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CHAPTER 1

Introduction

1.1 Motivation

During the past decade, there has been a surge of research on the artificial intelligence (AI). Because of its

extraordinary capability of handling complex and practical problems, it has been increasingly prevalent in

the economies and societies, such as autonomous driving, advertisement and healthcare. Its rising popularity

also highlights some critical problems. One is the lack-of-explainability issue which raises one major concern

about the trustworthiness of AI, where AI should consistently generate reliable outputs and perform task

properly rather than conduct unpredictable devastating behaviors.

To protect safety-critical systems with learning-enabled components, there is an urgent demand to es-

tablish approaches that can verify and guarantee the safety of AI. The conventional methods are normally

based on falsification tests, a type of statistical tests that can automatically identify system behaviors that

fails to satisfy the system specification. However, these methods are significantly computational expensive

due to large amount of simulations. Additionally, they are incomplete, which means they are capable of only

finite conclusions and cannot check all the possible scenarios, especially in a continuous environment with

infinite cases. Therefore, it is inevitably necessary to develop formal methods, mathematical approaches to

explore all the scenarios in reasoning which would be left unverified in the falsification test, and thus can

rigorously prove whether the system specification holds or not. For instance, in the autonomous driving, a

collision-avoidance system controller with AI components takes information from a set of sensors such as

speed, acceleration and distance of the ego vehicle relative to other objects, and makes reasonable plans to

avoid the collision. Formal methods can provide safety certification by taking all uncertain measurement

noise and adversarial attacks into account and verifying the reliability of such AI components in consistently

outputting correct actions.

Among the fundamental AI techniques, deep neural networks (DNN) have been widely applied in a num-

ber of industrial systems including safety-critical systems because of their versatility and ease-of-use. DNNs

are based on simple mathematical operations combining neurons containing non-linear activation functions

in layers, whose functionality, however, is difficult to be interpreted by humans. This lack of transparency

leads to one major barrier to realizing trustful autonomy. Moreover, it has been demonstrated that DNNs

are extremely vulnerable to adversarial attacks Carlini and Wagner (2017); Szegedy et al. (2014). Slight

perturbation on the input would generate an unpredictable output variation, resulting in object misclassifi-
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cation and unsafe actions with devastating effects. Therefore, in this dissertation, I propose a framework

based on computational geometry to conduct reachability analysis of DNNs including feedforward neural

networks (FFNN) and convolutional neural networks (CNN), such that (1) the safety of FFNN, particularly

neural network controllers in autonomous systems, can be formally verified efficiently, (2) unsafe behaviors

can be fully identified to contribute to the safety improvement of DNNs, and (3) the adversarial robustness of

image-classification CNNs can be fairly evaluated. Furthermore, based on these reachability analysis meth-

ods, I also propose a framework to repair unsafe DNNs to produce provably safe models on multiple safety

properties with negligible performance degradation.

1.2 Contributions

1.2.1 Reachability Analysis of Deep ReLU Neural Networks using Facet-Vertex Incidence

The versatility and ease-of-use of DNNs has made them popular in a number of industrial systems, including

safety-critical systems such as autonomous systems. However, a major barrier in realizing trustful autonomy

is the lack of scalable methods for safety verification. One of the major approaches for safety verification is

through reachability analysis which can provide a formal and insightful evaluation of the DNN behaviors.

In this work, we propose a set-based method for exact reachability analysis of DNNs. We utilize a

Facet-Vertex Incidence Matrix (FVIM) for the set representation. It represents the combinatorial structure

of convex sets by encoding the containment relation between their facets and vertices. The FVIM has very

useful properties for set manipulation. In the reachability analysis of ReLU DNNs, the major challenge

origins from the analysis of ReLU neurons. Most of the state-of-the-art works treat this analysis as a linear

programming (LP) problem Xiang et al. (2017); Tran et al. (2020b); Bak et al. (2020). However, solving of

numerous high dimensional LP problems can result in an undesired efficiency. In contrast, the reachability

analysis based on the FVIM can handle this problem more efficiently by avoiding the LP problem. This is

because the vertices of a set encoded in FVIM can be directly applied to determine whether the input set

spans both negative and positive input ranges of the ReLU function in neurons. When the input set spans

these two input ranges, it can also be quickly split into two subsets. This speeds up the computation of the

reachable set significantly in comparison with the related methods. An additional feature of the proposed

method is that it enables output-to-input backtracking. This enables the computation of the complete input

subspace that causes safety violations, which is especially useful for debugging and retraining the network.

The performance of our method is evaluated and compared to other state-of-the-art methods by using the

ACAS Xu DNNs and other benchmarks.
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1.2.2 Reachability Analysis of Convolutional Neural Networks with Face Lattice

Applications of Convolutional Neural Networks (CNNs) to safety-critical systems with learning-enabled

components, such as autonomous vehicles and medical devices have increased substantially. However, neural

networks are vulnerable to adversarial attacks Carlini and Wagner (2017); Szegedy et al. (2014). It has been

shown that CNN performance is often susceptible to pixel-level variations in images. Formal methods are

urgently needed to evaluate the safety and adversarial robustness of CNNs.

To address this challenge, first, we propose an approach to compute the exact output reachable domain

of a CNN given a pixel-wise input domain, where the reachable domain is a union of many output reachable

sets. To improve the computational efficiency, we utilize a novel set representation, face lattice, to encode

reachable sets. The face lattice is a structure that encodes the complete combinatorial structure of a con-

vex polytope. Besides the computation of reachable sets, our approach is also capable of backtracking to

the input domain given an output reachable set, such that problematic subspace in the input domain that is

responsible for misclassification can be identified. Second, an approach for fast analysis is also introduced,

which conducts fast computation of reachable sets by considering selected sensitive neurons in each layer. It

allows the practitioner to select the trade-off between computation speed and completeness. Third, our reach-

ability analysis method can be used to evaluate the robustness of networks trained with defense methods by

approximating the maximal output variation w.r.t. an input perturbation. Our exact pixel-level reachability

analysis method is evaluated on a CIFAR10 CNN and compared to related works. The fast analysis method

is evaluated over a CIFAR10 CNN and a VGG16 for the ImageNet dataset.

1.2.3 Neural Network Repair with Reachability Analysis

Recently, many works for analyzing behaviors of DNNs present post-training verification methods that gen-

erate safety certificate over input-output safety properties. An important challenge that remains is the repair

problem, where given a DNN with erroneous behaviors, an automatic process repairs the network w.r.t. a set

of safety properties.

In this work, we propose a repair method for general ReLU DNNs based on exact reachability analysis

of DNNs. Compared to over-approximation analysis, exact reachability analysis enables us to precisely

compute the entire unsafe reachable state domain of DNNs and its distance to the safe domain. In the repair

process, this distance is constructed with a novel loss function for minimization. Additionally, by combining

this loss function with another objective function that minimizes the deviation of the DNN parameters, a

minimal-repaired DNN can be generated such that the original behaviors of the DNN can be preserved to the

utmost extent. Overall, contributions can be summarized as follows. First, we develop a repair method for

ReLU DNNs based on exact reachability analysis, which can successfully repair unsafe DNNs on multiple
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safety properties with negligible impact on performance. Second, we also extend our repair method to deep

reinforcement learning by integrating it with the deep deterministic policy gradient (DDPG) algorithm, a

well-known algorithm that operates over continuous action spaces. Third, we present a novel depth-first-

search reachability analysis algorithm that includes both exact and over-approximation methods. This results

in a five-fold computational speedup and two-fold memory reduction when compared to other state-of-the-

art approaches. Forth, the repair method is evaluated on two benchmark problems against a state-of-the-art

method, where the detailed effects of repair methods on DNNs are thoroughly evaluated.

1.2.4 Veritex: A Tool for Reachability Analysis and Repair of Deep Neural Networks

This work presents a toolbox named Veritex for reachability analysis and repair of deep neural networks

(DNNs). Veritex includes methods for the exact reachability analysis and over-approximation analysis of

DNNs using different novel set representations, such as facet-vertex incidence matrix, face lattice, and V-

zono. In addition to sound and complete safety verification of DNNs, these methods can also efficiently

compute the exact output reachable domain as well as the exact unsafe input space that causes safety vio-

lations of DNNs. More importantly, based on the exact unsafe input-output reachable domain, Veritex can

repair unsafe DNNs on multiple safety properties with negligible performance degradation. The repair is

conducted by updating the DNN parameter through retraining. It also works in the absence of the safe model

reference and the original dataset for learning. Veritex primarily addresses the issue of constructing provably

safe DNNs which is commonly missing in most of the current formal methods for trustworthy AI. The utility

of Veritex is evaluated from two aspects, safety verification and DNN repair. The benchmark for verification

is the ACAS Xu networks, and the benchmarks for the repair include the unsafe ACAS Xu networks and

unsafe agents trained in deep reinforcement learning.
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CHAPTER 2

State-of-Art Works for Safety Verification of Deep Neural Networks

2.1 Neural Network Verification

Recently, there has been significant effort to develop methods to establish robustness and formal guarantees

of Learning-Enabled Components (LECs) Pulina and Tacchella (2010); Huang et al. (2017); Gehr et al.

(2018); Dutta et al. (2018); Katz et al. (2017); Henriksen and Lomuscio (2019); Xiang et al. (2018); Wang

et al. (2018b); Zhang et al. (2018); Singh et al. (2018a, 2019b); Wang et al. (2018a); Tran et al. (2019b,c);

Liu et al. (2019). These verification algorithms are sound, denoting that when they return holds, the safety

property actually holds. Some of them are also complete, denoting that whenever the safety property actually

holds, they will return holds. In terms of their methodologies, these algorithms can be classed into four main

categories. They are reachability analysis based, satisfiability (SAT) and satisfiability modulo theories (SMT)

solvers based, mixed-integer linear programming (MILP) based, and symbolic interval based.

2.2 Reachability based Methods

Reachability analysis is that given an input domain to a DNN, either the exact output reachable domain

or its over approximation will be computed. Through the computation of the output domain, the safety

properties which define desired output constraints for specific input spaces can be directly checked. The over

approximation provides sound analysis, while the exact computation can guarantee both the soundness and

completeness. The primary challenge for the reachability analysis of ReLU DNNs origins from the piece-

wise linear max function in ReLU neurons and the Max-pooling layer. The max function exhibits different

linearity over different input ranges. For instance, the ReLU activation function y = max(0, x) has two

different input ranges, the negative domain x < 0 and the positive domain x ≥ 0, over which the function

exhibits different linearities. The exact analysis separately considers these linearities whenever the input set

to each neuron spans these two input ranges. There are related works such as Xiang et al. (2017); Tran et al.

(2019a, 2020a)

The common strategy of the over-approximation analysis is to apply a conservative convex domain to

linearize the ReLU function. Thus, when an input set spans both the positive and negative ranges, those

different linearities does not need to be separately considered. Such over-approximation methods generate a

single output reachable domain and are capable of efficiently analyzing large scale neural networks. There

are related works such as AI2 Gehr et al. (2018), Abstract domain Singh et al. (2019b). But the approximation

error is accumulated w.r.t. each neuron in an exponential manner, and the conservativeness of the final over
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approximation can be extremely high and their effectiveness in verification will be undermined. One such

example is presented in Figure 2.1. We can notice that these over-approximated domains show significantly

high conservativeness.

Figure 2.1: Conservativeness of output reachable domains of an ACAS Xu neural network computed by an
abstract-domain-based method (over-approximation analysis) Singh et al. (2019b), a zonotope-based method
(over-approximation analysis) Gehr et al. (2018), and our method (exact analysis).

2.3 SAT and SMT based Methods

In the work Katz et al. (2017), a method named Reluplex based on SMT solver is proposed to verify FFNNs.

It extends the Simplex method to handle the piece-wise linear ReLU functions. To encode the ReLU node, the

node is represented with two variables, where one is the input to the node named backward-facing variable

and the other one is the output of the node named forward-facing variable. These two variables build the con-

nection between ReLU layers with their preceding layer and following layer, respectively. Their compliance

with the ReLU semantics is asserted in the solver. The pivot and update operations in the Simplex algorithm

are included to handle the out-of-bound violations in variables. Thus, any broken ReLU connections can be

fixed by updating the backward-facing or forward-facing variable. This method is sound and complete. The

Marabou Katz et al. (2019); Elboher et al. (2020) method is an extension of Reluplex. It supports arbitrary

piecewise-linear activation functions and parallel computation. In the work Ehlers (2017), a method named

Planet based on SAT solver is proposed. This method combines the satisfiability solving and linear program-

ming. An over-approximation approach is also included to filter out unnecessary search space to improve

computational efficiency.

2.4 MILP based Methods

In the work Lomuscio and Maganti (2017), a method named NSVerify is proposed to verify FFNNs with

ReLU neurons. NSVerify takes specifications with linear constraints and encodes the ReLU activation func-

tion by a set of mixed-integer linear constraints. It conducts sound and complete verification. Work Botoeva
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et al. (2020) improves the computational efficiency of NSVerify by utilizing the dependency relation between

ReLU nodes to prune search trees. Work Dutta et al. (2018) proposes a method named Sherlock to esti-

mate the upper bound and lower bound of the output. The bounds are computed through local search and

global search. The local search algorithm starts from a sample input points and utilizes the steepest projected

gradient ascent or descent algorithm to search its adjacent points with their output towards the upper bound

or lower bound. By encoding ReLU function with MILP, which is similar to NSVerify, the global search

helps escape the local optima identified in the local search. For FFNNs with multiple outputs, this method is

incomplete.

2.5 Symbolic Interval based Methods

ReluVal Wang et al. (2018b) is based on symbolic interval arithmetic to over approximate the output bounds

of a DNN. The symbolic interval is utilized to preserve the dependency between ReLU nodes to the utmost

extent when it propagates through layers, such that a less conservative approximation can be obtained. Neu-

rify Wang et al. (2018a) which is an improved version of ReluVal introduces symbolic linear relaxation to

achieve a tighter approximation, and also a directed constraint refinement algorithm to search space more

efficiently. These methods iteratively refine the over-approximation of the output reachable sets by bisecting

its input range, and they don’t terminate until a counterexample is found, or the network is verified safe.

Therefore, they are sound and complete.
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CHAPTER 3

State-of-Art Works for Repair of Deep Neural Networks

3.1 Weight Modification with Singular Adversarial Example

Existing works that improve the safety and robustness of DNNs can be classified into two main categories.

The first category relies on singular adversarial inputs to make specialized modifications on neural weights

that likely cause misbehavior. In Sohn et al. (2019), the paper presents a technique named Arachne. There,

given a set of finite adversarial inputs, with the guidance of a fitness function, Arachne searches and subse-

quently modifies neural weights that are likely related to unsafe behaviors. In Goldberger et al. (2020), the

paper proposes a DNN verification-based method that modifies unsafe behaviors of DNNs by manipulating

neural weights of the output layer. The correctness of the repaired DNN is then proved with a verification

technique. In Usman et al. (2021), the repair approach first localizes the potential faulty neural weights at an

intermediate layer or the last layer, and then conducts a small modification using constraint solving. In Majd

et al. (2021), the method poses the repair problem as a mixed-integer quadratic program to adjust the pa-

rameter of a single layer, such that unsafe behaviors can be reduced and meanwhile the change in DNNs is

minimized. However, these methods only enhance the robustness of DNNs for specific inputs and can hardly

eliminate their whole unsafe domain, meaning that provably safe DNNs cannot be generated. In addition, the

modification of weights based on individual adversarial examples may not capture the impact on the whole

performance of the network. Slight changes in DNN parameters can result in introducing other unexpected

unsafe behaviors.

3.2 Adversarial Training with Reachability Analysis

The second category of methods is based on adversarial training to update the DNN weights. Adversarial

training methods such as Goodfellow et al. (2014); Madry et al. (2017) have shown that incorporating adver-

sarial examples into the training process of a DNN can improve its adversarial robustness. However, these

methods do not provide guarantees regarding the safety of a DNN. To solve this issue, some researchers

incorporate reachability analysis in this process, such that they can train a model that is provably safe on

a norm-bounded domain Wong and Kolter (2018); Mirman et al. (2018); Lin et al. (2020). Given a norm-

bounded input range, these approaches over approximate the output reachable domain of a DNNs with one

convex region. Then they minimize the worst-case loss over this region, which aims to migrate all unsafe

outputs to the safe domain. The primary issue of these approaches is that the approximation error accumu-

lates with each neuron during computation. For large input domains or complex DNNs, their approximated
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reachable domain can be so conservative that a low-fidelity worst-case loss may result in significant accuracy

degradation. We confirm this issue through experimental analysis in comparison with ART Lin et al. (2020).

The method proposed in Leino et al. (2021) approaches the problem from a different perspective. Instead

of adjusting the weights of the network, the method appends a new layer to the DNN which checks and re-

pairs violating outputs. However, this method is limited to classification networks and the added layer may

increase the run time overhead of the network.
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CHAPTER 4

Reachability Analysis of Deep ReLU Neural Networks using Facet-Vertex Incidence

4.1 Preliminaries

4.1.1 Neural Network Verification

A DNN consists of one input layer, multiple hidden layers, and one output layer. Each layer contains multiple

neurons which are interconnected with neurons in the next layer by weights and bias in a feed-forward way.

The output of each neuron is associated with three components: its input weight ω, input bias b and the

activation function f , namely:

yi = f(
∑n

j=1
ωi,jxj + bi)

where ωij and bj are respectively the weight and bias from the jth neuron of the preceding layer to the ith

neuron of the current layer, and xj is an input to this neuron and also the output of jth neuron in the preceding

layer, and yi is the output of this neuron. In this paper, we consider networks that contain ReLU activation

functions which are defined as E(x) = max(0, x). Let W(l,l-1), bl denote the weight matrix, the bias vector

between the (l-1)th layer and lth layer, and xl be its input, then the output of the lth layer will be Equation 4.1.

For the first hidden layer, its input x1 is equal to the input to the network x0. The output of one layer is also

an input of the next layer. Therefore, given an input x0, the output yl of the lth layer will be Equation 4.2.

L(xl) = E(W(l,l-1) · xl + bl) (4.1)

yl = (Ll ◦ Ll−1 ◦ · · · ◦ L1)(x0) (4.2)

Definition 4.1.1 (Reachable Sets and Reachable Domain of Neural Networks) Given a neural networkN

and an input set I ⊂ R|x|, an output reachable set P ⊂ R|y| refers to a convex polytope where ∀y ∈ P,∃x ∈

I and y = N(x). The computation of reachable sets is {P1,P2, . . . ,Pk} = Reach(N, I). The output

reachable domain O is the union of all the computed reachable sets
⋃k

i=1 Pi where ∀x ∈ I, y = N(x) and

y ∈ O besides the condition for reachable sets.

An input set to one layer is denoted as S. We denote the linear transformation by W and b on S as a

function T(S) and the following operation from each ReLU neurons in the layer as E(·). Overall, the whole

process of the layer w.r.t. the input set S can be denoted as

L(S) = (Ek ◦ Ek−1 ◦ · · · ◦ E1 ◦ T)(S) (4.3)
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The function T(·) outputs one affine transformed set S ′ w.r.t. the input set S. While each E(·) yields at most

2 reachable sets for one input set because of the different linearities of the ReLU function w.r.t. its input

range. Finally, the output reachable sets of the current layer are passed on as an input set to the next layer.

The reachable sets are also associated with the linear regions of neural networks Montufar et al. (2014);

Serra et al. (2017); Hanin and Rolnick (2019). A linear region of a piecewise linear function f : R|x| →

R|y| refers to a maximum convex subset of an input set in R|x|, on which the function f is linear. As

described above, a set is either affine transformed by weights and bias, or divided into subsets to match the

different linearities of ReLU functions in each neuron. Thus, the DNN exhibits unique linearity for each

output reachable set over a subspace of the input set. Those subspaces are linear regions. Our method

takes advantage of this property in the backtracking process, where it tracks back to the input space given a

particular output reachable set. The details will be introduced in Section 4.4.

The verification of a neural network using reachability analysis is defined as follows.

Definition 4.1.2 (Verification of Neural Networks) Given a neural network N , an input set I ⊂ R|x| and

an unsafe domain U ⊂ R|y|. The verification problem is to determine whether (
⋃

Reach(N, I)) ∩ U = ∅.

4.1.2 Facet-Vertex Incidence Matrix

A convex polytope is a convex set S ∈ Rd and can be represented by the vertex representation (V-rep) or

the half-space representation (H-rep). The V-rep represents S as a finite number of extreme points (vertices),

whereas the H-rep represents S as the intersection of a set of closed halfspaces (in terms of linear inequalities).

In Xiang et al. (2017), the reachability analysis of neural networks utilizes both the V-rep and the H-rep to

compute reachable sets. The V-rep of S is utilized to conduct affine transformations between layers, and

the H-rep is utilized for the computation of new subsets while considering the linear constraints from the

input range in ReLU neurons. The iterative process, which requires the back-and-forth conversion between

representations, is called the enumeration problem in computational geometry and has a high computational

complexity. In Tran et al. (2019c); Bak et al. (2020), the authors use the Star set based on the H-rep and

can avoid the conversion issue. However, the computation for each neuron involves a large number of LP

problems, which has a significant impact on its efficiency. Other works Singh et al. (2018a); Gehr et al. (2018)

utilize zonotope representations, which are centrally symmetric polytope representations. The issue with

these approaches is that with a large input set, the over-approximation in every layer is overly conservative,

and this increases exponentially with every layer.

In this work, we utilize a facet-vertex incidence matrix to encode the combinatorial structure of a polytope.

The FVIM enables quick operations over convex polytopes in the reachable-set computation. This enables

fast affine transformations and can be used to derive vertex adjacency for fast division by hyperplanes. In the
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rest of the section, we provide a formal definition of the FVIM. For details, see Henk et al. (2004); Grünbaum

(2013).

In order to define a Facet-Vertex Incidence Matrix, we first need to define the notion of a supporting

hyperplane and face of a polytope.

Definition 4.1.3 (Supporting Hyperplane) A hyperplaneH denoted by a⊤x = b is a supporting hyperplane

of polytope S if one of its closed halfspaces, a⊤x ≤ b or a⊤x ≥ b contains S, and meanwhile, the intersection

of S with the hyperplane is not empty.

Definition 4.1.4 (Face & Facet) The face of a d-dimensional polytope S is an intersection of S with a sup-

porting hyperplane. When the dimension of aff(S ∩ H) is k, the face is denoted as k-face. The function

aff(S) indicates the affine hull of S, which is the smallest affine set that contains S. S contains {0-face,

1-face,..., (d − 1)-face} where the 0-face is named vertex and the (d − 1)-face is named facet. The

cardinality of the set of all k-faces is denoted as fk(S).

Definition 4.1.5 (Facet-Vertex Incidence Matrix) Given a full-dimensional polytope S ∈ Rd, the facet-

vertex Incidence matrix is a matrix M ∈ {0, 1}fd−1(S)×f0(S) where an entry M(f, v) = 1 indicates the facet

f contains the vertex v, and an entry M(f, v) = 0 indicates that it does not.

21

34

78

5 6

S

1 2 3 4 5 6 7 8

facet f:

vertex v:

1 2 3 4 5 6

Figure 4.1: A 3-dimensional cube S and the containment relation between facets and vertices.

Consider a 3-dimensional cube as illustrated in Figure 4.1. The graph with blue blocks describes the

containment relation between the facets and vertices and is equivalent to the FVIM shown in Equation 4.5. In

FVIM, f denotes the facet/plane and v denotes the vertex of the cube. For instance, f1 is the 2-dimensional

face: plane1-2-3-4. We define a polytope using its FVIM F and vertices V as follows:

S = ⟨F , V ⟩ (4.4)
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FVIM =



v1 v2 v3 v4 v5 v6 v7 v8

f1 1 1 1 1 0 0 0 0

f2 0 0 1 1 1 1 0 0

f3 0 0 0 0 1 1 1 1

f4 1 1 0 0 0 0 1 1

f5 0 1 1 0 0 1 1 0

f6 1 0 0 1 1 0 0 1


(4.5)

4.2 Operations on Polytopes

Our method relies on two basic operations for processing polytopes through a neural network. This includes

affine transformation by weights and division by a hyperplaneH. In the following, we present each operation

in detail.

4.2.1 Affine Transformation

An affine transformation can map a polytope to a higher-dimensional or lower-dimensional space. A polytope

S is called full-dimensional if it is a d-dimensional object in Rd. Otherwise, if S is in Rn>d, then it is not

full-dimensional.

Remark 4.2.1 Polytopes that differ only by an affine transformation are combinatorially equivalent. The

main reason is that an affine transformation only changes vertices but preserves polytopes’ combinatorial

structure Henk et al. (2004); Grünbaum (2013).

Therefore, the FVIM remains unchanged under affine transformation, regardless if it is on a higher or lower

dimensional space. Let W , b denote the weights and bias of an affine transformation. Then the computation

of FVIM F ′ and vertices V ′ of the output polytope S ′, under an affine transformation, can be formulated as

in Equation 4.6. This process computes the exact affine transformed polytope as represented by the function

T in Equation 4.3.

F = F ′, V ′ =WV + b (4.6)

4.2.2 Division by Hyperlanes

Another common operation when processing polytopes is the divison by hyperplanes. A hyperplane H di-

vides the input range of a ReLU function into two sub-ranges over which the function exhibits different

linearities. Division is only considered when the set S intersects H. As the polytope representation has

vertices V of S, the determination whether an intersection occurs can be made by checking whether the dis-

tribution of vertices V is on one side of a hyperplane H. For example, let H be a⊤x + b = 0. To compute
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the distribution of vertices, we can substitute x with V. Formally, we define the set of positive vertices as

V + = {v ∈ V |a⊤v + b > 0} and negative vertices as V − = {v ∈ V |a⊤v + b < 0}. Here, we make an

assumption that no vertices are located on the hyperplaneH. In practice, this is an extremely unlikely occur-

rence due to floating point computation. When computing a division by hyperplane H, one of the following

three cases may occur:

(1) Both V + and V − are non-empty. In this case, the hyperplaneH intersects with S. The polytope S will

be divided by H into two non-empty polytopes S+H
sub and S−H

sub . The positive polytope w.r.t. H, S+H
sub

is defined as ∀x ∈ S+H
sub , a

⊤x + b ≥ 0 On the other hand the negative polytope w.r.t. H is defined as

∀x ∈ S−H
sub , a

⊤x+ b ≤ 0.

(2) Only set V + in non-empty. In this case, polytope S is on the positive closed halfspace of H and we

have S+H.

(3) Only set V − in non-empty. In this case, polytope S is on the negative closed halfspace of H and we

have S−H.

4.2.2.1 Identification of New Facets

When a hyperplane H intersects with S and we have both S+H
sub and S−H

sub , the intersection creates one new

common facet with multiple new vertices for both subsets. The derivation of the facet is as follows. In Henk

et al. (2004); Grünbaum (2013), the authors show that an intersection of a polytope with an affine subspace

(hyperplane) is a polytope. Therefore, the intersection generates one polytope SI where SI ⊂ S+H
sub and

SI ⊂ S−H
sub . In the following, we show that SI is a new facet.

Theorem 1 Given a d-dimensional polytope S located in Rn≥d space, and a hyperplane H ⊂ Rn−1 where

S ⊈ H, then the intersection of S withH is a one (d-1)-dimensional polytope SI . SI is also a common facet

of subsets S+H
sub and S−H

sub .

Proof. In dimension theory Hurewicz and Wallman (2015), given a vector space V , and U ,W , two

subspaces of V , we have that

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W )

where dim(·) returns the dimension of the object. Since S ⊈ H, we have dim(S +H) = n. By substituting

U ,W with S,H, we have that

dim(S ∩H) = dim(S) + dim(H)− dim(S +H) = d− 1
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Therefore SI is (d-1)-dimensional polytope. Here, we use a result from polytope theory which states that a

face of polytope is equivalent to a polytope Henk et al. (2004). We can conclude that a polytope SI generated

from the intersection is a common facet of both subsets.

4.2.2.2 Identification of New Vertices

When a hyperplaneH intersects with S, new vertices are also generated. To compute these new vertices, the

edges of S first need to be identified from the FVIM. For a regular d-dimensional polytope, if d < 4, then two

vertices are adjacent and form an edge if and only if they are contained by at least (d − 1) common facets.

But this criterion does not apply to higher-dimensional polytopes where vertices may be nonadjacent under

the same condition.

However, with the assumption above that no vertices of S lie on the hyperplane, the criterion becomes

suitable for the higher-dimensional polytopes in our reachability analysis. First, we can show that all the

polytopes in our analysis are simple polytopes.

Definition 4.2.1 (Simple polytope) A d-dimensional polytope is a simple polytope if each vertex is contained

in exactly d facets.

Theorem 2 Given a d-dimensional simple polytope S and a hyperplane H which intersects with S without

any vertices of S locating onH, then the two subsets from the division are simple polytopes

Proof. Suppose there are m edges e ⊂ S intersecting with H. Then, m new vertices v are generated

respectively with v ∈ e and v ∈ H. Since S is a simple polytope, each edge is contained in exactly (d-1)

facets. Then, each new-generated vertex v is also contained in (d-1) facets of S. As Theorem 1 states, the

intersection creates a common facet for both subsets. Then each v is also contained by this facet. Therefore,

all vertices in two subsets are adjacent to exactly d facets,and the subsets are simple polytopes.

The infinity-norm bounded input set is a hyperrectangle. The hyperrectangle is a simple polytope which

is closed under affine-transformation Henk et al. (2004). According to Theorem 2, the subsets from the

division of a simple polytope are also simple polytopes. In terms of the polytope theory, two vertices of a

d-dimensional simple polytope are adjacent and form an edge if they are contained in exactly (d-1) common

facets. Suppose a pair of vertices v1 and v2 form an edge e of S, the new vertex v generated from e ∩H can

be computed by Equation 4.7 where λ is a derivable scalar.


v = v1 + λ(v2 − v1)

a⊤v + b = 0

(4.7)
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4.2.2.3 Derivation of Two Subsets

After identifying the new facet and vertices generated from the intersection, the next step is dividing the

original polytope S into two subsets according to the containment relation between facets and vertices. An

example of a division of the 3-dimensional cube is shown in Figure 4.2. The intersection of S with H is

the new facet plane9-10-11-12 which is denoted as facet {7} in the graph. Negative vertices {1, 2, 3, 4} and

positive vertices {5, 6, 7, 8} w.r.t. H are first identified. As S is a simple polytope, vertices that are contained

in exactly 2 common facets are adjacent and form an edge of S. Thus, the edges e1-8, e2-7, e3-6 and e4-5 are

identified intersecting with H and generate new vertices v9, v10, v11 and v12. Their values can be computed

according to Equation 4.7. Their containment relation with facets is inherited from the relation between the

edges with facets. For instance, v9 is from the intersection of e1-8 with H, and e1-8 are contained in facets

plane1-4-5-8 and plane1-2-7-8. Therefore, v9 is also contained in these two facets. This inheritance relation

is described by the red-line connection between Facet {4, 6} and Vertex {9} in the graph. Finally, the graph

is split in terms of positive and negative vertices as well as the new vertices, generating two compact and

exact FVIMs for the subsets and completing the division.

21
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1 2 3 4 5 6 7 8

9 10

1112

5 6

Facet:

Vertex: 9 10 11 12

v - v - v - v - v+ v+ v+ v+

78

9 10
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5 6

21

34

9 10

1112

5 6 7 8 9 10 11 12 1 2 3 4 9 10 11 12

Divide

H

S

v+ v+ v+ v+ v - v - v - v -

1 2 3 4 5 6 7 2 3 4 5 6 7 71 2 4 5 6

(a) (b)

Figure 4.2: Division of a 3-dimensional cube S by a hyperplane H. The graph which describes the contain-
ment relation between facets and vertices is equivalent with the FVIM. The blue blocks denote the faces of S
and the red blocks denote the new faces generated from the intersection.

4.3 Reachability Analysis with FVIM

In the previous section, we described the affine transformation and division operations, two basic operations

for reachability analysis with FVIM. In this section, we present the application of these operations in one layer

of the neural network and then extend them to the entire network. The process is illustrated in Figure 4.3. In

each layer, first we apply an affine transformation to the input set S by the weights and bias ( 1 ). Then, we

apply a divison operation on the resulting polytope to process it through the ReLU activation function ( 2 ).

Suppose a neuron layer contains k neurons, and let x ∈ Rk be an input. In the ith neuron, the input

range of its ReLU function is divided by xi = 0 into two domains over which the function exhibits different

linearities. The xi = 0 can also be formulated as a hyperplane Hi : a
⊤x = 0 where ai = 1 and the rest are
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Figure 4.3: A simple layer that contains 2 neurons to demonstrate the processing of an input polytope

zeros. When the polytope S spans two input domains of this ReLU neuron which indicates that it intersects

with Hi , this polytope will be divided by Hi according to the division operation. Then two subsets S−Hi

sub

and S+Hi

sub are generated. For the output negative subset that is located in the closed halfspace a⊤x < 0,

the xi dimension of all points belonging to it is set to zero in terms of the property of the ReLU function.

This process is equivalent to a linear transformation and can be implemented with Equation 4.6. Then by

sequentially processing the affine transformed set w.r.t. each neuron, we can consider all combinations of

linearities, as formulated in Equation 4.3.

An example is demonstrated in Figure 4.2 ( 2 ). The layer contains 2 ReLU neurons. First, E1(·) is applied

to the input polytope as shown in (a). The polytope is divided by the hyperplane H1 into two polytopes S1

and S2 which are S+H1

sub and S−H1

sub . Then the x1 dimension of all element points in S−H1

sub is set to zero,

generating a new polytope S3 (red solid line) in (b). Then the output S1 and S3 will be the inputs to the

function E2(·). As shown in (c). S1 and S3 are divided by H2 into {S4,S5} and {S6,S7}, respectively. S4

and S7 are in S−H2

sub and the x2 dimension of points is set to zero as shown in (d), creating S8 and S9 (origin),

respectively. Finally the output polytopes of this layer w.r.t. S are {S5,S6,S8,S9}, and the whole process

can be formulated as

{S5,S6,S8,S9} = (E2 ◦ E1 ◦ T)(S)

The output polytopes of the current layer will be the inputs to the next layer. Given an input set I, and
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number of layers l, the computation of reachable sets can be defined as:

O = (Ll ◦ · · · ◦ L2 ◦ L1)(I) (4.8)

The algorithm for the computation of reachable sets is shown in Algorithm 1. Its implementation is highly

parallelizable because (1) the input sets to each layer are independent in the for loop in Line 5, (2) the

processing of each set w.r.t. one neuron is also independent in the for loop in Line 14. The details of

functions are as following:

(1) The Reach() function corresponds to Equation 4.8. Given an input set to the neural network, it com-

putes all the reachable sets.

(2) The singleLayer() function computes reachable sets of the target layer given an input set.

(3) The affineTransform() function corresponds to Equation 4.6. It computes the affine transformation on

the input set with the weight matrix and bias vector between layers.

(4) The Divide() function corresponds to E(·), which is illustrated in Figure 4.2. Here, we only present

one case where S intersects with the hyperplane.

(5) The Project() function is used to set the target dimension of the elements of a polytope to zeros, which

is equivalent to a linear transformation.

Given an input set to the neural network that has n ReLU neurons, the maximum number of reachable

sets is bounded by 2n. This number is essentially associated with the volume of the input set, where a larger

volume increase the likelihood of its intersecting with hyperplanes imposed by neurons. For instance, in the

experimental evaluation, the number of reachable sets for the ACAS Xu N27 varies depending on the input

sets. For property 1 with a large input set, it computes over six hundred thousand reachable sets, while for

property 3 which has a smaller input set, it outputs around five hundred reachable sets.

4.4 Backtracking

Given an input set, the algorithm introduced in the previous section can compute the exact reachable sets for

neural networks. However, our method also supports backtracking, which is the process of computing the

corresponding input subspace given a subset of the output domain. This is particularly useful in verification,

since we can use this process to find input areas which are associated with possible violations. We track

the connection between the polytopes processed in layers and their corresponding linear regions in the input

space. Here, we revise the representation of polytopes in Equation 4.4 by introducing a matrix M and a

18



Algorithm 1 Reachable set computation of a neural network
Input: I # an input set to the neural network
Output: O # exact output reachable domain of the network

1: procedure O = REACH(I)
2: I [k] = I # I [k]: input sets to the kth layer
3: for k = 1 : layers do # layers: the number of layers
4: O[k] = empty # O[k]: output reachable sets of the kth layer
5: for S in Ik do
6: S [k] = singleLayer(k, S) # S [k]: output reachable sets for one input set S
7: Add S [k] to O[k]

8: I [k] = O[k]

9: return O = O[k]

10: procedure S [k] = SINGLELAYER(k, S)
11: S [k] = affineTransform(k, S)
12: for i = 1 : m do # m: the number of neurons
13: list = empty

14: for S in S [k] do
15: S+, S− = Divide(Hi, S)
16: S− = Project(i, S−)
17: Add S+,S− to list

18: S [k] = list

19: return S [k]

vector d that describe an affine transformation:

S = ⟨Fi, Vi,M, d⟩ (4.9)

Fi and Vi represents the FVIM and vertices of a convex subset of the input space, respectively. The vertices

of S can be computed with Vi by V = MVi + d. This linear relation between Vi and V indicates that the

input convex subset is the linear region for S. Matrix M and d actually describe a linear relation between S

and its linear region.

With the representation of polytopes as a tuple ⟨Fi, Vi,M, d⟩, the affine transformation in Equation 4.6

will be slightly different. As shown in Equation 4.10, the new operation on polytopes will only update M

and d instead and preserve Vi and Fi. Hence, the linear region for S can be tracked. The updated polytope

⟨F ′
i , V

′
i ,M

′, d′⟩ is calculated as follows:

F ′
i = Fi, Vi

′ = Vi, M ′ =WM, d′ =Wd+ b (4.10)

which is equivalent to updating the linear relation between S and its linear region.

With the new set representation, we also have a new division operation E(·). The checking of vertices
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distribution of S w.r.t. a hyperplane H is by computing the vertices of S with V = MVi + d. When

conducting a division operation on S with a hyperplane H : a⊤x + c = 0, H will be first mapped back into

the input space through M and d, generating a new hyperplane H′ : a⊤M + ad + c = 0. Then, we utilize

this hyperplane to conduct the division operation on the input subset represented by Fi and Vi.

4.4.1 Identification of Unsafe Input Subspace

Let the output unsafe domain be U : {y |Ay+ v ≤ 0}. Suppose we have an output reachable set of a network

P=⟨Fi, Vi,M, d⟩. Then, we conduct division operations on P sequentially with each hyperplane from U .

If there exists a subset of P locating in U , it indicates the neural network is unsafe. Otherwise, it is safe.

In each division, the hyperplane is obtained from one of the linear inequalities of U . One linear inequality

a⊤y+ v ≤ 0 is essentially one closed halfspace of a hyperplaneH : a⊤y+ v = 0. The P−H
sub generated from

the division with H contains all element points that satisfy this linear inequality. Then P−H
sub is the set to the

division with the next hyperplane. We can obtain the final unsafe set after sequentially considering all linear

inequalities of U .

4.5 Evaluation

4.5.1 Safety Verification of ACAS Xu Networks

In this section, we evaluate our method against the Marabou Katz et al. (2019), NNV-exact Tran et al. (2020b),

nnenum Bak et al. (2020), Venus Botoeva et al. (2020) and Neurify Wang et al. (2018a) methods, which

conduct a sound and complete verification. We also include ERAN Singh et al. (2018a), which is an over-

approximation method. We include it to demonstrate that performance-wise, over-approximation may not

provide a significant improvement in efficiency and effectiveness as opposed to our exact method.

Figure 4.4: Airborne Collision Avoidance System
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We verify safety of the DNN benchmarks proposed in Julian et al. (2016) for the Airborne Collision

System X Unmanned (ACAS Xu). These benchmarks have been widely tested by the verification commu-

nity Katz et al. (2019); Tran et al. (2020b, 2019c); Bak et al. (2020); Wang et al. (2018a). The ACAS Xu

networks are used to approximate a large lookup table that converts sensor measurements into maneuver ad-

visories in an Airborne Collision Avoidance System as shown in Figure 4.4 Katz et al. (2017), such that the

massive memory occupation by the table and the lookup time can be reduced. The set of networks contain

45 fully-connected DNNs for different combinations of discretized parameters. Each one has five inputs,

five outputs, and six hidden layers. Each layer consists of 50 ReLU neurons. There are 300 hidden neurons

total in each network. The five inputs consist of the sensor measurements: (1) ρ: Distance from ownship

to intruder; (2) θ: Angle to intruder relative to ownship heading direction; (3) ψ: Heading angle of intruder

relative to ownship heading direction; (4) vown: Speed of ownship; (5) vint: Speed of intruder. The outputs

are advisory scores for five different actions, where the lowest score corresponds to the best action. The five

actions are respectively, clear of conflict (COC), weak right, strong right, weak left, and strong left. There

are ten safety properties 1-10 which specify input bounds I and unsafe domains U in the output. The details

can be found in the Appendix of Katz et al. (2017).
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Figure 4.5: Test on ACAS Xu Property 1-4 with timeout. The timeout for each instance is set to 120 seconds.
ERAN fails to complete all instances. The figure below is without timeout.

We tested all 45 networks for properties 1, 2, 3 and 4 with 180 instances in total. The hardware config-

uration is Intel Core i9-10900K CPU @3.7GHz×, 10-core and 20-thread Processor, 128GB Memory, 64-bit

Ubuntu 18.04. The results as a cactus plot are shown in Figure 4.5. Our method is the only method that can

verify all the 180 instances without timing out (120s). Although Neurify Wang et al. (2018a) is faster than
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Property Network Result Our Method nnenum NNV-Exact Neurify ERAN Venus

5 N11 Safe 1.7 4.3 84.1 4.8 - 174.6
6.1 N11 Safe 4.7 20.9 Timeout 1.2 6.0 325.7
6.2 N11 Safe 5.6 24.1 Timeout 0.5 - 402.4
7 N19 Unsafe 1757.0 3730.5 Timeout 344.5 - 5298.0
8 N29 Unsafe 5.2 0.1 Timeout 24.4 - 0.7
9 N33 Safe 6.9 26.0 Timeout 146.2 - 926.8

10 N45 Safe 1.1 4.0 Timeout 0.4 10.3 78.4

Table 4.1: Running time (sec) and results of verification on properties 5-10 with 1hr timeout.

our methods on some instances by a few seconds, there are instances where it performs significantly worse.

In some instances, Neurify takes up to one hour. For properties 5-10, we select an individual network that is

commonly used by other publications. The result is shown in Table 4.1. Marabou is not included since their

published code does not support disjunctive conditions for the input domain. In addition, our approach can

also identify the subspace of the input space that leads to the safety violation.

Figure 4.6: Exact reachable set of the network N47 on Property 4. The blue star points are the output w.r.t.
2000 random input samples. They all locate on or inside the output sets.

An example of the exact reachable set of the network N47 is demonstrated in Figure 4.6, whose lower

bound and upper bound of the input are [1500, -0.06, 3.1, 1000, 700] and [1800, 0.06, 3.14, 1200, 800]. 5000

random inputs are sampled to demonstrate the method’s correctness. The reachable sets are visualized sep-

arately in two figures. With such output sets, we can verify different safety properties. Besides, our method

can also compute the exact input sets that lead to property violations. For instance, the inputs that make the

network N12 violate Property 2 are computed as shown in Figure 4.7. It is a union of 104 polytopes. The

element belonging to these polytopes will yield property violations. For the element that doesn’t belong to

them but are contained in the input range, they won’t cause any violation.
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Figure 4.7: Complete input sets that lead to the property ϕ2 violation on the network N12.

4.5.2 Reachability Analysis of Microbenchmarks

To further evaluate our approach, we compare them on a set of microbenchmarks that are proposed in Dutta

et al. (2018). These benchmarks consist of neural networks are created from the unwinding of a closed-

loop controller and a plant model. Here we check these networks’ safety on some synthetic unsafe domains.

Neurify is not included as we fail to apply their published code to these new networks. The performance on

each benchmark is shown in Table 4.2. The neural networks consist of thousands of neurons, as indicated in

column m in Table 4.2. As shown in Table 4.2, our approach computes the reachable sets for large networks.

For Marabou, the HD Error indicates a high-degradation error. The Error means Marabou returns a false

verification result for the instance. The LP Error for the nnenum indicates that the algorithm is terminated by

a LP-solver error.

Network x k m Our Method Marabou NNV nnenum

N11 3 9 1427 65.5 567.7 Timeout LP Error

N12 3 14 2292 96.5 Timeout Timeout LP Error

N13 3 19 3057 128.9 HD Error Timeout LP Error

N14 3 24 3822 150.9 HD Error Timeout LP Error

N15 3 127 6845 2.3 Error 383.5 12.7

Table 4.2: Performance results on the microbenchmarks. The label x, k andm respectively denote the number
of input, the number of layers and total number of ReLU neurons. The running time is in sec. The timeout is
set to 10 minutes.

4.6 Discussion

In this paper, we presented a set-based method to conduct exact reachability analysis of feed-forward neural

networks with ReLU neurons. The exact reachable set can be reusable for different properties that have

23



the same input domain, thus the extra computation time can be saved. To further improve the efficiency

and convenience, we can also partition a wide-range input into smaller subsets and build a library for their

reachable sets so that further analysis of any input contained in such range can be reduced to merely looking

up the library. Overall, there are multiple directions to improve our approach. One is a more concise and

efficient polytope representation than FVIM because it becomes complicated for high dimensional polytopes.

Another potential enhancement is to detect the polytopes in the input set that determine the output range so

that the redundant polytopes can be ignored, and the computation burden can be reduced. Additionally, one

direction is to apply the approach to reachability analysis and safety verification of learning-enabled control

systems with neural networks involved.
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CHAPTER 5

Reachability Analysis of Convolutional Neural Networks

5.1 Preliminaries

The architecture of CNNs usually consist of multiple layers including convolutional layers (Lc), Max-pooling

layers (Lm), batch-normalization layers (Lb), ReLU layers (Lr) and feed-forward layers (Lf ). Let N denote

a CNN with l layers and Li be its ith layer where i ∈ [1, 2, . . . , n]. Then, a CNN can be formulated as:

N = Ll ◦ Ll−1 ◦ · · · ◦ L1 (5.1)

where Li ∈ {Lc, Lm, Lb, Lr, Lf}. Inputs to the network will be sequentially processed by each layer.

The reachability analysis of neural networks refers to the computation of output reachable sets for the net-

work given an input set. As introduced, a reachable set refers to a domain where all the element points are

reachable. This set is usually represented using linear constraints or a geometric objects such as convex poly-

topes Xiang et al. (2018), Star set Tran et al. (2019a), Zonotope Tran et al. (2019a); Singh et al. (2018a) and

Abstract domain Singh et al. (2019b). The reachable-set computation of the network N can be formulated by

N(S) = (Ll ◦ Ll−1 ◦ · · · ◦ L1)(S) (5.2)

which is similar to Equation 4.8. The output reachable sets of one layer are inputs to the next layer.

Depending on the type of the layer, the function L(·) has two different operations. First, an affine trans-

formation operation is applied in layers Lc, Lb and Lf . This operation linearly transforms element points of

an input set with weights and bias (convolutional layer) or the mean and standard deviation (batch normal-

ization layer). Second, the input-domain division operation of the max function is applied in layers Lr and

Lm. The max function exhibits an unique linearity over each input range. For instance, the ReLU activation

function y=max(0, x) has two different input ranges x < 0 and x ≥ 0 over which the output of the max

function has different linearities. This is a source of non-linearity in CNNs and makes the set computation

challenging.

Recently, various approaches have been proposed to handle such challenges, and they can be classified in

two main categories. One is an over-approximation based approach, such as Zonotope Gehr et al. (2018) and

Abstract Domain Singh et al. (2018a), and the other one is an exact-analysis approach such as Polytope Xi-

ang et al. (2017), Star set Tran et al. (2019a) and ImageStar Tran et al. (2020a). The approximation methods
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normally apply a geometric object such as Zonotope to approximate the max function, which simplifies rep-

resentation of the nonlinearity of the max function. This simplification results in very efficient algorithms,

however, the over-approximation bound may be large, since the approximation error w.r.t the max function

is accumulated in an exponential manner. The exact-analysis methods separately consider the divided input

domains of the max function. These types of methods compute the exact reachable sets and can guarantee a

complete and sound verification of networks. But the number of reachable sets increases exponentially w.r.t.

the neurons, yielding an expensive computation process. Several set representations have been utilized by

other works Xiang et al. (2018); Tran et al. (2019a, 2020a), aiming to simplify this process. However, these

approaches do not scale very well for verification of deep neural networks. Here we propose a novel repre-

sentation of sets using the face lattice structure which can exhibit a significantly higher efficiency compared

to the aforementioned methods.

5.2 Reachable Set Representation

In this section, we introduce the notion of a face lattice Henk et al. (2004); Grünbaum (2013) and show how

it can be used for constructing reachable sets, and how its properties make it particularly efficient for the

computation of reachable sets for CNNs.

5.2.1 Face Lattice Structure

The face lattice of a set is a complete combinatorial structure that contains all its faces and partially orders

them by face containment. A 3-dimensional tetrahedron and its face lattice is shown in Figure 5.1. Its faces

are organized in terms of their dimensions. The highest-dimensional face 3-face is the tetrahedron itself.

There are a total of 15 faces described by blue blocks and their dimension ranges from 0 to 3. The downwards

paths along the solid lines from one face to its adjacent faces represent their containment relation, which is

transitive. For instance, the 2-dimensional face 2-face:1 which is the plane2-3-4 contains the 1-dimensional

face 1-face:2 which is the edge2-4. The indices of the 0-face correspond to the vertices. Given a set S, let F

denote its face lattice and V denote its vertices’ values, then S is represented by

S = ⟨F , V ⟩ (5.3)

More geometric details on the face lattice representation can be found in Henk et al. (2004).

5.2.2 Affine Transformation

Affine transformation operations are very common in computing reachable sets. One of the advantages of

the face lattice structure is that affine transformation only changes the values of vertices while preserving the
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Figure 5.1: Face lattice structure of a tetrahedron.

face lattice structure Henk et al. (2004); Grünbaum (2013). An affine transformation on a set S is applied as

follows. Given a set S = ⟨F , V ⟩, and an affine transformation with a weight matrix W and a bias vector b,

then the output set S ′ = ⟨F ′, V ′⟩ is computed by

F ′ = F , V ′ =WV + b (5.4)

We note that an affine transformation may project a set into a higher-dimensional or lower-dimensional

space. Projection onto higher dimensional space normally happens in the convolutional layer. On the other

hand, projection onto lower dimensional space commonly happens in the linear layer where neurons are

fully connected. In this case, the dimension of the set will be reduced to the dimensions of the target space

accordingly. When the set is affine transformed to a lower dimension, its face lattice is preserved as described

in Equation 5.4. The faces whose dimensions are higher than the target do not influence the computation of

reachable sets, and the face lattice including all faces together will be processed for future operations, such

that the geometric information from the preceding layer is maintained.

5.2.3 Split Operation

The split operation is applied when a set spans over multiple input domains of themax function. For instance,

when dealing with themax function in a ReLU neuron, the input set is split in two subsets in order to capture

the two different linearities. For a general max function y = max{x1, x2, . . . , xn}, we have that y = xi

if and only if ∀xj , j ̸= i, xi − xj ≥ 0. We note that the input domain over which xi is the maximum is

characterized by a set of linear constraints, and that input domains specifying different xi as the maximum

are adjacent and divided by hyperplanes. In exact reachability analysis, an input set will need to be split

when it spans such domains. This case can be determined by inspecting whether the set intersects with

those hyperplanes. In practice, making this determination is the most common and challenging issue in the

exact reachability analysis of DNNs. It’s usually handled by linear-optimization or similar approaches Katz
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et al. (2019); Kouvaros and Lomuscio (2018); Tran et al. (2020a); Singh et al. (2018b, 2019b), which are

computational expensive due to the high dimension of the sets and the large amount of neurons. The face

lattice structure does not require such optimization and is therefore much more efficient. To formally illustrate

the split process, we also utilize the concepts positive and negative vertices, and positive and negative subsets

as defined in Section 4.2.2.

Given a H : a⊤x + b = 0 and a set S, the split operation starts by determining whether there is an

intersection betweenH and S. As the face lattice contains vertices of S, this determination can be simplified

to finding the distribution of vertices on the sides ofH. This is achieved by substituting the x in a⊤x+ b with

vertices values. In terms of the vertices distribution, a vertex v is positive v+ if a⊤x+ b > 0, negative v− if

a⊤x+ b < 0, and v0 if a⊤x+ b = 0. Overall, there are three cases to consider:

1) The hyperplane H intersects with S, where S has both v+s and v−s w.r.t. to H. In this case, S is split

into two non-empty subsets S+1 and S−2 .

2) The hyperplane H doesn’t intersect with S, where S doesn’t have any v−s w.r.t. to H. In this case, S

itself is positive w.r.t. theH.

3) The hyperplane H doesn’t intersect with S, where S doesn’t have any v+s w.r.t. to H. In this case, S

itself is negative w.r.t. theH.

In the following, we focus on the first case, as the last two cases can be easily processed. The split process

in the first case includes four steps, as illustrated in Figure 5.2. They are: 1) identification of faces in each

dimension that intersects with H, 2) derivation of the face lattice structure that consists of the new faces

generated from the intersection of H with those faces obtained from Step 1, 3) splitting of the original face

lattice into two sub-structures according to the types of its vertices, 4) merging of the structure generated

from Step 2 respectively with the two sub-structures from Step 3, and forming the final face lattice for S+1

and S−2 .

The identification of faces in Step 1 is based on Lemma 3, with which we can identify different dimen-

sional faces that intersect with the hyperplane from the lower dimension to the higher along the containment

relation. The identification starts with the 1-faces (edges). A 1-face is said to be intersecting with H if it

contains a v+ and a v−. Based on these 1-faces, we search faces along the upward path to the next upper

dimension, and repeat this process until we reach the highest-dimensional faces. This ensures all faces are

searched. This process is demonstrated in Figure 5.2 (b).

The derivation of the new face structure in Step 2 is based on Lemma 4. The intersection ofH with each

face identified in Step 1 generates a new face. Additionally, their containment relation can also be inherited
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Figure 5.2: A demonstration of the split process of the face lattice of a tetrahedron S with a hyperplane H.
In (b), the blocks filled with blue and connected by solid lines is the face lattice. The connection by solid
lines represents face containment. The blocks with red frames and blue color are the faces intersecting with
H in S, which are extracted from the listed positive and negative vertices in Step 2. The new face lattice
generated in Step 2 is in red. In (c) and (d), the sub-face lattices consisting of the blue blocks are split from
Step 3, and the whole structures with the red blocks represent the final face lattice. The one in (c) represents
the positive set and the one in (d) represents the negative set.

from the original faces based on Lemma 4. This process is illustrated in Figure 5.2 (b), where the red solid

lines represent the inherited containment relations. From another perspective, this derivation is essentially

equivalent to a duplication of a sub-face lattice that only contains the faces that intersect withH in the original

structure.

The split operation in Step 3 separates the face lattice into two sub-face lattices according to the type of

their vertices. Faces of different dimensions belonging to one sub-face lattice are searched starting from the

vertices along the containment relation up to the highest-dimensional faces. With v+:{1} and v−:{2, 3, 4}, it

generates two sub-face lattices which consists of blue blocks, as shown in (c) and (d). In terms of containment

relations inherited in Step 2, the sub-face lattices from Step 3 and the new face lattice from Step 2 are merged,

generating the final structures for two subsets S+1 and S−2 , which is Step 4.

Lemma 3 Given a set S in the face lattice structure and a hyperplaneH, ifH intersects with a k-face ⊆ S,

then theH also intersects with all (k+1)-faces where (k+1)-faces ⊆ S and k-face ⊆ (k+1)-faces.

Proof. Let H ∩ k-face = ψ and ψ ̸= ∅, then ψ ⊆ H and ψ ⊆ k-face. As k-face ⊆ (k+1)-faces, then

ψ ⊆ (k+1)-faces and ψ ⊆ (H ∩ (k+1)-faces). ThusH intersects with (k+1)-faces.

Lemma 4 Assume a hyperplaneH intersect with a (k+1)-face and k-face in a set and generate new faces
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k-face′ and (k-1)-face′ accordingly. If k-face ⊆ (k+1)-face, then (k-1)-face′ ⊆ k-face′.

Proof. As k-face ⊆ (k+1)-face, it can be inferred that (k-face∩H) ⊆ ((k+1)-face∩H), from which

we can derive that (k-1)-face′ ⊆ k-face′.

5.3 Computation of Reachable Sets of CNNs

As discussed in Section 2, there are two primary operations on a set when it passes through a CNN. The

affine transformation is applied in the layers such as the convolutional layer and the linear layer, and the split

operation is applied to the ReLU layer and the Max-pooling layer. As introduced in Section 5.2.1, the affine

transformation only linearly updates the vertices of a set and its face lattice structure will be preserved. The

algorithmic implementation of this operation is straightforward. Therefore, this section will mainly focus on

the split operation on sets in ReLU and Max-pooling layers. Additionally, a tracking method is also proposed

which enables backtracking to the input domain of the network given an output reachable set. This method

can be utilized to identify space of adversarial examples.

5.3.1 ReLU Layer

Assume a ReLU layer contains n neurons and its input is denoted as x ∈ Rn. Then, the output of the kth

neuron is yk = max{0, xk}, and the input space of this max function is divided by the boundary xk = 0

into two domains over which it has different linearities. The boundary can be generalized to the hyperplane

Hk : a⊤x = 0 where a = [a1, a2, . . . , an] and ak = 1 and ai(i ̸=k) = 0. When the input is a set S where

x ∈ S , it will be sequentially processed with the hyperplane of each neuron. The sets generated w.r.t. one

hyperplane will be further processed by the next one until all hyperplanes in this layer are considered.

The process w.r.t. one hyperplane Hk is as follows. In terms of the discussion in Section 5.2.3, positive

and negative sets can be obtained in the split operation w.r.t. Hk. The positive set will stay unchanged as an

output w.r.t to Hk. On the other hand, the negative set will be projected on Hk and transformed to a new set

as an output, which is essentially done by setting the xk dimension of all the elements in the set to zero. Let

the function E[k]
relu denote this process, then the function L in Equation (5.2) for the ReLU layer is equal to

L(S) = (E[n]
relu ◦ E

[n−1]
relu ◦ · · · ◦ E

[1]
relu)(S) (5.5)

An example is used to illustrate this process as shown in Figure 4.3. The ReLU layer contains two neurons

n1 and n2. The input set S ⊂ R2 and element points x = [x1, x2]
⊤ ∈ S. When the set S passes through

the layer, it will be split sequentially by two hyperplanes that are imposed by two ReLU activation functions

max(0, x1) andmax(0, x2) from the n1 and n2. These two hyperplanes are respectivelyH1 : {[1, 0]⊤x = 0}
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and H2 : {[0, 1]⊤x = 0}. Together, there are four unique domains having different linearities over the input

x to this layer, and they are

{x | [1, 0]⊤x ≥ 0 and [0, 1]⊤x ≥ 0}

{x | [1, 0]⊤x ≥ 0 and [0, 1]⊤x ≤ 0}

{x | [1, 0]⊤x ≤ 0 and [0, 1]⊤x ≥ 0}

{x | [1, 0]⊤x ≤ 0 and [0, 1]⊤x ≤ 0}

The input set S is first split by HyperplaneH1 into two subsets {S1,S2}. The S2 locates in the halfspace

ofH1 : [1, 0]⊤x ≤ 0 and thus is the negative set w.r.t. H1. Due to the property of the negative domain in the

ReLU function, S2 will be projected on the H1, generating a new set S3. This process is essentially setting

the x1 of all the elements in the set to zeros. It’s also equivalent to a linear transformation, and the matrix is

an identity matrix with the first diagonal entry being zero. While the sets locating in the halfspace ofH1 will

remain. So far, sets {S1,S3} are obtained from the split byH1. Then, these sets will be split byH2 into four

subsets {S4,S5,S6,S7} as shown in (c), where {S4,S7} are negative sets w.r.t. H2. Similarly, sets S4 and

S7 will be mapped onH2 by setting the x2 of all their element points to zeros, generating new sets S8 and S9

which is the original point. Then the final outputs of this layer are {S5,S6,S8,S9}. Let the function E[i]
relu

denotes the split process by a hyperplaneHi as well as the subsequent linear projection for sets that locate in

the negative halfspace. Then we have the following process:

{S2,S3} = E[1]
relu({S1})

{S5,S7,S8,S9} = E[2]
relu({S2,S3})

For one layer, given an input set, the maximum number of output reachable sets is 2n, where n is the

number of neurons. Our experimental results indicate that the actual number is associated with the input

set’s volume. An input set with a larger volume will generate a larger number of sets, as it has a higher

likelihood of being split by hyperplanes. This process is described in Algorithm 2. It’s based on a recursive

function which aims to reduce the repeated computation on the hyperplanes that don’t intersect with sets.

Given an input set S , it starts with FnReLULayer(S, neurons=empty, flag=False). In each recursion, only

one valid neuron whose hyperplane truly intersects with S is considered. Function FnValidNeurons is first

to compute all such valid neurons denoted as news as well as the neurons negs where S is negative w.r.t. the

target hyperplanes. Subsequently, S will be projected on those hyperplanes using Function FnMap. Function

FnSplit denotes the split process introduced in Section 5.2.3.
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Algorithm 2 Computation in ReLU layers
Input: S, neurons # input set and neurons to process
Output: O # output reachable sets

1: procedure O = FNRELULAYER(S, neurons, flag=True)
2: if neurons is empty and flag then
3: return S
4: news, negs = FnValidNeurons(S , neurons)
5: S = FnMap(S, negs)
6: outputs = FnSplit(S, news.pop(0))
7: O = empty
8: for S in outputs do
9: O.extend(FnReLULayer(S, news))

10: return O

5.3.2 Max-pooling Layer

The purpose of the Max-pooling layer is to reduce the dimensionality of an input by pooling with amax func-

tion. For parameter configurations, we consider the most common kernel size 2×2 and stride size 2×2. Each

pool contains four unique element dimensions, and there are no overlaps between pools. Suppose a pool con-

tains dimensions {x1, x2, x3, x4}, then the pooling process will be formulated by y = max{x1, x2, x3, x4}.

Element xi will be the output if ∀xj(j ̸=i), xi − xj ≥ 0. We notice that the input domain over which xi

is the maximum is the common space of the three halfspaces H(xi,xj(j ̸=i)): xi − xj ≥ 0. When an input

set to this pool spans this domain, its subset can be computed by sequentially applying the split operation

with the three aforementioned hyperplanes. Considering the other three dimensions as well, there are totally

six unique hyperplanes, and they are H(x1,x2),H(x1,x3),H(x1,x4),H(x2,x3),H(x2,x4),, and H(x3,x4), respec-

tively. With them, the input space of the max function is divided into four domains over which they exhibit

unique linearity, and they are

{x | x1 − x2 ≥ 0 & x1 − x3 ≥ 0 & x1 − x4 ≥ 0}

{x | x2 − x1 ≥ 0 & x2 − x3 ≥ 0 & x2 − x4 ≥ 0}

{x | x3 − x1 ≥ 0 & x3 − x2 ≥ 0 & x3 − x4 ≥ 0}

{x | x4 − x1 ≥ 0 & x4 − x2 ≥ 0 & x4 − x3 ≥ 0}

The split operation is the same as introduced in Section 5.2.3. However, in this case, the split subset will be

handled differently. In the ReLU layer, the negative sets will be mapped to their corresponding hyperplane.

While in the Max-pooling layer, non-maximum dimensions will be eliminated. Here, the concepts of the

negative set and the positive set are extended to be w.r.t a specific dimension as defined in Definition 5.3.1.

Definition 5.3.1 (Set Types) In the Max-pooling layer, given a hyperplane H(xi,xj), a set is named xi-
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negative or xj-positive if it belongs to the closed halfspace xi − xj ≤ 0, and is named xj-negative or

xi-positive if it belongs to the closed halfspace xj − xi ≤ 0.

When a set is split by a hyperplane H(xi,xj) into two non-empty subsets, we have a xi-negative and a

xj-negative subset. The dimension for which the subset is negative will be eliminated. Then, these new sets

will be processed w.r.t. the next hyperplane. Let E[xi,xj ]
max denote the process with the hyperplane H(xi,xj),

and P denote the sequential splits of an input set S by these hyperplanes in one pool. Then we can derive

Equation (5.6).

P(S) = (E[x3,x4]
max ◦ E[x2,x4]

max ◦ E[x1,x4]
max ◦ E[x2,x3]

max ◦ E[x1,x3]
max ◦ E[x1,x2]

max )(S) (5.6)
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Figure 5.3: Demonstration of the split operation in the Max-pooling layer

The process E[xi,xj ]
max is illustrated in Figure 5.3. There are two dimensions x1 and x2 and correspondingly

there is one hyperplane H(x1,x2) : x1 − x2 = 0. As shown in Figure (a), the input set S is first split by

H(x1,x2) into two subsets S1 and S2 which respectively are x2-negative and x1-negative. The elimination

of dimensions is shown in Figure (b), where the 2-dimensional sets S1 and S2 respectively generate new

1-dimensional sets S3 and S4. Finally, this pooling yields reachable sets {S3,S4}. We have

{S3,S4} = E[x1,x2]
max (S) (5.7)

Suppose the layer has n pooling operations and the kth pooling is denoted as Pk, the L in Equation (5.2)

for the Max-pooling layer with an input set S can be formulated as Equation (5.8).

L(S) = (Pn ◦ Pn−1 ◦ · · · ◦ P1)(S) (5.8)

Given an input set, the maximum number of the output reachable sets of this layer is 23n. Similar to the

ReLU layer, the actual number is related to the input set’s volume. In addition to Equation (5.8), The process
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in the Max-pooling layer is also described in Algorithm 3. It’s conducted in a similar recursive manner as

Algorithm 2. Given an input set S, this algorithm starts with FnMaxpooling(S, pools=empty, flag=False).

Function FnValidPools helps identify a new set of pools news where intersections exist between their hyper-

planes and S. The set S is processed with one pool in each recursion, which is described by Equation (5.6)

and Line 9-14 in the algorithm. Function FnValidHplanes helps identify hyperplanes. Function FnSplit

splits a set with a hyperplane.

Algorithm 3 Computation in max-pooling layers
Input: S, pools # input set and pools to process
Output: O # output reachable sets

1: procedure O = FNMAXPOOLING(S)
2: if pools is empty and flag then
3: return S
4: news = FnValidPools(S, pools)
5: if news is empty then
6: return FnEliminateDims(S)
7: hps = FnValidHplanes(news.pop(0))
8: sets = S
9: forH in hps do

10: temp = empty
11: for S in sets do
12: temp.extend(FnSplit(S,H))
13: sets = temp
14: O = empty
15: for S in sets do
16: O.extend(FnMaxpooling(S, news))

5.3.3 Backtracking Method

Given output reachable sets, this method enables backtracking to find the corresponding subspace in the input

domain. This enables us to identify the adversarial input space. As described in Equation (5.5) and (5.6),

the domains over which the max function exhibits different linearities are always separately considered for

processing reachable sets. Therefore, for each output reachable set, there always exists a subset in the input

space over which the neural network is linear, and this subset is a linear region as introduced in Section 4.1.1.

There have been some works on the quantification of linear regions to assess the expressibility of neural

networks Montufar et al. (2014); Serra et al. (2018); Hanin and Rolnick (2019).

Our backtracking method tracks the linear regions of reachable sets when they are sequentially processed

by neurons. Here, we represent the linear region using vertices (V-representation). As reachable sets are

related to their linear regions with a linear map, the vertices of the linear region and the vertices of the set

itself are in a one-to-one correspondence. This relation is maintained in the affine transformation. For the

split process in the ReLU neuron Erelu and the Max-pooling Emax, in addition to splitting the reachable set,
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we also split its linear region accordingly, such that their one-to-one relation can be maintained and tracked.

The linear region of the initial input set to the network is the input set itself. Overall, all the computed output

reachable sets have their linear regions, and thus any violation in the output reachable sets can be backtracked

to the input space.

(a) CIFAR10 factor=0.01 (b) CIFAR10 factor=0.1

(c) VGG16 factor=0.01 (d) VGG16 factor=0.1

Figure 5.4: The fast computation of reachable sets with different relaxation factors. The gray area is the exact
reachable domain. The red area are the reachable domains computed by the fast method. The x axis is the
logit of the correct class, while the y axis is the second highest logit.

5.4 Fast Reachability Analysis

With the face lattice structure, we can efficiently compute the exact output reachable sets for most of the deep

neural networks and guarantee complete and sound verification. However, due to the exponential computa-

tional complexity in the ReLU layer and Max-pooling layer, the analysis of a deeper CNN with larger input

sets is still challenging. Here we propose an efficient alternative approach which only considers the sensitive

neurons. The sensitivity of each neuron is ranked using the gradient of the DNN output w.r.t. the input to

this neuron. We use a relaxation factor to select a fraction of the highest ranked neurons in each layer and

compute reachability analysis using only the selected neurons. The relaxation factor defines the trade-off

between computation time and completeness of the computed reachable sets. Our experimental results show

that even with a small relaxation factor, the exact reachable sets can still be well approximated, as shown in

Figure 5.4 and 5.6.

The reachable set computation is slightly different using the fast analysis method. In the ReLU layer,

for the selected neurons, computation remains unchanged. However, for each of the non-selected neurons, at
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most two subsets can be generated by the split operation and only the subset, which has the highest number

of vertices, is retained. We choose the subset with more vertices since it is more likely that it carries more

geometric information. In the Max-pooling layer, for the selected dimensions or neurons, computation re-

mains unchanged. Here, we apply a split operation for each of the non-selected dimensions and discard the

subset which is positive w.r.t. a non-selected dimensions (see Definition 5.3.1). When two dimensions are

non-selected, we keep the subset with more vertices to avoid an empty output.

Algorithm 4 Fast Computation of Reachable sets
Input: S, δ # input set and relaxation factor
Output: O # output reachable sets

1: procedure O = FASTCOMPUTE(S)
2: O = S
3: for l in layers do
4: if l is affine-transformation layer then
5: O = FnAffineTrans(O)
6: else if l is ReLu layer then
7: neurons = FnImpactNeurons(δ)
8: O = FnReLULayerFast(O, neurons)
9: else if l is Maxpooling layer then

10: neurons = FnImpactNeurons(δ)
11: O = FnMaxPoolingFast(O, neurons)
12: return O

The fast analysis is presented in Algorithm 4. Given a relaxation factor, Function FnImpactNeurons

selects neurons on which the fast computation of reachable sets are conducted. Functions FnReLULayerFast

and FnMaxPoolingFast are the revised functions respectively from Algorithm 2 and 3. The revised part of

these functions is that when two subsets are generated from Function FnSplit and the current neuron is not

in neurons, the subset with more vertices will be kept while the other one will be discarded.
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Figure 5.5: Reachable domains with different factors

Here is a running example to demonstrate our algorithm in Figure 5.5. It starts by ranking the neurons
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in each layer in terms of sensitivity. The relaxation factor defines the percentage of top-ranked neurons

considered in the fast computation of reachable sets. The lower the factor, the fewer the number of neurons

considered and the faster the method will be. The input is x = 0 and the perturbed range is x ± 0.5. When

factor = 1.0, it considers all neurons and computes exact reachable domain. The result is shown in the

first row where the exact reachable domains of each layer are included. When factor=0.67, it considers 2

neurons(in green) in each hidden layer which have the highest absolute gradients of the target output. The

algorithm computes the subset of exact reachable domain as shown in the second row.

5.5 Experimental Results

This section presents experimental results demonstrating the utility of our methods. (1) We evaluate our

reachable-set computation with various relaxation factors to demonstrate the trade-off between the compu-

tational complexity and the completeness of reachable sets. (2) We compare the performance of our reach-

ability analysis method to other state-of-the-art tools for the safety verification of CNNs. (3) We apply our

method to evaluate the adversarial robustness of CNNs trained with various defense algorithms to pixelwise

perturbation. (4) We apply our fast analysis method to falsify CNNs for image classification. The hardware

configuration for all experiments is CPU: Intel® Core™ i9-10900K, Memory: 128 GB, GPU: Nvidia® GeForce®

RTX 2080 Ti.

Relaxation 0.01 0.2 0.4 0.6 0.8 1.0

ϵ = 0.02 5.3 / 124 8.6 / 1602 12.5 / 4109 23.7 / 14274 32.3 / 22449 48.7 / 42931

ϵ = 0.06 5.2 / 126 16.3 / 6409 37.0 / 22902 115.5 / 95929 289.5 / 261140 765.5 / 766849

ϵ = 0.10 5.2 / 143 24.2 / 11445 66.4 / 44986 268.3 / 223970 968.7 / 835045 2930.1 / 2722864

Table 5.1: Evaluation of the fast reachability analysis with different settings of epsilons and relaxation factors.
The result format is Running Time(sec)/ Number of Reachable Sets for each computation.

The fast-analysis method is evaluated with a CNN for the CIFAR10 dataset and the VGG16 for the

ImageNet dataset. Here, the input set is created with a perturbation on the independent channels of target

pixels. Let C = [c1, c2, . . . , cn] denote the channels of the target pixels and ϵ be the perturbation range.

For each channel ci,i∈{1,2,...,n}, a range [ci − ϵ, ci + ϵ] is created. Thus, we can obtain a n-hyperbox set

with a face lattice structure. In this evaluation, we target one pixel with ϵ = 1.0. The input set is partitioned

into several subsets for parallel computation. The reachable sets are shown in Figure 5.4. The density and

the number of reachable sets increase with the relaxation factor, approaching the exact reachable domain

as the relaxation factor increases. We can notice that with relaxation = 0.01, the sparse reachable sets can

approximate well the outline of their exact reachable domains. Additional experiments are also included to

reveal that the running time and the number of reachable sets computed increase along with the relaxation
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Figure 5.6: The fast computation of reachable sets with different relaxation factors on a CIFAR10 image.
The computation in each row is with the different perturbation ϵs. From the top to the bottom, they are 0.02,
0.06 and 0.10, respectively. The computation in each column is with different relaxation factors. From the
right to the left, they are 0.01, 0.2, 0.6 and 1.0, respectively. The x axis corresponds to the output of the
correct class, and the y axis corresponds to the class which has the most likelihood to be misclassified to.

factor. The fast-analysis method is also evaluated by computing reachable sets w.r.t. one pixelwise variation

on a CIFAR10 image. Different relaxation factors as well as ϵs are considered. The computed reachable sets

are presented in Figure 5.6, and their number and the running time is shown in Table 5.1. We can notice that

our algorithm can compute 1000 output sets per second, and that the running time and number of output sets

increase exponentially with the relaxation factor.

We evaluate the exact reachability analysis of our approach by comparing it with related state-of-art-

methods. Specifically: Deepzono Singh et al. (2018a), Refinezono Singh et al. (2018b), Deeppoly Singh

et al. (2019b), Refinepoly Singh et al. (2019a) and the NNV tool Tran et al. (2020b). The proposed approach

is evaluated on a CIFAR10 CNN which consists of 16 layers which include the convolutional layer, ReLU

layer, and max pooling layer. The exact reachability analysis is tested on an image labeled with cat. 100

images are selected for the test. We apply perturbation with different ϵ values to one sensitive pixel and aim

to verify the network. The result is shown in Table 5.2. Compared to NNV-Exact, which also computes

the exact reachable domain, our method can quickly verify all images within the timeout limit, while the

NNV-Exact can only verify the images with the small perturbation ϵ = 0.01 and larger ϵ values causes out-
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of-memory issues. For other over-approximation methods, some of them are faster in running time but mostly

fail due to the large conservativeness of the approximated reachable domain.

ϵ 0.01 0.05 0.10 0.15

Methods SF US UK TT TIME SF US UK TT TIME SF US UK TT TIME SF US UK TT TIME
NNV-Appr 66 0 34 0 2,303 0 0 98 2 29,738 0 0 67 33 193,907 0 0 <67 >33 <193,907

NNV-Exact 77 22 0 1 27,335 3 5 88 3 131,138 – – – – – – – – – –

Deepzono 76 0 24 0 1,552 0 0 100 0 2,077 0 0 100 0 3,079 0 0 100 0 3,935

Refinezono 76 0 24 0 1,754 0 0 100 0 2,383 0 0 100 0 3,382 0 0 100 0 4,224

Deeppoly 75 0 25 0 7,6019 5 0 95 0 76,720 0 0 100 0 76,369 0 0 100 0 75,887

Refinepoly 77 0 23 0 146,763 10 0 90 0 186,558 0 0 100 0 198,058 0 0 100 0 219,365

Our Method 78 22 0 0 5,241 35 65 0 0 7,549 13 83 0 4 16,135 5 87 0 8 22,835

Table 5.2: Summary of the experimental results. The symbol SF stands for SAFE which indicates no mis-
classification in the input set. The US stands for UNSAFE indicating the existence of misclassification in the
input set. The UK stands for UNKNOWN indicating a failed verification returned from the algorithm. The
TT stands for the TIMEOUT which is set to one hour for each verification. The TIME stands for the total
computation time for the verification of all images (in seconds). The incomplete result of NNV-Exact for
ϵ=[0.05,0.10,0.15] is due to the out-of-memory (128 GB).

(a) Without Robust Training (b) PGD Adversarial

(c) Distillation (d) TRADES

Figure 5.7: Adversarial robustness evaluation with pixelwise perturbation. The x-axis is the output logits
of the class plane. The y-axis is the second highest logit of the next likely class. The diagonal denotes the
decision boundary. The segment length represents the approximated maximal output variation w.t.t. the input
perturbation. The averaged segment lengths of each networks are respectively 0.040, 0.012, 0.034, 0.010.
The standard deviations are 0.031, 0.008, 0.025, 0.006.

We also apply our method to analyze the adversarial robustness of CIFAR10 CNNs trained with different

defense methods. These methods considered are PGD adversarial training Madry et al. (2018), Distilla-
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tion Papernot et al. (2016) and TRADES Zhang et al. (2019). Test images include all the images correctly

classified as plane in the test data. For each image, we select the most sensitive pixel and apply the fast

reachability analysis to approximate the maximal output changes w.r.t. a perturbation of ϵ = 1. A larger out-

put variation indicates that a perturbation can have a larger effect on the output classification of the network.

On the other hand, a smaller variation indicates that the network is more robust under the perturbation. This

enables us to evaluate these networks’ adversarial robustness. The experimental results over CNNs trained

with different methods are shown in Figure 5.7. It shows the output change of each image before and after

the perturbation. The end of the segment that is closer to the boundary denotes the worst output after per-

turbation, while the other end denotes the original output. The segment length reflects the maximal output

variation w.r.t. the input perturbation. A red segment indicates that an adversarial example is found. For

comparison, outputs are normalized into [0, 1]. We notice that networks trained without robust training or

with the Distillation method exhibit much larger output variations, compared to the adversarial trained net-

works with PGD or TRADES. It indicates that these two networks of Figure 5.7 (a) and (c) are less resistant

to the pixelwise perturbation and thus have lower robustness. This supports the results presented in Athalye

et al. (2018); Tramer et al. (2020) where they show that methods such as Distillation which utilize gradient

obfuscation give a false sense of robustness. This result indicates that our reachability analysis can be useful

for a fair evaluation of robustness.

Figure 5.8: Falsification of CIFAR10 and VGG16 CNNs

Finally, to evaluate the falsification capability of the fast analysis method, we test it on a CIAFR10 CNN

and the VGG16 network. Our falsification method changes the input image pixel by pixel until a misclas-

sification is found. For each pixel, a fast-reachability computation is conducted with ϵ = 1 and relaxation

= 0.01. For each iteration, we first compute the output reachable domain for one pixel of the target image

under the perturbation, from which we approximate the perturbed image which is the closest to the decision

boundary. This perturbed image will be the input for the next iteration. The process is repeated until adver-

sarial examples are found, or a timeout is reached. For the CIFAR10 and VGG16 networks, we attack 400
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and 200 images that are correctly classified. The results are shown in Figure 5.8. With different number of

pixels allowed to change in each image attack, we compute the number of misclassified images as well as

the running time. We can notice that the selected CIFAR10 images can be successfully attacked when only a

few pixels are affected. For VGG16, more pixels need to be changed to cause falsification. This is because a

single pixel has a lower impact to the image classification due to the larger image size and a deeper network

architecture. The averaged computation time of a single pixel for the CIFAR10 network is∼2 seconds, while

for a larger and deeper architecture VGG16 the computation time is ∼25 seconds.
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CHAPTER 6

Neural Network Repair with Reachability Analysis

6.1 Deep Neural Network Repair

This section provides definitions and problem statements for DNN repair, and a brief overview of reachability

analysis for DNNs. The problem is also extended to repair DNN agents in deep reinforcement learning.

6.1.1 Provably Safe DNNs

Let fθ : X → Y where X ⊆ R|x| and Y ⊆ R|y| denote the input and output space of a DNN with the

parameter set θ, where given an input x ∈ X , it produces an output y = fθ(x) ∈ Y . The safety problem of

DNNs with reachability analysis on safety properties is formally defined as follows.

Definition 6.1.1 (Safety Property) A safety property P of a DNN fθ specifies a bounded input domain I ⊆

X and a corresponding undesired output domain U ⊆ Y . The domain I refers to an interval with the lower

bound x and the upper bound x. The domain U refers to either a convex domain Ay+ b ≤ 0 or a non-convex

domain consisting of multiple such convex domains.

Definition 6.1.2 (DNN Reachable Domain) Given an input domain I ⊆ X to a DNN fθ, its output reach-

able domain will be a subspace O ⊆ Y where ∀x ∈ I, its output y = fθ(x) and y ∈ O. The domain

O is exact if it only contains the output of x ∈ I. Otherwise, it is over approximated. It is formulated as

O = N(I).

Definition 6.1.3 (DNN Safety Verification) A DNN fθ is safe on a safety property P that specifies an input

domain I and an output unsafe domain U , or fθ |= P , if the exact output reachable domain O = N(I)

satisfies that O ∩ U = ∅. Otherwise, it is unsafe, or fθ ̸|= P .

Given a set of safety properties {P}ni=1 and a candidate DNN fθ, we define the DNN Repair problem

as the problem of repairing the DNN to generate a new DNN f ′θ such that all the properties are satisfied, as

defined in Problem 6.1.1. While repairing DNNs, it is also extremely important to preserve the parameter

θ of the candidate DNN to the utmost extent because a subtle deviation on the parameter can lead to a high

impact on the original performance and even introduce unexpected unsafe behaviors. These changes can be

difficult to identify due to the black-box nature of DNNs. Therefore, our work also considers the minimal

repair, which is formally defined in Problem 6.1.2.
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Problem 6.1.1 (DNN Repair) Given a DNN candidate fθ and a set of safety properties {P}ni=1, at least one

of which is violated, the repair problem is to train a new parameter set θ′ based on θ, such that fθ′ satisfies

all the safety properties, fθ′ |= {P}ni=1.

Problem 6.1.2 (Minimal DNN Repair) Given a DNN candidate fθ and a set of safety properties {P}ni=1,

at least one of which is violated, the minimal repair problem is to train a new parameter set θ′ based on θ,

such that fθ′ satisfies all the safety properties, fθ′ |= {P}ni=1 while minimizing the L-distance ∥θ′ − θ∥L.

For DNN classifier, we use classification accuracy on finite test data to analyze the performance of a

repaired DNN fθ′ w.r.t. its original DNN fθ. While for DNN regressor, we use the prediction error on test

data. Additionally, we also analyze the impact of the DNN deviation on the reachability of a DNN. Here,

reachability indicates the reachable domain of a DNN on its safety properties. As reachability characterizes

the behaviors of a DNN, a desired repair method should preserve its reachability. In the repair of a DNN

agent in Deep Reinforcement Learning (DRL), the DNN performance is set to the averaged rewards on a

certain number of episode tests.

6.1.2 DNN Agent Repair for Deep Reinforcement Learning

In DRL, an agent is replaced with a DNN controller. The inputs to the DNN are states or observations, and

their outputs correspond to agent actions. A property P for the DNN agent defines a scenario where it speci-

fies an input state space Iin containing all possible inputs, and also a domain U of undesired output actions.

Here, safety is associated with an input-output specification and reachability analysis refers to the process

of determining whether a learned DNN agent violates any of its specifications and also the computation of

unsafe state domain. This is formally defined as follows.

Definition 6.1.4 (Safe Agent) Given multiple safety properties {P}ni=1 for a DNN agent N , the learned

agent is safe if and only if for any Pi , the reachable domainO[i] for its input state space I [i] byO[i] = N(I [i])

does not overlap with its unsafe action space U [i], namely, O[i] ∩ U [i] = ∅.

An unsafe agent has the state domains Ou where their states will result in unsafe actions. Since the

traditional adversarial training is usually for regular DNN training algorithms with existing training data,

how to utilize such states or adversarial examples in DRL to repair unsafe behaviors remains a problem.

By considering the fact that DRL learns optimal policies in interactive environments by maximizing the

expectation of rewards, one promising way will be introducing penalty to the occurrence of unsafe actions

during the learning, such that safety can also be naturally learned from the unsafe state domain. This strategy

can also ensure the compatibility with the DRL algorithms, such that they can be seamlessly integrated. The

repair problem is formally defined as follows:

43



Problem 6.1.3 (DNN Agent Repair) Given a DNN agent candidate fθ and a set of safety properties {P}ni=1,

at least one of which is violated. The repair problem is to learn a DNN f ′θ through trial and error from the

experience in the interactive environment, such that f ′θ |= {P}ni=1 while maximizing the reward.

6.1.3 Computation of Exact Unsafe Domain of ReLU DNNs

The unsafe reachable domain of a DNN refers to its unsafe input-output domain on the safety properties. In

the repair, this domain is utilized not only for the safety verification, but also for its elimination by migrating

this domain into safe domains in the retraining process. Traditional reachability analysis of neural networks

focuses on computing the output reachable domain given an input domain. For neural network repair, it is just

as important to backtrack the unsafe reachable domain to the corresponding unsafe input domain containing

all adversarial examples. The input domain that generates unsafe behaviors is then used for the training/repair

process of the DNN.

The computation of an unsafe input-output reachable domain is as follows. Given a DNN fθ and a

safety property P that specifies an input domain I and an unsafe output domain U . The reachability analysis

computes a set of output reachable sets S, the union of which is the exact output reachable domain O =⋃m
i Si. Here, a set S refers to a convex set. The computation is denoted as O = N(I). This process is

illustrated in Figure 6.1. For each S, we compute its overlap Su with the specified unsafe output domain U ,

and then apply a backtracking algorithm to compute its corresponding unsafe input subspace Eu which is also

a convex set. The union of Su is the exact unsafe output reachable domain Ou =
⋃m

i Su,i and the union of

Eu is the exact unsafe input space Iu =
⋃m

i Eu,i. The backtracking process is denoted as Iu = B(Ou) as

illustrated in Figure 6.1.

Unsafe 
domain 

Input set Exact reachable domain 

Unsafe space Overlapped area u

in in(    )

Unsafe 
domain 

Input set Exact reachable domain 

Unsafe space Overlapped area

Figure 6.1: Computation of the unsafe input-output reachable domain Iu ×Ou.

In the reachability analysis above, the set representation for Eu and Su includes their vertices. These

vertices of all Eus and Sus distribute over the entire unsafe input domain Iu and unsafe output reachable

domainOu, respectively. In addition, Eu is actually a subset of a linear region of the DNN. Recall that linear

region is a maximal convex subset of the input domain to the DNN, over which the DNN is linear. Therefore,

Su and Eu have an affine mapping relation, and so do their vertices. Overall, these vertices can be utilized to
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well approximate the distance between unsafe domains and safe domains in Equation 6.3 for the repair.

Despite this method can compute the unsafe input space for the DNN repair, it needs to first compute the

O(2n) reachable sets. In practice, only a portion of these reachable sets violate the safety and a large amount

of the computation is wasted on the safe reachable sets. Therefore, to improve the computational efficiency,

it is necessary to develop a method to filter out such sets and avoid the additional computation.

Remark 6.1.1 Our reachability analysis algorithm will require computation of O(2n) reachable sets with

n ReLU neurons in N(·) and B(·). We aim to develop an over-approximation method to verify the safety of

reachable sets of each layer, such that we can filter out the safe set that will not violate safety properties and

avoid unnecessary subsequent computation.

To solve this problem, we propose an algorithm that integrates an over-approximation method with the

exact analysis method. Over-approximation methods can quickly check the safety of an input set to DNNs.

The integration is done as follows. Before an input set S is processed in a layer L(·), its safety will be first

verified with the over-approximation method. If it is safe, it will be discarded, otherwise, it continues with the

exact reachability method. Suppose there are m ReLU neurons involved in the computation in Equation 4.8,

then it can generate O(2m) reachable sets whose computation can be avoided if S is verified safe. The

integration of the over-approximation algorithm also improves the memory footprint of the algorithm, since

many sets are discarded early in the process.

Another problem is the memory-efficiency issue. The computation may take up a tremendous amount

of the computational memory, may even result in out-of-memory issues, due to the exponential explosion of

sets. To solve this problem, the algorithm above is designed with the depth-first search, by which the memory

usage can be largely reduced. The details of the over-approximation algorithm are presented in Section 6.3.3.

6.2 Framework for DNN Repair

6.2.1 Formulation of Loss Function for DNN Repair in Problem 1

The primary idea of this loss function is to construct the distance between its unsafe reachable domain and

the safe domain with a loss function of the parameter set θ. By minimizing this distance, the unsafe reachable

domain can be gradually eliminated. The loss function can be formulated as

Lu(θ) =

n∑
i=1

dist(Ou(I [i],U [i], θ),U [i]) (6.1)

where I [i] and U [i] are the input domain and output unsafe domain specified by the property Pi, the function

dist computes the distance between the identified unsafe reachable domain Ou and the safe domain U .
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This distance is designed to be the minimum distance of each y ∈ Ou to the safe domain U , such that the

modification of unsafe behaviors can be minimal. This minimum l-norm distance of y ∈ Ou to the safe

domain can be formulated as minŷ∈U ∥y(x, θ)− ŷ∥l.

The common strategy of related works which aim to repair or improve the safety of DNNs with reacha-

bility analysis Wong and Kolter (2018); Mirman et al. (2018); Lin et al. (2020) is by considering the largest

distance which is formulated as

dist : max
y∈Ou

min
ŷ∈U
∥y(x, θ)− ŷ∥l. (6.2)

However, the issues are twofold with this approach. First, it is unknown whether the unsafe domain Ou is

convex or concave, which makes it significantly challenging to convert the computation of the exact largest

distance to an LP problem. Secondly, Their solutions are based on the over-approximation of the output

unsafe reachable domain by linearization of nonlinear activation functions. As a result, the approximation

error is accumulated with neurons and it can be so conservative that a low-fidelity approximated distance may

result in significant accuracy degradation. This remark is demonstrated in our experimental evaluation and

comparison with the related work ART Lin et al. (2020).

Different from these strategies, our reachability analysis method can obtain the exact unsafe reachable

domain Ou efficiently. As introduced in Sec. 6.1.3, this is achieved by computing the exact unsafe linear

regions {Eu}mi=1 and their unsafe output reachable sets {Su}mi=1, where Su=N(Eu). The vertices of each pair

of domains E(u,i)×S(u,i) can be denoted as Vi : x×y. The y ∈ Ou having the largest distance in Equation 6.2

is also included in
⋃m

i=1 Vi which contains all the extreme points of Ou. Here, instead of identifying the y,

we choose to apply all the vertices to Equation 6.1. This enables us to avoid searching the y in
⋃m

i=1 Vi,

which significantly reduces computation time. More importantly, since these vertices distributes over the

entire Ou and contains all its corner points, they encode more geometrical information of this domain and

hence are more representative than a single point y which only captures its largest distance to the safe domain

U . Therefore, we substitute the dist function in Equation 6.1 with a more general formulation:

dist :

m∑
i=1

|Vi|∑
j=1

min
ŷ∈U
∥yj(xj , θ)− ŷ∥l (6.3)

where |Vi| denotes the vertices set’s cardinality.

In the following, we will explain our approach of approximating the closest safe ŷ to the unsafe y. Recall

that the unsafe output domain U defined in a safety property is either a convex set formulated as Ax+ b ≤ 0

or a non-convex domain consisting of multiple such convex sets. Therefore, the problem of finding ŷ can be

encoded as an LP problem of finding the ŷ on the boundaries of U whose distance to the interior y is minimal,
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Algorithm 5 DNN Repair
Input: N , {P}mi=1, (x, y)training #an unsafe DNN, safety properties, training data
Output: N ′ #an safe DNN satisfying all its safety properties.

1: procedure N ′ = REPAIR(N )
2: N ′ ← N
3: while N ′ is not safe on {P}mi=1 do
4: Dunsafe = reachAnalysis(N , {P}mi=1) #compute unsafe data domains
5: Lu = Dist(Dunsafe) #approximate the distance using Equation 6.3.
6: Lc = Loss((x, y)training) #compute loss on the training data in Equation 6.5
7: N ′ = Update(N ′, Lu, Lc) #learn through the loss function in Equation 6.6

where the optimal ŷ is located on one of its boundaries along its normal vector from y. Let the vector from y

to ŷ along the normal vector be denoted as ∆y. Then, the problem of finding ŷ can be formulated as

ŷ = y + (1 + α)∆y, min
ŷ /∈U
∥y − ŷ∥ (6.4)

where α is a very small positive scalar to divert ŷ from the boundary of U into the safe domain.

6.2.2 Formulation of Loss Function for the Minimal DNN Repair in Problem 2

The minimal repair problem is posed as a multi-objective optimization problem. In addition to the optimiza-

tion for the repair problem explained in the last section, the minimal change of the DNN parameter θ is also

considered in the problem formulation. For the minimization of the change, one simple and promising ap-

proach is to apply the training data in the retraining process of repair. Let the training input-output data be

denoted as X × T , then the function for measuring parameter change can be formulated as

Lc(θ) =

N∑
i=1

∥yi(xi, θ)− ti∥l (6.5)

where (x, t) ∈ X × T . Here, we combine the function Lu for repair in Equation 6.3 and the function Lc in

Equation 6.5 into one composite loss function using the weighted sum, and the minimal repair process can

be formulated as

minimize
θ

(
α · Lu(θ) + β · Lc(θ)

)
(6.6)

where α, β ∈ [0, 1] and α+ β = 1. The configuration α = 1, β = 0 indicates only the repair process, while

α = 0, β = 1 indicates the process does not include the repair but only the minimization of the parameter

change.

The process of the DNN repair is described in Algorithm 5. Given an unsafe DNN candidate, in each

iteration, its unsafe domain over safety properties are first computed. With the unsafe domain, the distance in
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Equation 6.3 is then computed. Finally, together with the loss value on the training data, the total loss value

in Equation 6.6 is computed and used to update the DNN parameters. The algorithm will be terminated when

the DNN is verified safe or the iteration exceeds the maximum number.

6.2.3 Repair for Deep Reinforcement Learning

DRL is a machine learning technique where a DNN agent learns in an interactive environment from its own

experience. Our method aims to repair an agent which violates its safety properties while its performance is

maintained as defined in Problem 6.1.3. In each time step of DRL, the agent computes the action and the next

state based on the current state. A reward is assigned to the state transition. This transition is denoted as a tuple

⟨s, a, r, s′⟩ where s is the current state, a is the action, s′ is the next state, and r is the reward. Then, this tuple

together with previous experience is used to update the agent. The sequence of time steps from the beginning

with an initial state to the end of the task is called an episode. The DRL algorithm in this work considers

one of the most popular algorithms, the deep deterministic policy gradients algorithm (DDPG) Lillicrap et al.

(2015) and is utilized on the rocket-lander benchmark 1 inspired by the lunar lander Brockman et al. (2016).

DNN Agent <s,a,r,s’>

One time step with 
the environment 

Add

A Set of 
<s,a,r,s’>

Train

 Select

Agent 
Candidate

One Episode

Unsafe 
State Space

Reachability 
Analysis

Buffer of
Unsafe States

Run one episode 
with each unsafe 

state as initial state

Generate

Termination
Empty?

(a) (b)

New Experiences

Old Experiences

Figure 6.2: Repair framework for deep reinforcement learning. In the loop (a), given an agent, its unsafe
state space is first computed with our reachability analysis method. Then, eposides in (b) are run with unsafe
states as initial states to update the agent, where the occurrence of unsafe states will be penalized.

Our repair method for DRL is demonstrated in Figure 6.2. Given an unsafe agent candidate in Fig-

ure 6.2(a), our reachability analysis method computes the unsafe state domain that leads to an unsafe action

by the agent. The vertices of unsafe linear regions are selected as representative unsafe states for the unsafe

domain. Instead of minimizing its distance to the closest safe state as proposed for the regular repair, we

run one episode with the unsafe state as an initial state, as shown in Figure 6.2(b). In this process, a penalty

r is applied to the unsafe action observed in the learning process, from which safety can be more naturally

learned. The penalty r is normally set to the least reward in the old experience, where the old experience

refers to the experience from learning the original unsafe agent. In the repair process, the tuple in each time

step will be stored into a global buffer for previous experience, which is named new experiences. For training,

1https://github.com/arex18/rocket-lander
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a set of tuples will be randomly selected from both experiences. The process in Figure 6.2(a) will be repeated

until the agent becomes safe. The process is also described in Algorithm 6.

Algorithm 6 Repair for Deep Reinforcement Learning
Input: N , E, {P}mi=1 #an unsafe DNN agent, its old experience, safety properties
Output: N ′ #a safe agent satisfying all its safety properties

1: procedure N ′ = REPAIR(N )
2: N ′ ← N
3: while N ′ is not safe on {P}mi=1 do
4: Dunsafe = reachAnalysis(N , {P}mi=1) #compute unsafe state domains
5: Sunsafe = Vertices(Dunsafe) #representative unsafe states
6: for s in Sunsafe do
7: N ′ = Episode(N ′, s, E) #one episode learning

6.3 Fast Reachability Analysis of DNNs

Fast reachability analysis is a core component in our DNN repair framework. However, different from tradi-

tional algorithms, for DNN repair the emphasis of the algorithm is on finding the unsafe input domain and

its corresponding unsafe output domain. Our algorithm builds on the reachability analysis and backtracking

method presented in Yang et al. (2021a). The method utilizes a FVIM set representation for efficient encoding

of the combinatorial structure of polytopes. This set representation is suitable for set transformations that are

induced by operations in a neural network. The reachability analysis method presented in Yang et al. (2021a)

is able to compute the output reachable domain of a DNN, and subsequently identify the unsafe input regions.

However, one disadvantage of the algorithm is that, in the worst case, the number of reachable sets is O(2n),

where n is the number of ReLU neurons. Its efficiency could be impeded due to this computation of a huge

number of sets.

To alleviate this problem, we utilize a novel over-approximation method to speed up computation in

Equation 4.3 and 4.8 by filtering out safe regions in the early stages of the algorithm. Since our focus

of retraining is on computing the unsafe input domain and its corresponding unsafe output domain, once

we have guarantees of safety for a particular region, we do not need to compute its exact output reachable

sets. Thereby, the computational efficiency and the memory footprint of the algorithm can be significantly

improved.

Our over-approximation method is based on a new set representation for the linear relaxation of ReLU

neurons. The new set representation named V-zono is designed to efficiently encode the exponentially in-

creasing vertices of reachable sets in each linear relaxation, and it is totally compatible with the FVIM. In

the following section, the over approximation with V-zono will be introduced. Additionally, to handle the

memory-efficiency issue caused by the large amount of reachable sets computed in Equation 4.3 and 4.8, a
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depth-first search algorithm is also presented.

6.3.1 Over Approximation with Linear Relaxation in Reachability Analysis

This section presents our over-approximation method based on the linear relaxation of ReLU. Linear relax-

ation is commonly used in other related works for fast safety verification of DNNs, such as Singh et al.

(2019b); Gehr et al. (2018); Zhang et al. (2018). Instead of considering the two different linearities of ReLU

neuron over its input in E(·) of Equation 4.3, these works apply one convex domain to over approximate these

linearities to simplify the reachability analysis, as shown in Figure 6.3. This over approximation is named

linear relaxation. Recall the process of S ′ with the ith neuron in the layer in Section 6.1.3, when the lower

bound and the upper bound of the xi of x ∈ S ′ spans the two linearities bounded by xi = 0, S ′ is supposed

to be divided accordingly and their two subsets lying in the range xi < 0 or xi ≥ 0 will be processed in

terms of their linearity. The linear relaxation is applied only in such cases, as shown in Figure 6.3 (b) and

(c). When S ′ only locates in xi < 0 or xi ≥ 0, the computation will be the same as the computation in

Section 6.1.3. We denote this process including the linear relaxation as Eapp(·), and the computation of one

layer as Lapp(·). Thus, by simply substituting E(·) with Eapp(·) in Equation 4.3, and substituting L(·) with

Lapp(·) in Equation 4.8, we can conduct the over-approximation method shown in Equation 6.7 and 6.8.

Function Eapp(·) only generates one output set for each input set, instead of at most two sets. Therefore,

given one input set to the DNN, Equation 6.8 computes one over-approximated output reachable set instead

of O(2n) sets with n ReLU neurons.

Lapp(S) = (Eapp
l ◦ · · · ◦ Eapp

2 ◦ Eapp
1 ◦ T)(S) (6.7)

Napp(S) = (Lapp
k ◦ · · · ◦ Lapp

2 ◦ Lapp
1 )(S) (6.8)
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Figure 6.3: Linear relaxations of ReLU functions with a convex bound: (a) ReLU function, (b) one type of
linear relaxation of ReLU function Wong and Kolter (2018), and (c) linear relaxation utilized in our over-
approximation method based on a new set representation.

Here, we introduce two of the most common types of linear relaxations for ReLU functions, as shown in

(b) and (c) of Figure 6.3. The linear relaxation in (b) uses the minimum convex bound. Compared to other

50



linear relaxations, it can over approximate the output reachable domain with the least conservativeness. A

less conservative relaxation typically leads to more accurate reachability analysis algorithms. The primary

challenge for this relaxation is the estimation of the lower bound lb and the upper bound ub for each ReLU

activation function. This is normally formulated as an LP problem. However, since the number of variables

equals to the number of activations, solving such problems with traditional methods for each verification may

not be tractable.

One alternative to avoid the LP problem is to use vertices to represent a reachable set, This also enables

us to easily integrate this representation with the FVIM set representation in the exact reachability analysis.

One issue with this approach is that doubling of vertices in each ReLU relaxation may add a significant

computation cost and memory occupation. The explanation is as follows. Suppose the relaxation is for the

ith neuron. As shown in (b) and (c), the relaxation introduces an unknown variable x̂i to the incoming set

S ∈ Rd and also the relation between xi and x̂i bounded in the convex domain.

Remark 6.3.1 The introduction of x̂i is equivalent to projecting S into Ŝ in (d+1)-dimensional space. For

each x ∈ S, it will transform into x̂ ∈ Ŝ with x̂=[x; x̂i] ∈ Rd+1. Accordingly, the faces of S will transform

into new faces of Ŝ with increasing their dimension by one. The new faces of Ŝ are unbounded because of

the unknown variable x̂i. The later intersection of Ŝ with the domain of xi and x̂i in the relaxation will yield

real values to x̂i.

For instance, the vertex v of S which is a 0-dimensional face will turn into v̂=[v; x̂i] which is equivalent

to an unbounded edge of Ŝ, a 1-dimensional face. With Ŝ and the linear relaxation bounds of xi and x̂i,

Eapp
i (S) can be interpreted as the intersection of Ŝ with these bounds.

Remark 6.3.2 The convex bounds of the ReLU relaxation consists of multiple linear constraint ls. Each

l : αx+ β ≤ 0 is one of two halfspaces divided by the hyperplaneH : αx+ β=0. The intersection of Ŝ with

each l is essentially identifying the subset of Ŝ which is generated from division of Ŝ byH and locates in the

halfspace l.

Take the (b) relaxation for instance which is bounded by three linear constraints l1, l2 and l3. Eapp
i (S)

can be formulated as

Eapp
i (S) = Ŝ ∩ {x ∈ Rd | l1 ∩ l2 ∩ l3}. (6.9)

As introduced above, the vertex v̂=[v; x̂i] of Ŝ is symbolic with x̂i and is equivalent to an unbounded edge.

In a bounded set, an edge includes two vertices. After the intersection of Ŝ with these linear constraints,

Eapp
i (S) generates a bounded subset of Ŝ and meanwhile, each symbolic v̂ will yield to two real vertices.

Therefore, the vertices of Ŝ are doubled from the vertices of S.
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H1 : (ub− lb) · x̂i − ub · xi + ub · lb = 0

H2 : (ub− lb) · x̂i − ub · xi = 0

H3 : xi − ub = 0

H4 : xi − lb = 0

(6.10)

To solve this problem, it is necessary to develop a new set representation that can efficiently encode the

exponential explosion of vertices with ReLU relaxations. Here, we choose the relaxation in Figure 6.3(c)

because the convex bound for the relaxation is a zonotope which can be simply represented by a set of finite

vectors and be formulated as a Minkowski sum. An efficient representation of vertices can benefit from

this simplification. The explanation is as follows. The zonotope in (c) is bounded by two pairs of parallel

supporting hyperplanes, (H1,H2) and (H3,H4) as shown in Equation 6.10, and their linear constraints

are denoted as l1, l2, l3 and l4. Since l3 and l4 are lower and upper bounds of the xi in S and S itself

locates in these constraints, then, the right part of the conjunction in Equation 6.9 can be replaced with

{x ∈ Rn | l1 ∩ l2}. For each symbolic vertex v̂=[v; x̂i], two new vertices v′1 and v′2 can be computed

from the intersection of the hyperplanes H1 and H2 with x̂i involved. The vertices v′1 and v′2 are shown in

Equation 6.11 where xi equals to the vi of v.

v′1 =

 v

ub·xi−ub·lb
ub−lb

 , v′2 =

 v

ub·xi

ub−lb

 (6.11)

{v′1, v′2} =

{
v′c ± v′v,

∣∣∣∣∣ v′c =
 v

ub·vi
ub−lb −

ub·lb
2(ub−lb)

 , v′v =

 0
ub·lb

2(ub−lb)

} (6.12)

These two vertices can also be represented by Equation 6.12 where v′v is a constant vector for the ReLU

relaxation Eapp
i (S). Let the vertices of S be V and S ′=Eapp

i (S), then for each v ∈ V it yields one v′c for the

vertices V ′ of S ′. Let the set of v′c be denoted as V ′
c , then V ′ can be represented as Equation 6.13 where the

doubled vertices are represented by plus-minus with the vector v′v .

V ′ = V ′
c ± v′v (6.13)

The relaxation is illustrated by in Figure 6.4. The layer includes 2 ReLU neurons. The input set S is

2-dimensional with x=[x1, x2]⊤ ∈ S , and its vertices V consists of v1, v2 and v3. Here, x1, x2 corresponds

to the inputs of the first neuron and the second neuron, respectively. In this example, the process of S w.r.t.

52



(1,0)

 (-1,2)

(-1,0)

x1

x1

x2

x2

x̂1

(−1 ,0 , x̂1) (−1 ,2 , x̂1)

F1

F2

F3

lb=−1

ub=1

x1

x2

x̂1

(1 ,0 , x̂1)

x1

ϵ=0.25

(1, 0, 0.75)

(-1, 2, -0.25)(-1, 0, -0.25)

x̂1

(a) (b)

(c) (d)

v'c2 v'c1

v'c3

v3v2

v1

S

Sh S '

Figure 6.4: Example of the linear relaxation.

the first neuron is demonstrated. We can notice that the lower bound and the upper bound of x1 in S are

lb= − 1 and ub=1, which indicates that S spans the input range of ReLU function over which the function

exhibits two different linearities. Therefore, the linear relaxation is applied in terms of the subfigure (b). As

introduced above, there are four linear constraints l1, l2, l3 and l4 bounding this relaxation of x1 and x̂1,

whose hyperplanes can be computed by Equation 6.10.

The introduction of new variable x̂1 projects 2-dimensional S into 3-dimensional Ŝ with x ∈ S trans-

forming into x̂=[x, x̂1]
⊤ ∈ Ŝ . Accordingly, the vertices v1, v2 and v3 of S transform into new symbolic

vertices [−1, 2, x̂1]⊤, [−1, 0, x̂1]⊤ and [1, 0, x̂1]
⊤ as shown in the subfigure (c), which are equivalent to three

unbounded edges of Ŝ. After the intersection of Ŝ with those linear constraints, we obtain the final over-

approximated set S ′ represented by the red domain in the subfigure (d) with its 6 vertices represented by the

red points. According to Equation 6.12 and 6.13, the vertices V ′ of S can be represented as


x1

x2

x̂1

 ∈ V ′, V ′ =

{
v′c ± v′v

∣∣∣∣∣ v′c ∈
{

−1

2

−0.25

 ,

−1

0

−0.25

 ,


1

0

0.75


}
, v′v =


0

0

0.25


}

(6.14)

where v′cs are denoted as {v′c1, v′c2, v′c2} and described by the dark points in (d).
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6.3.2 Over approximation with V−zono

In the previous section, a new set representation is preliminarily derived for the linear relaxation in Figure

6.3(c). This section mainly presents the formal definition of the set representation V-zono, and its utilization

in the over approximation of DNNs in Equation 6.7. The utilization includes the linear relaxation of ReLU

neuron Eapp(·), the affine mapping T(·), as well as the safety verification on the safety properties of DNNs.

The V-zono is formally defined in Definition 6.3.1. It consists of base vertices C and base vectors V . An

example of the V-zono representation is demonstrated in Figure 6.4(d). The convex set is the red domain. Its

base vertices include three v′c and the base vectors includes one v′v as shown in Equation 6.14. Suppose C

contains m base vertices and V contains n base vectors, then C ± V efficiently represents m× 2n vertices in

Equation 6.15.

Definition 6.3.1 (V-zono) In the set representation, the C that contains a set of finite real points vc ∈ Rd is

named as Base Vertices, and the V that contains a set of finite real vectors vv ∈ Rd is named Base Vectors.

Then ⟨C,V⟩ can represent a convex set S ⊂ Rd where C ± V encodes all its vertices.

C ± V = {vc +
n∑

i=1

(±vv,i) | vc ∈ C and V = {vv,1, vv,2, . . . , vv,n}} (6.15)

6.3.2.1 Linear Relaxation with V-zono

In the application of V-zono in ReLU relaxation, the vertex computation in Eapp
i (S) has been formulated as

Equation 6.12, which deals with regular vertices not represented by V-zono. Here, we will formally present

the linear relaxation with V-zono where given an input set S in V-zono, the V-zono of S ′ = Eapp
i (S) will

be computed. Suppose the V-zono of S has base vertices C and base vectors V . In terms of Equation 6.12, a

new base vertex v′c can be computed for each v by

v′c =

v
γ

 , γ =
ub · vi
ub− lb

− ub · lb
2(ub− lb)

, v ∈ V and V = C ± V.

Each v′c is computed by incorporating one new dimension to each v ∈ V with a real value γ, which is

essentially adding one new dimension to each vc ∈ C with γ, and adding one new dimension to each vv ∈ V

with zero. Accordingly, all the new base vertices v′cs can be computed as

{vc
γ

+

n∑
i=1

(
±

vv,i
0

) ∣∣∣∣∣ vc ∈ C and vv,i ∈ V

}
.
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Based on the equation above, Equation 6.12 can be extended from the computation of new vertices v′s

for one v to all v ∈ V . The vertices V ′ of S ′ can be computed as below, from which we can derive the C′ and

V ′ as shown in Equation 6.16.

{vc
γ

+

(
n∑

i=1

±

vv,i
0

)± v′v
∣∣∣∣∣ vc ∈ C, and vv,i ∈ V

}

C′ =

{vc
γ

 ∣∣∣∣∣ vc ∈ C
}
, V ′ =

{vv
0

 , v′v
∣∣∣∣∣ vv ∈ V

}
(6.16)

From Equation 6.16, we notice that with the linear relaxation of each ReLU neuron Eapp
i (·), the dimension

of vertices in V-zono will be increased by one, because when introducing the new dimension or variable x̂i

the old dimension xi still remains. It will result in the dimension inconsistency with the subsequent affine

mapping between layers. This old dimension can be eliminated with projecting the set S ′ on it by replacing

the old dimension xi in the vertices with the new x̂i. The projection is reflected on Equation 6.17 with the

updated C′ and V ′.

C′ = {vc | ∀vc ∈ C, vc[i] = γ}, V ′ = {vv, v′v | ∀vv ∈ V, vv[i] = 0} (6.17)

After the projection, part of the points C′ ± V ′ will become the actual vertices of the projected set and

the rest will become its interior points. The projection of the polytope S ′ into a lower-dimensional space will

generate another polytope S ′′ whose every face is a projection of a face of S ′. It indicates that the vertices

V ′′ of S ′′ are from the projection of subset of the vertices V ′ of S ′. Since after the projection, Equation 6.17

preserves all projected vertices from Equation 6.16, there are redundant points in Equation 6.17 which are

not vertices but only interior points of the projected polytope. This redundancy is allowed in the vertices

representations of polytopes, as well as our set representation V-zono. The detection and elimination of this

redundancy requires an additional algorithm, which is out of the scope of this work and will be our future

work. In addition, since V-zono can efficiently encode vertices, the redundancy issue will not greatly affect

the efficiency of the algorithm, which is also demonstrated in the experiments.
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Figure 6.5: Example of the linear relaxation.

An example of the projection of the set S′ in Figure 6.3(d) is shown in Figure 6.5. In the ReLU relax-

ation, x1 is the old dimension and x̂1 is the new one. The x1 will be eliminated by projecting the set on it,

which maintains the exact bounded relation between x̂1 and x2. The projection generates another polytope

represented by the red domain in (e). Its V-zono for the vertices is

x̂1
x2

 ∈ V ′′, V ′′ =

{
v′′c ± v′′v

∣∣∣∣ v′′c ∈ {
−0.25

2

 ,
−0.25

0

 ,
0.75

0

}, v′′v =

0.25
0

}. (6.18)

As shown in (d), its V-zono contains 6 vertices denoted as red dots. After the projection as shown in (e), the

new V-zono contains 6 points which are the projections of these 6 vertices. 4 of them are actual the vertices

of S′′ and the rest 2 points are redundant.

6.3.2.2 Affine Mapping with V-zono

As shown in Equation 6.7, the over approximation of reachable domain also includes affine mapping T(W,b)(·)

between layers by weights W and bias b. Affine mapping on a set S only changes the value of its vertices.

Suppose the vertices V of S is represented by C ± V , then T(W,b)(S) on V can be formulated as

W · V + b =W · (C ± V) + b

=W · C + b±W · V.
(6.19)

The new C′, V ′ for new vertices V ′ after the affine mapping are

C′ =W · C + b = {W · vc + b | vc ∈ C}

V ′ =W · V = {W · vv | vv ∈ C}.
(6.20)
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6.3.2.3 Safety Verification with V-zono

The safety verification problem is to determine whether an output reachable domain overlaps with the unsafe

domain bounded by linear constraints. Let one linear constraint be denoted as l : α⊤x + β ≤ 0. Suppose

vertices V of the over approximated output domain are represented by C ±V and V = {vv,1, vv,2, . . . , vv,n}.

Then, the verification of V w.r.t. the linear constraint l can transform into checking if the minimum value of

α⊤v + β over the vertices v ∈ V is not positive, which is formulated as

minimize(α⊤(C ± V) + β). (6.21)

The internal formula can be extended as

α⊤(C ± V) + β = α⊤C + β ± α⊤V = α⊤C + β +

k∑
i=1

±(α⊤vv).

Then for each vc ∈ C, we can compute its minimum α⊤vc+β+
∑k

i=1 -|α⊤vv|. By computing the minimums

of all vc ∈ C, we can determine the global minimum value in Equation 6.21 and thus complete the safety

verification.

6.3.3 Fast Computation of Unsafe Input Spaces of DNNs

In the previous sections, an over-approximation method for the reachability analysis of DNNs based on the

linear relaxation of ReLU neurons is developed. The method is formulated as Equation 6.7 and 6.8. As

introduced, it is utilized to integrate with the exact analysis method formulated in Equation 4.3 and 4.8 to

filter out all the safe intermediate sets that are computed in each L(·) and are not necessary for the computation

of unsafe input spaces for DNNs. In this section, the algorithm for such integration will be presented. This

algorithm is based on the depth-first search to handle the memory-efficiency issue due to large amount of

reachable sets computed in each layer.

Algorithm 7 describes the integration of the computation of unsafe input spaces of DNNs with the pro-

posed over-approximation method. Given an input set S, it can compute all the unsafe input spaces w.r.t. the

safety properties of the DNN. The details of each function are as follows.

1. Function Reach(·) is a recursive function which, in each recursion, computes only one of unsafe input

sets generated from the last layer to reduce the burden on the computational memory. Its base case is

Line 2-4 where the computation reaches to the last layer of the DNN and unsafe input spaces will be

computed. The recursion depth is the number of the DNN layers

2. Function outputOverApp(·) over approximates the output domain of the DNN for each input set to
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one layer. The input set is an output of the preceding layer computed with the exact analysis method

in Equation 4.3 and 4.8. This function corresponds to Equation 6.7 and 6.8. The details are shown

in Algorithm 8. In the beginning, the set S represented by FVIM is transformed into the V-zono in

Line 2. Subsequently, in each layer, it will be first processed by the affine mapping in Line 4 which

corresponds to the T(·) in Equation 6.7 and the computation of C′ and V ′ in Equation 6.20. Then, in

Line 5, it will be processed with ReLU neurons in the layer based on the linear relaxation. This process

corresponds to the Eapp in Equation 6.7 and also the computation of C′ and V ′ in Equation 6.17.

3. Function safetyCheck(·) checks the safety of the over-approximated output domain computed in Line

6 w.r.t. safety properties. This function corresponds to Equation 6.21 where the vertices of the output

domain are checked with each linear constraints of the unsafe domain defined in the properties. It

returns safe if no vertices satisfy all the constraints. In this case, the computation in the following

layers can be abandoned because S will not lead to safety violation.

4. Function layerOutput(·) computes the reachable sets for the current layer with input sets computed

from the previous layer, which corresponds to Equation 4.3 and 4.8. All sets in this computation are

represented by FVIMs. The details are shown in Algorithm 9.

The computational complexity of Algorithm 7 is that given an input set to a DNN with n ReLU neurons,

O(2n) output reachable sets will be computed. In practice, the utilization of the over approximation method

can significantly reduce the amount and improve the computational efficiency. The experimental results

indicate that Algorithm 7 can be around five times faster than the algorithm without the over-approximation

method.

Algorithm 7 Computation of unsafe input spaces of a neural network
Input: S # one reachable set
Output: Du # unsafe input-output reachable domain of the DNN

1: procedure Du = REACH(S, layer) # S: an input set; layer: the layer index
2: if layer == lastlayer then # lastlayer: the ID of the last layer
3: Du = Backtrack(S) # the unsafe domain in S
4: return Du

5: Oo = outputOverApp(S) # over approximated output domain of the DNN
6: if safetyCheck(Oo) then
7: return None
8: Ol = layerOutput(S, layer) # Ol: output reachable sets of the current layer for S
9: Du = empty

10: for Sl in Ol do
11: Du.extend(Reach(Sl, layer+1))
12: return Du
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Algorithm 8 Reachable-domain Over approximation of a neural network
Input: S # one input set to the current layer
Output: Oo # one over approximated output reachable set of the current layer

1: procedure Oo = OUTPUTOVERAPP(S, layer)
2: S = Vzono(S) # transform the FVIM representation of S to the V-zono
3: for layer = 1:lastlayer do
4: S = affineMapping(S, layer) # update base vertices and base vectors
5: S = reluLayerRelaxation(S) # relaxation of ReLU neurons
6: return Oo ← S

Algorithm 9 Reachable set computation of one layer
Input: S # one input set to the current layer
Output: Ol # output reachable sets of the current layer

1: procedure Ol = LAYEROUTPUT(S, layer)
2: S = affineMapping(S, layer)
3: Ol=reluLayer(S)) # compute exact reachable sets with each ReLU neuron
4: return Ol

6.4 Experiments and Evaluation

In this section, we evaluate our repair methods with two benchmarks. One is the DNN controllers for the

Airborne Collision System X Unmanned (ACAS Xu) Julian et al. (2016). Our repair method in Section 6.2.1

is evaluated against the work ART Lin et al. (2020). We also study the different performance between our

non-minimal repair method in Equation 6.1 and our minimal repair in Equation 6.5. To measure the impact

of repair algorithms on DNNs, besides the accuracy on finite test data, we also analyze the changes of the

DNN’s reachability. The other benchmark is a set of DNN agents for a rocket lander system based on

the lunar lander Brockman et al. (2016). With this benchmark, we explore our repair method proposed in

Section 6.2.3 to repair unsafe DNN agents for DRL. The hardware for all experiments is Intel Core i9-10900K

CPU @3.7GHz×, 10-core Processor, 128GB Memory, 64-bit Ubuntu 18.04.

6.4.1 Repair of ACAS Xu Neural Network Controllers

The ACAS Xu DNN controllers consist of an array of 45 fully-connected ReLU DNNs. They are used to

approximate a large lookup table that converts sensor measurements into maneuver advisories in an airborne

collision avoidance system, such that they can significantly reduce the massive memory usage and also the

lookup time. All DNNs have the same architecture which includes 5 inputs, 5 outputs and 6 hidden layers

with each containing 50 ReLU neurons. The 5 inputs correspond to the sensor measurement of the relative

dynamics between the ownship and one intruder. The 5 outputs are prediction scores for 5 advisory actions.

There are 10 safety properties defined, and each neural network is supposed to satisfy a subset of them.

Among these 45 network controllers, there are 35 unsafe networks violating at least one of the safety
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properties. Some works Lin et al. (2020); Katz et al. (2017) report there are 36 unsafe networks due to nu-

merical rounding issues Wang et al. (2018b). Since the original dataset is not publicly available, we uniformly

sample a set of 10k training data and 5k test data from the state space of DNNs, the same strategy as ART Lin

et al. (2020). To repair these unsafe networks, our minimal repair and ART Lin et al. (2020) require those

datasets, while our non-minimal repair approach does not.

The parameter configurations for the retraining process of a DNN in our repair are as follows. For non-

minimal repair, the learning rate lr = 0.001. The learning rate for our non-minimal repair normally needs

to be a small, because the retraining of the DNN is only guided by the modification of unsafe behaviors and

a large value may also greatly affect other safe behaviors. For the minimal repair which is a multi-objective

optimization problem, a set of configurations are applied to estimate the optimal performance. Here, the

learning rate lr and the value (α, β) in Equation 6.6 are set as below.

Learning Rate (lr) (α, β)

Non-minimal Repair 0.001 -
Minimal Repair {0.01, 0.001} {(0.2,0.8),(0.5, 0.5),(0.8,0.2)}.

There are 6 different settings for the minimal repair of each unsafe network. The optimal result is selected

for performance comparison. The loss functions in Equation 6.1 and 6.5 are computed with the Euclidean

norm. As introduced, each iteration of our repair consists of the reachability analysis and epochs of retraining.

Here, we empirically set the maximum iteration to 100 and the number of epochs to 200 for all our repair

methods. For ART Lin et al. (2020), their default settings are applied for the comparison.

6.4.1.1 Success and Accuracy

The experimental results are shown in Table 6.1. Table 6.1 describes the repair successes and the accuracy

of repaired networks. Recall that the test data are sampled from the original network, therefore, the accuracy

of the original network on these data is 100%. As shown, in terms of success, our non-minimal repair and

minimal repair methods both successfully repair all 35 unsafe networks. ART can repair 33 networks. While

ART with refinement which computes tighter approximation than ART can repair all the networks. In terms

of accuracy, our repaired networks exhibit a higher accuracy than ART and some of our repaired networks

even have 100% accuracy, indicating less performance degradation. We hypothesize that the difference of

performance in ART is primarily due to the over-approximation method for the unsafe domains of DNNs. It

can be so conservative that the estimated distance in Equation 6.1 will be inaccurate, resulting in performance

degradation. It can be also noticed that with the refinement in ART which computes a tighter approximation

of domains, the number of repair successes and their accuracy increase. Overall, with exact reachability
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analysis, our methods can outperform ART in terms of accuracy.

For our non-minimal repair and minimal repair methods, we can notice that the accuracy difference of

their repaired networks in Table 6.1 is trivial. Recall that our minimal repair can have the Pareto optimality

issue in its multi-objective optimization in Equation 6.6, while our non-minimal repair does not. It means

that in the minimal repair, the minimization of the DNN deviation may impede the optimization for repair.

By contrast, our non-minimal repair can consistently repair all networks with one parameter setting and

meanwhile maintain the high accuracy without the usage of training data.

Methods Repair Successes Min Accu. Mean Accu. Max Accu.

Art 33/35 88.74% 94.87% 99.92%
Art-refinement 35/35 90.38% 96.23% 99.92%

Our Non-minimal Repair 35/35 98.66% 99.74% 100.0%
Our Minimal Repair 35/35 99.38% 99.83% 100.0%

Table 6.1: Repair of ACAS Xu neural network controllers.

6.4.1.2 DNN Deviation after Repair

Additionally, the accuracy evolution of networks under repair is also demonstrated in Figure 6.6. It includes

ART with refinement (a) and our non-minimal repair method (b). We can notice that at the beginning of ART,

the accuracy of a DNN will first drop quickly and in some instances, it even drops below 20%. Then, the

accuracy gradually converges to a higher value. We speculate that at the beginning of the repair, ART mainly

generates a safe model with a large modification of the original network and then, train this safe network

with the training data to improve the accuracy. This modification of the network parameter can result in a

large parameter deviation (PD), and thus the minimal repair can hardly be enabled. This is shown by the

measurement of PD in Table 6.2, where the PD of ART-repaired networks show a much larger deviation than

our method. Here, PD is computed by ∥θ′ − θ∥2/∥θ∥2 in

PD =

√∑L
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) (6.22)

where L denotes the number of DNN layers, R and C denote the number of the row and the column of the

weight matrix between each layer.

From (b), we can notice that compared to ART, our repaired networks gradually converge within 25

iterations. As shown in Table 6.2, the PDs of our repaired networks are negligible. There is also no obvious

difference between PDs of repaired networks with our non-minimal repair and PDs with our minimal repair.

Besides PD, we also analyze its consequent impact on one of the critical properties of DNNs, their ex-
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Figure 6.6: Accuracy evolution of models w.r.t. the number of repair iterations. All models before the repair
are unsafe on at least one safety property. All repairs successfully generate safe models in the end.

Methods Min PD Mean PD Max PD

Art 3.96× 10−2 9.75× 10−2 1.77× 10−1

Art-refinement 2.31× 10−2 6.64× 10−2 1.17× 10−1

Our Method 6.75× 10−6 2.10× 10−4 9.31× 10−4

Our Minimal Repair 3.56× 10-6 1.04× 10-4 4.21× 10-4

Table 6.2: Parameter Deviation (PD) after the repair.

pressibility, over the input-output continuous space. Recall that the expressibility of DNNs which refers to

the capability of approximating nonlinearity in data is quantified by the number of linear regions of DNNs.

A larger number of linear regions indicates a higher expressibility. Here, we identify the number of linear

regions of each DNN over the input and output domains specified in all their safety properties. Then, we com-

pute their change ratio of the linear regions of repaired DNNs to the linear regions of their original DNNs.

The ratio is computed by |N ′ −N |/N where N ′ represents the number of linear regions of repaired models

over safety properties and N represents the number of linear regions of the original models over the same

safety properties. A smaller ratio indicates a less change of the DNN expressibility after repair.

Methods Min LRCR Mean LRCR Max LRCR

Art 8.21× 10−2 5.40× 10−1 1.26
Art-refinement 3.57× 10−1 6.32× 10−1 8.99× 10−1

Our Method 5.00× 10−6 7.20× 10-3 3.82× 10-2

Our Minimal Repair 3.44× 10−6 1.92× 10-2 1.09× 10-1

Table 6.3: Linear Regions Change Ratio (LRCR) after the repair of neural networks.

We also analyze the impact of repair on the reachability of DNNs. The reachability refers to the output

reachable domain of DNNs on the input domains of their safety properties. Here, we consider the network
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(a) The original (b) Our method (c) ART

Figure 6.7: Reachability of repaired network N21 on Properties 1 & 2, projected on dimensions (y1, y5) and
(y1, y3). It shows the output reachable domains of the original network and its repaired networks. The red
area represents the unsafe reachable domain, while the blue area represents the safe domain.

N21 which includes safety properties 1,2,3,4. It violates Property 2 whose unsafe output domain is that y1 is

the maximum. The output reachable domain of N21 has 5 dimensions, and it is projected on two dimensions

for visualization.

The output reachable domains of N21 on Properties 1 & 2, projected on (y1, y3) and (y1, y5), are shown

in Figure 6.7. (a) represents the reachable domain of the original unsafe N21. (b) and (c) represents the

reachable domain of repaired N21 by our method and ART, respectively. The blue area represents the safe

reachable domain, and the red area represents the unsafe reachable domain. We can notice that the unsafe

domain is successfully eliminated by our method and ART. We can also notice that compared to ART, our

method barely changes the reachable domain.

In addition, the reachability on Properties 3 & 4, projected on (y1, y5), is also shown in Figure 6.8.

Similarly, we can notice that the impact of our repair method on the reachability of N21 is negligible, but

ART changes the entire reachable domain. It can justify that a slight deviation on the DNN parameter may

cause a tremendous change in its behaviors. It also shows that our DNN repair on one property hardly affects

the DNN performance on other properties. The projection on other dimensions can be found in Figure 6.9

and 6.10

The running time of our repair method and ART is shown in Table 6.4. Here, we divide the repair of

all 35 networks into regular cases and hard cases in terms of the volume of input domain of their safety
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(a) The original (b) Our method (c) ART

Figure 6.8: Reachability of repaired network N21 on Properties 3 & 4, on which the original network is safe.
The domain is projected on dimensions (y1, y5). We observe that due to the over approximation, ART repairs
the network needlessly and changes the reachable set of the network.

...............................................................................................................................................

(a) The original (b) Our method (c) ART

Figure 6.9: Reachability of repaired network N21 on Property 1&2, projected on dimensions (y1, y2) and
(y1, y4).

Methods Regular Cases (33 Nets) Hard Cases (2 Nets)
Min Mean Time Max Time (N19) Time (N29)

Art 66.5 71.4 100.3 65.6 71.5
Art-refinement 85.4 89.2 90.1 84.6 90.4

Our Method 7.4 65.5 230.1 7173.2 3634.9

Table 6.4: Running time (sec) of our repair method and ART
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(a) The original (b) Our method (c) ART

Figure 6.10: Reachability of repaired network N21 on Property 3&4, projected on dimensions (y1, y2),
(y1, y3) and (y1, y4).
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properties. Normally, a larger input domain requires more computation for reachability analysis. The regular

cases include all 33 networks whose safety properties specify small input domains. While the hard cases

include the 2 networks N19 and N29 whose safety properties 7 and 8 specify large input domains. It can be

noticed that our method is faster than ART in the regular cases, but slower in the hard cases. That is because

that unlike the over-approximation method utilized by ART, the exact reachability analysis of networks is an

NP-complete problem Katz et al. (2017). When handling hard cases, it becomes less efficient. Despite this

undesired efficiency in the hard cases, the exact analysis enables our method to repair all networks with much

less performance degradation than ART.

6.4.2 Rocket Lander Benchmark

The rocket lander benchmark is based on the lunar lander presented in Brockman et al. (2016). It is a vertical

rocket landing model simulating SpaceX’s Falcon 9 first stage rocket. Unlike the lunar lander whose action

space is discrete, the action space is continuous, which commonly exists in the practical applications. Besides

the rocket, a barge is also included on the sea which moves horizontally, and its dynamics are monitored. The

benchmark is shown in Figure 6.11. The rocket includes one main engine thruster at the bottom with an

actuated joint and two other side nitrogen thrusters attached to the sides of the top by un-actuated joints. The

main engine has a power FE ranging in [0, 1] and its angle relative to the rocket body is φ. The power FS

of the side thrusters ranges in [−1, 1], where −1 indicates that the right thruster has full throttle and the left

thruster is turned off, while 1 indicates the opposite. The rocket landing starts in certain height. Its goal is

to land on the center of the barge without falling or crashing by controlling its velocity and lateral angle θ

through the thrusters.

FL

FR

FE

φ

G

θ

Figure 6.11: Rocket lander benchmark.

There are three actions, the main engine thruster FE , its angle φ and the side nitrogen thrusters FS . The

original observation contains the position x and y of the rocket relative to the landing center on the barge,

the velocity vx and vy of the rocket, its lateral angle θ, its angular velocity ω. To improve the performance

66



of agents, we also incorporate the last action advisory into the observation for reference. Then, the new

observation can be denoted as [x, y, vx, vy, θ, ω, F ′
E , φ

′, F ′
S ]. Their lower bound lb and upper bound ub are

in Equation 6.23. The starting state and the reward are similar to the lunar lander The termination conditions

of one episode includes (1) |x| > 1 which indicates the rocket moves out of the barge in x-space, (2) y > 1.3

or y < 0 which indicates the rocket moves out of the y-space or below the barge, (3) θ > 35◦ which indicates

the rocket tilts greater than the controllable limit.

lb = [−∞, 0,−∞,−∞,−π,−∞, 0,−15◦,−1]

ub = [+∞,+∞,+∞,+∞, π,+∞, 1, 15◦, 1]
(6.23)

Two safety properties are defined for the agent as below. Since reachability analysis processes bounded

sets, the infinite lower bounds and upper bounds of states above will be replaced with the searched state space

in the learning process of the original agent.

1. property 1: for the state constraints −20◦ ≤ θ ≤ −6◦, ω < 0, φ′ ≤ 0◦ and F ′
S ≤ 0 , the desired action

should be φ < 0 or FS < 0, namely, the unsafe action domain is φ ≥ 0 ∩ FS ≥ 0. It describes a

scenario where the agent should always stop the rocket from tilting to the right.

2. property 2: for the state constraints 6◦ ≤ θ ≤ 20◦, ω ≥ 0, φ′ ≥ 0◦ and F ′
S ≥ 0 , the desired action

should be φ > 0 or FS > 0, namely, the unsafe action domain is φ ≤ 0 ∩ FS ≤ 0. It describes a

scenario where the agent should always stop the rocket from tilting to the left.

The reinforcement learning algorithm Deep Deterministic Policy Gradients (DDPG) Lillicrap et al. (2015)

is applied on this benchmark, which combines the Q-learning with Policy gradients. This algorithm is used

for continuous action spaces. It consists of two models: Actor, a policy network that takes the state as input

and outputs exact continuous actions rather than probability distribution over them, and Critic, a Q-value

network that takes state and action as input and outputs Q-values. The Actor is our target agent controller

with its safety properties. DDPG uses experience replay to update Actor and Critic, where in the training

process, a set of tuples are sampled from previous experiences.

Here, we first learn several agents with the DDPG algorithm. Then, we apply our framework to repair

agents that violate the safety properties. The architecture of the Actor is designed with 9 inputs for states, 5

hidden layers with each containing 20 ReLU neurons, 3 outputs with subsequent tanh function which maps

input spaces into [−1, 1]. Let the three outputs before the tanh be denoted as y1, y2 and y3, the outputs of

Actor are computed by FE = 0.5×tanh(y1)+0.5, φ = 15◦×tanh(y2) and FS = tanh(y3). Our reachability

analysis is applied to the architecture before the tanh function, which contains only ReLU neurons. Although
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the unsafe output domains defined in safety properties above are for outputs φ and FS after the tanh function,

the domains φ ≥ 0∩FS ≥ 0, φ ≤ 0∩FS ≤ 0 are actually equivalent to y2 ≥ 0∩y3 ≥ 0, y2 ≤ 0∩y3 ≤ 0. The

architecture of the Critic is designed with 12 inputs for state and action, 5 hidden layers with each containing

20 ReLU neurons, 1 output for the Q-value. The capacity of the global buffer to store previous experience is

set to 4× 105. The learning rate for Actor and Critic is set to 10−4 and 10−3, respectively. 1000 episodes are

performed for each learning. Overall, three unsafe agents are obtained.

For the repair, the parameters are as follows. the learning rates for Actor and Critic stay unchanged. A

buffer stores all old experiences from the learning process. In addition, another global buffer is included to

store new experiences with unsafe states as initial states. From these two buffers, old experiences as well

as new experiences are randomly selected to form a set of training tuples in Figure 6.2(b). As introduced, a

new penalty reward is added for any wrong actions generated from input states. Its value is normally set to

the lowest reward in the old experience. Here, the penalty is set to -30. To maintain the performance, the

threshold of the change ratio which is defined in Equation 6.24 is set to -0.2.

Ratio =
Performance(repaired agent) − Performance(original agent)

Performance(original agent)
(6.24)

For each unsafe agent, we conduct the repair 5 times, with each repair aiming to obtain a safe agent. There

are 15 instances used for evaluation. The experimental results are shown in Table 6.5 and 6.6. Table 6.5

describes the performance change ratio, the epochs of repair and the total time, where the performance of

agents is evaluated by the averaged reward on 1000 episodes of running. We note that our framework can

successfully repair the 3 agents in all 15 instances. In most cases, the performance of the repaired agents is

slightly improved. The performance degradation in other instances is also trivial. The repair process takes 2-6

epochs for all instances with the running time ranging from 332.7 seconds to 2632.9 seconds. Also, during

the repair process, we notice that repairing unsafe behaviors on one property occasionally leads to new unsafe

behaviors on the other property. This is likely because the input regions defined in the properties are adjacent

to each other, but their desired output regions are different, and the repaired behaviors over one input region

can easily expand to other regions over which different behaviors are expected.

Next, we conduct a comparison of our new fast reachability analysis method with the method presented

in Yang et al. (2021a). The results are shown in Table 6.6. In terms of computational efficiency and memory

efficiency, our method outperforms this method in Yang et al. (2021a). The computational efficiency im-

provement of our method ranges between a maximum of 6.8 times faster and a minimum of 3.6 times faster,

with an average of 4.7. The reduction in memory usage ranges between 61.7% and 70.2%, with an average

of 64.5%.
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Agent 1 Agent 2 Agent 3
ID Ratio Epoch Time Ratio Epoch Time Ratio Epoch Time

1 +0.063 3 332.7 +0.048 3 635.7 +0.053 2 446.1
2 +0.088 3 302.0 +0.012 6 1308.4 +0.085 3 1451.6
3 +0.079 3 447.9 -0.084 4 812.9 -0.033 3 2417.1
4 +0.078 3 884.2 +0.025 3 620.3 +0.073 2 1395.3
5 +0.085 3 754.3 -0.001 4 813.5 -0.165 5 2632.9

Table 6.5: Repair of unsafe agents for the rocket lander. ID is the index of each repair. Ratio denotes
the performance change ratio of the repaired agent compared to the original unsafe agent as formulated in
Equation 6.24. Epoch denotes the number of epochs for repair. Time (sec) denotes the running time for one
repair with our reachability analysis method.

Agent 1 Agent 2 Agent 3
ID Tr Tnr Mr Mnr Tr Tnr Mr Mnr Tr Tnr Mr Mnr

1 129.4 760.0 15.94 42.69 426.1 1583.6 13.38 36.39 700.5 2513.7 14.48 46.05
2 122.9 740.4 15.48 40.45 935.9 3352.8 13.58 37.23 618.6 2586.6 14.33 48.18
3 206.7 1361.9 16.74 45.41 572.6 2106.7 13.55 36.55 645.3 3054.0 15.13 44.91
4 329.0 2250.6 15.66 43.89 428.4 1569.7 13.67 35.97 714.4 3019.8 15.49 47.10
5 224.53 1454.2 15.32 40.77 579.5 2108.3 13.68 35.99 997.0 3277.3 15.99 48.86

Table 6.6: Comparison of our new reachability analysis method with the method Yang et al. (2021a) on com-
putational efficiency and memory efficiency. Tr(sec) and Mr(GB) denote the computational time and the
maximum memory usage of our method for all reachability analysis in one repair. Tnr(sec) and Mnr(GB)
are for Yang et al. (2021a) on the same model candidate models.

In addition, we analyze the evolution of the reachable domain of candidate models in the repair. An

example of Agent 1 on the first repair is shown in Figure 6.12. At the first iteration, which is before the

repair, we can notice that the candidate agent has unsafe output reachable domain on Property 1 and is safe

on Property 2. At the second iteration, the unsafe reachable domain becomes smaller, which indicates that

the agent learns from the penalty and its action space moves towards the safe domain. After another repair,

the agent becomes safe on both properties. We can also notice that during the repair, the output reachable

domains do not change much, indicating that the performance of the agent is preserved.

1st Iteration 2nd Iteration 3rd Iteration

Figure 6.12: The evolution of the output reachable domain and the unsafe reachable domain in the repair of
Agent 1 on the first repair. x axis represents y2 and y axis represents y3. The blue area represents the exact
output reachable domain, while the red area represents the unsafe reachable domain which is a subset of the
exact output reachable domain. The bottom left area is the reachable domain on Property 1 and the top right
area is the reachable domain on Property 2.
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6.5 Discussion

We have presented a reachability-based framework to repair unsafe DNN controllers for autonomous systems.

The approach can be utilized to repair unsafe DNNs with only training data available. It can also be integrated

into existing reinforcement algorithms to synthesize safe DNN controllers. Our experimental results on

two practical benchmarks have shown that the proposed framework can successfully obtain a provably safe

DNN while maintaining its accuracy and performance. We utilize a new set representation and integrate an

over approximation method to improve the performance and memory footprint of our reachability analysis

algorithm.

Nonetheless, safe training or repairing of DNNs with reachability analysis is still a challenging problem.

There are several aspects we plan to study in the future. Firstly, computation of the unsafe set domain of

larger-scale DNNs with higher dimensional inputs, such as DNNs for image classification, is still challenging.

Therefore, new approaches are needed to repair such unsafe DNNs. Secondly, training of DNNs relies on

appropriate meta parameters and cannot always guarantee the convergence to optimal performance, which can

impose difficulties for the repair process to converge. Thus, analysis of the interaction between DNN training

and its repair is necessary. Furthermore, from our observations, it becomes more difficult to repair unsafe

DNNs when the input spaces of two safety properties are adjacent but with different desired output behaviors.

This is due to the fact that it may be difficult for the DNN to learn an exact boundary to distinguish these

adjacent input spaces and behave correctly. Therefore, a thorough study on understanding the convergence

of the proposed framework is critical for enhancing its applicability to real-world applications.
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CHAPTER 7

Veritex: A Tool for Reachability Analysis and Repair of Deep Neural Networks

7.1 Introduction

In this paper, we introduce a tool called Veritex that performs set-based reachability analysis of DNNs, safety

certification, and repair of unsafe DNNs 1. The reachability analysis includes the computation of both the

exact and over-approximated output reachable domain for an input domain, and also the computation of the

exact unsafe input space that causes the safety violation in the output. Here, the reachable domain contains

all the possible reachable states of a system given an input bounded domain. It is a union of reachable

sets, which refer to bounded convex polytopes. A variety of efficient set representations are utilized to

construct the reachable set, such as facet-vertex incidence matrix (FVIM) Yang et al. (2021a), face lattice

(FLattice) Yang et al. (2021c) and V-zono Yang et al. (2021b). If the exact output reachable domain does not

intersect with specified unsafe domains, the DNN is determined to be safe by Veritex. Otherwise, the DNN

is unsafe and Veritex computes the entire unsafe input space. The repair in Veritex is a retraining process.

Based on the unsafe input-output reachable domain computed in the reachability analysis, Veritex can repair

an unsafe DNN on multiple safety properties with negligible impact on its original performance. Here, the

safety property refers to specifications that describe a desired or unsafe output domain of a DNN for an input

domain.

Veritex primarily supports feedforward neural networks (FFNNs) which are commonly used as controllers

in learning-enabled control systems. It can perform reachability analysis, safety verification and unsafe net-

work repair. It also supports the reachability analysis and safety verification of convolutional neural networks

(CNNs). To speed up its computation, we also design a work-stealing parallel framework. It is a well known

scheduling algorithm for dynamic multi-threaded computation. In the evaluation, two cases studies are pre-
1https://github.com/Shaddadi/veritex.git
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Figure 7.1: An overview of Veritex architecture.
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Feature Exact Analysis Over-approximation Analysis
Set representations FVIM, FLattice V-zono

Safety Verification Sound and complete Sound

Network Repair Provably safe networks (FFNNs)

Activation Function ReLU ReLU, Sigmoid, Tanh

Layer Types FC, CONV, MaxPool, BN

Parallel Computing Work-stealing parallel

Table 7.1: Overview of primary features in Veritex. FC stands for fully-connected layers. CONV stands for
convolutional layer. MaxPool stands for max-pooling layer, BN stands for batch normalization.

sented. They include the safety verification and repair of ACAS Xu networks Katz et al. (2017), and an unsafe

DNN agent for a rocket-lander system in DRL roc (2021). The experimental results show that Veritex has

the highest efficiency in the safety verification of the ACAS Xu networks compared to all 13 related works,

and that it can repair all unsafe DNNs with negligible performance degradation. Veritex currently supports

DNNs with low-dimensional inputs, but maintain the possibility of supporting large-scale DNNs for image

classification in the future.

7.2 Overview and Features

Veritex is an object-oriented software programmed in Python. It takes in two inputs as shown in Figure 7.1,

the network model and safety properties. Veritex supports the standardized format ONNX and PyTorch

for the network and the unified format VNN-LIB2 for the safety property. In DNN verification, VNN-LIB

is the emerging standard that can specify safety properties of a DNN by defining their input domains and

their corresponding unsafe output domains. Roughly for specifications, it is an extension of SMT-LIB with

additional assumptions. With the network model and its safety properties, Veritex can compute the exact or

over-approximated output reachable domain and also the entire unsafe input space if exists. It supports the

plotting of 2 or 3-dimensional polytopes. When the repair option is enabled, it will produce a provable safe

network in ONNX or PyTorch format. Unlike tools era (2021); ver (2021); cro (2021); Bak (2021); Tran et al.

(2020b); Katz et al. (2019), Veritex does not involve LP problems in the reachability analysis and verification

of DNNs. Therefore, it does not require any commercial optimization solvers, which makes its installation

straightforward. The main features of Veritex are summarized in Table 7.1.

2http://www.vnnlib.org/standard.html

72

http://www.vnnlib.org/standard.html


7.2.1 Engine and Components

The engine of Veritex contains two main modules: reachability analysis of DNNs and DNN repair, as shown

in Figure 7.1. The former contains functions to compute the reachable domains of a DNN. The latter contains

functions to repair unsafe DNN on multiple safety properties.

7.2.1.1 Reachability Analysis Module

The module includes a solver for the computation of the reachable domain and an analyzer for the safety

verification and reachable-domain visualization. The solver constructs the incoming network and its safety

properties with a network object and a set of property objects. It can compute its exact or over-approximated

output reachable domain. It can also compute the exact unsafe input space using the backtracking algo-

rithm Yang et al. (2021a).

The exact analysis utilizes set representations FVIM and Flattice to compute output reachable sets whose

union is the exact output reachable domain. These reachable sets can be sent to the verifier for a sound and

complete safety verification, which returns either ”safe” or ”unsafe”. The over-approximation utilizes the set

representation V-zono to over approximate the output reachable domain. This reachable domain can be sent

to the verifier for a sound but incomplete safety verification, which returns either ”safe” or ”unknown”. The

visualizer plots a reachable domain by projecting it into a 2 or 3-dimensional space. This visualization is

critical for the analysis of the impact of repair methods on DNN reachability.

7.2.1.2 DNN Repair Module

This module eliminates safety violations through optimization of a loss function in the retraining of a DNN.

In each iteration of repair, it interacts with the reachability analysis module. Given a DNN and its violated

safety properties, they are first fed into the reachability analysis module, where its exact unsafe input-output

reachable domain over these properties are computed. Recall that the reachable domain consists of reachable

sets, which are convex polytopes. Then, the vertices of these sets are selected as representative data pairs

(x, y) to fully represent this reachable domain. They distribute over this domain, including all its extreme

points. They are used to construct the distance between the unsafe reachable domain and the safe domain

of the DNN. By minimizing this objective function, the repair can gradually eliminate the unsafe reachable

domain, generating a provably safe DNN. When there is a safe model as a reference for the repair, adversarial

x can be fed into this model to generate safe and correct ŷ for the repair. Otherwise, ŷ is set to the closet safe

output to y for the minimal modification.

In addition to the objective function above, the repair also incorporates another objective function into the

loss function, which aims to minimize the DNN parameter deviation. This is because slight changes in the
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parameter can cause unexpected performance degradation. This function minimizes the difference between

the predicted output of the repaired network for the training data and the true output in the training data. A

weighted-sum method is applied for this multi-objective optimization problem. Two positive real-valued α

and β represent the weights of each objective function and α + β = 1. This repair is named the minimal

repair. If the original dataset is not available, it can be sampled from the original network. The sampled data

are purified by removing unsafe data before the training. Or users can set α = 1 and β = 0 to transform the

optimization into a single-objective optimization. Then, only the objective function for repair is considered,

which is named the non-minimal repair.

In practice, the solving of the minimal repair is less efficient than the non-minimal repair due to the

Pareto optimality issue in the multi-objective optimization, where one objective function cannot be optimized

without worsening the optimization of other objective functions.

7.2.2 Work-stealing Parallel computation

In the exact analysis, different linearities that the ReLU activation function exhibits over its input ranges

x ≥ 0 and x < 0 are separately considered. Therefore, when an input reachable set to one ReLU neuron

spans its two input ranges, this set will be divided into two subsets which are separately processed w.r.t. the

linearity in that range. Afterward, these two subsets will be input sets to another neuron. Here, the state

S = (S, l, N) is defined for this computation, where S is a reachable set, l denotes the index of that layer,

and N denotes a list of neurons in the layer that will process S. After one neuron, the state S spawns at most

two states S′s with updated S ′s and N ′s. This state concept is also applied in the max-pooling layer. One

pooling operation normally contains more linearities than the ReLU neuron and thus spawns more states. In

the affine-mapping layer, such as fully-connected layer and convolutional layer, only S in the state will be

transformed to one new reachable set S ′ accordingly.

In the work-stealing parallel computing, each processor computes their states and store additional states

in a local queue for future processes. One processor becomes idle when its local queue is empty. Then

this processor steals states from other processors with a globally-shared queue as the agent, such that it can

enable the full use of the processors. The process of states will be terminated once they reach the end of the

DNN, where different callback functions can be invoked. In this phase, the reachable set S in the state is an

output reachable set of the DNN. The callback functions include the safety verification and the computation

of unsafe input space with the backtracking algorithm.
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7.3 Reachability Analysis and Set Representations

7.3.1 Reachability Analysis

The reachability analysis in Veritex includes the computation of exact or over-approximated output reachable

domain and exact unsafe input subspace for a bounded input domain. This computation in FFNNs can be

formulated in Equation 4.3 and 4.8 where L denotes the reachable-set computation in one layer, s denotes

an input reachable set, E denotes the computation in one ReLU neuron and T denotes the preceding affine

mapping. The reachable sets are computed layer by layer until the last layer. Similarly, in the computation of

CNNs, E also refers to one pooling operation in the max-pooling layer, and T also refers to the convolutional

computation or the batch normalization. The non-linearity of ReLU DNNs origins from piecewise linearity of

the max function in the ReLU activation function and max-pooling operation. In the exact analysis, different

linearities are separately considered for the reachable-set computation. Therefore, an output reachable set is

actually the output of a linear region of the DNN. A linear region refers to a maximal convex subspace of

the input domain, on which the DNN is linear.

7.3.2 Set Representations

The set representation encodes geometric information of a convex polytope, which directly affects the effi-

ciency of reachability analysis. Veritex includes multiple set representations, FVIM, FLattice and V-zono.

7.3.2.1 Facet-vertex Incidence Matrix (FVIM)

FVIM is an efficient representation to encode the combinatorial structure of a polytope. Since this set rep-

resentation tracks its vertices (extreme points), any LP problems involved can be avoided. It is notable that

the set representation including vertices will occupy more memory than methods involving LPs. The impact

of the increased memory usage on the overall computational cost can be less than the runtime overhead from

solving LPs. Thus, there is a space-time tradeoff in computational complexity.

There are two types of operations on FVIM in the reachable-set computation. The first one is the affine

mapping from the weights in the fully-connected layer, the convolutional layer and the batch normalization.

This operation will only modify the value of vertices but preserve the FVIM of a polytope. Therefore, its

implementation in Veritex is straightforward. The other operation is the process by the max function in

ReLU neurons and Max-pooling layers, whose details are discussed in Yang et al. (2021c). In brief, the

vertex adjacency can be efficiently deduced from the FVIM, which facilitates the update of reachable sets in

the max function.

With this representation, Veritex computes the exact output reachable domain. Furthermore, the compu-

tation also tracks the affine-mapping relation between an output reachable set and its linear region. Therefore,
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Veritex can backtrack exact unsafe input subspace that causes safety violation in the output. This set repre-

sentation can be only applied to simple polytopes Yang et al. (2021a). The common input interval domain to

a DNN is a simple polytope. Affine mapping does not change this attribute. A reachable set computed from

a simple polytope in the max function is still a simple polytope if none of its vertices lies in the boundary

distinguishing the linearities of this max function. In practice, this situation extremely unlikely happens

because of floating-point computation. Veritex can also detect this situation. In case, Veritex implements

another set representation, Face Lattice.

7.3.2.2 Face Lattice (FLattice)

Compared to FVIM, the face lattice structure encodes the complete combinatorial structure of a polytope,

describing all the containment relation between different-dimensional faces. Therefore, it is scalable to rep-

resent general polytopes. FLattice is also for the exact analysis of ReLU DNNs. The affine-mapping operation

on it is the same as FVIM. Similarly, in the process of the max function, the vertex adjacency also needs to

be achieved for the reachable-set update. Since FLattice has more face-containment relation to process, its

efficiency is slightly lower than FVIM. This set representation also can backtrack exact unsafe input space

given an unsafe output domain, the same strategy as FVIM. Overall, FLattice is compatible with the opera-

tions on FVIM in the reachable-set computation, and it is a convenient and effective alternative to address the

issue in FVIM.

7.3.2.3 V−zono

V-zono is an enhanced vertex-representation of zonotope, which is used to construct the over-approximated

reachable set in the linear relaxation of activation functions, such as ReLU, Sigmoid and Tanh. This zonotope-

based reachability method computes the over-approximated output reachable domain of a DNN and can be

used for sound but incomplete safety verification. Since it does not consider different linearities in the activa-

tion function, this method is faster than the exact analysis. However, the approximation error is accumulated

w.r.t. each neuron, which can yield a conservative approximation. Normally, this method is used for safety

verification with small input domains. Veritex also combines the exact analysis with this method in the safety

verification and the computation of unsafe input-output reachable domain of DNNs. Because the over ap-

proximation method can quickly filter out spaces that does not contain unsafe elements in the beginning of

its computation and significantly improve the computational efficiency.

76



Figure 7.2: Cactus plot of the running time of the safety verification for ACAS Xu from VNN-COMP’21.
The running time of failed instances which return ’unknown’ or ’timeout’ is not included. Timeout is 116
seconds. Compared to all the related works, Veritex exhibits the highest efficiency.

7.4 Evaluation

7.4.1 Safety Verification of ACAS Xu Networks

The performance of Veritex on the safety verification of 45 ACAS Xu networks is compared to the stan-

dardized competition results in VNN-COMP’21 Bak et al. (2021), where most of the state-of-art methods

participated. All 13 methods and tools that participated are considered in the comparison. Our hardware is

set to the standard configuration, AWS, CPU: r5.12×large, 48vCPUs, 384 GB memory.

Veritex combines the exact analysis and the over-approximation analysis for a fast, sound and complete

verification. The verification time of all 186 instances of each method is shown in the cactus-plot Figure 7.2.

We can notice that compared to those 13 methods, Veritex can complete all the verification within the 116-

second timeout and exhibits the highest efficiency. There are 10 methods that are over-approximation based

fail to verify all the instances due to their conservativeness. There are 3 methods that can also verify all the

instances within the timeout, and they are α-β-CROWN cro (2021), nnenum Bak (2021) and VeriNet Henrik-

sen and Lomuscio (2020). In terms of the total running time, Veritex is 16.8× faster, 1.8× faster, and 5.0×

faster than these 3 methods, respectively. This is because the set representation in Veritex contains vertices

of reachable sets, and thus can avoid LP problems that commonly exists in these related works. The other

reason is that the incorporation of the over-approximation analysis can quickly filter out safe subspaces in the

input domain and thus avoid further computation on them.
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Methods Repair Successes Min Accu. Mean Accu. Max Accu.

Veritex 35/35 98.74% 99.70% 100.0%
Art 34/35 89.08% 94.57% 98.06%

Art-refinement 35/35 88.82% 95.85% 98.64%

Table 7.2: Repair of ACAS Xu neural network controllers. Veritex successfully repairs all 35 unsafe networks
with little accuracy degradation.

7.4.2 Repair of Unsafe ACAS Xu Networks and Unsafe DNN Agents

Among those 45 networks, there are 35 unsafe networks violating at least one of their safety properties.

Their original dataset is not publicly available. Therefore, a set of 5k test data is sampled from each original

network for the accuracy analysis of their repaired network, on which the accuracy of these original networks

is 100%. In this case study, we apply the non-minimal repair and compare Veritex to ART Lin et al. (2020)

which is a well-known repair method for DNNs.

The result of the ACAS Xu network repair is shown in Table 7.2. We can notice that Veritex can repair

all the 35 unsafe networks. ART can repair 34 networks, and ART-refinement which is an improved version

of ART can also repair all the networks. In terms of accuracy, our repaired networks exhibit a much higher

accuracy than ART and ART-refinement. Some of our repaired networks even have 100% accuracy, showing

much less performance degradation.

Besides the accuracy, we also analyze the reachability change of repaired networks, because the reach-

ability of a network comprehensively reflects its behaviors. A desired repair should fix all safety violations

of a network and meanwhile preserve its safe behaviors. Here, we apply Veritex to plot the output reachable

domain of the original and repaired network N21 on their safety properties, and then analyze their difference.

Network N21 has safety properties 1, 2, 3, 4 and it violates the property 2. The output reachable domain of

the original network, Veritex-repaired network and ART-refinement-repaired network on the property 1&2 is

shown in (a), (b) and (c) in Figure 7.3. Their output reachable domains on the property 3&4 are shown in (d),

(e) and (f). All domains are projected on (y0, y1) for visualization. The unsafe reachable domain is plotted

in red. We can notice that the unsafe reachable domain on the property 2 is eliminated after the repair by

Veritex and ART. We can also notice that compared to ART, Veritex modifies the reachability less. This is

also shown by the reachability on the property 3&4 in (d), (e) and (f).

The running time of Veritex and ART is shown in Table 7.3. The repair of N19 and N29 by Veritex

takes more time than ART. This is because that the exact reachability analysis of networks is an NP-complete

problem Katz et al. (2017). The safety properties of these 2 networks specify very large input domains,

therefore, their analysis is more computational expensive. For the repair of the other 33 networks, Veritex is
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(a) Unsafe Network (b) Our Repair (c) ART Repair

(d) Unsafe Network (e) Our Repair (f) ART Repair

Figure 7.3: Reachability of the original network and the repaired networks on Properties 1&2 (a,b,c), 3&4
(d,e,f). The output reachable domains are projected on (y0, y1). Red area represents the unsafe reachable
domain. When projected on the lower dimensional space, the unsafe reachable domain overlaps with the
safe reachable domain, as shown in (a). The unsafe reachable domain is eliminated by Veritex, but the safe
reachable domain is barely changed, as shown in (b).

79



Methods Min Mean Time Max Time (N19) Time (N29)

Veritex 8.4 77.7 230.2 11250.7 2484.1
Art 63.6 64.6 91.7 67.5 72.6

Art-refinement 83.4 86.0 124.3 82.5 88.4

Table 7.3: Running time (sec) of Veritex and ART. Veritex shows a higher efficiency than ART-refinement in
most of the instances.

(a) Unsafe Agent (b) Our Repair (c) Unsafe Agent (d) Our Repair

Figure 7.4: Reachability of the original agent and the repaired agent on Properties 1 & 2. The output reachable
domains are projected on (y0, y1) and (y0, y2). Red area represents the unsafe reachable domain.

faster than ART-refinement.

The other case study is repairing an unsafe DNN agent for a rocket-lander system in DRL roc (2021).

This agent has 9 state inputs, 5 hidden layers with each containing 20 ReLU neurons, and 3 outputs with

a continuous action space. More details can be found in Yang et al. (2020). The repair by Veritex takes

304.9 seconds to produce a provable safe agent. The reachability of the original agent and our repaired agent

is shown in Figure 7.4. Similar to the ACAS Xu network repair, Veritex repairs this unsafe agent without

heavily affecting its original reachability. Overall, we can conclude that Veritex can efficiently repair unsafe

DNNs on multiple safety properties with trivial impact on the original performance.
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CHAPTER 8

Future Research and Challenges

8.1 Reachability Analysis and Verification of Large-scale DNNs

The primary challenge of the reachability analysis of large-scale DNNs origins from the more complex ar-

chitecture with different types of layers such as convolutional layer and max-pooling layer and significantly

more parameters involved, such as VGG16 with 144 million parameters. Since the exact analysis of DNNs

is a NP-complete problem, it will require a substantial computational resource and thus become infeasible.

Methods based on over approximation can be alternatives. These methods are more efficient because they

can avoid exponential explore of reachable sets and generate a single set for the estimation of the reachable

domain. However, the approximation error is accumulated w.r.t. each neuron, and the estimation can be con-

servative. Therefore, this project will aim to develop an efficient and less conservative over-approximation

approach.

8.2 Reachability Analysis of Learning-enabled Control Systems

Our reachability-analysis methods will be extended to verify the safety of closed-loop dynamic systems with

neural networks serving as controllers. Because of the disturbance and uncertainties are inevitable in the

sensing and control channel, such control is still not reliable without formal verification. In the perspective

of feedback channel, the main challenges include accumulated error when considering over-approximation

methods, and exponential exploration of reachable sets when considering exact analysis. In the aspect of the

plant system, the main challenge lies in the reachability analysis of non-linear dynamics.
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Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2018b). Boosting robustness certification of neural net-
works. In International Conference on Learning Representations.
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