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CHAPTER I

Introduction

I.1 Motivation

Cyber-Physical Systems (CPS) is a classification of intelligent systems where a physical mechanism is con-

trolled or monitored using computer-based (i.e. cyber) algorithms. CPS includes systems such as smart

power grids, autonomous vehicles, medical monitoring, autopilot, and robotics. As CPS start to become

more integrated with everyday life, we want to push the limits of their capabilities and automate their use. To

accomplish this desire, we look to Artificial Intelligence (AI), and more specifically, Machine Learning (ML).

AI is a field of study where we develop computer systems that are able to complete tasks that require human-

or at least animal-level intelligence, i.e. visual perception, decision-making, and complex control. ML is a

subset of AI where we study methods and techniques that allow computer systems to learn and improve their

performance at completing tasks.

Recent successes have brought Reinforcement Learning (RL) to the forefront of the AI and ML discussion,

such as SonyAI’s world-champion racer in Gran Turismo [6], OpenAI Five’s defeat of professional-level

players in the game Dota 2 [7], and MuZero’s mastery of Go, Chess, Shogi, and numerous Atari games with

a single learned policy [8]. Additional research consistently shows RL training produces optimal results

even when trained with inaccurate or incomplete models [9]. Instead of hard-coding, agents are programmed

via reward and punishment without needing to specify how the task is completed. Because of this, RL

techniques are extremely attractive for robotics and other cyber-physical systems applications, which have

complex dynamics and environments that are difficult to model. However, the behaviors of these RL systems

are often difficult to interpret and predict. A simple example of this can be seen in teaching hexapod robots

to walk using RL. During the unbounded exploration used for training, some applied policies can cause legs

to cross, get caught on each other, and pull apart, causing one or more legs to break. Similar scenarios and

situations can occur in any system trained using RL. This is unacceptable for safety-critical systems, where

unpredictable and unsafe behavior could be the difference between life and death.

To protect systems, and speed up the training process, engineers can train their RL agents in simulation

and then transfer the learned control policy to the corresponding real-world system. This process is a chal-

lenging problem referred to as the sim2real challenge. Simulation environments abstract away a lot of the

nuance and noise of the real world. As a result, RL policies trained in simulation can end up “brittle”, i.e.,

when confronted with scenarios that differ from the examples seen in training they can fail to contextualize
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the situation and break. Thus, sim2real transfers often have catastrophic results where the real world results

are drastically different from simulation [10, 11]. Therefore, if we are to take advantage of the many bene-

fits of training in simulation, we must emphasize training more robust policies and/or formally verify their

behavior before deploying on safety-critical, real-world systems.

To this end, the work completed in this dissertation builds towards the goal of making safe and robust

reinforcement learning for autonomous cyber-physical systems.

I.2 Research Challenges

One field of research aimed towards making RL-trained agents safer during and after training is Safe Re-

inforcement Learning SRL. Recent SRL works demonstrate real-world online learning [9], optimal perfor-

mance that does not require safety checking when deployed [12], and SRL approaches that work better than

state-of-the-art DRL approaches [13]. Each new SRL paper claims to be the best, safest, most efficient, or

least restrictive approach, but few prove these claims with valid demonstrations. We have tried to replicate

studies with the original code, and found issues in many of their comparisons of SRL to other RL approaches.

(1) Some results were invalid SRL approaches because unsafe conditions were not used as terminal condi-

tions. (2) In some cases, inconsistent hyperparameters were used between the safe and unsafe experiments,

which means the improved efficiency authors claimed as a result of their SRL approach might actually be the

result of hyperparameter tuning. (3) Often, the experiments are not repeated across multiple random seeds.

Because RL is a stochastic process, showing results from one random seed is not representative of the true

performance of the algorithm. Only presenting the results of trials across one seed, allows for results to be

cherry-picked from the best trial. The work in [14] highlights the importance of running experiments across at

least 5 random seeds and averaging the results and showing the performance range in order to prove the trend

of increased efficiency. (4) In some experiments we repeated, we found that authors manipulated initial con-

ditions to improve efficiency. For example, inverted pendulum experiments that claimed increased efficiency

as a result of an SRL approach could be explained by starting SRL trials closer to a vertical position than

baseline trials. When we applied the same initial conditions to the baseline approach and SRL approaches,

we found cases where the SRL approach learned slower than the baseline, disproving their claims.

Spurred by the inconsistencies and the desire to justify further research in SRL research, this dissertation

sets out to answer these crucial questions:

• Why should we consider RL for sim2real scenarios?

• How can we best incorporate safety in the RL process?

• How can we assure that learning safety produces safer results?
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• How can we integrate safety specifications in the reward designing/shaping process?

I.3 Research Contributions

Motivated by the existing challenges, the research contributions are presented and discussed in detail in

Chapters III to VI, and can be summarized as follows:

1. We begin by performing experiments in an original transfer reinforcement learning task and evaluating

two transfer learning techniques from the literature.

2. We then present a comparative analysis of two leading machine learning methods for training au-

tonomous controller, Reinforcement Learning and Imitation Learning. This case study was evaluated

on a 1/10th scale car racing scenario and helps provide justification for why we should be considering

RL for sim2real scenarios.

3. Having demonstrated RL’s usefulness in sim2real and demonstrating a need to integrate safety con-

siderations, we present an ablation study where we analyze different approaches for integrating safety.

Our results provide answers for a number of crucial questions in the field and point towards a greater

need for developing reward functions that encourage the desired safe behavior.

4. Finally, we present our tool, STLGym, which automatically generates reward functions designed to

help RL agents learn to satisfy both timed and untimed specifications. With this tool, researchers can

write up how they want the RL agent to behave in the environment, and our tool will generate a reward

function to help the RL agent match the desired behavior.

I.4 Organization

The remainder of this dissertation is organized as follows. Chapter II introduces the respective related work,

providing background information for the core topics discussed throughout the dissertation. Chapter III in-

troduces methods for transferring trained RL policies between tasks with different dynamics. Chapter IV

focuses on a comparative analysis of two leading machine learning methods for training autonomous con-

trollers, Reinforcement Learning and Imitation Learning. This case study was evaluated on a 1/10th scale car

racing scenario and helps provide justification for why we should be considering RL for sim2real scenarios.

Chapter V presents our ablation study of various Safe Reinforcement Learning approaches and how each

safety enforcing modification impacts the learning process and whether they make RL agents safer after all

the training is done. Our results provide answers for a number of crucial questions in the field and point

towards a greater need for developing reward functions that encourage the desired safe behavior. Chapter VI

introduces our tool for helping RL agents learn desired behavior, STLGym. STLGym generates reward
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functions designed to help RL agents learn to satisfy the desired behavior, written in the form of a Signal

Temporal Logic (STL) specification. Chapter VII ends with concluding remarks, followed by the author’s

lists of publications and presentations in Chapters VIII and IX, respectively.
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CHAPTER II

Preliminaries and Related Work

In this chapter, we describe the related works that are foundational topics to the work presented in this

dissertation. Chief among these foundational topics is describing the problem formulation for model-free

reinforcement learning, which is the primary focus of this work.

II.1 Problem Formulation

Reinforcement Learning is designed to solve problems modeled as Markov Decision Processes (MDPs), or a

variant of the original MDP formulation.

Definition 1 (Markov Decision Process). A discrete-time Markov Decision Process (MDP) is represented by

a tuple (S,U,T,γ,R), where

• S is a set of states called the state space,

• U is a set of actions called the action space (alternatively, Us is the set of actions available from state

s),

• T(s,u,s′) = Pr(st+1 = s′ | st = s,ut = u) is the probability that action u in state s at time t will lead to

state s′ at time t +1,

• γ ∈ [0,1] is the discount factor determining preference for immediate or distant reward assignments,

and

• R(s,u,s′) : S×U → R is the reward function assigning a scalar reward value to the transition from

state s to state s′ using action u.

The solution to an MDP is the optimal behavior function, u = π∗(s), that maximizes the expected cumulative

sum of rewards, i.e. return, J:

E[J] = E[
T

∑
t=0

γ
trt ], (II.1)

where T is a finite time-horizon. When γ = 0, the solution prioritizes immediate reward, and when γ = 1 the

solution prioritizes maximizing the expected sum of future rewards.

Formulating the problem as an MDP assumes that the state space is fully observable. While this might be

true for some simulated systems, many real systems are only able to estimate some state information using
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sensors. Because of this, only a portion of the state space may be observable. To handle these systems, we

need to account for Partially Observable Markov Decision Processes (POMDPs).

Definition 2 (Partially Observable Markov Decision Process). A discrete-time POMDP extends the MDP

to cases where the state may not be fully observable to the agent. Formally, a POMDP is represented by

a 7-tuple, (S,U,T,γ,R,Ω,O), which builds off the original MDP tuple by adding additional information,

where

• O is a set of observations, and

• Ω(s,o) : S → O is a probabilistic mapping of states s ∈ S to corresponding observations o ∈ O.

In this formulation, the behavior function maps observations, o ∈ O, to actions u ∈ U. Thus, the optimal

behavior function is u = π∗(o).

All model-free RL algorithms are designed to solve the POMDP formulation problem because any MDP

can be reformulated as a POMDP by setting the observation set to be equal to the set of states, O = S, and

defining the observation conditional probabilities to always match the observation that corresponds to the true

state.

II.1.1 Observed Markov Decision Process

Model-free RL algorithms are traditionally designed to solve Partially Observable Markov Decision Pro-

cesses (POMDPs) since all Markov Decision Processes (MDPs) can be described by an equivalent POMDP.

While POMDP is a very useful class of systems, it includes cases where some values are unobservable.

Having unobservable state values is not an issue for model-free RL, but it is an issue if there are certain

state values that need to be monitored to determine the safety of the system. To this end, we propose a new

MDP formulation we refer to as Observed Markov Decision Process (OMDP). This formulation is a subset

of POMDP that requires all the values we want to keep track of are measurable. This formulation does not

require that all measurable state values are included in the input observation.

Using the observation as the input for the policy is really useful because it allows us to normalize the state

values and change the input dimensions in order to ignore irrelevant variables and/or increase the importance

of other variables by repeating them. For example, consider the example of an aircraft doing waypoint

navigation. In this example, the observation can be comprised of the relative position between the aircraft

and the destination. If global position, the state, was used instead for the input, the learned policy would not

transfer well for even small changes in location. In this case, the global position is necessary for computing

the transition, but consciously ignored by the policy. Now add to the example a restriction on the system in

6



the form of a geofence1 the aircraft cannot leave. In order to monitor this restriction, we need access to the

global position. By formulating the problem as an OMDP, we ensure the global position is accessible for

such monitoring.

Definition 3 (Observed Markov Decision Process). A finite OMDP is a tuple (S,U,T,R,O,Ω,D) where

• S is a set of states called the state space,

• U is a set of actions called the action space (alternatively, Us is the set of actions available from state

s),

• T(s,u,s′) = Pr(st+1 = s′ | st = s,ut = u) is the probability that action u in state s at time t will lead to

state s′ at time t +1,

• R(s,u,s′) : S×U → R is the reward function assigning a scalar reward value to the transition from

state s to state s′ using action u,

• O is a set of observations,

• Ω(s,o) : S → O is a mapping of states s ∈ S to corresponding observations o ∈ O, and

• D is a definition of terminal conditions that indicate what is “done”.

Throughout this dissertation, we assume the RL problem can be represented by an OMDP. This allows us

to cover a broader class of problems than those represented by an MDP, but restricts our problems to those

where the state and observation values used for determining whether the system is “safe” are observable even

if they are ignored by the learning agent.

II.2 Deep Reinforcement Learning

Reinforcement Learning (RL) is a form of machine learning in which an agent acts in an environment, learns

through experience, and increases its performance based on rewarded behavior. Deep Reinforcement Learn-

ing (DRL) is a newer branch of RL in which a neural network is used to approximate the behavior function,

i.e. policy π . The basic construction of the DRL approach is shown in Figure II.1. The agent consists of the

Neural Network Controller (NNC) and RL algorithm, and the environment consists of a plant and observer

model. The environment can be comprised of any dynamical system, from Atari simulations ([15, 17]) to

complex robotics scenarios ([5, 9, 14, 18, 10, 19]).

Reinforcement learning is based on the reward hypothesis that all goals can be described by the maxi-

mization of expected return, i.e. the cumulative reward [20]. During training, the agent chooses an action, ut ,
1A geofence is a perimeter drawn up around a real-world geographical area.
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Figure II.1: Basic formulation of Deep Reinforcement Learning for a control problem.

based on the input observation, o. The action is then executed in the environment, which causes the environ-

ment to transition to state st+1 with probability T(st ,ut ,st+1) according to the plant model. However, instead

of receiving the state information, the agent receives an observation ot+1 ∈ O which depends on the new state

of the environment, st+1, and on the just taken action, ut , with probability Ω(ot+1 | st+1,ut). Finally, the agent

receives a reward rt equal to R(st ,ut ,st+1).

In all the examples shown in this dissertation, we assume the problem is represented as an OMDP, mean-

ing all important state values are measurable even if they are ignored by the agent. The process of executing

an action and receiving a reward and next observation is referred to as a timestep. Relevant values, like the

input observation, action, and reward are collected as a data tuple, i.e. sample, by the RL algorithm to update

the current NNC policy, π , to an improved policy, π∗. How often these updates are done is dependent on the

RL algorithm.

When comparing RL algorithms and approaches or determining how successful they are, we look at

two metrics: (1) the final policy performance, usually measured by the expected return; and (2) the sample

complexity, a measure of how fast the agent learns the optimal policy.

The return is the sum of all rewards collected over the course of an episode. An episode is a finite sequence

of states, observations, actions, and rewards starting from an initial state and ending when some terminal, i.e.

done, conditions are met. Throughout this dissertation, we refer to different elements of the episode by their

corresponding timestep, t. Thus, rt is the reward value at timestep t ∈ [0,T ], where T is the final timestep in

the episode.

The sample complexity is a measure adapted from general machine learning research that represents the

number of training-samples (i.e. timesteps in RL) needed to achieve a certain level of performance. The larger
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the sample complexity is, the more data is required to train the agent to a certain level of performance. Since

RL collects data throughout the training process, sample complexity is a proxy for measuring how quickly an

agent learns to complete the task. Throughout the training process, the training is halted periodically, and the

policy learned so far is evaluated in a number of episodes and the return is recorded. When this information

is plotted in a sample complexity plot, it shows how well the agent improves performance as it continues to

learn. These plots are used in RL for comparing how well an agent learns a task. An agent with better the

sample complexity, will have a higher return after fewer timesteps.

II.3 Deep Reinforcement Learning Algorithms

DRL algorithms are defined and categorized by how they use 3 distinct components and combinations of

them. These components are:

• Model: a descriptor of the environment. With a model, we can learn or infer how the environment

responds to different actions. The major components of a model are the transition probability function

and reward function.

• Policy: the agent’s behavior function, π , is a mapping from observation, o, to action, u, and can be

deterministic, π(o) = u, or stochastic, π(u|o) = Prπ(ut = u|ot = o).

• Value Function: a measure of the “goodness” of a state, or how rewarding a state-action pair is based

on the expected return computed with discount factor γ ∈ [0,1]: Jt = ∑
∞
k=0 γkrt+k+1

– state value: the expected return, Jt , if the agent is in state s at time t: Vπ(s) = Eπ [Jt |st = s]

– state-action value: also known as the Q-value is the expected return of a given state-action pair:

Qπ(s,u) = Eπ [Jt |st = s,ut = u]. This can be used to estimate the state-value using the target

policy. Vπ = ∑u∈U Qπ(s,u)π(u|s)

– advantage: the difference between the state-action value and the state value. It is defined as:

Âπ(s,u) = Qπ(s,u)−Vπ(s) (II.2)

Most algorithms refer to how they use those components with the following labels and combinations of

labels:

• Model-based: these methods rely on the model of the environment; either the model is known or the

algorithm learns it explicitly. Having a model of the environment allows the agent to “think ahead” by

predicting outcomes and choosing the best option.
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• Model-free: these methods have no dependency on the model during learning.

• On-policy: during training, the learned policy selects every action taken. These methods usually update

less often and rely on a stochastic version of the policy during training.

• Off-policy: during training, a separate behavior policy (often random or process noise) is used to select

the actions taken. Thus, the learned policy is not used during training.

In this dissertation, we focus on model-free DRL algorithms, using both on-policy and off-policy ap-

proaches. Model-free approaches have the advantage of not requiring a ground-truth model of the environ-

ment, but are still able to learn an optimal policy. We use multiple algorithms throughout this dissertation, but

our work favors using Proximal Policy Optimization (PPO) as our on-policy2 algorithm, and Soft Actor-Critic

(SAC) as our off-policy3 algorithm.

Both PPO and SAC, along with many state-of-the-art DRL algorithms, build off the foundational actor-

critic methodology. Actor-critic methods train two4 networks, an actor and critic, concurrently. The actor

network learns the optimal policy, π∗, and is the NNC that is eventually deployed after training. The critic

network learns the value function, either the state value or the Q-value, depending on the algorithm. The

critic’s learned value function is used throughout training to determine the updates to the actor network.

II.3.1 Proximal Policy Optimization

Proximal Policy Optimization (PPO) was first introduced by Schulman et al. in [26] as an improvement to

their previous DRL algorithm, Trust Region Policy Optimization (TRPO) [22]. Both algorithms are on-policy

and focus on iteratively improving the policy in small increments to prevent against making large changes in

the policy that might lead to a drop in performance. They differ in how the “small increment” is calculated.

TRPO solves an optimization problem to identify the largest change to the policy that can be made while

remaining within a “trustworthy” region. Solving this optimization problem is computationally expensive,

so PPO simplifies the process using a clipping function. Instead of defining the trustworthy region based

on the optimization problem, the clipping function sets a hard, constant limit. This simplification speeds

up computation, and, according to the introductory paper, improves sample complexity. Later work, [27],

showed that the improvements were actually a result of code-level improvements. Despite this finding, PPO

has continued to grow and is regularly improved with new features.

2Other on-policy RL algorithms include A2C [21], TRPO [22], and ARS [18].
3Other off-policy RL algorithms include DQN [3], DDPG [23], and TD3 [24].
4Two networks is not always the case. In Chapter III, our actor and critic share the same network body, but the actor and critic have

separate final layers. Furthermore, some DRL algorithms make use of multiple critic networks. These additional critics help provide a
more stable update for the actor network. Some DRL algorithms that make use of multiple critics include SAC [25] and TD3 [24].
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II.3.2 Soft Actor-Critic

Soft Actor-Critic (SAC) was first introduced by Haarnoja et al. in [25]. The algorithm is an improvement over

other off-policy algorithms because the learning process is more stable. One of SAC’s predecessors, Deep De-

terministic Policy Gradient (DDPG) [23], has well-documented issues with stability caused by catastrophic

forgetting [28]. Catastrophic forgetting occurs as a result of the agent improving the learned policy and no

longer visiting less-desirable states. Eventually, the optimal action in these less-desirable or early-episode

states are forgotten and the result of this forgetting shows up when the policy is evaluated, and we observe

the performance plummeting instead of improving. The agent then has to re-learn what to do in those states,

hurting the sample complexity. SAC addresses this issue by incorporating entropy maximization in the explo-

ration policy, i.e. the policy used during training. Because off-policy algorithms use a separate policy during

training (also referred to as exploration), the exploration policy can have a different goal from the learned

optimal policy.

This entropy maximization prioritizes trying new state-action combinations during training in order to

better approximate the true Q-function. In this way, the agent regularly revisits any state that has been

‘forgotten’ and prevents any catastrophic decline in performance.

II.4 Safe Reinforcement Learning

When an RL agent explores states in a video game, the consequences of making a “wrong” move are limited.

However, using RL in the real world has shown catastrophic results [9, 10]. The field of Safe Reinforcement

Learning (SRL) was developed in response to RL’s use on cyber-physical systems domain that interact with

the real world in complex scenarios. In Garcı́a and Fernández’s comprehensive survey of SRL from 2015,

they categorized the approaches into two main categories or styles: (1) modification of the optimality criterion

and (2) modification of the exploration process [29]. In this dissertation, we refer to these categories under

the more general terms: (1) reward shaping and (2) safe exploration. Additionally, we introduce an emerging

category of approaches, (3) adversarial training/retraining. Each are described in more detail in this section.

II.4.1 Safe Exploration

An approach geared more towards hardware deployment, safe exploration approaches ensure the agent re-

mains 100% safe throughout the duration of training. Furthermore, this approach can be redesigned for

deployment, ensuring the future safety of trained policies. Safe exploration techniques can be further broken

down into the following three categories.

1. Preemptive Shielding where the action set the agent is allowed to choose from is preemptively reduced

to only allow safe actions [17, 30].
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2. Safe-by-Construction in which verification techniques are used, often applied to an abstraction of the

learned policy, to verify safe behavior before being allowed to explore and develop further [31, 32, 33].

Alternatively, correct-by-construction can also be applied to a shielded RL solution [17].

3. Run Time Assurance (RTA) methods filter the agent’s desired actions, uNN , to assure safety. In some

cases, a monitor and/or decision module is used to determine whether the desired action provided by

the learning agent is safe. In the event the agent’s desired action is deemed unsafe, a different action

that is determined to be safe is substituted and sent to the plant [34, 12, 35, 36, 9, 37, 38, 39, 40, 41].

II.4.2 Reward Shaping

Reward shaping, the process of crafting a well-designed, optimal reward function, is essential for all forms of

DRL since a poorly designed reward function can lead to unexpected and/or ineffective behavior [15]. Within

SRL, reward shaping is often used to reformulate the problem as a Constrained Markov Decision Processes

(CMDP) [42].

Definition 4 (Constrained Markov Decision Process). A Constrained Markov Decision Process (CMDP) is

denoted by the tuple (S,U,T,γ,R,D). This adds to the original MDP tuple D : S×U → R, which is the cost

function.

The CMDP formulation behaves the same as the MDP formulation, except at each timestep a reward, rt =

R(st ,ut ,st+1), and a cost, dt = D(st ,ut ,st+1) are computed. With this additional cost, the objective changes

to find an optimal policy, u = π∗(s), that not only maximizes the expected return according to Equation II.1,

but also ensures the expected cumulative cost, K, remains below a specified value, Kmax.

E[K] = E[
T

∑
t=0

γ
tdt ]≤ Kmax (II.3)

Instead of optimizing performance according to a singular reward function, performance is optimized

according to a task-oriented reward and a safety-focused cost [43, 44, 45, 46, 13, 47], so the agent learns a

high-performing, safe policy. However, this style of SRL does not prohibit the agent from exploring unsafe

behavior. Thus, it cannot be used to train on real hardware platforms. Instead, reward shaping techniques are

limited to simulated environments and rely on high-quality transfer learning to be deployed in the real world.

II.4.3 Adversarial Training/Retraining

The newest category of SRL approaches, Adversarial Training/Retraining, focuses on identifying unsafe

behavior in the agent and then correcting that behavior [48, 49, 50]. Most of the papers that use this approach

12



focus on retraining an agent that already performs well in the environment. However, the approach can also

be applied to an untrained network at the cost of requiring more training time.

II.5 Run Time Assurance

One way to enforce the safety of a system while it is operating is through the use of Run Time Assurance

(RTA). RTA approaches filter out potentially unsafe control inputs provided by a primary controller with the

intent of preserving the safety of the system.

For the dynamical system represented by an OMDP, inequality constraints ϕi(s) : Rn →R, ∀i ∈ {1, ...,M}

can be used to define a set of M safety constraints, where the constraint is satisfied when ϕi(s) ≥ 0. With

these safety constraints, we can define safe operation by its relation to the admissible set.

Definition 5 (Admissible Set). The admissible set Sϕ ⊆ S, is defined as the set of states where all safety

constraints are satisfied. This is represented by,

Sϕ := {s ∈ S | ϕi(s)≥ 0,∀i ∈ {1, ...,M}}. (II.4)

Definition 6 (Safety). Safety and/or safe operation is achieved by always remaining within the admissible

set, i.e. not violating any specified constraints. In the examples provided in this work, safety is defined on a

finite time horizon, such that the operation is considered safe if ∀t ∈ [t0,T ],st ∈ Sϕ . However, the ending time

bound, T can be set to infinity for other systems that operate in perpetuity.

For RTA to ensure safe operation, we need to define a stricter subset of states to further constrain opera-

tions, known as the control invariant safe set, Sh. By operating in this stricter defined set, we avoid scenarios

that can arise near the boundary of the admissible set, Sϕ where, no matter the action executed, the next state

will be outside the admissible set.

Definition 7 (Control Invariant Safe Set). The control invariant safe set, Sh, is a subset of the admissible

set, Sϕ , where ∀s ∈ Sh,∃u ∈ U,T(s,u,s′) ∈ Sϕ . This means that, within the control invariant safe set, there

always exists an action that will keep the system within the control invariant safe set.

II.5.1 Explicit vs Implicit

RTA approaches are classified by how they determine Sh, explicitly or implicitly. Explicit approaches use a

pre-defined Sh to determine when RTA intervention is necessary. Implicit approaches use a defined backup

control law and a model of the system dynamics to compute trajectories, which are used to determine when

intervention is necessary. Because computing trajectories can be computationally expensive, explicit ap-

13



proaches tend to be more efficient. However, implicit approaches can be easier to implement since they do

not require a precise definition of Sh. This also allows implicit approaches to be less conservative.

II.5.2 Simplex vs Active Set-Invariance Filter

RTA monitoring approaches can be further split into two classes of intervention, simplex and Active Set-

Invariance Filter (ASIF). The simplex approach switches between the primary control (RL actions) and a

pre-defined backup controller [51]. The backup controller is usually less efficient at the desired control

task, but meets desired safety and/or human-machine teaming constraints. In contrast, ASIF approaches use

barrier constraints to minimize deviations from the primary control signal while assuring safety [52]. In other

words, ASIF approaches are always intervening, adjusting the primary control signal by the minimal amount

necessary to ensure safety. When the primary control is safe, the adjustment approaches 0.

II.6 Summary

In this chapter, we described the foundations of research areas fundamental to the rest of this dissertation.

The topics included deep reinforcement learning, safe reinforcement learning and its various approaches, and

run time assurance.
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CHAPTER III

Sonic2Knuckles: Evaluations on Transfer Reinforcement Learning

Deep Reinforcement Learning with real-world systems is a much greater challenge than in simulated envi-

ronments and tasks, because a learner in a real-world system cannot run millions of trials or easily tolerate

fatal trajectories. Therefore, the ability to train agents in simulated environments and effectively transfer

their knowledge to real-world environments is a crucial, and integral part of constructing autonomous robotic

systems. In this chapter, we perform experiments in an original transfer reinforcement learning task we

constructed using the game “Sonic 3 & Knuckles,” evaluating two transfer learning techniques from the

literature1.

III.1 Introduction

Reinforcement Learning (RL) is a branch of machine learning that focuses on a software agent taking actions

in an environment to maximize rewards. Due to its generality and versatility, RL is also studied in disciplines

outside of machine learning, such as game theory, control theory, simulation-based optimization, multiagent

systems, and swarm intelligence. RL is so versatile because it is a way of programming agents via reward

and punishment without needing to specify how the task is accomplished [53].

Reinforcement Learning and other learning-based methods have been around since the early days of com-

puter science, but are gaining influence in the control and artificial intelligence research communities [9]. In

part because RL algorithms consistently show an ability to produce optimal results despite having poor mod-

els to work with. Additionally, since Neural Networks and Deep Learning have been gaining popularity, RL

algorithms have been combined with Deep Learning to create a new branch of RL called Deep Reinforcement

Learning (DRL). DRL is able to better represent complicated, multidimensional systems. DRL techniques

are extremely attractive for robotics applications, which have complex dynamics and environments.

Despite the gaining popularity and success of DRL, it has one fatal setback; training the learning agent

is a computationally expensive process. To combat this, Transfer Learning and Meta-Learning have become

increasingly impactful topics. One example of this is OpenAI’s Retro Competition, which utilizes an emula-

tion of the Sega Genesis Sonic the Hedgehog games as the training environment. The competition challenged

competitors to develop new ways of outperforming baseline algorithms at learning how to reach the end of

secret/unseen levels created for the competition. The focus of the competition was on Meta-Learning, a way

of training a fast learner [2]. These fast learners are created by training an agent to play a number of different

1This chapter is based on [15], portions of which are reprinted here.
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levels/environments and using that learned policy as the starting point for an agent learning to play on any

secret test level. The focus of the competition was to highlight the value of Meta-Learning, but it also proved

that the Sonic games posed an interesting test environment for learning algorithms. It is non-trivial to develop

an agent that performs well in the game. Thus, we chose the Sonic environment for our experiments.

In addition to transferring learned policies between the same agent in different environments, like in the

Retro Competition, there are many scenarios where it would be beneficial to share learned policies among

agents that have slightly different dynamics. A common application where this problem often occurs is

moving learned policies from simulation to the real world. Simulations often simplify equations for the

agent’s motion by using a constant friction coefficient, removing slippage, or using out-of-the-box conversion

factors for rotors. These simplifications often cause agents to have poor results that do not work as expected,

sometimes resulting in fatal behaviors when moving from simulation to the real world [10]. However, it

would be greatly beneficial to train agents in simulated environments and then run those learned policies on

real world systems with comparable results since training in the real world is extremely costly, slow, and fatal

trajectories are common during the learning process.

In this chapter, we explore and test different methods for transferring learned policies between agents

with different dynamics using a simpler, safer environment, “Sonic the Hedgehog” for Sega Genesis. More

specifically, we are using Proximal Policy Optimization (PPO) to train one character, Sonic, in the “Sonic 3

& Knuckles” game environment and then transfer the learned policy to train a different character, Knuckles.

The characters differ in that, Knuckles is slower, has shorter jumps, and glides if a double jump is performed.

By transferring the learned policy between these two characters, we are trying to emulate the same kind of

transfer between simulated and real environments faced by researchers in industry today. In this project,

we wrote our own implementation of PPO and all the transfer learning methods to better understand them.

Additionally, we explored two methods for executing this transfer, jumpstart and imitation.

III.2 Background and Technical Approach

III.2.1 Deep Reinforcement Learning

The goal of RL is to learn the optimal policy, mapping states or observations to action, for completing a task.

Learning is done through experimental trials that have their levels of success represented as a reward. With

an optimal policy, the agent is able to actively adapt to the environment, maximizing future rewards. This is

done by an agent choosing actions in an environment. This is illustrated in Figure III.1.

For a more detailed background on Reinforcement Learning, see Section II.2.
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Figure III.1: Example image showing how an agent interacts with an environment. The agent is depicted
as a neural network, which is used in this work and all applications of deep reinforcement learning. The
environment is shown as a scene from “Sonic 3 & Knuckles”. The game is the environment, the screen
capture would be the state or observation the agent uses to determine the next action.

III.2.2 Jumpstart, a Starting Point Method

The first transfer learning method we experimented with, Jumpstart, is a starting point method. That means,

the target network is initialized according to knowledge from the source network [1]. In our case, the target

neural network is initialized as a copy of the source neural network. This is one of the simplest transfer

methods and is known for showing a large increase in the target policy’s initial performance, i.e. jumpstarting

the performance. This jumpstart is highlighted in Figure III.2.a by the transfer curve starting at a higher point

than the no transfer curve. We expect this method to show strong results transferring from Sonic to Knuckles

if the differences between the characters are sufficiently small.

(a) (b)

Figure III.2: The jumpstart method is highlighted in (a) as the transfer curve starts at a higher reward point.
The imitation method we used is depicted in (b) showing how the agent moves between using the source and
target policy to determine actions. Figures copied from Chapter 11 of Handbook of Research On Machine
Learning Applications and Trends [1]
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III.2.3 Imitation Method

Imitation methods are closely related to imitation learning, which allow an agent to learn by watching an

expert perform a task [54]. Imitation transfer learning methods differ in how the expert is defined and the

agent executes the actions determined by the expert instead of watching.

There are two main imitation methods. In the first, the agent follows the source policy at the start of

the training process. This guides the target policy towards more favorable behaviors, instead of executing

random actions trying to learn those good behaviors. Because the first imitation method is really similar

to the jumpstart method mentioned in Section III.2.2, we decided to experiment with the second imitation

method.

The second imitation method2, depicted in Figure III.2.b, follows the source policy intermittently through-

out the training process. Similar to the first imitation method, this helps guide the target policy towards favor-

able actions, but allows for more autonomy in learning different and potentially more beneficial behaviors.

We reasoned that this would work well in the case where the source policy was trained with different dy-

namics than the target policy. The differences in the dynamics might make the source policy suboptimal in

the new environment. So instead of learning the source policy directly, the target policy is learned from new

interactions that are guided towards optimal performance by the similarities learned from the source policy.

III.3 Experimental Setup

In this section, we discuss how we designed and set up our experiments. This includes information about the

environment we chose to train agents and run our experiments in, how we designed the reward function to

optimize, how we structured the neural networks used, and how we set up and designed our experiments.

III.3.1 Learning Environment

Our experiments and training were run in the “Sonic 3 & Knuckles” Sega Genesis game using the Gym

Retro3 emulator [2]. To make our results comparable, we modified the environment the same way explained

in [2]. This involved restricting the available action space from every combination of the 12 available buttons

being pressed (212 actions) to the following 8 actions. This reduced action space contains only the useful

actions for moving the Sonic character around in the game4.

{{},{LEFT},{RIGHT},{LEFT,DOWN},{RIGHT,DOWN},{DOWN},{DOWN,B},{B}}
2This method is similar to Safe Reinforcement Learning (SRL) approaches that use Run Time Assurance (RTA) (see Section II.4.1).

In the SRL case, the RTA is the source policy that is intermittently used.
3https://github.com/openai/retro
4For those not familiar with the Sonic games, B makes the character jump.
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(a) Sonic (b) Knuckles

Figure III.3: Example observations from the Sonic 3 & Knuckles video game. The screenshot on the left
shows the observation for an agent playing as the Sonic character. The yellow character behind Sonic is
Tails, who cannot be removed and is not controllable. The screenshot on the right shows the observation for
an agent playing as Knuckles.

Additionally, we modified our environment to employ the frame skip and sticky keys modifications, which

combine to make the sticky frame skip modification described in [2]. The first, frame skip, makes the agent’s

response time more similar to a humans. Instead of selecting an action for each frame of the video game

occurring every 1
60

th
of a second, each action is repeated 4 times. Now, the agent makes decisions every 1

15
th

of a second. Each action is determined by a singular frame of the game, shown in Figure III.3. Since each

timestep/interaction still occurs faster than the human reaction time, we include the second modification,

sticky keys. With sticky keys, at each step, there is a 25% chance the last action executed will be used for an

extra frame. An example of sticky frame skip is shown in Figure III.4.

Figure III.4: A visualization of “sticky frame skip” described by, and image copied from, Schulman et al. [2]

Since advantages are computed backwards from the end of an episode, we had to define boundaries for an

episode. We used definitions similar to Schulman et al. [2]. An episode ends if any of the following occurs:

• The character completes a level successfully. In this case, that means reaching a specified horizontal

offset.

• The character loses a life. Since this results in the character starting back at the beginning, it makes

sense to terminate the run.

• The agent has executed 4500 interactions in the environment. This is about 5 minutes of in-game time.
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This forces the agent to complete the level within a set time limit.

III.3.2 Choosing a Reward Function

Although reinforcement learning is seeing a surge in popularity, it faces many significant challenges, one of

the most notable being the problem of sparse rewards. The most effective reinforcement learning agents must

be rewarded very frequently, often at every step of play or multiple times per second. Without such dense re-

wards, a reinforcement learning agent will, at the beginning of training, act at random until it stumbles across

rewards or punishments to guide its behavior. Additionally, once it is actively achieving certain rewards, it

will not explore the state space sufficiently to discover rewards it may not yet be aware of. When rewards are

not clearly related to recent actions, distributing credit for success or failure to the appropriate actions in a

long sequence may take many trials.

These challenges highlight the importance of reward function design, or reward shaping, for current

agents. A well-designed reward function will greatly improve the speed of an agent’s learning process.

However, for a given environment and task, the optimal reward function is not necessarily clear. We evaluate

4 possible reward functions for our Sonic environment. We used the game’s built-in rewards, known as

points, the reward function provided as a baseline by OpenAI, the number of rings collected by the agent, and

a potential-based reward using the agent’s position.

Score in Sonic is mostly provided on a milestone basis, i.e. the score increases whenever certain hori-

zontal distances in the level are reached. But these score rewards are sparse, from a reinforcement learning

perspective, meaning that a reinforcement learning agent trained on this reward may not receive any feedback

for some time. The ring-based reward awards the agent for collecting rings, but does not punish the agent for

losing them. This was intended to encourage exploration, as rings are scattered throughout each level. The

OpenAI reward provides reward to the agent for traveling further to the right than it has before, as well as a

bonus for level completion, but does not punish the agent for traveling left as this is sometimes necessary. Our

‘potential-based’ reward was also based on position. It rewarded the agent for traveling to the right, (closer

to the ultimate goal at the end of the level), but punished it for traveling left. This was intended to prevent

possible cycles in the reward function that could be exploited by the agent, as outlined by [55].

We tested each reward function 3 times, each with a different random seed, and averaged results due to

the high variability of training trajectories. Each time, the agent was trained for 1 million timesteps, or an

average wall time of about 10 hours. Initially, we expected the training reward to follow a simple upward

trend which soon saturated, indicating the agent learning an optimal policy for each reward. However, the

trials were significantly more chaotic than we initially expected. Sometimes, results fluctuated wildly due to

fatal trajectories. If Sonic happened to die, the reward in that episode was significantly lower than average.
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Figure III.5: A comparison of how the reward function influences the learning process. Each curve represents
the average of three training runs, each with a different random seed, using the indicated reward function.

The averaged results are compiled in Figure III.5. The OpenAI reward led to the highest overall perfor-

mance, in that the agent trained with this reward eventually traveled the furthest distance through the level in

the shortest number of timesteps.

Other reward functions often led to unanticipated behavior. For instance, the potential-based reward,

in a result which could not have been predicted in advance, led to the agent often stumbling into a hidden

bonus level, which prevented them from traveling any further throughout the original level. This may be

the primary reason it underperformed the OpenAI reward function. The ring-based reward was expected to

lead to reward farming5 through cycles. The agent could have learned to jump into a hazard, lose its rings,

and then quickly collect them again, accumulating arbitrary amounts of reward without completing the level.

However, this did not seem to occur, perhaps because there were not many rings near the beginning of the

level and because learning to carry out this cycle was difficult in and of itself. We did, however, observe the

agent going backwards to collect rings that it had missed.

These results are another clear demonstration of the impact reward engineering has on reinforcement

learning. The OpenAI reward seemed to achieve high performance by encouraging the agent to travel right

without punishing it for traveling left when necessary. Under other reward conditions, the agent sometimes

got stuck against an obstacle, and did not back-track for fear of losing points. It is worth noting that the

OpenAI reward function is a blend of the in-game and potential-based reward functions. The reward is based

on more dense milestones with the maximum traveled distance rather than current location, and as such does
5Reward Farming is explained best at: https://openai.com/blog/gym-retro/
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not contain reward cycles.

III.3.3 Neural Network Architecture

The neural network used in these experiments is split into two main components, the main body, and the split

output. The main body’s architecture is designed after the architecture used by OpenAI in their competition,

which comes from [3]. The architecture, shown in Figure III.6, consists of three convolutional layers where

the output is rolled out into a vector and passed through a fully connected ReLU layer that reduces the size.

The layer dimensions were scaled down to fit our application. The dimensions of the first layer match that

of 1/16th the game’s output screen image, 52x76x3 with a filter size of 8x8 and stride length 4. We reduced

the image to 1/16th its original size to help with memory management. Without this reduction, we were not

able to store the information needed to complete a single horizon6. The dimensions of the second layer are

12x18x32 with a filter size of 4x4 and stride length 2. The dimensions of the third layer are 5x8x64 with a

filter size of 3x3 and stride length 1. The output of the third convolutional layer is rolled out to 1152 inputs

for the fully connected ReLU layer with 512 output nodes.

Figure III.6: The main body of the neural network used in this experiment. The structure is based on that
used in [3] and [2]. The output is fully connected to two separate outputs, the actor and critic, respectively.
Model generated using the web tool at http://alexlenail.me/NN-SVG/LeNet.html

The 512 output nodes of the main body are used as the input to the split output section. The final output

is split to represent the actor and the critic. The actor output uses a fully connected ReLU layer to output 8

nodes, which are then scaled proportionally using the softmax function. Each of the 8 nodes represents an

action in the reduced action space described in Section III.3.1. The critic output uses a fully connected ReLU

layer to output a single node representing the estimated value of the input observation.

6A horizon is made up of one or more episodes, where the policy is not updated until after the horizon is completed. The term is
often used in the literature interchangeably with the term epoch.
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III.3.4 Experiments

We ran the following experiments on Angel Island Zone 1 Act 1 of “Sonic 3 & Knuckles”. We used this

level, because it is the same level and structure for both Sonic and Knuckles. Many of the other levels have

different starting points or completely different structures for Sonic and Knuckles. By using the same level,

we simplify the problem to focus solely on character differences and not level differences.

(a) (b)

Figure III.7: Three training results run for ∼8 million simulated steps using the (a) Sonic character and (b)
Knuckles character. The results show a large amount of variation due to the inherent randomness in using a
stochastic on-policy method. The best performing trace from (a) generated the source policy for all transfer
learning experiments.

To develop the source policy, we ran six instances of PPO training an agent. Three were trained as

Sonic and the other three were trained as Knuckles. Training was done with the hyperparameters shown in

Table III.1, which are the same ones used in [2]. Because of a typing error, the code ran for a longer training

time than intended. The plan was to run the training for 1e6 steps instead of up to 8e6. We kept and used the

result because the distance Sonic reached was better than anything we had previously seen. The last saved

file of the best performing Sonic Neural Network’s parameters was used in the transfer learning tests as the

source policy.

The results of this training session, shown in Figure III.7, highlight the large variance that occurs in

training agents with RL. Experiments conducted in [14] show how the variance in runs is enough to create

statistically different distributions by varying random seeds alone. To reduce that impact and make our results

more repeatable, we conducted all of our experiments using the same random seed. However, using the same

random seed in every trial does not eliminate the variance. PPO uses a stochastic policy, which is inherently

random. Actions are randomly chosen according to the output policy distribution. Since the random decisions

made by the agent impact the future training data it obtains, the trajectories can take very different paths and

converge with varying levels of success. Additionally, fatal trajectories are present in the environment. If
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Table III.1: PPO hyperparameters for training the source policy

Hyperparameter Value
Horizon length 8192
Updates per horizon 4
Minibatch size 8192
Discount factor (γ) 0.99
Clipping factor 0.2
Learning rate 2e-4
Episode length 4500
Total steps 8e6
Save interval 1
Load model none

the agent selects actions that result in the character’s death, the episode ends early, resulting in a drop in the

accumulated reward. These random drops make the plots very difficult to understand, so we have filtered

them using a Gaussian filter (length 30, σ = 5) to better highlight the reward trend.

Two transfer learning tests were run using the jumpstart method. Both tests used the same source policy,

but the first trained the agent to play as Knuckles and the second trained the agent to play as Sonic. We tested

both characters to see how the transfer changed between the two characters. We expected to see the transfer

to Sonic perform better because of the matching character dynamics. Both tests were run on three instances

with the same hyperparameters, shown in Table III.2, except for the character selected.

Table III.2: PPO hyperparameters for the jumpstart method

Hyperparameter Value
Horizon length 8192
Updates per horizon 4
Minibatch size 8192
Discount factor (γ) 0.99
Clipping factor 0.2
Learning rate 2e-4
Episode length 4500
Total steps 1e6
Save interval 1
Load model source policy

Two transfer learning tests were run using the imitation method. Both tests used the same source policy,

but the first trained the agent to play as Knuckles and the second trained the agent to play as Sonic. We tested

both characters to see how the transfer changed between the two characters. We expected to see the transfer

to Sonic perform better because of the matching character dynamics. Both tests were run on three instances

with the same hyperparameters, shown in Table III.3, except for the character selected.

Imitation length and Imitation frequency have no mathematical reason for their selected values. The

imitation method is too theoretical to have recommended values, so we chose what we thought would work
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Table III.3: PPO hyperparameters for the imitation method

Hyperparameter Value
Horizon length 8192
Updates per horizon 4
Minibatch size 8192
Discount factor (γ) 0.99
Clipping factor 0.2
Learning rate 2e-4
Episode length 4500
Total steps 1e6
Save interval 1
Load model source policy
Imitation length 10
Imitation frequency 0.1

well. The imitation length refers to how many steps the agent follows the actions determined by the source

policy in succession. Imitation frequency determines how often the agent follows the source policy. With

these particular settings, the agent follows the source policy for the first 10 steps out of every 100 steps

simulated.

III.4 Results

Our results show an increase in learning speed for all transfer learning tests. Additionally, we saw consistent

transfers for both characters, which suggests the differences in the character dynamics were not large enough

to drastically affect the learning process. These results are discussed more in-depth below.

III.4.1 Jumpstart Method

The jumpstart method showed us the expected large increase in performance at the start of the training pro-

cess, despite being used for a different character. The large dips seen in Figure III.8.a occur when the character

ends the episode prematurely by losing a life in a region with multiple traps. This behavior was also seen in

the source policy, so it was expected. The agent does not appear to improve the policy, but instead simply

maintains the results. The ending point reached when simulating the final policy of these learning curves

shows that the character gets stuck at the same point as the source policy.

III.4.2 Imitation Method

The imitation method showed an increased learning speed, but was not allowed to run for long enough to

show if it might eventually surpass the source policy. The results in Figure III.8.b show the policy changes

regularly increase the episode reward.
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(a) (b)

Figure III.8: Three training curves showing the result of transferring the source policy to an agent playing
as Knuckles using (a) the jumpstart method and (b) the imitation method. The average Knuckles baseline
result is provided in both plots for comparison. The jumpstart method (a) maintains the end results seen
using the source policy with no improvement. The large dips show the learned policy is not very safe because
the character keeps dying early, resulting in a much lower reward. The imitation method (b) shows a steady
reward increase with each update to the policy.

III.4.3 Knuckles Results

Comparing the results of the transfer learning methods to the results of training without transfer, shown in

Figure III.9, indicate both transfer learning methods increased the final result. The jumpstart method had a

significant increase in the early results, but did not increase after that. The imitation method did not see as

large of an initial increase, but the learning speed was noticeably steeper than the baseline without transfer.

The jumpstart method resulted in the largest final result after running for one million steps.

III.4.4 Different Dynamics vs. Same Dynamics

In our final results comparison, Figure III.9, we looked at how transferring between systems with the same

dynamics (Sonic → Sonic) compares to transferring between systems with different dynamics (Sonic →

Knuckles). The grouping in the results suggest that the change in dynamics does not create a noticeable

effect. The lack of a noticeable effect suggests the slight differences in speed and jump height had very little

impact on the learning process.

One interesting thing to note is transferring Sonic → Sonic using the jumpstart method is essentially

continuing the training session. Picking up right where it left off. Since the policy had already converged,

we expected the agent to maintain the same level of performance and decrease the time it takes the agent to

reach the final position. Figure III.9.b shows the Sonic → Sonic transfer roughly maintains the same level

of performance, and our viewing of the playback supports the increased speed with which Sonic reaches the

final position. There were more fatal trajectories than we had anticipated, but the number should decrease
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(a) (b)

Figure III.9: (a) Averaged results of all tests run (three trials each) using the Knuckles character. (b) Averaged
results of all tests run (three trials each) using both the Sonic and Knuckles characters. In both plots, the
results are limited to fewer than 1 million steps. The results suggest either the character differences were not
large enough to affect the transfer learning methods, or the transfer methods were effective at reducing the
impact of the character differences.

with more training.

III.5 Summary

This project successfully implemented PPO and tested the desired Transfer Learning methods. The results

suggest there is a noticeable improvement using the transfer learning methods. More specifically, Jumpstart

had the largest effect, but did not improve upon the source policy significantly, and the imitation method

increased the learning speed gradually. In conclusion, the differences between the characters were not enough

to hinder the transfer learning methods, however, more tests with the platform and with more characters are

needed to form any definitive conclusions.
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CHAPTER IV

Zero-Shot Policy Transfer in Autonomous Racing: Reinforcement Learning vs Imitation Learning

There are few technologies that hold as much promise in achieving safe, accessible, and convenient trans-

portation as autonomous vehicles. However, as recent years have demonstrated, safety and reliability remain

the most obstinate challenges, especially in complex domains. Autonomous racing has demonstrated unique

benefits in that researchers can conduct research in controlled environments, allowing for experimentation

with approaches that are too risky to evaluate on public roads. In this chapter, we compare two leading

methods for training neural network controllers, Reinforcement Learning and Imitation Learning, for the au-

tonomous racing task. We compare their viability by analyzing their performance and safety when deployed

in novel scenarios outside their training via zero-shot policy transfer. Our evaluation is made up of many

experiments in simulation and on our real-world hardware platform that analyze whether these algorithms

remain effective when transferred to the real-world. Our results show reinforcement learning outperforms

imitation learning in most scenarios1.

IV.1 Introduction

Autonomous Racing is a growing topic of interest, ranging from small-scale academic competitions (e.g.

F1/10 [56]) to full-scale competitions (e.g. Roborace, AWS DeepRacer [57] and the Indy Autonomous

Challenge [58]). These racing competitions are integral to the development of Autonomous Vehicles, (AVs)

as they help promote general confidence and societal acceptance of a novel emerging technology. Moreover,

they allow researchers to conduct explorations of possible solutions to difficult scenarios such as high-speed

obstacle avoidance and other risky maneuvers that may be too dangerous to consider in urban settings [4].

Within this realm, one classical approach of constructing these systems involves a decomposition of

tasks into four main areas: perception, planning, control, and system supervision [59]. Confining our focus

to the control of these vehicles, many platforms favor classical or model predictive control techniques for

their predictably safe performance. However, in recent years, many researchers have proposed the use of

machine learning for control tasks, as these methods have shown significant potential in solving optimal

control problems for highly nonlinear systems with varying degrees of uncertainty [59]. This prowess has

made these types of regimes particularly attractive for autonomous vehicle development.

One of the most successful frameworks for solving machine learning control problems has been Rein-

forcement Learning (RL). RL is a branch of machine learning that focuses on software agents learning to

1This chapter is based on [16], portions of which are reprinted here.
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maximize rewards in an environment through experience. The general idea is similar to training a dog to do

tricks by giving it treats when it performs the desired task. Thus, an optimal controller can be synthesized

using data evaluated by key performance criteria through trial and error [60]. Many RL approaches leverage

neural networks due to their advantages in dealing with complex data. These approaches can be referred to

as Deep Reinforcement Learning (also referred to as RL) techniques, and recent successes such as OpenAI’s

OpenAI Five outperforming pro-level players at Dota 2 [7], and Microsoft’s MuZero [8] mastering Atari, Go,

Chess and Shogi have helped bring RL to the forefront of AI discussion.

Despite their success in numerous realms, RL approaches can be costly to train, especially as systems

become more complex and dynamic. Additionally, RL allows agents to learn via trial and error, exploring

any behavior during the learning process. In many realistic domains, this level of freedom is unacceptable,

thus training in simulation is standard. Therefore, the challenge becomes how to minimize the inherent

mismatches between real-world settings, and the simulation environments used to train RL agents [61].

Training agents in simulation and then deploying them on real-world hardware platforms, known as a

sim2real transfer, is a challenging problem. In many cases, the agents do not perform as expected in the real

world, sometimes resulting in unsafe or catastrophic behavior [10, 11]. Their performance can be improved

with further training in the new environment, but that is only possible if the behavior policy is safe from the

outset. Transferring a learned policy and evaluating before any additional training is done is referred to as a

zero-shot policy transfer.

In this chapter we focus on zero-shot policy transfer since active learning, i.e. learning during evaluation,

is impractical for real-time systems because updates to the neural network control policy are computationally

expensive and time-consuming. Instead, we evaluate trained policy networks as they are. This is standard

practice in industry, to deploy a trained model and release updates intermittently.2

One way to achieve high performance with a zero-shot policy transfer is by leveraging external or expert

knowledge. Imitation Learning (IL) utilizes expert demonstrations to train an agent to mimic the behavior.

Using IL, an agent can be trained to mimic a human or a complicated array of computationally intensive

classical control methods that perform optimally in different scenarios. In this way, complicated algorithms

and/or human experience can be boiled down to one neural network capable of replicating their behaviors.

While the last several years have witnessed a significant number of approaches for addressing these chal-

lenges, there have been few in-depth empirical studies comparing the efficacy of different learning frame-

works for learning robust agent behavior [62]. In [62], Gros et al. note that RL approaches generally outper-

form IL. However, this performance comes at a cost of significant reward shaping. While this work provides

an enlightening discussion, the authors consider only discrete environments and do not address sim2real

2The rate at which these updates occur depends highly on the application.
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challenges.

In light of the lack of empirical comparisons of IL and RL, in this chapter, we experiment with and

compare Neural Network Controllers (NNCs) trained using these approaches for the control of a 1/10 scale

autonomous vehicle. The performance of these trained NNCs are compared through a number of experiments,

testing their ability to handle scenarios outside their training environment via zero-shot policy transfer. These

experiments include changing the vehicle’s constant speed, adding unknown obstacles to the track, and evalu-

ating on different tracks. These experiments culminate in a sim2real transfer and evaluation of the controllers

on our hardware platform.

In summary, the contributions of this chapter are:

1. We train 2 NNCs using IL to imitate a path following algorithm that effectively balances efficiency and

safety.

2. We train 2 NNCs using state-of-the-art RL algorithms, DDPG and SAC.

3. We compare their performance in a series of zero-shot policy transfer experiments in simulation.

4. We compare their performance in a sim2real zero-shot policy transfer experiment.

IV.2 Preliminaries

IV.2.1 Imitation Learning

Imitation Learning (IL) seeks to replicate the behavior of a human or other expert on a given task [63, 64].

These approaches fall within the field of Expert Systems in Artificial Intelligence, and in recent years the

demand for these approaches has increased substantially. The surge in interest is spurred on by two main

motivations. (1) The number of possible actions needed to execute a complex task is too large to cover by

explicit programming. (2) Demonstrations show that having prior knowledge provided by an expert is more

efficient than learning from scratch [63].

In this chapter, we employ one of the most common methods of IL, Behavior Cloning, which was first

introduced to train a modified van to navigate paths at speeds up to 20 miles per hour [65, 66]. The work was

later replicated with an updated convolutional neural network architecture in [67] with great success.

IV.2.2 Reinforcement Learning

Reinforcement Learning (RL) is described in greater detail in Section II.2. For the work described in this

chapter, we utilize two well-known, state-of-the-art off-policy deep reinforcement learning algorithms Soft

Actor-Critic (SAC) [25], and its predecessor Deep Deterministic Policy Gradient (DDPG) [23].
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Figure IV.1: Visualization of our experimental F1/10 hardware platform. This platform is a one-tenth scale
RC car that has been altered to operate autonomously with the support of a sensor and compute architecture
for autonomous decision-making [4].

IV.2.3 F1/10

For our experiments, we utilize the F1/10 simulation and hardware platform [56]. The platform was designed

to replicate the hardware and software capabilities of full scale autonomous vehicles. The hardware platform

is equipped with a standard suite of sensors including stereo cameras, LiDAR (light detection and ranging),

and inertial measurement units (IMU). The car is controlled by an NVIDIA Jetson TX2, and its software stack

is built on the Robot Operating System (ROS) [68]. In the Gazebo simulation environment, all the sensors

are replicated, so the transition from simulation to the real-world and back is straightforward without hours

worth of re-configuring.

IV.3 Experimental Setup

In order to make the comparisons as fair as possible, all the controllers we trained have the same neural

network architecture and are trained on the Porto track shown in Figure IV.2 unless otherwise specified. The

trained NNCs selected for our experimental evaluations are the best performing of at least 3 NNCs trained the

same way using different random seeds3. Additionally, the control output has been limited to only steering

and the car travels at a constant speed of 1m/s during training.

3The random seed used for training has a large impact on the training process and resulting policy, as demonstrated in [14, 18]
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Figure IV.2: The different tracks and the corresponding starting positions we used in our simulation experi-
ments. The bright green rectangle is the simulated car, and the blue region around it represents the full set of
range values collected by the LiDAR sensor.
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IV.3.1 Neural Network Architecture

In this chapter, we utilize a common architecture found in RL literature. The simple multi-layer perceptron

network consists of an input layer, 2 fully connected hidden layers of 64 nodes with ReLU activation func-

tions, and a fully connected output layer with a hyperbolic tangent, tanh, activation function. The input layer

accepts nine range values collected from the LiDAR at −90◦, −60◦, −45◦, −30◦, 0◦, 30◦, 45◦, 60◦, and 90◦

from forward. The range values are clipped between [0m,10m]. The output layer provides a single value

between [−1,1], which is scaled up linearly for the desired steering angle between [−34◦,34◦].

IV.3.2 Training the Agents

IV.3.2.1 Imitation Learning

We trained the imitation learning agent using a procedure that is a simplification of the seminal work by Dean

Pomerleau, in which a neural network was trained to control an autonomous vehicle [66]. The agents in this

chapter were trained on sensor-action pairs collected during experiments where the vehicle was controlled

using a path following algorithm on the racetrack. The path we used for training lead around the middle of

the track, ensuring safe operation. The path following algorithm we utilized, Pure Pursuit [69], does a quick

search for a waypoint that it can safely reach governed by a specified look-ahead horizon, it then steers the car

towards that waypoint. The pure pursuit algorithm has been used in numerous contexts and has been shown

to be a robust method for efficiently and accurately following a path. However, the pure pursuit algorithm

requires access to accurate localization, which we did not have access to on our real-world racetrack. Using

imitation learning, we wanted to bring that same level of performance to a controller that used forward-facing

LiDAR ranges instead of localization. This was our main motivation in using this controller.

The first imitation learning agent, IL, was trained only on data collected from the Porto track. This makes

the training process more like what the RL agents will see, since they are also only trained on the Porto

track. The second agent, IL-3, was trained using data collected from the Porto track as well as the two other

tracks, Walker and Barca shown in Figure IV.2. We include IL-3 to highlight one of the main advantages of

using IL to train NNCs: any recorded data of the expert can be used for training. In both cases, the dataset

of state-action pairs was split into 70% training data and 30% validation data. The policy was then trained

with supervised learning, using Adam [70] with minibatches of 128 examples, until validation error stops

decreasing.

IV.3.2.2 Deep Reinforcement Learning

Both RL controllers, DDPG and SAC, were trained using common hyperparameters, which are provided in

Section IV.8. The agents optimize performance according to a dense reward function that assigns a positive
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reward for counterclockwise progress around the track. The reward is calculated using a reference path that

runs through the middle of the track. The value of the reward is the positive arc length between the previous

and current closest point along the path. This reward function encourages the agent to complete as many laps

as possible as quickly as possible.

We trained the agents according to their respective algorithms. We halted the training process to evaluate

performance after every 500 training steps. The performance is measured by how many laps the agent can

complete within 100 seconds. This is more than enough time to complete 2 laps in the training track (Porto).

We chose 2 laps because completing 1 lap is not enough to show the controller is capable of completing

multiple laps. The car always starts in the same position, but may not return to the same position at the end

of the first lap. However, the starting position of laps 2+ will be about the same. Thus, if the controller is able

to complete 2 laps, it is likely capable of completing any number of laps.

The evaluation is repeated up to 10 times, and training stops when the agent is able to complete at least

2 laps 10 times in a row. Once the agent is able to complete at least 2 laps 10 times, the training process is

halted and control policy is saved for our experiments.

IV.3.3 Evaluating Performance

We evaluate the controllers through a variety of scenarios that test their ability to maintain optimal perfor-

mance in scenarios outside their training environment. These scenarios include changing the constant speed

value, adding obstacles to the track, evaluating on a different track, and a real-world evaluation on our hard-

ware platform. We compare the performance of the controllers according to three metrics we refer to as track

distance, efficiency, and safety.

Efficiency is calculated as the distance the car travels around the track divided by the amount of time it

took to get there. Each test runs for a maximum of 60 seconds and cuts off sooner if the car collides with

a wall or obstacle. We refer to this as a measure of efficiency because the distance is not measured by the

direct distance the car traveled. Instead, the distance is measured in relation to the arc length of a path going

through the center of the track, which we refer to as the track distance. The closer the car stays to following

the center path, the closer the efficiency value will match the constant speed. However, if the car takes sharp

turns around the corners, the efficiency will increase since the car covers the same track distance in less time.

Safety is a measure of how prone to collisions the controller is at a specific track. The safety value

corresponds to the percentage of runs that ended with no collision regardless of the time or distance traveled,

i.e. if safety = 100%, there were no collisions encountered in the experiments.

34



Table IV.1: Performance on Porto with and without obstacles

No Obstacles Obstacles
Algorithm Track Distance Efficiency Safety Track Distance Efficiency Safety
IL 121.44 ± 14.41 1.94 ± 0.25 100% 41.80 ± 0.88 1.93 ± 0.02 0%
IL-3 125.23 ± 0.31 2.01 ± 0.00 100% 40.79 ± 0.26 1.92 ± 0.02 0%
DDPG 142.74 ± 10.52 2.29 ± 0.16 100% 40.33 ± 0.37 2.23 ± 0.03 0%
SAC 144.04 ± 0.47 2.31 ± 0.01 100% 182.98 ± 2.92 2.94 ± 0.01 96.66%

Table IV.2: Performance on Porto varying constant speed

0.5 m/s 1.0 m/s 1.5 m/s
Algorithm Track Distance Efficiency Safety Track Distance Efficiency Safety Track Distance Efficiency Safety
IL 64.73 ± 0.36 1.04 ± 0.01 100% 121.44 ± 14.41 1.94 ± 0.25 100% 171.24 ± 41.24 2.90 ± 0.06 93.33%
IL-3 64.60 ± 0.09 1.04 ± 0.00 100% 125.23 ± 0.31 2.01 ± 0.00 100% 178.54 ± 20.94 2.92 ± 0.03 96.67%
DDPG 73.60 ± 0.22 1.18 ± 0.00 100% 142.74 ± 10.52 2.29 ± 0.16 100% 18.09 ± 0.29 2.57 ± 0.08 0%
SAC 72.97 ± 10.05 1.20 ± 0.03 93.33% 144.04 ± 0.47 2.31 ± 0.01 100% 174.11 ± 62.58 3.21 ± 0.15 80.0%

IV.4 Experiments and Results

Our experiments were designed to test the performance of both the RL and IL controllers in challenging

scenarios. The first experiment demonstrates the ideal test conditions, evaluating in the same environment

the controllers were trained in. The following three experiments introduce changes to the environment that

test the robustness of the learned control policies, building up towards the final experiment, deploying on the

real-world hardware platform.4

All simulation experiments test each controller 30 times in the designated scenario. Each test lasts for a

maximum of 60 seconds, stopping early in the event of a collision.5

IV.4.1 Training Environment (Porto)

Our first experiment evaluates the performance of the controllers in the environment they were trained in. This

provides a baseline that we can compare to as we test these controllers in scenarios outside their training. The

results in Table IV.1 show all the controllers operate safely without any recorded collisions. Additionally, the

results show both RL controllers operate more efficiently and travel further than the IL controllers.

IV.4.2 Varying Speed

In our second experiment, we explore how changing the constant speed of the car impacts performance. This

subtle change tests the robustness of the controllers with respect to a change in speed. The control policies

were trained with the assumption the car moves at 1.0m/s. Moving at different speeds, especially faster than

expected, might reveal unsafe behaviors. Additionally, this experiment provides some insight into how well

4The hardware experiments are summarized at:
https://youtu.be/rgVb46RMMvE

5A video summarizing the simulation experiments can be
found at: https://tinyurl.com/2bjwpcxs
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the controllers will handle a sim2real transfer. Unlike in simulation, the hardware platform can experience

fluctuations in speed caused by a poorly-tuned speed regulator, wheel slippage, etc.

We tested the controllers on the Porto track with constant speeds 0.5m/s and 1.5m/s. We expected the

efficiency and track distance of the controllers to be cut in half when run at half speed. We also expected

the controllers would remain safe at half speed. For the tests at a faster speed, we expected the efficiency to

increase by a factor of 1.5, but experience more collisions.

The results in Table IV.2 show that cutting the speed in half leads the efficiency and track distance to be

reduced by about half for every controller. Since the efficiencies and recorded track distances of the con-

trollers at 0.5m/s are slightly above the expected half, the controller’s efficient behaviors are more impactful

at slower speeds. Every controller except for SAC maintained their safe performance. In the one trial that the

SAC controller collided with the wall, it was during the first left turn. The controller turned too early while

driving close to the wall, resulting in a collision.

Furthermore, the results in Table IV.2 show that increasing the speed reduces the safety of all the con-

trollers. In our experiments, none of the controllers were safe for all evaluated runs. In particular, DDPG was

unable to complete any runs without colliding after the first curve. However, despite the increase in collisions,

all the controllers operated more efficiently. IL, IL-3, DDPG, and SAC saw a 1.5x, 1.45, 1.12x, and 1.39x

increase respectively. The IL controller was the only one able to meet the 1.5x increase we expected to match

the speed increase.

IV.4.3 Obstacles

Our third experiment introduces unknown obstacles, orange traffic cones, to the Porto track as shown in

Figure IV.2. This experiment tests the controllers beyond what they were trained to do. Not only does the

controller have to steer the car along the optimal path while avoiding the walls, there are now additional

obstacles to avoid. Thus, it provides a measure of each controller’s ability to mimic the driving task, rather

than robust pattern matching. The IL controllers failed to generalize to this scenario, and failed to complete a

single lap without a collision failing around the last cone. DDPG was similar in nature, however, it maintained

its higher level of efficiency over the IL controllers. SAC was the only controller able to handle obstacles and

successfully navigated the cones in 96.66% of our evaluations. Interestingly, the obstacles improved SAC’s

performance. The last cone on the track was positioned just right to direct the controller to steer sooner,

finding a more optimal path.
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Table IV.3: performance across different racetracks

Porto (57.5m) Walker (73.25m) Barca (221.14m)
Algorithm Track Distance Efficiency Safety Track Distance Efficiency Safety Track Distance Efficiency Safety
IL 121.44 ± 14.41 1.94 ± 0.25 100% 33.50 ± 1.55 1.89 ± 0.02 0% 108.54 ± 33.26 1.96 ± 0.03 83.33%
IL-3 125.23 ± 0.31 2.01 ± 0.00 100% 123.38 ± 0.33 1.98 ± 0.01 100% 124 ± 0.29 2.00 ± 0.00 100%
DDPG 142.74 ± 10.52 2.29 ± 0.16 100% 130.08 ± 0.34 2.09 ± 0.00 100% 31.54 ± 0.03 1.80 ± 0.01 0%
SAC 144.04 ± 0.47 2.31 ± 0.01 100% 62.64 ± 38.31 2.11 ± 0.25 0% 24.27 ± 4.09 1.76 ± 0.02 0%

Figure IV.3: Difficult sharp turn on Barca track.

IV.4.4 Alternate Race Tracks (Walker and Barca)

In our fourth experiment, we examined how well the controllers perform when used on two different, more

complicated tracks, Walker and Barca shown in Figure IV.2. Walker introduces a choice between two paths,

which we anticipated would cause issues because none of the controllers, except IL-3, have experience with

that scenario. We also anticipated that Barca’s long straightaways and sharp turns would cause more colli-

sions for controllers trying to cut corners. The results for this experiment, and the lengths of the tracks for

comparison, are shown in Table IV.3

On the Walker track, both the IL and SAC controllers were unable to consistently navigate the junction.

Instead of picking a direction to pursue, the IL controller drove the car directly into the corner of the junction

in every test while the SAC controller managed to avoid that fatal mistake in some cases, but rarely passed

it in the second lap. In contrast, the DDPG controller was able to successfully navigate the divergent track

without prior experience. Additionally, both RL controllers navigated the track more efficiently than the IL-3

controller, which had prior experience on the track.

On the Barca track, only the IL controllers were able to safely navigate the sharp turn highlighted in

Figure IV.3. Both DDPG and SAC collide with the track wall at the sharp turn by either turning too soon or

not turning at all.
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Figure IV.4: Our real-world track with the reference path used for measuring the distance traveled marked in
blue.

Table IV.4: performance on hardware platform

Algorithm Track Distance Bumps Collisions
IL 53.86 ± 0.47 0 0
IL-3 5.81 ± 0.00 0 10
DDPG 2.00 ± 0.00 0 10
SAC 61.83 ± 0.37 4.7 ± 0.67 0

IV.4.5 Real-World, Hardware Platform

In our final experiment, we test how well these controllers handle an actual sim2real transfer on our hardware

platform. The experiments were conducted on our track, shown in Figure IV.4, which has a middle-of-the-

track path length of 13.08m. Because we could not reliably record the time for runs that resulted in a collision,

we do not compare the controllers’ efficiency. Instead, we compare the distance traveled around the track in

60 seconds. We averaged the results across 10 runs and kept a count of how often the controllers drove the

car along the side of the track, bumping into it (Bump), as well as how many times it drove directly into the

side of the track (Collision). We halted the run in the event of a collision and recorded the final position as

the total distance traveled. While bumps in our simulated results counted as collisions, we decided to allow

them in the hardware experiments because they did not harm the track and would have been allowed in the

F1/10 competition.

The results in Table IV.4 show DDPG and IL-3 were unable to complete a lap, instead colliding with the

side of the track before completing the first turn. However, both IL and SAC were able to complete over 4

laps in the allotted 60 seconds.

IV.5 Discussion

Our experiments highlight two main challenges to the sim2real problem, model mismatch and domain mis-

match. Model mismatch centers around the output not having the expected outcome. We highlight this

38



challenge in our experiments with varying speed. Domain mismatch centers around the input being out of

scope, or not what is expected. In other words, the real inputs do not match the training inputs. We highlight

this challenge in our experiments with the obstacles and alternate racetracks. In this section, we discuss which

controllers handled each type of mismatch best and theorize why that might be the case.

IV.5.1 Model Mismatch

Model mismatch is a result of the output not having the expected outcome. This could be the result of noisy

actuators, inaccurate model dynamics, etc. In our experiments, we highlight this challenge by testing the

controllers at varying speeds in Table IV.2.

Our results show the IL controllers handled this challenge better than the RL controllers. We attribute

this result to how the controllers were trained. The IL controllers were trained to imitate the behavior of our

expert control that balanced safety and efficiency by trending towards the middle of the track. In contrast, the

RL controllers were trained solely to optimize efficiency. As a result, the RL controllers cut corners sharply

and drove close to the walls. Because of this, changes to the speed had a larger impact on safety. Turning

close to the walls has a smaller margin for error than turning in the middle of the track. Despite this greater

challenge, the SAC controller was almost as safe as the IL controllers, with much better performance. If we

compare the track distance of only safe trials, the SAC controller traveled an average of 201.25m and the IL

controllers traveled an average of 182.3m. The difference between the two is about 1/3 of a lap.

IV.5.2 Domain Mismatch

Domain mismatch is a result of the input data not matching the training input. This could be the result of noisy

sensors, unexpected obstacles, or a change in environment. We highlight this challenge in our experiments

by introducing obstacles (Table IV.1) and testing on alternate racetracks (Table IV.3).

For this challenge, there is not a clear victor since the results were more varied. The IL-3 controller

performed well across all the racetracks, but failed at obstacle avoidance. The SAC controller, on the other

hand, successfully avoided colliding with obstacles in almost all our tests, but struggled when evaluated on

alternate racetracks.

IV.5.3 sim2real

The experiments on our hardware platform help emphasize why sim2real is such a challenging problem.

While the IL-3 controller maintained performance across all three racetracks and was the safest controller

when we varied the speed, it failed to complete a single lap in the real world. Meanwhile, the IL controller,

which had similar results with varied speed but struggled more on the different racetracks, successfully navi-
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gated our real world track. Because the IL-3 controller failed despite the IL controller’s success, we theorize

IL-3’s failure was a result of overfitting. Overfitting occurs when the learned policy too closely or exactly

matches the training data, and fails to generalize well to new data reliably. Training the IL-3 controller across

multiple racetracks helped it perform well on all three tracks and improved its performance on Porto. How-

ever, all the extra training data in simulation, across varied racetracks, caused the controller to overfit to the

simulation domain where the car can safely maintain a 1m distance from the left wall without colliding.

The varied training data that negatively impacted the IL-3 controller is likely what caused the SAC con-

troller to succeed. While DDPG and SAC are similar RL approaches, they differ greatly in how they collect

training data. In DDPG, new data is collected by adding random noise to the output of the learned policy.

As the learned policy improves, the data collected starts to repeat. This repetition can cause undesirable

effects on the learned policy, like catastrophic forgetting [28]. In contrast, SAC collects new data using an

entropy maximizing function. This means that throughout the training process, new, unique, and varied data

is prioritized. The result is a more robust learned policy with optimal performance.

IV.5.4 Lessons Learned

IV.5.4.1 Reinforcement Learning vs Imitation Learning

From the data and observations we collected throughout the training and evaluation processes, we found that

reinforcement learning has a greater potential to learn robust and optimal control policies. However, the

potential is lost without a well-defined reward function. Since RL focuses solely on optimizing performance,

when we changed the track, many of the optimal performance strategies backfired and lead the car into

collisions. We expect that this problem could be mitigated if we defined a reward function that incorporated

an additional aspect, like a punishment for moving away from the center of the track. The result would be a

more robust control policy that avoids colliding with walls, even in new tracks.

On the other hand, IL is still a valuable method, particularly when creating a well-defined reward function

is not possible. However, one of the main challenges with imitation learning lies in synthesizing a dataset

that allows the agent to truly mimic the expert behavior. Although the training regime for these approaches

resembles standard supervised learning regimes, the i.i.d assumption may no longer be valid [71]. Often,

the current state of the system prompts the next state. Thus, if the agent makes a mistake in carrying out an

action, it may eventually reach a state that the agent has never been trained on. For example, if the training

data only contained state-action pairs where the agent was following a path in the center of the track, any

deviation from this path could result in states outside the training data and suboptimal actions that lead the

car straight into a wall. Therefore, while imitation learning is extremely effective in numerous applications,

it can also fail spectacularly, like shown in our sim2real experiments.
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IV.5.4.2 Low Error is Not Necessarily a Good Indicator of Success

One commonly held principle within machine learning is that accuracy alone is generally a poor measure of

evaluating a model’s performance. In classification tasks, this can be addressed by using a metric such as

an F1-Score, which balances the precision and recall of a model. However, it is not as straightforward for

imitation learning tasks. In our experiments, we utilized mean-squared error to measure the effectiveness of

our controllers. Curiously, some of the models that had very low error-rates, both on the test and validation

set, could not complete a single lap. While other models, with a lower measured performance, did better on

the driving task. This illustrates the need for better metrics for evaluating imitation learning tasks. There has

been a large body of work towards this end over the last several years [72].

IV.5.4.3 General Recommendations

We recognize that it is difficult to issue broad recommendations on a limited set of experiments. However,

we believe the observations we made will translate to other platforms. Thus, we propose the following

suggestions for those who wish to apply these techniques to other platforms:

• In general, we believe that RL approaches will fare better at sim2real tasks, since their inspiration

is more conducive to exploring a wide range of state-action pairs than those considered in behav-

ior cloning paradigms. However, reward shaping for these approaches is still extremely challenging.

Therefore, one needs to weigh the cost of reward shaping against synthesizing expansive datasets for

imitation learning models.

• Our experiments did not evaluate training or fine-tuning models in the real world. This choice was

motivated by a desire to ensure fairness in the evaluation process between the two approaches. While

it is straightforward to train imitation learning models on real-world data, training RL approaches in

the real world remains a challenge within the machine learning literature [73]. Our future work would

like to consider an analysis of training and/or fine-tuning RL- and IL-trained models in the real world.

While imitation learning and reinforcement learning approaches are not widely used within production-

ready, state-of-the-art autonomous vehicles, they have enjoyed significant success within industrial robotics

applications. One such example of this success, is the rise of robotics companies leveraging these approaches,

such as Alphabet’s Intrinsic AI, Veo Robotics, Symbio, and Covariant. Still, there are few works comparing

the success of imitation learning versus reinforcement learning approaches within these contexts. The work

in this chapter serves to motivate these types of studies in the community at large.
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IV.6 Related Work

There is a large body of work developing methods to improve reinforcement learning and overcome its

shortcomings. These methods include ways to cut back on costly data collection and training time, reduce

over-specialization, and improve the safety of the system during and after training is over. In this section, we

highlight some of the promising methods we found in the literature. For an in-depth overview of how RL is

being used in autonomous driving, we recommend Kiran et al.’s 2021 survey [74].

IV.6.1 Offline Reinforcement Learning and Inverse Reinforcement Learning

Offline Reinforcement Learning, which is best described in [75], and Inverse Reinforcement Learning [76],

are both similar to a combination of imitation learning and reinforcement learning.

Like IL, the training data is collected once and goes unaltered during the training process. Additionally,

the agent does not interact with the environment at all during the training process until it is deployed after

training is complete. This method is very beneficial to settings where data collection is slow, expensive,

and/or dangerous like in robotics, autonomous driving, or healthcare.

The key aspect that allows both of these approaches to perform better than the policy used to collect the

data is the use of a reward function. The reward function allows the agent to better infer what should be done

in unexplored states, guiding the agent to perform optimally. In Offline RL, the reward function is known,

but in Inverse RL, the reward function is inferred from observing expert behavior.

IV.6.2 Meta Reinforcement Learning

Meta Reinforcement Learning (Meta-RL), best represented by model-agnostic meta-learning [77] and RL2

[78], seeks to reduce over-specialization by training across multiple environments. In addition to making the

agent more robust, the agent is able to learn to solve new tasks quickly. Some promising works in the area

include Joint PPO [2] and POET [79].

IV.6.3 Run Time Assurance

The most effective way to ensure safety after training, no matter the learning algorithm, is with Run Time

Assurance (RTA)6. Especially in safety critical settings like autonomous driving, it is imperative that system

designers prevent catastrophic failures that can result from biased or limited training data [80]. In recent years,

numerous RTA approaches have been proposed, ranging from approaches that are statistical in nature [81,

82, 83, 84, 48], to more rigorous formal proof regimes [85, 86, 87, 88, 89, 90, 91]. Formally demonstrating

the correctness of modern machine learning models is a difficult task that often suffers from the well-known

6This approach is explained and experimented with in the following chapter, Chapter V.
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state explosion problem [92]. While there has been a recent influx of formal methods capable of being run in

real-time, statistical methods are the current leaders at circumventing scalability issues, though without the

formal guarantees.

IV.7 Summary

In this chapter, we experimented with neural network controllers trained using imitation and reinforcement

learning to compete in autonomous racing. We compared how the trained networks performed in new scenar-

ios via zero-shot policy transfers. These scenarios tested the controllers’ performance despite changes made

to the operation of the vehicle and the track it was racing on. These changes were then combined by testing

the controllers on our hardware platform.

The results show the RL controllers had more efficient performance even in new environments. SAC

in particular was robust to the introduced static obstacles as well as the sim2real transfer. However, the

RL controllers’ more efficient performance led to more collisions. Therefore, developing RL for use on

real-world systems needs to consider safety constraints. In the next chapter, Chapter V, we look at existing

methods for incorporating safety in the RL training process and how utilizing run time assurance impacts the

training and performance of the RL agents.

IV.8 Hyperparameters for Experiments

IL and IL-3 Hyperparameters:

• Network Architecture : (64, relu, 64, relu, tanh)

• Optimizer: Stochastic Gradient Descent, Nesterov Momentum

• Learning Rate (LR): 0.01

• Decay: 0.002

• Epochs: 100

• Loss: Mean Average Error

DDPG Hyperparameters:

• Policy Network (Actor): (64, relu, 64, relu, tanh)

• Q Network (Critic): (64, relu, 64, relu, linear)

• Actor LR: 0.0001
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• Critic LR: 0.001

• Noise type: Ornstein-Uhlenbeck Process Noise σ = 0.3, θ = 0.15

• Soft target update: τ = 0.001

• γ = 0.99

• Critic L2 reg: 0.01

• buffer size: 106

• batch size: B = 64

• episode length: T = 500

• maximum number of steps: 45000

SAC Hyperparameters:

• Policy Network (Actor): (64, relu, 64, relu, tanh)

• Q Networks (Critics): (64, relu, 64, relu, relu)

• learning rate: 0.0001

• Soft target update: τ = 0.001

• γ = 0.99

• α = 0.01

• buffer size: 106

• batch size: B = 64

• episode length: T = 500

• maximum number of steps: 45000
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CHAPTER V

Ablation Study of How Run Time Assurance Impacts the Training and Performance of

Reinforcement Learning Agents

Reinforcement Learning (RL) has become an increasingly important research area as the success of machine

learning algorithms and methods grows. To combat the safety concerns surrounding the freedom given to RL

agents while training, there has been an increase in work concerning Safe Reinforcement Learning (SRL).

However, these new and safe methods have been held to less scrutiny than their unsafe counterparts. For

instance, comparisons among safe methods often lack fair evaluations across similar initial condition bounds

and hyperparameter settings, use poor evaluation metrics, and cherry-pick the best training runs rather than

averaging over multiple random seeds. In this chapter, we conduct an ablation study using evaluation best

practices to investigate the impact of run time assurance (RTA), which monitors the system state and inter-

venes to assure safety, on effective learning. By studying multiple RTA approaches in both on-policy and

off-policy RL algorithms, we seek to understand which RTA methods are most effective, whether the agents

become dependent on the RTA, and the importance of reward shaping versus safe exploration in RL agent

training. Our conclusions shed light on the most promising directions of SRL, and our evaluation methodol-

ogy lays the groundwork for creating better comparisons in future SRL work1.

V.1 Introduction

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) are fast-growing fields with growing

impact, spurred by success in agents that learn to beat human experts in games like Go [94] and Starcraft [95].

However, these successes are predominantly limited to virtual environments. An RL agent learns a behavior

policy that is optimized according to a reward function. The policy is learned through interacting with/in the

environment, making training on real-world hardware platforms prohibitively expensive and time-consuming.

Additionally, RL allows agents to learn via trial and error, exploring any behavior during the learning process.

In many cyber-physical domains, this level of freedom is unacceptable. Consider the example of an industrial

robot arm learning to place objects in a factory. Some behaviors could cause the robot to damage itself, other

elements in the factory, or nearby workers. To mitigate these set-backs, most training is done in simulation.

After the training is completed in simulation, the learned policy can then be transferred to the real world via a

sim2real transfer. However, this approach can result in poor performance and undesirable behavior [10, 16].

1This chapter is based on prior work currently under review for the Journal on Artificial Intelligence and available on arXiv as a
preprint [93]. This work has been approved for public release: distribution unlimited. Case Number AFRL-2022-0550.
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To counteract these issues, the field of Safe Reinforcement Learning (SRL) has grown. Recent works

demonstrate real-world online learning [9], optimal performance that does not require safety checking when

deployed [12], and SRL approaches that work better than state-of-the-art DRL approaches [13]. Each new

SRL paper claims to be the best, safest, most efficient, or least restrictive approach, but few prove these claims

with valid demonstrations. For example, the work done in Cheng et al.’s AAAI 2019 paper, [40], claims their

SRL approach “attains much greater sample efficiency in learning than other state-of-the-art algorithms and

maintains safety during the entire learning process.” The authors prove their claims by applying their new

approach on top of two RL algorithms, TRPO and DDPG, and testing in two environments, the inverted

pendulum and car following. We have tried to replicate studies with the original code, and found issues in

many of their comparisons of SRL to other RL approaches. (1) Some results were invalid SRL approaches

because unrecoverable unsafe conditions2 were not used as terminal conditions. The consequence is these

approaches learn to recover from unrecoverable unsafe conditions (e.g. a collision) and complete the task

rather than completely avoiding unsafe states. (2) In some cases, inconsistent hyperparameters were used

between the safe and unsafe experiments, which means the improved efficiency authors claimed as a result

of their SRL approach might actually be the result of hyperparameter tuning. (3) Often, the experiments are

not repeated across multiple random seeds. Because RL is a stochastic process, showing results from one

random seed is not representative of the true performance of the algorithm. Only presenting the results of a

singular trial allows for results to be cherry-picked from the best trial. The work in [14] and [96] highlight the

importance of running experiments across at least 5 random seeds and averaging the results and showing the

performance range in order to prove the trend of increased efficiency. (4) In some experiments we repeated,

we found that authors manipulated initial conditions to improve efficiency. For example, inverted pendulum

experiments that claimed increased efficiency as a result of an SRL approach could be explained by starting

SRL trials closer to a vertical position than baseline trials. When we applied the same initial conditions to the

baseline approach and SRL approaches, we found the SRL approach often learned slower than the baseline,

disproving their claims.

These issues in SRL publications bring rise to the need for better comparative studies and more ablation

studies. An ablation study involves singling out and removing individual components of a complex system to

understand their impact on the system as a whole. Ablation studies are used to determine causality and can

prove which aspects of a system are actually the most important. In this work, we outline a better standard

for comparing SRL approaches as we conduct a thorough ablation study on SRL approaches that use Run

Time Assurance (RTA), an approach that monitors the output of the control policy for unsafe control actions

2An example of this would include crashing the vehicle being controlled, while a recoverable unsafe condition might include violating
a set speed limit.
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and intervenes by modifying the output to assure system safety. RTA can be applied during training and after

the training is complete.

Our contributions. This chapter presents an in-depth investigation on how RTA configuration and usage

choices impact RL training and final agent performance. The key contributions presented in this chapter are

as follows.

1. Evaluation across four different RTA approaches in addition to training with no RTA.

2. Evaluation of five different RTA training configurations that adapt how penalties are assigned during

training and whether the RL agent has knowledge of a corrected action.

3. Evaluation of (1) and (2) on two different classes of RL: off-policy (SAC) and on-policy (PPO).

4. Evaluation of the true performance of each combination by training across 10 random seeds and aver-

aging the results.

5. A large-scale (880 unique agents trained) experimental ablation study that covers (1), (2), and (3).

6. Analysis of the experimental results to provide practical insights and recommendations for training RL

agents with RTA. In particular, answering these important questions:

(a) (V.5.1) Do agents learn to become dependent on RTA?

(b) (V.5.2) Which RTA configuration is most effective?

(c) (V.5.3) Which RTA approach is most effective?

(d) (V.5.4) Which works better with RTA, off-policy (SAC) or on-policy (PPO)?

(e) (V.5.5) Which is more important, Reward Shaping or Safe Exploration?

V.2 Preliminaries

V.3 Deep Reinforcement Learning

Reinforcement Learning (RL) is a form of machine learning in which an agent acts in an environment, learns

through experience, and increases its performance based on rewarded behavior. Deep Reinforcement Learn-

ing (DRL) is a newer branch of RL in which a neural network is used to approximate the behavior function,

i.e. policy π . The basic construction of the DRL approach is shown in Figure V.1. The agent consists of the

Neural Network Controller (NNC) and RL algorithm, and the environment consists of a plant and observer

model. The environment can be comprised of any dynamical system, from Atari simulations ([15, 17]) to

complex robotics scenarios ([5, 9, 14, 18, 10, 19]).
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Figure V.1: DRL training interactions between agent and environment without RTA.

Reinforcement learning is based on the reward hypothesis that all goals can be described by the maxi-

mization of expected return, i.e. the cumulative reward [20]. During training, the agent chooses an action,

uNN , based on the input observation, o. The action is then executed in the environment, updating the internal

state, s, according to the plant dynamics. The updated state, s′, is then assigned a scalar reward, r, and trans-

formed into the next observation vector. In all the examples shown in this chapter, we assume the task can be

represented as an Observed Markov Decision Process3 (OMDP). The process of executing an action and re-

ceiving a reward and next observation is referred to as a timestep. Relevant values, like the input observation,

action, and reward are collected as a data tuple, i.e. sample, by the RL algorithm to update the current NNC

policy, π , to an improved policy, π∗. How often these updates are done is dependent on the RL algorithm.

In this chapter, we focus on model-free DRL algorithms, meaning the agent has no dependency on the

environment model during training. Within model-free DRL algorithms, there are two main categories of

training, on-policy and off-policy. On-policy algorithms use the learned policy to select the actions taken

during training, while off-policy algorithms use a separate policy. This distinction will cause the RTA to

have a varied impact on the learning process. Thus, we repeat our experiments on two state-of-the-art DRL

algorithms representing these two categories of training. Proximal Policy Optimization (PPO) is our on-policy

algorithm4 and Soft Actor-Critic (SAC) is our off-policy algorithm5.

V.3.1 Safe Reinforcement Learning

When an RL agent explores states in a video game, the consequences of making a “wrong” move are limited.

However, using RL in the real world has shown catastrophic results [9, 10]. The field of Safe Reinforcement

Learning (SRL) was developed in response to RL’s use on cyber-physical systems domain that interact with

the real world in complex scenarios. In Garcı́a and Fernández’s comprehensive survey of SRL from 2015,
3See Section II.1.1 for more details.
4Other on-policy RL algorithms include A2C [21], TRPO [22], and ARS [18].
5Other off-policy RL algorithms include DQN [3], DDPG [23], and TD3 [24].
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they categorized the approaches into two main categories or styles: (1) modification of the optimality criterion

and (2) modification of the exploration process [29]. In this work, we refer to these categories under the more

general terms: (1) reward shaping and (2) safe exploration. Additionally, we introduce an emerging category

of approaches, (3) adversarial training/retraining. Each are described in more detail in this section.

V.3.1.1 Reward Shaping

Reward shaping, the process of crafting a well-designed, optimal reward function, is essential for all forms

of DRL since a poorly designed reward function can lead to unexpected and/or ineffective behavior [15].

Within SRL, reward shaping is used to reformulate the problem as a Constrained Markov Decision Processes6

(CMDP) [42]. Instead of optimizing performance according to a singular reward function, performance is

optimized according to a task-oriented reward and a safety-focused cost [43, 44, 45, 46, 13, 47], so the

agent learns a high-performing, safe policy. However, this style of SRL does not prohibit the agent from

exploring unsafe behavior. Thus, it cannot be used to train on real hardware platforms. Instead, reward

shaping techniques are limited to simulated environments and rely on high-quality transfer learning to be

deployed in the real world.

V.3.1.2 Safe Exploration

Safe exploration approaches, which are often geared towards hardware deployment, ensure the agent remains

100% safe throughout the duration of training. Furthermore, this approach can be redesigned for deployment,

ensuring the future safety of a static neural network that has completed training. Safe exploration techniques

can be further broken down into the following three categories.

1. Preemptive Shielding where the action set the agent is allowed to choose from is preemptively reduced

to only allow safe actions [17, 30].

2. Safe-by-Construction in which verification techniques are used, often on an abstraction of the learned

policy, to verify safe behavior before being allowed to explore and develop further [31, 32, 33]. Alter-

natively, correct-by-construction can also be applied to a shielded RL solution [17].

3. Run Time Assurance (RTA) methods filter the agent’s desired actions, uNN , to assure safety. In some

cases, a monitor and/or decision module is used to determine whether the desired action provided by

the learning agent is safe. In the event the agent’s desired action is deemed unsafe, a different action

that is determined to be safe is substituted and sent to the plant [34, 12, 35, 36, 9, 37, 38, 39, 40, 41].

6The definition for CMDP can be found back in Section II.4.
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Figure V.2: DRL training interactions between the agent and the environment with RTA.

In this work, we focus solely on RTA methods for ensuring safe exploration, since they work across more

examples with fewer scalability issues. An example of a general setup for safe exploration via RTA is shown

in Figure V.2.

V.3.1.3 Adversarial Training/Retraining

The newest category of SRL approaches, Adversarial Training/Retraining, focuses on identifying unsafe

behavior in the agent and then generating data to learn from and correct that behavior [48, 49, 50]. Most of

the papers that use this approach focus on retraining an agent that already performs well in the environment.

However, the approach can also be applied to an untrained agent.

V.3.2 Run Time Assurance

One of the main contributions of this work is investigating how the RL training process is impacted by RTA

approaches that filter unsafe control inputs to preserve system safety. For this paper, we focus on dynamical

system plant models sampled discretely given by st+1 = f (st ,ut) where st ∈ S is the state of the plant at

timestep t, S ⊆ Rn is the real-valued state space, ut ∈ U is the control input to the plant at timestep t, with

U ⊆ Rm the action space, and f is a function describing the state evolution from current state and control

action.

For the dynamical system, inequality constraints ϕi(s) : Rn → R, ∀i ∈ {1, ...,M} can be used to define

a set of M safety constraints, where the constraint is satisfied when ϕi(s) ≥ 0. The admissible set Sϕ ⊆ S,

which is defined as the set of states where all constraints are satisfied, is then given by,

Sϕ := {s ∈ S | ϕi(s)≥ 0,∀i ∈ {1, ...,M}}. (V.1)

Definition 8. Safety and/or safe operation is achieved by always remaining within the admissible set, i.e. not
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violating any specified constraints. In the examples provided in this work, safety is defined on a finite time

horizon, such that the operation is considered safe if ∀t ∈ [t0,T ],st ∈ Sϕ . However, the ending time bound, T

can be set to infinity for other systems that operate in perpetuity.

For RTA to ensure safe operation, we need to define a stricter subset of states to further constrain opera-

tions, known as the control invariant safe set, Sh. By operating in this stricter defined set, we avoid scenarios

that can arise near the boundary of the admissible set, Sϕ where, no matter the action executed, the next state

will be outside the admissible set.

Definition 9. The control invariant safe set, Sh, is a subset of the admissible set, Sϕ , where ∀s ∈ Sh,∃u ∈

U, f (s,u) ∈ Sϕ .

In this work, we first focus on two classes of RTA monitoring approaches, explicit and implicit, which

define Sh differently. Explicit approaches use a pre-defined Sh, to determine when RTA intervention is nec-

essary. To define Sh explicitly, we first define a set of M control invariant inequality constraints hi(s) : Rn →

R,∀i ∈ {1, ...,M}, where the constraints are satisfied when hi(s)≥ 0. Sh is then given by,

Sh := {s ∈ S | hi(s)≥ 0,∀i ∈ {1, ...,M}}. (V.2)

Implicit approaches use a defined backup control policy and the system dynamics to compute trajectories,

which are used to determine when intervention is necessary. Implicitly, the Sh is defined as,

Sh := {s ∈ S | ∀k ∈ [t0,T ],Pub
k (s) ∈ Sϕ}, (V.3)

where Pub
k represents a prediction of the state s for k timesteps under the backup control policy ub. Be-

cause computing trajectories can be computationally expensive, explicit approaches tend to be more efficient.

However, implicit approaches can be easier to implement since they do not require a precise definition of the

control invariant safe set, which is difficult to define without being overly conservative.

Additionally, we split the RTA monitoring approaches further with two classes of intervention, simplex

and Active Set-Invariance Filter (ASIF). The simplex approach switches from the primary control to a pre-

defined backup controller if the system is about to leave the control invariant safe set [51]. The backup

controller is usually less efficient at the desired control task, but meets desired safety and/or human-machine

teaming constraints. One possible implementation for a simplex RTA filter is constructed as follows,
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Simplex Filter

uact(s) =


uNN(o(s)) if PuNN

k (s) ∈ Sh

ub(s) otherwise
(V.4)

Here, PuNN
k (s) represents the predicted state if uNN is applied for k discrete time intervals.

ASIF approaches use barrier constraints to minimize deviations from the primary control signal while

assuring safety [52]. One possible implementation for an ASIF RTA filter is constructed using a quadratic

program as follows,

Active Set-Invariance Filter

uact(s,uNN) = argmin∥uNN −ub∥

s.t. BCi(s,ub)≥ 0, ∀i ∈ {1, ...,M}
(V.5)

Here, BCi(s,ub) represents a set of M barrier constraints [97] used to assure safety of the system. The

purpose of barrier constraints is to enforce Nagumo’s condition [98] and ensure ḣi(s) is never decreasing

∀i ∈ {1, ...,M} along the boundary of Sh. The function argmin finds the value of ub closest to uNN that still

satisfies the barrier constraints. In this way, ASIF approaches apply the minimal change necessary to keep

the system within Sϕ at each timestep.

Using these defined approaches, we categorize our experiments in this paper according to the four derived

classes of RTA monitoring approaches: Explicit Simplex, Implicit Simplex, Explicit ASIF, and Implicit ASIF.

V.4 Experiments

In order to answer the questions posed in the introduction, we have designed 88 experiments across multiple

environments, RTA configurations, RTA approaches, and random seeds7.

For each environment and DRL algorithm, we use established hyperparameters to limit the impact of

tuning. We use 10 random seeds to generate our traces [14]. The evaluations run during training halt and

freeze the NNC for the duration of the evaluation in order to better represent the performance of the agent

at that point. After training is completed, the final learned policy is evaluated on the task 100 times to

better approximate the expected performance if deployed. All evaluations are done in environments with and

7Code is currently undergoing the public release process and will be made available as soon as it is completed.
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Figure V.3: The RTA configurations used in our experiments represented within the three main categories of
Safe Reinforcement Learning outlined in Section V.3.1

without the RTA active in order to identify any dependence on the RTA forming.

V.4.1 Run Time Assurance Configurations

In Figure V.2, we show a general method for including RTA in the training loop and purposefully left it vague.

In the literature, there are many ways of connecting RTA. These range from treating it as an unknown feature

of the environment, to using it for generating additional training data. In this work, we have separated these

various ways of connecting the RTA into the 6 configurations shown in Figure V.3. While we were only able

to experiment with the first 5, the sixth is presented for future work. The configurations are listed in order of

increasing complexity. Each configuration builds on the previous ones, helping us observe the impact of each

addition.

The configurations are explained in detail below. Because SAC and PPO collect different data tuples

during training, we must define the configurations using different terms, dataSAC and dataPPO, respectively.

V.4.1.1 (1) Baseline (no RTA)

This configuration, demonstrated in Figure V.1, is used as a baseline to compare all the RTA configurations

against. In this configuration, the agent is learning according to the RL algorithm without any modifications.

Note that for this comparison to be fair, the environment must be the same with no alterations to the initial

set or terminal conditions.

dataSAC = {o,uNN,r,o′}

dataPPO = {o,uNN,r,v, logp(uNN)}

53



o is the input observation that led to the agent providing the output action, uNN. o′ is the observation of

the state reached after taking action uNN and r is the reward value associated with it. v, the estimated value

of the reached state, and logp(uNN), the log-probability of selecting uNN given the current policy, are terms

specific to PPO.

V.4.1.2 (2) Baseline punishment

In this configuration, we assign a negative reward, i.e. punishment p, if unsa f e? returns true, meaning at

least one safety constraint was violated. This configuration adds SRL-style reward shaping to the problem.

Instead of only maximizing the reward, the problem has two goals: (1) complete the task and (2) minimize

the punishment, or cost, incurred from violating constraints. The remaining configurations cannot factor in

this kind of punishment because they rely on safe exploration, which does not allow any violations of the

safety constraints.

dataSAC =


{o,uNN,r+ p,o′}, if unsa f e?

{o,uNN,r,o′}, otherwise

dataPPO =


{o,uNN,r+ p,v, logp(uNN)}, if unsa f e?

{o,uNN,r,v, logp(uNN)}, otherwise

V.4.1.3 (3) RTA no punishment

This configuration is the simplest form of safe exploration. Nothing changes from the baseline configuration,

except the agent remains safe throughout the training process because of the RTA.

dataSAC =


{o,uNN,r,o′}, if intervening?

{o,uNN,r,o′}, otherwise

dataPPO =


{o,uNN,r,v, logp(uNN)}, if intervening?

{o,uNN,r,v, logp(uNN)}, otherwise

V.4.1.4 (4) RTA punishment

This configuration adds an element of reward shaping to the previous configuration. Since we want the agent

to learn the correct action to take in a scenario without the help of an RTA, we assign a punishment for having

the RTA intervene. By adding this punishment, p, when the RTA intervenes, the agent should learn to make
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a distinction between safe and unsafe actions since safe actions will not incur a punishment.

dataSAC =


{o,uNN,r+ p,o′}, if intervening?

{o,uNN,r,o′}, otherwise

dataPPO =


{o,uNN,r+ p,v, logp(uNN)}, if intervening?

{o,uNN,r,v, logp(uNN)}, otherwise

V.4.1.5 (5) RTA Corrected Action

In this configuration, we build on the idea of helping the agent identify the correct action to take in states near

violating the safety constraints. Instead of punishing the agent for having the RTA intervene, we correct the

agent’s output to match that of the RTA’s. In this manner, the agent only learns the actions actually taken in

the environment.

dataSAC = {o,uact,r,o′}

dataPPO = {o,uact,r,v, logp(uact)}

V.4.1.6 (6) Neural Simplex Architecture (NSA)

This configuration (not used in this work but planned for future work) is based on the SRL approach first

published in [48]. In the authors’ original implementation, NSA is used for retraining a learned policy.

However, the retraining is done in an online approach, which can be easily adjusted to train a control policy

from scratch.

This configuration estimates the result of taking the unsafe action and adds that estimate to the training

data. This allows the agent to learn about unsafe actions without actually executing them. The additional

data should help the agent develop a much better understanding of the environment and, thus, learn a more

optimal policy after fewer timesteps. Currently, this configuration is limited to off-policy RL algorithms, but

we are actively working on extending it for use in on-policy algorithms.

dataSAC =




{o,ub,r,o′} and

{o,uNN,est r,est o′}
, if intervening?

{o,uNN,r,o′}, otherwise

Here, est r and est o′ are the estimated reward and estimated next observation, respectively. If an implicit
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RTA is used, the estimates can be computed using the internal simulation, PuNN
1 , which is used for determining

if an action is safe.

V.4.2 Environments

We ran our experiments in three environments with varying levels of complexity. By running our experi-

ments in environments with different levels of complexity, we can observe whether the trends remain the

same. If they do, then we can reasonably assume the trends will remain in even more complex environ-

ments. Currently, and to the best of our knowledge, these three environments are the only ones provided with

accompanying RTA8.

V.4.2.1 Inverted Pendulum

This environment was previously used in [40] as a good indicator of the effectiveness of SRL over standard

Deep RL. We use the same initial conditions and constraints described in their work, explained below.

The goal of the agent in this environment is to use an actuator to keep the frictionless pendulum upright

and within the bounds of ±1rad ≈±46◦. Thus, the inequality constraint the RTA is designed to uphold can

be written as,

ϕ1(s) := 1−|θ |, (V.6)

where θ is the displacement angle of the pendulum measured from the upright position.

The interior plant model changes according to the discrete dynamics

ωt+1 = ωt +(
−3g
2l

sin(θt +π)+
3ut

ml2 )∆t

θt+1 = θt +ωt∆t +(
−3g
2l

sin(θt +π)+
3ut

ml2 )∆t2,

(V.7)

where g= 10, l = 1, m= 1, ∆t = 0.05, and ut is the control from the neural network in the range [−15,15]. Ad-

ditionally, within the environment the pendulum’s angular velocity, ω , is clipped within the range [−60,60],

and the angle from upright, θ , is aliased within [−π,π] radians. θ is measured from upright and increases as

the pendulum moves clockwise. These values, θ and ω , are then used to determine the input values for the

neural network controller. The input observation is

o = [cos(θ),sin(θ),ω]T . (V.8)

The pendulum is randomly initialized within a subset of the safe region in order to ensure it has enough

time to intervene before violating the safety constraint. θ0 is randomly initialized between ±0.8rad. ω0 is
8As more RL environments are released with RTA, we hope to include them in our study to ensure our results continue to hold true.
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randomly initialized between ±1.0rad/s.

In the event the safety constraint is violated, the episode is deemed a failure and immediately terminated.

If the simulation were allowed to continue, the problem goal would change from simply keeping the pendu-

lum upright, to also include learning how to swing back up. Additionally, this termination helps us identify

safety violations later on in our analyses, since any safety violations would result in an episode length less

than 200 timesteps.

The reward function was modified as well by adding a constant, 5. 5 was chosen in order to make

a majority of the reward values positive. By keeping the reward positive, the agent is encouraged to not

terminate the episode early. If the reward were mostly negative, the agent might learn the fastest way to

terminate the episode in order to maximize the cumulative reward. The resulting reward function, Equation

V.9, has a cumulative maximum of 1000 instead of 0.

rt = 5− (θ 2
t +0.1ω

2
t +0.001u2

t ) (V.9)

We use this reward function, Equation V.9, for all the evaluations we conducted. The punishment value

used in various configurations when the RTA intervenes is p =−1.

The RTA design implemented in this environment is a simple implicit simplex design. The backup con-

troller, described by Equation V.10, intervenes if the desired control action is not recoverable using the backup

controller. To determine whether the desired action, uNN is recoverable, the desired action is simulated inter-

nally. If the simulated next state, s̄t+1 = PuNN
1 (st), violates the safety constraint, then the backup controller

intervenes. In the event the simulated next state, s̄t+1, is safe, a trajectory of up to 100 timesteps is simulated

from s̄t+1 using the backup controller. If any simulated state in the trajectory is unsafe, the desired action,

uNN , is determined unsafe, and the backup controller intervenes. If the trajectory remains safe or a simulated

next state is within the initial conditions, the desired action is determined to be safe, and the backup controller

does not intervene.

ub(s) = min(max(
−32

π
θ ,−15),15) (V.10)

V.4.2.2 Spacecraft Docking 2D & 3D

The cost of building and sending spacecraft into orbit is on the order of hundreds of millions of dollars.

Therefore, it is in everyone’s best interest to keep spacecraft in orbit operational and prevent collisions.

Spacecraft docking is a common and challenging problem with a high risk for failure in the event an error

occurs in the docking procedure and the two spacecraft collide. Here, we describe the problem with 3-

dimensional dynamics, but repeated our experiments in a 2-dimensional environment where all z values are
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held to a constant 0.

The goal of the agent in these environments is to use mounted thrusters that move the deputy spacecraft

in the x, y, and z directions to a docking region around the chief spacecraft located at the origin. The state

and observation are the same,

s = o = [x,y,z, ẋ, ẏ, ż]T .

The action vector consists of the net force produced by the thrusters in each direction,

u = [Fx,Fy,Fz]
T ,

where each net force is a real value bounded in the range U = [−1,1]m/s2.

In this environment, the relative motion dynamics between the deputy and chief spacecraft are given by

Clohessy-Wiltshire equations [99]. These equations are a first-order approximation represented by

st+1 = Ast +But , (V.11)

where

A =



1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3n2 0 0 1 2n 0

0 0 0 −2n 1 0

0 0 −n2 0 0 1


, B =



0 0 0

0 0 0

0 0 0

1
m 0 0

0 1
m 0

0 0 1
m


. (V.12)

In these equations, n = 0.001027rad/s is the spacecraft mean motion and m = 12kg is the mass of the deputy

spacecraft.

The agent, i.e. the deputy spacecraft, is randomly initialized in a stationary position (νH = 0m/s) around

the chief so the distance from the chief, dH is in the range [100,150]m. From there, the deputy successfully

docks if the distance between the deputy and chief, dH = (x2 + y2 + z2)1/2, is less than 20m and the deputy’s

relative speed, νH = (ẋ2 + ẏ2 + ż2)1/2, is less than 0.2m/s. If the deputy is traveling faster than 0.2m/s within

the docking region, then a crash occurs and the agent failed the task.

RTA is used in these environments to enforce a distance dependent speed limit and maximum velocity

limits9. Together, these constraints keep the deputy spacecraft controllable and prevent collisions caused by

9More information on how and why these constraints were chosen can be found in [100, 101].
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the deputy approaching too fast. The distance dependent speed limit is defined as,

ϕ1(s) := νD −νH + cdH, (V.13)

where νD = 0.2m/s defines the maximum allowable docking velocity and c = 0.002054s−1 is a constant. The

maximum velocity, vmax = 10m/s, limits can be written as inequality constraints,

ϕ2(s) := v2
max − ẋ2, ϕ3(s) := v2

max − ẏ2, ϕ4(s) := v2
max − ż2. (V.14)

Table V.1: Spacecraft 2D Spacecraft Docking & 3D reward function components

Terminal Rewards: All Configurations
Successfully Docked (dH ≤ 20m and νH ≤ 0.2m/s) +1
Crashed (dH ≤ 20m with a velocity νH > 0.2m/s) -1
Out of Bounds (dH > 200m) -1
Over Max Time/Control -1

Dense Reward: All Configurations
Proximity 0.0125(∆dH)

Safety Rewards: Punishment Configurations
If RTA is Intervening −0.001
Over Max Velocity −0.1−0.1(νH − vmax)

The reward functions for these environments are defined by sparse and dense components defined in

Table V.110. The sparsely defined terminal and safety reward components are only applied if the agent meets

the specified requirements. In contrast, the dense reward component is computed after each timestep. In our

experiments, the evaluation returns are computed using all the components defined in Table V.1. However,

during training, the safety components are ignored unless the punishment is required by the configuration.

V.4.3 Hyperparameters

Providing the hyperparameters used in RL experiments is crucial for recreating the results. In all of our

experiments, we train 10 agents using the following random seeds,

[1630,2241,2320,2990,3281,4930,5640,8005,9348,9462].

Additionally, in this section, we provide the remaining hyperparameters used for training. No matter the

configuration, the following hyperparameters were used. PPO hyperparameters are provided in Table V.2.

SAC hyperparameters are provided in Table V.3.
10These values were provided by the authors of the environments during early development and do not match those published in [102].

Additionally, these values were chosen with PPO as the target RL algorithm, which helps explain why SAC struggled with learning to
complete the task.
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Table V.2: PPO Hyperparameters

Inverted Pendulum Docking 2D Docking 3D

actor architecture 64 tanh, 64 tanh, 1 linear 64 tanh, 64 tanh, 2 linear 64 tanh, 64 tanh, 3 linear
critic architecture 64 tanh, 64 tanh, 1 linear 64 tanh, 64 tanh, 1 linear 64 tanh, 64 tanh, 1 linear
epoch length 4000 10564 10564
epochs 100 100 100
discount factor γ 0.0 0.988633 0.988633
clip ratio 0.2 0.2 0.2
actor learning rate 0.0003 0.001344 0.001344
critic learning rate 0.001 0.001344 0.001344
updates per epoch 80 34 34
target kl 0.01 0.01 0.01
GAE-λ 0.0 0.904496 0.904496
max episode length 200 1000 1000

Table V.3: SAC Hyperparameters

Inverted Pendulum Docking 2D Docking 3D

actor architecture 64 ReLU, 64 ReLU, 1 tanh 64 ReLU, 64 ReLU, 2 tanh 64 ReLU, 64 ReLU, 3 tanh
critic architecture 64 ReLU, 64 ReLU, 1 ReLU 64 ReLU, 64 ReLU, 1 ReLU 64 ReLU, 64 ReLU, 1 ReLU
epoch length 400 1000 1000
epochs 40 1000 1000
replay buffer size 10000 10000 10000
discount factor γ 0.99 0.99 0.99
polyak 0.995 0.995 0.995
entropy coefficient α 0.2 0.2 0.2
actor learning rate 0.001 0.001 0.001
critic learning rate 0.001 0.001 0.001
minibatch size 256 256 256
update after step(s) 1 1 1
max episode length 200 1000 1000
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V.5 Results and Discussion

In this section, we try to answer the questions posed in the introduction by analyzing the overarching trends

found in our experiments. We include select results that highlight the trends we found and provide all the

results in Section V.7

V.5.1 Do agents learn to become dependent on RTA?

Answer: Sometimes. Training RL agents with run time assurance always runs the risk of forming depen-

dence. Furthermore, this phenomenon is more prevalent in our on-policy results than our off-policy results.

An agent is dependent on the RTA if the RTA is necessary for safe and successful behavior during de-

ployment. In cases where optimal performance fits well within the safety specifications, like our Inverted

Pendulum example, dependence is not an issue. However, in cases like our docking examples where optimal

performance is restricted by the safety specifications, dependence is more crucial. Because the agent will

regularly encounter the boundary between safe and unsafe when deployed, the agent should understand how

to best navigate those scenarios and not rely on RTA, which usually has worse performance11

We can determine if an agent has learned to be dependent on the RTA by evaluating performance with and

without the RTA. We can identify when an agent has learned to form a dependence if the return and success

drop significantly when evaluated without the RTA. If the agent is independent of the RTA, the performance

metrics should be consistent when evaluated with and without the RTA.

Table V.4: This table shows final policy evaluation results across all test environments trained using the
PPO algorithm with the Implicit Simplex RTA approach. We show the recorded performance measured by
the reward function (Return) and whether the agent was successful at completing the task (Success). Rows
highlighted in gray indicate a learned dependency.

Environment Configuration RTA Return Success

Inverted Pendulum RTA no punishment on 987.84 ± 10.86 1.00 ± 0.00
off 987.59 ± 10.38 1.00 ± 0.00

Inverted Pendulum RTA punishment on 987.57 ± 11.20 1.00 ± 0.00
off 987.85 ± 11.18 1.00 ± 0.00

2D Spacecraft Docking RTA no punishment on 2.02 ± 0.39 0.92 ± 0.27
off -22.39 ± 15.39 0.34 ± 0.47

2D Spacecraft Docking RTA punishment on 1.82 ± 0.60 0.73 ± 0.44
off -17.99 ± 5.16 0.46 ± 0.50

3D Spacecraft Docking RTA no punishment on -33.29 ± 22.18 0.50 ± 0.50
off -23.51 ± 8.54 0.44 ± 0.50

3D Spacecraft Docking RTA punishment on 2.04 ± 0.39 0.89 ± 0.31
off 2.07 ± 0.34 0.92 ± 0.27

We use gray to highlight examples where agents learned to form a dependency in Table V.4, which

contains the final policy evaluations of our on-policy results across all the environments using the implicit

11Examples of this trade-off in reduced performance for safety can be found in the following texts: [103, 104, 105].
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simplex RTA approach. Note that not all agents in the highlighted rows (differentiated by the random seed

used for training) learned a dependency, as evidenced by the increased standard deviation about the mean

values. This further reinforces our answer that sometimes agents learn to become dependent on the RTA they

are trained with. Instead of “always” or “never,” whether the agent learns to become dependent on the RTA

is a matter of chance, i.e. which random seed is used. Mania et al. show a great visualization in [18] of just

how large an impact the random seed has on whether the agent learns a successful policy. The same is true

here. If we had selected different random seeds, we would likely see different results for which agents learn

to become dependent. However, it is the case that this can only happen if the agent is trained with RTA, and

we have seen it is less likely to occur if the agent is punished for using the RTA as in the RTA punishment

configuration. Note that the impact of the level/scale of punishment on whether dependence forms is left for

future work.

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.4: Results collected from experiments run in the 2D Spacecraft Docking environment with an
implicit simplex RTA. Each curve represents the average of 10 trials, and the shaded region is the 95%
confidence interval about the mean. The large difference in return and success that is recorded with (a & b)
and without (c & d) RTA shows that all agents trained with RTA learned to depend on it.

To further demonstrate issues with agents forming a dependence on RTA, observe the drop in performance
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and success between evaluating with RTA (a & b) and without RTA (c & d) in Figure V.4. While the RTA

helps all the agents reach success throughout the training process, the agents trained with RTA (RTA no

punishment, RTA punishment, and RTA Corrected Action) do not maintain that same level of performance

when evaluated without the RTA. In contrast, the baseline punishment agents learn successful behavior that

works with and without the RTA.

V.5.2 Which RTA configuration is most effective?

Answer: Baseline punishment is the most effective. However, if safe exploration is necessary, RTA punish-

ment is the most effective.

(a) 2D Docking, PPO evaluated without RTA Average Return (b) 2D Docking, PPO evaluated without RTA Average Suc-
cess

(c) 3D Docking, PPO evaluated without RTA Average Return (d) 3D Docking, PPO evaluated without RTA Average Suc-
cess

Figure V.5: Results collected from experiments run in the 2D (a & b) and 3D (c & d) Spacecraft Docking
environment with an explicit simplex RTA. Each curve represents the average of 10 trials, and the shaded
region is the 95% confidence interval about the mean. All plots show the baseline punishment and RTA
punishment configurations learn at a similar rate and converge to similar levels of success and return.

The most effective RTA configuration is the one that consistently trains the best performing agent evalu-

ated without RTA. In the case of a tie and the final performance is comparable across multiple configurations,
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the best configuration is the one that learns the optimal performance quicker, i.e. requiring fewer samples.

Across all our experiments, the baseline punishment configuration was consistently among the best perform-

ing agents. The next best performer was the RTA punishment configuration, which often outperformed the

baseline punishment configuration in our PPO experiments, but did not do as well in all of our SAC experi-

ments. We discuss why this might be the case in Section V.5.4. To demonstrate this conclusion, we show the

training curves in Figure V.5 from our experiments training agents across all configurations in both the 2D

and 3D Spacecraft Docking environments using the PPO algorithm and the explicit simplex RTA approach.

In these particular examples, Figure V.5, both baseline punishment and RTA punishment have similar

training curves that converge about the same return and success. This is similar across most of our experi-

ments, except in some experiments when RTA punishment has a noticeably lower return because a dependence

on the RTA formed.

V.5.3 Which RTA approach is most effective?

Answer: The explicit simplex is the most effective RTA approach for training agents that consistently perform

well and do not learn to depend on the RTA to maintain safety.

Figure V.6 shows the training curves for PPO agents trained in our 2D and 3D Spacecraft Docking en-

vironments with four different RTA approaches. All the training curves represent the PPO agents trained

in the RTA punishment configuration and evaluated without the RTA. The curves broadly show ASIF RTA’s

guide the agent to success earlier on, but at the cost of increased sample complexity. The simplex approaches

instead have a reduced sample complexity achieving a higher return sooner, which then leads to a greater

chance of success.

We attribute these results to the differences between simplex and ASIF approaches. With simplex, the

RTA does not intervene until the last moment, which allows for more agent-guided exploration, leading to

more unique data samples. More unique data samples leads to a better approximation of the value- and/or

Q-function, which reduces sample complexity. In contrast, ASIF approaches apply minimal corrections

intended to guide the agent away from boundary conditions. This applies a greater restriction on agent-guided

exploration, which can lead to more duplicated data samples, but increases the successfully completing the

task during a training episode.

The implicit RTA approaches were less effective than the explicit approaches and were less consistent. In

the 2D Spacecraft Docking environment, both ASIF training curves had similar return and success. However,

in the 3D Spacecraft Docking environment, the explicit ASIF curve maintained the trend of earlier success

with reduced return while the implicit ASIF curve failed to improve throughout the entire training process.

Similarly, in the 3D Spacecraft Docking environment, the simplex curves had similar return and success, but
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(a) PPO Average Return evaluated without RTA in the 2D
Spacecraft Docking environment

(b) PPO Average Success evaluated without RTA in the 2D
Spacecraft Docking environment

(c) PPO Average Return evaluated without RTA in the 3D
Spacecraft Docking environment

(d) PPO Average Success evaluated without RTA in the 3D
Spacecraft Docking environment

Figure V.6: Training curves collected from experiments run in the 2D and 3D Spacecraft Docking environ-
ments, training with PPO in the RTA punishment configuration across all four RTA approaches. Each curve
represents the average of 10 trials, and the shaded region is the 95% confidence interval about the mean.

in the 2D Spacecraft Docking environment the implicit simplex curve showed a large drop in both return and

success.

Therefore, we reason explicit RTA approaches are better for training. Additionally, simplex approaches

lead to a better performing agent in the long run.

V.5.4 Which works better with RTA, off-policy (SAC) or on-policy (PPO)?

Answer: On-policy methods see a greater benefit from training with RTA.

Our results showed PPO sees a greater benefit from training with RTA than SAC. This is likely a result

of how the methods approach the exploration versus exploitation problem. Too much exploitation, using

only known information (i.e. the current policy) too strictly, and the agent may never find the optimal policy.

However, too much exploration and the agent may never learn what the goal is, particularly if the rewards are
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sparse. In general, on-policy methods leverage more exploitation than off-policy methods through their use

of the learned policy.

(a) SAC Average Return evaluated with RTA (b) PPO Average Return evaluated with RTA

(c) SAC Average Return evaluated no RTA (d) PPO Average Return evaluated no RTA

Figure V.7: Results collected from experiments run in the Inverted Pendulum environment. Each curve
represents the average of 10 trials, and the shaded region is the 95% confidence interval about the mean.
Note: maximum possible return in the environment is 1000.

On-policy methods exploit the learned policy. Therefore, guiding the agent to success and away from

unsafe behavior helps the agent learn that behavior. As a result, the sample complexity is reduced. Figure V.7

(b & d) highlights this effect well. However, these benefits are hindered if the wrong configuration is chosen.

Across almost all of our PPO experiments, the RTA Corrected Action configuration prevented the agents from

improving the learned policy as shown in Figure V.5. This is likely a result of too much exploitation from

the RTA intervening around boundary conditions, which prevented the agents from exploring other options

to better define the optimal policy.

In contrast, off-policy methods have a larger focus on exploration. In particular, SAC maximizes en-

tropy, assigning a higher value to unexplored state-action combinations. By restricting the actions taken near

boundary conditions, the “unsafe” actions are never explored in actuality. Without making some distinction
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when the RTA intervenes makes the patterns harder to learn. This is shown in Figure V.8 where both RTA no

punishment and RTA Corrected Action have a noticeably worse training curve than the baseline configuration,

failing to improve at all through training. We see a similar trend in Figure V.7 (a & c) when SAC is used to

learn the optimal policy for controlling our inverted pendulum. However, in this environment, the agent is

still able to learn a successful policy.

V.5.5 Which is more important, Reward Shaping or Safe Exploration?

Answer: Reward shaping is generally more important for training. While safe exploration can improve

sample complexity in some cases, a well-defined reward function is imperative for training successful RL

agents.

In every experiment where reward shaping was applied, we saw a more consistent and improved training

curve. For example, note in Figure V.5 that the 95% confidence interval about baseline punishment and RTA

punishment is smaller than baseline and RTA no punishment respectively. Additionally, the return and success

tend to be much greater. The same trend shows in all of our experiments.

That said, safe exploration does improve sample complexity for on-policy RL, but the improvements are

much greater when reward shaping is also applied in the RTA punishment configuration. Additionally, the

punishment helps prevent the agent from becoming dependent on the RTA.

However, safe exploration on its own is no substitute for a well-defined/tuned reward function, as evi-

denced in our SAC experiments in the docking environments shown in Figure V.8. In these experiments, the

agents with the baseline punishment and RTA punishment configurations quickly converged to an optimal

performance, but the optimal performance did not result in success.

V.6 Summary

In summary, we trained 880 RL agents in 88 experimental configurations in order to answer some important

questions regarding the use of RTA for training safe RL agents. Our results showed that (1) agents sometimes

learn to become dependent on the RTA if trained with one, (2) baseline punishment and RTA punishment

are the most effective configurations for training safe RL agents, (3) the explicit simplex RTA approach is

most effective for consistent training results that do not depend on the RTA for safety, (4) PPO saw a greater

benefit from training with RTA than SAC, suggesting that RTA may be more beneficial for on-policy than

off-policy RL algorithms, and (5) effective reward shaping is generally more important than safe exploration

for training safe RL agents.
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.8: Results collected from experiments run in the 2D Spacecraft Docking environment with explicit
simplex RTA. Each curve represents the average of 10 trials, and the shaded region is the 95% confidence
interval about the mean.

V.7 All Experimental Results From Ablation Study

In this section, we show the results collected from all of our experiments. The subsections are broken up

according to environment and RTA approach. Experiments in the pendulum environment are in Section

V.7.1. Experiments in the 2D Spacecraft Docking environment are in Sections V.7.2, V.7.3, V.7.4, and V.7.5.

Experiments in the 3D Spacecraft Docking environment are in Sections V.7.6, V.7.7, V.7.8, and V.7.9.
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V.7.1 Pendulum Implicit Simplex

(a) SAC with RTA (b) PPO with RTA

(c) SAC no RTA (d) PPO no RTA

Figure V.9: Results collected from experiments run in the Pendulum environment. Each curve represents the
average of 10 trials, and the shaded region is the 95% confidence interval about the mean. Note: maximum
possible return in the environment is 1000.
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Table V.5: SAC Pendulum

Configuration RTA Return Length Interventions

baseline on 983.1007 ± 3.1389 200.0 ± 0.0 0.2940 ± 0.7250

off 982.8630 ± 3.3692 200.0 ± 0.0 -

RTA no punishment on 983.9275 ± 2.0795 200.0 ± 0.0 0.0370 ± 0.2401

off 982.8445 ± 30.7715 199.8070 ± 6.1001 -

RTA punishment on 984.1265 ± 2.0494 200.0 ± 0.0 0.0 ± 0.0

off 984.0623 ± 1.9408 200.0 ± 0.0 -

Corrected Action on 984.5683 ± 2.1403 200.0 ± 0.0 0.0030 ± 0.0547

off 984.5059 ± 2.0753 200.0 ± 0.0 -

Table V.6: PPO Pendulum

Configuration RTA Return Length Interventions

baseline on 987.9677 ± 10.9786 200.0 ± 0.0 0.0 ± 0.0

off 987.3375 ± 11.2540 200.0 ± 0.0 -

RTA no punishment on 987.8363 ± 10.8634 200.0 ± 0.0 0.0 ± 0.0

off 987.5939 ± 10.3785 200.0 ± 0.0 -

RTA punishment on 987.5672 ± 11.2048 200.0 ± 0.0 0.0 ± 0.0

off 987.8488 ± 11.1780 200.0 ± 0.0 -

Corrected Action on 850.7139 ± 51.6744 200.0 ± 0.0 27.7470 ± 11.6062

off 306.7720 ± 281.0874 64.7700 ± 56.5273 -
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V.7.2 2D Spacecraft Docking Explicit Simplex

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.10: Results collected from experiments run in the 2D Spacecraft Docking environment with an
explicit simplex RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence
interval about the mean.

Table V.7: PPO 2D Spacecraft Docking Explicit Simplex

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -25.5058 ± 7.0824 451.3160 ± 228.9647 0.5960 ± 0.4907 269.1270 ± 68.7516 0.8521 ± 0.2730

off -19.5788 ± 7.5443 261.0470 ± 255.9112 0.4740 ± 0.4993 132.0560 ± 59.6531 -

baseline punishment on 1.7415 ± 0.7302 763.2820 ± 197.3288 0.6720 ± 0.4695 1.0440 ± 2.4430 0.0501 ± 0.0980

off 1.7350 ± 0.7505 758.7400 ± 198.3093 0.6830 ± 0.4653 1.1420 ± 2.7484 -

RTA no punishment on -22.5140 ± 10.7681 348.6550 ± 85.4651 0.8530 ± 0.3541 242.0030 ± 100.1411 0.9448 ± 0.3900

off -18.3351 ± 4.1843 230.2570 ± 68.7432 0.8320 ± 0.3739 154.8820 ± 42.6876 -

RTA punishment on 2.0770 ± 0.3609 710.4490 ± 157.6271 0.8820 ± 0.3226 1.0830 ± 1.9236 0.0595 ± 0.0981

off 2.0637 ± 0.3659 703.4900 ± 155.3529 0.8920 ± 0.3104 1.2450 ± 2.2545 -

RTA Corrected Action on -38.8204 ± 23.3258 370.8200 ± 230.2876 0.0 ± 0.0 370.8060 ± 230.2876 12.8179 ± 3.2593

off -22.7426 ± 9.9165 18.0930 ± 4.9153 0.0 ± 0.0 18.0720 ± 4.8995 -
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.11: Results collected from experiments run in the 2D Spacecraft Docking environment with an
explicit simplex RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence
interval about the mean.

Table V.8: SAC 2D Spacecraft Docking Explicit Simplex

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -12.5070 ± 5.3815 980.3370 ± 95.3160 0.0170 ± 0.1293 129.1350 ± 54.4923 0.4160 ± 0.0389

off -44.4387 ± 18.4755 936.0760 ± 201.4800 0.0 ± 0.0 375.4500 ± 150.4911 -

baseline punishment on -0.7163 ± 1.1067 998.6170 ± 18.4751 0.0030 ± 0.0547 10.8460 ± 12.2911 0.2622 ± 0.1204

off -1.4651 ± 2.3989 995.6790 ± 41.1139 0.0050 ± 0.0705 17.8680 ± 24.0389 -

RTA no punishment on -14.5861 ± 4.6865 943.9070 ± 160.2614 0.0380 ± 0.1912 148.0320 ± 50.7698 0.4289 ± 0.0300

off -55.0964 ± 28.7844 639.9500 ± 320.4161 0.0080 ± 0.0891 397.9490 ± 210.2359 -

RTA punishment on -2.2407 ± 1.5318 994.1500 ± 53.0907 0.0010 ± 0.0316 25.4220 ± 16.9404 0.3336 ± 0.0755

off -5.9313 ± 5.0539 996.6070 ± 35.4610 0.0040 ± 0.0631 59.2540 ± 48.6995 -

RTA Corrected Action on -19.8202 ± 14.5191 927.6350 ± 179.7466 0.0580 ± 0.2337 199.4710 ± 144.4070 0.4516 ± 0.0666

off -43.6724 ± 20.6484 588.6050 ± 361.0214 0.0050 ± 0.0705 295.2280 ± 154.5340 -

72



V.7.3 2D Spacecraft Docking Explicit ASIF

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.12: Results collected from experiments run in the 2D Spacecraft Docking environment with an
explicit ASIF RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence
interval about the mean.

Table V.9: PPO 2D Spacecraft Docking Explicit ASIF

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -19.3937 ± 8.3859 496.2690 ± 276.8729 0.6100 ± 0.4877 320.1170 ± 76.3203 0.9750 ± 0.3698

off -19.6417 ± 8.6105 288.4830 ± 318.4605 0.3710 ± 0.4831 126.4670 ± 64.2468 -

baseline punishment on 1.6885 ± 0.7824 794.0 ± 174.0669 0.6830 ± 0.4653 135.3380 ± 47.6325 0.2399 ± 0.0411

off 1.7063 ± 0.8210 770.9680 ± 187.9315 0.6920 ± 0.4617 1.1970 ± 2.4409 -

RTA no punishment on -18.8412 ± 3.9873 327.1660 ± 35.9863 0.9570 ± 0.2029 287.7570 ± 32.6175 0.9100 ± 0.1651

off -18.4948 ± 2.2503 137.2860 ± 31.5151 0.2320 ± 0.4221 126.7610 ± 19.5246 -

RTA punishment on 1.8265 ± 0.7208 512.1800 ± 150.3579 0.9330 ± 0.2500 198.6380 ± 45.1417 0.2718 ± 0.0470

off -15.3082 ± 5.7940 391.2710 ± 193.5872 0.7970 ± 0.4022 152.7720 ± 47.8269 -

RTA Corrected Action on -35.2004 ± 20.0159 321.1060 ± 181.7095 0.0 ± 0.0 321.1060 ± 181.7095 9.7873 ± 3.5195

off -22.4530 ± 9.9569 20.7170 ± 6.3494 0.0 ± 0.0 20.5450 ± 6.2174 -
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.13: Results collected from experiments run in the 2D Spacecraft Docking environment with an
explicit ASIF RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence
interval about the mean.

Table V.10: SAC 2D Spacecraft Docking Explicit ASIF

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on 0.0216 ± 0.9744 968.7900 ± 127.7141 0.0320 ± 0.1760 280.0150 ± 76.8260 0.3916 ± 0.0454

off -45.9935 ± 21.5150 890.9630 ± 269.6588 0.0010 ± 0.0316 376.5710 ± 170.1958 -

baseline punishment on 0.1026 ± 0.2979 999.5220 ± 10.2286 0.0 ± 0.0 151.7450 ± 25.1203 0.3134 ± 0.0211

off -0.9064 ± 1.0850 995.0900 ± 51.4919 0.0 ± 0.0 12.0070 ± 11.5531 -

RTA no punishment on -0.1290 ± 0.6667 974.0790 ± 107.3582 0.0010 ± 0.0316 257.1470 ± 44.1387 0.3755 ± 0.0204

off -37.6844 ± 22.5865 374.3540 ± 225.3516 0.0 ± 0.0 250.7620 ± 155.8610 -

RTA punishment on -0.0374 ± 0.5376 987.6740 ± 73.9589 0.0020 ± 0.0447 264.8470 ± 47.4221 0.3788 ± 0.0252

off -41.9909 ± 23.4668 428.7950 ± 266.7232 0.0020 ± 0.0447 282.9180 ± 171.1889 -

RTA Corrected Action on 0.2143 ± 0.5982 990.1150 ± 56.8130 0.0280 ± 0.1650 252.5090 ± 53.4003 0.3716 ± 0.0291

off -36.1541 ± 18.2568 598.6270 ± 325.5361 0.0120 ± 0.1089 269.8170 ± 136.6618 -
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V.7.4 2D Spacecraft Docking Implicit Simplex

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.14: Results collected from experiments run in the 2D Spacecraft Docking environment with an
implicit simplex RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence
interval about the mean.

Table V.11: PPO 2D Spacecraft Docking Implicit Simplex

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on 1.7324 ± 0.5743 628.6310 ± 233.1921 0.7340 ± 0.4419 190.7160 ± 87.9536 2.5410 ± 0.4201

off -22.1098 ± 10.9814 320.5170 ± 360.2277 0.2660 ± 0.4419 143.9450 ± 79.5162 -

baseline punishment on 2.2181 ± 0.3315 709.3360 ± 158.4366 0.9100 ± 0.2862 0.6080 ± 1.1218 0.6372 ± 0.9141

off 2.1394 ± 0.3291 697.2640 ± 151.6598 0.9270 ± 0.2601 0.9660 ± 2.2147 -

RTA no punishment on 2.0223 ± 0.3853 483.4820 ± 159.6581 0.9200 ± 0.2713 137.0720 ± 37.9305 2.1929 ± 0.2068

off -22.3856 ± 15.3886 176.1880 ± 147.2843 0.3410 ± 0.4740 147.8420 ± 102.7799 -

RTA punishment on 1.8153 ± 0.5999 604.7220 ± 252.2543 0.7310 ± 0.4434 108.0690 ± 54.2185 2.0565 ± 0.2571

off -17.9896 ± 5.1619 415.3470 ± 341.2807 0.4600 ± 0.4984 147.5900 ± 40.1991 -

RTA Corrected Action on -1.3983 ± 1.2348 706.2610 ± 303.1083 0.0230 ± 0.1499 456.0030 ± 333.3891 4.8626 ± 2.1863

off -27.0715 ± 19.0662 132.6590 ± 234.5261 0.0 ± 0.0 90.0710 ± 154.2038 -
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.15: Results collected from experiments run in the 2D Spacecraft Docking environment with an
implicit simplex RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence
interval about the mean.

Table V.12: SAC 2D Spacecraft Docking Implicit Simplex

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on 0.4104 ± 0.4594 992.1540 ± 61.4690 0.0170 ± 0.1293 40.1990 ± 29.2195 2.0015 ± 0.1018

off -36.9676 ± 17.9372 963.3310 ± 160.9444 0.0010 ± 0.0316 312.0830 ± 141.1573 -

baseline punishment on 0.2988 ± 0.4151 996.6570 ± 34.9140 0.0 ± 0.0 5.1930 ± 4.0115 1.8304 ± 0.5606

off -1.1718 ± 1.6220 994.9620 ± 50.3511 0.0 ± 0.0 14.5570 ± 16.7634 -

RTA no punishment on 0.5268 ± 0.5937 985.8930 ± 77.3721 0.0260 ± 0.1591 45.5030 ± 14.1846 2.0088 ± 0.0616

off -49.2378 ± 26.5212 575.5730 ± 312.6387 0.0090 ± 0.0944 356.9840 ± 198.7087 -

RTA punishment on 0.4419 ± 0.6550 980.7460 ± 98.2139 0.0050 ± 0.0705 43.3130 ± 12.2646 2.0111 ± 0.0616

off -47.3890 ± 26.1510 525.6140 ± 298.1644 0.0090 ± 0.0944 341.2960 ± 193.6923 -

RTA Corrected Action on 0.6113 ± 0.6937 982.4190 ± 82.0556 0.0410 ± 0.1983 46.1820 ± 21.0099 2.0038 ± 0.0626

off -38.0627 ± 19.2859 598.8810 ± 311.1165 0.0350 ± 0.1838 286.5530 ± 145.0794 -
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V.7.5 2D Spacecraft Docking Implicit ASIF

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.16: Results collected from experiments run in the 2D Spacecraft Docking environment with an
implicit ASIF RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence
interval about the mean.

Table V.13: PPO 2D Spacecraft Docking Implicit ASIF

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -17.7031 ± 8.5565 601.9800 ± 318.1612 0.4870 ± 0.4998 337.4270 ± 80.0928 0.8393 ± 0.2897

off -23.4315 ± 13.5040 385.0710 ± 393.7963 0.1980 ± 0.3985 143.9770 ± 99.2892 -

baseline punishment on 1.8864 ± 0.5720 751.0750 ± 157.2639 0.7810 ± 0.4136 138.1540 ± 44.0523 0.2437 ± 0.0398

off 1.8927 ± 0.5791 733.8830 ± 175.6035 0.7550 ± 0.4301 0.9690 ± 1.8868 -

RTA no punishment on -17.5369 ± 4.5902 329.2390 ± 34.7500 0.9610 ± 0.1936 290.2000 ± 32.0983 0.8294 ± 0.1533

off -17.8740 ± 2.3042 123.9470 ± 36.0346 0.1880 ± 0.3907 114.9080 ± 25.0518 -

RTA punishment on 1.9883 ± 0.3713 502.9990 ± 143.2604 0.9480 ± 0.2220 204.7170 ± 37.7863 0.2781 ± 0.0398

off -15.8753 ± 5.1271 364.4110 ± 181.5286 0.7690 ± 0.4215 156.4490 ± 41.2289 -

RTA Corrected Action on -36.3506 ± 21.1084 335.6310 ± 192.6612 0.0 ± 0.0 335.6310 ± 192.6612 9.6171 ± 3.2334

off -22.0632 ± 9.6757 21.0460 ± 7.2165 0.0 ± 0.0 20.8590 ± 7.0182 -
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.17: Results collected from experiments run in the 2D Spacecraft Docking environment with an
implicit ASIF RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence
interval about the mean.

Table V.14: SAC 2D Spacecraft Docking Implicit ASIF

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on 0.0170 ± 0.6159 988.4880 ± 66.0788 0.0220 ± 0.1467 327.1520 ± 78.9583 0.3659 ± 0.0418

off -40.4752 ± 19.6528 945.6220 ± 187.7012 0.0030 ± 0.0547 335.9500 ± 154.2188 -

baseline punishment on -0.0926 ± 0.3824 998.7810 ± 21.0513 0.0 ± 0.0 242.3540 ± 94.6843 0.2916 ± 0.0280

off -0.6723 ± 1.0088 998.8650 ± 18.3413 0.0 ± 0.0 9.5740 ± 10.5377 -

RTA no punishment on 0.0072 ± 0.5972 989.0330 ± 63.0413 0.0120 ± 0.1089 337.4620 ± 70.4624 0.3637 ± 0.0308

off -40.3231 ± 22.8186 388.8060 ± 237.8237 0.0030 ± 0.0547 266.6250 ± 160.5296 -

RTA punishment on -0.0248 ± 0.5306 992.9850 ± 54.3038 0.0020 ± 0.0447 322.7700 ± 69.0018 0.3560 ± 0.0272

off -45.2013 ± 24.9335 500.5040 ± 285.1929 0.0020 ± 0.0447 319.9860 ± 182.5422 -

RTA Corrected Action on 0.0461 ± 0.7008 984.5460 ± 75.3451 0.0210 ± 0.1434 317.3800 ± 76.3632 0.3630 ± 0.0405

off -38.1003 ± 20.0277 474.9430 ± 292.3608 0.0110 ± 0.1043 261.0650 ± 143.3972 -
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V.7.6 3D Spacecraft Docking Explicit Simplex

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.18: Results collected from experiments run in the Docking3D environment with an explicit simplex
RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence interval about
the mean.

Table V.15: PPO 3D Spacecraft Docking Explicit Simplex

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -31.0188 ± 10.6629 518.1790 ± 321.9829 0.2820 ± 0.4500 193.3420 ± 67.8229 0.8483 ± 0.2922

off -23.6606 ± 10.0484 387.3470 ± 368.7029 0.2320 ± 0.4221 153.5120 ± 81.3324 -

baseline punishment on 2.0348 ± 0.3485 700.8320 ± 150.7818 0.8990 ± 0.3013 0.0 ± 0.0 0.0 ± 0.0

off 2.0182 ± 0.3761 714.7290 ± 147.2671 0.8870 ± 0.3166 0.9160 ± 1.9034 -

RTA no punishment on -24.4788 ± 10.7840 280.2370 ± 88.3712 0.5980 ± 0.4903 149.2880 ± 101.5997 0.9711 ± 0.8016

off -21.8075 ± 10.9196 190.2490 ± 111.3772 0.5510 ± 0.4974 134.1560 ± 72.1069 -

RTA punishment on 2.0870 ± 0.3968 687.3150 ± 135.2182 0.9360 ± 0.2448 0.0 ± 0.0 0.0 ± 0.0

off 2.0874 ± 0.3910 685.5820 ± 136.5485 0.9330 ± 0.2500 1.0390 ± 2.3608 -

RTA Corrected Action on -30.8903 ± 14.7595 230.2190 ± 122.1902 0.0 ± 0.0 230.2190 ± 122.1902 19.4718 ± 3.4466

off -22.6890 ± 8.2845 14.7530 ± 3.3308 0.0 ± 0.0 14.7530 ± 3.3308 -
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.19: Results collected from experiments run in the Docking3D environment with an explicit simplex
RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence interval about
the mean.

Table V.16: SAC 3D Spacecraft Docking Explicit Simplex

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -45.5176 ± 17.8207 889.6050 ± 233.6027 0.0210 ± 0.1434 81.5790 ± 65.0452 0.4107 ± 0.1040

off -51.7261 ± 22.6411 793.0560 ± 312.3463 0.0050 ± 0.0705 404.6600 ± 179.4067 -

baseline punishment on -3.1201 ± 3.3789 984.0890 ± 78.1228 0.0 ± 0.0 0.5910 ± 2.4831 0.0378 ± 0.1168

off -3.0951 ± 3.7081 985.4280 ± 66.5032 0.0010 ± 0.0316 29.8100 ± 35.5730 -

RTA no punishment on -56.2666 ± 18.2059 894.0790 ± 228.7942 0.0340 ± 0.1812 113.1790 ± 63.4759 0.4365 ± 0.0638

off -65.2064 ± 30.6350 749.4010 ± 336.3577 0.0020 ± 0.0447 478.7300 ± 229.1926 -

RTA punishment on -3.2459 ± 4.9680 997.0710 ± 27.9703 0.0050 ± 0.0705 1.6550 ± 6.6895 0.0429 ± 0.1162

off -3.5462 ± 6.0729 995.9100 ± 36.4424 0.0050 ± 0.0705 35.5580 ± 58.1211 -

RTA Corrected Action on -57.1892 ± 23.8735 874.9890 ± 254.3602 0.0230 ± 0.1499 134.5720 ± 111.9885 0.4541 ± 0.1048

off -53.6893 ± 28.7788 639.5200 ± 380.3689 0.0030 ± 0.0547 379.5430 ± 226.4612 -
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V.7.7 3D Spacecraft Docking Explicit ASIF

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.20: Results collected from experiments run in the Docking3D environment with an explicit ASIF
RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence interval about
the mean.

Table V.17: PPO 3D Spacecraft Docking Explicit ASIF

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -23.5395 ± 5.5692 520.2150 ± 335.7678 0.4380 ± 0.4961 262.1080 ± 81.3717 0.7496 ± 0.2788

off -25.9051 ± 15.2182 395.0710 ± 393.6692 0.2810 ± 0.4495 174.5970 ± 127.5959 -

baseline punishment on 2.0252 ± 0.4779 719.1760 ± 154.5015 0.8760 ± 0.3296 61.9650 ± 14.8473 0.1813 ± 0.0324

off 1.9796 ± 0.5287 699.8420 ± 156.6811 0.8890 ± 0.3141 1.2990 ± 3.2802 -

RTA no punishment on -35.7737 ± 31.4269 385.1380 ± 255.2133 0.6760 ± 0.4680 295.9280 ± 214.9787 0.8228 ± 0.4336

off -22.1710 ± 6.5638 161.8100 ± 77.1825 0.5380 ± 0.4986 133.3550 ± 59.4011 -

RTA punishment on 1.9614 ± 0.5390 678.1530 ± 155.3601 0.8860 ± 0.3178 65.2410 ± 17.8011 0.1843 ± 0.0306

off 1.5387 ± 1.0994 667.7730 ± 160.3803 0.8910 ± 0.3116 6.0220 ± 10.9016 -

RTA Corrected Action on -28.6656 ± 12.8821 196.4600 ± 92.5018 0.0 ± 0.0 196.4600 ± 92.5018 18.3608 ± 2.8570

off -22.9620 ± 8.5660 14.2520 ± 3.0771 0.0 ± 0.0 14.2440 ± 3.0875 -
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.21: Results collected from experiments run in the Docking3D environment with an explicit ASIF
RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence interval about
the mean.

Table V.18: SAC 3D Spacecraft Docking Explicit ASIF

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -12.7579 ± 10.1785 915.5070 ± 202.0146 0.1110 ± 0.3141 204.1420 ± 90.2193 0.3788 ± 0.0620

off -38.0083 ± 20.4644 854.8270 ± 283.0951 0.0410 ± 0.1983 304.2500 ± 160.4455 -

baseline punishment on -0.1637 ± 0.6890 987.1430 ± 68.1994 0.0010 ± 0.0316 60.4100 ± 32.5684 0.2518 ± 0.0390

off -2.8927 ± 3.6149 986.2250 ± 70.9115 0.0050 ± 0.0705 29.0850 ± 35.7144 -

RTA no punishment on -14.5421 ± 7.3016 940.2470 ± 159.9236 0.0780 ± 0.2682 252.0550 ± 65.3287 0.3840 ± 0.0382

off -56.6587 ± 29.6890 568.9540 ± 316.5479 0.0050 ± 0.0705 399.5180 ± 211.1678 -

RTA punishment on -2.7094 ± 1.9604 999.2260 ± 16.0357 0.0 ± 0.0 156.4860 ± 42.5640 0.3229 ± 0.0292

off -29.8980 ± 14.0208 947.3790 ± 146.0030 0.0180 ± 0.1330 270.2530 ± 120.9608 -

RTA Corrected Action on -12.3856 ± 9.0203 905.9600 ± 213.5613 0.0410 ± 0.1983 217.5670 ± 78.7771 0.3668 ± 0.0465

off -48.8981 ± 23.9236 687.4480 ± 355.5327 0.0080 ± 0.0891 375.6960 ± 195.4146 -
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V.7.8 3D Spacecraft Docking Implicit Simplex

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.22: Results collected from experiments run in the Docking3D environment with an implicit simplex
RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence interval about
the mean.

Table V.19: PPO 3D Spacecraft Docking Implicit Simplex

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -28.8368 ± 9.1682 444.4520 ± 311.7484 0.3520 ± 0.4776 177.5300 ± 58.5945 1.2214 ± 0.2807

off -23.7356 ± 14.1796 339.6470 ± 368.3187 0.2710 ± 0.4445 148.9460 ± 106.5690 -

baseline punishment on 1.9298 ± 0.4878 729.8170 ± 164.2315 0.8050 ± 0.3962 0.0 ± 0.0 0.0 ± 0.0

off 1.9062 ± 0.4930 741.4000 ± 163.1066 0.7880 ± 0.4087 0.8780 ± 1.9645 -

RTA no punishment on -33.2941 ± 22.1803 388.1860 ± 222.9841 0.5020 ± 0.5000 152.7050 ± 104.8435 1.2013 ± 0.4864

off -23.5098 ± 8.5427 214.6090 ± 125.9420 0.4380 ± 0.4961 152.0270 ± 57.3112 -

RTA punishment on 2.0360 ± 0.3864 722.1020 ± 156.9345 0.8900 ± 0.3129 0.0010 ± 0.0316 0.0008 ± 0.0247

off 2.0734 ± 0.3357 703.6070 ± 152.0538 0.9190 ± 0.2728 1.1600 ± 2.1805 -

RTA Corrected Action on -12.6732 ± 15.6686 705.8490 ± 305.7374 0.0290 ± 0.1678 705.4710 ± 305.5783 18.1370 ± 3.7118

off -22.2881 ± 8.1576 15.2590 ± 3.6905 0.0 ± 0.0 15.2590 ± 3.6905 -
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.23: Results collected from experiments run in the Docking3D environment with an implicit simplex
RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence interval about
the mean.

Table V.20: SAC 3D Spacecraft Docking Implicit Simplex

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -39.8408 ± 15.1098 853.8830 ± 271.8064 0.0480 ± 0.2138 49.7620 ± 37.1512 1.0700 ± 0.2004

off -49.9209 ± 23.8915 772.6130 ± 329.1146 0.0090 ± 0.0944 384.6810 ± 189.9644 -

baseline punishment on -1.7770 ± 2.1333 996.0120 ± 39.0965 0.0010 ± 0.0316 0.1110 ± 0.7673 0.0623 ± 0.2595

off -1.7795 ± 2.1777 996.9430 ± 31.9320 0.0 ± 0.0 18.1090 ± 21.9634 -

RTA no punishment on -56.7316 ± 18.9754 886.5070 ± 231.2872 0.0530 ± 0.2240 81.5040 ± 47.9373 1.0850 ± 0.1024

off -69.4304 ± 35.3073 701.8620 ± 334.5834 0.0010 ± 0.0316 489.0240 ± 244.4675 -

RTA punishment on -2.3084 ± 2.7257 997.5530 ± 30.4823 0.0020 ± 0.0447 0.4140 ± 1.8554 0.1206 ± 0.3443

off -2.5016 ± 3.2310 998.3320 ± 22.5890 0.0030 ± 0.0547 25.6890 ± 32.5553 -

RTA Corrected Action on -54.9041 ± 21.5688 818.4390 ± 297.3325 0.0260 ± 0.1591 119.9790 ± 103.9273 1.1138 ± 0.0633

off -52.5477 ± 28.3996 510.3110 ± 374.1590 0.0 ± 0.0 332.9860 ± 220.6356 -
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V.7.9 3D Spacecraft Docking Implicit ASIF

(a) PPO evaluated with RTA Average Return (b) PPO evaluated with RTA Average Success

(c) PPO evaluated without RTA Average Return (d) PPO evaluated without RTA Average Success

Figure V.24: Results collected from experiments run in the Docking3D environment with an implicit ASIF
RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence interval about
the mean.

Table V.21: PPO 3D Spacecraft Docking Implicit ASIF

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -11.1833 ± 14.6859 670.6230 ± 303.9664 0.0260 ± 0.1591 670.6230 ± 303.9664 2.1712 ± 0.6998

off -21.7117 ± 8.4841 358.8620 ± 359.6777 0.2550 ± 0.4359 134.7320 ± 69.5541 -

baseline punishment on -11.2320 ± 15.6139 723.6400 ± 297.1046 0.0340 ± 0.1812 723.6400 ± 297.1046 2.0077 ± 0.7648

off 1.8275 ± 0.5826 740.5620 ± 177.9170 0.7960 ± 0.4030 1.2820 ± 2.5820 -

RTA no punishment on -10.4772 ± 14.6715 727.0780 ± 304.3238 0.0290 ± 0.1678 727.0770 ± 304.3229 0.9596 ± 0.1598

off -24.7680 ± 8.6542 101.9490 ± 38.2915 0.0 ± 0.0 89.9680 ± 33.4132 -

RTA punishment on -10.4772 ± 14.6715 727.0780 ± 304.3238 0.0290 ± 0.1678 727.0740 ± 304.3218 0.7655 ± 0.1558

off -24.4860 ± 8.6466 88.4590 ± 32.2835 0.0 ± 0.0 77.6300 ± 30.2741 -

RTA Corrected Action on -10.4772 ± 14.6715 727.0780 ± 304.3238 0.0290 ± 0.1678 727.0780 ± 304.3238 5.3637 ± 2.2937

off -21.8312 ± 8.9370 27.9090 ± 8.6748 0.0 ± 0.0 27.3040 ± 8.4486 -
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(a) SAC evaluated with RTA Average Return (b) SAC evaluated with RTA Average Success

(c) SAC evaluated without RTA Average Return (d) SAC evaluated without RTA Average Success

Figure V.25: Results collected from experiments run in the Docking3D environment with an implicit ASIF
RTA. Each curve represents the average 10 trials and the shaded region is the 95% confidence interval about
the mean.

Table V.22: SAC 3D Spacecraft Docking Implicit ASIF

Configuration RTA Return Length Success Interventions/Violations Correction

baseline on -10.1428 ± 14.3804 721.7680 ± 289.5521 0.0350 ± 0.1838 721.7680 ± 289.5521 1.0391 ± 0.0697

off -49.4634 ± 24.9526 805.9750 ± 312.1980 0.0050 ± 0.0705 384.3810 ± 188.4363 -

baseline punishment on -13.8266 ± 16.6181 643.0790 ± 310.5455 0.0220 ± 0.1467 643.0790 ± 310.5455 1.0190 ± 0.0795

off -3.7864 ± 5.3072 974.0050 ± 109.7366 0.0020 ± 0.0447 36.7950 ± 50.6100 -

RTA no punishment on -9.2941 ± 13.4528 740.2390 ± 294.4016 0.0440 ± 0.2051 740.2390 ± 294.4016 0.9780 ± 0.0124

off -28.8167 ± 13.9128 233.3260 ± 108.2606 0.0 ± 0.0 180.0350 ± 88.3977 -

RTA punishment on -9.2941 ± 13.4528 740.2390 ± 294.4016 0.0440 ± 0.2051 740.2390 ± 294.4016 0.9796 ± 0.0123

off -29.0804 ± 13.9550 232.2120 ± 107.8407 0.0 ± 0.0 180.9220 ± 87.4997 -

RTA Corrected Action on -9.2941 ± 13.4528 740.2390 ± 294.4016 0.0440 ± 0.2051 740.2390 ± 294.4016 1.6682 ± 0.1922

off -21.4260 ± 7.9279 48.9950 ± 12.3313 0.0 ± 0.0 46.4630 ± 11.9167 -
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CHAPTER VI

Training Agents to Satisfy Timed and Untimed Signal Temporal Logic Specifications with

Reinforcement Learning

Reinforcement Learning (RL) depends critically on how reward functions are designed to capture intended

behavior. However, traditional approaches are unable to represent temporal behavior, such as “do task 1 be-

fore doing task 2” or “do task 1 while avoiding region O.” In the event they can represent temporal behavior,

these reward functions are handcrafted by researchers and often require long hours of trial and error to shape

the reward function just right to get the desired behavior. In these cases, the desired behavior and constraints

are already known, the problem is generating a reward function to train the RL agent to satisfy that behavior.

To address this issue, we present our tool, STLGym, for automatically converting timed and untimed specifi-

cations into a reward function. In this work, we show how STLGym can be used to train RL agents to satisfy

specifications better than traditional approaches and to refine previously learned behavior to better match the

specification1.

VI.1 Introduction

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) are fast-growing fields with growing

impact, spurred by success in training agents to beat human experts in games like Go [94], Starcraft [95], and

Gran Turismo [6]. These results support the claims from [106] that “reward is enough to drive behavior that

exhibits abilities studied in natural and artificial intelligence.”

However, traditional reward functions are Markovian by nature; mapping states, or states and actions,

to scalar reward values without considering previous states or actions [107]. This Markovian nature is in

direct conflict with designing reward functions that describe complex, temporally-extended behavior. For

example, the task of opening a freezer door, taking something out, and then closing the freezer door cannot

be represented by Markovian reward functions, because the success of taking something out of the freezer

is dependent on opening the freezer door first. This problem also extends to the context of safety-critical

systems, where the desired behavior might include never entering some region or responding to a situation

within a specified amount of time.

Therefore, if we want to use RL and DRL to solve complex, temporally-extended problems, we need a

new way of writing and defining reward functions. This is a challenging problem with growing interest as RL

1This chapter is based on prior work currently under review for the 2022 International Conference on Software Engineering and
Formal Methods (SEFM).
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research looks into new ways to formulate the reward function to solve these kinds of problems. The most

promising approaches look at using temporal logic to write specifications describing the desired behavior, and

then generating complex reward functions that help agents learn to satisfy the specifications. Temporal logics

are formalism for specifying the desired behavior of systems that evolve over time [108]. Some approaches,

like the one presented in this work, take advantage of quantitative semantics [109, 110, 111], while others

construct reward machines that change how the reward function is defined depending on which states have

been reached [112, 107, 13, 113].

Despite the many successes of these approaches, only one is able to incorporate timing constraints ([111])

and many only work with a few RL algorithms that require researchers to write up the problem in a custom

format to work with the implementation provided. By ignoring timing constraints, the approaches leave

out reactive specifications where systems need to respond within a specified amount of time, like in power

systems.

Our contributions. In this chapter, we introduce STLGym, our tool for training RL agents to satisfy

complex, temporally-extended problems with and without timing constraints using RL. To the best of our

knowledge, and compared to related works discussed in Section VI.6, our approach is the first that allows

users to train agents to satisfy timed and untimed specifications, evaluate how well their agents satisfy those

specifications, and retrain agents that do not already satisfy the specifications. We demonstrate the features of

our tool and explore some best practices in five interesting example case studies. Our results show STLGym is

an effective tool for training RL agents to satisfy a variety of timed and untimed temporal logic specifications.

VI.2 Preliminaries

Reinforcement Learning (RL) is a form of machine learning in which an agent acts in an environment, learning

through experience to increase its performance based on rewarded behavior. Deep Reinforcement Learning

(DRL) is a newer branch of RL in which a neural network is used to approximate the behavior function,

i.e. policy π . The environment can be comprised of any dynamical system, from video game simulations

([15, 95, 6]) to complex robotics scenarios ([5, 18, 16]). In this work, and to use our tool STLGym, the

environment must be constructed using OpenAI’s Gym API2 [5].

Reinforcement learning is based on the reward hypothesis that all goals can be described by the max-

imization of expected return, i.e. the cumulative reward. During training, the agent chooses an action, u,

based on the input observation, o. The action is then executed in the environment, updating the internal state,

s, according to the plant dynamics. The agent then receives a scalar r, and the next observation vector, o′.

2Information on the specifics of the Gym API can be found at https://gym.openai.com/. Because the Gym API is widely used and
often the required environment API for using open-source RL libraries, we do not consider this restriction a limitation of our work, but
instead a good feature.
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The process of executing an action and receiving a reward and next observation is referred to as a timestep.

Relevant values, like the input observation, action, and reward are collected as a data tuple, i.e. sample, by

the RL algorithm to update the current policy, π , to an improved policy, π∗. How often these updates are

done is dependent on the RL algorithm.

The return is the sum of all rewards collected over the course of an episode. An episode is a finite sequence

of states, observations, actions, and rewards starting from an initial state and ending when some terminal, i.e.

done, conditions are met. In this work, we refer to different elements of the episode by their corresponding

timestep, t. Thus, rt is the reward value at timestep t ∈ [0,T ], where T is the final timestep in the episode.

VI.2.1 Signal Temporal Logic

Signal Temporal Logic (STL) was first introduced in [108] as an extension of previous temporal logics that

allows for formalizing control-theoretic properties, properties of path-planning algorithms, and expressing

timing constrains and causality relations.

STL specifications are defined recursively according to the syntax:

φ := ψ|¬φ |φ ∧ϕ|φ ∨ϕ|φ =⇒ ψ|Fφ |Gφ |φUψ|Nφ |F[a,b]φ |G[a,b]φ |φU[a,b]ψ, (VI.1)

where a,b ∈ R≥0 are finite non-negative time bounds; φ and ϕ are STL formulae; and ψ is a predicate in

the form f (w) < d. In the predicate, w : R≥0 → Rn is a signal, f : Rn → R is a function, and d ∈ R is a

constant. The Boolean operators ¬, ∧, ∨, ⊻, and =⇒ are negation, conjunction, disjunction, and implication

respectively; and the temporal operators F , G, U , and N refer to Finally (i.e. eventually), Globally (i.e.

always), Until, and Next respectively.

wt denotes the value of w at time t and (w, t) is the part of the signal that is a sequence of wt ′ for t ′ ∈ [t, |w|),
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where |w| is the end of the signal. The Boolean semantics of STL are recursively defined as follows:

(w, t) |= ( f (w)< d) ⇔ f (wt)< d,

(w, t) |= ¬( f (w)< d) ⇔ ¬((w, t) |= ( f (w)< d),

(w, t) |= φ ∧ϕ ⇔ (w, t) |= φ and (w, t) |= ϕ,

(w, t) |= φ ∨ϕ ⇔ (w, t) |= φ or (w, t) |= ϕ,

(w, t) |= φ =⇒ ϕ ⇔ if (w, t) |= φ , then (w, t) |= ϕ,

(w, t) |= Fφ ⇔ ∃t ′ ∈ [t, |w|) s.t. (w, t ′) |= φ ,

(w, t) |= Gφ ⇔ (w, t ′) |= φ ∀t ′ ∈ [t, |w|),

(w, t) |= φUϕ ⇔ ∃tu ∈ [t, |w|) s.t. (w, tu) |= ϕ ∧∀t ′ ∈ [t, tu)(w, t ′) |= φ ,

(w, t) |= Nφ ⇔ (w, t +1) |= φ ,

(w, t) |= F[a,b]φ ⇔ ∃t ′ ∈ [t +a, t +b] s.t. (w, t ′) |= φ ,

(w, t) |= G[a,b]φ ⇔ (w, t ′) |= φ ∀t ′ ∈ [t +a, t +b],

(w, t) |= φU[a,b]ϕ ⇔ ∃tu ∈ [t +a, t +b) s.t. (w, tu) |= ϕ

∧∀t ′ ∈ [t +a, tu)(w, t ′) |= φ .

For a signal (w,0), i.e. the whole signal starting at time 0, satisfying the timed predicate F[a,b]φ means

that “there exists a time within [a,b] such that φ will eventually be true”, and satisfying the timed predicate

G[a,b]φ means that “φ is true for all times between [a,b]”. Satisfying the timed predicate φU[a,b]ϕ means

“there exists a time within [a,b] such that ϕ will be true, and until then, φ is true.” Satisfying the untimed

predicates have the same description as their timed counterpart, but with a = 0 and b = |w|.

VI.2.1.1 Quantitative Semantics

STL has a metric known as robustness degree or “degree of satisfaction” that quantifies how well a given sig-

nal w satisfies a given formula φ . The robustness degree is calculated recursively according to the quantitative
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semantics:

ρ(w,( f (w)< d), t) = d − f (wt),

ρ(w,( f (w)> d), t) = f (wt)−d,

ρ(w,(φ ∧ϕ), t) = min
(
ρ(w,φ , t),ρ(w,ϕ, t)

)
,

ρ(w,(φ ∨ϕ), t) = max
(
ρ(w,φ , t),ρ(w,ϕ, t)

)
,

ρ(w,(φ =⇒ ϕ), t) = max
(
−ρ(w,φ , t),ρ(w,ϕ, t)

)
,

ρ(w,Fφ , t) = max
t ′∈[t,|w|]

ρ(w,φ , t ′),

ρ(w,Gφ , t) = min
t ′∈[t,|w|]

ρ(w,φ , t ′),

ρ(w,φUϕ, t) = max
tu∈[t,|w|]

(
min{ρ(w,ϕ, tu), min

t ′∈[t,tu)

(
ρ(w,φ , t ′)

)
}
)
,

ρ(w,Nφ , t) = ρ(w,φ , t +1),

ρ(w,F[a,b]φ , t) = max
t ′∈[t+a,t+b]

ρ(w,φ , t ′),

ρ(w,G[a,b]φ , t) = min
t ′∈[t+a,t+b]

ρ(w,φ , t ′),

ρ(w,φU[a,b]ϕ, t) = max
tu∈[t+a,t+b]

(
min{ρ(w,ϕ, tu), min

t ′∈[t,tu)

(
ρ(w,φ , t ′)

)
}
)
.

VI.2.1.2 Horizon Length

The horizon length of a specification, hrz(Φ) is the minimum signal length necessary to compute the robust-

ness/degree of satisfaction. This is important for timed specifications where time bounds are provided. If the

specification covers 10 timesteps, then the signal must have at least 10 values to analyze. The horizon length
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is computed recursively according to the equations:

hrz(ψ) = 0,

hrz(φ) = b ifφ = G[a,b]ψ or F[a,b]ψ,

hrz(¬φ) = hrz(φ),

hrz(φ ∧ϕ) = max(hrz(φ),hrz(ϕ)),

hrz(φ ∨ϕ) = max(hrz(φ),hrz(ϕ)),

hrz(F[a,b]φ) = b+hrz(φ),

hrz(G[a,b]φ) = b+hrz(φ),

hrz(φU[a,b]ϕ) = b+max(hrz(φ),hrz(ϕ)),and

hrz(Nφ) = hrz(φ)+1.

where a,b ∈ R≥0, ψ is a predicate in the form f (w)< d, and φ and ϕ are STL formulae. The final results is

then determined as the maximum of the value computed using the formulas above and 1, thus hrz(Φ)≥ 1. In

order to calculate the robustness of a signal, the signal must exist, i.e. have a length greater than 0.

VI.3 Examples

In the remaining sections, we will be referring to these two example RL environments, Pendulum and Cart-

Pole, in order to explain how STLGym works and differs from other approaches. Figure VI.1 shows annotated

screenshots of the simulated environments.

" * = sin "
) = c/0 "

"̇

(a) Pendulum-v0

, !

+

−4.8 2.4−2.4

. = 1. = 0

+̇
4.8

(b) CartPole-v0

Figure VI.1: Annotated screenshots showing the simulated environments, Pendulum (left) and CartPole
(right), from the OpenAI Gym benchmarks [5].
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VI.3.1 Pendulum

The Pendulum3 environment, shown in Figure VI.1.a, consists of an inverted pendulum attached to a fixed

point on one side. The agent’s goal in this environment is to swing the free end of the pendulum to an upright

position, θ = 0, and maintain the position.

The interior plant model changes the state, s = [θ ,ω], according to the discrete dynamics

ωt+1 = ωt +(
3g
2l

sin(θt)+
3ut

ml2 )∆t

θt+1 = θt +ωt∆t +(
3g
2l

sin(θt)+
3ut

ml2 )∆t2,

(VI.2)

where g = 10, l = 1, m = 1, ∆t = 0.05, and ut is the control from the RL agent in the range [−2,2] applied as

a torque about the fixed end of the pendulum. Additionally, within the environment the pendulum’s angular

velocity, ω , is clipped within the range [−8,8], and the angle from upright, θ , is aliased within [−π,π]

radians. θ is measured from upright and increases as the pendulum moves clockwise. The values θ , ω , and

u are used to determine the observation, o = [cos(θ),sin(θ),ω]T and the reward,

rt =−θ
2
t −0.1(ωt)

2 −0.001(ut)
2. (VI.3)

For each episode, the pendulum is initialized according to a uniform distribution with θ ∈ [−π,π] and

ω ∈ [−1,1]. The episode ends when 200 timesteps have occurred. That means T is always 200.

VI.3.2 CartPole

In the CartPole environment4, a pole is attached to a cart moving along a frictionless track. The agent’s goal

in this environment is to keep the pole upright, −12◦ ≤ θ ≤ 12◦, and the cart within the bounds −2.4 ≤

x ≤ 2.4 until the time limit, t = 200, is reached. The agent accomplishes this goal by applying a leftward

or rightward force to move the cart along the track. The agent’s actions are discretized for a “bang-bang”

control architecture that moves the cart left when u = 0 and right when u = 1.

The interior plant model changes the state, s= [x, ẋ,θ , θ̇ ], until a terminal condition is met. These terminal

conditions are

1. the cart’s position leaves the bounds −2.4 ≤ x ≤ 2.4,

2. the pole’s angle is outside the bounds −12◦ ≤ θ ≤ 12◦, and

3This inverted pendulum environment is different from the inverted pendulum environment used in Chapter V. This is the original
version produced in [5], while the other chapters use a modified version meant to make it more difficult for maintaining safety introduced
in [40].

4The environment is based on the classic cart-pole system implemented for [114], where more information on the dynamics can be
found.
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Figure VI.2: A representation of how STLGym wraps around the user’s environment to record signals and
replace the reward function.

3. the goal time limit is reached, i.e. t = 200.

The original, baseline reward function with this environment gives the agent +1 for every timestep the first

two terminal conditions are not violated. Thus, the return for an episode is the same as the episode’s length. To

ensure the agent has a chance to complete at least one timestep successfully, each state element is initialized

according to a uniform distribution in the range [−0.05,0.05]. In this implementation, the observation is

equivalent to the state, o = s.

VI.4 Our Approach: STLGym

Our approach focuses solely on augmenting the environment side of the RL process to add an STL monitor

and replace the existing reward output with the calculated robustness degree as it relates to the desired speci-

fication(s), as shown in Figure VI.2. This process maintains the standards of the Gym API, so no changes to

the RL algorithm are necessary to facilitate its use. As a result, our approach is algorithm-agnostic, since no

modifications to the RL algorithm are required. Furthermore, since our approach makes use of existing en-

vironments, there is great potential for retraining learned policies to better optimize satisfying specifications.

Our approach is implemented as the tool STLGym5

To use the tool, a user provides a YAML file6 that defines the variable(s) that need to be recorded for

the multivariate signal, w, and the specification(s) that the signal needs to satisfy. Additionally, the user

must provide the underlying Gym environment that will be augmented. Provided these two inputs, STLGym

generates a new Gym environment where the specified variables are recorded so RTAMT can monitor the
5STLGym implementation is available at https://github.com/nphamilton/stl-gym
6Example YAML files can be found at https://github.com/nphamilton/stl-gym/tree/main/examples and https://github.com/

nphamilton/spinningup/tree/master/spinup/examples/sefm2022/configs.
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defined STL specification and return the robustness degree as the reward function.

VI.4.1 Computing the Robustness Degree

To compute the robustness degree, we make use of RTAMT [115], a tool for monitoring STL specifications

on recorded data. Given the recorded signal and specification, RTAMT computes the robustness degree

according to the quantitative semantics described in Section VI.2.1.

VI.4.2 Allowable Specifications

Our approach is amenable to a wide range of specifications and supports the full range of semantics described

in Section VI.2.1 in addition to any described in RTAMT’s readme7. This includes both timed and untimed

operators, adding more options than in the existing TLTL. Furthermore, our approach allows for specifications

to be broken up into individual parts. For example, consider the CartPole example from Section VI.3.2. The

desired behavior (“Keep the pole upright between ±12◦ and the cart within ±2.4 units”) can be written as

Φ = G((|θ |< 0.20944)∧ (|x|< 2.4)) (VI.4)

or it can be broken up into the individual components8 and combined with a conjunction,

φangle = G(|θ |< 0.20944)

φposition = G(|x|< 2.4)

Φ = φangle ∧φposition.

(VI.5)

These specifications, Equation VI.4 and Equation VI.5, are equivalent and allowable in both TLTL and STL-

Gym. However, STLGym allows you to treat φangle and φposition as individual specifications and automatically

applies the conjunction. Any number of individual specifications can be defined, and the resulting specifica-

tion the RL agent will learn to satisfy is the conjunction of all of them. Thus, if n specifications are provided,

the RL agent will learn to satisfy

Φ =
n∧

i=0

φi. (VI.6)

VI.4.3 Calculating Reward

STLGym replaces any existing reward function in the environment with the robustness degree calculated

using the provided specification(s) and RTAMT. If the user defines n specifications, φ0,φ1, ...,φn with corre-

7The RTAMT code is available at https://github.com/nickovic/rtamt
8These individual components were designed to allow users to write goal specifications and safety specifications as separate entities.
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sponding weight values9, c0,c1, ...,cn, the reward function is constructed as

rt =
n

∑
i=0

ciρ(s,φi,0). (VI.7)

We include optional weights to add more versatility. This allows for users to write specifications that

build on each other, i.e. a specification is defined using another specification, but remove one from the reward

function if desired by setting its weight to 0. Additionally, weights can help establish priorities in learning

specifications. For example, we go back to the CartPole specification Equation VI.5. The reward function

generated, according to the quantitative semantics described in Section VI.2.1, for the specification is

rt = cangle min
t ′∈[0,t]

(0.20944−|θt ′ |)+ cposition min
t ′∈[0,t]

(2.4−|xt ′ |). (VI.8)

If both cangle = cposition = 1, then the maximum possible reward for satisfying both specifications is 2.60944.

However, because the environment was designed to terminate if either specification is violated, if the agent

only satisfies φposition and lets the pole fall, the maximum possible reward is 2.4. Since the gain from keeping

the pole upright is so small, we found it was often ignored. In contrast, if we make the weights cangle = 4.7746

and cposition = 0.41666, then the maximum possible reward for satisfying both specifications is 2. If either

of the specifications are ignored, the maximum possible reward drops to 1. Thus, we have enforced equal

priority for satisfying the specifications.

VI.4.3.1 Dense vs Sparse

In addition to adding optional weights for each specification, STLGym allows users to specify if the reward

function should be calculated densely or sparsely. This design decision was spurred on by the existing RL

literature, where there are two main types of rewards utilized: dense and sparse. In the literature, dense

rewards are returned at every timestep and are often a scalar representation of the agent’s progresses toward

the goal. For example, the baseline reward function in the Pendulum environment (Equation VI.3) is a dense

reward. In contrast, sparse rewards are not returned at each timestep, but instead are only returned if certain

conditions are met. For example, an agent receiving +1 for passing a checkpoint would be considered a sparse

reward. Each of these reward types have their advantages for different tasks and algorithms. However, we

make use of these terms to make our own definitions of dense and sparse reward as they relate to frequency.

Definition 10 (Dense Reward). In this setting, the robustness degree is computed at every allowable timestep.

Thus, at each timestep, the reward returned to the agent is the robustness degree of the episode from the

9If a weight is not defined by the user, the default is 1.
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beginning to the current time step.

Definition 11 (Sparse Reward). In this setting, the robustness degree is only computed once at the end of the

episode. In all timesteps before that, the reward is 0. Thus, the return is the robustness degree for the entire

episode.

From our experiments, we found dense rewards works better for training agents, while a sparse reward

is better for evaluating their performance and understanding if they have successfully learned to satisfy the

specification or not. An example is provided in Section VI.5.1.

VI.5 Example Case Studies

In this section, we describe 5 case studies we conducted using the environments described in Section VI.3.1

and Section VI.3.210. In all of our case studies, we use the Proximal Policy Optimization (PPO) [26] al-

gorithm for training, unless otherwise specified. These case studies were designed to highlight features of

STLGym and try to identify some potential “best practices” for future use in other environments.

VI.5.1 Sparse vs Dense Reward

In this case study, we demonstrate why having the ability to swap between sparse and dense versions of

our STL reward function is important. To this end, we train 30 agents in the pendulum environment from

Section VI.3.1 to swing the pendulum upright and stay upright. Written as an STL specification, that is

Φ = F(G((|θ |< 0.5))). (VI.9)

Ten agents are trained using the baseline reward function (Equation VI.3), ten agents are trained with

the sparse version of our STL reward function, and ten agents are trained with the dense version of our STL

reward function. Using the quantitative semantics from Section VI.2.1, our tool automatically generates the

reward function,

rt = max
t ′∈[0,t]

(
min

t ′′∈[t ′,t]
(0.5−|θt ′′ |)

)
. (VI.10)

We show the sample complexity plots of training these 30 agents with the 3 different reward functions

in Figure VI.3. Sample complexity is a measure of how quickly an RL agent learns optimal performance.

Throughout training, the process is halted, and the agent is evaluated to see how well it performs with the

policy learned so far. The policy is evaluated in ten episodes, and the performance, measured by the return,

is recorded for the plot. A better sample complexity is shown by a higher return earlier in training. In

10All training scripts are available at https://github.com/nphamilton/spinningup/tree/master/spinup/examples/sefm2022
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(a) Sample complexity of PPO agents trained in Pendulum
environment. Evaluations done with Equation VI.3 for the
reward function.

(b) Sample complexity of PPO agents trained in Pendulum
environment. Evaluations done with Equation VI.10 defines
sparesly for the reward function.

Figure VI.3: Plots comparing the sample complexity from training in the Pendulum environment using three
reward functions: (baseline) the baseline reward function, Equation VI.3; (sparse) the STLGym reward func-
tion, Equation VI.10, defined sparsely; and (dense) the STLGym reward function defined densely. Each
curve represents the average return from 10 agents trained the same way. The shaded region around each
curve shows the 95% confidence interval.

Figure VI.3, we show sample complexity measured by the (a) baseline reward function and (b) the sparse

STL reward function to highlight how the agents trained with the dense STL reward have a better sample

complexity than agents trained with the baseline reward function even according to the baseline metric.

While the agents trained using the sparse STL reward function failed to learn an optimal policy, using the

sparse STL reward function for evaluating performance was very beneficial. Using the dense reward function

for evaluating performance is very similar to the baseline reward function, in that neither provide any insight

into whether or not the learned policy satisfies the desired behavior. In contrast, using the sparse STL reward

function in Figure VI.3(b), we see the exact point where the learned policies are successfully able to satisfy

the specification when the return is greater than 0.

VI.5.2 STLGym is Algorithm-Agnostic

In this case study, we demonstrate that our approach is algorithm-agnostic by using multiple RL algorithms

for the Pendulum example explained in Section VI.3.1. All algorithms are used to learn the optimal policy

for satisfying the specification in Equation VI.9. We demonstrate the following RL algorithms successfully

learning to satisfy the specification using STLGym: Proximal Policy Optimization (PPO) [26], Soft Actor-

Critic (SAC) [25], and Twin Delayed Deep Deterministic Policy Gradient (TD3) [24]. The sample complexity

plot in Figure VI.4 shows all RL algorithms successfully learn to satisfy the specification. While the results

suggest SAC and TD3 work better with our STL reward function, these algorithms are known to learn the

optimal policy for this environment very quickly. More examples, across different environments, are needed
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Figure VI.4: The sample complexity of multiple RL algorithms using STLGym to learn the Pendulum spec-
ification, Equation VI.9. Each curve represents the average of 10 agents trained the same way. The shaded
region around each curve shows the 95% confidence interval.

to make that claim.

VI.5.3 On Separating Specifications and Scaling

The goal of the agent in the CartPole environment is to learn how to keep the pole upright so the angle,

θ , is between ±12◦ and the cart’s position, x remains within the boundary of ±2.4 for 200 timesteps. As

explained in Section VI.4.2, this specification can be written as a singular specification, Equation VI.4, or as

the conjunction of individual components, Equation VI.5.

Using STL’s quantitative semantics, STLGym would generate the reward function for Φsingle as

rt = min
t ′∈[0,t]

(
min

(
(0.20944−|θt ′ |),(2.4−|xt ′ |)

))
. (VI.11)

Similarly, STLGym would generate the reward function for Φsplit as Equation VI.8

In this case study, we look at how splitting up the specification into its individual components to create a

different reward function impacts the training. We compare the sample complexity of learning Φsingle against

learning Φsplit with and without weights. The results are shown in Figure VI.5.

The results shown in Figure VI.5 indicate splitting the specification is a hindrance for learning. The agents

that were trained to satisfy Φsingle (single), converged to a more optimal policy faster than both the weighted

(stlgym) and unweighted (split) options of Φsplit . We believe this is a result of trying to satisfy Φsingle, where

the robustness degree is always the worst-case of satisfying both the angle and positions specifications. There

is no credit awarded for satisfying one better than the other, like in the Φsplit definition. We believe that,

while splitting the specification in this case study was more of a hindrance, in more complicated systems

with more specifications, splitting could be more beneficial than shown here. In those cases, the option for
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Figure VI.5: Plot comparing the sample complexity of the three options presented in Section VI.5.3. Each
curve represents the average of 10 trained agents, and the shaded region shows the 95% confidence interval.
The return is calculated using the sparse definition of Φsplit (reward function represented by Equation VI.8)
with cangle = 4.7746 and cposition = 0.41666 so the maximum possible return is 2.0.

weighting the individual specifications will be very helpful as the weighted and split option (stlgym), which

is only supported in STLGym, learned faster than and outperformed the unweighted option.

VI.5.4 Retraining With New Goal

There are many cases where the traditional reward functions successfully train agents to complete the desired

behavior, but we want to refine/improve/augment that behavior to some other desired behavior. Instead of

designing a new reward function and training a new agent from scratch, our tool can be leveraged to retrain

the agent to satisfy the new desired behavior. This also makes our tool amenable to curriculum learning [116],

an RL training strategy that trains agents in progressively harder environments or constraints. Similar to a

learning curriculum used to teach students in a class, by starting with easier constraints and building upon

what is learned from the easier tasks, the agent is better able to learn more complex behaviors.

In this case study, we look at an example with the CartPole environment described in Section VI.3.2.

The baseline reward function trains agents to keep the pole upright very efficiently, but as [111] point out

in their work, many of the learned policies are unstable. When they evaluated the policies for longer than

200 timesteps, they found many learned policies failed shortly after 200 timesteps. We saw similar results,

which are shown in Figure VI.6. To counteract this issue, we retrain the agents to maximize the measured

robustness of the specifications

φposition = F(G(|x|< 0.5)), and

φanlge = F(G(|θ |< 0.0872665)).
(VI.12)

In plain English, the specifications translate to “eventually the cart will always be within ±0.5 units of the
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(a) 10 example episodes where the policy learned using the
baseline reward function is stable after t = 200.

(b) 10 example episodes where the policy learned using the
baseline reward function is unstable after t = 200.

Figure VI.6: Episodes recorded from trained policies evaluated in the CartPole environment. The policies
trained using only the baseline reward function can learn unstable policies that fail shortly after t = 200, while
policies retrained with STLGym are able to continue satisfying the specification past t = 200. The red marks
the region outside the specification and the horizontal green lines mark the goal during training at 200, and
the goal at evaluation 500.

center of the track” and “eventually, the pole’s angle will always be within ±5◦.”11

After some retraining, Figure VI.6 shows the retrained policies converged to more stable and consistent

behavior. In particular, Figure VI.6.b shows our approach corrects the unstable behavior.

VI.5.5 Learning a Timed Specification

In this case study, we look at one of the features of our tool that sets it apart from almost all existing ap-

proaches in the literature—the ability to learn timed specifications. Here we return to the Pendulum envi-

ronment described in Section VI.3.1. This time, the specification is to “eventually the angle will be between

±45◦ for 10 timesteps.” In STL, the desired behavior is written as,

Φ = F(G[0:10](|θ |< 0.5)). (VI.13)

And is converted by our tool to the reward function,

rt = max
t ′∈[0,t]

(
min

t ′′∈[t ′,t ′+10]
(0.5−|θt ′′ |)

)
. (VI.14)

The results of learning the specification in Equation VI.13 are highlighted in Figure VI.7 where we show

a few example episodes. When we first wrote this specification, we believed the resulting behavior would

closely match that of the agents in Section VI.5.1. Instead, the learned policies were more varied. Some

11These specifications came from [111].
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(a) One trained policy. (b) A different trained policy.

Figure VI.7: Episodes of policies trained to satisfy the specification in Equation VI.13.

stay close to the upright position for longer than others, but they always return. We believe this is a result

of the circular state space, which puts the agent back in a starting position after it moves away from upright.

This result shows STLGym can successfully train agents to satisfy timed specifications. However, it also

highlights a limitation of our approach: we have no way of overwriting the terminal conditions. We would

see more similar results if we were able to stop the episode once the specification was satisfied, but that is a

feature left for future work.

VI.6 Related Work

Our work is not the first to use temporal logic specifications to create reward functions. The previous works

can be grouped into two categories, (1) quantitative semantics and (2) reward machines. We describe the

related works in greater detail below and provide a general comparison of our approach with others in Ta-

ble VI.1. The RL algorithms listed in Table VI.1 are the following: Augmented Random Search (ARS) [18],

Deep Deterministic Policy Gradient (DDPG) [23], Deep Q-Learning (DQN) [3], Neural Fitted Q-iteration

(NFQ) [117], Relative Entropy Policy Search (REPS) [118], Q-Learning (Q) [119], and Twin Delayed Deep

Deterministic Policy Gradient (TD3) [24].

VI.6.1 Quantitative Semantics

This category is where our work resides. These works, [109, 110, 111], generate reward functions based on

the quantitative semantics of the temporal logics used to write the specifications the RL agents are tasked

with learning to satisfy. In Truncated Linear Temporal Logic (TLTL), presented in [109], the authors create a

new specification language, TLTL, that consciously removes the time bounds from STL to only have untimed

operators. They made this decision, so specifications do not have to account for robotic limitations. In

contrast, our STLGym is designed to handle both timed and untimed specifications, thus handling all TLTL
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Table VI.1: A comparison of our tool to similar tools in the literature, separated by category, filled in to the
best of our knowledge. × indicates the feature is not supported, ✓ indicates the feature is supported, and ?
indicates it should be supported, but we cannot say so with confidence.

Name Env-API Sparse/Dense RL Algorithms Retraining Timed Sequential

TLTL [109] ? Dense REPS ? × ✓
BHNR [111] Custom Dense DQN ? ✓ ?

STLGym (ours) Gym Both Any ✓ ✓ ✓

QRM [112] Gym Both Q, DQN × × ✓
LCRL [120] Custom Both Q, DDPG, NFQ × × ✓

SPECTRL [13] Custom Dense ARS × × ✓
DIRL [113] Gym Dense ARS, TD3 × × ✓

problems and more.

Another work, [111], uses timed and untimed STL specifications similar to our STLGym. Their approach,

Bounded Horizon Nominal Robustness (BHNR), computes a normalized robustness value over bounded hori-

zons, i.e. small segments, of the episode, creating a reward vector. By only analyzing the robustness over

smaller segments of the episode, their approach is able to speed up the robustness degree calculation for dense

reward computation. However, because only a small portion of the episode is analyzed, their approach cannot

be used to determine the robustness degree across an entire episode like our sparse reward function is able

to do. Additionally, their implementation limits user’s specifications to be defined only by variables in the

environment’s observation space. Thus, their tool cannot train our pendulum example without re-writing to

specification in terms of x and y instead of θ .

VI.6.2 Reward Machines

Reward machine approaches, [112, 107, 13, 113], use finite state automata (FSA) to handle context switching

in the reward function. Temporal logic specifications are used to generate FSA that monitor the trace for

satisfaction. Additionally, depending on which state of the FSA is in, the reward function changes in order to

guide the agent towards satisfying the next specification. This approach is really great for solving sequential

tasks because it allows the user to specify “go to the fridge; open the door; take something out; close the

door; return to home” and the reward function changes depending on which part of the task is being done. To

the best of our knowledge, however, none of these approaches can handle timed specifications yet.

VI.7 Summary

This chapter presents our tool, STLGym for training agents to satisfy timed and untimed STL specification

using RL. To demonstrate the features of our tool and explore some best practices for learning to satisfy

STL specifications, we trained over 130 different RL agents in our 5 case studies. From these case studies
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we observed (1) RL agents learned STLGym’s dense rewards better than sparse rewards, (2) STLGym is

algorithm-agnostic and works with any RL algorithm designed to integrate with Gym environments, (3)

leaving specifications combined is better for RL agents than splitting them into individual parts, (4) STLGym

is effective for retraining RL agents to better satisfy specifications, and (5) STLGym is effective for training

RL agents to satisfy timed STL specifications.

VI.8 Reinforcement Learning Hyperparameters

Providing the hyperparameters used in RL experiments is crucial for recreating the results. In all of our

experiments, we train 10 agents using the following random seeds,

[1630,2241,2320,2990,3281,4930,5640,8005,9348,9462].

The algorithm hyperparameters used for each environment are specified in the following subsections.

Unless otherwise specified, the hyperparameters are consistent across all case studies. All hyperparameter

values, except the one marked with a ∗, are the default values provided in OpenAI’s SpinningUp library

available at https://github.com/openai/spinningup.

VI.8.1 Pendulum

In Table VI.2 we provide the hyperparameters used for training agents with the PPO, SAC, and TD3 algo-

rithms in the Pendulum-v0 environment.

Table VI.2: Pendulum Hyperparameters

PPO SAC & TD3

actor architecture 64 tanh, 64 tanh, 1 linear 64 ReLU, 64 ReLU, 2 tanh
critic architecture 64 tanh, 64 tanh, 1 linear 64 ReLU, 64 ReLU, 1 ReLU
epoch length 4000 4000
epochs 100 100
discount factor γ 0.99 0.99
polyak N/A 0.995
entropy coefficient α N/A 0.2
clip ratio 0.2 N/A
actor learning rate 0.0003 0.001
critic learning rate 0.001 0.001
updates per epoch 80 N/A
target kl 0.01 0.01
GAE-λ 0.97 N/A
minibatch size N/A 100
start steps N/A 10000
update after step(s) N/A 1000
update every step(s) N/A 50
max episode length 200 200
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VI.8.2 CartPole

In Table VI.3 we provide the hyperparameters we used to train our PPO agents in the CartPole-v0 environ-

ment.

Table VI.3: CartPole Hyperparameters

Separating Specifications Train/Retrain

actor architecture 64 tanh, 64 tanh, 1 linear 64 tanh, 64 tanh, 1 linear
critic architecture 64 tanh, 64 tanh, 1 linear 64 tanh, 64 tanh, 1 linear
epoch length 4000 4000
epochs 100 50∗
discount factor γ 0.99 0.99
clip ratio 0.2 0.2
actor learning rate 0.0003 0.0003
critic learning rate 0.001 0.001
updates per epoch 80 80
target kl 0.01 0.01
GAE-λ 0.97 0.97
max episode length 200 200
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CHAPTER VII

Conclusions

This dissertation presents our contributions in the field of safe and robust reinforcement learning for cyber-

physical systems, and this chapter concludes the dissertation with a brief summary and directions for future

research.

VII.1 Summary

In Chapter I, we established the goal of this dissertation to answer the crucial questions

1. Why should we consider RL for sim2real scenarios?

2. How can we best incorporate safety in the RL process?

3. How can we assure that learning safety produces safer results?

4. How can we integrate safety specifications in the reward designing/shaping process?

We answered the first question in Chapters III and IV. The experiments in Chapter III showed RL agents

are robust to small changes in the model and environment and can quickly learn to overcome the differences,

provided the goal is the same. The experiments with our 1/10th scale autonomous racecar in Chapter IV sup-

ported this conclusion. Additionally, Chapter IV extended our examples to include a sim2real demonstration

highlighting RL’s effectiveness at bridging this gap, and its key shortcoming: if the agent is trained without

safety in mind, it will not be safe in the real world. Identifying this shortcoming helped spur our research

towards answering the remaining questions.

We answered the second and third questions in Chapter V by training 880 RL agents in 88 experimental

configurations. The results from the ablation study answered many questions about SRL approaches. Key

among these answers was the best method to incorporate safety in the training process, and ensure the RL

agents learn safe behavior is through the reward function. Agents trained using reward functions that include

a measure of safety consistently learned safe, high-performing policies. The agents trained using safe explo-

ration methods were not as consistent when it came to learning safe policies that did not rely on having the

RTA as a backup.

Designing reward functions is a challenging problem. Designing reward functions that integrate safety

specifications in a way that does not prevent the agent from learning to complete the goal task is even more

challenging. To assist the reward function design process, we developed our tool, STLGym, described in
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Chapter VI. STLGym allows designers to automatically generate complex reward functions that help agents

learn to satisfy the written behavior specifications. This allows researchers to write specifications describing

the desired safe behavior, and the agent will learn to satisfy it.

VII.2 Future Work

This section describes future research directions based on the results of this dissertation.

VII.2.1 Continuing and Expanding Ablation Study

The ablation study we conducted in Chapter V was large, but not exhaustive, and we want to expand our

study to include more complex environments. Furthermore, new SRL approaches and ways of integrating

RTA in the learning structure are still in development. The Neural Simplex Architecture (NSA) [48] is just

one example of a newer approach we would like to add to our study. Additionally, we have identified the

following questions that we would like to explore:

• Soft vs hard constraints: soft constraints are things like speed limits. Violating soft constraints is un-

desirable, but violating these constraints is not immediately catastrophic. In contrast, hard constraints

cannot be violated without catastrophic results. Should we be treating these types of constraints differ-

ently during training?

• Scaled punishment for violating safety constraints: in our study, the punishment for violating a

safety constraint was always constant. How might it impact training if we scaled the punishment

according to how bad the violation was?

• Quantifying risk as an input for the agent: in this case, risk would measure the probability of success

or failure1. How can we leverage this valuable information in the input space to improve agent safety?

In addition to the new SRL approaches being developed, we have recently come across new approaches

in the DRL field that have not been identified as SRL approaches but share a lot of similarities to SRL ap-

proaches. This opens up even more literature to look through for potential improvement to existing SRL algo-

rithms. For example, the recently developed work “Exploring With Sticky Mittens: Reinforcement Learning

With Expert Interventions” [121] takes advantage of existing expert control systems to learn how to complete

low-level tasks from demonstration. They relate this to how infants are better able to learn grasping tasks

from using sticky mittens that simplify the grasping task, allowing the infants to more quickly realize the

value of grasping and prioritize learning the particulars of it. This shares a lot of similarities with the SRL

1This is a newer field of study that, to the best of our knowledge, has not been solved yet and could be an interesting research direction
all its own.
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approach of training with RTA, except in SRL we want to avoid using the RTA instead of leveraging it to

learn from demonstration.

VII.2.2 Further Development with STLGym

The case studies presented in Chapter IV are only a fraction of what STLGym is potentially capable of. In

future work, we hope to explore the following STLGym uses and demonstrate STLGym’s effectiveness in

more test environments.

More environments: One of the key features of STLGym is its adaptability to integrating with any exist-

ing Gym environments, with only minor modifications to make sure all the variables that need to be tracked

are readily accessible. Once we are able to make these modifications on the Spacecraft Docking environments

from Chapter V, we want to train agents that are able to satisfy the safety and goal specifications:

φsa f ety = G((r̄ < r̄dock) =⇒ ( ˙̄r < ˙̄rcrash)

φgoal = F(r̄ < r̄dock)

Φ = φsa f ety ∧φgoal

(VII.1)

where r̄ is the radial distance between the deputy and chief spacecraft and ˙̄r is the relative speed the deputy

is traveling towards the chief. By learning to satisfy these specifications, the agent will learn to eventually

guide the deputy within the docking region and when it does, the speed should be below the crashing speed

limit.

Sequential tasks: Writing STL specifications that describe sequential tasks is possible, but requires a lot

of nuances to ensure one is done before the other. We have already started work on an example demonstrating

STLGym’s ability to train agents to satisfy sequential specifications. However, we have not yet figured out

the particulars for writing sequential specifications that can generate dense reward functions using STLGym.

Monte Carlo analysis: Because STLGym does not change the environment’s dynamics in any way, STL-

Gym could be very useful for Monte Carlo analysis. Monte Carlo analysis is a straightforward verification

technique that relies on repeated random sampling in simulation to identify uncertainty. This usually requires

hundreds to millions of simulations to cover as much of the operating space as possible. Using STLGym, we

can write the specifications that need to be satisfied and, using the sparse reward setting, run all of those sim-

ulations. Since the return is the measure of satisfaction across the entire episode, we can quickly determine

if the agent regularly satisfies the specification by looking at the average, maximum, and minimum return.

Curriculum learning: One of the features of STLGym we noted in Chapter VI is its amenability to

curriculum learning. In future work, we would like to explore this in greater detail. We hope to uncover the

108



advantages of increasing the strictness of safety specifications throughout the learning process.

VII.2.3 More sim2real Demonstrations

The primary motivation of the work in this dissertation was geared towards improving RL in order to more

confidently deploy RL-trained agents in the real world. However, the majority of our work was limited to

purely simulation examples. Having established more of the theory for building safe and robust autonomous

controls using (S)RL, we want to put that theory into practice on real-world systems to verify that the theory

holds up in practice.

VII.2.4 Other Uses for RL

This dissertation focused solely on utilizing RL for learning optimal control policies. However, RL can

be used for more problems than just control. Recent works have shown RL is effective for predicting the

distances between pairs of amino acid residues, helping better predict protein structures and, from this in-

formation, their purpose [122]. Other work has demonstrated RL’s usefulness in designing computer chips

by identifying the best locations for connecting chip blocks, including unseen blocks the agent has no prior

knowledge of. The uses of RL are so much greater than simply autonomous control. If I had to start my PhD

over, I would want to spend more time learning about these other RL formulations. I believe I still would

have pursued using RL for safe and robust control, but learning about the other formulations while I was

learning how to implement RL would have helped me better understand the potential for RL. Additionally, I

think these other directions would have been fascinating to at least look into more
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K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver,
“Grandmaster Level in StarCraft II using Multi-Agent Reinforcement Learning,” Nature, vol. 575,
pp. 350–354, Oct. 2019.

[96] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare, “Deep reinforcement
learning at the edge of the statistical precipice,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[97] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier
functions: Theory and applications,” in 2019 18th European Control Conference (ECC), pp. 3420–
3431, IEEE, 2019.
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