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CHAPTER 1

Introduction

Jones defined an index [M : N] for an inclusion of /I factors N C M in [Jon83]. He proved that [M :
N] e {4 cosz(%) |n > 3} U [4, oo] by introducing the basic construction of a finite index subfactor, N C M,

in [Jon83]. Iterating his construction yields the Jones tower of I1; factors
M_=NCMy=McCcM CMy,C---.

Taking relative commutants of these factors, we may build the standard invariant of the subfactor which
consists of finite dimensional C*-algebras, { M} N M, |i = —1,0, n = —1,0, 1, ...}, inclusions M} N M,, C
M’y N M,, M/ M, C M!N M,41, and Jones projections {e,|n > 1}. Classifying standard invariants
and constructing exotic examples has been a multi-decade project that has contributed to low-dimensional
topology and many areas of mathematical physics. A summary of this can be found in [JMS14] and [AMP],
and for an introduction to subfactors see [GHJ89] and [JS97]. Popa axiomatized standard invariants using
A-lattices in [Pop95]. Jones used A-lattices to axiomatize the standard invariants of extremal subfactors as
subfactor planar algebras in [Jon21]. Weaker invariants of N C M can be constructed from the Bratteli
diagrams of the standard invariant, called the principal graphs of N C M.

The possible standard invariants of the hyperfinite //; factor remains an important open question. For
a finite index subfactor N C M, the Jones projections generate the Temperley-Lieb standard invariant with
loop parameter 6 = \/W , TL()). The Temperley-Lieb standard invariant is minimal as all standard
invariants with Jones index 6% contain T'L(§). Subfactors, N C M, with Jones index [M : N| > 4 and

Temperley-Lieb standard invariants have A, principal graphs. It is an open problem to determine which

*® . - - - . . .

Figure 1.1: A, Principal Graph

subfactors of the hyperfinite /1; factor have Temperley-Lieb standard invariants. It is also not known at
which indices greater than four these can occur.
In chapter 2 we outline fundamental results for subfactors and finite dimensional commuting squares.

Much of this background can be found in [JS97] or [GHJ89].



Subfactors generated from complex Hadamard matrices are called spin model subfactors. The principal
graphs of subfactors for twisted tensor products of Fourier matrices have been identified by Burstein as Bisch-
Haagerup subfactors, but very little is known about the standard invariants of spin model subfactors outside
of this family (see [Bur15] and [BH96]). In [Jon21] and [Jon19], Jones develops the planar algebra formalism
that axiomatizes standard invariants. Planar algebras became a powerful computational tool to classify small
index standard invariants and is a central tool for this dissertation. Jones extended the planar algebra formal-
ism for spin planar algebras, PP*", to include string crossings with complex Hadamard matrices. This led
Jones to define an angle operator, ©,,, in the sense of [SW94], whose 1-eigenspace is the standard invariant
of the subfactor. In chapter 3 we present Jones’s work on angle operators and modify his formalism to build
tunnel constructions of spin models.

In chapter 4 we identify this angle operator as an element of C*(M, ey, JM J), the C*-algebra generated
by M, ey, and JMJ on L?(M). Popa showed in [Pop99] that C*(M, ey, JM.J) admits a tracial state, T,
which is faithful iff the subfactor is amenable and M is hyperfinite. We then compute 7(©7) in terms of
the standard invariant and prove a correspondence between the principal graph spectrum and angle operator
spectrum. Since the angle operator has finite dimensional representations we can compute elements of its
spectrum. We also find non-algebraic integers in the spectra of angle operators for Petrescu’s continuous
family of 7 x 7 complex Hadamard matrices [Pet97] and Paley type I/ Hadamard matrices [Pal33]. Since
the spectrum of finite graphs only contains algebraic integers, these subfactors are infinite depth.

Finally, in chapter 5, we generalize these results to symmetric commuting squares. We show that the pla-
nar algebra of flat elements coincides with the subfactor planar algebra and we build a faithful representation
of the fusion algebra inside the symmetric enveloping algebra. For sake of exposition and since a new planar

algebra must be defined, this chapter is set apart from chapters 3 and 4 whose computations take place in

PSpin



CHAPTER 2

Preliminaries

The following section serves two purposes. Commuting squares, which we define shortly, are an important
tool for constructing inclusions of finite von Neumann algebras but they also arise naturally in the standard
invariant of a subfactor. First, we will consider inclusions of finite dimensional algebras. A detailed approach

to inclusions of finite dimensional C* algebras and commuting squares can be found in [GHJ89] or [JS97].

2.1 Inclusions of Finite Dimensional C*-Algebras

Since finite dimensional C*-algebras admit a system of matrix units, they can be identified with multi-matrix
algebras, @le M,,,(C), where v = (n;)¥_, is called the dimension vector. This also shows that traces on
finite dimensional C*-algebras are determined by a trace vector (#;)¥_, which yield the trace of a minimal
projection for each factor. Let V(A) denote the set of minimal central projections. Due to Bratteli, the

inclusion of two finite dimensional C*-algebras A C B is determined up to an inner automorphism by a

bipartite graph I'. This graph has the vertex set V (A) U V(B) and /dim(pgA’pg N pgBpq) edges between
p € V(A) and ¢ € V(B). This graph is called the Bratteli diagram, and we will also use I' to denote its
adjacency matrix which we will refer to as the inclusion matrix. We will call an inclusion connected if its
Bratteli diagram is connected. If this is a unital inclusion then I' also satisfies ['v4 = vp, where we think of
Tasa”V(B) x V(A) -matrix.

Bratteli diagrams provide a natural representation of a tower of algebras called the path algebra construc-
tion (see [GHJ89]). Let C C A; C Ay C --- C Ay be a sequence of unital inclusions with Bratteli diagrams
T; for A; C A,;41. A path in the tower of Bratteli diagrams is a sequence of edges (e;) f:o’ e; € I'; such that e;
and e; 1 share a vertex in V' (A;11). Let H be the space of formal linear combinations of paths. Then we can
construct a system of matrix units { f g | o, 3 paths sharing a vertex in V' (Ay)} where fo g(7) = dg=ya. It

can be shown that this algebra is Ay. Furthermore, we can use f,, g’s to generate matrix units for each A;,

Z faoa’ Boar |, B paths in C C A; ending at the same vertex in V' (A;)

a'upath
inA; C A

where o o & denotes concatenation of paths when they share a vertex in V(A;). We will use (o) to denote

concatenation of paths and some restrictions on sums will be implied by this operation. It will also be



convenient to let Q(A;, Aj41,...A;) denote the set of paths in the sequence of Bratteli diagrams for these

inclusions.

Remark 2.1.1. This representation of Ay can be decomposed into irreducible representations by fixing a
vertex of V(Ay) and considering the subspace generated by paths ending at that vertex. This implies the

path algebra representation contains each irreducible representation of Ay, exactly once.

Similar to subfactors, we have a basic construction for inclusions of finite dimensional C*-algebras (see

[Jon83])).

Lemma 2.1.2. Let A C B be an inclusion of finite dimensional C*-algebras with a faithful trace tr on B,

%
from a trace vector tg, e € B(L*(B,tr)) the orthogonal projection from B onto A, E 4 the conditional

expectation onto A, and let J be the conjugate linear isometry given by J(&) = 2% where & € B C

L?(B,tr). Then we have a basic construction By = (B, e) and:
(i) ze = Jz*Je forall z € Z(A).
(ii) Forb € B, be Z(B) iffb = Jb*J.
(iii) The map, z — Jz*J, from Z(A) to Z(B1) is a *-isomorphism.

(iv) If T is the inclusion matrix for A C B, then T't is the inclusion matrix for B C B using the identifica-

tion from (iit).
(v) By = span(BeB).

Proposition 2.1.3. Let A C B be a connected inclusion of multi-matrix algebras with inclusion matrix T’

with a tracial state trg coming from the trace vector tg. Then the following are equivalent:

(i) trp extends to a tracial state on By and Eg(e) = A - 1 for some \ € C (i.e. trg is a Markov trace of
modulus \71).
— —
(ii) Ptrt]g = A_ltB.
%
Furthermore, tp must be the Perron-Frobenius vector for T''T', which is unique up to a scalar, and is the

eigenvector 1o the eigenvalue X' = ||T||>.

In [PP86], Pimsner and Popa generalize the notion of index to conditional expectations of von Neumann

algebras. They compute Ind(EY) for N = @ M, (C) and M = @Mm, (C) multi-matrix algebras,
keK leL



inclusion matrix I' = (k) kek icL, and trace vectors ? = (t;)1er, and 5 = (sk)kex, where EX! denotes
the trace preserving conditional expectation from M onto V.
Theorem 2.1.4. [PP86] Ind(EY) = max, {Z bktlsk} where by, ;| = min{vy,ng}.

3 l
2.2 Commuting Squares
We now consider a square of multi-matrix algebras with compatible traces. These are important objects used
to build subfactors, but we must impose additional conditions to ensure they yield subfactors and an easily

computable Jones index.

Definition 2.2.1. Let A; ; for i, j = 0,1 be multi-matrix algebras with the unital inclusions

Ao C A
U U  and normalized faithful traces tr; ; that agree with these inclusions. Each pair of these
Ao C Ao

algebras has a unique trace preserving conditional expectation that we will denote by E. This is a commuting

K2
Ao — Ain
: . AL A A
square if g | L& commutes, ie E, \E " =E,".
i
Aoo — Aoa

Proposition 2.2.2. The square above is commuting iff
(i) Aoo=A1,0N Ao
(ii) Ao N Agg is perpendicular to Ay g N A with respect 1o try ;.

Proof. Starting with a commuting square, (¢) is immediate. Since each map fixes Ag o we can pass to
ApNAgy 5 AinAg,
the quotient by Ag o to obtain El LE . Since E is an orthogonal projection, this
0 L Aoa N A,
implies (41).
Starting with conditions (¢) and (4¢) it is clearly a commuting square. O
Example 2.2.3. Each square of algebras in the standard invariant of a subfactor N C M is a commuting

square with traces induced by M.

Proof. By the proposition above, interchanging Ag ; and A yields a commuting square and so by our

definition the roles of inclusions and conditional expectations can also be interchanged. Thus it suffices to



show that Ennar, () = Enpaa, (2) for @ € M/ N Myyq. Letting m € M, mz = xm and by applying

En, s mEy, (x) = Enpy,, (z)m which implies Engapr, (2) = Eny,, (z) and likewise for N. O

Definition 2.2.4. A square of algebras A; ; with connected inclusions is called a symmetric or non-degenerate

commuting square if Ay 1 = spandg 1410 = spanii pAoi.

Proposition 2.2.5. Consider the following commuting square with all four inclusions connected and their

respective inclusion matrices.
H
Ao C A
kU UL

G
Aoo C Ao

Let e be the Jones projection for A1 o C Ay ,1. Then the following conditions are equivalent:
(i) This square is symmetric.
(ii) G*K = LH?.
(iii) \/ {ueu*|u € U(Ap1)} = 1 on L*(A;11).
Furthermore, the Markov trace for Ay o C Ay 1 is the Markov trace for every other inclusion in the square.

This proposition allows us to perform the basic construction on a square of algebras. Let e be the Jones
projection for A; o C Aj1. Setting A1 2 = (A1,1,¢e) and Ag 2 = {Ap1,e}”, we can extend our commuting
square, however, by (iii), Ag o is isomorphic to the basic construction of Ago C Ao, if and only if the
original square is symmetric.

Observe that a square of algebras provides two different path algebra representations coming from C C
Apo C Ao CA1and C C Ay C Ap,1 C Ap1. Let Q and II respectively be the sets of paths in these
inclusions, Hq, and Hyj their linear spans, and {py, o }. {gs,s/ } the corresponding matrix units. The following

proposition rephrases commuting and symmetric squares in terms of the path algebra representation.

Proposition 2.2.6. (Biunitary Condition [JS97]) Let A; j be a square of algebras with the notation above
for the two path algebra representations. Then there is a Q(Ag o, A1,0, A1,1) X Q(Ao0, Ao,1,A1,1) matrix

U = (ua,8)a,p With complex coefficients such that
(i) ua,p = 0 unless o and (B share a vertex in V(Ag o) and V(A1 1).

(ii) U: Hn — Ho by U(B) = Y, Ua, 108,50 © e is a unitary, where 3 = [y o By o fa.



(iii) Do, = Zﬁ,ﬂ, Uay0as,800008,a408 U, ooy, 57 Where v = ap o g 0 az and o = af o] oal.
Then we have the following:
(a) If U’ satisfies (i) — (iit) then U'U* € U(Z(A11)).

(b) Iftr is a faithful tracial state on Ay 1, let t'; be the component of the trace vector for A; j corresponding
to the vertex that o and V (A, ;) share. Let V be a Q(Ap1,A1.1) 0 Q(A1,0,A411) X Q(Ao0,401) ©
Q (Ao 0, A1,0) matrix defined by

0,0
t 3y
%ﬂalmz, BioB, If all concatenations are well-defined.
UBsoas,Broar = tﬁl ta)
0 otherwise.

Then V' is an isometry iff A; j is commuting and a unitary iff A; j is symmetric. When V' is a unitary we

will refer to the pair U,V as a biunitary.

Remark 2.2.7. To be able to iterate the basic construction we must use the Markov trace. Then U completely

characterizes a square of algebras and when the square of algebras is symmetric with respect to the Markov

Ain C A
trace, V is the unitary characterizing the basic construction of the square U
Aon C Aoz

2.3 Construction of Subfactors
Let A; ;, i,7 = 0,1 be a square of multi-matrix algebras with A; o C Ay ; connected with the Markov
trace on A; ;. We can iteratively perform the basic construction and define A; , = <A1,k—1, €A, . and
Aok = {Aok—1,€4,,_,}". If we choose the unique Markov trace for A; o C Aj 1, then proposition 2.1.3
implies this trace extends to a faithful unital trace 7 on |J,, A x. Since the C*-algebra norm is unique, for
a € Aig, b € Ay and m > k, then [[abll, . < |l - [|b]l, .. Setting H, = m<’>T, we see that
(Ui A1, extends to bounded operators on H,. Finally, we can set A; = (|J, ALk)” C B(H,). Asa
consequence of Perron Frobenius theory 7 is the unique trace on | J i A1,% and so Ay must be a factor, and A,
is of course hyperfinite.

Similarly, define Ay = (U, Ao,k)” C A;. Ay must be a finite tracial von Neumann algebra, however,
there is no reason for Ay to be factor. One way to ensure that Ay is a factor is to begin with a symmetric

commuting square with A; o C A; ; connected inclusions. Then the inclusions Ag 1 C Ag,x C Ao k+1 are



instances of the basic construction and Perron Frobenius theory implies Ay has a unique trace.

Theorem 2.3.1. (Wenzl’s index formula)[ Wen88] Let

BO c B ¢ B, ¢ --- B
U U U
Ao C A1 C A2 c -+ A

be a sequence of commuting squares with a faithful trace, tr, on \J, B,, B = (U, Bn)", and A

(U, An)//. Further, assume that A and B are factors and the inclusion matricies for the square

n

B, C Bn+1
K, U U Knp1

GTL
A, C An+1

are periodic (i.e. there exists a period k such that, for all n, G, = Gy, Ky, = Ky, and Hy, = H,,yy, for

an identification of minimal central projections). Then [B : A] = || K, || for all n.

Theorem 2.3.2. (Ocneanu Compactness)[JS97] Let

Ao C Ain C A C 0 A
U U U U
Ao,o C A071 C AO,Q (R Ao

be a collection of multi-matrix algebras obtained from a symmetric commuting square A; j, i,7 = 0,1 with

its Markov trace, tr, by the basic construction. Then Ay N Ay = Ajy 1 N App.

Ocneanu compactness can also be used to compute higher relative commutants. In order to achieve this,
the grid of finite dimensional algebras must be extended upwards.

Define Ay, = {A1 k,€ea,}”, then by the commutativity of

Ay C A
U U
Ao C A

As g = {ao + ), aiea,ajla;, a; € Ay}, and so Ay, is finite dimensional and E4, (A2 ;) C Ai k. Thus



we have the diagram and inductive limits

Asog C Asn1 C Ass C -0 A
@] U U U
Ao € Ain C Ao C - Ay
U U U U
Ao C Aoq1 C A C -+ A

where each square is commuting. Since the original grid is symmetric, A; , = span Ao, A for n >
k. In fact an ONB of A; over Aj can be constructed such that the ONB belongs to A; . Then A; =
span Ag Ay = span Ay 1 Ag and so Ay = span A; pAgea, A1 r. Applying E4,, to both sides yields
As j; = span A; pea, A1 k. This implies that Ag, C Ay C Ay is a basic construction for each k. To

show that Ay ;,_1 C Aa j C A 41 is a basic construction, observe that

Az i, = span Ay pea, A1k =span A 1 Ao kea, A0,k A1 k-1

=span Ay y1ea,A0 k-1€4, , A1 k-1 Cspan Az x1€4, A2 k1.

Therefore, we may extend the grid of symmetric commuting squares upwards and by Ocneanu compact-
ness Ay N Ay = Aj 1 N Ago.

One might consider the general situation of a sequence of commuting squares with a coherent trace as we
naturally get from the standard invariant. Ocneanu compactness certainly will not generalize, but Pimsner

and Popa provide a generalization of the Wenzl index theorem in [PP86].

Proposition 2.3.3. [PP86] Let

By, ¢ B ¢ B, Cc --- B
U U U
Ao C Al C AQ c --- A

be a sequence of commuting squares with a faithful trace, tr, on |J, B,, B = (U, B,)", and A =
U, A,)". Letting E,: B, — A, and E: B — A be the unique trace preserving conditional expecta-

tions then Ind(E) = lim,,_, o, Ind(E,,).



CHAPTER 3
Planar Algebras

Planar algebras were constructed by V.E.R. Jones in order to analyze the standard invariant of subfactors. In
particular, the standard invariant of a subfactor can be axiomatized in the language of planar algebras due
to Jones or A-lattices due to Popa. For more information see [Jon21] and [Pop95]. Consequently, planar
algebras are a powerful tool for computations in and with the standard invariant and provide many methods
to construct and analyze subfactors. The approach to planar algebras presented here follows the conventions

and definitions in [Jon19].
Definition 3.0.1. A vanilla planar tangle T consists of the following data:
(i) A smooth disc DT C R? called the output disc.
(ii) A finite collection of disjoint smooth discs D that lie inside Int(DT) called the input discs.

(iii) A finite collection of disjoint smooth curves S that lie inside DT — U Int(D) such that its bound-

De®Dr
ary points belong to the input discs or the boundary of the output disc and all curves meet discs trans-

versely if at all. Elements of G are called strings of T.

(iv) The boundary of each disc is broken into a finite number of components called the boundary points of

D, the points in U s | N OD, and the intervals of D, the connected components of 0D — U S.

seS&r s€eSr
Each disc has a single marked interval that we will denote with a $. We will assign to each disc D

boundary data OD. For vanilla planar tangles the only boundary data is a natural number 0D =

np = #(boundary points of D). Call a planar tangle T a npr-tangle.

Example 3.0.2. Figure 3.1 is an example of a 9-tangle. Observe that closed loops are allowed in planar

tangles.

Remark 3.0.3. Given a diffeomorphism 0 of R? and a planar tangle T, then 0(T) is also a planar tangle.
This becomes clear with the observation that planar tangles are in one to one correspondence with the subsets

of R? obtained by DT — <U D) U (U 5) . Our goal is to define a multilinear map from a planar tangle up

©T GT
to orientation preserving diffeomorphisms. The main challenge to this goal is 'gluing’ together two different

tangles up to orientation preserving diffeomorphisms.

10



Figure 3.1: Vanilla Planar Tangle.

Definition 3.0.4. Given two tangles S, T embedded in the plane such that the marked and unmarked intervals
of D® coincide with the marked and unmarked intervals of the internal disc D € D1 and the union of an two
strings of S, T that share a boundary point is a smooth curve. Then we may take the composition of these two
tangles, T o S where D75 = D7 UDg — D, DT°% = DT, and S5 is obtained by replacing the pairs of

strings in S U &g with nontrivial intersection by their union.

Example 3.0.5. Let S and T be the tangles shown below where the discs D° and D3 € D coincide in R?.

Then we can form their composition T o S =g

Definition 3.0.6. A shaded planar tangle is a planar tangle T with the additional data:

(v) An assignment of shaded or unshaded to the connected regions of DT — <U D) U (U 5) such that
Z)T Sr
every string belongs to the boundary of a shaded region and an unshaded region.

11



For a tangle to admit a shading, it is necessary and sufficient for all discs to have an even number of boundary
points. Thus let np be half the number of boundary points of D. Then we may classify the discs of a shaded
planar tangle by the data 0D = (np,+) ((np, —) resp.) if the marked interval of D is in the boundary of

an unshaded region (a shaded region resp.).

Example 3.0.7. Figure 3.2 is a (2,+) shaded planar tangle.

Figure 3.2: Shaded Planar Tangle

Remark 3.0.8. Just like vanilla planar tangles, shaded planar tangles are acted on by diffeomorphisms of

R? and if all the data fits, we may compose two shaded planar tangles.

Definition 3.0.9. A unital shaded planar algebra P is a family of vector spaces P, +,n € N U {0} with

multilinear maps

ZTZ >< P(')D — P@DT
De®r

for every planar tangle T such that:
(i) If 0 is an orientation preserving diffeomorphism of R?, then Zoery(f) = Zp(f 0 0).

/(D) ifD#DS

(ii) Zpos = Zp o Zg whereZToZS(f):ZT(f) and f = .
Zs(f |os) ifD=D?

We will refer to elements of X Pyp as labellings of the tangle T. Unital here refers to the map Zr from
De®Dr
tangles without internal discs to P, 4.

Definition 3.0.10. A unital shaded planar algebra is a x-planar algebra if each vector space Py, + is over C
and has an involution such that Zyr)(f)* = Zr((f o 0)*) for all orientation reversing diffeomorphisms 6,

tangles T, and labellings f.

12



Remark 3.0.11. An important feature of shaded x-planar algebras with Py + = C is the involutive algebra

structure and inner product on Py, + coming from the tangles:

In these tangles we use a thick line with the label k or 2k to denote parallel strings and we have omitted
the shading. We will omit the shading when it is dependent on the number of parallel strings in a tangle or
when the appropriate shading is determined by context.

Observe that (- | -) could have been defined in k different ways based on the placement of marked inter-
vals. The following tangles are called rotations and will be useful to address the alternate definitions of inner

products.

p(z) = %ce forxz € P, 4 and p(z) = ece forx e P, _.
Definitions 3.0.12. Given a shaded *-planar algebra P over C, we have the following terminology:
(i) P is finite dimensional if each P, i is finite dimensional.
(ii) P is C*-planar algebra if each P,, 1 has a norm making it into a C*-algebra.
(iii) P is central if dimP, 4+ = 1.

(iv) If P is central then it has loop parameters §, = and §_ = which are both complex

numbers. It follows that these loop parameters are real numbers for x-planar algebras.

(v) If P is central then it is spherical if (p*(A) | p*(B)) is independent of k for all n and for all A, B €

P, 1.
(vi) P is called a subfactor planar algebra if it is a finite dimensional spherical C* planar algebra.

Theorem 3.0.13. [Jon21] The standard invariant of extremal finite index type 11, factors admits a subfactor

planar algebra structure where Py <™ = N’ 0 My, PNSM = M’ N M4y, and 5, = 6_ = \/[M : N].

13



Theorem 3.0.14. [Jon21] and [Pop95](see also [GJS10]) Every subfactor planar algebra with loop param-

eters 6 = 6_ > 1 arises as the standard invariant of an extremal finite index type 11 subfactor.

Given a subfactor planar algebra, we may build the fusion algebra directly using the projection category
of the planar algebra. The following summary of the projection category can be found in [BHP12] and in
[Bis97]. Bisch shows the fusion algebra for N — N bimodules can be obtained from the projection category

by taking the complex linear span of irreducible objects in the projection category.

Definition 3.0.15. Ler P be a subfactor planar algebra. Let the objects of the projection category,
Ob(Proj(P)), be formal finite sums of projections in P»,, ; for any n € NU{0}. Morphisms x € Mor(p, q)

forp € Proj(Pa, +) and g € Proj(Pay, ), are elements of Py, 4 such that

called intertwiners of projections. Composition of morphisms x € Mor(p,q) and y € Mor(q,r) for p €

Proj(Pon +), ¢ € Proj(Pam +), and v € Proj(Pay +) is given by

®

5 5
TY = Dy Joe 2

The morphisms between formal finite direct sums of projections are matrices of the intertwiners defined above.

Proj(P) is a tensor category when equiped with the tensor product

HOND O
P@a=ls(r) s(s)| and TRY=|s(x) s(v)
DD ) @

for projections p, q and morphisms x, y. This tensor product is extended linearly to formal finite direct sums as
well. Proj(P) also has a duality operation and adjoint. The duality operation on projections and morphisms

is given by

The adjoint on objects is the identity. For morphisms the adjoint is the x-transpose.

Such a category is an example of a rigid C*-tensor category, a definition of which can be found in
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[BHP12]. Then the fusion algebra of a subfactor is given by the complex linear span of equivalence classes of
irreducible objects in Proj(PY M) with addition given by formal direct sums, multiplication by the tensor
product, and the adjoint is the conjugate duality operation of complex linear combinations of projections.

We now define the spin planar algebra (see [Jon21]).

Definition 3.0.16. Fix a natural number Q). Let Pgﬁn =C Pg?jn = C@ and Piﬁn = (C?)®" where
elements in Pfﬁn correspond to a disk with 2n boundary points and n shaded intervals. Fix an inner product
and a basis B = {1, ..., Q} on CO. Vectors v € (CR)®" are a (unique) linear combination of simple tensors

B®" = {®" 5|8, € B}, v = Z vpb, vy, € C. Then the following rules will equip these vector spaces

beBen
with a unital shaded *-planar algebra structure.

(i) A state on a shaded planar tangle is a map o : {connected shaded regions of T} — {1, ..., Q}

(ii) For each disc D € D, a state o induces the following labelling of shaded intervals of D. Count the
shaded intervals of D in a counter clockwise direction starting after the marked interval. Set op =
®;2 s; where the it" shaded interval belongs to the boundary of a region labelled by s; € B. If D has
no shaded intervals then op = 1.

(iii) Define (R1_15;)* = QL Sp—i+1for @1 8; € PPV and (@7 8;)" = @1 $n—; ® sy, for

spin

®f_18i € Py — then extend x to P, by conjugate linearity. For example,

(iv) Then we may define the action of a tangle T on PP with a labelling f € X Pap by
De®r

zFH =Y I fDepopr,

o De®Dr

where nr is the number of shaded intervals in the output disk, f(D) = Z f(D)pb forn =np, and

beB®n
an empty product is interpreted as 1.

This is the spin planar algebra denoted by P*""". The shaded planar algebra PSP"™ has the same underlying
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vector space as PP and is obtained from PP with the modifications to the action below.

(v) Given a shaded planar tangle T' and a region v in T, define Rot(r) as follows: Remove input disks
with zero boundary points. Then give r a counter-clockwise orientation inducing an orientation on the
boundary of v which is a union of piecewise smooth curves. Define Rot(r) as the rotation number of

the oriented boundary of r.

(vi) Given a shaded planar tangle T, define

- 11 ()"

shaded regions
rof T

(vii) Finally, we define the action of a tangle T on P°P™™ with a labelling f € X Pgme by
De®dr

Z3P(F) = Q" Rot(T) Z3P™ (f).

This normalization makes the loop parameters of PSP"™ equal to each other, 5, = 0_ = /Q.

To illustrate the action of tangle on PSP consider the following example. Fix Q = 5andletz = 1 ® 2,

y = 2 ® 3. Then we can evaluate the tangle

[J)%

a,b,c,d

. 1 O
— R ( ) a®ay5®e&®d®@=721®d®
w 5

We work with PSP in this dissertation since both of its loop parameters 5, and §_ are equal and the

type I Reidemeister moves we will perform later have a cleaner presentation.

Proposition 3.0.17. ([Jon21],[Jon19]) PSP is a shaded C*-planar algebra i.e. each PSp '™ becomes a

C*-algebra with the multiplication tangle

$

)

@,

adbedl

and the x-operation. Furthermore, PSP™ has loop parameters

6+::\/§-id and 5,==\/§.id.
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n,— °

Observe that Pf’ T”, respectively P°P™ has a normalized trace ¢ given by the tangles

1 [ 1
tr(xz) = W $, respectively  tr(z) = ﬁ

where some shadings have been omitted and thick lines denote n parallel strings. We will use PSp *" to denote
these C'*-algebras and in more complicated tangles we will omit the shading.

The trace provides a normalized inner product on Pi ﬂ_m given by the tangle

3
&1y, = ﬁ NG D $ . It will also be convenient to work with the unnormalized inner product

€1 spin = $$ that we call the spin inner product.

3.1 Hadamard matrices and the Spin Model

In the following section we will utilize the spin planar algebra to describe a family of symmetric commuting
AQ C M, Q ((C)
squares. The squares of algebras that we will refer to as spin models are of the form |y U

C C HAQH*

where A is the diagonal algebra inside Mo(C) and H = (H; ;), . is a matrix satisfying the biunitary

2%
condition in the sense of proposition 2.2.6. The square is a symmetric commuting square iff [ is a unitary

and |H; ;| = for all 7, 7. Many of the constructions in this section can be found in [Jon19].

Proposition 3.1.1. Let P, Sp " denote the C*-algebras defined by the spin planar algebra. Then there are

injective unital trace-preserving *-algebra homomorphisms i, : PSp AN ns _len | defined by i,(x) =

s ©
e ]and PQSfT = Mgn(C), PQSffﬁ + = Mgn(C) ® Ag. Furthermore, the tower of algebras
N ’

C= (39 Pyr™ C Pls e P2S P ... is a basic construction with Jones projections e, = ﬁ ‘$

N

Proof. 1t is obvious that i,, is a unital injective *-algebra homomorphism. Then using the loop parameters
in the diagram for ¢r(i,,(A)) will show that i,, is trace preserving. To show these algebras form basic con-

structions, we should first compute the conditional expectations F,, PSp it zn(P;Z ﬁ_m) We observe

3 @ $
that £, : ’ — % } is a projection onto zn(PnS{';ﬂ) and satisfies tr(A4) = tr(E,(A)).
[ ]

Spin

Thus these E,,’s are the conditional expectations and e,ze, = E,_s(x)e, for x € P 4 This im-
plies that Pi P contains the basic construction for PP 2 C p3r 11” . Proceeding by induction, ob-

serve that C = PSPZ” PSp " = Aq and so Py Spin contains the basic construction Mq(C). Since

17



dz’m(P;T") = Q2 P;ﬁm ~ Mg(C) and so P(ff" C Pff" C PQS:T" is a basic construction. By an

identical argument, Pgﬁf > Mg (C) and Py 22 Mgn(C) @ Ag imply that Pfffé’Jr = Mgn+1(C).

Therefore C = POS: T” C Pf T " C P;: T” C ... is a basic construction and we have identified the algebras

and Jones projections. O

Remark 3.1.2. We may realize the isomorphisms of algebras above with

MQn(C) %Pés;?j_f byeilﬁj] ®®eln7Jn — Qn%1®®£n ®,}n®31 and

Mg (C)® Ag — PSPl L byei, j, @ @ e, j, @erp i /Q 118 @i, 0k ®jy @y
where the e; ;’s are matrix units of Mg (C).

Definition 3.1.3. Given a shaded planar algebra P, a pair of elements, u,v € Ps ., is called bi-invertible if

wv = 1 and p(u)p~t(v) = %1. In terms of planar diagrams

] 5]

ORW O |
a and a 5

] 5

If u is also a unitary then v = u* and we call u a biunitary.

$
$
$

Definition 3.1.4. ([Jon21],[Joni9]) A Q x Q complex matrix, H, is called a complex Hadamard matrix if
HH* = QI and |H; ;| = 1 for all i, j. Define u = Z%:l Hi7j% ®je PQST" and observe that u satisfies

the following equalities

B e M
£ £

One might expect the first equality above to yield @ - id pspin, but the action of the planar operad on
2,+

PSP absorbs the factor of . We encourage the reader to verify the equalities in P°P*". Observe that these

are equivalent to type 11 Reidemeister moves and so we will adopt notation from knot theory for v and u*.

18



Let

then we have the type I Reidemeister moves

Let u be a biunitary in the sense of proposition 2.2.6 with respect to the square U and

AQ C MQ ((C)

C C ulgu®
the unique trace on Mq(C). Identify u,v € P;T" by u = \/621%:1 u; ;1 ® j and v = u* we see that

these two notions of biunitarity coincide. Furthermore, these conditions are equivalent to u being % times

a complex Hadamard matrix.

Proposition 3.1.5. Given a complex Hadamard matrix u let

where we have omitted the shading as it depends on the parity of k.
Then Yy pn, Pun: P;Z T” — Pf len . are injective unital trace preserving x-algebra homomorphisms such
that ’(/}u,n Olp_1 = ip o z/]u,nfl and Pu,n © Ip_1 = Ip O Pu,n—1- Thus {wu,n}n and {Sﬂu,n}n induce

. 1
endomorphisms 1, p,, on (Un Pfff”) . Furthermore, 1, (e,) = ey 1 and py(€,) = €ni1.

Proof. These maps being trace preserving and unital algebra homomorphisms follow immediately from type

1T Reidemeister moves. The fact that they are *-homomorphisms follows from

$ $
m = m m = m The compatibility between 1y, i, ¢y 1 and i; comes di-
3| @

3@
rectly from type I/ Reidemeister moves. For example $ } = $ . Injectivity then follows from

faithfulness of the trace.

Due to the compatibility with inclusion maps, we can define ¥, 0, : J PR — U, P,i ’jrm by

n = n,+

19



Yy () = Yyn(z) forz € P,f:’f" and Y, (z) = Py n(x) for z € Plf”f". Furthermore, 1, and ¢, ex-

tend to the weak closures since they are trace preserving. Finally, observe that
\
wu(en) = % $ = % $ = ep+1 and similarly Qou(en> = €n+1- O

A 0

Remark 3.1.6. The homomorphisms 1, and @, provide a description of the spin model and the basic con-

structions coming from the spin model. This is immediate from the observation that

. $
Yu(z) = $ §
$

Furthermore, since ¥, (ey,) = ent1, the basic construction of the spin model is

Spin Spin
Ag C Mg(C) PR C Py

=uzu* andso | U = U U

u

u

C C ulgu* C  C uPH™)

Spin Spin
P c P
@] @]
Spin Spin
wU(Pn£)17+) - /(bu(Pnf% ) n>1
. 1 . 1
and so the subfactor 1, ((Uk Pslj:”) ) C (Uk P]ff:") has index Q). Going forward N C M will refer
to this irreducible subfactor coming from the spin model and N C M C My C --- C My, C --- its basic

construction. Similarly, we can deal with the vertical subfactor coming from the spin model. Observe that
Spi Spi
Aqg C Mg(C) Yo (PLE") C PR
U U = U U  bythemap Ad,~. Then the vertical subfactor of the spin
* Spi
C C ulgu C c P
.. . Spin " Spin "
model is isomorphic to y» (Uk Py ) C (Uk Py ) .LetPC Rand PC RC Ry C --- C
Ry, C --- denote the vertical subfactor and its basic construction. In the next section we will use Ocneanu
compactness and the planar algebra description of the vertical subfactor to describe the higher relative
comutants of N C M. In general, very little is known about the standard invariants of spin model subfactors.

However, N C M has been shown to be a Bisch-Haagerup subfactor when the complex Hadamard matrix is

a twisted tensor product of group Hadamard matrices.

Definition 3.1.7. Let G be a finite abelian group. There is a canonical group isomorphism between G

and its Pontryagin dual G, 0: G — G. Associated to G is a |G| x |G| complex Hadamard matrix Hg =
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[ (G) C M|G| (C)
(04(h)), 1, which yields the biunitary connection for U ,ug = \/%Hg. This complex
C c CG]

Hadamard matrix is called the group Hadamard matrix.

Example 3.1.8. When G = Z,,, we have the group Hadamard matrix, H = (62”“/")0<k 1<n_p» and

ug, = ﬁH called the Fourier matrix.

Theorem 3.1.9. [Burl5] Let G and K be finite abelian groups and T' € A |q).| k| a unitary. Then the subfac-
tor obtained from the spin model corresponding to the complex Hadamard matrix u = (1@ Hg )T (Hg ® 1)

is Bisch-Haagerup (i.e. R® C R x K).

Remark 3.1.10. The construction H = (1 @ Hi)T(Hg ® 1) in the theorem above are often refered to as
twisted tensor products with a twist T. Since Bisch-Haagerup subfactors are well understood the standard

invariant for these spin models can be computed. For more information see [BH96] and [BDGO09].

3.2 The Angle Operator and Flat Elements

We have already seen how the spin planar algebra provides a description of the spin model subfactor asso-
ciated to a Hadamard matrix H. The first goal for this section is to use the spin planar algebra along with
Ocneanu compactness to describe the relative commutants of P C R. We will also identify the von Neumann

algebra generated by the relative commutants as the intersection of two subalgebras of M. The general situa-

N c M
tion U U where L and NV are finite index von Neumann algebras has been studied by Sano and
NNL c L

Watatani in [SW94] using an angle operator corresponding to the square of algebras. This observation is due
to V.ER. Jones and motivates this investigation of the angle operator from the spin model and how it relates

to the relative commutants. The following results can be found in [Jon19].

Remark 3.2.1. Applying Ocneanu compactness to P C R, using the symmetric commuting square,

Spin Spin
PrYT o PG
U U )
C c w (PSpin)
UNT n,+

we find that P' N R,y = (Pfﬁm)’ Ny, (P,f]_’ﬁ”) inside Pfﬂi”_s_. Observe that (Pls,ﬁm)’ ﬂPfﬂl is given by
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elements of the form g |g(y) |where y € Pip_m. Therefore 1, (x) € Pfﬂz belongs to (Pfﬁm)'ﬁwu (Pf’_’:")

. @,
iff there exists any € Py"" such that g ﬁ | = ls|s

Definition 3.2.2. We will call x € P, Spmﬂat with respect to u if there exists y € Pf%m such that |g ()

@,
@ S
= (v) | The flat elements with respect to u clearly form a unital subalgebra of Pn’pﬂ;" that we will
i

denote by Py |

Proposition 3.2.3. x is flat with respect to u iff ¥, (x) € (Pspm) N 1 ( PSpm Furthermore, for n,l such

that n + | = 2k, these are both equivalent to the existance of ay € PSpm such that g ¢ e $*

Proof. Letn+1 = 2kand z € P,f’_fn. If there exists an y € Plizim such that |5 ¢ = $ then

after applying type I Reidemeister moves we see that ¢, (z) € (Pls 5’:”)’ N wu(PSp *™). A similar argument

provides the opposite inclusion. O
Theorem 3.2.4. [Jonl9] P is a planar subalgebra of PSP".

Proof. Our goal is to show that Zr(f) is flat whenever f € X, _;, Pjp. To prove this we will decompose
an arbitrary tangle 7" with unshaded marked intervals.

First, we may represent input discs, D, in T' by cusps with all the strings connected to D meeting at a point.
Since there are only finitely many discs we only have finitely many cusps. For each string s € S we have the
smooth height function given by the projection 7, : s — R. As a consequence of Sard’s theorem and Morse
theory 7, can be uniformly approximated by smooth functions with isolated critical points. Furthermore, it
is possible to perturb 7" so the finitely many critical points and cusps have disjoint image under 7,. Thus we
may slice T" into a sequence of annular tangles that only contain one critical point or cusp. These annular

tangles must be one of the following

() @
(“) (m) ()]s e (v) T
Q Q
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where [, n, p, ¢ and r are constants such that all marked intervals are unshaded. It is now an easy computation
to show that each of these tangles is flat, provided the inputs A and D are also flat. Therefore Z7(f) must be

flat whenever f € X Pjp. O
DeDr

We will now compute the first two relative commutants of P C R directly. The flatness condition will

make this computation much more manageable.

Proposition 3.2.5. [Jon21] Py, and Py are isomorphic to C and so P C R is an extremal subfactor.
Furthermore, Py’ is abelian.

Proof. dim(Pg',) = 1is immediate since dim(P(f’f") =1.

Let z; and y; be the 7 coefficients of x, y € CQ = Pf f[i”. Consider the following state on the flatness

condition for y and z: | ¢ . This is equivalent to the equation u; ;x; = u; ;y; for all

i,7 € {1,...Q}. Since entries in v have modulus 1, we have z; = y; forall 4, jandsoz € C - 1.

Finally, observe that P; pin o~ Aq ® Ag and so Pj'_ is abelian. We also have an anti-isomorphism

pP oty Py, — P3 givenby p? oy« (2) =g s |=|s (a)s| | Therefore P!, = P'N Ry is also

abelian. O

Remark 3.2.6. Since Py', is abelian, P' N Ry = C* where k is the number of minimal projections in Py

In order to compute the minimal projections of this algebra we will need to take a closer look at the complex

Hadamard matrix we are using. Observe that the flatness condition for x and y

J i

. 1 — — . .
corresponds to the equation 70 Yo Tk Wi Wy = Yi jUi kUj k. This equation says x

5 g

A . $
. _ 5 L .
has eigenvectors v;; = . u; ;1 € PR with eigenvalues y; j, i.e. .- = Yi,jVi,j-

Definition 3.2.7. [Jon21] Define the Q® x Q? praofile matrix Prof(u) by

Q
d _
Prof(u)y, = E Uq,1Up 1T, 1Ud,1-
=1

From this matrix we will define the directed graph G,, on Q? vertices by (a,b) — (c,d) iff

Prof(u)fl’z # 0.

Theorem 3.2.8. [Jon21] The minimal projections of the abelian algebra Py’ are in bijection with the
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connected components of G,. Furthermore, if pc is the projection corresponding to component C' then

Proof. Let p be a minimal projection of P21f+ and v; ; = ZlQ:l u“ﬂjﬂ S Pf’f". Then pv; ; = ¥i;vi;
where y; ; is zero or one since p is a projection and v; ; is an eigenvector. Suppose that pv,;, = v, and
(a,b) is adjacent to (c,d) in Gy. Then (vap | Ve,a) gpin %me(u)jﬁ # 0 and so
PU¢.d = Ve,q. Therefore pv; ; = v; ; for all (¢, j) in the connected component of (a, b).

Conversely, let C' be the connected component of (a,b) and let pc denote the orthogonal projection
onto the subspace of Pf ff" generated by {v; ;|(¢,7) € C'}. Then each v, ; is an eigenvector of pc and so

pc € P3',. Since p is minimal and p < pe, p = pc. We can also compute the trace of pc directly, since

y;,; = 1 for exactly |C| pairs (4, j). Setting y = E(i’j) Yi ;i ® J, we have

O

Proposition 3.2.9. Let u be a 4n x 4n real Hadamard matrix with n > 3 and odd. Then Pﬁf L is two

dimensional.

Proof. By the previous theorem it suffices to show that profile matrix has two connected components. We
will first show that Prof (u)Zdb # 0 whenever a, b, ¢, and d are distinct.
.. -
Let a, b,c, and d be distinct and define four vectors 1" = (1)#,, 1° = (ug up)i?, V¢ = (Uaitier) i,
4n

. L
and v% = (Ua,iua,);" - Since a, b,c, and d are distinct 1, vy, v, and v4 are mutually orthogonal. Define the

following sets for €,d,n € {+,—},
5657] — {l: 17 ,4n ylb:617le:617l/ld:’l’/1}.

Since
Q

Q
PTOf(U)Z’f; = Z Uqa, 1 Up,1Uc,IUd,l = Z(Ua,lub,l)(ua,luc,l)(Ua,zud,z),
=1 =1
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we have that
Prof(u)gy = |Stst] + 1Sl 1S4 |+ 1S4 | = 1S | = [S4—4| =[Sty | = [S——].

By definition Sesn| = 4n and since v, and v, are orthogonal to T)
y n g

€0,ne{+,—}
Z |Ses | = Z |Ses—| =2n = Z |Se+n| = Z |Se—n| )
6766{+1_} 5a66{+a_} 67776{""7_} 67776{""’_}
and so Z |Seqt| = [Se——| = Z |Seq—| = [Se—+|
ee{+,—} ee{+,—}
and Z |Se++| - |S€——| = Z |S€—+‘ - |Se+—| .
66{"")_} Ee{+7_}

Together, these imply that

D ISeral= D 1Sefand > [Sepo|= Y S+l

66{«#,7} 6€{+,7} 66{4’77} EE{‘F,*}

Since v, and v, are orthogonal

Z |Se++‘ + |Se——‘ = Z |Se+—| + ‘Se—+|
€€{+,7} 6e{‘hf}
and so Z [Sett| = z [Ses—| and Z [Se—_| = Z [Se—+]-
ec{+,—} ee{+,—} ee{+,—} ee{+,—}

Hence, for all §,n € {+,—} Z |Se.5,y] = m. The same argument implies that Z [Sesm =n

E€{+,7} 66{“"77}

for all ¢, € {+,—} and Z |Sesn] = nforalle,d € {+,—}. Letting |S;44| = k we find that

ne{+,—}
Prof(u)g’)z = 8k — 4n # 0 since n is odd and k is an integer.

Then G, has two components given by sets of vertices {(a,a)la = 1,--- ,4n} and {(a,b)|a # b}. The

first component is obviously connected since Prof (u)f;i; = 4n and so it is the complete graph. Since 4n > 5

we may pick five distinct numbers a, b, ¢, d, and e from 1, - - - ,4n. Then we have edges (a,b) — (¢,d) —

(a,e) and (a,b) — (c,d) — (b, a) which connect all vertices in the second component. In fact, all vertices

in the second component are at most a distance of two apart.

Definition 3.2.10. Let 1®: P,‘z pin _, P;? fl” . denote the trace preserving x-algebra morphism
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@,

$3() | |[s . Observe that 1® extends to an injective trace preserving map

&

= RN

1®: (Un P,‘Zp_m) — M = (Un P,i’f") . Then we may define a von Neumann subalgebra
. "

L=1® (U PSP”’> of M.

n-n,—

Remark 3.2.11. We have already shown that P'(\R,,—1 = (PL5™) My (Py5™) 2 1@ PP ey (PIY™)

N cC M
and so (|J,, P’ N R,)" = PN L. Thus we have a quadrilateral of von Neumann algebras ) u -
NNnL C L

Let En and Ej, be the conditional expectations to N and L respectively. In [SW94] Sano and Watatani

defined the angle operator © = \/JExEpEn — Ex A E, and showed that the spectrum o(©) is finite iff
[M : NN L] < oo provided that M, N, L and N N L are 11, factors. Fortunately this generalizes to the non-
factor case in [JX04] where Jones and Xu show that Ind(Ennr) < oo iff {En, E}" is finite dimensional.
In fact, [JX04] will imply that N C M is finite depth iff the angle operator has a finite spectrum. We will use

a slight variation of the angle operator that is more convenient for a planar algebra description.

Definition 3.2.12. Let N and L be as above. Then there are unique trace preserving conditional expectations

En and Er,. Define ©, = ENErEx € B(L?(M)) as the angle operator.

Theorem 3.2.13. [JX04] Let M be a sum of finitely many finite factors with faithful trace tr. Let £ be a
finite set of unital finite index subalgebras of M (i.e. Ind(Eﬁ/I) < oo for L € L) and for each L € £ let
ep be the projection from L*>(M,tr) onto L*(P,tr). Letting F = {er|L € £} and K = (.o L then

Ind(E¥) < oo iffdim(F") < oco.

Proposition 3.2.14. P C R is finite depth iff Ind(EL, ) < .

Proof. (=) Suppose that P C R is finite depth. Then for n large enough the square of algebras,
Yu(PRE")C O u(PIY)

U U )

leRn—l C leRn

is a symmetric commuting square which generates the subfactor N N L C M and so Ind(E¥. ;) = [M :

NNI|< oo
k"l
(<) Suppose that P C R is infinite depth. Let P’ N Ro,,—1 = @ Mg, (C) be the multi-matrix decompo-
k=1
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sition of P'NRg,,—1 and s(—”g = (SI(Cn))lngkn the trace vector for P'NRa,—1. Since wu(PQSnpi') = Mgn(C),

it is a factor with trace vector tTng = (&) and P'N Ry, 1 C ¢u(PQS£ Zf:) has an inclusion matrix of the form

Q'n.
G = (gk7l)1§kgkn7l:1 where the g;, 1 > 1 are integers. Since the traces must be compatible s,(cn) = %;, . Then
kn
by theorem 2.1.4, Ind(E,) = Z min{gx 1, dx }gr1 > kn, where E,, is the unique trace preserving condi-
k=1

Spin Spin
¢u(P27L,+) C wU(PQn-&-Q,-&-)
tional expectation for P’ N Ry,,_1 C ¢u(PQS,fT) Since U U is a commuting

PNRyyy C PN Rop41

square for all n we may apply proposition 2.3.3 and so Ind(E¥., ;) = li_)m Ind(E,) > ILm kn=o00. O
n oo n oo
Corollary 3.2.15. N C M is finite depth iff #0(0,,) < oc.

Due to Sato in [Sat97], N C M is finite depth iff P C R if finite depth. Thus the corollary follows from
the previous proposition and the equivalence, dim{en, e}’ < 0o < #0(0,,) < co. If {en, er}” is finite
dimensional then ©,, must have a finite spectrum as ©,, € {en, ey }”’. If ©, has a finite spectrum then there
is a positive integer n and a polynomial p(x) with degree less than n such that © = p(©,,). This implies that
dim{en,er}’ < oo as words in ey and ey, of length 2n + 3 or greater can be reduced to linear combinations
of words of length less than 2n+3.

We now find a description of the angle operator on the planar algebra | J,, P;Z I_’:" C M. The following
lemma is a standard technique in planar algebras and C*-tensor categories and will play an important role for

computations with the angle operator.

Lemma 3.2.16 (Cable cutting). Ler {b;}%, C P;Z """ be an orthonormal basis of P,i P with respect to

<' | '>S;m'n’ then

j . . . . i 53
Proof. Observe that PQSrf’ " =2 Mgn (C) has a faithful irreducible representation on P;Z P by af =

forz € PQSTﬁ T and £ € Pi ﬁ_i". Taking {b;“}?:l as a basis for P,LS ’fn, both sides of the equality above act by

the identity, hence they are equal. O

Proposition 3.2.17. Let {b;}?, C Pf ff_i" be an orthonormal basis, then for x € Pfﬁ‘{b +» Ex and Ey, are

given by the following diagrams:
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@,

0. (w)) = 5 @3

Proof. First, tr(ziy(y)) = tr(En(z)Yu(y)) forally € U, Pi’_’:" follows from type /I Reidemeister

moves and the loop parameters of PSP",

tr(zyu(y)) = = tr(En(2)du(y))

\/@nJrl

Similarly, tr(zy) = tr(Er(z)y) forally € 1@, Pi”_i"’ can be shown from the cable cutting lemma 3.2.16
and the loop parameters of PSP, Finally, the angle operator tangle follows from the tangles for £y and

Er. O

Definition 3.2.18. For a biunitary u define the operator 0., : | J,, Pfffn — U, PP by the tangle

n = n,+

Since 1, : L2(N) — L2(M) is an isometry and ©.,,1,, = 1,0, 0., defines a bounded operator on
———— "l
U, P27 \which we will identify as L*(N).

n = n,+
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We will also use the following notation to simplify the use of biunitaries. Let|g T denote n parallel

strings with the left most string being oriented up and alternating orientations from left to right. Similarly let

$ T 1 denote alternating orientations from right to left.

Applying the algebra isomorphism Ad Iz He yields

Spin Spin
Aqg C Mg(C) Yus (PLE")  C PyY
U U = U U
* Spin
C C HAgH C c PY

and so O« is the angle operator corresponding the vertical subfactor. Since

w used for crossing u™ used for crossing
u used for crossing u* used for crossing

we can express O, with tangles where u is used to interpret crossings. Here we have these tangles where u

is used for the crossings and the middle £ strings have alternating orientations

Proposition 3.2.19. 0(0y|psein) = 0(bg]psein) = 0(0,7|pspin) = 0(Ou~|psein) and dim(P}!, ) =
k.t k,+ k,+ k,+ ’

dim(Py ) = dim(P",) = dim(P;"", ) for all k € N.

Proof. Fix k € N and define a conjugation on P,fff" by € = Y jcper Gob where & = 375 pei &b, & € C

and B is the basis used to define the action of tangles on PP, Observe that 0,,(¢) = 0z(£) and so the

eigenvalues of 6, | ,spin and 0] ,s»in coincide and the eigenspaces are isomorphic by conjugation.
k,+ k,+
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Define

®
Our(n) = 5 {)

u used for crossings

If 0,(§) = X and A # O then 0,7 (¢, (&) = ¢u(0u(§)) = Apy(€). Furthermore, ¢, () # 0 since
Ok (Pu(8)) = Q0,(&) = QA # 0. This implies that a(0u|P’f;rn) and G(HUT\PETTL) coincide and there is a

bijection between eigenspaces. Therefore U(9u|PSpin) = 0(Ox| psein) = 0(Oy7| pspin) = (O ) and
k,+ k,+ k,+

dim (P}, ) = dim(Py ) = dim(Py ) dzm(P“ ). O

3.3 A Tunnel Construction for the Spin Model

The tunnel construction for subfactors is a useful tool in subfactors, however, the tunnel construction is not
unique, and concretely realizing a tunnel inside B(L?(M)) can be challenging for a general subfactor. We
have the two *-algebra homomorphisms ,, and ¢, which will provide a concrete realization of a tunnel
construction for spin model subfactors coming from the spin planar algebra.

Observe that the planar tangles thus far have no intersections between two oriented strings. This situation
leads to an ambiguity in how the tangle should be evaluated. The construction that follows requires an update
to our conventions to avoid this ambiguity. Since biunitaries satisfy type /I Reidemeister moves we will
adopt the crossing conventions from knot theory. This means every intersection of strings will have an over
string and under string and in general both strings will be oriented. Then the over string and its orientation

will determine how we replace the crossing with a complex Hadamard matrix.

5%

With this convention we still have type /I Reidemeister moves but we should be careful to never apply

type I or type 111 Reidemeister moves.
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Remark 3.3.1. There are complex Hadamard matrices that allow type I Reidemeister moves. For example

/
Yoo Hiw=+/Q foralli lﬁ‘[ b J = [ U }where H is the biunitary used. In fact, a real Hadamard

matrix satisfies all type I Reidemeister moves iff it is regular with ones on the diagonal (e.g. 2162:1 H; =
ZlQ:l H;; = Hy, = 1foralli,j, k). The following 4 x 4 Hadamard matrix is regular and and has ones on

the diagonal

Proposition 3.3.2. Let N = 1, (M) C M denote the spin model subfactor. Then

Yo (u(M)) C (M) C M and @, (Y (M)) C @y (M) C M are instances of the basic construction with

. 1 .
€ Pgsffn CMand f = — € P;ﬁm C M respectively.

V@

Jones projections eq =

1
VQ

Proof. Let N_y = 1, (¢, (M)). By the abstract characterization of the basic construction it suffices to show

that [eg,y] = 0 forally € N_; and En(eo) = [N : N_4]~! = [M : N]~! (see [PP86]). Let w € P5",

then by applying type I Reidemeister moves

wu(@u(x))et) = gr) = 60¢u(¢u(z))

-

Since |J,, Pi’f" is weakly dense in M, v, (gou (Un Piﬁ")

N—

is weakly dense in N_; and so [eq, y] = 0 for
ally € N_;.
Observe that [M : ¢, (M)] = @ since this subfactor comes from a spin model. Then [M : N| = Q =

[t (M) = 1y (0u(M))] = [IN : N_4] since v, is an injective trace preserving *-algebra morphism. Finally,
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we can compute E(eq) directly.

Therefore N_y C N C M is a basic construction. Proving that ¢, (1, (M)) C ¢, (M) C M is a basic

construction is identical. O

Corollary 3.3.3. Since @, (¢¥,(M)) C @ (M) C M is a basic construction, (¢, o ¢,)(N) C N_3 C N
is also with the Jones projection e_1 = 1, (f). Thus we have a tunnel given by N = Noy, N_o;, = (¢, ©
©u)*(No), N_or_1 = (Py 0 0u)*(N_1) with Jones projections e _op,_1 = (1, © u)¥(e_1) € N_o and

e—akt1 = (Yu © pu)*(e0) € N_oy.

Remark 3.3.4. This particular tunnel for N C M admits a planar algebra description (i.e. a grid of
dense subalgebras with traces, Jones projections, and conditional expectations given by planar tangles with

crossings). This is a direct consequence of 1, and ., being maps defined on the planar algebra PSP™",

Proposition 3.3.5. Let ®Y; = (¢, 0 ¢u)", DY 1 = (Y 0 @u)" 0 ¥y, and define A_; ; = @?(Pfffﬁr). Then
Ay C Ailijn
U U is a symmetric commuting square for j > 1 > 0 with respect to the traces induced

Aij C Aoijn

by tras.
Bt cop, o R,
Proof. Since both U U and U U are symmetric com-
Spi Spi Spi Spi

muting squares, so are all their images under repeated application of the trace-preserving *x-isomorphisms 1/,
Ay C A+

and ¢,,. Every square of algebras U U is obtained this way. O
Ay C Aijn

Corollary 3.3.6. We have the following grid of symmetric commuting squares that generate the tunnel for
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N C M defined above.

C=A400 C Ao1 C Ap,2 Cc Az C -+ C M
U U U U

C=4,, C A1 c A,43 C -+ C N

U U U
C=A49 C A3 C -+ C N,

Furthermore, the Jones projections for the tunnel belong to the following algebrase_,, € A_,, ;12 forn > 0.

Alternatively, A_,, , can be obtained from A_,, , = {e2—n} N A1_p m.
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CHAPTER 4
Symmetric Enveloping Algebras

The symmetric enveloping algebra construction associated to a subfactor with finite Jones index N C M is
due to Popa and is denoted by S = M g M°P (see [Pop94a] and [Pop99]). Let M°P be the von Neumann
algebra with the underlying vector space M, multiplication a -°’ b = ba and the usual adjoint. S is the
unique I7; factor generated by commuting copies of M and M°P along with ey such that M’ NS = M°P,
(M°PY NS = M and ey implements the conditional expectations for both N C M and N°? C M°P.
For this construction N C M must be finite index and extremal since we must have a coherent trace on
M’ N My, = M°P N M, C S. For more information see [Pop94a] and [Pop99].

An important algebra to keep in mind during this construction is C*(M, ey, JMJ) C B(L*(M)).
Observe that C*(M, ey, JM J) has the following properties (see [Pop99]):

(1) There are unital *-embeddings j: (M, exn) — C*(M, ey, JM.J),
JoP: (M, en)°? — C*(M,en, JMJ) such that [j(M), j°P(M°P)] = 0 and j(en) = j°P(en).
(2) C*(M,en, JMJ) is generated by j(M), j(en) and j°P(M°P) as a C*-algebra inside B(L?(M).

(3) There is a faithful representation 7: C*(M, e, JMJ) — B(L*M) such that j(M) and j°P(M°P) are

represented as von Neumann algebras.
@) (M) N C*(M, ey, M) = jP(M°F) and (j°F (M?))" 0 C*(M, en, M) = j(M).
(5) There is an anti-isomorphism x +— x°P given by Jz*J.

Let Sy denote a C*-algebra satisfying properties (1) — (3). We will now outline the symmetric enveloping

algebra construction given in [Pop99].

Lemma 4.0.1. [Pop99] Let j, j°P and Sy be as above. Then j and j°P extend to unital x-embeddings
J: Up M — So and j°P: | J, Mp* — So.

Proof. Let---N_,, C --- C N1y C Np =N C My = M C M, be a tunnel construction for N C M
with Jones projections e_; € Nj_g, eg € M and e; = ey. Then by the abstract characterization of
the basic construction M, = {j(M), j(e1), jP(eg’), .., 7P (es” )}’. Thus we may extend j by setting
J(ery2) = jP(e?,). However, this extension depends on the choice of the tunnel. We may extend j°” in an

identical way, and so there exist unital x-embeddings j: J, My — So and jP: |J, M? — Sp. O
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Lemma 4.0.2. [Pop99] Let j, j°P and Sy be as above. Then

Alg(j(My), joP (M) Uspanj P(MOP)j(My)5°P (M°P) Uspanj 3P (MP) (M)
k

= (Jspan §(M)j°P(MP)j ()5 (M) (M)
k
where ffk is the Jones projection for N1_y, C M C Mj.

Proof. Observe that f*, is a scalar multiple of the longest word in e_y;, ..., e and so ji(f*,) = jP((f*,)°P)
since j(ext2) = j°P(e”). Since the last equality contains j(A1) and j°P(M;") it suffices to show that
Uy, span 5 (M) P (M°?)j (f£,)j (M) (MP) is an algebra.

Let f°,, and f2* be the Jones projections for Ny_o;, C Ny_p C M and M C M, C Mayy, respectively.

Then
J(FERDI (M) (MOP)j(fE),)
< span (N1—k)j (f£0)5 (F22) 7 (N1-k) P (NY2 ) 5P (F221) )3 (FE) TP (NTE )
< span j(N1-x)j (N7 )3 (FE1)5 (FLk)3 7 ((F220) )i (FER)T(N1-1) P (NT2 )
< span j(N1-) 5 (N} (£251)3 (N1-k) 5P (NT2 ).
Therefore | J, span j(M)jP(M°P)j(f*,)7(M)j°P(M°P) is an algebra. O

For the following lemma, let the tunnel for N C M be indexed by N_j = M _j_;.

Lemma 4.0.3. [Pop99] Let j, j°P and Sy be as above and suppose that Sy satisfies the smoothness condition
J(M'' N My) C j°P(M°P) forall k > 1.

Then j(My) N Sy = joP(M™), jP(MP) NSy = j(M_y) and j(M] N M;) = j(M;) N j(M;) =
JOP(M) N joP (M), Furthermore there exist unique conditional expectations £ : Sy — j(M;)' N Sy

and £ : So — j°P(M;")' N Sy with the following properties:
(i) & (j(x)) = J(Eninn, () and € (7 (2°P)) = jP (Ernm, ()°F) for all x € My,

(ii) 5;' o Adj(y) = Ei"' and E; o Adjop (yor) = 5;‘ Sorall uw € U(M;).
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Theorem 4.0.4. [Pop99] Let Sy be as above and suppose that it satisfies the previous lemma. Then there
exists a unique tracial state T on Sy and the trace ideal, T, is the unique maximal ideal of Sy. Furthermore,

this trace is given by T = trpy 0 £ = tryp o &

Remark 4.0.5. A universal C*-algebra Uy satisfying (1) — (3) and the smoothness condition can be con-
structed and so every Sy satisfying these conditions embeds into this Uy. This implies the uniqueness of the
simple C*-algebra Sy /Z.. Then doing the GNS construction with T we obtain the 11, factor M g MeP =
S = 7. (So/T.)". We also have an anti-automorphism on S denoted by x s x° which comes from the

anti-automorphism op on Alg(j5(M), j(en), j°P (M°P)).

Definition 4.0.6. [Pop99] We call M I M°P the symmetric enveloping I 1, factor associated with N C M
eEN
and the subfactor M \/ M°P C M X MP°P is the symmetric enveloping inclusion where M \/ M°P is the
EN

von Neumann algebra generated by M and M °P inside M X M°P.
EN
We will now summarize some important results regarding the symmetric enveloping inclusion.

Proposition 4.0.7. [Pop99] An extremal finite index subfactor N C M has finite depth iff the symmetric
enveloping inclusion has finite index. Moreover if these conditions are satisfied then M \/ M°P C M X M°P
en

is finite depth and has index Z (dimp X M)2 where the summation is over all irreducible M -M bimodules

MX M

arising from N C M.

Theorem 4.0.8. [Pop94a] An extremal hyperfinite subfactor N C M is amenable iff |T||* = [M : N] where

T is the principal graph of N C M.

There are several equivalent notions of amenability for subfactors or their standard invariants due to Popa

(see [Pop94al,[Pop94b]).

Theorem 4.0.9. [Pop99] Let N C M be a finite index extremal subfactor. The following conditions are

equivalent:

(i) N C M is amenable.

(ii) M g M°P is hyperfinite.
(iii) C*(M,en, JMJ) is simple.

(iv) LetU be a C* algebra with embeddings of My and M;” satisfying conditions (1) — (3) and the smooth-

ness condition. Then the corresponding trace ideal, I, is trivial.
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4.1 Computation of 7(O7)

We now apply Popa’s symmetric enveloping algebra to the spin model. The existence and faithfulness of the
trace 7 on C*(M, ey, JMJ) for amenable subfactors plays a key role in this section. We will show that
the spectra of 6, and I'T"* coincide when N C M is an amenable subfactor in the sense of [Pop94b], where

" denotes the principal graph of N C M written as a V(Tepen) X V(Toqq) matrix. Note that in [KS99],
r 0 A

Kodiyalam and Sunder showed that and have the same spectrum with zero as the
r« o A* 0
only possible exception where A is the dual graph.

We will first define a collection of operators in C*(M, ey, JMJ) using the planar algebra formalism.
Then we will use this formalism to compute the value of 7 on these operators. These operators will be
defined on the dense subspace of L?(M) given by | J & P,f: f’: " then extended uniquely by continuity. Vectors
¢ e Uy P,i T " will be arranged with their marked intervals on the right and strings at the left. Then the

actions of z € PyX™ € M, Jy*J € JP;R"J C JMJ,and ey on & € PP} are given by

$
x€ = Jy*JE = ené = — .
g Yy 5 @*555 Nf \/@ $
(V=@
3

i
foré € Pk_ffl_i_.

$
This is well defined since , ,, commutes with the inclusion maps i (§) = l$ by type I1 Reidemeister
®©

moves.

Proposition 4.1.2. The linear operators © , for x,y € P,i ’f" extend uniquely to bounded operators on

L%(M) also denoted by 7, ,,.. Furthermore, these bounded operators belong to C*(M,en, JM.J).
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Proof. Let {b;}<, be an orthonormal basis of Pf " Then

for € € PP

QerinjJENg = Fbi,bjf = k+1,+

and so 7y, p, € C*(M,en, JM.J). Letiy, ia, ..., i, and j1, ja, ..., j, be indices taking values in {1,2, ..., Q}

then

n—1

Q 2 ﬂ-bilvbh Trb'iQ »bJ'2 © T

for ¢ € PP

b3, & = k+1,+

in

3 ¢ ¢ 3 ¢ ¢
R GBS
PSpin

Since elements of the same form as z for different indices 41, ..., ¢, form an orthogonal basis of P,)%", we

obtain 7, € C*(M, ey, JMJ) for any z,y € PS7". O

Lemma 4.1.3. Fix n,l € N and let x,y € P,iﬁ_in. Define the linear operator py y1: U, P,ff;7+ —

Spin
Us Pk+21,+

Spi
pa:,y,lf = f0r§ S Pkf;?JrLJr.

as
&*»

Then p,,.1 extends uniquely to a bounded operator on L?(M) with

Hpm,y7l||B(L2(M)) < \/aH@"Hsmn ||3/Hspm-

Proof. We will verify this inequality by obtaining an upper bound of ’(pxyy_ylf | m) for € and 7 in a dense

t’r‘jw

subset of L2(M). Let &,n € P,f _f;? 41,4+ then due to the Cauchy-Schwarz inequality and unitarity of the first

diagram below
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<Pz,y,l£ | 77>Spin = % I E % n1$
A
=o{(v)s
\ \- < 1Spin
§ 1/2 G 1/2
2, @@
< sle $

OLE: < V12l spin 191l im 1€l 5pir 171l i -

Since the tracial inner product is a normalization of (- | -) we have

Spin’
(P2 1€ I M iy, | < W% spin N0l spin 1€y, 11717y,

for all £, 7 in a dense subset of L?(M). Therefore p, ,; extends uniquely to a bounded operator with

szyy,l”B(L%M)) < \/@Hfﬂﬂsmn ”yHSpm' O

on
Lemma 4.1.4. Let {bl}g1 be an orthonormal basis of Pffﬁ” with respect 1o (- | ) g,,;,,» then Z b;b; =

i=1
" . d in .
\/@ 1 pfl;
This lemma follows from the cable cutting lemma 3.2.16 and the loop parameters for PSP,

Proposition 4.1.5. Let 7 denote the unique continuous trace on C*(M,en, JMJ) constructed in [Pop99].

Then for x,y € P;sz" and anyl € N

l

1
|T(7TI7y)| < ﬁ Hei«* (x)HSpln Heu* (y)Hszn :

Q3+t . Spin . .
Proof. Let {b;};2, be an orthonormal basis of P,"'" . Since 7 is a trace
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2041 1 N " Spin
T(May) = Y0 WT(@J@ I b Jb; ). Let & € Uy, Py, then

> bbb Ib JE = Y ——
41420t Vi eyt S 4142
i,j=1 \/Q i,j=1 \/@

$ 3

$ 3
O

$

3 —
1 1
= YN § 18| = AP0 (@).0L. ()1
V@ Q
—/
Since 7 is norm continuous and using Lemma 5.4.2, the proposition follows. [
dim(N' N M,,_
Proposition 4.1.6. 7(0O]) = im( ) forn > 1.

Qn+1

Proof. Let {bl}LQz1 be an orthonormal basis of Pf T" then by Proposition 3.2.17

Q
1 1 .
@u = [\ 4 — T for 6PSpm

iva i) Vg & e or€ @ B

and so ©,, € C*(M,en, JMJ) and 7(O7) is well-defined. Similarly, if {bi}gl is an orthonormal basis of

Pff_ﬁ " then

Qﬂ/
1 Spi
= g7 Zwbi,big for & € PUPY", .
i=1

40



Letd,, = dim(P}*, ) and choose an orthonormal basis, { fitdn of Pfj; and an orthonormal basis, {b; }]Q:nf dn

of (P;j;)L N Pi’f". Since the f;’s are flat, 77, 1, = VQ (fi | fi) 5pim €n = V/Qen and so

dn Q" —dy . Q" —dy,
n 1 - 1 dim(N' N M, _1) 1
7(03) = W ZT(Wfi,fi)"'W Z T(ij,bj) = Qn+i +Q”+1/2 T(ij,bj)~
i=1 j=1 j=1

It suffices to show that 7(m;, ;,) = 0. By Proposition 4.1.5 |7(m, s,)| < H%*(bj)H?spm for any [ € N.

Since the b;’s are orthogonal to the eigenspace of 6« corresponding to the eigenvalue A = 1 and 8,,-

Spin
P”-,+

is a positive, diagonalizable operator with norm less than or equal to one, ||6%,. (b;) H Spin < (1 —¢)! for some

0 < & < 1. Therefore 7(my, 5,) = 0. O

Theorem 4.1.7. o(IT*) C U, J(Q9u|Psp+m) with equality iff N C M is amenable where I is the principal
graph of N C M.

Proof. Observe that ©,, = ey 0O,ex and so O, belongs to the corner algebra ex C* (M, ey, JM J)en which
is faithfully represented on ey L?(M). Using the unitary, ¢, : L?(N) — enL?(M), defined in Proposition
3.1.5, we may represent ey C* (M, ey, JMJ)en on L?(N) by A: eyC*(M,en, JMJ)en — B(L*(N)),
M) = Prap,E. Set S = MenC*(M,en, JMJ)en) C B(L?(N)) and define a tracial state 7: S — C,

T(z) = QT(Yuxtpy). Since P, 10k = en, Outhy = Yuby, and T(en) = tryy (en) = é then 0, € S and 7
dzm(N’ n Mn—l)
Qn
Let T be the principal graph of N C M. T'T* defines a bounded linear operator in B(L?(V (Teyen)))

is a normalized trace with 7(07") = foralln > 0.

where L?(V (Teyen)) has the even vertices as an orthonormal basis. C*(1,TT*) comes with a state ¢(z) =
(@0, | 0.) where d, is the indicator function on the distinguished vertex of I'. Frobenius reciprocity in the fu-
sion algebra of N C M implies that ¢ is faithful (see [KS99]). By the Riesz-Markov-Kakutani representation
theorem, ¢ (resp. 7) induce unique positive Radon measures, d¢ (resp. d7) on the spectrum of I'T* (resp.
Q0,,). Since these spectra are compact subsets of [0, Q)], we may consider d¢ (resp. d7) as positive Radon
measures on [0, Q] by dp(E) = d¢(E N o(TT*)) (resp. for d7). Since ¢((IT'T*)™) = dim(N’' N M,,_1), the

moments of d¢ and d7 are equal,

Q Q
/ )\”dgi)()\):/ A"d7(A) foralln >0

0 0

and so by the Stone-Weierstrass theorem these measures define the same continuous linear functionals on
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C([0, Q]). Then by faithfulness of ¢

o(I'T*) = supp(dp) = supp(dT) C o(Qb.).

If N C M is amenable then, due to Popa, 7 is also faithful yielding equality of the spectra. If N C M is

not amenable then ||T'||* < [|Q6,|| = Q and so their spectra cannot be equal. o(Q0,) = U,, 0(Q0y| pspin)
n,+

remains to be shown.

U., G(QQU\PSTTL) C 0(Q80,,) is trivially true. Now let r ¢ o(Q60,) and observe that

1
dist(r,c(Q0,))
1 1
(T' - Qeu)|pr+Ln r— Q@u Pffin

50 0(IT) = U, 0(QOul psrin). O

_
r—Q0,

by continuous functional calculus. Since r — Q8,, maps P;Z pj" bijectively onto P,i ’f”, then

. Since Q0| pspin is diagonalizable, r ¢ | J,, 0(Q0y| psvin ), and
n,+ n,+

This provides us with two computational tools. First, if we already know a spin model subfactor is
amenable then we can compute elements in the spectrum of its principal graph. Second, since the spectrum
of a finite graph is contained in the algebraic integers, we may prove that a spin model subfactor is infinite

depth by finding non-algebraic integers in the spectrum of Q6,,.

4.2 Infinite depth spin model subfactors

First, we consider continuous families of complex Hadamard matrices, u;. Such a family yields a continuous
family of angle operators 6,,, | pSrin for each n > 0. This will imply that infinite depth subfactors are a generic
feature of continuous families of complex Hadamards. For a von Neumann algebra, A, let (A); denote the

unit ball and let

D(A,B) = sup{ inf |la—z|, inf ||b—2z||e€ (A);andb € (B)l}
IE(B)l IE(A)I

denote the Hausdorff metric between two von Neumann algebras, A, B C B(H). Then in [Phi74], Phillips
shows that if D(A, B) < e(< {5) then Z(A) = Z(B). The isomorphism ¢: Z(A) — Z(B) is given by
©(p) = q where ¢ is the unique central projection in B such that [|p — ¢|| < 4. Furthermore, if D(A, B) <
25—(1;18 and A is a type I von Neumann algebra then A and B are unitarily equivalent. See also [Chr79] for

similar results for type I1; von Neumann algebras using the trace norm instead of the operator norm.

Lemma 4.2.1. Let Ag C Ay C Ay C B(H) and By C By C By C B(H) be finite dimensional C*-
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algebras with unital inclusions. Suppose there exists a projection e € As N Bg implementing the unique
conditional expectations Eﬁ; and Eg; with respect to their Markov traces. Further assume that A; =
{A1 e}, By = {Bi,e}" and that D(A;, B;) < 5gargg for i = 0,1,2. Then the bijection between minimal
central projections above induces an isomorphism between I'ACAi+1 gnd TBiCBit1 and commutes with the

map p — pe forp € Z(Ap), sending p to a minimal central projection in As.

Proof. Observe that the inclusion matrix for Ay C Ay, is given by ['0C41 = (Yp,q) p,q min. central proj. Where

Vp.q =0ifpg =0and v, , = \/% otherwise. Thus, if D(Ag, By) and D(A;, By) are sufficiently
small then the centers of A; and B; can be identified. Furthermore,

D(pqAipq, ¢(pq)Bip(pq)) < 5si7g forany p € Z(Ag) and ¢ € Z(A;). This implies that the inclusion
matrices for Ag C A; and By C B are isomorphic. The same argument applies to the other inclusions.

The last claim follows from the observation ||pe — ¢ (p)e|| < |lp — ¢(p)|| < 3. O

Proposition 4.2.2. Let H: R — Mq(C), t — H,, be a continuous family of complex Hadamard matrices.

Then one of the following is true:
1. The corresponding principal graphs are equal for all t € R.
2. There are uncountably many t € R such that the corresponding subfactors are infinite depth.

Proof. Givent — Hy,lett — u; be the corresponding biunitaries. Then for all fixed n > 0, t — Q0,, | pSrin
is a continuous map to positive finite dimensional matrices. Since the spectra of positive matrices vary
continuously in the Hausdorff metric, if ¢t — o(Q0,, | Pfffﬁ”) is not constant then uncountably many ¢ yield
infinite depth subfactors.

Now suppose that ¢ — o(Q0,, | Pfypln) is constant for all n > 0. Since the spectrum is constant and
o (0, |Psp+n) = 0(Our |Ps,:rn), the 1-eigenspaces, Pf:; C P;zﬂm, vary continuously in the metric D(A, B)

defined above. Letting N; C M; denote the spin model subfactor from wu,, the previous lemma implies that
Sen = {t € RITM*<M* js isomorphic up to depth n to IN-<}

is an open subset of R for all n. By connectedness S, = R for all n and so (1) is true. O

Example 4.2.3. In [Pet97] Petrescu constructs a continuous family of inequivalent 7 X 7 complex Hadamard
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matrices given by

w? dw Wl W W w1
Wwowd o AWt w Wl

H = w3 WAt dw ow Wl 1
w3 w3 w w wt W1

w w w3 wd oW w1

1 1 1 1 1 1 1

where w = €™/ and \ € T. Letting u be the corresponding biunitary in PSP, 704 psvin has an eigenvector
2,+

given by
0 0 1 -1 %]m()@) :/—%Im(/\) %lm()\w)
0 0 —1 1 %lm()@) :/—%Im(/\) %Im()\w)
1 -1 0 0 %Im(/\) &—%Im()\w) &—%Im()@)
£= -1 1 0 0 %Im(/\) &—%Im()\w) ;;Im()@)
%Im(/\w) %lm(/\w) %Im()\) %Im(/\) 0 2Re()) —2Re(\w)
%Im()\) %Im()\) :/—%Im()\w) %Im()\w) 2Re(N) 0 —2Re(Aw)

I %Im()\w) %Im(/\w) \_/—%Im()@) \_/—%Im()@) —2Re(A\w) —2Re(\w) 0 |

1 , R
with eigenvalue - where £ € P;: P by the identification § = ZZ j=1&i,51 ® J. Thus every subfactor from

this continuous family is infinite depth.

This eigenvector was found numerically in Matlab and verified using the Symbolic Math Toolbox. The

Matlab code used can be found in the appendix.

Example 4.2.4. Let p be a prime and m € N such that p™ = 1 mod 4. Then the Galois field of order ¢ = p™,

Fy, has a quadratic character

0 ifa=20
x(a) = 1 ifa=10b?forsomeb € F,\{0}
—1  ifa # b* forany b € F,\{0}

Let jp, m be the nxm matrix of ones, I,, the nxn identity matrix, and define the q x g matrix, K, = x(a—b),
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indexed by F,. Then the 2(q + 1) x 2(q + 1) Paley type I1 Hadamard matrix ([Pal33]) is given by

jor K 1 -1 -1 -1

Letting u be the corresponding biunitary from H and Q = 2(q + 1), Q04| ps»in has an eigenvector
2,4

0 0 10
= &
0 K 0 -1

2

with eigenvalue \ = 5. Since q is a prime power congruent to 1 mod 4, X is not an algebraic integer

(¢+1)
and so Paley type I1 Hadamard matrices yield infinite depth subfactors.

Proof. Since the type I Paley Hadamard matrices are more easily expressed using tensors, we will work
in a tensor product of planar algebras as defined in [Jon21]. Letting P°P"™@ denote the spin planar algebra

with @ spins, it can be shown that PSP+l @ pSpin.2 o2 pSpin.2(a+1) by 3 bijection,

{%@ji: 1og+1,j= 1,2} o {k‘k: 1,...,2(q+1)}.

We will also identify matrices with the 2-box spaces of PP" via (az‘,j)%=1 =2 a; ji ® j. Non-self

adjoint matrices will be marked with a plus, [-]+, or a minus, [-]_, to denote whether they belong to P2S T" or
Py,

Define the following 2 x 2 and ¢ + 1 X ¢ + 1 matrices.

1 1 1 -1 1 0 0 1
H+: H,: D: E:
1 -1 -1 -1 0 -1 -1 0
0 O 0 0 0
- T — J = 1
0 K 0 Jgq—14 Jg1 0
L 0 0 . 0 —jig
]ql 0 jq,l 0

Then H =, (1 @ H_+JQ@HL +S5S®H and{ =S ®D. Since ¢ = 1 mod 4, K is symmetric, and so
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H=H*=H'=Hand ¢ = ¢ = £ = £ This implies that orienting strings and marked intervals for ¢ are
unnecessary. Similarly, marked intervals will also be omitted for real, self-adjoint matrices in the following

computations. To evaluate Q0,,(§), we first compute

Pu(§) =g $(

[~ ]
(-

For each intersection of strings we must substitute in H. Since H is a sum of three simple tensors, ¢, (£)
decomposes into a sum of 3% tangles with disks filled by the terms S ® D, I,41 ® H_, J@ Hy,or S ® H,.
The following identities force all but eight of these terms to be zero. Marked intervals will be omitted when

the identity holds for any choice of marked intervals.

. Spin,q+1
(i) Ipp1 = —— € Pyt

(i) ]

§ 5
(iii) = = 0. Similarly, any of the S disks may be replaced by T’

yielding zero as well.

(iv)

)

(vi)

+

Due to (iv), terms of ¢,,(§) without I, 11 ® H_ are zero. By (i), terms with two or more I, 1 ® H_’s are zero

due to (i7), (i47), or (v) depending on the placement of I, 1 ® H_ terms. Thus all nonzero terms contain
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one instance of I, 11 ® H_. Due to (4i7), terms with exactly one I,41 ® H_ and one J ® H disks are zero.
(4i7) further restricts how J ® H, and S ® H can be arranged to yield nonzero terms. Therefore the only

nonzero terms are

their adjoints, and rotations by p? (i.e. 7 radians). Since Kj, , = 0, we have

: $ 1 f
--- N O=0: R = O =t
=) Vet

1 1 -1
Applying these to the left-hand term in ¢,, () yields — i' ® . This term, its adjoint,
q
[] 1 -1

4
and rotations by p? sum to —ﬁT ® D. Similarly, since
q

a1 [
(== T(E] and (o = (1))
A

-1 1 -1
the right-hand term of ¢, (S ® D) evaluates to 4 ® . This term, its adjoint, and
[ ]

qg+1

rotations sum to

20¢—1) (F L1 ] I -1 2(q — 1)
® + ® =—(JRD+MQ®E),
¢+1 1 -1 1 -1 . :
and so
pu(§) =——=T®D+ (q_l)(J®D+M®E).
+1 +1
Letting
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we must evaluate ¢} (T’ ® D), ¢*(J ® D), and ¢} (M ® E). Fortunately, T, J, M, and E satisfy similar
identities to S and D which forces most terms of ¢ (¢, (£)) to be zero. The same argument given above
implies that nonzero terms from ¢}, (7' ® D), ¢;(J ® D), or ¢; (M ® E) contain exactly one instance of
I ® H_.

We now evaluate ¢} (T ® D). Identity (iii) restricts how J ® H; and S ® H can be arranged to yield

nonzero terms. Thus the only nonzero terms of ¢ (T' ® D) are

their adjoints, and rotations by p?. The left-hand term can be evaluated with a nontrivial fact of K. It can be

shown that K% = ¢I, — j,., using basic properties of F, and x. Then

1 -1
1 -1
+
q 1 -1 1 S 1 -1 1 S 1 -1
= ——5|(s ® -—5® =———85®
(q+1)3/2 .’ 1 1 g+1 1 _1 g+1 1 1
+ + +

The right-hand term from ¢} (T ® D) is zero since

3 3
—

4
T®D)=—-——5S®D.
T ®D) =~

Therefore

We now evaluate ¢* (J ® D). By identity (i), nonzero terms of ¢} (J ® D) cannot contain more that
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one instance of S ® H . This yields twelve terms of ¢, (J ® D),

their adjoints, and rotations by p?. Since

3 5 8 1 qg 0 1
H.J m@)nk M.J ) M.J 0= T = )
Va+l] g Jag X qg+1

F ] F
(s =0 and (Gy{(,2p=0
— = = =

where J? denotes the matrix product of J - J, the first two terms are zero and the last term of ¢ (J ® D)

becomes

$
1 ' 1 -1 1 1 -1
= 2)|® =—85®
q+1 q+1 1 —1 q+1 1 -1
[ ] .
Therefore

4
W(J®D)=—=8S®D.
6.(J@D)= —5e

Finally, we must evaluate ¢ (M ®FE). Due to identiy (v), the analysis of ¢ (J®D) applies to ¢ (M QE).
This yields twelve terms of ¢ (M ® E),
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their adjoints, and rotations by p?. Since

§ 3 § s $ 1 q 0 1
_[F s _ - JM
im=e: ’ OI0R= 771 |, Eate
q,q +
l.l.ﬂ =0, and ....

the first two terms are zero and the last term of ¢} (M ® E) becomes

1 - -1 -1 1 1 1
= —— (s7Mm)[® = S®
+

Therefore

(M FE — D.

42q

Combining these computations yields Q6, (&) = CESIE
q

g O

Since ¢ = 1 mod 4 is a prime power, 2(q + 1) is of the form 4n for some n > 3 and odd. By proposition
3.2.9 subfactors from Paley type I/ Hadamard matrices are at least two super-transitive (i.e. the principal

graph up to depth two is the same as A, up to depth two).
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CHAPTER 5

Generalizations to Commuting Squares

So far we have been focusing on the spin model subfactors and the spin model commuting squares. In this
chapter we define an angle operator for general symmetric commuting squares and perform the same analysis

of the angle operator. First we must define an appropriate planar algebra.

5.1 The Colored Graph Planar Algebra
Let ' be a finite weighted k-partite graph. We will define a k-colored planar algebra PT>¢ associated to T
called the colored graph planar algebra. The following construction is essentially Jones’s graph planar algebra

defined in [Jon19] with an added coloring. A very similar planar algebra can also be found in [MP14].

Definition 5.1.1. A k-colored planar tangle T is a planar tangle T where the regions of T are assigned
colors {1, ..., k} such that every string in T belongs to the boundary of two regions with different colors. The
disks of T are categorized with the boundary data 0,, which is the collection of sequences of n colors c;...cp,
ci € {1,...,k} such that ¢; # c;1+1 and ¢y # c¢,,. Starting with the marked interval of a disk D and reading the
coloring of adjacent regions counter-clockwise gives the boundary data of the disk 0D. We classify tangles

by the boundary data of their output disk 0D .

Example 5.1.2. Figure 5.1 is an example of a bgbyryrbg-tangle.

Figure 5.1: Colored Planar Tangle

Definition 5.1.3. Let I" be a finite weighted k-partite graph, k > 2, with parts {Fi};?:l and nonzero weights

w: V(') — C. The elements of {1, ..., k} will denote the colors for the colored planar algebra. For n € N
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let Oy, be the collection of sequences of n colors ¢j...cn, ¢; € {1,...,k} such that ¢; # ¢;11 and ¢1 # cp.

Define Ly =V (I's) for 0 € 04,
Ly = {pointed oriented loops (v1,€1,v2, €2, ..., Uy, en)|ei e BT, T, )andd = c, ..., cn}

for & € 0, and Pg’c = C[[Ls]), the vector space of all functions on Ly. We will need the following objects

to turn this into a planar algebra:

(1) A state o on a k-colored planar tangle T is a map

o: {regions of T'} H{strings of T} — {vertices of T'} H{edges of T'}

such that o sends i colored regions to vertices in the I'; component and strings to edges such that if R and
Ry are two regions both having S as part of their boundary, then (S) is an edge of T connecting o(Ry)
and o (R3). For each disk D we define a pointed oriented loop o (D) = (o(r1),0(81), .., 0(rn),0(81))
where the r;’s and s;’s are the regions and strings adjacent to D when read off the boundary of D in a

counter-clockwise direction starting at the marked interval.

(2) Given a k-colored planar tangle T and a region v in T, define Rot(r) as follows: Remove input disks
with zero boundary points. Then give r a counter-clockwise orientation which induces an orientation
on the boundary of T which is piecewise smooth. Define Rot(r) as the rotation number of the oriented

boundary of r.

(3) Given a state o on a k-colored planar tangle T, define

ROt H ﬂ Rot

regions
rof T

(4) Let T be a O-tangle for 0 € 0, and fix a loop n = (vi,e1,...,Vn,€,) € Lypr). Define pu(n) =
H?:1 (i) ="

Define the action of a tangle T with a labelling f € X Pgbc by
DeDr

Ze(Hm) = S umRot(e) J] #(D

states o of T’ DeDr
withn € Lo op
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P also has a x-structure. Let ™" denote the path n traversed in the reverse order and 0™ = cicpCrn_1...Co

where O = ¢1¢3...cy,. Define x: Pg7c — Pgﬁ by f*(n) = f(n=1).
Theorem 5.1.4. PC is a non-degenerate unital colored planar x-algebra.

Proof. The colored graph planar algebra can be derived from the graph planar algebra in [Jon21] or [Jon19].
Define the projections to each I';, p; € POF pi(v) = 1dyer,. Given a k-colored tangle, T, we define a
partially filled vanilla tangle, T, for PT. For each i-colored region insert an input disk with the projection
p; and remove the coloring. The action of T" on the colored planar algebra is precisely the action of 7' when
Pg *“is viewed as a subspace of P! where 0 has length n. Proving that P!+ is a unital planar x-algebra now
follows from P! being a unital planar s-algebra. The map 7' — T turns P" into a k-colored planar algebra,
but it will be degenerate in general. We can restrict to subspaces of P! to obtain a non-degenerate planar

algebra. This restriction yields Pg -, O

Remark 5.1.5. If the weights p(v) > 0 for all v and 0 = cica...cpcp_1...Co then Pg’c has a C*-algebra
structure. This can be shown by viewing Pg '“ as a subspace of P2F(n71) and observing that the colored

multiplication tangle induces the same product as the vanilla multiplication tangle.

B c C
Example 5.1.6. Ler U U be a symmetric commuting square with connected inclusions. We have a
A Cc D

unique inclusion C C A and its corresponding Bratteli diagram. Define a 5-partite weighted graph T in the

following way:
(i) V(T') = Equivalence classes of minimal projections in the algebras C, A, B, C, or D.
(ii) Define the edges of T from the Bratteli diagrams forC C A, AC B, BCC, AC D,and D C C.

(iii) The five parts of T are induced by the five algebras C, A, B, C, or D. Let the colors white, yellow,

green, blue, and red denote C, A, B, C, or D respectively.

(iv) For F € {A,B,C, D} let TACE: C[V(F)] — C[V(A)] be the adjacency matrix for the Bratteli
diagram for A C F. Let p be a minimal projection in F € {A, B,C, D} and define t[l;] = tra(p)
where trc is the unique normalized Markov trace for B C C. Define p([p]) = |[TA<F|| tf;]. For C

which has one minimal projection, 1, we define u([1]) = 1.
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B c C

We will refer to P€ as the planar algebra of the symmetric commuting square C = U U ,tre

A Cc D
Lemma 5.1.7. The loop parameters of PC are given by the norms of Bratteli diagrams, 8, = ||FACB H =
L2} and 5, = [[PA<P] =[PP,

Loops bounding a white shaded region do not generate loop parameters but choosing v,v=' € P

wy’
#E(vc,va)
p(va)

p(va)

0 , we have the
#E(U(Cv UA)

—1
v(ve,e1,v4,€2) = Ocy—e, and v~ (ve, €1,v4,€2) = Ocy—e,

following equalities:

@-O®ODD®

Proof. These are straight-forward computations with the following observations. Since we started with

a symmetric commuting square, the trace vectors I = (tI'),cp, F € {A, B,C, D} are Perron Frobe-
nius vectors for every inclusion matrix acting on them, [JS97]. In fact TACF¢F = ¢4 and (MACF)*t4 =

TACF||?¢F  Therefore
I
[ACC(DACCYx4A _ PACBPBCC (PBCC)x(DACBYxA HFACB||2 HFBCC||2 A

and so [[DZCC[[T2<C] = [[TA<€]). =

Definition 5.1.8. Let &, n € Pg where O begins with w. Define an inner product on P, called the planar

algebra inner product by the tangle

3

(El1me= $17*E$7
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and the associated norm will be denoted, ||-||.. This inner product is positive definite since it is equal to the
inner product in the graph planar algebra PT. We have only restricted to the subspace Pg . Furthermore,

this inner product is an unnormalized tracial inner product when Pg forms a C*-algebra.

B c C
Proposition 5.1.9. Let (Uq, g)a,3 be the biunitary for a symmetric commuting square |J U . Define
A Cc D
the element U € P;gbr by
1
U(Y) = —=——===VUas
m(vs)p(vp)

where vy = (va, €A,B, VB, €B,C,VC, €C,D,VD,€D,A), @& = (VA,€4,B,VB,€B,c,VC), and
B = (va,ep,4,vD,ec,p,vc). Then U is a biunitary in the planar algebra PC (i.e. U and it’s rotation p(U)

are unitaries).

Proof. We must show the following equalities for U.

()0 )s| - (o )50 )| -
£ [N

Here we show the computations verifying two of these equalities and the other two computations are

identical. A key component to both of these computations is proposition 2.2.6. Since (Uy, ), is @ unitary

we have

Zr(f)(n) = = > w(vs)U(B1Bansna)U(BrBanam)
B1,B2
n4 v4 M3
Z /L(U5) Uﬁ s Uﬁ s _ 67]2:7]357]1:7]4 _ $v1 .
R LG VT (S T () s
ny v2 (12
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. . . . v v tAtC
Letting v1, v2, v3, and vy be vertices in A, B, C, and D respectively, observe that plv1)p(vs) =

= -1 gince
p(vg)p(ve) B D
||FBcCH HFDCCH = HI‘ACCH, Then since (U, ), is a biunitary we have that V' is a unitary where
Mﬁaloaz,ﬁloﬁz if all concatenations are well-defined
Vﬂzoaz,ﬁloal = :u(UQ).u(U4)
0 otherwise
for loops (v1, a1, v2, ag,v3, B2, v4, B1) € Q(A, B,C, D). Since V is a unitary we have that
3
Zr(f)(n) Z ( = Z 11(v5)U (B2m2m381)U (B2 naBr)
B1,B2 oy B1,82
S S OV PO L LI
u(on)p(vs) f, | mo2)p(oa) "R (vg)a(og) =277
_ Om=mOng=ns _ H
w(v1)p(vs)
O

Now that we have shown U to be a biunitary we introduce a notation to simplify the tangles utilizing this

biunitary. We will use the following conventions to interpret crossings

Observe that the four-coloring completely determines how to substitute in U or U*. Rewriting the biunitary

identities using this notation yields the type I Reidemeister moves

It is tempting to remove the C inclusion from the colored planar algebra of a symmetric commuting square
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since w — y strings do not have loop parameters. This would yield a much better behaved planar algebra but
without the C inclusion the path algebra construction can only build algebras of the form A’ N F for algebras
F in the basic construction of the symmetric commuting square. The planar algebra without the C inclusion

would have the same problem.

B c C

Definition 5.1.10. Let U U be a symmetric commuting square with connected inclusions

C ¢ A c D

and let P€ be its colored planar algebra. Define the maps Vy Pﬁ(yr)ny — P¢

wy(gb)™ gy by

$ K $ K
wU(x): S{ w J] z/JU(m): $[ I ]

Proposition 5.1.11. The following squares of algebras are isomorphic

C C
B c C Pwygy C Pwygbgy
U u = U u
C c A c D P c PS5, C Pf,,
with the following inclusions
] ) $ 3 3
CCA by — ACB by | s(«) [7]s(a)
] ] ] ]
A C D by $ — $ B C C by $ — $

3 3
DccC by $ — $

) =y ().

Furthermore, the unique Markov trace is given by capping to the right and dividing by the corresponding

loop parameters, i.e. tr(x) = éﬂfgfe forz e C,A,B,C,orD.

Proof. Each algebra with a sequence of inclusions from C has a system of matrix units, {p, g}, from

Ocneanu’s string algebra construction. Let o o 371 € Ly then this isomorphism is given by the maps
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Pa,g > p € P§ where

0 =aofB~1
p(v) = II —
v internal vertices of a, 8 \/m

It is a trivial computation to show that each of these diagrams corresponds to the appropriate inclusions of

algebras. The last map given by D — )y (D) is just a diagramatic way to write part (4i7) of proposition

i
%

2.2.6. Finally, tr(z) = éfd“?fc forxz € C, A, B,C, or D follows from a straight forward computation. O

Proposition 5.1.12. The basic construction of the symmetric commuting square above is given by the squares

c pC

wy(gb)"+1gy

U U

wU (Pg’(yr)"y) - wU(Pii(yr)"‘*'ly)

C
Pwy(gb)”gy

Proof. We can show that Pg n-1y c pP¢ c pP¢ is an instance of the basic construction with

(yr) w(yr)"y w(yr)"tly

the typical diagrams for Jones projections. First, verify that the trace is Markov for the Jones projections

to show that PC

w(yr)ntly contains a basic construction. Then a dimension counting argument will show will

c P¢ is

C
c P wy(gb)"T1gy

show that Pw(yr)nﬂy is the basic construction. Similarly, P wy(gb)" gy

wy(gb)"~tgy

an instance of the basic construction. The proposition then follows from y; mapping Jones projections of

A C D to the Jones projections of B C C, i.e.

s [\ 11 $ U N

z]: :

AT

D
—/
I
&~
—

™

O

1 "
oy . C C
Definition 5.1.13. Let N C M be the horizontal subfactor (Un Yu (Pw(y'r‘)”y>) C (Un Pwy(gb)"gy)
with the Jones tower indexedby N = M_1 C M = My C My C ---. Similarly,let P=R_1 C R= Ry C

Ry C --- be the vertical subfactor and Jones tower.

Observe that a string cannot cross itself in P¢ using the biunitary formalism since such a tangle can-
not have four distinct colors at each crossing. The valid four-colorings of vanilla tangles are an important
consideration when generalizing results from vanilla or shaded planar algebras. For example, the tunnel con-
struction for spin models does not generalize since the necessary tangles do not admit valid colorings for PC¢.

We will see that flat elements and the angle operator still make sense for P€. We first describe the relative
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commutants of the vertical subfactor, (

PC

wygy

from the conditional expectations to each of these spaces.

Proposition 5.1.14. The space (

. C \/ C
Similarly (Pwy) N Pw(yr)"y

T —

"N P¢

(gb)" gy

(.

1]
)

and T +—

) N wU(Pg (yr)" y), then we will construct the angle operator

can be identified with P(Cgb)n by the inclusions

-
G
U

can be identified with P(Cyr)n by the inclusions

5(

il
)

and x>

- 1T
)

5( .

Proof. Certainly all of these elements belong to the commutant. To prove that all elements of the commutant

are of this form we need only show the dimensions of (PS, ) N PS¢

Y9y wy(gb) gy and P(Cgb)" coincide. Both of

these dimensions can be computed by counting the number of pointed oriented loops of length n starting in

B in the Bratteli diagram for B C C. The second claim follows from an identical argument. O
Corollary 5.1.15. Since (quygy)’ﬂi/)(] (P,C,(y,,_)ny) = (nggy)’ﬁp,gy(gb)ngyﬂz/JU((ng)’ﬂPg(yT)ny) we may

now identi e relative commutants of the vertical subfactor as the flat elements in n, L€ T n
dentify the relat tants of th tical subfact the flat el t PCyr) eP(CyT)

such that there exists an y € P(Cq by satisfying

A 5
C |- =)
p
S K
s o JRE L v}
p

Definition 5.1.16. Let P(’; lf)tn, Pjlat = P'' N\ P denote the flat elements of P(Cy 1yn- We can also exchange the

roles of B and D in the commuting square which will switch the roles of the red and green shading. Define

Pflat

(yg) 95 the flat elements of P(Cy o) in the same way as above.
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Lemma 5.1.17 (Cable cutting). For each cycle of colors O starting with w set Ay (v) = \/u(n)d,= € P§

forn,v € Ly. Then

3
$ AL
[T T |~ %=
3 Ay
8 s 111 1]
5( ; .
= Z forn,v € Pj.
neLo| ¢ An J
[ - AT
O coloring 9 coloring

Proof. The first equality is easily verified and so {\,},ec, is an orthonormal basis of P§. The second

equality follows from {\, },c, being an orthonormal basis. O

Definitions 5.1.18. Let 1.,., denote the identity tangle in Pcclc2 for colors c1 and co. Define the map

$
5*_>16102 ®§E$

3
where the coloring of regions is determined by c1co0co. For example, given & € Pfy, 1y ®€= $.

leyje,®: PCCQB — P¢

Cc1 02602

by the tangle

We will also use the following conventions for diagrams with parallel strings and alternating shadings.

The grey shaded region will stand in for one of the two alternating shadings depending on the parity of n.

(00 (-0 G

n strings n strings n strings

(00 000 G-I

2n strings 2n strings 2n strings

We also need to extend this notation to string crossings. The shadings of the following diagrams are
completely determined by the parities of n, k and requiring that every crossing to be adjacent to exactly one

region shaded with yellow, green, blue, or red. This allows us to interpret crossings with the biunitary U.
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~
Lo J_(ME-N[Le |-(HE-ULe -0 ¢e J-(H1
U BRI B E/a S B ) WHE-{
2n strings 2n strings n strings n strings
" N\
@)
= 2k strings
2n strings
e N\ " Y
@) @)
T B = k strings B = 2k strings
"
2n strings n strings

Proposition 5.1.19. Letr N C M be the horizontal subfactor for the symmetric commuting square above.

§
EN(IE):HFTlC,gH $ >)

;

Proof. By repeated application of type I] Reidemeister moves and the appropriate loop parameters we see

Then for x € PSy(gb)”gy’

that F is trace preserving and maps to the correct space. E is clearly a projection and restricts to the

identity on ¢y (P O

wy(ryn)

Proposition 5.1.20. Define the linear operator

. C
L UPwy(gb)"gy -V

n n

C / C C
U(Pwygy) N Pwy(gb)"'gy] C U Pwy(gb)"gy

by B(@) = sy Soec,,,, Pty € BIA(M))

wygy

3
1

E(z) = m @

C
forz € Pwy(gb)"gy'

(Y
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I
Then E extends uniquely to the orthogonal projection onto v [Un(PuC,ygy)’ N szy(gb)”gy:| : HmQ.
Proof. Since E is given by a bounded operator on a dense subspace it must extend uniquely to a bounded op-
erator. We now show that E? = E = E* by verifying their equality on a dense subspace of L?(M). By reduc-
ing loop parameters we can show that E? = E and F acts by the identity on v [Un(PC ) NP

wygy wy(gb)"gy |*

Using Lemma 5.1.17 we can show that ¢r(y* E(z)) = tr(E(y)*z) which implies that E* = F. O

Corollary 5.1.21. Putting these two projections together yields the angle operator Oy = En EFEyN which is

also given by the tangles

5 u
1 C
Oulz) = M ® Qﬁ @ j forz € Pwy(gb)”gy'
Observe that the eigenspace of Oy | pe corresponding the the eigenvalue A = 1 is given by

wy(gb)™ gy

C c C _ flat
v U(Pwygy) n Pwy(gb)"gy] Ny (Pwy(w)"> = Vly @ P(y?“)"

n

& 1

— C
Op(x) = [pACE PEF forz € P

y(gb)™gy-

Definition 5.1.22. For a biunitary U define the operator

0u: | JPGn = |J PGy

by the tangle

1
ETpp—)
[TA<5]

v (z)

$( =

62



Observe that Oy (VY (lwy ® x)) = vy (lwy @ Oy (x)) where

lwy®l‘:$$ fOf.’l?EP(CZ/T)n.

Since v is invertible, we can equip | J,, P(Cy ) with a positive definite inner product,

(€| 77>yr = (Vv (Luwy ®§) | vy (Luwy ® 77)>tr7

<I|.>yr. This gives a representation of 6y on H,, that is unitar-
'|‘>M-
ily equivalent to O represented on v [(1wy ®U, P((; r)”} . This is the Hilbert space 6y will be

and take its completion, H,, = |, P(Cy )

represented on when we consider the spectrum of 6y at the end of this chapter.
Observe that £ € P(Cy ryn is flat iff £ is in the 1-eigenspace of §;;. The angle operator extends the notion of

flatness to P/'! and Pf1**. We call ¢ € P¢

(ry)" () (resp. € € PS) flatif 1, ® £ belongs to the 1-eigenspace of

0y. P/ = C is an immediate consequence of Perron Frobenius theory applied to T'A<P (I 4<P)*,

Remark 5.1.23. All of the analysis above could have been done with B and D switched. This would exchange
the roles of the biunitaries U and U*, the subfactors N C M and P C R, and the shadings, red and green.
Let 1y~ and Oy~ denote the maps corresponding to ¥y and Oy in the construction above. The planar

diagrams defining them can be obtained from exchanging red and green shading.

Definition 5.1.24. Define the shaded planar algebra, PT19v" | by P,{ylf’yr = P(fylf)tn, P,{ylft’yr = P(frl;)il =

p(P(f;;,l)tn), P({Tt’yr = Pf'* = C, and P({lft’yr = Pflat = C. The action of shaded tangles on PT!atv"
is given by replacing unshaded regions by a yellow shading, shaded regions by a red shading, and using the

action in P€ by colored planar tangles.
Proposition 5.1.25. P/1%49" js q subfactor planar algebra.

Proof. Pf'%t:7 is a unital planar subalgebra of P¢

(yr)n by the same argument as the proof for theorem 3.2.4

where P(Cy yn is the colored planar algebra obtained by restricting to yellow and red shadings. Pf!**¥" js a C*

planar algebra as it is a *-closed planar subalgebra of P¢

(yr)n which is a C* planar algebra. Finally, we must

verify that P!%¥" is spherical. This easily follows from the properties of flat elements, loop parameters, v/,

and the cable cutting procedure. O

PPCR

We now show that P/1@:¥7 is isomorphic to the vertical subfactor planar algebra . First we must
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compute more general conditional expectations in the grid of algebras generated by the initial symmetric

commuting square.

Lemma 5.1.26. Let A = Ao,o, D = Al,O; B = A()’l and C = A171. Then let Ai,j: 1,7 € N be the

~

grid of algebras obtained from the basic construction of the symmetric commuting square. Then A, 9.,

ym and Ay 2m41 = Pe for n,m € N. Furthermore, we have the inclu-

wy(gy)™g(bg)™ (yg)™y

AO,m C An,m

C
Ruy(gy)’"(ry)"(gy

sions and conditional expectations for the square | U

Ao C Anp

] (] (] (]
A0,0 C An,O by $ = g AO,O C AO,m by $ =1 g @

@ 5 o) ila) ilc)
Aoom C Apom by $ = gl 2 Ao 2m+1 C Apamy1 by $ — $

=/

An,O C An,2m by An,O C An,2m+1 by

Eﬁg;’: () is obtained from capping off the right n strings and normalizing by the appropriate product of

loop parameters. Similarly, Eﬁ:’;" (x) is obtained from capping off the middle m strings to the right using

the biunitary for string crossings and normalizing by the appropriate product of loop parameters.

Proof. The isomorphisms of algebras follows from Ocneanu’s string algebra construction. We have already
Aoi C Ana

proven these inclusions for U . We proceed by induction. Suppose we have shown this result

Agp C Anp
for m > 1, then for n, m even we have the inclusion map A, o C A, C PuC)y(gy)m/Z(Ty)"/zgy(f“y)"/z(gy)m/z
by adding one string to the right. To get the appropriate embedding into A,, ,,,+1 We must conjugate by the
biunitaries U and V' to obtain an element in A,, ,,,11. This yields the inclusions provided here. The other
cases are identical but correspond to slightly different shadings. Since capping all strings to the right and
renormalizing yields a coherent trace by type I/ Reidemeister, it must be the unique trace on this grid of

algebras. The tangle for Eﬁg’g (resp. Eﬁ:‘g”) then follows from the defining equality tr(Eﬁg's (y)x) =

tr(yx) (resp. tr(Ef:_’(’)" (y)x) =tr(yz)) forally € A, ,, and x € Ag, (tesp. z € Ay ). O
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Lemma 5.1.27. {[R,,_1 : P]1/4)\7,V}7-,e£ is an orthonormal basis of P C R,,_1, i.e.

wy(ry)™

z=[R,_1:P]*/? Z )\nuEp(u)\;m)forx € R,_1.
ne[,wy(,,.y)n

Proof. Using the previous lemma, we can verify that {[R,,—1 : P]*/*\, v}, is a basis of the square

wy(ry)™

AO,m C An,m

U U  for every m and so by strong convergence of Eﬁ;": to E'p the result follows. O
Aop C Anp

Proposition 5.1.28. PPClt > pflat.yr,

Proof. We already have an identification of PP< with Pf!e:¥" by Ocneanu compactness. We have shown
this identification preserves the C*-algebra structures, Temperley-Lieb subalgebras, inclusions, and condi-
tional expectations of PP<® and P/!e:¥7 It suffices to show the generating tangles defined for theorem

3.2.4 act on PP<R and P("; lf)tn identically. Since multiplication, Temperley-Lieb, inclusion, and conditional

expectation tangles act identically on these planar algebras, it suffices to check that rotation tangles do as

well. We will show that the rotation tangle, p*, acts on PQIZELR and P(’;lff2 . identically. In [Bis97] p?* is also

called the surjective anti-isomorphism ~;: P’ N Ror11 — P’ N Rogy1, mk(yk(x)) = Jpmr(x)* Ji and is

computed algebraically using basis’ of the Jones tower. Let P C Ry cfe-1 Rop_q and fix z € P(J; lf)t%,

then by Lemma 5.1.17

Yeor(@) = [Re—1: P2 > Ery (fe1dgra) fro1v A

netwy(ry)k

NEL 4y (ry)k

Since this is the same tangle for v in PZIZCE this concludes the claim. The rotation tangle, p?, may then

be constructed from p?*, Temperley-Lieb elements, and conditional expectations. This allows all generating

tangles to be constructed and so these planar algebras coincide. O

The same analysis can be done for the flat elements in P(Cy gy yielding the subfactor planar algebra for
N C M which we denote Pf19*:v9. Since P({lj‘;t’yg ~(Cx P({lf’w and Pflet.yr pflat.yg are spherical,

they have natural inner products, (- | -) and (- | +) 44, &iven by the tangles

flat,yr>
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<‘T | y>flat,yr = " $ and <$ ‘ y flat,yg —

5.2 Operatorsin C*(M,exn, JM.J)

Since L?(M) comes with a dense graded subspace, | J, P, and ey, B, and JB.J preserve the grad-

n wy(gb)"gu

ing, we can perform computations in Alg(B, ey, JB.J) by confirming equality when acting on PC y(gb)" gy

for every n.

Definition 5.2.1. Fixk € N, z,y € Pg and define the operator 7, € B(L*(M)) by the following

(yg)ky

action on the dense subspace U wy( 9b)m gy

1

Ty€ = [[TACE]| P ygvgymy

Remark 5.2.2. Observe that m,, ,, commutes with the inclusion maps for |, PC

wy(gb)™ gy due to type II Rei-

demeister moves.

Lemma 5.2.3. Forall z,y € pP¢ w(yg)ry Tz € enAlg(B,en, JBJ)en and in particular ,, ,, is a bounded

operator on L*(M).

Proof. For each vertex v € V(T'4) fix an edge e, € E(I'°““) connecting C to v. We will proceed by

induction. For z,y € P, ., 7y = ||[TAE | enx(JyJ)en. Assume that

wygy’

k+1y loops

7oy € enAlg(B, ey, JBJ)ey forz,y € PS o (yg)ky TIX WO w(yg)

Y=70° (Ul,y7 €1,V2,g,€2,V3 .y, es,vc)

og=00 (ul,ymflauQ,gaf27u3,yaf3yv(:)

where 4 and & are w(yg)™y paths. Define the loops
7= :Y © (Ul,yv ST U(C) Y2 = (U(Cv €y 1 V1,y,€1,V2,g,€2,V3 y, €3, UC)

g1 = go (U:l,y,eul,y,’l]([j) 02 = (U(Cveulyyaul,yvf17u2,g7f25u3,y7f3av(f:)'
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For z,y € P¢ o ( z(a) = ba=ry, Y(a) = da=c define z;(a) = da=r,, yi() = da=0, fori = 1,2.

yg)k+iy ¥
Then 7,y = |48 || 70,y en@a(Jy2J)en. Thus m, y € en Algr2(ar) (B, en, JBJ)ey for x,y in a basis

of PS K1y and so our inductive step is proved. O

(vg)

5.3 A Representation of the Fusion Algebra
Since we have a large collection of elements from C*(M, ey, JMJ) that are definable using the planar
algebra P€, we may construct interesting maps and perform computations with planar algebra techniques.

We now define a representation of the fusion algebra, (N C M), in a corner of C*(M, ey, JM.J).

Definition 5.3.1. For each irreducible N — N bimodule, o, of the N C M fusion algebra let p, be a minimal

projection in P( '« for some k € N corresponding to o.. Define the linear operator D(a): Un —

wyg(bg)"y

C
U, Pwyg(bg)"y by

1 $
() = [[TACE]| > 9-@—6 e ls| foré € Plygugny
neLl ®

wy(gy)*

Since ®(a) is a finite sum of w ,,’s it must extend uniquely to a bounded operator in

C*(M,en, JMJ).

Proposition 5.3.2. ® has the following properties.
(i) ® is independent of the choice of pq,.
(ii) ®(a)* = d(@).

(iii) ®(« Z

yerdeHM

Proof. We will prove these equalities on the dense subspace | J_ P C L*(M) which implies they

n wyg(bg)"y
hold on L?(M). We first show that ®(«) is independent of the choice of minimal projections. If p ~ p,, in

the projection category then there exists a partial isometry w € P(J; g)tk +m such that

s $ 53 $
Pa = o v }@( }of 4 P =|o(w Jo(» )0
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Since w is flat and by Lemma 5.1.17

for ¢ € P¢

wyg(bg)my" and observe

.o C
To prove part (i7) apply Lemma 5.1.17 to (¢ | ®(a)n) for &, n € P otbe)my

that

since

For part (iiz) observe that

= Z NZ,,@(I)(’Y)f

yerd e
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for & € P¢

wyg(bg)"y’ since

O @
$$ :Zpi
iel
at

where p; € P(fyl g)2h-2m Ar€ mutually orthogonal minimal projections in P(J; l;)t% 42 and exactly NZ 5 of

{pi}ier are equivalent to p., for each N — N bimodule 7. O

5.4 Computation of 7

Due to Popa in [Pop99] if N C M is an extremal finite index subfactor then there exists a unique tracial
state on C*(M, ey, JM J) which is faithful iff N C M is amenable. By [Burl0] all symmetric commuting
square subfactors are extremal. Thus we can use Popa’s construction. In this section we will use the cyclic

invariance of M and JM J of this trace to compute the value of the trace on the image of ®.

Lemma 5.4.1. Let {&;}icr and {(; }ic1 be two orthonormal basis’s ofPQC

oy (gy)n With respect to (- | -)c. Then

>

is a unitary in P°

wy(gy)  wy(gy)" sending &; to (; for every i € 1.

Lemma 5.4.2. Fix k,l € Nand let x,y € Pf(gy)k. Define the linear operator

. C C
Pryi Uy P’wyg(bg)””y = U, P'wyy(bg)2’+"y

C
vayalg = I for§ € Pwyg(bg)m*"y'

Then
1/2

pr,y,l”B(Lz(M)) <

B'NB B'NB
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Proof. We will verify this inequality by obtaining an upper bound of ]( Pyl | 1) c’ for ¢ and 7 in a dense
subset of L2(M). Let &, € P

0yg(bg) 2+ then due to the Cauchy-Schwarz inequality and unitarity of the

first diagram below

g 3 3
0 0 ——
® o+ )s
’<pw,y,l§ | 77>c| = & s n ($
o=(v)s
(D 0, 0,
C
1 1
§ 26 2 )
3 Rl 2
O 0,
< e (LRl e o) o Ii el 1| < léle Il
0, 0,

The last inequality follows since the operator norm is unique for the C*-algebra, B’ N B. Renormalizing by

the appropriate loop parameters yields

1/2

[(po,ga€ [ )| < €1l [l

B'NB B'NB

and so the result follows. O

2y% _ ||pACB BcC||2n .
Lemma543. > AP\ = [|[DACE|| - [DBCC™ - idy,.
NEL Ly g(bg)2ny
Proof. Use Lemma 5.1.17 to remove the summation and the A,’s, then use loop parameters to remove ho-

mologically trivial loops. ]

Lemma 5.4.4. Let 7 denote the unique tracial state on C*(M,en, JMJ). Then for a,b € Psy(gy)k
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T(W2(JV2T) oy
[T ACB| . |rBco)?

9) $
@b*wm(a)) and y‘[ @’U*(wm(b))

112 2
Furthermore, if a = 1,,®a’, b = 1,,®b' fora’,b" € P(Zl;)tk then T(vtyau(Jv)) = EXYD (| D) flat yg-

T rAcE|®

T(wmap(Jvd)) =

xr =

Proof. Since 7is M and JM J invariant,

T(WTap(JVT) A2 X (J A2 N2 )
[PAcE|* - race)®

T(wrap(JvJ)) = Z

n”yeﬁuwg(bg)my

(JvX DA v o (Jv ) Ay (A v T )
|TACB|? . |rBcc

_, 3

YEL 4y (bg)2Ly

Now consider the action of the operator above on L?(M). For £ € | & ngg(bg)uﬂny

(JvAS A vma p(Jvd ) A\ (J A v)
rAcE | [rBec) ™

2.

MYEL g (bg)2ly

©)

8 3 3 3
QF v
e J
1 | =
= Z 3 1 ) Dt £ |$
mAEL |TACB| - [TBC|
, wyg(bg)2ly _— W D
w0 A O
_(:)‘;/ b () ()
3 3 3
F—O-O—)
0,
=0
_ 1 ® _ IV paya(§)
|pacs|® . race) ™ ‘P Ipace® . rece?
()
O
_@_G)_u
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where

3 $

T = elu*wm(a)) and y = @b*(wu*<b>>
N (>

at

Letting @ = 1,y ® @/, b= 1,, @ fora’,b' € P(fylg)k, and fixing [ = 0 in the calculation above,

T(V2(Jy2j)pa’,b’,0)

T(Wyaup(JV)) = ||I‘ACB||3

Since o’ and b’ are flat they can be pulled across the middle 2n strings in the diagram for p,s 1 0§ and so

par .0 = V2(Jv2T)z where

A\

z = $ $ € B'NnB.

(Yo()

\ J

Since ny lat >~ NN N = C, » must be a constant multiple of the identity. Finally, since v?(Jv?J)z €

Alg(M, JM J), the trace T restricts to trys @tr sy and so 7(vmye v (JvJ)) = % (@ [ V) f1atyg O

Proposition 5.4.5. 7(®(a)®(8)*) = ”t;ggflfz . dim(Hom(a, B)).

Proof. Let o and §3 be irreducible N — N bimodules. If p, ~ pg then since dim(Mor(p.,pg)) = 1 there is

anonzero r € P(J; l;)tk +m such that

s g $ $
+~[e3e0e0)
at

Furthermore, if i € P(J;l yerm such that (z | y) 11y , o = 0, then

9

=0

A

5 3 $ $
(Jo()el)

since z € Mor(pa,ps) = Cz, but (z | 2) = (2 [ Y) f1at,y,- Pick an orthonormal basis, {vx} U

flat,yg

{vmi}i=rU{v¢;}jer, of quy(gy)k+m such that {vx }U{vmn; };—1 is an orthonormal basis of V(lwy‘g’P(g;)th)
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with respect to (- | ), and x is a multiple of 1,,, ® =. Then by Lemma 5.4.1

P(a)®(B)°E = m Z
n

%
%{ ¢ s
eLwy(yy)"*"” @ $

$

(O

8 ) $ ) 3
3 3 3
O O

&)

&>

N 1 E: $‘II€@
[TACE]| £ %) <
i€l ® $

1 ()
e s|+ [TACE] ZH
jeJ @ s

e
™

1 $II'€@

|[rAcE]]
@®@E
—( O

- -
© &
. :
: ;

$

J

P

.Let x =1,y ® X' and n; = 1,,, ® 1} for X', 0} € P(J;l;)tHw Define

for & € P¢

wyg(bg)ky

and observe that

T(@()2(8)") = T(WTvay by (JVI)) + D T(WTpa, i, (JVT)) + > T(VT0a, i, (JVT)).

i€l jeJ

Since limy ;00 OL,. (Y= (¥¢;)) = 0, by Lemma 5.4.2, limy o0 || py,2.1]| = O where

$
v
>

Thus, by operator norm continuity of 7 and Lemma 5.4.4, 7(v7yq; 5, (Jv.J)) = 0. Finally,

$
mZ{aEmnm }

I\ = trN(l/2)
€ |racs)*

ry(v?)? o (2)2
F@(a)a(8)) = TN <<ax b + 3 (o bi>c> - rrﬁ(; (x

- 2
ITA<B iel
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where the last equation follows from

3
1= | EHDF | = O 1 tan r0) = (x et )

If po ~ pp then we can perform the exact same calculation except there is no nontrivial x € Mor(pa, pg).

Thus 7(®(a)®(B)*) = 0. O

Theorem 5.4.6. Let C*(N C M) be the C*-algebra generated by the fusion algebra, F(N C M), in the

GNS representation associated with ¢p(«) = dim(Hom/(«, id)). Then

&: F(N C M) = e(C*(M,en, JMJ) /T, ) e,

(o) = D) + I, is a unital norm preserving -homomorphism where e = ®(id), hence ® extends to a
unital norm preserving x-homomorphism ®: C*(N C M) — e (C*(M, ey, JM.J)/T,)e.

Proof. LetS = e (C*(M, ey, JMJ)/Z;) e denote the corner C*-algebra and define the faithful continuous
linear functional 7: S — Cby 7(e(z+Z;)e) = %T(exe). Then 7 is a normalized faithful tracial state.
Proposition 5.3.2 and proposition 5.4.5 imply that ® is a *-homomorphism such that ¢(z) = 7(®(x)) for
any x € span {a|irreducible N — N bimodules in {J,, x L*(M,)x }. In particular for z fixed, ¢((z*2)") =
7((®(x)*®(x))*), for all k € {0} UN. By the Riesz representation theorem ¢ and 7 induce compactly
supported regular Borel measures d¢ and d7 on R with support on o (z*) and o5 (®(z)*®(z)) respectively
since they are both faithful. Since

/ Ndp(\) = o((a")") = 7((B(2)*(x))F) = / NedF(N)
R

R

for all k € {0} U N, these measures define the same continuous linear functional on C(R). Then by the

Riesz representation theorem
o(z*z) = supp(de) = supp(d7) = os(®(z)*®(x)).

Therefore ® is norm preserving and we may extend it by continuity to a norm preserving *-homomorphism.

O

Corollary 5.4.7. The subfactor N C M is amenable iff o(TT?) = ||FACB H2 o(0y) where T is the principal
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graph of N C M.

Proof. If N C M is amenable then Z is trivial, and so ® = ® from the previous theorem. We also have

e
e§ = ®(id) = [[TACE]| Z D - e ls| foré € Pryngny

NELwy |-~ Ny

Ay H)
'|'>tr
which is the orthogonal projection onto the Hilbert space Hy = vy [1wy ®U, Pg(yr)ny . Since
P (o) = |TACE H2 Oy where o = yL?(M)y;, we have a norm preserving representation of C*(a@) on

Hy via aa — ||I‘ACB H2 Oy . Since Oy acting on Hy is unitarily equivalent to 6y acting on H,,., we have
o(a@) = |[TACE|* o (6y).

If N C M is not amenable then o (I'T") # ||TA<5 ||2 o(0y) since one belongs to the spectrum of ;. [

The previous corollary gives a criterion for when symmetric commuting square subfactors are infinite
depth. If ||FACB H2 Oy () = A and A is not an algebraic integer, then N C M must be infinite depth. We
now considers examples of infinite depth subfactors from symmetric commuting squares. First, infinite depth
subfactors are a generic feature of continuous families of biunitaries. The proof of the following is identical

to the proof for continuous families of complex Hadamard matrices.

Proposition 54.8. Let U: R — PyF g’gr be a continuous family of biunitaries for a four partite graph, T,
coming from inclusion graphs of a connected symmetric commuting square. Then one of the following is

true:
1. The corresponding principal graphs of the horizontal subfactors are equal for all t € R.

2. There are uncountably many t € R such that the corresponding subfactors are infinite depth.

5.5 Summary and Remarks

We have extended Jones’s definition of the angle operator for spin models to symmetric commuting squares
with connected inclusions. For subfactors from symmetric commuting squares let C*(N C M) be the C*
algebra generated by the fusion algebra, (N C M), in the GNS representation associated with ¢(a) =

dim(Hom(a,id)). Then we have the following theorem.
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Theorem 5.5.1. If N C M is amenable with principal graph T, then there exists a unital norm preserving
x-homomorphism

O:C*(NCM)—eC*(M,en, JMJ)e

extending ® defined in section 5.3, where e = ®(id). Furthermore, for o = yL*(M)y ®(a@) = [M :
()

N]Oy which, represented on eL*(M), is unitarily equivalent to [M : N0y on Hy,, = |, P(Cyr)n
Therefore o(ITT?) = [M : N]o(0y).

This theorem gives the following criterion which implies symmetric commuting square subfactors are

infinite depth.

Proposition 5.5.2. Let N C M be a subfactor from a commuting square with 0,, as its corresponding angle

operator. If there exists a non-algebraic integer in [M : N)o(0y), then N C M is infinite depth.

Using this criterion we found families of infinite depth spin model subfactors. We list these examples

below.

1. Spin model subfactors from Petrescu’s conitnuous family of 7 x 7 complex Hadamard matrices (see

[Pet97]).

2. Spin model subfactors from type /1 Paley Hadamard matrices (see [Pal33]).

We also showed that infinite depth subfactors are a generic feature of continuous families of biunitaries.
Many more examples of infinite depth subfactors might be shown with this criterion. Type I Paley

Hadamard matrices, also built from quadratic characters, were considered. Type I Paley Hadamard matrices

®2
. . . 1 1
do yield finite depth subfactors as the 4 x4 and 8 x 8 type I Paley Hadamards are equivalent to
1 -1
®3

1 1 . . . .
and respectively. Since the 12 x 12 type I Paley Hadamard is equivalent to the 12 x 12 type I

1 -1

Paley, the type I Paley Hadamard matrices yield infinite depth subfactors as well. Numerical computations
suggest that the 20 x 20 and 28 x 28 type I Paley Hadamard matrices also yield infinite depth subfactors.
Finally, the inability to identify non-algebraic integers in numerical computations was a common obstruction
to finding examples. Techniques to guess algebraic expressions for numerical data may lead to many more
infinite depth subfactors being identified.

In [Jon21], Jones asked if any complex Hadamard matrices lead to A, principal graph. We showed that

Paley type I1 Hadamard matrices are at least two super-transitive, and numerical computations suggest that
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Petrescu’s 7 x 7 family is at least three super-transitive. Petrescu’s 7 x 7 family and type 1] Paley Hadamard
matrices appear to be candidates for A, principal graphs, however, Jones’s question remains open. There are
currently a handful of examples of hyperfinite subfactors with A, principal graph. One is due to Ocneanu
at the index HE10||2 (see [Sch90]), another is due to Bisch at the index 4.5 (see [Bis94]), and a third is
given by biunitaries on the graph of the 3311 subfactors (see [[JMS12]). All of these examples rely on the
classification of subfactors with a small index (see [Haa94] and [JMS14]). There are currently no techniques
to show large index hyperfinite subfactors can have A, principal graphs. These examples warrant further

study and a determination of their principal graphs either way would yield interesting examples.

77



References

[AMP] N. Afzaly, S. Morrison, and D. Penneys. The classification of subfactors with index at most 5%.

To appear Mem. Amer. Math. Soc. [arXiv:1509.00038].

[BDGO9] D. Bisch, P. Das, and S. K. Ghosh. The planar algebra of group-type subfactors. Journal of
Function Analysis, 257(1):20-46, 2009.

[BHO96] D. Bisch and U. Haagerup. Composition of subfactors: new examples of infinite depth subfactors.

Annales scientifiques de I’Ecole Normale Superieure, 29(4):329-383, 1996.

[BHP12] A. Brothier, M. Hartglass, and D. Penneys. Rigid C*-tensor categories of bimodules over interpo-
lated free group factors. J. Math. Phys., 53(12), 2012.

[Bis94] D. Bisch. An example of an irreducible subfactor of the hyperfinite I/; factor with rational,

noninteger index. J. reine angew. Math., 455(8):21-34, 1994.

[Bis97] D. Bisch. Bimodules, higher relative commutants and the fusion algebra associated to a subfactor.

Fields Institute Communications, 13:13-61, 1997.

[Burl0] R. Burstein. Commuting square subfactors and central sequences. International Journal of Math-

ematics, 21(1):117-131, 2010.

[Burl5] R. Burstein. Group-type subfactors and Hadamard matrices. Transactions of the American Math-

ematical Society, 367(10):6783-6807, 2015.
[Chr79] E. Christensen. Subalgebras of a finite algebra. Mathematische Annalen, 243:17-29, 1979.

[GHJ89] F. Goodman, P. Harpe, and V. F. R. Jones. Coxeter graphs and towers of algebras. Springer Verlag
New York Inc., New York, 1989.

[GIS10] A. Guionnet, V. F. R. Jones, and D. Shlyakhtenko. Random matrices, free probability, planar

algebras and subfactors. In Proceedings of the International Congress of Mathematicians, pages

1603-1623, 2010.

[Haa94] U. Haagerup. Principal graphs of subfactors in the index range 4 < [M : N] < 3 ++/2. In

Proceedings of the Taniguchi Symposium on Operator Algebras, World Sci. Publ., pages 1-38,
1994.

78



[IMS12] M. Izumi, V. F. R. Jones, S. Morrison, and N. Snyder. Subfactors of index lexx than 5, part 3:

quadruple points. Communications in Mathematical Physics, 316(2):531-554, 2012.

[JMS14] V. FE. R. Jones, S. Morrison, and N. Snyder. The classification of subfactors of index at most 5.

Bulletin of the American Mathematical Society, 51(2):277-327, 2014.
[Jon83] V. F. R. Jones. Index for subfactors. Invent Math, 72:1-25, 1983.

[Jon19] V. F. R. Jones. Planar algebra notes. https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/

3392/2020/10/15150508/p121.2019.pdf, 2019.
[Jon21] V.F. R.Jones. Planar algebras. New Zealand Journal of Mathematics, 52:1-107, 2021.

[JS97] V. F. R. Jones and V. S. Sunder. Introduction to subfactors. Cambridge University Press, Cam-

bridge, 1997.

[JX04] V. F R. Jones and F. Xu. Intersections of finite families of finite index subfactors. International

Journal of Mathematics, 15(7):717-733, 2004.

[KS99] V. Kodiyalam and V. S. Sunder. Spectra of principal graphs. International Journal of Mathematics,
12(2):203-210, 1999.

[MP14] S.Morrison and E. Peters. The little desert? some subfactors with index in the interval (5, 3++/5).
International Journal of Mathematics, 25(8):1450080, 2014.

[Pal33] R. E. A. C. Paley. On orthogonal matrices. Journal of Mathematics and Physics, 12:311-320,
1933.

[Pet97] M. Petrescu. Existence of continuous families of complex Hadamard matrices of certain prime

dimensions. PhD thesis, University of California at Los Angeles, 1997.

[Phi74] J. Phillips. Perturbations of type I von neumann algebras. Pacific Journal of Mathematics,

52(2):505-511, 1974.

[Pop94a] S. Popa. Symmetric enveloping algebras, amenability and AFD properties for subfactors. Mathe-

matical Research Letters, 1:409-425, 1994.

[Pop94b] Sorin Popa. Classification of amenable subfactors of type I1. Acta Mathematica, 172(2):163-255,
1994.

79


https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/3392/2020/10/15150508/pl21.2019.pdf
https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/3392/2020/10/15150508/pl21.2019.pdf

[Pop95] S. Popa. An axiomatization of the lattice of higher relative commutants of a subfactor. Invent

Math, 120:427-445, 1995.

[Pop99] S. Popa. Some properties of the symmetric enveloping algebra of a subfactor, with applications to

amenability and property T. Documenta Mathematica, 4:665-744, 1999.

[PP86] M. Pimsner and S. Popa. Entropy and index for subfactors. Annales scientifiques de I’Ecole
Normale Superieure, 19(4):57-106, 1986.

[Sat97] N. Sato. Two subfactors arising from a non-degenerate commuting square. Pacific Journal of

Mathematics, 180(2):369-376, 1997.
[Sch90] J. K. Schou. Commuting squares and index for subfactors. PhD thesis, Odense University, 1990.

[SW94] T. Sano and Y. Watatani. Angles between two subfactors. Journal of Operator Theory, 32:209—

241, 1994.

[Wen88] H. Wenzl. Hecke algebras of type A,, and subfactors. Inventiones mathematicae, 92(2):349-384,
1988.

80



©

Appendix A

Code for Petrescu’s complex Hadamards

t=sym(’t’); %This symbol stands for lambda.
w=sym(exp(lixpi/3)); %w is the 6th primitive root of unity.
u= [txw t+xw™4 w5 w3 w3 w'1l 1;
txw 4 txw W3 w5 w3 w'l 1;
w5 w*3 conj(t)xw conj(t)sxw'4 w'1 w'3 1;
w3 w'5 conj(t)*w™4 conj(t)sxw w1 w'3 1;
w3 w3 www'd w5 1;
www3w3wS5 w4 1;
111111 1]./7sqrt(7);
Eigenvalue=sym(’ 1/49");
EigenvectorArray=[0 0 1 -1 (1/sqrt(3))=*imag(txconj(w)) (—1/sqrt(3))=*imag
(t) (1/sqrt(3))=imag(t=w);
00 -11 (1/sqrt(3))+*imag(txconj(w)) (—1/sqrt(3))=ximag(t) (1/sqrt(3)
)ximag (tsw) ;
I =1 0 0 (1/sqrt(3))=*imag(t) (—1/sqrt(3))*ximag(tsw) (—1/sqrt(3))=
imag(txconj(w));
-1 1 00 (1/sqrt(3))=«imag(t) (—1/sqrt(3))*«imag(txw) (—-1/sqrt(3))=
imag(txconj(w));

(1/sqrt(3))«imag(txconj(w)) (1/sqrt(3))=ximag(tsconj(w)) (1/sqrt(3))=
imag(t) (1/sqrt(3))*imag(t) O 2xreal(t) —-2xreal(txconj(w));
(=1/sqrt(3))=«imag(t) (—1/sqrt(3))*ximag(t) (—-1/sqrt(3))=imag(tsw)

(—=1/sqrt(3))«imag(txw) 2xreal(t) 0 —2xreal (txw);
(1/sqrt(3))+«imag(txw) (1/sqrt(3))=+imag(txw) (—1/sqrt(3))=ximag(t=xconj
(w)) (—=1/sqrt(3))=ximag(txconj(w)) —2xreal(txconj(w)) —2xreal (tsw
) 0];
Eigenvector=sym( e’ ,[49 1]);
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25

26

27

28

29

40

41

42

43

for al=1:7 %Since we are representing everything on P_{2,+}"{Spin} we
use 2—digit base 7 numbers for rows and columns.
for a2=1:7
Eigenvector(al+7=(a2—-1),1)=EigenvectorArray (al ,a2);
end
end %The definition of the profile matrix can be found in [Jon99].
AngleOp=sym (A’ ,[7°2 7°2]); %The angle operator as represented

on P_{2,+}"{Spin}.

for al=1:7
for a2=1:7
for bl=1:7
for b2=1:7
r=sym(0) ; %r is a running total for each entry of the

profile matrix (Defined in [Jon99]).
for m=1:7
r=r+u(m,bl)*conj(u(m,b2))=*conj(u(m,al))=*u(m,a2);
end
AngleOp(al+7%(a2-1) ,bl+7%(b2-1))=7+r*conj(r);
end
end
end
end
Test=7«AngleOp=xEigenvector —Eigenvalue.* Eigenvector; %If Test is zero
then 1/49 is an eigenvalue of 7:xAngleOp.
Substitutel =subs(Test,real (t) ,(t+conj(t))/2);
Substitute2=subs(Substitutel ,imag(t) ,(t—conj(t))/(21));
TestExpanded=expand ( Substitute2);
Substitute3=subs (TestExpanded ,txreal (t) ,(1/2)*(t"2+1));
Substitute4d=subs(Substituted ,txconj(t),l); %Here we make several

substitutions utilizing |t|=1 and expand terms.
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45

46

47

48

49

if any(Substituted™="0")
EigenvectorTest=false ;
else
EigenvectorTest=true;
end

clear al a2 bl b2 m r
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