
Transcript
[0:01] (music) 

Derek Bruff: [0:05] This is Leading Lines. I’m Derek Bruff. I am starting to believe that one of

our unstated goals on Leading Lines, is to interview each member of the podcast producer

team. In past episodes, we’ve interviewed John Sloop, Melissa Mallon, former producer,

Ole Molvig and well, me. Today we’ll continue the trend with an interview with Cliff Anderson,

Associate University Librarian for research and digital initiatives here at Vanderbilt and

another Leading Lines producer. I really like how this interview came together. Cliff has been

teaching a new course called, “The Beauty and Joy of Computing” for a few semesters, now.

It’s an introduction to computer science and computational thinking aimed at students who

aren’t majoring in computer science. This semester, another Leading Lines producer,

Gayathri Narasimham, Research Assistant Professor in Electrical Engineering and Computer

Science, has started teaching it. Gayathri thought it would be interesting to interview Cliff

about his experiences designing and teaching the course. I thought that was a great idea and

I’m happy to present their conversation here on Leading Lines.  

[1:09] In the course, Cliff and Gayathri use NetsBlox as their programming language. It’s

a blocks-based language like Scratch or Snap, designed to teach computing concepts

visually, without having to work through lines of code. In the interview, Cliff discusses the

pros and cons of this approach to teaching computer science. And he shares a little about his

interdisciplinary background as a scholar of religion, turned librarian, turned

technologists. (music) 

Gayathri Narasimham: [1:37] So I want to ask you, what got you interested in NetsBlox on

which this course is based? 

Cliff Anderson: [1:43] So I guess it was kind of a long story, in a sense, that it goes back to

like how I got interested in programming languages and the teaching of programming

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

1 of 13 8/29/2022, 12:33 PM



languages and maybe the teaching of computer science and programming outside of

computer science as a discipline per se. So, like a lot of people in the eighties, I grew up with

a personal computer and learned how to program in the basic programming language.

So, the idea of learning as you go and experimenting and trying out new programs and sort

of seeing how they worked. And maybe even getting inside of programs that have been

written and editing their source code and seeing how things would change, was something

that I was kind of used to. That idea of like tinkering and playing with code was something

that was very much a part of my own education in software, but also, I think it opened up my

mind to sort of the idea of educational programming environments. Because in the eighties,

there was a large blossoming of efforts to make programming more accessible to children.

And I think I’ve benefited from that. So you know, you kind of fast forward to perhaps after I

got my PhD and I’m working in a library, and I was given responsibility to build a digital

library. And so I had to reactivate a lot of the programming that I had learned as a kid and

formalize it. I’d, I’d never really stopped. But, you know, when you’re given a goal then you,

you’ll learn a lot more to achieve that goal.  

[3:17] So I worked with a bunch of colleagues and eventually started really concentrating a

language called XQuery, which is an XML programming language really great for handling

large quantities of text. But also what I needed to do, because there weren’t a lot of XQuery

programmers, was to think about how to train my colleagues to use XQuery effectively, as

well. So I had been teaching myself, but then was also teaching colleagues how to program.

So that led to an interest in what are the best ways to communicate the teaching of

programming. How do you do that effectively? They’re definitely some ways where it’s not so

effective, just like throwing up a bunch of code and just saying like now copy this and paste

that. That’s not too helpful. So the idea of sort of breaking down code into units of

meaning and exploring, what they do. And again, like tinkering with them with them to see

the different outcomes was, was a way that I’d sort of integrated some of that earlier learning

from those educational programming environments into my practice of teaching XQuery.

And that eventually led to a book a colleague and I wrote together, Joe Wicentowski,

called, XQuery for Humanists, which we basically encapsulate a lot of our learning. Joe had a

similar experience teaching colleagues at the State Department how to master this

programming language. So when faculty here, in particular, Professor Ákos Lédeczi and Doug

Schmidt came to me and said we might want to do something like an introductory

programming course for non-majors or potential majors. I thought that’d be really

interesting. Of course, I knew there’d be big challenges there because I had to just jump up

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

2 of 13 8/29/2022, 12:33 PM



another step, which is to say, you know, I needed to make sure that I was giving a well-

grounded introduction to computer science, not just practical programming. And I needed to

make sure that we’re doing this with the latest tools and sort of best practices for teaching

computer science. Fortunately, a lot of that had been already encapsulated in this Beauty and

Joy of Computing curriculum and we can talk about that some more. But I was able, as you

say, to adapt that for an audience here at Vanderbilt and then teach it for three semesters.

And I’m really glad that you’re teaching it now and continuing with that effort. So that’s a bit

of a long-winded introduction, but let’s maybe dive into aspects of that. 

Gayathri: [5:33]Yes. Yeah, I would definitely like for us to do that. I want to come back to a

couple of points that I wanted to, as I was listening to when you said this. One is you had

experimented with programming from a very young age. And, and that’s not intuitive to a lot

of people, especially the, the audience of this Beauty and Joy, the students who are taking

the Beauty and Joy of Computing class. And that builds on my second question, which is, it is

aimed towards the humanists or its aim to non-computer science majors. And so for them, it

is not intuitive at all. It’s not completely, it’s not something that, that is in their repertoire of

thinking. And so they’re learning some of these skills from scratch and I meant scratch as a

word, not as a code. So I want to ask you about how you built this course, Beauty and Joy of

Computing. The curriculum that Berkeley has, upon which your course is based, does not

have this comprehensive view of computer science. You for example, in your syllabus, you’ve

used Martin Erwig’s book, Once Upon an Algorithm: How Stories Explain Computing and

you’ve used Claire Evans’, Braodband: The Untold story of the Women Who Made the Internet.

And both of those books, along with the additional readings, give a perspective outside of

just a very programming focused environment. It gives a lot of context to the kinds of ideas

that are popular, the concepts that are important to understand computer science and

computing principles. So I want you to talk about all of that if you can. 

Cliff: [7:22] Okay, so let’s maybe just start with The Beauty and Joy of Computing. So this is

an effort, I’m sure there are many more people involved than the ones that I can name right

now. But, you know, I’m thinking primarily of Dan Garcia, Brian Harvey, Tiffany Barnes. These

are computer science educators with long experience thinking about how to

impart computer science principles to wide audiences and to make sure that it goes beyond

sort of the traditional group that might immediately decide to major in computer science.

And so their curriculum has been incredibly successful and not only at the undergraduate

level, but also at high schools. So I very much benefited from seeing what they had done and

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

3 of 13 8/29/2022, 12:33 PM



thinking about how to adapt that into the context at Vanderbilt.  

[8:05] And one of the things I have to say, just on a personal anecdotal level aside, I met Dan

Garcia at the SIGCSE conference, it’s called the Special Interest Group

and Computer Science Education. It’s, it’s the largest computer science educators conference.

And when I told him I was teaching this class, he give me a big hug, which I felt like was

terrific because I was really worried a bit that I was maybe stretching the boundaries of

the Beauty and Joy of Computing curriculum too far. But I think they recognize that it’s, it’s a

kind of set of principles that are about imparting this knowledge in a friendly and accessible

way. A way that really stresses the fun and the pleasure of computing, as much as the science

and rigor, but they’re both there and I think in nicely balanced parts. So, but one thing, we

have a different format here at Vanderbilt. This course had been in two meetings without

labs. And so in order to be able to, to teach this course, I had to make some adjustments just

to fit our semester and to fit the schedule. And so walking through it, I also thought it would

be helpful to have some textbooks that would focus also not only the social issues, but

the one that, that has been traditionally used with The Beauty and Joy of Computing is Blown

to Bits: Your Life, Liberty and Happiness After the Digital Explosion by Hal Abelson,

Ken Leedeen, and Harry Lewis. That book was written in 2008. And it’s a, it’s a fantastic and

excellent book. But just like you could imagine, the difference is 12 years later, in terms of

where we are as a society, the digital issues that we’re looking at, things that change. There is

a second edition of that book that is coming out. Wendy Seltzer is also now a coauthor on

that. And I was eagerly waiting for it to come out. And they said it was taking a little bit

longer than we expected. And I think it’s going to be a fantastic book in its second edition.  

[10:00] But in the meantime, I added, as you mentioned Martin Erwig‘s book, Once

Upon an Algorithm: How Stories Explain Computing, which I found extremely helpful because

it’s hard to find an introductory computer science textbook that doesn’t focus on some

particular language. So you could find one that might be like for Python or JavaScript, Pascal,

whatever you, you know, you could name. But what I really wanted was one that just focused

on the broad concepts because obviously I was going to be teaching this in conjunction with

the visual programming language that we have in the “Beauty and Joy of

Computing.” We could talk a little bit about Snap, NetsBlox, Scratch maybe later. So that

book was, was great because it helped me to just identify issues like what is a type? What is a

control structure, without actually reference to code. I mean, it uses some pseudocode, but

the idea is just to bring mental level of abstract, or even what is abstraction. That then I could

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

4 of 13 8/29/2022, 12:33 PM



highlight in the examples that we did in terms of practical coding exercises. And there wasn’t

a mismatch between what the book was teaching and the exercises that I was using in class.   

[11:06] I think it’s a really excellent book. And students seem to like it. It’s, it can be

demanding at times because it really is rigorous. But I think it sets up people well, if they

decide to take a second computing course, they’ll understand the concepts extremely well.

And so it’s really more that they have mastered the syntax and maybe additional semantics or

whatever is involved in a particular language you’re using. I would also say that the third

book, which you mentioned I’ve used, Claire Evans’ book, Broadband: The Untold Story of

the Women Who Made the Internet was really important for another reason. I mean, one of

the goals of this course was to expand the range of people that decide to take computer

science, whether they use it in a different major, or they take a minor in computer science or

decide to major in it. We wanted to expand access. And traditionally that’s meant getting

more women and minorities to take computer science. And so I think Evans’ books was really

important because it brought out the contributions that women have made throughout the

history of computing at every stage, you know, in so many different ways. And like, like every

story, some were extremely successful in their careers, others less so, others maybe fallen off

the map and rediscovered. But they’re great human stories. And I think one of the things that

was really useful about that, using those stories in class was just to say, you know, we know a

lot of stories about Alan Turing. Maybe we know some. I don’t know how many people know

all those stories and we do, I did put on, for example, some of Turing’s work. But I wanted

people to hear about stories that were told for perspectives that weren’t as commonly

known. And also focused on the contributions that women have made which had been

extremely substantial. And so I think that was helpful and just sort of broadening the

perception of what computing is, which was again, one of the goals of the course.  

Gayathri: [13:02] Anecdotally, I want to share something today we discussed The Longest

Cave. So it was about Patricia Crowder and how she discovered the links between

the cave system in Mammoth Caves. And I think the story is really about how she

discovered the cave, then took that, and put it into her programming and developed the

algorithms and tools for mapping that out. The only, you know, the whole, the whole class,

we were talking about this. This is an interesting story. It deals with these concepts very

nicely. And I think overall, both with Martin Erwig’s book and the Claire Evans’ book, we

are looking at the chapters and it’s an easy read in many ways. And by giving us very good

conceptual knowledge about all the different kinds of concepts that we need for the class

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

5 of 13 8/29/2022, 12:33 PM



itself. So I think those are great selections. Thank you.  

Cliff: [14:00] Well you know, I’ll say that I mentioned using computers early on, but when I

was, you know, it was in the seventies, my father was taking a course at NYU and he got

access to a mainframe computer. And I used to sneak onto the mainframe under his

account, and then  play Adventure online and it was the first computer game I ever played.

And I just couldn’t believe it. And so I used to play that game all the time. So to read about

sort of the human side of how that story got written and you know, it was, it was really

fascinating to come back around. So anyway, yeah, so I think, you know, stressing the

humanity of computing and also just expanding like their perceptions of what it means to be

a computer scientist. Definitely borrow what I was trying to do and what you’re trying to do. 

Gayathri: [14:50] Yeah. What were your experiences teaching this course? I mean, it’s not the

same as the, BJC, The Beauty and Joy of Computing that Berkley does.  Yours is more well-

grounded in the conceptual, the concepts, for example, to me. I mean, let me just say I

haven’t taken the BJC, so for me, I feel like this is really well-grounded, especially when it

comes to teaching a course in a semester, that you have all the background knowledge about

all the concepts. So give us some experiences, give us some of your insights into

teaching. What were your experiences? What do you think you would have done differently?  

Cliff: [15:34] Well, so I think one of the things that I really enjoyed about this, is the work that

has been put into the visual programming’s aspect of it. So just for people that are listening

to this and haven’t really played around with the technologies that we’re talking about. So a

lot of people know Scratch. And, and so that comes out of work at the MIT Media Lab in

2017, sorry, 2007, I believe they launched the first version of Scratch, I think was Mitch

Resnick’s Lifelong Kindergarten program. The idea was to make blocks that you could

connect together and snap together like Lego essentially. And then by making bigger and

bigger units, you could create really amazing programs. And I think, you know, it took off, the

success of Scratch is just undeniable. It’s been widely, widely used in lots of elementary

schools, middle schools. But there are some limitations for using Scratch to teach computer

science. And so, you know, when you think about trying to design a language that will be as

some of our colleagues like to say, “low threshold but high ceiling,” in a sense that, easy to

learn, but you don’t want it to be like a stopping point. You want them to actually then take

what they’ve learned and move into a textual language, because most programming’s still

these days is going to be text-based. 

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

6 of 13 8/29/2022, 12:33 PM



[17:02] So one of the things I think in teaching this course is how do you make sure that

students can make that transition well, but yet, try to make their entry point into computer

science such that they have a really good experience and it feels sort of intuitive to them in

this way that Scratch really makes that possible? So again, like building on the work of Brian

Harvey and Jens Mönig, who have collaborated for a long time on building Snap. One of the

things that they did was to basically take the syntax of Scratch, all those nice blocks, and

model it onto the semantics of Scheme. Scheme is a variant of Lisp. And it, you know, it, you

can teach all these wonderful concepts in computer science using Scheme, so now you can

teach it using Snap, with those blocks. And so then, as you know, we had a prior

show on NetsBlox, and some of the people listening to us may have listened to that. But just

to encapsulate that, NetsBlox basically takes two innovations and sort of puts them on top

of Snap. Those two being message-passing, the idea that you can pass messages peer-to-

peer and develop applications in which students can develop programs that communicate

with each other. Also, the idea of RPCs remote procedure calls, in which students can call out

to some place on the internet, like get the weather or a map or whatever, and then bring it

into their programs so that you’re able to communicate with, but with peers, as well as with

data sources that are external to your program. And that really makes programs that are very

rich. So, you know, this is where I think, again, like Ákos Lédeczi and Brian Broll, who is

a research scientist here, that are working on NetsBlox, have done a great job of making it

possible for students to jump in and with just a few blocks, you know, develop a weather map

or a guessing game with images from various cities and things like that.  

[18:53] So I think, you know, coming back to your original question, one of the things that I

think was really nice for me was, every time I tried to explain a computer science concept, I

also then had to think about how to model it so that you had a kind of visual output that was,

you know, would make students feel like they really accomplish something. Because it’s easy

and it’s certainly something that I did. For example, to write a program that computes

factorials. So you know, so that’s kind of a fun way to teach recursion and people, you

know, fun, I mean, I enjoy it, but yeah, it’s, it’s, it’s a standard way to teach recursion. But it

doesn’t have a natural visual compliment that you see on the stage. And so one of the things

I thought about was, how do you actually model these blocks and what their computing and

then the visual representation that you see. I think that was the toughest thing for me

because there was a tendency for me to just want to like move into having blocks put

together that will teach a concept. But it didn’t actually visualize anything, it just had an

output. And, you know, typically when you program, you know, especially if you’re thinking

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

7 of 13 8/29/2022, 12:33 PM



like I do, in a more functional environment than an imperative environment, that is to say in

an environment in which you’re working with pure function, so  you’re thinking about the

inputs and then you’re thinking about, okay, that produces these sets of outputs, but without

any side effects. Then you’re just thinking, okay, well I’m going to pass in these particular

values and I’m going to get out this list or this integer or string. But, but to really

make this successful for teaching purposes, you have to think beyond that and

think, okay, what would this look like? What kind of visual display? Could this make a spiral or

could this make a set of interlocking squares and things like that? So how the output looks to

people beyond the particular values, that’s really, really important. And I think that’s

something I had to think through for each example. And I don’t always know that I did a

great job of that, but I mean, I tried.

 

Gayathri: [20:53] I particularly like your examples. We’ve been working through

those and looked at other examples, as well. The key aspect of NetsBlox is the visual

programming that is helpful. Now I’m curious, you went from a syntax-based programming

culture to this visual block-based programming and also for our audience, so I would like to

remind you to listen to Cliff Anderson’s interview with Ákos Lédeczi, who was one of the

developers of the NetsBlox  Program, here at Vanderbilt University. So I will ask you about

that. So this is a very different way of thinking. And to be able to use this visual block-

based programming to provide some kind of like really cool outputs. That’s, where I think

the, the tension is. I think that’s where you really need to up the ante, so to speak. So going

from the simple blocks, to producing something that combines these blocks in very unique

ways and, and provides that output. How did you feel that? Did you write it out in syntax?

Think about in syntax and then? 

Cliff: [22:01] Well, so I think when you’re, so, so I mean in a way like that, you know. So, so

they both have their own syntax, of course, but like one is based on text and the other is

based on this grammar of visual objects that you’re connecting. But I think your question is a

really good one, in a sense that, you know, when you’re organizing blocks, one of the things

that is a criticism of the blocks approach, is that your screen quickly get overwhelmed by lots

of graphic objects. So, so one of the things that I think as we move along the semester, we

had to think about is, how to organize your code. And this is, this is again, this is really

important lesson for anybody learning to program because your tendency, when you first

learn, is to make some huge function that’s like a hundreds of lines long. I mean, this is a kind

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

8 of 13 8/29/2022, 12:33 PM



of a joke in programmer culture, but it does happen where you’ve just got this one thing

that’s really impossible to figure out what it does in between, you know, it might work, but if

you try to change a single line, you could break it in all these unexpected ways and nobody

knows how to fix it. So keeping your code modular and thinking about how to reduce the

level of complexity, so that you kind of focus on like each of these blocks, just one thing at a

time and then they work in concert together to produce some uniform output. So again, one

of the things that I think is really distinctive about Snap is that it was actually originally,

originally called “Build Your Own Block,” BYOB. But as I understand, like some teachers didn’t

like the joke of the BYOB because it also stands for, “bring your own beer.” So they changed it

to Snap. 

 

[23:36] But the underlying idea that, you know, we should really be thinking in terms of

functions so that you, you create a block and you encapsulate the sort of functionality inside

of that block. And it may happen inside that further blocks that encapsulate further

functionality. But that you sort of tame complexity by working in those sets of functions that

then get composed together to produce a result. That I think, is one of the things that I was

always trying to communicate to students. And I think it’s, it’s, it’s a software engineering

lesson that everyone needs to learn, including myself. The technical term, of course, is you

build something that’s really hairy and does too many things at once, then you want to

refactor to something that’s simple. And so a lot of the classes, actually getting something to

work the first time and then thinking, OK, now that we did this, how can we do this more

elegantly? And so that’s almost the, the beauty side of it is. It’s not just that the beauty of the

output, which can be beautiful, even if you’re working on fractals, but it’s also the beauty of

the code. And so you’re thinking, okay, I got this to work, but it doesn’t look too beautiful.

How can I make this more elegant in its approach?  

Gayathri: [24:46] That’s a great point about elegance, which is the neatness of the code, the

ability to make it modular, like you said. There can be recombined in easy ways and not, not

be cumbersome or bucky on the screen. It definitely is a big deal that block based

programming, because you’re really pulling in those blocks, yes. We’ve also been working

with the computational thinking and learning institute, with NetsBlox. So where do you

see NetsBlox in future? And based on your classes, you’ve taught three semesters

now, The Beauty and Joy of Computing course for three semesters, have you had students

who are interested in pursuing? Have you had like feedback about the course motivating

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

9 of 13 8/29/2022, 12:33 PM



students to go beyond these block-based programming classes, to actually going into syntax

or learning coding in other language? And also, how does that segue into

the computational thinking aspect?  

Cliff: [25:47] So I, you know, I don’t know because we haven’t done any formal study on the

number of students that continue on to do a computer science minor or major, or take other

courses in computer science. But anecdotally, I think quite a few have, you know, it would

be interesting to know, and I think this is an area of active research, how you move from the

visual programming languages to the text-based languages. And I think some studies have

shown that that people that start out with visual languages do better at least over some

period of time in the text-based languages. But that I think is, that’s an area of active

computer science research. My own interest is a little bit different in the sense that I am

interested in teaching coding to humanists and try to think about the best way to do that.

And so, you know, the computational thinking learning initiative that we’re both apart of, is

thinking about computing across the curriculum in, in ways that it’s not just about computer

science, but as a discipline. So I think in the digital humanities, which is where I spent a lot of

my time, one of the challenges is, we all want to, we want to compute for practical purposes.

And I think that, that makes a lot of sense because we have research questions that we’d like

to answer. We have data we’d like to analyze. And so there are tools that allow you to do that

and some of them are really nice off-the-shelf, kind of almost visual tools, themselves. Like

you could think about it, like Tableau, for example, for data analysis, fairly easy to use and

very popular because it produces great visualizations without having to do a lot of hand-

coding. There are also ways to do R and Python that are not too code heavy and people can

pick them up and run with them and sort of learn as they go. But I’m also interested in, in

thinking about OK, how do we sort of deepen our engagement with computer science

concepts so that we can stay in dialogue with computer science researchers, who are thinking

through these languages and, and help to think about how the humanities perspective can

inform the development of computing paradigms, new languages, and things like that? I

think there’s, there’s interests both sides, but I think in order to be able to do that, it’s just

this kind of two worlds problems. You have to be able to understand both sides well enough

to be able to communicate across, what can sometimes be substantial barriers, even if there

is goodwill on both sides. 

 

[28:20] So for me personally, I’m working with a group of colleagues, including Lynn

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

10 of 13 8/29/2022, 12:33 PM



Ramey and Corey Brady and Brian Broll on thinking about developing versions

of NetsBlox that work with data and compute results that are of interest to humanists. So

right now, we’re focusing on text mining. There’s an interesting project going on with the

professor, Mark Schoenfield, who’s interested in analyzing large quantities of 18th and

19th century British periodicals. And so the question we have that’s a research question is,

you know, we want to get the answers to him and we’re going to be using tools, for

example, like XQuery. We’re going to be using things like Apache Spark. Gonna be writing

code in Scala. These are all fairly high threshold technologies, in the sense that it takes a

while to learn them to become productive in them. And we are working with faculty and

students to get them up to those thresholds so they can work in those environment and we

can answer these questions. But at the same time, we want to see, can we create an

environment in NetsBlox that will allow people to understand these concepts without having

to struggle with setting up clusters on Amazon and thinking about the distributed? Could we,

could we make the conceptual approach simpler? So can we make the approach to these

technologies simpler so that the concepts rise more to the floor rather than all the technical

scaffolding that you need to actually accomplish the goal? So we presented, Lynn and I, on

some of our early work, to develop this kind of environment and curricula at the

digital humanities conference that took place in Utrecht last summer. We’ve got a proposal

and we’ll see if it’s accepted for the upcoming digital humanities conference in Ottawa. But it

is an ongoing research area which is to say, you know, if we can really think about the best

ways to teach undergraduates about computer science across the curriculum, how about

graduate students and faculty who are doing digital humanities?  

Gayathri: [30:21] That’s very exciting, Cliff, and good luck with your efforts in developing that

program. I hope your proposal is accepted.  

Cliff: [30:27] Thank you, Gayathri.  

Gayathri: [30:27] So this has been great, I love talking with you about The Beauty and Joy of

Computing course, because obviously that’s very relevant to me being, teaching this course

this semester. But also your larger background and your input, your insights into developing

not just this course, but your interest in programming and how you came to be able to teach

this course and so on. Thank you so much for talking with me. And before we end, I would

like to ask you this question that we ask all our interviewees. So we’ve talked a lot about

digital technologies, and this podcast is about EdTech. So what is your favorite analog

technology? 

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

11 of 13 8/29/2022, 12:33 PM



 

Cliff: [31:10] So the first time I answered this question, when we all sat around together, I

said it was a ruler. Because I like to, to write very straight lines when I’m underlining books,

which I think people thought was fairly ridiculous. So now I’m going to say a pencil, which is

the other side of that because I also don’t like to markup books in any permanent way. I’d

like to be able to erase what I write. No, but I also, you know, I have discovered and I think a

lot of people have, that if you really want to remember something, actually writing it down,

long hand can be better as a mnemonic device than actually typing it out. So I regularly carry

around a pencil. We both got pencils in our hands and I think it’s, it’s a wonderful educational

technology. It’s hard to improve upon. 

Gayathri: [31:55] That’s very good. I completely agree with you about writing it longhand. It

really does help to anchor some of the points that you want to talk about or discuss or

remember later on. Thank you so much, Cliff.  

Cliff: [32:07] Alright, thanks, Gayathri. (music) 

Derek: [32:12] That was Cliff Anderson, Associate University Librarian for research and digital

initiatives here at Vanderbilt, interviewed by Leading Lines producer, Gayathri Narasimham.

As computational thinking continues to weave its way into a variety of disciplines, I think it’s

important to talk about the ways we introduce students to these concepts and prepare them

for more substantial work with computing in the future. I really appreciate Cliff’s thoughtful

and creator approach to this topic. For more on teaching computational thinking, I’ll direct

listeners to a few episodes in the Leading Lines archives where we’ve addressed this topic.

Back in episode 28, we interviewed Vanderbilt computer scientist, Ákos Lédeczi. He’s the lead

developer of NetsBlox, the visual coding language that Cliff and Gayathri use in their course.

More recently, in episode 68, I talked with Ian Bogost from Georgia Tech about lots of fun

things including his approaches to teaching computer science to non-majors. And just a

few weeks ago, we shared my conversation with Mark Sample, who teaches digital studies at

Davidson College. That was episode 72. Mark, like Cliff and like me, learned how to code back

in the eighties, which meant learning to program in Basic. And we talk about that in our

interview.  

[33:25] Check the show notes for links to all of these past episodes, as well as links to more

information about Cliff Anderson and some of the resources he mentioned in his interview.

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

12 of 13 8/29/2022, 12:33 PM



You’ll find show notes for this and every other episode of Leading Lines on our

website, leadinglinespod.com. We’d love to hear your thoughts on ways to teach

computational thinking across the disciplines. You can reach us via email

at leadinglinespod@vanderbilt.edu or on Twitter @leadinglinespod. Leading Lines is

produced by the Vanderbilt Center for Teaching and the Jean and Alexander Heard libraries.

This episode was edited by Rhett McDaniel. Look for new episodes the first, and

third Monday of each month. I’m your host, Derek Bruff. Thanks for listening. (music) 

Firefox https://leadinglinespod.com/episodes/episode-74cliff-anderson/

13 of 13 8/29/2022, 12:33 PM


