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SUMMARY 
I have worked on developing tools and techniques to interpret rare genetic variants, uncover rare 

disease mechanisms and help diagnose individuals suffering from rare undiagnosed diseases, in 

collaboration with the Undiagnosed Diseases Network (UDN). The UDN was established to help 

provide clinical intervention roadmaps for individuals with rare diseases.  Rare genetic diseases 

affect more than 300 million people around the world; however, the causative genes and variants 

have not been identified for most.  

Rare disease phenotypes can be caused as a consequence of variants in more than one 

gene, and digenic diseases result from variants in two genes. Experimentally evaluating digenic 

combinations cannot be done for all possible candidates in a timely manner to help diagnose 

individuals with undiagnosed diseases. A computational prediction and prioritization of digenic 

pairs can reduce the number of candidates for experimental validation by several orders of 

magnitude. I have developed a machine-learning classifier (DiGePred) to predict human gene 

pairs with the potential to cause digenic diseases, based on a database of known digenic diseases 

and features derived from biological networks, genomics and evolutionary biology. The 

classifier could accurately identify known digenic pairs in the held-out testing dataset, as well as 

recently discovered digenic pairs from recent literature, not used for training. I also demonstrated 

the low false positive rate of DiGePred on unaffected relatives of individuals with rare diseases, 

being studied by the UDN. 

Our group has collaborated with the UDN to help interpret rare variants using 

computational structural biology and molecular dynamics (MD) simulations, and predict digenic 

disease causing candidate gene pairs. The digenic classifier predicts gene pairs with the potential 
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to cause digenic disease when carrying rare deleterious variants simultaneously. However, the 

variants do not factor into the prediction. There are several tools available to interpret 

pathogenicity of genetic variants from a genomic or amino acid sequence paradigm. 

However, protein functions are mediated in the 3D conformational space, where amino 

acid residues distant in sequence could be proximal in 3D space, after the protein folds to adopt  

a functionally active conformation. There are increasingly more protein structural models 

available for genes, especially with the advent of AlphaFold. Rare variants in the coding region 

of genes can result in changes to the 3D protein structure. There are currently several variant 

interpretation tools available that consider the 3D protein structural context, however, often the 

context is not used to explore disease mechanisms. 

I have contributed to the establishment of a “Personalized Structural Biology” approach, 

based on computational structural biology and Molecular Dynamics (MD) simulations, in 

collaboration with biochemists and electrophysiologists, to interpret rare disease variants. I led a 

comprehensive analysis and illustration of this approach on the effects of rare de novo missense 

variants in KCNC2, a gene coding for the Kv3.2 potassium ion channel. I was able to postulate a 

mechanism using structural biology insights, that were validated using biochemical and 

electrophysiology experiments, and the rationale was provided using Molecular Dynamic (MD) 

simulations.  

During my PhD, I have worked extensively in collaboration with the UDN to develop 

computational tools and techniques to help resolve the mechanisms underlying rare diseases, and 

interpret rare variants using computational structural biology and machine learning.  
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CHAPTER 1: Introduction 

Since the completion of the human genome project1,2, the genetic origin of many severe diseases 

has been determined. Genetic variants in almost 3000 human proteins have been identified as 

causing altered physiology, observable as disease phenotypes3,4. Many of these diseases 

identified are monogenic diseases which usually follow Mendelian patterns of inheritance, with 

variants in only a single gene being identified as causative5–7. Often a single rare deleterious 

variant forms the basis of these Mendelian phenotypes, and diagnosis of these diseases has been 

focused on analyzing the effect of rare variants8–12. At the other end of the spectrum, there are 

polygenic diseases that result from the combined impact of common variants in multiple genes 

and non-coding loci, as well. The genetic loci linked to polygenic diseases such as hypertension, 

coronary heart disease and diabetes have been identified using Genome wide Association studies 

(GWAS)13. Polygenic risk scores14 are currently used to assess the genetic risk of polygenic 

diseases for individuals during their lifetime. Polygenic diseases usually affect thousands of 

people, while Mendelian diseases affect very few people in comparison, and are often 

characterized as “rare” diseases.  

 

Rare diseases 

A rare disease is defined as an affliction that affects fewer than 200,000 individuals in the USA, 

according to the Orphan Drug Act of 198315,16. In the European Union, a condition affecting 

fewer than 1 in 2000 individuals is termed as a rare disease. Over 7,000 rare diseases have been 

identified so far, with an estimated 300 million people suffering from rare diseases worldwide. 

Roughly one in 10 people in the world are afflicted by rare disease. Approximately 80% of all 

rare diseases are genetic in origin, and more than half of the known rare diseases do not have 
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causative genes and variants discovered.4,5,7 Several rare diseases are tracked via new born 

screening and routine medical screening in adults; however, a precise estimate of number of 

individuals suffering from rare diseases is difficult to obtain. As a result, several research cohorts 

have been established to help prognose and design treatment plans for individuals with rare 

diseases. The Undiagnosed Diseases Network (UDN)17 was established by the NIH in 2014 to 

help address the challenge of rare diseases. 

 

UDN 

The Undiagnosed Diseases Network (UDN)17–19, funded by the National Institutes of Health 

Common Fund, comprises a team of researchers and clinicians across the country to address 

medical mysteries using an interdisciplinary approach including genomics, bioinformatics and 

other computational techniques. The purpose is to ameliorate the health of individual patients 

and families afflicted by rare and undiagnosed diseases, and lead to mechanistic understanding of 

rare diseases. There are 12 sites across the country that serve as clinical sites, where medical 

practitioners and healthcare providers, geneticists and bioinformaticians work together to help 

resolve the rare disease phenotypes. There is a sequencing core, model organisms screening 

center, and metabolomics core.  

 The UDN has received more than 5000 applications from individuals suffering from rare 

undiagnosed disease, and roughly 2000 applications were analyzed after preliminary reviews. 

The UDN team has successfully diagnosed over 500 individuals, using whole genome or exome 

sequencing, model organism screening, metabolomic analyses. The UDN has contributed to rare 

disease research and mechanistic knowledge with over 150 manuscripts and over 500 additions 
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of rare variants to ClinVar. Although this approach has yielded much success, 20–32 more than 

half of all UDN cases remain undiagnosed.  

Our team, at Vanderbilt University, provides personalized computational structural 

biology analysis for candidate rare variants identified in an individual suffering from rare disease 

and being analyzed by the UDN. I hypothesized that in many of these unsolved, rare cases might 

involve variants in multiple genes that only when combined result in a disease phenotype 

complicating diagnosis. I developed a machine learning classifier to predict gene pairs that could 

lead to digenic diseases, rare diseases arising from variants in two genes, and I communicate 

digenic dual molecular hypotheses for the clinical phenotypes on the basis of the variants in the 

UDN patient, as well. 

 

Digenic diseases 

Variants in more than one gene, usually ranging between two and four genes, can synergistically 

lead to disease via different mechanisms, such as direct molecular interactions or multiple genes 

in the same pathway33–36. Digenic inheritance was first demonstrated in 1994, when concurrent 

mutations in two genes, Retinal outer membrane protein 1 (ROM1) and Peripherin 2 (PRPH), 

were found to cause retinitis pigmentosa.37 Digenic inheritance is the simplest form of oligogenic 

inheritance in which the combination of a small number of variants leads to disease.38–40 Digenic 

diseases have been previously classified into two categories: true digenic, where variants in both 

genes are essential for development of clinical phenotypes, and composite, where one variant is 

responsible for causing a clinical phenotype, and the second variant severely exacerbates the 

disease.41,42 However, in all cases of digenic inheritance the phenotype results from the combined 

effect of two variants. In isolation, the individual variants that form a digenic pair are benign or 
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lead to a less extreme phenotype. However, upon simultaneous mutation, the variants either 

interact to produce disease or combine to produce a more complex, and usually more severe, 

phenotype that cannot be explained by variants in one gene alone.  

Since the discovery of a digenic cause for retinitis pigementosa (RP) in 1994, many 

additional digenic diseases have been identified. The Digenic Diseases Database (DIDA)39 has 

chronicled several hundred cases of digenic disease in 2017. Analyses of DIDA have revealed 

that digenic disease causing gene pairs are more likely to functionally and/or physically interact 

with one another than expected by chance39. Machine learning approaches have been developed 

to distinguish between different types of digenic disease pairs42 and to identify disease causing 

variant combinations,43,44 including oligogenic combinations of greater than two genes45. 

 

Machine learning 

Machine learning methods are versatile approaches to derive and visualize functional 

interactions in large-scale data, without the need explicitly define them beforehand.46–48 The 

merit of application of machine learning in computational biology is the scope to develop 

predictive models without complete comprehension of underlying physiological mechanisms.49 

Incorporation of disparate biological data from different sources such as genomics, proteomics 

and electronic medical health records data can lead to better performing machine learning 

models, with an improved ability to grasp and explain complex biological mechanisms.50,51 

However, biological data can be very sparse and not well defined, with the number of samples 

often fewer than the number of variables available. This disparity can be explained by the cost 

associated with generating data from individuals, for example genome sequencing or cancer 
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studies. The disparity is sometimes referred to as the “curse of dimensionality”, and has the 

potential to lead to inaccurate models owing to overfitting or missing data.52  

 Machine learning methods have been previously used to study rare disease mechanisms53, 

help provide prognosis for individuals with rare diseases54 and develop better clinical and 

pharmaceutical intervention strategies55. Investigations into rare disease biology using machine 

learning methods have been undertaken in many countries56. A common impediment to high-

throughput machine learning methods is unstructured data in the form of freeform text records or 

non-standardized medical health records57. The incorporation of medical data in canonical 

vocabulary such as the Orphanet rare disease nomenclature58 or the Human Phenotype Ontology 

(HPO) terms59,60 has been demonstrated to improve machine learning based analysis of rare 

diseases. Machine learning has been previously used in conjunction with the UDN, to predict the 

realistic estimates to the probability of patients to be accepted into the UDN cohort for analysis, 

based on the clinical phenotypes that manifested in the individual.61 Ensemble methods such as 

Random Forests, support vector machines (SVMs) and artificial neural networks have been most 

frequently used to analyze rare diseases.  

 

Random Forests  

An ensemble classification model relies on accumulating predictions from many different 

classifiers to get a final prediction value or label.62 Combining outputs from different classifiers 

has the advantage of improving the robustness of the ensemble, leading to more accurate 

predictions for a wider range of data. A Random Forest (RF) model averages along an arbitrary 

distribution of decision trees to derive the final predictive value. Each tree provides one class or 

label continuum as an output, and each individual sample is classified as belonging to the class 
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based on the consensus from all the trees part of the ensemble.63 RFs are less susceptible to 

overfitting and shown to perform better in the cases of high missing data and high dimensional 

data.64 RFs have been previously used in bioinformatics, proteomics, and genetics paradigms.65–

67 A strength of RFs is the ability to conveniently rank and prioritize features for the prediction 

task by calculating feature importance using a non-parametric Gini impurity reduction metric. 

65,68,69 Machine learning methods have been used to predict the impact of rare variants on human 

physiology, as well on protein structure and function.55  

 

Protein structure 

The vast diversity of physiological functions of human proteins is mediated by the precise three-

dimensional structural conformation.70,71 According to Anfinsen’s thermodynamic hypothesis,72–

74 the amino acid sequence of the protein contains the information needed for the protein to adopt 

its native 3D conformation, and the information is encoded in the energetic landscape of the 

protein, with native conformation considered to have the lowest energetic profile. The 

Levinthal’s paradox75,76 postulates that the entire conformational landscape does not need to be 

sampled to attain the native conformation. The energetic landscape is often considered to be 

shaped as a “funnel” with the energetic state of current conformations driving the protein to be 

folded towards the native conformation.70,77,78  

 The methods of resolving native protein structure experimentally such as NMR 

spectroscopy, X-ray crystallography and Cryo electron microscopy (cryo-EM) have become 

more accurate and robust more recently79–84. However, NMR spectroscopy for large proteins 

remains challenging85, X-ray crystallography requires large amounts of proteins to optimize 

crystallization and structure determination86, while cryo-EM samples are difficult to prepare and 
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resolving the structure of smaller proteins and flexible regions can be cumbersome84. The 

prediction of protein structure from genomic sequence has become more accurate and advanced 

over the past decade.70 Machine learning methods have also been employed to help determine 

the native conformation of proteins, as well as predict the effect of variants on protein structure 

and folding thermodynamics. Molecular modeling software such as Rosetta87,88 and FoldX89,90 

have been used to predict the structural conformation of amino acid sequences, and estimate the 

energy changes of the system associated with mutations in the sequence. The advent of 

AlphaFold91,92 has led to structural models becoming available for a >90% of all human proteins 

on UniProt allowing modeling of thermodynamic changes involving genetic variants. This has 

further enabled the modeling the effect of genetic variants on altering protein structure and 

function to become a major component of modern genomic medicine. 

 A notable limitation of conventional modeling of protein structure is that the analysis 

usually only samples the native conformation or a functional stable conformation of the protein. 

However, protein structures are highly dynamic and often different conformations have different 

functional roles in physiology. It is possible that a mutation could thermodynamically favor a 

particular conformation over another or render the protein unable to adopt a certain conformation 

completely, leading to impaired function. There are methods available to simulate the dynamics 

of protein structures and study protein folding on a longer time scale.  

 

MD simulations 

Molecular dynamics (MD) simulations for proteins predict the movement of every atom in the 

system over a certain period of time, based on physical forces determining atomic 

interactions.93,94 The first MD simulation of a protein was performed in 197795, and it has 
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become far more common in recent years with exponentially more protein structural models 

available70 and computational analysis becoming more affordable and accessible with graphics 

processing units (GPUs) now permitting sophisticated simulations in a cost effective manner.96–

101 The MD simulation software packages96,102 have become easier to setup and interpret and the 

physical approximations underlying modeling atomic interactions have become more accurate. 

MD simulations yield a trajectory file which is essentially a three-dimensional movie chronicling 

the atomic-level configuration of the protein system at every time point over the simulated time 

interval. MD simulations are usually coupled with experimental methods to further elucidate 

protein folding and thermodynamic changes arising from genetic variants mechanisms more 

clearly.93,94,103 

 Although MD simulations have become comparatively more convenient to perform over 

the past few years, there is still the need for considerable iteration to get concordant data. The 

results can still be difficult to interpret in the absence of experimental data, and may require 

downstream experiments to validate findings.94 Identifying residues and interactions vital for 

protein folding and thermodynamic stability from MD simulations can be inaccurate in some 

cases. Functional methods based on mutagenesis of protein sequences can elucidate the impact of 

point mutations on organism physiology. I have used MD simulations to study the impact of rare 

de novo missense variants in a potassium ion channel on protein dynamics and ion transport 

through channel pore. 

 

Roadmap 

In Chapter 2, I have discussed the development of DiGePred, the digenic disease Random Forest 

machine-learning classifier. I have explained the features used for training, the performance of 
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the classifier during training, and testing the performance and establishing the prediction 

threshold using a held-out testing data set and novel digenic pairs from recent literature. In 

Chapter 3, I have chronicled the application of DiGePred on rare disease cohorts in the UDN, 

and external cohorts as well. There was a novel digenic disease pair discovered in a cohort of 

individuals suffering from MRKH, a connective tissue disease affecting the female reproductive 

system. In Chapter 4, I have written about the “personalized structural biology” approach our 

team has conceptualized. I have postulated a computational structural biology-based hypothesis 

regarding the mechanism by which a de novo missense variant in a potassium ion channel; can 

lead to developmental epileptic encephalopathy (DEE) like phenotypes in a child. I collaborated 

with experimental biochemists and electrophysiologists to validate our hypothesis, and I used 

MD simulations to provide rationale for the experimental observations, and uncover the 

mechanism of action.  
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CHAPTER 2: Designing DiGePred – a machine-learning digenic gene pair classifier to help 

diagnose rare disease 

 

Summary 

The central hypothesis of this work is that many of the rare genetic disorders that remain 

unresolved after analysis by the UDN can be caused by multiple variants in more than one gene. 

I developed DiGePred, a random forest classifier for identifying candidate digenic disease gene 

pairs using features derived from biological networks, genomics, evolutionary history, and 

functional annotations. I trained the DiGePred classifier using DIDA, the largest available 

database of known digenic disease causing gene pairs, and several sets of non-digenic gene pairs, 

including variant pairs derived from unaffected relatives of UDN patients. DiGePred achieved 

high precision and recall in cross-validation and on a held-out test set (PR area under the curve 

>77%), and I further demonstrated its utility using digenic pairs from the recent literature. This 

work enables the discovery of genetic causes for rare non-monogenic diseases by providing a 

means to rapidly evaluate variant gene pairs for the potential to cause digenic disease.  

 This work has been published in the American Journal of Human Genetics (AJHG) in 

October 2021. (Mukherjee S, Cogan JD, Newman JH, Phillips JA, Hamid R, Undiagnosed 

Diseases Network, Meiler J, Capra JA. Identifying digenic disease genes using machine learning 

in the undiagnosed diseases network. Am J Hum Genet, 2021 Oct 7;108(10):1946-1963.  doi: 

10.1016/j.ajhg.2021.08.010.) 
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Introduction 

I hypothesized that the disease phenotype in some unresolved rare disease patients is likely a 

result of digenic inheritance and develop DiGePred, a high-throughput machine learning tool for 

evaluating the likelihood that dysfunction of gene pairs leads to digenic disease. I focused on the 

specific challenge of identifying gene pairs that have functional or phenotypic potential to cause 

a digenic disease when both are disrupted in a patient. I considered all cases in DIDA, which 

includes cases where both variants are required for disease and cases in which having the 

variants simultaneously modifies disease presentation or severity. My approach is based on 

supervised machine learning using a random forest classifier trained on diverse functional, 

network, and evolutionary properties of known digenic gene pairs versus realistic sets of non-

digenic gene pairs, including variant pairs from healthy individuals. This work has already been 

published in the American Journal of Human Genetics (AJHG) in September 2021. 

 

Results 

Digenic disease gene pairs have different attributes than non-digenic disease gene pairs 

My goal in this study is to develop a machine learning classifier for identifying gene pairs that 

cause disease when both are disrupted simultaneously, but produce no or less severe phenotypes 

when disrupted in isolation. To this end, I considered all unique known digenic disease pairs 

curated by the DIDA database and contrast them with several informative sets of non-digenic 

disease pairs. Pairs of genes harboring mutations known to cause digenic disease have distinct 

biological properties when compared with random gene pairs 39. Previous work has shown that 

digenic disease pairs have high protein interaction network connectivity and proximity. More 

than 35% of known digenic disease pairs directly interact on a protein-protein interaction (PPI) 
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network, and ~60% of digenic 

gene pairs are one gene away 

on the interaction network. 

Similarly, ~20% of digenic 

pairs are in the same 

biochemical pathway, and 

~40% are expressed in the 

same tissues 39. 

Based on this prior 

knowledge I devised a list of 

six “network and functional 

features” (NFFs) to use as 

attributes for distinguishing 

between digenic and non-

digenic gene pairs (Figure 1): 

1) Pathway Similarity, defined 

as the Jaccard similarity 116 

between the genes’ 

membership in ~1800 pathways from KEGG 117 and Reactome 118,119; 2) Phenotype Similarity, 

the Jaccard similarity between the ~6000 phenotypes from Human Phenotype Ontology (HPO) 

120 associated with the genes; 3) Co-expression Rank, defined as the rank of the co-expression of 

the genes across 23 co-expression platforms from 11 species compared to other gene pairs from 

FIGURE 1: Network and Functional Features (NFFs) used 
for machine-leaning-based identification of digenic disease 
gene pairs  
 
I considered six network and functional features (NFFs) for 
training the digenic disease classifiers: i) pathway similarity: 
Jaccard similarity of pathway annotations from KEGG and 
Reactome for both genes; ii) phenotype similarity: Jaccard 
similarity of phenotype annotations from HPO for both 
genes, iii) co-expression rank: co-expression rank of gene 
pair compared to all other gene pairs across multiple tissues 
from COXPRESdb; iv-vi) network distances between the 
genes on protein-protein, pathway, and literature mined 
interaction networks from UCSC gene and pathway 
interaction browser database.  
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COXPRESdb 121; 4) PPI 

Distance, the distance on a 

global PPI network; 5) Pathway 

Distance, the distance on an 

annotated biochemical pathway 

network; and 6) Literature 

Distance, the distance on a 

literature-mined interaction 

network, derived from the 

UCSC gene and pathway 

interaction database 122. 

Since the ultimate 

application is the detection of 

potential digenic diseases in 

patients, most of the results 

focus on comparisons of known 

digenic gene pairs and gene 

pairs with variants in 

“unaffected” parents, siblings, 

and other relatives of 25 UDN patients (Figure 3). However, as I have shown below, the results 

are similar using other strategies for defining non-digenic disease gene pairs. 

Feature Source Logic

loss of function intolerance

haploinsufficiency

protein age

selection pressure

gene essentiality

Evolutionary features

Ability of gene to 
withstand mutations

ProteinHistorian

Evolutionary history of 
protein coded by gene

Selection pressures 
acting on gene during 

evolution

OGEE
Gene essentiality 
derived from gene 

knockout 
experiments

mutation

Gene 1

Gene 2

gene  A
variant

gene  B

Gene 1 Gene 2gene  B

gene  A

FIGURE 2: Additional feature sets used for machine 
learning classification of digenic diseases 
 
Evolutionary biology and genomics features: i) loss of 
function intolerance; ii) haploinsufficiency, measures of 
mutational load on gene; ii) protein age, measure of 
evolutionary age of protein coded by gene; iv) dN/dS score, 
measures the constraints on selection during mammalian 
evolution of gene; v) essentiality score, derived from gene 
KO experiments, measures how vital a gene is to organism 
survival. 
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I compared the distribution 

of the NFFs for known digenic 

pairs and for non-digenic gene 

pairs from unaffected relatives of 

UDN patients. As expected from 

previous work, the distribution of 

each NFF was significantly 

different between digenic and non-

digenic pairs (Figure 5; P < 10–20 

for each, Mann-Whitney U 

(MWU) test). This suggests that a 

machine learning approach may 

enable distinguishing digenic from 

non-digenic disease pairs. 

To further explore the 

properties of digenic disease genes 

and the ability of a classification 

approach to recognize them, I 

defined three additional sets of 

Gene pair set Selection criteria

Digenic

Unaffected

Permuted

Random

Matched

Unaffected  no gene overlap

Random no gene overlap

Shuffle DIDA pairs

Random assortment

Derived from 
unaffected 

relatives of UDN 
patients

Unique gene pairs

Match distribution of digenic 
pairs

C B

A C

F D

A B

C D

E F

C J

R S

S L

A L

P Q

K M

G B

L S

S W

No gene overlap between 
training & testing

G B

L S

H W

C J

R S

T L
No gene overlap between 

training & testing

FIGURE 3: Positive and negative training sets used for 
classification of digenic disease genes 
 
Digenic gene pairs were derived from DIDA. Unique 
digenic gene pair combinations (n=140) were used for 
training and evaluation. Unaffected gene pairs were 
derived from genes with variants in unaffected members 
of UDN patient families. Permuted negative gene pairs 
were generated by computing all possible permutations 
of genes in digenic pairs, excluding the known digenic 
combinations. Random gene pairs were generated by 
selecting random pairs of all human genes, excluding any 
known to be digenic. Matched gene pairs were selected 
from random gene pairs so that the set matched the NFF 
distribution of digenic pairs (Figure 4).  Unaffected no 
gene overlap and Random no gene overlap pairs were 
selected subsets from the unaffected and random pairs 
respectively, such that there was no overlap between the 
training and held-out testing pairs. 
 

X Not digenic 
disease gene

Y Digenic disease 
gene

X Not digenic 
disease gene

Y Digenic disease 
gene
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non-digenic disease gene pairs 

(Figure 3). First, I created a 

“permuted” non-digenic set by 

generating all possible gene 

pairs from genes known to be 

involved in a digenic gene pair, 

and removing the pairs known 

to be digenic. Second, I 

constructed a “random” set of 

non-digenic gene pairs by 

randomly selecting gene pairs 

from all possible human genes 

(excluding known digenic 

pairs). Third, I created a 

“matched” non-digenic gene 

pair set that closely matched the 

NFF distributions of the digenic 

gene pairs; however, I was not 

able to match the distribution of 

all NFFs perfectly given the 

skewed distribution of the digenic disease pairs (Figure 5). Nonetheless, the matched set enables 

exploration of how well the classification approach can identify digenic pairs among non-digenic  

 

Independent non-digenic pairs 
from 38 unaffected relatives

Calibrate
Threshold

Cross Validate
(10x)

digenic : non-digenic
(~1:75)

Split

Digenic Non-digenic

Random 
Forest 
Model

Train

13 novel digenic 
pairs from literature

Evaluate 
ROC / PR

DiGePred Classifier

Evaluate False Positive Rate Evaluate True Positive Rate

Validation 
(16%)

Held-out
Testing 
(20%)

Training 
(64%)

FIGURE 4: Schematic of the protocol for training and 
evaluating the DiGePred digenic disease pair classifier 
 
Known digenic pairs (positives) and variant gene pairs 
from healthy individuals (negatives) were combined at 
~1:75 ratio. The combined pairs were divided into training 
(64%), validation (16%) and held-out test datasets (20%). 
The DiGePred random forest classifier was trained and 
cross-validated using the training and validation sets. 
The final performance estimate for the trained DiGePred 
classifier was quantified by the area under the Receiver 
Operator Characteristic (ROC) and Precision-Recall (PR) 
curves (AUCs) on the held-out test set. This set was also 
used to establish suggested thresholds on the 
continuous DiGePred score. DiGePred’s potential clinical 
utility was further demonstrated by applying it to an 
additional positive set of 13 novel digenic pairs from the 
recent literature, one novel gene pair in a resolved UDN 
patient and an external set of non-digenic gene pairs from 
38 unaffected relatives of UDN patients. 
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FIGURE 5: Distribution of network features is different for digenic and non-digenic pairs; similar 
for matched gene pairs 
 
Feature distributions of network and functional features (NFFs) for digenic gene pairs (black), 
unaffected (light blue), permuted (orange), random (dark green), matched (grey), unaffected no 
gene overlap (dark blue) and random no gene overlap (light green) gene pairs. The feature value 
bins shown along X axis and proportion of gene pairs along Y axis. Distributions compared using 
MWU test, P values shown. A) Jaccard similarity of KEGG and Reactome pathways associated with 
both genes; B) Jaccard similarity of HPO phenotypes associated with both genes; C) Mutual co-
expression rank, comparison of co-expression of gene pair to all other gene pairs across multiple 
co-expression platforms; D-F) Distance on experimental PPI, biochemical pathways and literature-
mined interaction networks, obtained from UCSC gene and pathway interaction browser database. 
MWU P consistently higher for matched pairs for all features. 
unaffected relatives of UDN patients. 
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pairs with similar NFF distributions. To be conservative, I also constructed non-digenic 

gene pair sets with no overlap between the individual genes present in the training and the held-

out test datasets123. These are subsets of the unaffected and random sets and will be referred to as 

“unaffected no gene overlap” and “random no gene overlap,” respectively (Figure 3).  

 

Random forest classifiers accurately identify digenic pairs using network and functional features 

I divided the available gene pairs into training (64%), validation (16%), and held-out test sets 

(20%). I trained, evaluated, and compared different models using 10-fold cross-validation within 

the training and validation sets (Figure 4). The test set was only analyzed after models had been 

finalized. Comprehensive studies of genetic interactions have found that one in approximately 40 

gene pairs interact.124 This suggests that digenic interactions are likely rare; only a very small 

fraction of all possible gene pairs are likely to produce digenic disease. I trained the random 

forest machine learning classifier using the six NFFs to distinguish 140 digenic disease gene 

pairs (positives) from ~8,400 negative gene pairs. Unless otherwise specified, I focused in the m 

ain text on the “unaffected no gene overlap” negative set and present others in Supplementary 

Material. The large class imbalance (~1:75)  reflects the expectation few digenic gene pairs 

among all possible pairs to be evaluated; this exact ratio was selected due to data availability. I 

evaluated performance using Receiver Operating Characteristic (ROC) and Precision-Recall 

(PR) curves.  

The random forest classifier distinguished digenic and non-digenic gene pairs very 

accurately using the six NFFs. It achieved an average ROC area under the curve (AUC) of 0.90 

and a PR AUC of 0.698 on average over 10 folds of cross-validation on the training and 

validation sets (Figure 6). The algorithm retains near perfect precision at recall above 60% 
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(Figure 6B). Since I was evaluating multiple classification approaches, the held-out test set was 

not considered in this analysis. 

 

 

FIGURE 6: Classifier accurately identified digenic pairs from all non-digenic gene pairs using 
various feature sets; addition of features improved performance. 
 
Performance of classifiers at distinguishing between known digenic pairs from DIDA (positives) 
and gene pairs from 25 healthy individuals (negatives) trained using different feature sets as 
evaluated by: (A) Receiver Operating Characteristic (ROC) curves and (B) Precision-Recall (PR) 
curves. Classifiers trained on three sets of features are compared: i) six network and functional 
features (NFFs) (dotted line); ii) the six NFFs and evolutionary genomics features; and iii) the six 
NFFs, evolutionary genomics features, and gene-level network and functional features. The 
mean curves across 10-fold cross-validation on the training and validation sets are plotted with 
shaded areas representing the standard deviation. Since this analysis is developing and 
evaluating multiple possible classifiers, I held-out the test set for final evaluation (Figure 10).   
Positives: digenic pairs from DIDA; training 
Negatives: “unaffected” non-digenic pairs; training 
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FIGURE 7: Classifier accurately identified digenic pairs from all non-digenic gene pairs using 
various feature sets; addition of features improved performance. 
 
Performance of the classifier on distinguishing between digenic pairs and non-digenic sets of 
gene pairs: Unaffected (light blue), Random (dark green), Permuted (orange), Matched (grey), 
Unaffected no gene overlap (dark blue) and Random no gene overlap (light green) training data, 
measured by area under the Receiver Operating Characteristic (ROC) (A, C, E) and Precision-
Recall (PR) curves (B, D, F) (AUCs), using different feature sets: A-B) six network features 
(NFFs) (dotted line); C-D) NFFs + Evolutionary biology and genomics features (EBGFs) (dashed 
line); E-F) NFFs + EBGFs + NFF related features (solid line). The ROC and PR AUCs for each 
non-digenic set increased with added features, and the unaffected no gene overlap was the best 
performing set. 
Positives: digenic pairs from DIDA; training 
Negatives: non-digenic pairs from various sources; training 
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Including additional features improves ability to identify digenic disease genes  

The performance of the classifier based on the six NFFs alone was strong; however, there are 

many other sources of biological information beyond the NFFs that could potentially inform 

either the nature of the relationship between genes or the relative likelihood and risk of a gene 

being mutated and causing disease. I tested if including additional features in training the 

classifier would increase performance of the classifier.  

First, I trained classifiers using the six NFFs and five additional evolutionary features that 

reflect the evolutionary history and constraint on the genes (Figure 6- 7). These features were: 1) 

the evolutionary ages of the genes; 2) their essentiality; 3) their intolerance to loss of function 

mutations, 4) the selection pressure acting on them through mammalian evolution (dN/dS) and 5) 

their haploinsufficiency scores. The addition of evolutionary features, as the quadratic mean of 

the values associated with both genes, substantially improved classifier performance: average 

ROC AUC of 0.938 and PR AUC of 0.709 (Figure 6-7). 

Next, I considered additional features derived from network and functional annotations of 

the gene pairs. These features were designed to add additional gene-focused (rather than gene-

pair-focused) context and explore the sufficiency of the six NFFs. These features were: 1) the 

number of pathways, 2) phenotypes, 3) network neighbors, and 4) genes co-expressed for each 

individual gene in a candidate pair. As above, I used the quadratic mean to combine these gene-

level features. Considering these features also further improved classifier performance, with an 

average ROC AUC of 0.972 and PR AUC of 0.751 for all features (Figure 6-7). 
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Digenic disease genes can be distinguished from many non-digenic gene sets 

I used the same training and evaluation approach as described in the previous section for the 

unaffected no gene overlap negative set to train random forest classifiers to distinguish digenic 

disease gene pairs from each of the additional negative sets (random, permuted, and matched) 

using all the network, functional, and evolutionary features. In each case, the classifiers 

performed very well (Figure 7). The classifiers trained to distinguish digenic pairs from random 

and random no gene overlap pairs performed the best (mean ROC AUC of 0.972, 0.968 and PR 

AUC of 0.696, 0.741), with all features included for training. As expected, given their similar 

attributes to the digenic pairs, the permuted and matched negative sets are more challenging for 

the classifiers, but they still achieved very strong performance with average ROC AUCs of 0.964 

and 0.977 and PR AUCs of 0.54 and 0.597, respectively.  

Feature importance varies for classifiers trained on different non-digenic sets 

I estimated the importance of the features to the classifiers using the mean decrease in node 

impurity approach (Figure 8). For the classifier trained using variant gene pairs from unaffected 

relatives, the Jaccard similarity of phenotypes associated with each gene for a gene pair was the 
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highest weighted feature (37%). The pathway similarity and the mean number of phenotypes for 

the gene pair were among the other important features (10% and 7% of the weight, respectively). 

The feature importance values were similar for the classifiers trained using random gene pairs 

and permuted digenic gene pairs (Figure 8). 

FIGURE 8: Phenotype features were most important for classifier to idenitfy digenic pairs; 
evolutionary features more important for matched pairs 
 
GINI feature importance values for classifier to identify digenic gene pairs from unaffected, 
random, matched and permuted non-digenic gene pairs. Phenotype similarity (37%) had highest 
importance, followed by pathway similarity (10%), number of phenotypes (7%) and PPI distance 
(6%). Evolutionary and genomics features more important when distinguishing digenic pairs from 
matched gene pairs. 
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The feature importance values were most different for the matched classifier; it placed 

significantly lower feature importance on the NFFs. This was expected, because by design the 

differences between the positive and negative training examples in individual NFFs were 

minimal for this classifier. Instead, a range of evolutionary and individual gene-level functional 

features took on similar levels of importance (Figure 8). This indicates that information in gene-

level features related to evolution, gene importance, and relevance to physiology contain useful 

information about the likelihood of gene pairs interacting to produce digenic disease.  

The impurity approach for feature importance calculation can be biased, especially when 

the classification task includes features with both continuous and discrete values 125. Therefore, I 

FIGURE 9: Comparison of feature importance ranks measured using GINI and permutation OOB 
error approaches 
 
(A) The feature importance values were calculated using the out-of-bag (OOB) error score after 
permutation of feature values. The values denoted the mean error in classification of out-of-bag 
samples after scrambling of feature values. Phenotype similarity and number of phenotypes had the 
highest OOB error scores. (B) The feature importance ranks calculated using the GINI mean 
decrease in impurity approach (X-axis) and the out-of-bag (OOB) error score after permutation of 
feature values (Y-axis). The most and least important features using both approaches were the same 
(phenotype similarity and number common highly co-expressed, respectively). The high importance 
and low importance features generally overlapped. The Spearman rho correlation is 0.404. The one 
major discrepancy between the methods was the importance of pathway similarity, which had high 
GINI importance (rank=2), but low permutation OOB importance (rank=19). The reason for this was 
the ability of the model to rely on phenotype similarity and pathway distance to compensate, which 
does not lead to misclassification in the permutation analysis. In contrast, the high GINI importance 
for phenotype similarity suggests that it was often selected as representative of these features in the 
trained models.  
 

A B
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also used a permutation approach to calculate the importance for each feature based on the error 

in classification after the feature values were scrambled. Phenotype similarity was still the most 

important feature (Figure 9A), and the feature importance values calculated based on the 

impurity and the permutation approach generally agreed (Spearman rho = 0.404, Figure 9B).  

 

DiGePred accurately identifies held-out digenic pairs  

To obtain an unbiased estimate of the best classifiers’ performance, I evaluated them using held-

out test sets of digenic and non-digenic pairs. These sets were not used for training or validating 

the classifier and maintained the 1:75 ratio used during training. The classifiers trained using 

gene pairs observed in unaffected relatives of UDN patients as negatives most closely reflect the 

distribution of gene mutations likely to be seen in real clinical applications. Based on the 

previous results, the best balance between performance and stringency in selecting the negatives 

was achieved for the unaffected no gene overlap model, with all the features used during 

training. I focused on this model going forward, but report results for all classifiers.   

The ROC AUC for the unaffected no overlap classifier on the held-out sets was 0.983, 

while the mean PR AUC was 0.735 (Figure 10). The classifiers trained on the other non-digenic 

gene pair sets also performed well on their corresponding held-out sets: the ROC AUCs were 

better than 0.97 and PR AUCs were better than 0.59 in all cases (Figure 10).  
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To establish thresholds for predicting potential digenic gene pairs based on the output of 

the unaffected no gene overlap classifier, I computed thresholds that maximize the F1 and F0.5 

scores. The F1 is maximized at a digenic score of 0.156, and the F0.5 is maximized at a digenic 

score of 0.496. Since I anticipate that precision is more important than recall in most 

applications, I suggest use of the F0.5-based threshold. At this threshold, the classifier correctly 

FIGURE 10: Classifiers accurately distinguish digenic pairs from non-digenic pairs on held-out 
test sets. 
 
(A) ROC and (B) PR curves for random forest classifiers trained using all features on digenic 
gene pairs and various negative sets (indicated in the legend) and evaluated on the appropriate 
held-out test sets. These test sets consisted of DIDA held-out pairs as positives and six different 
held-out negative sets: i) Unaffected, derived from healthy relatives of UDN patients (light blue); 
ii) Permuted, derived by generating permutations of known digenic pairs (orange); iii) Random, 
derived by randomly selecting pairs of genes (dark green); iv) Matched, derived by matching 
the distribution of network and functional features observed among the digenic pairs (grey); v) 
Unaffected no gene overlap, derived from healthy relatives of UDN patients and no genes in 
common between the training and test datasets (dark blue); vi) Random no gene overlap, 
derived by randomly selecting pairs of genes with no genes in common between the training 
and test datasets (light green). The area under the ROC curves (AUROCs) were >0.97 in all 
cases, while the area under the PR curves (AUPRs) were >0.6 in all cases. In all subsequent 
analyses, the Unaffected no gene overlap classifier will be referred to as “DiGePred”. 
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identified 13 of 28 digenic gene pairs in the held-out test set, with a false positive rate of 0.14% 

(Figure 10, Dataset D1). I refer to this model as the DiGenic Predictor (DiGePred). 

 

DiGePred identifies novel digenic pairs from the recent literature 

While the test set was not seen by the classifier prior to evaluation, it was still obtained from 

DIDA, the source of digenic pairs for training and testing. Thus, I further applied DiGePred to 13 

digenic pairs obtained from recent literature, not included in DIDA (Table T1). I derived three 

digenic pairs ((CEP290, RPE65), (AHI1,CEP290), (CEP290, CRB1)) from the validation set 

used by a recently published digenic classifier 43. The other digenic gene pairs ((CLCNKA, 

CLCNKB), (TCF3, TNFRSF13B), (IFNAR1, IFNGR2), (PCDH15, USH1G), (LAMA4, MYH7), 

(KCNE2, KCNH2), (CLCNKB, SLC12A3),  (CACNA1C, SCN5A), (FGFR1, KLB), (CLCN7, 

TCIRG1)) were derived from recently reported cases of digenic disease, respectively: (Abdallah 

et al., 2019; Ameratunga et al., 2017; Heida et al., 2019; Hoyos-Bachiloglu et al., 2017; Kong et 

al., 2019; Nieto-Marín et al., 2019; Nozu et al., 2008; Schrauwen et al., 2018; Stone et al., 2019; 

Yang et al., 2018). I noted that these pairs include some similar phenotypes and overlapping 

genes, and so should not be viewed as 13 independent tests. 

DiGePred correctly identified 11 of the 13 novel digenic pairs at the F0.5 threshold. 

(Figure 11-12). Two of the gene pairs missed at the F0.5 threshold, IFNAR1 and IFNGR2 

(Hoyos-Bachiloglu et al. 2017) and LAMA4 and MYH7 (Abdallah et al. 2019) were identified as 

digenic at the F1 threshold (expected FPR of 0.5%) (Figure 11-12).  
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TABLE T1: Novel digenic pairs from recent literature, not in Digenic Database (DIDA) and not 
used for training. 

# Gene A Gene B Paper Phenotypes 
DiGePred 

score 

1 AHI1 CEP290 

Coppieters 

et al., 10,  
Papadimitriou 

et al., 19  

(validation 

set) 

Leber Congenital 

Amaurosis, Joubert 

syndrome  

0.804 

Coppieters 

et al., 10 
2 CEP290 RPE65 

Leber Congenital 

Amaurosis 
0.726 

Coppieters 

et al., 10 3 CEP290 CRB1 
Leber Congenital 

Amaurosis 
0.654 

4 TCF3 TNFRSF13B Ameratunga et al., 17 

Primary immunodeficiency 

disorder and systemic 

lupus erythematosus 

0.668 

5 IFNAR1 IFNGR2 
Hoyos-Bachiloglu et al., 

17 
Primary immunodeficiency 0.18 

6 PCDH15 USH1G Schrauwen et al., 17 
Profound non-syndromic 

hearing impairment 
0.754 

7 LAMA4 MYH7 Abdallah et al., 19 
Infantile Dilated 

Cardiomyopathy 
0.269 

8 KCNE2 KCNH2 Heida et al., 19 
Long QT Syndrome Type 

2 and Type 6 
0.888 

9 CLCNKB SLC12A3 Kong et al., 19 Gitelman syndrome 0.608 

10 CACNA1C SCN5A Nieto-Marín et al., 19 Long QT phenotype 0.652 
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11 FGFR1 KLB Stone et al., 19 

Endocrine Specific FGF-

21 Signaling Defects and 

Extreme Insulin Resistance 

0.57 

12 CLCN7 TCIRG1 Yang et al., 18 Osteopetrosis 0.669 

13 CLCNKA CLCNKB Nozu et al., 2008 
Bartter syndrome, 

sensorineural deafness 
0.788 

14 FBN1 TRPS1 Zastrow et al., 17 (UDN) 
Marfan syndrome and 

TRPS1 
0.239 

Genes, publication, and patient phenotypes for 13 recently identified digenic disease pairs. Red 
indicates a DiGePred score beneath the F0.5 threshold. The 14th pair (italics) is not strictly 

digenic, but underlies disease in a UDN patient. 
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FIGURE 11: DiGePred accurately identifies novel digenic pairs from the recent literature. 
 
Geometric shapes in red indicate the DiGePred scores assigned to 13 novel digenic pairs 
reported in the recent literature. The dashed pink and purple lines represent the DiGePred score 
thresholds that maximize the F1 (0.156) and the F0.5 (0.496) metrics (Figure 13). Given the 
importance of precision in clinical applications, I propose the score maximizing the F0.5 metric 
or higher as a threshold for calling a gene pair digenic. At this threshold 11 of the 13 novel 
digenic pairs are predicted to be digenic with a low expected false positive rate (<=0.14%). All 
digenic pairs score above the F1 threshold. The DiGePred classifier was trained using all 
features and the unaffected no gene overlap set as negatives. 
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I also evaluated a gene pair from a solved UDN case in which variants in FBN1 and 

TRPS1 caused independent autosomal dominant conditions with some overlapping symptoms 

that produced a unique phenotype in the patient (Zastrow et al. 2017) 136.  Due to the lack of  

interaction, this pair does not meet the strict criteria for digenic pairs used here. DiGePred 

predicted that this gene pair was not digenic at the F0.5 threshold. Nonetheless, it was predicted at 

FIGURE 12: Validation of other models of classifier using novel digenic pairs from recent 
literature. 
 
The novel digenic pairs from recent literature and name of first author of the publication are 
along the Y axis. The predicted scores by the different models of DiGePred, trained on different 
negative sets, are along the X axis. Green indicates prediction as digenic based on F0.5 
prediction threshold, pink indicates no digenic prediction. 11/13 novel digenic pairs are identified 
as digenic by the unaffected no gene overlap model. Solved UDN case with overlapping 
phenotypes not predicted as digenic at highest threshold. 
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the F1 threshold (Figure 11-12, Dataset D2), suggesting the potential of the classifier to 

highlight pairs of functionally related genes.  

 

Discussion 

In this paper I describe DiGePred, a high-throughput machine-learning approach to identify gene 

pairs with the potential to cause digenic disease. I demonstrate the accuracy and robustness of the 

approach in several realistic scenarios. I was motivated to create DiGePred by the challenge of 

identifying causal variants in patients with rare disease that cannot be explained by a single 

variant. It is not feasible to experimentally evaluate all candidate pairs of variants in a patient of 

interest. 

The DiGePred classifier trained using negatives derived from unaffected relatives is 

likely best suited to the purpose of identifying digenic pairs in patients with rare disease, because 

it reflects the baseline distribution of gene pairs with variants identified using clinical sequencing 

pipelines in individuals without severe disease. Moreover, classifiers trained using these negative 

sets performed well. However, this approach preforms well at distinguishing digenic pairs from 

several additional sets of candidate non-digenic gene pairs, and the features used by these 

classifiers are similar unless the prediction problem is explicitly engineered to make them 

different (Figure 11-12).  
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The features prioritized by DiGePred support previous work 39,42 in that phenotypic 

similarity, number of phenotypes, and involvement in the same molecular pathways are the most 

important predictors. They also suggest that these may be more specific predictors of digenic 

gene pairs than similar co-expression profiles or close interaction network distance. The results 

using negatives that match the network and functional features between positives and negatives 

sets indicate that digenic gene pairs also have differences in their evolutionary attributes.  

These analyses are based on the examples available in DIDA, but there are likely 

hundreds or even thousands of undiscovered digenic diseases. The strong performance of 

FIGURE 13: Leaving out phenotype features reduces DiGePred performance, but it remains 
strong. 
 
(A) ROC and (B) PR curves for random forest classifiers trained on all features (blue), leaving 
out phenotype similarity (pink), and leaving out all phenotype features (orange) using held-out 
testing digenic and unaffected no gene overlap pairs. The AUCs were significantly lower without 
phenotype features (p values <1.34 x 10-24), but the models maintain strong performance. The 
area under the ROC curves (AUROCs) were >0.934 in both cases, while the area under the PR 
curves (AUPRs) were >0.585 in all cases. 
  
Positives: digenic pairs from DIDA; held-out testing 
Negatives: non-digenic pairs from unaffected relatives of UDN patients 
No gene level overlap between training and testing datasets. 
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DiGePred on the test set with no gene overlap with the training set and DiGePred’s ability to 

identify new digenic pairs from the recent literature (Figure 11-12) suggest that the algorithm 

will generalize. However, I note that the performance estimates may be optimistic; known 

digenic pairs are unlikely to be an unbiased sample of the full spectrum of digenic mechanisms. I 

anticipate that the algorithms will further improve as more digenic diseases and their causal 

molecular mechanisms are determined. 

DiGePred is based on functional, biological network, and evolutionary features in a 

Random Forest model. Phenotype similarity and other phenotype related features, such as the 

mean number of phenotypes associated with each individual gene, were the most important 

features. Given that our understanding of function of most genes is incomplete, the high reliance 

on a phenotype-based features could lead to a high performing model that does not generalize 

when these features are missing. I retrained and evaluated DiGePred leaving out either 

phenotype similarity or all phenotype related features. There was a decrease in performance on 

the held-out test set (P value < 1.34 x 10-24) (Figure 13); however, the classifiers maintained 

substantial accuracy, with a ROC AUCs >0.93 and PR AUCs >0.585. Thus, while the models are 

likely somewhat biased by existing knowledge, the strong performance is not only due to 

overlapping phenotypic annotations.  
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CHAPTER 3: Application of DiGePred to real world scenarios – predict digenic pairs in 

individuals suffering from rare diseases 

 

Summary 

I have developed DiGePred, a method for identifying gene pairs with digenic disease potential, 

and generated predictions for all pairs of human genes. The use of this tool on rare disease 

patients illustrates its potential to provide insight in real-world settings, and I anticipate that it 

will have broad utility in clinical genome interpretation. In contrast to other approaches, 

DiGePred also appropriately controls the number of false positives when applied in realistic 

clinical settings. Finally, to enable the rapid screening of variant gene pairs for digenic disease 

potential, we freely provide the predictions of DiGePred on all human gene pairs.  

These findings were published as a part of the DiGePred manuscript published in AJHG 

in 2021. A novel digenic candidate identified was published in Mikhael S et al., 2021 (Mikhael 

S, Dugar S, Morton M, Chorich LP, Tam KB, Lossie AC, Kim HG, Knight J, Taylor HS, 

Mukherjee S, Capra JA, Phillips JA 3rd, Friez M, Layman LC. Genetics of agenesis/hypoplasia 

of the uterus and vagina: narrowing down the number of candidate genes for Mayer-Rokitansky-

Küster-Hauser Syndrome. Hum Genet, 2021 140, 667–680 (2021; 

https://doi.org/10.1007/s00439-020-02239-y) 

 

Introduction 

Application of machine learning methods to rare diagnosis has been performed previously.137 

With an increased focus on rare diseases research, there is an increase in rare disease 

cohorts.138,140 The Undiagnosed Diseases Network (UDN)17,18 performs genome sequencing 
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individuals suffering from rare diseases who have applied to and been accepted as a part of the 

UDN cohort  for analysis. In addition, both parents and siblings, when available and other 

relatives, when applicable are sequenced as a part of the cohort as well. Often the relatives of the 

individual with rare disease show no clinical phenotypes and carry no rare deleterious variants. 

This provides sequencing data for unaffected individuals for the UDN cohort as well, and 

provides additional levels of analyses that can be performed to help identify rare and unique 

causative variants or variant combinations, that are not present in other unaffected relatives.   

There is a comprehensive database of digenic diseases39 and machine learning methods to 

identify digenic gene pairs from genome sequencing data currently available42–44. However, the 

efficacy and accuracy of these methods have not been evaluated in real world scenario, on rare 

disease cohorts.  

I evaluated the accuracy of DiGePred on the UDN and other rare disease cohorts and 

demonstrate that it has a low false positive rate, which is essential for clinical applications. To 

aid in rapid screening of patients for potential digenic disease variants, I provide a classification 

of the digenic disease potential for all human gene pairs.  
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Results 

DiGePred has a low false positive rate in real-world applications  

Individuals often carry hundreds of protein-coding variants of unknown significance, which 

results in thousands of potential digenic disease pairs per individual. Thus, when considering the 

FIGURE 14: DiGePred has a low false positive rate and outperforms a recent digenic gene 
prediction method. 
 
The number of digenic pairs identified for each of 38 healthy relatives of UDN patients is plotted 
at a range of DiGePred thresholds (x-axis) and for the highest confidence predictions (99% 
threshold) of the ORVAL/VarCOPP method. The DiGePred score thresholds that maximize the 
F1 and F0.5 metrics on the held-out data are shown in pink and purple, respectively. Since the 
individuals considered are healthy, any predicted digenic disease pairs are very likely false 
positives. DiGePred predicts significantly fewer digenic pairs at each threshold than ORVAL 
(Mann-Whitney U test, p-values above each bar). At the F0.5 threshold, DiGePred predicts an 
average of under four digenic pairs per healthy individual and none above the 0.9 threshold, 
while ORVAL predicts an average of 830 digenic pairs per healthy individual at its strictest 
threshold. Results were similar for classifiers trained on other negative sets (Figures 15-23). 
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application of classifiers to individuals’ genomes, it is essential to understand and control the 

false positive rate. To this end, I evaluated DiGePred on gene pairs with rare variants predicted 

to disrupt protein function in 38 human genomes from unaffected parents and relatives of UDN 

patients not used in training the algorithm. These healthy individuals should not contain any true 

digenic disease pairs, so any positive predictions on gene pairs from these individuals are very 

likely to be false positives. The gene pairs from these individuals were not used in the training, 

validation, or held-out test sets.  

 At the F0.5 threshold, 8% of unaffected individuals had no predicted candidate digenic 

pairs and 29% had only one candidate digenic pair. On average, less than four digenic pairs were 

predicted per individual, and only six had more than five pairs (Figure 14-15). Furthermore, I 

emphasize that users can adjust the score threshold to reflect their tolerance for false positives in 

different applications; for example, the fraction of individuals with no digenic gene pairs 

predicted was 31%, 66% and 92% at score thresholds of 0.6, 0.7 and 0.8, respectively (Figure 

15).  

In contrast, I applied the ORVAL 43,45 method for identifying digenic disease pairs to 

variants from these same individuals. At its highest confidence threshold, ORVAL predicted that 

all these healthy individuals have digenic disease pairs, with an average of 830 highest 

confidence digenic pairs per individual. All individuals were predicted to have > 300 digenic 

pairs, and 5 (~13%) had more than a thousand digenic pairs predicted (Figure 14). This is a 

significantly larger number of candidate digenic disease pairs per individual than DiGePred (P = 

2.95x10-14, MWU test), and these are very likely to be false positives given that these are healthy 

individuals. This difference in number of false positives was recapitulated for all gene selection 
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criteria, variant pathogenicity prediction approaches, and all models of training considered 

(Figure 15-23). 

FIGURE 15: Low false positive rate of classifier on external negative test set of gene pairs 
from unaffected relatives of UDN patients; comparison with recently published variant 
combination pathogenicity predictor at various prediction thresholds 
 
Number of gene pairs from individuals without digenic disease (unaffected relatives of UDN 
patients; n=38) identified to be digenic at varying predicted probability thresholds shown on X 
axis. Percentage of individuals with zero (dark green), one (green), two (light green), three - five 
(beige), six - ten (light brown) and > ten (dark brown) predicted digenic pairs shown on X axis; 
prediction thresholds shown on Y axis. ORVAL is a recently published variant combination 
pathogenicity predictor. The number in the box indicates number of individuals in each category. 
The prediction thresholds (F1 score, shown in pink and F0.5 score threshold shown in purple. At 
the F0.5 threshold, three (7.9%) of unaffected individuals had no predicted digenic pairs, while 
11 (29%) had only one predicted digenic pair. Only seven (18%) individuals had more than five 
digenic pairs and under four digenic pairs were predicted per individual on average. All 
individuals were predicted to have more than ten digenic pairs by ORVAL, with an average 
number of 830 predicted digenic pairs per individual. 
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FIGURE 16: Low false positive rate of classifier on external negative test set of gene pairs 
from unaffected relatives of UDN patients; comparison with recently published variant 
combination pathogenicity predictor using various models of training. 
 
Number of gene pairs from individuals without digenic disease (unaffected relatives of UDN 
patients; n=38) identified to be digenic at varying predicted probability thresholds shown on X 
axis. Percentage of individuals with zero (dark green), one (green), two (light green), three - five 
(beige), six - ten (light brown) and > ten (dark brown) predicted digenic pairs shown on X axis; 
models of training on Y axis ORVAL (VarCOPP) is a recently published variant combination 
pathogenicity predictor. The number in the box indicates number of individuals in each category. 
At the F0.5 threshold, all models, except matched, has an average of fewer than four digenic 
pairs, with at least 50% of unaffected individuals having fewer than three predicted digenic pairs. 
ORVAL predicts >300 digenic pairs for every individual. 
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FIGURE 17: Fewer false positives for DiGePred compared to ORVAL for other models of 
classifier. 
 
The number of digenic pairs identified for each of 38 healthy relatives of UDN patients is plotted 
for different models of DiGePred, trained on different negative sets, (x-axis) and for the 
ORVAL/VarCOPP method. Since these individuals are healthy, any predicted digenic disease 
pairs a very likely false positives. DiGePred predicts significantly fewer digenic pairs for every 
model than ORVAL (MWU test, p-values above each bar). DiGePred trained on Unaffected no 
gene overlap (dark blue) pairs predicts an average of two digenic pairs per healthy individual, 
while the Unaffected (light blue), Permuted (orange), Random (dark green), Matched (grey), 
Random no gene overlap (light green)  and All digenic vs unaffected (light blue) predict an 
average of 0.9,2.7, 0.5, 103, 3.4, 0.7 and 1.2 digenic pairs per individual respectively. ORVAL 
predicts an average of 830 digenic pairs per healthy individual. 
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Gene selection criterion = consensus

FIGURE 18: Fewer false positives for DiGePred compared to ORVAL when genes selected 
based on predicted deleterious variant effect. 
 
The number of digenic pairs identified for each of 38 healthy relatives of UDN patients is plotted 
at a range of DiGePred thresholds (x-axis) and for the ORVAL/VarCOPP method. The score 
thresholds that maximize the F1 and F0.5 metrics on the held out data are shown in pink and 
purple, respectively. DiGePred predicts significantly fewer digenic pairs at each threshold than 
ORVAL (MWU test, p-values above each bar). The genes are selected by a Consensus 
pathogenic criterion. At the F0.5 threshold, DiGePred predicts an average of 1.5 digenic pairs 
per healthy individual, while ORVAL predicts an average of 1286. 
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Gene selection criterion = random

FIGURE 19: Fewer false positives for DiGePred compared to ORVAL when genes selected 
randomly. 
 
The number of digenic pairs identified for each of 38 healthy relatives of UDN patients is plotted 
at a range of DiGePred thresholds (x-axis) and for the ORVAL/VarCOPP method. The score 
thresholds that maximize the F1 and F0.5 metrics on the held out data are shown in pink and 
purple, respectively. DiGePred predicts significantly fewer digenic pairs at each threshold than 
ORVAL (MWU test, p-values above each bar). The genes are selected by a Random selection 
At the F0.5 threshold, DiGePred predicts an average of 2.7 digenic pairs per healthy individual, 
while ORVAL predicts an average of 108. 
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FIGURE 20: Fewer false positives for other models of DiGePred compared to ORVAL when 
genes selected based on predicted deleterious variant effect. 
 
The number of digenic pairs identified for each of 38 healthy relatives of UDN patients is plot 
along the Y axis for training models of DiGePred among Unaffected no gene overlap (dark blue) 
pairs predicts an average of two digenic pairs per healthy individual, while the Unaffected (light 
blue), Permuted (orange), Random (dark green), Matched (grey), Random no gene overlap 
(light green) and All digenic vs unaffected (light blue), along the X-axis. DiGePred is compared 
to ORVAL (X axis), a recently published digenic predictor. DiGePred predicts significantly fewer 
digenic pairs for every model than ORVAL (MWU test, p-values above each bar). The genes 
are selected by a Consensus pathogenic criterion. DiGePred predicts an average of 0.7 (U), 
1.8 (P), 0.4 (R), 68 (M), 2.7 (Un), 0.63 (Rn) and 0.84 (A). ORVAL predicts an average of 1285.  
 

Gene selection criterion = consensus



 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 21: Fewer false positives for other models of DiGePred compared to ORVAL when 
genes selected randomly. 
 
The number of digenic pairs identified for each of 38 healthy relatives of UDN patients is plot 
along the Y axis for training models of DiGePred among Unaffected no gene overlap (dark blue) 
pairs predicts an average of two digenic pairs per healthy individual, while the Unaffected (light 
blue), Permuted (orange), Random (dark green), Matched (grey), Random no gene overlap 
(light green) and All digenic vs unaffected (light blue), along the X-axis. DiGePred is compared 
to ORVAL (X axis), a recently published digenic predictor. DiGePred predicts significantly fewer 
digenic pairs for every model than ORVAL (MWU test, p-values above each bar). The genes 
are selected by a Random selection DiGePred predicts an average of 10.87 (U), 3.1 (P), 0.34 
(R), 265 (M),  2.7 (Un). 0.58 (Rn), 1.07 (A), ORVAL predicts an average of 108. 
 

Gene selection criterion = random
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Gene selection criterion = consensus

FIGURE 22: Low false positive rate of classifier on external negative test set of gene pairs 
from unaffected relatives of UDN patients; comparison with recently published variant 
combination pathogenicity predictor using various models of training, when genes selected 
based on predicted deleterious variant effect. 
 
Number of gene pairs from individuals without digenic disease (unaffected relatives of UDN 
patients; n=38) identified to be digenic at varying predicted probability thresholds shown on X 
axis. Percentage of individuals with zero (dark green), one (green), two (light green), three - five 
(beige), six - ten (light brown) and > ten (dark brown) predicted digenic pairs shown on X axis; 
models of training on Y axis ORVAL is a recently published variant combination pathogenicity 
predictor. The number in the box indicates number of individuals in each category. At the F0.5 
threshold, all models except matched has fewer than three digenic pairs predicted for > 68% of 
unaffected individuals. ORVAL predicts >299 digenic pairs for every individual. 
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Gene selection criterion = random

FIGURE 23: Low false positive rate of classifier on external negative test set of gene pairs 
from unaffected relatives of UDN patients; comparison with recently published variant 
combination pathogenicity predictor using various models of training, when genes selected 
randomly. 
 
Number of gene pairs from individuals without digenic disease (unaffected relatives of UDN 
patients; n=38) identified to be digenic at varying predicted probability thresholds shown on X 
axis. Percentage of individuals with zero (dark green), one (green), two (light green), three - five 
(beige), six - ten (light brown) and > ten (dark brown) predicted digenic pairs shown on X axis; 
models of training on Y axis ORVAL is a recently published variant combination pathogenicity 
predictor. The number in the box indicates number of individuals in each category. At the F0.5 
threshold, all models except matched has fewer than three digenic pairs predicted for > 58% of 
unaffected individuals. ORVAL predicts >18 digenic pairs for every individual. 
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I found that 11.8% of false positives in unaffected individuals (gene pairs incorrectly 

predicted as digenic by DiGePred) had at least one gene as a member of a known digenic pair in 

DIDA. Only 3.2% of all gene pairs evaluated by DiGePred had at least one gene overlapping 

with known digenic pairs from DIDA. This is an approximately 4-fold enrichment of such gene 

pairs among false positives compared to the genome-wide expectation (P-value=1.31x10-05).  

 

Prediction of digenic pairs among patients with undiagnosed disease 

To illustrate the application of DiGePred in patients with rare undiagnosed genetic disorders, I 

applied it to: 1) patients from the UDN site at Vanderbilt and 2) a cohort of 111 individuals with 

Mayer–Rokitansky–Küster–Hauser (MRKH) syndrome.  

I first considered variants from ~50 UDN cases and identified several candidate digenic 

pairs based on DiGePred score integrated with analyses of variant effect, variant inheritance, and 

similarity of the gene’s functions to the patient phenotype. Since these cases are still being 

actively evaluated, I cannot report full details here. Instead, I describe a representative example. I 

predicted a candidate digenic pair of ATXN2 (Ataxin 2) and FUS (fused in sarcoma) for a patient 

with ALS (amyotrophic lateral sclerosis) and Parkinsonism like phenotypes. The variant in 

ATXN2 was a polyglutamine (polyQ) repeat expansion variant, and there is evidence in literature 

for a functional interaction between these two genes 139,141,142. 
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To explore the performance of DiGePred on UDN individuals more quantitatively, I 

compared the predictions on variants from 24 patients with 38 available unaffected relatives that 

were not used in the training of DiGePred. I tested whether the rare disease patients had a higher 

median of fraction of high-confidence predicted digenic pairs compared to related individuals 

without rare disease. At all thresholds considered (F0.5 or higher), DiGePred predicted a greater  

FIGURE 24: DiGePred predicts that UDN patients have more digenic gene pairs above 
high confidence thresholds than unaffected relatives. 
 
The median fraction of gene pairs predicted to be digenic by DiGePred (Y-Axis) above 
the corresponding threshold (X-Axis) for 24 individuals with undiagnosed disease (red) 
and 38 unaffected individuals (black). The distribution of the median number of predicted 
digenic pairs for individuals with undiagnosed disease is significantly greater than for 
unaffected relatives (P-value of 6.74x10-12, Kolmogorov–Smirnov (K-S) test. The shading 
around the lines indicates the 95% confidence interval around each median. All high 
confidence prediction thresholds (F0.5 threshold of 0.496 and greater) for which at least 
one of the medians was > 0 were considered. 
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fraction of gene pairs with variants to be digenic for individuals with undiagnosed disease than 

the unaffected individuals. The difference between the distributions was significant (P=6.74x10-

12, Kolmogorov–Smirnov test; Figure 24). In contrast, the fraction of predicted digenic pairs was 

similar for the individuals with undiagnosed disease compared to unaffected individuals across a 

range of ORVAL classification scores within the 99% confidence zone (P=0.482; Figure 25). 

FIGURE 25: ORVAL predicts that UDN patients and unaffected relatives have similar 
numbers of digenic gene pairs at high confidence thresholds. 
 
The median fraction of gene pairs predicted to be digenic by ORVAL classification score 
(Y-Axis) above the corresponding threshold (X-Axis) for 24 individuals with undiagnosed 
disease (red) and 38 unaffected individuals (black). The distributions for the individuals 
with undiagnosed disease and unaffected individuals were not significantly different (P-
value of 0.482, Kolmogorov–Smirnov (K-S) test). The shading around the lines indicate 
the 95% confidence interval around the median. All high confidence prediction thresholds 
(ORVAL classification scores of 0.74 and greater, corresponding to the 99% confidence 
zone) for which at least one of the medians was > 0 were considered.  
 



 52 

 Next, I applied DiGePred to variants from a cohort of 111 individuals with MRKH 

syndrome143, a developmental disorder primarily affecting the female reproductive system, often 

characterized by a congenital absence of a uterus or vagina 144,145. I identified a potential digenic 

pair between LAMC1 (Laminin Subunit Gamma 1), an extracellular matrix (ECM) glycoprotein 

that is a member of the Integrin pathways and plays a role in cell adhesion and signaling, and 

MMP14 (Matrix Metallopeptidase 14), a protein involved in breaking down the extracellular 

matrix during embryonic development and tissue remodeling. The DiGePred prediction was 

driven by the two proteins being highly co-expressed with one another, directly interacting along 

the Integrin pathway, being only one protein away on the global PPI network, and having ~5% 

phenotype similarity. Furthermore, there is evidence in literature of functional interaction 

between LAMC1 and MMP14 that affects ECM remodeling via fibronectin deposition in 

zebrafish 146.   

 

Prediction of digenic pairs among all human gene pairs at various confidence thresholds 

To aid in the rapid evaluation of digenic disease potential for a pair of genes of interest, I trained 

a new DiGePred classifier using all digenic pairs from DIDA (to maximize use of available data) 

and variant gene pairs from healthy relatives of UDN patients. I applied DiGePred to all possible 

human gene pairs. A gene pair was deemed a candidate digenic pair if the digenic score met the  
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FIGURE 26: Gene Ontology enrichment for top 100 genes with most predicted digenic pairs. 
 
Gene ontology (GO) enrichment using WebGestalt (WEB-based GEne SeT AnaLysis Toolkit). 
GO terms along X axis, and number along Y axis. (A) Biological process (red); (B)  Cellular 
Component (blue); (C) Molecular function (green).  Most genes are involved in metabolic 
processes, localized to the cell membranes and multi-protein complexes and have important 
binding domains. 

A B C

FIGURE 27: Gene Ontology enrichment for top 100 genes with highest average predicted 
value. 
 
Gene ontology (GO) enrichment using WebGestalt (WEB-based GEne SeT AnaLysis Toolkit). 
GO terms along X axis, and number along Y axis. (A) Biological process (red); (B)  Cellular 
Component (blue); (C) Molecular function (green).  Most genes are involved in metabolic 
processes, localized to the cell membranes and multi-protein complexes and have important 
binding domains. 
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F0.5 threshold as described above. As expected, the percentage of all possible gene pairs that 

were identified as digenic at the most confident threshold was very low (54,318 out of 155.33 

million gene pairs, 0.035%). These predictions and the raw digenic scores are available in 

Dataset D3.  

 Overall, 7,970 unique genes are involved in at least one predicted digenic pair. This 

illustrates that DiGePred is not just prioritizing gene pairs that include a gene in a known digenic 

pair. In fact, only 3 of the top 100 genes with the most predicted digenic pairs occur in a DIDA 

pair. These genes are enriched for several essential developmental and molecular Gene Ontology 

functional annotations including “maintenance of cell number” (7.5x expected, FDR=0.005), 

“chromatin remodeling” (7.3x, FDR=0.005), and “membrane docking” (7.0x expected, 

FIGURE 28: Gene Ontology enrichment for genes in the top 100 gene pairs with highest 
predicted value. 
 
Gene ontology (GO) enrichment using WebGestalt (WEB-based GEne SeT AnaLysis Toolkit). 
GO terms along X axis, and number along Y axis. (A) Biological process (red); (B)  Cellular 
Component (blue); (C) Molecular function (green).  Most genes are involved in metabolic 
processes, localized to the cell membranes and multi-protein complexes and have important 
binding domains. 
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FDR=0.004; Table T2). For example, FGF5, a growth factor important for cell proliferation and 

differentiation, tissue development and repair, had the highest number of predicted digenic pairs 

above the F0.5 threshold with 370. ARID1B, which had the 2nd highest number of predicted 

digenic pairs, with 262, encodes a component of the SWI/SNF chromatin remodeling complex 

with broad regulatory functions across the genome. CEP290, a centrosome protein, with 

essential roles in centrosome and cilia development in many cell types had the 6th most predicted 

digenic interactions with 232. The genes with the most predicted digenic pairs were also 

enriched for several organ development and cell cycle processes. The top 100 gene pairs with the 

highest average DiGePred scores were enriched for tissue and organ development, ciliary 

function, and electron transfer activity (Figure 26-28, Tables T2-4).  

TABLE T2: Gene Ontology enrichment for top 100 genes with most predicted digenic pairs. 

GO term Description Size Expected 
Enrichment 

Ratio 
P- Value FDR 

GO:0003713 transcription 

coactivator 

activity 

316 2.0516 5.8491 8.3026e-7 0.00023413 

GO:0051427 hormone receptor 

binding 

184 1.1946 6.6967 2.4596e-5 0.0034681 

GO:0048568 embryonic organ 

development 

423 2.7139 4.7901 2.9198e-6 0.0024819 

GO:0048880 sensory system 

development 

355 2.2776 4.8296 1.6639e-5 0.0037935 
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GO:0022406 membrane 

docking 

177 1.1356 7.0447 1.7852e-5 0.0037935 

GO:0098727 maintenance of 

cell number 

146 0.93672 7.4729 4.2022e-5 0.0051660 

GO:0006338 chromatin 

remodeling 

150 0.96238 7.2736 4.9927e-5 0.0051660 

GO:0050953 sensory 

perception of light 

stimulus 

209 1.3409 5.9661 5.8508e-5 0.0051660 

GO:0006333 chromatin 

assembly or 

disassembly 

155 0.99446 7.0390 6.1484e-5 0.0051660 

GO:0044772 mitotic cell cycle 

phase transition 

487 3.1245 3.8406 6.4116e-5 0.0051660 

GO:0043583 ear development 212 1.3602 5.8816 6.4680e-5 0.0051660 

GO:0044441 ciliary part 440 3.1871 3.7651 6.7244e-6 0.0038553 

GO:0005819 spindle 328 2.3759 3.7881 5.6910e-4 0.024471 
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TABLE T3: Gene Ontology enrichment for top 100 genes with highest average predicted value. 

GO term Description Size Expected Ratio P- Value FDR 

GO:0030990 intraciliary transport 

particle 

28 0.21671 18.458 5.9038e-5 0.010155 

GO:0048018 receptor ligand 

activity 

468 3.1144 4.4952 2.2023e-6 0.00062106 

GO:0009055 electron transfer 

activity 

111 0.73868 9.4764 8.6751e-6 0.0012232 

GO:0070851 growth factor 

receptor binding 

132 0.87843 6.8304 2.4251e-4 0.022796 

GO:0016651 oxidoreductase 

activity, acting on 

NAD(P)H 

106 0.70540 7.0881 6.9140e-4 0.039453 

GO:0001228 DNA-binding 

transcription 

activator activity, 

RNA polymerase 

II-specific 

444 2.9547 3.3844 6.9951e-4 0.039453 

GO:0048732 gland development 434 2.8431 7.0345 4.8348e-12 2.0548e-9 
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GO:0060485 mesenchyme 

development 

262 1.7164 9.3221 1.2885e-11 3.6508e-9 

GO:0048568 embryonic organ 

development 

423 2.7711 5.7740 1.4138e-8 0.0000024034 

 

TABLE T4: Gene Ontology enrichment for genes in the top 100 genes with highest average 
predicted value. 

GO term Description Size Expected Ratio P- Value FDR 

GO:0070491 repressing 

transcription factor 

binding 

73 0.43248 23.123 1.2986e-11 3.6619e-9 

GO:0015631 tubulin binding 321 1.9017 5.7842 2.66203-6 0.00025023 

GO:0008307 structural 

constituent of 

muscle 

44 0.26067 15.345 1.2865e-4 0.0090698 

GO:0007389 pattern specification 

process 

433 2.8950 8.2900 6.6613e-16 1.8874e-13 

GO:0044839 cell cycle G2/M 

phase transition 

213 1.4241 10.533 1.0589e-11 1.2858e-9 

GO:0044441 ciliary part 440 3.6674 8.7255 ~0 ~0 
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GO:0005874 microtubule 402 3.3507 3.2829 4.7853e-4 0.013718 

 
I found that 19,325 (35%) of predicted digenic gene pairs had at least one recessive 

phenotype associated in OMIM 147–149. In almost a fifth of these cases (3,697; 19%), at least one 

phenotype was in common or with high semantic similarity 150 between the two genes. For most 

of these gene pairs (3,601; 97%), the two genes had different MIM numbers in OMIM. This 

indicates that the two genes have not been previously annotated as causing a digenic disease, 147 

and thus, suggests that they are novel associations. 

Existing knowledge provides plausible mechanisms underlying many of these predicted 

novel digenic gene pairs. For example, a digenic pair comprising STIM1 and ORAI1 had the 4th 

highest score over all human gene pairs. It has been previously reported that STIM1 and ORAI1 

function together to form Ca2+ release-activated Ca2+ (CRAC) channels, which are responsible 

for Ca2+ influx called store-operated Ca2+ entry (SOCE) 151. The proper functioning of these 

channels is necessary for maintaining the normal physiology of several cell types, including T 

cell receptors and human lymphocytes 152–154. Missense variants in STIM1 and ORAI1, 

individually, cause diseases with a great degree of phenotypic homogeneity 155. Loss of function 

variants in STIM1 and ORAI1 have also been known to cause immunodeficiency, 156–159 under 

autosomal recessive conditions, as reported by OMIM. Therefore, it is possible that single loss of 

variants in both genes occurring simultaneously could lead to the autosomal recessive 

immunodeficiency. 
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Discussion 

To facilitate the rapid identification of candidate digenic gene pairs in patients, I have provided 

DiGePred predictions for all pairs of human genes at several confidence thresholds (Dataset 

D4A-D). DiGePred has demonstrated low false positive rate when applied to unaffected 

individuals, indicating its applicability to real world scenarios. I compared DiGePred to the 

recently published ORVAL/VarCOPP digenic disease prediction server. This method was also 

developed using DIDA as positive training data. Due to the challenge of running the web server 

on a large-scale, it was not possible to evaluate its performance in the training, validation, test 

framework.  

I applied it to variant gene pairs from the 24 UDN patients and their 38 unaffected 

relatives not used in the training or initial evaluation of DiGePred. At its strictest (99%) 

prediction threshold, I found an average of 855 predicted digenic disease pairs per individual 

without disease. This false positive rate is too high for clinical use. In contrast, DiGePred 

predicts two or fewer digenic pairs for 47% of these individuals and an average of under four 

digenic pairs per individual overall. I also observed that ORVAL predicted a similar fraction of 

digenic pairs in the unaffected and patient groups at increasingly strict classification score 

thresholds (Figure 14). My analysis of the ORVAL method suggests that if one of the genes in a 

pair carries a variant that is predicted to be pathogenic by ORVAL’s variant effect prediction 

component, then the gene pair is very likely to be predicted to be digenic. This suggests that 

strong variant-level effects may obscure signals specific to digenic disease. 

As a part of our collaboration with the UDN, we help review individuals with rare 

diseases analyzed as a part of the UDN cohort by the clinical research team. This includes 

application of computational variant effect predictors, study of inheritance patterns, and clinical 
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expertise. Other models of DiGePred perform similarly well whether trained against gene pairs 

that have predicted disruptive variants or on all variant pairs from individuals (Figure 15-23), 

suggesting that they are not simply identifying pairs containing monogenic disease genes. Going 

forward, I will continue to refine this approach in collaboration with the UDN and other rare 

disease cohorts.  
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CHAPTER 4: A Personalized Structural Biology (PSB) approach reveals the molecular 

mechanisms underlying heterogeneous epileptic phenotypes caused by de novo KCNC2 

variants 

 

Summary 

Next-generation whole exome sequencing (WES) is ubiquitous as an early step in the diagnosis 

of rare diseases and the interpretation of variants of unknown significance (VUS). 

Developmental and epileptic encephalopathies (DEE) are a group of rare devastating epilepsies, 

many of which have unknown causes. Increasing WES in the clinic has identified several rare 

monogenic DEEs caused by ion channel variants. However, WES often fails to provide 

actionable insight, due to the challenges of proposing functional hypotheses for candidate 

variants.  

Here, I have described a “personalized structural biology” (PSB) approach that addresses 

this challenge by leveraging recent innovations in the determination and analysis of protein 3D 

structures. I illustrated the power of the PSB approach in an individual from the Undiagnosed 

Diseases Network (UDN) with DEE symptoms who has a novel de novo VUS in KCNC2 

(p.V469L), the gene that encodes the Kv3.2 voltage-gated potassium channel. A nearby KCNC2 

variant (p.V471L) was recently suggested to cause DEE-like phenotypes. I found that both 

variants are located in the conserved hinge region of the S6 helix and likely to affect protein 

function. However, despite their proximity, computational structural modeling suggests that the 

V469L variant is likely to sterically block the channel pore, while the V471L variant is likely to 

stabilize the open state. Biochemical and electrophysiological analyses demonstrate 

heterogeneous loss-of-function and gain-of-function effects, respectively, as well as differential 
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inhibition in response to 4-aminopyridine (4-AP) treatment. Using computational structural 

modeling and molecular dynamics simulations, I illustrate that the pore of the V469L variant is 

more constricted increasing the energetic barrier for K+ permeation, whereas the V471L variant 

stabilizes the open conformation 

These results implicated KCNC2 as a causative gene for DEE and guided the 

interpretation of a UDN case. They further delineate the molecular basis for the heterogeneous 

clinical phenotypes resulting from two proximal pathogenic variants. This demonstrates how the 

PSB approach can provide an analytical framework for individualized hypothesis-driven 

interpretation of protein-coding VUS suspected to contribute to disease. 

This work has been communicated as a manuscript to the American Journal of Human 

Genetics (AJHG) Advances, and published on MedRxiv as Mukherjee et al., 2022 (Mukherjee 

S, Cassini TA, Hu N, Yang T, Li B, Shen W, Moth CW, Rinker DC, Sheehan JH, Cogan JD, 

Undiagnosed Diseases Network, Newman JH, Hamid R, Macdonald RL, Roden DM, Meiler J, 

Kuenze G, Phillips JA, Capra JA. Personalized structural biology reveals the molecular 

mechanisms underlying heterogeneous epileptic phenotypes caused by de novo KCNC2 variants. 

MedRxiv doi: https://doi.org/10.1101/2022.02.01.21268115). 

 

Introduction 

The advent of cheaper and more accurate DNA sequencing technologies has enabled the 

integration of genetic information into diverse areas of medicine. For example, more than 70% of 

rare diseases are thought to have a genetic cause, and recent efforts have identified the causal 

variants for thousands of Mendelian diseases 160–162. However, causal variants have not been 

identified for approximately half (~3000) of known rare genetic diseases 163–165, and sequencing 
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often fails to lead to actionable insights, even after expert clinical evaluation through programs 

like the NIH’s Undiagnosed Diseases Network (UDN) 17,18,166.  

Many computational methods have been developed for interpreting variants observed in 

clinical sequencing 167–170. However, they have substantial weaknesses and often disagree 171–175. 

In particular, commonly used tools provide only ill-defined, categorical variant classifications 

like “pathogenic” and “benign” and fail to propose specific hypotheses about the underlying 

molecular effects of variants. A prediction that a variant is “pathogenic” is not of much clinical 

use without a testable prediction of the mechanisms of its pathogenicity, pleiotropic effects and 

possible insights to treatment.  

Motivated by the challenges of variant interpretation, recent advances in experimental 

approaches for protein structure determination 176–181 and recent improvements to the accuracy of 

prediction, modeling and analysis of native 3D protein structural models 92,182–184, I propose a 

new variant interpretation paradigm. This “personalized structural biology” approach focuses on 

making mechanistic predictions about the effects of the variant(s) observed in patients in the 

context of their genetic background via computational and experimental evaluation of protein 

structure and function. I demonstrate the power of this approach on two candidate VUS in 

KCNC2, the gene encoding the homo-tetrameric voltage gated potassium channel Kv3.2, one 

variant from an individual with an unsolved epilepsy-like disease enrolled in the UDN and 

another variant from a recent case report 185 with epilepsy-like phenotypes; however no 

functional validation was done for the variant. 

Developmental epileptic encephalopathies (DEE) are a group of devastating disorders in 

which epileptic activity contributes to cognitive and behavior impairment in addition to 

underlying developmental pathologies 186,187. Genetic etiologies are thought to be the cause of a 
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substantial proportion of these DEE cases, and with recent advances in genetic testing 

technology, many DEE variants have been discovered. The underlying genetic mechanisms are 

diverse 188, but defects in neuronal ion channels are thought to be a common cause of DEE. For 

example, the initial discovery that Dravet syndrome is caused by variants in SCN1A 189 has been 

followed by the demonstration that variants in many voltage-gated potassium (Kv) channels can 

cause DEE190. The largest family of these channels is the Kv family, with 12 subfamilies whose 

alpha subunits are encoded by approximately 40 genes. The Kv3 subfamily influences rapid 

firing of inhibitory interneurons in the central nervous system 191. The general mechanism of 

Kv3.2 channel gating is thought to be similar to other closely related voltage-gated potassium ion 

channels. Kv channels consist of four homologous subunits, with each monomer having six 

transmembrane helical domains (S1-S6). S1-S4 form the voltage sensing domain (VSD) and S5-

S6 from all four subunits form the membrane pore. A linker domain between S4 and S5 connects 

the VSD to the pore forming units 192–196. The VSD undergoes conformational changes between 

the open and closed state of the channel 197, and the coupling between the S4-S5 linker and the 

S6 pore forming unit is responsible for the voltage dependent gating of the channel 198,199. With a 

pronounced inward movement of the positively charged S4 voltage sensor, the S4-S5 linker is 

pushed downwards, which causes the S6 helix to constrict the pore, thus closing the channel 195. 

This gating mechanism is made possible by the presence of a Proline-Valine-Proline (PVP) 

motif, which acts as a hinge domain in the S6 helix. The hinge domain allows the S6 pore-

forming helix to kink at the flexible PVP motif to open and close the channel pore. 

Other members of this subfamily have been implicated as a potential causes of DEE and 

other epilepsy-like symptoms with discoveries of variants in genes encoding Kv3.1 and Kv3.3 

200–202. More recently variants in KCNC2, which is highly expressed in GABAergic interneurons 
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in the CNS, have been suggested to be linked to DEE-like phenotypes, with possibly dominant 

negative effects 185,203,204. However, the links and their mechanisms are yet to be established. 

MD simulations provided detailed insight into the molecular mechanism underlying the 

altered function of both variants. Our MD results agree well with the experimentally observed 

loss-of-function and gain-of-function phenotypes for V469L and V471L, respectively. 

 

Results 

Undiagnosed Diseases Network patient with DEE-like symptoms 

A child at the Vanderbilt University UDN site presented with DEE-like phenotypes, including 

multiple types of refractory seizure and global developmental delay. Early on, they developed 

generalized tonic clonic seizures, and was diagnosed with Lennox-Gastaut syndrome, a severe 

form of DEE. However, he continued to have frequent myoclonic absence seizures and 

occasional generalized tonic clonic seizure.  

Initial sequencing of the individual on an epilepsy gene panel through Athena covered 

ARHGEF9, ARX, CDKL5, CNTNAP2, FOXG1, GABRG2, GRIN2A, KCNT1, MECP2, NRXN1, 

PCDH19, PNKP, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, SCN1A, SCN1B, SCN2A, 

SCN8A, SCN9A, SLC25A22, SLC2A1, SLC9AC, SPTAN1, STXBP1, SYNGAP1, TCF4, TREX1, 

UBE3A, ZEB2. The only potentially significant finding was a heterozygous c.2985G>C variant 

in GRIN2A. Deletion analysis of SCN1A was negative as well. Secondary findings, metabolic 

screens, and mitochondrial DNA sequencing were also negative.  

Following the negative epilepsy panel result, WES revealed a candidate variant in a 

voltage-gated potassium channel Kv3.2, KCNC2 c.1405G>T (p.V469L). Sanger sequencing 

confirmed this variant. This variant was not seen in either of his parents, and therefore it was 
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presumed to be de novo. This variant is in the conserved hinge motif of the channel which is 

critical for channel gating (Figure 29). The potential relevance of this variant is supported by 

another recently reported discovered candidate heterozygous variant also located in the hinge 

domain of KCNC2 (c.1411G>C, p.V471L) only two amino acids away from V469L variant 

found in the UDN subject 185. The UDN subject and the previously reported case shared the 

phenotypes of DEE, seizures refractory to medications, developmental delay, and microcephaly. 

However, their phenotypes differed in that the reported case also had complete absence of 

speech, dystonia, decreased myelination around frontal and occipital horns of the lateral 

ventricles, spastic tetraplegia, myoclonic jerks, and opisthotonos attacks. 

To evaluate the evidence for these VUS and propose specific functional hypotheses, I 

assessed the effects of these variants on protein expression, structure, and function with 

experimental and computational methods. 
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Structural modeling suggests distinct functional effects for candidate KCNC2 variants 

To evaluate the potential effects of the KCNC2 variants at the molecular level, my PSB colleague 

Dr. Bian Li and I constructed a homology model of its tetrameric structure based on a high-

resolution structure of the Kv1.2-Kv2.1 paddle chimera channel (PDB ID: 2R9R) 198 using the 

Rosetta molecular modeling suite (Methods) 87. 

The homo-tetrameric Kv3.2 model, with six transmembrane helical domains (S1-S6) is 

shown in Figure 29A. The PVP motif ranges between residues 468 and 470 on the S6 helix and 

facilitates channel gating. The variants of interest p.V469L and p.V471L are adjacent to the PVP 

motif (Figure 29B). The channel pore is formed by the S5 and S6 helices of all four chains 

together (Figure 29C), and the PVP motifs on all four helices act together for channel gating. 

This region is almost entirely conserved among vertebrates Figure 30A). Furthermore, previous 

FIGURE 29: Candidate pathogenic variants in KCNC2 are nearby, but have different 
structural contexts in Kv3.2.  
 
(A) Homo-tetrameric structure of Kv3.2. The complete structural model of Kv3.2 (KCNC2) was 
generated using RosettaCM from Kv1.2-Kv2.1 paddle chimera channel (PDB ID: 2R9R, 42.8% 
sequence identity). Four homologous subunits form the tetrameric channel pore structure; chain 
A is shown in color. Each monomeric subunit has intracellular N terminal domain (black) and 
six transmembrane helical domains. S1-S4 form the voltage sensing domain (VSD, beige). The 
S4-S5 linker (magenta) is the force transducer between the VSD and the channel pore, formed 
by the S5 (yellow) and the S6 (red) helices. The S5-S6 linker (orange) acts as the selectivity 
filter, allowing only potassium ions through the channel. The patient variant (V469L) is located 
in the PVP motif (purple; residues 468-470) which acts a hinge domain facilitating channel 
gating. The previously discovered variant (V471L) suspected to also cause DEE-like symptoms 
is located adjacent to the PVP motif. (B) A view of the carbon backbone of the S6 helix, showing 
the PVP hinge region. The valines at positions 469 (blue) and 471 (green) are shown. (C) A 
view of the channel pore formed by the tetrameric structure of Kv3.2, showing the selectivity 
filter (orange) and the hinge domain (purple). (D) A closer view of the channel pore with 
reference amino acids valine at positions 469 (deep blue) and 471 (teal) shown, alongside 
variant leucine residues (light blue and cyan). Residue 469 extends into the pore, while residue 
471 faces away from the pore. (E) A view of the carbon backbone of the native (valine) and 
substituted (leucine) amino acids at positions 469 and 471.  
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studies have shown that altering the central hydrophobic residues in Kv1.1 channels from valine 

to isoleucine affects channel kinetics, stability, and conformational dynamics 205.  
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FIGURE 30: KCNC2 variants are located in the evolutionarily conserved hinge domain and 
predicted to be deleterious.  
 
(A) The amino acid sequence flanking the PVP motif (green box) and the V469L and V471L are 
deeply conserved across vertebrate species. (B) V469L and V471L are both predicted to be 
functional by the combined annotation dependent depletion (CADD) and genomic evolutionary 
rating profile (GERP) scores.  
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The UDN subject’s variant (p.V469L) results in a conservative substitution, which 

changes the hydrophobic valine at the core of the PVP motif to leucine, another hydrophobic 

amino acid. However, the p.V469L variant is predicted to have a deleterious effect on the protein 

by commonly used variant effect prediction tools like CADD and GERP (Figure 29B). The 

residue at position 469 faces into the channel pore (Figure 28D), and while conservative amino 

acid substitutions do not usually have severe effects, in this case, the bulkier leucine amino acid 

(Figure 28E) at the center of the PVP motif on the hinge domain could influence ion transfer. I 

hypothesize that it could sterically obstruct the pore resulting in a decreased pore radius and 

slower kinetics of channel gating. The steric hindrance of the curving of the S6 helix could lead 

to fewer ions passing though the pore. 

 

FIGURE 31: Candidate Kv3.2 variants cause loss and gain of channel function.  
 
(A) Representative potassium current traces for wild type (WT) Kv3.2 in CHO cells recorded by 
voltage clamp. WT shows the characteristic current amplitude and fast deactivation (short 
deactivating tail currents). (B) Current traces for the V469L variant show lower peak current and 
very slow deactivation. (C) Current traces for the V471L variant demonstrate much higher 
current and moderately slowed deactivation compared to WT. Each voltage clamp used the 
protocol shown in the insert of panel A. The deactivation tails are compared in greater detail in 
Figure 32A-C. (D) Current vs. steady-state voltage (I-V) curves for WT Kv3.2, V469L, and 
V471L. The V469L variant showed a much lower current at steady-state, while the V471L 
variant showed increased current at steady-state. (E) Current vs. voltage plots for the tails for 
each variant. V469L has a slight negative shift (~10 mV), while V471L has a large negative 
voltage shift (~28 mV). Each group considered 6 to 10 cells. (F) Percentage of channel activity 
(steady-state current) blocked by 200 µM 4-aminopyridine (4-AP), a known voltage gated 
potassium channel blocker, for WT, V469L, and V471L. The WT and V469L Kv3.2 were 
similarly blocked (p > 0.05, n=6 for each), but V471L was resistant to 4-AP blockage (p < 0.0001, 
n=6). Figure 33A-C shows the protocol and representative traces for each variant. Altogether, 
these data demonstrate loss- and gain-of-function effects on channel activity for V469L and 
V471L, respectively. 
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The second recently reported candidate KCNC2 variant 185 (p.V471L) is immediately 

adjacent to the PVP motif (Figure 29A); however, the structural context of this variant in the 

model suggests potentially different effects from that of our UDN subject’s p.V469L variant. 

Residue p.V471 faces away from the pore (Figure 29D), and therefore, the substitution of the 

bulkier amino acid leucine (Figure 29E) is less likely to lead to a decrease in the pore radius as 

the residue faces outward. In this case, I hypothesized that the molecular effect of the p.V471L 

variant would widen the pore and increase its tendency to remain open, leading to more ions 

passing through than normal and thus a gain-of-function phenotype. I also predicted that the 

channel gating will be affected by the bulkier leucine residue; however, not to the extent of the 

p.V469L variant since p.V471L faces away from the channel pore.  
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FIGURE 32: Candidate KCNC2 variants have different effects on Kv3.2 deactivation tail 
kinetics.  
 
(A) Current traces for the deactivating tails for wild type (WT) Kv3.2. The short peak indicates 
fast deactivation, which is a hallmark of Kv3.2, and required for fast depolarization of membrane 
potential in the central nervous system. (B) Current traces for the deactivating tails of V469L 
Kv3.2 show a much slower deactivation, indicated by the long peak which does not return to 
zero. (C) Current traces for the deactivating tails of V471L Kv3.2 demonstrate a much higher 
current and a somewhat slowed deactivation, indicated by the higher and longer peak, 
compared to the WT.  
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V469L causes loss of channel function, while V471L causes gain of function 

To quantify the effects of the candidate variants our experimental collaborator Dr. Tao Yang, 

from the Dan Roden group, quantified the electrophysiological function of Kv3.2, potassium 

channel currents for WT Kv3.2 and the two disease causing variants (p.V469L and p.V471L) in 

CHO cells. The proteins were expressed in a homo-tetrameric model, with all four chains 

carrying the variant, in each case. The WT form of Kv3.2 showed a very fast deactivation, in 

accordance with previously characterized behavior of the Kv3.2 channel (Figure 31A, 32). 

KCNC2 is primarily expressed in the brain, where its product Kv3.2 contributes to the fast 

repolarization of action potentials in neurons of the central nervous system 191,206,207. Therefore, 

short spike duration and rapid deactivation of Kv3.2 channels are important for normal 

physiology. 

The electrophysiological profiles for the p.V469L variant (Figure 31-32) compared to the 

WT Kv3.2 had a lower peak current and much longer deactivation tails. The peak current for the 
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FIGURE 33: 4-AP differentially blocks variant Kv3.2 channels.  
 
The effect of 4-aminopyridine (4-AP), a voltage gated potassium channel blocker, on WT Kv3.2 
(A), V469L (B), and V471L (C) channel activity. Representative baseline (absence of 4-AP) 
current traces are shown in black for each protein, and representative traces with 200 uM 4-AP 
are shown in gray. 4-AP blocked the WT and V469L at similar levels. However, activity of the 
V471L variant was only modestly reduced by 4-AP and maintained high activity. The voltage-
clamp protocol is shown as insert in panel A.  
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p.V469L mutant was less than half that of WT (Figure 31D), with a much slower deactivation 

and a slight negative shift of ~10mV (Figure 31E). In contrast, the electrophysiological profile 

for p.V471L (Figure 31C, Figure 32) showed a much higher peak current than WT, with a 

longer deactivation tail. The p,V471L peak current was 1.5 times that of the WT channel (Figure 

31D), with a moderately slower deactivation, but a drastic negative shift of ~28mV (Figure 

31E). The very slow deactivation and slightly negative voltage shift observed for p.V469L and 

moderately slow deactivation and dramatically negative voltage shift for p.V471L align with the 

structural hypothesis of loss-of-function and gain-of-function phenotypes, respectively. For each 

variant, the same amount of plasmid was injected, and the behavior of the proteins at their native 

levels of expression was analyzed.  

Dr. Yang further characterized the effect of the variants on channel function by 

administration of the voltage-gated potassium channel blocker 4-aminopyridine (4-AP). Kv3.2 is 

very sensitive to 4-AP 208,209,211. 4-AP is known to approach the channel lumen from the 

cytoplasmic side 208,210,212; and bind the open channel weakly. Once bound, the channel becomes 

biased towards the closed state 210, and 4-AP binds strongly to the closed conformation, blocking 

the channel.   

Interestingly, 4-AP blocked the channel activity similarly for the WT and p.V469L Kv3.2  

(Figure 31F, Figure 33). Both experienced >70% decreases in activity (p > 0.05, n=6). In 

contrast, the gain-of-function p.V471L variant was resistant to 4-AP compared to WT and 

p.V469L (p < 0.0001 for both, n=6), showing a less than 30% reduction in activity (Figure 31F, 

Figure 33). This could be due to the V471L variant stabilizing the channel in the open 

conformation, thereby making 4-AP less effective in closing the channel and less likely to bind. 
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These results further supported the contrasting loss- and gain-of-function mechanisms I proposed 

for p.V469L and p.V471L. 

 

V469L expression is lower while V471L expression is higher than wild type 

Rare pathogenic protein-coding variants, in addition to causing changes to protein structure and 

molecular function, can also lead to altered protein expression in cells. Dr. Ningning Hu, from 

the Robert Macdonald group, compared the levels of protein present in cells for the WT and two 

Kv3.2 variants with an Immunoblot analysis (Western Blot).  

The homomeric V469L Kv3.2 was present at less than half the amount for homomeric 

WT, while the levels for homomeric V471L Kv3.2 were greater than one and a half times that of 

WT (Figure 34). Thus, expression differences likely contribute to the loss- and gain-of-function 
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FIGURE 34: Candidate KCNC2 variants modify Kv3.2 expression levels.  
 
(A) Western blot showing expression of WT Kv3.2, V469L and V471L variants in CHO stable 
cells. The mock well shows only the ATPase antibody tag, while the WT, V469L and V471L 
labeled wells have the corresponding version of Kv3.2 loaded. Kv3.2 has a molecular weight of 
~70 kDa and shows up as one band, below the 75 kD marker, thus confirming the presence of 
the protein in its native state. The V471L band is larger and more intense than WT, while V469L 
is faint. This suggests higher protein levels for V471L and lower levels for V469L compared to 
WT. (B) Protein expression estimated from Western blot band intensity. The protein levels for 
V469L were roughly half that of the WT, and the proteins levels for the V471L were more than 
one and a half times that of WT. These results support a loss-of-function phenotype for V469L 
and a potential gain-of-function phenotype for V471L.  
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effects for the two variants, respectively. However, while the expression levels could cause the 

observed differences in the peak currents for the two variants (Figure 31), differences in protein 

levels alone cannot explain the slowed deactivation dynamics of the V469L channel. Thus, both 

differences in the molecular function and expression levels of these KCNC2 variants contribute 

to their phenotypic effects. 

 

V469L constricts the channel pore in molecular dynamics simulations increasing the energetic 

barrier for K+ ion permeation 

To explore the molecular basis for the functional changes caused by V469L and V471L, Dr. 

Georg Kuenze and I performed molecular dynamics simulations of these ion channel variants 

and of WT Kv3.2 in POPC membranes. Each system was simulated for more than 1µs in total. 

Figure 35A-C displays simulation snapshots of the three ion channel systems and Videos V1-V6 

show representative MD trajectories. I observed that the inner pore helices in V469L moved 

closer together at their hinge motif sites such that the pore became more constricted and fewer 

water molecules were able to enter the inner channel cavity through the cytosolic gate. This 

effect was most likely driven by increased attractive interactions between leucine 469 residues 

on adjacent and opposite S6 helices that led to a ‘de-wetting’ of the channel pore. Calculation of 

the pore radius along the channel axis (z-axis) (Figure 35D) confirmed that the K+ ion 

permeation pathway in the V469L channel is more constricted compared to WT and V471L 

Kv3.2 channels.  
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FIGURE 35: The channel pore of Kv3.2 V469L becomes constricted in MD simulations 
whereas the pore of V471L adopts a stable open conformation.  
 
(A) – (C) Snapshots from MD simulations of Kv3.2 WT, V469L, and V471L. The entire MD 
trajectories are available at https://vanderbilt.box.com/s/al6y4ezhmquw8il3wsvhhesdazeqmbyi. 
For each protein, the channel-membrane system was simulated in four replicas with a total 
simulation time of more than 1μs. The protein is represented as ribbon with each chain shown 
in a different color. One domain in the front is not shown to better see the channel cavity. The 
amino acids at positions 469 and 471 are depicted as spheres and colored cyan and yellow, 
respectively. Water molecules are shown as sticks (red-white). (D) Surface representation of 
the pore radius of Kv3.2 WT (left) and 1D pore radius profiles (right) along the channel axis (z-
axis) for WT, V469L, and V471L. The solid line and shaded area represent the average radius 
and standard deviation from four independent MD replicas. 
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FIGURE 36: Distribution of φ and ψ backbone angles of pore helix residues 461 to 478 
sampled in MD simulation of Kv3.2 WT, V469L, and V471L.  
 
For Kv3.2 V469L variant, small changes are found at ψ 466, ϕ 467, ψ 468 and ϕ 469, and for 
Kv3.2 V471L at ψ 466 (TABLE T5). 
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FIGURE 37: Adjacent pore helices in Kv3.2 form a contact between residues 471 and 480.  
 
A) Cytosolic view of structural models of Kv3.2 WT and V471L. Each subunit is shown with a 
different color. V471 in WT Kv3.2 and L471 in the pV471L variant, respectively, are represented 
as spheres and colored yellow. Residue Y480 is shown in cyan. (B) Close-up view of residues 
V471 (left) or L471 (right) interacting with Y480. 
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FIGURE 38: V469L increases the energy required for K+ ion transfer through the cytosolic 
gate of Kv3.2 compared to WT and V471L.  
 
(A) I estimated the energy required to transfer a K

+
 ion (purple sphere) through the cytosolic 

channel gate, from the bulk solvent into the cavity below the selectivity filter by umbrella MD 
simulation. A close-up view of the gate and aqueous cavity of WT Kv3.2 channel is shown. The 
subunit in the front is not depicted to better see the K

+
 permeation pathway which is lined by 

residues on S6. The side chains of reference amino acids V469, P470, and V471 are drawn as 
cyan, green, and yellow spheres, respectively. (B) 1D PMF of K

+
 transfer through the channel 

for Kv3.2 WT, V469L, and V471L. The solid line and shaded area represent the average PMF 
and standard deviation of four independent MD simulations. The V469L variant induces a 
greater energetic barrier to ion transfer compared to WT and V471L. The increased energetic 
requirement is focused on the conserved P470 residue in the hinge region. This supports the 
relevance of the disruption of this element to function and the functional difference between 
V469L and V471L in spite of their spatial proximity.  
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TABLE T5: Summary of ϕ and ψ backbone angles of pore helix residues 463 to 475 sampled in 
MD simulation of Kv3.2 WT, V469L, and V471L. 

Residue Dihedral 

WT 

median 

V469L 

median 

V71L 

median WT - V469L WT - V471L 

V469L - 

V471L 

463 
φ -68.214  -67.374 -67.786 0.840 0.428 0.412 

ψ -32.987 -35.295 -37.187 2.308 4.2 1.892 

464 
φ -65.619 -64.638 -64.060 0.981 1.559 0.578 

ψ -36.610 -38.107 -37.833 1.497 1.223 0.274 

465 
φ -78.080 -76.485 -76.110 1.595 1.97 0.375 

ψ -32.992 -34.092 -36.759 1.100 3.767 2.667 

466 
φ -69.493 -72.195 -71.071 2.702 1.578 1.124 

ψ -21.215 -27.900 -28.040 6.685 6.825 0.140 

467 
φ -78.686 -72.731 -75.937 5.955 2.749 3.206 

ψ -54.420 -51.163 -53.854 3.257 0.566 2.691 

468 
φ -76.931 -77.422 -80.585 0.491 3.654 3.163 

ψ -32.838 -21.468 -30.719 11.370 2.119 9.251 

469 
φ -62.922 -58.835 -61.602 4.087 1.32 2.767 

ψ -43.718 -43.248 -41.395 0.470 2.323 1.853 

470 
φ -58.551 -60.526 -57.736 1.975 0.815 1.160 

ψ -31.664 -31.793 -28.719 0.129 2.945 2.816 

471 
φ -70.613 -71.664 -68.606 1.051 2.007 0.956 

ψ -40.992 -41.250 -39.090 0.258 1.902 1.644 

472 φ -63.507 -63.709 -68.455 0.202 4.948 4.746 



 82 

ψ -43.176 -45.512 -41.865 2.336 1.311 1.025 

473 
φ -63.365 -64.722 -63.215 1.357 0.15 1.207 

ψ -38.527 -38.229 -38.088 0.298 0.439 0.141 

474 
φ -65.186 -65.446 -63.958 0.260 1.228 0.968 

ψ -36.940 -38.138 -38.796 1.198 1.856 0.658 

475 
φ -70.334 -67.447 -67.946 2.887 2.388 0.499 

ψ -46.164 -45.022 -44.724 1.142 1.44 0.298 

For Kv3.2 V469L variant, small changes are found at ψ and ϕ angles for several residues. The 
alterations for ψ 466 were consistent between both the variants, indicating a strain on the S6 
helix resulting from both variants. However, the difference between V469L and WT for ψ 468 

and ϕ 469 were specific for V469L variant, and not observed for the V471L variant. Conversely, 
the alterations to ψ 471 and ϕ 472 were observed specifically for the V471L variant, indicating 

these changes were specific for the position and resulting amino acid of the variants. 
 

Furthermore, I noticed small but distinct differences of the backbone structure at residue 

469 and preceding residues (Figure 36, Table T5). By contrast, the pore radius of the V471L 

channel was slightly wider than that of WT Kv3.2 indicating that V471L adopted a stable open 

conformation in MD. One possible explanation for this observation is the difference in the types 

of interactions made by residues at positions 469 and 471. While L469 side chains are oriented 

towards each other and towards the pore, L471 residues are oriented outward and interact with 

residues on S5 in the same subunit and with residues on S6 in a neighboring subunit. The largest 

number of atom contacts of L471 are made with Y480 on an adjacent S6 helix (Figure 37). In 

the variant, the number of heteroatom contacts (within 4Å radius) for the L471-Y480 interaction 

more than doubled relative to the V471-Y480 interaction in WT Kv3.2 (average of ~3.2 contacts 

in WT Kv3.2 to ~7.0 contacts in the V471L channel). This finding offers a plausible explanation 
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for how this amino acid change at position 471 leads to stabilization of the open channel 

conformation. 

To assess the energetic cost more directly for K+ ion permeation in WT Kv3.2 and both 

channel variants, I used umbrella MD simulations and calculated the potential of mean force 

(PMF) for moving a K+ ion from the cytosolic site of the channel through the S6 helix gate into 

the water-filled cavity below the selectivity filter (Figure 38A). Compared to WT, the energetic 

barrier for ion transfer of the V469L variant increased by ~0.8 kcal/mol (Figure 38B). The 

V471L variant, however, required an energy for ion transfer similar to WT. The highest peak in 

the PMF and the V469L-specific energy increase occurred at position P470. This indicates that 

V469L, but not V471L, constricts the channel pore at the PVP hinge region, which is in line with 

our pore radius measurements. 

 

Discussion 

Our team has illustrated the power of a “personalized structural biology” pipeline that places 

candidate VUS into 3D structural models tailored to the patient. The integration of cycles of 

computational and experimental analysis enabled us to provide mechanistic molecular insights 

into the different mechanisms by which two proximal candidate KCNC2 VUSs lead to DEE-like 

phenotypes. DEE has been previously linked to dysfunction of other ion channels 213,215. 

Moreover, Kv3 channel family members have been previously associated with neurological 

disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer’s disease 214. 

  The V469L variant occupied the central hydrophobic residue of the PVP motif and the 

flexibility of this hinge region is critical for channel opening and closing kinetics 216. Previous 

studies in other channels supported this hypothesis, as altering the central hydrophobic residues 
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in Kv1.1 channels from valine to isoleucine, a constitutional isomer of leucine, affected channel 

kinetics, stability, and conformational dynamics 205. The V469L variant resulted in > 50% 

decrease in peak current and a very slow deactivation with a slight negative shift (~10mV). 

Interestingly, the V469L variant caused the Kv3.2 channel to be expressed at < 50% of WT. 

Molecular dynamics simulations showed that the V469L variant had a smaller pore radius and a 

higher energetic barrier to ion transfer. The constriction was likely the result of hydrophobic 

interactions between bulkier L469 residues causing part of the channel pore to become devoid of 

water molecules 217,218.  

 The V471 variant is immediately adjacent to the PVP hinge motif and resulted in a > 50% 

increase in the peak current, with moderately slow deactivation, but a drastic negative shift 

(~28mV). There was also an increase in protein expression to > 150% of WT and the pore 

remained fully open in MD and the pore radius for the V471L variant of Kv3.2 channel was 

slightly wider. An increased number of inter-subunit contacts made by V471L suggests a 

possible mechanism how this mutant could selectively stabilize the open channel state. The 

V469L and V471L variants had opposite loss-of-function and gain-of-function effects 

respectively. 

The lower current for V469L versus higher for V471L compared to WT could be 

explained by the differences in protein expression levels. However, alterations in the protein 

level would not cause changes in the kinetics of deactivation. The two variants could affect the 

energy required for the protein to undergo conformational changes between the open and closed 

states. The adjacency of the variants to the PVP motif would lead to changes to the ability of the 

helix to kink at the hinge domain and facilitate channel gating. The V469L variant, which results 

in the central hydrophobic valine of the PVP motif to be substituted by a bulkier leucine 
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extending into the pore, results in a lower tendency for the helix to kink, and therefore, leads to 

slower channel gating and slower deactivation. In contrast, the stabilization of the V471L 

channel in the “open” conformation, which would also affect channel gating, is consistent with 

its moderately slow deactivation. Thus, these results indicate that the variants influence both 

expression and channel function. However, they do not identify the cause of the differences in 

the expression levels of the two variants. It is likely that these result from differences in protein 

folding or stability. Further studies, such as analysis of protein trafficking in cells, are needed to 

identify the causes. For experimental simplicity, we carried out in vitro and in silico analyses 

with all four chains carrying the variant of interest. In the future, it would be valuable to evaluate 

the spectrum of effects for channels carrying different combinations of variant and WT chains; 

though, similar effects can be anticipated.  

The ability of the channel blocker 4-AP to inhibit the V469L Kv3.2 channel aligned with 

the loss-of-function phenotype because 4-AP approaches the channel lumen from the cytoplasm 

208,210,212; therefore the steric hinderance of the pore cavity by V469L should not affect its 

mechanism of action. Furthermore, the decreased ability of 4-AP to block the V471L channel 

supports the gain-of-function hypothesis. Channel closing is destabilized in V471L, so 4-AP may 

not bind as efficiently to the open channel. These results also illustrate how the personalized 

structural biology approach can help evaluate the effects of possible pharmacological 

interventions. For example, 4-AP is not likely to help individuals with the V469L variant, it is 

possible that it could counteract some effects of the V471L variant.  

Taken together, the clinical features of the UDN patient, and the reported and the 

combined experimental and molecular modeling of their de novo KCNC2 variants prove their 

functional role as a cause of DEE. The phenotypes associated with the two variants in KCNC2 
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are the result of two fundamentally different molecular mechanisms, even though the residues 

are only two amino acids away. Analyses of these variants in their structural context was key to 

revealing their mechanistic and functional heterogeneity. In addition to the contribution to 

diagnosis, these results also suggest that drugs that modulate the activity of Kv3.2 could be 

potential treatments. This case study demonstrates the strength of personalized structural biology 

as a diagnostic method to predict precise molecular hypotheses by taking the context of the 

variant if interest in the 3D structure of the protein into account.  
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CHAPTER 5: Conclusion 

Using machine learning to develop a classifier for digenic gene pairs has yielded success. 

Nonetheless, there is still much to learn about the mechanisms underlying digenic and other rare 

diseases. Other machine learning approaches and integrating additional features could further 

improve performance. For example, I have used Gene Ontology functional annotation 

enrichment as a way of categorizing the most confident digenic predictions, but GO ontology 

relationships between the genes would likely help prioritize potential digenic interactions. Since 

protein-protein interactions (PPI) were an indicative feature for DiGePred, protein family and 

domain similarity, derived from the Pfam219 database, could be considered as a relevant feature 

as well. I used a Random Forest model as it suited the ensemble approach based on many 

features on disparate scales and limited training data. Alternatively, a support vector machine 

(SVM) or linear regression approaches could be used with feature normalization. As discussed in 

the next paragraph, I also believe that approaches that incorporate genetic variants into the 

prediction are promising; however, the small amount of available training data pose challenges. 

As more digenic disease pairs are identified, I anticipate that better predictive models will be 

developed and that these models will yield insight into the genes, pathways, evolutionary 

histories, and phenotypes associated with digenic disease. 

The approach used to design DiGePred could be expanded to consider oligogenic 

combinations of greater than two genes. Trigenic and oligogenic cases are beginning to be 

identified 220,222, and previous work has identified exclusive gene hubs that cause disease in 

combination 221,223. In fact, many previously considered monogenic diseases are now being 

classified as oligogenic or multigenic, with a range of phenotypes depending upon which genes 

and how many carry variants 224,225. I also believe that there is the potential to integrate 
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information from large-scale screens of genetic and synthetic lethal interactions in human cell 

lines and model organisms 226–231.  

This approach intentionally separates the prediction of variants’ effects on gene function 

from the identification of gene pairs that could cause disease when their functions are disrupted 

simultaneously. The focus on gene pairs is reflected in this use of gene level and gene-pair level 

systems biology, biological network, and evolutionary features that represent genes as a whole. 

The question of whether a variant affects gene function has been studied extensively. There are 

many methods for interpreting variants of unknown significance,232–238, but there is low 

concordance between them 239,240. The decoupling of these tasks enables users to apply the 

approaches they believe to be most appropriate to identify gene pairs of interest before screening 

for digenic disease potential. 

In the future, it may be beneficial to incorporate variant-level and gene-level information 

into a single algorithm, in particular in cases where there is structural information about the 

proteins of interest. Indeed, our team has had success incorporating 3D modeling of variants and 

their interactions with the UDN. Deriving actionable information for patient diagnosis and 

treatment from clinical sequencing data is a fundamental challenge in genetics and medicine. 

Current methods for analyzing sequencing data often fail due to the inability to predict the 

effects of the detected VUS on protein function. 

The Personalized Structural Biology (PSB) approach to interpreting de novo potassium 

ion channel variants and attempting to uncover disease mechanisms looks to make four main 

contributions. First, I demonstrated via expression and electrophysiology analyses that the two 

candidate KCNC2 variants (p.V469L, p.V471L) have loss-of-function and gain-of-function 

effects, respectively, despite both affecting the essential hinge region of Kv3.2 responsible for 
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channel gating. Second, the protein structural modeling and molecular dynamics simulations 

rationalized the mechanistic basis for the phenotypic heterogeneity of these variants. Third, the 

results combined to validate links between KCNC2 variants and heterogenous DEE phenotypes. 

Finally, the PSB  analyses provide a blueprint for integrating genetics, expression analysis, 

electrophysiology, and protein structural modeling to develop mechanistic understanding of the 

molecular effects of de novo variants in rare disease. 

I have not simulated the entire dynamics involved in channel activation and deactivation. 

This process is too long to be studied by conventional MD methods. Enhanced MD protocols, 

which aim at representing the free energy landscape of the molecular system by a set of low-

dimensional collective variables, have been used to simulate conformational changes for some 

ion channel systems 241. These methods could be helpful for explaining the observed changes in 

activation potential and deactivation time. However, no general protocol for deriving a set of 

collective variables that capture the whole activation and deactivation cycle of Kv channels like 

Kv3.2 is available yet. Going forward, this approach has broad applicability across VUS 

observed in studies from rare disease to cancer.  

MD simulations can elucidate the mechanisms of protein folding and predict the effects 

of variants to protein dynamics and stability. However, these are computationally generated 

results and not experimentally validated. Thus, we collaborated experimentally extensively to 

determine the functional consequences of missense variants in the potassium ion channel. There 

is very little experimental evidence for the functional impact of single nucleotide variants or 

single amino acid missense variants in human proteins104,105. To improve the scope of precision 

and personalized medicine, deep mutational scanning (DMS) analyses have been performed that 

record a sequence library with all possible variants, or combination of variants and the functional 
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impact score, determined by the effect of the variant on the organism fitness.106 These 

experiments have been historically conducted in single cellular systems, but are being expanded 

to more complex organism and tissue systems.106–109 Deep mutational scanning (DMS) analyses 

derive information from saturation mutagenesis and high-throughput experimental functional 

analyses, leading to a framework conveying data for multiple mutations simultaneously.110 DMS 

studies have the potential for rare disease causing variant prioritization and identification.  

Recently DMS datasets are being applied to help design computational variant 

interpretation methods.106,108,111,112 The experimental mutation level data serves as an informative 

independent training set that has been demonstrated to have high predictive power and facilitate 

development of more accurate variant effect prediction tools, which also perform better on 

unseen variants.107,113,114 I am currently using DMS data derived on human proteins to develop a 

tool to predict the functional effect of rare variants using computational exhaustive mutagenesis 

in Rosetta87,115 and FoldX.89  This tool will help integrate experimental variant level data into a 

computational variant interpretation tool. 
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CHAPTER 6: Methods 

Digenic gene pairs 

I obtained known digenic disease gene pairs from the DIgenic Diseases Database (DIDA; using 

the latest version as of April 2021, which was updated in July 2017) 39. There were 140 unique 

gene pairs in DIDA. These pairs served as the “positive” training data for the machine learning 

classifier and were termed the digenic set of gene pairs. DIDA provides information about the 

genes mutated together in cases of digenic disease, the variants in the genes, the number of 

variants on both alleles, as well as information concerning the connectivity of the genes forming 

a gene pair such as distance on PPI network, whether expressed in same tissue, whether members 

of the same biochemical pathway, and whether annotated to have the same function. The 

additional list of digenic pairs discussed in a follow up paper by the group that produced DIDA 

42 were not used for training. 

 

Non-digenic gene pairs 

I generated several sets of putative non-digenic gene pairs that served as the “negative” data in 

training different classifiers. The unaffected non-digenic set was created from genes with 

variants in the sequenced exomes or genomes of relatives of UDN patients deemed unaffected by 

the UDN. Thus, I consider any combination of genes observed to be mutated simultaneously in 

any one “unaffected” individual to be non-digenic. Combining gene pairs from 55 individuals, 

the unaffected set contains 1.8 million gene pairs. I considered validation sets both with and 

without gene-level overlap with the training/validation sets. The random non-digenic set was 

created by selecting random pairs from the list of all human genes. The permuted non-digenic set 

was created by generating all possible pairs of two genes from the DIDA genes excluding actual 
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DIDA pairs; this resulted in 13,390 permuted gene pairs. I created the matched non-digenic gene 

pair set from the random gene pairs by selecting gene pairs such that the distribution of the six 

NFFs match those of the digenic set. The digenic gene pairs were binned by dividing the 

distribution of features into equal sized intervals, such that every feature value data interval had 

an equal number of gene pairs. I selected random gene pairs for the matched set such that the 

distributions of feature values for all the selected pairs recapitulated the overall distribution for 

all features of the digenic set, simultaneously.  

 

Six Network and Functional Features  

 

Pathway similarity 

The pathway annotations for the genes were derived from KEGG 117 and Reactome 118. The 

Jaccard similarity metric 116 was used to calculate the proportion of pathway overlap between the 

two genes. The Jaccard similarity is measured by the ratio between the intersection of two sets 

and the union of two sets. In this case, the pathway similarity was calculated by taking the ratio 

of pathways annotations in common with both genes and pathway annotations associated with 

either. If both genes did not have pathway annotation, the similarity value was 0. 

 

Phenotype similarity 

The phenotype annotations from the Human Phenotype Ontology (HPO) 120 for the genes were 

used as features. The phenotypic overlap between the two genes was calculated similarly, as 

above, using the Jaccard similarity metric. The value for missing phenotype annotations was 0. 
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Co-expression 

The co-expession data was derived from the COXPRESdb web server version 7.3 121. The data is 

in the form of a mutual co-expression rank, which indicated how likely it was for a pair of genes 

to be co-expressed in the same tissue and the same level compared to other gene pairs. A lower 

rank indicated high co-expression. The inverse of the rank was used as the feature and if either 

gene was not found in the co-expression database, the value used was 0. The network data was 

downloaded from the UCSC gene and pathway interaction browser 122, which in turn was 

derived from other sources of data, such as protein-protein interaction (PPI) databases 242–245, 

functional annotation databases 246 and others. 

 

PPI distance 

The PPI network was based on experimental data regarding protein interactions. The inverse of 

the shortest path between a pair of genes on this network was used as the PPI distance feature.  

 

Pathway distance 

The pathways interaction network was based on interactions between the various curated 

biochemical pathways. The inverse of the shortest path between a pair of genes on this network 

was used as the pathway distance feature.  

 

Literature distance 

The literature mined interaction network was made up of interactions derived from reported 

interactions or predicted associations in published biomedical literature. The inverse of the 

shortest path between a pair of genes on this network was used as the literature distance feature. 
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For each network (PPI, Pathway, and Literature), a value of 0 indicates the absence of a path 

between the gene pair in the network and was thus assigned to pairs with missing data.  

 

Five Evolutionary Features  

 

Evolutionary age  

I obtained the evolutionary ages of the proteins coded by the genes using ProteinHistorian 247. 

This estimates the ancestral branch on which the gene first appeared and the age in millions of 

years. The quadratic mean of the values for each gene in a pair was used as a combined feature. 

 

Gene essentiality  

The gene essentiality scores provide a rank of how important and vital a gene is for normal 

physiology, viability and survival. They were derived from the OGEE webserver 248,250. The 

essentiality scores are based on knockout (KO) experiments in model organisms and cell-based 

assays. The quadratic mean of the values for each gene was used as a combined feature. 

 

Loss of function intolerance (pLI) 

I added the loss of function intolerance (pLI) scores 249, obtained from the EXAC consortium. 

These scores were based on the difference between actual mutation incidence and expected 

mutation frequency. A depletion of mutation incidence, compared to expected frequency, could 

mean the inability of the organism to survive if the gene was mutated. The quadratic mean was 

used as a combined feature. 
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Selection pressure (dN/dS) 

I used measures of selection pressure in the form of dN/dS scores for the genes. These were 

derived from the EVOLA web server 252. dN/dS ratios give a measure of the ratio between the 

non-synonymous mutations and synonymous mutations during evolution. This ratio tells us 

whether the gene has been evolving under strong positive, negative or neutral selection. The 

quadratic mean was used as a combined feature. 

 

Haploinsufficiency 

I used the Haploinsufficiency scores 251 which were in the form of predictions of which genes 

were haploinsufficient, based on observed mutations. The quadratic mean was used as a 

combined feature. 

 

Gene-focused network and functional features 

Several additional gene-level attributes in the network and functional data sources described 

above were used as features.  

 

Number of pathways 

The feature used for the classifier was the quadratic mean of the number of pathways associated 

with gene A and the number of pathways associated with gene B.  

Number of phenotypes 

Similar to the pathways, the feature used for the classifier was the quadratic mean of number of 

phenotypes associated with gene A and with gene B, individually. 
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Network neighbors 

The numbers of shared network neighbors, defined as the number of genes directly connected to 

both gene A and B, were also considered. For each gene pair, I computed he quadratic mean of 

the number of genes in the network directly connected to gene A and to gene B. These features 

were defined for all three types of interaction networks. 

 

Number co-expressed 

The number of genes highly co-expressed with both gene A and gene B were identified as the 

top 500 co-expressed genes (out of possible 20,000) for each. The feature used in the classifier 

was the quadratic mean number of genes highly co-expressed with gene A and gene B, 

individually. 

 

Encoding gene level features 

Several of the evolutionary, genomic, and network features are attributes of individual genes 

rather than gene pairs. I combined these gene-level features into a single feature for each gene 

pair by computing their quadratic mean. Results were similar when using the arithmetic mean 

(Figure S5). 

 

Performance Quantification 

Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves were computed to 

evaluate the performance of the classifiers. The ROC curve plots the False Positive Rate (FPR) 

on the x-axis and the True Positive Rate (TPR) on the y-axis. The area under each curve (AUC) 

was used to summarize performance. 
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Training and Testing the DiGePred Random Forest Models 

I trained several random forest (RF) classifiers to distinguish digenic and non-digenic gene pairs. 

I selected RFs because they can integrate diverse features, perform well on unbalanced positive 

and negative sets, and provide interpretable models. The sci-kit learn (sklearn) python module 

was used for all training, evaluation, and prediction 253. Hyper-parameters were selected by 

nested cross validation on 80% of the labeled gene pairs. A stratified shuffle split was used for 

10-fold cross validation. This method involved splitting the data into 10 equal parts, with each 

part of the data containing approximately the same ratio of positives and negatives as the other 

parts. The optimum number of trees was found to be 500 and the maximum depth was found to 

be 15. Based on these analyses, I selected the classifier trained with the unaffected negative pairs 

and all features as the best model, and I refer to this as the DiGePred classifier. 

The remaining 20% of the combined labeled data was held out for final performance 

validation of this best model from the cross-validation. These pairs had not been previously 

evaluated by the classifier. I also considered held-out test sets that had no overlap with the 

training/validation sets at the gene level (“no gene overlap” classifiers).  In addition to the held-

out positive digenic pairs, I generated 100 sets of held-out non-digenic pairs for evaluation. This 

enabled us to evaluate the best classifier 100 fold, with the same positive digenic pairs used in 

every iteration, but a unique non-overlapping set of held-out non-digenic pairs in every iteration.  

 

Evaluation using additional digenic pairs not in DIDA 

The classifier was further evaluated using an external set, made up of gene pairs considered to be 

digenic that were reported after DIDA was compiled. The external evaluation set was used in the 
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previously published variant combination pathogenicity predictor (VarCOPP/ ORVAL) 43,45. 

This set had three unique gene pairs, which did not overlap with DIDA pairs. These gene pairs 

(AHI1, CEP290), (CEP290, CRB1) and (CEP290, RPE65) was labeled Papadimitrou et al., 19 

validation set. I included recently discovered novel digenic inheritance of profound non-

syndromic hearing impairment caused by (PCDH15, USH1G) 126. In addition, three recently 

reported cases of digenic inheritance in immune disorders were used. Ameratunga et al., 17 

identified epistatic interactions between TACI and TCF3 (or TNFRSF13B) resulting in severe 

primary immunodeficiency disorder and systemic lupus erythematosus 127. Hoyos-Bachiloglu et 

al., 17 discussed how human immunodeficiency was caused by mutations in IFNAR1 and 

IFNGR2 128. More recent digenic findings such as (LAMA4, MYH7) linked to infantile dilated 

cardiomyopathy (Abdallah et al., 2019) from Abdallah et al., 19; (KCNE2, KCNH2) linked to 

long QT syndrome types 2 and 6 135 from Heida et al., 2019; (CLCNKB, SLC12A3) linked to 

Gitelman syndrome 133 from Kong et al., 2019; (CACNA1C, SCN5A) linked to Long QT 

phenotype 131 from Nieto-Marín et al., 2019; (FGFR1, KLB) linked to insulin resistance 132 and 

diabetes from Stone et al., 2019; (CLCNKA, CLCNKB) linked to Bartter syndrome with 

sensorineural deafness 129 from Nozu et al., 2008; and (CLCN7, TCIRG1) linked to osteoporosis 

134 from Yang et al., 2018 were used to assess the classifier as well.  

I also included gene pairs not characterized as digenic, but displaying functional synergy 

associated with disease or adverse phenotypes. I derived the gene pair from the previously 

reported UDN study that found mutations in TRPS1 and FBN1 to be responsible for the patient 

phenotype and it was labeled Zastrow et al., 17 (UDN)) 136.  
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Feature Importance 

To identify the most important features I used the classifier feature importance function in scikit-

learn, which uses the GINI impurity approach to quantify the relative feature importance for all 

features. Owing to possible biases in the GINI-based approaches when diverse features are 

considered, 125 I also used a permutation approach to calculate feature importance. This involved 

scrambling the feature values and comparing the error in classification between using the actual 

and permuted values for each individual feature 255. 

 

Prediction Score Thresholds 

I determined a digenic score threshold for the DiGePred classifier for classifying gene pairs 

digenic based on the F0.5 metric. This is a modification of the F1 statistic, designed to attenuate 

the effect of false negatives. It is calculated as Fß = (1 + ß2) x TP / (1 + ß2 x TP + ß2 x FP + 

FP), where ß=0.5, TP=true positives, FP=false positives. The score that yielded the highest F0.5 

value was 0.534. 

 

Estimating the False Positive Rate at various score thresholds 

I evaluated the DiGePred classifier with an external set of non-digenic gene pairs as well. These 

gene pairs were obtained from 38 unaffected relatives of UDN patients. The genes were 

preliminarily selected if the variant in the gene had an ExAC 256,257 minor allele frequency of < 

1%. A gene was further selected if it received a pathogenicity score of ‘D’ (“probably 

damaging”) from Polyphen2 (Kircher et al., 2014) Only genes passing this Polyphen2 filter were 

selected to limit the predictions to pairs of genes with variants that likely affected molecular 

function.  
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Additionally, genes with rare variants were selected based on a consensus pathogenicity 

approach if at least two out of Polyphen2, SIFT 258,259, CADD (Kircher et al., 2014; Rentzsch et 

al., 2019) and PhyloP 261 agreed that the variant(s) in the gene was pathogenic. A Polyphen2 

selection criteria was similar to above. A variant was deemed pathogenic by SIFT if the score 

was <=0.05. a CADD score >= 30 was considered pathogenic, while a PhyloP score of <= –10 

for a variant deemed it pathogenic. All possible gene pairs were used as the consensus 

pathogenic gene pairs for an individual.  

The fraction of gene pairs predicted to be digenic was compared for individuals with 

undiagnosed disease vs. unaffected members of UDN cohorts. The comparison of these fractions 

was done for the most confident DiGePred thresholds (F0.5 and higher), with the MWU P-value 

being calculated for each and every threshold. 

 

Comparison with ORVAL 

I submitted the list of gene pairs for all the unaffected individuals to the ORVAL43,45 server. I 

compared the number of pairs predicted to be digenic by ORVAL, according to its highest 

confidence threshold, to the number predicted by our method to be digenic at the F0.5 threshold. I 

obtained the list of genes for each unaffected individual as mentioned in the previous section. I 

evaluated the statistical significance of the number of digenic pairs predicted as false positives 

per individual between DiGePred and ORVAL using a MWU test.  

Furthermore, 20% of all genes with rare variants in the individual were chosen at random. 

All possible gene pairs were generated to constitute the random set of gene pairs for each 

individual. I calculated the number of digenic pairs predicted per individual at different score 

thresholds. This was done to compare the number of false positives between ORVAL and 
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DiGePred fairly. As ORVAL includes variant effects as a feature, selecting for genes with 

variants that were predicted pathogenic by Polyphen2 or by a consensus of several predictors of 

variant effect could bias against ORVAL, though it reflects common clinical practice. Therefore, 

I also compared DiGePred and ORVAL on pairs of genes selected at random. 

For the purpose of comparing ORVAL predictions on individuals with undiagnosed 

disease and unaffected members of UDN cohorts, I further ranked ORVAL predictions using the 

ORVAL classification score as a prediction threshold. According to the authors, a pairs with a 

classification score of > 0.74 with a support score of 100 were scored in the 99% confidence 

zone. I compared the fraction of gene pairs predicted to be digenic at varying ORVAL 

classification score thresholds, ranging from 0.74 and higher, for diseased vs. unaffected 

individuals. The Mann-Whitney U test P-value was calculated for the distributions at each and 

every threshold. 

 

Gene ontology (GO) enrichment 

The GO enrichment was computed using a web resource WebGestalt (WEB-based GEne SeT 

AnaLysis Toolkit) 262. A list of genes was prepared for each selected set of predicted digenic 

pairs based on highest score, highest average score, or most predicted pairs. This list of genes 

was ranked based on the selection criteria and the GO enrichment for biological process, cellular 

component and molecular function categories was performed using the online tool. 

 

Structural modeling of Kv3.2 

The tetrameric structural model of human Kv3.2 (UniProtKB accession number: Q96PR1-1, 

modeled residues: 1-484) was generated by homology modeling using the molecular modeling 
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software suite Rosetta (version 3.10) 263. The shaker family voltage dependent potassium channel 

(Kv1.2-Kv2.1 paddle chimera channel) resolved to 2.4 Å (PDB ID: 2R9R) was used as a 

template. The percent identity between the aligned positions of the sequences of Kv3.2 and the 

template structure was 42.8%, sufficiently high for the chimera channel structure to serve as a 

reliable template. A starting partial tetrameric model of Kv3.2, which only covered aligned 

residues, was generated by threading the sequence of Kv3.2 onto the template structure using the 

corresponding sequence alignment as a guide. Full models were created using the Rosetta 

comparative modeling (RosettaCM) protocol 115 guided by the RosettaMembrane energy 

function 264 in a C4 symmetry mode 265. The boundaries of membrane-spanning segments were 

calculated using the PPM server 267 based on the starting model. The boundaries were used to 

impose membrane-specific Rosetta energy terms on residues within the theoretical membrane 

bilayer. A total of 1000 full tetrameric models were generated using RosettaCM. The lowest-

energy model was selected as the final model for structure-based analysis in this work. This work 

by conducted in collaboration with Dr. Bian Li. 

 

MD system setup 

The Kv3.2 channel domain (residues L211 – M484) was embedded in a POPC (palmitoyloleoyl-

phosphatidylcholine) bilayer (~240 lipid molecules per leaflet) using the membrane builder tool 

of CHARMM-GUI 266. The system was solvated in TIP3P water containing 0.15 M of 

neutralizing KCl. Three K+ ions were placed in the channel selectivity filter at coordination sites 

S0, S2, and S4 by inferring their positions from the crystal structure of the Kv1.2-2.1 chimeric 

channel (PDB: 2R9R) 199. Another K+ ion was placed below the selectivity filter in the aqueous 

channel cavity (termed SCav site) and used for running umbrella simulations. During 
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conventional MD simulations, the position of the cavity K+ ion was constrained by imposing 

distance restraints to the selectivity filter residue T437. Dr. Georg Kuenze helped me with this 

setup. 

 

Conventional MD simulations 

MD simulations of the Kv3.2 channel in POPC membranes were performed with AMBER16 269 

using the ff14SB force field for proteins 268 and the Lipid17 force field. The system was 

simulated in four replicas with a total simulation time of ~1 µs. Bonds involving hydrogen atoms 

were constrained with SHAKE 270. Nonbonded interactions were evaluated with a 10 Å cutoff, 

and long-range electrostatic interactions were evaluated by the particle-mesh Ewald method 271. 

Each MD system was first minimized using a four-step energy minimization procedure: 

Minimization of only lipids was followed by minimization of only water + ions, and 

minimization of protein before the whole system was minimized. With protein and ions 

restrained to their initial coordinates, the lipid and water were heated to 50 K over 1000 steps 

with a step size of 1 fs in the NVT ensemble using Langevin dynamics with a rapid collision 

frequency of 10,000 ps-1. The system was then heated to 100 K over 50,000 steps with a collision 

frequency of 1000 ps-1 and finally to 310 K over 200,000 steps and a collision frequency of 100 

ps-1. After changing to the NPT ensemble, restraints on protein and ions were gradually removed 

over 500 ps. The system was equilibrated for another 10 ns at 310 K with weak positional 

restraints (with a force constant of 5 kcal mol-1 Å-2) applied to protein Cα atoms. The protein 

restraints were then gradually removed over 20 ns, and production MD was conducted for 260 ns 

using a step size of 2 fs, constant pressure periodic boundary conditions, anisotropic pressure 
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scaling, and Langevin dynamics. I was assisted by Dr. Georg Kuenze to help set up the 

simulations. 

Subsequent to running production MD, molecules were reimaged back into the 

simulation box using CPPTRAJ 272 and the final 200 ns of each MD replica were analyzed. The 

Kv3.2 channel was aligned to the first MD frame and the channel pore radius was measured with 

HOLE 273 by taking conformations of Kv3.2 at every 1 ns. 

 

Umbrella MD simulations 

In order to estimate the free energy of K+ ion permeation through the cytosolic gate of Kv3.2 

WT, V469L, and V471L channels, I calculated the potential of mean force (PMF) of moving a 

K+ ion up the pore axis past the cytosolic constriction site and into the cavity below the 

selectivity filter. The center of mass of the backbone atoms of the selectivity filter residues (T437 

– Y440 of all four subunits) was defined as the origin of the pore axis. Umbrella potentials (with 

a spring constant of 10 kcal mol-1 Å-2) were placed at 0.5 Å intervals in the range from Z = -11 Å 

(below selectivity filter) to Z = -44 Å (in cytosol), making a total of 67 umbrella simulations for 

each 1D PMF. In addition, to ensure that the K+ ion remained in the vicinity of the pore axis 

when it was no longer constrained by the S6 helices (i.e., was in bulk solvent), I used a method 

described in Fowler et al. 274 and applied a flat-bottomed cylindrical constraint with a radius of 8 

Å and a spring constant of 10 kcal mol-1 Å-2. Starting configurations for each umbrella window 

were prepared by taking the last frame from the conventional MD simulation and gradually 

pulling the cavity K+ ion from SCav into cytosolic solvent over 10 ns using a spring constant of 

10 kcal mol-1 Å-2. To ensure that the direction of the pore axis was well-defined and did not 

change during the simulation, the positions of the backbone atoms of the first two helix turns of 
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S6 (W448 – G454) were constrained by a harmonic potential with a force constant of 5 kcal mol-

1 Å-2 during the pulling and umbrella simulations. Each umbrella simulation was run for 10 ns 

and repeated twice for each of the original four MD replicas. The WHAM method 275 as 

implemented in the program by Grossfield 276 was used to remove the umbrella biases and 

calculate 1D PMFs. A final 1D PMF was calculated for Kv3.2 WT, V469L, and V471L, 

respectively, by averaging the individual PMFs for each variant, and the height of the free energy 

barrier relative to the bulk solvent was measured. 

 

Heterologous expression of Kv3.2 ion channel and whole-cell voltage clamp electrophysiology 

Wild-type Kv3.2, V469L, and V471L channel plasmids (1 ng/µl for each plasmid) were 

separately transfected with fluoresced green protein (GFP as marker to identify successful ion 

channel expression) into Chinese Hamster Ovary (CHO) cells using 10 µl Fugene 6 (Promega), 

following manufacturer’s cell transfection instructions. Two days post transfection, cells with 

green color were selected for patch clamp experiments. 

 Whole-cell voltage clamp experiments were performed at room temperature (22-23˚C) 

with 3~5 mΩ patch microelectrodes, by using a MultiClamp 700B amplifier and DigiData 1550B 

low-noise data acquisition system (Molecular Devices Inc., Sunnydale, California). The 

extracellular solution contained (in mmol/L) NaCl 145, KCl 4.0, MgCl2 1.0, CaCl2 1.8, glucose 

10, and HEPES 10; the pH was 7.4, adjusted with NaOH. The pipette (intracellular) solution 

contained (in mmol/L) KCl 110, MgCl2 1.0, ATP-K2 5.0, BAPTA-K4 5.0, and HEPES 10; the 

pH was 7.2, adjusted with KOH. Data acquisition was performed using pClamp 10.7 software 

(Molecular Devices Inc.), sampling at 1 kHz and low-pass-filtered at 5 kHz. Activating current 

was elicited with 1-second depolarizing pulses from a holding potential of −80 mV at a 10-mV 
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increments, and tail current was recorded on return to −40 mV. The voltage-clamp protocol is 

shown in Figure EP. Pulses were delivered every 15 seconds.  The current-voltage (I-V) 

relationships were analyzed by fitting the Boltzmann equation to the data:  

I=Imax / {1 + exp [(Vt − V0.5) / k] }, where Imax is the maximal current, Vt is the test potential, 

V0.5 is the membrane potential at which 50% of the channels are activated, and k is the slope 

factor. Current densities (pA/pF) were obtained after normalization to cell surface area calculated 

by the Membrane Test in pClamp 10.7. A potassium channel blocker 4-aminopyridine (4-AP at 

200 µM; Sigma-Aldrich Co., St. Louis, MO, USA) was used to test the sensitivity of wildtype 

Kv3.2 and two variant (V469L and V471L) channels to drug block by 1-second repetitive 

pulsing protocol from a holding potential of -80 mV to a testing potential of +60 mV (Figure 

S3). This work was performed by Dr. Tao Yang, our collaborator and a part of the Dan Roden 

group. 

 

DNA constructs for WT and variants of KCNC2 

The coding sequences DNA of human Homo sapiens potassium voltage-gated channel subfamily 

C member 2 KCNC2 (NM_139137.4)) was subcloned into pcDNA3.1+ /C-(k)-DYK expression 

vector with an equipped Flag tag (DYKDDDDK) in C-terminal (GenScript, NJ, USA). The 

mutant KCNC2 variants Kv3.2-V469L and Kv3.2-V471L cDNA constructs were generated by 

using a pair of designed overlapping primers for the PCR in the QuikChange Site-Directed 

Mutagenesis Kit (Agilent USA Cat. # 200523) and by PCR Overlap Extension method to 

introduce the mutation site in. Both variants were confirmed by DNA sequencing. 
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Western Blot 

To detect the Kv3.2 protein expression and to perform protein functional analysis, the wild type 

and two mutated cDNA plasmids were transfected to CHO stable cells (ATCC, USA) by X-

tremeGENE 9 DNA Transfection Reagent (Roche). The transfected cells were collected and 

lysed in modified Radio-Immunoprecipitation Assay (RIPA) lysis buffer (50 mM Tris pH = 7.4, 

150mM NaCl, 1% NP-40, 0.2% Sodium Deoxycholate, 1mM EDTA), and 1% protease inhibitor 

cocktail (Sigma-Aldrich Co., USA). Collected protein samples were subjected to gel 

electrophoresis using 4–12% BisTris NuPAGE precast gels (Invitrogen Life Technologies, USA) 

and transferred to PVDF-FL membranes (MilliporeSigma, USA). Primary antibody against Flag 

epitope tag located on FLAG fusion proteins (Sigma-Aldrich, polyclonal ANTI-FLAG, rabbit 

host. F7425) was used to detect the Kv3.2 protein by indirect immunofluorescent staining at a 

1:500 dilution. Anti-Na+/K+ ATPase antibody (Developmental Studies Hybridoma Bank, 

Antibodies at the University of Iowa for use in research, USA) at a 1:1000 dilution was used as 

an internal quality control. IRDye conjugated secondary anti-rabbit antibody (LI-COR 

Biosciences Inc. USA) was used at a 1:10000 dilution. The membranes were scanned using the 

Odyssey Infrared Imaging System, and the integrated density value of bands was determined 

using the Odyssey Image Studio software (LI-COR Biosciences Inc. USA). This work was 

conducted by Dr. Ningning Hu and others with the  Dr. Robert MacDonald group. 
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DATA AND CODE AVAILABILITY 

The data and code used to train and evaluate DiGePred and other models considered are 

available at https://github.com/CapraLab/DiGePred. The trained DiGePred models are also 

available in the repository. In addition, digenic pairs from recent literature are provided as 

Dataset D2. The gene pairs predicted to be digenic above our most confident F0.5 threshold are 

listed in Dataset D3, and the predictions using all models of DiGePred on all human gene pairs 

are in Datasets D4A-D. A website that enables the user to access all DiGePred predictions is 

available at http://www.meilerlab.org/index.php/servers/show?s_id=28.  

 The data files are available at: 

https://vanderbilt.box.com/shared/static/h5s94d9qhd79mre2a0mgj57z4ljgmtwq 

DATASET D1: Held-out digenic gene pairs 

DiGePred predictions on held-out digenic gene pairs from DIDA (n=28). These pairs were not 

used for training and used to test the trained classifier. 

https://vanderbilt.box.com/s/ufsbb48tnkkz5tkckfay23pmrkn3qfqq 

DATASET D2: Novel digenic gene pairs from recent literature 

DiGePred predictions on novel digenic gene pairs from recent literature (n=13). These pairs were 

not included in DIDA. 

https://vanderbilt.box.com/s/3cq5f5ldl4h8h8w8hmnd8rmesj6in1hm 

DATASET D3: Predicted digenic pairs with highest confidence from all possible gene pairs 

Gene pairs predicted to be digenic by DiGePred at most confident threshold. (n=54,318) 

https://vanderbilt.box.com/s/n1nzdyj8i5fa55vultyq4xn6rsp792a7 

DATASET D4A: Digenic predictions on all human gene pairs 

https://vanderbilt.box.com/s/459ethsqv339nqiarhm0j227jdjb0whq 
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DATASET D4B: Digenic predictions on all human gene pairs 

https://vanderbilt.box.com/s/acdqvjuihj3932c6msi5py82rvr5kam3 

DATASET D4C: Digenic predictions on all human gene pairs 

https://vanderbilt.box.com/s/kb3vzubfxjcjtxt8x0y1vytu59x8r8no 

DATASET D4D: Digenic predictions on all human gene pairs 

DiGePred predictions on all possible human gene pairs (n=155.32 mil.) 

The entire MD trajectory videos (V1-V6) for simulations of V469L and V471L KCNC2 are 

available at https://vanderbilt.box.com/s/al6y4ezhmquw8il3wsvhhesdazeqmbyi. 
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