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Chapter 1

Introduction

Climate change is creating more frequent and more severe weather events across the
world and the reality is that this trend will only continue for the foreseeable future (Masson-
Delmonte, Zhai, et al. 2021). As a result, society must prepare for these impacts and adapt
accordingly while recognizing that these impacts will be vastly different across geographical
regions. In order to make more effective adaptation investment decisions, the future impacts of
these natural disasters must be understood. Loss and damage data can be utilized to forecast
these impacts. Databases on loss and damage monetary impacts have been recorded for decades,
presenting a data-rich resource for use in predictive modeling of future impacts. The focus of this
dissertation is to leverage this data in concert with utilizing future climate change pathways and
their associated outcomes, and to evaluate non-economic and indirect damages. Such a modeling
effort achieves a more comprehensive evaluation of the cost of future disaster and helps inform

resource allocation towards strategies designed to mitigate the risk of extreme weather events.

1.1 Motivation for the study

Human induced climate change is already affecting the frequency and severity of extreme
weather and other climate-induced events across the globe. There is evidence of observed
changes in heatwaves, heavy precipitation, droughts, and tropical cyclones (Masson-Delmonte,
Zhai, et al. 2021), among others. As current climate mitigation efforts fail to reach the goals set

by global leaders, the new reality of increasingly severe and frequent weather events requires



adaptation to these possible impacts. The Intergovernmental Panel on Climate Change states that
the need for climate resilient and adaptation development is more urgent than previously stated

in past assessment reports (H.-O. Portner 2022).

Climate change impacts will accrue at all levels, local to international. As an inevitable
product of that range, there can be a great disparity in the resources allotted across those levels,
and between similar locations with different assessment capabilities. By developing a model to
simulate cost impacts using publicly available data online, this reduces the cost burden to access
information to help in decision making, particularly important for rural communities and

locations of disproportionately high socially disadvantaged populations.

By presenting the future impacts of natural hazards in a dollar value, this helps to present
a business case for climate change adaptation to motivate adaptation decisions. Furthermore, by
illustrating the usefulness of loss and damage data, improvements in loss and damage accounting
could provide enhanced modeling at a smaller spatial resolution to help risk-informed decision-

making.

1.2 Overview of the Study

The work presented in this dissertation aims to both show the potential in loss and damage
information while also highlighting the need to improve this data for more effective analysis.
This is first done by establishing the definitions of the many variables which comprise loss and
damage, followed by. identifying the available databases and assessing their advantages and
disadvantages. Once the fundamental knowledge of loss and damage data is established, this

study advances with a selected database to develop a risk projection model by fitting probability



distributions of loss and damage to the hazards included in the database in specific regions of the
continental United States. By developing the probability distribution of damages, these cost
curves are then used as the integral piece in the development of a hybrid Monte Carlo Simulation
technique where parameters are adjusted based on future climate change scenarios to develop

future climate change monetary impacts.

This dissertation is organized as follows. Chapter 2 outlines the state of the practice of
loss and damage databases. Chapter 3 describes the hybrid simulation technique developed to
model the loss and damage of specific natural hazards in individual states of the continental
United States. Chapter 4 establishes the change in parameters using various climate change
scenarios along different Shares Socioeconomic Pathways to introduce future expected risk.
Chapter 5 introduces additional costs into the model, intangible and indirect loss and damage
which are not commonly included in existing databases due to the difficulty in accounting for
damage which is not formally given a dollar value. Chapter 6 contains concluding remarks and
directions for future research. It should be noted that Chapters 2-5 consist of published or soon-
to-be-published journal articles, respectively, that are intended to be read as separate documents,

so there is some overlap in the material discussed.



Chapter 2

Loss and Damage Estimation for Extreme Weather Events: State of the Practice

Extreme weather, climate-induced events that are episodic (e.g., hurricane, heat wave) or
chronic (e.g., sea level rise, temperature change) in nature, is occurring with increasing
frequency and severity. This places a growing and time-sensitive need on the development and
implementation of adaptation policies and practices. To motivate adaptive behavior, however,
requires the ability to deliver improved risk-informed decision-making capability. At the crux of
this challenge is the provision of full and accurate loss and damage accounting of the overall
impact of an extreme weather event, enabling the business case to be made for adaptation
investment. We define loss and damage as the manifestation of impacts associated with extreme
weather that negatively affect human and natural systems. Progress in the development of
adequate loss and damage accounting has been hampered by issues such as discrepancies in
conceptual frameworks, problems associated with data quantity and quality, and lack of
standardized analysis methodologies. In this paper, we discuss the conceptual basis for
measuring loss and damage, review the state of loss and damage data collection and modeling,

and offer a narrative on the future direction of the practice.

2.1 Introduction

Extreme weather events worldwide have been increasing at an alarming rate in terms of
both frequency and consequence, creating a compelling need for proactive risk management

(ICSU 2008). While improved disaster reporting may serve as a partial explanation of this



observed trend, it does not explain the temporal and spatial impacts that are being realized

(UNISDR 2009).

The 2018 Intergovernmental Panel on Climate Change report heralded the need to
accelerate global climate change adaptation (IPCC 2018), stating with high confidence that
human activities have caused approximately 1.0°C of global warming, and we are on pace to
reach 1.5°C in the coming decades. The consequences of this forecast are that trends in intensity
and frequency of weather extremes are likely to persist for the foreseeable future. Although some
climate change adaptation measures are being undertaken, these efforts must be expanded and

implemented more rapidly than previously anticipated.

At the crux of improving risk-informed decision-making and motivating adaptive
behavior, is making the business case for investing in such policies and practices. The concept of
a business case involves a full accounting of the cost of investing in a risk mitigation strategy
compared to the derived benefits, creating an ability to determine if the return-on-investment
warrants expenditure of resources. In the case of extreme weather, the benefits accrue in the form
of cost avoidance; that is expenditures that do not have to be incurred due to strategy
implementation having mitigated the severity of the impacts. A complete assessment of cost
avoidance requires a comprehensive approach to and damage accounting, both in terms of

accuracy, completeness and uniformity.

The United Nations Framework Convention on Climate Change defines loss and damage
as “the actual and/or potential manifestation of impacts associated with climate change in
developing countries that negatively affect human and natural systems” (UNFCCC 2012). While
there is no question that developing countries are a key focal point of the conversation, this

definition and the need for loss and damage assessment applies to first world countries as well.



Unfortunately, to date, the lack of standardized and comprehensive methods for loss and damage
data collection, analysis and reporting has posed challenges. In this paper, we discuss the
conceptual basis for measuring loss and damage, review the state of loss and damage data
collection and modeling, and offer a narrative on the future direction of the practice. In the
following discourse, we use the term “extreme weather” as including both episodic (e.g., flood,
wildfire) and chronic (e.g., sea level rise, temperature change) events, both of which are climate-

induced.

2.2 Conceptual Framework for Loss and Damage Estimation

Loss is commonly defined as the negative impacts in which restoration or reparation is
impossible (Gall, Emrich and Cutter 2015); (Andrei, Rabbni and Khan 2015), whereas damage is
considered those negative impacts for which restoration or reparation is possible. Loss and
damage estimation is typically approached categorically, generally separated into tangible and
intangible cost (Meyer, et al. 2013); (Gall, Emrich and Cutter 2015). Tangible loss and damage
can be further sub-divided into direct and indirect impacts. Some studies define risk mitigation as

a category as well.

2.2.1 Direct Tangible Costs

Direct tangible costs are considered those that occur as a direct result of the physical
impact of the event (Kreibich, et al. 2014). Common examples include damage to infrastructure

and property loss (e.g., cars, livestock, crops). Fatalities and injuries may appear in this category



or be included elsewhere, depending on whether the cost of human harm is considered a tangible

or intangible cost due to the complexity in the quantification of the value of a human life.

Direct cost measurement is most frequently performed using damage functions, which describe
the relationship between a hazard parameter and the resulting monetary cost (e.g., cost per square
foot of residential housing). Some models account for resistance parameters, such as building
type or a risk mitigation measure that has been implemented (Meyer, et al. 2013). Market price
methods are popular in assessing direct tangible costs, as these valuation techniques reflect

current replacement costs, are easy to apply, and applicable to many economic sectors.

Direct cost estimation can be limited by the quality and quantity of available data, however,
which can vary widely depending on the location of the event and the information source. Such
inconsistencies, inaccuracies and missing data contribute to greater estimation uncertainty,
leading many analysts to utilize cost ranges rather than specific values. Additionally,
complexities in understanding the process leading to loss and damage often results in the use of
multi-parameter models that require the introduction of additional variables, causing further

uncertainty in the estimation process.

2.2.2 Indirect Tangible Costs

Indirect tangible costs are generally considered as those that occur as a result of a direct
impact (Kreibich, et al. 2014). Examples include business interruption, relief efforts, lost

tourism, relocation costs, disruption to transportation, and diminished living conditions.

Common approaches to indirect cost estimation include the use of surveys, econometric models,

input/output models, and computable general equilibrium analysis (CGE) models (Meyer, et al.



2013). Surveys are often narrow in scope and consequently the applicability of the results can be
limited. Econometric models provide an opportunity for broader application, and the results can
be used in future forecasts. Input-output models contain coefficients to estimate impacts that an
initial change in economic activity has on a regional economy, where the initial change and
coefficients are determined based on extreme weather event severity (Bess and Ambargis 2011).
Note, however, that input-output models require assumptions in economic behavior with the
potential to bias the magnitude of the results (Meyer, et al. 2013). CGE models, while based on
the input-output structure, place greater emphasis on price, with substitution options not
included. As a result, CGE models often result in lower loss estimates than input-output models.

However, CGE models assume markets function perfectly post-disaster, which is rarely the case.

2.2.3 Intangible Costs

Intangible costs are effects felt by society, but for which the accompanying loss and
damage are difficult to value monetarily. Examples include environmental, educational, cultural,
and health/well-being impacts. Depending on the assessment framework, human harm can be
placed in this category as well. Intangible costs are typically difficult to quantify because of the
subjective nature of the variables involved, as putting a dollar value on impacts such as
environmental degradation or cancer risk is a complex process that can include a number of

considerations.

One approach to quantifying loss and damage is through the use of revealed preference
and stated preference methods (Markantonis and Meyer 2011). Revealed preference methods

produce estimates of the value of a particular good or service from actual market behavior. Types



of revealed preference methods include hedonic pricing, travel cost, cost of illness and
replacement cost. Stated preference methods create a hypothetical or contingent market for
choice analysis; methods include contingent valuation, choice modeling, and life satisfaction
analysis. Whereas revealed preferences look towards related markets, where the non-market
good is implicitly traded, stated preference methods take a survey-based approach that considers
an individual’s preference directly by determining a willingness to pay or a willingness to accept.
Regardless of the approach, however, the resulting estimated value for intangible damages is not
an equivalent to a market price, which is the monetary standard for comparison (Morrissey and

Oliver-Smith 2013).

2.2.4 Risk Mitigation Costs

Risk mitigation costs represent the investment that is made in order to achieve a reduction
in loss and damage when an extreme weather event is experienced. As such, it is considered as a
cost incurred against which to compare the cost reductions in unrealized loss and damage. It is
on this basis that the benefit/cost of a candidate risk mitigation strategy can be evaluated, with an
ultimate goal of determining whether such an investment is warranted. Common risk mitigation
costs include investments made for (Bouwer, et al. 2013): 1) management practices, 2) land use
planning, 3) hazard modification, 4) infrastructure adaptation, 5) communication in advance of
events, 6) emergency response and evacuation, 7) financial incentives, and 8) risk transfer (e.g.,
insurance). Risk mitigation costs are relatively easy to quantify and can be determined by the

available market price for the cost of implementation (Meyer, et al. 2013).



2.3 Loss and Damage Data

In utilizing databases for loss and damage estimation, one must be mindful of a number

of potential biases that might be present, including (Gall, Borden and Cutter 2009):

e Hazard bias - over or under representation of certain hazard types, due to selective
reporting.

e Temporal bias - loss and damage exhibiting an upward trend over time as a result of
increased wealth and population sizes, or perhaps improved accounting.

e Threshold bias - inconsistent inclusion criteria across databases, creating
discrepancies.

e Accounting bias - inconsistencies in how loss and damage is accounted for due to the
variety of input methods used.

e Geographic bias - changes in political geography, creating spatial inconsistencies in
loss and damage accounting.

e Systemic bias - between and within loss and damage reporting arising from
computational inconsistencies (e.g., reporting in dollar losses at the time of
occurrence vs. inflation-adjusted losses).

e Measurement bias - use of different metrics to measure loss and damage, making it
difficult to normalize.

While several approaches to loss and damage estimation have emerged, each embodying
a unique set of cost categories and input variables, the databases they generally rely upon are
limited to information made available by a small number of sources. Here, we review the most

popular: 1) EM-DAT, 2) NatCatSERVICE, 3) Sigma CatNet, and 4) SHELDUS.

2.3.1 Emergency Events Database (EM-DAT)

EM-DAT is a publicly accessible, international database of global natural and

technological disasters, maintained by the Centre for Research on the Epidemiology of Disasters

10



(CRED 2018). It is intended to provide an objective basis for vulnerability assessment and
decision-making by collecting, organizing and providing access to validated data on the human
impact of disasters and disaster-related economic damage estimates. The database consists of
approximately 19,000 entries, covering from calendar year 1900 to present. Natural disasters are
divided into six groups (geophysical, meteorological, hydrological, climatological, biological,
and extraterrestrial), covering 15 disaster types and over 30 sub-types. Technological disasters
are divided into three groups (industrial, transport, and miscellaneous), covering 15 disaster
types (see Table 1). Data sources include governments, UN agencies (UNEP, UNOCHA, WFP,

FAO), NGOs, research institutions, insurance companies, and media reports.

Geophysical Meteorological Hydrological Climatological Biological Extraterrestrial Industrial Transport Misc.
Earthquake Extreme Flood Drought Epidemic Impact Chemical Air Collapse
temperature spill
Dry mass Fog Landslide Glacial lake Insect Space weather Collapse Road Explosion
movement outburst infestation
Volcanic Storm Wave action Wildfire Animal Explosion Rail Fire
activity accident
Fire Water Other
Gas leak
Poisoning
Radiation
Qil spill

Other

Table 1: EM-DAT Disaster Classifications

Criteria for database inclusion are events in which there are at least ten fatalities, at least
one hundred people affected, declaration of a state of emergency, and/or a call for international
assistance. Events are entered on a country-level basis, with attributes consisting of location;
date; number of people killed/injured/missing; number homeless/affected; economic loss, both
direct (e.g., damage to infrastructure, crops, housing) and indirect (e.g., loss of revenues,

unemployment, market destabilization); international aid contributions; and composite indicators

11



(total affected and victims). The disaster classification used in EM-DAT is adapted from

Integrated Research on Disaster Risk (IRDR) Peril Classifications (IRDR 2014).

EM-DAT data entry guidelines follow three levels. Level 1 includes information
regarding the disaster event, including the group, sub-group, and disaster type, sub-type, and sub-
sub-type. The second level consists of geographic and temporal information, physical
characteristics, and status. Spatial divisions specifying the continent, country, region,
latitude/longitude of the disaster, a three letter ISO code and temporal information (start/end
dates and local time) are reported. Physical characteristics of the event include origin, associated
disasters and scale/intensity (reported in units linked to the disaster type, such as area covered in
wildfire reports and the Richter scale for earthquake events). Status reporting lists aid
contributions (total amount given in USD current value), Office of U.S. Foreign Disaster
Assistance (OFDA) response, date of appeal for international assistance, and if a declaration of
emergency was made. Level 3 consists of the source of the information along with a reliability
score for the source, between 1 (low) and 5 (high). Level 3 also includes the human impact of the
event, in terms of deaths, missing, homeless, injured, and affected people requiring immediate
assistance during emergency. Economic impact is reported in Level 3, which includes total
estimated damages, reconstruction costs, insured losses and the disaster impact. Total damage
costs are defined as the value of all damages and economic losses directly or indirectly related to
the disaster, which may be segmented by sector: social, infrastructure, production, environment,
and other. Reconstruction costs are the costs for replacement of lost assets, while insured losses
are the economic damages covered by insurance. The disaster impact report category specifies
the sectors affected by the disaster, which include animals, electricity, water supply and

sanitation, communications, cultural infrastructure, and other. Infrastructure reports include

12



percentage of damage of destruction to certain infrastructure, and number of affected houses,

bridges, businesses and schools.

2.3.2 NatCatSERVICE

NatCatSERVICE is a comprehensive global natural hazard catastrophe database
maintained by Munich RE, containing records dating back to 1980, and retrospectively all great
disasters since 1950 (see Table 2). Catastrophe events include those classified as geophysical
(earthquake, volcano, dry mass movements), meteorological (storms), hydrological (flooding,
wet mass movements), and climatological (extreme temperature, drought, wildfire). Data is made
available through an online tool where the user can designate the period of interest (years),
location (continent) and event type (MunichRE 2018). The loss event classification in
NatCatSERVICE is closely related to the IRDR Peril classifications (also adopted by EM-DAT),
defined by an overarching family of events and sub-perils that more closely describe the physical

forces behind the event.

Geophysical Meteorological Hydrological Climatological
Earthquake Storm Flooding Extreme
temperature
Volcano Wet mass Drought
movements
Dry mass Wildfire
movements

Table 2: NatCatSERVICE Hazard Categories

Events are rated on the following scale: 0 - no fatalities and no property damage, 1 -
small-scale property and structural damage and between 1-9 fatalities, 2 - moderate damage and
greater than 10 fatalities, 3 - damage in excess of $60 million plus greater than 20 fatalities, 4 -

damage in excess of $250 million with over 100 fatalities, 5 - damage in excess of $650 million

13



and over 500 fatalities, and 6 - “great disaster” where a region’s ability to help itself is overtaxed
and international assistance is necessary, thousands of fatalities and just as many without homes,
major economic losses and insured losses reaching exceptional orders of magnitude. Each record
in the database is characterized by the following attributes: date; event type; geocoding of main
loss areas; nature of the event; loss data (insured losses, overall losses, bodily injuries),
infrastructure areas; affected industries; and event description (e.g., wind strength, precipitation

levels, earthquake magnitude).

The database gathers information from a wide range of sources, using data mining and
surveys among internet portals, institutions, direct contacts, and specialized companies. Any
contradictory information is assessed internally. Events listed in the database have an assigned
direct economic loss measured in USD. Due to potential variability in reporting accuracy and
consistency, NatCatSERVICE defines five levels of loss estimates, ranging from full information
to partial data or only event descriptions. Each level utilizes a separate approach for damage
estimation, with loss estimates based on insurance market data offering the highest quality of
reporting. In low-quality information cases, asset value assumptions are utilized, based on home
value repair costs for listed damaged assets, with further assumptions made for infrastructure and

agriculture sectors.

Loss and damage analysis can be performed according to: 1) country mortality rates
(high, upper middle, lower middle, and low), 2) insurance penetration (high, middle, low, very
low), and 3) income group (high, upper middle, lower middle, and low). The products offered by
NatCatSERVICE include an analysis of the number of events, as well as overall loss/insured loss

ratio, which can be tracked by inflation adjusted and normalized overall losses. The tool also
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provides a breakdown of the percentage distribution for relevant natural loss events worldwide as

well as a map showing where each event occurred (Monti and Tagliapietra 2009).

2.3.3 Sigma CatNet

Sigma CatNet, maintained by Swiss RE, consists of a limited access global disaster
database containing both manmade and natural catastrophes (SwissRE 2018). The database
includes events from 1970 to present, and requires one of the following to have occurred in order
to be included: 1) 20 or more deaths and/or people missing, 2) 50 or more people injured, 3)
2,000 or more people left homeless, 4) insured losses of greater than $17.9 million (marine), 5)
insured losses of greater than $35.8 million (aviation), 6) insured losses of greater than $44.5
million (all other losses), or 7) total losses in excess of $88.9 million (see Table 3). This
information is obtained through internal research performed by Swiss RE, natural disaster
coordination agency research data, publicly released information, and press, industry and aid
agency reports (CRED 2018). Minimal discussion is provided, however, regarding validation of

the database sources.

Flood Earthquake and Tsunami Storm Other
River flood Seismic hazard Wind speed Lightning
Coastal flood Epicenters Tropical cyclone tracks Volcanoes
Dyke ring Plate boundaries Hailstorms Volcano ash
projection thickness
Historic floods Tsunami historical run-up Tornado Wildfire
Tsunami hazard Historic tropical cyclones | Climate change
Historic earthquakes Historic winter storms Climate data

Table 3: Sigma CatNet Event Categories
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Attributes for each record include fatalities, injuries, missing persons, homeless (unable
to occupy their dwelling), and economic losses (direct/indirect/insured). Although some indirect
economic loss is represented, such as business interruption, other such loses are not considered
(e.g., loss of earnings by suppliers due to disabled businesses, estimated shortfalls in Gross
Domestic Product, non-economic losses). Swiss RE cautions that total losses represent general
estimates that are communicated in different ways, such that the data should not be used to

perform direct comparisons between events.

2.3.4 SHELDUS

The Spatial Hazard Events and Losses Database for the United States (SHELDUS)
records natural hazard events at the county level, covering the entire U.S., with the exception of
U.S. territories (Gall, Borden and Cutter 2009). SHELDUS is maintained by the Center for
Emergency Management and Homeland Security at Arizona State University. The database
covers events from 1960 to present, and includes 18 natural hazard event types (see Table 4),
populated with attributes describing date, location, and direct losses (property, crop, injuries,

fatalities). The database can also be searched by specific peril, from among 139 different peril

types.
Geophysical Meteorological Hydrological Climatological
Avalanche Fog Flood Drought
Coastal Hail Tsunami/Seiche Wildfire
Earthquake Heat
Landslide Hurricane/Tropical
storm
Volcano Lightning
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Severe storm

Tornado

Wind

Winter Weather

Table 4: SHELDUS Event Categories

Most of the SHELDUS data is sourced from the National Weather Service (NWS),
including the NWS process for loss estimation, including how to determine direct and indirect
fatalities and injuries associated with the event. Loss estimates are recorded as actual dollar
amounts if a reasonably accurate estimate is considered available. Otherwise, either an estimate
is attempted or “no information available” is entered (except for flooding events, where an
estimate is required by the U.S. Army Corps of Engineers). In cases where estimates are reported
as ranges rather than specific values, SHELDUS enters the lower bound of the range in the
database. If events are reported for regions rather than specific counties, the impacts are
distributed equally across the involved counties, which often results in non-integer fatality and

injury entries.

2.3.5 Further Discussion

Table 5 presents a comparative summary of the characteristics of the aforementioned
databases. As noted, each database covers a different time period, geography, hazard definition,

and sources of information.

From the standpoint of attempting to estimate loss and damage at the local level,
SHELDUS is best suited for that purpose (Gall, Emrich and Cutter 2015). This database,

although limited to the United States, provides records at the county level, the most disaggregate
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geographic delineation among the group, and has a lower reporting threshold such that more

event information is available. Although SHELDUS also provides the most readily available loss

information for analysis, even its data records are incomplete, as they do not contain any

information associated with indirect or intangible loss and damage.

When considering global or national disaster trends, use of EM-DAT, CatNet or

NatCatSERVICE is more desirable, given their worldwide coverage and reporting at a more

aggregate scale. In each of these cases, the reporting threshold is such that only the more

catastrophic events are captured, and not the entire distribution of impactful events. Moreover,

none of these databases afford complete coverage of direct, indirect and intangible impacts. Also

of note, only EM-DAT and SHELDUS provide an opportunity to download raw data for analysis

use, whereas CatNet and NatCatSERVICE only allow viewing privileges, functioning more as an

interactive online tool with a supporting database.

The bottom line is that there is a paucity of available extreme weather loss and damage

data at a time when there is a compelling need to have access to such information. This creates a

major gap in having the ability to make the business case for adaptation investment.

EM-DAT

SHELDUS

NatCatSERVICE

Sigma CatNet

Total records

>20,000

>800,000

>33,000

>9,000

Record span

1900-Present

1960-Present

1980-Present

1970-Present

Loss categories

Fatalities, injuries,
homeless/affected,
damage (crop, property,

Direct property damage, crop
damage, injuries, fatalities

Direct economic loss estimates, insured
losses, fatalities

Fatalities, missing, victims (casualties),
injured, homeless (unable to occupy their
dwelling), and economic losses

killed, 100+ people
affected, declaration of a
state of emergency, call
for international
assistance

damage

1996-Present: All events
represented in the NCDC Storm
Data with a specific dollar
amount

damage & 1-10 fatalities, 2-moderate
property damage & greater than 10
fatalities, 3-property damage in excess of
$60 million & greater than 20 fatalities,
4-property damage in excess of $250
million & greater than 100 fatalities, 5-
property damage exceeding $650 million
& over 500 fatalities, 6-great disaster
with international assistance necessary

livestock) (direct/indirect/insured)
Spatial Global United States (county level) Global Global
coverage
Inclusion One (or more) of the 1960-1995: one fatality or Losses categorized 0-6: 0-no fatalities no >20 deaths, and/or >50 injured, and/or >2,000
threshold following: 10+ people $50,000+ crop or property property damage, 1-small scale property homeless, and/or insured losses >$14 million

(marine), >$28 million (aviation), >$35
million (all other losses), and/or total losses
>$70 million
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Accessibility Online registration, for Online registration, for purchase Online registration, for viewing Online registration, for viewing
download

Source https://www.emdat.be/exp http://hvri.geog.sc.edu/SHELDU https://www.munichre.com/en/reinsuranc http:/www.sigma-
lanatory-notes S/docs/SHELDUS_ReadMe.pdf e/business/non- explorer.com/documentation/Methodology_sig

life/natcatservice/index.html ma-explorer.com.pdf

Table 5: Comparison of Loss and Damage Databases (International Council for Science 2008)

2.4 Loss and Damage Methodologies and Frameworks

Several efforts have been made to incorporate loss and damage estimation either pre-disaster or
post-disaster methodologies (Surminski, et al. 2012). Below, we review a representative sample

of these applications.

2.4.1 HAZUS-MH

Developed by the Federal Emergency Management Agency, HAZUS-MH is a tool for
assessing loss and damage associated with hurricane, flood and earthquake events (Federal
Emergency Management Agency 2019). It utilizes geographic information systems to estimate
hazard-related impacts before or after a disaster. The methodology accounts for loss and damage
according to four categories: 1) direct damage, 2) induced damage, 3) direct losses, and 4)
indirect losses. Direct damage includes general building stock, essential facilities and lifelines.
Induced damages comprise those caused by fire, hazardous material exposure and debris
generation. Direct losses include cost of repair/replacement, income loss, crop damage,
casualties, shelter and recovery needs. Indirect losses consist of supply shortages, sales decline,
opportunity costs, and economic loss. HAZUS-MH also includes demographic data in its impact

reports, including age, sex, income and household characteristics.
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HAZUS-MH is purported to be a comprehensive tool for loss and damage assessment in
addressing a couple of extreme weather event types (i.e., flood, hurricane), and is the nationally
recommended tool for flood mitigation planning at the county level. However, a recent study
calls into question the accuracy of the tool’s flood model impact assessment. Key study findings
include that HAZUS-MH: 1) underestimates the flood extent boundaries for study regions along
major rivers such as the Mississippi, 2) may be incorrectly predicting the number and location of
damaged buildings, and 3) essential facility inventory data underrepresents the accessibility and

response capabilities of essential facilities (Abkowitz, et al. 2019).

2.4.2 Damage and Loss Assessment (DalLA)

DaLl A was developed by the United Nations Economic Commission for Latin America
(ECLAC 2003), as an approach to damage and loss assessment, where the onus is on the user to
obtain the necessary data for implementation. The methodology focuses on assessing the social,
economic and environmental effects of disasters, separated into direct damage, indirect loss, and
macroeconomic effects (i.e., repercussions of direct and indirect damage/loss, measured in terms
of how the disaster modifies the performance of main economic variables of the affected
country, provided that national authorities make no adjustments). A “reasonable” time frame for
assessing macroeconomic effects is defined as the remainder of the year in which the disaster
occurs plus up to two additional years; under exceptional circumstances, a five-year accounting

can be used.

DaL. A defines cost types (direct, indirect, business interruption, intangible, and risk

mitigation), and how they can be quantified in monetary terms. The cost of human harm is
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considered a direct cost, and a suggested monetization is to estimate future income that the
deceased would have generated while fulfilling the individual’s average life expectancy. An
alternative approach is to value the loss of life as the amount paid by insurance companies based
on airline-related accidents from the Warsaw Convention of the International Civil Aviation
Organization, but can be problematic due to regional variance. A final proposal for valuing a

human life is to base it off the amount an individual is willing to pay to avoid premature death.

Indirect costs are defined as the flow of goods and services that will not be produced or rendered
after the event and may extend throughout the rehabilitation and reconstruction periods. It is
recognized that some indirect effects may have a net positive effect, such as a heightened need
for a specific service or product (e.g., generators, building supplies), which should be deducted

from the total cost estimate.

Dal A associates intangible costs with human suffering, insecurity, and impacts on
quality of life. While the methodology recognizes the difficulty in placing a monetary value in
evaluating these costs, DaLA acknowledges that a complete loss and damage assessment must

include these considerations.

2.4.3 Post Disaster Needs Assessment (PDNA)

The goal of the PDNA methodology is to provide support for emergency and recovery
management (World Bank 2013). It embraces the ECLAC method for assessing loss and

damage.

The PDNA methodology includes the collection of pre-disaster baseline data for

comparison with post-disaster conditions to determine the overall impact, and impacts by sector.
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The assessment includes: 1) damage to infrastructure and physical assets, 2) disruption of access
to goods and services, 3) governance and decision-making processes, and 4) increased risks and
vulnerabilities. These effects are expressed in both quantitative and qualitative terms, with loss
and damage estimation calculated as the value of total and partial destruction of infrastructure
and assets, changes in service delivery, production of and access to goods and services, changes

to government processes, and changes to risk.

Impact estimation is determined through the economic impact at macro and micro levels,
considering likely effects of the disaster on economic performance and macro-economic
imbalances, along with impacts on personal household incomes and employment in all sectors.
This includes the extent of change in quality of human life over both medium- and long-term

time scales.

Economic loss is defined as the change in economic flow arising from the disaster until
full economic recovery and reconstruction is achieved. This includes the decline in output of
impacted sectors due to damage to infrastructure and assets, lower revenues associated with
demand reduction due to the disaster, and increased expenditure for management of new risks
brought on from the disaster. Macro-economic impacts are measured from the post-disaster
performance of gross domestic product, the balance of payments (increase of imports, decrease
of exports), and the fiscal sector (increased operational costs). Human development impacts can
be measured in terms of the human development index (HDI), hybrid HDI, inequality-adjusted
HDI, multi-dimensional poverty index, and gender inequality index. The decision of which
indicator(s) to include is generally governed by what is utilized in establishing pre-disaster

baseline information.
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2.4.4 CATSIM

A simulation model developed by the International Institute for Applied Systems
Analysis (ITASA), CATSIM is designed to assess disaster risks in a certain country or region.
The methodology is intended to help with natural disaster risk mitigation planning by examining
fiscal and economic risk, and evaluating the benefits and costs of various risk reduction
strategies. CATSIM is an interactive tool which allows for testing of assumptions through the
variation of multiple parameters. The model uses Monte Carlo simulation of disaster risks in a
specified region to derive an estimate of the region’s financial vulnerability to the disaster
(Surminski, et al. 2012). The methodology is segmented into five modules: 1) risk of direct asset
losses, determined through loss distributions and probability loss curves, 2) financial and
economic resilience for disaster response, measured through the financing gap concept, 3)
financial vulnerability, determined by the risk and financial resilience of the government, 4)
economic impacts and resource shortfall consequences, and 5) adaptation/risk management
(Hochrainer-Stigler 2014). The model can be utilized at the ex-ante stage, where budget
allocation is determined to make natural disaster mitigation decisions, purchase insurance or
other protection of assets, or at the ex-post stage, after a disaster in guiding repair and financial
decisions. CATSIM has been used by the World Bank to estimate disaster risk in over 80

countries (R. Mechler 2019).

2.4.5 Further Discussion

It is commendable that in the evolution of loss and damage frameworks and models,

attempts are being made to structure a means to quantify the full impact of natural hazard
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disaster events. HAZUS-MH represents an all-in-one approach whereby the data and model are
integrated within the tool, yet it is limited in its representation of extreme weather events, and the
validity of the corresponding impact estimation results have been brought into question. The
remaining modeling frameworks included in this review are indicative of idealized ways to
capture the full range of disaster impacts, including recognition that post-disaster impacts are
experienced over an extended period of time, which can have economic and human development
impacts incurred locally and across broader spatial and jurisdictional boundaries. Data necessary
to serve as inputs to populate these considerations are generally lacking, however, rendering a

barrier to perform full loss and damage accounting that has yet to be overcome.

2.5 Conclusion

There is a clear need to make the business case for investments in extreme weather risk
mitigation, making it imperative to perform full loss and damage accounting in evaluating the
benefits and costs of various adaptation strategies. Based on our review, we find that the quality
of available data and inconsistencies in loss and damage accounting methodology constrain the
ability to achieve this objective. Arguably most challenging among these concerns is the
difficulty in estimating intangible costs, to the point that the majority of the existing databases
and models avoid its consideration altogether. This is unfortunate given the broad impact and
lengthy time spans that such impacts can be experienced, such that its magnitude may dwarf the
impacts that are currently taken into consideration. To the extent this is the case, the benefits of
adaptation strategies may be severely underestimated, biasing the efficacy of attracting

investment.
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Addressing these needs will require a comprehensive effort to evaluate the full loss and
damage impact of disaster events, beginning with the development of use cases based on past
events where the process of full recovery has been achieved. This will provide insight into
quantifying overall loss and damage, the portion attributed to direct, indirect and intangible
effects, and how it is distributed temporally and spatially. Concurrently, the insurance industry
should be encouraged to partner with the public and private sector to produce a methodology and
practical approach to measuring loss and damage. Doing so would prove beneficial to all

involved parties, as each has a vested interest in better understanding the bottom line.

While attention needs to be focused on improving extreme weather loss and damage
accounting, we must also recognize that decision-makers are facing the harsh realities of extreme
weather today that require immediate attention. Thus, in helping the practitioner make more risk-
informed resource investment decisions in the meantime, we must straddle the fence of not
requiring an overabundance of technical requirements while also effectively using available data.
To that end, relying on a hybrid of quantitative and qualitative understanding of extreme weather
trends may be an appropriate recourse. This particularly applies to situations where adaptation
strategies are being evaluated at the screening level, or where local authorities require a simple,
practical framework (and one that does not require much training or technical understanding to

use) for making more risk-informed decisions given limited time and resources.
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Chapter 3

Extreme Weather Loss and Damage Estimation Using a Hybrid Simulation Technique

History has shown that occurrences of extreme weather are becoming more frequent and
with greater impact, regardless of one’s geographical location. In a risk analysis setting, what
will happen, how likely it is to happen, and what are the consequences, are motivating questions
searching for answers. To help address these considerations, this study introduced and applied a
hybrid simulation model developed for the purpose of improving understanding of the costs of
extreme weather events in the form of loss and damage, based on empirical data in the
contiguous United States. Model results are encouraging, showing on average a mean cost
estimate within 5% of the historical cost. This creates opportunities to improve the accuracy in
estimating the expected costs of such events for a specific event type and geographic location. In
turn, by having a more credible price point in determining the cost-effectiveness of various
infrastructure adaptation strategies, it can help in making the business case for resilience

investment.

3.1 Introduction

Citing dire consequences, the Intergovernmental Panel on Climate Change has recently
reported a compelling need to accelerate global climate change adaptation (Masson-Delmotte, et
al. 2021). This finding is based on substantial evidence that the effect of global warming is
causing increased frequency and severity of a variety of weather extremes, which are likely to

persist for at least several decades. The consequential impacts of these developments can be
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expected to cause additional economic, social, and environmental suffering, creating an
imperative for society to invest, post haste, in adaptation strategies that reduce community

vulnerability and strengthen resilience.

The impact of an extreme weather event may be felt at several levels—local, regional,
national, and global. A single catastrophic event can lead to human casualties, property damage,
loss of assets, community disruption, severed supply chains, mental health issues, and other
negative economic, social, and environmental impacts (Botzen and Van Den Bergh 2009). The
magnitude of these impacts brings into focus the need for policy responses to prepare for what is
considered a new era of natural catastrophes and ease the burden of these occurrences on society

(Kunruether 2008).

Yet, widespread implementation of adaptation strategies only becomes possible if one
can make a business case for investing in such initiatives. This requires an ability to quantify the
full range of loss and damage (L&D) associated with an extreme weather event, such that the
benefits accrued (that is, L&D avoidance) from deploying an adaptation strategy can be assessed
relative to the cost of implementation. Publicly available L&D data are typically focused on
quantifiable tangible direct costs, with little or no consideration of other direct costs, commonly
known as tangible indirect costs and intangible costs. This limits our complete understanding of
the impacts of an extreme weather event. Empirical L&D data can also suffer from inconsistent
definitions and potential biases (Doktycz and Abkowitz 2019). Furthermore, utilization of L&D

data for decision making follows the same difficulties as with data gathering.

Overcoming these deficiencies is a fundamental aspect of our effort, and the reason for
developing a hybrid simulation approach. As development of such an approach is ultimately

intended to help practitioners make more risk-informed resource investment decisions, we are
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mindful that local authorities require a simple, practical framework for decision making given
limited time and resources. Therefore, it must balance between not requiring an overabundance
of technical requirements while also effectively using available data. We develop and apply this
methodology using L&D data obtained from the National Oceanic and Atmospheric
Administration (NOAA) Storm Events Database, subsequently normalizing the data to allow for
spatial/temporal comparisons, fitting the data to statistical distributions, and finally using Monte
Carlo simulation (MCS) to return L&D costs of specific extreme event types in a region over a

specified time horizon.

The objective of the study described in this article was to generate a representative model
of L&D costs for specific regions and segmented by extreme weather type, and subsequently to
employ the results in a Monte Carlo simulation. This study took a unique approach in the
utilization of L&D databases, to develop a cost model for hazards within the United States.
Development of an accurate base historic cost model will then allow for additional cost
projections and analysis in future work. As mentioned, future climate projections along with
other costs such as indirect or intangible damages will help to create a more accurate picture of
the impacts society will face due to climate change. This work highlights an overlooked data
source, loss and damage data can provide insight towards climate impacts through use of another
tool to improve cost benefit considerations for adaptation decisions in the face of future
uncertainty. By building this base model, it provides opportunities to consider future climate
change scenarios for cost analysis where input of different parameters can influence how the

costs may change in the future.
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3.2 Literature Review

When investigating trends in extreme weather events over time, it is important to account
for development and wealth that may have occurred during that same period, as this affects the
level of L&D exposure. To date, there have been several approaches used to normalize L&D
data for spatial and temporal aggregation, with varying results. Although normalization is yet a
perfect science, it is a crucial step in data analysis when comparing results by ensuring that the

data can be compared consistently across all records in the database.

Weinkle et al. (2018) performed a study of normalized losses due to hurricane landfall for
the period from 1900 to 2017 in the continental United States. Multiple normalization
methodologies were utilized in this effort, including adjusting the historic loss data for inflation,
per capita wealth, and the population of affected counties. These methodologies tried to account
for wealth added in the areas in which the storms took place by using a conventional approach to
L&D data normalization, one which focused on the economic value of a region. This was based
on the concept that as an area develops over time, it generates more valuable assets, which
increases the possible L&D outcomes that did not exist in years prior. However, this
methodology does not account for the evolution of technology, building codes, improved
knowledge, and investment in risk adaptation that might reduce the L&D realized in more recent
extreme weather events. Furthermore, the rate of inflation or the rate of value increase over time
used in these normalization methods could mask any concurrent rate changes in extreme weather

frequency and severity.

Nordhaus (2010) found that annual hurricane damage in the United States increased by

USD 10 billion (at 2005 incomes), 0.08% of gross domestic product (GDP), and is possibly an
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underestimate. The findings were based on three primary factors: (1) number of storms; (2)
maximum wind speed at landfall; and (3) GDP. The assumption in development of the hurricane
damage function was that damage per storm is conditional on wind speed and proportional to
nominal GDP. This assumption is based on the grounds of economic growth, assuming no
changes in technology and the location and structure of economic activity. His argument for why
this is likely an underestimate of damage is that it omits consideration of the social impact of the

destruction of communities, as well as the culture and history in the impacted areas.

In a study of various disaster trend analyses in South Korea, Choi et al. (2019) grouped
normalization methods into those that used inflation, wealth, and societal factors. It was
determined that each hazard type had its own characteristics and disaster-specific variables to
better fit the normalization. Generally speaking, it was found that a larger spatial scope required
a more simple and general normalization methodology, while a longer time period improved the

quality of the statistical analysis.

Social vulnerability is a difficult metric to develop due to the array of variables that may
be used to establish a representative factor. To address this consideration, the Social
Vulnerability Index (SoVI) was developed by Cutter et al. (2003); it contains around 30 U.S.
Census variables, including socioeconomic, household composition and disability, minority
status and language, housing type, and transportation. This index provides a powerful
normalization tool because the index utilizes consistent rating scales that can be employed in
comparisons between regions in time or space, thus solving a major hurdle in disaster cost
normalization. Additionally, social vulnerability can be measured using the U.S. Center for
Disease Control (CDC) Social Vulnerability Index (SVI), which measures a community’s

vulnerability to respond to and recover from disasters by ranking each census tract based on 15
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social factors grouped into four themes (socioeconomic status, household composition,
race/ethnicity/language, and housing/transportation). The result is a vulnerability score between
0 (least vulnerable) and 1 (most vulnerable). The CDC SVI and SoVI are two of the most
commonly used vulnerability indices. Various studies have compared vulnerability indices and
evaluated the contribution of different factors to the assessment of community vulnerability
(Flanagan, et al. 2011). The hybrid simulation technique developed in this study uses the CDC

SVI, which constructs the data in a percentile rank (Tarling 2017).

Loss and damage data normalization must explain the change in exposure and
vulnerability within and between areas of comparison, while controlling for the change in the
value of a dollar over time. There is no standard method for cost normalization and much of it
depends on the spatial region and temporal setting of analysis. The normalization input factors
are dependent on the type of analysis performed and is limited to the available data. It is clear
normalization for L&D must account for the socioeconomic vulnerability of an area combined
with the potential exposure. Furthermore, the dollar values must be adjusted to reflect inflation

that has occurred over the time period in question.

Effective disaster management policies require a full understanding of the cost of
disasters. Direct damage estimations can help to provide insight from which key vulnerable
sectors and mitigating factors can be determined. Furthermore, these estimates can be built upon
with other costs, such as indirect, intangible damages, and future long-term climate predictions to
understand the full scope of risk a community face (Botzen, Deschenes and Sanders 2020).
Common natural hazard-related disaster modeling techniques build disaster loss and damage

models based on physical characteristics, as in the case of catastrophe modeling. Although these
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models often derive costs in the form of annual expected damages, L&D databases provide

actual data that can be utilized for analysis.

As an example of the application of L&D databases, Kahn (2005) examined the direct
impacts of natural hazards measured by fatalities, using raw data on deaths from the Centre for
Research on the Epidemiology of Disasters (CRED). Through analyzing deaths from different
disasters in 57 countries, conclusions towards the role of income, geography, and institutions in
minimizing death counts were made. Other studies utilize the CRED database to compare
hazards on a global scale to understand the drivers of risk from extreme weather events (Shen, et
al. 2018). It is worth noting that events are only included in the CRED database if they meet the
database classification of an extreme event, which includes ten or more fatalities, declaration of a
state of emergency, hundreds or more reported affected, or a call for international assistance. The
following presented methodology uses L&D resources to develop a model for natural hazards of
all cost ranges to aid decision making for future climate adaptation to natural hazard-related

disasters.

3.3 Model Development

The quality and uncertainty in how extreme weather data are collected and reported
makes loss and damage data difficult to utilize at a local level, particularly due to sample size
limitations when the data are segmented by extreme weather type. For this reason, some level of
data aggregation is recommended; one means for doing so is to adopt a geographical region
approach, such as has been defined by NOAA climatological divisions (Fig. 1). These nine

regions are considered to be internally climatically consistent and therefore useful for putting
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climate anomalies into a historical perspective (Karl and Koss 1984). Using a regional approach
while maintaining internal climate consistency is an important consideration in creating a more
robust sample of extreme weather events from which L&D estimation can be performed. This
does not suggest, however, that smaller geographical units, such as state or county, should be
ignored if a sufficient sample size exists to provide a more resolute view of L&D. Since each
region is considered similar climatologically, the grouping of data by this categorization was the
initial starting point to expand the modeling sample size. However, in cases where it was
determined that an adequate sample size was available for a smaller geographical unit, individual

state data analyses were also performed.

U.S. Climate Regions
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Figure 1: National Oceanic and Atmospheric Administration (NOAA) climatological divisions
Source Karl and Koss (1984).

Socioeconomic status can be a meaningful indicator of risk exposure to extreme weather
impacts, and such information is available at the county level as provided by the U.S. Census

Bureau. Combining this information with the extreme weather profile for the area of interest can
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provide a more downscaled perspective of the risk with as suitable a level of disaggregation as

the data allows.

We limited our use of extreme weather event data from the NOAA Storm Events
Database to the period of 2000 to 2019. This time period is associated with an event history that
reflects more recent trends, and conforms with a stretch of time where NOAA maintained

consistency in how different extreme weather events were recorded.

The NOAA database includes 49 different event types, with each record containing date,
location (state and county), property damage, crop damage, injuries, and fatalities. In our
methodology, we aggregated the 49 event types into “main event” categories, following the
Integrated Research on Disaster Risk (IRDR) peril classification and hazard glossary, as shown
in Integrated Research on Disaster Risk (2014). The main event categories consisted of the
following: Earthquake, Volcanic Activity, Flooding, Landslide, Wave Action, Convective Storm,
Tornado, Winter Convective Storm, Heat, Cold, Fog, Tropical Cyclone, Drought, and Wildfire.
These events were further sorted by the state and county in which they occurred along with the

year in which the event took place, with the goal of normalizing the data based on these factors.

A simple, scalable L&D normalization equation that is both spatially and temporally
consistent is applied to the cost values. As outlined in the literature review, there are a variety of
normalization methods implemented for trend analysis of natural hazard costs. For example,
Weinkle et al. (2018) developed the following normalization equation (Eq. 1). First, the cost total
(Dy) is inflation adjusted with the adjustment variable (1,,), then it is further normalized with the
real wealth per capita of the impacted area (RWPC,,) and a county population adjuster (P1g/y)-
The indices functioned as multiplicative indices to generate the normalized cost data (Dg,g) as

shown in Eq. 1.
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Dyo1s = Dy X I, X RWPC, X Pyy1gy (1)

A similar approach is used in this study with a focus on larger spatial scale and multiple
natural hazards. The normalized damage, D,,, is calculated in Eq. 2. To adjust for inflation, the
monetary value of property damage was adjusted to the CPI for calendar year 2018 from the year
the event actually occurred. The CPI data were retrieved from the Bureau of Labor Statistics at
the U.S. Department of Labor. The SVI is included to account for the capability of a household
to withstand event impact. Finally, population density is included to explain the magnitude of the

impact, based on the assumption that more people exposed increases L&D potential.
Dy = D; X SVl X PD,, . )

In Eq. 2, D; is the inflation adjusted to 2018 event cost, SV 1y, ) is the CDC SVI
percentile rank in year y for county ¢, and PD is the population density percentile rank based on
event year and county. The CDC SVI is one of the most widely used indicator models for social
vulnerability (Wood, Sanders and Frazier 2021). The CDC SVI database has indices from the
year 2000, 2010, 2014, 2016, and 2018 and the CDC will continue to release new data every
other year. At the time of this study, the 2020 data had not been released. In this application,
metrics for the years between CDC SVI release years are linearly extrapolated to fill in during
normalization. The CDC SVI uses a percentile ranking for each census tract, which allows for
easily interpretable data and as a result shows the spread of vulnerability more evenly without
explicitly displaying vulnerability outliers (Tarling 2017). In this normalization approach the
data are grouped by county rather than census tract since the loss and damage cost data are
provided at the county level. This county grouping would account for the potential loss of census
track outliers the percentile ranking may miss since the values would be averaged out across a

county grouping. The percentile rank functions as a consistent comparative metric facilitating
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direct comparison across counties in the United States and across the years in which the data are
sampled to account for changes in socioeconomic vulnerabilities over time. In order to keep the
normalization equation variables consistent, the population density was also converted to a
percentile rank. This ranking applies a homogenous vulnerability index for comparison between
counties. Reducing vulnerability outliers keeps general vulnerability patterns for the impacted
area but prevents unique locations from entirely changing the shape of the damage data. As loss
and damage data become more resolute and accurate to impacted locations, comparison at the
census tract level may be necessary, in which case vulnerability at a smaller scale will be crucial

to understand.

If the desired outcome consists of cost estimates over a period of time, understanding the
general distribution of costs and the nature of extreme weather occurrence in the location of
interest requires statistical representation to develop a model for cost estimation. In order to
account for the uncertainty in L&D estimation, we fit the natural logarithm of the data to
probability distributions from which potential L&D can be generated using Monte Carlo
simulation. The normalized data for a specific extreme event type and location were fitted
against 85 different candidate functions using the Kolmogorov-Smirnov test to determine the
best fit. Once a best-fit distribution was obtained for a specific extreme weather type and region,
that function was subsequently used to represent the extreme weather type and region profile in

the succeeding model simulation.

During this process, it was discovered that the fitted distributions typically did not
capture rare and highly damaging events, leading to distributions with infinite moments and
failing to accurately replicate the historic data consistently. This issue was addressed by

Blackwell (2015), who observed a USD 200 billion difference in damages based on the
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distribution used to represent the hurricane impact. This is important because it strongly impacts

the cost-benefit analysis results in justifying whether to invest in risk mitigation measures.

Based on the extreme value theory (EVT), using a separate distribution to replicate heavy
tail events is preferred for modeling extreme losses (Katz 2020). The EVT has a growing
application in measuring high-cost losses from natural hazards, for example, modeling
windstorm, rainfall, wildfire, earthquake, and snowfall losses. In many cases, the goal of the
application is to price the events for future expectations and probabilities to inform decision
making. For example, Zimbidis et al. (2007) measured earthquake risk via the EVT to assign
respective probabilities to the extreme high-cost events. Recent application has seen a similar
approach using the EVT to compute probabilities of unobserved rare heatwaves not seen in

historical records (French, et al. 2018).

When looking at cost extremes, studies often use a specific cost threshold to separate
high-cost events from less costly events to build the end tail distributions, specifically in the case
of the EVT because of the focus on modeling extremes. In one particular example, McNeil who
used the EVT to estimate end tail loss of Danish wildfires fitted multiple distributions to find a
single best performing distribution of extreme events (extreme events were classified as events
over one million Danish Krone) from 1980 to 1990 (A. J. McNeil 1997). In our study, the
application of the EVT led to similar results when compared to fitting the individual distributions
to end tail. We do see, however, the need for more robust testing of EVT distributions for

application within our hybrid simulation technique as a topic of future research.

Rather than establishing a specific monetary threshold as done in other EVT studies, we
define the top 10% of the data for each region/hazard combination as high-cost events to be

separated for data fitting in order to more accurately represent the dynamic of the data at the end
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tail in a region. This cutoff was implemented to both represent the unique features of the specific
region/hazard combination and ensure that a large enough sample size was obtained to accurately
fit the data. Furthermore, although many end tail fitting methodologies focus on fitting a single
distribution to a single event data space, our approach fit many different hazard and regional data
combinations to different distributions depending on the best fit found during testing. The value
of the threshold can be revised and evaluated using a sensitivity analysis to determine the most

appropriate threshold for different regions and hazards.

Taking the most extreme instances and fitting them separately allows for a more accurate
characterization of these events. The reason for the selection of the top 10% part of the loss and
damage cost distribution is that the “end tail” behavior is a unique problem due to the limited
number of low probability, high consequence events in the sample. Furthermore, the top 10% of
the distribution was selected using the Kolmogorov-Smirnov test in order to include enough
event samples to create a confident distribution fit that can be consistently applied to each event
and location. An example of the two-step data fitting process is presented in Fig. 2. The best-fit
distributions for the convective storms in the Midwest were determined to be the generalized
logistic and the Johnson SB distribution. This process was performed for each hazard/region
combination, resulting in different distributions for each combination, depending on the

distribution that fit best when tested.

For example, along with convective storms, the following list consists of the other best-fit

distributions for hazards in the Midwest:

. Winter convective storm: A T-distribution for the nonextreme events and an
exponential power distribution for the end tail;

« Flooding: Log-normal distribution for the nonextreme best-fit and a Gompertz
(truncated Gumbel) distribution for the end tail distribution.
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Midwest Convective Storm Best-Fit Distribution Generalized b Midwest Convective Storm Best-Fit Distribution Johnson SB
(a) Logistic Distribution (¢ = 1.34, loc = 5.97, scale = 1.44) ( ) Distribution (a = 1.53, b= 0.70, loc =9.51, scale = 8.81)
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Figure 2: Two-step data fitting process. The log-normalized data for Midwest convective storms
was fitted across the entire data (a) and then for the events in the top 10th percentile (b). The
vertical line before 10 on (a) indicates the top 10% of the data that was fitted again on the right
(b). The red curves in (a) and (b) represent the probability density function (PDF) of the best-fit
distribution.

The top 10% of the data was fitted following the same process as previously described,
using the Kolmogorov-Smirnov test to determine the best fit for the distribution. In many cases,
the end tail distribution required truncation prior to distribution fitting in order to replicate the
historic distribution. This distribution was then tested by randomly generating samples to ensure
that the fit is a realistic representation of the data due to frequent cases of heavy tailed
distributions resulting in disaster costs greater than the wealth in the represented area. The fitting
process also occasionally required more samples than the number of samples in the top 10%, in

which case the threshold was expanded to include additional events.

Once the two distributions were created, one to represent the lower 90% of the data and

another for the top 10%, these distributions were placed into a Monte Carlo simulation
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(MCS). The simulation uses historical event frequencies to establish the probability of

occurrence of a specific extreme weather event type in the area of interest by dividing the

number of records for each extreme weather event type by the observation period (in days). The
historical L&D data along with the fitted distributional form from the previous step were used to

generate a random cost outcome from the distribution to represent L&D.

This model was then utilized in simulation to generate samples that represent a 20-year
period for the selected location and extreme weather category (Fig. 3). The 20-year period was
selected to directly compare to the historic data. Each day (time = #) is represented in the
simulation as an extreme weather event either happening or not, which is determined by a
random outcome based on the historic event frequency (total historic events divided by the total
number of days in the historic data recording period). If an event does not occur, the simulation
moves to the next day (¢ =¢+ 1). Should an event occur, however, the model then determines the
associated costs based on the corresponding event type L&D distribution. Once this is
determined, the model moves to the next day in the simulation and continues this process until
completion of the 20-year period. This creates a single sample and is repeated 1,000 times in the
MCS. The sample size of 1,000 was determined experimentally as convergence towards a

relative mean value was found in the model with reasonable computational demand.
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Figure 3: Simulation flowchart for a single hazard/location

The hazard loss and damage generation step in Fig. 3 uses the fitted distributions from the
previous step to generate the cost based on the historic data. This process flow is displayed in
Fig. 4. The variable C represents the realized cost in the simulation, Co.90 represents the 90th
percentile cost of the L&D of the specific extreme weather event type and region. These costs
are compared to determine if C is greater than Co.90; when this is the case, the end tail

distribution is used to re-generate a simulated cost.

Generate Cost Generate Cost
» From Initial » From End Tail
Distribution Distribution

Final
o Costof

Event

Figure 4: Generation of damage cost for a specific hazard type. C is the realized cost in the
simulation, if C is greater than the 90th percentile threshold it is replaced with a cost generated
from the end tail distribution.
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After verifying that the simulation results fit the historic data, respective extreme weather
event trends can be evaluated. The model can then be applied to future extreme weather event
scenarios according to anticipated changes in event frequency/severity and demographics. These
results can be compared with the status quo (base case) scenario to estimate future L&D with or

without the introduction of risk mitigation strategies.

3.4 Model Validation

The aforementioned methodology was applied as separate simulations for 201 unique
region and extreme weather event type combinations, each run 1,000 times over a 20-year
period. The results from each individual simulation were first compared to normalized historic
data in order to understand how well they represented historical observations. This was
accomplished by calculating the percentage difference via the following equation for each of the

1,000 runs:

[(Historic Mean) — (Simulated Mean)] 3)
Historic Mean

% mean dif ference =

The average p-value of the historic data following the Kolmogorov-Smirnov test of these
201 combinations was 0.680 with a variance of 0.088. The distribution fits were good
considering the variety of distributions presented with the historic data.

By using the mean value, both the individual trial performance and the overall simulation
performance can be examined since the mean is both a function of the total events that take place
and a measure of the center of the data. Overall, 187 of the 201 simulations showed a percent

mean difference below 10%. Despite a few outliers that may be addressed in further testing or re-
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fitting distributions, generally the simulation was able to reasonably reproduce the L&D

associated with historic data representing extreme event types occurring in the areas tested.

3.5 Discussion

The efficacy of this hybrid simulation approach, as expected, relies on a sufficient sample
size of historic data, which is the primary input for the model. The average percent mean
difference of the combined 201 simulations was 5%. Slightly better results were achieved when
the input sample size exceeded 1,000 historic events. This does not mean the simulation cannot
be useful when applied to sample sizes below 1,000 historic events, only that it may somewhat

reduce confidence in the results.

As seen in Fig. 5, the number of historic events is not the only variable impacting model
performance. The variance represents the overall range of possible L&D that is incurred in an
event. As the variance increases, there is less consistency in the event outcomes, making the
ultimate modeling and data fitting process more difficult. Aside from a few clear outliers, as the

overall historic cost variance increases, the percent mean difference also increases.
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Figure 5: Percent mean difference as a function of the variance in historic cost of an event. The
red line shows the trend.

It can be seen that the variability in the historic data propagates into the model and
corresponding cost outputs. This relationship is further explained in Table 1, where the extreme

weather types with the most events and smallest variability lead to the smallest percent mean

differences.
Total Average Historic Variance No. of Test
Events Mean of Event Costs (Log Samples
Difference Transformed)
Convective storm 393,598 5% 4.95 57
Flooding 83,167 6% 7.10 56
Tornado 26,423 4% 6.34 33
Tropical cyclone 3,759 13% 7.95 13
Wildfire 853 6% 6.89 4
Winter convective storm | 29,191 4% 5.87 36

Table 1: Model performance comparison by event type. The highlighted rows include the
smallest average mean difference or the smallest variance.
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This is even more evident when examining the empirical distributions of the historic
L&D data. For example, when comparing the historic data of convective storms in the Midwest
and tropical cyclones in Texas, the percentage mean differences are 1% and 15%, respectively.
Midwest convective storms had roughly 22,000 events and a historic cost variance of 5.60
compared to Texas tropical storms that consisted of 120 events and a historic cost variance of
15.39. These two combinations were selected to highlight the range of differences between
region and state sample sizes in the historic data and to show inherent differences in the range of
possible L&D for different event types. Although tropical cyclones have a much larger range of
outcomes compared to convective storms, the sample size for Texas tropical storms is so much
smaller than for Midwest convective storms, creating greater difficulty in confident data

modeling.

However, even though the model is not as close to the mean in cases of smaller sample
sizes, it does not necessarily imply that the results are not useful, only that the estimated results
are less precise. This is a common phenomenon in any extreme weather analysis where sparse

data exist for low probability, high consequence events.

3.6 Conclusion

By developing a better understanding of L&D associated with different extreme weather
event types in various climate regions, it provides a basis for addressing what to expect in terms
of L&D based on future climate projections. The model and methodology described herein can
help guide decision making in future infrastructure adaptation investments by creating a cost

comparison of inaction versus implementation of candidate risk mitigation strategies. It is based
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on the premise that practitioners desire to make more risk-informed investment decisions using a

simple, practical framework given limited time and resources.

As previously discussed, output comparison of the end tail values, specifically the
maximum cost events in the simulated period, presents a unique challenge due to the limited
historic data for extreme weather events. This is further amplified if an extreme event is not
present in the historic data. This issue can be potentially addressed by using an expanded data
set, perhaps with a sample size threshold, to act as a benchmark for the normalized maximum

costs.

Furthermore, one must be mindful that L&D model estimation is presently limited to only
property damage effects of extreme weather events; intangible and indirect damages must be
quantified to develop a more complete picture of the L&D impacts of an event on an area. When

these empirical data become available, they can be incorporated into the approach espoused.

This methodology is unique in its approach to modeling extreme weather loss and
damage. Through development of this methodology, L&D data can be used as another tool in
adaptation decision making while limiting the data demands of most hazard cost projection and
analysis. The added benefit of this approach is that it can become an even more impactful

resource over time as the databases gain more entries from the occurrence of future events.
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Chapter 4

Extreme Weather Risk Projection Using a Hybrid Simulation Technique

There are clear indications that climate change is affecting weather and other climate-
induced extremes in every region across the globe, and trending in an even more concerning
direction. To prepare for this increasing threat, climate adaptation measures must consider risk
assessment methods that capture scenario-based loss and damage to support cost-benefit
analysis. This study presents a risk projection approach that builds on historical loss and damage
data from extreme weather events to evaluate potential losses under future climate scenarios.
Loss and damage of historical extreme events are used as a proxy measure for severity of
disasters. A hybrid Monte Carlo simulation technique is then applied to develop disaster loss
projections under climate change and used to estimate return periods of extreme events based on
the projected losses. Application of this methodology is illustrated using flood hazard in the
Northeast region of the United States. The results are in good agreement with other literature on
flooding impacts in the region in terms of expected return periods of large flooding events. These
findings suggest that this approach could function as a promising screening tool to help guide

climate adaptation planning.

4.1. Introduction

The most recent Intergovernmental Panel on Climate Change (IPCC) assessment report
affirms that the trending rise in global surface temperatures along current emissions scenarios
will bring many changes to climate systems, including increases in frequency and intensity of hot

47



extremes, heavy precipitation, and agricultural and ecological droughts (Masson-Delmonte, Zhai,
et al. 2021). Furthermore, with each additional increment of global warming, these effects are
expected to become more pronounced. Projecting these changes and the consequential impacts
are fundamental to climate risk analysis. Absent this information, it is challenging for decision-
makers to justify investment in adaptation strategies. Armed with better information, cost-benefit
analysis can more accurately depict the efficacy of candidate adaptation strategies to address

anticipated needs (Nissan, et al. 2019).

The availability of historic loss and damage (L&D) data from extreme weather events
offers an opportunity to create a baseline from which to estimate future impacts. A single
catastrophic event can lead to a broad range of outcomes, including human casualties, property
damage, loss of assets, community disruption, loss of supply chain, mental health issues, and
other negative economic, social, and environmental consequences (Botzen and Van Den Bergh
2009). The purpose of this study is to develop a comprehensive approach for evaluating the cost
of future disasters beyond relying solely on property damage to support of climate risk-based
decision-making. Our study builds on a hybrid simulation technique developed in prior work
(Doktycz, Abkowitz and Baroud 2021) that develops a base simulation model of historic L&D
costs for extreme weather events in the United States over the past two decades (2000 to 2019).
Our proposed method utilizes the outcome of the simulation to develop a probabilistic
framework that estimates future L&D risk using expected changes along different climate change
pathways. This is performed by adjusting the L&D cost probability distributions based on the
future mean annual precipitation for the region in three Shared Socioeconomic Pathway (SSP)
scenarios. While the methodological approach is applicable to any type of extreme weather

event, flood risk is selected as an illustrative example in this paper.
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The technical burden of obtaining credible inputs to estimate flood risk requires detailed
data of the study region, including the return period of extreme flooding events, vulnerability of
exposed assets, and the type of economic activity in the affected area (Pellicani, et al. 2018).
Recent research has made efforts to develop accurate probabilistic flood loss estimation models
that incorporate fewer variables to reduce computational demands for determining flood

vulnerability (Apel, et al. 2009).

High resolution studies at the community level are still necessary to fully prepare
infrastructure planning based on expected future flood risk (Porter, et al. 2021). The data
demands for future flood risk projection are well-described by Bates, et al. (2021) in their
flooding analysis at 30m spatial resolution for both current and future time periods under the
RCP4.5 emissions pathway. The study utilized a high-resolution hydraulic model based on
LISFLOOD-FP code which converts boundary conditions of rainfall, river flow or coastal

extreme water level to predictions of flood depth, flow velocity, and inundations extent.

While hydraulic models provide an accurate evaluation of flood risk, reducing the
technical and computation burden of future flood projection provides a complementary approach
to inform risk mitigation decisions for vulnerable communities. Our proposed risk projection
methodology functions as a screening tool to identify hazards and scenarios requiring higher-
resolution analysis or a physics-based modeling approach to more accurately evaluate the risk.
Moreover, while demonstrated herein for flood risk, the approach is transferable to other extreme

weather and climate-induced threats.

To evaluate future climate conditions, we use the products developed by the World
Climate Research Programme’s Coupled Model Intercomparison Project (CMIP) to generate

hydrologic projections of the frequency of flooding events (Wobus, et al. 2017). CMIP
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comprises major climate models from different groups and incorporates them into a simulation
of the 20" century’s climate for projecting into the 21% century (Nyaupane, et al. 2018). A
primary output of CMIP for flooding projection is mean annual precipitation (Raff, Pruitt and
Brekke 2009). In addition, CMIP produces climate projections along socio-economic pathways
based on global greenhouse gas emissions under various future emissions scenarios. Studies have
found a significant positive relationship between precipitation and flood damage, along with
expectations for increased damage should the world continue along current climate pathways

(Davenport, Burke and Diffenbaugh 2021).

Our study utilizes a modeling methodology to project L&D for flooding events for near
(2021-2040), mid (2041-2060), and long-term (2080-2099) time horizons, across three different
SSP’s (SSP1-2.6, SSP2-4.5, and SSP5-8.5). SSP1 represents a sustainable pathway, SSP2
represents a middle case, and SSP5 represents a fossil-fuel dependent future. Our methodology
reduces data requirements by utilizing normalized flooding costs rather than an expansive list of
detailed information required to model flood events, thereby reducing the technical burden on
local decision-makers. Often methodologies require a plethora of data inputs and outputs that are
not provided in ways that the public can readily utilize in decision making. It is worth nothing
that the objective of our methodology is not to replace existing risk analysis approaches or
physics-based, data-driven and simulation approaches, as they all contribute to a comprehensive
understanding of flood risk analysis (Mosavi, Ozturk and Chau 2018). Rather, it provides an
initial screening tool to determine high risk areas and to provide flood risk assessment across a

defined region.
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4.2 Risk Projection Methodology

4.2.1 Review of Hybrid Simulation Technique

The risk projection methodology starts with the base hybrid simulation technique which
normalizes the existing L&D cost data to then be fit to a distribution to represent the probabilistic
distribution of flooding costs in the area of analysis. Once fit to a distribution, a Monte Carlo
simulation is used to develop expected costs the hazard would cause in the region over a
specified time period if no changes to the area are made. From there, future projections can be
performed by adjusting parameters in the probabilistic distribution. The changes were
determined from the ensemble of 31 models utilized in CMIP, version 6 (CMIP-6). Three future
time periods (2021-2040, 2041-2060, and 2080-2099), under the aforementioned three different
SSPs were considered. The change in mean annual precipitation for the region along each
scenario is used to shift the probabilistic L&D cost distribution to be simulated as the new set of

parameters for future flood L&D projection.

The simulation approach uses normalized L&D cost data to model historic property
damage totals from an extreme weather event type in the United States beginning from the year
2000 (Doktycz, Abkowitz and Baroud 2021). The L&D cost data comes from the NOAA Storm
Events Database, which includes 49 different event types, with each record containing date,
location (state and county), property damage, crop damage, injuries and fatalities (NOAA 2022).
The database provides L&D costs dating back to January 1950, although the recording
procedures were not formalized until 1996 when all 48 event types started to be recorded. The
initial step involves normalizing the historic data for comparison between different locations and

years in which the events occurred according to Equation 1.

51



D, =D;*SVIy o * PD,, . (1)

Equation 1 calculates normalized cost (D,,) by inflation-adjusting damage to a 2018 U.S.
dollar value (D;). The cost is further adjusted using the CDC Social Vulnerability Index (SV1j,¢))
for the respective year and county in which the event occurred (denoted with subscript y and c,
respectively), to account for the variability across regions in their ability to respond to disasters
(Mechler and Bouwer 2015). SVI is comprised of a percentile rank index of 15 census variables
that define a community’s vulnerability to potential disasters (CDC/ATSDR 2021). The CDC
SVI index has measurements for the years 2000, 2010, 2014, 2016, 2018. The values in years
between corresponding measurement indices were linearly extrapolated. The final variable in the
normalization equation is the percentile rank of the population density for the impacted region

for the respective year and county (PD,, ), representing exposure to households in the impacted

arca.

Following normalization, the data was grouped by state and extreme weather event type
in order to generate sufficient sample sizes to develop a damage function. Six event types were
considered, one of which was flooding. Then, probability distributions were fitted, and the
Kolmogorov-Smirnov test was used to identify the distribution with the best fit for each hazard-
region combination. A separate distribution was considered for the top 10% of the data to better
capture the end tail of extreme events. Specifically, the end tail distributions fits were assessed
using Extreme Value Theory (EVT) where the generalized Pareto distribution consistently
returned a more representative distribution for the tails of losses. As a result, each end tail
distribution was fit with a generalized Pareto distribution through calculation of the L-moment
statistics. This distribution has been proven to be a useful method for estimating the tails of loss

severity distributions (A. J. McNeil 1997).
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The two distributions were then used to simulate potential costs of the extreme weather
event of interest based on 1,000 samples of a Monte-Carlo Simulation (MCS) over a 20-year
time period for a specific region and event type. The daily event frequency used in the MCS to
determine whether an event occurs on a given day is based on the historic event frequency. The
historic event frequency is calculated as the total number of events divided by the total number
of days recorded in the data set. If an event does occur in the simulation, the severity of the event

is determined using the L&D function discussed previously.

A process flow diagram is presented in Figure 1. The two distributions represent the
overall cost, where initially a value is randomly selected from the first distribution (“C” in Figure
1), the distribution which represents the entire range of events. If the value selected is greater
than the 90" percentile threshold (“Co.90” in Figure 1), it is determined to be an extreme event
and is removed and replaced by a new value selected from the second distribution, representing

the top 10% of data in that region for the selected hazard.
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Figure 1: Monte Carlo Simulation process flow

During the simulation, when an event occurs, the simulation generates a cost based on the

representative probability distribution of losses determined in the previous steps for the specific
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region and event type. The entire series of costs is subsequently collected at the end of the
simulation. The data set therefore consists of 1,000 twenty-year periods, with each twenty-year
period containing a record of events and costs that occurred. We found that 93% of the simulated
historic cost totals were within 10% of the actual historic costs, and 77% were within 5% of the

total 201 region/hazard combinations.

4.2.2 Risk Projection Methodology

While, the risk projection approach is described in this section following a case study of
flood hazard in the Northeast region of the U.S., the method can be applicable to any type of
hazard-region combination. The Northeast region consists of Connecticut, Massachusetts,
Maryland, Maine, New Hampshire, Rhode Island, New Jersey, New York, Pennsylvania, and

Vermont.

The annual percent change in mean rainfall for each time period and SSP combination is
applied in the hybrid Monte Carlo simulation model to the Northeast region. Future flooding
costs are generated through use of the percentage change in mean annual precipitation in the
region based on CMIP-6 generated data (Almazroui, et al. 2021). This functions as a relative
measure for the expected change in the cost of flooding events (Guilbert, et al. 2015);
(Zscheischler, et al. 2018); (Slater and Villarini 2016). The base costs are defined by the
normalized (using calendar year 2018 monetary values) historic flood data for the Northeast
region. Using the percent change in mean annual rainfall as forecast by CMIP-6, a mean shift
was then applied to the corresponding flooding probability distribution of losses (see Table 1),

which is then converted to the log value in the corresponding damage probability distribution
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Northeast United States

Region/Scenario | Near | Mid Far
SSP1-2.6 3.58 3.86 5.36
SSP2-4.5 3.03 5.22 7.79
SSP5-8.5 3.67 5.65 11.37

Table 1: Percent mean shift applied to Monte Carlo Simulation probability distribution of losses
in the Northeast United States. Values in bold are the percent shifts which were tested in this
analysis (Almazroui, et al. 2021).

The percentage changes in Table 1 represent the broad range of possible future scenarios
under the SSPs. Increased rainfall heightens future flood risk, increasing the expected costs from
flooding events. Costs are a necessary component to take into account when evaluating the

efficacy of climate adaptation practices (Prein, et al. 2017).

The mean shifts were applied to the damage function representing each state,
respectively. The occurrence probabilities of various flood sizes can be determined through
probability distribution techniques of varied types (Maghsood, et al. 2019); (Bhat, et al. 2019).
Using the probability distribution of costs as a proxy measurement for flooding events in an area,
applying the change in annual rainfall to shift the average cost of events in the probability
distribution of losses also accounts for the change in event frequency and magnitude. More
specifically, the new probability distribution of L&D increases the cost outcomes in an event,
making these events more costly in the future. Note, however, that this projection only accounts
for future societal changes or adaptations that are included in the SSP scenarios which derive
global greenhouse gas emissions and does not consider any further increases in exposure such as

direct population increases in an area and other forms of development. This methodology
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projects near present day costs (2018 USD) which can be easily adjusted for future inflation,

vulnerability or exposure for a region’s future scenario planning.

The future projection of flooding impacts consisted of shifts in one or both of the mean
and standard deviation of the probability distribution of losses. A shift in the mean represents a
change in the average severity of a flooding event, whereas a shift in the standard deviation
represents a change in the range of possible outcomes under the scenario. This resulted in three
different scenarios for each SSP (see Table 2). Note that Body represents the distribution of the

common occurring flood events and Tail represents the extreme event distribution.

Scenario SSp Time Body Shift Tail Shift
Frame

Scenario1 | SSP1-2.6 | near mean mean
Scenario 1 | SSP2-4.5 | mid mean mean
Scenario 1 | SSP5-8.5 | far mean mean
Scenario 2 | SSP1-2.6 | near mean mean + st. dev.
Scenario 2 | SSP2-4.5 | mid mean mean + st. dev.
Scenario 2 | SSP5-8.5 | far mean mean + st. dev.
Scenario 3 | SSP1-2.6 | near mean + st. dev. | mean + st. dev.
Scenario3 | SSP2-4.5 | mid mean + st. dev. | mean + st. dev.
Scenario 3 | SSP5-8.5 | far mean + st. dev. | mean + st. dev.

Table 2: The applied shift among climate scenarios. The Body shift represents the distribution of
the common occurring events and the Tail Shift is the distribution of the less frequent high-cost
events. Standard Deviation is abbreviated as st. dev.

The output is expressed in the normalized expected annual cost, which can be utilized in

estimating the change in the expected return periods of flooding events and associated L&D cost.
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The results from the simulated scenarios are measured in the change in return period of a
100-year cost event. This flooding return frequency change allows for comparison between
different climate scenarios (Lantz, Trenholm, et al. 2012). Through use of the benchmark flood
scale, more direct cost applications can be used for the local area although this is primarily used
to highlight the change in risk due to future climate change expectations. Furthermore, the key
output of the simulation is a normalized dollar value; those costs must be adjusted to the specific
region to obtain direct cost projections for the studied area. For this case study, only the change

in return periods will be highlighted.

4.3 Application Results

We define an initial return period based on the historic data and then use it as a basis of
comparison with the calculated return periods from the simulation data to establish expected
changes in flood risk. It is important to understand that communication of risk and return periods
has considerable influence on the estimate of risk (Ward, de Moel and Aerts 2011), so through
use of associated L&D costs of flooding events, this form of risk analysis can be utilized as a
screening tool for where fine resolution modeling applications are warranted, reducing the
overall technical burden. The results in this study are displayed in the form of the change in
expected return period over time. For example, in the base simulation using the historic data
distributions, a 100-year cost threshold (annual probability of 0.01) may become more common

in the future scenarios.

Return periods are commonly used in frequency analysis, including its application to

flood risk. We define the return period of an event as the inverse of the probability that the event
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will be exceeded in any given year. In this study, return periods are represented based on the
probability of damage and losses incurred from floods instead of discharge thresholds.
Specifically, we use the projected probability distribution of losses evaluated using the hybrid
simulation technique (Doktycz, Abkowitz and Baroud 2021) and corresponding mean and

standard deviation shifts based on climate projections.

The simulation outputs a data set containing flood events and associated normalized
costs, with the resulting event costs gathered (cost is used as a proxy measure for flood severity)
to determine the overall frequency of occurrence over time. The resulting values are associated
with a return period based on the calculated probability as the mean number of years for which
the value will be surpassed once. After the completed simulation, the events are categorized by
percentiles for determining their return period based on the amount of time (in years) elapsed in
the simulation. For example, the simulation spans 1,000 twenty-year periods, resulting in a total
0f 20,000 years of simulated flood data for the region based on the probability distribution of
L&D derived from the historic data. This simulation primarily functions to represent a range of
future expected costs to understand future expected flood risks. A direct way to display this
change in risk is through the expected change in return periods at the cost thresholds determined
from the historic base simulations. Using this data, return periods can be determined using the
normalized cost as a proxy measure for the severity of an event. Events with a 0.01 probability in
this model are defined as a 100-year event, meaning that there is a one in one hundred chance the
cost will be exceeded in any one simulated year. The shift in the potential damage distributions

based on this approach is displayed in Figure 2.
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Figure 2: Distribution of log transformed normalized potential damages of the tail behavior for a
flooding event. The zoomed in section shows the extended tail of the shifted distribution
compared to the initial case. The two vertical lines display the historic (black) and new scenario
(red) 100-year events.

Figure 2 shows the range of costs associated with the tail of a representative damage
probability distribution in the model simulation. All costs calculated in this analysis have been
normalized to 2018 USD for direct comparison across time. Shown in blue is the distribution of
costs from flood events using the historic case damage distribution, and displayed in orange is
the distribution based on the expected change in mean annual precipitation in the region. As seen
in Figure 2, there is a shift towards increased costs when considering the expected change in
mean annual precipitation in the region. As a result, what was a 100-year event in the initial
distributions can be expected to become a more common event under the new climate scenarios

due to the shifts applied from the expected climate change pathways.

To understand the impact of a changing climate on loss and damage from flood events,
we evaluated the shift in the likelihood of a 100-year event (based on the simulated loss and
damage probability distribution) for each state across the entire Northeast region. These figures

are developed at the state level as this was the highest resolution the L&D data allows for across
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all states when fitting the probability cost distributions. Figures 3-5 show this shift in the
likelihood under the three scenarios listed in Table 2. The scenarios follow three different SSP
pathways combined with different applied shifts in order to visualize the impacts these shifts had

on the results.

$5P1-2.6 Near Term (2021-2040) 100yr Event Probability Shift - Scenario 1 $5P2-4.5 Mid Term (2041-2060) 100yr Event Probability Shift - Scenario 1 $5P5-8.5 Far Term (2080-2099) 100yr Event Probability Shift - Scenario 1
Log 100y Shtt Log 100yr Skt Log 100y Shft

ID lo la
10
10 10

Figure 3: Scenario 1 projection of change in probability of 100-year events in the Northeast
United States

Recall that Scenario 1 represents only a shift in the mean of the damage function,
representing a general increase in future event magnitude. This led to minimal change in the
near, mid, and far time horizons. By contrast, Figure 4 displays Scenario 2 results which
represent a shift in the mean of the main body distribution and a shift to both the mean and the

standard deviation of the extreme events representative damage function.

-4, - - SSP5-8.5 Far Term (2080-2099) 100yr Event Probability Shift - Scenario 2
$5P1-2.6 Near Term (2021-2040) 100yr Event Probabilit Shift - Scenario 2 S5P2-4.5 Mid Term (2041-2060) 100yr Event Probability Shift - Scenario 2 ( ) 100y y
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Figure 4. Scenario 2 projection of change in probability of 100-year events in the Northeast
United States

g
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Figure 4 clearly indicates a larger increase in the frequency of 100-year events relative to
the historic data (base case), and particularly so for SSP5-8.5 pathway in the longer term (2080-
2099). Figure 5 displays results for Scenario 3, which consists of shifts to the mean and standard
deviation of both representative damage functions (the distribution body and the tail extreme

events distribution).
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Figure 5: Scenario 3 projection of change in probability of 100-year events in the Northeast
United States

As expected, there is a larger increase among all SSP’s, again with the most intense
change associated with the longer-term scenario, where almost every Northeast state experiences
an average increase in annual probability to 0.08. Even in the near-term simulation (SSP1-2.6),
each state realizes an increase from the historic 100-year return period (probability greater than
0.01). This increase means the probability of what is currently considered a 100-year event level
of damage will develop a shorter return period than 100 years in the near future. More
specifically, today’s 100-year event in the Northeast following scenario 3 projections would
become a 12.5-year event in the next 80 years since the annual probability of a similar outcome

magnitude is 0.08. These findings are generally consistent with other studies which conclude that
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flood frequency and severity will increase, and in turn increase expected L&D. Interestingly, the
expected L&D for New Jersey shows a limited relative change in the Northeast. This result can
be explained by the historic New Jersey data supporting the hybrid simulation technique. In New
Jersey, the historic L&D data has a left skew, which creates a distribution that contains a larger
number of costly events, in turn, the increases reflected in the simulation created a smaller

relative increase than the surrounding states.

These results are consistent with other literature that affirms a difference in expected
damages based on the emission scenarios presented. A 2017 Natural Hazards Earth Systems
Science article, which used hydrologic projections based on CMIP-5 to estimate changes in
frequency of modeled 1% annual exceedance probability flood events in the contiguous United
States, found a difference of 750 million USD per year by 2100 between RCP 4.5 and RCP 8.5
scenarios. With each more intensive RCP scenario, 1% annual exceedance probabilities (AEP)
increased across the entire Northeast United States, finding between two and six times the
frequency of occurrence. The heavier concentrations of increased 1% AEP frequency in the
Northeast were observed mainly in Pennsylvania, New York, New Jersey, Connecticut, Maine
and Massachusetts. When aggregated across the U.S., national annual flood damages were
estimated to increase from approximately USD 3 billion between 2000 and 2020 to
approximately USD 4 billion by the end of the century under RCP 4.5, and to USD 7 billion

under RCP 8.5 (Wobus, et al. 2017).

A study looking at the inequitable patterns of U.S. flood risk in the Anthropocene also
found an increased flood risk of about 26.4% along RCP4.5, including increases in the inland
Northeast region. Similar to the approach taken in our risk projection methodology, these results

were compared to the historic records to demonstrate the change in risk over time. The analysis
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results concluded that U.S. flood losses are currently around $32.1 billion on average and are
expected to rise to $40.6 billion by 2050 under the RCP4.5 scenario. More specifically, the
largest expected increases of absolute annual losses by the year 2050 in the Northeast region
were observed in New York, New Jersey, Massachusetts, Connecticut and Rhode Island (Wing,
et al. 2022), similar to what we observed using our risk projection methodology in the mid-term

scenario.

4.4 Further Discussion

Decision-making under uncertainty necessitates a risk-informed approach, particularly as
it impacts an assessment of the benefits and costs of risk mitigation strategies (Cheong, et al.
2009). In this regard, there is cause for optimism in adaptation to flood disasters, as positive
achievements have been witnessed through economic development, technological improvements
and targeted adaptation interventions. In Europe, for example, fatalities and normalized
economic losses have decreased over recent decades despite an increase in flooded area and

absolute loss (Jongman 2018).

However, additional improvements can be achieved through better understanding of
expected changes in return periods which, in turn, can help make a more convincing case for
adaptation investment. The 100-year event is a well-understood standard for risk analysis which
can help make that argument. Understandably, the methodology described herein does not supply
the level of granularity necessary for evaluating the efficacy of specific adaptation measures, but
it can serve as a screening tool to identify and prioritize locations where risk is heightened, from

which risk analysts can perform a more detailed assessment of viable adaptation strategies.
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There is broad agreement that climate science tends to produce outputs that are difficult to use,
incompatible with the decisions at hand, or too technical for decision-makers to utilize
(Findlater, et al. 2021). It is our hope that this effort provides a simple and practical approach to
help overcome these challenges. Although it is limited by the resolution of available data for
both climate projections and historic events, it demonstrates a proxy-based methodology from
which one can develop future scenario planning through cost-benefit analysis with publicly

available data.

Note, however, that our methodology was limited to the inclusion of only tangible
property damages. Inclusion of indirect and intangible L&D would provide a more complete and
comprehensive assessment of the full cost associated with extreme weather events. Additionally,
this methodology provides an underestimate of future costs from disasters because economic and
population growth continue to act as key drivers of rising impacts from natural disasters (Botzen,
Deschenes and Sanders 2019). Future costs will likely be greater than currently predicted as a
result of added wealth and population growth in specific geographical locations, which can make

the implications of these disasters even more significant.
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Chapter 5

Natural Hazard Intangible Damage Quantification

5.1 Introduction

The future of climate change impacts will undoubtedly have a massive toll on life on
earth. Extreme weather and other climate-induced events can be expected to leave in their wake
damaged infrastructure, human casualties, environmental destruction, and otherwise test the very
societal fabric upon which we depend. Typically, beyond property damage, there is no such
“price of replacement/repair” for the sustained loss and damage that these events cause, such that
the true cost is poorly understood. Yet, a central tenet of policy development is to rely on cost-
benefit analysis to determine whether and how to invest in adaptation approaches to mitigate this
risk. Because indirect and intangible (non-market) damages are not commonly measured in
monetary terms, their impact is omitted from the analysis, making it more difficult to establish a

compelling business case for allocating resources with this intention (Pannell and Gibson 2016).

A growing number of studies have attempted to monetize indirect and intangible loss and
damage relative to direct damages experienced by extreme weather and other climate-induced
events. Typically, these studies are narrow in scope, focused on a specific location, making it
more challenging to apply broadly. As the number of these studies begin to accumulate,
however, it creates the possibility for trends or averages to emerge that may be applicable across
regions. The study reported herein was performed with this objective in mind. In this effort, we

utilize available data on intangible loss and damage in a climate change cost simulation to
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determine a more complete estimate of loss and damage incurred from future extreme weather

and or climate-induced events. Our methodology is illustrated for a use case involving flooding.

5.2 Literature Review

Intangible loss and damage refer to goods and services which are not measurable in
monetary terms because they are not traded on a market (Meyer, et al. 2013). These costs often
include health, environmental, and social impacts. The methods to illicit a value from intangible
impacts include stated and revealed preference methods. Stated preference methods typically
utilize surveys to derive a cost by asking individuals questions which can help to infer a
willingness to pay (WTP) to achieve a result or willingness to make tradeoffs between different

outcomes (Rogers, et al. 2019). Stated preference methods include:

e Contingent Valuation Method (CVM): Asking individuals about values they would
place on non-market commodities if markets did exist (Bishop and Heberlein 2019).

e Discrete Choice Experiments/Choice Modeling: Determining a willingness to pay
through use of choice experiments in which participants must decide between
outcomes with varying characteristics which includes market or non-market goods
(Mariel, et al. 2021).

e Life Satisfaction Analysis: Using life satisfaction survey results with a range of other
objective or subjective measurable variables to assess the association those variables
have on life satisfaction (Fernandez, Stoeckl and Welters 2019).

Revealed preference methods utilize market behavior to estimate the value of a good, deriving
information from observed behavior to determine a willingness to pay (Meyer, et al. 2013). The

most common methods include:

e Travel Cost Method: Using individual’s travel cost data as a proxy for recreational
value (Leh, et al. 2018).
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e Hedonic Pricing Method: Determining the value of non-market characteristics based
on actual market prices, such as housing market impacts (Wei, et al. 2022).

For cases of specific disaster events in an accessible area, contingent value methods are
often used to survey victims to gather information about the event and to correlate those results
with the level of damage experienced. This approach allows for intangible costs to be
represented as a percentage of total costs. A case study in Fredericton, Eastern Canada combined
extreme event analysis, the contingent evaluation method, hydrologic analysis, and down-scaled
general circulation models to develop a four-step framework on a flooding event to estimate the
market and non-market annual average flood damage under different population and climate
scenarios (Lantz, Trenholm, et al. 2012). The authors concluded that non-market costs can
represent up to 50% of total household costs of flooding events. To obtain intangible (non-
market) cost estimates, the study developed CVM scenarios and questions, asking study
participants to understand a hypothetical policy based on a major flood event that had previously
occurred in the region and a more intense flooding scenario than the one that had occurred. The
participants were asked to determine if the impacts to their household were significant enough to
warrant applying for hypothetical compensation. The respondents were also asked to determine
the minimum amount of financial compensation the household would need in order to make
them as well off as prior to the flood event, specifying the compensation should cover damaged
property, personal items, preventative measures, employment, traffic, transit, recreation, and
psychological impacts, among others. These results provided a willingness to accept (WTA) that
could be related to the specific flooding events in the area. The advantage to this approach is the
subjectivity in what constitutes an individual’s intangible costs is kept broad enough to establish

a general associated non-market cost impact to an individual. Since mental health and other
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impacts are not traded on a market, methods such as the Fredericton case study provide a relative

impact to the sector.

A second CVM approach, examining agriculture production in Vietnam, reported similar
results. In this application, local authorities and farmers were asked to estimate damage rates and
unit values. These results were converted to Annual Average Risk (AAR), resulting in direct
intangible and indirect (tangible and intangible) being 1.5 to 2.5 times higher when compared to
direct tangible risk (Nga, Takara and Nguyen 2018). Of those risks, losses associated with clean
up and repair, environmental pollution and business interruption were the major contributors to
the impacts of extreme events when compared to less extreme events (100-year floods compared

to 10-year floods).

Similar findings have been reported for studies using life satisfaction analysis (LSA).
LSA was used to value tangible and intangible costs of flooding in the Philippines used self-
reported accounts as a serviceable proxy for utility. These responses, combined with regional
scale environmental data and the estimated financial impact of the flood damages, allowed for
inferences as to the value of ecosystem services to the individuals. Determinants of life
satisfaction included gender, education, age, number of children and household size,
employment, income, and health/faith/public infrastructure. These attributes were determined
using ordinary least squares on the LSA model, resulting in a conclusion that tangible flooding
impacts should be multiplied by a factor of between 1.4 and 1.7 to arrive at an estimate of total

costs of flooding events (Fernandez, Stoeckl and Welters 2019).

The life satisfaction and social well-being approaches have been gaining popularity in
economic applications because it helps to control some of the bias factors that can be introduced

when surveying willingness to pay (WTP) or contingent valuation methods (CVM), as they can
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create hypothetical markets which do not accurately represent one’s true willingness to pay (C.
Fernandez 2016). A study of the monetization of social well-being impacts from flooding events
found that intangible effects are about twice as large as tangible direct monetary flood losses
(Hudson, et al. 2017). These effects were determined through a mail survey in France to collect a
random sample in three different regions which had been impacted by flooding. The survey
measured overall Subjective Well Being (SWB) and its association with health, home, living
environment, financial situation, family life, social life, and amount and use of free time. The
survey also asked about flood risk perceptions, namely the expectation of the possible increase in
future flooding, worrying about flood probabilities, and past experiences with flooding. Lastly,
the survey asked about current individual flood protection measures. Collectively, these variables
were used to formulate a framework to monetize SWB. This monetization was calculated based
on the trade-off between income and SWB, creating a compensating value which is the ratio of
the marginal effect of the variable of interest to the marginal effect of income on SWB. Flooding
was, to no surprise, correlated with a decrease in overall SWB. The intangible effects were found

to be nearly twice as large as the compensation value of the tangible effects of flooding.

WTP for public investments may not always accurately reflect the expected costs in the
area, further suggesting room for the non-quantified intangible damages in the expected cost
assessment. One WTP study, using CVM for flood risk reduction in Germany, found an average
willingness to pay of nearly double the cost as estimated by climate models for the area. One
could surmise that the climate model underestimate is a result of exclusion of indirect and
intangible damages and the potential for respondents to be motivated to help others by “doing
their part” (Entorf and Jensen 2020). Other WTP studies found similar results. For example, a

study looking at WTP for flood insurance for homeowners along a Dutch river delta aimed to
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elicit risk beliefs and demand for insurance from a low probability, high impact flood found
individuals do not behave in accordance with the expected utility model. The study found WTP
for flood insurance is considerably higher than the expected value for the flood risk homeowners
face and communication of those risks has a significant impact on the level of WTP. Based on
the expected risk in the area, it was found that homeowners are willing to pay flood insurance
rates of between 70% and 175% higher than the expected value of average flood damage per

household under the current climate conditions (Botzen and van den Bergh 2012).

Other LSA approaches contextualize intangible impacts in terms of willingness to pay a
portion of household income to avoid flooding impacts. This type of analysis is useful to
understand individual risk perception although makes it more difficult to place into the context of
the total cost of specific flooding events. One particular study, which analyzed time series data
from 16 European countries, found a sizeable negative impact of flooding on life satisfaction
(Luechinger and Raschky 2009). This study utilized self-reported subjective well-being and
income data as well as flooding event data. The SWB and income data were a product of the
Eurobarometer Survey Series which interviews a cross-section sample of Europeans each year.
On average, a person living in the study region reported a 0.035 lower life satisfaction (on a 4-
point scale) compared to the reference group. Furthermore, income had a significant positive
effect on individual life satisfaction. Additionally, it was found that a willingness to pay for the
prevention of one sure flood disaster was valued at 23.7% of an average household income and
about 0.7% of annual household income to reduce the annual flood probability by its mean of

0.026 to 0 (Luechinger and Raschky 2009).

The generalized approaches to intangible variable costs cover many of the pitfalls more

specific survey measurements such as CVM or WTP can experience. Nonetheless, it is necessary
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to perform such analysis to achieve more focused variable costing. Considering that economic
cost and benefit analysis is the standard for policy decision-making, it is necessary to continue to
develop this science in order to generate more informed policy development. Furthermore, the
deployment of surveys can be resource intensive and expensive, so alternatives such as benefit
transfer, a method of transferring values from existing studies and adjusting them to a different

context can function as an alternative if resources are limited (Johnston, et al. 2021).

The benefit transfer approach was utilized in a case study of flooding in Australia.
Separate intangible loss categories were defined for morality, morbidity, recreation, electricity
outage, road traffic annoyance, road traffic delays, inability to return home, and cultural heritage.
For each category, annual average tangible and intangible loss values were determined for a
variety of scenarios in developing a comprehensive benefit-cost analysis of flood mitigation
planning in the area (Florec, Chalak and Hailu 2017). In this instance, a smaller total ratio of
intangible to tangible losses was reported, with intangible costs representing between 6 and 21%
of total losses. Notably, however, the study did not include much of the costs of recovery time or

other mental health impacts which are typically included in life satisfaction approaches.

Business interruption costs along with site remediation costs are also crucial to the event
loss and damage accounting and are often left out of cost analysis due to the length of time it
takes to determine the magnitude of the costs after an event. An integrated flood risk analysis
using Central Vietnam as a case study combined flood risk curves (FRCs) and annual average
risk (AAR) in monetary values for the agriculture sector of a rural floodplain in multiple
flooding scenarios ranging from 100-year to 10-year return periods (Nga, Takara and Nguyen
2018). The study derived the intangible damage amounts through a CVM method, using a

household survey asking local authorities and farmers to estimate the damage rates and unit
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values of rice and crop cultivation and aquaculture production. The study found total risks
(including all damage types: direct, indirect, and intangible) are significant, between 1.5 to 2.5
times higher compared to the direct tangible losses. Those losses include clean up, repair,
environmental pollution, and business interruptions. Furthermore, the study suggests as direct
damages increase, indirect and intangible losses increase at a higher rate (e.g., the losses in a
100-year event were found to be almost double compared to a 10-year event) (Nga, Takara and

Nguyen 2018).

The definition of intangible values contains a wide umbrella of factors, which makes it
difficult to measure specifically. As the above studies have shown, each study values a different
set of variables using different methodologies. Furthermore, the survey approach to measuring
the relationships leave a lot of the intangible definition interpretation up to the participants of the
survey. As a result of the broad scope of analysis the following methodology presents an
approach to use a generalized approach to account for uncertainties across the approaches to
develop an associated combined intangible and indirect damage factor to the realized direct costs

of a natural hazard.

5.3 Methodology

The aforementioned studies formed the database from which we were able to incorporate
this information in a previously developed Monte Carlo simulation technique previously
developed by the authors to develop cost projections for future climate adaptation decision
making (Doktycz, Abkowitz and Baroud 2021). This approach uses normalized loss and damage

(L&D) cost data to model historic direct property damage for various extreme weather events,
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including flooding. By adjusting the probability distribution of losses based on future climate

change expectations for flooding events in the regions of analysis, future costs are determined.

By including intangible damage cost factors in this methodology, a more complete cost

assessment can be determined for use in performing cost-benefit analysis.

The intangible damage cost factors were defined by flooding studies shown in Table 1,

which included a range of geographical locations, total cost comparisons, and methods to

determine the indirect/intangible multiplying factor. Due to the variety in attributes considered in

each study, combined with the different methods to calculate each attribute, the range of values

were used to account for the non-exact value. Each study had an associated expected cost per

year (which was either from a single event or multiple events in a year); this value was adjusted

to 2018 USD to establish comparative uniformity.

Intangible
Expected Damage
Method Scenario Cost/Year Factor Study
CVM ‘Worst-Case’ $6,000,000 0.396 (Lantz, Trenholm, et al. 2012)
CVM ‘Best-Case’ $700,000 0.501 (Lantz, Trenholm, et al. 2012)
CVM ‘Normal Climate’ $813,000 0.492 (Lantz, Trenholm, et al. 2012)
CVM 100yr Flood $115,000 1.52 (Nga, Takara and Nguyen 2018)
CVM 50yr Flood $215,000 0.83 (Nga, Takara and Nguyen 2018)
CVM 20yr Flood $492,000 0.77 (Nga, Takara and Nguyen 2018)
CVM 10yr Flood $910,000 0.62 (Nga, Takara and Nguyen 2018)
CVM Annual Average $430,000 0.65 (Nga, Takara and Nguyen 2018)
WTP High end Estimate $65 1.75 (Botzen and van den Bergh 2012)
WTP Low end estimate $65 0.7 (Botzen and van den Bergh 2012)
LSA High end estimate $2,000 0.7 (Fernandez, Stoeckl and Welters 2019)
LSA Low end estimate $2,000 0.4 (Fernandez, Stoeckl and Welters 2019)
WTP Annual Average $5,000 0.276 (Florec, Chalak and Hailu 2017)
WTP Annual Average $3,000,000 0.58 (Entorf and Jensen 2020)

Table 1: List of associated intangible damage cost factors for flooding events
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To develop an intangible damage factor distribution, the factors were log transformed to
fit into a truncated normal distribution. In Figure 1, the damage factor distribution used for the
simulation can be seen. The initial distribution of factors from the studies was log transformed
and fit to a truncated normal distribution where factors were randomly selected based on the
distribution. The normal distribution, with a p-value of 0.846, was compared among 85 SciPy
Statistics distributions in Python (Virtanen, et al. 2020). Although there were better fit
distributions, such as the Laplace distribution with a p-value of 0.996, this distribution does not
have a truncated function. The truncated normal distribution allows for the ability to retain true
randomness when implemented in the simulation. The Laplace distribution would have had to be

manually truncated, preventing a true random draw in the simulated model.

Log Intangible Factor Histogram Intangible Factor Histogram Intangible Factor Theoretical Histogram

Figure 6: Left: log transformed intangible damage factors fit to a truncated normal distribution
curve. Center: Actual Distribution of the intangible damage factors. Right: Theoretical truncated
normal distribution using the parameters determined by the distribution fit.

The truncated normal distribution was subsequently integrated into the hybrid Monte
Carlo simulation technique to function as an accessory set of costs along with the direct costs
derived in the simulation. The simulation uses probabilistic cost distributions based on
normalized historic property damage data to simulate a period of time for a specific region of
analysis towards developing probable costs of severe weather events (in this case flooding
events). Once a property damage cost total for an event is created in the simulation, the

multiplication factor is randomly produced from the intangible damage distribution range and the
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product of the two values represents the intangible damage cost. This process can be seen in

Figure 2.

Values Stored to
| Intangible and Direct Intangible
Damage Variables Damage Factor
Multiplier

i

Hazard Direct

t=t+1 No Loss & Damage

Generation

Event

Yes
W

t=End of
Period?

| t=1 |—| Dayt

Simulation
Complete

Figure 7: Monte Carlo Simulation process.

The direct and intangible damage estimates are saved as separate values for comparison.
The total combined costs are calculated after the simulation period is completed. Each simulation
consisted of 1,000 iterations of a twenty-year period. Different climate change pathways are also
considered in the simulation technique to adjust the possible outcomes for scenario-based risk
analysis by adjusting mean and standard deviations of the probability distribution of losses for
the specific regions. The Shared Socioeconomic Pathways (SSPs) represent projected
socioeconomic global changes up to the year 2100. SSP1 represents a sustainable pathway, SSP2

represents a middle of the road pathway and SSP5 displays a fossil fuel dependent future.
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5.4 Results

We illustrate this approach using the future expected costs of flooding in the State of
New York as a case study. The simulated results are presented in normalized monetary values
for comparison purposes. The historic baseline simulated results serve as the metric for
comparison. The data gathered from the simulation results include the direct costs and intangible
damage costs for the future time horizon, the cost of a 100-year event (an event with the
probability of 0.01) and the total cost (the sum of direct and intangible costs). These values were
calculated for three different Shared Socioeconomic Pathways. These results are also presented
in three different time periods to display the range of possible risk scenarios (see Table 2). Near-
term represents the years 2021-2040, Mid-term represents the years 2041-2060 and Far-term

represents 2080-2099.

Scenario Direct Costs Intangible Costs Total Costs

Historic Baseline $635,000,000 $544,600,000 $1,179,600,000
SSP1-2.6 Near Term $954,220,000 $819,800,000 $1,774,020,000
SSP2-4.5 Mid Term $1,179,000,000 $1,015,000,000 $2,194,000,000
SSP5-8.5 Far Term $2,297,000,000 $1,978,000,000 $4,275,000,000

Table 2: Normalized dollar costs of flooding events in presented climate scenarios.

Based on the simulation results, the intangible damages comprise roughly 46% of the
total flooding damage across all of the future climate scenarios. Furthermore, the direct damage
totals over time increase 262% from the historic baseline costs to the far term fossil fuel

dependent scenario of SSP5-8.5.
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Scenario 100yr Event Cost 100yr Event Cost Total Cost
(Direct) (Intangible)
Historic Baseline $121,000,000 $117,270,000 $238,270,000

SSP1-2.6 Near Term $178,000,000 $165,350,000 $343,350,000
SSP2-4.5 Mid Term $219,300,000 $214,230,000 $433,530,000
SSP5-8.5 Far Term $408,300,000 $404,100,000 $812,400,000

Table 3: Normalized expected cost of a 100-year flooding event

The 100-year flooding event cost represents the expected costs of a single 100-year event
(see Table 3). The intangible damages represent nearly 50% of the total costs based on
simulation results. Across each scenario tested, the ratio of direct to intangible damages remains
largely the same. Note that the expected costs of a 100-year event increase significantly over the
three time periods, suggesting what is currently considered a 100-year event will become more

frequent in the future.

5.5 Concluding Remarks

This study synthesizes recent research on intangible and indirect impacts from flooding
events and integrates those results into an actionable methodology to produce a more
comprehensive assessment of the monetary impacts associated with such events. As there is a
considerable range of outcomes in a flooding event, creating a scenario-based simulation places
into context the relative contribution of intangible and indirect damages. Generally speaking, it
appears that direct damages only reveal about one-half of the total costs, which highlights a

significant gap in current risk assessment.
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The results reveal a significant cost burden that is simply too large to continue to be
overlooked in performing benefit-cost analysis of risk mitigation strategies. Intangible and
indirect damages such as network, public service disruptions, mental and physical health
impacts, employment and academic outcomes, along with damage to environmental services or
recreation areas unveils an entirely new set of costs that must be factored into a BCA if it is to
continue to be the standard for investment decision-making as it relates to climate change
(Masson-Delmonte, Zhai, et al. 2021). This is likely to be the case, as alternative methods to
BCA often require significant expertise, time, and data (Helgeson and Li 2022). As research
directed at intangible and indirect cost estimation for extreme weather events continues to
evolve, our methodology will be able to evolve with it, as a richer database will become

available to support the simulation technique.
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Chapter 6

Conclusion

As a theme throughout this dissertation, loss and damage data functions as a crucial
resource in educating benefit cost decisions towards climate change adaptation. There are
regional variances in the impacts realized by natural hazards and in order to effectively
implement tools to mitigate these hazard impacts, future cost projection at improved spatial
resolutions will allow for effective strategies to be considered through benefit cost analysis. By
providing the business case for adaptation decision making, the impacts can be placed in context
of dollar values to help to realize the demand to develop proactive cost mitigation strategies.
Loss and damage data relies on long periods of time of consistent data reporting to develop
usable datasets and this accounting must continue in order to be able to narrow the spatial
resolution for future analysis. Through development of the probability cost distributions for
natural hazards in different regions we have displayed the potential for loss and damage data to

be used for future analysis.

In Chapter 2, we outlined the current state of loss and damage databases, highlighting the
accounting practices and tools available for data gathering depending on the type of analysis.
This chapter also focused on the many biases which appear based on different inclusion
thresholds and measurement focuses. Furthermore, the different types of losses were defined,
showing the range of cost impacts and which impacts are included or excluded across the
different available loss and damage databases. The synthesis of this knowledge is essential for

further research to establish definitions and understanding of the possibilities and limitations of
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loss and damage databases and provide direction for improvement in loss and damage

accounting practices.

Chapter 3 aimed to establish a baseline simulation of the historical loss records.

Development of this model paves the way for future parameter changes to forecast possible
future risk scenarios. Due to the nature of loss and damage data, aggregation required grouping
for a sufficient sample size and normalization of the damage data to be able to compare between
time and regions. The goal was to obtain a representative sample for data fitting to a probabilistic
distribution, which resulted in data to be grouped at a state level to retain a large enough sample
size. The average percent mean difference of the 201 combinations of region and hazard tests
was about 5%, and the best results were found when the sample sizes were above 1,000 events.
The success in establishing this base model allowed for progressing to future risk projection in

subsequent updates to the model.

The methodology for future risk projection was established in Chapter 4. The probability
distribution of losses developed in Chapter 3 were modified to represent future climate change
scenarios. The following simulations developed the risk outlook for the case study application to
illustrate the potential of the base model. The simulation results found agreement with other
future flooding expectations under climate change trends, finding the return period of what are

considered today’s 100-year event will decrease.

Chapter 5 was the culmination of the previous chapters. The establishment of the
expected costs from direct damages only explained a part of the picture. As outlined in Chapter
2, there is a plethora of other impacts that are not quantified in traditional loss and damage
databases. This chapter synthesized the current research attempting to quantify intangible and

indirect damages in relation to direct costs to develop a multiplying factor to derive a general
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cost from the probability distribution of losses. Developing a rough cost estimate using a fuzzy
statistics-based approach gives an idea of the magnitude of costs not represented in most
discussions regarding climate change impacts, highlighting the mental health, business
interruption, recreational, and many other losses which occur when an event interrupts daily life.
This research highlights the importance of this consideration in climate change adaptation
decision making, especially in terms of benefit-cost analysis to more accurately understand the

full range of impacts society faces in the future of climate change.

The work presented in this dissertation has also identified several needs for future

research in loss and damage data. Chapter 2 showed how crucial it is to continue to record this
data in a consistent manner in order to be able to compare past costs with future ones to avoid
any systemic biases in the databases. Setting a consistent definition and set of variables is also

important to be able to compare between other databases and to help establish a standard for

global loss and damage accounting. The subsequent chapters displayed the potential applications
to improve benefit-cost decision making through establishment of a methodology to project
future costs using future climate change scenarios to estimate an expected cost for the price of

inaction in the face of climate change.

Improved and sustained loss and damage accounting will only help the validity of this
methodology by supplying more data to develop and compare the probability distribution of loss
and damage created in Chapter 3 and 4, while also providing the potential to narrow the

resolution of analysis from a state level to a regional or county analysis. Validation of this

methodology can be accomplished with the stated additional future data to function as the

comparison baseline to the model projections. Furthermore, additional applications of the
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developed model on other future climate change pathways and different time horizons will create

a more robust portfolio of case studies from which to perform validation.

Future analysis would also benefit from sensitivity testing of the model parameters. For

example, testing the weight of the population density or social vulnerability index in the

normalization equation on future loss and damage estimates will help to understand the potential

of proposed adaptation strategies.

As outlined in Chapter 5, it is important to continue to understand the relationship
between direct costs and other compounding impacts of natural disasters, notably indirect and
intangible damages, in order to better understand the full extent of realized costs of an event.
Climate change adaptation is necessary at all levels, local to global, and through improved
understanding of the costs and impacts communities will face in the future, more impactful
adaptation decisions can be made and the research outlined in this dissertation serves as a

contribution towards that effort.
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