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CHAPTER 1

Introduction

The universe as we know it is made up of many mysterious constituents. One of these

such constituents, dark matter, is fundamental to our understanding of how all structures

in the universe come to be. In the standard cosmological model, dark matter makes up

27% of the total composition of the universe; however, it comprises around 84% of the

total matter of the universe, with the other 16% being normal baryonic matter. While dark

matter is unable to form the structures in the universe with which we are most familiar -

planets, stars, galaxies, all of which are made up of baryonic matter - its gravitational effect

on baryonic matter means that it is the hidden underyling driver of the formation of all

observable structures in the universe.

In the early universe, shortly after the Big Bang, the universe lacked any significant

structure. It was nearly uniform in its distribution of matter and energy. However, over the

course of the next ∼14 billion years, small fluctuations in the initial density distribution

would grow and become more extreme via gravity. Today, we can observe the imprint of

these primordial density perturbations as the ”cosmic web” - large filamentary structures

harbor massive clusters of galaxies in regions where the universe was once just slightly

denser, and cosmic voids are now barren where they were once just slightly underdense.

Because galaxies live in the denser regions of the universe, the effects of this density evo-

lution are observable when we measure the distribution of galaxies that we seen in our own

universe today. Measurements of this distribution, combined with models of cosmological

structure formation through simulations, provide an extremely useful way for astrophysi-

cists to compare observed and simulated structures to understand exactly what conditions

the universe needs in order to form into the one in which we live (Bertschinger, 1998;

Angulo and Hahn, 2022).
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This makes cosmological simulations incredibly useful tools in modern astronomy -

much of our understanding of how our universe came to be has been reliant on using sim-

ulations to model how universes with different cosmological parameters would develop.

Despite their usefulness, it has been difficult for astrophysicists to have access to all of the

simulations that they would ideally need. For one, it is often most useful to have many real-

izations of a simulation to accurately estimate and understand errors in calculated statistics

(Manera et al., 2013; Avila et al., 2018). For some areas of study, simulations must be of

very high resolution to accurately model the growth of structure at smaller scales (van den

Bosch et al., 2018; Joyce et al., 2021). For other applications, simulations must be of large

volumes to generate structures on all physical scales that we can measure (Greig et al.,

2022). However, the computational expense of running a simulation is often prohibitively

high, requiring millions of CPU hours. This makes running many, large, high-resolution

simulations all but impossible, and has opened a large area of research in astrophysics to

create estimations of behaviors that would otherwise be modeled via full simulations.

In recent years, the burgeoning field of machine learning has been of interest to scien-

tists of all disciplines. In astronomy, machine learning has been used for a diverse set of

topics, from detecting exoplanets (McCauliff et al., 2015; Shallue and Vanderburg, 2018;

Schanche et al., 2019a; Cuéllar et al., 2022), to classifying galaxies (De La Calleja and

Fuentes, 2004; Banerji et al., 2010; Khalifa et al., 2017), to identifying properties of clus-

ters (Angora et al., 2020; Yan et al., 2020), to generating maps of the cosmic microwave

background (Caldeira et al., 2019; Mishra et al., 2019; Guzman and Meyers, 2022). The

ability of machine learning methods to model a mapping from some input to some output

is ripe for the field of structure formation, which often relies on highly complex models

(simulations) to predict structure growth. The goal of this dissertation is to investigate how

modern machine learning methods can be used to model large-scale structure growth in

astrophysics without the use of traditional simulations.
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1.1 The Hierarchical Growth of Structure in an ΛCDM Universe

The most widely accepted cosmological model, ΛCDM (cold dark matter) states that the

universe is made up of 68% dark energy, 27% dark matter, and 5% baryonic matter

(Planck Collaboration et al., 2020). Dark energy acts as a negative vaccuum pressure on

the universe - forcing its accelerated expansion. Baryonic matter makes up all visible com-

ponents of our universe (e.g. planets, stars, galaxies, gas). Dark matter is some type of

matter which is unable to interact through (at least) two of the four fundamental forces in

the universe - neither electromagnetic, nor strong nuclear forces, making it impossible to

directly observe or to clump into very tightly bound structures. However, dark matter is still

able to interact through the gravitational force, and can attract mass from other dark matter

and baryonic matter alike. The effect that this has on structures in the universe is profound.

Although dark matter is not directly observable, its effects can be seen all over the universe,

in galaxies through the measuring of rotation curves (Rubin et al., 1980), in galaxy clusters

through dynamical measurements (Zwicky, 1933) and gravitational lensing (Soucail et al.,

1987; Paczynski, 1987), and at the largest scales in the cosmic microwave background ra-

diation (Spergel et al., 2003; Planck Collaboration et al., 2020), which has imprinted in it

the density fluctuations that come to make up the ”cosmic web” of our universe.

A fundamental consequence of this cosmological model is the hierarchical growth of

structure. Pockets of dark matter first coalesce into clouds which collapse into virialized

structures, called ”halos”, once a region of dark matter is dense enough to become stable,

at ∼200 times the mean density of the universe (Press and Schechter, 1974; Navarro et al.,

1996). These halos attract each other via gravity, merging and forming larger halos. A

larger halo is then able to attract more halos to merge with, so structures become progres-

sively larger via the constant accretion of those smaller than them. This merging process is,

importantly, not instantaneous. Small halos that fall into larger halos remain inside those

larger halos as substructures - called ”subhalos” - for quite some time, slowly losing their

mass via tidal stripping and dynamical friction (Tormen et al., 1998; Weinberg, 1989) to
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the host as they orbit.

1.2 Understanding Structure Formation with Cosmological Simulations

The hierarchical formation of the cosmic web is commonly studied with the assistance

of cosmological N-body simulations. These simulations are also commonly ”dark-matter

only” simulations, meaning that normal baryonic matter and the formation of stars and

galaxies through the physics of gas is not modeled, only the effects of gravity are modeled.

Despite lacking any baryonic physics, on the largest scales gravity is responsible for the

entirety of structure formation, so these models still accurately reproduce the cosmic web

and detail the dynamics of dark matter halos through time. This allows us to probe how

different cosmological parameters, initial conditions, and assumptions about the physics of

our universe, affect the growth of structures through the statistical properties of dark matter

halos (Springel, 2005).

These simulations model structure formation by placing collisionless particles inside

a simulation box and moving them in accordance with the effects of gravity. In the early

universe, the distributions of these particles, which represent large chunks of mass, are

distributed fairly uniformly, as soon after the Big Bang the universe was still nearly homo-

geneous everywhere. However, as the simulation runs forward, and each particle is moved

based on how much gravitational pull it feels from every other particle, these particles end

up clumping together and forming structures. A simulation is run forward in timesteps,

with at each timestep, each particle being assigned a new position and velocity which are

calculated from the force it has experienced in the passing time interval. This is repeated

until the age of the universe in the simulation is equal to the age of the universe today.

Figure 1.1 shows an example of the evolution of the density field in a dark matter

only simulation. The top left panel shows the distribution of particles at the beginning of

the simulation, 0.1 Gyr after the Big Bang. The top right panel shows the distribution of

particles at 1.5 Gyr, the bottom left panel shows the distribution of particles at 5 Gyr, and the
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Figure 1.1: An example of a 179 x 134 Mpc x 18 Mpc (depth) simulation box from a dark-matter
only simulation. The top left panel shows the distribution of particles at the beginning of a simula-
tion, 0.1 Gyr after the Big Bang. The top right panel shows the distribution of particles at 1.5 Gyr,
the bottom left panel shows the distribution of particles at 5 Gyr, and the bottom right panel shows
the final distribution of particles at the end of the simulation. Brighter colors correspond to higher
density. As the simulation evolves, overdense regions become progressively more dense (brighter)
and underdense regions become progressively less dense (darker). Image credit: Screenshots come
from a video created by Benedikt Diemer and Patt Mansfield. The individual frames were created
using Phil Mansfield’s visualization code gotetra (Mansfield, 2020). The simulation is described in
detail in Diemer and Kravtsov (2014).
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bottom right panel shows the final distribution of particles at the end of the simulation. At

this simulation end point, the particles have clumped into structures which we can confirm

statistically match our real universe. This is done with the assistance of galaxy surveys,

which allow astronomers to observationally sample the distribution of mass in our universe

(York et al., 2000).

1.2.1 Simulations from Beginning to End

Highly accurate N-body simulations begin before the first gravitational calculations are

ever made. Instead, they must begin with a set of initial conditions that accurately represent

the density fluctuations of the early universe. The first step of this is to choose a cosmo-

logical model, which specifies an early-universe power spectrum that matches the cosmic

microwave background. Then, in a universe that experiences a period of rapid expansion

known as inflation, the initial field of density fluctuations is fully specified by sampling

a Gaussian random field from this power spectrum (Guth and Pi, 1982; Brandenberger,

1985).

Collisonless dark matter particles are then laid down on a lattice, and perturbed in posi-

tion and velocity by a displacement field to the starting redshift of the simulation (typically

z ∼ 100). This displacement field can be generated to first order with the Zel’dovich ap-

proximation (Zel’dovich, 1970), or more accurately to second order using second-order

Lagrangian perturbation theory (2LPT) (Scoccimarro, 1998), with the perturbations being

dependent on the initial field of density fluctuations. These approximations do not account

for the highly nonlinear evolution that occurs at small physical scales, but are accurate

enough to generate initial conditions to a very high redshift, when growth of structure in

the universe was still nearly linear.

The simulation begins at this early redshift, and further particle displacements between

timesteps are calculated according to the laws of Newtonian gravity. As this becomes a nu-

merical integration problem, these timesteps must be chosen to be sufficiently small (∼103
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timesteps per simulation). Additionally, the simulation box must have periodic bound-

aries to represent an indefinite universe. Finally, it’s advantageous to have many particles

(billions) of sufficiently small mass (∼ 109 M⊙) to adequately and robustly resolve galaxy-

sized structures.

1.2.2 Challenges for Large Simulations

The primary challenge for modern simulations is accurately calculating the forces for all

N particles without the computational cost becoming so burdensome that the task is ren-

dered impossible. In principle, each timestep requires N2 calculations to iterate, for each

particle, over every other particle in the simulation. However, some clever methods have

been developed to significantly decrease this computational cost by taking advantage of the

inverse-square nature of the gravitational force, combined with the large physical distances

that are covered by a simulation box, allowing forces from particles at large distances to

be approximated without significant loss of accuracy. This can be done, for example, with

particle-mesh methods which approximate the force as a field on a grid (Centrella and

Melott, 1983), or with tree methods that explicitly hierarchically bunch particles to esti-

mate their force contributions in groups (Barnes and Hut, 1986). These methods reduce the

number of calculations to NgridlogNgrid and NlogN, respectively. It is hugely advantageous

to reduce the number of calculations required, as it can allow the creation of simulations

that are more accurate and more useful.

These techniques allow the generation of high resolution simulations to be feasible but

not free - running a simulation still requires millions of CPU hours and remains unachiev-

able without the use of a supercomputer. Faster approximations of density evolution can

be accomplished, but with significantly less accuracy. It remains an open challenge to both

quickly and accurately model small scale structures.
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1.2.2.1 Fast and Simple Approximations of Structure Growth

Some analytic estimations of structure growth have made it possible to quickly and crudely

approximate an evolved density field. Perturbation theory estimations straightforwardly

move particles towards overdensities. The Zel’Dovich approximation will move particles

in a straight line towards an overdensity. Second-order Lagrangian perturbation theory

(2LPT) keeps higher order terms, so will move particles in a mostly straight line, with

some curvature. As we have discussed, both of these are suitable for generating initial

conditions for simulations, as in the early universe the growth of structures was still quite

linear. These approximations can be used to evolve the density field all the way to z=0, al-

though will be highly inaccurate for small scale structures which are very nonlinear in their

evolution. Quasi-N-body approximators have been developed which add additional mod-

els of evolution on top of perturbation theory estimations (Scoccimarro and Sheth, 2002;

Monaco et al., 2013; Tassev et al., 2013), matching the fully non-linear power spectrum sig-

nificantly better than perturbation theory alone, i.e with FastPM down k < 0.5h/Mpc (Feng

et al., 2016). These fast approximations are useful for quickly generating simulations for

which the larger-scale structures are what is of primary interest.

1.3 Hierarchical Growth in Simulations via Mergers

While the first dark matter halos are formed via collections of particles collapsing into viri-

alized structures, halos grow to significant size by collecting mass via series of mergers. In

this framework, when smaller halos are gravitationally attracted to larger halos, they fall

into the larger halo, gradually losing their mass to the larger halo through the effects of

dynamical friction and tidal stripping. Tidal stripping is the process whereby particles be-

longing to a diffuse object are differentially affected by a gravitational potential, shearing

the object and shedding its outermost particles (Kampakoglou and Benson, 2007). Dynam-

ical friction is the process whereby an orbiting object gradually moves more slowly through

an object due to the cumulative drag force of particles from the host object that were left
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in its gravitational wake (Tormen et al., 1998; Weinberg, 1989). As a subhalo orbits within

a host halo, these effects mean its orbit decays and it falls deeper into denser regions of

the host halo. In response, it is susceptible to more mass loss, which will occur until the

subhalo has lost so much mass that it is no longer identifiable as a unique object.

1.3.1 Halos and Subhalos from Simulations

Our current understanding of the formation of galaxies is that they reside in the interior

portion of dark matter halos and subhalos (Kahn and Woltjer, 1959; Blaauw and Schmidt,

1965; Ostriker and Peebles, 1973). Thus, tracking the growth and merging of halos and

subhalos within these cosmological simulations not only elucidates how dark matter struc-

tures form in detail, but allows a better understanding of how galaxies group and merge.

Regions in the dark matter density field that have collapsed into sufficiently dense struc-

tures are identified using halo finders - post-processing codes that are run on a snapshot of a

completed simulation to identify which particles have grouped into these stable, spherical-

like structures (Springel et al., 2001; Behroozi et al., 2013a). The boundaries of these halos

are not smooth or clearly defined in reality, so halo finders must make choices about how to

identify halos and decide which particles belong to them. One such way to do this is with

a friends-of-friends algorithm, where some linking length is decided, and a halo is formed

by collecting particles that are within that length from each other until no more particles

can be linked together by less than that distance (Davis et al., 1985). Another option is to

grow spherical overdensities, which choose a central overdensity as a a starting point, then

grow a radius outward from that center point until the enclosed density drops off to 200ρcrit

(Press and Schechter, 1974). Once this density threshold has been reached, the halo is as-

sumed spherical and particles that lay within the radius are assigned to that halo (Klypin

and Holtzman, 1997; Gill et al., 2004a).

Figure 1.2 shows an example of a roughly Milky Way sized host halo and its substruc-

ture in the VISHNU simulation, found with the ROCKSTAR halo finder (Behroozi et al.,
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Figure 1.2: An example of a host halo of mass ∼1012 and its substructure, shown in the X-Y plane,
which was identified using the ROCKSTAR phase-space halo finder on the VISHNU simulation.
The blue circle shows the radius of the host halo, the black circles show the radii of all identified
substructures belonging to that host halo at that snapshot, and the green circle shows a target subhalo
which has been tracked through time.

2013a), at two different snapshots. The left panel shows an earlier snapshot (a ∼ 0.9; z ∼

0.1; t ∼ 12.5Gyr) and the right panel shows the end of the simulation (a = 1; z = 0; t ∼

13.8Gyr). The subhalo and host halo are drawn as circles with radius R200b, with substruc-

tures being in black and the host halo being in blue. One such subhalo is highlighted in

green to show its movement through the host as the simulation progresses, which can be

tracked with the help of merger trees.

1.3.2 Merger Trees

As we have already discussed, structures in the universe form hierarchically through series

of mergers. Thus, it is imperative to track the growth and merger history of a halo through-

out the entirety of a simulation for its detailed evolution to be studied. After identifying

halos for every snapshot of a simulation via a halo finder, a merger tree code can be applied

to match halos and subhalos across different snapshots, identifying a structure as being the

same in one snapshot to the next, even if its mass changes or it moves (Behroozi et al.,
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2013b). A resulting merger tree gives, for any halo that exists at the end of the simulation,

a detailed account of how it collected mass over the last ∼14 billion years, and, for any

subhalo which had merged, a detailed account of how it lost its mass during the merging

process.

1.3.3 Semi-Analytic Models, Halo Models, and the Study of Galaxies without Mod-

eling Baryons

Galaxies inhabit dark matter halos, so models of halo merging and evolution naturally pro-

vide insights to galaxy merging and evolution, far extending the usefulness of dark-matter

only simulations and allowing for the study of galaxies without explicitly modeling baryons

through hydrodynamic simulations. Semi-analytic models, which typically apply analytic

approximations of the physical processes of galaxy evolution onto merger trees constructed

from N-body simulations, are one such way to study galaxies with dark-matter only simu-

lations (White and Frenk, 1991; Kauffmann et al., 1993; Cole et al., 1994). These modeled

physical processes often include dynamical friction, tidal stripping, and tidal heating, which

estimate how a subhalo evolves as it falls into its host, along with approximations for how

the galaxy is affected by the subhalo’s evolution. The umbrella of ”semi-analytic models”

encompasses models which approximate many different physical processes, but merging

timescales (Taylor and Babul, 2001; Boylan-Kolchin et al., 2008), mass loss (Taylor and

Babul, 2005), and final distributions of galaxies (Diaferio et al., 1999; Somerville et al.,

2008) have been studied in detail and approximated using semi-analytic frameworks. An-

other approach to studying galaxy distributions is through halo models, which are param-

eterized models that dictate how to place galaxies inside of dark matter halos according to

properties of those halos (Neyman and Scott, 1952; Peebles, 1974). The generated galaxy

distribution can then be compared to observations, allowing for a fully empirical model of

galaxy clustering down to small scales.
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1.4 Understanding the Distribution of Structure on Different Physical Scales

It is of vital importance to be able to statistically characterize the distribution of structures

in our universe in order to determine if theoretical distributions generated by simulations

are truly representative of it. Typically, these statistics aim to describe the frequency and

strength of clustering of different sized structures. On the observational side, it is common

to probe the clustering of galaxies using the spatial two-point correlation function, which

measures the excess probability of finding a pair of galaxies at some separation distance,

as compared to a random distribution (Landy and Szalay, 1993). The frequency of the

formation of galaxies of certain sizes can be probed using for instance the galaxy lumi-

nosity function, which measures the number density of galaxies in a certain luminosity bin

(Schechter, 1976). In a dark matter only simulation, a halo mass function is a similar mea-

surement, which instead counts the number of halos in the simulation that belong to a given

mass bin (Jenkins et al., 2001). These measurements allow for theoretical distributions of

structure from simulations to be compared to both each other and to the real universe in a

straightforward and consistent way.

1.4.1 The Power Spectrum

One of the most crucial and basic cosmological observables to measure for density fields

is the power spectrum. Under the assumption that the density field is traced by the number

density distribution of dark matter particles, the power spectrum can be calculated from the

dark matter particle distribution. Formally, the power spectrum is the Fourier transform of

the two-point correlation function. It describes the statistical distribution of the amplitudes

of density fluctuations as a function of the wavelength of those fluctuations. Functionally,

the power spectrum of a density field can be calculated by computing a Fourier transform

on the gridded density field to find underlying sine wave modes with wavenumber k, and

measuring, in bins of k, the amplitude of those modes as P(k) (Feldman et al., 1994; Hand

et al., 2018).
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Figure 1.3: Two density field maps, with identical power spectra, but visually very different distri-
butions of structure. The image on the left comes from a real N-body simulation. The image on the
right is generated by randomly reshuffling the phases between Fourier modes of the image on the
left. This figure is taken directly from Coles (2001), where it is shown as Figure 2.

The power spectrum measures the distribution of fluctuations, but crucially, not the

arrangement of those fluctuations as phase information is not embedded in P(k). Therefore,

an accurate power spectrum is necessary but not sufficient to ensure that a density field

matches our universe. This is illustrated in Figure 1.3, which shows two maps with identical

power spectra which are morphologically very different. On the left is an image of a real

N-body simulation. The image on the right is constructed by randomly shuffling the phases

between Fourier modes of the N-body simulation. This uncorrelates the phases, but the

coupling of phases in later-stage evolution of the universe is precisely what is responsible

for the sharply defined structures we see in the image on the left (Coles and Chiang, 2000).

1.4.2 Higher Order Statistics: The Bispectrum, Void Probability Function, and Cross-

Power

Higher moments of the density field can act as more sensitive probes of the non-linearity,

and many other statistics exist to examine specific properties of the structure distribution.

The bispectrum - which is a Fourier transform of the three-point correlation function - is
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capable of encoding directional information that is lost by the power spectrum. In turn,

it can be a better probe of the typical shapes and orientations of structures (Lazanu et al.,

2017). Of course in theory, N-point correlation functions can be calculated, but are much

more arduous to calculate and have not found to be generally as useful (Sharp et al., 1984).

The void probability function (White, 1979), which describes the probability that a ran-

domly placed sphere of radius R does not contain any galaxies or halos, allows for more

specific probing of less highly non-linear regions of the density field and is tied to higher-

orders of the correlation function (Fry, 1986; Perez et al., 2021). The cross-power spectrum

measures the covariance between two different density maps, and can be used to quantify

correlations in their phases (Stirling and Peacock, 1996). The aforementioned statistics,

and others, can not only be useful when attempting to describe the patterns of structures in

the universe, but also when determining if and how a simulated universe matches or devi-

ates from its desired configuration when comparing simulations to the real universe or to

each other.

1.5 Machine Learning as a Predictive Approach

Machine learning has the advantage of being able to model complicated, abstract relation-

ships without any a priori knowledge about the target problem. Instead, the creation of

successful machine learning models relies on the supposition that a model which has suffi-

ciently large capacity can be trained to approximate any complex function. In astrophysics,

predictive models like this are useful for a wide span of analyses. For some astrophysical

modeling tasks, such as simulating the highly non-linear effects of running complete sim-

ulations, machine learning may provide robust mappings between input and output where

otherwise analytical estimators are too difficult to specify precisely. For other astrophysical

problems, we have a priori knowledge about how the physics of certain systems work, but

machine learning may be able to learn complex additional effects that are not captured by

our current analytic models alone.
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1.6 Summary

The goal of the work presented in this dissertation is to investigate to what degree machine

learning methods might mitigate some modern problems in astronomy that are a conse-

quence of the need to use simulations. In Chapter 2, I use machine learning to explore

structure formation on smaller scales, investigating the merging of subhalos into their host

halos to probe the potential of modeling mergers without detailed simulations and the va-

lidity of the assumptions we presently make about these behaviors. In Chapter 3, I move

to a more macro scale, and investigate the use of deep convolutional neural networks to

predict the results of a cosmological N-body simulation and how these methods may help

astrophysicists move toward bypassing running these simulations altogether. Finally, in

Chapter 4, I provide a summary of the work presented here and discuss potential for future

work.
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CHAPTER 2

Machine Learning the Fates of Dark Matter Subhalos: A Fuzzy Crystal Ball

This chapter was previously published in the June 2021 edition of Monthly Notices of the Royal

Astronomical Society1 (Petulante et al., 2021), and is reproduced here, with minor formatting

changes, with the permission of the publisher and my co-authors, Andreas A. Berlind, J. Kelly

Holley-Bockelmann, and Manodeep Sinha.

The evolution of a dark matter halo in a dark matter only simulation is governed purely

by Newtonian gravity, making a clean testbed to determine what halo properties drive its

fate. Using machine learning, we predict the survival, mass loss, final position, and merging

time of subhalos within a cosmological N-body simulation, focusing on what instantaneous

initial features of the halo, interaction, and environment matter most. Survival is well

predicted, with our model achieving 94.25% out-of-bag accuracy using only three model

inputs (redshift, subhalo-to-host-halo mass ratio, and the impact angle of the subhalo into

its host) taken at the time immediately before the subhalo enters its host. However, the

mass loss, final location, and merging times are much more stochastic processes, with

significant errors between true and predicted quantities for much of our sample. Only five

inputs (redshift, impact angle, relative velocity, and the masses of the host and subhalo)

determine almost all of the subhalo evolution learned by our models. Generally, subhalos

that enter their hosts at a mid-range of redshifts (z = 0.67-0.43) are the most challenging

to make predictions for, across all of our final outcomes. Subhalo orbits that come in more

perpendicular to the host are easier to predict, except for in the case of predicting disruption,

where the opposite appears to be true. We conclude that the detailed evolution of individual

subhalos within N-body simulations is difficult to predict, pointing to a stochasticity in the

1Because this chapter was originally published in a journal in the UK, British English spelling conventions
are used in this chapter.
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merging process. We discuss implications for both simulations and observations.

2.1 Introduction

According to the standard ΛCDM model of cosmology, dark matter structures in the uni-

verse form hierarchically through a series of mergers, with larger halos continuously grow-

ing from the accretion of smaller halos. Once independent halos themselves, these ”subha-

los” sink to the center of their ”host” halos, losing mass to their hosts along their orbits due

to tidal effects and dynamical friction, a process which has been studied in detail (Tormen

et al., 1998; Weinberg, 1989; van den Bosch et al., 1999; Hayashi et al., 2003; Taffoni et al.,

2003; Gan et al., 2010; van den Bosch, 2017). A significant number of such subhalos retain

some of their mass, surviving as substructures within their hosts today. The study of these

substructures has been fundamental to our understanding of many areas of astrophysics,

from large-scale structure (Zentner and Bullock, 2003; Knebe et al., 2002; Zentner et al.,

2005; Watson et al., 2011) to the formation and evolution of galaxies (Hayashi and Chiba,

2009; Kazantzidis et al., 2009; Simha and Cole, 2017), which rely on both accurate final

subhalo populations and the evolution of these populations (Diemand et al., 2007; Giocoli

et al., 2008).

Theoretical models of galaxy formation and evolution are commonly put to the test

through analytic frameworks of subhalo evolution (Taylor and Babul, 2004; Zentner et al.,

2005; van den Bosch et al., 2005; Penarrubia and Benson, 2005; Jiang and van den Bosch,

2016). These techniques typically rely on merger trees constructed from N-body simula-

tions, along with analytic treatments of the physical processes that cause their evolution,

which allow for an in-depth study of the individual effects of dynamical friction, tidal

stripping, and tidal heating. Semi-analytic models often perform quite well, producing

galaxy populations that match hydrodynamic simulations (Croton et al., 2006; De Lucia

and Blaizot, 2007; Somerville et al., 2008; Henriques and Thomas, 2010; Hirschmann

et al., 2012; Mitchell et al., 2018). Other works have focused on developing analytical
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models that reproduce specific properties of subhalos, such as disruption and mass loss

rates, spatial distributions within host halos, and merging timescales, to better understand

our assumptions about these driving physical processes.

Although there has been significant focus on constructing semi-analytic models of sub-

halo evolution, the reliability of tuning these models to N-body simulations has remained

relatively unexplored. N-body simulations do produce consistent subhalo mass functions,

the evolution of which has been thoroughly studied (Gao et al., 2004; Onions et al., 2012;

Jiang and van den Bosch, 2017; Chua et al., 2017) even down to 107 solar masses (Munshi

et al., 2019). However, though the ensemble of subhalos is well-characterized, it is not clear

that the evolution of an individual subhalo within these simulations is a truly determinis-

tic process. Subhalo evolution models that are tuned to N-body simulations (Penarrubia

and Benson, 2005; Gan et al., 2010; Hiroshima et al., 2018) reflect the noise and uncer-

tainty within the simulation. It may be that subhalo evolution within N-body simulations

is somewhat stochastic, such that nearly identical interactions evolve differently, adding

unforeseen complications when using these models.

In this work, we use halo merger tree data generated from the dark matter only simu-

lation VISHNU, described in Johnson et al. (2019), to quantify the evolution and fate of

subhalos. We attempt to predict the final subhalo state using initial conditions at the time

the subhalo enters its host. Using a large range of physically-motivated quantities at the

time of a subhalo’s entry, we train machine learning algorithms to predict final properties

for the subhalo, in the hopes of investigating to what degree its fate is determined by these

parameters and to what degree the interaction is stochastic and cannot be predicted. If the

amount of mass loss, for example, is deterministic, a machine learning algorithm should

be able to successfully map subhalo initial conditions to its final mass. On the other hand,

if there is a level of stochasticity in subhalo fate, there will remain large prediction errors,

even when using a complete set of inputs that describe its initial state.

Machine learning has emerged as a powerful tool in astrophysics with a variety of ap-
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plications, such as galaxy classification (Barchi et al., 2020; Nolte et al., 2019), exoplanet

detection (Schanche et al., 2019b), and gravitational wave noise removal (Cavaglia et al.,

2019), and has recently been used with cosmological simulations to predict galaxy prop-

erties from halo properties (Kamdar et al., 2016; Moster et al., 2020), populate halos with

galaxies (Agarwal et al., 2018; Jo and Kim, 2019), connect initial conditions to final ha-

los (Lucie-Smith et al., 2018, 2019), predict the formation of large scale structure (Feder

et al., 2020; Li et al., 2020), and predict the halo masses of galaxies (Calderon and Berlind,

2019) and clusters (Ntampaka et al., 2015). The ability of machine learning models to ap-

proximate any function with a large set of parameters provides a useful means of revealing

complex correlations when a direct analytic function cannot be found. Notably, Nadler

et al. (2018) recently used machine learning to predict the survival or disruption of sub-

halos in a hydrodynamic simulation, using the initial conditions of their counterparts in a

dark matter only simulation. They were quite successful, accurately predicting the results

of 85% of their test set of subhalos. Works like this are encouraging that machine learning

can be used to fit these complicated interactions.

Here, we focus on dark matter only simulations and aim to predict not only survival,

but more quantitative metrics such as the amount of mass loss, the final position, and the

time to final merger for a subhalo. By using a comprehensive set of model inputs that

describe the physical state of the subhalo to make these predictions, we hope to reveal what

properties of the subhalo are the most closely tied to – and thus what physical processes

most strongly drive – this evolution. While we expect these additional quantities to be

more difficult to predict, even in a dark-matter only simulation with simpler physics, than a

binary prediction for disruption, the ability or inability of machine learning models to make

predictions in the first place can inform us about the determinism of a model. Predictions

that are not successful, despite having a complete set of physical descriptors available to

them, may indicate that subhalos in N-body simulations do not evolve in a straightforward,

predictable way. This could be due to a number of factors, ranging from resolution effects,
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to halo catalog or merger tree errors, to an inherent chaotic nature of these interactions.

The topic of subhalo disruption has a particularly rich body of work, which will guide

us in selecting our initial suite of halo properties to use as model inputs. Accretion redshift

has repeatedly been found to be overwhelmingly important in determining the survivability

of subhalos, with the majority of surviving subhalos being accreted more recently than z=1

(Ghigna et al., 2000; Diemand et al., 2004; Gao et al., 2004; Zentner et al., 2005; Penar-

rubia and Benson, 2005; Diemand et al., 2007). The abundance of subhalos is also found

to be lower for host halos of fixed mass that have higher concentrations. Because higher

concentration halos on average form earlier, they have less surviving substructure because

their substructure is accreted earlier and spends more time orbiting inside the host (Gao

et al., 2004; Giocoli et al., 2010; Gao et al., 2011; Mao et al., 2015). Trends with the orbits

of subhalos find that many subhalos that are destroyed do not complete even one pericenter

passage, but many subhalos that do survive have completed more than one pericenter pas-

sage. However, it has also been found that surviving subhalos tend to have more eccentric

orbits (Klimentowski et al., 2010) . Slower subhalos with low orbital energies are prefer-

entially destroyed, resulting in a positive velocity bias in the subhalo distribution within

clusters (Diemand et al., 2004). The fraction of surviving subhalos can be well modeled as

a function of the subhalo-to-host mass ratio (Tormen et al., 1998), and subhalos with larger

mass ratios have been found to more rapidly disrupt (Tormen et al., 1998). It has also been

found that there is a weak dependence of the subhalo disruption rate on the mass of the host

halo (Gill et al., 2004b).

As subhalos typically disrupt after losing a significant fraction of their mass (Taylor

and Babul, 2005), we expect many of the properties that determine subhalo survival to also

be of significant importance to subhalo mass loss. For populations of subhalos across a

wide variety of host halos, subhalo mass loss does not appear to strongly depend on the

mass of the host halo (Gao et al., 2004). In a static host potential, the eccentricity of the

subhalo orbit and the subhalo concentration are the dominant determinants of mass loss,
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with subhalos losing a significant portion of their mass during each pericenter passage, re-

sulting in more radial orbits losing mass more quickly (Taylor and Babul, 2004). Average

mass loss rates of subhalos using only the redshift and subhalo-to-host mass ratio appear to

have good agreement with subhalo mass functions from simulations (van den Bosch et al.,

2005). Additionally, many analytical models of subhalo positions and internal structure

at each timestep have been created to model subhalo evolution (Taylor and Babul, 2001;

Hayashi et al., 2003; Kampakoglou and Benson, 2007; Gan et al., 2010; Han et al., 2016).

Although these works give deeper insights to the relative importance of the physical pro-

cesses at work on these subhalos, our machine learning models do not explicitly model the

evolution over time of our subhalos, so the properties used by those works are less relevant

here.

The final distributions of subhalos within their hosts have also been closely studied. Ra-

dial distributions of subhalos within their hosts do not appear to depend on host halo mass

or redshift, but do depend on the subhalo-to-host mass ratio (Angulo et al., 2009). Subhalos

that merge with the central parts of their host halos also tend to have larger subhalo-to-host

mass ratios than those merging with the outer parts of the host halo, which may suggest that

mass ratio can help predict the final location of a subhalo (Nipoti et al., 2018). Distribu-

tions of subhalo spins show lower spins closer to the host center, suggesting that lower spin

halos may have more success at surviving to z=0 when orbiting at small fractions of the

host radius (Reed et al., 2005). If this is due to higher spin subhalos being more susceptible

to tidal stripping, this trend could also be important for our other predicted quantities.

Analytic predictions of merging timescales for subhalos have been found by a number

of previous works. A function to determine the time until satellite removal after accretion

can be successfully fit using only the subhalo-to-host mass ratio (Wetzel and White, 2010).

The effects of dynamical friction can be accurately modeled to determine galaxy merging

timescales, using the subhalo-to-host mass ratio, the circularity and energy of the subhalo

orbit, the virial radius of the host halo, and the dynamical time at the host halo’s virial
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radius (Boylan-Kolchin et al., 2008; Jiang et al., 2008; McCavana et al., 2012). Although

the dependencies on these parameters are different in these different works, the parameters

dominating the merging timescale remain the same.

In Section 2.2, we describe the simulation and input data. In Section 2.3, we cover

the machine learning methods we use to create our predictive models. In Section 2.4.1,

we discuss the parameter selection methods we use to gain intuition and decide on which

parameters are the most important for each model to make predictions. In the rest of Sec-

tion 2.4, we share the results of our models for predicting each of our outcomes, including

their performance and which parameters were needed as inputs to the model. Finally, in

Section 2.5 we discuss implications of our results for both observation and theory.

2.2 Description of the Data

Our analysis makes use of VISHNU, a cosmological N-body simulation with 1000 snap-

shots for exquisite time resolution; no snapshot is separated by more than 3.2 × 107 years.

VISHNU contains 16803 dark matter particles of mass mp = 3.215 × 107h-1M⊙ in a box

of size 130 h-1Mpc and uses WMAP-1 cosmology (Spergel et al., 2003); Ωm = 0.25, ΩΛ

= 0.75, Ωb = 0.04, σ8 = 0.8, ns = 1.0, h = 0.7). The initial positions and velocities of

the particles at redshift z = 599 were then determined using the 2LPT code (Scoccimarro,

1998). The simulation was evolved to z = 0 using the GADGET-2 N-body TreeSPH code

(Springel, 2005), adopting a force resolution of 2.2 h-1kpc. The ROCKSTAR halo finder

was used to identify halos and subhalos (Behroozi et al., 2013a), adopting a spherical over-

density halo definition with a threshold density equal to 200 times the background den-

sity of the universe. We denote the mass and radius of such halos with M200b and R200b.

Finally, merger trees were constructed using the code Consistent-Trees (Behroozi

et al., 2013b).

Starting with halos at z=0, we use the merger trees to identify the most massive progen-

itors of all host halos within the simulation, and track the subhalos within. These subhalos
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are allowed to host further substructure but cannot, at any point during their infall, become

sub-substructure themselves. To help mitigate resolution uncertainties, we select only sub-

halos with a minimum of 1000 particles (total mass 3.215 × 1010h-1 M⊙) at their time of

accretion. We define the accretion time as the last snapshot before a subhalo enters its host.

This mass cut reduces our sample from over 1,250,000 to 121,343 subhalos.

In addition to this resolution cut, some interactions were removed due to their unphysi-

cal behavior, likely as a result of errors in the merger tree generation or halo finder. Specif-

ically, 1474 subhalos were removed that more than tripled their mass during infall, likely

due to swapping identities with another halo. In addition, 327 subhalos were removed be-

cause their initial mass was larger than that of their supposed hosts. Taken together, these

cuts culled about 1.5% of halos, leaving 119,543 subhalo-halo interactions in our final

sample.

Once a subhalo has been accreted by a host, it must have one of two fates: disrupt

within the host (merge), or remain a bound, identified subhalo within that host until today

(survive). We define the merger time as the last snapshot at which a subhalo is identified

as its own entity. However, subhalos are highly sensitive to artificial disruption after they

have lost a significant amount of their mass, as has been shown by a number of studies

that have shown that ”orphan satellites” are required to match the small-scale clustering of

galaxies in semi-analytic models (Wang et al., 2006; Guo and White, 2014; Campbell et al.,

2018). Following uncertainties in subhalo mass loss shown by van den Bosch and Ogiya

(2018), we attempt to preempt this issue by also considering a subhalo to be merged when

it has lost more than 90% of its mass, provided it remains underneath this threshold for the

remainder of the simulation. This cut changes the fates of 21,929 subhalos, around 18% of

our total sample, but ensures a more consistent definition of merging that is less sensitive

to resolution errors.

Figure 2.1 illustrates the two possible subhalo fates using actual examples from our data

set. The top panel shows a surviving interaction, where the subhalo orbits for some time,
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Figure 2.1: An example of a surviving (top) and merging (bottom) interaction between a subhalo
and host halo. The large circles show the radii of the host halos at the beginning and end of the
interaction. The orbits of the subhalos are shown with the series of filled circles, plotted at each
eighth timestep, and with a point size corresponding to subhalo mass along the orbit. The green
point and circle show initial quantities, at the timestep right before the subhalo enters its host. The
orange point and circle show final quantities, at either the timestep right before the subhalo dissolves
in the merging case, or at the final timestep in the simulation in the surviving case. Predicted
quantities (gold) are labeled and numbered in the order we will present them throughout the paper.

losing mass but not dissolving before z=0, while the bottom panel demonstrates a merger.

In all, 76,442 (64%) are mergers and 43,101 (36%) survive. The four quantities we predict

are shown in yellow and numbered by the order that they will be presented in Section 2.4.
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Note that the binary fate, survival or merger, uses the whole sample, but mass loss and final

position considers only surviving halos and merging time applies only to those halos which

merge.

Figure 2.2: Demographics of our sample of interactions. The left panel shows the distribution of
mergers as a function of host mass and mass ratio, defined at the time of accretion. The cosmological
scale factor of accretion versus mass ratio is shown on the right. The color represents number of
mergers in each hexagonal pixel on a logarithmic scale, as denoted on the far right. Histograms
show the one-dimensional distribution of the variable on the corresponding axis. Most mergers
occur at lower mass ratios and for smaller host halos, but the spaces are still well-spanned over a
range of interactions in both panels. The chosen cut of 1000 particles (M = 3.215 × 1010h-1 M⊙)
for subhalos upon entry is clearly shown in the left panel. Imposing this cut and requiring that host
halos be larger than their subhalos means that, for very small host halos, the only subhalos within
our dataset are those with masses more similar to their hosts.

Distributions of our final sample with respect to host masses, mass ratios, and the scale

factor of the time of entry are shown in Figure 2.2. The most common interactions are

those of unequal masses that occurred more recently. However, our sample also spans the

space of more equal mass and higher redshift interactions, with hundreds of interactions

shown in many of the bins in Figure 2.2. The effects of our chosen particle cut can also

be clearly seen in Figure 2.2. Because subhalos must have 1000 particles at their time of

entry, this results in a minimum initial mass of 3.215 × 1010h-1 M⊙ for both the subhalo

and host halo, given that a host halo must also be at least as large as its subhalo. In the

left panel of Figure 2.2, this results in an area of no data with low mass hosts and unequal

25



masses, because most subhalos of low mass hosts are too low mass to be included in our

sample. We also do not have many interactions between very large hosts halos and similarly

large subhalos. This is because there are relatively few massive halos in the simulation, so

interactions between them are expected to be very rare.

2.2.1 Used Interaction Parameters

Here we describe our set of physically-motivated parameters to characterize an interac-

tion. Our parameters comprise four categories: 1) Global interaction parameters give in-

formation about the interaction that is not specific to the particular system; 2) Internal halo

parameters that are properties of the individual halos themselves and describe their size,

shape, or structure; 3) Orbital parameters provide information about the initial trajectory of

the subhalo’s infall path; and 4) Environmental parameters describe the influence of larger

scale environment around the subhalo and its host. In total, this yields 26 parameters, which

we list and define here. All of these quantities are measured at the time of accretion, which

is defined as the last snapshot before a subhalo enters its host.

2.2.1.1 Global Interaction Parameters

• aacc: the scale factor of the universe when the subhalo is accreted, defined as the

snapshot right before the subhalo is flagged as a subhalo of its host.

• q: the ratio of subhalo to host halo masses.

2.2.1.2 Internal Halo Parameters

• Msub: Mass of the subhalo (just before it becomes a subhalo) at 200 times the back-

ground mass density of the universe, M200b. This is defined using only those particles

that were assigned to the subhalo and the sub-substructure within it.

• Mhost: M200b of the host halo, as described above. Note that this mass is calculated

by including the particles of all substructure within the halo.
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• Rsub: Radius of the subhalo at the point where the mean subhalo density is 200 times

the background mass density of the universe, R200b. Because this radius is calculated

as the spherical overdensity radius of a halo with mass M200b, this value contains

identical information to Msub.

• Rhost: R200b, as described above, of the host halo. This value contains identical

information to Mhost.

• csub: the concentration of the subhalo, defined as R200b/Rs, where Rs is the scale

radius of the subhalo.

• chost: the concentration of the subhalo, defined as R200b/Rs, where Rs is the scale

radius of the host halo.

• λsub: Bullock spin parameter of the subhalo, defined as in Bullock et al. (2001).

• λhost: Bullock spin parameter of the host halo.

• Tsub: the triaxiality parameter of the subhalo. Calculated from the definition given

in Franx et al. (1991):

T =
1− (b/a)2

1− (c/a)2 (2.1)

where b/a is the minor/major axis ratio and c/a is the intermediate/major axis ratio.

• Thost: the triaxiality parameter of the host halo, calculated as above.

• max(Msubs,sub): M200b of the most massive sub-subhalo within the subhalo. 0 if

subhalo has no sub-substrucutre.

• max(Msubs,host): M200b of the most massive subhalo already within the host halo at

the time of the selected subhalo’s entry. Does not include the selected subhalo. 0 if

no other subhalos are present.

• Nsubs,sub: the total number of sub-subhalos within the subhalo.
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• Nsubs,host: the total number of subhalos within the host halo. Does not include the

selected subhalo.

2.2.1.3 Orbital Parameters

• drel: distance between the centers of the subhalo and host halo.

• vrel: magnitude of the relative velocity between subhalo and host halo, calculated in

the reference frame of the subhalo.

• ε: eccentricity of subhalos initial orbit. Calculated as described in Wetzel (2011):

ε =

√
1+

2EL2

(GMhostMsub)2µ
(2.2)

In this definition, ε = 1 is a perfectly elliptical orbit, and orbits that are initially

unbound have eccentricities greater than 1.

• φ : impact angle of subhalos initial orbit. Calculated as Ltotal/Lmax , the ratio between

the total angular momentum of the subhalo orbit and the angular momentum of an

orbit with the same velocity magnitude and orbital radius, but with the entire velocity

component in the direction perpendicular to the direction of the host center. We refer

to this as an impact angle because:

Ltotal

Lmax
=

m(⃗v× r⃗)total

m(⃗v× r⃗)max
=

mvrcos(θ)
mvr

= cos(θ) (2.3)

In this definition, φ = 1 is an orbit coming in perfectly perpendicular to the axis

between the host and subhalo. We call this a grazing impact angle. Alternately, φ = 0

would be an orbit coming in perfectly along the axis between subhalo and host halo,

which we call a plunging impact angle. We note that, while an orbit with Lmax would

be instantaneously circular, this is different from the typical definition of circularity,

Ltotal/Lcirc , which compares the total angular momentum of the subhalo orbit and
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the angular momentum of a stable circular orbit with the same energy. As circularity

is simply mathematically related to our definition of ε , it would contain identical

information.

2.2.1.4 Environmental Parameters

• Ftid: Magnitude of the tidal force on the subhalo, approximated as the tidal force

from the neighboring halo within d = 4h-1Mpc that contributes the most to the tidal

force. Excludes the subhalo’s own host. This value is calculated using the full halo

catalog at the relevant aacc.

F tid =
Mneighbor

dneighbor
3 (2.4)

• ρ1Mpc: The density due to neighboring halos in a surrounding sphere with radius r =

1h-1Mpc from the subhalo center, not including the subhalo’s own host halo. This

value is calculated using the full halo catalog at the relevant aacc.

ρ1Mpc = ∑
i

Mi
4
3πr3

(2.5)

• ρ2Mpc: The density due to other halos in a surrounding sphere with radius r =

2h-1Mpc from the subhalo center not including the subhalo’s own host halo.

• ρ4Mpc: The density due to other halos in a surrounding sphere with radius r =

4h-1Mpc from the subhalo center not including the subhalo’s own host halo.

2.2.2 Predicted Quantities

We aim to use machine learning to predict the following for each subhalo:

1. survival: a (categorical, binary) indication of whether or not a subhalo survives until

z=0. 0 or 1, depending on whether the subhalo exists above the required mass thresh-

old at z=0 (survives, 1) or if the subhalo has fallen below the mass threshold at some
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time before z=0 (dissolves, 0). This mass threshold is defined as 10% of the subhalos

mass upon accreting into the host (Msub). Predicted for all subhalos.

2. Msub,f: the M200b (as described above for Msub, calculated using only particles which

belong to the subhalo) of the subhalo at z=0. Only predicted for surviving subhalos.

When compared to the initial subhalo mass, this shows the amount of mass loss that

the subhalo experiences.

3. drel,f: relative absolute total distance between subhalo and host halo centers at z=0,

normalized by the radius of the host halo (Rhost, as described above) at z=0. Only

predicted for surviving subhalos.

4. tmerge: the elapsed time between the accretion of a subhalo into the host and its

dissolution within the host. Only predicted for dissolving subhalos.

2.2.3 Data Normalization

Machine learning, requires data to train and test; we randomly split our data into subsam-

ples, with 80% for training and 20% as a final holdout test set. The training set will then fur-

ther be split into training and validation sets when tuning our models. We scale and normal-

ize the data using StandardScaler from the scikit-learn preprocessing

package such that each quantity, X, if assumed Gaussian, is distributed with zero mean and

unit variance:

Xnorm =
X −µ

σ
(2.6)

where µ is the mean of the unscaled data and σ is the standard deviation. This scaling is

necessary for many machine learning models, as large variations dynamic range over a set

of observables can affect model accuracy.

30



2.3 Machine Learning Methods

The machine learning algorithms we use come from the scikit-learn package for

python. Subhalo survival is a classification problem, so we use a random forest algorithm.

On the other hand, predictions of the amount of mass loss, the final position, and merging

time are all classic regression problems, so we use the gradient boosting regressor algo-

rithm. Although we refer the reader to the scikit-learn documentation for a full

description of these algorithms, we briefly describe these methods below.

2.3.1 Random Forest

Random forest classifiers use an ensemble of decision trees to reach consensus on a pre-

diction. These decision trees repeatedly split the data into bins based on the values of its

input parameters, resulting in gradually smaller subsets of data belonging to each bin. The

goal of the algorithm is to find bins that span a section of the input parameter space where

almost all members of the bin have the same output value. Then, the assumption is that

test data points with input parameters that fall in a certain bin will usually have the same

output value as other members of that bin. In a random forest, many individual decision

trees are trained on random subsets of the training dataset. Because random forests are a

type of bagging - or bootstrap aggregating - method, the classification for an object is then

the majority vote of all of the trees. This means that the trees that make up the ensemble are

distinct, making an independent prediction for the classification of an object in the testing

set.

There are several hyperparameters of the algorithm that we tune in order to get the

best-fitting model. These hyperparameters are parameters of the model itself, that deter-

mine properties such as the complexity of the model or the way that it learns. Their val-

ues are fixed before the model is trained, and are not adjusted during the training of the

model. The hyperparameters that we set for the random forest classifier are as follows.

The n estimators hyperparameter sets the number of estimators, in this case decision trees,
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used in the final consensus. Too few decision trees removes the power of using multiple

trees. In general, using too many trees is not a concern, though it does increase the runtime

of the algorithm. The max depth hyperparameter sets the maximum number of decisions

in each tree. Effectively, this sets the maximum number of input parameters each decision

can use, since each depth splits on one parameter. The max leaf nodes hyperparameter

sets the maximum number of nodes at a given depth. We note that, if this value is too

small, the decision tree may split on the same parameter at multiple depths. We keep other

hyperparameters at default values (see scikit-learn documentation).

One of the main advantages of random forest algorithms is that they are less prone to

overfitting, especially compared to a single decision tree. Because each decision tree works

with a subset of the data and considers a random group of parameters, the ensemble is

more robust to unseen data. This is important in cases like ours in which a large number of

training examples determine a small number of phenomena. Random forests are also useful

in their ability to deal with correlations between input parameters, such as halo mass and

concentration. Unfortunately, the results of a random forest are much less straightforward

to interpret than that of single decision trees, and any given decision tree within the forest

may be a very poor predictor. Nonetheless, random forest classifiers robustly rank the

importance of each input parameter, based on their frequency and proximity to the top of

the decision trees within the forest. However, strong correlations between input parameters

can make this ranking difficult to straightforwardly interpret as well, which we discuss in

more detail in Section 2.4.1.

Subhalo survival is particularly amenable to binary classification; we assign 0 to a sub-

halo for dissolving before z=0, and a value of 1 for surviving until z=0. We train multiple

models, using the same hyperparameters, on increasingly smaller subsets of input param-

eters to confirm the minimum number needed to make accurate predictions. To determine

the order of parameter removal, and for presentation purposes in our figures, we use the

custom parameter selection algorithm outlined in Section 2.4.1 to determine the relative
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importance of our parameters.

2.3.2 Gradient Boosting Regressors

Gradient boosting regressors, like random forests, rely on an ensemble of decision trees to

make predictions. However, unlike random forests, gradient boosting regressors construct

trees that are dependent on the results of all the trees trained before them. New trees are fit

to the errors of the current ensemble; the purpose of each new tree is to learn the errors of

the current model and to iteratively hone in on the prediction.

As with the random forest classifier, several hyperparameters can be tuned to create the

best model. The learning rate weights the significance of a new tree within the ensemble;

small learning rates significantly increase the number of trees that need to be added to the

model, but too large a learning rate may result in corrections that perpetually overshoot the

prediction. As with the random forest classifier algorithm, we also tune the n estimators,

max depth and max leaf nodes. Other hyperparameters are kept as their default values.

The advantage of gradient boosting regressors is again the reduction of overfitting be-

cause it is an ensemble method. Additionally, given that we also expect relatively few pa-

rameters to be important in making our regression predictions, a model that is able to avoid

selecting unimportant parameters is favorable. The main advantage that a gradient boost-

ing ensemble has over a random forest is that the trees work together to make a prediction.

Because each tree added to a gradient boosting model corrects errors from the previous

iteration of the ensemble, data points that were difficult to make predictions for are prefer-

entially corrected for in later trees, making a gradient boosting ensemble better at dealing

with outliers. This is particularly important for our regression problems given the large

ranges of outcomes for all of our predicted quantities. As with the random forest classifier,

the gradient boosting regressor class in scikit-learn also contains a function to report

relative feature importances. However, interpreting these results again presents difficulties

due to strong correlations between parameters.
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We use gradient boosting regressors to predict mass loss, final position, and merge time

individually. As with the survival classification problem, due to the difficulty of interpreting

the reported feature importances of the algorithm, we use our custom algorithm, outlined

in Section 2.4.1 to determine the order and relative importance of each parameter.

2.3.3 Model Training

When training any machine learning model, the choice of hyperparameters is critical for

the model’s ability to learn. So we begin by finding a set of hyperparameters for each of our

models that leads to the best fit for our data. We do this by repeatedly creating models with

different hyperparameters and evaluating their performance using training and validation

sets that are random subdivisions of our total training set, using an 80%/20% split. We

then check if the model performs well without overfitting too strongly. From our complete

dataset, these repeated divisions mean that 20% of our data is used only for final testing and

never given to a model while tuning hyperparameters, while 80% of our data set is used to

tune the model by creating different training and validation sets. The use of these validation

sets allows us to fine tune the properties of the model so that it best fits the training set,

while leaving the testing set untouched to ensure that the model performance at testing

time accurately shows the model’s ability to generalize to new data. We use 5-fold cross-

validation when determining a new set of hyperparameters’ performance. The number of

different hyperparameter values we need to try before arriving at a set of hyperparameters

that best fits the data is different for each quantity we predict.

We begin this process by using scikit-learn’s GridSearchCV function, which

accepts arrays of values for the desired hyperparameters to be tuned, then repeatedly trains

the model on all combinations of the chosen hyperparameter values and evaluates each

combination’s performance. This function includes a best params attribute, which

will return the combination of hyperparameters that leads to the best performance. We

then, by inspection, fine-tune the hyperparameters within small ranges around this set. For
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example, we may begin with a depth hyperparameter of 5 for our model, then check if

either raising the depth to 6 or lowering it to 4 with other hyperparameters held constant

will give us improvement. We repeat this process for all hyperparameters, until we find

a model that achieves high accuracy on both the training and validation sets, indicating

that the model is well fit to the data, but with the smallest differences between training

and validation accuracy, indicating that the model is minimally overfit. We take this extra

step of fine-tuning the hyperparameters by hand to ensure that the model is well fit to our

specific accuracy metrics for each prediction, which we motivate from physical quantities

about the subhalo and host halo. These specific accuracy metrics that we use for each of

our predicted quantities are described further in Section 2.4.

The best set of hyperparameters for each of our models can be found in Table 2.1.

We note that, while we find these hyperparameters to create models that fit the data well,

different choices of the hyperparameters can yield equally good models. Typically, slight

changes to these hyperparameters did not lead to significant performance differences for our

models. In the case of max leaf nodes, we found that changing its value, even significantly,

did not have strong effects on the model performance for any of our models, and thus we

kept it fixed to its default value (None) for all of our models. However, large changes to the

other hyperparameters can cause significant changes to the model’s ability to fit the data,

so using a selection of a well-fitting set of hyperparameters is imperative to getting the best

results. The choice of loss function to optimize is another free parameter. We found the

best results using the mean squared error criterion for the random forest regressor and the

Huber loss for the gradient boosting regressors.

2.4 Results

In the following subsections, we discuss our exploration of the parameter space and the per-

formance of each of our machine learning models. In Section 2.4.1, we detail our parameter

selection methods, where we find a preliminary order of the importance of our parameters
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Table 2.1: The best fit hyperparameters for each of our models. Definitions of these hyperparame-
ters and how they were selected are detailed in Section 2.3.

Survival Mass Loss Position Merge Time
method RF GBR GBR GBR

n estimators 50 600 1800 500
max depth 7 3 6 5

max leaf nodes None None None None
learning rate N/A .07 .008 .05

for predicting our final quantities. Then, in the subsections that follow, we detail the results

of our machine learning models, including a discussion of our metrics for determining the

accuracy of our predictions, how well each of the models perform, and which parameters

were the most important for making the predictions for each model. In Section 2.4.2, this is

discussed in detail for predicting the survival quantity. In Section 2.4.3, we discuss this in

detail for the mass loss quantity. In Section 2.4.4 we discuss the final position quantity, and

in Section 2.4.5 we discuss the merging time quantity. In Section 2.4.6, we investigate the

frequency of subhalo interactions that we find within our sample and their potential effects

on our predictions.

2.4.1 Feature Selection

We select 26 features to describe each subhalo/host halo interaction. These parameters are

selected to encompass information about the orbit, environment, and individual properties

of both the host and subhalo. Although we begin with this large set of features for thorough-

ness, we expect that not all of them will be important for predicting our desired quantities.

To determine which features most strongly affect the predicted quantities, we use a feature

selection method to select four features from the complete set, for each predicted quantity,

which are responsible for the most variation in that quantity. Because our set of features

has strong correlations between several values, we also aim to use a selection method that

minimizes correlations in the selected set. We emphasize that we do not remove any fea-

tures using these methods. Instead, we use the order of the selected set to determine the
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order in which we will add features to our models and for display purposes in our figures.

During training, all models still use all features, to ensure that no information is missed.

When building decision trees, higher ranked features are both the most important, and

those that cause the most variance in the final quantity. Our aim, then, is to order the fea-

tures by the amount of variance, while binning to remove correlations with other features;

this leads to an independent ordering that appears to add information to the prediction most

quickly. We describe the feature selection method using the example of predicting the final

mass of surviving subhalos. We begin by binning the data by each of our features, say im-

pact angle, into bins with equal numbers of subhalos, and calculating the mean final mass

in each bin. We then determine the range of these binned mean values as a measure of the

strength of the correlation between final mass and impact angle. We adopt the feature with

the largest range as the most important. This algorithm selects the subhalo radius as the

most important feature for predicting the final subhalo mass. To select the next most im-

portant feature, we bin the data in two dimensions, where the one dimension is our adopted

primary feature and for the second dimension we try each of the remaining features. In each

two-dimensional bin we calculate the mean final mass. We can now measure the strength

of correlation between final mass and each feature at fixed subhalo radius. We do that by

calculating the range of mean final mass values across all bins of the secondary feature,

while staying in the same bin of subhalo radius. Finally, we calculate the mean such range,

averaging over all the bins of subhalo radius. We adopt the secondary feature with the

largest mean range as the second most important feature. This algorithm selects the scale

factor of the halo-subhalo interaction as the second most important feature for predicting

the final subhalo mass. We continue with this process until we have extracted four features;

the sample size does not permit further binning of the data beyond four dimensions without

having too few bins to be useful.

The four most important features for each of the predicted quantities are shown in

Table 2.2. The numbers in parentheses represent the strength of correlation between the
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Table 2.2: The ranking order of most important features for predicting each of the desired quan-
tities. The second column displays the normalized maximum range in target quantity that results
from binning on that feature, where higher values (maximum 1) indicate the feature is more strongly
responsible for changes in the prediction outcome. The final row shows mean and standard devia-
tion in the normalized maximum range at the fourth bin level, due to a random parameter.

rank Survival Mass Loss Position Merge Time
1st aacc (.997) Rsub (.243) aacc (.538) aacc (.283)
2nd q (.254) aacc (.132) q (.214) q (.127)
3rd φ (.145) φ (.047) φ (.177) φ (.091)
4th vrel (.093) Mhost (.042) vrel (.153) vrel (.058)

random 0.027±0.002 0.012±0.0004 0.035±.009 0.017±0.002

predicted quantity and each selected feature. This is determined by using the ranges, as

described above, that were maximized to select the most important features. For ease of

comparison, we normalize these ranges by the full range of the predicted quantity in the

data. For example, in the case of predicting the final position of the subhalo, the range of

mean final positions in bins of scale factor is 53.8% of the total range of final positions.

Furthermore, the mean range of final positions in bins of mass ratio, at fixed scale factor,

is 21.4% of the total range of final positions. The mean range of final positions in bins

of impact angle, at fixed scale factor and mass ratio, is 17.7% of the total range of final

positions, and so forth. We note that in the case of mass loss, we convert to log space

before reporting the normalized ranges.

From Table 2.2, we see that the same features appear repeatedly for all of our quantities.

In particular, survival, final position, and merge time have the same four features, in the

same relative order, chosen as most important for making their predictions. The initial

scale factor of entry, ranked as most important for all of those quantities, is also ranked as

second most important for predicting mass loss. The impact angle of the subhalos orbit

also appears as important for predicting mass loss. These results are already encouraging,

as many of these features are those that we were motivated to select because they were

known to be important from previous works, as discussed in Section 3.1. It is interesting

that, although the eccentricity of a subhalo has been shown to affect subhalo evolution in a
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number of ways (Taylor and Babul, 2004; Boylan-Kolchin et al., 2008; Jiang et al., 2008;

Klimentowski et al., 2010; McCavana et al., 2012), the impact angle feature is chosen over

the eccentricity, meaning that just the initial direction that the subhalo enters the host is

more influential than the actual orbit that the subhalo is on. While these two parameters are

fairly well correlated and contain similar information, there is a large amount of scatter in

their relationship.

In the last row in Table 2.2, we include the mean and standard deviation of the nor-

malized ranges calculated from a set of uniformly distributed random numbers at the 4th

ranking level over 100 runs. Comparing the ranges due to our features to these random

ranges, we can tell that all four of our chosen features for all of our predicted quantities

hold some information more than noise. Furthermore, from the relative ranges associated

with these top four features, we can see that some of our predicted quantities may need

more than four features to make accurate predictions, while others may be able to reach

maximum accuracy with fewer features. For example, in the case of mass loss, the range

due to the fourth feature, Mhost, is already small, and closer to the range obtained by a

uniform random number than in the case of, for instance, final position, where the range of

the 4th feature remains relatively high, and well above noise.

Figure 2.3 shows predicted quantities as a function of the two most important features.

For example, the top left panel shows the mean survival fraction as a function of both initial

scale and subhalo to host mass ratio. Note the strong trends in predicted quantities in these

’best feature planes’. For survival, the plane is clearly divided, suggesting that the survival

of a subhalo is already well-determined by only two features. For the other quantities,

this gradient is less defined, suggesting that either more features are needed to make good

predictions, or the process is stochastic enough that general trends with respect to our input

features are harder to find. In particular, the panel for merge time (lower right) in Figure 2.3

shows little variation in outcome across the entire plane of initial scale and subhalo-to-host

mass ratio, despite the merging time having the strongest trend of variation with those

39



Figure 2.3: Distributions of the predicted quantities of interest with respect to the two parameters
that are most responsible for each of their variations. In each panel, the parameter that causes the
most variation is shown on the x-axis, and the parameter that causes the second most variation is
shown on the y-axis. In addition, in each panel the colorbar shows the average value of the quantity
of interest within a hexagonal bin. The top left panel shows the fraction of surviving subhalos. The
top right panel shows the fraction of subhalo mass that remains for surviving subhalos. The bottom
left panel shows the fractional distance of surviving subhalos from their host’s center. The bottom
right panel shows the elapsed time for a subhalo to merge. In each instance, some pattern of color
striation can be seen to represent the importance of the two parameters shown. However, it is clear
that the survival of a subhalo is by far the most drastically divided and well-defined by this two-
dimensional space.
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features. From these ’best feature planes’, it is clear that some of these final quantities,

such as the binary outcome of survival or disruption, will be much more straightforward

to predict than others, such as merge time. The lower left panel of Figure 2.3 shows some

structure in the final relative distance with regards to scale factor, which likely is due to the

orbital period of subhalos. Subhalos that enter their hosts at, for instance, aacc = 0.75, are

likely near the outer edge of their host halos because they have completed one full orbit

around their host. Indeed, this corresponds to a time of around 3.5 Gyr, which is roughly

the dynamical time of a host halo.

We have designed our feature selection algorithm to find the set of features that adds

the most new information the fastest. However, the scikit-learn algorithms that we

use also provide a feature importances method, which ranks features according to

their relative placement in the decision trees, where features with higher rankings being

able to split more of the data more effectively. We find this ranking to be less useful than

our feature importance ranking, as we are interested in finding the smallest set of features

that can be used to make accurate predictions rather than a complete set of features that

holds relevant information.

2.4.2 Survival

For the entire sample of subhalos, we predict whether or not a halo will survive until z=0

(assigned a 1) or dissolve within the host (assigned a 0) using a random forest classifier. The

details of this model are outlined in Section 2.3.3. Our accuracy is defined straightforwardly

as the percentage of halos correctly classified. Figure 2.4 displays the accuracy when one

feature at a time is added to the model in the order shown. We emphasize that, although we

add features to the model in an ordered way, the random forest does not use the ordering of

input features when training a model; each new subset of features requires re-training the

model. Thus, if the ordering of our features had been completely random, the maximum

model accuracy would not change, although the slope of information gain in Figure 2.4
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would.

As is clearly shown in Figure 2.4, after adding the four most important features, we

reach a maximum accuracy for both the testing and training sets of 94.4% and 94.6%,

respectively. The gap between these accuracies is small, suggesting low overfitting. The

decrease in accuracy (less than 1%) when adding additional features beyond these four

suggests a lack of information gained by adding any feature thereafter. Any small increase

or decrease in the accuracy beyond the first four features are within noise. Since the model

is free at any iteration to use as many of the provided features as needed, the fact that

maximum accuracy is reached after the addition of only these four features suggests that

they are the only features that are necessary to predict the survival of a subhalo.

The four critical features are: aacc, q, φ , and vrel. The initial scale of the subhalo

entry is overwhelmingly the most important of these features - 90% of our test sample is

accurately predicted with this feature alone. With the addition of each of the remaining

features, a 2.7%, 1.2%, and .27% gain in accuracy occurs. In Figure 2.5, we show trends in

accuracy with respect to each of these features, by showing the average accuracy score in

bins, normalized by the average accuracy score of the entire sample. Here, we see distinct

trends in accuracy with respect to each of our features. The initial scale of entry, which has

the most predictive power for our sample, also has the most drastic trend with accuracy.

All subhalos that enter their hosts at times either before aacc = 0.3 or after aacc = 0.9 are

predicted correctly. This is consistent with what we see in the top left panel of Figure 2.3,

where all subhalos entering after aacc = 0.9 survive, and almost all halos entering before

aacc = 0.3 merge. Subhalos with entry times between aacc = 0.5-0.7 are by far the hardest to

make predictions for, with the peak of this uncertainty occurring at aacc = 0.6. There is also

a strong trend with respect to q, where in general the larger the subhalo-to-host mass ratio is,

the better survival is predicted. The one exception to this trend is at the smallest subhalo-to-

host mass ratios, with q < 0.002, where the percent of accurate predictions returns to about

average. This is likely because most of the subhalos below this mass ratio do not survive,
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making them easier to predict. Subhalos on orbits with the highest φ (most grazing orbits)

are worse predicted than those on orbits with φ < 0.7, and prediction accuracy appears

to generally decrease for orbits that are both more plunging and more grazing than φ =

0.3-0.4. A similar trend occurs in log(vrel), where subhalos with both larger and smaller

relative velocities being worse predicted than subhalos with log(vrel) = 2.1-2.4. For both φ

and log(vrel), the difference between the best and worst average accuracy points are much

smaller than for aacc or q, so these trends are also less significant.

Figure 2.4: Accuracy of model predictions, for both the training and test sets, in the case of predict-
ing subhalo survival. On the y-axis, we show the accuracy, defined as the percentage of the subhalo
sample that is predicted correctly. On the x-axis, we show the features used to train the model. For
each point, the model was trained using all features to the left of and including that point on the
x-axis. The solid line and circles show the accuracy of the test set, while the dashed line and square
points show the accuracy of the set the model was trained on. The choice and order of features
for the first four features in the x-axis is determined by our feature selection algorithm described in
Section 2.4.1, while the order of the remaining features is arbitrary.

In Figure 2.5, we also show the distributions of our correctly and incorrectly predicted

subhalos for our model trained with the four most important features. There is a clear ten-
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Figure 2.5: Accuracy of subhalo survival predictions for our test set, as a function of the four
most important features, shown in four different panels. Black lines and points show the average
percentage of accurate predictions within bins of each feature, normalized by the average percentage
of accurate predictions of the entire test set. Bins along the x-axis are created such that the same
number of subhalos belong to each bin. We include dashed lines where the y-axis value is 1. Above
this line, predictions in that bin are on average better than the test set average, and below this line,
predictions in the bin are on average worse than the test set average. The histograms show the
distributions of the accurately (green) and inaccurately (orange) predicted populations. Since the
survival quantity is binary, predictions can only either be correct (prediction matching truth) or
incorrect (prediction not matching truth). We note that the histograms are normalized to the figure
size and their height does not correspond to the y-axis labels.
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dency for subhalos with aacc around 0.5-0.7 to be the most difficult to predict, correspond-

ing to a range of redshifts of around z = 0.68-0.55. The distribution of correctly predicted

subhalos peaks near aacc = 0.3, or z = 2.3. As satellite occupation peaks at around z = 2.5

(Wetzel et al., 2009), this peak is likely due to most of the interactions occurring there. In

fact, as the vast majority of our subhalos are correctly predicted, these distributions of the

correctly predicted samples look nearly identical to the distributions of the complete sam-

ple. The peak of the incorrectly predicted subhalos also agrees with the region of greatest

uncertainty that we see in the upper left plot of Figure 2.3, where a clear division between

always surviving and always dissolving occurs at aacc = 0.6. We note that, although most of

the poorly predicted halos exist in this small section of feature space, 80.3% of halos with

aacc = 0.5-0.65 are still accurately predicted, significantly better than random guessing. We

further investigate this range of scale factor values by training a model with data exclusively

in the aacc = 0.5-0.7 range, to see if we can predict this population better when it is isolated.

However, this model did not have better accuracy on the subhalos in this range than our

model trained on all data. Moreover, the four most important features as selected by our

feature selection algorithm are rearranged but not changed by this test. In the remaining

panels of Figure 2.5, the distributions of the correctly and incorrectly predicted halos are

roughly the same, and cover roughly the same range of values. In the bottom panel, the cor-

rectly predicted population peaks where the average accuracies are the highest, indicating

a higher fraction of incorrect subhalos at low and high log(vrel).

To determine if there are significant differences between the correctly and incorrectly

predicted subhalos with respect to our additional features beyond these most important

four, we perform a KS test between the distributions of these two populations. We do

this test using the distributions of correctly and incorrectly subhalos, with respect to each

of the additional features beyond our set of the most important four. To ensure that any

differences we find in these distributions are not due to correlations with our four most

important features, we take a slice of our data in a narrow four-dimensional bin, that fixes
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a range of values for all of these four features. We then ensure that within this selected

bin, the distributions of the correct and incorrect populations are the same according to

the KS test. Then, we perform an individual KS test between the two distributions from

this slice of data, with respect to each of our additional features. In doing so, we find

that the two distributions are found to be the same, with a p-value of above 3σ, for all of

our additional features. This suggests that there is no significant difference in any of the

additional features between correctly and incorrectly predicted subhalos.

2.4.3 Mass Loss

For all surviving subhalos at z=0, we predict the final mass using a gradient-boosting re-

gressor, with hyperparameters as given in Table 2.1. To determine the accuracy of the

model, we define an error metric, δ (M), which we call the prediction error of each indi-

vidual prediction, using the the difference between true and predicted fractional remaining

mass. A subhalo is considered to be accurately predicted if:

δ (M) =
|Mpred,f −Mtrue,f|

Mtrue,i
−

2mp
√

Np,true,i

Mtrue,i
≤ tol (2.7)

Where tol is some tolerance value which determines what difference in fractional mass

loss is acceptable as accurate. M is the mass of the subhalo. Np is the number of particles

belonging to the subhalo, and mp = 3.215 × 107h-1 M⊙ is the mass of a dark matter particle

in the simulation. Subscripts pred refer to a value predicted by the model, while true

refer to the true value from the simulation. Subscripts f denote quantities taken at z=0,

and i denote quantities taken when the subhalo first enters the host. We can then vary

the tolerance, determining what percentage of subhalos have their prediction errors within

certain tolerance thresholds. We point out that, because this prediction error is a measure

of how close a prediction is to the truth, a higher prediction error value corresponds to a

worse prediction, and a lower prediction error value means a better prediction.

The first term in this equation measures the difference between our true and predicted
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Figure 2.6: Accuracy of model predictions, for both the training and test sets, in the case of pre-
dicting subhalo mass loss. On the y-axis, we show the accuracy, defined as the percentage of the
subhalo sample with a prediction error below some specified tolerance, as defined by Eq. 2.7. On
the x-axis, we show the features used to train the model. For each point, the model was trained using
all features to the left of and including that point on the x-axis. The solid lines and circles show
the accuracy on the test set, while the dashed lines and square points show the accuracy on the set
the model was trained on. Different colored lines show the different tolerance values used to define
accuracy. For a complete description of this accuracy metric, see the associated text. The choice
and order of features for the first four features in the x-axis is determined by our feature selection
algorithm described in Section 2.4.1, while the order of the remaining features is arbitrary.

masses. Although the quantity that our machine learning model predicts is the mass of the

subhalo, we determine prediction error by normalizing this value to the initial mass of the

subhalo and comparing true and predicted fractions of initial mass. We do this in order

to have a metric that equally penalizes errors in prediction for all subhalos, rather than

allowing more leniency depending on the subhalo mass. The second term accounts for

Poisson noise in the number of particles assigned to the subhalo. By subtracting this noise

term from the error, we are stating that a prediction is perfect if it is within the Poisson noise

limit. This term is significantly smaller than the first term and only makes a difference in
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the case of small subhalos where a small number of particles make up a large portion of the

mass.

Figure 2.7: Prediction error for subhalo mass loss in our test set, as a function of the four most im-
portant features, shown in four different panels. Black lines and points show the average prediction
error within bins of each feature, normalized by the average error of the entire test set. Bins along
the x-axis are created such that the same number of subhalos belong to each bin. We include dashed
lines where the y-axis value is 1. Above this line, errors are higher than average, so predictions in
that bin are on average worse than the test set average. Below the dashed line, errors are lower than
average and predictions in the bin are on average better than the test set average. The histograms
show the distributions of the 15% best (lowest prediction errors; green) and 15% worst (highest
prediction errors; orange) predicted populations. We note that the histograms are normalized to the
figure size and their height does not correspond to the y-axis labels. The error metric that we use
for predicting subhalo mass loss is given by Eq. 2.7 and described in detail in the associated text.
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Figure 2.6 shows the accuracy of the model, when trained using the technique described

above. Since the accuracy of this model depends on the selected tolerance value, we present

our results for a range of tolerances. Again, the training set generally does better than the

test set, for all tolerances, due to slight overfitting. It can be seen that, using only the

four top-ranking features, 56.5% of subhalos have their final masses accurately predicted

to with a margin of error of less than ±5% of their true initial mass. 89.3% of subhalos

can be predicted accurately, given predictions within ±20% of their initial mass. Almost

all (99.3%) subhalos can have their masses predicted to within ±50% of their initial mass,

although it’s worth noting that this tolerance encompasses a very wide range of mass loss.

To predict subhalo mass loss, the three most important features are: Rsub, aacc, and

φ . Again, given the ordering from the feature selection method discussed previously, these

features drive the steepest information gain, even given a model allowed to select any of the

full 26 feature set. At the 20% tolerance level, adding these first three features results in an

increase of 44.2%, 38.5%, and 5.3% accuracy percentage gain, respectively. We note that,

because the radius and mass of subhalos are directly analytically related to one another, the

radius can be replaced with the mass in this model with no difference in the information

gain or final accuracy.

Figure 2.7 shows the average prediction error, as a function of the four most important

features for making these predictions. We create bins with respect to each of these 4 param-

eters, spaced such that that the same number of subhalos belong to each bin, and plot the

average prediction error in that bin, normalized by the average prediction error of the entire

sample. We also show distributions of the subhalos with the 15% best and worst predicted

mass loss. There are clear trends in the error of our predictions with respect to each of these

four features. The prediction error increases with increasing Rsub, so smaller subhalos are

predicted better than larger subhalos. Prediction errors also decrease for subhalos that enter

their hosts at more recent times. In particular, there is a sharp improvement to predictions

for subhalos entering their hosts at aacc ≥ 0.85. Subhalos entering their hosts around aacc

49



= 0.6-0.7 are the hardest to make predictions for. There is a slight trend in prediction er-

ror with regards to φ . Subhalos that enter their hosts with φ ≤ 0.3 are slightly harder to

make predictions for than those entering on more grazing (higher φ ) orbits. Finally, there

is a roughly linear trend between prediction error and log(Mhost), with prediction error de-

creasing as log(Mhost) increases, meaning that it is easier to make predictions for subhalos

entering larger hosts. This is likely related to mass ratio as well, as smaller hosts will tend

to have interactions with larger q than smaller hosts. Indeed, we find a similar trend in

log(q), with better predictions for subhalos with smaller mass ratios. As with the survival

prediction, we additionally try to train a model with data exclusively where aacc = 0.6-0.8 to

determine if it is possible to get better performance in this particularly challenging region.

Again, we find that a model trained on only subhalos with aacc = 0.6-0.8 does not perform

better on data in this region than the model that was trained using subhalos with all aacc

values. In this case, three out of the four most important features as selected by our feature

selection algorithm are rearranged but remain unchanged in this test.

Although a significant fraction of our subhalo population cannot have their final masses

predicted with high precision, we point out that this model still performs much better than

a naive guess. As a baseline model, we assign a predicted final mass fraction to all sub-

halos as the average final mass fraction of the sample. Using Equation 2.7 to calculate the

accuracy of this baseline model, we find that only 15% of subhalos have their final masses

accurately predicted to with a margin of error of less than ±5% of their true initial mass,

65% with a margin of error less than ±20% of their true initial mass, and 93% with a mar-

gin of error less than ±50% of their true initial mass. It is clear that, although the majority

of subhalos can be predicted to within ±50% of their true initial mass by both models, our

machine learning model can make more precise predictions than the baseline model.

Interestingly, the distributions of the best and worst predicted subhalo populations do

not always separate strongly. Most of the well-predicted subhalos are of smaller size, while

the poorly predicted halos span a larger range of sizes, although their highest concentration
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is at a similar size to that of the well-predicted subhalos. We note that this is likely due to

the fact that there are more small subhalos than large, so the majority of our sample falls

within this range. However, the distribution of poorly predicted subhalos does tell us that,

despite the trend in prediction error with subhalo size, many of our smaller subhalos are still

difficult to make predictions for. As the radius of a subhalo is analog to its mass, this also

means that less massive subhalos are better predicted than their more massive counterparts.

The well-predicted subhalos also tend to reside in larger host masses than their poorly

predicted counterparts, suggesting that the well-predicted population is more comprised of

unequal mass ratios. The best-predicted subhalos are also those that enter their host at later

times, with the contours centering around aacc = 0.9-0.95, likely because those do not have

much time to lose mass before the end of the simulation, and thus have final masses similar

to their initial masses. The most concentrated regions of poorly predicted subhalos also

trace the regions of highest prediction error well. The best predicted subhalos appear to

have slightly higher impact angles than their poorly predicted counterparts, although the

total span is roughly the same for both.

As before, we want to determine if there are significant differences between the best

and worst predicted subhalos with respect to our additional features. As we did with the

correctly and incorrectly predicted populations for our survival predictions, we perform a

KS test between these distributions. This is done with respect to each of the additional

features beyond our set of the most important four, after finding a narrow bin within these

four features that removes all differences between the best and worst predicted halos with

respect to those four features. The KS test shows that the two distributions are found to be

the same, with a p-value of above 3σ, for all of our additional features, meaning that no

additional feature exhibits a trend with the goodness of our predictions.
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2.4.4 Final Position

We next predict the final position of a surviving subhalo at z=0, relative to the center of

the host, using a gradient-boosting regressor. To determine the accuracy of the model, we

define a positional error metric, δ (drel,f), which we call the prediction error for each of our

predictions, using the the difference between true and predicted fractional distance from

host center. A subhalo is considered to be accurately predicted if:

δ (drel,f) = |drel,f,true −drel,f,pred|−
2Rsoft

Rhost,f
≤ tol (2.8)

Where tol is some tolerance value that determines what difference in fractional distance

from host center is acceptable as accurate. Here, drel,f is the distance between subhalo and

host halo centers, normalized by the host radius. Subscripts pred refer to a value predicted

by the model, and true refer to the true value from the simulation. Rhost, f is the radius

of the host at z=0, and Rsoft is the softening length of the simulation. The first term in

this equation is simply the absolute difference between the true and predicted fractional

distance from host center. Since what our model predicts is the actual fractional distance of

the subhalo from the host halo center, we do not need to additionally normalize this quantity

as we did when predicting mass loss, as this value can be straightforwardly taken as the

fraction of the host radius by which the prediction is off. The second term in the equation

is an additional tolerance, to account for uncertainty in the subhalo’s position within its

host due to the force resolution of the simulation. As with the mass loss predictions, we

vary the tolerance to determine what percentage of subhalos have their prediction errors

within that tolerance, which is how we define the model accuracy.

Figure 2.8 shows the accuracy of the model. For final subhalo position, it appears that

more features are needed to reach maximum accuracy, with the first six required before

accuracy converges. Moreover, the fraction of well-predicted halos is smaller than in the

case of predicting mass loss. 39% of subhalos have their final positions accurately predicted
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Figure 2.8: Same as Fig. 2.6, but for the case of predicting the final subhalo position. Different
colored lines show the different tolerance values used to define accuracy, as defined in Eq. 2.8.
For a complete description of the positional error metric we use to calculate this accuracy, see the
associated text. The choice and order of features for the first four features in the x-axis is determined
by our feature selection algorithm described in Section 2.4.1, while the next two features were
chosen by the GBR algorithm. The order of the remaining features is arbitrary.

to ±5% of their final host radius, 82.1% of subhalos can be predicted accurately to within

±20% of their host’s radius, and 98.8% to within ±50%.

The most important six features to predict final position are: the initial scale factor, the

mass ratio between the sub and host halo, the subhalo’s orbital impact angle, the relative

velocity with which the subhalo enters, the mass of the subhalo, and the mass of the host

halo. Given the ordering from the feature selection method discussed previously, it appears

that these first four features were chosen to be quite important, although the subhalo impact

angle provides less accuracy gain than some of the other, later-chosen features. The addi-

tional two features that we did not find with our feature selection methods, the mass of the

subhalo and the mass of the host halo, were found by the machine learning model to be ad-

53



ditionally important. Adding these first six features results in an increase of 25.8%, 29.6%,

3.6%, 18.3%, 3.9%, and 1% accuracy percentage gain, respectively, at the 0.2 tolerance

level. In this case, our feature selection method does not add information in the optimal

order, so some later added features provide more information gain than earlier selected fea-

tures. For each of our four top features, we show trends in prediction error in Figure 2.9.

There is a strong trend with regards to aacc, where the later a subhalo enters its host, the

better its final position can be predicted. As with mass loss, this is likely because subhalos

entering their hosts closest to z=0 have less time to undergo significant changes from the

influence of their host, or fall very deeply into the host center. There is a significant de-

crease in prediction error for subhalos entering later than aacc = 0.7, with subhalos entering

prior to that time being generally predicted poorly. Subhalos with both lower mass ratios,

log(q) < -3, and higher mass ratios, log(q) > -1, are predicted better than those at more

mid-range mass ratios, with prediction error notably decreasing for the higher mass ratios.

There appears to be little trend in prediction error with regards to φ . Higher impact angles

(φ > 0.8) are predicted slightly worse than subhalos on more plunging orbits, but below

this impact angle, there is no significant trend. Similarly, subhalos with log(vrel) < 2.2 are

predicted better than subhalos with larger initial velocities, but above this initial velocity

there appears to be little trend. This is perhaps due to subhalos incoming with the smallest

initial velocities not changing position significantly from their time of entry, making them

easier to make predictions for.

We again compare the accuracy of these predictions to a baseline model, where we as-

sign the average fractional distance from the host center of all subhalos to every subhalo

in the sample. Using Equation 2.8 to calculate the accuracy of this baseline model, we

find that 13% of subhalos are correctly predicted when using a tolerance of 0.05, 47% of

subhalos are correctly predicted given a tolerance of 0.2, and 99% of subhalos are cor-

rectly predicted using a tolerance of 0.5. Given that the average final fractional distance for

subhalos is around 0.55, achieving 99% correct predictions at the 0.5 tolerance level is un-
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surprising, as this high tolerance allows almost any subhalo within the host’s virial radius to

be considered correctly predicted. Comparing these baseline accuracies at the 0.05 and 0.2

tolerance levels to our machine learning model, which achieved 39% and 82.1% accuracy,

respectively, we see that our machine learning model offers significant improvement over

this simpler model.

Figure 2.9: Same as Fig. 2.7, but for the case of predicting the final subhalo position. The predic-
tion error, shown on the y-axis, is given by Eq. 2.8 and described in detail in the associated text. A
higher error value corresponds to worse predictions in that bin, and a lower error value corresponds
to better predictions in that bin.

Figure 2.9 also shows distributions of where the best and worst 15% of predicted sub-
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halos lie. Most of the best-predicted subhalos are those that enter their host closer to z=0,

likely because those have less time to move deep into the host and have their orbits altered.

The distribution of poorly predicted subhalos peaks at an earlier time, around aacc = 0.7,

as those subhalos likely spend more time in their host halos with the potential for larger,

less predictable perturbations. Well-predicted subhalos also seem to slightly favor more

equal mass ratios than poorly-predicted ones, but the difference between the distributions

is fairly minor, except for at log(q) > -1.0, or mass ratios of greater than 1:10, where the

higher relative number of well-predicted subhalos to poorly predicted subhalos brings the

average prediction error down. From the third panel of Figure 2.9, it appears that best and

worst distributions with the impact angle are quite similar. There are slightly fewer poorly

predicted subhalos than well predicted subhalos at more grazing orbits with φ > 0.8, which

likely explains the increase in average prediction error at those values. Well-predicted sub-

halos favor slightly lower initial velocities than their poorly-predicted counterparts, with

the peak of the well-predicted population occurring at log(vrel) = 2.1, and the peak of the

poorly-predicted population being closer to log(vrel) = 2.3.

As before, we check the distributions of the best and worst predicted subhalos with

respect to each of our additional features, beyond our set of the most important four, using

a KS test. After controlling for aacc, φ , q, and vrel by selecting a narrow bin in this feature

space where the two distributions of best and worst predicted subhalos are the same, we

perform a KS test between the two distributions with respect to all additional features. In

doing so, we find that the two distributions are the same, with a p-value of above 3σ, for all

of our additional features, except for the concentration of the subhalo and the eccentricity.

2.4.5 Merge Time

For those subhalos that dissolve before z=0, we predict the time between the subhalos entry

and subsequent merging, using a gradient boosting regressor. To determine the accuracy

of the model, we define an merger time error metric, δ (t), which again we refer to as
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the prediction error for an individual subhalo, using the the difference between true and

predicted number of crossing times. A subhalo is considered to be accurately predicted if:

δ (t) =
|ttrue − tpred |

tcross,true
≤ tol (2.9)

Where tol is some tolerance value which determines to within how many crossing times

a prediction is considered to be accurate. Here, t is the predicted duration of the merger,

and tcross is the crossing time of the host halo, at the time that the subhalo dissolves, both

in years. Subscripts pred refer to a value predicted by the model, and true refer to the true

value from the simulation. Then, our tolerance is in units of final crossing times of the host

halo. This δ (t) is calculated as the difference between the true and predicted elapsed time

of infall for the subhalo, normalized by its final crossing time. Normalizing by this crossing

time allows us to use this error metric for all subhalos, regardless of when the interaction

occurs. As before, by varying the tolerance, we calculate the percentage of halos with

acceptable prediction errors to get accuracy.

Figure 2.10 shows the accuracy of the model, when trained using all and increasingly

smaller subsets of the features. Since accuracy depends on the selected tolerance value,

we show the accuracy given several different choices of tolerance. As always, the training

set generally does better than the test set, for all tolerances, due to slight overfitting. To

predict subhalo merging time, only three features appear to be necessary to reach maximum

accuracy. 41.6% of subhalos can be predicted to within half of a crossing time, 83.5% of

subhalos can be predicted to within 1.5 crossing times, and 97.4% can have their merging

time predicted to within 3 crossing times. We note that 3 crossing times is typically a few

billion years, and is around the average time it takes a subhalo to merge, so this threshold

is very lenient.

As with our other predictions, we compare the results of our model to a baseline model

that assigns a constant merging time to each subhalo equal the average number of crossing
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Figure 2.10: Same as Fig. 2.6, but for the case of predicting the subhalo merge time. Different
colored lines show the different tolerance values used to define accuracy, as defined in Eq. 2.9. For
a complete description of the error metric we use to calculate this accuracy, see the associated text.

times of all subhalos to merge. Then, we use Equation 2.9 to check the accuracy of this

simple model and compare it to the accuracy of our machine learning model. We find that,

using this baseline model, 40.3% of subhalos are correctly predicted to within .5 crossing

times, 83% of subhalos are correctly predicted to within 1.5 crossing times, and 98.8% of

subhalos are correctly predicted to within 3 crossing times. The performance of this simple

model is extremely similar to that of our machine learning model, at all tolerance levels,

suggesting that this model was unable to learn more complex merging behavior.

The three features needed before prediction accuracy levels off with the addition of

more features are: the initial scale factor, the mass ratio between the sub and host halo, and

the subhalo’s orbital impact angle. Adding these first three features results in an increase

of 74.9%, 4.7%, and 3.1% percentage gain in accuracy, respectively, at the 1.5 tolerance

level. In Figure 2.11, we show trends in prediction error with respect to each of the top
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four features. In the top panel, we see a trend with aacc for subhalos with entry times at

aacc > 0.45, where later entry times are on average predicted better. For subhalos entering

at times earlier than aacc = 0.45, there does not appear to be a trend. Subhalos with larger

q are also better predicted than those at more unequal mass ratios, with the prediction error

rapidly decreasing as mass ratios become more equal, until around q = 0.3, where the trend

roughly levels off. This mass ratio of q = 0.3 is often presented as the threshold between

major and minor mergers (Wetzel et al., 2009), so major mergers are predicted much more

easily than minor mergers. This trend is likely due to the fact that major mergers happen

more quickly than minor mergers do, and the more equal the mass ratio in a merger is, the

more quickly the merger occurs. As such, we would expect higher q mergers to be easier to

predict because the target value is smaller. Subhalos on more grazing initial orbits, with φ¿

0.7 have on average higher prediction errors than those on more plunging orbits. Plunging

orbits likely take less time to merge than grazing orbits, and thus likely also have less time

for their orbits to be changed significantly, making them easier to predict. Initial relative

velocity has a consistent trend with prediction error, where the higher log(vrel) is, the worse

a subhalo is predicted.

Figure 2.11 also shows the distributions the subhalos with the 15% best and worst pre-

diction errors. The poorly predicted subhalos have a slight tendency to enter their hosts at

earlier times than their better predicted counterparts, however the majority of both distribu-

tions are subhalos entering their hosts at earlier times. Most of the best predicted subhalos

have more equal mass ratios, whereas the worst predicted subhalos are highly concentrated

in the smallest q subhalos. The distribution of the best predicted subhalos peaks at more

plunging φ orbits than the worst-predicted subhalos, with a higher concentration of poorly

predicted subhalos at higher φ , following the trends that we saw with prediction error. Fi-

nally, the distributions in log(vrel) look similar but offset, with the best-predicted subhalo

distribution having a peak at around log(vrel) = 2.2, and the worst-predicted subhalo distri-

bution having a peak at around log(vrel) = 2.3. This offset is small, but consistent with the
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trends in prediction error that we see.

We check the distributions of the best and worst predicted subhalos with respect to each

of our additional features, beyond our set of the most important four. After controlling

for aacc, φ , q, and vrel by selecting a narrow feature space where the two distributions

of best and worst predicted subhalos are the same, we perform a KS test between the

two distributions with respect to all additional features. In doing so, we find that the two

distributions are the same, with a p-value of above 3σ, for all features except for the spin

of the host halo and the concentration of the host halo.

2.4.6 Subhalo Interactions

Several papers have noted that interactions between subhalos as they orbit within their

hosts can be frequent and lead to significant amounts of mass loss, with as much as 40%

of mass loss in a subhalo attributed to subhalo interactions (Tormen et al., 1998; Knebe

et al., 2006; Klimentowski et al., 2010; Angulo et al., 2009). In our sample, we find that

interactions between subhalos are quite common. Around 57% of our subhalos spend at

least one snapshot as a sub-subhalo; that is, they enter the radius of another subhalo within

the host at some point after they have entered the host itself. After becoming a sub-subhalo,

around 23.5% of our total sample remain shrouded as sub-subhalos until they dissolve or

until z = 0.

To test if these close interactions are important in determining mass loss, or any of our

other predicted final quantities, we track and incorporate three additional subhalo features

in our model: (1) a flag indicating whether the subhalo becomes a sub-subhalo; (2) a flag

indicating whether the subhalo remains a sub-subhalo until either merging or z=0; and (3)

the time that the subhalo spends being a sub-subhalo. Since the subhalo can enter and then

exit another subhalo multiple times, this number may reflect time spent inside more than

one subhalo. Although these features are tracked during the whole history of a subhalo’s

infall, and thus do not align with our initial goal of predicting outcomes of subhalos using
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Figure 2.11: Same as Fig. 2.7, but for the case of predicting the subhalo merge time. The prediction
error, shown on the y-axis, is given by Eq. 2.9 and described in detail in the associated text. A higher
error value corresponds to worse predictions in that bin, and a lower error value corresponds to better
predictions in that bin.

only initial conditions, we add these additional features to our model solely to determine

if they matter significantly. We find that none of these features increase accuracy when

added, meaning that the number and duration of interactions does not inform the evolution

of our subhalo final quantities. We also tested whether these interaction features could add

enough stochasticity to the merging process to be responsible for the difficulty in making

these predictions by checking if the distributions of the best and worst predicted subhalos
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are significantly different. For each model, we control for the features that were found

to be important by selecting a narrow bin within each of them, then we perform a KS

test between the distributions of best and worst predicted subhalos with respect to our

interaction features. In doing so, we find that the two distributions are the same, with

a p-value of above 3σ, for all of our models. This suggests that these close interactions

between subhalos are not important for their evolution as they fall into their hosts, neither

by affecting the outcome nor by adding noise to the process.

2.5 Summary and Discussion

In this paper, we employed machine learning algorithms to predict the survival, mass loss,

final position, and merge time of a subhalo from features taken at the time of its initial infall

into its host halo. Our goal was to better understand to what degree these final outcomes

are due to stochasticity in subhalo evolution versus real, physically-motivated processes

that could be consistently, analytically predicted. we found:

• Subhalo survival vs. disruption (mass loss > 90%) can be predicted remarkably well,

with 94.4% of our sample being correctly predicted as surviving or disrupting. To

reach this accuracy, four initial features are needed: the scale factor at the time of the

start of the interaction, the mass ratio between the subhalo and its host, the impact

angle of the subhalo’s orbit, and the initial relative velocity between the subhalo

and its host. However, to reach this accuracy, the initial scale factor is by far the

most influential of these features, and an accuracy of 89.9% can be reached with this

feature alone. Subhalos with both late and early entry times are easiest to predict,

while those entering their host halos at aacc = 0.6 are more difficult. However, this

is also dependent on the subhalo-to-host mass ratio, where subhalos with lower mass

ratios instead exhibit this transition closer to aacc = 0.3. This is likely because lower

mass ratio subhalos are in general more likely to survive, so a subhalo must enter

its host at an earlier time to be subject to changes from its host for long enough to
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dissolve.

• Subhalo mass loss is a much more stochastic process. Although for 56.5% of our

sample we were able to predict a final mass with an error within ±5% of the initial

mass, we must loosen our criteria to ±20% of the initial mass in order to consider

∼ 90% of our sample correctly predicted. This maximum prediction accuracy is

achieved using only three initial features: the radius of the subhalo, the scale factor

at the time of the start of the interaction, and the impact angle of the subhalo orbit.

In general, our model makes better predictions for smaller subhalos with late entry

times than for those that are larger or have earlier infall times.

• Subhalo final positions are also difficult to predict. 39% of our sample can be cor-

rectly predicted to within ±5% of their host’s initial radius, but an accuracy of 88.5%

is only achieved when we loosen our error tolerance to within ±25% of the host ra-

dius. To make these predictions, six initial features are needed: the scale factor at the

time of the start of the interaction, the mass ratio between the sub and host halo, the

impact angle, the initial relative velocity, the subhalo mass, and the host halo mass.

As with mass loss, our model makes better predictions for subhalos entering their

hosts at later times. However, there does not seem to be a significant trend in predic-

tion accuracy with regards to the other features that were found to be important for

making these predictions.

• Subhalo merging timescales are also difficult to predict. 41.9% of our sample can

be correctly predicted to within half of their host halo’s final crossing time, but an

accuracy of 91.1% is only achieved when we loosen our error tolerance to within

2 crossing times. Our model needs four features to make its predictions: the scale

factor at the time of the start of the interaction, the mass ratio between the sub and

host halo, the impact angle, and the initial relative velocity. Notably, this model

shows no improvement in accuracy over a naive model which assigns to all subhalos

63



the average number of crossing times our subhalos take to merge.

• There are some interesting commonalities among both the sets of features needed to

make these predictions and the feature spaces in which predictions are poorest. Only

five features, in total, are needed to achieve the maximum prediction accuracy for all

of our predicted outcomes:. The scale factor, impact angle, relative velocity, and the

masses of the host and subhalo (sometimes combined as mass ratio or appearing as

virial radius instead) seem to be the only relevant features for determining subhalo

evolution. Additionally, the feature spaces that are most difficult to make predictions

within also have much overlap. In general, subhalos that enter at a mid-range of

initial scales (typically aacc = 0.6-0.7) are challenging to make predictions for, across

all of our final outcomes. There also appear to be trends in impact angle, with higher

impact angles (more grazing orbits) being easier to predict the behavior of, except

for in the case of predicting disruption, where the opposite appears to be true.

• Additional features beyond the set needed to make predictions for each final quantity

are not useful, either for making predictions or for characterizing the types of subha-

los that are better or worse predicted. Although the best and worst predicted subhalos

are typically distributed differently with respect to the features that are used to make

predictions, when these features are controlled for, differences in these distributions

with respect to all other features are removed. So, additional features outside of the

set used to make predictions do not correlate with the stochasticity of our predictions.

It is clear from our results that, for predicting the mass loss, final location, and merging

timescales of individual subhalos, an accurate, consistent mapping for a significant frac-

tion of the population cannot be found given our set of initial features. There are several

possible reasons for this inability to accurately model subhalo evolution. The first possi-

bility is that some feature or features were missing from the initial set, which would have

been fundamental to making accurate predictions. Although we have made sure to include
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an extensive list of physically-motivated features that were found in the literature to be

important for modeling these outcomes, our list was not completely comprehensive. For

instance, the halo finder ROCKSTAR outputs 75 features to describe each subhalo, many

of which encode information about the ID’s of the halos, but also include: halfmass ra-

dius, largest shape ellipsoid axes, angular momenta, velocity dispersion, and some others,

most of which we decided not to include in our analysis. However, we have no compelling

reason to believe that these excluded features would contribute such a meaningful portion

of the needed information to bridge this gap in predictability. So, although the possibility

remains that additional features could be needed to improve predictions, it seems unlikely

that the missing information could be completely encompassed there.

A second possibility is that errors within the simulation, halo catalog, or merger tree

make subhalo evolution unpredictable and sometimes incorrect. Much speculation remains

as to the accuracy of N-body simulations and their ability to accurately model the physics

of subhalo evolution, particularly on these small scales (van Kampen, 2000; Taylor and

Babul, 2005; van den Bosch et al., 2018; van den Bosch and Ogiya, 2018). Although

several studies have suggested that simulation resolution only effects subhalos with small

numbers of particles (e.g., Gao et al., 2004; Nurmi et al., 2006; Diemand et al., 2007),

van den Bosch et al. (2018) found that typical state-of-the-art cosmological simulations

cannot resolve subhalos well enough to follow their mass loss until complete disruption.

In the Bolshoi simulation, for example, van den Bosch (2017) found that only around 20%

of subhalo disruption was truly physical, with instantaneous subhalo masses being highly

erratic along the orbit. Similarly, van den Bosch et al. (2018) found that most subhalo

disruption in modern simulations is artificial or numerical in nature, with only subhalos

of exquisite resolution and greater than 106 particles per halo showing consistently con-

verged results, especially for those orbiting close to the center of the host. A number of

other works have also called into question the reliability of the halo catalogs and merger

trees that are generated from these simulations. Comparison projects have found differing
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results for the fates of subhalos and the subhalo mass functions resulting from different

halo finders (Knebe et al., 2011; Onions et al., 2012; Avila et al., 2014; van den Bosch

and Jiang, 2016; Behroozi et al., 2015) and merger tree codes (Tweed et al., 2009; Sri-

sawat et al., 2013; Jiang and van den Bosch, 2014). Because these codes fundamentally

define subhalos in different ways and trace their properties between snapshots using differ-

ent methods, these comparison projects found that, when applied to the same simulation,

resulting halo catalogs and merger trees could differ quite significantly. This problem may

be additionally exacerbated by the frequently tumultuous merger histories of halos (Sinha

and Holley-Bockelmann, 2012).

Despite the fact that the veracity of simulation results has been brought into question,

we note that it seems unlikely that simulation errors could be entirely responsible for the

results we have found. van den Bosch and Ogiya (2018) found that, despite physical dis-

ruption2 being extremely rare within simulations, subhalos only became highly sensitive to

numerical disruption after losing over about 90% of their mass. Additionally, Avila et al.

(2014) and Srisawat et al. (2013) found that spurious fluctuations in the masses of subhalos

within simulations using ROCKSTAR may be frequent, and that subhalos that pass close

to the centers of their hosts may have truncated merger trees. However, they also found

that Consistent-Trees is usually able to successfully follow the evolution of subhalos, lead-

ing to overall reliable mass loss histories. Since our study only relies on final outcomes

mapping from the initial conditions, any minor errors along the history should not be im-

portant. And, although different halo finders and merger tree codes can differ from one

another, their behavior is generally consistent, and thus again should not be responsible for

the inconsistent merging behavior that we have found.

Another possibility is that final outcomes can be accurately predicted from initial con-

ditions of the interaction, but the machine learning methods used here were not able to

2We mean ”physical” here as it is used in van den Bosch and Ogiya (2018), where it refers to disruption
caused by the tidal heating and stripping that unbounds the subhalo particles, as opposed to numerical disrup-
tion, which is due to a subhalo falling below the resolution limit of the simulation. In the case of numerical
disruption, the subhalo would still exist if the resolution of the simulation were higher.
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capture the process. This could be due to a few reasons. It is possible that the particular

machine learning method used was not well-suited to the problem. However, we sam-

pled different algorithms, from very simple methods to more complicated methods such as

neural networks, and have found that this technique yields the highest fraction of accurate

predictions. Another possibility is that we did not have enough data, or the data did not

span the parameter space well enough. In this instance, noise in the data could overwhelm

the relationship between input and output. We also tested this by repeating our process with

smaller random subsets of our data, using instead one half and one quarter of our original

sample, to ensure that our results did not change with fewer data points. In doing this, we

found no change in maximum accuracy, even with a significantly reduced amount of data,

suggesting that the noise in the data is not due only to sample size.

The final possibility is that there is an inherent chaotic nature of these interactions

within N-body simulations. We find a large scatter in outcomes to be present in our data

- even in narrow bins of the input parameters, there can be large differences in the out-

come with regard to all of our predicted quantities, meaning that a consistent relationship

between these inputs and outputs can not be found. As we do not expect the previous

possible explanations to completely explain this behavior, we believe that a chaotic nature

of these interactions is the most likely explanation. In this case, the initial conditions of

an interaction are not enough to know the outcome, because similar initial conditions can

lead to very different outcomes. This makes it impossible for a model that relies on similar

initial conditions producing similar outcomes to get consistent results.

An inherent stochasticity in these merging processes would have implications for sim-

ulations and the models that are built from them. For instance, our findings in this work

would suggest that analytic models that attempt to model the individual evolution of sub-

halos are doomed to be unable to describe all subhalo-host halo interactions, as the basic

premise that the same inputs would yield the same outputs is not necessarily true. However,

the regions of highest uncertainty in our predictions may give insights on how to improve
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these models. For instance, in predicting merge time, our model clearly had more trou-

ble making predictions for minor mergers over major mergers. This could point to a need

to model the merging times of these two populations separately, as our machine learning

model, which is able to perform well in the major merger regime, clearly does not apply as

well to the minor merger regime. In this instance, there may be an inconsistent dependence

of merging timescales on the mass ratio, making it difficult to accurately parameterize its

effect.

Despite the inability of these models to make accurate predictions at the individual sub-

halo level, we may still be able to use a model like this to construct subhalo populations.

For instance, to determine the surviving population of subhalos at z=0 given a population

of subhalos that enter the host, our model would be able to definitively determine the sur-

vival or disruption of some subhalos that enter within certain ranges of our most important

features, and determine with some probability the survival or disruption of other subhalos

that enter within the more uncertain ranges of our features. A model like this could prop-

erly take into account the regions of feature space where outcomes are more variable, to

assign outcomes with some scatter, but model more precisely in the regions of feature space

where outcomes are better defined. In this way, one could use our model to create realistic

distributions of z=0 subhalo populations using moderate resolution simulations that do not

actually resolve subhalo evolution.

The features that our model selects also give some interesting insights. For instance,

predicting the survival, final position, and merge time of a subhalo, all required the same

four features: aacc, q, φ , and vrel, all in the same relative order of importance, to make

predictions. This likely means that the same fundamental physical processes are at work in

determining all of these quantities. To predict mass loss of a subhalo, our model selected

from the same broad subset of features, but the features that provided the most information

to the model were not the same. This may mean that some additional processes effect

subhalo mass loss, that skew some features to be more necessary in making predictions
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than were needed for the other final quantities. Another interesting result from the features

that our model selected is that the impact angle and relative entry velocity of a subhalo

as individual features appear to be more influential in determining subhalo evolution than

a feature like eccentricity, which captures information about both. This may mean that

allowing a model to individually weigh those two components of subhalo orbits leads to a

more generalizable model of subhalo evolution than using eccentricity or circularity alone.

Finally, as our analysis here has shown us trends in the outcomes of subhalos with

respect to certain features, we can use this information to draw conclusions about satellite

populations. For instance, the overwhelming dependence of survival on the entry time of

the subhalo, along with the clear division that we see in Figure 2.3 of survival fraction

occurring at z = 0.67-0.43, suggests that these galaxies should be severely stripped of their

dark matter, containing 10% or less of their original mass. Alternatively, due to the trend

we also see in mass ratio, subhalos that enter at earlier times may retain more of their mass

if they entered their host with a mass ratio of less than 1:100. Similarly, we could expect

a roughly smooth trend in the fraction of halo mass remaining with the time of entry for

subhalos.

In this study, we used a dark matter only simulation to study the evolution of subhalos.

However, hydrodynamic simulations play a crucial role in our understanding of subhalo

evolution by capturing a more complete context of baryonic physics. The next step in this

type of work would naturally be to explore the implications of baryons. Because there are

more potential factors dictating the evolution of subhalos in hydrodynamic simulations,

such as feedback and enhanced tidal effects (Diemand and Moore, 2011; Brooks et al.,

2013; Despali and Vegetti, 2017), we may expect that subhalo evolution in a hydrodynamic

simulation is even more difficult to predict. A recent study by Nadler et al. (2018) perhaps

confirms this, as they used dark matter properties to predict the survival of subhalos in a

hydrodynamic simulation, with slightly less success than we were able to predict survival

in a dark matter only simulation, meaning that the addition of baryonic physics makes this
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prediction more difficult. However, whether or not adding baryonic features to these types

of models would improve predictions remains unexplored. Several works have studied

the specific effects of baryons on the subhalos in which the galaxies reside (Dolag et al.,

2009; Romano-Dı́az et al., 2010; Brooks and Zolotov, 2014; Sawala et al., 2017; Garrison-

Kimmel et al., 2017; Munshi et al., 2017; Richings et al., 2020), but as can be seen from

this work, the chaotic nature of these interactions may make it difficult to quantify these

trends into a machine learning model.

Finally, it would be interesting to explore the dependence of the stochasticity of these

interactions on the place in the orbit at which the start of the interaction is defined. In this

work, we have defined the start of the interaction as when the subhalo crosses the virial

radius of the host halo. However, there are many other significant times in a subhalo’s orbit

which could be chosen instead. For instance, we could define the ”start” of the interaction

as the time that a subhalo reaches its first pericenter, or as the time that it crosses the

splashback radius of its host rather than the virial radius. These changes could significantly

change our results, and an analysis of the performance of these models at various times

during the infall could give valuable insight as to whether or not the stochasticity of the

interaction increases or decreases after any point in the infall.
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CHAPTER 3

Deep Learning the Formation of Structure Down to Smallish Scales

Cosmological simulations are one of the cornerstone tools in modern astrophysics. While

these simulations prove incredibly useful over a wide range of applications, their computa-

tional expense remains a barrier to creating large ensembles of example universes, partic-

ularly of higher resolutions. Modern machine learning techniques offer a potential avenue

to create simulated universes with significantly less computational expense. We utilize a

U-Net deep convolutional neural network with a dark-matter only initial conditions density

field evolved to z=0 using 2LPT as the network input. Then, we predict the z=0 density

field from our full dark-matter only N-body simulation as the target output. We train this

model with the mean-sqaured error loss function, then train an additional conditional gen-

erative adversarial network on the same data. Our input and output simulation boxes have

1 Mpc3 voxel resolution. Our U-Net model generates a final density field that is accurate

to 30% at k=3.0Mpc/h, and accurate to under a percent at the largest scales. The model

predicts higher density regions more accurately than lower density regions and overall has

a blurred effect. The generative adversarial network is accurate to 35% at k=2.0Mpc/h

and to 15% at k=3.0Mpc/h. We discuss the limitations of the approach we used and some

potential avenues to improve upon these results in the future.

3.1 Introduction

The cosmic web that we see today is the result of billions of years of evolution in our

universe. From the time of the Big Bang until the present, density fluctuations in the uni-

verse’s matter grow under the influence of gravity, eventually forming structures that host

the galaxies and clusters we observe today. Understanding the formation of this structure

in depth has been an ongoing topic of study in astrophysics, giving rise to multiple sub-

fields, all of which aim to understand how our current universe forms from the relatively
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homogeneous primordial matter distribution.

These billions of years of evolution are often simulated using dark matter only cosmo-

logical simulations, which have become a fundamental tool for studying structure forma-

tion. From probing different cosmologies to understanding how galaxies are distributed,

dark matter only simulations have been key in advancing our knowledge of the universe

through their comparisons to observations (Springel et al., 2006; Angulo and White, 2010;

Borgani and Kravtsov, 2011; Tinker et al., 2012). However, full cosmological N-body sim-

ulations, especially of high resolution, are incredibly computationally demanding to run,

requiring potentially millions of CPU hours to complete (Boylan-Kolchin et al., 2009; Nel-

son et al., 2019; Maksimova et al., 2021). This computational expense can act as a barrier to

running large suites of high resolution simulations, which are often necessary for properly

understanding systematic errors in galaxy surveys and for generating reliable covariance

matrices for our simulated universes (Berlind and Weinberg, 2002; Harnois-Déraps and

Van Waerbeke, 2015; Klypin and Prada, 2018; Szewciw et al., 2022).

Machine learning, and deep learning in particular, have emerged in recent years as tools

that can bypass more complicated computations by learning complex relationships between

input and output data. Convolutional neural networks (CNN’s) are a type of neural network

that can learn the spatial relations between pixels in an image or voxels in a 3D volume

(Krizhevsky et al., 2017; Tran et al., 2015; Gu et al., 2018). Since much data in astrophysics

is either inherently image-like in nature or can naturally be treated as such, CNN’s are an

obvious choice for many astrophysical problems. In cosmology, CNN’s have been used

for a wide variety of tasks, including galaxy identification and categorization (Guo and

Martini, 2019; Wu et al., 2019; Bretonnière et al., 2021; Maslej-Krešňáková et al., 2021;

Domı́nguez Sánchez et al., 2022; Farrens et al., 2022; Tang et al., 2022; Zhang et al., 2022),

photometric redshift estimation (Hoyle, 2016; Pasquet-Itam and Pasquet, 2018; Pasquet

et al., 2019; Shuntov et al., 2020; Schuldt et al., 2021; Dey et al., 2021; Henghes et al., 2022;

Lin et al., 2022), strong gravitational lensing identification (Jacobs et al., 2017; Lanusse
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et al., 2018; Petrillo et al., 2019; Cañameras et al., 2020; He et al., 2020; Huang et al.,

2020; Savary et al., 2021; Li et al., 2021; Wilde et al., 2022), and identification and mass

estimations of galaxy clusters (Ntampaka et al., 2019; Gupta and Reichardt, 2020; Kosiba

et al., 2020; Yan et al., 2020; Su et al., 2020; de Andres et al., 2022; Lin et al., 2022; Hong

et al., 2021; Ramanah et al., 2021).

Recently, CNN’s have been explored for a number of large scale structure formation

problems, by interpreting a density or displacement field of dark-matter only simulation

boxes as a 3D volume and transforming it into a more useful fake simulation. Yip et al.

(2019), Tröster et al. (2019), and Bernardini et al. (2022) all used CNN-like architectures

to add baryons to dark-matter only simulations. Berger and Stein (2019) and Ramanah

et al. (2019) directly predict halo masses and locations from low resolution dark matter

density fields, and Bernardini et al. (2020) and Lucie-Smith et al. (2020) do so from an

initial density field. Chardin et al. (2019) predict maps of reionization times from initial

density and gas fields. Wu et al. (2021) reconstruct velocity fields from dark matter density

fields.

There have also been several recent studies that aim to tackle the same problem that we

do in this work - generating realistic final simulation outputs without running simulations -

albeit with some different approaches. Kasmanoff et al. (2020), Ramanah et al. (2020), Li

et al. (2020), Ni et al. (2021), and Schaurecker et al. (2021) make use of general adversarial

networks (GANs) to super-resolve dark matter structures. These works use GANs to add

resolution to lower resolution simulations, making simulation boxes that look like realistic

higher-resolution counterparts of the lower-resolution boxes they are given. Rodrı́guez

et al. (2018), Perraudin et al. (2019), Feder et al. (2020), and Ullmo and Aghanim (2021)

also make use of GANs, instead generating completely new density fields which visually

and statistically look like the output of a simulation run with a different set of random initial

conditions. This allows for the fast generation of multiple simulation boxes that all have

the same cosmology. Perraudin et al. (2021) created a more generalized GAN model that is
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able to generate simulated universes for a given set of cosmological parameters. Curtis et al.

(2022) used a GAN to generate 2D images of the density field, with a focus on investigating

void statistics in those generated images. Mustafa et al. (2019) and Tamosiunas et al. (2021)

use GANs to produce weak lensing convergence maps, with Tamosiunas et al. (2021) also

investigating generalizing their models to different cosmologies.

CNN’s can also be used to approximate the results of a full cosmological N-body sim-

ulation, going from an initial density field to the final density field without running a simu-

lation. He et al. (2019) trained a U-Net to learn a fast approximation of the final displace-

ment field from an initial displacement field, generating simulations of 323 particles in a

128 (Mpc/h)3 box and achieving few percent-level accuracy on the power spectrum at the

smallest scales. de Oliveira et al. (2020) expanded on this approach and pushed it to finer

resolution, instead training their U-Net model to predict final displacement fields of simu-

lation boxes that are of resolution 5123 particles in a 1000 (Mpc/h)3 box. They were able

to achieve the same percent-level accuracy at the smallest scales, despite the resolution of

these simulations being more than 8 times higher.

In this work, we attempt to push to even higher resolutions, making use of a 1000

(Mpc/h)3 simulation box with 22403 particles. Using a high resolution simulation allows

us to predict a finer final density grid of resolution 1Mpc, pushing our predictions to in-

clude smaller structures. In this regime, the effects of gravity are highly nonlinear, so we

expect that accurate predictions down to those scales may be significantly harder to achieve.

However, predictions on scales that small would be necessary to eventually produce halo

catalogs.

In Section 3.2, we give a complete description of the data. Like He et al. (2019) and

de Oliveira et al. (2020), we use a U-Net architecture, which we give images of the initial

density field to predict images of the final density field. The details of this architecture

are discussed completely in Section 3.3. We go over the performance of this network,

both visually and statistically, in Section 3.4. Finally, Section 3.5 includes a discussion of
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practical findings from this study as well as possible future avenues for this type of work.

3.2 Description of Data

This work makes use of a dark matter only (DMO) cosmological N-body simulation from

the Large Suite of Dark Matter Simulations project (LasDamas; McBride et al. (2009)).

This simulation was run on the Texas Advanced Computing Center’s Stampede supercom-

puter using the public code GADGET-2 (Springel (2005)). The initial power spectrum was

generated using CMBFAST (Seljak and Zaldarriaga, 1996; Zaldarriaga et al., 1998; Zaldar-

riaga and Seljak, 2000). Initial conditions are then generated using 2LPTIC (Scoccimarro,

1998; Crocce et al., 2006), and evolved to a starting redshift of z=99. All simulations were

run with the following cosmological parameters (Planck Collaboration et al., 2014): Ωm

= 0.302, ΩΛ = 0.698, Ωb = 0.048, h = 0.681, σ8 = 0.828, and ns = 0.96. The simulation

contains 22403 particles in a 1 Gpc/h box, and the mass of a single dark matter particle is

7.46 x 109M⊙.

The particles of an N-body simulation are initially laid down on a grid with separation

less than our desired 1Mpc grid for our density field. This makes using a gridded version

of the initial density field impossible - gridding this already gridded particle distribution

leads to an aliasing artifact that dominates the image. Instead, we use as the input density

field the initial conditions run to z=0 using 2LPTic. As 2LPT approximates the evolution of

structures, this also helps the U-Net not need to learn as large of a problem, as this density

field has more of the large scale trends already in place.

However, running 2LPT to z=0 creates a different problem - some areas of the density

field may be evolved too far, as 2LPT is unable to capture proper orbital trajectories of

particles as they move into more highly dense regions. This shell crossing effect could have

the opposite of the intended effect of helping the U-Net learn, so we attempt to mitigate this

issue by dampening the initial power spectrum before generating initial conditions. This

preserves the evolution that 2LPT predicts on large scales, but small-scale structures are
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less strongly evolved. We do this by dampening the initial power spectrum exponentially

at the critical density according to:

P(k)′ = P(k)e−k/2knl (3.1)

Where P(k)’ is the power spectrum we use to generate these new initial conditions,

givenkand P(k) the output power spectrum of CMBFAST. The nonlinear scale, knl, is defined

as the scale at which kcross =kfor:

kcross = (
2π2

P(k)
)1/3 (3.2)

Figure 3.1 shows the resulting input density field evolved to z=0 from dampening the

input power spectrum. The left panel shows the result of evolving with 2LPT the initial

conditions generated without a dampened power spectrum to z=0. The middle panel shows

the result of evolving with 2LPT initial conditions generated from our dampened initial

power spectrum to z=0. The final panel shows the full simulation results when run to z=0.

All panels show a slice of one of our simulation boxes from the training set. To increase

the clarity of structures in these images, the density values are plotted logarithmically. The

bottom panel of Figure 3.1 shows the power spectrum for these three density fields. It can

be seen both visually and in the power spectrum that dampening the initial power spectrum

generates a result with 2LPT that is more similar to the full simulation box, especially at

smaller scales. The undamped initial conditions run to z=0 have visually smoothed out

clustering at the smaller scales due to the aforementioned shell crossing effect.

Convolutions must be performed on a grid of voxels, so we grid this density field using

a 1.0Mpc grid, and a triangular filter of width 0.5Mpc. This triangular filter allows particles

to contribute some of their count to a neighboring cell if the particle is close enough to the

edge of its primary grid cell. This means that a particle that lies in the interior 0.5Mpc of

a grid cell (±0.25Mpc from the center of the grid cell) will have all of its count given to
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Figure 3.1: An example slice of the density field at z=0 for 2LPT without damping the initial power
spectrum (left panel), for 2LPT with a damped initial power spectrum (middle panel), and for the
full simulation (right panel). The bottom panel shows the power spectra of these three density fields.
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that grid cell. However, a particle that is outside of these bounds will contribute a portion

of its count to the neighboring grid cell that it is closer to. A particle that is exactly on

the boundary of two grid cells will give half of its mass to each grid cell, a particle that

is halfway between 0.25 Mpc from the cell center and the cell edge will give 75% of its

count to the primary cell and 25% of its count to the neighbor. This contribution drops off

linearly between 0.25Mpc from the grid center and the grid cell edge. This spread happens

in all 3 dimensions, so a particle can maximally contribute density to 8 grid cells, with the

contribution to each of these cells depending on the particle’s x,y, and z offsets from center.

While this gridding filter may spread out some features, it also prevents harsh boundaries

between neighboring grid cells. We perform the same gridding on the final density field for

consistent comparisons.

Large machine learning models have many learnable parameters, and require many cal-

culations during a forward pass of the model. For this reason, there is not enough memory

on the GPUs we train on to forward pass the entire 1000 (Mpc/h)3 box. To fit our memory

constraints, we cut this full simulation into smaller boxes of size 128 Mpc3. This size box

is small enough to fit in its entirety onto one GPU, while still being large enough to have

structures at all relevant scales. This gives us 3000 smaller boxes for our training data. We

also augment this dataset, by up/down flipping, left/right flipping, or 90-degree rotating

each of these boxes along one, none, or two of the x,y, and z dimensions. This increases

our effective dataset by a factor of sixteen, resulting in 48000 simulation boxes. We reserve

a random subset of 64 boxes, before augmentation, for each the testing and validation sets.

This results in 2872, 64, and 64 unaugmented boxes for training, testing, and validation,

respectively.

To get an accurate prediction for an entire matching 128 Mpc3 output box, the U-Net

would need information outside of this input box, as the density surrounding voxels on the

edge is fundamental to evolving those edge voxels properly. To avoid this issue, we simply

ignore the predictions of the outer 16 voxels on all sides of our output image, as the sizes
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of our filters do not have information to predict them accurately. This is done by applying a

final layer of the model which truncates these edges, reducing their size to (96,96,96) rather

than (128,128,128).

3.3 Machine Learning Methods

In this work, we use a U-Net (Ronneberger et al., 2015) (commonly called V-Net when

used on volumes (Milletari et al., 2016)) convolutional neural network. These networks

have a downsizing portion which uses a series of convolutional layers to transform the

input, learning its features and compressing it into a lower-dimensional representation of

itself. This is then followed by an upsizing portion, where the network increases the size of

the image again while adding convolutions over the upsized image and the corresponding-

size downsized image from previously in the network via skip connections. This upsizing

portion works to transform the image into the desired target image, in our case the final

density field, while using information from the downsizing portion of the network to inform

larger-scale features. I have written a full tutorial on how every step of a U-Net works,

available on github at github.com/apetulante/UNet Tutorial. This tutorial is also included

in its entirety as Appendix 1 in this document.

3.3.1 The Architecture

The network architecture that we use in this work is shown in in Figure 3.2. The network

consists of 6 convolution layers which progressively downsize the image from (128,128,128)

to (16,16,16) using 3 blocks of (3x3x3) filters followed by (5x5x5) filters. This is mirrored

by 6 up-convolution layers, which each involve an up-sampling of the image followed by

a convolution. These convolutional layers also use 3 blocks of (3x3x3) filters followed by

(5x5x5) filters. Each convolution is followed by a rectified linear units activation, and a

batch normalization. We end the network with 64 1x1x1 filters followed by 1 1x1x1 filter.

These are necessary to return the image to its original size, as the number of ”channels”

of an output image will equal the number of filters used in the previous layer. Finally, our
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Figure 3.2: The network architecture that we use.

network ends with a truncation layer, which cuts off the outer 16 pixels on all sides of the

final image.

3.3.2 Training Procedure

We train the network using the Adam Optimizer (Kingma and Ba, 2014), with a learning

rate of 1x10-5 and first and second moment exponential decay rates equal to 0.9 and 0.99,

respectively. Due to the size of our data, we can not load all of our data into memory

at once. Instead, we train the model in batches of 128 pieces of data, randomly drawn
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from our full dataset, with the model updating after averaging the weight updates from all

128. While this makes the loss highly noisy during training, the loss still generally trends

downward and becomes less noisy as the model is better generalized. This also leads to

the model requiring many epochs to have had time to see all of the pieces of data, so our

model only converges after 3000 epochs. During training, we monitor the validation loss,

and attempt to halve the learning rate once the moving average of the validation loss has not

decreased in 100 epochs. We stop training once this learning rate change does not improve

the loss either. This smoothing of the validation loss allows us to robustly monitor when

it generally stops trending down, as any given epoch may move to a worse validation loss

given the training is done on random batches.

We use the mean-squared error (MSE) as the loss function:

MSE(ypred,ytrue) = |(ypred − ytrue)
2| (3.3)

The MSE is known to have some issues when it comes to image reconstruction, namely

that it has a tendency to produce blurry final images. This is because the MSE requires a

direct pixel-by-pixel comparison between the target and predicted image, so it can be more

easily reduced by smearing out features in the predicted image. Nonetheless, we find that

the MSE as the loss function produces the best results from the pixel-by-pixel comparison

metrics that we tried. The majority of this smearing effect appears to happen in the lower-

density regions of the image, which do not contain as many of the important structures as

the higher-density regions. In Section 3.5, we explore some ways to mitigate this issue.

3.3.3 An Alternate Approach with Conditional GANs

One alternate choice for the loss function is to replace it instead with another network -

called a discriminator network - whose job is to tell if the generated images match the real

images. The main advantage of this approach is that the network remains unconstrained by

the choice of a specific loss function - rather, the entire discriminator network can act as
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a much more complex heuristic for determining if the generated image matches the target

image, or essentially as a learned loss function itself. The generator network (in this case,

our U-Net) and the discriminator network are jointly trained as one unit called a generative

adversarial network (GAN) (Goodfellow et al., 2014). The conditional GAN is a particular

flavor of GAN where the training is also conditioned by giving to the discriminator some

additional information about the desired output (Mirza and Osindero, 2014), for instance by

having the discriminator determine if pairs of (input, output) images are real or fake, rather

than if just the generated image is real or fake. This additional conditioning allows the

set of potentially real-passing generated images to be more constrained to match a specific

desired output.

To compare these different methods of training a generator network, we adapt a pix2pix-

like architecture for 3D images and train this model as well on our simulation boxes (Isola

et al., 2017). The pix2pix includes an L1 loss component to the generator loss to encourage

generated output images to match exactly the target image, which is the desired outcome

of this work. Pix2pix also uses a PatchGAN as the discriminator network. A PatchGAN

classifies patches of an image as real or fake, creating a map of regions from the image

that each correspond to an independent prediction of realness or fakeness for each patch.

One potential issue with the PatchGAN architecture for our use case is that each patch

taken from the image is classified assuming independence from the other patches. In truth,

all regions in a simulation density field are causally connected, so density fluctuations on

scales larger than the size of the patches will not be evaluated even though they exist. Al-

though this is a potential cause for concern, we do not modify the PatchGAN discriminator

used by pix2pix beyond changing the input shape. The pix2pix PatchGAN uses patches

which cover 70x70x70 pixel regions of the image, which for our grid cells corresponds to

a 70x70x70 Mpc box. This is still a large region of the density field, with only the largest

mode of density fluctuations being inhibited by this patch size. The main advantage of

the PatchGAN - that focusing on smaller regions of the image may improve predictions of
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”high-frequency”1 structures in the image, which correspond to smaller scales in the power

spectrum - may outweigh the detriment that using patches brings.

We adapt the pix2pix architecture to our data by changing all convolutions to be in

3D in order to be suitable for our volumes. We additionally remove the two layers at the

bottom of the ”U” of the generator so that we can keep our input boxes as (128,128,128)

rather than resizing them to (256,256,256) as pix2pix normally requires. In the training

procedure, we change the relative weightings of the L1 loss component and the generator

loss in the total loss that is used for updating the generator network. We give slightly more

weight to the L1 loss, as we found this to be necessary to produce more identical images

to the target output. We also decrease the learning rate for the generator model to 5x10-5

as we found that for our case the generator was learing much faster than the discriminator.

All other aspects of the training procedure remain as described completely in Isola et al.

(2017).

3.4 Results

3.4.1 MSE-Trained U-Net

We begin by presenting the visual results of the U-Net when trained using MSE as the loss

function. Figure 3.3 shows, for three of our test boxes, the input density field, predicted

density field, and true density field. The first column shows the input fields for three 1 Mpc

slices of a (96 x 96 x 96) target output box. The middle column shows the prediction of

the U-Net for the same slice from that same volume. The last column shows the same slice

from the target (true) box from the full simulation. The colorbars shown on the right are

scaled to the maximum and minimum of each of the respective trio of images, so that a

pixel’s color across all three images corresponds to the same value.

The large scales patterns of structures look similar in all three images, with the input

1Here, we use ”high-frequency” as it is commonly used in the field of computer vision. High-frequency
structures are those that have high variation over small regions in the image - often appearing the most crisp
or sharply defined. This is not related to the frequency with which a pixel value appears, which we show in
our histograms.
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Figure 3.3: An example of the input (first column), predicted (middle column), and true (last
column) density fields for three simulation boxes in our test set. The input images are truncated by
16 pixels on each edge to be the same size as the predicted and target images for easier comparison.
The colors shown correspond to counts of ρ +1 rather than ρ to account for the undefined nature of
log(0).
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density field of 2LPT run to z=0 already placing the broad strokes of density fluctuations

in the right places. However, the prediction panels show that the U-Net has both sharpened

some of those structures as well as added some structures into the regions where the 2LPT

input had only very diffuse structure. In particular, the highest density peaks appear to be

generally the correct size and pixel value in the predicted image. Compared to the target

images however, the predicted boxes look distinctly blurrier. The lowest density regions

appear to be predicted the worst, with the true image having a significant number of fine,

thin filaments in the lower-density regions which are not in the predicted image at all. The

lowest density regions of the image are also generally not dark enough in the prediction,

with the overall background color of the predicted images appearing as a lighter blue than

the background of the truth images.

3.4.1.1 Pixel-by-Pixel Comparisons

We examine the distribution of densities in our predicted images more closely in Figure

3.4, which shows a histogram of pixel values averaged across 64 of the predicted, corre-

sponding true, and corresponding input boxes in our test set. Above ∼4000 counts/pixel,

the true and predicted histograms match in shape very well. This can be seen visually in

Figure 3.3, where it appears that the highest density, brightest pixels are typically repro-

duced accurately. Between ∼100 and ∼4000 counts/pixel, the U-Net predicts less density

than is in the true image. In Figure 3.3, these regions typically appear as green pixels.

This discrepancy seems to come primarily from a lack of fine filamentary structures in the

lower density regions of the images. The predicted images have almost all but the largest

filaments significantly blurred out, but less dense areas in the truth images have many small

structures defined throughout. Instead, these regions in the predicted images seem to take

on the lighter blue color that is associated with pixels of counts ∼10. This can also been

seen in the histograms, with the model significantly overpredicting pixels to be in the ρ ∼3

- ∼30 density range and the peak pixel value of the model pixels occurring at ρ ∼4 rather
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Figure 3.4: Histograms of the pixel densities of the predicted and true density field, averaged for
64 boxes in our test set. The histogram of true values is shown in purple, and the histogram of
predicted values is plotted on top in green. We also show, in light gray dots as to not cover the other
two histograms, the outline of the histogram of input boxes. We show the counts of ρ + 1 rather
than ρ to account for the undefined nature of log(0).

than at ρ ∼1 like in the truth. This also shows up as a significant underprediction of pixels

in the range ρ = 0-4, which again seem to have been given slightly higher values in the

predicted images.

At the first bin in the histograms, which corresponds to ρ = 0, there is a distinct spike in

the model histogram. This is due to the final activation function of our model being ReLU,

which does not allow negative values and instead makes them zero. This is necessary

because our final density field should not contain any negative values. However, as the

convolved image coming out of the final layer in our model, before the ReLU activation, is

allowed to contain negative values, this artifact remains in the final image.

We next take a closer look at some particular regions of our predicted boxes to further

investigate where the model tends to fail. Figure 3.5 shows, for three 40x40x1 Mpc patches

of our predicted boxes, the corresponding truth patch, and the subtraction of the predicted

patch from the truth patch. It is clear from these images that what we have speculated about

the locations of the density discrepancies between truth and prediction is true. Overall, the
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Figure 3.5: Patches taken from our predicted and true test boxes, and the difference map between
them. Each patch is a 40x40 region taken from a 1Mpc thick slice of one our test boxes. The first
column shows patches taken from truth images, the second column shows patches from the same
predicted images, and the third column shows the predicted patch subtracted from the truth patch.
The difference map is log-scaled to better show variation. All colorbars are centered at zero, so blue
pixels indicate excess density in the truth compared to prediction, and red pixels indicate excess
density in the prediction compared to truth.
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highest density structures are predicted well, with a trend towards excess density in the

predicted image by ∼10 - 100 counts, as can be seen in the major structure in the third row

of Figure 3.5. It is clear from all of the panels that the majority of the blue pixels, where the

truth is in fact higher in density than the model predicted, form thin filaments that are not

resolved by the blurry lower-density regions of the prediction. We can also confirm from

the reddish background on all of the subtracted images that the tendency for the prediction

is to put too much density into what should be nearly completely empty regions of the

density field.

The performance of the model in these ranges points to particular strengths and weak-

nesses of the MSE as the loss function. Although the general size and location of the

brightest pixels is accurate, we can see the MSE’s tendency to shift structures in the high-

est density pixel of the patch in the first row of Figure 3.5. It is also clear from all of

these pixel-by-pixel comparisons that using the MSE as the loss function generates overall

smoothed out final images. This is most evident in the lowest density regions, where finer

structures are smoothed out into a diffuse background over the entire image. The shifted

peak in the histogram is likely due to this smoothing effect, where predicting pixel values

in a mid-range of ∼3 - 30 helps to minimize the loss in regions where the density was both

supposed to be slightly lower and slightly higher,

3.4.1.2 The Power Spectrum

The power spectrum is one of the most common summary statistics that cosmologists use

to quantify the density field as a function of physical scale. It is given by:

P(ki) =
∑ki<k≤ki+1

⟨|δ (k)|2⟩
(NiV )

(3.4)

Where δ(k) is the Fourier transform of δ(x) the overdensity field, Ni is the the number of

k’s that fall into the given k bin (ki < k ≤ ki+1) and V is the volume of the region in k-

space. The wavenumber k corresponds inversely to physical scale, so a larger k represents

88



structures of smaller physical sizes. We calculate this power spectrum using nbodykit’s

(Hand et al., 2018) FFTPower on our gridded density fields. In Figure 3.6, we show the

average power spectrum for 64 of our input, predicted, and true boxes in our test set in the

top panel. In the bottom panel, we show the transfer function T(k) as used by Feng et al.

(2016); He et al. (2019); de Oliveira et al. (2020):

T (k) =

√
P(k)predicted

P(k)true
(3.5)

for more straightforward comparisons to their results. T(k) is defined such that values of

T > 1 correspond to the power in the predicted density field being larger than power in

the true density field, and values of T < 1 imply less power at that scale in the predicted

density field than in the true density field.

At small k-values, the predicted and true power spectra are nearly indistinguishable,

matching for k < 0.5 Mpc-1h to under one percent. At larger k, the true and predicted

power spectra begin to deviate, with the model not predicting enough power at smaller

scales. By k = 1 Mpc-1h, the difference between the power spectra has grown to 5%,

and at the smallest physical scales resolved by our gridding resolution, k = 3 Mpc-1h, the

difference is 30%. While these predictions significantly degrade at larger k, it can be seen

that the predicted power spectrum is remarkably better than the input power spectrum at all

scales, which does not match perfectly at even the smallest k, and has degraded to a 30%

deviation from the true spectrum at k ∼ 0.2Mpc-1h.

The performance of our model with regards to the power spectrum is similar to existing

works. He et al. (2019) reproduce the results of FastPM (Feng et al., 2016) very well at all

scales, only deviating from the FastPM power spectrum by a few percent at their largest k =

0.7 Mpc-1h. FastPM itself is accurate when compared to the fully nonlinear power spectrum

to 5% at k = 1 Mpc-1h for their longer 40 timestep run, and to ∼20% at k = 1 Mpc-1h for

their quicker 10 timestep run. The accuracy of this 40-timestep version of FastPM at k
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Figure 3.6: The power spectrum, for an average of 64 predicted (green line), true (purple line),
and input (gray line) density field boxes in our test set. In the bottom panel, we show the transfer
function as defined in Equation 3.5. At the dashed line of T(k) = 1, the true and predicted P(k) are
identical

.
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= 3 Mpc-1h is also similar to our results, where they achieve a 25% difference from the

nonlinear power spectrum. de Oliveira et al. (2020) achieve better results, maintaining

percent-level accurate results across all scales, down to k as small as ∼1 Mpc-1h.

It is important to remember in these comparisons that the simulation resolution is very

different in these works compared to ours, which has major consequences for the power

spectrum. He et al. (2019) use a simulation with 323 N-body particles in a volume of 128

Mpc/h, meaning their simulations contain an average of ∼0.016 particles/Mpc whereas our

simulations contain on average ∼11 particles/Mpc. de Oliveira et al. (2020) use simulations

with 5123 particles in a 1 Gpc/h box, meaning the underlying simulation has (512/2240)3

= 0.012 the resolution of ours. They do however use the displacements of all 512 particles

rather than gridding them as we do, leading to an effective (512/1000)3 = 0.13 fraction of

our resolution in the target boxes.

3.4.2 GAN-trained U-Net

In Figure 3.7, we show the visual results for the same three test boxes as in Figure 3.3, but

for our GAN model. Immediately, the visual results appear somewhat worse as compared

to the MSE-trained U-Net. While the predicted images in this set appear to lack some of the

fuzziness plaguing the MSE-trained model, features appear more sharp but still too diffuse

in their overall shape compared to the truth. It does appear that, as compared to Figure 3.3

the dynamic range of the predicted and true images matches a bit better, with void regions

being properly more empty and high-density regions having the correct brightness.

The lack of defined filaments is the most notable difference. For the MSE-trained U-

Net, the predicted image appeared as an overall blurry version of the true image, with

larger filaments appearing in the correct place and maintaining their rough shape that they

had in the input image. The MSE-trained U-Net did not appear to erase where 2LPT

had these larger structures, only sharpen or move them slightly. This is not the case for

the predicted images of the GAN-trained U-Net, where it appears that many of the larger
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Figure 3.7: The same as Figure 3.3, but for the GAN-trained U-Net instead.
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Figure 3.8: Same as Figure 3.4, but for the model that was trained with a conditional GAN struc-
ture.

filaments instead become bumpy looking and ill-defined. The highest density regions of

these filaments appear in approximately the same place, but the smooth, thin structures that

connect them are mostly gone.

In the low-density region, the GAN-trained U-Net does place some structure where the

MSE-trained U-Net did not. Rather than an overall smooth background, the predicted im-

ages in Figure 3.7 have more mottled structures, which do better represent the thin clumps

of filaments that appear in the lower density regions of the true images. The highest density

pixels appears reproduced fairly well, although again not as much so as for the MSE-trained

U-Net. It appears that the primary improvement for this model over the MSE-trained U-Net

is in the lower-density regions, at the overall expense of higher-density pixels.

3.4.2.1 Pixel-by-Pixel Comparisons

We next investigate the pixel density histograms for this model and inspect if these visual

differences are also apparent there. Figure 3.8 shows the density distribution as pixel counts

for an average of 64 of our true, predicted, and input boxes in our test set. The trends in

these histograms are quite different to those in Figure 3.4.

First off, it appears from Figure 3.8 that the GAN-trained U-Net has the opposite prob-
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lem from the MSE-trained U-Net at the lowest densities. Rather than drastically under-

predicting pixels with very low densities (ρ= 0-1), they are overpredicted. This seems to

come at the expense of density everywhere else, as the GAN-trained U-Net underpredicts

all other densities in the image. These trends can be confirmed when looking at the gener-

ated images for this model. The predicted images in Figure 3.7 show that the voids have a

generally lower density than they do in the truth, with a much darker overall background

color in the image. This can be seen in the histograms as the sharp spike in the first bin. Al-

though it appears that there is more structure in the lower density regions, the unorganized

nature of this structure makes it visually hard to compare to the truth.

Another potential reason for these large discrepancies is that the GAN-trained model

lacks in total density as compared to the truth. For the MSE-trained model, the total density

in the predicted and truth boxes was roughly similar over an average of many. However,

the average density of the GAN-trained model’s predictions is only ∼ 88% of the average

density of the truth. This is in theory an easy post-processing fix when predicting a full

simulation box, as the total mass is known and can therefore be preserved. For smaller

boxes that are cut from a larger simulation, it is harder to robustly correct the total mass.

For this reason, it may be useful to enforce that the total mass of the box matches during

training, when the truth is allowed to be known to the model.

As with the MSE-trained model, we inspect some patches of the true and predicted

density fields in Figure 3.9. We select the same patches that we used in Figure 3.5 for more

direct comparisons between the two models. As we suspected, the regions that the GAN-

trained model seems to have trouble with are quite different from what the MSE-trained

model struggled to predict. Most obviously, the the subtraction patches in Figure 3.5 were

mostly red, indicating that, particularly in the lower-density regions, the tendency of the

model was to predict too much density. The opposite is true of the GAN-trained U-Net,

where instead the tendency is to underpredict density. This of course matches what we

can tell by the histograms, that the GAN-trained model makes too many very low density
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Figure 3.9: Same as Figure 3.5, but for the GAN-trained model.
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pixels.

Despite the results in Figure 3.8 suggesting that there are not enough overall higher-

valued pixels in the predicted images, it seems from the subtraction patches in Figure 3.9

that the model also struggles to put its highest density pixels in the correct spot. For in-

stance, in the patches in the first row in 3.9, where the bright patch of pixels in the lower

right of the image is roughly the correct brightness when compared to the truth, but is

shifted relative to the truth. In the bottom row of 3.9, the brightest patches are in roughly

the correct spots, but are not as compact as in the true image.

3.4.2.2 The Power Spectrum

The noticeable improvement in the GAN-trained model over the MSE-trained model is in

its performance on the smallest scale of the power spectrum. In Figure 3.10, we show the

average of 64 input, predicted, and true power spectra on the top panel, and on the bottom

panel we show the residual quantity T(k) (given by Equation 3.5), the same as in Figure

3.6. On large scales, the true and predicted power spectra match very closely, the same as

the MSE-trained model did. However, at smaller scales the power spectrum is reproduced

slightly more accurately.

At large k-values, the predicted and true power match well, to under one percent until

k < 0.3 Mpc-1h, slightly worse than the MSE-trained U-Net that matched until k < 0.5

Mpc-1h. Just like with the MSE-trained U-Net, at larger k, the true and predicted power

spectra deviate, with not enough power at smaller scales. By k = 1 Mpc-1h, the difference

in the power spectrum has grown to 10%, and at k = 1 Mpc-1h, the difference is up to 35%.

This is overall worse performance than the MSE-trained model in all but the last 2

points on the power spectrum, at the highest k, where the difference instead decreases back

down to 15%, at k = 3 Mpc-1h. Even though for other smaller scales, 0.3 Mpc-1h < k <

1 Mpc-1h, the GAN-trained model does not do as well, the better performance in this final

bin is promising, as the smaller the scales, the harder making accurate predictions is. This,
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Figure 3.10: Same as Figure 3.6, but for the GAN-trained U-Net instead.
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combined with the overall lack of smoothness in the power spectrum, which could perhaps

be mitigated with more data, show that there is still much potential for using conditional

GAN’s to train a simulation generator.

3.5 Discussion

In this work, we utilize U-Net convolutional neural networks to predict the z=0 density

field, as generated from an N-body simulation, from the the density field of initial condi-

tions run forward to z=0 using 2LPT. We train both a U-Net in a standard manner with an

MSE loss function, and a modified version of a pix2pix GAN with a discriminator network

acting as the loss function.

The overall performance of the MSE-trained U-Net was better on almost all accounts.

Visually the images were significantly blurred, but the sizes and scales of the higher density

structures were well reproduced. The minor improvement of the GAN-trained U-Net was

in the voids of the images, which were appropriately more empty with some fine structures

throughout. However, the GAN-trained model did have a tendency to predict too many

very low-valued pixels, so the improvement here still comes with a cost.

We find that the MSE-trained U-Net performs better on all scales of the power spec-

trum except for the largest k = 3.0 Mpc-1h. Whereas the MSE-trained U-Net drops to a 30%

difference in predicted and true power spectrum at this scale, the GAN-trained U-Net in-

creases in accuracy to a 15% difference at this scale. It is for this reason that we believe that

there is still much potential for this method of training. Because the discriminator network

is able to pick out much more complex differences between the predicted and target image

during training, which unlike with the MSE loss are not easily minimized by blurring out

features in the output, it seems that it may have potential for improving the smaller scales

of the power spectrum where the MSE would be unable.

In this study, we have made use of a 1000 Mpc simulation box with 22403 particles,

gridded with a 1Mpc grid. At this spatial resolution, the growth of structures is highly
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nonlinear. Nonetheless, we are able to match the power spectrum with the MSE-trained

U-Net down tok= 1 Mpc to 5%. We believe that these results show much promise for the

continued use of deep learning techniques to learn smaller scale structure formation when

provided with higher resolution simulations. These results also align fairly well with those

from He et al. (2019) and de Oliveira et al. (2020), suggesting that using a significantly

smaller grid size does not affect the model’s ability to capture larger scales at all.

One very important comparison that we did not explore here is to replace the generator

network in the pix2pix pipleline with the architecture that we use for our MSE-trained U-

Net, which we have already found to fit the problem quite well. In this work, we have

minimally adapted pix2pix to fit our image size, however, the theory behind conditional

GAN’s, with a PatchGAN as the discriminator as pix2pix uses, can be applied to train any

U-Net architecture. This would be the natural next step for the results that we have found

here.

3.6 Lessons Learned and Looking Ahead

In getting to the model presented in this work, there was much that we tried, sometimes

with some success, and other times with significantly worse results. Here, we discuss some

of the most important takeaways from those tests. Where applicable, we give recommen-

dations for what we believe to be the most promising avenues for continued work on this

and similar problems.

3.6.1 Loss Functions

The choice of loss function is one of the most important determinants of success when

it comes to training our generator model. Pixel-by-pixel loss functions clearly have issues

producing blurry images, missing the majority of structures in low-density regions. While a

slight blurring effect doesn’t matter significantly for larger scales of the power spectrum, it

is evident that our MSE-trained U-Net drops significantly in performance at smaller scales

of the power spectrum, which may be largely due to an almost complete lack of any fine
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structures in the lower-density regions of the image. On the other hand, the GAN-trained

U-Net was much more successful at visually producing more small-scale structures in the

low-density regions, albeit without the same amount of definition that is seen in the truth.

While the GAN-trained model has much better reconstruction of the very smallest scales

of the power spectrum, at mid-scales of k it performs worse than the MSE-trained model.

Nonetheless, we conclude that going forward, a discriminator loss is likely the best way to

train a generator network for producing faux density fields, as recovering small scales of

the power spectrum is incompatible with a loss that produces highly blurry images.

Given that it is the primary evaluator of a successfully generated density field that we

use in this work, one obvious extension might be to specifically train the model based on its

accuracy on the power spectrum, by including performance on the power spectrum in the

loss. However, as the power spectrum lacks much vital information about the arrangement

of structures in the universe, we have not found this to improve the training of our model,

with the primary challenge of this approach likely being that an infinite number of density

fields satisfy the criteria of a matching power spectrum, so solely optimizing for a matching

power spectrum would most certainly not lead to a matching density field. Of course, the

accuracy of the power spectrum can be added as a component to the loss, which perhaps

with the correct relative weighting or with a dynamic weighting scheme could improve

results, however we did not find this to be the case with the weightings which we did test.

3.6.2 Dynamic Range of Data

One potential issue in training these models may lie in the enormous dynamic range that

the density field contains. As can be seen in Figures 3.4 and 3.8, while the majority of

pixels are fairly empty, those that do contain the highest density structures are often 104 -

105 higher in value than the majority of the image. This can make training, especially with

pixel-by-pixel losses, difficult to tune and quite finicky when it comes to for instance the

specific choice of learning rate depending on the chosen loss function. With pixel-by-pixel
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losses in particular, there is a danger that the model quickly memorizes the highest-value

pixels as a way of ”easily” significantly reducing the loss, and given the relatively very

small number of these high density pixels, a very large amount of data is needed for this

to not become inevitable. The use of a GAN to train the generator may also mitigate this

issue, as the pixel-by-pixel loss component to the generator and the discriminator loss from

the PatchGAN may work together to capture the transformation in both the high density

and low density regimes.

Another option is to scale the input data, for instance logarithmically, before giving it

to the model, which would shrink the dynamic range. In our testing of different models for

this work, we again found that the logarithmic scaling didn’t appear to help. The solution

may instead lie in a different scaling scheme for the input data, which even more drastically

reduces the relative range of the pixels.

One other promising way to deal with this would be to instead model a displacement

field rather than a density field. The displacement field specifies the movement of a particle

in the x,y, and z dimensions over some time. He et al. (2019) and de Oliveira et al. (2020)

use the displacement field as the input in their work, with very good results. The downside

of using the displacement field is of course that it must be specified in 3 dimensions: x,y

and z, tripling the amount of data. However, it also contains more information than the

density field, so if a model is able to compensate the additional size, it could likely lead to

better results.

3.6.3 Next Steps for Science

In this work, we primarily have focused on reproducing the density field. However, in

order to accurately make halo catalogs, velocities would be required. In principle, pre-

dicting the gridded velocity field is as straightforward as predicting the gridded density

field. Additionally, as the densities and velocities are complementary information, predict-

ing them together would likely improve the accuracy of both. However, each component
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of the velocity in x, y, and z would require its own field equal in size to the density field,

so predicting both density and three velocity components would quadruple the size of the

input and output data that we have used here.

From a science perspective, it will also be necessary to continue pushing the resolution

of generated simulations in order for them to be useful for more types of work. To generate

halo catalogs that contain information about galaxy-sized halos, for example, a gridding

smaller than 1 Mpc, which instead is on the scale of clusters, would be needed. The work

we have presented here shows promise that small-scale structures can be learned, at least

somewhat well. However, as structure formation is more nonlinear on smaller scales, it

may prove very challenging to keep pushing the grid size smaller while maintaining the

same level of accuracy.

With continued pushing to higher resolutions, and by adding additional information

such as the velocity fields, memory constraints may quickly become the primary challenge

for this type of work. Density fields must be sufficiently large as to contain structures across

all physical scales, so smaller grid sizes will only exponentially grow the number of input

pixels. However, to resolve structures smaller than cluster-size, an even smaller grid than

the one used in this work will be required.
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CHAPTER 4

Conclusions

In modern astrophysics, dark-matter only simulations are an essential tool for studying

structure formation. However, the computational expense of running these simulations

remains a barrier for generating large, high resolution simulations. While astronomers have

creative ways of reducing the computational cost or analytically modeling some processes

rather than simulating them, the need for full simulations remains to accurately model

many behaviors. In this dissertation, I have explored how machine learning might provide

solutions to some of these computational problems, as it is an extremely powerful tool for

modeling behaviors without needing any a priori knowledge about how the input and output

relate.

4.1 Summary

In Chapter 2, we used random forests and gradient boosting regressors to predict the sur-

vival, mass loss, final position, and merge time of a subhalo from a list of physically-

motivated features taken at the time of its initial infall into its host halo. In doing so, we

were able to probe the degree of stochasticity in subhalo evolution, testing whether or not

analytical models which approximate the fate of subhalos based on their properties at infall

time are beginning with consistently behaving subhalo evolution. We found that subhalo

survival can be predicted well, but that mass loss, final position, and merge time were

more stochastic processes, with very similar initial conditions not necessarily leading to

similar outcomes. Only five input quantities (redshift, impact angle, relative velocity, and

the masses of the host and subhalo) were needed to determine almost all of the subhalo

evolution learned by our models. We also found that some subhalos were harder to make

predictions for than others. In particular, those entering at mid-range redshifts (z = 0.67-

0.43) were harder to predict for all models, and those coming in with more perpendicular
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trajectories to the host were easier to make predictions for. We investigated a large range

of possible causes of this stochasticity, and conclude that it is most likely that the evolution

of subhalos within dark matter only simulations is inherently chaotic in nature.

In Chapter 3, we utilize a U-Net deep convolutional neural network to predict the z=0

density field from a dark-matter only simulation, using as input the initial conditions density

field evolved to z=0 with 2LPT. With this model, we were able to reproduce the power

spectrum to only 30% at k = 3.0Mpc-1h, but maintained an accuracy of under a percent at

the largest scales (k < 0.5Mpc-1h, and dropped to only %5 error for k = 1.0Mpc-1h. Then,

we investigated whether a conditional GAN has potential to make the same predictions,

while relieving issues caused by using pixel-by-pixel loss functions. Our GAN model

performed slightly worse on the power spectrum, instead with an error of %10 error for k =

1.0Mpc-1h, and only matching the power spectrum to under one percent for k < 0.3Mpc-1h.

However, at k = 3.0Mpc-1h, the GAN-trained model only had an error of 15% where the

MSE-trained model had an error of 30%, showing that there is still much potential for the

use of conditional GAN’s to train U-Nets for this type of work.

Both models had challenges accurately predicting the lowest density regions of the den-

sity field. In particular, pixels that housed single-digits of particles were not predicted well

by either the MSE U-Net or the GAN model, with the MSE U-Net underpredicting counts

of low density pixels and the GAN model overpredicting vey low pixel values. While these

pixels would not house any significant structures in the universe and therefore are in some

ways less important to predict correctly, the inability of the models to predict them accu-

rately points to a glaring hurdle in generalizing the modeling of structure formation for all

density regimes.

4.2 Future Work

There is much potential for the continued use of machine learning for problems of struc-

ture formation, and therefore many avenues of future work to explore for both the studies
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covered in Chapter 2 and Chapter 3 of this dissertation.

4.2.1 For Modeling Subhalo Evolution

For modeling subhalo evolution, much of the potential future work for what we have dis-

cussed in this dissertation would involve characterizing and accounting for the merging

stochasticity. For instance, subhalo interactions might play a significant role in the life of

a subhalo within its host. If that is the case, accurate modeling of subhalo evolution will

require more information about dynamics within the host, which may mean that obtain-

ing information about the interaction at only its starting point is not enough. A deeper

investigation into the subhalos that are most poorly predicted can give clues as to what is

affecting their evolution inside their hosts. An exploration into different significant times

in subhalo’s orbit could also elucidate when the subhalos evolution is most chaotic. For

instance, if we change the definition of the ”start” of the interaction to instead be the time

of first pericenter or the time of crossing the splashback radius, the performance of these

models could point to whether the stochasticity of the interaction changes as a function of

time within the host.

It would be very interesting to additionally recreate this study in the context of a hy-

drodynamical simulation. Galaxies are known to have strong effects on their subhalo hosts

through feedback and enhanced tidal effects, so subhalo evolution in a hydrodynamic sim-

ulation is likely dependent on significantly more factors. However, it would be important to

understand whether or not adding information about baryons to this type of study actually

changes the accuracy of predictions, as understanding whether or not the additional galac-

tic effects might also be stochastic in nature has implications for future analytic modeling

of galaxy evolution.

4.2.2 For Predicting the Cosmic Web

The primary goal of future work for predicting the cosmic web will be to improve the accu-

racy of predictions for smaller scales of the power spectrum and to make predictions more
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useful for a wider range of science applications. Improving the predictions themselves will

rely on improvements to model architecture and training procedure. In this dissertation,

we have demonstrated that a conditional GAN is a promising method for training a gener-

ator model if the primary goal is to accurately predict small scales of the power spectrum,

and would recommend this type of architecture for future models. That being said, many

changes could be made to the pix2pix framework that could better tailor it to density fields,

such as changing the patch size of the PatchGAN or changing the pixel-by-pixel loss that

is added to the generator loss, which we have not had time to explore in this dissertation

but that may improve training. Additionally, the U-Net portion of the pix2pix architecture

could be replaced with the U-Net architecture that we have developed in this work, which

already has shown fairly good performance on this problem.

For generated density fields to be practicable for science that relies on smaller scale

clustering, it will become necessary to push these predictions down to even smaller k. This

would mean making predictions of density on a finer grid, as 1 Mpc/h, while being in the

highly nonlinear regime, is still at the scales of clusters rather than individual galaxies. To

make accurate halo catalogs from a generated density field, a grid closer to 0.25 Mpc/h

would be needed to begin resolving Milky Way sized galaxies. A finer grid would also

be necessary to reduce pixelization effects, which as was recently explored in Schaurecker

et al. (2021), have strong effects on small scales of the power spectrum. In a similar vein,

we have not predicted the final velocity field in this work, but this is also a crucial piece

of information that is obtained from running a full simulations. Velocities from simula-

tions are important for many comparisons to the observed velocity field (e.g. Nusser et al.

(1991)), or to make accurate halo catalogs (e.g. Behroozi et al. (2013a)).

In this dissertation, I have primarily focused on examining the power spectrum as a

statistic for measuring the accuracy of a generated density field. However, while this is

a statistic that is crucial to reproduce correctly, it is far from sufficient for ensuring that

a generated cosmic web matches the observed universe for all relevant science. As Dong
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et al. (2021) recently discussed, many other validation metrics, such as the bispectrum,

topological metrics, and the cross-power test are all tests that should be passed to have

confidence that an AI-generated cosmic web truly matches a simulated one. Once future

works have generated the power spectrum sufficiently well, it will be important to turn to

these and additional metrics for ensuring that generated simulations can truly take the place

of fully-simulated ones.

When it comes to hydrodynamics and simulating galaxies, it remains yet unexplored

whether current machine learning techniques could help bypass the running of full hydro-

dynamical simulations by generating them in the same manner. As hydrodynamic sim-

ulations are enormously more complex, this is likely a much further frontier. However,

machine learning shows promise for semi-analytic type frameworks of modeling galaxy

formation on top of dark-matter only simulations (e.g. Kamdar et al. (2016)), which, when

applied on top of a generated density field could mean a pipeline for a fully-simulated

galaxy catalog is reasonably in the future. In order to further probe the viability of this

pipeline, it would be of particular interest to do a detailed comparison of a halo catalog

generated from a simulated density field versus that of a generated density field, especially

if the halo catalog were generated from a pixelized density field which would likely have

significant constraints.

4.2.3 On Machine Learning’s Continued Usefulness

Of course, as the field of machine learning continues to rapidly expand, new technologies

may be key for obtaining the high level of accuracy that current models lack. The anal-

ysis of Chapter 2 could be completely redone with a more complex model, which could

incorporate information about all other nearby subhalos in an attempt to capture more in-

formation about dynamics in the host that may be responsible for some of the stochasticity.

Perhaps a model that aimed to predict each step in a subhalos infall, in the full context of

how all other subhalos in that same host were evolving, could lead to a machine learning
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model that highly accurately determines subhalo fates, but still only needs information on

infall for every subhalo.

New technologies may also be what is needed to someday make running N-body simu-

lations all but unnecessary. Some recent developments in the field, including the emergence

of transformer models, provide ways to better include information about all regions of the

simulation box so that each pixel could be better predicted in the full context of the sim-

ulation box. Additionally, as hardware and hardware acceleration techniques continue to

improve, it may be feasible to grid the density field finer and finer, allowing for very high

resolution predictions and larger models. In the absolute ideal scenario, a prediction on

a particle-by-particle basis would be modeled, completely reproducing the output from a

real simulation with no lost information. Given the enormous number of particles in a high-

resolution simulation, this is likely a goal for the very far future, which will require clever

architectures or optimization techniques to become possible.
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CHAPTER 5

Appendix I: A Jupyter Notebook Tutorial

This Jupyter Notebook was originally authored using Google Colab, and was later format-

ted for download to a personal computer. It can be found in its full, original version in both

formats at https://github.com/apetulante/UNet Tutorial. Some minor formatting changes

have been made for its inclusion here.

This is a Jupyter notebook tutorial, walking through how a UNet convolutional neural

network works. It has been written assuming that the reader has some prior knowledge

about neural networks and/or convolutional networks, but that they may have forgotten

most of it and need a refresher of the basics.

5.1 Pre-Tutorial Setup

Before we start, let’s check that the GPU is ready to go if we have one, and import packages

that we’ll need, and talk about the motivations behind using a U-Net.

5.1.1 Some Basic Setup

If you wish to re-run any cells in this notebook, and you’re on Google Colab with GPU

access, run this cell. Otherwise, this entire notebook should run fine on a CPU (but will be

faster on a GPU).

1 import tensorflow as tf

2 device_name = tf.test.gpu_device_name()

3 if device_name != ’/device:GPU:0’:

4 raise SystemError(’GPU device not found’)

5 print(’Found GPU at: {}’.format(device_name))

Now, we’ll import the rest of the packages we’ll need. If re-running the cells that load

images, we’ll also define a string which is just the path to the folder that contains this
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notebook as well as all of the other images/data needed to run it (should be in folders as

they are on github).

1 !pip install -q keras

2 import numpy as np

3 import os

4 import matplotlib.pyplot as plt

5 import matplotlib

6 from keras.models import *

7 from keras.layers import *

8 from keras.optimizers import *

9 from keras.callbacks import ModelCheckpoint, LearningRateScheduler

10 from keras import backend as K

11 import tensorflow as tf

12

13 from PIL import Image

14

15 from matplotlib import animation

16 from IPython.display import display, HTML

17 from IPython.display import Image as Im

5.1.2 What is a UNet?

This subsection makes use of data and results originally presented in https://github.com/zhixuhao/unet

You might be wondering: what exactly is a UNet? Why would I want to use one?

How is it different from other convolutional neural nets? So we’ll start by giving a bit of

motivation for why UNets are so useful. Let’s say we have some image:

1 display(Im(’%s/data/test_input.png’ %filepath, height=270, width=270))
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A ”normal” CNN task might be to say ”that’s a stomach” given that the image could

have been from a stomach, brain, or skin. (Full disclosure: I don’t know what this image is

of, but it’s a medical image of some sort).

Let’s say instead though, that we want this:

1 display(Im(’%s/data/test_output.png’ %filepath, height=270, width=270))

That’s not a single class output: it’s another image. And ”normal” CNN’s don’t give an

image from an image, they collapse an image into one number or one set of numbers. Enter

the UNet. Fundamentally, it’s a CNN that’s architecture is such that you get an image back

out of the same size as the input image.

One way to think about this is really as pixel-by-pixel classification: in the above ex-
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ample, we’re deciding whether each pixel should be assigned black or white. But as you’ll

see, a UNet is more generalizable than that, and the final image doesn’t necessarily need to

correspond to pixel classifications.

5.2 How Convolutions Work

UNets are a type of convolutional neural network (CNN), so understanding how convo-

lutions work is fundamental to understanding how these networks work. In this section,

we briefly go over how to perform convolutions and the building blocks of a convolutional

layer in a CNN. While I cover all the basics here, this is meant as more of a refresher

and assumes you have previously seen how a convolutional network works (but may have

forgotten the details since).

5.2.1 The Convolution Operation

First, we need to cover exactly what a ”convolution” means. The building blocks of convo-

lutions are essentially dot products over matricies - we multiply the values in a matrix by

the corresponding values in another matrix, then add the values together to get a number.

Let’s define matricies A and B, then take the dot product between them.

1 a = np.array([[1,1,1],[0,0,0],[1,1,1]])

2 b = np.array([[3,2,3],[4,2,4],[3,3,3]])

3

4 # to visualize the matricies

5 fig = plt.figure(figsize=(10,5))

6 ax1, ax2 = fig.add_subplot(1,2,1), fig.add_subplot(1,2,2)

7 ax1.imshow(a, vmin=0, vmax=4, cmap="Greys"), ax1.set_title("Matrix A")

8 ax2.imshow(b, vmin=0, vmax=4, cmap="Greys"), ax2.set_title("Matrix B")

9

10 print(np.sum(a*b)) # since a/b are arrays, a*b is element-wise

multiplication
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Note that, this is different than doing matrix multiplication, which would result in an-

other matrix, rather than just one number.

Really, we want to think of this operation as giving us some linear combination of a

matrix. If we want a linear combination of matrix X with values x1,x2,x3, ... x9, we can

define some matrix A with values a,b,c, ... i, such that:

y =


a b c

d e f

g h i

∗


x1 x2 x3

x4 x5 x6

x7 x8 x9

=
(a× x1)+(b× x2)+(c× x3)+(d × x4)+(e× x5)+

( f × x6)+(g× x7)+(h× x8)+(i× x9)

Then, we can interpret the values in matrix A (a,b,c, ... i) as weights, each of which

decides how strong the contribution from matrix X’s values (x1,x2,x3, ... x9) should be.

5.2.2 Convolving an Image

When we convolve an image, we simply perform this operation over and over again, on

each pixel of an image. So, matrix A would be our matrix of weights, and matrix X is a

matrix of pixel values, where the center value is our current pixel of interest. Convolving

an image means performing this operation on every pixel of the image, then replacing its

value with the one that is given by our matrix dot product. In this way, the image becomes
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another version of itself - one where each pixel is some linear combination of the pixels

that were around it:

x5,new =


a b c

d e f

g h i

×


x1 x2 x3

x4 x5 x6

x7 x8 x9

=
(a× x1)+(b× x2)+(c× x3)+(d × x4)+(e× x5)+

( f × x6)+(g× x7)+(h× x8)+(i× x9)

In convolutional network applications, we typically call this matrix of weights a filter.

In other applications that use convolutions, it may also be called a kernel.

Let’s use matrix A from before, this time to convolve a simple, 5x5 image. The image

we are going to convolve is shown below:

1 im = np.array([[0,3,6,2,3],

2 [2,5,6,3,1],

3 [1,2,0,0,3],

4 [0,5,6,4,4],

5 [4,3,3,4,3]])

6

7 # show the image we’ll convolve, and the filter we’ll convolve it with

8 fig = plt.figure(figsize=(10,5))

9 ax1, ax2 = fig.add_subplot(1,2,1), fig.add_subplot(1,2,2)

10 ax1.imshow(im, cmap="Greys"), plt.title("Starting Image")

11 ax2.imshow(a, cmap="Greys",vmin=0,vmax=6), plt.title("Filter")

12

13 conved_im = np.zeros((3,3)) # we’ll replace these as we get the new

values
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The first step is to take the 3x3 block in the upper left of our image, and multiply that

by our weights:

1 fig = plt.figure(figsize=(18,5))

2 ax1, ax2, ax3, ax4 = fig.subplots(1,4)

3 ax1.imshow(im, cmap = "Greys"), ax1.set_title("Full Image")

4 ax1.add_patch(matplotlib.patches.Rectangle((-.48,-.48),2.98,2.98,fill=

False,color=’red’,lw=2)) #show region to convolve

5

6 ax2.imshow(im[0:3,0:3],cmap="Greys"), ax2.set_title("Region Around Pixel

")

7 ax3.imshow(im[0:3,0:3]*a,cmap="Greys",vmin=0,vmax=6), ax3.set_title("

Filter x Region")

8

9 conved_im[0][0] = np.sum(im[0:3,0:3]*a)

10 ax4.imshow(conved_im,cmap="Greys",vmin=0,vmax=29), ax4.set_title("

Convolved Image")

11 #here, I prematurely set vmax to what the maximum of conved_im will

be, otherwise scaling will change as it plots

12 plt.annotate("only one pixel in", (.55,.4))

13 plt.annotate("new image so far", (.55,.6))

115



We can see, that because our filter was a row of ones, a row of zeros, then another row

of ones, when we apply this filter to our region, the middle row becomes zeros, while the

top and bottom rows of the region are unchanged. So, the sum of Filter X Region which

creates our new pixel is really just the sum of the top and bottom rows of the region.

Next, let’s move over one pixel, and do the same thing:

1 fig = plt.figure(figsize=(18,5))

2 ax1, ax2, ax3, ax4 = fig.subplots(1,4)

3 ax1.imshow(im, cmap = "Greys"), ax1.set_title("Full Image")

4 ax1.add_patch(matplotlib.patches.Rectangle((.5,-.48),3,2.98,fill=False,

color=’red’,lw=2)) #show region to convolve

5

6 ax2.imshow(im[0:3,1:4],cmap="Greys", vmin=0, vmax=6), ax2.set_title("

Region Around Pixel")

7 ax3.imshow(im[0:3,1:4]*a,cmap="Greys",vmin=0,vmax=6), ax3.set_title("

Filter x Region")

8

9 conved_im[0][1] = np.sum(im[0:3,1:4]*a)

10 ax4.imshow(conved_im,cmap="Greys",vmin=0,vmax=29), ax4.set_title("

Convolved Image")

11 #here, I prematurely set vmax to what the maximum of conved_im will

be, otherwise scaling will change as it plots

12 plt.annotate("now, 2 pixels", (.95,.7))
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We can keep moving it over, and filling in the pixels of this ”new version” of our image:

1 fig = plt.figure(figsize=(18,5))

2 ax1, ax2, ax3, ax4 = fig.subplots(1,4)

3

4 display_ims = []

5 conved_im = np.zeros((3,3)) # reset this

6 for i in range(conved_im.shape[0]):

7 for j in range(conved_im.shape[1]):

8 im1 = ax1.imshow(im, cmap = "Greys",animated=True)

9 ax1.set_title("Full Image")

10 im1 = ax1.add_patch(matplotlib.patches.Rectangle((-.48+j,-.48+i)

,3,3,fill=False,color=’red’,lw=2)) #show region to convolve

11

12 im2 = ax2.imshow(im[i:i+3,j:j+3],cmap="Greys", vmin=0, vmax=6,

animated=True)

13 ax2.set_title("Region Around Pixel")

14 im3 = ax3.imshow(im[i:i+3,j:j+3]*a,cmap="Greys",vmin=0,vmax=6,

animated=True)

15 ax3.set_title("Filter x Region")

16

17 conved_im[i][j] = np.sum(im[i:i+3,j:j+3]*a)

18 im4 = ax4.imshow(conved_im,cmap="Greys",vmin=0,vmax=29, animated=

True)

19 #here, I prematurely set vmax to what the maximum of conved_im

will be, otherwise scaling will change as it plots
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20 ax4.set_title("Convolved Image")

21

22 display_ims.append([im1, im2, im3, im4])

23

24 ani = animation.ArtistAnimation(fig, display_ims, interval=1000, blit=

True, repeat_delay=1000)

25 plt.close()

26

27 HTML(ani.to_html5_video())

This image originally appeared in the Jupyter Notebook as a video. The image presented here is the

final frame of that video. The full video can be viewed in the original Jupyter Notebook by going to

https://github.com/apetulante/UNetT utorial.

5.2.3 Padding

You’ll notice that this convolution reduced our image size: while we started with a 5x5

image, our convolved version was only 3x3. This is because we’re only able to fit a 3x3

filter onto a 5x5 image, 3x3 times. We aren’t able to make ”new” pixels out of the ones on

the border of the image - our filter can’t fit. For this reason, we usually pad images before

we convolve them - or add values all around the border of the image. Padding ensures two

important things:

1. That the image isn’t downsized by a convolution.
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2. That pixels on the outer edges ”count” as much as pixels in the middle. That is - that

they’re convolved over as many times as pixels closer to the center of the image.

There are many different choices for padding, each with their own unique advantages,

but the most common/universal (and the only one we’ll discuss here) is valid, zero padding.

Valid means that we add whatever padding we need in order to keep the image the same

size. Zero just means that the values we add along the borders are all zeros.

If we valid zero-pad the image we were just using, we would get:

1 padded_im = np.pad(im, pad_width = (1,1), mode="constant",

constant_values=0)

2

3 # show the image we’ll convolve, and the filter we’ll convolve it with

4 fig = plt.figure(figsize=(10,5))

5 ax1, ax2 = fig.add_subplot(1,2,1), fig.add_subplot(1,2,2)

6 ax1.imshow(im, cmap="Greys"), ax1.set_title("Original Image")

7 ax2.imshow(padded_im, cmap="Greys",vmin=0,vmax=6), ax2.set_title("Padded

Image")

We can see, if we re-do the convolution we did to this image in the last section, now

with the padded image, that pixels on the edge of the image are also convolved over, and

the image size is preserved:
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1 fig = plt.figure(figsize=(18,5))

2 ax1, ax2, ax3, ax4 = fig.subplots(1,4)

3

4 display_ims = []

5 conved_im = np.zeros((5,5)) # now, we’ll have 5x5 pixels to fill in

6 for i in range(conved_im.shape[0]):

7 for j in range(conved_im.shape[1]):

8 im1 = ax1.imshow(padded_im, cmap = "Greys",animated=True)

9 ax1.set_title("Full Image")

10 im1 = ax1.add_patch(matplotlib.patches.Rectangle((-.48+j,-.48+i)

,3,3,fill=False,color=’red’,lw=2)) #show region to convolve

11

12 im2 = ax2.imshow(padded_im[i:i+3,j:j+3],cmap="Greys", vmin=0, vmax

=6, animated=True)

13 ax2.set_title("Region Around Pixel")

14 im3 = ax3.imshow(padded_im[i:i+3,j:j+3]*a,cmap="Greys",vmin=0,vmax

=6, animated=True)

15 ax3.set_title("Filter x Region")

16

17 conved_im[i][j] = np.sum(padded_im[i:i+3,j:j+3]*a)

18 im4 = ax4.imshow(conved_im,cmap="Greys",vmin=0,vmax=29, animated=

True)

19 #here, I prematurely set vmax to what the maximum of conved_im

will be, otherwise scaling will change as it plots

20 ax4.set_title("Convolved Image")

21

22 display_ims.append([im1, im2, im3, im4])

23

24 ani = animation.ArtistAnimation(fig, display_ims, interval=1000, blit=

True, repeat_delay=1000)

25 plt.close()

26

27 HTML(ani.to_html5_video())
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This image originally appeared in the Jupyter Notebook as a video. The image presented here is the

final frame of that video. The full video can be viewed in the original Jupyter Notebook by going to

https://github.com/apetulante/UNetT utorial.

Valid padding means padding in order to maintain image size. In our example above,

this means we just had to add a border of single-pixel width to our image. In general though,

the size of the border you need to add will depend on a few parameters. The parameters

that determine the size after you perform a convolution are:

• n: the size of the input image (assumed square, so it’s nxn)

• f: the size of the filter (assumed square, so it’s fxf)

• s: the stride, or how much you move the filter over before you do the next convo-

lution. In our above examples, we’ve always used s=1, but in general, s can be any

number that will still make the filter fit evenly inside the image. We will assume that

you use the same stride along all of the image dimensions.

• p: the width of the padding to be added, assumed the same amount will be added all

around the image.

Then, the output dimension of the image will be:

nout ×nout =
n− f +2p

s
+1
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So, depending on the image size, filter size, and stride selected, you can determine the

width of the padding that will need to be added to keep nout = n.

5.2.4 Adding Bias and Activations

We’ve already talked about how we can intepret each step of a convolution as replacing a

pixel with a linear combination of it and the pixels around it. But a classic linear combina-

tion has the format:

y = m1x1 +m2x2 +m3x3 + ...+b

And so far, we haven’t added b. We refer to this extra parameter as the bias, it’s a single

value that get’s added to every pixel of the image after the image has been convolved. You

need a bias for sort of the same reason that you need b when you fit a line: because it can

act to shift the entire image one way, in a way that otherwise can be impossible given just

the values × weights.

Beacuse the bias is just a single number added to every pixel, it’s a very simple aug-

mentation of the image:

1 bias = -10

2 fig = plt.figure(figsize=(10,5))

3 ax1, ax2 = fig.add_subplot(1,2,1), fig.add_subplot(1,2,2)

4 ax1.imshow(conved_im, cmap="Greys", vmin=-5, vmax=29), ax1.set_title("

Convolved Image")

5 biased_im = conved_im + bias

6 ax2.imshow(biased_im, cmap="Greys", vmin=-5, vmax=29), ax2.set_title("

Convolved Image + (b = %d)" %bias)

122



The other step that happens after the convolution step in a convolutional layer is the

activation. In the activation step, the image is subject to a function, so each pixel of the

image is changed according to that function. In convolutional neural networks, the most

common of these functions is ReLU (Rectified Linear Units), which looks like:

ReLU(x) = max(0,x)

So, when an image is passed through the ReLU activation, each pixel becomes either 0 (if

the value was negative) or remains the same (if the value was 0 or positive). An image

passed through this activation will look like:

1 fig = plt.figure(figsize=(15,5))

2 ax1, ax2, ax3 = fig.add_subplot(1,3,1), fig.add_subplot(1,3,2), fig.

add_subplot(1,3,3)

3 ax1.imshow(conved_im, cmap="Greys", vmin=-5, vmax=29), ax1.set_title("

Convolved Image")

4 ax2.imshow(biased_im, cmap="Greys", vmin=-5, vmax=29), ax2.set_title("

Biased Image")

5 relu_im = np.maximum(0,biased_im)

6 ax3.imshow(relu_im, cmap="Greys", vmin=0, vmax=29), ax3.set_title("Relu-

ed Image")
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When we added the bias to our image, some of our pixels became negative. That means

that, after we applied the activation function, these pixels actually became zero-valued,

meaning our final image now has some areas of whitespace that weren’t there before.

It may seem as though this activation function merely removes information: pixels that

previously had value are now becoming zeroed-out, now lending us no information about

the image. We won’t go into a detailed explanation as to why activation functions are

so important (as well as an explanation of the advantages and disadvantages of different

choices for the activation function), but there are many resources online that do a deep-dive

into this topic. For now, I’ll just give the main reasons why we include the activation step:

• Dying gradients

• Prevent weights from blowing up

5.3 Interpreting Filters

The point, really, of a UNet, is to learn the weights of the filters, and the biases, that

transform an image and allow us to augment that image into another image. So, we may

want to attempt to look at the filters and determine the ways that it might be transforming

our image and helping to learn patterns.

5.3.1 The Horizontal Edge Detector

Some filters, such as the horizontal edge detector are fairly easily intepretable in the ways

that they transform an image. We’ll take a look at the horizontal edge detector below.
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1 horiz_edge_filter = np.array([[ 1, 2, 1],

2 [ 0, 0, 0],

3 [-1, -2, -1]])

4

5 plt.imshow(horiz_edge_filter, cmap = ’RdBu’)

This filter is comprised of: a row of positive values, a row of zero values, and a row of

negative values. It may not be immediately obvious how this can pick out horizontal edges,

but consider the case of an image with a very simple horizontal edge:

1 horiz_edge_im = np.array([[ 1, 1, 1],

2 [ 0, 0, 0],

3 [ -1, -1, -1]])

4

5 plt.imshow(horiz_edge_im, cmap = ’Greys’)
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If we convolve this image with this filter (that is, take the sum of the element-wise

products of these two 3x3 matricies) we will get a single number:

1 conved_val = np.sum(horiz_edge_filter*horiz_edge_im)

2 print("The new pixel value would be:", conved_val)

The new pixel value would be: 8. If instead, this image had been of a vertical edge.

Then, when we check what value the convolution gives us, we instead get:

1 vert_edge_im = np.array([[ 1, 0, -1],

2 [ 1, 0, -1],

3 [ 1, 0, -1]])

4

5 plt.imshow(vert_edge_im, cmap = ’Greys’)

6

7 conved_val = np.sum(horiz_edge_filter*vert_edge_im)

8 print("The new pixel value would be:", conved_val)

The new pixel value would be: 0. We can see that the structure of the filter is that it’s

symmetric along its horizontal axis. That is, the row of positive values is mirrored by a

row of negative values at the bottom of the filter. This means that, any portion of an image

which it is applied to, which is also symmetric along its horizontal axis, will give us a value

of 0, because the positive and negatives will cancel out.
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1 2 1

0 0 0

−1 −2 −1

×


a b c

a b c

a b c

= a+2b+ c+0−a−2b− c = 0

Whereas a portion of an image that changes values along its horizontal axis will give

us a nonzero value.

Note that, the values in the center row of the image never matter, because the center

row of the filter is all zeros.

5.3.2 The Horizontal Edge Detector in Action

You may notice that an image like the one below, which you would identify as a horizontal

line, will not get identified by this filter, because

• It’s horizontally symmetric, and

• Every element-wise multiplication includes a zero.

1 horiz_edge_im = np.array([[ 1, 1, 1],

2 [ 0, 0, 0],

3 [ 1, 1, 1]])

4

5 plt.imshow(horiz_edge_im, cmap = ’Greys’)
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But, in practice, we apply these filters over a larger image, not over an image of match-

ing size, so we’ll see that single-pixel edges are still detected by this filter, just not when

the edge is on the center pixel.

Let’s start by loading in an image with some edges, which we’ll pass our horizontal

edge detector over.

1 from PIL import Image

2 im = np.array(Image.open(’%s/images/horiz_im.png’ %filepath))[:,:,2]

3 im = im/255

4 im = np.round(im)

5

6 im[35][0:20] = 1 #add a single-pixel-width edge, to see if we can detect

that too

7 padded_im = np.pad(im, pad_width = (1,1), mode="constant",

constant_values=0)

8

9

10 plt.imshow(padded_im, cmap="Greys")

Now, if we convolve with our filter like we did in Part 1:

1 fig = plt.figure()

2

3 # first, get the filter sizes which will help us later
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4 filter_sz = horiz_edge_filter.shape[0]

5 filter_width = int(np.floor(filter_sz/2))

6

7 conv_ims = []

8 conved_im = padded_im.copy() # set it to a copy, that way we can watch

the image transform

9 for i in range(1, im.shape[0]+1): # from 1-65 instead of 0-64, because

we added the padding

10 for j in range(1,im.shape[0]+1):

11 # first, replace the pixel in the image with the convolved one

12 conved_region = padded_im[i-filter_width:i+filter_width+1,j-

filter_width:j+filter_width+1]*horiz_edge_filter

13 conved_im[i,j] = np.sum(conved_region) # replace pixels of the copy

with the convolution

14 # make an image where the filter is overlayed, too

15 filter_im = conved_im.copy()

16 filter_im[i-filter_width:i+filter_width+1,j-filter_width:j+

filter_width+1] = conved_region

17 if (i>12 and i<18 and j>10) or (i>50 and i<55 and j>10) or (i>33 and

i<37 and j<20):

18 # it takes too long to plot the whole movie, so just do interesting

parts

19 conv_ims.append([plt.imshow(filter_im, animated=True, cmap = ’

RdBu_r’,vmin=-2,vmax=2)]) # with filter overlayed

20 conv_ims.append([plt.imshow(conved_im, animated=True, cmap = ’

RdBu_r’,vmin=-2,vmax=2)]) # convolved im result

21

22 ani = animation.ArtistAnimation(fig, conv_ims, interval=100, blit=True,

repeat_delay=1000)

23 plt.close()

24

25 HTML(ani.to_html5_video())
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These images originally appeared in the Jupyter Notebook as part of a video. The images presented

here are select frames of that video that represent the complete progression. The full video can be

viewed in the original Jupyter Notebook by going to https://github.com/apetulante/UNetT utorial.

There are a few important things to note about this output image:

1. That the output image contains both blue and red pixels - this filter is able to pick

out not only the edge, but the direction the edge is going in - that is, higher valued to

lower valued pixels or vice versa.

2. That the single-pixel width edge is detected by this filter - and is replaced with these

two representations of the edge - where the edge created a border of low to high

valued pixels, and where it creates a border of high to low valued pixels.

3. The perfectly vertical portions of the thick lines are ignored by the filter - but diagonal

regions are still detected.

In A U-Net, we want to learn the filters that can transform our image. To do this, we

usually must convolve an image with many different filters, with deeper layers applying

filters to versions of the image which have already been convolved. So as you can probably

guess, the filters of a real UNet are usually not doing something as simple and interpretable

as the horizontal edge detection.

In Section 5.5, we’ll talk more about how to view and interpret the filters of a UNet

trained on a real-world example, but for now, we’ll take a break to establish exactly what

the UNet is doing.
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5.4 The Architecture of a UNet

To get a better handle on how exactly these operations work, how they transform our image,

and how they change the dimensionality of the image at each step, let’s closely investigate

an extremely simple example of a UNet.

5.4.1 The UNet Structure

The basic structure of a UNet looks like this:

1 display(Im(’%s/images/UNet_Structure.png’ %filepath, width=650, height

=400))

U-Nets are named as such because they have this U-like shape, where the input image is

first reduced in dimensionality in the downsizing portion, then increased in dimensionality

back to its original size in the upsizing portion. As you can see, there are 4 main types

of operations, which we’ll briefly describe here but give a detailed description of in the

upcoming subsections:
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1. convolutions: We have already discussed the convolution operation and components

of a convolutional layer. In these convolutional portions, the image is convolved

repeatedly, with differing (and often differently sized) filters.

2. pooling: The image is decreased in dimensionality, by representing regions of a few

pixels of the image with only one pixel.

3. up-convolutions: Sort of the opposite of pooling, one pixel is copied several times to

become multiple pixels of the image, in order to increase the image dimensionality.

4. concatenations: An image from a previous part of the network is stacked with the

image from the current part of the network

5.4.2 Convolutions and Convolution Blocks

We already talked about convolutions in Section ??. Here, we’ll take a look at exactly what

makes a convolutional layer, and how those layers stack to extract the information we want

from our image.

You can use a filter to convolve an image. But usually in a convolutional network, we

want to use many filters to convolve an image, because each filter is learning something

different about the image. Additionally, we usually perform multiple convolutions in a

row of the same number of filters/shape of filter, in what’s often called a convolutional

block. Here, we might convolve our image with 5 3x3 filters, then take the result of that

convolution, and convolve it with another 5 3x3 filters.

So what exactly is the output of a convolution, and what do we do when we have 5 of

them?

If we start with an image, say 8x8, and we convolve it with a 3x3 filter, then provided

that we valid padded it first, we get out a 8x8 image which is some version of the original:

1 im = np.array([[0,1,1,2,4,4,3,2,2], # the region of pixels

2 [4,3,2,4,5,5,4,3,1],
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3 [0,1,1,4,5,4,3,2,2],

4 [2,2,1,3,5,3,0,1,2],

5 [3,2,1,1,2,3,4,2,2],

6 [4,3,2,1,0,1,3,3,2],

7 [3,2,1,2,1,1,4,4,5],

8 [2,1,1,2,1,3,5,6,7],

9 [1,0,0,2,1,4,6,8,8]])

10

11 filt1 = np.array([[-1,-1,0], # a filter I made up

12 [-1,0,1],

13 [0,1,1]])

14

15 from scipy.ndimage import convolve # a handy function that can do

convolutions for us

16 conv_im1 = convolve(im, filt1, mode = ’constant’) # set mode=constant

for valid padding

17

18 fig = plt.figure(figsize=(15,5))

19 ax1, ax2, ax3 = fig.subplots(1,3)

20 ax1.imshow(im, cmap=’Greys’), ax1.set_title(’Original Image’)

21 ax2.imshow(filt1, cmap=’Greys’), ax2.set_title(’Filter’)

22 ax3.imshow(conv_im1, cmap=’Greys’), ax3.set_title(’Convolved Image’)

If we have a second filter, then we have another version of the image which was con-

volved with that filter:
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1 filt2 = np.array([[1,2,1], # another filter I made up

2 [2,3,2],

3 [1,2,1]])

4

5 conv_im2 = convolve(im, filt2, mode = ’constant’) # set mode=constant

for valid padding

6

7 fig = plt.figure(figsize=(15,5))

8 ax1, ax2, ax3 = fig.subplots(1,3)

9 ax1.imshow(im, cmap=’Greys’), ax1.set_title(’Original Image’)

10 ax2.imshow(filt2, cmap=’Greys’), ax2.set_title(’Filter #2’)

11 ax3.imshow(conv_im2, cmap=’Greys’), ax3.set_title(’Convolved Image #2’)

If we have 5 such filters, then we have 5 unique ”versions” of the original image:

1 filt3 = np.array([[1,2,1], [0,0,0], [-1,-2,-1]]) # more filter that I

made up, not necessarily

2 filt4 = np.array([[0,1,0], [2,3,2], [-1,-2,-1]]) # ones that should

do anything interesting

3 filt5 = np.array([[-1,-2,-1], [0,0,0], [1,2,1]])

4

5 conv_im3 = convolve(im, filt3, mode = ’constant’)

6 conv_im4 = convolve(im, filt4, mode = ’constant’)

7 conv_im5 = convolve(im, filt5, mode = ’constant’)

8

9 fig = plt.figure(figsize=(18,5))

10 ax1, ax2, ax3, ax4, ax5 = fig.subplots(1,5)
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11 ax1.imshow(conv_im1, cmap=’Greys’), ax1.set_title(’Convolved Image #1’)

12 ax2.imshow(conv_im2, cmap=’Greys’), ax2.set_title(’Convolved Image #2’)

13 ax3.imshow(conv_im3, cmap=’Greys’), ax3.set_title(’Convolved Image #3’)

14 ax4.imshow(conv_im4, cmap=’Greys’), ax4.set_title(’Convolved Image #4’)

15 ax5.imshow(conv_im5, cmap=’Greys’), ax5.set_title(’Convolved Image #5’)

Now, we have 5 representations of our original image, each with some unique features

that were emphasized or de-emphasized because of the filter that created them. So, we want

a way to keep all of this information that our filters gave us. But, we also want a way to be

able to associate these versions of the image with one another. The dark pixels in the bottom

right of all of these convolved images above, for example, are all some representation of

the dark region in the lower right of our starting image. That is, the bottom right regions

of our convolved images still correspond to and give us information about the bottom right

region of our original image.

So, what we do is stack the images so that each one becomes a channel of one complete

image. These channels are just like the RGB channels you might be used to in normal

color images: each one contains some information about the image, and each matching

pixel across different channels is telling you something about the same region of the image.

That’s exactly what our convolved images are doing - they’re each telling us different pieces

of information about the same regions of the original image.

When we stack these convolved images into channels, we increase the depth of the

image: our 8x8x(1 channel) original image is now an 8x8x(5 channel) image.
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1 display(Im(’%s/images/operation_examples/conv_example_im1.png’ %filepath

, height=370, width=370))

Next, it’s typical to convolve our image a second time. Let’s say that our convolution

block involves a second set of convolutions, where this time we want to use 3, 3x3 filters.

You might be wondering: how are we going to convolve an 8x8x5 image with a 3x3

filter? The answer is that our filters will now also need to have 5 channels, so really, we’ll be

using 3, 3x3x5(channel) filters. (Note: I keep making this distinction that these third dimensions

are *channels*. That’s because it’s an important distinction: convolutions can happen in 3D, too,

so a 3x3x5 filter (not a 3x3x(5 channel)) filter actually would, in general, be a somewhat different

operation, which I’ll point out and talk about more in a little bit. This is why we would still refer to

the second set of filters in this convolution block as 3x3 filters, instead of specifying that they have

5 channels. The number of channels is implied by the network architecture; if we were to call them

3x3x5 filters it would sound like we are doing 3D convolutions.)

When we convolve a multi-channel image with a multi-channel filter (always with the

matching number of channels as the image), what we are effectively doing is convolving

each channel of our image with its own filter, and then adding the results togeher. So, in the

second part of our convolution block, where we have 3, 3x3x(5 channel) filters, it’s really
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like each filter gives us 5 versions of our image.

Let’s look at what one of the filters is doing:

1 fig = plt.figure(figsize=(18,5))

2 ax1, ax2, ax3, ax4, ax5 = fig.subplots(1,5)

3 ax1.imshow(conv_im1, cmap=’Greys’), ax1.set_title(’Image Channel #1’),

ax1.axis(’off’)

4 ax2.imshow(conv_im2, cmap=’Greys’), ax2.set_title(’Image Channel #2’),

ax2.axis(’off’)

5 ax3.imshow(conv_im3, cmap=’Greys’), ax3.set_title(’Image Channel #3’),

ax3.axis(’off’)

6 ax4.imshow(conv_im4, cmap=’Greys’), ax4.set_title(’Image Channel #4’),

ax4.axis(’off’)

7 ax5.imshow(conv_im5, cmap=’Greys’), ax5.set_title(’Image Channel #5’),

ax5.axis(’off’)

8

9 fig2 = plt.figure(figsize=(18,5))

10 ax1, ax2, ax3, ax4, ax5 = fig2.subplots(1,5)

11 # Filter #1, 5 channels, each 3x3

12 filt1_ch1 = np.array([[0,-1,1],[-1,-1,1],[1,1,0]])

13 ax1.imshow(filt1_ch1, cmap=’Greys’), ax1.axis(’off’), ax1.set_title(’

Filter #1, Channel #1’)

14 filt1_ch2 = np.array([[2,-1,2],[2,1,2],[2,0,2]])

15 ax2.imshow(filt1_ch2, cmap=’Greys’), ax2.axis(’off’), ax2.set_title(’

Filter #1, Channel #2’)

16 filt1_ch3 = np.array([[-1,1,-1],[1,-1,1],[-2,-1,2]])

17 ax3.imshow(filt1_ch3, cmap=’Greys’), ax3.axis(’off’), ax3.set_title(’

Filter #1, Channel #3’)

18 filt1_ch4 = np.array([[-1,-2,-1],[-1,-1,0],[2,-1,-2]])

19 ax4.imshow(filt1_ch4, cmap=’Greys’), ax4.axis(’off’), ax4.set_title(’

Filter #1, Channel #4’)

20 filt1_ch5 = np.array([[-1,-1,1],[-2,-1,0],[2,-1,-2]])

21 ax5.imshow(filt1_ch5, cmap=’Greys’), ax5.axis(’off’), ax5.set_title(’
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Filter #1, Channel #5’)

22

23 fig3 = plt.figure(figsize=(18,5))

24 ax1, ax2, ax3, ax4, ax5 = fig3.subplots(1,5)

25 # Convolve each channel of the 8x8x5 image with the corresponding filter

channel

26 filt1_ch1_convIm = convolve(conv_im1, filt1_ch1, mode = ’constant’)

27 ax1.imshow(filt1_ch1_convIm, cmap=’Greys’), ax1.axis(’off’), ax1.

set_title(’Convolved Image Channel #1’)

28 filt1_ch2_convIm = convolve(conv_im2, filt1_ch2, mode = ’constant’)

29 ax2.imshow(filt1_ch2_convIm, cmap=’Greys’), ax2.axis(’off’), ax2.

set_title(’Convolved Image Channel #2’)

30 filt1_ch3_convIm = convolve(conv_im3, filt1_ch3, mode = ’constant’)

31 ax3.imshow(filt1_ch3_convIm, cmap=’Greys’), ax3.axis(’off’), ax3.

set_title(’Convolved Image Channel #3’)

32 filt1_ch4_convIm = convolve(conv_im4, filt1_ch4, mode = ’constant’)

33 ax4.imshow(filt1_ch4_convIm, cmap=’Greys’), ax4.axis(’off’), ax4.

set_title(’Convolved Image Channel #4’)

34 filt1_ch5_convIm = convolve(conv_im5, filt1_ch5, mode = ’constant’)

35 ax5.imshow(filt1_ch5_convIm, cmap=’Greys’), ax5.axis(’off’), ax5.

set_title(’Convolved Image Channel #5’)
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So, we start with a 5-channel image, we convolve each channel with the corresponding

filter of a 5-channel filter, and we get out 5 images.

If we have 3 of such filters, that would give us 3 (filters) x 5(channels) = 15 versions

of our image. You might expect that we would stack all of these again, and end up with a

8x8x15 output from this convolution, but that’s not the case.

Although we stack the outputs of our filters into channels, we actually add the channels

of an image after it’s convolved. So really, the output of our first convolution, using Filter

1, a 3x3x(5 channel) filter on our 8x8x(5 channel) image is:

1 filt1_convOutput = filt1_ch1_convIm + filt1_ch2_convIm +

filt1_ch3_convIm + filt1_ch4_convIm + filt1_ch5_convIm

2

3 plt.imshow(filt1_convOutput, cmap="Greys")
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So, actually, if the second set of convolutions in our convolutional block had 3, 3x3

filters, the output of the layer would be an 8x8x(3 channel) image. That is, the number

of channels in the output of a convolutional layer is equal to the number of filters used.

Regardless of the number of channels the input to the convolutional layer had, because we

add the channels together after applying our filters, we always end up with one image per

filter.

Okay, now you might be wondering: why do we add these multiple channels together,

but we stacked the outputs from different filters instead of adding those together. Why

don’t we do the same thing in both cases? The logic is roughly this: think of the purpose of

each filter to be to learn something different about our image. Adding together the outputs

from different filters would muddle their information together, so we want to make sure

to keep the information preserved by stacking. But multi-channel filters, while they sort

of act like multiple filters over multiple images, are truly one filter over one image. So, if

we want those filters to focus on learning one thing about the image, then we want to add

the channels together: because the multiple channels should be working together to tell us

something about the image.

So, in summary:

• Convolutional blocks are typically made up of a few convolutional layers.
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• A covolutional layer typically involves convolving the image input to the layer with

many filters, all of the same size.

• The output of a convolutional layer is an image with multiple channels - one per

filter.

• If the input to a convolutional layer has multiple channels, the filters used on the

image in that layer must all have the same number of channels as the image.

• Each channel of the input image is convolved with a corresponding channel of the

filter, to create a corresponding channel of the output.

• The channels of an output image convolved with one filter are added together to

make one image per filter, but the images generated by different filters are stacked to

create the multiple channels of the output.

Some follow up on that note about 3D convolutions 3D convolutions are convolutions

over volumes. A 3x3x3 filter over a volume performs a similar operation as a 3x3 filter

over a 2D image, in that the weights of the filter are multipled by a region of the image,

then summed together to get one pixel value. The only real difference, is that a 3D filter

on a 3D volume also strides over the volume dimension, instead of just across the image in

the 2D dimensions.

1 display(Im(’%s/images/operation_examples/3D_vs_2D_convs.png’ %filepath,

height=400, width=850))
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Thus, a 3D convolution over a volume will usually also produce a volume: the original

image will usually be padded in all dimensions, so that as the filter slides over all dimen-

sions of the image, multiplying the weights and adding them together, the output volume

has the same dimensions as an input volume.

In principle, our 3x3x(5 channel) filters are acting the same on an 8x8x(5 channel)

image as a 3x3x5 3D filter would act on an 8x8x5 3D volume, in that we are mutiplying

the weights by the pixel values and adding the results together to get one pixel value.

1 display(Im(’%s/images/operation_examples/3D_vs_2DMultiChannel_convs.png’

%filepath, height=400, width=850))

But, that doesn’t mean that multi-channel convolutions and 3D convolutions are gen-
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erally the same thing. This only happens because, if the dimension of a filter matches the

dimension of an image, the filter can’t slide over in that dimension. In the example above,

the 3x3x5 3D filter can’t slide in the z dimension, so it can only move along x and y just

like our multi-channel filter would. But 3D filters will typically be symmetric the way that

2D filters are typically symmetric: a 3D filter would likely be size 3x3x3, instead of 3x3x5,

just like a 2D filter is almost always something like 3x3 instead of 3x5. Thus, a 3D con-

volution will usually be able to slide back along the z dimension of an image, and output a

volume.

This is an important distinction because 3D volumes can *also* have multiple channels

- in which case there would be multiple 3D filters making up one multi-channel 3D filter,

and then thinking about multi-channel convolutions as just 3D convolutions doesn’t work

anymore.

5.4.3 Pooling

The basic idea behind pooling is to reduce the dimensionality of an image, by representing

some region of pixels with just one pixel instead.

Max pooling is the most common type of pooling, and the type that we will use in

our examples in this tutorial. In max pooling, a region of pixels is represented by the

maximum-valued pixel within that region. So, we would represent a region of pixels like

this one:

1 im = np.array([[5,2], # the region of pixels

2 [8,3]])

3 im_max = np.max(im) # what pooling would give us

4

5 fig = plt.figure(figsize=(10,5))

6 ax1, ax2 = fig.subplots(1,2)

7 ax1.axis(’off’), ax2.axis(’off’)

8

9 # plot the image region with values
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10 ax1.imshow(im, cmap="Greys", vmin=0, vmax=12)

11 for j in range(im.shape[0]):

12 for i in range(im.shape[1]):

13 ax1.annotate(im[i][j], (j,i))

14

15 # plot the resulting region

16 ax2.imshow(np.pad(np.array([im_max]*4).reshape(2,2),pad_width = (1,1),

mode="constant", constant_values=0), # just makes it look nice

17 cmap="Greys", vmin=0, vmax=12)

18 ax2.annotate(im_max, (1.5,1.5))

19 ax2.arrow(-1.25,1.5,1,0,width=.05,head_width=.2,color=’k’) #draw an

arrow

This would be 2x2 max pooling, because the region of pixels that we replace with a

single pixel is size 2x2. We can arbitrarily choose the region size that we use for pooling,

but this region is almost always square, and 2x2 is a very typical choice.

2x2 max pooling an entire image involves taking every 2x2 region in the image and

replacing it like so:

1 im = np.array([[0,3,6,2,1,2],

2 [2,5,6,3,1,1],

3 [1,2,0,0,3,1],

4 [2,5,6,4,4,4],

5 [2,3,3,4,3,0],
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6 [0,2,4,5,1,0]])

7

8 fig = plt.figure(figsize=(10,5))

9 ax1, ax2 = fig.subplots(1,2)

10 ax1.axis(’off’),ax2.axis(’off’)

11

12 display_ims = []

13 pooled_im = np.zeros((3,3)) # output image will have output shape

= original shape / 2 for 2x2 pooling

14 for ind1 in range(pooled_im.shape[0]):

15 i = ind1*2 # so that we have an index that moves over by 2

pixels each time, instead of 1

16 for ind2 in range(pooled_im.shape[1]):

17 j = ind2*2

18 im1 = ax1.imshow(im, cmap="Greys", vmin=-1, vmax=10, animated=True)

19 for k in range(im.shape[0]):

20 for l in range(im.shape[1]):

21 im1 = ax1.annotate(im[k][l], (l,k)) # plot the pixel values

22 ax1.set_title("Full Image")

23 im1 = ax1.add_patch(matplotlib.patches.Rectangle((-.48+j,-.48+i)

,2,2,fill=False,color=’red’,lw=2)) #show region of pooling

24

25 pooled_im[ind1][ind2] = np.max(im[i:i+2,j:j+2])

26 im2 = ax2.imshow(pooled_im,cmap="Greys",vmin=-1,vmax=10, animated=

True)

27 ax2.set_title("Pooled Image")

28

29 display_ims.append([im1, im2, ax2.annotate(int(pooled_im[ind1][ind2

]), (ind2,ind1))]) #also show pixel values

30

31 ani = animation.ArtistAnimation(fig, display_ims, interval=1000, blit=

True, repeat_delay=1000)

32 plt.close()
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33

34 HTML(ani.to_html5_video())

These images originally appeared in the Jupyter Notebook as part of a video. The images presented

here are select frames of that video that represent the complete progression. The full video can be

viewed in the original Jupyter Notebook by going to https://github.com/apetulante/UNetT utorial.

We won’t discuss any of them in detail here, but there are other types of pooling. Aver-
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age pooling, for instance, takes the average pixel value of a region as the new pixel value.

You might be wondering: what’s the advantage of throwing away information?

1. Computationally, it’s advantageous to remove some information, especially if we can

still retain the ”most important” information when we do so. In convolutional neural

networks in particular, the number of operations we need to perform scales with the

size of the image as we convolve it, so reducing the image size can greatly reduce the

number of computations we need to do.

2. Pooling may help to ”sharpen” certain features in the image. Because filters are sort

of trying to pick out specific features in an image, choosing the pixel that gave the

highest ”signal” in a region of an image may help to single out the most important

parts of that image.

5.4.4 Upsampling

Upsampling is unique to UNets - the step is performed because we need to increase the

size of our image after a series of convolutions and pooling has decreased it. In this way,

it’s like the opposite of pooling - instead of shrinking an image by representing a region

of pixels with one pixel, we create a region of pixels by copying one pixel into multiple

pixels.

1 im = np.array([[1,3,6],

2 [2,5,6],

3 [2,4,3]])

4

5 fig = plt.figure(figsize=(10,5))

6 ax1, ax2 = fig.subplots(1,2)

7

8 display_ims = []

9 upsampled_im = np.zeros((6,6)) # output image will have output

shape = original shape * 2 for 2x2 upsampling
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10 for i in range(pooled_im.shape[0]):

11 ind1 = i*2

12 for j in range(pooled_im.shape[1]):

13 ind2 = j*2

14 im1 = ax1.imshow(im, cmap="Greys", vmin=-1, vmax=10, animated=True)

15 for k in range(im.shape[0]):

16 for l in range(im.shape[1]):

17 im1 = ax1.annotate(im[k][l], (l,k)) # plot the pixel values

18 ax1.set_title("Full Image")

19 im1 = ax1.add_patch(matplotlib.patches.Rectangle((-.5+j,-.5+i),1,1,

fill=False,color=’red’,lw=2)) #show we’re upsampling

20

21 for k in range(ind1,ind1+2):

22 for l in range(ind2,ind2+2):

23 upsampled_im[k][l] = im[i,j]

24 im2 = ax2.imshow(upsampled_im,cmap="Greys",vmin=-1,vmax=10,

animated=True)

25 display_ims.append([im1,im2,ax2.text(l,k,int(upsampled_im[k][l])

)]) # plot the pixel values too

26 ax2.set_title("Upsampled Image")

27

28 ani = animation.ArtistAnimation(fig, display_ims, interval=600, blit=

True, repeat_delay=1000)

29 plt.close()

30

31 HTML(ani.to_html5_video())

These images originally appeared in the Jupyter Notebook as part of a video. The images presented

here are select frames of that video that represent the complete progression. The full video can be

viewed in the original Jupyter Notebook by going to https://github.com/apetulante/UNetT utorial.
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So, you can see that even though the upsampled image looks identical to the original, it

actually has dimensions 6x6 instead of 3x3, and 4 times the number of pixels.

5.4.5 Concatenations

Concatenations are also unique to UNets. As we convolve our image and pool it, we lose

the spatial information of our features. If we’ve reduced the dimensionality of our starting

image to 2x2, for example, then each pixel in that 2x2 image represents about a quarter

of our initial image, meaning that we’ve lost all information about finer resolution features
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within each quarter. If we were to simple upsample and convolve our image back up to its

original size, there would be no way to get that information back, because upsampling just

copies the same pixels over again - it doesn’t increase the resolution of the details. For this

reason, we need to do concatenations.

In the concatenation step, we take the output of a previous layer in the downsizing

portion of the UNet, and stack it with the output from the upsizing portion of the UNet

that has the same dimensions. In this way, we get to use the finer resolution information

that the downsizing steps still had, but we also get our larger scale information from our

upsampling step.

For instance, let’s say in the second convolutonal block of a UNet, we convolve our

image with 3 filters, so we have an output that looks like this:

1 display(Im(’%s/images/operation_examples/concat_example_im1.png’ %

filepath, height=370, width=370))

Then, let’s say that in the next steps in the UNet, this image is pooled down to size

4x4x3, and more convolutions are done on the image, keeping it at size 4x4x3 but further

transforming it.

If after these convolutions, we begin the upsizing portion of the UNet, we would begin
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with an operation which upsamples the 4x4x3 image back into an 8x8x3 image, which

looks like:

1 display(Im(’%s/images/operation_examples/concat_example_im2.png’ %

filepath, height=370, width=370))

In the concatenation step of the UNet, these two 8x8x3 images are stacked, so the image

becomes 8x8x6. Then, this stacked image would go on to be convolved further, with the 6

stacked images all acting as different channels of the same image.

1 display(Im(’%s/images/operation_examples/concat_example_im3.png’ %

filepath, height=400, width=400))
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5.5 A Very Simple UNet Example

To get a better handle on how exactly these operations work, how they transform our image,

and how they change the dimensionality of the image at each step, let’s closely investigate

an extremely simple example of a UNet.

5.5.1 The Data/Problem

Say we have a simple 8x8 image, made of black and white pixels randomly scattered. And

we want to create a UNet to invert the image for us. Our data might look like this:

1 im_in = np.array([[0,0,0,0,1,0,0,0], # example image in, which we’ll

also use for testing later

2 [1,0,1,1,0,0,1,0], # obviously, not a real random

scattering, but just an example

3 [0,0,1,1,0,0,0,0],

4 [0,1,1,0,0,1,0,0],

5 [0,0,0,1,1,0,0,1],

6 [0,0,0,0,1,1,0,0],

7 [0,0,0,0,1,1,0,0],

8 [0,0,0,1,1,0,0,1]])

9
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10 im_out = np.abs(1-im_in) # example image output, just the

inversion of the input image

11

12 # show our example images

13 fig=plt.figure(figsize=(10,5))

14 ax1,ax2 = fig.subplots(1,2)

15 ax1.imshow(im_in, cmap="Greys_r")

16 ax1.set_title("in")

17 ax2.imshow(im_out, cmap="Greys_r")

18 ax2.set_title("out")

And we can easily generate a dataset of 100 examples:

1 X_example = []

2 y_example = []

3 for i in range(100):

4 X_example.append(np.round(np.random.rand(8,8)).reshape(8,8,1))

5 y_example.append(np.abs(1-X_example[-1]).reshape(8,8,1))

6

7 X_example = np.array(X_example)

8 y_example = np.array(y_example)

This inversion operation is obviously very simple: It takes one line of code and 2 op-

erations (a subtraction and an absolute value) to perfectly invert our image. But, because
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this is a transformation of an image, a very simple UNet should also be able to perform this

inversion for us, so that’s what we’ll try to make here.

5.5.2 The Architecture

We’ll use a simple UNet, with a few 3x3 filters, to do this inversion. The architecture will

look like this:

1 display(Im(’%s/images/simple_example_UFormat.png’ %filepath, width=950,

height=480))

This might look a little overwhelming right now, but we’re going to go through each of

the operations that this network will perform in more detail in the upcoming sections.

We will also add layers to the model in keras as we go through them. To start building

a model in keras, we just need to start defining our layers. This begins with the input:

1 input_size = X_example[0].shape # get the size of the input images,

in our case this is 8x8x1

2 print(input_size)

3
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4 inputs = Input(input_size) # then, we just define an input layer

and tell keras to expect images of size 8x8x1

5.5.3 Conv Block 1

The first convolution block has 3 steps:

• Conv1: 2 3x3 filter convolutions

• Conv2: 2 3x3 filter convolutions

• Pool1: 2x2 pooling

In the first convolution step, the input image is convolved twice: Once with one 3x3

filter , and another time with another 3x3 filter . We first pad the input image with zeros,

so that the convolved image is 9x9, and the result is 2, 8x8 images, that we then add our

bias to and then pass through the ReLu activation function. Each of these images is a

”representation” of the original image. These images are stacked to become two channels

of the same image, and the layer output is 1, 8x8x2(channel) image.

Because we have 2 filters, each with 3x3 weights, and an associated bias for each filter,

this means our first layer has a total of:

2× (3×3)+2 = 20

learnable parameters.

1 display(Im(’%s/images/layers/conv1.png’ %filepath, height=270, width

=1000))
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We can add this to the model:

1 conv1 = Conv2D(filters = 2, # here, we tell the layer we want to use 2

filters

2 kernel_size = (3,3), # the filters are of size 3x3

3 activation = ’relu’, # we want to use the ReLU

activation function

4 padding = ’same’, # same padding means the output

size will equal the input size(before padding)

5 kernel_initializer = ’he_normal’)(inputs) # we’ll

initialize the weights with the He normal distribution. We also

6 # need to tell

this layer what the input to it will be, which is the input

7 # layer (

inputs)

The next convolution step, takes the output from the first convolution step, and again

convolves it twice: Once with one 3x3x2 filter, and another time with another 3x3x2

filter. Note that these filters now need to have 2 channels, because the output from the

first layer had 2 channels. As we discussed in the previous section, when a 2-channel filter

convolves a 2-channel image, the outputs are added together to generate the output. That

is, the darker blue filter convolves the lighter green channel of the image, and the lighter

blue filter convolves the darker green image. Then, the two channel outputs are added

together to create the darker purple image generated from the convolution. The same,
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of course, happens with the grey filter and the image, generating the lighter purple, the

second of our two output images.

As with the first convolution layer, we pad the input image with zeros, add a bias after

the convolution, and pass the images through the ReLu activation function. These output

images are again stacked to become two channels of the same image, making the layer

output 1, 8x8x2(channel) image.

Because we have 2 filters, each with 3x3x2 weights, and an associated bias for each

filter, this means this second layer has a total of:

2× (3×3×2)+2 = 38

learnable parameters.

1 display(Im(’%s/images/layers/conv2.png’ %filepath, height=270, width

=1000))

We add this to our model, the same way we added the first convolution:

1 conv2 = Conv2D(filters = 2, # 2 filters again

2 kernel_size = (3,3), # size 3x3 filters. Keras is smart,

so we don’t need to tell it that these filters need to have 2

3 # channels; it will know that

because it will know that the input to the layer has 2 channels
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4 activation = ’relu’, padding = ’same’, # we’ll be

keeping the activation, padding, and initializer the same for all

5 kernel_initializer = ’he_normal’)(conv1) # of our layers

. But note, the input to this layer was now the output from

6 # conv1

The last step in this convolution block is pooling, where we downsize our image by

applying 2x2 pooling to it.

There are no learnable parameters in a pooling step, but it’s important to note that we

do not pool across channels - our 8x8x2 output becomes 4x4x2, because the two channels

are each pooled seperately and remain stacked.

1 display(Im(’%s/images/layers/pool1.png’ %filepath, height=270, width

=1000))

Adding a pooling layer to our model is also straightforward with Keras:

1 pool1 = MaxPooling2D(pool_size=(2, 2))(conv2) # we just need to tell

it the size of the region to pool,

2 # and that we’re pooling

the output from conv2

5.5.4 Conv Block 2

The second convolution block mimics the first, but we’ll increase the number of filters:

• Conv3 has 3 3x3 filter convolutions
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• Conv4 has 3 3x3 filter convolutions

We also won’t pool here, as the image is already small enough, and the next step will

be to re-increase the image size.

For Conv3, the input image is convolved three times: with 3 filters that each have size

3x3, and 2 channels because our output from the pooling layer had 2 channels. As always,

we first pad the input image with zeros, add our bias after the convolution, and pass through

the ReLu activation function. These images are stacked to become three channels of the

same image, and the layer output is 1, 4x4x3(channel) image.

Because we have 3 filters, each with 3x3x2 weights, and an associated bias for each

filter, this means this layer has a total of:

3× (3×3×2)+3 = 57

learnable parameters.

1 display(Im(’%s/images/layers/conv3.png’ %filepath, height=370, width

=1000))

Adding this to our model:
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1 conv3 = Conv2D(filters = 3, kernel_size = (3,3), #again, we don’t need

to tell it that we’ll need 2-channel filters

2 activation = ’relu’, padding = ’same’, kernel_initializer

= ’he_normal’)(pool1)

For Conv4, the input image is convolved three times: with 3 filters that each have size

3x3, and 3 channels because our output from the Conv3 layer had 3 channels (because

it was convolved with 3 filters). We pad the input image with zeros, add our bias after

the convolution, and pass through the ReLu activation function. These images are stacked

to become three channels of the same image, and the layer output is 1, 4x4x3(channel)

image.

Because we have 3 filters, each with 3x3x3 weights, and an associated bias for each

filter, this means this layer has a total of:

3× (3×3×3)+3 = 84

learnable parameters.

1 display(Im(’%s/images/layers/conv4.png’ %filepath, height=370, width

=1000))

Again, this is easy to add to the model:
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1 conv4 = Conv2D(filters = 3, kernel_size = 3, # if you just give

kernel_size a single number, it assumes a square filter of that

dimension

2 activation = ’relu’, padding = ’same’, kernel_initializer

= ’he_normal’)(conv3)

5.5.5 UpConv Block 1

Next, we begin the upsizing portion of the UNet. This first Up-Convolution block will have

3 steps:

• UpSamp1 will do 2x2 upsampling

• Conv5 has 2 3x3 filter convolutions

• Concat1 will stack Conv5 output with Conv2 output

In the upsampling step, we’ll upsize our image taking each pixel and copying it into a

2x2 square.

There are no learnable parameters in an upsampling step, but it’s important to note that,

as with pooling, channels aren’t upsampled - our 4x4x3 image becomes 8x8x3, because the

two channels are each upsampled separately and remain stacked.

1 display(Im(’%s/images/layers/upsamp1.png’ %filepath, height=270, width

=1000))
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Adding the upsampling layer to our model is also as easy as adding the pooling layer

was:

1 up1 = UpSampling2D(size = (2,2))(conv4)

In the Conv5 step, the image we just created by upsampling is convolved two times:

with 2 filters that each have size 3x3, and 3 channels. As always, we pad the input image

with zeros before the convolution, and add one bias for each filter before passing the image

through the ReLu activation function. These images are stacked to become two channels

of the same image, and the layer output is 1, 8x8x2(channel) image.

Because we have 2 filters, each with 3x3x3 weights, and an associated bias for each

filter, this means this layer has a total of:

2× (3×3×3)+2 = 56

learnable parameters.

1 display(Im(’%s/images/layers/conv5.png’ %filepath, height=270, width

=1000))

We can add this convolutional layer to the mode making sure that we are applying it to

the output from the upsampling layer:

1 conv5 = Conv2D(2, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(up1)
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Next is the concatenation step. We now have an 8x8x(2 channel) image as the output

from Conv5. We also had, from our downsizing steps, an 8x8x(2 channel) image as the

output from Conv2. In the concatenation step, we stack these together so that we have an

8x8x(4 channel) image.

Concatenations, because they just involve stacking images, will have no learnable pa-

rameters.

1 display(Im(’%s/images/layers/concat1.png’ %filepath, height=270, width

=1000))

To do this concatenation with keras, we just need to specify what layer outputs (conv5

and conv2) we’re looking to concatenate:

1 concat1 = concatenate([conv2,conv5], axis = 3) # axis = 3 tells the

model that we need to stack these images as extra channels. Both

2 # conv5 and conv3

will have shape (None, 8, 8, 2), so axis = 3 means to stack along

the axis

3 # which has shape 2,

the channel axis

5.5.6 UpConv Block 2

This is the final block in our model. It will contain

• Conv6: 2, 3x3 convolutions
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• Conv7: 1 3x3 convolution

Conv6 will convolve our concatenated image, with 2 filters that each have size 3x3,

and 4 channels. We will pad, add bias, and ReLU as usual. The layer output is 1,

8x8x2(channel) image.

Because we have 2 filters, each with 3x3x4 weights, and an associated bias for each

filter, this means this layer has a total of:

2× (3×3×4)+2 = 74

learnable parameters.

1 display(Im(’%s/images/layers/conv6.png’ %filepath, height=370, width

=1000))

We add this to the model the same as any other convolutional layer, making sure we

apply it to the output from our concatenation:

1 conv6 = Conv2D(2, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(concat1)

Finally, Conv7 will convolve our image, with 1 filter of size 3x3, and 2 channels. Be-

cause our input only had 1 channel, our final convolution must use only 1 filter, to ensure
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that the output has only 1 channel. We will pad and add bias as usual.

The one difference from all of our other convolutional layers that we’ll make is using

the sigmoid activation function rather than ReLU. Because of the shape of the sigmoid

function, values are more easily forced to be either 0 or 1. Because this is our output

layer, and we know that our data was comprised of exclusively 0 or 1-valued pixels, the

signmoid function will hopefully help to squash our pixel values to the correct one of these

two values.

The layer output is 1, 8x8 image. Because we have 1 filter with 3x3x2 weights, and an

associated bias, this layer has a total of:

1× (3×3×2)+1 = 19

learnable parameters.

1 display(Im(’%s/images/layers/conv7.png’ %filepath, height=270, width

=1000))

Adding this to our model:

1 conv7 = Conv2D(1, 3, activation = ’sigmoid’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv6) # note the change in

activation function
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5.5.7 The Final Model

ow, let’s finish putting the model together, and have a look at the model summary that keras

gives us, and try it out.

To finish up our model, we just need to define it by telling keras what layer is the

input and what is the output. We’ll also need to compile the model before we can use

it, where we’ll get to choose a few hyperparameters. To keep it simple, we’ll choose a

common optimizer, the Adam optimizer, and only specify the learning rate. We also need

to choose what loss function to use, and we’ll use the mean-squared error, which keras

already has built in for us.

This tutorial isn’t meant to cover the huge body of options for all of these hyperparam-

eters, loss functions, and other functionalities that we can add when compiling our model,

but the keras website: https://keras.io/models/model/ does a good job of listing all of the

options it has for the compile method.

1 simple_model = Model(input = inputs, output = conv7) # we tell it that

the first layer is the input layer, and that conv7 is going to be

the layer that gives us the output. All of the layers in between

were connected as we defined them, so we don’t need to give the

model any of those here.

2

3 simple_model.compile(optimizer = Adam(lr = .0005), loss = ’mse’) # Adam

is an extremely common optimizer, and the lr is the learning rate

Keras will also display for us a summary of our model, showing the different layers,

their shapes, and the number of learnable parameters per layer, and is a handy way to make

sure that the model is consistent and doing everything we expect it to.

1 simple_model.summary()

1 Model: "model_1"

2 __________________________________________________________________________________________
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3 Layer (type) Output Shape Param #

Connected to

4 ==========================================================================================

5 input_1 (InputLayer) (None, 8, 8, 1) 0

6 __________________________________________________________________________________________

7 conv2d_1 (Conv2D) (None, 8, 8, 2) 20 input_1

[0][0]

8 __________________________________________________________________________________________

9 conv2d_2 (Conv2D) (None, 8, 8, 2) 38

conv2d_1[0][0]

10 __________________________________________________________________________________________

11 max_pooling2d_1 (MaxPooling2D) (None, 4, 4, 2) 0

conv2d_2[0][0]

12 __________________________________________________________________________________________

13 conv2d_3 (Conv2D) (None, 4, 4, 3) 57

max_pooling2d_1[0][0]

14 __________________________________________________________________________________________

15 conv2d_4 (Conv2D) (None, 4, 4, 3) 84

conv2d_3[0][0]

16 __________________________________________________________________________________________

17 up_sampling2d_1 (UpSampling2D) (None, 8, 8, 3) 0

conv2d_4[0][0]

18 __________________________________________________________________________________________

19 conv2d_5 (Conv2D) (None, 8, 8, 2) 56

up_sampling2d_1[0][0]
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20 __________________________________________________________________________________________

21 concatenate_1 (Concatenate) (None, 8, 8, 4) 0

conv2d_2[0][0]

22

conv2d_5[0][0]

23 __________________________________________________________________________________________

24 conv2d_6 (Conv2D) (None, 8, 8, 2) 74

concatenate_1[0][0]

25 __________________________________________________________________________________________

26 conv2d_7 (Conv2D) (None, 8, 8, 1) 19

conv2d_6[0][0]

27 ==========================================================================================

28 Total params: 348

29 Trainable params: 348

30 Non-trainable params: 0

31 __________________________________________________________________________________________

We can see, if we go back and check the number of learnable parameters, and the output

shapes for each of these layers, that they match exactly what we expected. The fact that the

model compiles properly is good news, too - we’ll get an error if we tried to build a model

that doesn’t connect properly or where the shapes don’t make sense.

Training a model in keras is also super simple. Let’s try training this model, on our

example data, for 500 epochs - 500 iterations of the model seeing all of the example images

and adjusting the weights accordingly.

1 simple_model_history = simple_model.fit(X_example, y_example, # the

fake data we made, X is input, y is output

2 epochs = 500, # we’ll
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try out 100 epochs

3 verbose = 1) #

verbose = 1 tells keras that we want to see how well the model is

doing at every epoch

So, how did the model do? Let’s check by using the im in and im out example images

that we made at the start of this section, which the model hasn’t seen before, to see if it can

do the inversion for us.

1 fig = plt.figure(figsize=(15,5))

2 ax1,ax2,ax3 = fig.subplots(1,3)

3

4 predicted_im_out = simple_model.predict(im_in.reshape(1,8,8,1)).reshape

(8,8)

5 # even though our image was 8x8 to begin with, keras needs the shape to

match the input shape it expected, so we have to reshape twice

6

7 ax1.imshow(im_in, cmap="Greys"), ax1.set_title("Input")

8 ax2.imshow(im_out, cmap="Greys"), ax2.set_title("True Output")

9 ax3.imshow(predicted_im_out, cmap="Greys"), ax3.set_title("Predicted

Output")

It doesn’t do too bad! You could rerun the last 2 cells, training the model for another 500

epochs (it will keep training what it currently has instead of training all over again, unless

you re-run model.compile()), and check if it does even better (spoiler: it does). But either
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way, let’s move on and look at exactly what’s happening under the hood of this network a

little more closely.

5.6 Interpreting Filters

So far, we’ve been talking in detail about what a UNet does in a more conceptual way. But

now that we’ve built a real example, let’s take a closer look at how real data is transformed

by a real model. Then, we’ll build a model for a real-world problem, and try to see how

much we can visualize and understand from a model doing a much more complicated

transformation.

5.6.1 Our Simple Example

The simple inversion example that we did didn’t have many layers or filters. So, we can

actually go through and easily look at every single weight our model learned.

Keras saves the weights that all of our filters had, so it’s easy to go through and display

all of our model’s filters:

1 # iterate over all of our layers

2 for layer in simple_model.layers:

3 if "conv" in layer.name: # there are other (non-conv) layers,

with no learnable params

4 filters, biases = layer.get_weights() # filters will have

shape (filter_size, filter_size, number channels, number filter)

5 f_min, f_max = filters.min(), filters.max()

6 filters = (filters - f_min) / (f_max - f_min) # normalize all

filters for one layer

7

8 # set up one figure per layer

9 fig = plt.figure(figsize=(12,2))

10 plt.title("Layer %s" %(layer.name)), plt.xticks([]), plt.yticks([])

# say what layer we’re on, and box in layers (but without axis ticks

)
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11 fig_count = 1 # to keep track of subplots

12

13 # Iterate over all the filters in the layer

14 for i in range(filters.shape[-1]): # ’i’ will iterate over the

number of filters in that layer

15 ax = fig.add_subplot(1,13,fig_count), plt.axis(’off’) # this

adds a dummy subplot, just to leave some whitespace between new

filters

16 fig_count += 1

17 for j in range(filters.shape[-2]): # ’j’ will iterate over

the channels of the filter

18 ax = fig.add_subplot(1,13,fig_count) # make a new subplot per

channel per filter

19 if j == 0:

20 ax.set_title("Filter %d" %((i+1))) # only title the first

channel of the filter, to keep it neat

21 plt.imshow(filters[:,:,j,i],cmap=’RdBu’), plt.axis(’off’)

22 fig_count += 1

23 plt.tight_layout()
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Looking at all of our filters can be useful, but it also can show us a bunch of seemingly

random weights, as it does above. What’s often more useful is to look at the layer acti-

vations - or the ”version” of the image that convolving with a filter, adding its bias, and
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passing through an activation function gives us. For each of the filters above, we can look

at the activation that would come from convolving an image with it.

So, let’s use our example image again, and see what the activations for that image are

at each layer.

1 layer_outputs = [layer.output for layer in simple_model.layers[1:]]

# the first layer is input, but we want all layers after that

2 activation_model = Model(inputs=simple_model.input, outputs=

layer_outputs) # Make a model that returns each layer output

given the input

3 activations = activation_model.predict(im_in.reshape(1,8,8,1)) # then

, get all the activations for our test image

4

5

6 for layer_num in range(len(activations)):

7 layer_activation = activations[layer_num]

8 fig = plt.figure(figsize = (15,2*np.ceil(layer_activation.shape[-1]/9)

))

9 plt.title("%s Activations" %simple_model.layers[layer_num+1].name)

10 plt.axis(’off’)

11 for filter_num in range(layer_activation.shape[-1]):

12 ax = fig.add_subplot(np.ceil(layer_activation.shape[-1]/9), 9,

filter_num+1)

13 ax.matshow(layer_activation[0, :, :, filter_num], cmap=’Greys_r’)

14 if "conv" in simple_model.layers[layer_num+1].name:

15 ax.set_title("Filter %d" %(filter_num+1)) # only have filters

in the conv layers, else just call them Im 1/2/etc..

16 else:

17 ax.set_title("Im %d" %(filter_num+1))

18 plt.axis(’off’)

19 plt.tight_layout()
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So, those aren’t exactly interesting either. There are a few things to point out here:

• The pooling, upsampling, and concatenate ”activations” (there’s no activation func-

tion in these layers so the name doesn’t make as much sense for them) are plotted, so

you can confirm these operations are acting as we expect.

• Because the activations are after the different channels of the filter have summed, we

are showing one image per filter, not one image per filter channel.

But, even though we can look at all of our weights and activations, we aren’t getting

too much insight here on how our image is being inverted by these operations. A big part
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of this could be because the task we’re asking the U-Net to perform - inverting an image

- doesn’t actually care too much about the features in the image. It isn’t like identifying

an eye to figure out that you’re looking at a face - each pixel in this case could be inverted

completely independently from those around it.

5.6.2 A Real-World Example

So instead, let’s take a look at a real-world example, where the features of the image are

much more important, and try to see what we can learn about what the U-Net is doing.

The example data and U-Net that we’re going to be using are originally from:

https://github.com/zhixuhao/unet

But we’re going to augment the data differently, and I’ve made the U-Net smaller (in

both number of layers and number of filters) to make it more manageable to visualize.

The task for this U-Net is image segmentation. Given a grayscale image, we want to

create a black/white mask, where areas of interest are in black and all other areas are in

white. Let’s start by loading in the data so we can take a look at an example. We are

also going to augment the data as we load it in. That means, we’ll rotate and/or transpose

images as we read them in, so that they can become multiple new images to use for training.

We’ll also chop each of our images (which begin as 512x512) into multiple smaller images,

again, because smaller images will be easier to visualize later.

1 input_path = ’%s/data/ims’ %filepath

2 output_path = ’%s/data/labels’ %filepath

3

4 rotation_angles = [90,180,270] # set degrees to rotate by, leave []

if no augmentation

5 mirror_angles = [Image.TRANSPOSE,Image.FLIP_LEFT_RIGHT,Image.

FLIP_TOP_BOTTOM] # set types of mirroring/transposing the image

6

7 sz = 512 # image sizes (one dimension specified, images must be square

)
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8 n_crops = 8 # number of images (along one dimension) to crop original

to. Will end up with n_crops*n_crops images for every original

image

9

10 cropped_sz = int(sz/n_crops) # size of image we want to crop to. sz/

n_crops must be an integer to divide images evenly

11 sz = cropped_sz # set the new size to the size of the cropped images

12

13 X = []

14 for file in np.sort(os.listdir(input_path)):

15 full_im = Image.open(’%s/%s’ %(input_path, file))

16 for i in range(n_crops):

17 for j in range(n_crops):

18 box = (i*cropped_sz,j*cropped_sz,(i+1)*cropped_sz,(j+1)*cropped_sz

) # get the region of the full image that will become the cropped

image

19 im = full_im.crop(box)

20 X.append(np.array(im).reshape(sz,sz,1))

21 for angle in rotation_angles: # rotate images on all angles

22 rotated_im = im.rotate(angle)

23 X.append(np.array(rotated_im).reshape(sz,sz,1)) # add rotated

im as new one

24 for angle in mirror_angles: # transpose images on all angles

25 mirror_im = im.transpose(angle)

26 X.append(np.array(mirror_im).reshape(sz,sz,1)) # add transposed

im as new one

27

28 # build y in the same way as X, with images and rotations in the same

order to they match each other

29 y = []

30 for file in np.sort(os.listdir(output_path)):

31 full_im = Image.open(’%s/%s’ %(output_path, file))

32 for i in range(n_crops):
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33 for j in range(n_crops):

34 box = (i*cropped_sz,j*cropped_sz,(i+1)*cropped_sz,(j+1)*cropped_sz

)

35 im = full_im.crop(box)

36 y.append(np.array(im).reshape(sz,sz,1))

37 for angle in rotation_angles:

38 rotated_im = im.rotate(angle)

39 y.append(np.array(rotated_im).reshape(sz,sz,1))

40 for angle in mirror_angles:

41 mirror_im = im.transpose(angle)

42 y.append(np.array(mirror_im).reshape(sz,sz,1))

43

44 input_size = X[0].shape

45

46 X = np.array(X)

47 y = np.array(y)

48

49 # scale data to a 0-1 range

50 X = (X-np.min(X))/(np.max(X)-np.min(X))

51 y = (y-np.min(y))/(np.max(y)-np.min(y))

Now let’s look at some examples of our images, and confirm that our augmentations

worked properly.

1 fig = plt.figure(figsize=(15,9))

2 ax1 = fig.add_subplot(2,4,1)

3 ax1.imshow(X[0].reshape(sz,sz),cmap=’Greys_r’), plt.title("Input Image")

4 ax2 = fig.add_subplot(2,4,2)

5 ax2.imshow(y[0].reshape(sz,sz),cmap=’Greys_r’), plt.title("Output Mask")

6 ax3 = fig.add_subplot(2,4,5)

7 ax3.imshow(X[3].reshape(sz,sz),cmap=’Greys_r’), plt.title("Input Image,

Rotated 270")

8 ax4 = fig.add_subplot(2,4,6)

9 ax4.imshow(y[3].reshape(sz,sz),cmap=’Greys_r’), plt.title("Output Mask,
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Rotated 270")

10 ax5 = fig.add_subplot(2,4,3)

11 ax5.imshow(X[0].reshape(sz,sz),cmap=’Greys_r’), plt.title("Input Image")

12 ax6 = fig.add_subplot(2,4,4)

13 ax6.imshow(y[0].reshape(sz,sz),cmap=’Greys_r’), plt.title("Output Mask")

14 ax7 = fig.add_subplot(2,4,7)

15 ax7.imshow(X[5].reshape(sz,sz),cmap=’Greys_r’), plt.title("Input Image,

Flip Left/Right")

16 ax8 = fig.add_subplot(2,4,8)

17 ax8.imshow(y[5].reshape(sz,sz),cmap=’Greys_r’), plt.title("Output Mask,

Flip Left/Right")

18 plt.tight_layout()

19

20 print("We now have %d pieces of data" %len(X))

And we now have 13440 pieces of data. Now, let’s build the model that we’ll train on

this problem. We’re going to build this model exactly the same way that we built the very

simple model, but it will have more layers and more filters.
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1 inputs = Input(input_size)

2 # conv block 1

3 conv1 = Conv2D(16, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(inputs)

4 conv1 = Conv2D(16, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv1)

5 pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

6 # conv block 2

7 conv2 = Conv2D(32, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(pool1)

8 conv2 = Conv2D(32, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv2)

9 pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

10 # conv block 3

11 conv3 = Conv2D(64, 5, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(pool2)

12 conv3 = Conv2D(64, 5, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv3)

13 pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

14 # conv block 4

15 conv4 = Conv2D(128, 5, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(pool3)

16 conv4 = Conv2D(128, 5, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv4)

17 pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

18 # upconv block 1

19 up7 = Conv2D(64, 2, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(UpSampling2D(size = (2,2))(conv4))

20 concat7 = concatenate([conv3,up7], axis = 3)

21 conv7 = Conv2D(64, 5, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(concat7)

22 conv7 = Conv2D(64, 5, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv7)
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23 # upconv block 2

24 up8 = Conv2D(32, 2, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(UpSampling2D(size = (2,2))(conv7))

25 concat8 = concatenate([conv2,up8], axis = 3)

26 conv8 = Conv2D(32, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(concat8)

27 conv8 = Conv2D(32, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv8)

28 # upconv block 3

29 up9 = Conv2D(16, 2, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(UpSampling2D(size = (2,2))(conv8))

30 concat9 = concatenate([conv1,up9], axis = 3)

31 conv9 = Conv2D(16, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(concat9)

32 conv9 = Conv2D(16, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv9)

33 conv9 = Conv2D(2, 3, activation = ’relu’, padding = ’same’,

kernel_initializer = ’he_normal’)(conv9)

34 # output

35 conv10 = Conv2D(1, 1, activation = ’sigmoid’)(conv9)

36

37 model = Model(input = inputs, output = conv10)

38 model.compile(optimizer = Adam(lr = 1e-4), loss = ’mse’, metrics = [’

accuracy’])

39 model.summary()

1 Model: "model_3"

2 __________________________________________________________________________________________

3 Layer (type) Output Shape Param #

Connected to

4 ==========================================================================================
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5 input_2 (InputLayer) (None, 64, 64, 1) 0

6 __________________________________________________________________________________________

7 conv2d_8 (Conv2D) (None, 64, 64, 16) 160 input_2

[0][0]

8 __________________________________________________________________________________________

9 conv2d_9 (Conv2D) (None, 64, 64, 16) 2320

conv2d_8[0][0]

10 __________________________________________________________________________________________

11 max_pooling2d_2 (MaxPooling2D) (None, 32, 32, 16) 0

conv2d_9[0][0]

12 __________________________________________________________________________________________

13 conv2d_10 (Conv2D) (None, 32, 32, 32) 4640

max_pooling2d_2[0][0]

14 __________________________________________________________________________________________

15 conv2d_11 (Conv2D) (None, 32, 32, 32) 9248

conv2d_10[0][0]

16 __________________________________________________________________________________________

17 max_pooling2d_3 (MaxPooling2D) (None, 16, 16, 32) 0

conv2d_11[0][0]

18 __________________________________________________________________________________________

19 conv2d_12 (Conv2D) (None, 16, 16, 64) 51264

max_pooling2d_3[0][0]

20 __________________________________________________________________________________________

21 conv2d_13 (Conv2D) (None, 16, 16, 64) 102464

conv2d_12[0][0]
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22 __________________________________________________________________________________________

23 max_pooling2d_4 (MaxPooling2D) (None, 8, 8, 64) 0

conv2d_13[0][0]

24 __________________________________________________________________________________________

25 conv2d_14 (Conv2D) (None, 8, 8, 128) 204928

max_pooling2d_4[0][0]

26 __________________________________________________________________________________________

27 conv2d_15 (Conv2D) (None, 8, 8, 128) 409728

conv2d_14[0][0]

28 __________________________________________________________________________________________

29 up_sampling2d_2 (UpSampling2D) (None, 16, 16, 128) 0

conv2d_15[0][0]

30 __________________________________________________________________________________________

31 conv2d_16 (Conv2D) (None, 16, 16, 64) 32832

up_sampling2d_2[0][0]

32 __________________________________________________________________________________________

33 concatenate_2 (Concatenate) (None, 16, 16, 128) 0

conv2d_13[0][0]

34

conv2d_16[0][0]

35 __________________________________________________________________________________________

36 conv2d_17 (Conv2D) (None, 16, 16, 64) 204864

concatenate_2[0][0]

37 __________________________________________________________________________________________

38 conv2d_18 (Conv2D) (None, 16, 16, 64) 102464
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conv2d_17[0][0]

39 __________________________________________________________________________________________

40 up_sampling2d_3 (UpSampling2D) (None, 32, 32, 64) 0

conv2d_18[0][0]

41 __________________________________________________________________________________________

42 conv2d_19 (Conv2D) (None, 32, 32, 32) 8224

up_sampling2d_3[0][0]

43 __________________________________________________________________________________________

44 concatenate_3 (Concatenate) (None, 32, 32, 64) 0

conv2d_11[0][0]

45

conv2d_19[0][0]

46 __________________________________________________________________________________________

47 conv2d_20 (Conv2D) (None, 32, 32, 32) 18464

concatenate_3[0][0]

48 __________________________________________________________________________________________

49 conv2d_21 (Conv2D) (None, 32, 32, 32) 9248

conv2d_20[0][0]

50 __________________________________________________________________________________________

51 up_sampling2d_4 (UpSampling2D) (None, 64, 64, 32) 0

conv2d_21[0][0]

52 __________________________________________________________________________________________

53 conv2d_22 (Conv2D) (None, 64, 64, 16) 2064

up_sampling2d_4[0][0]

54 __________________________________________________________________________________________
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55 concatenate_4 (Concatenate) (None, 64, 64, 32) 0

conv2d_9[0][0]

56

conv2d_22[0][0]

57 __________________________________________________________________________________________

58 conv2d_23 (Conv2D) (None, 64, 64, 16) 4624

concatenate_4[0][0]

59 __________________________________________________________________________________________

60 conv2d_24 (Conv2D) (None, 64, 64, 16) 2320

conv2d_23[0][0]

61 __________________________________________________________________________________________

62 conv2d_25 (Conv2D) (None, 64, 64, 2) 290

conv2d_24[0][0]

63 __________________________________________________________________________________________

64 conv2d_26 (Conv2D) (None, 64, 64, 1) 3

conv2d_25[0][0]

65 ==========================================================================================

66 Total params: 1,170,149

67 Trainable params: 1,170,149

68 Non-trainable params: 0

69 __________________________________________________________________________________________

Let’s train this model:

1 model_history = model.fit(X, y, epochs = 100, verbose = 1,batch_size

=100)

Now, before we take a closer look at what the model is doing, let’s look at how accu-
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rately it was able to produce our desired masks to see if we’ve successfully completed our

task.

1 data_num = 2500 # can change to look at a different image and its

prediction

2

3 input_im = X[data_num].reshape(sz,sz)

4 predicted_im = model.predict(X[data_num:data_num+1]).reshape(sz,sz)

5 output_im = y[data_num].reshape(sz,sz)

6

7 fig = plt.figure(figsize=(15,5))

8 ax1, ax2, ax3 = fig.subplots(1,3)

9 ax1.imshow(input_im,cmap=’Greys_r’), ax1.set_title("Input")

10 ax2.imshow(predicted_im,cmap=’Greys_r’), ax2.set_title("Predicted Output

")

11 ax3.imshow(output_im,cmap=’Greys_r’), ax3.set_title("True Output")

12 plt.tight_layout()

And it looks pretty good! Okay, so let’s look at the filters again for this network, and

see if any of them seem to stand out as picking out some features for us.

We’ll do this in the exact same way that we did above, except we’ll only look at the

filters for the first convolutional layer of the first convolutional block. This is because we

have way more filters in this example than we did in the last example, so even in the second
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convolution of the first convolution block involves filters with 16 channels, so visualizing

all of them would be extremely hard.

1 for layer in model.layers[1:2]:

2 if "conv" in layer.name:

3 filters, biases = layer.get_weights()

4 f_min, f_max = filters.min(), filters.max()

5 filters = (filters - f_min) / (f_max - f_min)

6

7 fig = plt.figure(figsize=(15,5))

8 plt.title("Layer %s" %layer.name)

9 plt.axis(’off’)

10 for i in range(filters.shape[-1]):

11 ax = fig.add_subplot(np.ceil(filters.shape[-1]/8),8,i+1)

12 plt.imshow(filters[:,:,:,i].reshape(filters.shape[0],filters.shape

[1]),cmap=’RdBu’)

13 plt.axis(’off’)

14 plt.tight_layout()

It might not be any more evident in this real-world example than it was in our very

simple example what these filters are doing. But, now that our images have significant

structure, we might be able to figure out what these filters are telling us. Let’s look at the

activations for this first convolutional layer to see if anything jumps out.
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1 layer_outputs = [layer.output for layer in model.layers[1:]]

2 activation_model = Model(inputs=model.input, outputs=layer_outputs) #

Creates a model that will return these outputs, given the model

input

3 activations = activation_model.predict(input_im.reshape(1,64,64,1))

4

5 for layer_num in range(1):

6 layer_activation = activations[layer_num]

7 fig = plt.figure(figsize = (15,5))

8 plt.title("%s Activations" %model.layers[layer_num+1].name)

9 plt.axis(’off’)

10 for filter_num in range(layer_activation.shape[-1]):

11 ax = fig.add_subplot(np.ceil(layer_activation.shape[-1]/8), 8,

filter_num+1)

12 ax.imshow(layer_activation[0, :, :, filter_num], cmap=’Greys_r’)

13 plt.axis(’off’)

14 plt.tight_layout()

Now, if you’ve just been reading the cells of this notebook without re-running them,

you have the same filters and activations as I do. Otherwise, if you’ve been re-running the

cells, and you’ve re-trained the model, your filters and activations will be different than

mine. But, you should see that the activations all look like versions of the image that are

meant to pick out something.
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In the cells below, I’m going to manually load in some of the filters and activations that

I have in my notebook, and talk about them. If you didn’t re-run the notebook, this will be

filters and activations 2,6, and 7 (python-indexed) from above. Otherwise, your filters and

activations will be different, but likely some will still be relatively similar, to mine.

So, here are the filters we’re going to look at:

1 filt_2 = np.array([[0.6744713 , 0.69218516, 0.6413911 ],

2 [0.36131164, 0.426186 , 0.4645831 ],

3 [0.534594 , 0.5280584 , 0.4137286 ]])

4

5 filt_6 = np.array([[0.7352305, 0.61722165, 0.70441914],

6 [0.85438216, 0.61504716, 0.7480632 ],

7 [0.16859733, 0.65413386, 0.84601194]])

8

9 filt_7 = np.array([[0.6218604, 0.25640523, 0.45756572],

10 [0.5342595, 0.20999649, 0.53925157],

11 [0.3942946, 0.810168, 0.5870034 ]])

12

13 fig = plt.figure(figsize=(15,5))

14 ax1,ax2,ax3 = fig.subplots(1,3)

15 ax1.imshow(filt_2,cmap=’RdBu’), ax1.set_title("Filter 1")

16 ax2.imshow(filt_6,cmap=’RdBu’), ax2.set_title("Filter 2")

17 ax3.imshow(filt_7,cmap=’RdBu’), ax3.set_title("Filter 3")
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Now, let’s look at the activations these filters gave:

1 display(Im(’%s/images/realWorld_example_activations.png’ %filepath,

height=270, width=1000))

So, let’s try to speculate what these filters might be doing.

• Filter 1 looks like it might be a horizontal/diagonal edge detector. It seems to pick

out the strongest borders between black and and white pixels in the original image,

provided that border isn’t vertical.

• Filter 2 doesn’t seem to change the image significantly, besides blurring it somewhat

to smooth out the lighter sections.

• Filter 3 seems to only emphasize the darkest regions of the original image: the highest

concentration of black pixels in the original image are highlighted, and the rest of the

image is uniform.

If we go back and look at our filters, is there any evidence that this is what they’re

doing? Well, maybe. If you look at the structure of them, you can pick out that Filter 1

might have differing values horizontally/diagonally which might be giving us the horizontal

edges, or that Filter 2 might be keeping information from all the cells about equally which

blurs the image out, but it’s easier to look at the activation and say what it’s doing based off

of that than to make guesses based on the weights.
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5.6.3 Deeper Layers

And what about the deeper layers?

Well, the activations are easy enough to visualize. Although in the layers with 64 or

128 filters, this would mean looking at 128 images, that’s much easier than trying to look

at the filters, which will end up with 128 channels.

However, it can prove more challenging to interpret later activations because they are

now convolved versions of already convolved versions of our images. So while these ac-

tivations can still provide valuable insight at every level, it’s difficult to straightforwardly

interpret what exactly the UNet is doing.

Still, it’s clearly an incredibly powerful tool for image transformation, which hopefully

you now have a little better of an understanding/intuition about!
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Lemon, C., Rojas, K., and Savary, E. (2020). HOLISMOKES: II. Identifying galaxy-
scale strong gravitational lenses in Pan-STARRS using convolutional neural networks.
Astronomy and Astrophysics, 644:1–28.

Cavaglia, M., Staats, K., and Gill, T. (2019). Finding the Origin of Noise Transients in
LIGO Data with Machine Learning. Communications in Computational Physics, 25(4).

Centrella, J. and Melott, A. L. (1983). Three-dimensional simulation of large-scale struc-
ture in the universe. \nat, 305:196–198.

Chardin, J., Uhlrich, G., Aubert, D., Deparis, N., Gillet, N., Ocvirk, P., and Lewis, J.
(2019). A deep learning model to emulate simulations of cosmic reionization. Monthly
Notices of the Royal Astronomical Society, 490(1):1055–1065.

Chua, K. T. E., Pillepich, A., Rodriguez-Gomez, V., Vogelsberger, M., Bird, S., and Hern-
quist, L. (2017). Subhalo demographics in the Illustris simulation: effects of baryons and
halo-to-halo variation. Monthly Notices of the Royal Astronomical Society, 472(4):4343–
4360.

194



Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., and Zepf, S. E. (1994). A
recipe for galaxy formation. \mnras, 271:781–806.

Coles, P. (2001). Large—scale Structure, Theory and Statistics. Phase Transitions in the
Early Universe: Theory and Observations, pages 217–247.

Coles, P. and Chiang, L.-Y. (2000). Characterizing the nonlinear growth of large-scale
structure in the Universe . Nature, 406(6794):376–378.

Crocce, M., Pueblas, S., and Scoccimarro, R. (2006). Transients from initial condi-
tions in cosmological simulations. Monthly Notices of the Royal Astronomical Society,
373(1):369–381.

Croton, D. J., Springel, V., White, S. D. M., De Lucia, G., Frenk, C. S., Gao, L., Jenkins,
A., Kauffmann, G., Navarro, J. F., and Yoshida, N. (2006). The many lives of active
galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies.
Monthly Notices of the Royal Astronomical Society, 365(1):11–28.
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Schanche, N., Cameron, A. C., Hébrard, G., Nielsen, L., Triaud, A. H. M. J., Almenara,
J. M., Alsubai, K. A., Anderson, D. R., Armstrong, D. J., Barros, S. C. C., Bouchy,
F., Boumis, P., Brown, D. J. A., Faedi, F., Hay, K., Hebb, L., Kiefer, F., Mancini, L.,
Maxted, P. F. L., Palle, E., Pollacco, D. L., Queloz, D., Smalley, B., Udry, S., West, R.,
and Wheatley, P. J. (2019b). Machine-learning approaches to exoplanet transit detection
and candidate validation in wide-field ground-based surveys. Monthly Notices of the
Royal Astronomical Society, 483(4):5534–5547.

Schaurecker, D., Li, Y., Tinker, J., Ho, S., and Refregier, A. (2021). Super-resolving Dark
Matter Halos using Generative Deep Learning.

Schechter, P. (1976). An analytic expression for the luminosity function for galaxies. \apj,
203:297–306.
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