapters. In this chapter, the six steps are used first to benchmark previous VVUQ

studies and then are demonstrated in the next section using the heat transfer model from Chapter 2. The steps and

associated substeps for the framework developed in this chapter are shown in Figure 7.1 in Section 7.3.

The two VVUQ studies mentioned above (PBA and Bayesian approaches) and two of the ASME standards

are selected in this chapter for comparison against the six VVUQ steps to highlight common gaps that must be

addressed for the application of a VVUQ process. The first engineering standard considered, ASME V&V10

[165] (solid mechanics), was published in 2006 and was among the earlier guidance documents on the topic of

V&V1. This was revised in 2019 as an official standard [1] and provides broad guidance on several VVUQ topics,

focusing the most on model definition, verification, and validation. It briefly discusses key aspects of model

calibration but offers limited guidance on specific methods and does not address uncertainty aggregation. The

second engineering standard, ASME V&V20 [16] (CFD and heat transfer), was published in 2009 and focuses

primarily on V&V. It is more prescriptive in the methodology than V&V10, deriving ‘validation uncertainty’ by

combining numerical error, input uncertainty, and measurement uncertainty using an approaches established by

the metrology community [136], e.g., sum of squares of ‘standard uncertainties’. Thus, there is some aggregation

towards bounding the validation result, but the sum of squares may not always be applicable for other sources

of uncertainty (such as model calibration parameter uncertainty, dimension reduction errors, or surrogate model

errors). It is also not clear how to incorporate these other sources of uncertainty into the final predictions.

The third VVUQ study is the probability bounds approach [3], which combines aleatory and epistemic sources

of uncertainty through a probability box (p-box). This work along with [2] covers the aspects of model definition,

verification, validation, and prediction. In the probability bounds approach, aggregation of uncertainty is achieved

by expanding (adding to) the p-box (using the results of the area metric [129]), which treats each uncertainty

1Others include the 1998 AIAA guide for CFD [134] and 1996 DOD instructions [164]
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source as independent (correlation is not accounted for). The width of the p-box define an error interval for model

predictions, with some guidance on how to adjust this for extrapolation. Model calibration parameter uncertainty

is not discussed, but could be included as an additional independent source of uncertainty. Applications and

extensions include [23, 128, 153, 166–168]

The fourth VVUQ study is a Bayesian network approach [5] for uncertainty aggregation across verification,

calibration, validation, and prediction. Various sources of uncertainty were addressed including input uncer-

tainty, numerical errors (verification and surrogate model), and model parameter uncertainty (quantified through

Bayesian calibration). These sources of uncertainty were combined with a probabilistic validation metric to

quantify the prediction uncertainty. While this paper did not focus on model definition or how to perform verifi-

cation for more complex models, it nevertheless incorporates the broadest set of VVUQ steps. Furthermore, the

Bayesian approach is able to account for appropriate correlations between sources of uncertainty. This Bayesian

approach has also been extended to multivariate validation metrics [141], sparse and imprecise measurements and

mixed aleatory and epistemic input uncertainty sources [60], inclusion of model discrepancy [13, 98], and overall

integration of verification, calibration, validation, and prediction [5].

Based on extensions to the Bayesian framework noted above, a similar Bayesian approach is adopted in this

research and extended to address model definition, dimension reduction, adaptive meshing errors, the presence

of both aleatory and epistemic uncertainty in the model inputs, and multivariate model validation. This chapter

demonstrates the framework as an end-to-end application to the heat transfer model.

7.3 The proposed framework

The proposed VVUQ framework is shown schematically in Figure 7.1, which forms the outline of this section. The

next six subsections discuss each of the main steps, which are indicated by the dark blue boxes, and demonstrate

them using the heat transfer model. The red boxes indicate inputs to each step and the light blue box is the end

result along with the prediction. Process sub-steps (gray) represent tasks around VVUQ which feed into the goal

of this chapter, which is to aggregate uncertainty from one step to the next (green boxes). The arrows indicate the

general flow of the process, but in practice there are feedback loops throughout that are omitted for simplicity.
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Figure 7.1: The uncertainty aggregation framework developed as part of this research.

7.3.1 Model Definition

The model definition process was outlined in Section 2.1 for the heat transfer model. The start of this process

considers the purpose (“intended use”) of the model and its output quantities of interest (QoI). Decision-making

regarding these QoI is affected by the prediction accuracy of the model. Thus, estimation of ‘error bounds’ on the

predicted QoI is the ultimate purpose of performing VVUQ analysis.

7.3.1.1 Requirements

Section 2.1.1 listed modeling requirements which lead to the identification of physical phenomena involved and

the importance of these relative to the QoI. Besides focusing only on the final QoI, the VVUQ process should

consider additional requirements through each of the framework steps listed in 7.1. These provide more granular

and measurable criteria that lead to opportunities for model diagnosis by the analyst and improved credibility for

the decision-maker. Failure to meet any of these individual requirements suggests that further model improve-

ments are necessary, thus guarding against the use of inadequate models. However, once the requirements have

been satisfactorily met, both the analyst and decision-maker gain better assurance in the accuracy of the model

for its intended use.

A model’s intended use may be the direct prediction of a QoI, or the model’s predictions may be used as

inputs to another model (whose output is the primary QoI) [1, 5]. In the present heat transfer application, the

model represents a gas turbine engine disc in and the thermal environment it operates in. Its intended use is to
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predict disc metal temperatures that will be used as inputs to a separate stress model of the turbine disc, which

in turn is used to estimate part life (usage limits in service). For the sake of demonstration in this chapter, the

rim-to-volume-weighted mean temperature Trm is used as a low-fidelity prediction of stress, since Trm is known

to correlate well with stress. Therefore, Trm is considered to be the primary QoI and temperature at the measured

locations is the secondary QoI.

For the heat transfer model, the accuracy requirements on the QoI are further subdivided into requirements

for the individual steps in the VVUQ framework in Table 7.1. The first requirement relates to setting a limit on

Trm, after accounting for the aggregated sources of uncertainty in the prediction. The requirement ensures that

the probability of failure (exceeding a threshold value T ∗
rm = 105 Kelvin) is ‘acceptably low’, which is defined

here to be pf = 0.02.

Table 7.1: Representative VVUQ requirements for the heat transfer model

# Requirement Description Framework step

1 pf = P (|Trm| < T ∗
rm) < 0.02 Rim-to-volume-weighted mean temp. Trm Prediction

2 R = P (|yi − yd,i| < λi) > 0.8 Univariate temperature output yi Validation
3 RM = P (M < λM ) > 0.8 Multivariate temperature outputs y Validation
4 Bayesian inference of θ Refine parameter uncertainty P (θ) Calibration
5 ϵh + ϵp + ϵs ≤ 5 K Combined numerical errors Verification & Model Reduction

The second and third requirements relate to the validation assessment of the temperature predictions (the

secondary QoI), evaluated with the model reliability validation metric [17, 141, 150]. The validation process

proposed in this dissertation was discussed in detail in Chapter 6, which considers multiple metrics that address

both the univariate and multivariate output of the model (which was described in Section 2.4.1). Thus, the second

requirement considers the temperature output at individual measurement locations, yi where i indexes over outputs

(that include different time instants and spatial locations). This univariate requirement states that the difference

between model and measurements yi−yd,i must be less than an accuracy tolerance λi. The accuracy requirement

represents the allowable difference in the mean values. The third requirement is the multivariate equivalent of the

second, comparing multiple model outputs y to corresponding measurements. The multivariate metric uses the

Mahalanobis distance M to account for correlation between the outputs. Another advantage of the multivariate

metric is that it condenses the validation assessment across many outputs to a single metric, which can be used for

post-validation predictions as shown later in this chapter (Section 7.3.6). The multivariate accuracy requirement

is defined as a vector containing the univariate requirements λ = [λ1, . . . , λn].

The fourth requirement in this example states that calibration is to be performed using Bayesian inference

methods [58] to refine (and ideally, reduce) the prior parameter uncertainty P (θ). This also includes plotting of

the distributions generated during the MCMC solution discussed in Section 4.4, which provide additional insights
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into the model behavior and quality. Further detail on this requirement is possible, including setting convergence

criteria for the MCMC algorithms used in Bayesian inference [28, 29], or setting requirements on the uncertainty

of the posterior model parameters. In the latter case, failing to meet the uncertainty requirement may result in

additional modeling or testing to reduce this source of epistemic uncertainty. However, in this example, it is simply

required that Bayesian inference be used to quantify model parameter uncertainty. The fifth and final requirement

stated in Table 7.1 is that the combined numerical errors from discretization (ϵh), dimension reduction (ϵp), and

surrogate modeling (ϵs) should be less than 5 Kelvin in the predicted output across time and space. These are

quantified during the verification and model reduction steps.

7.3.1.2 Conceptual, mathematical, and computational model

As noted above, there are two sets of requirements in the modeling process, when considering VVUQ: modeling

requirements and accuracy requirements. The latter were discussed in the previous section, whereas Section 2.1.1

listed modeling requirements. These lead to the development of the conceptual model. Section 2.2 demonstrates

this process by using a phenomena identification and ranking table (PIRT, Figure 2.4), which organizes the im-

portant phenomena identified by SME. Importance is ranked with respect to the selected QoI, which were listed

on the right hand side of the table. The conceptual model is one of the most important steps in the definition of the

model, since incorrect assumptions lead to model form error that may not be revealed until physical testing (usu-

ally expensive) has been performed. All subsequent modeling choices are dependent on these initial assumptions.

In addition, the SME should consider how the system will operate in both the validation domain and prediction

domain. There may be insufficient information for certain aspects of the modeling such that alternative models

must be compared during the VVUQ process. This process is referred to as model selection [159–161]. Although

the process considered here enables model selection, it is beyond the present scope. The conceptual model de-

scribed in Section 2.2 showed the model geometry and expected environment/boundary conditions around the

turbine disc. The operation of the engine was also described, which defines required boundary conditions and

time-dependence that are considered in the next step of the model development process. Operation considered

in this example is the test cycle (square cycle, Figure 2.3). In general the model will also be run through several

flight cycles to predict transient temperatures and stresses during flight, although this is omitted in this discussion.

The conceptual modeling assumptions are then turned into a mathematical model using physical laws ex-

pressed through differential equations with appropriately specified boundary conditions (e.g., Eqs. 2.1 to 2.4).

An example of these equations for the heat transfer model was shown in Section 2.3. The mathematical model

includes a number of inputs and parameters that may be unknown or only partially defined from existing ‘text

book’ data. Refinement of these may be part of the test plan, including smaller tests that estimate key model

inputs (using uncertainty quantification methods) or model calibration which refines the model parameters using
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measurements of the system outputs. Finally, the computational model (Section 2.4) is developed by discretiza-

tion the mathematical model using various numerical methods. For the heat transfer model, the finite element

(FE) method [18] is used and is implemented in an in-house code.

7.3.1.3 Uncertainty identification

In the last section, it was mentioned that the mathematical model contains a number of inputs (x ∈ Rpx ) and

parameters (θ ∈ Rp) that the SME may not be able to fully quantify. Thus, they are sources of uncertainty

due either to aleatory measurement uncertainty or epistemic uncertainty due to limited measurements, lack of

measurements, or are unmeasurable quantities (such as some model parameters). Due to the size and complexity

of many models, the total number of inputs and parameters may be in the hundreds or more. This requires SME

guidance to narrow down to a more manageable set (see Section 7.3.3.2). Even so, identifying these and gathering

estimates of their uncertainty requires substantial effort (Eek [169] documents a real-world example where this

is by far the most significant time cost in the VVUQ project). Due to time constraints or limited information

for the problem at hand, historical or reference information may be obtained where new measurements cannot

be obtained. Since the Bayesian approach is used, these sources of uncertainty are described through probability

distributions.

For the heat transfer model example, several sources of uncertainty are listed in Table 7.2; the list is not ex-

haustive, but is used to illustrate the framework. The first column separates these into inputs x and parameters θ,

along with an index for reference. Each row relates to one of the numbered phenomena in the PIRT (Figure 2.4)

and provides a description, variable name used in the computational model, the the assumed probability distribu-

tion. For inputs, these are propagated through the model. For the parameters, they represent prior distributions

which will be refined during calibration. The rightmost column lists an assumed ‘true’ value for the creation of

synthetic measurements, which are defined in Section 2.4.1 and below. In this example, the px = 4 input distri-

butions are approximated as Gaussian, centered on the mean of the measurements (3 of the 4 are scaled from 0).

A description of what these inputs represent is given next, below the table. The p = 14 parameters consist of a

thermal contact conductance (fcond), 11 heat transfer correlation (HTC) factors, a heat generation model factor

(fwdrout), and a radiation emissivity (frad). Since these represent sources of epistemic uncertainty, they are

given uniform distributions to reflect the limited knowledge of their values ahead of testing. However, they are

also given bounds based on SME experience.
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Table 7.2: Source of uncertainty and their characterization.

x Phenom. Uncertainty source: Inputs Name Distribution x∗

x1 4 Compr. offtake air temp. (drive cone supply) fthp3 ∼ N (0, 0.01) 0
x2 4 Compr. exit, station T30 (drive cone supply) ft30 ∼ N (1, 0.005) 1
x3 4 Compr. inlet, station T26 (bore supply) ft262 ∼ N (0, 0.005) 0
x4 4 Turbine inlet, station T42 (front rim supply) ft42 ∼ N (0, 0.005) 0

θ Phenom. Uncertainty source: Parameters Name Distribution θ∗

θ1 2 Thermal conductance (blade to disc) fcond ∼ U(0, 5) 1
θ2 5 HTC on outer drive cone cavity fhdcc ∼ U(0.5, 2) 1.1
θ3 5 HTC on inner drive cone cavity flange fhflng ∼ U(0.5, 2) 1.7
θ4 6 HTC on inner drive cone fhcone ∼ U(0.5, 2) 0.5
θ5 5 HTC on HPT bore front & drive arm fhboref ∼ U(0.5, 2) 1.9
θ6 5 HTC on HPT bore ID fhbore3 ∼ U(0.5, 2) 0.7
θ7 5 HTC on HPT bore rear fhborer ∼ U(0.5, 2) 1.3
θ8 5 HTC on HPT diaphragm, front fhdiaf ∼ U(0.5, 2) 0.6
θ9 5 HTC on HPT diaphragm, rear fhdiar ∼ U(0.5, 2) 1.6
θ10 5 HTC on HPT preswirler exit fhprsw ∼ U(0.5, 2) 1.3
θ11 5 HTC on HPT rim, front fhrimf ∼ U(0.5, 2) 1.9
θ12 7 HTC in disc slot fhslot ∼ U(0.5, 2) 0.5
θ13 9 Air friction heat generation (drive cone) fwdrout4 ∼ U(0.5, 2) 1.5
θ14 8 Radiation from combustor (emissivity) frad ∼ U(0, 0.3) 0.2

The model inputs are defined directly based on either available measurements or other models. Inputs received

from other models will include errors, which fall under epistemic uncertainty. The inputs that are measured may

include both aleatory and epistemic uncertainty. In a typical calibration problem, it is often assumed that the

inputs are well-characterized through measurements during testing. In some cases, they may only be partially

characterized if the measurement capability is limited, and therefore may also include epistemic uncertainty.

In the present application, the selected inputs are considered partially characterized (i.e., they include epis-

temic and aleatory uncertainty) measurements of air temperature that supply the inner cavity secondary flows.

This supply air is bled from the primary cycle air flow at the high-pressure compressor inner flowpath radius, as

shown in Figure 7.2, and directed to the inner cavities for cooling purposes. The primary cycle air temperature

radial profile has higher temperature at the inner and outer radii due to aerodynamic losses. The radial profile is

schematically shown in Figure 7.2 (axes, upper left), along with the measurement locations indicated by dotted

horizontal lines five radii. The data is sparse, with respect to resolving the temperature profile which supplies air

into the inner cavities, resulting in epistemic uncertainty regarding this corresponding model input. This source of

epistemic uncertainty in the temperature boundary condition could be reduced through more advanced measure-

ment methods [170] or estimated [171] and included with the uncertainty sources in the heat transfer model. For

the present work, the latter course is taken. This is defined as input fthp3 in Table 7.2. Three other inputs are

similarly defined for the purpose of illustration in this chapter.
2In Chapters 4 and 5, a parameter controlling the transient rate of this temperature source is modeled instead (called ftau).
3fhcob2 in Chapters 4 and 5
4fwdiaf in Chapters 4 and 5
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Figure 7.2: Schematic of the compressor exit air temperature profile (upper left) and its sparse measurements which
result in epistemic uncertainty in the model input fthp3. This serves as a cooling air source for the turbine disc as it
is bled off the main gaspath at the inner radius into internal cavities as indicated. Note: not all hardware is shown (i.e.,
combustor and the static hardware in front of turbine disc).

7.3.1.4 Measurements for calibration and validation

The test plan should be developed as part of the VVUQ requirements for the model. The objectives of testing

for the purpose of model calibration and validation may be different to testing that is focused on proving the

performance of an engineered product (sometimes referred to as certification testing). Calibration and validation

testing involves measurements specific to the model for which the VVUQ process is applied. This usually involves

more detailed measurements of the system of interest including the system outputs and inputs and performing

various maneuvers that help to examine whether the behavior of the physics model is accurate for its intended use.

Furthermore, since calibration adjusts the physics model parameters to gain agreement with the measurements,

measurements for the purpose of calibration and validation should be separately obtained. Several possibilities

were considered in Section 2.5.

Similar to previous chapters in this dissertation, the measurements for the heat transfer model were synthet-

ically generated from the model and Gaussian noise was added (see Chapter 2.5). For this chapter, two separate

data sets were produced for calibration yCd and validation5 yVd as follows: (i) Input and parameter ‘true’ values

x∗ and θ∗ were defined for calibration and validation data (shown in Table 7.2) , except in the validation data,

parameter fwdrout is decreased by 10% to represent an engine-to-engine difference relative to the calibration

data. (ii) The heat transfer model was run using these two parameter sets and model outputs were extracted at the

nℓ = 9 thermocouple positions that are indicated in Figure 7.3. (iii) As noted in Section 2.4.1 and further dis-

cussed in Section 7.3.3.1, the output dimensionality was reduced by manually extracting nc = 14 ‘characteristic’

time instants out of the more than nts = 169 time steps from the transient response of the model (see Figure 7.5).
5The nomenclature yV

d means the replicate samples taken during the validation experiment, whereas D used in Chapter 6 and later in
this chapter represents the expanded validation measurements used in the validation metric computation.
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(iv) After the outputs are post-processed from the model, zero-mean Gaussian noise with σ∗
d = 2K on all 126

values is used to draw Nd = 2 samples (replicates). These samples represent thermocouples placed at the same

location but offset circumferentially by 180o. A sample of the two sets of nℓ = 9 measurements are shown in

Figure 7.4 for two time instants in the square cycle (times t = 2010 and 4000 seconds). The 18 labels in the figure

include the time and location, e.g., tk2010p1 represents t = 2010 seconds and location 1. The temperature values

are plotted as circles corresponding to the left-hand axis, whereas the difference between the two measurements

is plotted as a triangle corresponding to the right-hand axis.

Figure 7.3: Turbine disc component model showing thermocouple positions6

Figure 7.4: Temperature measurements at the nℓ = 9 thermocouple locations (Figure 7.3) for time instants t = 2010
and 4000 seconds. The left-hand axis indicates measurement temperatures; the right-hand axis corresponds to the
triangles, which are the average difference between the calibration and validation measurements.

7.3.2 Verification

This section reviews the main points of Chapter 3 and shows how the discretization error estimation method is

incorporated into the uncertainty aggregation framework. It was stated in Section 1.2 that verification includes two

parts: code verification and solution verification. Code verification is assumed to be completed, since the present

study uses an established FE tool. For the solution verification of the present application, discretization error is

the focus since it is assumed that round-off and truncation errors are relatively low, as was done in [3] (for existing
6These positions were inadvertently numbered in a different order relative to the examples in Chapter 5 and 6. Since there is no intention

of cross-referencing results, the figures in this chapter were not revised.
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codes, checking these may be difficult and is therefore beyond the scope of the present work). Discretization error

is defined as the difference between the exact solution f∗ and the approximate solution, f∗ − fk at mesh level

k. In some previous works, the discretization error is treated deterministically and the estimate of f̂ ≈ f∗ is

used to correct the model outputs before performing subsequent steps of VVUQ (e.g., calibration) [172]. Others

suggest that, due to limitations in available discretization error estimation methods, the discretization error should

be treated as a source of epistemic uncertainty [3, 52]. In this chapter, the latter view is taken.

The prevailing method in the VVUQ literature for estimating discretization error is Richardson extrapolation

(RE) [2, 42, 48, 49] (Section 3.1.1). However, RE-based methods rely on the assumption of systematic mesh

refinement, which requires uniform refinement (it does not require an uniform mesh) and “consistent quality”

across the mesh [2]. However, since the application in this study’s FE tool uses adaptive meshing and time-

stepping, traditional RE is not possible.

The FE tool’s adaptive mesh routine is based on iteratively reducing local solution error through a recovery-

based error estimator [42, 43, 45]. However, it has been pointed out [16, 46] that the estimator’s magnitude may

not be useful as an indicator of errors for the purpose of UQ.

Therefore, Chapter 3 extended the GP approach proposed in [54] to the case of adaptively refined mesh

and time step. GP models were fit to the solutions of five meshes and an error estimator ϵhg called GPDE

(GP discretization estimate) was developed that includes (i) the GP uncertainty, (ii) the bias between the chosen

solution k and the exact solution estimate, and (iii) the additional uncertainty in the discretization error estimate

due to input/parameter variability. The end result is an estimate for discretization error, ϵh, which is incorporated

into the uncertainty aggregation process in the next subsection.

7.3.2.1 Incorporating discretization errors in the VVUQ framework

The results shown in Chapter 3.3 (Table 3.4) provide an estimate for discretization error ϵh at time t = 2010

seconds and for each of the measurement locations. Results could be obtained at all time points, if required,

by repeating the process for additional model outputs. However, to simplify the application of this error and

apply it in a conservative manner, results at t = 2010 seconds are applied to all times through the square cycle.

The discretization error estimate is included in this chapter during the subsequent VVUQ framework steps of

calibration and validation by randomly sampling the normal distribution defined in Eq. 3.9.

An additional step is required to include discretization errors during prediction, which involves a computed

quantity Trm = T7 − T̄ , where T7 is temperature at the rim location (output at P7) and T̄ is a volume-weighted-

mean temperature of the disc. To estimate an approximate discretization error for T̄ , the discretization error at

the nℓ locations is averaged, i.e., σ̄h = 1
nℓ

∑
i σh,i. Then, since the quantity represents the difference between

two random variables, a further approximation is to set their combined uncertainty to
√
2σ̄h (this assumes the rim
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error is similar to the average).

Finally, the discretization errors defined above will be combined with the model reduction errors in the next

section (Section 7.3.3.4) for evaluation against Requirement 5 in Table 7.1.

7.3.3 Model Reduction

Complex engineering models are often slow running, have many input/parameter sources of uncertainty, and

produce a large number of outputs. To make VVUQ analysis feasible, model reduction methods are typically

required. Those employed in this chapter include a two-step output dimension reduction: (1) manual ‘feature

selection’ to reduce the size of the model output time series and (2) PCA for further output dimension reduc-

tion (Section 7.3.3.1). Then, global sensitivity analysis (GSA) is used for input/parameter dimension reduction

(Section 7.3.3.2), and a surrogate model is used to speed up the MCMC solution during Bayesian inference (Sec-

tion 7.3.3.3). Since these are used within the VVUQ framework, the additional sources of uncertainty should be

included in the aggregation process, which is demonstrated below.

7.3.3.1 Model output dimension reduction

The number of outputs from the physics model may be large, considering that results from each node of the

FE solution may be of interest. In this application, the primary interest is in calibration and validation at the

nℓ = 9 thermocouple locations. It was previously shown in Section 2.4.1 how the time dependent outputs from

the model were reduced through feature selection from nts time steps to nc ‘characteristic’ quantities. This takes

advantage of the autocorrelation between successive times in the physical output [70]. Two alternative approaches

for characterizing the transient response were considered in Section 2.4.1: either specific time instants or derived

time constants. The first was used in the applications in Chapters 4 and 5.

In this chapter, the manual time instants feature selection approach is used, in which case nc = 14 time

instants were chosen based on inspection of the time traces of temperature error in Figure 7.5 (the time instants

are shown as vertical lines through the acceleration and deceleration portions of the time traces, which are shown

magnified in the lower part of the figure). The time instants include the two stabilized temperature time points

(t = 2000 and t = 4000 seconds for idle and MTO, respectively) to characterize the steady-state outputs and an

additional 12 time instants are selected to characterize the transient response of the outputs (heating and cooling

rates). Thus, the multivariate model output now has size n = nℓ × nc = 126. After performing a DOE with

N = 450 runs, the model output dataset size is y ∈ RN×n.
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Figure 7.5: Model output to measurement difference (transient) for each of the 9 thermocouple locations. Top: full
square cycle. Bottom: zoom in to the transient acceleration and deceleration, including the 14 time instants used for
surrogate modeling, calibration, and validation.

Despite the initial reduction of the model output dataset to size n = 126, there is motivation for further

reduction: (i) there is (still) redundant information in these outputs, since they are correlated; (ii) surrogate models

will be constructed later and it is desirable to minimize the number of surrogate models that must be fit; (iii)

sensitivity analysis will be performed to reduce the input dimension and the results may be uninterpretable for a

large number of outputs. Principal components analysis (PCA), introduced in Section 4.3.1, is therefore applied

to the y ∈ RN×n sized dataset.

In Section 4.3.1 it was shown that errors in the reconstructed outputs ŷ0 = ŷpcUT1 (where the retained and

truncated eigenvectors are represented by U1 ∈ Rnpc×npc and U2, respectively) are calculated as

y0 − ŷ0 ⊙ Sy (7.1)

where Sy = [σ′
y1,σ

′
y2, . . . ,σ

′
yn] is a matrix with N rows that each contain a copy of the standard deviations

of the original outputs (to ‘undo’ the standardization), and ⊙ is element-wise multiplication. These errors are

plotted for the present analysis in Figure 7.6, in which case the maximum error was found to be < 2 K if 30 PCs

were retained and 7-8 K if 15 PCs were retained (see further discussion on this truncation error when fitting the

surrogate model, Section 7.3.3.3). In this study, npc = 15 was chosen, since it was found to be a good trade-off

between PCA truncation error and surrogate model error (which increases for smaller PCs), i.e., the outputs for

npc > 15 results in poor surrogate model fits due to the magnitude of the smaller PCs.
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Figure 7.6: PCA reconstruction errors as a function of the number of retained PCs (npc) for the first 50 PCs. The
callouts indicate the maximum (1.84 K) and root-mean-square (0.18 K) errors for npc = 30.

As pointed out in [109], Eq. 7.1 above does not reflect the entire truncation error since any combination of

the truncated PCs may be included during reconstruction (setting them equal to zero as in Eq. 7.1 was only a

convenient choice). A more complete error estimate therefore includes randomly sampled truncated PCs [109]

ϵp =
[
y0 − (ŷpcUT1 +ΦUT2 )

]
⊙ Sy (7.2)

where Φ ∈ RN×(n−npc) is a zero-mean i.i.d. multivariate Gaussian with variances corresponding to the inactive

PCs. In the VVUQ framework pursued in this chapter, this computed PCA truncation error is included when

making model predictions for the validation and prediction steps which use the PC-based surrogate models. How-

ever, since the same transformation is applied to the measurements during calibration in this research, the PCA

truncation errors are not required at this step of the framework (Section 7.3.4; this approach was also taken for

calibration in the PC space in [35, 36]).

7.3.3.2 Model inputs and parameters dimension reduction

Physics models often contain dozens if not hundreds of model inputs and parameters. It is typical that the SME

will use a combination of engineering judgment and one-factor-at-a-time studies to make a ‘first cut’ at the set

of inputs/parameters that will be considered in the VVUQ analysis. Further reduction may be possible through

applying methods such as global sensitivity analysis (GSA), which assesses the importance of each input on the

output. A specific example of GSA is the Sobol’ index [173]). Other approaches to handling input dimension

reduction include PCA (if there are many inputs with correlation), or active subspace [65], which derives a reduced

set of transformed parameters from the eigenspace of the model gradients in which the new parameters are linear

combinations of the original parameters. In the present application, the list of selected inputs and parameters
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(variables) were shown in Table 7.2, representing the SME’s first cut set of variables. The efficient first-order

Sobol’ index method [87] that was used in previous chapters was again applied to this chapter in order to reduce

the number of variables (and rank the importance of the variables). As previously shown, the method is efficient

since it is possible to compute the Sobol’ indices directly from the set of DOE results.

In this chapter, the indices were computed for each output, then the maximum index for each parameter

across all outputs is selected. These maximum indices are then sorted into a Pareto plot, as shown in Figure

7.7. This result then indicates the relative importance across all model outputs. Similar to the indices in Section

5.4.2, the error due to computing the Sobol’ indices using a limited number of DOE samples7 was estimated with

bootstrapping[125]. The one standard deviation errors are included as whiskers on the bars in Figure 7.7.

In the present example, the last three variables highlighted in Figure 7.7 (fcond, ft42, and fhrimf) have

small Sobol’ indices and are therefore deemed non-influential to the model outputs. These three variables are set

to their original nominal values in the remainder of the VVUQ framework steps.

Figure 7.7: Pareto ordering of maximum Sobol’ indices across all outputs. The three red bars indicate variables that
are removed from further analysis (model calibration).

7.3.3.3 Surrogate model errors

As mentioned in Chapters 1, 2, and 4, it is common in engineering to replace slow-running physics models with

a fast surrogate model [32] in order to speed up optimization or sampling-based UQ methods. Many types of

surrogate models are possible, including classic linear regression and response surface models (RSM) [39], or

machine learning models such as Gaussian process models [55], neural networks [175], support vector regression

[90], or the PC-AS surrogate method (developed as part of the research in Chapter 4). For the present application,

7There is also error in the estimate due to model accuracy [174], which is not addressed in this research.
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the RSM was selected for convenience8 and satisfactory accuracy. It was implemented using the MATLAB®

function stepwiselm with term selection based on Bayesian Information Criterion (BIC) [177]. These are

well-established techniques that are covered in the above references and many others.

In this research, the dataset to which the surrogate will be fit represents rows corresponding to model runs from

the DOE containing the input/parameter samples and corresponding outputs, where these outputs have been first

transformed using PCA (Section 7.3.3.1). Since the surrogate models are typically univariate (in the output), a

separate surrogate model is fit separately to each uncorrelated output (PC) using the same set of inputs/parameters.

A surrogate model type is selected, fit to a portion of the dataset (i.e., trained on a subset of the model runs), and

then cross-validated using the remainder of the dataset [39].

A common error estimator used with cross-validation is the mean-square error (MSE). Considering the present

application, the MSE is computed for the error between ŷpcij and the surrogate prediction Ŷpcij ,

MSEi =
1

N ′

N ′∑
j=1

(ŷpcij − Ŷpcij ) (7.3)

where this is computed for each PC and each sum is over the subset ofN ′ model runs used for testing the surrogate

model (i.e., not used in training). In cross-validation, the MSE is computed several (e.g., 10) times and the average

result is reported, which is denoted here as Σs. In the VVUQ framework, this epistemic uncertainty is treated as

a zero-mean i.i.d. multivariate Gaussian,

ϵs ∼ N (0,Σs) (7.4)

This source of uncertainty is then sampled during model calibration, model validation, and predictions made using

the surrogate models (along with but independent to PCA truncation errors as noted in Section 7.3.3.1).

7.3.3.4 Aggregated numerical errors versus requirements

It is also possible to address the correlation between the discretization error, dimension reduction, and surrogate

modeling errors derived above through an extensive UQ exercise. For example, the influence of model inputs/-

parameters on the discretization error results could be incorporated by running each of the mesh levels through

the DOE and computing the uncertainty in ϵh for the entire DOE set. Then, the influence of discretization error

on PCA and surrogate modeling could be derived by repeating the model reduction steps on multiple levels of

mesh refinement. Further, the impact of dimension reduction truncation errors could be related to the surrogate

model error by re-fitting the surrogate models for different values of npc (number of PCs selected). The use of a

Bayesian network could also be used to further aggregate these errors [5] and could be considered in future work.

8Other methods would work even better, but an in-house implementation along with PyMC [176] was available to the author, which
afforded significant time-savings for the Bayesian inference with input sampling (Section 7.3.4.4).
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In practical VVUQ applications, these additional steps add significant computational overhead and may not be

possible (or worthwhile, unless these represent substantial sources of uncertainty). Therefore, in the present work

these sources are treated independently and combined as indicated in Requirement 5 of Table 7.1, which states

that the numerical errors
√
σ2
h + σ2

p + σ2
s ≤ 5 Kelvin. Across all outputs and time points assessed, the maximum

numerical error was observed to be 2.8 K. Therefore, this numerical error requirement has been satisfactorily

achieved. If errors were too high, a finer mesh could be used and a higher accuracy surrogate model method could

be used (with added computational cost).

7.3.4 Calibration

Bayesian inference is used in this framework for parameter estimation (calibration) as it provides a natural way

to aggregate the various sources of uncertainty identified in previous steps of the framework [5, 60] and account

for parameter uncertainty. Bayesian inference and its solution by MCMC methods was introduced in Section 4.4.

The same approach is applied in this chapter (Section 7.3.4.1). Several cases are defined to demonstrate the use of

Bayesian calibration within the framework (Sections 7.3.4.2 to 7.3.4.4). To conclude, a summary of the relative

magnitude of aggregated uncertainty sources is shown in the final subsection (Section 7.3.4.5), which is included

when performing the validation step (Section 7.3.5). In this chapter, MCMC is implemented with the No-U-Turn

Sampler (NUTS) available in PyMC [176], which is substantially faster than the Metropolis-Hastings method that

was used in earlier chapters due to the former taking advantage of gradient information from the likelihood [176]

and self-tuning [176].

7.3.4.1 Aggregation through Bayesian inference

For the purpose of uncertainty aggregation, the sources identified up to this step in the process are included during

Bayesian calibration so the parameter posterior distributions reflect the uncertainty. It was stated that the goal

of calibration is to update the model’s parameters to improve the agreement between the model outputs and the

measurements, which was expressed

g(x,θ) + ϵ(x,θ) = gd(x) + ϵd(x) (7.5)

As in previous chapters, the measurement uncertainty ϵd(x), assumed to be zero-mean Gaussian with covariance

matrix Σd. Rather than the model discrepancy approach ϵδ presented in Chapter 5, this model error is instead

quantified during validation using the model reliability metric from Chapter 6 and following the approach in [5].

The remaining sources of model uncertainty addressed in this chapter include the numerical errors quantified in

the previous section, that is ϵ(x,θ) = ϵh+ ϵs+ ϵp. The discretization errors are modeled as Gaussian processes.
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The linear regression-based surrogate model errors are Gaussian by definition (during the fitting process and by

use of MSE). The PCA truncation errors are not included during the calibration step, but will be included during

the validation and prediction steps using the re-sampling in Eq. 7.2.

Thus, ϵh and ϵs are included in the definition of the likelihood function (Eq. 4.13) along with measurement

errors for a combined covariance matrix Σ = Σd + Σh + Σs. For calibration in the PC space, it was shown

that this matrix is transformed according to Σpc = UT1
[
diag(σ−2

y )
]
U1, where the diagonal matrix diag(σ−2

y )

standardizes the variance as before. If there is a strong reason to suspect any of these sources of uncertainty

are non-Gaussian, the likelihood function could be modified accordingly, e.g., [60]. Finally, input uncertainty is

included during evaluation of the likelihood function, which includes an evaluation of the model ypc. Treatment

of input uncertainty is discussed further in Section 7.3.4.4.

7.3.4.2 Model cases for calibration and validation

To highlight different aspects of model calibration and validation of the heat transfer model within the VVUQ

framework, a series of model cases are defined in Table 7.3. First, Case M4 is compared to M1 to demonstrate

the impact of verification (discretization errors) on calibration results (Section 7.3.4.3). Next, calibration in the

presence of input uncertainty is demonstrated by comparing M2 to M3 (Section 7.3.4.4). In M2, the inputs are

fixed during calibration and then the input uncertainty is sampled independently from the calibrated parameters

during propagation (M2). By contrast, M3 performs model calibration while simultaneously sampling from the

input distributions, resulting in correlation between parameters and inputs. The M3 results are then used as the

primary case for further analysis in the framework.

Table 7.3: Model configurations used to demonstrate calibration and validation of the heat transfer model.

Case Input uncertainty Other modification Comparison

M1 fixed – M4
M2 random, independent sampling – M3
M3* random, correlated sampling – M2 (Sec. 7.3.4.4)
M4 fixed no discretization error (ϵh = 0) M1 (Sec. 7.3.4.3)

∗M3 is the primary case used in subsequent analyses.

7.3.4.3 The impact of discretization errors on Bayesian inference

In this subsection, results are shown for Bayesian calibration with and without the discretization errors from

Section 7.3.2. The calibration is performed for the 12 parameters that were down-selected using the Sobol’

indices (Figure 7.7), while the 3 inputs were fixed. Figure 7.8 and Table 7.4 show results for the marginal posterior

parameter distributions and the change in their standard deviations, respectively. Table 7.5 shows the change in

marginal posterior prediction standard deviations for a subset of the model outputs, i.e., all 9 locations at three
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representative times. The posterior predictions were generated by propagating the parameter posteriors through

the surrogate model. The impact to parameter standard deviation was up to 24% (fhdiar), while the impact

on model output standard deviation was even more significant. This highlights the importance of systematically

tracking the uncertainty aggregation from step to step in the VVUQ framework.

Figure 7.8: Parameter posterior marginal distributions with (M1) and without (M4) discretization errors. Inputs
fthp3, ft30, and ft26 are fixed. Corresponding standard deviations are listed in Table 7.4.

Table 7.4: Parameter posterior marginal distribution standard deviations with (M1, ϵh ̸= 0) and without (M4, ϵh = 0)
discretization errors.

θi 2 3 4 5 6 7 8 9 10 12 13 14

Std. Dev.
M1, ϵh ̸= 0 0.027 0.062 0.065 0.055 0.033 0.039 0.019 0.065 0.121 0.026 0.04 0.012
M4, ϵh = 0 0.026 0.056 0.053 0.044 0.029 0.031 0.016 0.05 0.113 0.026 0.038 0.011
∆% -6.1 -9.3 -18.6 -19.2 -13.4 -21.4 -13.1 -23.7 -6.7 2.2 -5 -9.3

2:fhdcc 3:fhflng 4:fhcone 5:fhboref 6:fhbore 7:fhborer 8:fhdiaf 9:fhdiar 10:fhprsw 12:fhslot 13:fwdrout 14:frad

Table 7.5: Posterior prediction marginal distribution standard deviations with (M1, ϵh ̸= 0) and without (M4, ϵh = 0)
discretization errors. Results are given at three key time points: transient acceleration (t = 2010 sec), stabilized high
power (t = 4000 sec), and transient deceleration (t = 4250 sec).

Output Location
Std. Dev. 1 2 3 4 5 6 7 8 9

t = 2010s M1, ϵh ̸= 0 3.02 2.49 2.65 1.22 2.22 2.51 2.99 2.74 1.13
M4, ϵh = 0 2.74 2.45 0.41 0.35 0.4 0.77 2.39 2.36 0.95
∆% -9.3 -1.7 -84.3 -71.6 -81.8 -69.4 -20.2 -13.9 -15.6

t = 4000s M1, ϵh ̸= 0 1.62 1.85 2.75 1.31 2.4 3.02 2.37 2.13 1.48
M4, ϵh = 0 1.27 1.71 0.64 0.55 0.71 1.65 1.5 1.67 1.33
∆% -21.3 -7.8 -76.9 -58.2 -70.7 -45.3 -36.8 -21.7 -9.6

t = 4250s M1, ϵh ̸= 0 3.37 4.1 4.59 3.94 4.33 4.53 3.46 3.51 3.53
M4, ϵh = 0 3.26 4.08 3.78 3.75 3.68 3.79 3.2 3.41 3.47
∆% -3.1 -0.5 -17.6 -4.8 -14.9 -16.4 -7.5 -3 -1.5
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7.3.4.4 The impact of input uncertainty on Bayesian inference

In Section 2.3.1 it was mentioned that some inputs may be only partially characterized and that this epistemic

uncertainty should be addressed during model calibration. It is important to incorporate this input uncertainty

during model calibration to ensure that any correlation between inputs and parameters is properly accounted

for. For example, if a function has two inputs, say Y = f(X1, X2) = aX1 + bX2 and X1 and X2 are un-

correlated, then Var[Y ] = a2σ2
X1 + b2σ2

X2. However, if the inputs are correlated, then Var[Y ] = a2σ2
X1 +

b2σ2
X2 + 2abCov(X1, X2) [74] and there is the possibility that the variance is reduced by the additional covari-

ance term if either a, b, or Cov(X1, X2) < 0 (or increased for positive correlation). If this correlation exists in a

physics model’s inputs but is neglected, the model prediction uncertainty may be either more pessimistic or more

optimistic than in reality. Therefore, this section demonstrates an approach to address this dependence during

calibration.

The input distributions π(x) and priors P (θ) for the heat transfer model were defined in Table 7.2. The

sensitivity analysis (Figure 7.7) resulted in selecting 3 inputs and 12 parameters. Heat transfer model cases M2

and M3 were defined in Table 7.3 to compare uncorrelated and correlated sampling approaches, respectively. For

model M2, the 12 parameters were calibrated with the inputs fixed at their nominal values (using 2000 MCMC

samples); then, the parameter posteriors and input distributions were both propagated through the model, with

inputs sampled independently from the parameters. For M3, 120 input samples where drawn from the joint

distribution π(x) of inputs fthp3, ft30, ft26. Then, for each of these input samples, the model parameters

were calibrated with 1000 MCMC samples. This ‘double-loop calibration’ estimates the correlation between

inputs and parameters, as can be seen in Figure 7.9, where the scatterplots show the correlation between the input

ft30 and parameter frad. Another interesting observation is that the correlation between the parameters is

also affected, e.g., the correlation between fwdrout and frad changes from negative to positive. These two

particular parameters also showed the largest increase in the marginal standard deviations, which are listed in

Table 7.6.

The posteriors and inputs of both M2 and M3 were propagated to obtain posterior predictions at each ther-

mocouple location. The standard deviations of these results are compared in Table 7.7, showing the expected

reduction (up to 50% in some locations) in posterior prediction uncertainty when the correlation between inputs

and parameters is correctly accounted for. The aggregated sources of uncertainty for M3 are summarized in the

next section (Section 7.3.4.5) and will be used next for model validation (Section 7.3.5).
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Figure 7.9: Scatterplots comparing calibration results with uncorrelated (M2) and correlated (M3) sampling. Only
variable pairs that showed significant correlation are shown. Marginal distributions are shown on the diagonal and their
standard deviations are listed in Table 7.6. A subset of M3 samples (2000 out of 120,000) are shown.

Table 7.6: Parameter posterior marginal distribution mean and standard deviations for calibration with uncorrelated
(M2) and correlated (M3) inputs. Both results have very similar means, so only the M3 result is shown.

θi 2 3 4 5 6 7 8 9 10 12 13 14

Mean 1.1 1.78 0.58 1.87 0.75 1.26 0.6 1.61 1.16 0.53 1.5 0.19

Std. Dev.
M2, uncorr. 0.026 0.063 0.064 0.06 0.033 0.04 0.018 0.063 0.118 0.026 0.042 0.012
M3, corr. 0.029 0.062 0.068 0.058 0.033 0.04 0.018 0.067 0.138 0.027 0.091 0.031
∆% 7.7 -0.9 6.6 -3.5 1 0.6 0.9 7.4 16.9 1.4 113.3 159.2

2:fhdcc 3:fhflng 4:fhcone 5:fhboref 6:fhbore 7:fhborer 8:fhdiaf 9:fhdiar 10:fhprsw 12:fhslot 13:fwdrout 14:frad

Table 7.7: Posterior prediction marginal distribution standard deviations for calibration with uncorrelated (M2) and
correlated (M3) inputs.

Output Location
Std. Dev. 1 2 3 4 5 6 7 8 9

t = 2010s M2, uncorrelated 3.66 3.15 2.74 1.32 2.33 2.62 3.86 3.7 1.26
M2, correlated 2.91 2.52 2.68 1.23 2.28 2.55 3.02 2.85 1.14
∆% -20.4 -19.9 -2.1 -6.6 -2.4 -2.9 -21.7 -22.9 -10.1

t = 4000s M2, uncorrelated 3.93 3.75 2.9 1.69 2.48 3.13 4.23 4.2 1.8
M3, correlated 1.68 1.86 2.74 1.32 2.36 2.99 2.41 2.26 1.49
∆% -57.3 -50.5 -5.5 -21.8 -4.8 -4.4 -43 -46.3 -17

t = 4250s M2, uncorrelated 2.49 2.83 3.02 1.86 2.74 3.19 2.65 2.78 1.9
M3, correlated 1.52 2.02 2.91 1.42 2.52 2.83 2.01 2.21 1.71
∆% -38.7 -28.4 -3.7 -23.4 -8.2 -11.2 -24.1 -20.4 -10.1
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7.3.4.5 A summary of aggregated uncertainty sources

At this stage in the VVUQ study, many sources of uncertainty have been aggregated and the impact on the model

output is shown in Figure 7.10 for model M3. The figure shows the impact of a given uncertainty source (groups)

on each of the nine outputs (bars) at time t = 2010 seconds. The sources of uncertainty include the inputs

sampled during calibration, parameters estimated through Bayesian inference, and numerical errors estimated

during verification (discretization) and model reduction (PC truncation and surrogate model errors). Measurement

uncertainty influences parameter uncertainty through the likelihood during calibration and it is included during

the validation assessment later (in Section 7.3.5.1).

The results in Figure 7.10 also provide insight for model improvements. The most significant uncertainty is

around the drive cone cavity and rim region of the turbine disc model (locations 1, 2, 7, and 8). This observation

may lead the analyst to consider ways to reduce the sources of epistemic uncertainty in this region either through

more detailed modeling (CFD), through refinement of the surrogate model, a reduction of discretization error

using a finer mesh (potentially resulting in higher computational cost), or obtaining additional sensor information

(which may reduce model calibration parameter uncertainty).

Figure 7.10: Sources of uncertainty aggregated through the VVUQ framework for the nine thermocouple locations at
t = 2010 seconds (model M3).

7.3.5 Validation

The process of model validation was considered in detail in the previous chapter (Chapter 6), and more specif-

ically, the validation assessment compared model predictions to measurement distributions using mathematical

validation metrics. In this chapter, it has been shown how the sources of uncertainty are quantified through the first

four steps of the VVUQ process (model definition, verification, model reduction, and calibration) for the model

prediction, y. These predictions are at the validation test measurement locations (Figure 7.3) and are based on

the tested conditions (e.g., the square cycle and associated inputs, Figure 2.3). In the next section, the predictions

discussed are for the primary QoI, which is different from the measured locations in the test specimin. Addi-

tionally, uncertainty propagation may be based on the surrogate model or the physics model. For the validation

step in this chapter, the surrogate model is used to speed up the sampling process for the comparison of model
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output and measurement distributions (the additional surrogate model uncertainty is included during uncertainty

propagation). To verify this approach, the propagation by the surrogate model is compared to propagation using

the physics model in Section 7.3.6 which showed good agreement between the two approaches.

This section briefly summarizes the approach outlined in Chapter 6 and applies it to the heat transfer model

outputs in this chapter (model M3 defined in Table 7.3), which include propagation of the uncertainty from pre-

vious steps of the VVUQ framework. Then, the validation metric result is used to expand the posterior parameter

uncertainty (Section 7.3.5.3) for prediction of the QoI.

7.3.5.1 Model predictions and measurements for validation

After model calibration is performed, the sources of uncertainty discussed in Section 7.3.4.5 are propagated

through the model at measurement locations producing model output distribution y. The uncertainty propaga-

tion is performed by drawing samples from the input and parameter joint distributions (obtained from MCMC

samples), obtaining an output from the surrogate model, then further sampling from the numerical errors (ϵh,

ϵp, and ϵs) which are treated as zero-mean Gaussian sources of uncertainty. Finally, as described in Section 6.3,

for the purpose of the validation assessment, y is expanded to obtain the posterior predictive distribution, i.e.,

z ∼ y +N (0,Σd), where Σd = diag(σ2
d). Including the measurement uncertainty in this way addresses numer-

ical issues (due to strong correlation between outputs during inversion of the covariance matrix) and addresses

potential inconsistency in the comparison of distributions for limited measurement samples (Section 6.3.1). Figure

7.11 compares the distributions of y and z for selected model outputs.

Also shown in Figure 7.11 are the corresponding calibration and validation measurements. Although there are

only Nd = 2 replicate validation measurements yVd shown in this figure, an estimated measurement uncertainty

σd is also available (see Section 2.5). This information is used to construct a measurement distribution for the

validation assessment by computing the mean ȳVd and assuming zero-mean Gaussian measurement error and

sampling error of the mean, resulting in D ∼ N (ȳVd ,ΣD), where ΣD = diag(σ2
d/Nd + σ2

d). The nomenclature

D is therefore used for the validation assessments in the next section for the measurements rather than yVd .
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Figure 7.11: Comparison of posterior prediction distributions of y and z which are based on propagating posteriors
P (θ|yC

d ) from model M3. This subset of results includes three model output locations: 2 (front diaphragm), 4 (bore),
and 7 (rim); and three time instants: 2010 sec (transient acceleration), 4000 sec (stabilized high power), and 4250 sec
(transient deceleration). The calibration yC

d and validation yV
d measurements are shown (see Section 7.3.5).

7.3.5.2 Model validation assessment

The validation assessment is a quantitative comparison between the model outputs and measurements using a

validation metric. Several metric types were reviewed in Section 6.2.1 and the model reliability metric was

selected since it has both univariate [141, 150] and multivariate [17, 141] versions (the model reliability metric and

area metric were both selected for extension and application, but only the model reliability metric is considered

in this chapter).

Recall from Section 6.2.2.2 that the univariate model reliability metric evaluates the probability that the dif-

ference between the model outputs and measurements |z−D| is less than a specified accuracy requirement λ, i.e.,

R = P (|z −D| < λ). The univariate (single model output) assessment allows for model diagnosis by showing

which parts of the model have the largest error (See Figure 7.12).

To complement this, the multivariate version of the metric condenses the outputs into a single probability

that accounts for correlation between the outputs. Its result is used in this chapter for uncertainty aggregation.

As shown in Section 6.2.3, the metric is computed by comparing the multivariate Mahalanobis distance Mij =√
(zi −Dj)TΣ−1(zi −Dj) to a multivariate accuracy requirement λM =

√
λTΣ−1λ, where λ = [λ1, . . . , λn]

combines accuracy requirements for each of the individual outputs. Since the aggregation process in this chapter

is sample-based, the Mahalanobis distance is computed for the ith model sample and jth measurement replicate

(sample) of the distributions z and D, respectively. Thus, for each measurement sample j there is a distribution

Mj , implying that a separate multivariate model reliability metric is computed for each sample,RMj = P (Mj ≤

λM ).

Figure 7.12 shows a histogram of RMj plotted for all of the measurement samples. The distribution of
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RMj represents the impact of both model bias/uncertainty (by affecting its central tendency) and measurement

uncertainty (by affecting its variance) on the validation metric. If RMj = 1, then the model is in good agreement

with the measurements with respect to the accuracy requirement. In this study, the distribution is skewed toward

probability 1 with a mean of R̄M = 0.75. For the purpose of uncertainty aggregation, this additional source of

uncertainty may be used for the prediction of the QoI through modification of the parameter posteriors or model

outputs. The first of these (modification of the parameter posteriors) will be shown in the next section.

Figure 7.12: Computed multivariate model reliability metric distribution for model M3. The mean is R̄M = 0.75.

Finally, the mean of the above distribution R̄M for the multivariate metric and the mean results for the uni-

variate metrics of individual output locations are summarized in Figure 7.13 (in this example, the metrics were

computed for four time instants). This plot provides additional detail regarding individual output metrics that

contribute to the overall result in R̄M . As noted above, this information is useful for model diagnosis within the

VVUQ framework. However, unlike R̄M , the univariate metric does not account for output correlation and any

conclusions drawn from univariate results should be interpreted with care.

Figure 7.13: Computed mean univariate and multivariate model reliability metrics for model M3. The multivariate
metric mean result is R̄M = 0.75, as shown in Figure 7.12.

7.3.5.3 Incorporating the validation assessment into final model predictions

An advantage of the Bayesian VVUQ framework is that the results from model validation may be included during

the prediction of the QoI. Sankararaman et al [5] and Mullins [41] proposed weighting the posterior results (either
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parameters or outputs) using a probability-based validation metric. Sankararaman et al used Bayesian hypothesis

testing for the validation metric, which also results in the probability that the model prediction agrees with the

observation. Mullins used the univariate model reliability metric. In this research, we adopt the parameter-

weighting approach using the multivariate model reliability metric [141] since (i) modifying the parameters rather

than outputs allows for making model predictions of QoI other than the outputs used in validation, and (ii) as

previously noted, the multivariate model reliability metric allows for assessing multivariate and correlated model

outputs.

Mullins computed the univariate model reliability metric for multiple samples of the inputs, which formed a

distribution of the metric that was used in the weighting scheme. In this chapter, the multivariate model reliability

metric is used to provide an overall result across measurement locations and temporal conditions (which may

be thought of as non-stochastic inputs). It was shown above that, due to the many measurement samples, a

collection of metric results is produced RMj that results in a distribution shown in Figure 7.12. This distribution

of probability values RMj range from 0 to 1 and are used to weight the parameter prior P (θ) and posterior

P (θ|yCd ) distributions. This approach incorporates both calibration and validation measurements and treats the

certainty in the parameters based on the accuracy achieved in the validation step. This weighting process is

expressed as [5]

P j(θ|yCd , yVd ) = RMj · P (θ|yCd ) + (1−RMj) · P (θ) (7.6)

The distributions P j(θ|yCd , yVd ) are combined for all j to obtain the overall weighted posterior distribution

P (θ|yCd , yVd ), which is shown Figure 7.14. The weighted distribution (dotted) falls between the prior and posterior

distributions, but is more similar to the posterior distribution due to the skew in the distribution of RM towards

higher probability. In general, a validation metric skewed towards high probability will favor the parameter poste-

rior distribution and a validation metric skewed toward low probability will favor the prior distribution. The mean

and standard deviation of the parameter distributions in Figure 7.14 are compared in Table 7.8.
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Figure 7.14: Model M3 prior P (θ), posterior P (θ|yC
d ), and validation-metric-weighted posterior P (θ|yC

d , yV
d ).

Table 7.8: Parameter marginal distribution mean E[·] and standard deviations S[·] for calibration posteriors and
validation-metric-weighted posteriors.

θi 2 3 4 5 6 7 8 9 10 12 13 14

E[P (θ|yCd )] 1.10 1.78 0.58 1.87 0.75 1.26 0.60 1.61 1.16 0.53 1.5 0.19
E[P (θ|yCd , yVd )] 1.13 1.65 0.75 1.71 0.87 1.25 0.76 1.52 1.18 0.70 1.44 0.18

S[P (θ|yCd )] 0.029 0.062 0.068 0.058 0.033 0.04 0.018 0.067 0.138 0.027 0.091 0.031
S[P (θ|yCd , yVd )] 0.14 0.18 0.19 0.19 0.16 0.14 0.18 0.16 0.17 0.19 0.16 0.036

2:fhdcc 3:fhflng 4:fhcone 5:fhboref 6:fhbore 7:fhborer 8:fhdiaf 9:fhdiar 10:fhprsw 12:fhslot 13:fwdrout 14:frad

The above procedure incorporates model and measurement uncertainty through model parameters. However,

if the model exhibits significant model form error through output bias, the above approach may result in biased

model predictions. Alternative approaches in the case of model form error include correcting the model output

bias by calibrating a discrepancy model [13, 98] or correcting the model form (model form error estimation)

using Bayesian state estimation of additional inputs to the model’s governing equations [102]. This is an intrusive

method as it requires access to the governing equations, however, a non-intrusive approach to model form error

estimation has recently been developed [103]. In the present study, to allow for prediction throughout the entire

FE model domain (temporal and spatial), we have chosen the parameter-weighting approach. Future research

should consider these alternate approaches where model form error is significant.

7.3.6 Prediction

The final step in the VVUQ framework is the prediction of the QoI, which incorporates the aggregated effects of

all the dominant sources of uncertainty. In the prediction step it is assumed that there are no direct measurements

available for comparison to the model-based QoI. The validated model may be used either to directly predict the
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QoI or may be used indirectly as an input to a downstream model (that is in turn used to predict the QoI). In this

section, the former is briefly demonstrated.

For the heat transfer model example, the selected QoI is the rim-to-volume-weighted mean disc temperature,

Trm. A requirement was given in Table 7.1 that Trm < T ∗
rm. It is further specified here that T ∗

rm = −105

Kelvin. A negative result for the temperature difference suggests that the bulk of the disc is hotter than the rim,

which occurs during deceleration of the engine (cooling of the disc). This situation can result in higher thermal

stress in the rim which may set a limit on the useful life of the turbine disc. Thus, Trm may be thought of as an

indicator for thermal stress in the turbine disc, and a larger negative result is more adverse. For the purpose of this

demonstration, it is further assumed that the failure mechanism is dependent on the maximum that occurs over a

given cycle of the engine. Thus, the instantaneous probability of exceeding T ∗
rm is to be evaluated.

To propagate the aggregated sources of uncertainty that were identified through the previous sections, two

options are compared. The first is based on constructing a new surrogate model to predict Trm (a low-fidelity

approach). The same DOE and outputs (the 14 time instants) are used to train a response surface model, similar

to the model described in Section 7.3.3. However, for the QoI, PCA is not used since the output is a single

time-dependent quantity that is comprised of combinations of the outputs (i.e., the difference between the rim

output and the disc average temperature). Since the surrogate model runs quickly, many samples of the results

may be produced (3× 104 in this case), which improves the computational efficiency of the probability of failure

calculations. This approach may be more practical than many runs of a full-fidelity model when probability of

failure calculation is needed.

The second option is to propagate the aggregated uncertainty through the higher-fidelity FE physics model.

The number of runs is 857 (there were a few failed runs), which used randomly selected sets of the validation-

weighted posterior samples derived in the previous section. Using this method improves the fidelity of the outputs

and enables computing all time-steps rather than the 14 steps selected for surrogate modeling (which may miss

the worst time point). However, since only a few runs are affordable in the high fidelity case, this introduces

additional statistical error for the computed failure probabilities.

Uncertainty is propagated through the surrogate model and high-fidelity FE model and Figure 7.15 compares

results for Trm from the two approaches at the same time instant t = 4250 seconds (this was identified as is the

worst time instant for the surrogate model among the 14 time instants with which it was defined). At t = 4250

seconds, the surrogate and FE model estimates for probability of failure were pf = 0.0066 and pf = 0.082,

respectively9. Then, the probability of failure estimate was determined for the worst time point observed in the

FE model results (Figure 7.16), which occurs at t = 4275.7 seconds, slightly after the worst time instant that

9The difference is thought due to differences in the FE tool’s calculation of ϵhr (Section 3.3), since the surrogate model and discretization
errors were computed with the prior parameters and the FE model predictions were based on posterior parameters.
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was identified using the surrogate model (t = 4250 seconds). This results in pf = 0.0187, which still meets the

requirement pf < 0.02 stated in Table 7.1.

Figure 7.15: Distribution of Trm for the surrogate model and FE model.

Figure 7.16: Prediction of Trm with the full-fidelity heat transfer model

Finally, the surrogate model and FE model predictions are compared at one of the locations used in valida-

tion, P2 (forward diaphragm, see Figure 7.3). This check verifies that the surrogate used for the earlier parts of

the VVUQ framework is in agreement with the higher-fidelity FE model, except for the additional sources of

uncertainty due to surrogate errors and PCA errors. The distributions of surrogate model and FE model at P2 are

plotted for two different time instants in Figure 7.17, while Figure 7.18 plots the FE model result over time at

P2. The results show good agreement between the two propagation methods. Note that the surrogate for Trm was

developed using the physical outputs directly so there are no PCA errors, i.e., ϵp = 0.
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Figure 7.17: Distribution of temperature at P2 for the surrogate model and FE model. The dashed line represents the
surrogate model and solid is the FE model.

Figure 7.18: Prediction of temperature and uncertainty bounds at P2 with the full-fidelity heat transfer model. The
upper panel shows the full square cycle, while the lower two show the acceleration (left) and deceleration (right) with
the time instants used for surrogate modeling shown as vertical lines.

7.4 Conclusion

The framework shown in Figure 7.1 provides a structured approach to model development and uncertainty quan-

tification. The Bayesian approach adopted from [5] enables an aggregation process that can address correlation

between each source of uncertainty as appropriate. Examples demonstrated include the impact of discretization

errors on model parameter calibration, how uncertain inputs affect the correlation between model parameters, and

the validation metric results are incorporated to impact the final model predictions. The sources of uncertainty

were propagated through both low-fidelity and high-fidelity models to predict the QoI.

The main contribution of this chapter is the development and application of an end-to-end uncertainty aggre-
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gation framework for a practical engineering physics model. There is a significant body of excellent work on

VVUQ methodologies, but very few examples that take a specific application through the steps proposed in this

chapter. Other contributions in this chapter are as follows: the addition of a ‘model reduction’ step for the uncer-

tainty aggregation framework explicitly highlights and incorporates uncertainty sources from dimension reduction

and surrogate modeling; the impact of input uncertainty on model parameter correlation was demonstrated; and,

a multivariate model reliability metric was applied for the purpose of model validation and parameter weighting,

which also offers a metric for use in model selection.

With such a broad range of steps and methods, there are many areas for improvement and future work. Three

important areas are mentioned here:

• A better approach to estimate and apply discretization error results for the transient errors and combined

quantities such as Trm (a spatially averaged quantity) would be beneficial.

• The numerical errors were combined independently, but the interactions between these could be incorpo-

rated within this framework by deriving appropriate correlation matrices and including them in the likeli-

hood function (Eq. 5.2). However, further work is needed to reduce the computational expense of address-

ing each of these correlations. The use of a Bayesian network [5] could be used to further improve the

integration of these errors.

• The prediction step is an area of active research and methods to address extrapolation issues are needed. In

Section 7.3.5.3 a method of Bayesian parameter-weighting was shown as a way to incorporate uncertainty

from the validation results. It was noted that this approach may not be appropriate when there is significant

model form error. Recently developed model form error estimation methodology, which aims at correcting

the model form to improve the model prediction at new untested outputs [102, 103] may be investigated in

this regard.
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CHAPTER 8

Conclusion

The value of models and measured data to advancements in modern engineering cannot be overstated. However,

uncertainties in model predictions and measurements inhibit the exploitation of physics-based models to their

fullest extent. Yet, with the democratization of physics-based models and pressure on test budgets, the risk is

that no one questions the model or compares it to measurements’. The methods of verification, validation, and

uncertainty quantification (VVUQ) aim to temper the excitement and ensure the proper use of models and data

in three ways. First, VVUQ seeks to ensure that the right model is developed for the application – that they are

sufficiently “accurate for their intended use”. Second, it provides evaluation tools and quantitative evidence to

establish model credibility. Third, it fuses models and data (and their sources of uncertainty) to make the best of

both and improve decision-making.

8.1 Summary of contributions

This research has focused on bridging the gap between the wealth of VVUQ literature, methods, and advance-

ments in recent years, and their application to an industrial-level problem. Several methodologies have been

adopted and extended for the estimation and aggregation of uncertainty for multivariate physics models.

• An end-to-end VVUQ framework (Figure 7.1), based on the Bayesian approach in [5], was extended as a

road map for the quantification and aggregation of several sources of uncertainty. The application of an

end-to-end VVUQ framework to the multivariate output heat transfer model of Chapter 2 serves as one of

first published examples to address several sources of model and measurement uncertainty.

• The multi-metric, multi-output validation approach in Chapter 6 improves insights into the model validation

process through (i) simultaneous univariate and multivariate assessment, (ii) addressing correlated model

outputs using the multivariate model reliability metric, and (iii) improving interpretability of the metric by

better accuracy requirement setting and reduced confounding between model bias/variance relative to the

measurements.

• The Gaussian process discretization error estimator [54] was extended to an adaptively refined mesh and

time step for a transient finite element model. The results were then included in the aggregation of uncer-

tainty within the developed VVUQ framework of Chapter 7.

• The estimation of parameter uncertainty is crucial to models such as the one studied in this research (Chap-

ter 2). Doing this efficiently was achieved in Chapter 4 by (i) developing the dimension-reduced PC-AS

128



surrogate model method and (ii) performing the calibration within the same dimension reduced space.

• In Chapter 5, the first exploration of model calibration with additive discrepancy in principal component

space was performed. This provided insights into such issues as parameter non-identifiability, feasible

functional forms for discrepancy models within this subspace, and the application of discrepancy models

for diagnostic purposes.

8.2 Future work

VVUQ is a rapidly growing field and there are unending possibilities for improvements in all aspects of the

research in this dissertation. There are also many other physics-based modeling applications to which these

approaches may be applied and refined. Several of these opportunities for improvement were identified in earlier

chapters, and key items are summarized here.

• The use of verification methods is often limited or non-existent in many industrial settings. The GP-based

estimation approach deserves further development towards a practical estimation tool for discretization

error. The extension of the research in Chapter 3 should focus on rigorous comparison of the GP approach to

the well-established Richardson extrapolation methodology with meshes that are both within and extended

beyond the asymptotic range. In addition, error estimates are univariate by nature, and focus on a single

model solution. Approaches to address multivariate outputs (the entire domain of space and time) and the

relationship to other sources of model uncertainty need to be established. The Bayesian network approach

to aggregation should be more fully exploited.

• This research addressed time dependence through feature selection and PCA. The proposed approach seems

to cover many other similar situations that arise in the industrial setting for model and development testing.

However, other approaches for surrogate modeling and measurement processing (such as LSTM, functional

PCA, or other time-series methods) may make the methods more generally applicable (e.g., more complex

test maneuvers).

• A multivariate metric for the purpose of model validation was demonstrated in Chapter 6. This metric

should be exploited for related tasks such as model selection and sensor placement optimization problems.

This extension should consider the use of the PCA-based sensitivity analysis approach (demonstrated in

Sections 4.3.4 and 5.4.2) when assessing sensor placement. Further work on the metric could look into

approaches to test and handle highly-non-normal distributions and guidance on setting metric thresholds

for various applications (these are application specific issues).

• Model calibration and validation require separate measurement data sets to ensure the calibration process
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is not over-fitting the model to the available data. There are well-established methods to check this in

the statistical/machine learning context. Addressing this issue when only a single test and sparse data are

available need further investigation. The multivariate validation metric could be used in this context as well.

• Model calibration of multivariate outputs was improved through the formation of the PC-AS surrogate

model. However, there were limitations for less significant PCs when using the simplest active subspace

definition (linear gradient approximation, single active variable). Further work on this should consider

improving these elements to increase accuracy of the method.

• In the discussion of calibration with discrepancy, the formulation of discrepancy functions in the PC space

was shown to offer (and require) simplified construction, set up and solution (simultaneous). It was also

shown how calibration with and without these discrepancy functions could offer diagnostic insights into

sources of model form error and an indication of model uncertainty in the outputs. This diagnostic use

of model discrepancy should be further explored with other types of model form error and with increased

model complexity (only five parameters were considered in the study).

• Finally, Subramanian and Mahadevan demonstrate an alternative to the model output discrepancy approach

with an intrusive [133] and non-intrusive [103] model form error estimation approach. Rather than modi-

fying the outputs, it seeks to adjust the governing equations, making the correction more extensible to the

prediction regime (e.g., for locations in the model other than the sensor positions, or for running the model

at untested input settings). Improving the accuracy of predictions is a necessary and challenging topic,

since it is often not possible to perfectly model the system. This subject requires significant future research

investment.
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