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Chapter 1  
 

Introduction 

 

1.1 Transportation and Data Analytics 

Transportation is a critical infrastructure system, whose importance is underscored by the need to 

provide adequate mobility for people and goods to meet society’s demands.  An essential element 

in satisfying this requirement is to provide an acceptable level of safety performance across the 

transportation modes upon which the public relies. This is especially challenging given the 

constant change in land use, demographics, technology innovation, availability of transportation 

alternatives, and other factors. 

Against this landscape, however, are opportunities to make improvements in safety methods and 

practices to keep pace with these challenges and provide an enhanced level of safety. This becomes 

possible, in part, due to advances in information technology that produce a plethora of exposure 

and accident data, as well as analytical tools that utilize these data to develop explanatory and 

predictive tools. 

 

1.2 Motivation of Study 

Regardless of the type of transportation mode, the goal is the same, i.e., to enhance transportation 

safety by reducing crashes resulting in severe outcomes. Accidents involving motor vehicles 

(including crashes with pedestrians and bicyclists) account for the vast majority of the 

transportation fatalities, with railroads also contributing to this unfortunate situation (USDOT, 

2021). 
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From Table 1.1 on fatalities in transportation by modes from the year 2017 to 2021, we observe 

that highway fatalities account for 95 percent of all the fatalities, with approximately 17 percent 

of pedestrians and pedalcyclists (i.e., bicyclists). Railway fatalities are the next highest category. 

An interesting trend is seen for the year 2020, where the total fatalities increased by six percent, 

including pedestrians and bicyclists in spite of a 13 percent decrease in vehicle miles of travel. 

Pedestrian, bicyclist, and railway fatalities increased by 13, five, and 20 percent, respectively, from 

2020 to 2021(NHTSA, 2022; BTS, 2021). Based on these figures and facts the research focuses 

on pedestrian, bicycle, and railway modes where various data analytics techniques have been 

applied to improve the safety of these transportation modes. 

Table 1.1: Fatality in Transportation Modes (2017-2021) (NHTSA, 2022; BTS, 2021) 

 
Mode Fatalities - 

2017 

Fatalities - 

2018 

Fatalities - 

2019 

Fatalities - 

2020 

Fatalities - 

2021 

Air 347 395 452 349 - 

Highway 37,473 36,835 36,096 38,680 42,915 

- Pedestrian 
and 

Pedalcyclist 

6,881 7,245 7,051 7,127 8,327 

Railway 817 805 863 752 902 

Transit 249 260 268 289 290 

Water 709 682 707 852 - 

Pipeline 7 7 11 15 13 

 

Of particular concern to railway safety are the many thousands of hazmat shipments that occur 

daily in the U.S., traveling across a vast network. While the industry has amassed an impressive 

safety and security track record, incidents continue to occur, posing risks to the health and safety 

of hazmat responders, inspectors, carriers, shippers, other transportation stakeholders, and 

communities at large.  This accentuates the need for research that can advance the development of 

innovative techniques to minimize the risks of transporting hazardous materials. One promising 

area for achieving this goal is deploying intelligent detection systems and related communication 
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technology to improve the accuracy, timeliness, and breadth of communication among 

stakeholders, focusing on both incident prevention and consequence mitigation.  

Providing the shipper with these capabilities is arguably key to influencing the entire hazmat 

transportation supply chain.  The hazmat shipper loads the product knows its material properties, 

often owns the fleet equipment, and never wholly relinquishes its custodial role (even when in the 

hands of a carrier) until the product is successfully delivered to the customer.  Providing the shipper 

with these capabilities is key to influencing the entire hazmat transportation supply chain.  The 

hazmat shipper loads the product, knows its material properties, often owns the fleet equipment, 

and never wholly relinquishes its custodial role (even when in the hands of a carrier) until the 

product is successfully delivered to the customer.  In this respect, it is the shipper who is at the 

helm of implementing the technology solution that collects vital monitoring/detection information, 

assesses it, and communicates what other stakeholders need to know in a timely fashion to ensure 

that the safety and security of the hazmat shipment are highly coordinated and effectively 

managed.  

Regarding pedestrian and bicyclist safety, walking and bicycling play an essential role as 

significant non-motorized travel modes in many urban areas. While increasingly serving as a vital 

part of an integrated transportation demand management system and a sustainable mobility option, 

interest in walking and biking as an active transportation mode has been unfortunately 

accompanied by an increased crash count, many with incapacitating injuries or fatal outcomes. 

Pedestrians and bicyclists are among the most vulnerable road users when a motor vehicle is 

involved. To support planning a scalable and streamlined long-term transportation goal of zero 

accidents, it is thus essential to improve walking and bicycling safety. With the crash data recorded 

and maintained by the Tennessee Department of Transportation (TDOT) and machine learning 
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algorithms, we can identify and understand the critical factors that influence severe crash 

outcomes, understand their interactions, and identify and prioritize policies and actions to mitigate 

these risks, which benefits both modes. 

 

1.3 Dissertation Overview 

This dissertation focuses on how information technology and data analytics can be utilized to 

improve our understanding and implement policies that enhance the safety of passenger and freight 

transportation. This is investigated through three targeted applications: 1) rail transport of 

hazardous materials, 2) pedestrian transport, and 3) bicycle travel. 

The dissertation is organized as follows. Chapter 2 describes a study on how hazmat shippers can 

leverage the integration of several technologies to achieve enhanced hazmat transport safety and 

security across various freight surface transportation modes, using rail freight transport as the 

research focus.  A conceptual design is developed for deploying this system for use by rail hazmat 

shippers This includes schematics showing individual system components (hardware and 

software) and their interoperability and a narrative that describes how each component is utilized 

and how information is transmitted to the rail hazmat shipper and subsequently merged into an 

integrated database.  Guidance is also provided to set thresholds, trigger alerts/notifications, and 

communicate these alerts/notifications to appropriate hazmat transportation stakeholders.  

Chapters 3 and 4 describe the development of classification models for determining factors 

influencing severe crash outcomes involving pedestrians and bicyclists, respectively, and 

comparing their predictive results on a highly imbalanced dataset using three data balancing 

methods. Chapter 5 builds on the results of the previous two chapters to demonstrate the 

importance of not only severe crash frequency, but also severe crash rate, through estimation of 
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corresponding pedestrian and bicycle exposure at locations of interest. Chapter 6 contains 

concluding remarks and future research recommendations. 

As Chapters from 2 to 5 consist of either published or soon-to-be-published journal articles, they 

are presented in the form of the manuscripts prepared for this purpose. For this reason, these 

chapters are intended to be read separately, and some content may overlap. 
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Chapter 2  

Design and Implementation of an Integrated Technology System for Rail Shipper Safety & Security 

 

This chapter presents an overview of a system design for addressing critical hazardous materials 

risks and how key technological components can operate together to improve rail safety and 

security. It includes a description of the design and application of an existing integrated technology 

system to make it available to any rail hazmat shipper for implementation consideration.  

Schematics are presented showing individual system components (hardware and software) and 

their interoperability and a narrative that describes how each component is utilized and how 

information is transmitted to the hazmat shipper and subsequently merged into an integrated 

database.  Guidance is also provided to set thresholds, trigger alerts/notifications, and 

communicate these alerts/notifications to appropriate hazmat transportation stakeholders.  A case 

study is subsequently presented that illustrates how system outputs are used in making improved 

risk-informed decisions. 

   

2.1 System Design Overview 

The technology solution utilizes as its foundation an integrated safety/security system for rail 

shipments of high-hazard cargo that begins inside the shipper’s fence line, continues while a 

shipment is in transit, and does not end until the cargo is successfully delivered to the customer 

(Figure 2.1). 
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Figure 2.1: Railcar Shipment Overview 

Risk domains of safety and security interest are the health and handling of the railcar, its contents, 

and the railroad infrastructure.  A schematic of the developed rail hazmat shipper safety and 

security system is displayed in Figure 2.2.  A variety of operational and spatial information is 

collected from multiple sources.  Natural hazard information is streamed from source data 

collection agencies to identify extreme weather and earthquake events that may impact a hazmat 

shipment's current or future location.  Sensors installed on the cargo container enable the shipper 

to monitor any developing problems, recognize tampering, identify an accident, or perform 

damage assessment.  Sensors installed by the railroad (along the track) provide information on 

equipment and track health.  Finally, the shipment is monitored according to its location within a 

prescribed geo-fence to ensure that it stays on the desired path. 

Figure 2.3 shows a schematic of the preferred location of the GPS device mounted on the cargo 

container.  If the unit contains a camera (which is not wide-angle), 14 feet from the platform on 

the top of the ladder is the desired installation site to capture the image of a seven-foot-tall man 

standing on the platform.  If the device does not contain a camera, the four-foot indicator is the 

suggested location for a GPS unit install. 
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Figure 2.2: Rail Hazmat Shipper Safety and Security Information System 

This information is transmitted to the shipper via GPS vendor application programming interface 

(API) or read from Internet sources and merged into an integrated database for each railcar.  This 

information has three interdependent dimensions - time, location, and event criticality – which are 

benchmarked against safety/security performance metrics and corresponding safety/security 

exceedance threshold values.  When a threshold is exceeded, an alert or notification is transmitted 

to the affected parties (Figure 2.4). Alerts are sent in real-time when a critical event has been 

reported, or the potential for a time-sensitive, critical event is identified.  Otherwise, this 

information is stored as a notification to be acted upon at a more convenient location without 

jeopardizing immediate safety or security, such as when a part needs to be replaced the next time 

the railcar arrives at the shipper’s facility.  In both instances, the relevant information is transmitted 

to the person(s) with a need to know, formatted to be interoperable with the recipient’s device 

(e.g., smartphone, laptop, etc.). 

 



 

 

 

9 

 

 

Figure 2.3: Tank Car Equipped GPS Device 

 

 

Figure 2.4: Alert and Notification Protocol 

 

2.2 System Operations 

Specific system operating characteristics can be best described and understood as they map to a 

typical hazardous material shipment, beginning at the shipment origin. 

 

2.2.1 Shipper Facility System Features 

When a railcar enters the shipper’s facility, it is scanned in multiple ways (Figure 2.5):  

1. The unique railcar automatic equipment identification (AEI) tag is read. This electronic tag 

allows railroads, car owners, and shippers to track information related to each specific railcar. 
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Data-tag readers are also usually tied to a railroad's car location message (CLM) system, where 

the railroad can opt to share this information with its customers. This system provides a trigger 

to automate the delivery of the alert queue.  Alerts gathered during transit are supplied to 

targeted employees who can act on them.  

2. Cameras installed on both sides of the car enable high-definition (HD) image capture. This 

creates a visual record of the physical status of the railcar upon entering the facility. If any car 

damage is observed by the technician reviewing the image, this is documented (Figure 2.6) 

and reported along with the equipment health management (EHM) alerts. 

3. Any scheduled maintenance due on the railcar is also identified according to the time/distance 

it has been in service (Figure 2.7). 

 

This information is collected to facility personnel for appropriate action (Figure 2.8).  The system 

also integrates with the facility entrance security system to determine which personnel are working 

that day to avoid the delivery of alert queues unnecessarily.   

While inside the shipper facility, cars equipped with GPS can generate and provide alerts to facility 

employees hand-held devices, reporting and reminding them of an unresolved/unacknowledged 

alert based upon the employee’s proximity to the car.  

Before departing the shipper facility, maintenance and repair records are checked to ensure that no 

railcar leaves without work having been completed.  
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Figure 2.5: Cameras and AEI Readers at the Shipper Facility 

 

 

Figure 2.6: Car Damage Assessment 
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Figure 2.7: Maintenance and Repair Records 

 

 

Figure 2.8: Actionable Facility Information 
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2.2.2 In-Transit 

Once cars are in transit and outside the confines of the shipper’s facility, the focus shifts to 

monitoring the shipment, maintaining vigilance that the cargo is not exposed to unwanted safety 

or security risk. 

 

2.2.2.1 GPS Data Collection 

Car safety and security are monitored via the GPS unit installed on the top of the railcar. With this 

technology, the tank car’s dome position can be monitored for tampering, ride quality measured 

by collecting impact and deceleration data, and images captured when any unexpected motion or 

movement is experienced (Figure 2.9). The criteria are programmable according to the shipper’s 

specifications. 

 

 

Figure 2.9: Motion Image Capture 

 

Several techniques are available to determine tampering: 1) motion detection sensors, 2) vibration 

monitoring (differentiates between normal rail car movement vibrations and footsteps on the car), 
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and 3) a wireless transmitter underneath protective dome housings with an accelerometer that 

detects opening of the dome lid.   Regardless of the technique used, an event will trigger image 

capture. Data is stored by the GPS unit until it is sent to the shipper via cellular message or 

offloaded via wireless transmission when the car re-enters the shipper’s facility. 

The GPS devices also serve a valuable purpose in ensuring that the shipment travels on its intended 

route.  Route boundaries can be defined by establishing geofences and spatial coordinates that, if 

intersected, infer that the railcar is off course.  If such an event is detected, the GPS device triggers 

an alarm indicating an off-route situation. 

 

2.2.2.2 Natural Hazard Information 

Natural hazards also pose a potential in-transit threat to the safety of hazmat shipments.  Among 

the data sources regarding natural hazard threats or events, occurrences are available through the 

National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey 

(USGS). This information can be sourced through the web in real-time and associated with railcar 

location and movement.  

Real-time satellite imagery and associated information provided by the National Oceanic and 

Atmospheric Administration (NOAA), when superimposed on the shipper’s railcar locations, 

offers current information on extreme weather events (e.g., storms, wildfires), such that potentially 

dangerous areas can be avoided until safe passage can be restored (Figure 2.10). The USGS 

provides real-time earthquake information, helpful in ascertaining whether a rail car may have 

incurred damage from being in the impact zone (Figure 2.11) and, if not, whether the railcar’s 

shipment route has been impeded, such that the car must be halted and stored in a safe haven or 

re-routed. 
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In the event of a release, existing weather conditions at the site can predict how a release will 

propagate over time and what emergency response measures would be appropriate (Figure 2.12). 

Toxic release modeling can be performed using publicly available tools, such as the Areal Location 

of Hazardous Atmospheres (ALOHA) model, developed by the U.S. Environmental Protection 

Agency, and the Wireless Information System for Emergency Responders (WISER), developed 

by the National Institutes of Health. Predictive information provided by these tools helps support 

timely and effective emergency response. 

 

 

Figure 2.10: Severe Weather Event 
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Figure 2.11: Earthquake Impact Zone 

 

Figure 2.12: Release Modeling 

2.2.2.3 Railinc 

Another vital information source is Railinc, a subsidiary of the Association of American Railroads 

(AAR), whose mission is to provide rail data and messaging services to the North American freight 
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railroad industry. Two services provided by Railinc, equipment health management system 

(EHMS) and car location messaging (CLM), can be integrated as part of a shipper’s safety and 

security information system.  

EHMS is a web-based application that communicates the condition of railroad equipment to rail 

carriers, car owners, and other interested parties, including alerts. The system receives and 

manages alert data from the following wayside detection devices located at regular intervals along 

rail track: 1) wheel impact load detectors (WILD), 2) truck hunting detectors (THD), 3) acoustic 

bearing detectors (ABD), and 4) truck performance detectors (TPD). These detectors are designed 

to reduce risk in railroad operations by identifying poorly performing equipment before accidents 

occur. Additionally, line of road failure (LORF) notifications are provided, representing a new 

statistical alert based on data summaries associated with component failure rates. 

WILD measures vertical wheel forces via rail-mounted accelerometers or strain gages, searching 

for defective wheels. THD measures oscillation of the wheelset due to lateral movement in the 

track gauge, where exceedance above a certain threshold (i.e., dynamic instability) can cause wheel 

flanges to impact the rails, potentially causing damage to both and increasing the likelihood of a 

derailment. ABD identifies bearing flaws in railcars by recording audio from a train as it passes 

by and using acoustic technology to detect wheel bearing defects before failure. TPD evaluates the 

suspension performance of trucks1 by measuring the vertical and lateral forces generated by the 

wheels as a car moves over the detectors that are placed along the instrumented track. The 

following defects can be flagged with TPD: 1) worn friction wedges, 2) broken suspension springs, 

3) twisted car bodies, 4) mismatched side frames, 5) hollow/worn wheels, and 6) tight side 

bearings.  

 
1In the rail industry, the term “truck” refers to the structure underneath the railcar to which axles (and wheels) are 

attached. 
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CLM delivers complete information on the car location and its shipment. CLM has many event 

codes which help summarize and provide data on the car and its cargo.  Examples include departure 

and arrival times, current location and estimated arrival time, interchanges between railroad 

carriers, intermodal transfers, and equipment in storage or deemed currently defective. 

 

2.2.3 Customer Delivery 

At the destination, once the shipment has arrived inside the customer’s fence line, the shipper 

remains concerned that no accident occurred at this location. The previously described 

technologies and information system remain active during this time and until the shipper’s 

equipment leave the customer’s facility.  It is also possible that the technologies described in 

Section 2.2.1 could be installed at the receiving facility as well. 

 

2.2.4 Information Transmission and Database Management 

Data collected by the GPS units can be transmitted using cellular service or via long-range wireless 

communication. The data is received and stored at a central server maintained at the shipper’s 

facility where cars enter or leave. The data is further enriched by combining it with the information 

provided by Railinc and natural hazard web services, resulting in comprehensive health, 

maintenance, inspection, and damage assessment of each rail car entering the facility for further 

action. The data collected from various sources can be analyzed based on the thresholds and 

decision criteria established by the shipper, consistent with any Federal Railroad Administration 

(FRA) requirements and AAR standards/guidance.  
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The process can be aided considerably by utilizing Early Warning, a web-based application/service 

provided by Railinc that acts as a hub for communications about rail equipment from which 

maintenance advisories and early warning notices can be issued. Early Warning enables railroads, 

equipment owners, and repair shops to have visibility into defective equipment and components, 

identify when tests are past due, and report when a car has been inspected or repaired so that 

equipment can be removed from notices. 

Every source of data has a relevance period, defined as the time between the ship date and the 

delivery date.   All GPS readings and alerts that occur between these dates belong to that shipment.   

Events that occur during transit can also have a relevance period and sometimes a geo-coordinate 

shape, such as a tornado warning.   All GPS readings from a car inside the geo-coordinate shape 

that occurred within the event relevance period can be flagged for inspection once the car arrives 

back at the shipper facility.    Events such as earthquakes may have a short relevance period but, 

depending upon the magnitude, and regional location, can have a large geofence radius.   All GPS 

readings reported within the geofenced area and timing within one update cycle would be flagged 

for inspection.  

 

2.3 Case Study: The Olin Experience 

Olin Corporation is a large multinational petrochemical company with a substantial North 

American presence as one of the largest producers of chlorine, industrial bleach, and on-purpose 

hydrochloric acid. As a shipper of hazardous materials, Olin is committed to ensuring the safety 

and security of these shipments through active monitoring and active engagement with carriers, 

incident responders, and other transportation stakeholders as an essential part of its risk 

management program. 
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Olin developed and has implemented the aforementioned integrated technology system, equipping 

a portion of its railcar fleet used for shipping high-hazard cargo with GPS devices and establishing 

criteria for triggering alerts and notifications.  In the discussion to follow, the Olin experience is 

described in terms of how the system is operated and utilized. Hereafter, we refer to this system 

using the acronym SHRIS (Shipper Hazmat Risk Information System). 

 

2.3.1 Olin System Data Sources 

As described in the prior discussion and shown in Figure 2.13, Olin sources data via GPS, the 

Internet, and Railinc to form a comprehensive information system from which risk-informed safety 

and security decisions can be made. The GPS unit is utilized for dome open/close detection, motion 

detection image capture, and collection of impact and deceleration data.  Web services are sourced 

for recognizing natural hazard threats and events, whereas Railinc provides EHM and CLM data.  

 

 

Figure 2.13: Olin System Data Sources 
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2.3.2 Anomaly Alerts 

As shown in Figure 2.14, collectively, this information enables Olin to assess a multitude of system 

performance considerations and evaluate whether alerts are warranted. Any alerts are recorded and 

transmitted to the plant rail crew for maintenance and repair (Figure 2.15)2. These notifications are 

managed within an alert management system, wherein the plant crew has complete visibility over 

each railcar and its corresponding safety and security needs (Figure 2.16).    

 

 

Figure 2.14: Olin System Alerts 

 

Figure 2.15: Alerts Directed to Olin Rail Crew 

 

 
2The reference to SAP in Figure 2.15 represents Olin internal digital platform. 
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Figure 2.16: Alert Visibility 

Another element of the system focuses primarily on rail security.  In addition to any immediate 

emails directed to Olin’s security coordinator if an undesirable event is detected, the security 

coordinator receives a daily summary of each event, which includes images captured from the GPS 

unit that can be used to verify if the event had any impact on shipment integrity (Figure 2.17).  

Image capture from the GPS unit when in transit helps eliminate false alarms by providing visual 

context around the event. 

 

 

Figure 2.17: Olin Daily Summary Report with GPS Image Capture 
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2.3.3 Deceleration Threshold Determination 

As previously discussed, alerts are sent to plant operations when railcars entering Olin plants have 

experienced a deceleration event in excess of a target threshold.  In an effort to determine where 

to set the deceleration alert threshold that would trigger visual and mechanical inspection of 

coupler components (Figure 2.18), Olin conducted a study to determine damage encountered as a 

function of deceleration speed.  The study involved an analysis of 200 tank cars that Olin owns 

that were tracked and inspected over a 12-month period, using data generated by the GPS-enabled 

fleet when being moved by Class I and regional railroads and while located in shipping and 

receiving yards.  This amounted to a sample size of 2,660 car bills. All cars were loaded to within 

3% of their maximum allowable weights, and decelerations were monitored during the loaded legs 

of the trip because the higher mass would result in higher forces and more damage.  Olin operation 

inspections and repairs were combined with rail car repair billing data from Railinc (supplying in-

transit repair information) to identify any coupler damage incurred by these tank cars during the 

study period. 

 

Using the maximum coupling speed obtained during each car bill trip, the probability of a damaged 

component was determined by dividing the number of maximum coupling speeds at each level by 

the number of bad components found (Figure 2.19). Noting that damage classified is cumulative 

left to right, one can observe that at a collision velocity of greater than 8 mph, coupling damage 

becomes a much more frequent consequence.  Hence, Olin set its alert threshold at 7+ mph, 

meaning that railcar alerts are sent to plant operations when railcars entering the plant have 

experienced a deceleration event in excess of the reporting threshold. 
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Figure 2.18: Railcar Coupler Configuration 

 

 

Figure 2.19: Coupler Damage Probability Versus Maximum Deceleration Speed 

 

To adequately capture deceleration speeds, the location of the GPS unit on top of the railcar is an 

important consideration, as forces are concentrated, especially in an undamped system, and they 

may not propagate fully down to the GPS location. Since a car can be struck on either end, ideally 

having the GPS on the center of the car would be best to ensure impact is detected equally from 
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both ends. In consultation with Lat-Lon, Olin’s GPS vendor, a decision was made to position the 

unit off-center, enabling the device camera to obtain a wide angle of view such that the platform 

and ladder can be clearly seen. Placing the unit outside the platform area also reduces the potential 

for device damage and tampering. 

 

As the GPS units contain an accelerometer that is capable of generating 10 Hz and 100 Hz filtered 

values, this provides an additional method for determining (and verifying) deceleration speed.3 

The accelerometer-based approach is capable of detecting short duration, high impact events that 

last less than 50 milliseconds. This shock pulse type event is measured by subtracting the 10Hz 

reading from the 100Hz reading, producing a G-force lateral impact. To accommodate this 

consideration, Olin’s GPS devices are programmed to report any impact forces of larger than 2G 

that are accompanied by deceleration events in excess of 3 mph. An important consideration, 

however, is recognition of false alarms. For that reason, the GPS unit is prompted to take a picture 

whenever a deceleration event greater than 5 mph or an impact over 5G is recorded.  

 

2.3.4 Monitoring Derailment Incidents 

Derailments are another Olin trigger event requiring an alert notification.  Figure 2.20 shows a 

derailment event on a train carrying an Olin shipment, which prompted an alert to be generated 

within three minutes of the event occurrence. Note that the derailment location is identified along 

with an image captured by the GPS unit.  This information has been supplemented by data recorded 

on the change in velocity leading up to the incident.  From the captured image, it can be seen that 

the trees are horizontal, so the car is definitely on its side. In Figure 2.21, images are shown 

 
3Filtering is used to remove structural vibrations or ringing from the signal. 
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following re-positioning of the railcar on the track.  The image shows that the dome lid is open, 

but also indicates that no product is leaking (opening the dome lid provides access to the valves, 

but does not expose the product unless the valves are compromised). Significant damage to the 

railcar skin is also visible. 

 

 

Figure 2.20: Olin Derailment Event 

 

Figure 2.21: Dome Lid Open 



 

 

 

27 

 

2.3.5 Natural Hazard Event Tracking 

Olin’s Crisis Management System includes a real-time feed that provides up-to-date information 

on severe weather as well as seismic activity.  Figure 2.22 displays information the company 

utilized after Hurricane Matthew had made landfall.  By overlaying the hurricane footprint on Olin 

railcar assets (dots show railcar locations; colors represent different hazmat products), a 

determination could be made as to how to manage the safety of these assets.  Seismic activity 

potentially impacting Olin’s shipments are shown in Figure 2.23 for the La Habra earthquake that 

struck southern California.  The location of railcars in vicinity of the earthquake was identified, 

from which a decision could be made as to whether any damage inspection was warranted. 

 

Figure 2.22: Severe Weather Tracking: Hurricane Matthew 
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Figure 2.23: La Habra Earthquake 

 

2.3.6 Google Earth Flight Verification 

An additional activity that Olin deploys is to utilize Google Earth flights to generate a movie that 

provides a bird’s eye view of the trip made by a particular railcar (Figure 2.24).  This includes 

demarcating the location of any alerts that were issued during the trip wh, ich, when combined 

with other relevant data, can create a more comprehensive profile of the event in question (Figure 

2.25). 
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Figure 2.24: Trip Imagery via Google Earth Flight 

 

Figure 2.25: Google Earth Flight Events and Images 

 

2.3.7 System Impacts 

 

Since implementing the Integrated Technology System for Rail Shipper Safety & Security, Olin 

has experienced a dramatic reduction in the risk of transporting hazardous materials and realizing 

cost savings.  The discussion below provides examples of this achievement. 
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2.3.7.1 Condemnable Wheels 

 

Figure 2.26 shows the impact on the weekly average of condemnable wheels during the past 

several years, coinciding with when the integrated rail safety and security system was in place.  

Although there are aberrations in week-to-week performance, there is a clear general trend of a 

substantial reduction in the number of condemnable wheels related to Olin railcars. This significant 

improvement in fleet health has several important implications: 1) reduces the costs associated 

with installing new wheelsets, 2) helps to flatten the maintenance budget, 3) provides the ability 

to focus better and streamline inspections, and 4) finds and repairs dangerous trucks before they 

can cause a severe incident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.7.2 Other Considerations 

 

The ability to collect and archive such a vast array of railcar performance data, augmented by data 

analytics to investigate specific rail safety and security issues, has enabled Olin to utilize 

Week 
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o
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n
t 

Olin’s weekly average condemnable 

wheels 

Figure 2.26: Olin Weekly Average Condemnable Wheels 
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technology adoption proactively.  For example, the company could compare safety records at 

various classification yards and notify corresponding railroads where sub-standard handling of 

Olin railcars is being observed. A related consideration is evaluating flat yard versus hump yard 

safety performance, intending to work with the rail carriers to route Olin shipments to reduce the 

risk of railcar damage based on analysis results. 

 

2.4 Conclusion 

 

The adoption of intelligent detection systems and related communication technology affords an 

opportunity to further improve the safety and security of rail shipments of hazardous materials, 

with an eye on both incident prevention and consequence mitigation.  The SHRIS system described 

herein leverages these technology advancements, with the hazmat shipper as the driver of this 

process. Providing the shipper with these capabilities is key to influencing the entire hazmat 

transportation supply chain, given their knowledge of the product and their relationship with rail 

carriers and customers. 

A distinct project objective is to transfer system knowledge to enable other hazmat shippers who 

use the rail mode to leverage its availability. A proven and affordable system can enable hazmat 

rail shippers of all sizes to leverage this capability, not just a select few within the industry. Such 

widespread adoption benefits not only each shipper but the industry as a whole. While developing 

a SHRIS-type system for hazmat movements by either the truck or barge mode is likely to offer 

safety and security benefits, a greater need and opportunity appear to exist for developing and 

deploying such a system in the barge domain.  This rationale rests with the communication 

technology gap found in the maritime industry created by the dependence on a paper-based system 
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kept on board each vessel. Further, the significantly larger cargo volumes per barge shipment 

create the potential for a more consequential impact in the event of a material release. 
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Chapter 3  
 

Factors Impacting Bike Crash Severity in Urban Areas 

 

3.1 Introduction 

 

Bicycling represents a relatively small portion of the total commuting activity in the United States 

(US). Still, this non-motorized travel mode plays a vital role in many of the nation’s urban areas. 

Biking is a relevant part of many emerging integrated transportation demand management systems. 

It offers a sustainable mobility option with a lower carbon footprint should commuters choose to 

switch from modes that rely on traditional fuel sources. This has prompted several state and local 

agencies to promote biking by employing strategies such as sidewalk modifications and the 

construction of dedicated bike lanes. In recent years, many cities with bicycle sharing programs 

have also increased dramatically. However, these developments have resulted in an increase in 

bike crashes, many with incapacitating injuries or fatal outcomes.  Therefore, it is essential to 

improve our understanding of the critical factors impacting bike crashes in urban areas, aiming to 

develop risk mitigation strategies to curb this trend.  This chapter discusses an analysis performed 

with this intent.  

The study objective is to determine bike road safety in select urban areas within the State of 

Tennessee using detailed crash data to investigate the factors affecting bike crashes with 

incapacitating and fatal outcomes and subsequently develop a classification model for fatal or 

incapacitating events. It concludes with a policy discussion directed at enhancements to 

transportation infrastructure and operations with bicycle safety in mind. 

 

3.2 Background  

 

Commuting on a bicycle is the third most utilized US transportation mode and is quickly gaining 

popularity as a commuting option. The number of commuters biking to work has increased by 65% 



 

 

 

34 

 

nationwide from 2000 to 2019 (U.S. Census Bureau, 2014 & 2021). Unfortunately, with increased 

usage, there are also alarming trends involving fatal and incapacitating bicycle crashes. Traffic 

hazards for bicyclists include poorly designed roads, high motor vehicle speeds, and lack of 

responsibility exhibited by other road users (Furth et al., 2016; Jacobsen and Rutter, 2017). In 

2019, bikers accounted for 0.5% of 156 million commuters; however, of all traffic crashes, bikers 

account for 1.78% of injury crashes and 2.3% of fatal and serious (incapacitating) injuries for the 

entire nation. Fatal and serious bike injuries have seen a 36% increase since 2010 (NHTSA, DOT 

HS 813 197: Traffic Safety Facts 2019), indicating bicyclists were among the most vulnerable 

users being disproportionately impacted (Jacobsen and Rutter, 2017; Smart Growth America, 

2020). 

The disturbingly high number of crashes involving bicycles resulting in fatal or incapacitating 

injury outcomes leads one to question whether the transportation infrastructure and operations lack 

accessible and safe facilities for bikers which can be problematic when bikers must share roads 

with other users, particularly motor vehicles. Bicyclists are considered among the most vulnerable 

participants in mixed traffic because of the kinetic energy produced upon crashes between two 

differential masses. One is traveling at a higher velocity and mass (Jacobsen and Rutter, 2017). In 

the case of an automobile colliding with a cyclist, speeds above 20 miles per hour increase the risk 

of severe road injury or fatality (Jacobsen and Rutter, 2017; Chris Jurewicz et al., 2016). Therefore, 

heavily utilized urban corridors impose a potentially significant danger to cyclists if not provided 

with adequate safety measures (NTSB, 2019).  

 

3.3 Literature Review  

 

Bicycle crashes have been studied by researchers worldwide. Many of these efforts have been 

directed at individual areas or regions to identify and rectify safety issues within the bicycle 
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infrastructure and operations. The most common modeling techniques have included the use of the 

Poisson distribution, negative binomial models, linear regression models, logit models, ordered 

probit models, and multivariable logistic regression. Table 3.1 lists the results of significant factors 

found in previous studies, organized according to field type and variable.  Table 3.2 summarizes 

relevant study methodologies.  

About Table 3.2, note that the use of random forest modeling is not included. Studies modeling 

bicycle injury prediction using random forest are currently in their infancy, such as one examining 

bicyclist-only crashes in Victoria, BC, Canada; however, the dataset consists of only 111 crashes 

and 234 near misses and was collected via surveys rather than from official crash records.  

 

Table 3.1: Significant Bicycle Crash Factors from Prior Studies 

 

Variable Field Variable Analyzed Relevant Studies 

Environmental Lighting  

Weather  

Intersection Type  

Speed Limit  

Traffic Control Device 

Number of Lanes 

Road Curvature 

Traffic Volume (AADT) 

Land Use (urban, rural, residential, 

industry, farmland, institutional, 

commercial) 

 

Zangenehpour et al., 2016  

Yan et al., 2011  

Klop et al., 1999  

Allen-Munley et al., 2004  

Strauss et al., 2015  

Reynolds et al., 2009  

Turner et al., 2011 

Lee and Abdel-Aty, 2005 

Petritsch et al., 2006 

Pai, 2011 

Schepers and den Brinker, 2011 

Dixon et al., 2012 

Kim et al., 2007 

Eluru et al., 2008 

Oh et al., 2008 

Vandenbulcke et al., 2014 

Crash Specific Crash Type  

Severity 

Wang et al., 2015  

Klop et al., 1999  

Allen-Munley et al., 2004 

Time Year  

Month  

Day  

Hour 

Wang et al., 2015 
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Table 3.2: Previous Methodologies and Modeling Techniques 

 

Modeling Technique Author Study Focus Variables Analyzed 

Poisson Distribution Oh et al., 

2008 

Bicycle Crash at 

Urban Signalized 

Intersections 

Average daily traffic volume, presence of bus stops, sidewalk 

widths, number of driveways, presence of speed restrict devices, 

and presence of crosswalks are all statistically significant risk 

factors. 

Negative Binomial 

Model 

Oh et al., 

2008 

Bicycle Crash at 

Urban Signalized 

Intersections  

Found different types of facility designs impact bicycle safety 

such as bike lanes, bike track, pavement markings or colors. 

 
Wang et 

al., 2004 

Bicycle - Motor 

Vehicle Crashes at a 

Signalized 

Intersection 

Intersection design impacts on bicycle safety in multiple ways. 

Linear Regression Dixon et 

al., 2012 

State Highways For intersection and network movement, hazardous crossings, 

right hook, left sneak and complicated interactions are 

potentially dangerous to bicyclists. Intersection safety influenced 

by vehicle volume, vehicle speed, percentage of heavy vehicles, 

among others. 

Logit Model Eluru et al., 

2008 

Road Segments Crashes on curved/non-flat roadways tend to result in more 

severe injuries. 
 

Kim et al., 

2007 

Bicycle-Motor 

Vehicle Crashes 

Curved rounds significantly increase the chance that a fatal or 

incapacitating injury will occur during a vehicle-bicycle crash. 

 
Pai, 2011 Road Segments  Horizontal and vertical curves can contribute to bicycle crashes. 

 
Schepers & 

Brinker, 

2011 

Road Segments  Bicyclists colliding with a bollard, road narrowing or riding off 

a curve found to occur more than when bicyclists hit an obstacle. 

More crashes were observed where the bicycle had the right-of-

way on a through movement at intersections with two-way 

bicycle tracks that are well marked and are reddish in color. 

Fewer crashes occurred when there are raised bicycle crossings 

(speed humps) or other speed reduction measures. 

 Abdel-Aty 

and Keller, 

2005 

Signalized 

Intersections 

The division of a minor road, as well as a higher speed limit on 

the minor road lowered the expected injury level, while a median 

on the minor road may prevent more head-on crashes, which 

were found to be more severe crashes.  

 Haleem 

and Abdel-

Aty, 2010 

Unsignalized 

Intersections 

Traffic volume on the major approach, number of through lanes 

on the minor approach, upstream and downstream distance to the 

nearest signalized intersection, left and right shoulder width, 

number of left-turn movements on the minor approach, and 

number of right- and left-turn lanes on the major approach are 

significant factors influencing bicycle risk. 

Decision Tree  Rahman, 

2018 

Pedestrian & 

Bicycle Crashes 

Highlighted the most significant predictor variables for 

pedestrian and bicycle crash count in terms of three broad 

categories: traffic, roadway, and socio demographic 

characteristics  
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Modeling Technique Author Study Focus Variables Analyzed 

Bayesian Model Vandenbul

cke et al., 

2014 

Selected Controlled 

Sites or Bikeable 

Road Network 

Right-of-way intersections equipped with bicycle lanes tend to 

have higher crash risk for cyclists, due to vehicles not respecting 

the right-of-way (i.e., right-hook crashes). Cyclists riding on 

marked bicycle lanes in roundabouts and signalized intersections 

with marked cycle lanes had higher crash risk, attributed to 

bicyclists being in drivers’ blind spots. Additionally, complex 

intersections (high number of road legs, road users, high number 

of signs, dense traffic crossings, etc.), and therefore complex 

traffic situations, increase bicycle risk. 

Safety Analyst and 

Clustering Algorithm 

Dolatsara, 

2014 

Roadway Segments 

in Michigan 

Exposure, the presence of bicycle lanes and bus stops, and the 

number of left-turn lanes at intersections are positively 

associated with bicycle crashes. 

 

 

3.4 Data Analysis 

 

The bicycle crash data utilized in this analysis was obtained from the Tennessee Department of 

Transportation (TDOT) for the period of January 1, 2017 through December 31, 2020, covering 

the entire state.  In Tennessee, a crash is reported when a driver of a vehicle is involved in a crash 

resulting in injury, death or property damage exceeding $50 (Tennessee Code Title 55. Motor and 

Other Vehicles § 55-10-106). A crash is also reported when a vehicle collides with an unattended 

vehicle (Tennessee Code Title 55. Motor and Other Vehicles § 55-10-104), such as one located in 

a parking lot. Crash data obtained from TDOT and used for this study consists of only bicyclist-

motor vehicle crashes.  Attributes associated with each crash record are listed in Appendix I.  

During this period, 5,347 bike crashes were recorded for which there was complete information 

(see Table 3.3), distributed across the state, as shown in Figure 3.1. Of the ninety-five counties in 

Tennessee (TN), Shelby County and Davidson County recorded the highest bike crashes, 

collectively accounting for 2,942 incidents, more than one-half of the overall state total. This is to 

be expected since these two counties are densely populated and include the cities of Memphis and 

Nashville, respectively. As a result, these two locations subsequently became the focus of the 

modeling effort.  

https://vanderbilt.box.com/s/b45y6x1slgg0m3bcy5uenua5vicyty8u
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Table 3.3: TN Bike Crashes by Year 

 

Year Total Bike Crashes 

2017 1,384 

2018 1,299 

2019 1,432 

2020 1,232 

 

 

Figure 3.1: Bicycle Crashes Cluster in TN (2017-2020) 

 

Bike crash severity results for the two counties are shown in Figure 3.2.  TDOT crash data includes 

an injury severity attribute according to whether there was no injury, non-serious injury, serious 

(incapacitating) injury or fatality. An incapacitating injury is one which results in one or more of 

the following: 1) severe laceration resulting in exposure of underlying tissues/muscle/organs or 

resulting in significant loss of blood, 2) broken or distorted extremity (arm or leg), 3) crush injuries, 

4) suspected skull, chest or abdominal injury other than bruises or minor lacerations, 5) significant 

burns (second and third degree burns over 10% or more of the body), 6) unconsciousness when 

taken from the crash scene, and 7) paralysis. Particularly notable is that fatal and incapacitating 

injury collisions account for 27% of 2,942 recorded crashes. 
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Figure 3.2: Bike Crash Severity in Davidson and Shelby County 

 

Figure 3.3 shows the distribution of bike crashes by time of day, where times have been grouped 

into the following categories: 1) midnight-5:00 am, 2) 5:00-9:00 am, 3) 9:00 am-1:00 pm, 4) 1:00-

5:00 pm, 5) 5:00-9:00 pm, and 6) 9:00 pm-midnight. Note that while the frequency of bicycle 

crashes tends to increase as the day goes along, the percentage of those that result in incapacitating 

and fatal injuries are highest during the earlier part of the day.  

 

Figure 3.3: Bike Crashes by Time of Day in Davidson & Shelby County 

 

As displayed in Figure 3.4, the largest number of bike crashes in general as well as those resulting 

in a fatality or incapacitating injury occurred on four lane roads, two lanes in each direction. It was 

also observed that four lane roads experience a high number of bicycle injuries on medians and in 

turn lanes. 
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Figure 3.4: Bike Crashes by Lane Configuration 

 

As seen in Figure 3.5, roads with speed limits from 30 mph to 45 mph experience a significant 

number of bicycle crashes, with the proportion of those resulting in a fatality or incapacitating 

injury increasing at higher speeds. This observation is consistent with prior studies (Irene Isaksson-

Hellman et al, 2019).  

 

Figure 3.5: Bike Crashes by Road Speed Limit 

 

3.5 Modeling Approach 

 

While the literature review cited a variety of modeling approaches that have been developed for 

predicting bicycle crash severity, none have considered a comparison of various classification 

predictive modeling techniques with different balancing methods along with a rigorous feature 

selection process. An overview of the process used in developing a predictive model of bicycle 
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crash severity is shown in Figure 3.6. Model estimation was performed using Logistic Regression 

(LR), Decision Tree (DT) and Random Forest (RF). A classification technique is applied to the 

models such that one can predict the categorical outcome of a killed or/and incapacitating injury 

(Class 1) and no killed and/or incapacitating injury (Class 0). LR is a supervised machine learning 

algorithm that uses a logistic function to model the outcome and serves as a baseline for our binary 

classification problem. It represents a widely used method to study risk factors impacting injury 

severity. The advantage of LR is its easy implementation and quick description of the relationship 

between the input variables and the output variable with no scaling of features. The drawback with 

LR is that it can only construct linear boundaries, it assumes no correlation between input variables 

and the output variables, input variables are correlated to each other, and a constant need to set the 

threshold (from the baseline of 0.5) on which classification is based such that we reduce the false 

prediction of the output variable.  

DT is another frequently used supervised learning classification algorithm for understanding and 

interpreting data, where the top node is the root node, representing the best feature that divides the 

data. Each internal node is a feature and branches indicate the decision, with the class label being 

represented by a leaf node. A DT consists of nested if-else statements where successive conditions 

are checked unless a conclusion is reached (i.e., a decision is made if the output will be a class 1 

or class 0 only if it satisfies certain criteria for each of the features), which can then be shown 

graphically in the form of a decision tree or a flow chart. DT outperforms an LR, especially when 

the relationship between the input and out variables is complex and non-linear. DT also helps build 

easy-to-understand models for visualization; however, DTs tend to overfit. DT serves as a 

foundation for RF, which is yet another supervised machine learning algorithm.  
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Figure 3.6: Predictive Model Development Framework 

 

Although RF has not been extensively used as a classification algorithm for analyzing bicycle 

crashes, it was included because RF has been shown to improve modeling performance relative to 

a single tree classifier (e.g., DT) and LR. RF enables multiple uncorrelated DTs to grow, thus 

creating a forest.  RF uses a technique called feature bagging, where features are selected randomly 

for individual DTs, which is similar to bagging procedure. With feature bagging, the correlation 

between each DT is reduced but the overall accuracy of the model increases. RF performs better 

compared to LR and DT as it is more robust to noise, and able to capture the non-linear tendencies 

by putting all the weak learners in an ensemble that is used to make the prediction. It also avoids 

overfitting because those individual learners are weak, so it is not one massive model that could 

lead to overfitting the data (A.C. Muller et.al.,2017). 

In this study, we elected to use LR followed by DT and RF to observe the model prediction 

outcome. It is not necessary to use models that build on the previous ones; however, this was done 

to tune the classifier and improve model performance. 

The dependent variable was defined as a numerical Boolean variable, with a value of 1 indicating 

a fatal or incapacitating injury outcome, and 0 otherwise (i.e., minor injury or no injury). Prior to 

conducting model estimation, data pre-processing was performed to remove records with missing 

data, following which exploratory data analysis was performed.  This resulted in the selection of 

the following candidate crash factors (attributes) to be considered as independent variables in 

Data aquisition
Data pre-
processing

Apply training data 
to predictive 

models 

Evaluation
Apply testing data 
to predictive model
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model estimation:  location, functional class, number of lanes, speed limit, average annual daily 

traffic (AADT), impaired driver, weather, lighting and weekend. Categorical values for location 

(roadway, intersection, bridge, ramp), functional class (urban, rural), impaired driver (yes, no), 

weather (clear, cloudy, rain, fog, snow, severe cross wind, sleet, hail), lighting (dark, dawn, 

daylight, dusk) and weekend (yes, no) were converted to numerical Boolean variables (0 or 1). 

AADT, speed limit and number of lanes, were scaled to help decrease the magnitude as per a fixed 

ratio; this process assists with reducing fluctuations in model performance.    

The data set was divided where 80% of the observations were used for training and the remaining 

20% for testing. We attempted to balance the training data before model insertion. Note that as 

shown in Figure 3.7, the dependent variable is unevenly distributed in the training dataset, with 

27% of bike crashes resulting in a fatality and/or incapacitating injury (i.e., minority class), and 

73% of bike crashes resulting in no fatality and/or incapacitating injury (i.e., majority class). There 

are several techniques to handle imbalanced datasets, but broadly-speaking, data can be balanced 

by decreasing the majority class sample size (under-sampling) or increasing the minority class 

sample size (oversampling). We will consider two widely used algorithms for under and 

oversampling (i.e., Near-Miss and SMOTE). Additionally, we look at misclassification costs as a 

way to address imbalanced classification.  

 

Figure 3.7: Unbalanced Data for Dependent Variable 
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Three sampling techniques were applied to training data as part of the modeling effort to gauge 

which method gave the best prediction capability. We used the NearMiss algorithm for under-

sampling to prevent the problem of information loss in most traditional under-sampling techniques. 

Here, the majority class is reduced to the total number of the minority class. In a near-miss 

algorithm, distance between all the points in the majority and minority class is calculated; for all 

instances where this distance is the shortest, this group of points in the majority class is selected 

for elimination. For each example in the minority class, a given number of the closest majority 

class is selected. This method guarantees that every minority point is surrounded by some majority 

samples. Synthetic Minority Oversampling Technique (SMOTE) was applied for oversampling, a 

technique where synthetic samples are generated for the minority class that helps to overcome the 

overfitting problem posed by traditional random oversampling techniques. By linear interpolation 

of the minority class, synthetically more training data is generated by randomly selecting one or 

more of the k-nearest neighbors for each minority class by calculating the Euclidean distance 

between a point and every other sample point in the minority class. Another balancing approach 

involves the use of cost-sensitive learning (CSL), whereby a larger weight is assigned to the 

minority class and a smaller weight is applied to the majority class. Since the data points for a 

killed and/or incapacitating injury are way smaller compared to injured and/or no injured cases, 

and this chapter focuses on being able to detect killed and/or incapacitating injury, CSL can be 

used in especially such cases. In CSL, each class is given a misclassification cost when training a 

model, where the aim is to minimize the total misclassification cost. When the class weight is set 

according to the imbalanced ratio, it implies a modification in the loss function, thus improving 

the training model by pushing the decision boundary that allows improvement in the minority 

class. 
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Even though RF is insensitive to many features, we applied the following feature selection methods 

to improve the classification performance of LR and DT so that we can examine and compare the 

models unbiasedly. As the dataset consists of both numerical and categorical inputs, three methods 

of feature selection were applied sequentially: 1) Correlation coefficient, 2) DT feature 

importance, and 3) Recursive Feature Elimination (RFE). Feature selection using correlation is a 

filter approach that is based on the feature-to-feature correlation using the standard Pearson 

correlation coefficient value. The goal here is to find a subset of features that are highly correlated 

with one another and drop them as they may influence the performance of the model performance. 

A correlation coefficient threshold of ±0.7 was applied to eliminate highly correlated features 

(Hulse, J.V. et al., 2012). The second step of feature selection involved the use of DT after 

dropping the highly correlated features. By using all the features in a DT, we can quickly observe 

the portion of the features DT uses for the full classification. We drop the features which do not 

contribute to the classification.  The final filter selection method used was RFE, which works by 

starting with all the features in the training dataset and subsequently removing the undesired 

features until a subset of the desired features remains.  The RFE starting point was the set of 

features filtered using DT in the training dataset. The core of the model used here is DT, where 

features are ranked by importance, the least important features are discarded, and the model is 

refitted. This process is repeated until only the desired features remain by performing a cross-

validation evaluation of the different number of features and selecting the number of features with 

the best mean score. 

Finally, to understand and explain the output for a killed and/or incapacitating bicycle injury (class 

1) for the selected model, Shapley additive explanations (SHAP) is used. SHAP helps interpret the 

predictions by measuring each feature’s contribution (known as Shapley value) to the output (class 
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1). Shapley values are a concept adopted from the game theory field, whose objective is to measure 

each player’s contribution to the game (Shapley, 1953). We used Kernel Shap to calculate the 

Shapley value as it can interpret any ML model regardless of its nature. Kernel Shap is based on 

weighted linear regression where the coefficients of the solution are the Shapley value (Lundberg 

et. al., 2017). 

Some limitations were identified in the crash data. The data used for this study consists of only 

bicyclist-motor vehicle crashes. All the data is recorded at the scene of crash by law enforcement 

officers. Once this police report is filed, it is then entered into the data platform. Hence, this data 

can suffer from human error when reported, collected and processed at the various stages. TDOT 

does not include near misses and unreported bike incidents. The data does not provide information 

on the cause of crash, which party involved in the crash was injured (although we assume that if 

any injuries are reported, it at a minimum involves a bicyclist), nor any details on how or in which 

direction the involved parties where moving (i.e., circumstances prior to crash). 

 

 

3.6 Model Results  

 

The overall model performance measure is the extent to which the model can accurately predict 

whether a bike crash results in a fatality or incapacitating injury. Appendix II provides a list of 

relevant metrics and their corresponding definitions for indicators considered in evaluating the 

efficacy of model performance.  

Table 4 summarizes the performance metrics for various models that were estimated using the 

features that emerged from the aforementioned elimination process:  lighting (dark), number of 

lanes, speed limit, AADT, weekend, and location type (roadway). 

https://vanderbilt.box.com/s/ynoldn6yp9f5c1mxvii39swol8fb9c3d
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As shown in Table 3.4, three models (oversampled LR, weighted CSL applied to both LR and RF) 

perform well.  However, weighted CSL applied to RF performs slightly better, due to its higher 

true negativity rate (0.63) and true positivity rate (0.77), and with lower Type I and Type II errors. 

Moreover, RF with weighted CSL has the highest value of G-mean (0.7), and weighted accuracy 

(0.7).  

The Receiver Operating Characteristic (ROC) curve value for RF with weighted CSL is also high 

for the testing data (0.7) and varies the least (0.01) from the training data (0.71). This curve plots 

two parameters: true positive rate (TPR) and false positive rate (FPR). This measure is derived 

from a curve plotted on a graph showing the performance of a classification model at different 

classification thresholds The ROC curve can help identify the threshold by balancing the TPR and 

FPR than manually checking which threshold works best. A cut-off point of 0.5 is taken for ROC, 

which means that below this value the model is unable to distinguish between class 1 and class 0. 

In RF, you obtain the probability of the prediction belonging to a class when you aggregate the 

indication functions from its decision trees. When you do the inference on the train and test dataset, 

you get a distribution, and the ROC curve represents precision of the chosen point of the 

corresponding probability space. The ROC measures the area under the curve; when the ROC is 

closer to 1 but greater than 0.5, it indicates a strong model. 

 

Table 3.4: Performance Metrics for Various Model Estimation Techniques 

Performance 

Metrics 

True 

Negativ

e Rate 

True 

Positive 

Rate 

False 

Negative 

Rate 

False 

Positive 

Rate 

Geometric

-Mean 

Weighted 

Accuracy 

Receiver 

Operating 

Characteristics 

- Train 

Receiver 

Operating 

Characteristics 

- Test 

LR – Unbalanced  0.18 0.94 0.062 0.82 0.41 0.56 0.58 0.56 

LR – 

Undersample 
0.57 0.68 0.32 0.43 0.62 0.625 0.64 0.63 
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Shapley additive explanations (SHAP), as shown in Figure 3.8, measure the contribution of a 

feature in model prediction (Apley and Zhu, 2020). Note that both classes use the same feature 

equally (i.e., all features have equal impact on model prediction). Among these features, dark 

lighting and roadway crash location are the most important factors affecting bike crash severity, 

while roads with higher motor vehicle speed limits, heavy traffic, multilane roads and weekend 

travel are also significant contributors. 

 

Figure 3.8: Summary Plot Displaying SHAP Values for Model Features 

 

Performance 

Metrics 

True 

Negativ

e Rate 

True 

Positive 

Rate 

False 

Negative 

Rate 

False 

Positive 

Rate 

Geometric

-Mean 

Weighted 

Accuracy 

Receiver 

Operating 

Characteristics 

- Train 

Receiver 

Operating 

Characteristics 

- Test 

LR – 

Oversample 
0.71 0.68 0.32 0.29 0.69 0.695 0.67 0.7 

LR – Weighted 

CSL 
0.68 0.69 0.31 0.32 0.68 0.685 0.68 0.68 

DT– Unbalanced 0.31 0.89 0.11 0.69 0.53 0.6 0.68 0.6 

DT– 

Undersample 
0.62 0.66 0.34 0.38 0.64 0.64 0.69 0.64 

DT – 

Oversample 
0.5 0.78 0.22 0.5 0.62 0.64 0.75 0.64 

DT – Weighted 

CSL 
0.66 0.7 0.3 0.34 0.68 0.68 0.71 0.68 

RF – Unbalanced  0.2 0.95 0.055 0.8 0.44 0.575 0.6 0.57 

RF – 

Undersample 
0.63 0.62 0.38 0.37 0.62 0.625 0.7 0.63 

RF – Oversample 0.56 0.76 0.24 0.44 0.65 0.66 0.77 0.66 

RF – Weighted 

CSL 
0.63 0.77 0.23 0.37 0.70 0.7 0.71 0.70 
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Figure 3.9 displays a bee swarm plot for the study data. This plot helps one understand how a 

variable may influence model prediction. In this plot, every record in the database is shown as a 

dot on each row. The color of the dot represents the value of that feature for the event, with red 

indicating a high value and blue a low value. Here, one can observe that for Class 1 (killed and/or 

incapacitating bike injury), when the lighting condition is inadequate and location type is roadway, 

it is more likely to result in a killed and/or incapacitating bike injury. 

 

Figure 3.9: Summary Plot Combining Feature Importance with Feature Effect for Class 1 (Killed and/or Incapacitating Bike 

Injury) 

 

Understanding prediction for individual instances can provide meaningful information, as it 

explains how individual predictions are reached in terms of feature contribution. To illustrate, we 

selected this information for two bicycle crash records, one which resulted in a killed or 

incapacitating injury (Event 419), and another where the outcome was not a killed or incapacitating 

injury (Event 422). Using the feature inputs for Event 419, the model predicts a killed and/or 

incapacitating bike injury with 0.71 probability. This compares with when we do not know any 

features for a specific event, in which case the average model output over the training dataset is 

0.4995 (base value). Doing the same for Event 422, In the case of Event 422, the model predicts a 
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no killed and/or incapacitating bike injury with 0.74 probability, compared to a base value of 

0.5005.  

Figure 3.10 helps identify groups of similar instances by using hierarchical agglomerative 

clustering to order the instances. Each position on the x-axis is an event in the database, where red 

plots increase the model prediction and blue decreases it. A cluster is observed towards the right 

of the curve with high prediction of killed and/or incapacitating bike injury. 

 

Figure 3.10: Clustering Based on Features for Class 1 (Killed and/or Incapacitating Bike Injury) 

 

The heavy influence of inadequate lighting conditions on bike crash severity is a finding consistent 

with prior studies and is the largest factor influencing bicycle injury severity (Asgarzadeh et al., 

2018), with Kim et al. (2007) concluding that the probability of a fatal bike injury doubles in the 

absence of streetlighting. The magnitude of this factor in the model results suggests that risk 

mitigation strategies should seriously consider improvements to lighting infrastructure. 

Many previous studies have focused on crashes along the intersections since they have the highest 

conflict points. However, within our study database, more than one-half of the bike crashes 

occurred on non-intersection segments, one reason why this feature emerged as a significant 

explanatory factor for serious injury outcomes. Asgarzadeh et al. (2017) similarly found these 
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locations to be important, reporting that crashes on non-intersection segments are more likely to 

result in 1.31 times higher injury severity.  

An increase in speed limit is also positively associated with a killed and/or incapacitating biker 

injury outcome. Chimba et al. (2012) noted a similar relationship when comparing crashes on roads 

with speed limits of 30 mph to those with a 35-45 mph speed limit. Fridman et al. (2020) describe 

several case studies which significantly reduce the likelihood of a killed and/or incapacitating bike 

(and pedestrian) injury by lowering road speed to 20 mph.   

As a larger number of motor vehicles (AADT) travel across a road segment, it creates greater 

opportunity for crash exposure. Therefore, it is not surprising that biker injury frequency would 

increase; however, it is less clear based on model results that AADT alone accounts for more 

severe injury outcomes. This may be explained by the presence of other related factors such as 

vehicle speeds and number of lanes. 

The same can be said for the significance of number of roadway lanes as an explanatory factor in 

predicting a serious biker injury outcome.  In fact, the combination of multilane roads with higher 

speed limits being associated with higher risk of fatal or incapacitating injuries is one of the most 

consistent findings across the literature (Chen, 2015; Siddiqui et al.,2012; Huang et al.,2010; Lee 

et al., 2015; Noland and Quddus, 2004; Quddus, 2015; Wier et al., 2009; Yu and Zhu, 2015). 

Finally, the weekend effect, albeit small, influences the likelihood of a bike crash causing a killed 

and/or incapacitating injury. Similar findings were observed in research performed by Shubo Wu 

et al., (2021). 

In reviewing these findings, it is important to acknowledge the potential differences between factor 

correlation and causation, particularly absent any information on traffic volume to normalize the 

results (Von Stülpnagel, et. al., 2021).  Consequently, one must be careful in interpreting how to 
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associate these results with potential risk mitigation considerations. It is entirely possible, for 

example, that bicyclist fatalities and incapacitating injuries are actually occurring more often in 

well-lit places, not because the individual safety risk is greater, but because the volume of 

bicyclists is so much higher that it confounds this relationship.  This issue is addressed in Chapter 

5.   

 

3.7 Policy Implications  

The feature importance associated with the selected model (see Figure 3.8) provides insights into 

key factors that most influence serious biker safety outcomes as well as their relative contribution 

to those impacts.  The following discussion provides a general description of policies that may be 

cost-effective in reducing serious biker safety risk based on the model results.  However, the extent 

to which a particular strategy makes sense is dependent on the site-specific conditions that are 

present at the location of interest.  For example, implementation of a dedicated bike lane may be 

possible in one location that would be physically infeasible at another site or the benefit-cost may 

not be sufficient to justify allocation of construction resources.  

It is also possible that the unintended consequences of implementing a supposed safety 

improvement actually creates greater risk.  For example, consider a case where a dedicated bike 

lane is established by demarcating the lane by painting the roadway, but it is relatively narrow in 

width and a physical barrier is not present to divide it from the rest of the roadway. The existence 

of a bike lane may motivate more bicyclists to use the facility because of a perception safety has 

been improved, yet they may be placing themselves more in harm’s way (Ferenchak and Marshall, 

2016; Ferenchak and Marshall, 2019). 



 

 

 

53 

 

Regarding lighting conditions, relatively simple risk mitigation strategies would include the 

placement of street lighting along popular bike routes. In addition to improving illumination by 

providing better street lighting, it would also help if the bikers made their presence known on a 

roadway by wearing reflective materials and installing blinking lights on their bikes (Abdur et al, 

2021). The latter is required by the traffic law in Tennessee (TN), especially at nighttime. It goes 

without saying that personal protective wear, which includes helmets, should always be worn by 

the bicyclist.  

While the relationship between roadways and serious bike crash outcomes is clear, the particular 

built environment and usage may influence exposure; hence, the reason why higher AADT’s and 

number of lanes also contribute to the problem. Controlling for bicyclist exposure, Kaplan and 

Prato (2015) concluded that separated bicycle facilities reduce both bicyclist injury crashes and 

fatal crashes, whereas on-street bike lanes do not.  This suggests that efforts to create dedicated 

bikeways which are physically separated from the roadway would be a more effective, albeit a 

more expensive, risk management strategy.  In the absence of resources to provide these means, 

creating sufficient street width for an on-street bike lane is paramount, as most bicycle lanes today 

are placed between the vehicular route and the curb, often at widths of no more than four feet 

(including the 1–2 feet gutter pan as part of the bicycle lane).  This problem is compounded by 

motorist expectations that bicyclists will remain in their dedicated lane, even when physically 

unable to do so. It is further exacerbated by the presence of “mixing zones”, which are placed in 

advance of right-turn lanes to allow vehicles to cross the bicycle lane to enter the right-turn lane. 

When combined with adequate signage and other demarcations, these intervention strategies 

should help alleviate at least some crashes and reduce the impact of others when they occur.  
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Regarding speed limits, we recommend reviewing all urban streets with speed limits above 30 mph 

to assess whether the limit should be lowered.  When this is not deemed a viable strategy, signage 

with dynamic message boards could be placed at vulnerable locations, reminding motorists to obey 

speed limits.  Another strategy would be to deploy speed sensors coupled with speed cameras 

(either mobile or fixed) at vulnerable locations that display the actual speed of a passing vehicle 

which flashes when the speed limit is being exceeded. Speed bumps and round abouts are other 

options to slow vehicular traffic speed along the roadway and at intersections.  

While recommendations for improving bike safety are encoded into bicycle design guidance 

(American Association of State Highway and Transportation Officials, 2014; National Association 

of City Transportation Officials, 2014), the widespread use of bike lanes generally, and mixing 

zones in particular, has been cited as an example of broader professional ignorance on matters of 

traffic safety (Hauer, 2016). There are recent and ongoing efforts to better understand bicyclist 

safety, including NCHRP 17-84: Pedestrian and Bicycle Safety Performance Functions for the 

Highway Safety Manual, NCHRP 15-73: Design Options to Reduce Turning Motor Vehicle – 

Bicycle Conflicts at Controlled Intersections and NCHRP 15-74: Safety Evaluation of On-Street 

Bicycle Facility Design Features. While a lack of crash and exposure data continues to be a 

hindrance to bike safety research, it has generally been accepted that as the biker population 

increases, the crash rate decreases (Elvik, 2009), perhaps an indication of greater awareness on the 

part of motorists of the need to share the road with this travel mode.  

To that end, both Sweden and the Netherlands have developed approaches to address this 

challenge. Starting in the early 1990s, Sweden's Vision Zero and the Netherlands' Sustainable 

Safety Vision have integrated motorists and vulnerable road users with the concept of shared road 

responsibility to create homogeneous, multimodal transportation networks (Welle, Sharpin, et al. 
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2018, Wegman, et al. 2006). The same concept has been recently adopted in Davidson County, 

TN (Vision Zero, 2020). 

 

3.8 Conclusion  

Bike safety has been a much-discussed topic, particularly of late, as interest in bicycling as a 

sustainable transportation alternative continues to gain popularity.  Consequently, policy analysts 

and planners have been grappling with cost-effective methods to reduce bicycle crashes, 

particularly those with serious outcomes.  We believe that the results of this study have shed 

additional light on the subject, in particular: 1) demonstrating the use of random forest modeling 

and select sampling techniques as having the potential to provide greater accuracy in predicting 

the likelihood of a fatal and serious bike injury, and 2) utilizing the feature weighting of the 

predictive model to prioritize the types of risk mitigation strategies that offer the greatest impact. 
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Chapter 4  
 

Explanatory Analysis of Pedestrian Crash Severity in Urban Areas 

 

4.1 Introduction 

 

Walking is an integral part of active transportation since everyone is a pedestrian at one time or 

another. This is particularly true in urban areas, where walkability is a primary mode used to satisfy 

mobility needs, in part to avoid traffic congestion, but also as a sustainable alternative and one that 

can improve human wellbeing, both physically and emotionally. These benefits have prompted 

federal, state and local agencies to encourage walking by designing more pedestrian-friendly 

streets. However, pedestrian crash frequency is rising, with many crashes leading to incapacitating 

injuries or fatal outcomes; notably, 82% of pedestrian fatalities occur in urban areas (NHTSA, 

2021).  

Pedestrians are among the most vulnerable road users, especially when a motor vehicle is involved. 

According to one study, only 10% of pedestrians will survive if involved in a crash with a car 

traveling at 40 mph (Tefft, 2013). Therefore, heavily utilized urban corridors impose a potentially 

significant danger to pedestrians if not provided with adequate safety measures. Consequently, it 

is essential to improve our understanding of the critical factors impacting pedestrian crashes in 

urban areas, aiming to develop risk mitigation strategies to curb this trend.   

This chapter discusses a study performed to improve our understanding of pedestrian crash severity 

in urban areas by investigating the factors affecting pedestrian crashes with incapacitating and fatal 

outcomes, leading to the development of an explanatory model. This was accomplished using 

detailed pedestrian crash records from Nashville and Memphis, the two largest urban areas in the 

State of Tennessee. It concludes with a policy discussion directed at enhancements to 

transportation infrastructure and operations with pedestrian safety in mind. It also addresses the 
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extent to which policy changes directed at pedestrian safety may offer co-benefits for bicyclist 

safety. 

4.2 Literature Review  

 

As pedestrian safety in urban areas is a global problem, the international research community has 

been actively engaged in providing adequate protection within pedestrian infrastructure and 

operations. Table 4.1 lists the results of significant factors found in previous studies, organized 

according to field type and variable.   

Table 4.1: Significant Pedestrian Crash Factors from Prior Studies 

 

Variable Field Variable Analyzed Relevant Studies 

Environmental Lighting  

Weather  

Intersection Type  

Speed Limit  

Traffic Control Device 

Number of Lanes 

Road Curvature 

Traffic Volume (AADT) 

Land Use  

Mujalli et al., 2019 

Li et al. 2017 

Haleem et al., 2015 

Samerei et al., 2021 

Almasi et al., 2021 

Verzosa and Miles, 2016 

Khattak and Tung, 2015 

Wanvik, 2009 

Crash Specific Crash Type  

Severity 

Theofilatos and Efthymiou, 2012 

Time Time of day 

Day of week 

Mokhtarimousavi et al., 2020 

Mokhtarimousavi, 2019 

 

Table 4.2 summarizes relevant study methodologies. The most common modeling techniques have 

included the Multinomial Logit Model, Mixed Logit Model, and Ordered Logit Model. Note, 

however, that some of the more innovative modeling techniques, such as support vector machines 

and weighted cost-sensitive learning, have not been applied to this problem.  
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Table 4.2: Previous Methodologies and Modeling Techniques 

 

Modeling 

Technique 

Author Study Focus Variables Analyzed 

Multinomial logit 

model (MNL) 

Chen and Fan, 2019 Pedestrian – vehicle 

crash injury severities 

into five categories (no 

injury, possible injury, 

evident injury, 

disabling injury and 

fatality) in North 

Carolina 

Probability of fatalities and disabling injuries are increased 

due to driver's physical condition (bad condition), vehicle 

type (motorcycle and heavy truck), pedestrian age (26–65 

and over 65), weekend, light condition (dawn, dusk and 

dark), roadway characteristics (curve), roadway surface 

(water), roadway class (NC route) and speed limit (35–

50 mph and above 50 mph) 

Partial 

proportional odds 

logit model 

Li and Fan, 2019 Pedestrian – vehicle 

crash injury severities 

in North Carolina 

Models have a better performance of developing separate 

injury severity models for each age group compared with 

estimating a single model utilizing all data. 

Support vector 

machine and MNL 

Mokhtarimousavi, 

2019 

Pedestrian crash - time 

of day analysis in 

California 

Pedestrian action, type of vehicle, roadway type, weather 

condition and crash type are the top variables which affect 

pedestrian fatal and severe injuries for daytime and 

nighttime. 

Binary logistic 

regression and 

tree-based models 

Hu et al., 2020 Pedestrian causality in 

Changsha City, China  

Several clusters of pedestrian crashes were identified in 

urban areas, which are related to the population, road 

network, regional functional zoning and social and 

economic characteristics. However, the severity of 

pedestrian casualties has strong relationships with 

darkness, lighting conditions, road isolation facilities and 

pedestrian age and behavior. Casualties are more severe at 

night than during the day, and school-age children and 

elderly pedestrians tend to suffer more.  

Classification and 

regression tree 

with random forest 

approach 

Li et al., 2017 Impact of weather 

conditions on injury 

severity in Great 

Britain 

Under severe weather conditions pedestrian age, vehicle 

maneuver and speed limit are the important features 

affecting pedestrian severity 

Extracted rules 

from Bayesian 

networks 

Mujalli et al., 2019 Urban and suburban 

areas of Jordan 

Roadway type, number of lanes, speed limit, lighting, and 

adverse weather conditions increase the risk of fatal and 

severe injuries. 

Mixed logit model Haleem et al., 2015 Signalized and non-

signalized locations in 

Florida 

For both location types higher AADT, speed limit, and 

percentage of vehicle type; at-fault pedestrians; pedestrians 

age; rainy weather; and dark lighting condition were 

associated with higher pedestrian severity risk. 

Mixed logit model Kim et al., 2010 Pedestrian-injury 

severity in pedestrian-

vehicle crashes of 

North Carolina 

Dark lighting conditions, vehicle size, freeway, high speed, 

impaired driving and old age of pedestrians lead to high 

probability of fatal injuries. 

Random-

parameter (mixed) 

logit 

Aziz et al., 2013 Pedestrian injury 

severity levels of New 

York City 

Number of lanes, grade, light condition, road surface, 

presence of signal control, type of vehicle, parking 

facilities, commercial and industrial land use are found to 

be statistically significant. 
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Modeling 

Technique 

Author Study Focus Variables Analyzed 

Artificial neural 

network and 

random parameter 

ordered response 

models 

Mokhtarimousavi et 

al., 2020 

injury severity of 

pedestrian crashes by 

time-of-week in 

California 

age, alcohol consumption, pedestrian presence location, 

time of day, light, and surface conditions significantly 

impact injury severity 

Latent class 

clustering and 

MNL 

 

Sun et al., 2019 Pedestrian crashes in 

Louisiana 

Pedestrian crossing and entering roads, crash hours 

between midnight to 6 pm, dark-unlighted conditions, dark-

lighted conditions, and non-intersection locations are 

identified as significant variables  

Latent class with 

ordered probit 

method, k-means 

with MNL 

Mohamed et al., 2013 Pedestrian injury 

severity for New York 

City, US and the City 

of Montreal, Canada  

Pedestrian age, location type, driver age, vehicle type, 

driver alcohol involvement, lighting conditions, and several 

built environment characteristics influence the likelihood 

of fatal crashes 

Latent-class logit 

and mixed logit 

models. 

Behnood & 

Mannering, 2016 

Pedestrian injury 

severity in three 

distinct economic time 

periods in Chicago, 

Illinois 

Variables potentially affecting injury severities were 

considered, including time, location, and severity of crashes 

and data on the roadway and environmental conditions, 

pedestrian characteristics, and crash characteristics. 

Significant temporal instability was seen, which likely 

results from a combination of the economic recession and 

the long-term evolution of the influence of factors that 

affect pedestrian-injury severity. 

 

4.3 Data Analysis 

 

Data associated with pedestrians involved in motor vehicle crashes were obtained from the 

Tennessee Department of Transportation (TDOT) for the period from January 1, 2017, through 

December 31, 2020, covering the entire state. Attributes associated with each crash record are 

listed in Appendix I.  

During this period, 5,494 pedestrian crashes were recorded for which there was complete 

information (see Table 4.3), distributed across the state as shown in Figure 4.1. Of the 95 counties 

in TN, Shelby County and Davidson County recorded the highest number of pedestrian crashes, 

collectively accounting for 56% of the total crashes (56% of 5,494 crashes), more than one-half of 

the overall state total. This is to be expected since these two counties are densely populated and 

include the cities of Memphis and Nashville, respectively. These two locations subsequently 

became the focus of the modeling effort.  

https://vanderbilt.box.com/s/b45y6x1slgg0m3bcy5uenua5vicyty8u
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Table 4.3: TN Pedestrian Crashes by Year 

Year Total Pedestrian Crashes 

2017 1,400 

2018 1,394 

2019 1,473 

2020 1,227 

 

 

Figure 4.1: Pedestrian Crash Cluster in TN (2017-2020) 

 

Pedestrian crash severity results for the two counties are shown in Figure 4.2. The pedestrian crash 

injuries were classified as resulting in either no injury, injury, serious (incapacitating) injury and 

fatal injury. Particularly noteworthy is that fatal and/or incapacitating injury (KII) crashes account 

for 28% of 3,055 recorded crashes for Davidson and Shelby County. 

 

Figure 4.2: Pedestrian Crash Severity in Davidson and Shelby County 
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Figure 4.3 shows the distribution of pedestrian crashes based on location type. Pedestrian KII 

crashes are highest on roadways, followed by intersections and ramps.  

 

Figure 4.3: Pedestrian Crashes by Location Type in Davidson & Shelby County 

 

As displayed in Figure 4.4, the most significant number of pedestrian crashes in general and those 

resulting KII occurred on four-lane roads (two lanes in each direction). It can also be seen that 

four-lane roads experience a high number of pedestrian crashes on medians and in turn lanes. 

 

Figure 4.4: Pedestrian Crashes by Lane Configuration 
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As seen in Figure 4.5, roads with speed limits from 30 mph to 45 mph experience high pedestrian 

crashes, with the proportion resulting in a KII increasing at higher speeds.  

 

Figure 4.5: Pedestrian Crashes by Road Speed Limit 

 

4.4 Modeling Approach 

 

While the literature review cited a variety of modeling approaches that have been developed for 

predicting pedestrian crash severity, none have considered a comparison of various classification 

predictive modeling techniques with different balancing methods along with a rigorous feature 

selection process. In this study, model estimation was performed using Logistic Regression (LR) 

and Decision Tree (DT) techniques while also considering Random Forest (RF) and Support 

Vector Machine (SVM). A classification technique is applied to the models such that one can 

predict the categorical outcome of a killed and/or incapacitating injury (Class 1) and no killed 

and/or incapacitating injury (Class 0). LR is a supervised machine learning algorithm that uses a 

logistic function to model the outcome and serves as a baseline for our binary classification 

problem. It represents a widely used method to study risk factors impacting injury severity. The 

advantage of LR is its easy implementation and quick description of the relationship between the 

input variables and the output variable with no scaling of features. The drawback with LR is that 

it can only construct linear boundaries, it assumes no correlation between input variables and the 
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output variables, input variables are correlated to each other, and a constant need to set the 

threshold (from the baseline of 0.5) on which classification is based such that we reduce the false 

prediction of the output variable.  

DT is another frequently used supervised learning classification algorithm for understanding and 

interpreting data, where the top node is the root node, representing the best feature that divides the 

data. Each internal node is a feature and branches indicate the decision, with the class label being 

represented by a leaf node. A DT consists of nested if-else statements where successive conditions 

are checked unless a conclusion is reached (i.e., a decision is made if the output will be a class 1 

or class 0 only if it satisfies certain criteria for each of the features), which can then be shown 

graphically in the form of a decision tree or a flow chart. DT outperforms an LR, especially when 

the relationship between the input and out variables is complex and non-linear. DT also helps build 

easy-to-understand models for visualization; however, DTs tend to overfit. DT serves as a 

foundation for RF, which is yet another supervised machine learning algorithm.  

Although RF has not been extensively used as a classification algorithm for analyzing bicycle 

crashes, it was included because RF has been shown to improve modeling performance relative to 

a single tree classifier (e.g., DT) and LR. RF enables multiple uncorrelated DTs to grow, thus 

creating a forest.  RF uses a technique called feature bagging, where features are selected randomly 

for individual DTs, which is similar to bagging procedure. With feature bagging, the correlation 

between each DT is reduced but the overall accuracy of the model increases. RF performs better 

compared to LR and DT as it is more robust to noise, and able to capture the non-linear tendencies 

by putting all the weak learners in an ensemble that is used to make the prediction. It also avoids 

overfitting because those individual learners are weak, so it is not one massive model that could 

lead to overfitting the data (A.C. Muller et.al.,2017). 
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SVM is a supervised machine learning method that uses a decision boundary to divide the data, 

based on the features, into either a fatality or incapacitating outcome or a less severe injury 

outcome. It calculates a maximal margin hyperplane separating the two classes. The boundary 

decision can be a linear or non-linear function. When comparing the efficacy of RF and SVM 

performance, RF performance is sensitive to the number of features randomly selected at each 

node and the number of trees and its choice can lead to performance variation leading to 

opportunities for overfitting, unlike SVM parameters that have minor effects on error. A major 

advantage of SVM is its insensitivity toward unbalanced datasets and avoiding overfitting. We 

chose to use a linear decision function in SVM based on the observed gap between the testing and 

training Receiver Operating Characteristic (ROC) values for RF (A.C. Muller et.al.,2017)  

In this study, we applied LR, followed by DT, RF, and SVM to observe the model prediction 

outcome. It is not necessary to use models that build on the previous ones; however, this was done 

to tune the classifier and improve model performance. 

The dependent variable was defined as a numerical Boolean variable, with a value of 1 indicating 

a KII outcome and 0 otherwise (i.e., minor injury or no injury). Before conducting model 

estimation, data pre-processing was performed to remove records with missing data. This resulted 

in the selection of the following candidate crash factors (attributes) to be considered as independent 

variables in model estimation:  location, functional class, number of lanes, speed limit, average 

annual daily traffic (AADT), impaired driver, weather, lighting, weekday, and time-of-day. 

Categorical values for location (roadway, intersection, bridge, ramp), functional class (urban, 

rural), impaired driver (yes, no), weather (clear, cloudy, rain, fog, snow, severe crosswind, sleet, 

hail), lighting (dark, dawn, daylight, dusk), weekday (yes, no) and time-of-day (early morning, 

morning, AM peak, afternoon, PM peak, late evening) were converted to numerical Boolean 
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variables (0 or 1). AADT, speed limit, and number of lanes were scaled to help decrease the 

variation of magnitude for these features compared to the other features. Scaling reduces model 

performance fluctuations by interpreting the features on the same scale.    

The data set was divided such that 80% of the records were used for training and the remaining 

20% for testing. We attempted to balance the training data before model insertion. Note that as 

shown in Figure 4.6, the dependent variable is unevenly distributed in the training dataset, with 

28% of 3,055 pedestrian crashes resulting in a KII (i.e., minority class), and 72% of 3,055 

pedestrian crashes resulting in non-KII (i.e., majority class). There are several techniques to handle 

imbalanced datasets, but broadly speaking data can be balanced by decreasing the majority class 

sample size (under-sampling) or increasing the minority class sample size (oversampling). We will 

consider two widely used algorithms for under and oversampling i.e., Near-Miss and SMOTE. 

Additionally, we look at misclassification costs as a way to address imbalanced classification.  

  

 

Figure 4.6: Unbalanced Data for Dependent Variable 
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Three sampling techniques were applied to training data as part of the modeling effort to gauge 

which method gave the best prediction capability. We used the NearMiss algorithm for under-

sampling to prevent the problem of information loss in most traditional under-sampling techniques. 

Here, the majority class is reduced to the total number of the minority class. In a near-miss 

algorithm, distance between all the points in the majority and minority class is calculated; for all 

instances where this distance is the shortest this group of points in the majority class is selected 

for elimination. For each example in the minority class, a given number of the closest majority 

class is selected. This method guarantees that every minority point is surrounded by some majority 

samples. Synthetic Minority Oversampling Technique (SMOTE) was applied for oversampling, a 

technique where synthetic samples are generated for the minority class that helps to overcome the 

overfitting problem posed by traditional random oversampling techniques. By linear interpolation 

of the minority class, synthetically more training data is generated by randomly selecting one or 

more of the k-nearest neighbors for each minority class by calculating the Euclidean distance 

between a point and every other sample point in the minority class. Another balancing approach 

involves the use of cost-sensitive learning (CSL), whereby a larger weight is assigned to the 

minority class and a smaller weight is applied to the majority class. Since the data points for a 

killed and/or incapacitating injury are way smaller compared to injured and/or no injured cases 

and this chapter focuses on being able to detect killed and /or incapacitating injury, CSL can be 

used in especially such cases. In CSL, each class is given a misclassification cost when training a 

model, where the aim is to minimize the total misclassification cost. When the class weight is set 

according to the imbalanced ratio, it implies a modification in the loss function thus improving the 

training model by pushing the decision boundary that allows improvement in the minority class. 
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Even though RF and SVM is insensitive to many features, we applied the following feature 

selection methods to improve the classification performance of LR and DT so that we can examine 

and compare the models unbiasedly. As the dataset consists of both numerical and categorical 

inputs, three methods of feature selection were applied sequentially: 1) Correlation coefficient, 2) 

DT feature importance, and 3) Recursive Feature Elimination (RFE). Feature selection using 

correlation is a filter approach that is based on feature-to-feature correlation using the standard 

Pearson correlation coefficient value. The goal here is to find a subset of features that are highly 

correlated with one another and drop them as they may influence the performance of the model 

performance. A correlation coefficient threshold of ±0.7 was applied to eliminate highly correlated 

features (Hulse, J.V. et al., 2012). The second step of feature selection involved the use of DT after 

dropping the highly correlated features. By using all the features in a DT, we can quickly observe 

the portion of the features DT uses for the full classification. We drop the features which do not 

contribute to the classification.  The final filter selection method used was RFE, which works by 

starting with all the features in the training dataset and subsequently removing the undesired 

features untill a subset of the desired features remains.  The RFE starting point was the set of 

features filtered using DT in the training dataset. The RFE starting point was the set of features 

filtered using DT in the training dataset. The core of the model used here is DT, where features are 

ranked by importance, the least important features are discarded, and the model is refitted. This 

process is repeated until only the desired features remain by performing a cross-validation 

evaluation of the different number of features and selecting the number of features with the best 

mean score. 

Finally, to understand and explain the output for a killed and/or incapacitating bicycle injury (class 

1) for the selected model, Shapley additive explanations (SHAP) is used. SHAP helps interpret the 
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predictions by measuring each feature’s contribution (known as Shapley value) to the output (class 

1). Shapley values are a concept adopted from the game theory field, whose objective is to measure 

each player’s contribution to the game (Shapley, 1953). We used Kernel Shap to calculate the 

Shapley value as it can interpret any machine learning model regardless of its nature. Kernel Shap 

is based on weighted linear regression where the coefficients of the solution are the Shapley value 

(Lundberg et. al., 2017). 

Some limitations were identified in the crash data. The data used for this study consists of only 

pedestrian impacts associated with motor vehicle crashes. All the data is recorded at the crash 

scene by law enforcement officers. Once this police report is filed, it is then entered into the data 

platform. Hence, data efficacy can suffer from human error when reported, collected, and 

processed at the various stages. Additionally, TDOT does not include near misses and unreported 

pedestrian incidents. The crash record also does not provide information on the cause of crash, 

which party involved in the crash was injured (although we assume that if any injuries are reported, 

it at a minimum involves a pedestrian), nor any details on circumstances prior to the crash.  

 

 

4.5 Model Results  

 

The overall model performance measure is the extent to which the model can accurately predict 

whether a pedestrian crash results in a fatality or incapacitating injury. Appendix II provides a list 

of relevant metrics and their corresponding definitions for each of indicators considered in 

evaluating the efficacy of model performance.  

Table 4.4 summarizes the performance metrics for various models that were estimated using the 

features that emerged from the aforementioned elimination process:  number of lanes, speed limit, 

AADT, weekday, location type (roadway) and lighting (dark).  

https://vanderbilt.box.com/s/ynoldn6yp9f5c1mxvii39swol8fb9c3d
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As shown in Table 4.4, although oversampling applied to both LR and SVM performs well, SVM 

with weighted CSL performs slightly better, due to its nearly even but also high true negativity 

rate (TNR=0.68) and true positivity rate (TPR=0.66), and with lower Type I and Type II errors. 

Moreover, SVM with weighted CSL has among the highest values of G-mean (0.67), and weighted 

accuracy (0.67).  

 
Table 4.4: Performance Metrics for Various Model Estimation Techniques 

 

Performance 

Metrics 

True 

Negative 

Rate 

True 

Positive 

Rate 

False 

Negative 

Rate 

False 

Positive 

Rate 

Geometric-

Mean 

Weighted 

Accuracy 

Receiver 

Operating 

Characteristics-

Train 

Receiver 

Operating 

Characteristics-

Test 

LR-

Unbalanced 
0.12 0.94 0.056 0.88 0.34 0.53 0.57 0.53 

LR-Under 

sample 
0.61 0.7 0.3 0.39 0.65 0.655 0.63 0.65 

LR-Over 

sample 
0.7 0.65 0.35 0.3 0.67 0.675 0.68 0.66 

LR-Weighted 

CSL 
0.67 0.66 0.34 0.33 0.66 0.665 0.67 0.67 

DT-

Unbalanced 
0.29 0.83 0.17 0.71 0.49 0.56 0.68 0.56 

DT-Under 

sample 
0.56 0.63 0.37 0.44 0.59 0.595 0.68 0.59 

DT-Over 

sample 
0.4 0.81 0.19 0.6 0.57 0.605 0.78 0.6 

DT-Weighted 

CSL 
0.53 0.7 0.3 0.47 0.61 0.615 0.72 0.62 

RF-

Unbalanced 
0.2 0.9 0.095 0.79 0.43 0.555 0.67 0.56 

RF-Under 

sample 
0.59 0.59 0.41 0.41 0.59 0.59 0.73 0.59 

RF-Over 

sample 
0.49 0.77 0.23 0.51 0.61 0.63 0.79 0.63 

RF–Weighted 

CSL 
0.53 0.75 0.25 0.47 0.63 0.64 0.74 0.64 

SVM-

Unbalanced 
0.088 0.96 0.04 0.91 0.29 0.524 0.55 0.52 

SVM-Under 

sample 
0.59 0.71 0.29 0.41 0.65 0.65 0.63 0.65 

SVM-

Oversample 
0.7 0.65 0.35 0.3 0.67 0.675 0.67 0.68 

SVM-

Weighted CSL 
0.68 0.66 0.34 0.32 0.67 0.67 0.67 0.67 
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The Receiver Operating Characteristic (ROC) curve value for SVM with weighted CSL is also 

high for the testing data, with no change from the training data. This curve plots two parameters: 

true positive rate (TPR) and false positive rate (FPR). This measure is derived from a curve plotted 

on a graph showing the performance of a classification model at different classification thresholds 

The ROC curve can help identify the threshold by balancing the TPR and FPR than manually 

checking which threshold works best. A cut-off point of 0.5 is taken for ROC, which means below 

this value, the model is unable to distinguish between class 1 and class 0. In RF, you obtain the 

probability of the prediction belonging to a class when you aggregate the indication functions from 

its decision trees. When you do the inference on the train and test dataset, you get a distribution, 

and the ROC curve represents the precision of the chosen point of the corresponding probability 

space. The ROC measures the area under the curve; when the ROC is closer to 1 but greater than 

0.5, it indicates a strong model. 

The importance of each feature in contributing to the selected model results (SVM using weighted 

CSL) appears in Figure 4.7. We use Shapley additive explanations (SHAP), which measures the 

contribution of a feature in model prediction. Here, it can be seen that each of the features 

contribute equally towards a pedestrian KII (Class 1) or otherwise (Class 0), a desirable condition. 

 

Figure 4.7: Summary Plot Displaying SHAP Values for Model Features 
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Figure 4.8 displays a bee swarm plot for the study data. This plot helps us understand how a 

variable may influence model prediction. In this plot, every record in the database is shown as a 

dot on each row. The color of the dot represents the value of that feature for the event, with red 

indicating a higher value and blue a lower value.  

From this plot, we can observe that even though inadequate lighting conditions and roadway 

location type are the top two features affecting the model, they have a negative impact a KII 

outcome. This can be explained by the likelihood that more pedestrians walk during the daytime 

and cross at street intersections rather than along the roadway. Similarly, roads with a large number 

of lanes and pedestrians who travel during weekends experience fewer severe crash outcomes. 

By contrast, increases in AADT and speed limit on roads positively contribute to a model outcome 

resulting in a KII crash outcome.   

 

Figure 4.8: Summary Plot Combining Feature Importance with Feature Effect for Class 1 (Killed and/or Incapacitating Pedestrian 

Injury) 

 

That AADT emerges as an explanatory factor for pedestrian injury severity can be expected as a 

larger number of motor vehicles are potentially interacting with pedestrians, providing greater 

opportunity for crash exposure (Obeng and Rokonuzzaman, 2013; Haleem et al. 2015). 

The relationship between speed limit and pedestrian injury severity concurs with results supported 

by other researchers (Li et al., 2016; Haleem et al., 2015; Sasidharan et al., 2015; Gårder, 2004; 

Kong et al. 2010, Richards 2010, Rosén et. al. 2009 Tefft 2011). As a reference point, Table 4.5 
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summarizes the relationship between vehicle impact speed and pedestrian injury risk (Nilsson, 

2004). The magnitude of this factor in our model suggests that a significant improvement in 

pedestrian safety would be to direct efforts at reducing pedestrian crashes on higher speed urban 

roads. 

In reviewing these findings, it is important to acknowledge the potential differences between factor 

correlation and causation, particularly absent any information on traffic volume to normalize the 

results.  Consequently, one must be careful in interpreting how to associate these results with 

potential risk mitigation considerations. It is entirely possible, for example, that pedestrian 

fatalities and incapacitating injuries are actually occurring more often in well-lit places, not 

because the individual safety risk is greater, but because the volume of pedestrians is so much 

higher that it confounds this relationship.  This issue is addressed in Chapter 5.   

  

 

 
Table 4.5: Pedestrian Injury as a Function of Vehicle Crash Speed (Nilsson, 2004) 

Pedestrian Injury Scale Impact Speed 

10% 17 mph 

25% 25 mph 

50% 33 mph 

75% 40 mph 

90% 48 mph 

  

Figure 4.9 helps identify groups of similar instances by using hierarchical agglomerative clustering 

to order the instances. Each position on the x-axis is an event in the database, where red plots 
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increase the model prediction and blue decreases it. A cluster is observed towards the right of the 

curve with high prediction of KII. 

 

Figure 4.9: Clustering Based on Features for Class 1 (Killed and/or Incapacitating Pedestrian Injury) 

 

4.6 Policy Implications 

 

The feature importance associated with the selected model, as shown in Figure 4.8, provides 

insights into critical factors that most influence serious pedestrian safety outcomes and their 

relative contribution. The following discussion provides a general description of policies that may 

be cost-effective in reducing serious pedestrian safety risk based on the model results.  However, 

the extent to which a particular strategy makes sense is dependent on the site-specific conditions 

that are present at the location of interest.  For example, implementation of a pedestrian bridge 

may be possible in one location that would be physically infeasible at another site or the benefit-

cost may not be sufficient to justify allocation of construction resources. As noted in Chapter 3, it 

is also possible that the unintended consequences of implementing a supposed safety improvement 

actually creates greater risk, due to pedestrian perception of enhanced safety when sufficient risk 

still remains.   

 

AASHTO’s Roadway Design Speed Classification identifies a low-speed facility when it is 45 

mph or lower. Based on the model results regarding speed limits, we recommend reviewing all 
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urban streets with speed limits at or above 30 mph to assess whether the limit can be lowered. 

When this is not considered feasible, speed-reducing mechanisms (speed bumps) are an 

alternative, mainly where frequent pedestrian activity requires that motorists slow down. An added 

advantage of lowering speed is an increase in a driver’s cone of vision. Another strategy would be 

to remove any conflict points between vehicles and pedestrians by providing a wider shoulder 

width or separate pedestrian access routes such as a pedestrian bridge. This latter option would be 

more viable for streets with heavy traffic, multiple lanes, and 30mph or greater speeds.  

Additional risk mitigation interventions include introducing measures such as a road diet (where 

the number and width of travel lanes is reduced on a roadway to cater to other uses like street 

parking or other modes of travel), pedestrian medians/barriers, or raised sidewalks. When 

combined with adequate signage, posts, and other demarcations, these intervention strategies could 

help alleviate at least some crashes and reduce the impact of others when they occur.  

Although not explicitly addressed in this paper, conflict with bus stops at the intersections and 

pedestrian crossings should be reviewed towards implementing improved complete street designs. 

For lighting conditions, relatively simple risk mitigation strategies would include placement of 

street lighting (Abdur et al, 2021), especially where the power source is renewable energy such as 

solar, along popular pedestrian routes to improve visibility. An illumination study can be 

conducted for new and retrofit projects to suggest the street light locations, height, and type based 

on existing topography and physical obstructions. Active or passive flashing beacons at pedestrian 

crossings are another means of notifying motorists of potential safety considerations.  

Jaywalking should be strongly discouraged, and the placement of additional pedestrian crossings 

in locations of heavy pedestrian use should be considered. 
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The multimodal project manual released in 2018 by the Tennessee Department of Transportation 

(TDOT), represents a proactive policy in this regard. It advocates for a risk-based approach with 

built-in flexibility regarding pedestrian facility design.  Nashville and Memphis Vision Zero draft 

plans adopt a similar approach, where comprehensive efforts are made to eliminate pedestrian 

fatalities and severe injuries while increasing safe and equitable mobility for all.  

 

4.7 Conclusion 

 

Pedestrian safety has been a much-discussed topic, particularly of late, as interest in walking as a 

sustainable transportation alternative continues to gain popularity. Consequently, policy analysts 

and planners have been grappling with cost-effective methods to reduce pedestrian crashes, 

particularly those with serious outcomes. We believe the results of this study have shed additional 

light on the subject, in particular: 1) providing policy makers with evidence-based 

recommendations to address pedestrian safety ,  2) demonstrating the use of support vector 

machine and select sampling techniques as having the potential to provide greater accuracy in 

predicting the likelihood of serious pedestrian crash outcomes, and 3) utilizing the feature 

weighting of the predictive model to prioritize the types of risk mitigation strategies that offer the 

greatest safety impact. Ultimately, we hope this study has broadened collective knowledge and 

awareness of risk-informed decision-making that will lead to lives saved and greater use of 

walking as a safe and therefore more viable transportation alternative.  
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Chapter 5  
 

Severe Crash Rates Involving Pedestrians and Bicyclists in Urban Areas 

 

5.1 Introduction 

 

Pedestrians along with bicyclists are the lifeblood of many urban areas (AASHTO, 2018). Walking 

and biking encourage the use of non-motorized modes for short trips, especially in urban areas, 

and are essential sustainable urban design concepts. This is in addition to promoting the many 

health benefits from such an active lifestyle.  

Unfortunately, pedestrians and bicyclists are among the most vulnerable road users, especially 

when a motor vehicle is involved. Safety interventions are needed on such heavily utilized urban 

corridors by understanding the interactions and factors resulting in a serious crash outcome, 

namely the pedestrian or bicyclist being killed or suffering an incapacitating injury (KII) outcome. 

While the frequency of where these outcomes occur is important, it may mask the individual risk 

of a pedestrian or bicyclist. This requires accurate pedestrian and bicyclist traffic counts, which is 

also often referred to as exposure (USDOT, 2010). 

This chapter discusses a study performed to identify pedestrian and bicyclist crash safety, both in 

the aggregate user population and from an individual risk perspective, on specific roadway 

segments in the urban area of Nashville, TN, where significant pedestrian and bicyclist severe 

crash outcomes have been reported (Dash et al., 2022, 2022). 

5.2 Literature Review  

 

Various methods have been explored to calculate the exposure of pedestrians and bicyclists. 

Population measures have been proposed to estimate motor vehicle and pedestrian/bicyclist 

exposure to risk. It assumes that crashes between motor vehicles or between pedestrians/bicyclists 
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and motor vehicles are more likely to occur when there are more residents, drivers, motor vehicles, 

pedestrians, bicyclists, or bicycles in a given area. Over the past several years, NHTSA has 

reported the number of motor vehicle fatalities and fatality rates based on three population types 

in the United States : motor vehicle crashes per 100,000 residents, per 100,000 licensed drivers, 

and per 100,000 registered motor vehicles (Marshall et al., 2011, DiMaggio et al., 2016). However, 

such population-based methods have limited use when examining pedestrian/bicyclist crashes 

since these methods do not consider the opportunity of exposure to motor vehicles, especially at a 

specific type of location (e.g., roadway), nor is it sensitive to the amount of time or distance that a 

pedestrian or bicyclist is exposed to motor vehicle traffic. Additionally, population metrics do not 

account for external changes in behavior patterns, such as changes in walking or bicycling behavior 

for health or environmental reasons with a constant population of residents, bicyclists, and/or 

bicycles. Such a metric also runs counter to the notion of safety in numbers which has been 

hypothesized in the literature (Elvik, 2009) that the denser the population of pedestrians or 

bicyclists, the lower the probability of a crash.  

The amount of time that a pedestrian or bicyclist engages in certain activities may be taken as a 

measure of exposure. This measure has the advantage of capturing time differences between 

pedestrians who walk more and those who walk less. However, the measure is not sensitive to 

where people walk. As a result, it includes time walking on various unspecified locations such as 

sidewalks, trails, and other facilities not shared with motor vehicles. The time spent walking in 

these facilities represents an overestimate of exposure because the likelihood of a crash between a 

pedestrian and a motor vehicle is extremely small at these locations. If the measure had specified 

time spent walking in locations where pedestrians and motor vehicles share the same facility, the 

time metric would have represented a variant of the original metric, the difference being time 
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walking in the facility would have replaced distance walking in the facility. For a constant walking 

speed, the distinction between time walked and distance walked is minimal; therefore, a distance 

metric is preferred such as vehicle miles traveled (VMT) for motor vehicles. However, the distance 

metric uses total distance traveled rather than the total distance traveled on the facility shared with 

motor vehicles. Thus, exposure is overestimated, and risk underestimated. 

One measure of pedestrian exposure that has been investigated in the past is the number of 

pedestrians observed on the roadway. Pedestrian safety analyses based on only the number of 

pedestrians observed in the roadway is better than population density as the latter could distort risk 

values. This helped observe and reflect only changes in walking behaviors Some authors included 

the number of motor vehicles and the distance factor to the pedestrian volume as an exposure 

metric which could address driving behaviors to some extent. The drawback of volume metric 

manual counts was that it was conducted for short durations, at only a few specific locations, and 

these were extrapolated using an adjustment factor for a longer duration and to other similar 

locations. Ferenchak et al. (2020) uses age-specific metrics based on fatality data from FARS and 

exposure data from national surveys such as US Census, the National Household Travel Survey 

(NHTS), American Community Survey (ACS), and National Sporting Goods Association 

(NSGA). The socio-economic demographic population used as a measure of exposure (Ferenchak 

et al, 2019 & 2021; Rebentisch et al., 2019) also suffers from the same drawbacks as population 

metrics.  

Studies conducted for the metrics mentioned above mostly used social surveys and lacked the 

accuracy of observational counts of pedestrian and bicyclist activity. They are also prone to error 

as they are based on a person’s memory or behavior rather than an empirical observation.  
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Some studies address perceived risk as an exposure metric to identify high-risk urban 

infrastructures (Stülpnagel et al., 2022, Ryerson et al., 2021, Bigazzi et al., 2022) while others have 

conducted studies in a stimulator or laboratory to address driver inattention at intersections for 

vehicle-pedestrian/bicyclist crashes using eye-tracking technology (Kaya et al, 2021).   

Procedures and guidebooks exist on how to perform pedestrian and bicyclist volume counts. These 

include FHWA Exploring Pedestrian Counting Procedures, FHWA Bicycle-Pedestrian Count: 

Technology Pilot Report, and NCHRP Report 797 - Guidebook on Pedestrian and Bicycle Volume 

Data Collection. However, performing such counts for non-motorized modes have faced 

challenges that include organizational interest, availability of technological tools, and funding. 

Unfortunately, this lack of volume data has been a barrier to planning a more effective roadway 

facility for all users, especially when considering locations of high pedestrian and cyclist 

interactions with motor vehicles.  

Most non-motorized counts nowadays are still performed manually and are also difficult to scale. 

Currently, the best practice is to establish permanent counts at strategic locations, which can help 

conceptualize and adjust short-term manual counts. Some state transportation agencies, including 

Oregon, Washington, Vermont, Colorado, and North Carolina, have established permanent manual 

counts at strategic locations as part of a statewide data collection program. As Washington aims 

to double the number of cyclists and pedestrians by 2027, these measures bring important attention 

to the need to improve the safety of vulnerable road users (WSDOT, 2008).  

Fortunately, technological data collection advancements are helping to create large volumes of 

data compared to traditional counting methods while requiring less effort and fewer resources, 

especially for non-motorized travel. These techniques use either a passive or an active method. A 

passive method requires little or no input and effort from the traveler. These include leveraging 
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global positioning system (GPS) enabled devices or location-based services (LBS). INRIX and 

StreetLight are two web-based service providers that use passive methods. Active data collection 

requires user participation and input, such as using fitness apps or involvement in bicycle-share 

programs. Strava is a fitness activity tracking map that uses an active data collection method 

(CDOT, 2018).  

StreetLight is unique as it combines mobile data from GPS and LBS data types, geospatial 

information, and textual datasets (census data) where socioeconomic factors can be considered. It 

uses a methodology that takes anonymized location records from smart phones and navigation 

devices in connected cars and trucks, supplemented by other sources (e.g., parcel and digital road 

network data). This information is utilized in an algorithm that transforms the data into 

contextualized travel patterns.  The final step involves normalizing and aggregating the results to 

deliver insights into how vehicles, including bicycles and pedestrians, move by road and Census 

block. A version of StreetLight can directly analyze and visualize pedestrian and bicycle activity 

metrics with an online platform (StreetLight Data, 2021).  

5.3 Approach 

 

Pedestrian and bicyclist crash counts and their respective features contributing to a KII outcome 

in Nashville, TN, have been analyzed and presented in previous work published by the authors 

(Dash et al., 2022 and 2022). While crash frequency is important, we also need to know the risk 

to an individual pedestrian or bicyclist. Hence, facility usage information for pedestrians and 

bicyclists is used as an exposure metric. KII percentage and rates are used toward improving safety 

of non-motorists on roadways. Here both percentages and rates are given equal weights simply 

because we want to identify roadways with high KII cases and where the exposure of crashes is 

high. In the absence of permanent and short-term activity counts, the StreetLight online platform 
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was used to determine volume counts for pedestrians and bicyclists at a facility level. These 

volume counts were available from 2018 to the present, as were the respective crash counts. 

Roadways with a KII percentage (i.e., ratio of total KII crashes to total crashes from 2018 to 2020) 

of five were the minimum requirement for inclusion in the pedestrian and bicycle assessment.  

It has been suggested in some literature such as Ryerson et al. (2021) that counting killed or serious 

injuries (KSI) and even adding exposure or near misses, which is an objective safety metric, is 

insufficient; rather it can be improved by addressing the perceived safety context for a pedestrian 

or bicyclist (i.e., by assessing the cognitive workload) also termed a proactive safety metric. 

However, the major limitation of this study is that the data is collected for a 0.3-mile urban mixed-

use arterial road with 43 cyclists wearing eye-tracking glasses for an unspecified duration or time.  

It does not address the fact that safety perception varies from person-to-person due to reasons such 

as individual experience, risk tolerance level, frequency of use, and gender. The existing crash data 

from TDOT also does not include any pedestrian or bicyclist exposure metrics at a facility level, 

nor does it include information on near misses, information on the non-motorists, factors prior to 

the crash, their reactions, or factors that they think would have prevented a non-injury scenario. In 

the absence of permanent counters, it is reasonable to use KII percentage and KII rate where the 

pedestrian and bicycle activity, especially at the facility level, can be obtained from Streetlight for 

the high crash count locations in Nashville, TN. 

The data validation process for pedestrian and bicyclist volumes for the selected roadways of 

Nashville, TN obtained via Streetlight using manual counts or permanent counts was not possible. 

However, pedestrian and bicyclist metrics have been validated against permanent counters in San 

Francisco, Philadelphia, and Ottawa and a correlation of 0.7 to 0.9 have been reported between the 

daily trip counts from counters and trip counts from Streetlight (Streetlight, 2020). Another 
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limitation is that the number of crashes recorded even over three years may result in too small a 

sample size for pedestrians and bicyclists in some locations.  

 

5.4 Analysis 

 

A total of thirty-three road segments for pedestrians and thirty-one road segments for bicyclists 

met the criteria mentioned above. For pedestrians and bicyclists, respectively, each roadway's KII 

percentage was normalized (on a scale from 0 to 1) according to the location with the highest KII 

percent value. These values serve as a proxy measure for severe crash frequency. 

Pedestrian and bicyclist volumes for each segment were obtained from Streetlight Data and 

averaged for the same three-year period. Using this information, a KII rate was calculated as a 

ratio of total KII crashes to the corresponding volumes for pedestrians and bicyclists, respectively, 

on each segment. Using a similar approach to the KII percentage ranking, KII rates were 

normalized to values between 0 and 1. Figures 5.1 and 5.2 show the KII percentage (total KII/total 

crashes) and KII rate (total KII/average volume) for pedestrians and bicyclists, respectively, by 

individual road segment.  

Identification of high-risk locations for pedestrians and bicyclists, respectively, was obtained by 

adding the rank order values for KII percentage and KII rate (see Table 5.1 for pedestrians and 

Table 5.2 for bicyclists). This, in effect, represents an equal weighting of high-frequency locations 

where KII events have occurred and where the rate at which an individual is at risk for a KII crash. 

Note that Murfreesboro Pike, Shelby Avenue, Commerce Street, West Trinity Lane, South Old 

Hickory Boulevard, Nolensville Pike, East Old Hickory Boulevard, Antioch Pike, and Dickerson 

Pike each appear in both pedestrian and bicycle top ten streets that should be prioritized for 
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pedestrian and bicyclist safety enhancements. This suggests that designing safety enhancements at 

these locations could simultaneously benefit pedestrians and bicyclists.  

 

Figure 5.1: Pedestrian KII Percentage and Rate - Davidson County (2018-2020) 

 

 

Table 5.1: Rank Order of Top Ten KII Pedestrian Crashes on Roadways 

 

Segment 

No. Road Name 

KII 

Percent 

Rank 

KII Rate 

Rank 

Final 

Rank 

1 MURFREESBORO RD. 0.846 0.906 1.753 

2 SPRING ST. 0.333 1 1.333 

3 SHELBY AVE. 1 0.015 1.015 

4 W. TRINITY LN. 0.793 0.156 0.950 

5 EAST OLD HICKORY BLVD. 0.909 0.012 0.921 

6 SOUTH OLD HICKORY BLVD. 0.694 0.176 0.871 

7 NOLENSVILLE PK. 0.681 0.143 0.825 

8 ANTIOCH PK. 0.714 0.023 0.737 

9 COMMERCE ST. 0.714 0.0006 0.714 

10 LAFAYETTE ST. 0.677 0.034 0.711 
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Figure 5.2: Bicyclist KII Percentage and Rate - Davidson County (2018-2020) 

 

 

 

 

 

Table 5.2: Rank order of Top Ten KII Bicyclist Crashes on Roadways 

 

Segment 

No. Road Names 

KII 

Percent 

Rank 

KII Rate 

Rank 

Final 

Rank 

1 MURFREESBORO PK. 0.820 1 1.820 

2 COMMERCE ST. 1.000 0.001 1.001 

3 SOUTH OLD HICKORY BLVD. 0.641 0.294 0.935 

4 SHELBY AVE. 0.909 0.012 0.921 

5 ANTIOCH PK. 0.833 0.028 0.861 

6 NOLENSVILLE PK. 0.628 0.229 0.857 

7 W. TRINITY LN. 0.714 0.114 0.829 

8 EAST OLD HICKORY BLVD. 0.714 0.059 0.773 

9 DICKERSON PK. 0.625 0.058 0.683 

10 LAFAYETTE ST. 0.648 0.028 0.676 
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5.5 Comparative Assessment 

 

The Nashville-Vision Zero Plan draft includes a systemic safety analysis that assesses crashes and 

roadway characteristics for pedestrians and bicyclists. While the findings are in alignment with the 

results of our previous studies on the factors contributing to pedestrian and bicyclist crash severity 

in urban areas (Dash et al., 2022 & 2022), there are differences in the Plan’s list of locations with 

high pedestrian and bicyclist injuries, respectively. This is due to the approach and limitations 

identified in the Plan. In particular: 1) data consisted of motor vehicle, motorcycle, pedestrian, and 

cyclist crashes (minor, serious, and fatal injuries), 2) freeways and ramps were not considered, and 

3) weights were assigned based on injury severity (minor, serious, and fatal injuries), vulnerable 

users (pedestrians and bicyclists), and equity (vulnerable areas).  

Moreover, the final designation of high injury roadways was derived by multiplying weights for 

each crash on that road segment (i.e., severity index * vulnerable user index * equity index). This 

method identifies a high pedestrian injury network, bicyclist high injury network, and dangerous 

intersections for pedestrians and cyclists, as shown in Table 5.3. It is unclear if all of the identified 

roadways in the high injury network are rank-ordered. The Plan uses Random Forest regression 

models with eight features for pedestrian predictive analysis. The three important variables 

identified are AADT, the number of lanes, and the fraction of commercial land use within 500 feet. 

Due to the small sample size for bicyclist crashes, no predictive analysis was conducted; hence it 

would be difficult to draw conclusions. AADT for local roadways was assumed to be a constant 

of 2,400 vehicles per day.  

Table 5.3: Top Pedestrian and Bicyclist Injury Roadways and Intersections in Nashville (Nashville Vision Zero Draft) 
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High Pedestrian 

Injury Network 

High Bicyclist 

Injury Network 

Dangerous 

Intersections-

Pedestrians 

Dangerous 

Intersections-

Bicyclist 

West Trinity Lane Church Street Lafayette St. & 

Charles E. Davis 

Blvd. 

Division St. & 12th 

Ave. S. 

Murfreesboro Pike 28th Ave North Gallatin Pike S. & 

Neely’s Bend Rd 

Division St. & 12th 

Ave. S. 

Lafayette Street Charlotte Ave Gallatin Pike S. & 

Berkley Drive 

Gallatin Pike S & 

Emmit Ave 

Nolensville Pike West Trinity Lane Dr. MLK Blvd & 

Rep John Lewis 

Way 

Highland Ave & 

25th Ave S. 

Gallatin Pike Gallatin Pike Gallatin Pike S. & 

Madison St. 

E. Thompson Lane 

& Old Glenrose 

Ave 

Dickerson Pike East Trinity Lane Nolensville Pike & 

Welshwood Dr. 

 

Harding Place Lafayette Street Murfreesboro Pike 

& Millwood Dr. 

 

 

Rosa L Parks Blvd 25th Ave South   

Main Street 8th Ave South   

Old Hickory Blvd Murfreesboro Pike   

 

 

5.6 Results  

 

In our previous work examining explanatory factors associated with severe crash outcomes for 

bicyclists and pedestrians in urban areas (Dash et al., 2022 & 2022), when comparing opportunities 

for introducing pedestrian and bicycle policy improvements, the same six features (number of 

lanes, speed limit, AADT, weekday, roadway location type, and dark lighting) emerged as critical 

factors, albeit with different explanatory effects. This suggests that there may be opportunities to 

mitigate fatal and severe pedestrian and bicyclist injuries simultaneously by improving specific 

roadway design and operational elements at high-risk locations.  

Shelby Avenue is a case in point, which ranked fourth highest in KII pedestrian and bicyclist 

crashes. We observe a total of 10 and 11 pedestrian and bicycle crashes, respectively, and each has 

six KII crashes. By examining the 12 KII crash locations on Shelby Avenue (Figures 5.3 & 5.4), 

one can assess the opportunity to improve speed management (reduction to 20 mph) as a viable 
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strategy for relieving pedestrian and bicycle crashes. We also observed that all pedestrian crashes 

occurred within one-half mile of a transit stop. A case could be made for transit stops to be located 

along the roadway length rather than at intersections. To address inadequate lighting conditions, 

enhanced crosswalk markings, flashing lights, median refuge islands, and crosswalk signals (e.g., 

High-Intensity Activated CrossWalk beacon - HAWK) warrant consideration. Improving roadway 

design (with signal timing for non-motorized modes) at intersections, and construction of a barrier 

between the bicycle lane and motor vehicle travel lanes can reduce bicycle crashes. Closer 

examination of vehicular right and left turns at intersections is also worthy of consideration. 

Additionally, education can help modulate safe travel behaviors for all modes (e.g., motorist, 

cyclist, pedestrians, transit). 

 

Figure 5.3: Pedestrian (Yellow Mark-up) and Bicycle (Blue Mark-up) KII on S. 6th St. & Shelby Ave 
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Figure 5.4: Pedestrian (Yellow Mark-up) and Bicycle (Blue Mark-up) KII on S. 7th St. & Shelby Ave 

 

 

In 2010, the United States Department of Transportation adopted a policy (based on the Code of 

Federal Regulations (CFR) Title 23 – Highway, Title 49 – Transportation, and Title 42 – Public 

Health and Welfare) that supports the development of fully integrated activity transportation 

systems. This policy includes provisions to incorporate and improve conditions for safe and 

convenient walking and bicycling facilities in transportation projects. It also includes a need to 

modify minimum design standards and requirements that have proven inadequate to create safe 

and accessible pedestrian and bicycle facilities. Guidance exists in the FHWA Lighting Handbook, 

Urban Street Design Guide, Complete Street Guide, Proven Safety Countermeasure (PSC) Tools, 

and TDOT's Roadway Design Guidelines, describing engineering design solutions involving 

lighting provisions, pedestrian and bicycle facility design, and traffic calming measures.  

Ultimately, the goal is equity for all road users which can be achieved by prioritizing pedestrian 

and bicycle safety relative to motor vehicle utilization. This will help balance safety on the streets 

for all users, especially in urban areas. Where implemented, further research will be needed to 

gauge the efficacy of these recommendations. 
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Walking and biking are essential transportation alternatives for short distances, which help close 

the transport loop for an individual. Hence, establishing safe and connected pedestrian and bicycle 

facilities is a necessity. By doing so, we can create greater access to various locations, particularly 

for underserved communities. 

5.7 Conclusions 

 

Pedestrian and bicyclist safety has been a much-discussed topic, particularly of late, as interest in 

walking and bicycling as sustainable transportation alternatives continue to gain popularity. Policy 

analysts and planners have been grappling with cost-effective methods to reduce pedestrian and 

bicycle crashes, particularly those with serious outcomes.  

The results of this study can help shed additional light on the subject, in particular demonstrating 

how to leverage existing tools to obtain pedestrian and bicycle volumes and severe crashes. By 

comparing the pedestrian and bicycle KII to the volume for a specific roadway, one can prioritize 

the streets targeted for risk mitigation. Additionally, we can utilize the predictive model's feature 

weighting to prioritize the types of risk mitigation strategies that offer the most significant benefit. 

Ultimately, we hope this study has broadened collective knowledge and awareness of risk-

informed decision-making, leading to saved lives and greater use of walking and bicycling as safe 

and therefore more viable transportation alternatives.  
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Chapter 6  
 

Conclusion 

 

By executing a data-driven approach, we can better understand transportation risk and safety 

issues, which can help inform and shape policy, especially for future transportation investment. 

Advancements in information technology and data analytics are transforming our ability to make 

risk-informed decisions. through the exploration of new opportunities for evidence-based 

quantitative feedback.  

In Chapter 2, a conceptual design was presented for deploying smart detection systems and their 

communication technology for use by rail hazmat shippers. It was observed that since 

implementing SHRIS for its high-hazard rail shipments, Olin Corporation had experienced a 

dramatic reduction in the risk of transporting hazardous materials as well as realizing cost savings.  

This proven and affordable system offers an opportunity for hazmat rail shippers of all sizes to 

leverage this capability and not just a select few within the industry. Such widespread adoption 

benefits not only each shipper but the industry as a whole. 

In Chapters 3 and 4, the study here aims at evaluating the degree to which three main classification 

algorithms are impacted by class imbalance, with the goal of identifying the algorithms that 

perform best and worst on imbalanced data and other forms of balanced data. In particular, this 

study assesses the relative impact of class imbalance and three class balancing techniques on 

three/four different classification algorithms as they are applied to data sets with varying levels of 

class-balanced data. The results from this study demonstrate that certain classification algorithms, 

such as random forest and support vector machine, perform very well in the presence of cost-

sensitive learning while other algorithms, perform poorly. Improved modeling techniques were 
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introduced for determining critical factors influencing bicyclist and pedestrian severe accident 

outcomes on an imbalanced dataset. This provides an opportunity to make more cost-effective 

bicycle and pedestrian safety policy decisions based on improved explanatory models. The critical 

factors influencing pedestrian and bicyclist severe crash outcomes alike were inadequate lighting 

conditions, crashes on roadways, speed limits, average annual daily traffic, number of lanes, and 

weekends. Based on this finding, specific suggested policy changes were presented for 

implementation consideration.  

Chapter 5 demonstrated that the ability to evaluate the efficacy of the potential risk mitigation 

strategies presented in Chapters 3 & 4 requires an ability to consider not just the frequency of 

pedestrian and bicyclist crash outcomes at specific locations, but also the demand for services in 

these locales. In the absence of this exposure information, the rate at which an individual pedestrian 

or bicyclist may suffer severe harm remains unknown. Available methods and technologies for 

measuring pedestrian and bicyclist severe crash exposure were utilized, illustrated in a case study 

using Nashville, Tennessee to identify the most critical urban area locations using both severe 

crash frequencies and rates. These techniques are scalable and transferable to other locations, both 

temporally and spatially. Of particular note is the similarity among the top ten road segments for 

pedestrian and bicycle risk, respectively, suggesting that not only should they be prioritized for 

pedestrian and bicyclist safety enhancements, but there may be cost-effective solutions that 

provide mutual benefits.  

The research performed in this dissertation can be expected to contribute to transportation safety 

methods and practices.  However, there remain several avenues for future research, in particular 

the following: 
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1. Integration of innovative information technologies and data analytics to enhance the safety and 

security of rail transport of hazardous materials, with the potential transferability to other cargo 

types and freight modes. 

Both the barge and truck modes can benefit from the implementation of a SHRIS-type system, and 

the vast majority of highly valued features can either be adopted directly using technologies 

embedded in the SHRIS system or can be implemented by making modifications to SHRIS system 

elements.  There are no dramatic differences in the development effort involving the 

implementation of such a system for either mode, but rather certain feature elements add greater 

value for one mode and vice-versa. While the development of a SHRIS-type system for hazmat 

movements by either the truck or barge mode is likely to offer safety and security benefits, a greater 

need and opportunity appears to exist for developing and deploying such a system in the barge 

domain.  This rationale rests with the communication technology gap found in the maritime 

industry created by the dependence on a paper-based system kept on board each vessel. Further, 

the significantly larger cargo volumes per barge shipment create the potential for a more 

consequential impact in the event of a material release. 

2. Implementation of improved modeling techniques to identify evidence-based risk mitigating 

strategies and policies to enhance safety. Leverage existing methods and technologies to 

measure activity level on a transport segment or facility, which can help prioritize cost-

effective safety enhancements at specific locations. This approach is transferable to other road 

users to achieve an optimal safety for all modes.    

An analysis is as good as the available data. It has been noted that although pedestrian and bicyclist 

severe crash outcomes typically involve motor vehicle crashes, current databases do not include 

near misses and are plagued by unreported incidents, as well as lacking cause and circumstances 
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prior to the crash. Including such information and standardizing the reporting system is a desirable 

future task. 

Much of this may be accomplished through the advent of more sophisticated technology for 

studying pedestrian and bicycle safety.  This includes putting eye-tracking cameras on pedestrians, 

cyclists and motorists to track what they are looking at on a frequent time scale; installing 

accelerometers on pedestrians, cyclists and motorists to track when they turn their heads to look 

to their side or behind; and instrumenting streets with cameras to observe interactions among 

motorized vehicles, cyclists and pedestrians, particularly at intersections. 
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