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Chapter 1

Introduction

Two infinite countable discrete groups Γ and Λ are measure equivalent if there is a σ-finite

measure space (Ω,m) with a measurable, measure-preserving action of Γ × Λ, so that both the

actions Γy (Ω,m) and Λy (Ω,m) admit finite-measure fundamental domains Y,X ⊂ Ω:

Ω =
⊔
γ∈Γ

γY =
⊔
λ∈Λ

λX.

This notion was introduced by Gromov in [Gro93, 0.5.E] in analogy with the topological notion

of quasi-isometry for finitely generated groups and is fundamental in modern ergodic theory, espe-

cially to the study of measured group theory and orbit equivalence. The basic example of measure

equivalent groups is when Γ and Λ are lattices in the same locally compact group G. In this case,

Γ and Λ act on the left and right of G respectively, and these actions preserve the Haar measure on

G.

For certain classes of groups, measure equivalence can be quite a coarse equivalence relation.

For instance, the class of countable amenable groups splits into two measure equivalence classes,

those that are finite, and those that are countably infinite [Dye59, Dye63, OW80]. Amenability is

preserved under measure equivalence, as are other (non)-approximation type properties such as the

Haagerup property or property (T). Outside the realm of amenable groups there are a number of

powerful invariants to distinguish measure equivalence classes (for example, Gaboriau’s celebrated

result that states that measure equivalent groups have proportional `2-Betti numbers [Gab00]) and

there are a number of striking rigidity results, such as Furman’s work in [Fur99a, Fur99b] where

he builds on the superrigidity results of Margulis [Mar75] and Zimmer [Zim84], or Kida’s work in

[Kid10, Kid11] where he considers measure equivalence for mapping class groups, or for classes

of amalgamated free product groups.
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If Γy (X,µ) is a free probability measure-preserving action on a standard measure space, then

associated to the action is its orbit equivalence relation, where equivalence classes are defined to

be the orbits of the action. If Λy (Y, ν) is another free probability measure-preserving action,

then the actions are orbit equivalent if there is an isomorphism θ : X → Y of measure spaces that

preserves the orbit equivalence relations, i.e., θ(Γ · x) = Λ · θ(x), for each x ∈ X . If E ⊂ X is a

positive measure subset, then one can also consider the restriction of the orbit equivalence relation

toE. The two actions are stably orbit equivalent if there exist positive measure subsetsE ⊂ X and

F ⊂ Y such that the restricted equivalence relations are measurably isomorphic. A fundamental

result in the study of measure equivalence is that two groups are measure equivalent if and only

if they admit free probability measure-preserving actions that are stably orbit equivalent [Fur99a,

Section 3] [Gab05, PME5]. Moreover, in this case one can take the actions to be ergodic.

Also associated to each probability measure-preserving action Γy (X,µ) is the Murray-von

Neumann crossed product von Neumann algebra L∞(X,µ) o Γ [MVN36]. This is the von Neu-

mann subalgebra ofB(L2(X,µ)⊗ `2Γ) that is generated by a copy ofL∞(X,µ) acting onL2(X,µ)

by pointwise multiplication, together with a copy of the group Γ acting diagonally by σγ ⊗ λγ ,

where σγ is the Koopman representation σγ(f) = f ◦ γ−1 and λγ is the left regular representation.

The crossed product L∞(X,µ) o Γ is a finite von Neumann algebra with a normal faithful trace

given by the vector state corresponding to 1 ⊗ δe ∈ L2(X,µ)⊗ `2Γ, and if the action is free then

this will be a factor if and only if the action is also ergodic, in which case L∞(X,µ) is a Cartan

subalgebra of the crossed product. Non-free actions are also of interest in this setting. In particular,

in the case when (X,µ) is trivial, this gives the group von Neumann algebra LΓ, which is a factor

if and only if Γ is ICC, i.e., every non-trivial conjugacy class in Γ is infinite [MvN43].

A celebrated result of Singer shows that two free ergodic probability measure-preserving ac-

tions Γy (X,µ) and Λy (Y, ν) are stably orbit equivalent if and only if their von Neumann

crossed products are stably isomorphic in a way that preserves the Cartan subalgebras [Sin55].

Specifically, Singer showed that ifE ⊂ X and F ⊂ Y are positive measure subsets and θ : E → F

is a measure space isomorphism, then θ preserves the orbit structure almost everywhere if and only
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if there exists an isomorphism of von Neumann algebras

θ̃ : 1F (L∞(Y, ν) o Λ)1F → 1E(L∞(X,µ) o Γ)1E

such that θ̃(f) = f ◦ θ for all f ∈ L∞(F, ν|F ).

Singer’s result shows that the study of measure equivalence is closely connected to the study

of finite von Neumann algebras, and there have been a number of instances where techniques from

one field have been used to settle long-standing problems in the other. This exchange of ideas has

especially thrived since the development of Popa’s deformation/rigidity theory; see for instance

[Pop06a, Pop06b, Pop06c, Pop07a, Pop08], or the survey papers [Pop07b, Vae06, Vae10, Ioa13,

Ioa18], and the references therein.

Two groups Γ and Λ are W ∗-equivalent if they have isomorphic group von Neumann algebras,

i.e., LΓ ∼= LΛ. This is somewhat analogous to measure equivalence (although a closer analogy

is made between measure equivalence and virtual W ∗-equivalence, which for ICC groups asks for

LΓ and LΛ to be virtually isomorphic in the sense that each factor is stably isomorphic to a finite

index subfactor in the other factor [Pop86, Section 1.4]) and both equivalence relations preserve

many of the same “approximation type” properties. These similarities led Shlyakhtenko to ask

whether measure equivalence implied W ∗-equivalence in the setting of ICC groups. It was shown

in [CI11] that this is not the case, although the converse implication of whether W ∗-equivalence

implies measure equivalence is still open.

As with measure equivalence, we have a single W ∗-equivalence class of ICC countably in-

finite amenable groups [Con76], which shows that W ∗-equivalence is quite coarse. Yet there

do exist countable ICC groups that are not W ∗-equivalent to any other non-isomorphic group

[IPV13, BV14, Ber15, CI18].
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1.1 Measure equivalence and non-commutativity

Returning to discuss measure equivalence, if Γ and Λ have commuting actions on (Ω,m) and if

F ⊂ Ω is a Borel fundamental domain for the action of Γ, then on the level of function spaces, the

characteristic function 1F gives a projection inL∞(Ω,m) such that the collection {1γF}γ∈Γ forms a

partition of unity, i.e.,
∑

γ∈Γ 1γF = 1. This notion generalizes quite nicely to the non-commutative

setting where we will say that a fundamental domain for an action on a von Neumann algebra

ΓyσM is a projection p ∈M such that
∑

γ∈Γ σγ(p) = 1, where the convergence is in the strong

operator topology.

Using this perspective for a fundamental domain we may then generalize the notion of measure

equivalence by simply considering actions on non-commutative spaces.

Definition 1.1. Two groups Γ and Λ are von Neumann equivalent, written Γ ∼vNE Λ, if there

exists a von Neumann algebra M with a semi-finite normal faithful trace Tr and commuting,

trace-preserving, actions of Γ and Λ on M such that the Γ and Λ-actions individually admit a

finite-trace fundamental domain.

The proof of transitivity for measure equivalence is adapted in Proposition 3.9 below to show

that von Neumann equivalence is a transitive relation. It is also clearly reflexive and symmetric, so

that von Neumann equivalence is indeed an equivalence relation.

Von Neumann equivalence is clearly implied by measure equivalence, and, in fact, von Neu-

mann equivalence is also implied by W ∗-equivalence. Indeed, if θ : LΓ → LΛ is a von Neu-

mann algebra isomorphism, then we may take M = B(`2Λ) with the trace-preserving action

σ : Γ× Λ→ Aut(M) given by σ(s,t)(T ) = θ(λs)ρtTρ
∗
t θ(λ

∗
s), where ρ : Λ→ U(`2Λ) is the right

regular representation, which commutes with operators in LΛ. It is then not difficult to see that the

rank one projection p onto the subspace Cδe is a common fundamental domain for the actions of

both Γ and Λ. In fact, we’ll show below that virtual W ∗-equivalence also implies von Neumann

equivalence.

We introduce below a general induction procedure for inducing representations via von Neu-
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mann equivalence from Λ to Γ, and using these induced representations we show that some of the

properties that are preserved for measure equivalence and W ∗-equivalence are also preserved for

von Neumann equivalence.

Theorem 1.2. Amenability, property (T), and the Haagerup property are all von Neumann equiv-

alence invariants.

Theorem 1.3. Weak amenability, weak Haagerup property, and the approximation property (AP)

are von Neumann equivalence invariants.

A group Γ is properly proximal if there does not exist a left-invariant state on the C∗-algebra

(`∞Γ/c0Γ)Γr consisting of elements in `∞Γ/c0Γ that are invariant under the right action of the

group. Properly proximal groups were introduced in [BIP18], where a number of classes of groups

were shown to be properly proximal, including non-elementary hyperbolic groups, convergence

groups, non-amenable bi-exact groups, groups admitting proper 1-cocycles into non-amenable rep-

resentations, and lattices in non-compact semi-simple Lie groups of arbitrary rank. It is also shown

that the class of properly proximal groups is stable under commensurability up to finite kernels,

and it was then asked if this class was also stable under measure equivalence [BIP18, Question

1(b)].

Proper proximality also has a dynamical formulation [BIP18, Theorem 4.3], and using this,

together with our induction technique applied to isometric representations on dual Banach spaces,

we show that the class of properly proximal groups is not only closed under measure equivalence

but also under von Neumann equivalence.

Theorem 1.4. If Γ ∼vNE Λ then Γ is properly proximal if and only if Λ is properly proximal.

An example of Caprace, which appears in Section 5.C of [DTDW20], shows that the class of

inner amenable groups is not closed under measure equivalence. Specifically, if p is a prime and

Fp denotes the finite field with p elements, then the group SL3(Fp[t
−1]) n Fp[t, t

−1]3 is not inner

amenable, although is measure equivalent to the inner amenable group (SL3(Fp[t
−1])nFp[t−1]3)×

Fp[t]
3. Using the previous theorem we then answer another question from [BIP18] by providing
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SL3(Fp[t
−1]) n Fp[t, t

−1]3 as an example of a non-inner amenable group that is also not properly

proximal.

The notion of von Neumann equivalence also admits a generalization in the setting of finite

von Neumann algebras.

Definition 1.5. Two finite von Neumann algebras M and N are von Neumann equivalent, written

M ∼vNE N , if there exists a semi-finite von Neumann algebraM containing commuting copies

of M and Nop such that we have intermediate standard representations M ⊂ B(L2(M)) ⊂ M

and Nop ⊂ B(L2(N)) ⊂ M satisfying the property that finite-rank projections in B(L2(M)) and

B(L2(N)) are finite projections inM.

We show in Chapter 5 that this does indeed give an equivalence relation, which is coarser than

the equivalence relation given by virtual isomorphism. Moreover, if M is a factor then we can

associate an index [M : N ]M, which is given by

[M : N ]M = Tr(p)/Tr(q),

where Tr is a trace onM and p and q are rank 1 projections in B(L2(M)) and B(L2(N)) respec-

tively. The connection to von Neumann equivalence for groups is given by the following theorem:

Theorem 1.6. If Γ and Λ are countable groups, then Γ ∼vNE Λ if and only if LΓ ∼vNE LΛ.

We show in Theorem 5.8 that the set of indices for factorial self von Neumann couplings forms

a subgroup IvNE(M) < R∗+, which we call the index group of M . If M is a factor then we show

that the index group contains the square of the fundamental group of M . The fact that we have the

square of the fundamental group instead of the fundamental group itself agrees with phenomena

predicted by Connes and Shlyakhtenko in [CS05, Theorem 2.4] and leaves open the possibility

that Gaboriau’s theorem implying proportional `2-Betti numbers could still hold in the setting of

von Neumann equivalence. However, we make no attempt to achieve this result here.

We also show that for a countable ICC group Γ there is a connection between the index group

of LΓ and the class Seqrel(Γ) studied by Popa and Vaes in [PV10], which consists of fundamental
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groups for equivalence relations associated to free, ergodic, probability measure-preserving actions

of Γ. Specifically, we show in Corollary 5.12 that IvNE(LΓ) contains the group generated by all

the groups in Seqrel(Γ).

For the reader who may be more familiar with techniques coming from measured group theory,

we end this thesis with an appendix where we give a direct proof in the measure equivalence setting

that proper proximality is a measure equivalence invariant.

Majority of the content of this thesis is based on the joint work with Dr. Peterson, and Dr. Ruth

in [IPR19], and some on the work of the author in [Ish21].
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Chapter 2

Preliminaries

The main techniques we use in this thesis involve von Neumann algebras endowed with semi-

finite normal traces. We briefly discuss some of the facts regarding semi-finite von Neumann

algebras that we will use in the sequel. We refer the reader to [Tak02] for proofs of these facts.

2.1 Von Neumann algebras: Definition and Examples

Let H be a complex Hilbert space with inner product 〈·, ·〉, and let B(H) be the algebra of all

bounded linear operators on H. Equipped with the involution x 7→ x∗ (adjoint of x) and with the

operator norm, B(H) is a Banach ∗-algebra. One can consider the following weaker topologies on

B(H):

• the strong operator topology (SOT): xi → x if and only if ‖xiξ − xξ‖ → 0, for all ξ ∈ H.

• the weak operator topology (WOT): xi → x if and only if 〈xiξ, η〉 → 〈xξ, η〉 for all ξ, η ∈ H.

A von Neumann algebraM on a Hilbert spaceH is a ∗-subalgebra of B(H) which contains identity

and is closed in the strong operator (or, equivalently weak operator) topology. One immediate

example of a von Neumann algebra is M = B(H). WhenH = Cn, one gets the algebra Mn(C) of

n× n-matrices with complex entries, the simplest example of a von Neumann algebra.

Definition 2.1. A von Neumann algebra M is called tracial if it admits a linear functional τ :

M → C, called a trace, which is

1. positive: τ(x∗x) ≥ 0, for all x ∈M .

2. faithful: τ(x∗x) = 0, for some x ∈M , implies that x = 0.
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3. normal: τ(
∑

i∈I pi) =
∑

i∈I τ(pi), for any family {pi}i∈I of mutually orthogonal projec-

tions.

4. tracial: τ(xy) = τ(yx), for all x, y ∈M .

A von Neumann algebra with trivial center 1 is called a factor. An infinite dimensional tracial

factor is called a II1 factor. Any II1 factor M admits a unique trace τ such that τ(1) = 1.

2.1.1 The standard representation

Any tracial von Neumann algebra (M, τ) has a canonical (or standard) representation on a

Hilbert space. This representation is a particular case of the GNS construction. Consider the inner

product 〈x, y〉τ := τ(y∗x), x, y ∈ M on M . Denote by L2(M) the completion of M with respect

to the norm ‖x‖2 = τ(x∗x)1/2, x ∈M . If x 7→ x̂ : M → L2(M) is the canonical embedding, then

π : M → B(L2(M)) given by

π(x)(ŷ) := x̂y, x, y ∈M

defines a ∗-homomorphism since

‖xy‖2
2 = τ(y∗x∗xy) ≤ ‖x∗x‖τ(y∗y) = ‖x‖2‖y‖2

2.

π is called the standard representation of M . Since τ is a trace, the operator J : x̂ 7→ x̂∗, is

an antilinear isometry from M̂ onto itself, where M̂ is the image of M under the embedding

x 7→ x̂ : M → L2(M). J extends to an antilinear surjective isometry of L2(M) still denoted by

J . We say that J is the canonical conjugation operator on L2(M). One of the main features of

the standard representation of M is that it makes M isomorphic to its commutant. More precisely,

one has JMJ = M ′ (e.g., see [AP17, Theorem 7.1.1]).

1only operators commuting with all of M are the scalar multiples of identity, i.e., Z(M) = M ∩M ′ = C, where
M ′ denotes the commutant of M .

9



Definition 2.2. Let M be a von Neumann algebra and B ⊂ M be a von Neumann subalgebra. A

linear contraction E : M → B is called a conditional expectation if it satisfies

1. E(b) = b, for all b ∈ B.

2. E(x) ≥ 0, for every x ∈M with x ≥ 0.

3. E(b1xb2) = b1E(x)b2, for all b1, b2 ∈ B and for all x ∈M .

Proposition 2.3. Let (M, τ) be a tracial von Neumann algebra and let B ⊂M be a von Neumann

subalgebra. Then there exist a unique conditional expectation EB : M → B which is trace

preserving, i.e., τ ◦ EB = τ .

Proof. Let eB : L2(M) → L2(B) be the orthogonal projection, where L2(B) = {b̂ | b ∈ B}
‖·‖2

.

If x ∈M and b ∈ B, then beB(x̂) = eB(b̂x) and hence

‖beB(x̂)‖2 = ‖eB(b̂x)‖2 ≤ ‖b̂x‖2 = ‖bx‖2 ≤ ‖x‖‖b‖2 = ‖x‖‖b̂‖2.

Thus, there exists T ∈ B(L2(B)) such that T (b̂) = beB(x̂). Since T ∈ B′, we get that T ∈ JBJ ,

which gives that eB(x̂) ∈ B̂. We therefore have a linear map EB : M → B given by ÊB(x) =

eB(x̂). One the checks thatEB satisfies all the conditions of Definition 2.2 and that τ ◦EB = τ .

2.1.2 Group von Neumann algebras

Let Γ be a countable discrete group. A unitary representation of Γ on a Hilbert space H is

group homomorphism π : Γ→ U(H), where U(H) denotes the group of unitaries in B(H). Every

countable group Γ has a canonical unitary representation λ : Γ → U(`2Γ), called the left regular

representation, defined by

λg(f)(h) = f(g−1h),
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for all g, h ∈ Γ and f ∈ `2Γ. If δg ∈ `2Γ denotes the Dirac function at g ∈ Γ, then {δg}g∈Γ is an

orthonormal basis for `2Γ, and we have λg(δh) = δgh for all g, h ∈ Γ. Let

A =

{∑
g∈F

agλg | ag ∈ C for all g ∈ F and F ⊂ Γ is a finite subset

}
.

Then, A ⊂ B(`2Γ) is a ∗-subalgebra which is isomorphic to the complex group algebra CΓ. The

group von Neumann algebra of Γ, denoted LΓ, is defined as the weak operator closure of A,

that is, LΓ := AWOT
. It is a tracial von Neumann algebra with a trace τ : LΓ → C given by

τ(x) = 〈xδe, δe〉. Recall that a group Γ is ICC (infinite conjugacy classes) if every non-trivial

conjugacy class {ghg−1 | g ∈ Γ}, h 6= e is infinite. LΓ is a finite factor if and only if Γ is ICC (see

[AP17, Proposition 1.3.9]

Example 2.4. There are plenty of countable ICC groups. The following are some of the simplest

examples.

1. S∞, the group of permutations of N fixing all but finitely many integers.

2. The free product group Γ = Γ1 ∗ Γ2, where Γ1,Γ2 are arbitrary groups with |Γ1| > 1 and

|Γ2| > 2. In particular, the free group Fn, n ≥ 2, on n generators is ICC.

3. SLn(Z) := {A ∈Mn(Z) | det(A) = 1}, n ≥ 3 and n odd.

2.1.3 Group Measure Space Construction

We describe a fundamental construction associated to an action of a countable group Γ on a

probability space (X,µ). The group von Neumann algebra LΓ is a special case of this construction

when X is reduced to a single point.

Definition 2.5. A probability measure preserving (p.m.p.) action Γy (X,µ) of a countable group

Γ on a probability space (X,µ) is a group homomorphism σ : Γ → Aut(X,µ). The action of

g ∈ Γ on x ∈ X will be denoted by gx.
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Let Γy (X,µ) be a p.m.p. action of a countable group Γ on a standard probability space

(X,µ). Define a unitary representation σ : Γ → U(L2(X)) by σg(f)(x) = f(g−1x) for all

f ∈ L2(X). Note that σg(L∞(X)) = L∞(X) for all g ∈ Γ. DenoteH = L2(X)⊗ `2Γ and define

a unitary representation u : Γ → U(H) by ug = σg ⊗ λg, g ∈ Γ, where λ : Γ → U(`2Γ) is the

left regular representation. We also consider the ∗-homomorphism π : L∞(X) → B(H) given by

π(f)(ξ ⊗ δg) = fξ ⊗ δg, and view L∞(X) ⊂ B(H) via π. Then, for every g ∈ Γ and for every

f ∈ L∞(X), it straightforward to check that

ugfu
∗
g = σg(f).

Definition 2.6. The group measure space von Neumann algebra L∞(X) o Γ ⊂ B(H) is defined

as the WOT-closure of the linear span of {fug | f ∈ L∞(X), g ∈ Γ}. L∞(X) o Γ comes with a

faithful, normal tracial state τ : L∞(X) o Γ→ C, given by

τ(x) = 〈x(1⊗ δe), 1⊗ δe〉.

2.2 Semi-finite traces

A trace on a von Neumann algebraM is a function Tr on the positive coneM+ with values

in the extended reals [0,∞] satisfying the following conditions:

(i) Tr(x+ y) = Tr(x) + Tr(y), x, y ∈M+,

(ii) Tr(αx) = αTr(x), α ≥ 0, x ∈M+,

(iii) Tr(x∗x) = Tr(xx∗), x ∈M.

A trace Tr is said to be faithful if Tr(x) > 0 for any non-zero x ∈M+, semi-finite if for every non-

zero x ∈ M+ there exists a non-zero y ∈ M+, y ≤ x with Tr(y) < ∞, finite if Tr(1) < ∞, and

normal if Tr(supi xi) = supi Tr(xi) for every bounded increasing net {xi} inM+. A separable

von Neumann algebraM is semi-finite if and only if it admits a faithful normal semi-finite trace.
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If M is a semi-finite von Neumann algebra with a faithful normal semi-finite trace Tr, we set

nTr = {x ∈ M | Tr(x∗x) < ∞}, and mTr = {
∑n

j=1 x
∗
jyj | xj, yj ∈ nTr, 1 ≤ j ≤ n}. Both nTr

and mTr are ideals inM, and the trace Tr extents to a C-valued linear functional on mTr, which is

called the definition ideal of Tr.

We let L1(M,Tr) denote the completion of mTr under the norm ‖a‖1 = Tr(|a|), and then the

bilinear formM× mTr 3 (x, a) 7→ Tr(xa) extends to the duality betweenM and L1(M,Tr) so

that we may identify L1(M,Tr) withM∗.

We let L2(M,Tr) denote the Hilbert space completion of nTr under the inner product 〈a, b〉2 =

Tr(b∗a). Left multiplication ofM on nTr then induces a normal faithful representation ofM in

B(L2(M,Tr)), which is called the standard representation.

Restricting the conjugation operator fromM to nTr induces an anti-linear isometry J : L2(M,Tr)→

L2(M,Tr), and we have JMJ = M′ ∩ B(L2(M,Tr)). The von Neumann algebra JMJ is

canonically isomorphic to the opposite von Neumann algebra Mop via the map Mop 3 xop 7→

Jx∗J . We also have the induced trace onMop given by Tr(xop) = Tr(x∗).

If M is a semi-finite factor, then it has a unique (up to scalar multiples) normal semi-finite

faithful trace. In general, if Tr1 and Tr2 are normal semi-finite traces, then there is an injective

positive operator a affiliated to the center Z(M) such that Tr2(x) = Tr1(ax) for all x ∈ M+. In

particular, the map nTr2 3 x 7→ a1/2x ∈ nTr1 extends to a unitary operator from L2(M,Tr2) onto

L2(M,Tr1) that intertwines the representations ofM, and also intertwines the representations of

Mop. Thus, up to isomorphism, the representation M ⊂ B(L2(M,Tr)) is independent of the

choice of semi-finite normal faithful trace Tr, and we may use the notationM⊂ B(L2(M)) if we

wish to emphasize this fact.

If H is a Hilbert space and we have an embedding B(H) ⊂M, then setting P = B(H)′ ∩M

we have an isomorphism B(H)⊗P ∼= M that maps T ⊗ x to Tx for T ∈ B(H) and x ∈ P .

Indeed, this is easy to verify in the case whenM is a type I factor, and in general if we represent

M ⊂ B(K), then we have B(H) ⊂ M ⊂ B(K) ∼= B(H)⊗B(K0) for some Hilbert space K0.

Thus,M′ =M′ ∩ B(K0), so thatM =M′′ = B(H)⊗ (M∩B(K0)) = B(H)⊗P . There also
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then exists a unique semi-finite normal faithful trace TrP on P so that TrM = Tr⊗ TrP .

If we have two embeddings θ1, θ2 : B(H) → M, then θ1(B(H)) and θ2(B(H)) are conjugate

by a unitary inM if and only if for some rank one projection p ∈ B(H) we have that θ1(p) and

θ2(p) are Murray-von Neumann equivalent 2.

An element x ∈ M is compact, if for every ε > 0, there exists a projection p ∈ M such that

‖xp‖ < ε and 1 − p is finite. IfM is a semi-finite von Neumann algebra with a faithful normal

semi-finite trace Tr, and p ∈ M is a finite-trace projection, then the map x 7→ Tr(xp) is weak

operator topology continuous.

Lemma 2.7. SupposeM is a semi-finite von Neumann algebra with a faithful normal semi-finite

trace Tr, x ∈ M is compact, and {pi} is a net of finite-trace projections such that pi → 0 in the

weak operator topology. If {Tr(pi)} is uniformly bounded, then, Tr(xpi)→ 0.

Proof. Given ε > 0, there exists a projection q ∈ M such that ‖xq‖ < ε and Tr(1 − q) < ∞.

Since pi → 0 in the weak operator topology, we get that xpi → 0 in the weak operator topology

and hence Tr(pix(1− q))→ 0. Moreover, we have that {Tr(pi)} is uniformly bounded, say by C,

whence it follows that

lim sup
i
|Tr(xpi)| ≤ lim sup

i
(‖xq‖|Tr(pi)|+ |Tr(pix(1− q))|) ≤ εC.

Since ε > 0 was arbitrary, the proof is complete.

2.3 Actions on semi-finite von Neumann algebras

If Γ is a discrete group and ΓyσM is an action that preserves the trace Tr, then Γ preserves

the ‖ · ‖1-norm on mTr and hence the action extends to an action by isometries on L1(M,Tr), and

the dual of the action on L1(M,Tr) agrees with the action onM.

Restricted to nTr the action is also isometric with respect to ‖ · ‖2 and hence gives a unitary

2two projections p and q in a von Neumann algebraM are Murray-von Neumann equivalent if there exits a partial
isometry u ∈M with u∗u = p and uu∗ = q.
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representation in U(L2(M,Tr)), which is called the Koopman representation and denoted by σ0 :

Γ → U(L2(M,Tr)). Note that consideringM ⊂ B(L2(M,Tr)) via the standard representation,

we have that the action σ : Γ → Aut(M,Tr) becomes unitarily implemented via the Koopman

representation, i.e., for x ∈M and γ ∈ Γ we have σγ(x) = σ0
γxσ

0
γ−1 .

The crossed product von Neumann algebraMoΓ is defined to be the von Neumann subalgebra

of B(L2(M,Tr)⊗ `2Γ) generated by M⊗C and {σ0
γ ⊗ λγ | γ ∈ Γ}. We use the notation

uγ = σ0
γ ⊗λγ . Note that by Fell’s absorption principle 3, the representation Γ 3 γ 7→ uγ ∈MoΓ

is conjugate to a multiple of the left regular representation and hence generates a copy of the group

von Neumann algebra LΓ.

If Pe denotes the rank one projection onto Cδe ⊂ `2Γ, then we have a canonical conditional

expectation from B(L2(M,Tr)⊗ `2Γ) onto B(L2(M,Tr)) given by T 7→ (1⊗ Pe)T (1⊗ Pe) and

then identifying B(L2(M,Tr)) with B(L2(M,Tr)) ⊗ CPe. Restricting this to M o Γ gives a

conditional expectation EM : M o Γ → M. The trace onM then extends to a faithful normal

semi-finite trace onMo Γ given by Tr(x) = Tr ◦ EM(x).

If we have a subgroup Γ0 < Γ and a Γ0-invariant von Neumann subalgebra M0 such that

M0 ∩ mTr is weakly dense in M0, then the von Neumann algebra generated by M0 and Γ0 is

canonically isomorphic to the crossed productM0 o Γ0, and so we have a canonical embedding

of crossed productsM0 o Γ0 ⊂Mo Γ.

A specific example of the crossed product construction that we will use below is when we

consider `∞Γ with its trace coming from counting measure, and the action of ΓyL `∞Γ is given

by right multiplication Lγ(f)(x) = f(xγ). In this case, by considering a Fell unitary, we obtain

an isomorphism θ : `∞Γ o Γ → B(`2Γ) such that θ(f) is the multiplication operator by f for

f ∈ `∞Γ, while for γ ∈ Γ we have θ(uγ) = λγ gives the left-regular representation.

3Fell’s absorption principle states that if π is a unitary representation of a group Γ on H, then λ ⊗ π is unitarily
equivalent to λ⊗ 1H. Here, λ is the left-regular representation and 1H is the trivial representation.
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2.4 The basic construction

If (M,Tr) is a von Neumann algebra with a semi-finite normal faithful trace Tr, then con-

jugation on nTr induces an anti-linear isometry J : L2(M,Tr) → L2(M,Tr), and we have

M′ = JMJ . If N ⊂ M is a von Neumann subalgebra then the basic construction is the von

Neumann algebra

〈M,N〉 := (JNJ)′ ⊂ B(L2(M,Tr)).

If N is semi-finite, the so is 〈M,N〉.

2.5 Tensor products of operator spaces

For the basic results we’ll need from the theory of operator spaces and their tensor products,

we refer the reader to [BLM04] or [Pis03]. A (concrete) operator space is a closed subspace

E ⊂ B(H). Given operator spaces E and F , and a linear map u : E → F , we define linear maps

un : Mn(E) → Mn(F ) by setting un((xij)) = (u(xij)). The map u is completely bounded if the

completely bounded norm ‖u‖cb = supn ‖un‖ is finite.

We denote by CB(E,F ) the space of all completely bounded maps from E to F , which is a

Banach space when given the completely bounded norm. We also endow Mn(CB(E,F )) with the

Banach space norms coming from the canonical isomorphism Mn(CB(E,F )) ∼= CB(E,Mn(F )).

Ruan’s abstract matrix norm characterization for operator spaces shows that the norms on Mn(CB(E,F ))

give an operator space structure to CB(E,F ), i.e., CB(E,F ) is completely isometrically isomor-

phic to a concrete operator space. In particular, when F = C we obtain the dual operator space

structure on E∗.

Any Banach space X can be endowed with an operator space structure by embedding X into

the C∗-algebra C((X∗)1) of weak∗-continuous functions on the unit ball of X∗, and where X

is realized via the evaluation map. We denote this operator space structure by min(X). We

may also consider the supremum of all operator space norms on X , and we denote this opera-

tor space structure by max(X). We then have completely isometrically min(X)∗ = max(X∗) and
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max(X)∗ = min(X∗).

For a Hilbert spaceH there are two canonical operator space structures. The first is the Hilbert

column space Hc, which endows H with the operator space structure coming from the canonical

isomorphismH ∼= CB(C,H). The second is the Hilbert row spaceHr, which endowsH with the

operator space structure coming from the canonical isomorphism H ∼= CB(H,C). As operator

spaces we then have natural identifications (Hc)∗ ∼= Hr
and (Hr)∗ ∼= Hc

. Unless otherwise stated,

in the sequel we will endow any Hilbert space with its operator space structure as a Hilbert column

space.

If E ⊂ B(H) and F ⊂ B(K) are operator spaces, the minimal tensor product E ⊗min F is

given by the completion of the algebraic tensor product E ⊗ F ⊂ B(H⊗K). The operator space

structure on E ⊗min F is independent of the concrete representations, and we have a completely

isometric embedding

E ⊗min F ↪→ CB(F ∗, E)

where u =
∑n

k=1 xk ⊗ yk ∈ E ⊗ F is associated to the map ũ : F ∗ → E given by ũ(ψ) =∑n
k=1 ψ(yk)xk, for ψ ∈ F ∗.

If E and F are operator spaces, then perhaps the simplest way to describe the projective tensor

product is to define it as the completion of E ⊗ F when we embed E ⊗ F into the operator space

CB(E,F ∗)∗ via the map that assigns to x ⊗ y the functional CB(E,F ∗) 3 T 7→ T (x)(y). We

denote the operator space projective tensor product ofE and F byE_⊗F . From [BP91, Proposition

5.4] we then have completely isometric isomorphisms

(E _⊗ F )∗ ∼= CB(E,F ∗) ∼= CB(F,E∗). (2.1)

We note that under the identification (E _⊗F )∗ ∼= CB(E,F ∗), the weak∗-topology on bounded

sets is given by pointwise weak∗-convergence of operators.

In this article we will be mainly interested in dual operator spaces. We therefore find it con-

venient to use the notation E and F for operator spaces that are dual to operator spaces E∗ and
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F∗ respectively. Every ultraweakly closed subspace E of B(H) is a dual operator space with a

canonical predual B(H)∗/E⊥, where E⊥ is the preannihilator of E. Conversely, if E is a dual

operator space, then E is weak∗-homeomorphically completely isometric to an ultraweakly closed

subspace of B(H).

IfE ⊂ B(H) and F ⊂ B(K) are ultraweakly closed subspaces, then the normal minimal tensor

product E⊗F is the ultraweak completion of the algebraic tensor product E ⊗ F ⊂ B(H⊗K).

This is independent of the concrete representations, and we have a weak∗-homeomorphic com-

pletely isometric embedding

E⊗F ↪→ (E∗
_⊗ F∗)∗ ∼= CB(E∗, F ) ∼= CB(F∗, E).

We will therefore identify E⊗F as a subspace of CB(E∗, F ). We note that even in the case when

F = M is a von Neumann algebra, this embedding will not be surjective in general. However,

it follows from [Ble91, Theorem 2.5], [Rua92, Proposition 3.3] and [Kra91] that this embedding

will be surjective whenever F = M is a von Neumann algebra with the σ-weak approximation

property.

2.6 Hilbert C∗-modules

We refer the reader to [Lan95] for the basic properties of Hilbert C∗-modules. If A is a C∗-

algebra and I is a set, then we let
⊕

i∈I A denote the space of functions (ai)i∈I such that
∑

i∈I a
∗
i ai

converges in A. This gives a Hilbert A-module where we have an A-valued inner product (linear

in the second variable) given by

〈(ai)i∈I , (bi)i∈I〉A =
∑
i∈I

a∗i bi.

If H is a Hilbert space then on the algebraic tensor product A ⊗ H we have an A-valued inner

product given by 〈a ⊗ ξ, b ⊗ η〉A = 〈η, ξ〉a∗b. This inner product extends continuously to give a

Hilbert A-module structure to A⊗min H [BLM04, Theorem 8.2.17], whereH is endowed with its
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operator space structure as a column Hilbert space. Choosing a basis {ei}i∈I gives an identification

between the Hilbert A-modules A⊗min H and
⊕

i∈I A.

IfM is a von Neumann algebra and I is a set then we let
⊕

i∈IM denote the space of functions

(ai)i∈I such that
∑

i∈I a
∗
i ai is bounded. If (ai)i∈I , (bi)i∈I ∈

⊕
i∈IM then we have ultraweak

convergence of the sum

〈(ai)i∈I , (bi)i∈I〉M =
∑
i∈I

a∗i bi.

IfH is a Hilbert space, then the HilbertM-module structure onM⊗minH has a unique extension

toM⊗H such that the inner product 〈·, ·〉M is separately ultraweakly continuous. In particular,

M⊗H will be self-dual in the sense of Paschke [Pas73], [Sch02, Proposition 2.9]. Choosing a

basis {ei}i∈I gives an identification between the HilbertM-modulesM⊗H and
⊕

i∈IM.

Dual Hilbert M-modules are naturally related to normal representations of M obtained via

an internal tensor product K⊗M L2(M). In the case when M has a finite trace τ , this is quite

explicit, and as we will use this in the sequel, we describe this here. Given a HilbertM-moduleK,

we obtain a scalar-valued inner product 〈·, ·〉τ onK by 〈ξ, η〉τ = τ(〈η, ξ〉M). The completion gives

a Hilbert spaceKτ , and the rightM-module structure onK then extends to a normal representation

ofMop on Kτ .

Each vector ξ ∈ K then gives rise to a bounded rightM-modular map Lξ : L2(M, τ) → Kτ

such that Lξ(x) = ξx for all x ∈ M ⊂ L2(M, τ). To see that Lξ is bounded, just note that for

x ∈M ⊂ L2(M, τ) we have

‖Lξ(x)‖2
τ = τ(〈ξx, ξx〉M) = τ(x∗〈ξ, ξ〉Mx) ≤ ‖ξ‖2‖x‖2

2.

Every bounded right M-modular map arises in this way, and if ξ, η ∈ K, then we can recover

our inner product as 〈ξ, η〉 = L∗ξLη ∈ (JMJ)′ ∩ B(L2(M, τ)) = M. The mapping L : K →

B(L2(M, τ),Kτ ) is then isometric and gives a homeomorphism between the weak∗-topology on

K and the ultraweak topology on B(L2(M, τ),Kτ ).

As a consequence, if X ⊂ K is anM-invariant subset, then X is weak∗-dense in K if and only
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if X is dense in Kτ . Indeed, if X were not dense in Kτ , and if we let P denote the projection onto

X⊥ in Kτ , then P is rightM-modular, and PLξ = 0 for all ξ ∈ X . If we then took any non-zero

right M -modular map L ∈ B(L2(M, τ), PKτ ), then L = Lη for some η ∈ K, and PLη 6= 0,

showing that η is not in the weak∗-closure of X .

Another consequence we shall use is that ifK andH are two dual HilbertM-modules, X ⊂ K

is a weak∗-denseM-invariant subset, and V : X → H is a rightM-modular map that satisfies

〈V ξ, V η〉 = 〈ξ, η〉 (2.2)

for all ξ, η ∈ X , then V has an extension to K that satisfies (2.2) for ξ, η ∈ K and such that V is

continuous with respect to the weak∗-topologies. Indeed, if Vτ denotes the map V when viewed as

a map between Kτ andHτ , then Vτ extends to an isometry, and we may define V by LV ξ = VτLξ.

2.7 Measurable functions into separable Banach spaces

If (X,µ) is a standard measure space andE is separable Banach space, then we let L1(X,µ;E)

denote the space of measurable functions f : X → E such that
∫
‖f(x)‖ dµ(x) < ∞, where

we identify two functions if they agree almost everywhere. We have an isometric isomorphism

L1(X,µ) ⊗̂E → L1(X,µ;E), which takes an elementary tensor f⊗a to the function x 7→ f(x)a;

here ⊗̂ represents the Banach space projective tensor product. If E = (E∗)
∗ is dual to a separable

Banach space then we let L∞w∗(X,µ;E) denote the space of essentially bounded functions that are

Borel with respect to the weak∗-topology restricted to some ball in E that contains almost every

point in the range of f , where we identify two functions if they agree almost everywhere. Note

that since E∗ is separable, the weak∗-topology in E is compact and metrizable when restricted to

any closed ball.

IfK ⊂ E is a weak∗-compact subset, then we denote byL∞w∗(X,µ;K) the subset ofL∞w∗(X,µ;E)

consisting of those functions whose essential range is contained in K. We have an isometric iso-
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morphism L∞w∗(X,µ;E)→ (L1(X,µ;E∗))
∗ [Mon01, Section 2.2] given by the pairing

〈f, g〉 =

∫
〈f(x), g(x)〉 dµ(x).

Thus we have isometric isomorphisms

L∞w∗(X,µ;E) ∼= (L1(X,µ;E∗))
∗ ∼= B(L1(X,µ), E).

Proposition 2.8. If E = (E∗)
∗ is a dual Banach space and K ⊂ E is a weak∗-closed convex

subset, then under the above isomorphism we have

L∞w∗(X,µ;K) ∼= {Ξ ∈ B(L1(X,µ), E) | Ξ(f) ∈ K for all f ∈ L1(X,µ)+, ‖f‖1 = 1}.

Proof. We let Ψ : L∞w∗(X,µ;E) → B(L1(X,µ), E) be the isomorphism from above, so that for

f ∈ L∞w∗(X,µ;E) and g ∈ L1(X,µ) we have Ψ(f)(g) =
∫
g(x)f(x) dµ(x).

If f ∈ L∞w∗(X,µ;K) and g ∈ L1(X,µ)+ with ‖g‖1 = 1, then asK is convex and weak∗-closed

we have Ψ(f)(g) =
∫
g(x)f(x) dµ(x) ∈ K. On the other hand, if f ∈ L∞w∗(X,µ;E) is not in

L∞w∗(X,µ;K), then choose a point m ∈ E \K that is contained in the essential range of f . By the

Hahn-Banach separation theorem, there exists a convex weak∗-open neighborhood G of m such

that G ∩K = ∅. If we set B = f−1(G), then we have that µ(B) > 0, and taking g = 1
µ(B)

1B, we

have Ψ(f)(g) = 1
µ(B)

∫
B
f(x) dµ(x) ∈ G ⊂ E \K.

2.8 Properly proximal groups

Suppose Γ is an infinite discrete group and we have an action by homeomorphisms on a non-

empty Hausdorff topological space X . Recall that a pair of points x, y ∈ X are called proximal

if the orbit Γ · (x, y) has non-trivial intersection with every neighborhood of the diagonal ∆ =

{(x, x) | x ∈ X} ⊂ X2. We say a pair of points x, y ∈ X are properly proximal if for every

neighborhood O of ∆ there is a finite set F ⊂ Γ such that (Γ \ F ) · (x, y) ⊂ O. We say a point
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x ∈ X is properly proximal if any pair of points in the orbit Γ · x are properly proximal, and we

say the action ΓyX is properly proximal if the set of properly proximal points in X is dense.

Lemma 2.9. Let E be a compact convex subset of a locally convex topological vector space X .

Let K ⊂ E be a compact convex subset and U be relatively open in E with K ⊂ U . Then there

exists a convex set V such that K ⊂ V ⊂ U and V is relatively open in E.

Proof. For each point x ∈ K choose an open convex neighborhood Ux of zero such that (x+Ux +

Ux)∩E ⊂ U . The family {x+Ux : x ∈ K} is an open cover of K. Therefore there exists a finite

subset F ⊂ K such that K ⊂
⋃
{x + Ux : x ∈ F}. Put U0 =

⋂
{Ux : x ∈ F}. Then U0 is both

open and convex. The set K + U0 is convex as a sum of convex sets, and it is open as a union of a

family {x + U0 : x ∈ K} of open sets. The set V = (K + U0) ∩ E is relatively open in E, and it

is convex as an intersection of two convex sets. It is clear that K ⊂ V . Now, let x ∈ V ⊂ K + U0

be an arbitrary point. Then there exists a point z ∈ K such that x ∈ z + U0. Also there exists a

point y ∈ F such that z ∈ y + Uy. Then x ∈ y + Uy + U0 ⊂ y + Uy + Uy. Since x ∈ E, we see

that x ∈ U .

Lemma 2.10. Suppose Γ acts on a compact Hausdorff space X . If ΓyX is properly proximal,

then so is the action ΓyProb(X).

Proof. First note that the embedding of X into Prob(X) as Dirac masses is a homeomorphism

from X into Prob(X) with the weak∗-topology. Thus, if x ∈ X is a properly proximal point, then

so is δ{x} ∈ Prob(X).

We now claim that the set of properly proximal points in Prob(X) is closed under taking

convex combinations. Indeed, suppose η1, . . . , ηn ∈ Prob(X) are properly proximal, and η =∑k
i=1 tiηi with

∑k
i=1 ti = 1. Let O∗ be an open neighborhood of ∆∗, the diagonal of Prob(X) ×

Prob(X). In light of Lemma 2.9, we may assume without loss of generality that O∗ is convex.

For each i = 1, . . . , k, there exists a finite subset Fi ⊂ Γ such that (γηi, γgηi) ∈ O∗ for all

g ∈ Γ, γ /∈ Fi. Set F = ∪ki=1Fi. Then, (γηi, γgηi) ∈ O∗ for all g ∈ Γ, γ /∈ F and for all

i = 1, . . . , k. Since O∗ is convex, it follows readily that (γη, γgη) ∈ O∗ for all g ∈ Γ, γ /∈ F .
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The proof is then immediate, as the convex combination of Dirac masses is dense in Prob(X).

A Banach Γ-module consists of a pair (π,E), whereE is a Banach space and π : Γ→ Isom(E)

is an isometric representation of Γ onE. We will often drop the notation π and by abuse of notation

refer to E as a Banach Γ-module. A dual Banach Γ-module consists of a dual Banach space of a

Banach Γ-module, together with the natural dual representation of Γ. Note that for a dual Banach

Γ-module (π,E), the Banach Γ-module to which it is dual is part of the data, and we denote

this predual of E by E∗ so that E = (E∗)
∗. The weak∗-topology on E will always refer to the

weak∗-topology with respect to this duality.

A group Γ is defined in [BIP18] to be properly proximal if there exists an action of Γ on a

compact Hausdorff spaceX such that there is no Γ-invariant measure onX and such that Prob(X)

has a properly proximal point. It will be easier for us here to consider actions on convex subsets of

locally convex topological vector spaces, and so we reformulate proper proximality in this setting.

Proposition 2.11. Let Γ be an infinite discrete group. The following are equivalent:

(i) Γ is properly proximal.

(ii) Γ has a properly proximal action on a compact Hausdorff space that does not have an in-

variant measure.

(iii) There is a dual Banach Γ-moduleE and a non-empty Γ-invariant weak∗-compact convex sub-

set K ⊂ E such that K has a properly proximal point (with respect to the weak∗-topology),

but has no fixed point.

(iv) There is a dual Banach Γ-module E and a non-empty Γ-invariant weak∗-compact convex

subset K ⊂ E such that the action ΓyK is properly proximal (with respect to the weak∗-

topology) but has no fixed point.

(v) Γ has an action by affine homeomorphisms on a non-empty compact convex subset K of a

locally convex topological vector space such that the action ΓyK is properly proximal but
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has no fixed point.

Proof. (i) =⇒ (iii) is trivial by considering the weak∗-compact convex set of probability measures

on a compact Hausdorff space. (i) =⇒ (ii) is also trivial as we can restrict to the closure of an

orbit of a properly proximal point. (ii) =⇒ (iv) follows from Lemma 2.10. (iv) =⇒ (v) is trivial.

Finally, both (iii) =⇒ (i) and (v) =⇒ (i) follow from the simple observations that if k is a

properly proximal point in a compact Hausdorff space K, then δ{k} is a properly proximal point

in Prob(K), and if a compact convex set has an invariant measure, then the barycenter of such a

measure gives a fixed point.

Given a dual Banach Γ-module (π,E), we let Emix denote the set of all points x ∈ E such

that we have weak∗-convergence limγ→∞ π(γ)x = 0. Note that Emix is a norm-closed Γ-invariant

subspace of E, so that (π,Emix) is also a Banach Γ-module.

We also have a characterization of proper proximality in terms of bounded cohomology, which

is of independent interest.

Proposition 2.12. Let Γ be a discrete group. Then Γ is properly proximal if and only if there is

a dual Banach Γ-module E such that the induced map H1
b (Γ, Emix) → H1

b (Γ, E) has non-trivial

range.

Proof. Suppose Γ is properly proximal and let ΓyX be an action on a compact Hausdorff space

such that Prob(X) has a properly proximal point η but X has no invariant measure. We let E =

{ζ ∈ Meas(X) | ζ(X) = 0} ⊂ C(X)∗ and define a bounded cocycle c : Γ→ E by c(γ) = η−γη.

Since η is properly proximal we have that the cocycle c ranges inEmix. If we had c(γ) = ζ−γζ for

some ζ ∈ E then it would follow that η − ζ ∈ C(X)∗ is Γ-invariant, and as X has no Γ-invariant

probability measure we must then have η = ζ ∈ E. However, η 6∈ E since η(X) = 1, and hence c

represents a non-trivial cohomology class in H1
b (Γ, E).

Conversely, suppose E is a dual Banach Γ-module and c : Γ → Emix is a bounded cocycle

that represents a non-trivial cohomology class in H1
b (Γ, E). Consider the associated isometric

affine action on E given by α(γ)x = γx + c(γ). Note that we have weak∗-topology convergence
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limγ→∞ α(γ)α(g) · 0 − α(γ) · 0 = limγ→∞ γc(g) = 0. Thus, 0 is a properly proximal point with

respect to the action α.

If we let K be the weak∗-closure of c(Γ), then K is weak∗-compact by the Banach-Alaoglu

Theorem, and we have that ΓyαK is properly proximal. If we had an invariant measure on K,

then taking the barycenter would give a Γ-fixed point in E, which would contradict the fact that

the cocycle c represents a non-trivial cohomology class in H1
b (Γ, E). Thus Γ is properly proximal

by condition (2) in Proposition 2.11.

2.9 Multipliers on discrete groups and associated multiplier algebras

Let Γ be an infinite countable discrete group. We will denote by c0(Γ), the space of all complex-

valued functions on Γ vanishing at infinity, i.e., f ∈ c0(Γ) if for every ε > 0, there exists a finite set

F ⊂ Γ such that |f(s)| < ε for all s ∈ Γ \ F . The space of all bounded complex-valued functions

on Γ will be denoted by `∞Γ, and c00(Γ) will denote the space of all finitely supported functions

on Γ. For a subset E ⊂ Γ, we denote the characteristic function of E by 1E .

The Fourier-Stieltjes algebra of Γ, denoted by B(Γ), is the set of all coefficient functions of

unitary representations of Γ, that is, for every ϕ ∈ B(Γ) there exists a unitary representation (π,H)

of Γ and vectors ξ, η ∈ H such that ϕ(s) = 〈π(s)ξ, η〉 for every s ∈ Γ. It is a Banach algebra with

respect to the norm

‖ϕ‖B = inf ‖ξ‖‖η‖,

where the infimum is taken over all representations of ϕ as above.

The Fourier algebra of Γ, denoted by A[Γ], is the set of all coefficient functions associated

to the left regular representation of Γ. It is the norm closure of the algebra of finitely supported

functions in the algebra B(Γ).

A Herz-Schur multiplier on Γ is a function ϕ : Γ→ C for which there exists a Hilbert spaceH

and bounded functions ξ, η : Γ→ H such that

ϕ(t−1s) = 〈ξ(s), η(t)〉 s, t ∈ Γ.
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The set B2(Γ) of all Herz-Schur multipliers on Γ is a Banach algebra with respect to the pointwise

product and to the norm

‖ϕ‖B2 = inf ‖ξ‖∞‖η‖∞,

where the infimum is taken over all representations of ϕ as above. It turns out that B2(Γ) is a dual

space, and the predual Q(Γ) of B2(Γ) is obtained by completing `1Γ in the norm

‖ϕ‖Q =

{∣∣∣∣∣∑
s∈Γ

ϕ(s)u(s)

∣∣∣∣∣ | u ∈ B2(Γ), ‖u‖B2 ≤ 1

}

(see, [Her74, DCH85]).

Definition 2.13. Let Γ be a countable discrete group.

1. ([CCJ+01]) We say that Γ has the Haagerup property if there exists a net {ϕi} of normalized

(i.e., ϕi(e) = 1 for every i), positive definite functions on Γ such that ϕi ∈ c0(Γ) for every i,

and ϕi → 1 pointwise.

2. ([CH89]) We say that Γ is weakly amenable if there exists a net {ϕi} of finitely supported

functions on Γ converging pointwise to the constant function 1, and such that supi ‖ϕi‖B2 ≤

C. The Cowling-Haagerup constant Λcb(Γ) is the infimum of all constants C for which such

a net {ϕi} exists.

3. ([Knu16]) We say that Γ has the weak Haagerup property if there there exists a net {ϕi}

in B2(Γ) ∩ c0(Γ) such that supi ‖ϕi‖B2 ≤ C and ϕi → 1 pointwise. The weak Haagerup

constant Λwcb(Γ) is the infimum of all constants C for which such a net {ϕi} exists.

4. ([HK94]) We say that Γ has the approximation property (AP) if there exists a net {ϕi} of

finitely supported functions on Γ such that ϕi → 1 in the σ(B2(Γ), Q(Γ))-topology.

Remark 2.14. It is easy to see that every finitely supported function on Γ can be realized as a

coefficient of the left regular representation and hence c00(Γ) ⊂ A[Γ]. Therefore, by [CH89,
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Proposition 1.1], Γ is weakly amenable if and only if there exists a net {ϕi} in the Fourier algebra

A[Γ] such that ϕi → 1 pointwise and supi ‖ϕi‖B2 <∞.

Remark 2.15. The inclusion map from B(Γ) into B2(Γ) is a contraction (see [DCH85, Corollary

1.8]), and so the σ(B2(Γ), Q(Γ))-closure of any subset E of B(Γ) contains the closure of E in

the B(Γ)-norm. Hence Γ has (AP) if and only if the constant function 1 is in the σ(B2(Γ), Q(Γ))-

closure of A[Γ] in B2(Γ).

Since A[Γ] ⊂ B2(Γ) ∩ c0(Γ), one always has Λwcb(Γ) ≤ Λcb(Γ), and a weakly amenable

group has the weak Haagerup property. Similarly, as normalized, positive definite functions are

Herz-Schur multipliers of norm one, it follows that if Γ has the Haagerup property then it has the

weak Haagerup property and Λwcb(Γ) = 1. It is well known that all weakly amenable groups have

(AP), and there are non-weakly amenable groups with the (AP) as well (see [HK94]).
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Chapter 3

Von Neumann equivalence

In this chapter we define the notion of a fundamental domain for the action of a discrete group

on a von Neumann algebra and that of von Neumann equivalence of groups. We study their basic

properties and prove some fundamental results.

3.1 Fundamental domains for actions on von Neumann algebras

Definition 3.1. Let ΓyσM be an action of a discrete group Γ on a von Neumann algebraM. A

fundamental domain for the action is a projection p ∈ M so that {σγ(p)}γ∈Γ gives a partition of

unity.

Note that if p ∈ M is a fundamental domain, then we obtain an inclusion θp : `∞Γ → M

by θp(f) =
∑

γ∈Γ f(γ)σγ−1(p). Moreover, this embedding is equivariant with respect to the Γ-

actions, where Γy `∞Γ is the canonical right action given by Rγ(f)(x) = f(xγ). Conversely, if

θ : `∞Γ→M is an equivariant embedding, then θ(δe) gives a fundamental domain.

Remark 3.2. If p ∈M is a fundamental domain, one can equivalently work with the Γ-equivariant

normal inclusion θp : `∞Γ → M given by θp(f) =
∑

γ∈Γ f(γ)σγ(p). Here Γy `∞Γ is the

canonical left action given by Lγ(f)(x) = f(γ−1x). This will be used in section 4.3.

Proposition 3.3. Suppose M is a semi-finite von Neumann algebra with a semi-finite normal

faithful trace Tr, and Γyσ (M,Tr) is a trace-preserving action that has a fundamental domain

p. The following are true:

(i) The map τ(x) = Tr(pxp) is independent of the fundamental domain p and defines a faithful

normal semi-finite trace onMΓ. Here,MΓ denotes the space of all Γ-fixed points.
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(ii) There is a unitary operator Fp : `2Γ⊗L2(MΓ, τ)→ L2(M,Tr) that satisfies

Fp(δγ ⊗ x) = σγ−1(p)x,

for x ∈ nτ ⊂MΓ and γ ∈ Γ.

(iii) The operator Fp satisfies

Fp(1⊗ JxJ) = JxJFp, Fp(ργ ⊗ 1) = σ0
γFp, (f ⊗ 1)Fp = Fpθp(f), (3.1)

for x ∈ MΓ, γ ∈ Γ, and f ∈ `∞Γ, where θp : `∞Γ → M is the Γ-equivariant embedding

given by θp(f) =
∑

γ∈Γ f(γ)σγ−1(p).

(iv) F∗p 〈M,MΓ〉Fp = B(`2Γ)⊗MΓ.

(v) We haveM = W ∗(θp(`
∞Γ),MΓ), and, in fact,

span{θp(f)x | f ∈ `∞Γ, x ∈MΓ}

is strong operator topology dense inM.

(vi) If α ∈ Aut(M) is an automorphism that preserves Tr and is Γ-equivariant, then α|MΓ

preserves τ .

Proof. If x ∈ MΓ such that τ(x∗x) = 0, then as Tr is faithful we have xp = 0. We then have

xσγ(p) = σγ(xp) = 0 for all γ ∈ Γ, and since
∑

γ∈Γ σγ(p) = 1 we then have x = 0, so that τ is

faithful.

As Tr is semi-finite, there exists an increasing net of finite-trace projections {qi}i∈I so that

qi → p in the weak operator topology. If we set q̃i =
∑

γ∈Γ σγ(qi), then as p is a fundamental

domain for Γ, it follows that {q̃i}i∈I gives an increasing net of projections inMΓ that converges in

the weak operator topology to
∑

γ∈Γ σγ(p) = 1, and satisfies τ(q̃i) = Tr(qi) < ∞ for each i ∈ I .

Therefore τ is semi-finite.
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If q is another Γ-fundamental domain then we also have

τ(x∗x) = Tr(px∗xp) =
∑
γ∈Γ

Tr(px∗σγ(q)xp)

=
∑
γ∈Γ

Tr(σγ(q)xpx
∗σγ(q)) =

∑
γ∈Γ

Tr(qxσγ−1(p)x∗q) = Tr(qxx∗q).

Thus τ is independent of the fundamental domain and defines a trace, proving (a).

If x ∈ nτ ⊂ MΓ, then px ∈ nTr and we have ‖x‖2
τ = τ(xx∗) = Tr(pxx∗p) = ‖px‖2

Tr, so the

map nτ 3 x 7→ px ∈ pL2(M,Tr) is isometric with respect to the trace norms. If T ∈ nTr, then for

each γ ∈ Γ we set aTγ =
∑

λ∈Γ σλ(pTσγ(p)). Note that since p is a fundamental domain, this sum

converges in the strong operator topology, and we have aTγ ∈MΓ. We then compute

pT =
∑
γ∈Γ

pTσγ(p) =
∑
γ∈Γ

paTγ ,

where the sums converge in pL2(M,Tr). Since T ∈ nTr was arbitrary, this shows that nτ 3 x 7→

px has dense range in pL2(M,Tr), showing that this map extends to a unitary from L2(MΓ, τ)

onto pL2(M,Tr). Since p is a fundamental domain we have a direct sum decompositionL2(M,Tr) =∑
γ∈Γ σγ−1(p)L2(M,Tr), and (ii) then follows easily.

Let γ, g ∈ Γ and x, y ∈ nτ . The following three computations verify (iii):

Fp(1⊗ JxJ)(δg ⊗ y) = Fp(δg ⊗ JxJy) = σg−1(p)JxJy = JxJσg−1(p)y = JxJFp(δg ⊗ y),

Fp(ργ ⊗ 1)(δg ⊗ y) = Fp(δgγ−1 ⊗ y) = σγg−1(p)y = σ0
γ(σg−1(p)y) = σ0

γFp(δg ⊗ y),

Fp(f ⊗ 1)(δg ⊗ y) = Fp(fδg ⊗ y) = Fp(f(g)δg ⊗ y) = f(g)Fp(δg ⊗ y)

= f(g)σg−1(p)y =

(∑
γ∈Γ

f(γ)σγ−1(p)

)
σg−1(p)y = θp(f)σg−1(p)y = θp(f)Fp(δg ⊗ y).
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To verify (iv), let x, y ∈MΓ, T ∈ B(`2Γ), and ξ, η ∈ nTr. Then,

〈JyJFp(T ⊗ x)F∗p ξ, η〉 = 〈(T ⊗ x)F∗p ξ,F∗pJy∗Jη〉

= 〈(T ⊗ x)F∗p ξ, (1⊗ Jy∗J)F∗pη〉

= 〈ξ,Fp(T ∗ ⊗ x∗Jy∗J)F∗pη〉

= 〈ξ,Fp(1⊗ Jy∗J)(T ∗ ⊗ x∗)F∗pη〉

= 〈ξ, Jy∗JFp(T ∗ ⊗ x∗)F∗pη〉

= 〈Fp(T ⊗ x)F∗pJyJξ, η〉,

whence it follows that Fp(T ⊗ x)F∗p ∈ (JMΓJ)′ = 〈M,MΓ〉, and this establishes (iv).

As in part (ii), if T ∈M and γ1, γ2 ∈ Γ, then

σγ1(p)Tσγ2(p) = σγ1(p)

(∑
γ∈Γ

σγ(σγ1(p)Tσγ2(p))

)
∈ span{θp(f)x | x ∈MΓ, f ∈ `∞Γ},

where the sum converges in the strong operator topology. We also have strong operator topology

convergence

T =
∑

γ1,γ2∈Γ

σγ1(p)Tσγ2(p),

and hence (b) follows.

If α ∈ Aut(M) is a Γ-equivariant automorphism that preserves Tr, and if p is a Γ-fundamental

domain, then α(p) is also a Γ-fundamental domain, and hence for x ∈MΓ we have

τ(α(x∗x)) = Tr(pα(x∗x)p) = Tr(α(p)x∗xα(p)) = τ(x∗x),

showing (vi).

Proposition 3.4. Suppose Γy (M,Tr) is a trace-preserving action with fundamental domain p.
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Then there exists a trace-preserving isomorphism ∆p :Mo Γ→ B(`2Γ)⊗MΓ such that

∆p(uγ) = ργ ⊗ 1, ∆p(x) = F∗pxFp

for γ ∈ Γ, x ∈M ⊂Mo Γ. In particular, we haveMo Γ ∼= B(`2Γ)⊗MΓ ∼= 〈M,MΓ〉.

Proof. We let Fp : `2Γ⊗L2(MΓ, τ) → L2(M,Tr) be the unitary from Proposition 3.3. We

define a unitary operator W ∈ U(`2Γ⊗L2(MΓ, τ)⊗ `2Γ) by W (δγ ⊗ ξ⊗ η) = δγ ⊗ ξ⊗ λγη. We

then check that W (F∗p ⊗ 1) gives a unitary intertwiner betweenMo Γ and B(`2Γ)⊗MΓ⊗C =

(F∗p ⊗ 1)(〈M,MΓ〉 ⊗ C)(Fp ⊗ 1), which takes uγ to ργ ⊗ 1 ⊗ 1 for each γ ∈ Γ, and takes x to

F∗pxFp for each x ∈M ⊂Mo Γ.

We note that if x ∈ M, then we also have an explicit form for ∆p(x). Indeed, if we view

B(`2Γ)⊗MΓ as MΓ-valued Γ × Γ matrices, then it’s simple to check that ∆p(x) = [xs,t]s,t,

where

xs,t =
∑
γ∈Γ

σγ(σt−1(p)xσs−1(p)) ∈MΓ.

Proposition 3.5. Suppose Γy (M,Tr) is a trace-preserving action with fundamental domains

p and q. Then, using the notation above, we have F∗qFp ∈ U(LΓ⊗MΓ) and ∆p(p)(F∗qFp) =

(F∗qFp)∆p(q).

Proof. By (3.1) and Proposition 3.4 we have F∗qFp ∈ (ρ(Γ)⊗ C)′ ∩ B(`2Γ)⊗MΓ = LΓ⊗MΓ.

Moreover, by Proposition 3.4 we have

∆p(p)F∗qFp = (δe ⊗ 1)F∗qFp = F∗q qFp = F∗qFp∆p(q).
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3.2 Von Neumann couplings

Definition 3.6. Let Λ and Γ be countable groups. A von Neumann coupling between Λ and Γ

consists of a semi-finite von Neumann algebraM with a faithful normal semi-finite trace Tr and

a trace-preserving action Λ × ΓyM such that there exist finite-trace fundamental domains q

and p for the Λ and Γ-actions, respectively. The index of the von Neumann coupling is the ratio

Tr(p)/Tr(q) and is denoted by [Γ : Λ]M. This is well-defined by Proposition 3.3.

By Definition 1.1, Λ and Γ are von Neumann equivalent if there exists a von Neumann coupling

between them.

Note that the notion of von Neumann equivalence coincides with measure equivalence when

restricting to the case when M is abelian. Also, if we have an isomorphism θ : LΛ → LΓ,

then setting M = B(L2(LΓ)) we have an action of Γ by conjugation by ργ , an action of Λ by

conjugation by θ(uλ), and a common fundamental domain Pe, so that if Γ and Λ areW ∗-equivalent,

then they are also von Neumann equivalent. More generally, we have the following construction:

Example 3.7. Suppose Λ and Γ are countable groups, we have trace-preserving actions Γy (M1, τ)

and Λy (M2, τ), and a trace-preserving isomorphism θ : M2 o Λ→ M1 o Γ such that θ(M1) =

M2. Then θ extends to an isomorphism of basic constructions θ̃ : 〈M2 o Λ,M2〉 → 〈M1 o Γ,M1〉

such that θ̃(eM2) = eM1 .

For γ ∈ Γ we have [uγ(JuγJ), eM1 ] = 0 and hence Γ 3 γ 7→ Ad(JuγJ) describes a trace-

preserving action of Γ on 〈M1 oΓ,M1〉, which pointwise fixes M1 oΓ. In particular, we have that

Λ 3 λ 7→ Ad(θ̃(uλ)) gives an action that commutes with the action of Γ, and we have that eM1 gives

a fundamental domain for both the Γ and Λ-actions. Therefore, 〈M1 o Γ,M1〉 ∼= M1⊗B(`2Γ)

gives an index-one von Neumann coupling.

Remark 3.8. We have a partial converse of the previous example, which is in the spirit of Theorem

3.3 from [Fur99a]. If M is a von Neumann coupling, then by Proposition 3.4 we have isomor-

phisms B(`2Γ)⊗ (MΓ o Λ) ∼= M o (Γ × Λ) ∼= B(`2Λ)⊗ (MΛ o Γ). ThereforeMΓ o Λ is a
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factor if and only ifMΛ o Γ is a factor, and in this case we have thatMΓ o Λ andMΛ o Γ are

stably isomorphic.

Just as in the case of measure equivalence, von Neumann equivalence is an equivalence relation.

Reflexivity follows by considering the trivial von Neumann Γ-coupling `∞Γ. Symmetry is obvious,

and transitivity follows from the following proposition.

Proposition 3.9. Let (N ,TrN ) and (M,TrM) be (Σ,Λ) and (Λ,Γ) von Neumann couplings,

respectively. We consider the natural action of Σ,Λ, and Γ on N ⊗M, where Λ acts diagonally.

ThenN ⊗M has a Λ-fundamental domain, and the induced semi-finite trace on (N ⊗M)Λ gives

a (Σ,Γ) von Neumann coupling with index

[Σ : Γ](N ⊗M)Λ = [Σ : Λ]N [Λ : Γ]M.

Proof. If q is a Λ-fundamental domain forN , then q⊗1 gives a fundamental domain for the action

on N ⊗M. We therefore obtain an induced Σ × Γ-invariant semi-finite normal faithful trace on

(N ⊗M)Λ by Proposition 3.3.

If p ∈M is a fundamental domain for Γ, then we see that
∑

λ∈Λ σλ(q)⊗σΛ(p) ∈ (N ⊗M)Λ is

a fundamental domain for Γ with trace Tr(q)Tr(p) <∞. Similarly, if r ∈ N is a fundamental do-

main for Σ, and if q̃ ∈M is a fundamental domain for Λ, then
∑

λ∈Λ σλ(r)⊗ σλ(q̃) ∈ (N ⊗M)Λ

is a fundamental domain for Σ with trace Tr(r)Tr(q̃) <∞.

Hence, (N ⊗M)Λ is a (Σ,Γ) von Neumann coupling with index

[Σ : Γ](N ⊗M)Λ = Tr(q)Tr(p)/Tr(r)Tr(q̃) = [Σ : Λ]N [Λ : Γ]M.
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Chapter 4

Von Neumann equivalence and group approximation properties

We introduce induction procedures in this chapter. More precisely, we develop procedures

for inducing group actions, unitary representations, and Herz-Schur multipliers via von Neumann

equivalence from Λ to Γ, and using these we prove, respectively, Theorems 1.4, 1.2, and 1.3.

4.1 Inducing actions via semi-finite von Neumann algebras

If Γ is a group, then an operator Γ-module consists of a pair (π,E), where E is an operator

space and π : Γ→ CI(E) a homomorphism from Γ to the group of surjective complete isometries

of E. A dual operator Γ-module consists of a dual operator space E = (E∗)
∗ that is an operator

Γ-module such that the action of Γ is dual to an action on E∗. Note that if X = (X∗)
∗ is a dual

Banach Γ-module, then we can regard X also as an operator Γ-module by endowing X∗ with

the operator space structure min(X∗), so that max(X) = (min(X∗))
∗ becomes a dual operator

Γ-module.

Definition 4.1. Let Γ and Λ be discrete groups and suppose that Γ × Λy (M,Tr) is a trace-

preserving action on a semi-finite von Neumann algebraM. Let E be a dual operator Λ-module.

(i) Letting Γ act trivially on E, we obtain an isometric action ΓyM∗
_⊗ E∗, and hence a dual

action ΓyCB(M∗, E) = (M∗
_⊗ E∗)∗, which we may then restrict to (M⊗E)Λ. We call

(M⊗E)Λ the dual operator Γ-module induced from E.

(ii) If K ⊂ E is a non-empty convex weak∗-closed subset that is Λ-invariant, then, considering

the embeddingM⊗E ⊂ CB(M∗, E), we letM⊗K denote those maps Ξ ∈ CB(M∗, E)

such that Ξ(ϕ) ∈ K for each normal state ϕ. We then have that M⊗K ⊂ M⊗E is

a convex subset that is invariant under the actions of Γ and Λ. Hence we have an action

Γy (M⊗K)Λ, which we refer to as the Γ-action induced from the Λ-action ΛyK.
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As motivation for Definition 4.1, note that if (X,µ) is a standard measure space and M =

L∞(X,µ), then Proposition 2.8 gives an identification between L∞(X,µ)⊗K and L∞w∗(X,µ;K),

so that (L∞(X,µ)⊗K)Λ can be identified as the space of Λ-equivariant measurable functions

from X to K.

Lemma 4.2. Using the notation above, if K is weak∗-compact, thenM⊗K is a weak∗-compact

subset ofM⊗E.

Proof. Since K is weak∗-compact, it is bounded, and hence M⊗K is a norm bounded subset

ofM⊗E. Viewing elements inM⊗K as maps fromM∗ to E, we then have that the weak∗-

topology coincides with the topology of pointwise weak∗-convergence. SinceK is weak∗-closed, it

follows thatM⊗K is also weak∗-closed, hence weak∗-compact by the Banach-Alaoglu Theorem.

Proposition 4.3. Using the notation above, suppose thatMΓ has a normal Λ-invariant finite trace

τ . Then there exists a Γ-fixed point in (M⊗K)Λ if and only if there exists a Λ-fixed point in K.

Proof. If k0 ∈ K is fixed by Λ, then we have that 1⊗ k0 ∈ (M⊗K)Λ is clearly Γ-invariant.

Conversely, suppose Ξ ∈ (M⊗K)Λ ⊂ CB(M∗, K)Λ is Γ-invariant. Under the Banach

space isomorphism CB(M∗, E) ∼= CB(E∗,M), we see that we may make the identification

CB(M∗, K)Γ ∼= CB((MΓ)∗, K), so that we may view Ξ as a completely bounded Λ-equivariant

map from (MΓ)∗ into E taking states into K. Since Λ preserves the trace τ onMΓ, we have that

Ξ(τ) ∈ K is Λ-invariant.

Lemma 4.4. Let E = (E∗)
∗ be a dual operator space, and let M be a von Neumann algebra.

Suppose x, y ∈ M, and {pi}i∈I is a family of pairwise orthogonal projections inM. If {ai}i∈I ⊂

E is any uniformly bounded family in E, then the sum
∑

i∈I xpiy⊗ai converges weak∗ inM⊗E.

Moreover, we have

‖
∑
i∈I

xpiy ⊗ ai‖ ≤ ‖x‖‖y‖(sup
i∈I
‖ai‖).
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Proof. By representing E as an ultraweakly closed subspace of a Hilbert space H, it suffices to

show this when E = B(H). Since {pi}i are pairwise orthogonal, we then have that
∑

i∈I pi ⊗ ai

converges ultraweakly and hence so does

∑
i∈I

xpiy ⊗ ai = (x⊗ 1)

(∑
i∈I

pi ⊗ ai

)
(y ⊗ 1).

Moreover,

‖
∑
i∈I

xpiy ⊗ ai‖ ≤ ‖x⊗ 1‖‖
∑
i∈I

pi ⊗ ai‖‖y ⊗ 1‖ = ‖x‖‖y‖ sup
i∈I
‖ai‖.

Lemma 4.5. Let E be a dual operator Λ-module, suppose K ⊂ E is a non-empty Λ-invariant

convex weak∗-closed subset, and letM be a von Neumann algebra on which Λ acts. If the action

of Λ onM has a fundamental domain p then the map χp : K → (M⊗K)Λ defined by

χkp =
∑
λ∈Λ

σλ(p)⊗ λk

gives a well-defined, weak∗-continuous affine isometric map. In particular, (M⊗K)Λ is non-

empty in this case.

Proof. We first note that the sum defining χkp converges weak∗ by Lemma 4.4. It is also easy to

see by a change of variables that we have χkp ∈ (M⊗E)Λ.

If ϕ is a normal state on M, then we obtain a probability measure µ on Λ given by µ(λ) =

ϕ(σλ(p)). Viewing χkp as a map fromM∗ to E, we see that it takes ϕ to the element
∫
λk dµ(λ) ∈

K, so that χp maps into (M⊗K)Λ.

We clearly have that χp is affine, and by Lemma 4.4 we have ‖χp‖ ≤ ‖k‖. Also, ‖k‖ =

‖p⊗ k‖ ≤ ‖χkp‖ so that χp is isometric. Finally, note that if ki → k weak∗, then for each η ∈ M∗

we have
∑

λ∈Λ |η(σλ(p))| ≤ ‖η‖. It then follows that
∑

λ∈Λ η(σλ(p))λki →
∑

λ∈Λ η(σλ(p))λk

weak∗, and since η ∈M∗ was arbitrary, this shows that χkip → χkp weak∗.
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4.1.1 Properly proximal actions

In this section we show that if Λ has a fundamental domain and the Γ-action onM is mixing,

then points that are properly proximal for a Λ-action can be induced to points that are Γ-properly

proximal. At the heart of the argument is Lemma 4.7, which allows us to compare the induction

maps χp and χq from Lemma 4.5 corresponding to different fundamental domains p and q.

Lemma 4.6. LetM be von Neumann algebra, and fix ϕ ∈M∗. If a sequence xn ∈M converges

in the ultrastrong topology to 0, then limn→∞ ‖xnϕ‖∗ = 0.

Proof. By considering the polar decomposition of ϕ, it is enough to consider the case when ϕ is

a state. Since xn → 0 in the ultrastrong topology, we have x∗nxn → 0 in the ultraweak topology.

Hence by Cauchy-Schwarz we have

‖xnϕ‖∗ = sup
a∈M,‖a‖≤1

|ϕ(axn)| ≤ ϕ(aa∗)1/2ϕ(x∗nxn)1/2 → 0.

Lemma 4.7. Suppose Λy (M,Tr) is a trace-preserving action, E is a dual operator Λ-module,

and a point k ∈ E is properly proximal. Fix A ∈ mTr and suppose {αn}n∈N ⊂ Aut(M,Tr)

is a sequence of trace-preserving automorphisms commuting with the action of Λ and such that

αn(A) → 0 in the weak operator topology. Then for any finite-trace fundamental domains p, q ∈

P(M), we have weak∗-convergence

lim
n→∞

χkp(αn(A))− χkq(αn(A)) = 0,

where χkp, χ
k
q ∈ (M⊗E)Λ are defined as in Lemma 4.5.

Proof. Consider the trace-preserving embedding ∆p : M → B(`2Λ)⊗MΛ as given in Propo-

sition 3.4. This then gives a corresponding restriction map from (B(`2Λ)⊗MΛ)∗ to M∗, and

by composing this with χkp (where we view χkp ∈ CB(M∗, E)), we obtain a map (which we
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still denote by χkp) from (B(`2Λ)⊗MΛ)∗ into E. This map is Λ-equivariant, where Λ acts on

(B(`2Λ)⊗MΛ)∗ by conjugation with ργ ⊗ 1.

Note also that the isomorphism M o Γ ∼= B(`2Λ)⊗MΛ shows that the automorphisms αn

extend to trace-preserving automorphisms of B(`2Λ)⊗MΛ, which we also denote by αn, and

which fix RΓ⊗C. Part (vi) of Proposition 3.3 applied to Λ acting by conjugation onMo Λ then

shows that αn also preserves the finite trace on LΓ⊗MΛ = RΓ′ ∩ (B(`2Γ)⊗MΛ).

Fix A ∈ mTr⊗τ ⊂ B(`2Λ)⊗MΛ and suppose that αn(A) → 0 weakly. Fix t ∈ Λ, u ∈

LΓ⊗MΛ and v ∈MΛ. We have

χkp((λt ⊗ v)uαn(A)− uαn(A)(λt ⊗ v))

=
∑
s∈Λ

(Tr⊗ τ)(((λt ⊗ v)uαn(A)− uαn(A)(λt ⊗ v))(ρsPeρ
∗
s ⊗ 1))sk

=
∑
s∈Λ

(Tr⊗ τ)((λt ⊗ v)uαn(A)(ρsPeρ
∗
s ⊗ 1))(sk − st−1k).

Since we have weak operator topology convergence uαn(A) → 0, and since τ is a finite trace on

MΛ, it follows that for any finite set F ⊂ Λ we have

∑
s∈F

(Tr⊗ τ)((λt ⊗ v)uαn(A)(ρsPeρ
∗
s ⊗ 1))→ 0.

Since k is properly proximal, and since {αn(A)}n is uniformly bounded in trace norm, it follows

that we have weak∗-convergence

χkp((λt ⊗ x)uαn(A)− uαn(A)(λt ⊗ x))→ 0.

Taking linear combinations of vectors of the form λt ⊗ v, it follows that for all z ∈ CΛ⊗algMΛ,

we have weak∗-convergence

χkp(zuαn(A)− uαn(A)z)→ 0. (4.1)
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If {zm}m ⊂ LΛ⊗MΛ is uniformly bounded, then zn converge to 0 in the ultrastrong∗ topology

if and only if zn converge in ‖ · ‖2 with respect to the trace. If this is the case, then as αn are trace-

preserving, we have from Lemma 4.6 that

lim
m→∞

sup
n∈N
‖α−1

n (zmu)A‖Tr⊗τ = lim
m→∞

sup
n∈N
‖Aα−1

n (zmu)‖Tr⊗τ = 0.

Kaplansky’s Density Theorem then shows that we have (4.1) for all z ∈ LΓ⊗MΛ and all u ∈

LΓ⊗MΛ.

By Proposition 3.5 there exists a unitary u ∈ U(LΛ⊗MΛ) so that χkq(A) = χkp(uAu
∗) for all

A ∈M∗. We then have weak∗-convergence

χkp(αn(A))− χkq(αn(A)) = χkp(u
∗(uαn(A))− (uαn(A))u∗)→ 0.

Proposition 4.8. Suppose Γ×Λy (M,Tr) is a trace-preserving action such that the action of Λ

has a finite-trace fundamental domain and the Koopman representation ΓyL2(M,Tr) is mixing.

Suppose E is a dual operator Λ-module and K ⊂ E is a non-empty convex weak∗-compact Λ-

invariant subset. If the action ΛyK has a point that is properly proximal, then so does the

induced action Γy (M⊗K)Λ.

Proof. We fix a point k ∈ K that is properly proximal for the action ΛyK. Given a finite-trace

Λ-fundamental domain p ∈M, we let χp : K → (M⊗K)Λ be defined by χkp =
∑

s∈Λ σs(p)⊗sk

as in Lemma 4.5, and we view χkp as a Λ-equivariant map fromM∗ to E∗.

Fix g ∈ Γ, and suppose {γn}n ⊂ Γ is such that γn → ∞. If A ∈ mTr, then as the action of

Γ is mixing, we have that σγn(A) converges to 0 in the weak operator topology. Therefore, if we

consider the Λ-fundamental domain q = σg(p), then by Lemma 4.7 we have weak∗-convergence

χkp(σγ−1
n

(A))− χkp(σg−1γ−1
n

(A)) = χkp(σγ−1
n

(A))− χkq(σγ−1
n

(A))→ 0.
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As the set of such A is dense inM∗, the result follows.

Theorem 4.9. Suppose Γ×Λy (M,Tr) is a trace-preserving action such thatMΓ has a normal

Λ-invariant finite trace, the action of Λ on M has a finite-trace fundamental domain, and the

Koopman representation ΓyL2(M,Tr) is mixing. If Λ is properly proximal, then so is Γ.

Proof. This follows from Propositions 2.11, 4.3 and 4.8.

Proof of Theorem 1.4. From Proposition 3.3, the existence of a fundamental domain for Γ implies

that the Koopman representation is a multiple of the left-regular representation, and hence is mixing

for any infinite group. The result then follows from Theorem 4.9.

4.2 Inducing unitary representations

Suppose Λy σ(M,Tr) is a trace-preserving action on a semi-finite von Neumann algebra and

π : Λ → U(H) is a unitary representation. In Section 2.6 we gave a dual Hilbert M-module

structure toM⊗H that satisfies

〈a⊗ ξ, b⊗ η〉M = 〈η, ξ〉a∗b

for all a, b ∈M and ξ, η ∈ H. Thus for s ∈ Λ and x, y ∈M⊗H, we have

〈(σs ⊗ π(s))x, (σs ⊗ π(s))y〉M = σs(〈x, y〉M). (4.2)

The space of fixed points (M⊗H)Λ then becomes a dual HilbertMΛ-module.

Left multiplication ofM on itself gives a normal representation ofM onM⊗H. Thus the

space of fixed points (M⊗H)Λ is endowed with a normalMΛ-representation.

If τ is a faithful normal trace onMΛ, we obtain a positive definite scalar-valued inner product

on (M⊗H)Λ by 〈y, x〉 = τ(〈x, y〉M). We denote the corresponding Hilbert space completion as

(M⊗H)Λ
τ , which we then see is anMΛ-correspondence in the sense of Connes [Con95, Chapter

5, Appendix B].
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If we are also given a trace-preserving action Γyσ (M,Tr) that commutes with the Λ-action,

then we see that (4.2) also holds for the Γ-action. Hence if Γ preserves the trace τ on MΛ, we

obtain a unitary representation Γy (M⊗H)Λ
τ .

Definition 4.10. Suppose π : Λ → U(H) is a unitary representation and Γ × Λy (M,Tr) is a

trace-preserving action on a semi-finite von Neumann algebra such that the action of Λ admits a

finite-trace fundamental domain. We let τ denote the Γ-invariant trace on MΛ given by Propo-

sition 3.3. We say that the representation Γy (M⊗H)Λ
τ is induced from π, and we denote this

representation by πM.

As anMΛ-correspondence, we say that (M⊗H)Λ
τ is the correspondence induced from π.

Proposition 4.11. Suppose π : Λ → U(H) is a unitary representation and Λy σ(M,Tr) is a

trace-preserving action on a semi-finite von Neumann algebra that has a finite-trace fundamental

domain p. There exists an isomorphism of dual HilbertMΛ-modules Vp :MΛ⊗H → (M⊗H)Λ

such that

Vp(x⊗ ξ) =
∑
t∈Λ

σt(p)x⊗ π(t)ξ

for all x ∈MΛ and ξ ∈ H.

Proof. Note first that by Lemma 4.4, when restricted to the algebraic tensor product, the map

Vp :MΛ ⊗H → (M⊗H)Λ is well-defined. Moreover, for x, y ∈M and ξ, η ∈ H we have

〈Vp(x⊗ ξ), Vp(y ⊗ η)〉M =
∑
s,t∈Λ

〈π(s)η, π(t)ξ〉x∗σt(p)σs(p)y

= 〈η, ξ〉x∗y

= 〈x⊗ ξ, y ⊗ η〉MΛ .

As described in Section 2.6, it follows that Vp has a weak∗-continuous extension Vp :MΛ⊗H →

(M⊗H)Λ that preserves the inner product; and to see that V is surjective, it suffices to show that

the range of Vp is dense when viewed as a map into (M⊗H)Λ
τ , where τ is the trace given by

Proposition 3.3, i.e., τ(x) = Tr(pxp) for x ∈MΛ.
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Suppose therefore that we have ζ0 ∈ (M⊗H)Λ
τ , orthogonal to the range of V . Note that since

〈ξ, η〉τ = τ(〈ξ, η〉) = Tr(p〈ξ, η〉p) = Tr(〈ξp, ηp〉)

for all ξ, η ∈ (M⊗H)Λ, we may view ζ0 as an element in (Mp⊗H)Tr, which is the completion

ofMp⊗H with respect to the inner product given by 〈ξ, η〉Tr = Tr(〈ξ, η〉) for all ξ, η ∈Mp⊗H.

Fixing s ∈ Λ, x ∈MΛ, ζ ∈ (M⊗H)Λ and ξ ∈ H we have

〈σs(p)xp⊗ ξ, ζp〉Tr = Tr(〈σs(p)x⊗ ξ, ζp〉)

=
∑
t∈Λ

Tr(pσt(〈σs(p)x⊗ ξ, ζp〉))

= τ(〈
∑
t∈Λ

σt(p)x⊗ π(ts−1)ξ, ζ〉)

= 〈Vp(x⊗ π(s−1)ξ), ζ〉τ .

Approximating ζ0 by elements in (M⊗H)Λ and viewing ζ0 as an element in (Mp⊗H)Tr, it

follows that

〈σs(p)xp⊗ ξ, ζ0〉Tr = 0.

By part (b) of Proposition 3.3 we have that span{σs(p)x ⊗ ξ | s ∈ Λ, x ∈ MΛ, ξ ∈ H} is

weak∗-dense inM⊗H, and hence it follows that ζ0 = 0.

A motivating example is whenM = B(`2Λ) and the action σ : Λ → Aut(B(`2Λ)) is given

by σt(T ) = ρtTρ
∗
t , where ρ : Λ → U(`2Λ) is the right-regular representation. ThenMΛ = LΛ

and the above process describes a method of inducing representations of Λ to normal Hilbert LΛ-

bimodules.

There is another, extensively used, method of inducing representations to normal Hilbert bi-

modules, which was originally discovered by Connes (see [Con82, Cho83, CJ85, Pop86]). Given

a unitary representation π : Λ→ U(H), set K = `2Λ⊗H, and consider the representations λ⊗ π,

and 1 ⊗ ρ of Λ in U(K). The Fell unitary U : K → K given by U(δt ⊗ ξ) = δt ⊗ π(t)ξ satisfies
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U(λ ⊗ π)U∗ = λ ⊗ 1, and thus both representations λ ⊗ π and ρ ⊗ 1 extend to give commuting

normal representations of LΛ and LΛop in B(K).

The following proposition shows that, for this example, the induced bimodule described in

Definition 4.10 is isomorphic to Connes’ induced bimodule.

Proposition 4.12. Let Λ be a discrete group, and π : Λ → U(H) a unitary representation.

Then there exists a unitary V : `2Λ⊗H → (B(`2Λ)⊗H)Λ
τ that induces an isomorphism of LΛ-

bimodules.

Proof. For r ∈ Λ we let pr be the rank-one projection onto Cδr ⊂ `2Λ. We let Vpe : LΛ⊗H →

(B(`2Λ)⊗H)Λ be as in Proposition 4.11. If s, t ∈ Λ and ξ ∈ H, then

(λs ⊗ 1)Vpe(δt ⊗ ξ) = (λs ⊗ 1)
∑
r∈Λ

prλt ⊗ π(r−1)ξ

=
∑
r∈Λ

psrλst ⊗ π(r−1)ξ

= Vpe(λs ⊗ π(s))(δt ⊗ ξ).

Viewing LΓ as a dense subspace of `2Γ and taking completions shows that Vpe extends to a

unitary Vpe : `2Γ⊗H → (B(`2Λ)⊗H)Λ
τ that intertwines the LΓ-module structures defined above.

As Vpe is also right LΓ-modular, the result follows easily.

Lemma 4.13. Suppose π : Λ → U(H) and ρ : Λ → U(K) are unitary representations and

Λy σ(M,Tr) is a trace-preserving action on a semi-finite von Neumann algebra. For finite-

trace fundamental domains p, q ∈ M, let Vp and Vq respectively be the maps defined in Proposi-

tion 4.11. Suppose G is a finite set and we have functions ξ : G → K and ξi : G → H such that

supi,k∈G ‖ξki ‖ <∞, and for all t ∈ Λ and k, ` ∈ G we have

〈π(t)ξki , ξ
`
i 〉 → 〈ρ(t)ξk, ξ`〉.
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Then for all x, y ∈MΛ and for all k, ` ∈ G, we have

〈Vp(x⊗ ξki ), Vq(y ⊗ ξ`i )〉τ → 〈Vp(x⊗ ξk), Vq(y ⊗ ξ`)〉τ .

Proof. We compute

〈Vp(x⊗ ξki ), Vq(y ⊗ ξ`i )〉 =
∑
s,t∈Λ

〈σs(p)x⊗ π(s)ξki , σt(q)y ⊗ π(t)ξ`i 〉

=
∑
s,t∈Λ

x∗σs(p)σt(q)y〈π(t)ξ`i , π(s)ξki 〉

=
∑
s∈Λ

x∗

(∑
t∈Λ

σt(σs(p)q)

)
y〈ξ`i , π(s)ξki 〉. (4.3)

We have ∑
s∈Λ

τ

(∑
t∈Λ

σt(σs(p)q)

)
=
∑
s∈Λ

Tr(pσs−1(q)) = Tr(p) <∞,

and hence given ε > 0 there exists a finite set F ⊂ Λ such that setting

yF =
∑
s 6∈F

∑
t∈Λ

σt(σs(p)q),

for all k, ` ∈ G we have

|τ(x∗yFy)| ≤ τ(x∗yFx)1/2τ((y)∗yFy)1/2 ≤ ‖x‖‖y‖τ(yF ) < ε.

Thus,

lim sup
i→∞

|〈Vp(x⊗ ξki ), Vq(y ⊗ ξ`i )〉τ − 〈Vp(x⊗ ξk), Vq(y ⊗ ξ`)〉τ |

≤ ε sup
i
‖ξki ‖1/2‖ξ`i‖1/2 + lim sup

i→∞

∑
s∈F

τ

(
x∗

(∑
t∈Λ

σt(σs(p)q)

)
y

)

· |〈ξ`i , π(s)ξki 〉 − 〈ξ`, ρ(s)ξk〉|
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= ε sup
i
‖ξki ‖1/2‖ξ`i‖1/2.

As ε > 0 was arbitrary, the result follows.

Lemma 4.14. Suppose π : Λ → U(H) is a mixing representation and Λy σ(M,Tr) is a trace-

preserving action on a semi-finite von Neumann algebra. Suppose we have finite-trace Λ-fundamental

domains pi ∈ M such that pi → 0 in the weak operator topology. Then for any Λ-fundamental

domain p and ξ, η ∈ H, we have

lim
i→∞

sup
x,y∈(MΛ)1

|〈Vp(x⊗ ξ), Vpi(y ⊗ η)〉τ | = 0.

Proof. Fix p ∈ M a finite-trace fundamental domain and ξ, η ∈ H. Then for x, y ∈ MΛ we may

compute as in (4.3)

〈Vp(x⊗ ξ), Vpi(y ⊗ η)〉τ =
∑
s∈Λ

x∗

(∑
t∈Λ

σt(σs(p)pi)

)
y〈η, π(s)ξ〉.

Fix ε > 0. Since π is a mixing representation, there exists F ⊂ Λ finite so that |〈η, π(s)ξ〉| < ε

for all s 6∈ F . As pi → 0 weakly, we have

lim
i→∞

∑
s∈F

∣∣∣∣∣τ
(∑
t∈Λ

σt(σs(p)pi)

)∣∣∣∣∣ = 0.

Hence

lim sup
i→∞

sup
x,y∈(MΛ)1

|〈Vp(x⊗ ξ), Vpi(y ⊗ η)〉τ |

≤ lim sup
i→∞

sup
x,y∈(MΛ)1

∑
s 6∈F

∣∣∣∣∣τ
(
x∗

(∑
t∈Λ

σt(σs(p)pi)

)
y

)
〈η, π(s)ξ〉

∣∣∣∣∣ < ε.

Since ε > 0 was arbitrary, and since vectors of the form x ⊗ ξ span a weak∗-dense subset of

MΛ⊗H, the result follows.
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The following proposition generalizes results in Section 8 from [Fur99b]. In the case when

M is associated to a W ∗-equivalence as in Proposition 4.12, this follows from results in [Cho83,

CJ85].

Proposition 4.15. Suppose π : Λ→ U(H) and ρ : Λ→ U(K) are two unitary representations of

Λ, and Γ× Λy (M,Tr) is a von Neumann coupling. The following hold:

(i) If π ≺ ρ, then πM ≺ ρM.

(ii) If π is mixing, then πM is mixing.

(iii) λM is a multiple of the left-regular representation of Γ.

(iv) If π is weak mixing, then πM has no non-zero invariant vectors.

Proof. Suppose first that π ≺ ρ. Replacing ρ with ρ⊕∞, we may assume that ρ has infinite mul-

tiplicity. Fix G a finite set, and suppose ξ : G → K is a map. Since π ≺ ρ, there exists a net

ξi : G → H such that for all t ∈ Λ, we have 〈π(t)ξki , ξ
`
i 〉 → 〈ρ(t)ξk, ξ`〉. By Lemma 4.13, for all

x, y ∈MΛ and γ ∈ Γ, we then have

〈(σγ ⊗ 1)Vp(x⊗ ξki ), Vp(y ⊗ ξ`i )〉τ = 〈Vσγ(p)(σγ(x)⊗ ξki ), Vp(y ⊗ ξ`i )〉τ

→ 〈Vσγ(p)(σγ(x)⊗ ξk), Vp(y ⊗ ξ`)〉τ

= 〈(σγ ⊗ 1)Vp(x⊗ ξk), Vp(y ⊗ ξ`)〉τ .

As elements of the form x⊗ ξ span a dense subset of (MΛ⊗H)τ this then shows (i).

If π is mixing and γ → ∞, then for a fixed Λ-fundamental domain p ∈ M, we have that

σγ(p)→ 0 weakly. Hence Lemma 4.14 shows that for all ξ, η ∈ H and x, y ∈MΛ, we have

lim
γ→∞
〈(σγ ⊗ 1)Vp(x⊗ ξ), Vp(y ⊗ η)〉τ = lim

γ→∞
〈Vσγ(p)σγ(x)⊗ ξ, Vp(y ⊗ η〉τ = 0.

Thus πM is also mixing, which then shows (ii).
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We define the map F : (M⊗ `2Λ)Λ →M by F(ξ) = 〈1⊗ δe, ξ〉M. For x ∈ MΛ and t ∈ Λ,

we then have F(Vp(x ⊗ δt)) = 〈1 ⊗ δe, Vp(x ⊗ δt)〉 = σt−1(p)x. Hence if we also have y ∈ MΛ

and s ∈ Λ, then

〈F(Vp(x⊗ δt)),F(Vp(y ⊗ δs))〉Tr = δs,tTr(x∗σt−1(p)y)

= δs,tτ(σt(yx
∗))

= δs,tτ(x∗y)

= 〈x⊗ δt, y ⊗ δs〉τ

= 〈Vp(x⊗ δt), Vp(y ⊗ δs)〉τ .

Thus, F extends to an isometry F : (M⊗ `2Λ)Λ
τ → L2(M,Tr). Moreover, by part (b) of Propo-

sition 3.3 we see that span{F(Vp(x ⊗ δt)) | x ∈ MΛ, t ∈ Λ} is dense in L2(M,Tr), hence F is

unitary.

AsF commutes with the action of Γ, we then see thatF implements an intertwiner between the

representation λM and the Koopman representation on L2(M,Tr). Since Γ has a finite-measure

fundamental domain, the latter representation is isomorphic to an amplification of the left regular

representation by part (ii) of Proposition 3.3. This then establishes (iii).

We now suppose that πM has a non-zero invariant vector in (M⊗H)Λ
τ . First, note that this

then implies that there is a non-zero Γ-invariant vector in (M⊗H)Λ. Indeed, if ξ ∈ (M⊗H)Λ
τ is a

Γ-invariant vector, then we may approximate ξ by some η ∈ (M⊗H)Λ so that ‖ξ − η‖τ < 1
2
‖ξ‖.

If we let ξ0 be the unique element of minimal ‖ · ‖τ in the ‖ · ‖τ -closed convex closure hull of

{πM(γ)η | γ ∈ Γ}, then ξ0 is also Γ-invariant, and we have ‖ξ0 − ξ‖ ≤ ‖η − ξ‖ < 1
2
‖ξ‖, so that

ξ0 is non-zero. Closed balls in M⊗H are weak∗-compact by the Banach-Alaoglu theorem and

hence we see that ξ0 ∈ (M⊗H)Λ ⊂ (M⊗H)Λ
τ .

We therefore have a non-zero vector in (M⊗H)Γ×Λ ∼= (MΓ⊗H)Λ. Recall that we endow

H with its column operator space structure coming from the isomorphism H ∼= B(C,H). We

therefore consider ξ0 ∈ (MΓ⊗B(C,H))Λ, and we then obtain a non-zero positive operator |ξ0| ∈
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(MΓ⊗HS(H))Λ, whereHS(H) denotes the space of Hilbert-Schmidt operators onH. As τΓ⊗Tr

gives a faithful trace onMΓ⊗B(H), we then obtain a non-zero Λ-invariant vector (τΓ⊗id)(|ξ0|) ∈

HS(H). This then shows that π is not weak mixing, establishing (iv).

Proof of Theorem 1.2. Amenability is characterized by having the left regular representation weakly

contain the trivial representation, thus (i) and (iii) in Proposition 4.15 show that amenability is pre-

served under von Neumann equivalence.

Similarly, the Haagerup property is characterized by having a mixing representation that weakly

contains the trivial representation. Thus, (i) and (ii) in Proposition 4.15 show that the Haagerup

property is preserved under von Neumann equivalence.

Finally, if Γ has property (T) and π is a representation of Λ that weakly contains the trivial

representation, then since 1M contains the trivial representation for Γ, it follows that πM also

weakly contains the trivial representation. Property (T) then implies that πM contains non-zero

Γ-invariant vectors, and by (iv) in Proposition 4.15 it follows that π is not weak mixing. It then

follows from [BV93, Theorem 1] that Λ also has property (T).

4.3 Inducing Herz-Schur Multipliers

We present the proof of Theorem 1.3 in this section. The proof relies on the following analogue

of Lemma 2.1 in [Jol14].

Lemma 4.16. LetM be a semi-finite von Neumann algebra with a faithful normal semi-finite-trace

Tr and let Λy σ(M,Tr) be a trace-preserving action with a finite-trace fundamental domain p.

Suppose Γy (M,Tr) is another trace-preserving action that commutes with the Λ-action. For

ϕ ∈ `∞Λ, define ϕ̂ : Γ→ C by

ϕ̂(γ) :=
1

Tr(p)
Tr(σγ(θp(ϕ))p) =

1

Tr(p)
Tr(θp(ϕ)σγ−1(p)), γ ∈ Γ,

where θp : `∞Λ ↪→M is the Λ-equivariant embedding.
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(a) If ϕ ∈ B2(Λ) is a Herz-Schur multiplier on Λ, then ϕ̂ is a Herz-Schur multiplier on Γ and

‖ϕ̂‖B2 ≤ ‖ϕ‖B2 . Moreover, if ϕ is positive definite, then so is ϕ̂.

(b) If Γy (M,Tr) is mixing, i.e., the Koopman representation ΓyL2(M,Tr) is mixing, and if

ϕ ∈ c0(Λ), then ϕ̂ ∈ c0(Γ). In particular, if ϕ ∈ B2(Λ) ∩ c0(Λ), then ϕ̂ ∈ B2(Γ) ∩ c0(Γ).

Proof. Since p is a finite-trace fundamental domain, it follows that ϕ̂ is well-defined and ‖ϕ̂‖∞ ≤

‖ϕ‖∞. Let ξ, η : Λ → H0 be bounded functions from Λ into a Hilbert space H0 such that

ϕ(t−1s) = 〈ξ(s), η(t)〉, s, t ∈ Λ.

LetH = L2(M,Tr)⊗H0. Note that, for γ ∈ Γ, we have

∑
s∈Λ

‖σγ(σs(p))p‖2
2‖ξ(s)‖2 ≤ ‖ξ‖2

∞

∑
s∈Λ

Tr(pσγ(σs(p))) = ‖ξ‖2
∞Tr(p) <∞.

Therefore, ξ̂, η̂ : Γ→ L2(M,Tr)⊗H0 given below are well-defined.

ξ̂(γ) :=
1√

Tr(p)

∑
s∈Λ

σγ(σs(p))p⊗ ξ(s), η̂(γ) :=
1√

Tr(p)

∑
t∈Λ

σγ(σt(p))p⊗ η(t).

One has, for every γ ∈ Γ,

‖ξ̂(γ)‖2 =
1

Tr(p)

∑
s∈Λ

〈ξ(s), ξ(s)〉Tr(σs(p)σγ−1(p)) ≤ 1

Tr(p)
‖ξ‖2

∞Tr

(∑
s∈Λ

σs(p)σγ−1(p)

)
= ‖ξ‖2

∞.

Thus, ‖ξ̂‖∞ ≤ ‖ξ‖∞. Similarly, ‖η̂‖∞ ≤ ‖η‖∞. Finally, for γ1, γ2 ∈ Γ, we have

〈ξ̂(γ1), η̂(γ2)〉 =
1

Tr(p)

〈∑
s∈Λ

σγ1(σs(p))p⊗ ξ(s),
∑
t∈Λ

σγ2(σt(p))p⊗ η(t)

〉

=
1

Tr(p)

∑
s,t∈Λ

〈ξ(s), η(t)〉Tr(pσγ2(σt(p))σγ1(σs(p)))

=
1

Tr(p)

∑
t∈Λ

Tr

(
pσγ2(σt(p))σγ1

(∑
s∈Λ

ϕ(t−1s)σs(p)

))

=
1

Tr(p)

∑
t∈Λ

Tr(pσγ2(σt(p))σγ1(σt(θp(ϕ))))
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=
1

Tr(p)

∑
t∈Λ

Tr(σγ−1
2

(p)σt(pσγ−1
2 γ1

(θp(ϕ))))

=
1

Tr(p)
Tr

(∑
t∈Λ

σt−1(σγ−1
2

(p))pσγ−1
2 γ1

(θp(ϕ))

)

=
1

Tr(p)
Tr(σγ−1

2 γ1
(θp(ϕ))p)

= ϕ̂(γ−1
2 γ1).

Therefore, ϕ̂ is a Herz-Schur multiplier with ‖ϕ̂‖B2 ≤ ‖ϕ‖B2 . Furthermore, ifϕ is positive definite,

then one can take η = ξ and it is straightforward to see that ϕ̂ is positive definite on Γ as well. (In

fact, let (πϕ,Hϕ, ξϕ) be the GNS-triple associated to ϕ. Then, as ϕ(s) = 〈πϕ(s)ξϕ, ξϕ〉 for every

s ∈ Λ, we see that the function s 7→ ξ(s) = πϕ(s)ξϕ works.)

Note that, if ϕ ∈ c0(Λ), then θp(ϕ) is compact. Since the action of Γ is mixing, σγ(p) → 0 in

the weak operator topology as γ →∞, and (b) now follows from Lemma 2.7.

Proposition 4.17. LetM be a semi-finite von Neumann algebra with a faithful normal semi-finite

trace Tr and Λy σ(M,Tr) be a trace-preserving action with a finite-trace fundamental domain

p. Suppose Γy (M,Tr) is another trace-preserving action that commutes with the Λ-action.

Consider the map Φ : `∞Λ → `∞Γ defined by Φ(ϕ) = ϕ̂, where ϕ̂ is defined as in Lemma 4.16.

Then Φ is a contractive linear mapping from B2(Λ) into B2(Γ), and is

(a) continuous on norm bounded sets with respect to the topology of poitwise convergence.

(b) σ(B2(Λ), Q(Λ))-σ(B2(Γ), Q(Γ)) continuous.

Proof. It is clear that Φ : B2(Λ)→ B2(Γ) is linear, and that it is contractive follows from Lemma

4.16(a). Moreover, Φ : `∞Λ→ `∞Γ is also a linear contraction.

(a) Let ϕi → 0 in B2(Λ) pointwise and let ‖ϕi‖B2 < C for every i. Since ‖ · ‖∞ ≤ ‖ · ‖B2 , after

passing to a subnet if necessary, we may assume that ϕi → 0 weak∗. By Lemma ?? it follows

that θp(ϕi) → 0 in the weak operator topology. Therefore, Tr(θp(ϕi)σγ−1(p)) → 0 for every

γ ∈ Γ, and hence ϕ̂i → 0 pointwise.
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(b) Since Φ : B2(Λ) → B2(Γ) is a linear contraction, the dual Φ∗ : B2(Γ)∗ → B2(Λ)∗ is contin-

uous. Therefore, to prove that Φ is σ(B2(Λ), Q(Λ))-σ(B2(Γ), Q(Γ)) continuous, it suffices to

show that Φ maps Q(Γ) into Q(Λ). To this end, notice that a similar argument as in the proof

of previous part shows that Φ : `∞Λ→ `∞Γ is normal, whence it follows that the dual map Φ∗

maps `1Γ into `1Λ. Since `1Γ and `1Λ are dense, respectively, in Q(Γ) and Q(Λ), it follows

that Φ∗(Q(Γ)) ⊂ Q(Λ).

Proof of Theorem 1.3. Suppose Λcb(Λ) ≤ C, and choose a net {ϕi} of finitely supported functions

on Λ such that supi ‖ϕi‖B2 ≤ C, and ϕi → 1 pointwise. It follows from Lemma 4.16 that

ϕ̂i ∈ B2(Γ) and ‖ϕ̂i‖B2 ≤ C for every i. Since each ϕi is finitely supported, we have that ϕ̂i is a

coefficient of the Koopman representation σ0 : Γ → U(L2(M,Tr)). Moreover, the existence of a

fundamental domain for Γ implies that σ0 is a multiple of the left-regular representation [IPR19,

Proposition 4.2] and hence ϕ̂i ∈ A[Γ] for all i. From Proposition 4.17, we also have that ϕ̂i → 1

pointwise. This shows that Λcb(Γ) ≤ C, and Γ is weakly amenable.

If the net {ϕi} is in c0(Λ) ∩ B2(Λ), then by Lemma 4.16(b), ϕ̂i ∈ c0(Γ) ∩ B2(Γ) for every

i. Now the same argument as in the previous paragraph shows that if Λ has the weak Haagerup

property, then Γ has the weak Haagerup property and Λwcb(Γ) ≤ Λwcb(Λ).

If Λ has (AP), then 1 is in the σ(B2(Λ), Q(Λ))-closure of finitely supported functions on Λ.

From the first paragraph we have that if ϕ is a finitely supported function on Λ, then ϕ̂ ∈ A[Γ].

Therefore, Proposition 4.17 gives that 1 is in the σ(B2(Γ), Q(Γ))-closure of A[Γ] inside B2(Γ),

whence it follows that Γ has (AP).

Remark 4.18. The above methods provide an alternate proof for the stability of the Haagerup

property under vNE as follows. Note that θp(ϕ)p = ϕ(e)p. Therefore, if ϕ(e) = 1, then

ϕ̂(e) = 1. Moreover, if ϕ is a normalized positive definite function, then there exists a Hilbert

space Hϕ, a unitary representation πϕ : Λ → U(Hϕ), and a unit vector ξϕ ∈ Hϕ such that

ϕ(s) = 〈πϕ(s)ξϕ, ξϕ〉, s ∈ Λ [BO08, Theorem 2.5.11]. In particular, ‖ϕ‖∞ ≤ 1. Therefore,
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the arguments in the previous paragraphs show that the Haagerup property is invariant under von

Neumann equivalence.
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Chapter 5

Von Neumann equivalence for finite von Neumann algebras

The notion of von Neumann equivalence also admits a generalization in the setting of finite

von Neumann algebras which we study in this chapter.

Definition 5.1. Let M ⊂M be an inclusion of semi-finite von Neumann algebras. A fundamental

domain forM inside ofM consists of a realization of the standard representationM ⊂ B(L2(M))

as an intermediate von Neumann subalgebra M ⊂ B(L2(M)) ⊂ M. The fundamental domain is

finite if finite-rank projections in B(L2(M)) are mapped to finite projections inM.

Note that if P = B(L2(M))′ ∩M, then we have an isomorphism

M∼= B(L2(M))⊗P

where M acts standardly as M ⊗ C.

Lemma 5.2. Let M ⊂M be an inclusion of von Neumann algebras withM being semi-finite and

M being finite and σ-finite. Then any two fundamental domains for M are conjugate by a unitary

in M ′ ∩M.

Proof. Let CTr be a faithful normal semi-finite center-valued trace on M, and let τ be a faithful

normal trace onM . LetF denote the collection of finite dimensional subspaces ofM ⊂ L2(M, τ),

which we order by inclusion. Then the net {PV }V ∈F ⊂ B(L2(M, τ)) converges to the identity in

the strong operator topology. If θ1, θ2 : B(L2(M, τ)) → M are embeddings that restrict to the

identity on M , and if V ∈ F has an orthonormal basis {x1, . . . , xk} ⊂M , then we have

CTr(θ1(PC1̂)θ2(PV )) =
k∑
i=1

CTr(θ1(PC1̂)θ2(xjPC1̂x
∗
j))
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=
k∑
i=1

CTr(θ1(x∗jPC1̂xj)θ2(PC1̂))

= CTr(θ1(PV ∗)θ2(PC1̂)).

Taking the limit over F , we see that CTr(θ1(PC1̂)) = CTr(θ2(PC1̂)).

Thus, θ1(PC1̂) and θ2(PC1̂) are Murray-von Neumann equivalent projections inM. It follows

that θ1(B(L2(M, τ))) and θ2(B(L2(M, τ))) are conjugate by a unitary in M, and as M is stan-

dardly represented on L2(M, τ), we may then find such a unitary u ∈M so that

uxu∗ = uθ1(x)u∗ = θ2(x) = x

for all x ∈M , and hence u ∈M ′ ∩M.

Definition 5.3. A von Neumann coupling between two finite, σ-finite von Neumann algebras M

and N consists of a semi-finite von Neumann algebra M, together with embeddings of M and

Nop intoM such that Nop ⊂ M ′ ∩M and such that each inclusion M ⊂ M and Nop ⊂ M has

a finite fundamental domain.

We use the notationM = MMN to indicate thatM is a von Neumann coupling between M

and N . Two von Neumann couplings MMN and MNN are isomorphic if there exists an isomor-

phism betweenM and N that restricts to the identity on M and N , respectively.

Proposition 5.4. LetM = MMN be a von Neumann coupling between M and N . Fix a normal

faithful semi-finite center-valued trace CTr onM, and consider the quantity

[M : N ]M := CTr(p)/CTr(q)

where p and q are rank-one projections in B(L2(M)) and B(L2(N)) respectively. Then this gives

an invertible operator affiliated to Z(M), which is independent of the choice of CTr as well as the

fundamental domains for M ⊂ B(L2(M)) ⊂M and N ⊂ B(L2(N)) ⊂M.
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Proof. Considering the decompositionM ∼= B(L2(M))⊗P we see that non-zero projections in

B(L2(M)) have central support equal to 1. Therefore CTr(p)/CTr(q) gives an invertible operator

affiliated to Z(M).

As two faithful semi-finite center-valued traces are related by a positive injective operator affil-

iated to Z(M), we see that the quantity CTr(p)/CTr(q) is independent of CTr. Also, by Lemma 5.2

fundamental domains must be conjugate inM and hence the quantities TrM(p) and TrM(q) are

each independent of the choice of fundamental domain.

Definition 5.5. The quantity [M : N ]M ∈ Z(M) is the index of the couplingM. The index group

of M is the subset of R∗+ consisting of all indices for factorial self-couplings of M and is denoted

by IvNE(M).

Note that in Theorem 5.8 below, we justify the terminology by showing that the index group is

indeed a subgroup of R∗+.

SupposeM = MMN and N = NMQ are M -N and N -Q von Neumann couplings, respec-

tively. Choose fundamental domains θM : B(L2(N))→M for Nop ⊂M and θN : B(L2(N))→

N for N ⊂ N . Set P1 = θM(B(L2(N)))′ ∩M and P2 = θN (B(L2(N)))′ ∩ N . Then we have

isomorphisms

θ̃M : P1⊗B(L2(N))→M, θ̃N : B(L2(N))⊗P2 → N

such that θ̃M(a⊗ x) = aθM(x) and θ̃N (x⊗ b) = θN (x)b for a ∈ P1, b ∈ P2 and x ∈ B(L2(N)).

We then define the fusion (or composition) of the couplings MMN and NMQ to consist of the

von Neumann algebra

M⊗N N := P1⊗B(L2(N))⊗P2,

endowed with the embeddings of M and Q via the inclusions θ̃−1
M × 1 of M and 1 × θ̃−1

N of N

given respectively by

M3 x 7→ θ̃−1
M (x)⊗ 1 ∈M⊗N N , N 3 x 7→ 1⊗ θ̃−1

N (x) ∈M⊗N N .
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Note that Z(M) ⊂ P1 and Z(N ) ⊂ P2, so we have an inclusion

Z(M)⊗Z(N ) ⊂M⊗N N .

Proposition 5.6. Using the notation above, the von Neumann algebraM⊗N N gives a von Neu-

mann coupling between M and Q with index

[M : Q]M⊗N N = [M : N ]M ⊗ [N : Q]N .

Moreover, up to isomorphism, this coupling is independent of the choice of fundamental domains

for the inclusions N ⊂M and N ⊂ N .

Proof. We have

(θ̃−1
M × 1)(M) ⊂ (θ̃−1

M × 1)(Nop′ ∩M) = P1⊗N ⊗C,

while

(1× θ̃−1
N )(Q) ⊂ (1× θ̃−1

N )(N ′ ∩N ) = C⊗Nop⊗P2,

so that the copies of M and Q inM⊗N N commute. Since we have isomorphisms

M⊗P2
∼=M⊗N N ∼= P1⊗N ,

and since P1 and P2 are finite, we then have finite fundamental domains for M and Q. We let

p ∈M and q ∈ N be minimal projections in fundamental domains for M and Q respectively. We

also let Ci denote the center-valued trace on Pi for i = 1, 2, and we define

CM = C1 ⊗ TrB(L2(N)) and CN = TrB(L2(N)) ⊗ C2.

Then we have

[M : Q]M⊗N N = (C1 ⊗ TrB(L2(N)) ⊗ C2)(θ̃−1
M (p)⊗ 1)/(C1 ⊗ TrB(L2(N)) ⊗ C2)(1⊗ θ̃−1

N (q))
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= CM(p)⊗ C2(1)/C1(1)⊗ CN (q)

= [M : N ]M ⊗ [N : Q]N .

Suppose now that we have fundamental domains for Nop ⊂M and N ⊂ N given respectively

by φM : B(L2(N))→M and φN : B(L2(N))→ N . We set

R1 = φM(B(L2(N)))′ ∩M and R2 = φN (B(L2(N)))′ ∩N ,

and we define the isomorphisms φ̃M and φ̃N as above.

By Lemma 5.2 there exist unitaries u ∈ Nop′ ∩M and v ∈ N ′ ∩N so that φM = Ad(u) ◦ θM

and φN = Ad(v) ◦ θN . We then have R1 = uP1u
∗ and R2 = vP2v

∗.

We consider the isomorphism α : R1⊗B(L2(N))⊗R2 → P1⊗B(L2(N))⊗P2 given by

α = Ad(u∗) ⊗ id ⊗ Ad(v∗). Under this isomorphism, the inclusion of M coming from the

fundamental domains φM and φN is given by α ◦ (φ̃−1
M × 1) and still maps M into P1⊗N ⊗ C.

Similarly, the new inclusion of Q again maps into C⊗Nop⊗P2.

If we restrict α to P1⊗B(L2(N)) and consider the automorphism

β = α ◦ φ̃−1
M ◦ θ̃M ∈ Aut(P1⊗B(L2(N)),

then for a ∈ P1 and x ∈ B(L2(N)) we have

β(a⊗ x) = α ◦ φ̃−1
M(aθM(x))

= α ◦ φ̃−1
M(u∗(uau∗)φM(x)u)

= α ◦ Ad(φ̃−1
M(u∗))(uau∗ ⊗ x)

= Ad(α(φ̃−1
M(u∗)))(a⊗ x).

Hence, β = Ad(α(φ̃−1
M(u∗))), and if we set U = φ̃−1

M(u), then we see that U ∈ R1⊗N ⊂

R1⊗B(L2(N)) and the map Ad(U) ◦ α−1 intertwines the two inclusions of M coming from
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the choice of fundamental domains. Similarly, if we set V = φ̃−1
N (v), then V ∈ Nop⊗R2 ⊂

B(L2(N))⊗R2 and the map Ad(U) ◦ α−1 intertwines the two inclusions of Q coming from the

fundamental domains. We then have that U and V commute and the isomorphism Ad(UV ) ◦ α−1

intertwines both the inclusions of M and Q.

Definition 5.7. Two finite, σ-finite von Neumann algebras M and N are von Neumann equivalent,

denoted M ∼vNE N , if there exists a von Neumann coupling between them.

Von Neumann equivalence is indeed an equivalence relation. Reflexivity follows by consider-

ing the trivial von Neumann coupling B(L2(M, τ)) with the standard embeddings of M and Mop.

If MMN is a von Neumann coupling between M andN , thenMop gives a von Neumann coupling

betweenN andM (with index [N : M ]Mop = [M : N ]−1
M ), showing that this relation is symmetric,

while transitivity of this relation follows from Proposition 5.6. We also see that by considering the

index it follows that IvNE(M) is a subgroup of R∗+. We record all these facts in the following

theorem.

Theorem 5.8. Von Neumann equivalence gives an equivalence relation on the collection of finite,

σ-finite von Neumann algebras. Given a finite, σ-finite von Neumann algebra M , we have that

IvNE(M) is a subgroup of R∗+, which only depends on the von Neumann equivalence class of M .

Two finite factors M and N are virtually isomorphic if there exists a normal Hilbert M -N -

bimodule H that has finite von Neumann dimension as both an M module and an N module.

Two ICC groups Γ and Λ are virtually W ∗-equivalent if LΓ and LΛ are virtually isomorphic. The

notion of virtual isomorphism of factors was first studied by Popa in [Pop86, Section 1.4], while

the terminology was coined more recently in [PS20, Section 4.1].

Theorem 5.9. Let M and N be finite factors, and suppose thatH is a Hilbert M -N -bimodule that

is finite as both an M -module and an N -module. Then M and N are von Neumann equivalent,

and a von Neumann couplingM may be chosen so that

[M : N ]M = dimM(H) · dimN(H)−1.
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Proof. Let H be a Hilbert M -N -bimodule that is finite as both an M -module and an N -module.

Let R denote the hyperfinite II1 factor and setM = R⊗B(H).

Suppose t = dimM(H) < ∞, and take k ∈ N so that k > t. If we take a projection p ∈

Mn(C)⊗Mop such that (Tr ⊗ τ)(p) = t, then we have an isomorphism of inclusions between

M ⊂ B(H) and pM ⊂ p(Mn(C)⊗B(L2(M, τ)))p.

If we now take a projection q ∈ R so that τ(q) = t/n, then we have that q and p are equivalent

projections in R⊗Mn(C)⊗Mop and hence we see that we have an isomorphism of inclusions

between M ⊂ R⊗B(H) and qM ⊂ qRq⊗Mn(C)⊗B(L2(M, τ)). In particular, we then see

that we have a fundamental domain for the inclusion M ⊂ R⊗B(H). Moreover, the trace of a

rank-one projection in this fundamental domain will be nτ(q) = t.

We similarly see that the inclusion N ⊂ R⊗B(H) has a fundamental domain, and the trace

of a rank-one projection in its fundamental domain will be dimN(H). Thus,M is a von Neumann

coupling between M and N with index dimM(H) dimN(H)−1.

Corollary 5.10. If M is a II1 factor and s, t > 0, then M t and M s have a von Neumann coupling

M that satisfies

[M t : M s]M = t2/s2.

Consequently, we have an inclusion F(M)2 ⊂ IvNE(M).

We may now show the relationship between von Neumann equivalence for groups and for finite

von Neumann algebras as stated in Theorem 1.6.

Proof of Theorem 1.6. We first suppose that M is an LΓ-LΛ von Neumann coupling. If p ∈

Z(M) is a non-trivial central projection, then pM is also an LΓ-LΛ von Neumann coupling,

hence we may assume thatM is σ-finite and fix a semi-finite normal faithful trace Tr onM.

We identify Γ (resp. Λ) as a subgroup of U(LΓ) (resp. U(LΛ)) and then consider the commuting

trace-preserving actions of Γ and Λ onM given by conjugation. If we have a fundamental domain

LΓ ⊂ B(`2Γ) ⊂ M, then the rank-one projection onto the subspace spanned by δe ∈ `2Γ gives a
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finite-trace fundamental domain for the conjugation action of Γ onM. We similarly have a finite-

trace fundamental domain for the action of Λ onM, and hence we see thatM is then a Γ-Λ von

Neumann coupling.

Now suppose that (M,Tr) is a Γ-Λ von Neumann coupling. We set N = M o (Γ × Λ).

We then have embeddings LΓ, LΛ ⊂ N . A Γ-fundamental domain in M gives a Γ-equivariant

embedding `∞Γ ⊂M and hence we get an embedding of von Neumann algebras

B(`2Γ) ∼= `∞Γ o Γ ⊂Mo Γ ⊂ N .

Thus N has an LΓ fundamental domain. Moreover, if Pe is the rank-one projection onto the span

of δe ∈ `2Γ, then we have Pe ∈ M ⊂ N , and therefore the fundamental domain for LΓ has finite

trace and so must be finite. We similarly have a finite-trace fundamental domain for LΛ inN , and

hence N is an LΓ-LΛ von Neumann coupling.

The analogue of the index group has also been considered in the setting of measure equiva-

lence. For instance, in [Gab02, Section 2.2] or [Gab05, Question 2.8] Gaboriau considered the set

of indices of all ergodic self measure equivalence couplings of a group Γ. For minimally almost

periodic groups [NW40] any non-trivial ergodic probability measure-preserving action is weak

mixing, and a simple argument then shows that the composition of two ergodic measure equiva-

lence self-couplings is again ergodic. This then shows that for minimally almost periodic groups,

the set of indices of all ergodic self measure equivalence couplings is a subgroup of R∗+. It is not

clear, however, if this set is a group in general, or that it is a measure equivalence invariant, as the

composition of ergodic measure equivalence couplings need not be ergodic in general. For ICC

groups, at least, we have the following relationship between indices for ergodic measure equiva-

lence couplings and the index group for the group von Neumann algebra:

Proposition 5.11. Suppose (Ω,m) is an ergodic ME-self-coupling of an ICC group Γ, then [Γ :

Γ]Ω ∈ IvNE(LΓ).

Proof. We see from the proof of Theorem 1.6 that if (Ω,m) is an ergodic measure equivalence
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self-coupling of Γ, then L∞(Ω,m) o (Γ × Γ) is a von Neumann self-coupling for LΓ, and if

L∞(Ω,m)o (Γ×Γ) is a factor, then the indices for these couplings agree. Thus it suffices to show

that under these hypotheses, we have that L∞(Ω,m) o (Γ× Γ) is a factor.

If we let Γi denote the ith copy of Γ in Γ× Γ, then Proposition 3.4 shows that the fundamental

domain for Γ1 leads to an isomorphism

L∞(Ω,m) o (Γ× Γ) ∼= (L∞(Ω/Γ1) o Γ2)⊗B(`2Γ1).

Since Γ2 is ICC, and since Γ2 yΩ/Γ1 is an ergodic and measure-preserving action on a finite

measure space, Murray and von Neumann’s proof of factoriality of LΓ2 [? ] shows that we have

LΓ′2 ∩ (L∞(Ω/Γ1) o Γ2) ⊂ L∞(Ω/Γ1)Γ2 = C.

Hence L∞(Ω/Γ1) o Γ2 is a factor, and so is

(L∞(Ω/Γ1) o Γ2)⊗B(`2Γ1) ∼= L∞(Ω,m) o (Γ× Γ).

In [PV10] Popa and Vaes study the collection Seqrel(Γ) of fundamental groups for equivalence

relations associated to free, ergodic, probability measure-preserving actions of Γ. Each element

in such a fundamental group gives rise to an ergodic measure equivalence coupling with the same

index [Fur99a, Theorem 3.3], and hence we obtain the following corollary.

Corollary 5.12. For a countable ICC group Γ, we have F < IvNE(LΓ) for all F ∈ Seqrel(Γ).

As an example, the previous corollary applied to Theorem 1.3 in [PV10] shows that for n ≥ 3

we have Q∗+ < IvNE(L(Zn o SL(n,Z))).

IfM is von Neumann equivalent to a factor with fundamental group R∗+, then we have IvNE(M) =

R∗+. It would be interesting to have examples of von Neumann algebras, or even groups Γ, such

62



that IvNE(LΓ) is not R∗+. Or, in view of the previous proposition, examples when IvNE(LΓ) is

non-trivial and discrete.

Chifan and Ioana in [CI11] gave examples of groups that are orbit equivalent (and hence

also von Neumann equivalent) but that are not W ∗-equivalent. Popa and Shlyakhtenko showed

in [PS20, Propostion 4.3] that these are not even virtually W ∗-equivalent (and additional exam-

ples with this property are also given). Combining this result with Theorem 1.6 shows that von

Neumann equivalence for groups (resp. for von Neumann algebras) is strictly coarser than virtual

W ∗-equivalence (resp. virtual isomorphism). We also note that Bannon, Marrakchi, and Ozawa

showed recently in [BMO20] that property Gamma of Murray and von Neumann [MvN43] is

a virtual isomorphism invariant, while Theorem 1.6 together with Effros’s Theorem [Eff75] and

Caprace’s example [DTDW20, Section 5.C] show that property Gamma is not an invariant of von

Neumann equivalence.

The related problem of finding groups that are W ∗-equivalent but not measure equivalent re-

mains open (see [CI11]). We also do not know examples of groups that are von Neumann equiva-

lent but not measure equivalent.
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Appendix

Measure equivalence and properly proximal groups

For the benefit of the reader who may be less familiar with von Neumann algebras, we include

here a separate proof that proper proximality is a measure equivalence invariant. We refer the

reader to [Zim84] or [Fur11] for preliminary results on measure equivalence and cocycles.

If E∗ is a separable Banach space and (X,µ) is a standard Borel space, then we denote by

L1(X;E∗) the set of norm-integrable Borel functions from X to E∗, where we identify two

functions if they agree almost everywhere. This is naturally a Banach space with norm ‖f‖ =∫
‖f(x)‖ dµ. We set E = (E∗)

∗ and let L∞(X;E) denote the space of measurable, essentially

bounded functions from X to E, where E is given the Borel structure coming from the weak∗-

topology, and we identify functions that agree almost everywhere. We have a natural identification

of L∞(X;E) with L1(X;E∗)
∗ via the pairing 〈ϕ, f〉 =

∫
ϕx(fx)dµ(x). If K ⊂ E is a weak∗-

compact convex subset, then L∞(X;K) gives a weak∗-compact convex subset of L∞(X;E).

IfE is a dual Banach Λ-module andK ⊂ E is a non-empty weak∗-compact convex Λ-invariant

subset, Γy (X,µ) is a probability measure-preserving action, and α : Γ × X → Λ is a cocycle,

then we obtain an induced affine action of Γ on L∞(X;K) by

(γ · f)(x) = α(γ, γ−1x)f(γ−1x).

Let (Ω,m) be an ME-coupling of two groups Γ and Λ, and let X ⊂ Ω be fundamental domains

for the Λ-actions. Under the identification Ω/Λ ∼= X given by Λω 7→ Λω∩X , the action ΓyΩ/Λ

translates to

γ · x = α(γ, x)γx,

where α is the Zimmer cocycle, which is defined by the property that α(γ, x) is the unique element

in Λ such that α(γ, x)γx ∈ X .

The following result is well known.
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Proposition 5.13. There exists a Γ-fixed point in L∞(Ω/Λ;K) if and only if there exists a Λ-fixed

point in K.

Proof. Suppose ξ : Ω/Λ → K is a Borel map that satisfies ξ(γx) = α(γ, x)ξ(x). We then define

the map ξ̃ : Ω→ K by ξ̃(λ, x) = λ−1ξ(x), where we identify here Ω with Λ× (Ω/Λ). Then as ξ̃ is

invariant under the induced Γ-action and is equivariant with respect to the Λ-action, we therefore

obtain a Λ-equivariant map from Ω/Γ → K. Integrating this map with respect to the Λ-invariant

measure on Ω/Γ then gives a Λ-fixed point.

We recall from Proposition 2.11 that a group Λ is properly proximal if there exists a dual

Banach Λ-module E and a non-empty weak∗-compact convex Λ-invariant subset K ⊂ E such that

K has a properly proximal point, but has no fixed point.

A cocycle α : Γ×X → Λ is proper if for all ε > 0 and F ⊂ Λ finite, there exists F ′ ⊂ Γ finite

such that µ({x | α(γ, γ−1x) ∈ F}) < ε for all γ ∈ Γ \ F ′. It’s easy to see that a cocycle coming

from an ME-coupling is proper.

Proposition 5.14. If the action ΛyK is properly proximal, and if the cocycle α is proper, then

the induced action ΓyL∞(X;K) is properly proximal.

Proof. We assume for simplicity that K is contained in the unit ball of E∗. Fix k ∈ K such that

for all h ∈ Λ we have limλ→∞ λhk−λk = 0. We view k ∈ L∞(X;K) as a constant function. Fix

g ∈ Γ, ε > 0, andF ⊂ L1(X;E) a finite collection of step functions with finite range F0 contained

in the unit ball of E. Fix a set X0 ⊂ X such that µ(X0) > 1− ε and such that x 7→ α(g, x) ranges

in a finite set F00 ⊂ Λ.

Since k is a convergence point for Λ, there exists a finite set F ′00 ⊂ Λ such that for all λ ∈ Λ\F ′00

we have |〈λhk − λk, a〉| < ε for all h ∈ F00, a ∈ F0. As the cocycle α is proper, there exists a

finite set G0 ⊂ Γ, so that if Eγ = {x ∈ X | α(γ, γ−1x) 6∈ F ′00}, then µ(Eγ) > 1 − ε for all

γ ∈ Γ \G0. For γ ∈ Γ \G0, and f ∈ F we then have

|〈γgk − γk, f〉| =
∣∣∣∣∫ 〈α(γg, g−1γ−1x)k − α(γ, γ−1x)k, f(x)〉dµ(x)

∣∣∣∣
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≤
∫
|〈α(γ, γ−1x)α(g, g−1γ−1x)k − α(γ, γ−1x)k, f(x)〉|dµ(x)

≤ ε+

∫
γgX0

sup
h∈F00

sup
a∈F0

|〈α(γ, γ−1x)hk − α(γ, γ−1x)k, a〉|dµ(x)

≤ 2ε+

∫
γgX0∩Eγ

sup
h∈F00

sup
a∈F0

|〈α(γ, γ−1x)hk − α(γ, γ−1x)k, a〉|dµ(x) < 3ε.

Since simple functions are dense in L1(X;E), it follows that k is a convergence point for the action

ΓyL∞(X;K).

Corollary 5.15. If two groups Γ and Λ are measure equivalent, then Γ is properly proximal if and

only if Λ is properly proximal.
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[after sorin popa], Séminaire BOURBAKI (2006), 58e.

[Vae10] , Rigidity for von Neumann algebras and their invariants, Proceedings of

the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol.

I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, World Scientific,

2010, pp. 1624–1650.

[Zim84] Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathemat-
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