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CHAPTER 1: INTRODUCTION 

Portions of this chapter were adapted from the following manuscript published in Cancer 

Discovery: 

Madden, M.Z. and Rathmell, J.C., 2021. The complex integration of T-cell metabolism and 

immunotherapy. Cancer Discovery, 11(7), pp.1636-1643. 

 

Introduction to the immune system 

The immune system is a network of barriers, proteins, and cells which protects a host organism 

from pathogens and other insults and promotes tissue homeostasis. Although the immune system 

is often initially framed as a mechanism for the clearance of microorganisms, its role in the 

promotion and resolution of inflammation across diverse diseases, including cancer, autoimmune 

disease, and cardiovascular disease, has been increasingly appreciated. Therapeutics targeting the 

immune system are of growing interests to advance human health (Murphy & Weaver 2017). 

 

The immune system can be categorized into the innate and adaptive immune system and 

according to its components. This introduction will focus on the cellular components of the 

immune system, but it should be noted that barriers and proteins also play critical roles. 

Impermeable barriers such as skin and mucosa prevent the entry of pathogens into vulnerable 

tissues. The complement system and antimicrobial peptides are examples of proteins that help 

eliminate broad pathogens, and antibodies are proteins produced by the adaptive immune system 

to neutralize and eradicate specific pathogens. The primary “immune cells” in adult mice and 

humans are bone marrow-derived leukocytes or “white blood cells”. However, many non-

circulating tissue-resident cells are critical for organ-specific immune protection and 
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homeostasis. Alternatively, any cell could be considered an “immune cell” since nearly all cells 

express machinery that can recognize pathogens or cellular damage to initiate an immune 

response and would subsequently participate during an immune response. However, for the 

purpose of this dissertation, “immune cells” refers specifically to leukocytes. 

 

The innate immune cells are the “first line of defense” against invading microorganisms and can 

react within seconds when damage occurs. Innate cells express receptors that recognize 

pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) which are general 

signals of infection and/or pathophysiology. Upon recognition of PAMPs and DAMPs, innate 

immune cells can exert effector function to promote inflammation and clearance of pathogens. 

Immune cells are specialized according to the type of immune response required by a particular 

pathogen or insult. Granulocytes such as neutrophils, eosinophils, and basophils, contain 

intracellular collections of protein called granules that can be released on pathogens. Neutrophils 

are important for the clearance of extracellular bacteria. Their effector functions include the 

production of antimicrobial peptides and immune signaling molecules known as cytokines, 

engulfment of bacteria for elimination (phagocytosis), and production of neutrophil extracellular 

traps (NETs) (Mantovani et al 2011). Eosinophils and basophils are important for the clearance 

of fungi and multicellular parasites. Eosinophils also contribute to pathologies such as asthma 

and allergy, and basophils are implicated in the life-threatening complication anaphylaxis when 

triggered by a specific antigen, a molecular ligand that may or may not be part of a pathogen 

(Wen & Rothenberg 2016). Innate lymphocytes, distinguished by their small round morphology, 

are another class of innate immune cell. Natural killer (NK) cells and innate lymphoid cells 

(ILCs) are important for specific types of immune responses against cancer and intracellular 
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infections including viruses and mycobacterium (NK cells and ILC type 1), parasites and fungi 

(ILC type 2), and extracellular bacteria (ILC type 3) (Cong 2020). 

 

Apart from granulocytes and innate lymphocytes, macrophages and monocytes, their circulating 

precursors, are critical effector cells for early immunity and for the resolution of inflammation. 

Macrophages are phagocytes which engulf pathogens and debris for clearance. They also release 

cytokines to help recruit other immune cells and inform the subsequent type of immune 

response. Distinct from granulocytes, macrophages can play a key role in activating 

lymphocytes, and may be considered “professional” antigen-presenting cells (APCs) (Lavin et al 

2015). Upon phagocytosis of a pathogen, macrophages can digest the proteins of the pathogen 

into smaller peptides and recycle these peptides bound to major histocompatibility complex class 

II (MHCII) as a ligand on their cell surface. Peptide bound to MHC is an antigen, the ligand for a 

lymphocyte receptor. On the cell surface, it can be recognized by a T cell receptor for T cell 

activation, part of the adaptive immune system. 

 

The “most professional” APC is the dendritic cell (DC). Dendritic cells are specialized to sample 

antigens in a tissue microenvironment, become activated by inflammatory PAMPs and DAMPs, 

depart the inflamed tissue, home to a secondary lymphoid organ such as a lymph node, and then 

present antigen to lymphocytes and thereby initiate the adaptive immune response. Besides 

presenting MHC-bound peptides to T cells, DCs also secrete cytokines reflecting the type of 

inflammatory microenvironment from which they came, thereby tailoring the differentiation of 

their activated T cell towards a pathogen-appropriate effector function (Kapensberg 2003). 
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T cells are lymphocytes derived from the bone marrow like other immune cells but uniquely 

mature in the thymus (Klein et al 2014). In the thymus, each T cell precursor begins to express a 

genetically-recombined T cell receptor (TCR), the lineage-defining surface molecule of T cells. 

Each T cell has a TCR with a different specificity for their ligand peptide-MHC. In the thymus, 

both self-reactive T cells and T cells with useless TCRs that do not recognize peptide-MHC are 

deleted. T cells with TCRs demonstrating high affinity for self-peptide-MHC presented by 

thymic epithelial cells are terminated (“negative selection”), those with no or minimal affinity for 

self-peptide-MHC die in the absence of survival signals (“death by neglect”), and those with low 

tonic TCR affinity receive pro-survival signaling, proliferate, and exit the thymus as mature T 

cells (“positive selection”). CD4 is a TCR coreceptor recognizing MHCII and CD8 is a 

coreceptor recognizing MHCI, so CD4 T cells recognize peptide-MHCII derived from the 

endosomal (extracellular) compartment of the APC and CD8 T cells recognize peptide-MHCI 

derived from the cytoplasmic compartment of the APC. While all nucleated cells present 

peptides from their cytoplasmic cellular compartment on MHC class I, professional APCs also 

degrade proteins from the extracellular environment and endosomal compartment to present 

peptides on MHCII. 

 

After activation by DCs, T cells grow, proliferate, and depart secondary lymphoid organs to 

home to inflamed tissue. There, they exert effector function according to their activation status 

and other environmental cues. For type 1 immunity against cancer and intracellular infection, 

CD8 T cells eliminate transformed or infected cells through the effector molecules perforin and 

granzyme B. They are also known as cytotoxic lymphocytes (CTL). CD4 T helper 1 cells (Th1) 

also promote type 1 immunity through the secretion of Interferon-γ. For type 2 immunity against 
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multicellular fungi and parasites, CD4 Th2 cells secrete interleukins 4 (IL4), IL5, and IL13, and 

for type 3 immunity against extracellular bacteria CD4 Th17 cells secrete IL17. Anti-

inflammatory regulatory T cells (Treg) (peripheral Treg, pTreg) expressing master transcription 

factor FOXP3 can also differentiate, although Treg (thymic Treg, tTreg) can also mature in the 

thymus after demonstrating moderate affinity for self-peptide-MHC. CD4 T cells can also 

differentiate into follicular helper cells (Tfh). Tfh promote antibody responses by B cells (Zhu et 

al 2010). Like T cells, B cells are lymphocytes that express an analogous genetically-recombined 

B cell receptor (BCR) which recognizes antigen independent of MHC. Therefore, unlike TCRs, 

BCRs are not restricted to recognizing proteins and can theoretically recognize any antigen and 

bind any specific epitope. After receiving Tfh costimulatory signals, B cells activate and 

differentiate into antibody secreting cells (ASCs) including plasma cells. An antibody is a 

secreted form of the BCR and is important for binding to pathogens for neutralization and 

elimination. Antibodies are a secreted proteins found in plasma and are therefore considered the 

humoral component of adaptive immunity in contrast to the cellular component of T and B cells 

(LeBien & Tedder 2008). 

 

Once activated, the innate and adaptive immune systems can form a cycle whereby T and B cell 

effector functions drive further inflammation, innate immune activity, and antigen presentation 

to more T and B cells (Chen & Mellman 2013). If the pathogen and the specific antigens driving 

T and B cell activity are cleared, then inflammation can be resolved. Setting them apart from the 

innate immune system, T and B cells are antigen-specific and can persist long term as memory 

lymphocytes to protect against repeat infections from the same antigens. Memory lymphocytes 

are primed for reactivation and persist in circulation, in lymphoid organs, and in tissue. Together 
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with antibodies produced by long-lived plasma cells, memory lymphocytes provide the 

“immunity” to pathogens associated with convalescence after infection or vaccination (Kumar et 

al 2018). 

 

Identification of critical cells and molecules driving a specific immune response can lead to the 

development of targeted therapeutics to modulate inflammation and immunity. Corticosteroids, 

analogs of the stress hormone cortisol, are broadly immunosuppressive and are commonly used 

in clinical practice across multiple indications. Targeted therapies antagonizing innate signaling 

cytokines tumor necrosis factor α (TNFα), IL1, and IL6 are now standards of care in 

autoimmune diseases, whereas cancer immunotherapies to stimulate the immune system have 

revolutionized oncology. 

 

While many therapies have focused on activating or blocking immune signaling pathways, an 

emerging approach is to exploit differences in cellular metabolism in different immune cells. 

Although the field is gaining greater interest, targeting immunometabolism is also an old 

approach to immunomodulation, as methotrexate inhibits folate metabolism in activated 

lymphocytes. Just as specific molecules promote particular immune responses, the metabolic 

programs of those immune cells support their activities (O’Neill et al 2016). In this dissertation, 

we focus on T cell and macrophage metabolism, although exciting discoveries on cellular 

metabolism and its impact on immunity continue to be made in other cell types as well (Pearce & 

Everts 2015, O’Brien & Finlay 2019, Kumar & Dikshit 2019). 
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T cell metabolism 

Resting T cells utilize an oxidative catabolic metabolism that undergoes a dramatic shift upon 

activation.  Tonic signals from the TCR through RasGRP and the cytokine IL-7 signal to 

maintain a low basal activity of mechanistic Target of Rapamycin Complex I (mTORC1) in 

naïve T cells. Together with sphingosine-1 phosphate that promotes mitochondrial metabolism 

and oxidative phosphorylation, these pathways generate ATP essential for cell survival and 

immune surveillance (Myers et al 2019, Wofford et al 2008, Mendoza et al 2017).  Upon antigen 

encounter, the TCR activates calcium signaling that can result in tolerance or anergy if co-

stimulatory signals through receptors such as CD28 are not received to enhance TCR signals and 

robustly activate the Phosphatidylinositide-3-kinase (PI3K)/Akt/mTORC1 and Myc signaling 

pathways (Esensten et al 2016, Wang et al 2011).  Importantly, TCR signals alone in the absence 

of co-stimulation do not efficiently trigger reprogramming to support anabolic metabolism 

essential for cell growth and effector differentiation (Frauwirth et al 2002, Zheng et al 2009) and 

T cells that fail or are unable to undergo metabolic reprogramming do not adopt effector 

functions.  Conversely, T cells with excessive metabolic reprogramming can promote 

inflammation and autoimmunity (Jacobs et al 2008, Perry et al 2012). An appropriate balance of 

co-stimulatory signals, therefore, is essential to regulate T cell metabolism for efficient yet not 

excessive responses. 

 

Metabolic programming for T cell activation involves transition from catabolism to the induction 

of a wide range of anabolic processes that resemble the metabolic transitions long known to 

occur in cancer (Figure 1.1).  Oncogenic signals through PI3K, Myc, and others can lead to 

increased glucose uptake and metabolism with the production of lactate even in the presence of 
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abundant oxygen (Andrejeva & Rathmell et al 2017).  This process, termed aerobic glycolysis, is 

similarly induced in T cells following TCR activation with co-stimulation and is limiting to 

establish the extent of T cell inflammatory function and proliferation (Jacobs et al 2008).  Serine 

and one carbon metabolism, as well as glutamine uptake and oxidation, are also increased to 

support redox balance, nucleotide synthesis, and mitochondrial metabolism (Ma et al 2019, 

Johnson et al 2018).  To support the increased flux required for these pathways, T cells 

upregulate nutrient transporters and uptake of glucose (Macintyre et al 2014) and amino acids, 

including glutamine and essential amino acids including methionine (Nakaya et al 2014, Sinclair 

et al 2019).  Uptake and metabolism of additional amino acids are also important and can play 

key metabolic and immunomodulatory roles, with arginine and tryptophan in particular playing 

key roles to shape inflammation and anti-tumor immunity (Fiore et al 2021, Szefel et al 2019).  

Even uptake of the non-essential amino acid alanine is necessary to satisfy the high protein 

synthesis demand accompanying T cell activation (Ron-Harel et al 2019). Importantly, as T cells 

activate and are guided by inflammatory and cytokine cues to gain distinct sets of effector 

functions, they also develop and require specific metabolic programs (Michalek et al 2011).  If 

these fail to establish or are blocked, T cells are unable to elicit effector functions and may 

instead develop into immune suppressive regulatory T cells (induced Treg, iTreg). While iTreg 

were can often rely on fatty acid oxidation, activated Treg in vivo may also utilize glycolysis 

during proliferation and for migration into tissues (Kishore et al 2018, Pacella et al 2019). In the 

tumor microenvironment, Treg utilize lactate oxidation for suppressive function in tumors, and 

Treg-specific deficiency of lactate transporter MCT1 (Slc16a1) reduces tumor growth (Watson et 

al 2021). Ultimately, Treg flexible utilization of glycolysis, lactate, and fatty acid metabolism 
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contributes to the overall immunosuppressive nature of the tumor microenvironment and may 

grant a selective advantage compared to effector T cells (Pacella et al 2018).  

 

 
Figure 1.1: T cell metabolism drives T cell fate and function to eliminate tumors.  Naïve T 

cells rely on oxidative metabolism (OXPHOS) and maintain robust mitochondrial quality 

control.  After activation with co-stimulation through receptors including CD28 that activate the 

mTORC1 pathway, effector T cells increase glucose and glutamine (Gln) metabolism to support 

effector function.  If antigen is cleared, effector cells can enter a long-lived memory state with 

stem cell-like properties.  If antigen remains, as often occurs in long-term tumor elimination 

processes, inhibitory receptors such as PD-1 and CTLA4 can reshape T cell metabolism to 

reduce pathways that characterize effector T cells and lead to multiple metabolic impairments. 

Exhausted T cells demonstrate reduced glucose and glutamine metabolism, low quality 

dysfunctional mitochondrial, and a dependance on fatty acid oxidation (FAO). Potentially 
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contributing to T cell disfunction in the tumor microenvironment are low levels of oxygen (pO2), 

low levels of tryptophan (Trp) metabolized by the kynurenine pathway including indoleamine 

2,3-dioxygenase (IDO), low levels of arginine (Arg) metabolized by arginase (ARG1), high 

levels of lactate, and potentially competition for glucose with cancer cells. Figure created with 

Biorender.com. 

 

Transient TCR signaling from acutely cleared antigens leads to a distinct metabolic outcome 

compared to chronic stimulation from persistent antigens.  Following acute antigen exposure and 

clearance, T cells that fail to reduce aerobic glycolysis undergo apoptosis while those that can 

revert back to catabolic metabolism using lipid oxidation as a primary fuel to support 

mitochondrial respiratory capacity can survive as memory cells (van der Windt et al 2012).  The 

morphology of mitochondria can play a key role in electron transport efficiency, underlying 

mitochondrial capacity and fitness.  Upon T cell activation mitochondria fragment and cristae 

remodel leading to relatively reduced oxidative phosphorylation, although overall metabolic flux 

is elevated compared to a non-activated T cell (Buck et al 2016). Transient inhibition of 

fragmentation during activation resulted in fused mitochondria that maintained mitochondrial 

oxygen consumption and supported long-term T cell survival and memory.  Importantly, this 

treatment increased the ability of T cells to survive and eliminate tumors upon subsequent 

adoptive transfer (Buck et al 2016). A key characteristic of memory T cells is the ability to 

mount fast responses upon secondary antigen encounter. Metabolically, memory T cells remain 

poised through endoplasmic reticulum/mitochondrial associations and metabolic complexes to 

rapidly reactivate aerobic glycolysis to promote robust effector function and proliferation 

(Bantug et al 2018).  Importantly, memory responses may be enhanced if anabolic cell 

metabolism is transiently suppressed during initial activation.  While mechanisms are unclear, it 

is possible that mild metabolic stress, such as low dose 2-deoxyglucose to inhibit glycolysis, can 
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lead to mitochondrial adaptation to prime for future respiratory capacity and survival as memory 

cells (Sukumar et al 2013). 

 

If antigens are not rapidly cleared, chronic antigen exposure can lead to T cell dysfunction, often 

termed T cell exhaustion. In contrast to memory T cells that are primed to quickly respond to 

restimulation, exhausted T cells do not produce the full array of inflammatory cytokines upon ex 

vivo stimulation, have reduced proliferative potential, express characteristic inhibitory 

coreceptors, and have epigenetic changes suggestive of terminal differentiation (Blank et al 

2019). Exhausted T cells can also have marked metabolic dysfunction. Glucose uptake and 

mitochondrial oxidative metabolism are decreased, yet mitochondrial mass is increased (Bengsch 

et al 2016). Depolarized mitochondria accumulate in exhausted T cells, and pharmacologic 

enhancement of depolarization promotes epigenetic changes suggesting a causal link between 

metabolism and the transcriptional program of exhaustion (Yu et al 2020). Indeed, clearance of 

damaged and non-functional mitochondria to maintain a high level of mitochondrial quality 

control may be a key event to reinvigorate exhausted T cells and allow the generation of long-

lived memory T cells (Bengsch et al 2016, Adams et al 2016).  The combination of continuous 

TCR signaling with hypoxia induces an exhausted program in T cells by restricting 

mitochondrial regulation of ROS (Scharping et al 2021). Further, the ability of exogenous 

pyruvate or acetate to rescue exhausted T cell functions supports a central role for metabolic 

impairment in T cell exhaustion (Siska et al 2017, Qiu et al 2019).   

 

These normal metabolic processes are critical to maintain T cell fitness and allow rapid and 

robust immunity. The distinct metabolic programs of different T cell subsets offer the promise of 
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specific modulation of immune responses through targeted therapies. Glutamine metabolism 

provides a striking example of selectivity and regulation of T cell responses. While all effector T 

cells require increased glutamine uptake upon activation and can instead differentiate into Treg 

when glutamine itself is limiting (Johnson et al 2018, Nakaya et al 2014), the further metabolism 

of glutamine differs between T cell subsets.  Metabolism of glutamine through Glutaminase 

(GLS) to generate glutamate is required for CD4 Th17 cells and inhibition or genetic deletion of 

GLS is sufficient to provide protection in models of airway inflammation (Johnson et al 2018), 

inflammatory bowel disease (Johnson et al 2018), psoriasis (Xia et al 2020), and Systemic Lupus 

Erythematosus (Johnson et al 2017, Kono et al 2019).  Conversely, glutamine metabolism 

appears to restrain the differentiation and function of CD4 Th1 and CD8 cytotoxic lymphocytes 

(CTL), as both cell types show increased markers of activation and effector function when 

glutamine metabolism is inhibited (Johnson et al 2017, Leone et al 2019).  Increased 

differentiation upon GLS inhibition may come at the cost of excessive or terminal fates, 

however, as GLS-deficient Th1 cells also upregulated inhibitory receptors and appeared to lose 

function over time.  It remains unclear if this ultimate decrease of overall function was due to 

reversion to a state similar to chronic antigen stimulation or terminal differentiation and 

increased susceptibility to apoptosis. 

 

Changes in cell metabolism are now known to affect epigenetic marks and histone acetylation so 

as to influence gene expression and cell differentiation that can last long after T cells are 

removed from metabolic interventions (Britt et al 2020). This long-lasting impact of cell 

metabolism may affect both T cells that have left tumor microenvironments as well as adoptively 

transferred T cells that can be epigenetically programed in vitro through metabolic manipulation 
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for specific differentiation fates and to withstand metabolically hostile microenvironments.  

Acetylation of histones depends on acetyl donor molecule acetyl-CoA and the enzymatic activity 

of histone acetyl transferases. Cytoplasmic and nuclear acetyl-CoA is derived from fatty acid 

metabolism, TCA cycle citrate exported to the cytosol and converted to acetyl-CoA by ACLY, 

and acetate though the enzyme ACSS2. Enhanced nucleo-cytosolic acetyl-CoA, enhances 

epigenetic acetylation of effector molecule loci in T cells. Genetic ablation of lactate 

dehydrogenase reduced aerobic glycolysis and reduced IFNγ production and histone acetylation 

in Th1 cells by sequestering citrate in the TCA cycle to maintain cellular metabolism (Peng et al 

2016). Acetate metabolism promotes CD8 effector function at sites of infection, but ACSS1/2 

are downregulated in memory CD8 T cells potentially to prevent further epigenetic remodeling 

in these stem-like cells (Balmer et al 2020). Universal methyl donor S-adenosyl-L-methionine 

(SAM), necessary for histone and DNA methylation, is largely derived from methionine in 

activated T cells. Methionine restriction reduced Th17 cell effector molecule production and 

attenuated experimental autoimmune encephalitis pathology (Roy et al 2020) . Conversely, 

inhibition of glutamine metabolism may promote hypermethylated states as many demethylation 

reactions rely on the downstream glutamine metabolite α-ketoglutarate (Johnson et al 2017, 

Leone et al 2019).  These epigenetic mechanisms now offer a straightforward in vitro metabolic 

approach to in vivo immunotherapy, as the epigenetic differentiation of effector immune cell 

therapy may be directly altered metabolically during ex vivo production 

 

T cell-based Cancer Immunotherapy 

Immunotherapy has revolutionized clinical oncology and now provides a distinct arm of cancer 

treatment to empower the immune system to eliminate cancer cells. Following on early efforts to 



17 

vaccinate against cancer that led to disappointing results, immunotherapy through Adoptive Cell 

Therapy (ACT) or Immune Checkpoint Blockade (ICB) now can lead to promising and durable 

remissions (Jun & Sadelain 2018, Wei et al 2018).  While many methods for cancer 

immunotherapy are under study that include a variety of cell mechanisms and targets, a common 

approach in ACT and ICB is to engage or remove inhibition of T cells to eliminate target cancer 

cells.  Despite early successes, however, immunotherapy has not been sufficiently effective 

across cancer types or for all patients, as the majority of patients fail to respond and strategies to 

improve immunotherapy outcomes are needed. The basic biology of T cells and how T cells 

interact with and are suppressed by the tumor microenvironment may contribute to these failures 

of ACT and ICB.  In each case, cellular metabolism offers an avenue to understand the 

limitations of immunotherapy and may provide rational approaches to improve anti-tumor T cell 

activity by improving the metabolic fitness of anti-tumor T cells. 

 

An essential component of an anti-tumor T cell response is antigen-driven T cell activation.  In 

ACT, transferred cancer-specific T cells or T cells expressing a Chimeric Antigen Receptor 

(CAR) are stimulated upon interaction with target cells, while ICB blocks inhibitory signals that 

prevent the activation of endogenous anti-cancer T cells.  In each case, antigen and co-

stimulatory signals must be present for optimal activation, proliferation, and effector function.  

These co-stimulatory signals are provided in culture for in vitro expansion and as integral 

components of CARs in ACT and co-stimulatory signals are the direct targets for ICB, as PD-1 

and CTLA4 are both inhibitory receptors of the CD28 co-stimulatory family of receptors 

(Schildberg et al 2016, Esensten et al 2016).  A key function of co-stimulatory signals is to 

enhance T cell metabolism to support energetic requirements, biosynthesis, and cell signaling 
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processes for effector activities.  CD28 promotes T cell nutrient uptake, glycolysis, and 

mitochondrial fitness (Frauwirth et al 2002, Geltink et al 2017), while PD-1 and CTLA4 each 

can suppress this pathway to instead reprogram T cell metabolism away from anabolic and 

effector pathways (Parry et al 2005).  These challenges, however, also offer opportunities to 

improve ACT and ICB. How these metabolic changes influence T cell-based immunotherapy 

and how the tumor microenvironment may further suppress the metabolism of T cells is 

reviewed below.   

 

T cell metabolism in CAR T cells and other ACT 

ACT includes a variety of treatments in which immune cells are infused into patients to eliminate 

cancer cells. These approaches include the transfer of multiple different cell types that can be 

stimulated, differentiated, and engineered ex vivo.  T cells have represented the major application 

for ACT and can include expanded tumor-infiltrating lymphocytes (TILs), engineered T cells 

modified to express TCRs specific for tumor-specific antigen peptide/MHC complexes, or 

antibody-based Chimeric Antigen Receptors (CARs) specific for cell surface tumor antigens.  

There are numerous advantages and disadvantages to different ACT strategies, which are 

reviewed elsewhere (Rosenberg & Restifo 2015). ACT has had promising success in some tumor 

types, particularly with CD19-specific CAR T cells used against B cell acute lymphoblastic 

leukemia (B-ALL) and B cell lymphomas, where up to half or more of patients can achieve 

durable remission (Maude et al 2018).  Responses in other settings, however, remain poor.  To 

improve and broaden these responses, T cell metabolism must be optimized to best support both 

robust initial and durable T cell responses for the specific activation stimuli, target cell, and 

tumor microenvironment.  
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Engineered CAR T cells offer a particularly promising approach to modulate T cell metabolism.  

By building specific signaling domains and properties into CARs, adoptively transferred T cells 

might be tailored for effector activity or long-lasting memory.  Although many variations are 

being rapidly generated, the two FDA-approved CARs consist of an extracellular domain to 

target the B cell marker CD19 that is coupled with an intracellular portion that includes signaling 

domains from CD3ζ and the co-stimulatory molecules CD28 or 4-1BB.  By linking TCR 

signaling directly with co-stimulatory signaling domains, CARs can be activated to elicit effector 

functions without additional need for inflammatory or co-stimulatory cues. Downstream 

signaling through CD28 or 4-1BB domains are thought to mediate the primary differences 

between the two CAR T cell treatments.  Indeed, each signaling domain can elicit different 

metabolic effects (Kawalekar et al 2016).  CAR T cells that express the CD28 signaling domain 

CAR can have increased glycolysis and effector responses but can be short-lived.  Conversely, 

CAR T cells that express the 4-1BB signaling domain CAR have increased mitochondrial 

respiration and lipid oxidation and can be longer-lived, associated with a more central memory 

immunophenotype.  These phenotypes are not surprising given the normal physiological 

functions of these co-stimulatory molecules.  CD28 co-stimulation normally promotes glycolysis 

and effector differentiation through activation of the PI3K/Akt/mTORC1 pathway and regulation 

of mitochondrial morphology and function (Frauwirth et al 2002, Geltink et al 2017, Buck et al 

2016) while 4-1BB may instead activate AMPK and stimulate lipid oxidation and mitochondrial 

biogenesis and metabolism (Choi et al 2017).  4-1BB also stimulates non-canonical NF-κB 

signaling to promote cell survival (Philipson et al 2020).  These metabolic phenotypes of CD28 

and 4-1BB CARs are reminiscent of short-lived effector T cells and long-lived memory T cells, 

respectively.  Given this and detailed understanding of the mechanisms of CD28 and 4-1BB 
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signaling, a promising approach to increase CAR T cell effector function or survival has been to 

introduce signaling mutations.  Mutation of the YMNM signaling motif of CD28, for example, 

was recently shown to increase CAR T cell survival and reduce signs of T cell exhaustion to 

enhance durable tumor control in pre-clinical models (Guedan et al 2020).  The metabolic 

implications of this mutation are unclear, but Akt phosphorylation was maintained while MAPK 

and calcium signaling were reduced suggesting a shift in metabolic and mitochondrial regulation.   

 

Other costimulatory molecules modulate T cell metabolism and may be incorporated into  

CAR constructs or targeted with agonist antibodies. ICOS, a member of the CD28 family, 

similarly promotes glycolysis and mTORC1 activity in Tfh cells (Zeng et al 2016). GITR 

agonism increases CD8 TIL metabolism (Sabharwal et al 2018). OX40 was expressed more 

highly in Treg TIL than CD4 Tconv TIL and was associated with enrichment of glycolysis and 

lipid metabolism transcripts. Agonism of OX40 enhanced lipid uptake in these Treg (Pacella et 

al 2018). 

 

In addition to CAR, T cells harvested from tumors and in vitro expanded or transduced with 

engineered TCR can also be subject to metabolic manipulations to optimize function.  These 

approaches are generally directed towards solid tumors and take advantage of natural or 

synthetically derived specificity against tumors and have both advantages and challenges.  While 

tumor specific, T cells obtained from patient tumors are likely already epigenetically 

programmed and any metabolic manipulation will need to overcome this barrier.  Engineered 

TCR can start from a naïve T cells similar to CAR but must differentiate to gain sufficient 

effector functions and longevity to eliminate tumors similar to CAR.  The in vitro stimulation 
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period for each does offer, however, the opportunity to adapt nutrient conditions or T cell 

metabolism to favor appropriate effort and longevity states.  In particular, T cells with low rates 

of glycolysis or mitochondrial potential may be generated or selected to have greater longevity 

while retaining effector functions (Kishton et al 2017).  Similarly, targeting other pathways, such 

as glutamine metabolism may also promote increased T cell function in these settings (Leone et 

al 2019). 

 

A significant advantage ACT has over ICB in metabolic approaches to immunotherapy is that 

treatments can be carried out during the in vitro stimulation and T cell engineering period rather 

than in situ. This approach allows the opportunity to modify T cell metabolism and mitochondria 

independent of effects on other cells and tissues and thus prevents any potential benefit of a 

metabolic therapy meant to boost T cells from also promoting the metabolism of cancer cells. 

This approach also eliminates concern for potential toxic side-effects of targeting metabolism in 

other tissues.  The benefit, however, is predicated on the capacity of transient metabolic 

modifications during an in vitro period to lead to lasting effects on T cell differentiation, 

function, and fate in vivo to allow tumor elimination.  This cell intrinsic stability is inherent in 

genetically engineered T cells, but it is also now clear that transient pharmacologic approaches 

may shift T cell metabolism to favor long-lived anti-cancer effector T cells for ACT.   

 

One metabolic strategy that has proven promising to modify T cell differentiation is to 

selectively target the high rates of glycolysis that accompany effector T cells and that can impair 

the establishment of long-lasting memory.  Glycolysis can be targeted directly with 

pharmacologic inhibitors, such as 2-deoxyglucose.  This treatment of T cells stimulated in vitro 
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prior to ACT in preclinical models reduced glycolysis and proliferation, but also led to a more 

memory-like phenotype and greater cell survival in vivo (Sukumar et al 2013).  As a result, 2-

deoxyglucose treated T cells were better able to control tumors and extend animal life.  

Restricted glucose during T cell activation can also prime subsequent glucose uptake and 

shunting into the pentose phosphate pathway for nucleotide synthesis and altered redox balance, 

resulting in superior tumor control (Geltink et al 2020). The PI3K/Akt/mTORC1 pathway is a 

critical mechanism by which T cells induce aerobic glycolysis downstream of CD28 co-

stimulation and, similar to 2-deoxyglucose, inhibition of Akt reduced glucose uptake and 

glycolysis and led to a more central memory phenotype.  Importantly, this also improved the 

ability of in vitro inhibitor-treated CAR T cells to eliminate B cell leukemia following in vivo 

transfer (Klebanoff et al 2017). 

 

Glutamine metabolism is generally coupled to aerobic glycolysis to provide anaplerotic 

substrates to maintain the TCA cycle.  In CD4 Th1 and CD8 CTL, however, glucose and 

glutamine metabolism can become uncoupled and inhibition of glutamine metabolism can lead to 

an adaptive increase in glycolysis that drives T cell proliferation and effector differentiation 

(Johnson et al 2018, Leone et al 2019).  Both GLS and broader glutamine metabolism inhibitors, 

therefore, can enhance the functionality of CD4 Th1 and CD8 CTL cells.  In a CAR T cell 

model, this led to increased proliferation, ability to kill target cells, and rapid cell accumulation 

in vivo.  A potential challenge to this approach to modulate glucose metabolism by targeting 

glutamine is that enhanced effector differentiation may be self-limiting.  Similar to the fate of 

normal effector T cells, GLS-deficient T cells also induced inhibitory receptors and markers of 

terminal differentiation over time.  Ultimately, permanent genetic loss of GLS led to a sharp loss 
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of cytotoxic function and B cell targets eventually accumulated to normal numbers (Johnson et al 

2018).  Nevertheless, transient in vitro inhibition was sufficient to induce epigenetic alterations 

that led to long-lasting changes in tumor-specific T cells and timed or transient inhibition of 

glutamine metabolism may provide a means to promote effector function while not driving T 

cells to exhaustion or terminal fates. Inhibition of glutamine metabolism may also be promising 

to reinvigorate TIL in situ, as tumor CD8 T cells upregulated acetate metabolism to support 

anabolism (Qiu et al 2019, Balmer et al 2020), in contrast to cancer cells which did not alter 

acetate metabolism and became catabolic.  

 

Ultimately, memory or stem-like phenotypes are characterized by mitochondrial oxidative 

metabolism and strategies to mimic this state may best support long-term T cell survival and 

ability to eliminate cancer targets in ACT.  This may be a key mechanism by which 4-1BB 

domain containing CARs support ACT (Kawalekar et al 2016) and approaches to directly 

modify mitochondria may also prove valuable. The morphology of mitochondria can play a key 

role in electron transport efficiency.  Upon T cell activation mitochondria fragment and cristae 

remodel leading to reduced oxidative phosphorylation (Buck et al 2016). Transient inhibition of 

this fragmentation during activation, however, resulted in fused mitochondria that maintained 

mitochondrial oxygen consumption and supported long-term T cell survival and memory.  

Importantly, this treatment increased the ability of T cells to survive and eliminate tumors upon 

subsequent adoptive transfer (Buck et al 2016). CRISPR based gene knockout screens are a 

powerful tool to assess the role of metabolic genes in T cells in different contexts of 

inflammation and immunity.  REGNASE 1 was discovered using this approach as a negative 

regulator of BATF, mediating mitochondrial function and morphology (Wei et al 2019). Another 
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strategy to rewire mitochondria in ACT is to directly promote mitochondrial lipid metabolism 

characteristic of memory T cells.  Expression of the transcriptional co-activator PGC1α or 

treatment with the PPAR agonists bezofibrate or fenofibrate both increased lipid oxidation and 

increased T cell functionality and ability to eliminate tumors in ACT (Scharping et al 2016, 

Zhang et al 2017, Chowdhury et al 2018). 

 

T Cell Metabolism in Immune Checkpoint Blockade 

A fundamental difference between ACT and ICB is that while the challenge in ACT is to direct 

immunity against tumors using cells delivered as a pharmaceutical, the goal of ICB is to 

overcome inhibitory signals to activate endogenous anti-tumor specific T cells.  ICB also is most 

commonly directed against solid tumors, where the tumor microenvironment can exert a strong 

influence on T cell metabolism.  Beyond the initial barrier that T cells must first infiltrate into 

tumors, ICB must surmount several key challenges.  Tumor infiltrating T lymphocytes (TIL) 

may have an exhausted differentiation state, with high expression of inhibitory receptors and 

altered epigenetic marks that impede effector function (Philip et al 2017).  These changes are 

accompanied by diverse metabolic adaptations that lead to multiple deficits.  Translocation of 

GLUT1 to the cell surface to support glucose uptake can be impaired and glycolytic enzymes 

GAPDH and Enolase can be downregulated or suppressed (Siska et al 2017, Gemta et al 2019).  

Mitochondria can also be dysregulated, with fragmented morphology, high production of 

reactive oxygen species, and poor capacity for respiration (Siska et al 2017, Scharping et al 

2016). Rescue of TIL metabolism, however, with expression of PCK to promote 

gluconeogenesis and the replacement intracellular glycolytic intermediates or by treatment with 

pyruvate or acetate to directly support mitochondrial metabolism can improve T cell 
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inflammatory function (Siska et al 2017, Qiu et al 2019, Ho et al 2015).  These findings 

demonstrate that the lack of metabolic flux directly contributes to T cell impairments in the 

TME. 

 

One mechanism by which ICB may act to restore T cell function is to enhance T cell metabolic 

capacity to rescue T cells from metabolic defects imposed by the TME. Another is to promote 

differentiation of PD1+ TCF1+ stem-like progenitor exhausted T cells into effector T cells, 

which may occur in secondary lymphoid tissue, tertiary lymphoid structures, or in the tumor 

itself (Siddiqui et al 2019, Miller et al 2019). In either context, disrupting coinhibitory signals 

promotes the generation of effector cells. In addition to chronic TCR signaling, the TME can 

express high levels of immunosuppressive ligands, including PD-L1 or PD-L2. A normal 

function of both PD-1 and CTLA4 is to suppress PI3K and Akt signaling and thus oppose a key 

signaling mechanism of CD28-family mediated co-stimulation (Schildberg et al 2016). PD-1 can 

recruit SHP1/2 phosphatase to prevent PI3K activation, while CTLA4 can inhibit both the 

interaction of CD28 with the ligands B7-1 and B7-2 as well as recruit the phosphatase PP2a.  It 

is not surprising, therefore, that PD-1 and CTLA4 inhibit CD28-mediated metabolic 

reprogramming and the induction of aerobic glycolysis that otherwise characterizes effector T 

cells (Frauwirth et al 2002, Parry et al 2005).   

 

Distinguishing PD-1 and CTLA4, CTLA4 is thought to be more important for initial phases of T 

cell activation and thereby promote a naïve metabolic program. PD-1, in contrast, is expressed 

after TCR engagement. PD-1 signals restrain glucose uptake and glycolysis in T cell activation 

and instead promote lipid oxidation that is characteristic of long-lived quiescent cells. 
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Intriguingly, both anti-CTLA4 and anti-PD-1 can promote the expansion of new anti-tumor 

clones. Overall, inhibitory signals can prevent inappropriate T cell activation or excessive 

inflammation. In support of this model, stimulated PD-1-deficient T cells can maintain greater 

metabolic activity in chronic infection models (Bengsch et al 2016, Patsoukis et al 2015). By 

blocking the PD-1 and CTLA4 mediated physiologic signals that dampen effector T cell 

metabolism ICB can allow T cell stimulation and increased metabolism. ICB treatments that 

inhibit ligand interactions of PD-1 or CTLA4, therefore, relieve inhibition of 

PI3K/Akt/mTORC1 signaling to allow T cells to adopt an effector-like metabolism. In addition, 

as a metabolic shift may lead to epigenetic modifications, successful ICB may metabolically 

reprogram epigenetic marks to favor effector functions or cell longevity, although these changes 

remain to be fully understood. 

 

In addition to PD-1 and CTLA4 that have been most extensively pursued as targets for ICB, 

other coinhibitory molecules also modulate T cell metabolism. Indeed, of the various ICB targets 

that provide or inhibit co-stimulatory signals to T cells, many have been shown to also influence 

cell metabolism and this may be a general mechanism by which co-stimulation promotes or 

suppresses T cell function. TIM3 negatively regulates glycolysis and GLUT1 expression, and 

may also inhibit glutaminolysis (Lee et al 2020). LAG3 negatively regulates mitochondrial 

metabolism (Previte et al 2019). Likewise, targeting 4-1BB and OX40 may enhance T cell 

mitochondrial metabolism to promote effector function and long-term survival (Choi et al 2017, 

Tsurutani et al 2016). Each of these metabolic regulatory functions may both directly affect 

biosynthetic processes and influence epigenetic marks for long-lasting influence over T cell 

differentiation and fate. Other family members and how these various T cell modulating 
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receptors may ultimately impact anti-tumor T cell metabolism and functions, however, remains 

to be established.   

 

Regardless of the presence and function of co-stimulatory or inhibitory molecules, T cells in the 

TME must still access adequate essential nutrients to support metabolic demands.  Various 

nutrients, however, may be limited or heterogeneous in abundance.  In addition to limited 

oxygen in regions of hypoxia, glucose and other nutrients essential for efficient effector T cell 

responses may be depleted in the TME (Ho et al 2015, Chang et al 2015). Because cancer cells 

themselves can use an aerobic glycolysis metabolism that is similar to activated effector T cells 

and therefore can have similar metabolic requirements (Andrejeva & Rathmell 2017), 

competition may arise for these nutrients in settings where vascular exchange is limited.  This 

potential for nutrient competition suggests that the metabolism of the TME itself may be directly 

immunosuppressive.  Indeed, changes in tumor glucose metabolism can influence the ability of T 

cells to eliminate tumors and increased tumor cell glycolysis can reduce anti-tumor immunity 

(Chang et al 2015).  The generality of such nutrient competition is uncertain, however, as 

measurements of metabolites in tumor interstitial fluid in some tumor settings have found that 

glucose and glutamine can be at normal or at only modestly decreased levels (Siska et al 2017, 

Sullivan et al 2019). Nevertheless, T cells from these same tumors show metabolic impairments 

(Siska et al 2017), suggesting that chronic antigen stimulation and immune inhibitory receptors, 

such as PD-1, contribute and may be the primary drive for many of these metabolic phenotypes.  

An unresolved question relevant to potential metabolic competition and tumors is to what extent 

T cells in the TME may be capable of reactivation with ICB or do ICB therapies instead engage 

T cells that have yet to experience prolonged engagement with tumors and tumor antigens.  This 
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is an important question that will influence understanding of the metabolic implications of the 

TME on T cells as, despite these many barriers, ICB does successfully eliminate many tumors. 

 

Macrophage Metabolism 

The overall theme that glycolysis promotes inflammation and oxidative metabolism promotes 

immune resolution appears to hold true generally across immune cell types, not just in T cells. 

Macrophage activation offers an extreme example of distinct glycolytic and oxidative cellular 

metabolic programs linked to function. Macrophage activation by cytokines and toll-like receptor 

(TLR) signaling causes increased phagocytosis and secretion of cytokines. However, the specific 

activation signals in vitro cause stark changes metabolically. Activation with TLR4 agonist 

lipopolysaccharide (LPS) and/or IFNγ induces pro-inflammatory M1 polarization with and a 

glycolytic phenotype. Alternative activation with IL4 induces anti-inflammatory or pro-

resolution M2 polarization and an oxidative phenotype (Rodriquez-Prados et al 2010). Increased 

glycolysis in M1 macrophages is partly due to induction of pyruvate kinase isoenzyme M2 

(PKM2), which in addition to functioning in glycolysis also translocates to the nucleus to 

promote HIF1α activity and IL1β production (Palsson-McDermott 2015). The M1 versus M2 

paradigm is supported by massive changes in TCA cycle metabolism. M1 macrophages have a 

“broken” TCA cycle with no flux through isocitrate dehydrogenase (IDH) and succinate 

dehydrogenase (Jha et al 2015, O’Neill 2015). Instead, glutamine and α-ketoglutarate are shunted 

toward succinate production which further promotes HIF1α activity and IL1β production 

(Tannahill 2013), and the arginosuccinate shunt promotes the production of citrate for fatty acid 

synthesis and the production of antimicrobial itaconate (Michelucci et al 2013). M2 macrophages 
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still use glucose, however, and utilize key anabolic signaling complexes mTORC1 and mTORC2 

(Covarrubias et al 2016, Huang et al 2016). 

 

While it is thought that the differences in M1 and M2 macrophages stem from M1 cells’ higher 

demand for energy in the short term, there are limitations to the M1 versus M2 paradigm in vivo 

(Ganeshan & Chawla 2014). The paradigm has relied heavily on in vitro experiments with bone 

marrow-derived macrophages. Much remains uncharacterized in vivo macrophages, where more 

complicated cytokine signaling and nutrient microenvironments may yield distinct phenotypes 

(Bakker & Pearce 2020). The TME is one such environment where macrophages are often highly 

abundant and interact with T cells and cancer cells. Tumor macrophages can be highly abundant 

and have substantial consequences in the TME through secretion of cytokines rewiring the 

metabolism of other cells as well as secretion of immunosuppressive metabolites such as 

kynurenine (Vitale et al 2019). 

 

Glucose Metabolism in the Tumor Microenvironment 

 The original finding of tumor metabolism was published nearly a century ago by Otto 

Warburg (Warburg et al 1924). He observed that glucose was metabolized to lactate in thin slices 

of Flexner-Jobling tumors serially passaged in rats, and the cellular respiration of cancer cells 

was severely reduced compared to normal tissues even though there was oxygen available. No ex 

vivo media conditions could rescue the reduced respiration of cancer cells. The result was so 

profound that Warburg later hypothesized that a defect in cellular respiration was the ultimate 

etiology of all cancers (Warburg 1956). Warburg’s hypothesis on the origin of cancer did not 

hold up, and now we appreciate that cancer arises from genetic mutations However, the 
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preferential conversion of glucose into lactate in the presence of oxygen became known as the 

Warburg Effect or aerobic glycolysis. It became the most studied aspect of tumor metabolism, 

although therapies targeting aerobic glycolysis have had limited success (Vander Heiden & 

DeBerardinis 2017). Glutamine metabolism in cells exhibiting aerobic glycolysis, in addition to 

being an important source of carbon and nitrogen, supports anabolism through anaplerosis, 

demonstrating that focusing on glucose is insufficient (DeBerardinis et al 2007). Additionally, 

tumors can have a variety of metabolic programs and demonstrate metabolic flexibility according 

to their location and in response to treatment (Senyilmaz & Teleman 2015). A caveat to this 

approach is that the tumor slices used by Warburg were not pure cancer cells and likely included 

a range of tumor infiltrating cells. 

 With respect to the TME, the paradigm of cancer cell aerobic glycolysis led to the 

hypothesis that cancer cells outcompete anti-tumor immune cells for glucose. In this model, 

glucose is a scarce resource required by anti-tumor immune cells and its depletion is a form of 

immunosuppression. Glycolytic metabolism between cancer cells and CD8 T cells was inverted 

regressor and progressor tumor models, with progressing tumors having high cancer cell 

metabolism and low CD8 T cell metabolism. Overexpression of genes promoting glycolysis in 

cancer cells enhanced tumor growth and reduced in vivo fluorescent glucose analog 2NBDG 

uptake in CD8 TIL, suggesting that cancer cells were preventing glucose uptake in TIL (Chang 

et al 2015). Additionally, overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1) to 

increase flux in late glycolysis in tumor-specific CD4 T cells improved TIL function and reduced 

tumor burden in a mouse model of melanoma with low interstitial glucose concentration (Ho et 

al 2015). These data strongly suggest that glycolytic machinery promotes the function of cancer 

cells and T cells in the TME, however the more specific hypothesis of competition for glucose 
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remains difficult to conclude. These experimental manipulations may have caused many other 

intrinsic (such as intrinsic metabolic program) and extrinsic (such as composition of other tumor 

cells) changes to the microenvironment which would explain differences in glucose metabolism. 

Additionally, analyses of metabolites in human and mouse tumor interstitial fluid demonstrate 

that, at steady state, glucose is present in the TME (Siska et al 2017, Sullivan et al 2019, Cortese 

et al 2020). These data would suggest that in many tumors glucose is present and may be 

preferentially consumed by different cells not due to competition for nutrients, but rather due to 

the intrinsic uptake capacity of each cell. Heterogeneity between patients, between tumor sites, 

and between local microenvironments within a given tumor may dictate the availability of 

glucose and other nutrients to particular cell subsets, but the Warburg effect does not mean low 

glucose availability in tumors generally. 

 The consequences of enhanced tumor glycolysis may be less about glucose and more 

about lactate. The Warburg effect also predicts high lactate in the TME compared to normal 

tissue. Lactate is elevated in tumor interstitial fluid (Cortese et al 2020). High lactate in the TME 

reduces antitumor activity of T cell and NK cells (Brand et al 2016). Anti-inflammatory Treg 

have greater capacity to survive in high lactate environments and use lactate as an oxidative fuel 

(Angelin et al 2017, Watson et al 2021). Lactate also promotes M2-like immunosuppressive 

tumor-associated macrophage (TAM) phenotype (Colegio et al 2014, Noe et al 2021).  

 

Outstanding Questions and Rationale for Dissertation Research 

A better understanding of metabolism in the TME and in distinct cell subsets may be crucial to 

improving patient outcomes in cancer. Optimizing T cell metabolism is a promising avenue of 

synergy with cancer immunotherapy. Normal T cell metabolic physiology can identify key 
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transition and regulatory points that are altered in cancer and provide opportunities in ACT and 

ICB cancer immunotherapies.  Metabolism underlies all cellular functions and may provide 

approaches to increase stemness and long-term memory, enhance effector function, and reduce 

exhaustion in T cells through diverse mechanisms. Organism-level metabolism is another 

important avenue of investigation, as obesity causes dysfunctional TIL partly through differential 

responses to lipids (Ringel et al 2020). The paradigm of T cell stemness, supported by 

mitochondrial oxidative phosphorylation, has proven advantageous for ACT, whereas reversing 

any component of the global metabolic dysfunction of exhausted T cells in the tumor 

microenvironment may be a viable strategy. Interrogation of T cell metabolism alone is 

insufficient for studying immunotherapy, as differences between T cell and cancer cell 

metabolism may highlight new approaches to specifically target tumor cell subsets. It is 

important for future therapeutics targeting tumor metabolism to address their effect on cancer 

cells, T cells, macrophages, and other tumor and immune cell subsets. 

 

Several questions have come to the forefront for the field of tumor and T cell metabolism.  The 

distinct microenvironments of tumor specific T cells, either in the TME or in lymphoid tissue, 

does not adequately explain how ICB exerts activity despite potentially metabolic constraints in 

tumors. Terminal differentiation and T cell dysfunction is intimately tied to epigenetic 

alterations. It remains an ongoing question if “terminal” differentiation and its’ associated 

epigenetics can be reversed, and whether cellular metabolism may be the lynchpin underlying 

effector function rescue.  It also remains largely untested and uncertain which nutrients are 

actually available for T cells and other immune cells in the tumor microenvironment that may 

support cell functions and these epigenetic regulations.  In this sense, our understanding of the 
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tumor microenvironment is rudimentary at best and a systems biology and spatial view will be 

essential.  A fundamental question in immunotherapy for both ACT and ICB is what target is 

best suited to what indication?  Ultimately, this will depend on gaining a better understanding of 

how each co-stimulatory or inhibitor molecule affects T cell physiology and gene expression and 

placing this in the context of the specific tumor setting and microenvironment, including 

available nutrients and heterogeneity of stromal, cancer, and other immune cells.  As is the case 

for all exciting areas of research, one question begets many more as the field continues to 

advance and improve cancer therapy. 

 

Fundamentally important to immunometabolism in vivo is the question of which nutrients are 

available and utilized by diverse cell types in specific tissues. Additionally, if there are 

differences in nutrient utilization, why do they exist? In Chapter 2 of this dissertation, we 

demonstrate the cancer cells do not dominate tumor glucose uptake but do dominate glutamine 

uptake. Glucose is most avidly up taken by myeloid cells including macrophages, and T cells do 

not appear to be “starved”. We also suggest that, instead of competing for scarce metabolites, 

uptake of nutrients is governed by cell intrinsic cell programming. We expand on these nutrient 

uptake findings in Chapter 3. 

 

Before utilizing treatments targeting tumor metabolism, it may be wise to ascertain the effect of 

therapies on distinct compartments of the TME. In Chapter 4, we ask if different strategies of 

glutamine inhibition could lead to differential outcomes. We find that global glutamine blockade 

early during T cell activation has a detrimental effect on anti-tumor function and sets CD8 T 

cells on a distinct differential trajectory compared to a more specific glutamine-targeting strategy 
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inhibiting only glutaminase. Taken together, this dissertation demonstrates the contributions of 

distinct cell subsets to the TME and the importance of examining cell-specific and therapy-

specific contributions to TME cellular fate and function. 
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CHAPTER 2: CELL-PROGRAMMED NUTRIENT PARTITIONING IN THE TUMOR 

MICROENVIRONMENT 

 

This chapter was adapted from the following manuscript published in Nature: 

Reinfeld, B. I., Madden, M. Z., Wolf, M. M., Chytil, A., Bader, J. E., Patterson, A. R., ... & 

Rathmell, W. K. (2021). Cell-programmed nutrient partitioning in the tumour microenvironment. 

Nature, 593(7858), 282-288. 

Introduction 

Cancer cells characteristically consume glucose through Warburg metabolism (Vander Heiden & 

DeBerardinis 2017), a process forming the basis of tumor imaging by positron emission 

tomography (PET). Tumor infiltrating immune cells also rely on glucose, and impaired immune 

cell metabolism in the tumor microenvironment (TME) contributes to tumor immunological 

evasion (Siska et al 2017; Ho et al 2015; Chang et al 2015). It remains uncertain, however, if 

immune cell metabolism is dysregulated in the TME by cell intrinsic programs or by competition 

with cancer cells for limiting nutrients. Here we used PET tracers to measure access and uptake of 

glucose and glutamine by specific cell subsets in the TME. Surprisingly, myeloid cells had the 

greatest capacity to uptake intra-tumoral glucose, followed by T cells and cancer cells across a 

range of cancer models. Cancer cells, in contrast, demonstrated the highest glutamine uptake. This 

distinct nutrient partitioning was cell intrinsically programmed through mTORC1 signaling and 

glucose and glutamine-related gene expression. Inhibiting glutamine uptake enhanced glucose 

uptake across tumor resident cell types, demonstrating that glutamine metabolism suppresses 

glucose uptake without glucose being limiting in the TME. Thus, cell intrinsic programs drive the 

preferential immune and cancer cell acquisition of glucose and glutamine, respectively. Cell 
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selective partitioning of these nutrients may be exploited to develop therapies and imaging 

strategies to enhance or monitor the metabolic programs and activities of specific cell populations 

in the TME.  

 

The founding observation in cancer metabolism was that tumors consume glucose to produce 

lactate in the presence of oxygen. Aerobic glycolysis is widely observed in rapidly proliferating 

cells, including activated immune cells, to support biosynthetic demands (Vander Heiden & 

DeBerardinis 2017). In vivo carbon labeling studies have confirmed that glucose supports anabolic 

metabolism in transformed cells and T cells (Faubert et al 2017; Ma et al 2019). Glutamine 

metabolism provides anaplerotic fuel, and restrains glucose-dependent differentiation and function 

of macrophages and T cells (Liu et al 2017; Johnson et al 2018; Leone et al 2019). These metabolic 

pathways may become disrupted in immune cells in the TME to prevent anti-tumor immunity 

(Siska et al 2017; Ho et al 2015; Chang et al 2015; Scharping et al 2021). 

 

Glucose uptake can be measured using [18F]fluorodeoxyglucose (FDG) positron emission 

tomography (PET) imaging to detect cancers and monitor therapeutic responses. Depletion of 

TME glucose by cancer cells may drive nutrient competition as a metabolic mechanism of 

immunosuppression (Ho et al 2015; Chang et al 2015). High micromolar to millimolar glucose 

concentration have been measured in mouse and human TME (Siska et al 2017; Sullivan et al 

2019; Cortese et al 2020).  Further, the metabolic phenotypes of T cells can persist even after 

removal from the TME and culture in nutrient-replete media, including after the specific addition 

of pyruvate suggesting dysfunctional glycolysis (Siska et al 2017; Gemta et al 2019).  The extent 

of intrinsic metabolic programming or nutrient competition for limited nutrients between cancer 
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cells and immune cells remains uncertain. Here we used PET probes to directly measure glucose 

and glutamine uptake in TME cell subsets. 

 

Nutrients partition in the tumor microenvironment 

Immune cells may contribute significantly to glucose consumption in the TME. We measured 

nutrient abundance in the tissue interstitial fluid (IF) from freshly resected human renal cell 

carcinoma (RCC) specimens and subcutaneous murine MC38 tumors using mass spectrometry 

(Figure 2.1a-b, Table 2.1) (Nair-Gill et al 2010). Glucose, glutamine, and lactate were all 

detectable in the TME at similar concentrations to matched normal kidney tissue or plasma. In vivo 

glucose uptake was next directly measured to quantify the accessibility of glucose to distinct cell 

populations in the TME.  Subcutaneous MC38 tumors were visualized by FDG-PET imaging and 

per cell in vivo 18F radioactivity was measured in fractionated tumor cell subsets (Figure 2.1c, d). 

CD45 positive selection magnetic microbeads fractionated tumor cells into enriched CD45-, 

predominantly cancer cell, and CD45+ immune cell populations (Figure 2.1e, Figure 2.2a). 

Unfractionated tumor cells demonstrated higher FDG avidity than control tissue splenocytes 

(Figure 2.1f). Strikingly, tumor infiltrating CD45+ immune cells had greater per cell FDG uptake 

than CD45- cells. FDG autoradiography and immunohistochemistry demonstrated homogenous 

distribution of FDG and CD45+ cells, showing differential uptake was not due to spatial 

distribution favoring immune cells (Figure 2.1g-h). Immune cells also had higher FDG avidity in 

BALB/c syngeneic CT26 and Renca subcutaneous tumors (Figure 2.1i-j, Figure 2.2b-c) and 

orthotopic Renca tumors demonstrated higher per cell FDG avidity in immune cells (Figure 2.1k, 

Figure 2.2d). Infiltrating immune cells had higher FDG uptake than EPCAM+ cancer cells in both 

azoxymethane/dextran sodium sulfate-induced (AOM/DSS) inflammatory colon cancer tumors 
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and PyMT genetically engineered mouse model (GEMM) breast cancer models (Figure 2.1l-m, 

Figure 2.2e-g). These results show that glucose is available in the TME and preferentially 

partitions into infiltrating immune cells more than cancer cells across multiple models. 

 

Table 2.1: Human kidney cancer patient characteristics. 
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Figure 2.1: Glucose is preferentially consumed by immune cells over cancer cells. a,b 

Quantification of IF metabolites from (a) human ccRCC tumors and matched adjacent normal 

kidney (n=14 patients) and (b) murine MC38 subcutaneous tumor IF and matched plasma (n=5 

mice). c, Representative (of n>20 mice) FDG PET image of MC38 tumor. d, Experimental 

schema. e, Representative flow cytometry analysis of MC38 whole tumor, CD45+, and CD45- 

cell fractions gated on live cells. f, FDG avidity in designated cell fractions from MC38 tumors 

(n=5 mice). g, Representative (of n=3 mice) tissue autoradiography of MC38 tumor (scale bar = 

800μm). h, Representative (of n=5 mice) IHC for CD45 in MC38 tumor (scale bar = 200μm). i-

m, FDG avidity in designated tumor cell fractions from subcutaneous CT26 (n=4 mice) (i) and 

Renca (n=4 mice) (j) tumors; intrarenal Renca tumors (n=3 mice) (k); AOM/DSS-induced CRC 

tumors (n=6 for tumor, n=11 mice for spleen) (l); and PyMT GEMM tumors (n=3 mice) (m). 

Each data point represents a biological replicate and graphs show mean and SEM. (b-c, e-m) are 

data from representative studies performed independently at least twice. P values were calculated 

using paired 2-tailed t-test for (a-b) and Welch’s 2-tailed t-test for (f, i-m). * p<0.05, ** p<0.01, 

*** p<0.001. AOM/DSS CRC: azoxymethane/dextran sodium sulfate-induced colorectal cancer; 

ccRCC: clear cell renal cell carcinoma; CPM: counts per minute; FDG PET: 18-

fluorodeoxyglucose positron emission tomography; GEMM: genetically engineered mouse 

model; IF: interstitial fluid; PyMT: Polyoma virus middle T antigen; TIF: tumor interstitial fluid; 

TME: tumor microenvironment 
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Figure 2.2: Purity, viability, and yield of isolated tumor cell populations. a-f, Fraction purity, 

viability, and yield for (a) MC38 (n=5 mice), (b) CT26 (n=4 mice), and (c) Renca (n=4 mice) 

subcutaneous tumors; (d) intrarenal Renca tumors (n=3 mice); (e) AOM/DSS-induced CRC 
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tumors (n=6 for tumors, n=11 mice for spleens); and (f) spontaneous PyMT GEMM (n=3 mice) 

tumors. g, Representative flow cytometry analysis of PyMT and AOM/DSS CRC whole tumor, 

CD45+ immune cell, and EPCAM+ cancer cell fractions gated on live cells. Each data point 

represents a biological replicate and graphs show mean and SEM. Data are representative studies 

performed independently at least twice. AOM/DSS CRC: azoxymethane/dextran sodium sulfate-

induced colorectal cancer; GEMM: genetically engineered mouse model; PyMT: polyoma virus 

middle T antigen. 

 

Multiple strategies validated that this approach accurately measures in vivo per cell glucose uptake. 

Immune cells isolated from MC38 tumors were confirmed as tumor-infiltrating based on minimal 

labeling following intravenous administration of fluorescent anti-CD45 antibody that efficiently 

labeled immune cells in blood and spleen (Figure 2.3a). FDG uptake had a dynamic range with a 

multiple-log scale of linearity (Figure 2.3b) and was independent of sample viability, cell yield, 

and tumor mass across biological replicates and tumor models (Figure 2.3c). To confirm that FDG 

uptake did not occur during tumor processing, unlabeled MC38 tumor single cell suspensions were 

incubated with supernatants from FDG-labeled tumors. Ex vivo FDG uptake did not substantially 

contribute to the final FDG signal (Figure 2.3d-e). Finally, to specifically examine cancer cells 

apart from other CD45- cells, Thy1.1+ MC38 cells were implanted in Thy1.1- hosts and isolated 

using Thy1.1 positive selection microbeads. Negatively selected Thy1.1- immune cells 

demonstrated higher FDG avidity than Thy1.1+ cancer cells (Figure 2.3f-h). This approach thus 

specifically and quantitatively measures in vivo glucose uptake of cancer and immune cells in the 

TME. We also tested the fluorescent glucose analog 2NBDG (N-(7-Nitrobenz-2-oxa-1,3-diazol-

4-yl)Amino)-2-Deoxyglucose). Consistent with other in vitro findings (Sinclair et al 2020), 

2NBDG was not specific for glucose uptake in vivo and comparative measures of radioactive FDG 

and 2NBDG uptake in T cells from mice co-injected with both tracers showed no correlation of 

FDG radioactivity with 2NBDG (Figure 2.4, Figure 2.5). 
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Figure 2.3: Validation of in vivo cellular FDG uptake assay. a, Intravenous (IV) anti-CD45 

PE staining of leukocytes from designated tissues gated on live CD45+ cells.  b, Demonstration 
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of dynamic range of 18F quantification using serially diluted in vivo FDG-labelled splenocytes. c, 

Correlation plots of CPM/live cell versus cell viability, cells counted, and tumor mass across 

multiple tumor cell populations. Only “CD45-” and “Other CD45+” simple linear regressions had 

slopes significantly different than 0 for tumor mass (n=10 mice). d, FDG-labelled digest 

supernatant from in vivo labelled MC38 tumors was applied to FDG-naïve MC38 tumor single 

cell suspensions to determine ex vivo background FDG uptake contribution to final signal. e, 

Cellular FDG avidity in designated ex vivo and in vivo labelled MC38 tumor cell populations 

(n=4 mice/group). f, Cellular FDG avidity in designated tumor cell fractions from MC38-Thy1.1 

tumors (n=2 mice). g, Proportion of CD45+ and Thy1.1+ cells, cell viability, and live cell yield 

from MC38-Thy1.1 tumors (n=2 for tumors, n=5 mice for spleens). h, Representative flow 

cytometry analysis of MC38-Thy1.1 tumor fractions. Each data point represents a biological 

replicate and graphs show mean and SEM. (b, d-h) are data from a representative study 

performed independently at least twice. * p<0.05, ** p<0.01, *** p<0.001. CPM: counts per 

minute. 

 

 

 

 

 

 

 

 

 

Figure 2.4: Flow cytometry gating scheme for in vivo 2NBDG T cell uptake. 
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Figure 2.5: In vivo 2NBDG uptake does not mirror FDG uptake. a, Representative 

histograms of in vivo 2NBDG uptake in splenic and MC38 tumor cell subsets. b, MFI of in vivo 
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2NBDG uptake across spleen and MC38 tumor cells (n=3 mice). c-d, Representative histograms 

of in vivo splenic CD4 (c) and CD8 (d) T cell 2NBDG uptake. e, 2NBDG staining in splenic 

CD4+ and CD8+ subsets (n=3 mice). f, Schema for 2NBDG/FDG co-injection experiment. g, 

Representative histogram of 2NBDG hi and 2NBDG lo populations collected via flow sorting. h, 

Per cell FDG avidity of flow-sorted 2NBDGlo versus 2NBDGho splenic T cells (n=3 mice). Each 

data point represents a biological replicate and graphs show mean and SEM. Data are from 

representative studies performed independently at least twice. P values were calculated using the 

Brown-Forsythe and Welch ANOVA with Dunnett’s T3 for multiple comparison tests for (b,e), 

2-tailed Welch’s t test for CD4 comparisons in (e), and a paired t-test for (h). * p<0.05, ** 

p<0.01, *** p<0.001. 2NBDG: 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-

Deoxyglucose); CM: central memory; CPM: counts per million; EM: effector memory; FDG: 

fluorodeoxyglucose; Tconv; conventional CD4 T cell; Treg: regulatory CD4 T cell  

 

Myeloid cells uptake the most glucose in the tumor microenvironment 

Effector T cells and inflammatory myeloid cells both use glycolysis and are subjects for 

immunotherapeutic strategies in the TME. CD3+ T cells, CD11b+ myeloid cells, and F4/80+ 

macrophages were abundant in MC38 tumors without clear differences in spatial distribution or 

proximity to CD31+ endothelial cells that would suggest differential nutrient access (Figure 2.6). 

Characterization of immune infiltrates across various tumor models demonstrated diversity in 

immune cell composition (Figure 2.7). We next sought to compare the FDG uptake between tumor 

T cells, myeloid cells, and cancer cells in the MC38 model using microbeads to isolate each 

population. T cells in the TME had greater in vivo FDG avidity than resting splenic T cells and 

similar FDG avidity to cancer cells (Figure 2.8a-b, Figure 2.9a), suggesting that these cells are 

not glucose deprived. T cell glucose uptake was significantly lower, however, than that of the 

remaining CD45+ non-T cells.  
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Figure 2.6: Spatial organization of immune cells in subcutaneous MC38 tumors. 

Representative micrographs of H&E and indicated immunohistochemistry (IHC) stains of 

subcutaneous MC38 tumors. Arrows indicate positive cells on faint CD11b stain. Center column 

is low power overview (scale bar = 200μm). Insets demonstrate high power images from central 

(left) and peripheral (right) tumor locations (scale bar = 20μm). Images are representative from 5 

biological replicates. 

 



47 

 
 

 
 

 
Figure 2.7: Tumor model characterizations by flow cytometry. a-g, Spleen and tumor CD45+ 

immune cell populations from MC38 (a) (n=3 mice), CT26 (b) (n=4 mice), and Renca (c) (n=4 

mice) subcutaneous tumors; intrarenal Renca tumors (d) (n=3 mice); spontaneous PyMT GEMM 

tumors (e) (n=3 mice); AOM/DSS CRC tumors (f) (n=6 for tumors, n=11 mice for spleens); and 
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MC38 subcutaneous tumors grown in Rag1-/- mice (g) (n=6 mice). h, Gating strategy for immune 

cell identification using lymphocyte and myeloid-focused antibody panels. Each data point 

represents a biological replicate and graphs show mean and SEM. Data from a-f are 

representative of independent experiments performed at least twice. DC: dendritic cell; M-

MDSC: monocytic myeloid-derived suppressor cell; NK cell: natural killer cell; PMN-MDSC: 

polymorphonuclear myeloid-derived suppressor cell; PyMT: polyoma virus middle T antigen; 

TAM: tumor-associated macrophage.  

 

To characterize the non-T cell CD45+ cells, myeloid cells were isolated using CD11b positive 

selection beads (Figure 2.8c-d, Figure 2.9b). Notably, CD11b+ myeloid cells displayed higher 

FDG uptake per cell than cancer cells and other immune cells in MC38 tumors. Myeloid cells from 

CT26 tumors displayed a similar phenotype (Figure 2.9c-d), consistent with recent reports (Nair-

Gill et al 2010; Hesketh et al 2019). Flow cytometry analysis of CD45+ CD11b+ cells from MC38 

tumors demonstrated two dominant cell populations: Ly6G-Ly6Chi cells consistent with monocytic 

myeloid-derived suppressor cells (M-MDSC), and Ly6G-Ly6CloF4/80hiCD68+CD206hi cells 

consistent with tumor associated macrophages (TAM) (Figure 2.8e). Isolated F4/80hi cells had 

histiocytic morphology (Figure 2.8f), concordant with TAM classification. Both M-MDSC 

isolated using Gr1 positive selection beads and TAM isolated using F4/80 positive selection beads 

demonstrated high FDG avidity (Figure 2.8g-h, Figure 2.9e-f). CD11b+ cells demonstrated high 

glucose uptake even in B- and T cell-deficient Rag1-/- (Figure 2.7g), showing that high glucose 

uptake in myeloid cells is independent of adaptive immunity (Figure 2.9g). Conventional type 1 

dendritic cells (cDC1) are critical to support anti-tumor CD8 T cell activity (Spranger et al 2017). 

CD11b-CD11c+ cDC, displaying a MHCII+CD103+Ly6C- phenotype consistent with cDC1, had 

lower glucose uptake than CD11b+ myeloid cells but greater glucose uptake than cancer cells and 

non-myeloid immune cells in the TME (Figure 2.9h-j). 
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Figure. 2.8: TME myeloid cells uptake more glucose than cancer cells. a, Representative 

flow cytometry from CD4/8 microbead fractionated MC38 tumors gated on live cells. b, FDG 

avidity in designated cell fractions (n=3 for tumor, n=4 mice for spleen). c, Representative flow 

from CD11b microbead fractionated MC38 tumor gated on live cells. d, FDG avidity in 

designated cell fractions (n=4 mice). e, Representative flow cytometry plots of MC38 tumor 

CD11b+ myeloid cells. f, Representative (of n=2 mice) H&E-stained micrograph of F4/80 

microbead-isolated TAM (scale bar = 5μm). g-h, FDG avidity in designated MC38 tumor cell 

fractions using Gr1 (n=4 except Wh Tum n=3 mice) (g) or F4/80 microbeads (n=4 mice) (h). i, 

Representative (of n=5 mice) OCR tracings from MC38 tumor cell fractions with oligomycin 
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(O), FCCP (F), and rotenone and antimycin A (R/AA). j-k, Basal mitochondrial OCR (j) and 

cellular ECAR (k) of MC38 tumor fractions (n=5 mice). Each data point represents a biological 

replicate except for (i) which shows technical replicates of a single biological replicate, and 

graphs show mean and SEM. Independent representative studies were performed at least twice. P 

values were calculated using Welch’s 2-tailed t-test. * p<0.05, ** p<0.01, *** p<0.001. ECAR: 

extracellular acidification rate; M-MDSC: monocytic myeloid-derived suppressor cell; OCR: 

oxygen consumption rate; TAM: tumor-associated macrophage 
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Figure 2.9: MC38 and CT26 cell isolation characterization and glucose uptake in RAG1 

KO mice and in cDC. a-b, Fraction composition, viability, and live cell yield from MC38 tumor 

fractions isolated using CD4/8 microbeads (n=3 for tumors, n=4 mice for spleens) (a) and 

CD11b microbeads (n=4 mice) (b). c-d, Cellular FDG avidity in designated CT26 tumor cell 



52 

fractions using CD4/8 microbeads (n=5 for Wh Spl, n=3 for Spl other CD45+ and Wh Tum, n=4 

mice for all others) (c) and CD11b microbeads (n=5 for spleens, n=3 for Wh Tum, and n=4 mice 

for all others) (d). c-f, Fraction composition, viability, and live cell yield from MC38 tumor 

fractions isolated using Gr1 microbeads (e) and F4/80 microbeads (f) (n=4 mice). g, Cellular 

FDG avidity in designated MC38 tumor cell fractions from Rag1 KO mice (n=6 mice). h, 

Cellular FDG avidity in MC38 tumor cell fractions using CD11b and CD11c microbeads (n= 9 

for Wh Spl, n=5 for spleen fraction, n=10 mice for all others). i, Fraction composition of CD11c 

purification (n= 9 for Wh Spl, n=5 for spleen fraction, n=10 mice for all others). j, 

Representative flow cytometry illustrating CD103 and Ly6C staining of cDC (CD45+ CD11b-  

CD11c+ MHCII+ cells) from MC38 tumor and spleen. Each data point represents a biological 

replicate and graphs show mean and SEM. Data are representative of independent experiments 

performed at least twice. (h) includes data from two independent experiments. P values were 

calculated using Welch’s 2-tailed t-test. * p<0.05. ** p<0.01, *** p<0.001. cDC1:  type 1 

conventional dendritic cell  

 

We conducted extracellular flux assays on microbead-fractionated MC38 tumors to validate 

metabolic activity of cells in the TME. Isolated F4/80+ TAM maintained higher basal cellular 

extracellular acidification rate (ECAR) and mitochondrial oxygen consumption rate (OCR) than 

tumor infiltrating T cells and cancer cells (Figure 2.8i-k). These studies show TAM and M-MDSC 

consume the most per cell glucose in the TME and maintain active glucose metabolism. 

Consistently, myeloid infiltration has been correlated with FDG avidity in non-tumor bearing 

lymph nodes in human and mouse gynecological malignancies (Mabuchi et al 2020). Our data 

extend these findings directly to the TME and reveal the relative metabolic phenotypes of 

heterogeneous cells in the TME. 

 

mTORC1 and transcription programs support metabolism in the tumor microenvironment 

Mechanistic target of rapamycin complex 1 (mTORC1) supports anabolic metabolism and nutrient 

uptake (Saxton & Sabatini 2017). We observed mTORC1 pathway activity by higher levels of 

phosphorylated ribosomal protein S6 (pS6) in tumor myeloid cells compared to other tumor cell 

subsets in human ccRCC, murine MC38, and murine CT26 tumors (Figure 2.10, Figure 2.11a-c, 
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Figure 2.12a, Table 2.1). To determine whether mTORC1 supports glucose uptake in the TME, 

we treated MC38 tumor-bearing mice with rapamycin for four days and measured FDG uptake in 

tumor cell populations. Rapamycin did not affect tumor weights, glucose, glutamine, or lactate 

concentration in the TME, but significantly decreased pS6 levels, T cell infiltration, Ki67 levels in 

cancer cells and T cells, and TAM cell size (Figure 2.11d, Figure 2.12b-f). Rapamycin treatment 

led to significant decreases in myeloid and cancer cell FDG uptake (Figure 2.11e). Extracellular 

flux demonstrated that in vivo rapamycin treatment decreased myeloid cell metabolism ex vivo, 

while cancer cells and T cells remained unchanged (Figure 2.11f-h). Tumor CD8 T cells and TAM 

retained phenotypic markers after rapamycin treatment, but CD8 T cells displayed a functionally 

less activated phenotype (Figure 2.12g-n, Figure 2.13). 

 

 

 

 

Figure 2.10: Flow cytometry gating scheme for pS6 analysis of human ccRCC tumors. 
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Figure 2.11: mTORC1 supports glucose uptake and metabolism in the TME. a-c, 

Phosphorylated S6 (pS6) levels in indicated cell populations by flow cytometry in human 

peripheral blood mononuclear cells (PBMC) and matched ccRCC (representative histograms a, 

quantification b) (n=4 patients) and MC38 tumors (c) (n=4 mice). d, Representative histograms 
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of pS6 levels in MC38 tumor cells from mice treated with rapamycin or vehicle. e, FDG avidity 

in designated MC38 tumor cell fractions with rapamycin treatment (n=15 for Spl Veh, n=8 for 

CD4/8+ veh, n=9 for CD4/8+ rapa and other CD45+, and n=14 mice for all other groups). f, 

Representative (of n=5 mice/group) OCR tracings from fractionated MC38 tumors from mice 

treated with rapamycin or vehicle with indicated injections of oligomycin (O), FCCP (F), and 

rotenone and antimycin A (R/AA). g-h, Basal cellular ECAR (g) and mitochondrial OCR (h) of 

MC38 tumor fractions from mice treated with rapamycin or vehicle (n=5 except for CD4/8+ rapa 

n=3 mice/group). i, PCA plot of metabolism-related mRNA transcripts from CD45-, TAM, M-

MDSC, CD8 T cell, and CD4 T cell flow-sorted populations from MC38 tumors (n=3 mice). j-

m, Flow cytometry quantification of HK1 (j), HK2 (k), CD71 (l), and CD98 (m) in MC38 tumor 

cell populations from mice treated with rapamycin or vehicle (n=4 for veh, n=5 mice for rapa). c-

d, i-m are representative of at least two independent experiments. (e) is the combined data of 

three independent experiments. Each data point represents a biological replicate except for (f) 

which shows technical replicates of a single biological replicate, and graphs show mean and 

SEM. P values were calculated using Brown-Forsythe and Welch ANOVA with Dunnett’s T3 

for multiple comparison tests for (b-c) and Welch’s 2-tailed t-test for (e-m). * p<0.05, ** p<0.01, 

*** p<0.001. FMO: fluorescence minus one; MFI: median fluorescence intensity; M-MDSC, 

monocytic myeloid derived suppressor cell; PBMC: peripheral blood mononuclear cell; pS6: 

phosphorylated ribosomal protein S6 (Ser235/236); Rapa: rapamycin 
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Figure 2.12: Effect of rapamycin treatment on the MC38 TME. a, pS6 levels in CT26 tumor 

populations (n=5 mice). b, MC38 tumor mass at study endpoint with rapamycin (n=20 for veh, 

n=19 mice for rapa). c, Metabolite concentrations in tumor interstitial fluid (TIF) and matched 
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plasma from MC38 tumor-bearing mice treated with rapamycin or vehicle (n=5, except for 

lactate and glutamine plasma and TIF veh n=4 mice). d, Immune cell infiltration of MC38 

tumors from mice treated with rapamycin or vehicle (n=15 for veh, n=19 mice for rapa). 

Significance between rapamycin and vehicle treatment for individual populations indicated in 

legend. Significant decrease in total CD45+ cell infiltration is noted. e-f, Flow cytometry 

quantification of Ki67 positivity (e) and cell size (forward scatter, FSC) (f) from MC38 tumor 

populations in mice treated with rapamycin or vehicle (n=4 for veh, n=5 mice for rapa). g-k 

MC38 tumor CD3+CD8a+ T cell phenotypes from rapamycin or vehicle treated mice for effector 

memory phenotype (g), ex vivo IFNγ production (h), PD1 and TIM3 expression (i), LAG3 

expression (j) (n=5 mice/group), and ratio of CD8 T cells to CD4+FOXP3+ Treg (k) (n=15 for 

veh, n=19 mice for rapa). l, % M2-like TAM (CD11cloCD206hi) in MC38 tumors from mice 

treated with rapamycin or vehicle (n=15 for veh, n=19 mice for rapa). m-n, Myeloid suppression 

assay representative histogram of CD8a+ OT-I T cell dilution of CellTrace Violet (CTV) 

indicative of proliferation (m) and quantification of division index (n) for MC38 tumor myeloid 

cells isolated using CD11b microbeads from rapamycin and vehicle-treated mice (n=5 

mice/group). Each data point represents a biological replicate and graphs show mean and SEM. 

Data in (a, e-j) are representative of independent experiments performed at least twice. (b, d, k-l) 

display data merged from 4 independent experiments. P values were calculated using the Brown-

Forsythe and Welch ANOVA with Dunnett’s T3 for multiple comparison tests (a) and Welch’s 

2-tailed t-test (b-l, n). * p<0.05. ** p<0.01, *** p<0.001. pS6: phosphorylated ribosomal protein 

S6 (Ser235/236); Rapa: rapamycin; TIF: tumor interstitial fluid. 

 

 

 

 
Figure 2.13: Flow cytometry gating strategy of tumor-infiltrating T cells from rapamycin-

treated tumors. 
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Flow-sorted CD45- cancer cells, TAM, M-MDSC, CD8 T cells, and CD4 T cells from MC38 

tumors were transcriptionally profiled (Figure 2.14a). In untreated tumors, principal component 

analysis and unbiased clustering based on only metabolism-related transcripts grouped samples by 

cell identity (Figure 2.11i, Figure 2.14b). Corresponding with increased glucose uptake in 

myeloid cells, gene set enrichment analysis revealed relative enrichment of glucose-related 

pathways in M-MDSC and TAM (Figure 2.14c, Table 2.2). Glucose transporters demonstrated 

population-specific expression, with cancer cells and myeloid cells expressing high transcript 

levels of Slc2a1 (GLUT1) and T cells expressing high levels of Slc2a3 (GLUT3). Hexokinase 

isoforms Hk2 and Hk3, which catalyze glucose phosphorylation in cells as the rate-limiting initial 

phosphorylation of glucose in glycolysis, were most highly expressed in myeloid cells in contrast 

to broadly expressed Hk1. CD45- cancer cells displayed amino acid, lipid, and signaling-related 

transcripts, and CD8 T cells were enriched in nucleotide-related transcripts. Rapamycin increased 

glycolysis-related transcript levels, particularly in CD45- cancer cells, while other metabolic gene 

transcripts decreased, including amino acid-related transcripts (2.15a-e). Gene expression levels 

and changes after rapamycin treatment were confirmed at protein levels by flow cytometry. 

Rapamycin treatment reduced HK1 across tumor cell populations and HK2 specifically in TAM, 

potentially underlying differences in glucose uptake (Figure 2.11j-k). GLUT1 levels remained 

unchanged (Figure 2.15f), yet iron transporter CD71 and amino acid transporter CD98 protein 

levels decreased with rapamycin treatment (Figure 2.11l-m). 
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Figure 2.14: Metabolic transcriptional signatures of MC38 tumor cell populations. a, Cell 

sorting scheme of MC38 tumor cell populations used for mRNA transcript analyses. b, 

Clustering analysis heatmap of differentially expressed metabolic genes from MC38 tumor cell 

populations. Select genes annotated. c, Reactome gene set enrichment analysis for genes most 

highly expressed in each MC38 tumor population. Significantly enriched gene sets are shown 

and colored according to metabolic pathway. OXPHOS; oxidative phosphorylation; TCA; 

tricarboxylic acid cycle 



60 

 

Table 2.2: Genes most highly expressed in distinct MC38 tumor populations. 

Gene lists were generated based on clustering analysis of differentially expressed genes (FDR 

<0.01) and were subsequently used for gene set enrichment analysis. 
CD45- TAM M-MDSC CD8 CD4 

Fah Prdx1 Slc27a1 Ass1 Fdx1 Slc2a3 

Aox1 Akt1s1 Idh2 Nt5e Psph Adora2a 

Asns Fahd1 Naglu Haa0 Eno3 Hsd11b1 

Slc16a1 Nadk2 Ada Slc16a3 Rrm1 Ehhadh 

Gls2 Pck2 Gmpr Slc3a1 Rrm2 Pparg 

Mapk8ip1 Acat2 Ptgs1 Upp1 Ppat Nos1 

Ptges Fasn Apoe Vegfa Cad Odc1 

Ak5 Sqstm1 Gatm Cybb Shmt1 Glrx 

Pycr1 Pemt Alox5 Apoc2 Tfrc Hif1a 

Mycn Pfkm Trf Deptor Bcl2  
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Figure 2.15: Effects of rapamycin on MC38 tumor population metabolic markers. a-e, 

Heatmaps of significantly altered metabolic genes between rapamycin and vehicle-treated MC38 

tumor cell populations for indicated metabolic pathways. White spaces indicate non-significant 
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changes with rapamycin treatment for that gene and tumor cell population. Genes were grouped 

and classified manually. (n=3/group, except n=2 for rapamycin treated M-MDSC and CD4) f, 

Flow cytometry quantification of GLUT1 expression in MC38 tumor populations from mice 

treated with rapamycin or vehicle (n=4 for veh, n=5 mice for rapa). Each data point represents a 

biological replicate and graphs show mean and SEM. AA: amino acid; FAO: fatty acid 

oxidation; NT: nucleotide; OXPHOS: oxidative phosphorylation; PPP: pentose phosphate 

pathway; PTGS: prostaglandin synthases; Reg: regulatory genes; RNR: ribonucleotide reductase; 

SLCs: solute carrier proteins; TCA tricarboxylic acid cycle 

 

Cancer cells uptake relatively more glutamine and lipids in the tumor microenvironment 

Having shown that systemic glucose is preferentially consumed by tumor-infiltrating myeloid 

cells, we hypothesized that other nutrients also have distinct patterns of uptake in the TME. Ex 

vivo uptake of fluorescently labelled palmitate (C16 BODIPY) was highest in CD45- cancer cells, 

corroborating transcript enrichment data and showing that other nutrients may partition differently 

than glucose in the TME (Figure 2.17a-c). We postulated based on transcript data that glutamine 

uptake would also be greatest in CD45- cancer cells. TME glutamine metabolism has been shown 

to promote cancer cell growth while impairing anti-tumor immunity (Leone et al 2019). MYCN 

and ATF4 drive glutamine utilization (Yoshida et al 2020), and Mycn and Atf4 were more highly 

expressed in MC38 cancer cells than immune cells (Figure 2.16a-b). Glutamine metabolism 

enzymes Aspa, Asns, and Gls2 were also specifically expressed in the MC38 cancer cells, as well 

as other amino acid-related transcripts Pycr1 and Slc7a5 (Figure 2.14b). Tumor-bearing mice 

were injected with 18F-(2S,4R)4-Fluoroglutamine (18F-Gln) (Zhou et al 2017) to measure 

glutamine pool size and uptake in the TME. Subcutaneous MC38 tumors were 18F-Gln avid 

(Figure 2.16c, d). In contrast to FDG, however, CD45- cancer cells demonstrated greater 18F-Gln 

avidity than CD45+ immune cells in MC38 (Figure 2.16e), CT26, Renca, and spontaneous 

AOM/DSS tumor models (Figure 2.17d-f).  
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Figure 2.16: Glutamine partitions into cancer cells in the TME. a-b, Glutamine-related 

transcription factor mRNA transcript levels of flow-sorted MC38 tumor cell populations (n=3 

mice). c, Representative 18F-Gln image of subcutaneous MC38 tumor. d, 18F-Gln autoradiography 

image of subcutaneous MC38 tumor (scale bar = 800μm). e, Cellular 18F-Gln avidity in designated 
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MC38 tumor cell fractions (n=4 mice). f-g, Cellular 18F-Gln avidity in MC38 tumor cell fractions 

from mice treated with vehicle or rapamycin (f) or V9302 (g) (n=5 mice/group). h, FDG avidity 

in MC38 tumor cell fractions from mice treated with V9302 or DMSO (n=4 for Wh Tum, CD4/8+, 

and other CD45+; n=8 mice for all others). i-j Contribution of cell populations to total MC38 tumor 

FDG (i) (n=10 mice) and 18F-Gln signal (n=5 mice) (j). k, Model for nutrient partitioning in the 

TME. Each data point represents a biological replicate and graphs show mean and SEM. Data are 

representative of at least two independent experiments. (h) shows combined data of two 

independent experiments. P values were calculated using Welch’s 2-tailed t-test for (e-h) and 

Brown-Forsythe and Welch ANOVA with Dunnett’s T3 for multiple comparison tests for (a-b, i-

j). * p<0.05, ** p<0.01, *** p<0.001. 18F-Gln: 18F-4-fluoroglutamine; DMSO: Dimethyl 

sulfoxide; V9302: ASCT2 inhibitor. 

 

 

Rapamycin reduced amino acid-related transcripts and CD98 protein levels. Correspondingly, 

rapamycin treatment sharply decreased 18F-Gln uptake in CD45- and myeloid cells (Figure 2.16f).  

To assess the relationship between glutamine and glucose uptake, tumor-bearing mice were treated 

with V9302, a small molecule inhibitor of the glutamine transporter ASCT2 (Schulte et al 2018). 

V9302 broadly decreased glutamine uptake by cells in the TME (Figure 2.16g), but increased 

glucose uptake in all tumor cell populations in the TME (Figure 2.16h). V9302 also decreased 

MC38 tumor mass and T cell infiltration (Figure 2.17g, h) and increased the frequency of tumor 

M2-like macrophages (Figure 2.17i, j). Together these data demonstrate that glutamine uptake 

and metabolism actively restrain glucose metabolism in vivo and that tumor infiltrating cells can 

access and increase glucose uptake beyond basal levels when glutamine is restricted. Cell-intrinsic 

programs of distinct tumor cell subsets thus dictate glucose and glutamine uptake in the TME. 
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Figure 2.17: Fatty acid and glutamine uptake and the effect of V9302 treatment on the 

TME. a-b, Representative histograms (a) and quantification (b) for ex vivo staining of C16 

BODIPY by indicated MC38 tumor cell populations from tumor single cell suspensions (n=5 

mice). c, Percent contribution to total tumor C16 BODIPY signal from indicated tumor cell 

populations (n=5 mice). d-f, Cellular 18F-Gln avidity in designated tumor cell fractions in CT26 

(n=4 for spleen, n=3 mice for tumor) (d) and Renca (n=5 mice) (e) subcutaneous tumors and 

AOM/DSS spontaneous tumors (n=4 mice) (f). g, MC38 tumor mass from mice treated with 

V9302 or DMSO (n=13 for V9302, n=12 mice for DMSO). h, Immune cell infiltration of MC38 

tumors from mice treated with V9302 or DMSO (n=13 for V9302, n=12 mice for DMSO). 

Significance between V9302 and DMSO treatment in distinct populations is indicated in legend. 

There is no significant change in total CD45+ cell infiltration (n=13 for V9302, n=12 mice for 

DMSO). i-j, Representative plot (i) and abundance (j) of MC38 M2-like TAM from mice treated 

with V9302 or DMSO (n=13 for V9302, n=12 mice for DMSO). Each data point represents a 

biological replicate and graphs show mean and SEM. Data are representative of at least two 

independent experiments. (g-j) are data combined from two experiments. P values were 
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calculated using the Brown-Forsythe and Welch ANOVA with Dunnett’s T3 for multiple 

comparison tests (b,c) or Welch’s 2-tailed t-test (d-j). * p<0.05, ** p<0.01, *** p<0.001. C16 

BODIPY: C16 (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic 

Acid) (fluorescent analog of palmitate); V9302: glutamine uptake inhibitor 

 

Selective nutrient partitioning 

Our findings demonstrate discrete metabolic selections regulate glucose and glutamine uptake 

within the TME.  In the context of the whole tumor, multiplying the per cell glucose uptake by the 

abundance of each cell type showed that cancer cells accounted overall for approximately 2/3 of 

glucose uptake, with myeloid cells accounting for another 1/3 and other immune cells contributing 

negligibly (Figure 2.16i). In contrast, glutamine and lipid per-cell and total tumor uptake were 

dominated by cancer cells (Figure 2.16j, Figure 2.17c). These results support the notion that 

glucose is not grossly limiting in the TME and utilization is instead modulated by cell intrinsic 

programs and glutamine uptake (Figure 2.16k). 

 

Discussion 

The data presented in this chapter reveals that diverse cell populations preferentially acquire 

distinct metabolites from a common pool of metabolites available in the TME (Sullivan et al 2019, 

Kilgour et al 2021), and further demonstrates that tumor myeloid cells consume significantly more 

glucose than tumor infiltrating T cells or cancer cells on a per-cell basis, which each remain more 

active than in unrelated tissues. This has implications for metabolism-targeting agents as well as 

myeloid targeting therapies, with the potential to either enhance or impair tumor-related 

inflammation. These data also support targeting glutamine metabolism as a specific strategy to 

hamper cancer cell growth while also increasing glucose consumption and altering 

immunophenotype in the TME as a result. 
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Previous studies have suggested competition for glucose in the TME between cancer cells and T 

cells contributes to immunosuppression (Ho et al 2015; Chang et al 2015; Cascone et al 2018). 

However, the data herein show that glucose is not broadly limiting, and TME resident cells have 

the capacity to increase glucose uptake in vivo when glutamine uptake is restricted. This cell-

intrinsic programming provides a new level of insight into the innerworkings of the TME. Here, a 

program of mTORC1-driven glutamine uptake may suppress glycolytic gene expression and 

glucose metabolism in cancer cells. There is also growing evidence that glycolytic cancer cell 

transcriptional programs are associated with immunosuppressive TMEs and directly recruit 

suppressive myeloid cells (Li et al 2018; Chafe et al 2019) while TAM glycolysis may drive 

hypoxia via endothelial dysfunction (Wenes et al 2016) and cytokine production (Jeong et al 2019). 

These findings support a model where glycolytic tumors are immunoinhibitory not directly due to 

nutrient deficiencies but rather because of large scale microenvironmental changes which alter 

intrinsic cellular programming and that different nutrients may follow distinct, but cell and tumor-

type specific patterns. 

 

Myeloid cells directly consume FDG out of proportion to the cancer cells and thus account for a 

significant fraction (30%) of measured tumor glucose uptake in PET imaging. These findings also 

help explain intratumoral regional variability in FDG avidity observed on PET imaging as well as 

the PET avid nature of Hodgkin’s lymphoma, a disease entity with far more inflammatory cells 

than transformed tumor cells. Understanding the biology of distinct cell types in the complex TME 

has contributed substantially to shaping models of tumorigenesis. Our studies extend these 

approaches to evaluate in vivo metabolic features of tumor cell types and show that individual cell 
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populations have distinct nutrient uptake programs that may play an important role in therapy 

response or resistance.  

 

It is noteworthy that two other groups produced similar results using FDG. Nair-Gill et al 2010 

described their own kind of 18F-tracer partitioning, with myeloid cells picking up relatively more 

FDG and lymphocytes consuming more 18F-deoxycytidine analog ([18F]–2-fluoro-d-

(arabinofuranosyl)cytosine, or 18F-FAC) in murine tumors and tumor-draining lymph nodes. 

These results are consistent with the findings presented in this chapter, including transcriptome 

analysis showing enrichment in nucleotide-related pathways in tumor CD8 T cells (Figure 

2.14c). In Hesketh et al 2019, the investigators found that in murine xenograft tumors myeloid 

cells demonstrated greater FDG uptake than human cancer cells. Again, their results are 

consistent but using a non-syngeneic tumor model. 

 

This study has some limitations that may limit the generalizability of the conclusions. First, the 

only in vivo nutrient uptake data presented are from murine tumor models. We provide 

supportive human TIF and flow cytometry data suggesting that glucose is not functionally scarce 

in the TME and that mTORC1 activity is high in human myeloid cells, but it would be 

logistically close to impossible to conduct the analogous 18F studies for patients. Limited 

attempts at ex vivo FDG uptake in resected human kidney tumors were technically inconclusive. 

 

It is possible that not all tumors will demonstrate the same pattern of glucose and glutamine 

uptake as demonstrated here. That is to be expected, however, in the model of nutrient 

partitioning. Cancer cells will be variably glycolytic based on their cellular program, which may 
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in turn influence the programs of other TME cells indirectly through signaling or, potentially, 

through competition for nutrients. The results of this study do not preclude the possibility of 

nutrient competition in TME with low concentration of nutrients, but allow for the development 

of a model whereby cell intrinsic factors are more important for nutrient uptake. Heterogeneity 

between human tumors is expected to be greater than those mouse models tested here. 

 

This work does not show the direct contributions of myeloid cells to FDG PET imaging, 

although a natural hypothesis follows that myeloid cells significantly contribute to tumor FDG 

PET scans according to Figure 2.16i. Experimental attempts to selectively eliminate 

macrophages via intraperitoneal and intratumoral injection of liposomal clodronate were not 

successful. A clinical trial to prospectively compare paired FDG and 18F-glutamine PET imaging 

in kidney cancer patients and correlate with surgical specimens is under consideration at 

Vanderbilt. We would hypothesize that 18F-glutamine may be more sensitive for tumor than 

FDG, and that FDG signal would be associated with myeloid cell composition. 

 

A potential systematic error which may challenge these findings is selection bias during tumor 

dissociation. These results rely on digesting tumors to single cell suspensions, and therefore may 

be losing/killing cancer cells that are the most FDG avid. This oversimplifies the tumor 

microenvironment and may be eliminating cells from areas of necrosis or that have 

concentrations of different cell subtypes. The data may only represent nutrient uptake in the most 

viable parts of tumors. While Figure 2.1g-h and Figure 2.6 demonstrate spatial homogeneity in 

MC38 tumors, this will not be the case across all tumor types. or from necrotic zones. Figure 

2.3f-h also argues against an error in impure cancer cells, but it is possible that even among a 
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“homogenous” cancer cell line more glycolytic cells are being lost based on spatial and/or non-

genetic heterogeneity. Technical considerations for measuring in vivo 18F-nutrient uptake 

including strengths and limitations are discussed in Chapter 3. 

 

Another limitation for this work is the lack of specifically targeting the metabolic program of a 

single tumor cell type. Instead, there is a reliance on pharmacologic inhibitors that affect all 

TME cells. An important future direction will be to show that the metabolic program of a single 

cell subset alters its nutrient uptake independent of all other TME cell types. Alternatively, an 

intervention on one cell subtype may affect the uptake of other TME cells, suggesting direct (if 

nutrient concentration is limiting) or indirect (secondary to TME cell function altering other 

metabolic cell programs) nutrient competition. 

 

In this chapter a model of cell-programmed nutrient partitioning in the TME was established. 

These results have potential implications for 18F-nutrient PET tumor imaging and for therapies 

targeting metabolism in the TME. In Chapter 3, other tumor and inflammatory contexts are 

explored using 18F-nutrient uptake.  
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CHAPTER 3: GLUCOSE UPTAKE IN OTHER TUMOR AND INFLAMMATORY 

CONTEXTS 

 

The data in this chapter are unpublished. 

 

Introduction 

The methodology developed in Chapter 2 proved a powerful tool to measure in vivo nutrient 

uptake across different cell subsets. We tested other hypotheses about glucose and glutamine 

uptake across tumor and inflammatory contexts. The experiments highlighted in this chapter 

demonstrate the strengths and limitations of our approach to measuring in vivo nutrient uptake. 

They also provide preliminary data for future work in the field. Each experiment will be 

introduced in its respective section. 

 

Validation of cellular FDG avidity across different cell numbers 

In Figure 2.3 we provided evidence that our method of FDG uptake truly measures glucose 

uptake in vivo. In Figures 2.4-2.5, we demonstrate that FDG uptake does not match 2NBDG 

staining, consistent with other reports casting doubt on the accuracy of 2NBDG as a glucose 

uptake-specific reporter (Sinclair et al 2020). An outstanding technical question not addressed on 

our manuscript is the ranges of live cells counted and counts per minute (CPM) over which our 

assay provides linear results. This is particularly important as we calculate cellular FDG uptake 

by dividing the radioactive CPM by number of live cells in each sample. Isolated tumor CD4/8+ 

and Other CD45+ lymphocyte fractions tend to yield fewer live cells than CD11b+ myeloid and 

CD45- cancer cell fractions. Differences in live cell yield between different tumors or between 

different tissues (spleen and tumor) may also hypothetically affect results. 
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To determine the range of live cells over which the in vivo FDG assay provides linear radioactive 

CPM, we dissociated in vivo labelled FDG-avid MC38 tumors, isolated myeloid, T cell, other 

immune cell, and cancer cell fractions, and serially diluted the cells to below the detectable range 

of CPM radioactivity (Figure 3.1a). Linear regression analysis demonstrated linearity along 

almost three orders of magnitude of cell count, from 20 million to 40,000 live cells. The slope of 

each line indicates cellular glucose avidity (CPM /million cells) and demonstrated the same FDG 

uptake phenotypes observed in Chapter 2: CD11b+ > CD4/8+ ~ CD45- (991 > 232 ~ 212 

CPM/million cells). Notably, elevated myeloid FDG uptake held even up until the limit of 

detection of radioactivity at <100,000 cells, suggesting that the assay is valid at low cell numbers 

so long as radioactivity is significantly above background (average background plus two 

standard deviations above n=5 background measurements). However, linear regression analysis 

of live cell count versus cellular FDG avidity (Figure 3.1b) shows that lower cell counts may 

overestimate cellular FDG avidity. While this may be a limitation of our approach, the primary 

result of Figure 2.3 is apparent with myeloid cell glucose uptake substantially greater than other 

cell populations. Additionally, the strength of the interaction appears weak over the range of cell 

numbers typically measured in an experiment (100,000 – 10 million), and would be incorporated 

in the variability of FDG avidity between biological replicates within an experiment. 
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a 

 

 
Figure 3.1: MC38 tumor cell FDG avidity across varied cell numbers. FDG-avid 

splenocytes, MC38 tumor cells, and microbead-isolated tumor cell populations were counted and 

serially two-fold diluted. (a) Linear regression for CPM vs. Live cells from the minimum cell 

number needed for signal above background (40,000 for CD11b+ and Whole Tumor, 80,000 live 
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cells for Spleen, CD45-, and CD4/8+, and 320,000 live cells for Other CD45+) to maximum 

yield or 20 million live cells. Plots of the same linear regression analysis are shown at different 

scales. (b) Linear regression for CPM/live cells vs. log2-transformed live cells. Data points are 

averages of technical duplicates pooled from n=5 mice. 

 

Tumor FDG avidity normalization by total protein 

Our primary readout for “cellular glucose uptake” is FDG counts per minute (CPM) divided by 

millions of live cells in the sample. We regularly checked FDG avidity normalized to millions of 

total cells, as well, to ensure that differences in viability between samples did not change the 

overall phenotype (Figure 2.3c). One additional consideration besides viability of the samples is 

the size of the cells. Larger cells, which we would expect in the tumor microenvironment to be 

cancer cells and myeloid cells, might be expected to have greater metabolic activity just based on 

biomass alone which would accentuate per-cell measurements. To control for differences in cell 

size, we normalized MC38 tumor FDG CPM signals to live cells, total cells, and total protein in 

each sample (Figure 3.2). In all cases, tumor CD11b+ myeloid cells demonstrated the highest 

FDG avidity, consistent with the primary conclusions from Figure 2.8. 

 

 
Figure 3.2: MC38 tumor cell FDG avidity normalized to total protein. a-c, Indicated spleen 

and MC38 tumor fraction FDG signal normalized to millions of live cells (a), millions of total 

cell (b), and total protein (c). d, Protein yield per million live cells. P-values indicate result of 

Welch’s 2-tailed t-test (* p<0.05) 
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CD8 versus CD4 T cell glucose uptake in MC38 tumors 

In Figure 2.8, we demonstrated that total T cell glucose uptake in the tumor microenvironment 

approximates cancer cell glucose uptake and exceeds the uptake of resting splenic T cells. The 

two predominant T cell subsets are cytotoxic CD8 and helper CD4 T cells, both of which are 

found in different proportions in TMEs (Figure 2.7). We sequentially isolated myeloid, CD8 T 

cell, CD4 T cell, and cancer cell fractions from FDG-avid MC38 tumors by using CD11b, CD8, 

CD4, and CD45 microbeads, respectively. Tumor CD8 and CD4 T cell fractions demonstrated 

similar glucose uptake, both greater than their respective splenic populations (Figure 3.2a-d). 

Tumor CD8 T cells expressed PD-1 and TIM3 consistent with an exhaustion phenotype, whereas 

CD4 T cells were predominately regulatory T cells expressing FOXP3 (Figure 2.13, Figure 

3.2e). It is remarkable here that, despite having phenotypes associated with reduced glycolytic 

metabolism, both CD8 and CD4 T cells show elevated glucose uptake compared to splenic 

counterparts. 
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Figure 3.3: CD8 and CD4 T cell FDG uptake in MC38 tumors are similar. Cellular FDG 

avidity (a), cellular composition (b), viability (c), and live cell yield (d) of designated cell 

fractions in spleen and tumor (n=4-5 mice). e, Representative flow cytometry analysis in CD8 

and CD4 T cells from tumor and spleen. 
 

Cellular glucose and glutamine uptake with anti-PD-1 immunotherapy in MC38 tumors 

The intersection of immune cell metabolism and cancer immunotherapy is described in Chapter 

1. PD-1 inhibitory signaling reduces anabolic metabolism in T cells (Schildberg et al 2016). 

Therefore, we hypothesized that anti-PD-1 immunotherapy would specifically reduce glucose 

uptake in T cells in the TME. We treated mice bearing subcutaneous MC38 tumors with control 
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IgG or anti-PD-1 therapy for 5 days prior to analyzing in vivo FDG and 18F-glutamine uptake. 

Anti-PD-1 antibody treatment blocked fluorescent anti-PD-1 antibody staining on tumor T cells 

but did not have an effect on final tumor size at the timepoints analyzed (Figure 3.3a-b). No 

significant effect on glucose uptake was observed across TME cell populations (Figure 3.3c). 

18F-glutamine showed a trend toward reduced uptake across tumor populations, particularly in T 

cells (Figure 3.3d). A limitation to these experiments was that the clone of MC38 cell lines used 

was subsequently shown to not be sensitive to anti-PD-1 therapy. Subsequent experiments in an 

MC38 clone directly obtained from a vendor and shown to be sensitive to anti-PD-1 at later 

timepoints also demonstrated no difference in glucose uptake in the TME (Figure 3.3e-f). 

 

The absence of a change in glucose uptake was unexpected, given PD-1’s direct inhibitory effect 

on signaling upstream of glycolytic programming. It is possible that our method is not 

sufficiently sensitive or precise to detect the hypothesized increase in FDG signal. Biologically, 

it is also possible that the most significant T cells responding to anti-PD-1 are in secondary 

lymphoid organs. The non-significant decrease in glutamine uptake would need to be repeated in 

future experiments but may be of interest as pharmacologic inhibition of glutamine metabolism 

particularly in T cells has been associated with improved tumor control (Leone et al 2019). 
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Figure 3.4: Effect of anti-PD-1 on MC38 tumor glucose and glutamine uptake. a, 

Representative PD-1 flow cytometry staining on tumor CD8 T cells with in vivo IgG and anti-

PD-1 treatment. b-c, Effect of anti-PD-1 treatment on final tumor mass (b) and cellular FDG 
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uptake (c) in MC38 tumor resistant to anti-PD-1 treatment (n=15-20 mice from 4 independent 

experiments). e-f, Effect of anti-PD-1 treatment on final tumor mass (e) and cellular FDG uptake 

(f) in MC38 tumors sensitive to anti-PD-1 treatment (n=10 mice from 2 independent 

experiments). P-values indicate result of Welch’s 2-tailed t-test. 

 

Cellular glucose uptake with anti-CTLA4 immunotherapy in MC38 tumors 

CTLA4 signaling directly inhibits CD28 costimulatory signals in T cells, thereby reducing 

PI3K/Akt/mTORC1-mediated anabolic metabolism and glycolysis. We therefore hypothesized 

that anti-CTLA4 treatment would increase FDG uptake in T cells. Anti-CTLA4 had no effect on 

tumor mass but did deplete intratumor Treg, a known effect of the anti-CTLA4 antibody used in 

mice (Figure 3.4a-b). Anti-CTLA4 treatment had no effect on glucose uptake across MC38 

tumor cell populations. Like the results using anti-PD-1, it is possible that our method for 

measuring glucose uptake is not sufficiently sensitive or precise to detect the hypothesized 

increase in FDG signal. Alternatively, we may not have used an appropriate tumor model to 

detect the effect of anti-CTLA4 or we are not isolating specific cell populations affected by 

treatment. It is intriguing to note that glucose uptake across cell types was not affected by the 

depletion in tumor Treg, but depletion by another method would be necessary to confirm.  

 
Figure 3.5: Effect of anti-CTLA4 on MC38 tumor glucose uptake. a, Final tumor mass after 

treatment with IgG of anti-CTLA4 antibodies. b, Relative abundance of Treg in spleen and 
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tumor with IgG of anti-CTLA4 antibodies. c, Effect of anti-CTLA4 treatment cellular FDG 

uptake (n=5 mice). 

 

Cellular glucose uptake with STING agonism in MC38 tumors 

The innate immune STING pathway recognizes cytoplasmic DNA and activates NFkB and type 

I interferon signaling. Agonism of STING is under investigation as a form of cancer 

immunotherapy (Flood et al 2019). We hypothesized that tumor treatment with intratumoral 

injection of STING agonist ADU-S100 would promote more effector anti-tumor phenotypes in 

tumor immune cells associated with increased glucose uptake. Four days after starting treatment, 

STING agonism did not change tumor size but did alter the immune infiltrate of tumor, including 

relatively fewer Treg and more CD11b+ Ly6Chi monocytic myeloid-derived suppressor cells (M-

MDSC) (Figure 3.5a-c). There was no change in glucose uptake across tumor cell populations 

(Figure 3.5d). We are limited in our ability to make conclusions based on this null result as 

noted in the anti-PD-1 and anti-CTLA4 experiments. 

 

 
Figure 3.6: Effect of intratumoral STING agonist on MC38 tumor glucose uptake. a, Final 

tumor mass after treatment with intratumoral PBS or STING agonist. b-c, Relative abundance of 

Treg and M-MDSC in spleen and tumor with intratumoral PBS or STING agonist. d, Effect of 

intratumoral STING agonism treatment cellular FDG uptake (n=10 mice). Data merged from two 

independent experiments. P-values indicate result of Welch’s 2-tailed t-test (* p<0.05, *** 

p<0.001). 
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Cellular glucose uptake with PI3Kγ/δ inhibition in MC38 tumors 

PI3K signaling promotes mTORC1 activity and anabolic metabolism. PI3Kγ and PI3Kδ are 

catalytic subunits specifically expressed in leukocytes (Okkenhaug 2013). We hypothesized that 

IPI-145 (Duvelisib), a PI3Kγ/δ-selective inhibitor (Davis et al 2017), would specifically decrease 

glucose uptake in tumor infiltrating immune cells. Treatment of MC38-tumor bearing mice for 

five days reduced splenic lymphocyte pS6 and Ki67 levels, but did not change these markers in 

tumor cell populations (Figure 3.6 a-b). There was also no change in final tumor mass (Figure 

3.6c). Glucose uptake in the tumor microenvironment was not altered, although there was a trend 

toward reduced glucose uptake in splenocytes (Figure 3.6d). It is possible that the treatment 

failed to reach tumor resident cells, or that a higher dose would be required to inhibit 

downstream mTORC1 signaling and proliferation. 
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Figure 3.7: Effect of PI3Kγ/δ inhibitor IPI-145 on MC38 tumor glucose uptake. a-b, pS6 (a) 

and Ki67 (b) levels in indicated spleen and tumor cell populations. c, Final tumor masses. d, 

Cellular FDG avidity in indicated cell populations (n=5 mice). P-values indicate result of 

Welch’s 2-tailed t-test (* p<0.05, ** p<0.01). 
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Cellular glucose uptake in T cells with exogenous expression of GLUT1 

The glucose transporter GLUT1 is upregulated during immune cell activation and supports 

glycolytic programming for effector T cell function (Macintyre & Garriets et al 2014). We 

hypothesized that overexpression of GLUT1 in T cells would increase glucose uptake in the 

tumor microenvironment. We implanted tumors in transgenic mice with exogenous GLUT1 

expression driven by the Lck promotor, such that only T cells have enhanced GLUT1 levels 

(Zhao et al 2007). Flow cytometry analysis of GLUT1 demonstrated elevated GLUT1 

specifically in splenic CD8 and CD4 T cells and tumor CD4 T cells, but not tumor CD8 T cells. 

The basal expression of GLUT1 in WT CD8 T cells approximated the splenic expression of 

GLUT1 in transgenic CD8 T cells (Figure 3.7a). There was no difference in tumor size in wild 

type and GLUT1 transgenic animals (Figure 3.7b). Cellular FDG uptake was not significantly 

different in tumor T cells, although splenocytes demonstrated a significant increase in glucose 

uptake consistent with exogenous GLUT1 in T cells which account for approximately one 

quarter of total splenocytes (Figure 3.7c). There was no difference in the abundance of CD8, 

CD4 Tconv, or CD4 Treg in spleen and tumor from wild type and GLUT1 transgenic animals 

(Figure 3.7d). Tumor GLUT1 transgenic CD8 expressed less PD1 and TIM3, although similar 

CD44 and CD69, consistent with a less terminally differentiated tumor resident phenotype 

(Figure 3.7e). However, only GLUT1 transgenic spleen CD8 and spleen and tumor CD4, not 

tumor CD8, expressed more IFNγ on ex vivo stimulation, such that GLUT1 expression was 

associated with IFNg production (Figure 3.7f). 
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Figure 3.8: Effect of transgenic expression of GLUT1 in T cells on splenic and MC38 tumor 

glucose uptake. a-b, GLUT1 levels in indicated spleen and tumor cell populations. b, Final 

tumor masses. c, Cellular FDG avidity in indicated cell populations (n=4 WT mice, n=7 Glut1 



85 

Tg mice). d, Relative abundance of CD8, CD4 Tconv, and CD4 Treg cells. e, Surface marker 

immunophenotypes of CD8 T cells. f, IFNg production of CD8 and CD4 T cells. P-values 

indicate result of Welch’s 2-tailed t-test (* p<0.05, ** p<0.01). 

 

Cellular glucose uptake with exogenous myeloid-specific NFκB signaling 

NFκB signaling drives immune cell differentiation and effector functions. We hypothesized that 

activation of NFκB would drive immune cell glucose uptake across different tissue types. To test 

this hypothesis, we employed a model with transgenic monocyte-macrophage-specific NFκB 

activation, whereby a constitutively activated form of IKK2 (cIKK2) is expressed under the 

control of colony stimulating factor receptor 1 promotor (Connelly et al 2011, Hoover & 

Hufnagel et al 2020). MC38 tumors obtained similar sizes after seven days of cIKK2 induction 

(Figure 3.9a). The total number of bone marrow cells collected from cIKK2 mice was 

significantly decreased compared to controls (Figure 3.9b), consistent with results showing that 

cIKK2 expression under the Vav promotor causes terminal differentiation of hematopoietic stem 

cells (Nakagawa et al 2018, Nakagawa & Rathinam 2018). While overall CD11b+ myeloid cell 

frequencies did not change in bone marrow, spleen, and tumor, the overall Ly6G+ neutrophil 

contribution decreased (Figure 3.9c-d), potentially suggesting favored monocytic differentiation. 

The overall frequency of CD11b+ Ly6G- monocytic cell subsets changed in the bone marrow, 

spleen, and tumor compartments, with seemingly enhanced macrophage differentiation in tumors 

(Figure 3.9e-f). Surprisingly, in vivo cellular FDG uptake was not altered in MC38 tumors, but 

was 4.3-fold greater in whole splenocytes and 16-fold greater in bone marrow cells from cIKK2 

mice (Figure 3.9g). Future work may focus on uncovering which cells specifically uptake 

glucose in the bone marrow and periphery and how blocking glucose uptake or glycolysis affects 

cIKK2-induced myelopoiesis. 
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Figure 3.9: Effect of transgenic constitutive activation of NFκB signaling in monocytic cells 

on bone marrow, spleen, and MC38 tumor glucose uptake. a, Final tumor mass. b, Live cell 

yield from bone marrow. c, Total myeloid cell composition of immune cell compartment. d, 

Total neutrophilic cell composition of myeloid cell compartment. e, Total monocytic-

macrophage compositions of myeloid cell compartment. f, MC38 tumor monocyte-macrophage 

composition according to Ly6C, F4/80, and CD206 expression. g, Cellular FDG uptake in bone 

marrow, spleen, and indicated MC38 tumor cell populations. n=6 control mice, n=5 cIKK2 

transgenic mice. P-values indicate result of Welch’s 2-tailed t-test (* p<0.05, ** p<0.01, 

***p<0.001). 

 

Cellular glucose uptake in inflamed lung 

Activated immune cells in across diverse inflammatory contexts and tissues upregulate glucose 

metabolism. We hypothesized that myeloid cells may be the greatest major consumers of glucose 

in situations other than cancer. A recent study demonstrated that microglia, the resident 
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macrophages of the brain, uptake more glucose than other brain parenchymal neurons and 

astrocytes (Xiang et al 2021). We induced allergic lung inflammation in mice through intranasal 

sensitization with Alternaria extract for 10 days prior to measure in vivo FDG uptake in 

dissociated lung cells (Figure 3.10a-c). Isolated CD11b+ myeloid cells had significantly higher 

FDG avidity than CD4 and other CD45 microbead-isolated cell fractions (Figure 3.10d). The 

magnitude difference in glucose uptake is likely greater than was measured due to myeloid cell 

contamination of CD4 and other CD45 cell fractions (Figure 3.10c). 

 
Figure 3.10: Cellular glucose uptake in Alternaria-sensitized inflamed lung. a, Cell viability 

of inflamed lung. b, Live cell yield from inflamed lung fractions. c, Cell composition microbead-

isolated lung fractions. d, Cellular FDG uptake in spleen and inflamed lung cell fractions. n=3 

mice for fractions, n=6 mice for spleens. P-values indicate result of Welch’s 2-tailed t-test (* 

p<0.05, ** p<0.01). 

 

Discussion 

Our approach to measuring 18F-nutrient uptake has many notable strengths. The most important 

aspect was the ability to measure cell type-specific nutrient uptake as opposed to bulk tumor 

metabolism. This simple approach to tumor metabolism allowed us to test the paradigm of 

cancer cell-dominant glucose uptake. While fluorescent analogs delivered in vivo are logistically 

appealing and permit single cell analysis by flow cytometry, we demonstrated that glucose 
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analog 2NBDG does not have the same uptake pattern as FDG, in agreement with other recent 

work (Sinclair et al 2020). FDG is a glucose molecule with a single hydroxyl group replaced 

with 18F, whereas 2NBDG incorporates a nitrobenzofurazan fluorophore which is itself bulkier 

than glucose and likely accounts for its different net uptake behavior in vivo. FDG also has the 

added appeal of being broadly clinically utilized in oncology. The molar dose of FDG is minute 

compared to circulating glucose, meaning that FDG is non-saturating and systemic metabolism is 

unaltered by the assay (Kohl et al 2021). 

 

There are numerous technical limitations in our assay that merit caution. In terms of accuracy, 

Figure 3.1 shows that, at low isolated cell numbers, the calculated FDG avidity may be 

overestimated. This could be a result of accuracy of the cell count, or less likely an artifact of the 

experiment in Figure 3.1. The use of antibodies bound to magnetic microbeads permits 

processing of multiple samples side by side with high cell yields. However, the degree of 

enrichment is approximately ten-fold, so rare cell populations are difficult to purify. Figure 2.9i 

demonstrates tumor cDC enrichment less than plurality, although the degree of enrichment 

combined with low background cancer cell FDG uptake strengthened our decision to conclude 

that cDC have higher glucose uptake than cancer cells. In other contexts, low purity may reduce 

differences between samples, as in Figure 3.10, or reduce the confidence of our conclusions, as 

in Figure 3.3. Overall, antibodies bound to magnetic microbeads have proven a powerful 

approach, but they require a cell population approximately 10% of total live cells and themselves 

need to have specific binding. 
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Multiple sources of variability affect the precision of our assay. An initial source of variability is 

the dose 18F injected into the mouse, although this can be easily corrected by measuring the 

precise dose at the time of injection. Another source of variability may be the glucose metabolic 

state of the mouse. Our mice were fed ad labitum prior to cellular 18F-nutrient assays, and it is 

possible that overnight fasting may have helped normalized serum glucose levels. Similarly, 

differences in mouse mass, adiposity, and sex could lead to both technical and biologic variation 

that should be considered in future experiments. In the TME, differential vascularization may 

produce different total FDG delivery to tumor cells, necessitating paired analyses if possible. 

Differences in fraction purity between like samples can vastly effect FDG signal. It is necessary 

to confirm fraction purity in every isolated sample. A potentially large source of variability is 

uncertainty in cell counts using an automated cell counter with trypan. Finally, normalization of 

radioactivity to time of injection is possible and reduces variability to a limited extent. 

 

Future Directions 

Major questions in tumor metabolism and immunometabolism are directly testable using 18F-

nutrient uptake. In tumors, it will be interesting to test mediators of cell type-specific nutrient 

uptake, following up from Chapter 2. Ongoing and future experiments will test the role of cancer 

cell-specific VHL and myeloid cell-specific HK3 knockout on TME glucose uptake. 

Additionally, responses to immunotherapy and metabolism-targeted therapy may lead to key 

insights on basic mechanisms of action on distinct cell subsets. We should not over conclude 

from the null results in Figures 3.4-3.7, as the effect of immune-targeted therapies are likely to 

be tumor type-, tissue-, and time-dependent. We measured orthotopic and subcutaneous Renca 
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tumor glucose uptake, but a more relevant comparison will be measuring how metabolic 

programs change from primary to metastatic sites.  

 

For immunometabolism, Figures 3.9-3.10 demonstrate exciting initial results continuing to 

probe myeloid cell glucose metabolism in non-cancer contexts. Do different tissue and 

inflammatory microenvironments confer cell-selective nutrient uptake? We may hypothesize that 

myeloid cells are always uniquely poised to uptake glucose across tissue microenvironments 

based on their cellular metabolic program. For T cell metabolism, comparing the in vivo nutrient 

uptake antigen-specific naive CD8 T cells, effector CD8 cells responding to acute infection, 

memory CD8 cells, and exhausted CD8 cells responding to chronic infection or tumors. It will 

also be important to measure antigen specific-cells in both lymphoid tissue and inflamed 

tissue/tumors. Analogous experiments for different effector CD4 subsets could also be 

performed. Thy1.1 microbeads have worked well for antigen-specific T cell isolation, and if 

technically necessary Rag KO mice could also be utilized to enhance T cell purity. 

 

In this dissertation we interrogated in vivo glucose and glutamine uptake with 18F probes, and ex 

vivo palmitate uptake with a fluorescent probe. Many nutrients can be synthesized as 18F tracers. 

Most important in the tumor context of our work may be lactate. 18F tracers may not be perfect 

indicators of uptake, however, as they can be further metabolized and effluxed out of cells. FDG 

is a dead-end tracer which, after being phosphorylated, is not further metabolized. 

 

The use of flow sorting for more specific cell subsets will be necessary to move beyond magnetic 

bead isolations. Magnetic beads essentially limit analyses to a single cell surface marker sorted 
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sequentially. Use of a flow sorter combined with logistically optimized tissue processing and 

radiation measurement will permit more accurate and specific conclusions regarding how 

particular cells partition nutrients in tissue microenvironments.  
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CHAPTER 4: GLUTAMINE DETERMINES EARLY CD8 T CELL 

DIFFERENTIATION TRAJECTORY 

 

Data from Figure 4.1 were adapted from the following manuscript originally published in 

Immunity: 

Levine, L. S., Hiam-Galvez, K. J., Marquez, D. M., Tenvooren, I., Madden, M. Z., Contreras, D. 

C., ... & Spitzer, M. H. (2021). Single-cell analysis by mass cytometry reveals metabolic states of 

early-activated CD8+ T cells during the primary immune response. Immunity, 54(4), 829-844. 

 

All other data are unpublished. 

 

Introduction 

In Chapter 2 and 3 we explored how different cell types uptake nutrients, particularly in the 

TME. Our analysis of how cells differentially utilized the nutrients and how they determine cell 

function was limited. Here, we explore the role of glutamine in CD8 T cell differentiation and 

anti-tumor function. There is increasing interest in glutamine-targeting therapeutics in cancer, 

and understanding how these molecules impact T cell fate is important to holistically evaluate 

consequences in vivo (Wise & Thompson 2010, Lemberg et al 2022). 

 

Overall, previous studies have shown that glutamine promotes effector T cell function, but 

precise mechanisms and targets for optimal glutamine inhibition remain unclear. Glutamine 

uptake increases during T cell activation supported by a transcriptional program that broadly 

promotes glutaminolysis (Wang et al 2011). T cell activation in the absence of glutamine 
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decreases cell blasting and proliferation, although TCR signaling and activation marker 

upregulation remain intact, consistent with its classification as a conditionally essential amino 

acid for proliferating cells (Carr et al 2010). Apart from affecting T cell activation, alterations to 

glutamine metabolism alter T cell differentiation. Different perturbations of glutamine 

metabolism have distinct effects on CD4 T cell fate. In vitro differentiation of CD4 cells in 

media without glutamine promoted iTreg differentiation, in a manner dependent on reduced α-

ketoglutarate downstream of glutamine (Klysz et al 2015). Correspondingly, inhibition of GOT1 

reduces α-ketoglutarate to promoted iTreg over Th17 differentiation (Xu et al 2017). Deficiency 

of glutamine transporter ASCT2 (Slc1a5 KO) decreased Th1 and Th17 CD4 differentiation in 

vitro and attenuated models of T cell-dependent bowel and neuro-inflammation in vivo but had 

no effect on iTreg (Nakaya et al 2014). Inhibition or deficiency of Glutaminase (GLS) decreased 

Th17 differentiation in vitro and attenuated models of skin, lung, and bowel inflammation in vivo 

(Xia et al 2020) but promoted Th1 differentiation (Johnson et al 2018). 

 

Diverse mechanisms have been proposed for the differential effects of glutamine perturbations. 

The regulation of reactive oxygen species through glutathione production is linked to GLS-

dependent Th17 differentiation (Johnson et al 2018). Altered epigenetics from the availability of 

α-ketoglutarate for the function of epigenetic modifying enzymes also affects Th17 and Th1 fates 

(Chisolm et al 2017, Johnson et al 2018). Glutamine is important for the synthesis and transport 

of other amino acids. Glutamine is effluxed during the cotransport influx of branched chain 

amino acids. T cells with deficiency of large neutral amino acid transporter LAT1 (Slc7a5 fl/fl 

CD4-Cre) demonstrated a marked failure to proliferate and gain effector function, partially 

dependent on the presence of glutamine for cotransport (Sinclair et al 2013). 
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Cytotoxic CD8 T cells are critical mediators of anti-tumor immunity. Precise roles for glutamine 

in CD8 T cell differentiation and function are unclear. As outlined in Chapter 1, there is 

substantial evidence that blocking anabolic pathways in tumor-specific CD8 T cells during in 

vitro expansion prior to adoptive transfer promotes a stem-like phenotype which enhances anti-

tumor activity in vivo (Kishton et al 2017). When tumor specific T cells were activated in 

conditions depleted of glutamine, with pan-glutamine inhibition by small molecule DON (6-

Diazo-5-oxo-L-norleucine), or with inhibitors of the conversion of glutamate to α-ketoglutarate, 

tumor growth was better controlled than under control conditions. T cells activated with depleted 

glutamine also demonstrated enhanced oxidative and glycolytic metabolism, enhanced 

cytotoxicity, and increased markers of stem-like differentiation (Nabe et al 2018). 

Correspondingly, GLS inhibition with small molecule CB839 enhanced Th1 and CD8 effector 

differentiation and promoted CAR T cell persistence in vivo and effector function in vitro 

(Johnson et al 2018). CB839 treatment in vivo also enhanced adoptive cell therapy and immune 

checkpoint blockade therapies (Varghese & Pramanik et al 2021). In vivo treatment with a DON 

derivative promoted anti-tumor CD8 activity associated with enhanced anabolic flux. Strikingly, 

DON treatment of cancer cells had an reverse effect, causing reduced growth and upregulated 

catabolic metabolism (Leone et al 2019). 

 

Here, we hypothesized that specific targeting of glutamine metabolism through inhibition of 

GLS with CB839 would have a distinct effect from pan-glutamine blockade with DON or 

depletion of glutamine. Both CB839 and DON are being developed for applications in oncology. 

DON is a glutamine-analog which competitively and irreversibly inhibits a large number of 
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glutamine-using enzymes, some of which may be beneficial and some detrimental to effector T 

cell differentiation and function (Ahluwalia et al 1990). Consistent with its broad pharmacologic 

targets, it has been shown to have limiting toxicities in people (Lemberg et al 2022). We show 

that treatment of CD8 T cells with DON during the first 48hr of activation has a detrimental 

effect on T cell persistence in vivo. These differences are driven by distinct transcriptomic, 

epigenetic, and metabolic differentiation trajectories. Ultimately, DON-treated CD8 T cells fail 

to control tumor growth as well as control or CB839-treated T cells, suggesting caution on its use 

with adoptive cell therapies which may be secondary to inhibition of additional glutamine-related 

targets besides GLS. 

 

Patient CAR T cells demonstrate metabolic differentiation trajectory in vivo 

We first examined the expression of key metabolic markers by mass cytometry in CAR T cells 

from the peripheral blood of patients with B cell lymphoma. Consistent with metabolic 

differentiation over time, CD8 CAR T cells initially expressed high levels of multiple 

metabolism-related proteins. Over multiple weeks post infusion, these markers decrease except 

for fatty acid oxidation enzyme CPT1a (Figure 4.1). This result is consistent with fatty acid 

catabolism being important for persisting memory T cell survival (Pearce et al 2009). 
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Figure 4.1: CAR T cells undergo metabolic differentiation after infusion into patients. 

Axicabtagene ciloleucel CAR T cells from two advanced non-Hodgkin lymphoma patients were 

sampled at the time of infusion, and PBMCs were isolated from the same patients on days 7, 14, 

21, and 28 and month 3 post-infusion for analysis by mass cytometry. Shown are CyTOF 

expression levels of key metabolic markers in CAR T cells at each time point post-infusion by 

patient. 

 

DON-treated CD8 T cells have reduced persistence but maintain memory function 

CAR T cells are a form of adoptive cell therapy, whereby T cells are cultured in vitro prior to 

transfer in vivo to exert anti-tumor function. We hypothesized that glutamine inhibition strategies 

during initial T cell activation would differentially affect the persistence and function of T cells 
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after adoptive transfer, including their ability to mount a memory response. Intriguingly, 

knockout of GLS specifically in T cells in CD4-Cre GLSfl/fl mice had no discernable effect on 

effector and memory CD8 T cell levels during an endogenous response to Listeria 

monocytogenes expressing ovalbumin (Lm-OVA) (Figure 4.2a-b). Transient inhibition of 

glutamine during CD8 T cell activation might lead to a distinct result. Therefore, we designed a 

model of CD8 T cell activation to test the effects of transient specific GLS inhibitor (GLSi) 

CB839, pan-glutamine inhibitor DON, and culturing CD8 T cells in media without glutamine 

(No Q). This establishes a putative gradient of glutamine availability, from control conditions 

with glutamine, to only GLSi, to pan-glutamine blockade, to little or no glutamine available in 

media. Splenocyte OVA-specific CD8 T cells from Thy1.1+ mice were activated in the presence 

of SIINFEKL peptide and IL-2 for 24hr prior to magnet assisted cell sorting (MACS) with a 

CD8 negative selection kit to remove splenocyte APCs and peptide. CD8 T cells were then 

cultured for another 24hr in IL-2 prior to adoptive transfer (Figure 4.2c). 

 

Inhibition of glutamine metabolism after 48hr reduced CD8 T cell numbers and proliferation 

without affecting viability (Figure 4.2e-f). To measure T cell activation, we measured cell size, 

granularity, CD69, CD44, CD62L, and CD44 by flow cytometry at 4hr, 24hr, and 48hr. There 

was approximately equal upregulation of activation marker CD69 at 4hr prior to cell blasting 

(Figure 4.2g-h). DON and No Q conditions delayed T cell blasting. Activation markers CD69, 

CD44, and CD25 increased as expected during activation, except that in No Q conditions CD44 

was delayed and CD69 was elevated. CD62L levels increased relatively more by 48hr in CB839 

and DON conditions, canonically associated with a more stem-like differentiation. 
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To assess the persistence of previously activated “memory-like” cells, OT-I cells were 

adoptively transferred into Thy1.2+ naïve mice and analyzed 35 days later. DON treatment 

significantly reduced the number of memory Thy1.1+ OT-I cells in the spleen, with similar 

trends in adipose tissue and liver (Figure 4.2i). To determine if the functionality of the persisting 

CD8 cells differed, we MACS purified splenic Thy1.1+ cells from this 35-day time point and 

adoptively transferred these cells in equal numbers to new Thy1.2+ hosts. The next day, the 

recipient mice were infected with Lm-OVA and secondary effector cells were measured 7 days 

later. CB839- and DON-treated expanded similarly to control OT-I, but there were fewer No Q 

responding OT-I cells (Figure 4.2j). These results suggest that glutamine blockade with DON 

reduces the persistence of adoptively transferred cells in vivo but those that persist maintain the 

ability to function as memory cells. Conversely, CD8 T cells cultured without glutamine in vitro 

persist in vivo but have a defect in secondary responses weeks later. These results would be 

consistent with other work showing that cell fate can be determined from as early as the first cell 

division (Chang et al 2007).  
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Figure 4.2: Pan-glutamine inhibition reduces in vivo persistence of CD8 T cells without 

affecting recall capacity. a-b, Gating scheme (a) and quantification (b) of splenic antigen-

specific tetramer+ CD8 T cells in CD4-Cre Gls fl/fl mice at indicated days post infection (dpi) 

with Lm-OVA or after secondary infection >35 days post initial infection. c, Scheme of in vitro 

activation of OT-I CD8 T cells in different glutamine conditions prior to adoptive transfer. d-f, 
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Live cell yield (d), average number of cell divisions based on dilution of proliferation dye (e), 

and viability (f) 48hr post activation of OT-I cells. g-h, Flow cytometry analysis of cell 

morphology and activation markers at indicated timepoints post activation from n=3 mice. i, 

Abundance of Thy1.1+ OT-I cells in spleen (Spl), gonadal adipose tissue (gAT), and liver (Liv) 

35 days post adoptive transfer after being activated in indicated glutamine conditions for 48hr. j, 

Abundance of effector Thy1.1+ OT-I cells 7 days after sorting and adoptive transfer of equal 

numbers into naïve mice then infected with Lm-OVA. Dots indicate biological replicates. Mean 

and SEM are shown of representative experiments performed at least twice, or from merged 

experiments in b and i. Asterisks indicate p-values of Brown-Forsythe and Welch ANOVA tests 

with multiple comparisons (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). 
 

Glutamine alters differentiation markers and effector molecules 

We hypothesized that differences in expression of key transcription factors, coinhibitory receptors, or 

effector molecules over the time course of in vitro activation may predict differences in cell fate after 

adoptive transfer. Key differentiation and effector molecules were measured by flow cytometry at 4, 24, 

and 48hr post activation. TCF1, a transcription factor associated with stem-like phenotypes in CD8 T 

cells (Siddiqui et al 2019), was higher in CB839 and DON treated OT-I at the time of adoptive transfer 

(Figure 4.3a). Effector-associated TBET and memory-associated EOMES (Banerjee et al 2010) increased 

during activation but were highest in No Q CD8 cells at 48hr (Figure 4.3b-c). PD-1, a coinhibitory 

receptor associated with CD8 dysfunction in cancer and chronic viral infection but better contextualized 

here as an activation marker, was expressed at lower levels in all glutamine-inhibited cells at 24hr but was 

similar to control by 48hr (Figure 4.3d). Cytolytic molecules perforin and granzyme B were similarly 

blunted initially (Figure 4.3e-f). Cytokine production demonstrated differences, most notably decreased 

IFNγ production across glutamine conditions (Figure 4.3g-i). Overall, there were no obvious changes 

consistent with reduced persistence of DON-treated or with reduced memory function in No Q-treated 

CD8 cells in vivo. 
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Figure 4.3: Effect of glutamine inhibition on differentiation and effector molecules during 

the initial 48hr of CD8 T cell activation. Median fluorescence intensities (MFI) of the markers 

at designated timepoints and with respective glutamine treatments. Intracellular cytokine staining 

for IFNγ, TNFα, and IL-2 was performed after 4hr PMA/ionomycin stimulation (g-i). Data are from n=3 

mice and graphs show mean and SEM. Representative of at least 2 independent experiments. 
 

The global transcriptome is most altered by DON treatment 

Differentiation markers were not obviously associated with in vivo phenotypes, but we 

hypothesized that alterations to the global transcriptome and metabolome over time would 

underly differences in glutamine-inhibited T cell fate. We performed RNA sequencing (RNAseq) 

on in vitro activated OT-I cells at 0, 4, 24, and 48hr cultured in control, CB839, DON, and No Q 

conditions. Principal component analysis (PCA) revealed clustering according to time of 

activation, with the ability to distinguish DON and No Q-treated samples from other treatment 

groups at 24 and 48hr (Figure 4.4a). Pearson correlation coefficient analysis also demonstrated 
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grouping according to day of activation, with clear demarcation of DON and No Q samples at 24 

and 48hr (Figure 4.4b). DON treatment by 48hr appeared to cause greater differences compared 

to the other treatments. The overall number of differentially expressed genes (DEGs) over time 

for each treatment was appoximately the same, although more genes changed for DON and No Q 

in the 24-48hr interval, with a notable number of downregulated genes with DON treatment 

(Figure 4.4c). We hypothesized that genes regulated by glutamine might share similar changes 

in gene expression across treatment groups, or alternatively that glutamine-sensitive genes that 

have inverse changes in expression might determine differences between treatments. The number 

of DEG for CB839 was much lower than for DON and No Q, consistent with its tight clustering 

with control cells by PCA and Pearson correlation coefficient analysis (Figure 4.4d). Substantial 

numbers of DEGs were shared between DON and No Q groups, including many that, although 

they are significantly different than control cells, are inversely differentially expressed in the 

DON and No Q groups. These genes, indicated by ≠ in Figure 4.4d, may provide insights to how 

DON and no Q groups, similarly the “most restrictive” treatments on glutamine metabolism, can 

have contrasting effects on CD8 T cell function in vivo. Future analyses will focus on 

interrogating these gene sets. 
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Figure 4.4: Global transcriptome analysis of glutamine-inhibited CD8 T cells. a-b, PCA (a) 

and Pearson correlation coefficient analysis (b) of RNAseq transcriptomes from glutamine-

inhibited CD8 T cells. c, Number of differentially expressed genes (DEGs) within treatment 

groups during the indicated activation time intervals (FDR<0.05 for indicated comparison). d, 
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Number of DEGs compared to control (FDG<0.05) at the indicated timepoints. Venn diagram 

demonstrates the number of DEGs shared across treatment groups. Arrows indicate the direction 

of differential expression compared to control, and ≠ indicates share DEGs with opposite 

directions of differential expression. Analysis from n=4 biological replicates. 
 

GLS and pan-glutamine blockade promote divergent metabolic programs 

Glutamine inhibition has been shown to produce substantial changes in metabolic programs of T 

cells, included enhanced glycolysis and oxidative metabolism (Johnson et al 2018, Nabe et al 

2018, Leone et al 2019). By 48hr after activation, RNAseq expression patterns suggested high 

levels of glycolysis and fatty acid synthesis-related transcripts in control and CB839 groups 

(Figure 4.5a-b). Fatty acid catabolism-related transcripts appeared to be elevated with DON-

treatment, and DON-treatment also uniquely appeared to decrease levels of cytoplasmic 

aminoacyl-tRNA synthetases necessary for charging tRNA with amino acids for protein 

translation (Figure 4.5c-e). Transcripts for components of the electron transport chain important 

for oxidative phosphorylation did not appear obviously altered across treatment groups (Figure 

4.5f). 

 

To characterize the cellular metabolism of glutamine-inhibited CD8 T cells, we performed 

extracellular flux analysis across the established 0, 4, 24, and 48hr timepoints of differentiation. 

Basal extracellular acidification rate (ECAR), a proxy for lactate production from glycolysis, and 

oxygen consumption rate (OCR), a measurement of oxidative metabolism, demonstrated 

different trajectories of metabolic differentiation according to treatment (Figure 4.6a-d). By 4hr, 

all cells demonstrated increased ECAR consistent with activation-induced glycolysis. After 4hr, 

distinct metabolic differentiation trajectories become evident. Control and CB839 cells 

demonstrated relatively higher ECAR than OCR, whereas DON and No Q groups demonstrated 

relatively higher OCR than ECAR (Figure 4.6e). These results are consistent with control and 
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CB839 cells relying more on glycolysis. Interestingly, CB839 treatment decreased the 

OCR/ECAR ratio compared to control, suggesting that GLSi confers an opposite effect than 

more general glutamine inhibition strategies. Although CB839 reduced basal OCR, it retained a 

greater maximal OCR with a reduced proton leak compared to control T cells, potentially 

consistent with greater mitochondrial reserve and healthier mitochondria (Figure 4.6f-g). 

Measurement of mitochondrial mass and membrane potential was largely consistent with 

maximal and basal OCR (Figure 4.6h-i). The membrane potential to mass ratio was lowest with 

CB839, consistent with low basal OCR and potentially reduced proton leak and mitochondrial 

health (Figure 4.6j). mTORC1 signaling is critical for anabolic metabolism in proliferating cells 

including activated CD8 T cells. Glutamine inhibition broadly blunted mTORC1 signaling early 

during activation, but it subsequently rebounded particularly with CB839 treatment (Figure 

4.6k). This may support the relatively high ECAR and low OCR/ECAR ratio with CB839 

treatment, consistent with high glycolysis and supported by elevated lactate secretion determined 

by NMR (Figure 4.6l). Overall, our results suggest that the metabolic differentiation trajectories 

of CB839-treated CD8 T cells varies drastically from DON and No Q-treated cells, with greater 

glycolysis after GLS-specific inhibition and greater oxidative phosphorylation (OXPHOS) in 

pan-glutamine inhibition.  
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Figure 4.5: The metabolic transcriptome is altered by glutamine inhibition strategies. 

Heatmaps show curated gene sets of indicated pathways with expression normalized to the 

maximum average value for that gene across treatment groups. Unstimulated and 48hr 

expression levels are shown. Data are the average of n=4 biological replicates. 
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Figure 4.6: Functional metabolic analysis of glutamine-inhibited CD8 T cells. Extracellular 

flux analysis was performed on OT-I CD8 T cells at indicated timepoints of differentiation with 
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different glutamine inhibition strategies a, Basal mitochondrial OCR versus basal cellular 

ECAR. 0hr and 4hr timepoints are expanded in upper right corner. b-d, Representative OCR 

tracings of mitostress tests for a given biological replicate (n>3 technical replicates per biological 

replicate). e-g, Calculated OCR parameters from mitostress tests. h-k, Flow cytometry MFIs for 

determination of mitochondrial mass (mitotracker green, MTG) (h), mitochondrial membrane 

potential (Tetramethylrhodamine ethyl ester, TMRE) (i), potential normalized to mass (j), and 

phosphorylated S6 protein (pS6) (k). l, NMR-measured lactate secretion normalized to final cell 

number from cell culture media at 48hr. N=3-4 mice per experiment. Extracellular flux assays 

are representative of at least 2 independent experiments. Asterisks indicate p-values of Brown-

Forsythe and Welch ANOVA tests with multiple comparisons (* p<0.05, ** p<0.01). 

 

Global H3K27me3 and acetylation are altered by glutamine treatment 

Epigenetic modifications including histone methylation and acetylation enforce T cell 

differentiation state (Britt et al 2020). Metabolites are the substrates for acetylation and 

methylation, and α-ketoglutarate downstream of glutamine is a demethylase cofactor. We 

hypothesized that glutamine inhibition strategies may have differential effects on histone 

modifications. We performed CUT&RUN sequencing (CUT&RUNseq) to specifically identify 

genomic regions around acetylated H3K27 (H3K27Ac), associated with open chromatin and 

gene transcription, and trimethylated H3K27 (H3K27me3), associated with closed chromatin. We 

found global changes according to glutamine treatment at 24hr and 48hr (Figure 4.7). Notably, 

No Q conditions appeared to reduce global H3K27Ac at 24hr but increase acetylation at 48hr, 

whereas H3K27Ac appears down with CB839 and DON at 48hr. Further analysis of these 

datasets will shed light on the potential regulation of glutamine on site-specific histone 

modifications and paired transcription. 
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Figure 4.7: H3K27Ac and H3K27me3 CUT&RUNseq analysis of glutamine-inhibited CD8 

T cells. Read peak intensities for CUT&RUNseq of H3K27Ac (a) and H3K27me3 (b) to IgG 

control centered along transcription start sites. Representative data of 2 biological replicates. 
 

DON-treated CD8 T cells have impaired control of tumor growth  

We asked if glutamine inhibition strategies could be implemented to support adoptive cell 

therapy treatment of tumors. MC38 tumors grown in CD4-Cre GLSfl/fl mice demonstrated no 

difference in final tumor size, tumor T cell infiltration, or T cell IFNγ production (Figure 4.8a-

d), although there was a striking increase in mTORC1 activity in tumor CD8 T cells (Figure 

4.8e). To determine if transient glutamine inhibition strategies affect adoptive cell therapy 

efficacy, we injected MC38-OVA tumor-bearing mice with OT-I CD8 T cells activated for 48hr 

in control, CB839, DON, or No Q conditions. The dose of OT-I cells was insufficient to 

eliminate tumors but did slow tumor growth. DON-treated OT-I cells failed to control tumor 

growth as well as other treatments (Figure 4.8f). This was associated with fewer DON-treated 

OT-I cells infiltrating tumors and in spleens (Figure 4.8f-h), consistent with reduced persistence 

observed in Figure 4.2. 
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Figure 4.8: Tumor control is impaired by DON treatment of OT-I CD8 T cells. a, Final 

tumor mass of MC38 tumor grown in CD4-Cre GLS fl/fl mice. b, Abundance of indicated T cell 

subsets in MC38 tumors. c-d, IFNγ production in CD8 and CD4 T cells from MC38 tumors. d-e, PD-1 

and TIM3 coexpression and pS6 levels in CD8 T cells in MC38 tumors. f, Change in MC38-OVA tumor 
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area from day of OT-I T cell injection to endpoint of experiment. g-h, Thy1.1+ OT-I T cell abundance in 

spleens and MC38-OVA tumors. Each dot represents a biological replicate. f-h show results merged from 

2 independent experiments. Asterisks indicate p-values of Brown-Forsythe and Welch ANOVA 

tests with multiple comparisons (* p<0.05, ** p<0.01, *** p<0.001). 

 

Discussion and future directions 

We found that the mechanism of glutamine inhibition has broad implications for adoptive cell 

therapy efficacy. DON treatment impaired tumor-specific CD8 T cell function in vivo and was 

associated with vast differences on the transcriptomic, epigenomic, and metabolic level from 

control, CB839-treated, and no glutamine-treated T cells. Our findings stand in contrast to Nabe 

et al 2018 which found enhanced anti-tumor control after transient treatment with DON. The 

authors relied on EL4-OVA thymoma cancer cells compared to our MC38-OVA model. It is 

possible that longer in vitro expansion and washout of DON for one day prior to transfer selected 

for healthier cells, thereby improving tumor control compared to control. This result 

demonstrates the complexities of adoptive cell therapy manufacturing, where culture conditions 

can produce vast changes in effector cell function in vivo. Our results are also distinct from 

Leone et al 2019, which found that in vivo treatment with a DON analog promoted CD8 TIL 

anabolic metabolism and activity. This contrast could represent differences in utilization of 

glutamine during distinct stages of T cell function. During initial activation pan-glutamine 

blockade may be detrimental to CD8 survival, whereas in the tumor microenvironment pan-

glutamine blockade may potentiate effector functions based on the local environment and the 

differentiation state of the T cell. It is also possible that CD8 invigoration by DON in vivo is 

secondary to effects of DON on cancer cells or other cells in the TME. Ongoing clinical trials 

will ultimately demonstrate efficaciousness of many different glutamine-inhibition strategies in 

cancer patients (ongoing trials can be found in Lemberg et al 2022). 
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Our results demonstrate that, in the first 48hr of activation and the first rounds of cell division, 

glutamine determines the metabolic and differentiation trajectories of CD8 T cells. These results 

are not consistent with glutamine inhibition “slowing down” differentiation wholesale, although 

proliferation was reduced particularly with DON and no glutamine treatments. 

 

There are multiple important future directions for this work to determine that full role of 

glutamine inhibition strategies on CD8 T cell differentiation. A paired analysis of transcriptomic 

and CUT&RUNseq may reveal specific mediators of glutamine-differentiation on an epigenetic 

level. Additional gene set enrichment analyses of the RNAseq datasets may also suggest 

common and divergent effects of GLS versus pan-glutamine inhibition. Particular attention 

should be paid to the kinetics of changes over time, such as with the Tcseq (time course 

sequencing data analysis) pipeline (Mengjun 2021). 

 

While we characterized T cell differentiation during the first 48hr of activation, we did not check 

the transcriptional, epigenetic, and metabolic phenotypes of cell after adoptive transfer in vivo. 

Analysis of sorted cells immediately ex vivo will provide powerful evidence that glutamine 

during early T cell activation has durable effects on differentiation. Similarly, examination of 

changes between 4hr and 24hr may also be worthwhile, particularly as to how metabolite levels 

directly tied to epigenetics are changing. These include, in order of importance with respect to 

glutamine flux: α-ketoglutarate, acetyl-CoA, and S-adenosyl methionine (SAM). 

 

Interest in targeting glutamine metabolism for cancer and autoimmunity continues, and this work 

highlights the importance of specifying specific targets to optimally affect target cells and avoid 
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toxicities. Pooled in vivo CRISPR screening targeting glutamine-related genes would provide a 

powerful approach to identify new candidates beyond GLS (Sugiura et al 2022).   
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CHAPTER 5: OVERALL DISCUSSION AND FUTURE DIRECTIONS 

 

Cell type-specific metabolism in the tumor microenvironment 

This dissertation examines how cells in cancer utilize fuels differently and how it effects their 

function. In Chapter 2, we asked which broad cell types uptake major nutrients in the TME. 

Using 18F-nutrient tracers, we determined that glucose and glutamine partition into myeloid and 

cancer cells respectfully. We also found that, rather than competing for scarce nutrient resources 

in the TME, tumor cells use different nutrients according to their cell programs. These results 

were surprising, as we expected cancer cells to dominate nutrient uptake. In Chapter 3, we tested 

multiple specific hypotheses about nutrient uptake in the TME and show that myeloid cells seem 

to use glucose in other inflammatory contexts, as well. Finally, in Chapter 4, we asked how one 

cell type, CD8 T cells, are affected by inhibition of glutamine metabolism. We found that GLS-

specific inhibition differs sharply from blocking overall glutamine metabolism during early CD8 

T cell activation, with distinct differentiation trajectories and subsequent anti-tumor activity. 

 

A theme of our work is the importance of understanding tumor metabolism and 

immunometabolism in a cell, tissue, and context specific manner. The paradigm of cancer cell 

aerobic glycolysis was critical in starting the field of tumor metabolism and changed the way 

scientists thought about the metabolism of proliferating cells. Often, an assumed corollary of the 

Warburg Effect could be that cancer cells dominate glucose metabolism in the TME. This view 

conformed with the basic observation and pathophysiology of tumors: cancer cells require 

energy and biomass to support uncontrolled growth eventually invading healthy tissue, 

metastasizing, and eventually causing critical organ failure. Cancer cell-centric glucose 
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consumption was also confirmed on a regular basic clinically through the advent of FDG-PET 

imaging to monitor patient tumor status. 

 

In the field of immunometabolism, studies revealed that activated immune cells can adopt a 

metabolic program like cancer cells. Aerobic glycolysis underlies normal immune cell 

proliferation and effector function. Notably, FDG-PET not only delineates tumors, but also 

unveils areas of non-malignant inflammation. The assumption that glucose consumption in 

glycolytic FDG-avid tumors is dominated by cancer cells was strengthened by the hypothesis of 

nutrient competition in the TME. By consuming all the scarce glucose, cancer cells directly 

contribute to the immunosuppressive microenvironment and dysfunctional glucose metabolism 

of tumor CD8 T cells. 

 

In this historical narrative, we asked a basic question: Which cells truly pick up glucose in the 

TME? We were surprised to uncover results seemingly inverted of the assumed Warburg Effect 

paradigm. Immune cells, not cancer cells, have the highest glucose uptake in the TME. Glucose 

uptake is highest in myeloid cells like macrophages and can be changed by pharmacologic 

targeting or cellular metabolic programming. In contrast to glucose, glutamine is preferentially 

consumed by cancer cells. Thus, we proposed a model whereby nutrients partition into different 

cells in the TME according to their cellular programs, not according to competition for scarce 

metabolites. 

 

“Cell-programmed nutrient partitioning” is a model meant to supplement and complement 

existing idea of tumor metabolism. Given the heterogeneity of cancer, there may be some tumors 
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were scarce nutrients are consumed according to competitive uptake and could lead to immune 

cell dysfunction. However, our data and that of others suggest that nutrient concentrations are not 

always scarce. Additionally, steady-state concentration will not necessarily reflect the flux of 

uptake, metabolism, and export. Our model supports focus on the buildup of immunosuppressive 

metabolites in the TME as mediators of metabolic dysfunction, such as lactate, reactive oxygen 

species, protons, and kynurenine. Our approach is not without its limitations as outlined in the 

discussions of Chapter 2 & 3. Of special note, our dependence on live cell FDG uptake may 

mean that our results reflect nutrient uptake in healthy tissues and non-necrotic tumor areas, 

and/or that we are selecting for the tumor cells most amenable to processing to single cells. 

 

Future directions in the metabolic tumor microenvironment 

In the future, interrogating how specific cells utilize nutrients differently in vivo may best inform 

the next therapeutic strategies. Continuing to measure nutrient uptake is important, but the 

intracellular fate of nutrients will provide insight into how metabolism shapes cell fate and 

function. In vivo stable isotope tracing with 13C and 15N labelled glucose and glutamine coupled 

with specific cell isolation would provide major insights. Emerging approaches also permit 

subcellular localization of labelled nutrients to ascertain organelle-level partitioning of nutrients 

(Arrojo e Drigo et al 2019). 

 

Metabolic approaches need to be combined with biologically meaningful functional readouts. 

We have left many questions about what aspects of cellular programming determine metabolism 

and subsequently how they both contribute to function. Future and ongoing work in the lab 

interrogates the role of HK3, a myeloid-specific hexokinase, in driving myeloid cell-specific 
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glucose uptake. Another project interrogates how genetic differences among cancer cells, the 

fundamental etiology of cancer, shape the TME. In clear cell renal cell carcinoma, loss of VHL 

is ubiquitous and is hypothesized to drive glycolysis in cancer cells via HIF activity. Other 

tumors have characteristic activation of other master regulators, which may contribute to the 

metabolic TME. Other potentially important factors affecting the metabolic TME is cancer cell 

cell-of-origin and the site of the tumor, including during metastasis. In all of these cases, we may 

hypothesize a common feature of high myeloid cell glucose uptake, since this appears to be a 

conserved feature of inflammation. If myeloid cells have low glucose uptake, it would be 

interesting to uncover what properties of the cancer cells are deterministic. Another more direct 

metabolite relationship may exist between myeloid cell glucose uptake and cancer cell glutamine 

uptake. In muscle, macrophages utilize glucose to synthesize glutamine which is then exported 

and utilized by myocytes (Shang et al 2020). 

 

Another fascinating basic underlying mechanism in the metabolic TME is epigenetic alterations 

driven by metabolic flux. Just as differential glutamine metabolism changed CD8 T cell 

epigenetics in Chapter 4, there may be unique epigenetic signatures in tumor cells depending on 

their metabolic flux and differentiation. Hypothetically, the epigenetic changes would become 

durable and may shed light on treatment vulnerabilities.  

 

We studied primarily glucose and glutamine uptake in major cell populations of the tumor 

microenvironment but extending our approach to other metabolites and inflammatory 

environments should be a major goal. Based on our results, lactate and fatty acid tracing should 

be highly prioritized. In Chapter 3, we show preliminary results that myeloid cells are major 



118 

glucose consumers in other inflammatory conditions. This may be important for autoimmune and 

autoinflammatory conditions. The use of magnetic microbeads is a powerful approach to 

isolating major cell populations, but a major advance technically would be the use of flow 

sorting on 18F-avid cells to determine in vivo uptake on more specific and potentially more 

biologically relevant cell populations. 

 

Ultimately, how can our results here translate to patient care? FDG PET imaging is used 

routinely to monitor patient responses in oncology purely as a specific tracer for tumors. Our 

results suggest that FDG might be marker of myeloid cell activity and that 18F-glutamine may be 

a more specific marker of cancer cell metabolism. The interaction of glucose and glutamine PET 

could shed light on monitoring patient outcomes or predicting responses to particular therapies. 

18F-deoxycytidine as described in Nair-Gill et al 2010 may also be useful as T cell-specific 

tracer. 

 

For the design of future therapies targeting the TME, is critical to consider the effect of these 

molecules on all cell types involved in cancer cell growth and anti-tumor immunity, including T 

cells and myeloid cells. Synergistic relationships as described by Leone et al 2019, whereby 

cancer cells falter while anti-tumor immunity is strengthened, should be an idealistic goal of 

therapy design. In Chapter 4, we interrogate how different approaches to glutamine inhibition 

have can alter CD8 T cell differentiation and impact anti-tumor immunity. This work can be 

extended through the identification of specific and hopefully targetable glutamine-related genes 

or metabolites that determine cell fate. CRISPR screening of glutamine-related genes may be one 

approach. Experiments adding back metabolites to cell cultures may also prove valuable. 



119 

 

Another major future direction for CD8 T cell metabolism is determination of time and 

differentiation-specific relationships between metabolites and epigenetic modifications. A major 

hypothesis in the field of immunometabolism is that metabolic processes directly determine 

epigenetic modifications through the availability of substrate and epigenetic regulators. These 

include acetyl-CoA for histone acetylation, SAM for histone and DNA methylation, and α-

ketoglutarate as a cofactor for demethylases. CD8 T cell activation affords an opportunity to 

measure time-specific associations of metabolite levels with epigenetic marks, and subsequent 

manipulation of metabolic pathways to block the hypothesized flux of a substrate through a 

metabolic pathway to deposition as an epigenetic modulator.  
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CHAPTER 6: MATERIALS AND METHODS 

Patient Samples 

Fresh histology-confirmed clear cell renal cell carcinoma (ccRCC) tumors and matched normal 

tissue were surgically removed from 14 patients. Supplementary Information Table 1 contains 

relevant patient and tumor information. Tumor and matched normal kidney were processed by 

mechanical dissociation (human tumor setting two on Miltenyi gentleMACS™) in HBSS with 

calcium chloride and magnesium chloride.  Mechanical dissociation was followed by enzymatic 

digestion in 435U/mL deoxyribonuclease I (Sigma-Aldrich, D5025) and 218U/mL collagenase 

(Sigma-Aldrich, C2674) in RPMI supplemented with 10% FBS, 1% glutamine, 1% pen/strep, 

1% Hepes, and 0.1% 2-Mercaptoethanol for 30-45min, depending on tissue toughness, at room 

temperature with 17 rpm agitation. Tissue digests were washed with HBSS without calcium 

chloride, magnesium chloride, or magnesium sulfate and then incubated in 5mM EDTA for 

20min at room temperature with 17rpm agitation. Tumor and matched normal kidney digests 

were washed with HBSS with calcium chloride and magnesium chloride. Then they were passed 

through a 70μm filter and ACK-lysed. Patient peripheral blood mononuclear cells (PBMC) were 

isolated by density gradient centrifugation using Ficoll-Paque (GE Healthcare, 17144002) in 

SepMate-50 tubes (Stemcell Technologies, 85450) and subsequently ACK-lysed. Single cell 

suspensions were frozen in 90% FBS 10% DMSO. Batched tumor and matched PBMC were 

thawed, rested for 10min at 37°C, counted, stained, and analyzed for flow cytometry. All studies 

were conducted in accordance with the Declaration of Helsinki principles under a protocol 

approved by the Vanderbilt University Medical Center (VUMC) Institutional Review Board 

(protocol #151549). Informed consent was received from all patients prior to inclusion in the 

study by the Cooperative Human Tissue Network at VUMC. 
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Interstitial fluid collection & LC/MS metabolite analysis 

Tissue interstitial fluid (TIF) was collected from freshly resected ccRCC tumor and matched 

normal kidney tissue. Specimens were centrifuged against a 0.22μm nylon filter (Corning 

CLS8169) at 4°C for 5 minutes at 300g. Flow-through TIF was flash-frozen and stored at -80°C 

prior to batch analysis. Mouse blood was collected via submandibular vein, aliquoted immediately 

into EDTA, and centrifuged for 10min at 850g at 4°C. Plasma supernatant was collected and then 

cleared by centrifugation for 20min at 3000g at 4°C. Liquid chromatography/mass spectrometry 

(LC/MS) quantitation of metabolites was performed as described previously (Sullivan et al 2019). 

 

 

Mice 

C57BL/6J (000664), BALB/cJ (000651), Rag1 KO (002216) Thy1.1, (000406) and OTI 

transgenic (003831) mice were obtained from the Jackson Laboratory. Glut1 transgenic mice 

have been previously described and were originally created using full-length rat Glut1 cloned 

into the pLck.E2 vector (Zhao et al 2007). CD4-Cre GLSfl/fl mice were generated as described in 

Johnson et al 2017. Functionally wild-type CD4-Cre- GLSfl/fl mice were compared to 

functionally knock out CD4-Cre+ GLSfl/fl littermates. All mouse procedures were performed 

under Institutional Animal Care and Use Committee (IACUC)-approved protocols from 

Vanderbilt University Medical Center and conformed to all relevant regulatory standards. Mice 

were housed in ventilated cages with at most 5 animals per cage and provided ad libitum food 

and water. Mice were on 12 hour light/dark cycles which coincided with daylight in Nashville, 

TN. The mouse housing facility was maintained at 68-76°F and 30-70% humidity. For injectable 

tumor models, 8-20 week old male and female mice were used. Mice were euthanized if humane 

endpoint was reached (2cm dimension, ulceration, weight loss >10%). V9302 treatments were 
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administered intraperitoneally twice daily for five days at 25mg/kg for FDG uptake or once at 

75mg/kg 3hr prior to 18F-Gln injection. Rapamycin treatments were administered 

intraperitoneally daily for four days at 2mg/kg dissolved in 2% DMSO 30% Polyethylene Glycol 

300 (Sigma Aldrich 202371), and 5% Tween 80 (sigma Aldrich P1754). 200 μg control IgG 

(InVivoMab Bio X Cell BE0089) and anti-PD-1 (InVivoMab Bio X Cell BE0146) treatment was 

administered intraperitoneally every other day starting at day 9. 200 μg control IgG (InVivoMab 

Bio X Cell BE0087) and anti-CTLA4 (InVivoMab Bio X Cell BE0131) treatment was 

administered intraperitoneally every other day starting at day 9. Mice were randomized at first 

day of treatment to control or drug in an unblinded manner, with mice from the same cage 

receiving different treatments. Sample sizes were chosen based on prior experiments. 25 μg 

STING agonist ADU-S100 (John Wilson lab, Vanderbilt University) dissolved in 100 μL PBS or 

PBS alone was injected directly into MC38 tumors using 27G insulin syringes on days 10 and 13 

prior to analysis on day 14. PI3Kd/g inhibitor IPI-145 (Cayman Chemical 16800) was 

resuspended in 0.5% carboxymethylcellulose and 0.05% Tween 80 in ultra-pure water and was 

administered by oral gavage daily for 15 mg/kg for 5 days prior to analysis on day 14. IKFM 

double transgenic mice were generated by the Fiona Yull lab and were used as previously 

described (Connelly et al 2011, Hoover & Hufnagel et al 2020). Overall, mice with the reverse 

tetracycline transactivator (rtTA) gene expression driven by monocyte/macrophage-specific 

colony stimulating factor receptor 1 promoter cfms-rtTA (FMR), were bred with mice harboring 

the NF-κB activating (tet-O)7-FLAG-cIKK2 transgene (IKK). Doxycycline ingested with 

drinking water promotes rtTA protein binding to the tet operon, driving transcription of FLAG-

cIKK2 specifically in the monocyte/macrophages lineage. Drinking water with 1 g/L 

doxycycline (Sigma Aldrich, St. Louis, MO) and 5% sucrose was started on day 7 post tumor 
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injection, and analysis occurred on day 14. Littermates lacking one or both transgenes were used 

as controls. For Alternaria-induced lung inflammation, mice were anesthetized with isoflurane 

and challenged intranasally with 8μg Alternaria extract (Greer Laboratories) every 3 days for 4 

total challenges before analyzing the day after the final challenge (Palmer et al 2019). 

 

Cell lines 

The MC38 and CT26 cell lines were provided by Barbara Fingleton and grown in DMEM 

supplemented with 10% FBS. The Renca cell line was obtained through ATCC and grown in 

RPMI 1640 supplemented with 10% FBS, 4mM glutamine, 25mM HEPES, essential amino acids, 

and sodium pyruvate. Cells were trypsinized, washed twice in PBS, and 1x106 cells were injected 

subcutaneously in 100-200μL of PBS on mouse flanks. Subcutaneous tumors grew for 14 days 

prior to analysis. The MC38-EL-Thy1.1 cells were generated using a transposon based engineering 

approach with plasmids that were described previously (O’Neil et al 2018). MC38 cells were 

electroporated using the NEON transfection system (ThermoFisher) according to manufacturer’s 

recommendations for adherent cell lines. 5 million MC38 cells were suspended in electroporation 

buffer containing 5μg of the plasmid pCMV-M7PB and 15μg of the plasmid pT-EL-thy1.1, which 

is a bicistronic transposon vector driving expression of an enhanced firefly luciferase as well as 

Thy1.1 antigen. Cells were magnetically sorted based on expression of Thy1.1 using magnetic 

beads (Miltenyi 130-121-273). MC38-OVA cells were generated and provided by Richard O’Neil. 

Cell lines were regularly tested for mycoplasma via PCR and all cells used in downstream assays 

were confirmed negative.  
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Orthotopic renal implantation 

For intrarenal Renca injections, survival mouse surgery was performed according to a method 

previously described (Tracz et al 2014). Briefly, mice were anesthetized by isoflurane inhalation 

at 2-3% and placed on a warming recirculating water pad set at 37°C to maintain body temperature. 

Using sterile surgical techniques, a 1-cm incision was made in the skin running parallel to the 

spine, slightly below the ribcage on the right flank. Next, a 1-cm incision was made in the muscle 

layer in the same location. Using gentle pressure on the mouse abdomen, the right kidney was 

exteriorized. 5x104 Renca cells resuspended in 100μL of PBS were injected using a 29-gauge 

needle inserted through the renal capsule into the cortical space. The injection site was swabbed 

using sterile gauze and the kidney was returned to the body cavity. The abdominal wall was closed 

using 6-0 monofilament absorbable sutures (AD Surgical; S-D618R13), and the skin was closed 

using wound clips. Analgesic was provided pre-surgery and 24 hours post-surgery in the form of 

ketoprofen injections at 5 mg/kg. Wound clips were removed 7 days following the surgery. Tumors 

were analyzed 28 days after cancer cell injection. 

 

Spontaneous mouse tumor models 

PyMT GEMM mice were bred by crossing male transgenic mice expressing the polyoma virus 

middle T antigen (PyMT) oncoprotein under the MMTV-LTR (Jackson Laboratory 022974) with 

wildtype females on a similar B6/FVB mixed background. The GEMM mice were from a colony 

in which all mice expressed two Vhl alleles in which exon 1 is flanked by loxP sites (Jackson 

Laboratory 012933) but did not express a Cre transgene and were thus effectively wildtype. Once 

weaned, female mice were palpated twice a week and tumors were measured in three dimensions 

with digital calipers. Mice were collected when any tumor had grown to a size of 1 cm in diameter 

in any dimension, around 5 months of age. Virgin female littermates were used in these studies. 
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The AOM/DSS inflammatory colorectal cancer model was used as previously described (Parang 

et al 2016; Becker et al 2005). In brief, bedding was mixed to normalize microbiome two weeks 

prior to experimental initiation. 8-12 week-old C57BL/6J mice were intraperitoneally injected with 

12.5 mg/kg AOM and exposed to three 4-day cycles of 3% to 4% DSS (TdB Labs 9011-18-1). 

Each DSS cycle was followed by a 16-day recovery period. Prior to sacrifice, colonoscopy was 

performed to confirm tumor development. Mice were weighed every other day throughout the 

experiment. Mice were euthanized 6-8wk after completing the last cycle of DSS. Colons were 

dissected and tumor tissue was isolated from the mucosa. 

 

PET-CT imaging 

For individual studies, a group of MC38 tumor-bearing mice were food-restricted overnight. Then 

the mice received a retro-orbital injection of ~ 37 MBq/0.1 mL of 18F-FDG and were returned to 

plate-warmed cages. Forty minutes later, the mice were anesthetized under 2% isofluorane and 

imaged an Inveon microPET (Siemens Preclinical, Knoxville TN) for 20 min. Data from all 

possible lines of response (LOR) were saved in the list mode raw data format. The raw data was 

then binned into 3D sinograms with a span of 3 and ring difference of 47. The images were 

reconstructed into transaxial slices (128 x 128 x 159) with voxel sizes of 0.0815 x 0.0815 x 0.0796 

cm3, using the MAP algorithm with 16 subsets, 4 iterations, and a beta of 0.0468. For anatomical 

co-registration, immediately following the PET scans, the mice received a CT scan in a 

NanoSPECT/CT (Mediso, Washington DC) at an x-ray beam intensity of 90 mAs and x-ray peak 

voltage of 45 kVp. The CT images were reconstructed into 170 x 170 x 186 voxels at a voxel size 

of 0.4 x 0.4 x 0.4 mm3. The PET-CT images were uploaded into Amide (www.sourceforge.com) 
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and volumetric regions-of-interest were drawn around the tumors. The PET images were 

normalized to the injected dose and the mean radiotracer concentration within the ROIs were 

determined. 

 
18F autoradiography 

Mice were handled and injected similarly to previously described for the PET-CT imaging, but 

without overnight fasting. Tumors were harvested, embedded in optimal cutting temperature 

compound (OCT, Fisher 23-730-571), and frozen on dry ice. Tumors were cut into 10μm 

sections and imaged in a Beta Imager (Biospacelabs, France) for 1 hr. Regions-of-interest (ROIs) 

were drawn around the resulting tumor and spleen images and the counts in each ROI were 

compared. 

 

In vivo 18F-FDG and 18F-Gln nutrient uptake assay 

Tumor-bearing mice were retro-orbitally injected with 1mCi of FDG or 18F-Gln synthesized at 

VUMC (Hassanein et al 2016). During radiotracer uptake, mice were conscious and had access to 

food and water. Mice were euthanized and spleen and tumors were harvested 40min after 

radiotracer administration. Single cell suspensions of splenocytes were prepared by physical 

dissociation followed by ACK-lysis. Tumors were chopped, mechanically dissociated on the 

Miltenyi gentleMACS™ Octo Dissociator with Heaters (setting implant tumor one) and digested 

in 435U/mL deoxyribonuclease I (Sigma-Aldrich, D5025) and 218U/mL collagenase (Sigma-

Alrich, C2674) at 37°C for 30min. After enzyme treatment, tumors were passed through a 70μm 

filter and ACK-lysed. Cells were resuspended in MACS buffer (PBS +2% FBS +2mM EDTA) 

and counted using trypan blue with the TC20™ Automated Cell Counter (Bio-Rad). In some cases, 

tumors from different mice were pooled to achieve higher tumor cell number prior to fractionation 
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to ensure sufficient 18F signal and were ultimately analyzed as biological replicates. Next, tumor 

cell suspensions were fractionated using serial magnetic bead positive selection according to the 

manufacturer’s instructions (all Miltenyi mouse kits: CD45 TIL 130-110-618, EPCAM 130-105-

958, Thy1.1 130-121-273, CD4/8 TIL 130-116-480, CD11b 130-049-601, F4/80 130-110-443, 

Gr1 130-094-538, CD11c 130-125-835, CD8 TIL 130-116-478, CD4 TIL 130-116-475). Briefly, 

cells were resuspended at 10 million total cells/90μL MACS buffer and 10μL microbeads for 

15min. Then, cell suspensions were applied to LS columns (Miltenyi 130-042-401) in Miltenyi 

QuadroMACS™ Separators, washed, and eluted according to manufacturer’s instructions. 

Fractions were resuspended in 1mL of media; 10μL were used for trypan blue staining and TC20 

cell count, ~50μL were stained for flow cytometry determination of fraction cellular composition, 

and 900μL were transferred into 5mL tubes to measure radioactivity. 900μL of 2mL splenocyte 

suspensions and 5 million total cells from the unfractionated whole tumor were also assayed for 

radioactivity. The Hidex Automatic Gamma Counter was used with 1min read times to measure 

time-normalized 18F counts per minute (CPM) for each sample. To determine per cell 18F-nutrient 

avidity, time-normalized CPM was divided by the number of viable cells as determined by trypan 

count. Harvested tissues and cell fractions were kept on ice or at 4°C in RPMI 1640 supplemented 

with 10% FBS except when noted. 

 

Flow cytometry 

Single cell suspensions obtained from tumors and spleens were incubated in Fc block (1:50, BD  

553142) for 10min at room temp, stained for surface markers for 15min at room temp, washed 

with FACS buffer (PBS +2% FBS) once, and resuspended in FACS buffer for analysis on a 

Miltenyi MACSQuant Analyzer 10 or 16. For intracellular staining, the eBioscience™ 

Foxp3/transcription factor staining buffer kit (Fisher 00-5523-00) was used. For intracellular 



128 

cytokine staining, tumor single cell suspensions were incubated for 4hr at 37°C 5% CO2 in 

supplemented RPMI with PMA (50ng/mL, Sigma Aldrich P8139-1MG), ionomycin (750ng/mL, 

Sigma Aldrich I0634-1MG), and GolgiPlug (1:1000, BD 555029), and processed using the BD 

Cytofix/Cytoperm™ Fixation and Permeabilization Solution (ThermoFisher BDB554722). 

Surface staining was performed as described above, cells were fix/permed for 20min at 4°C, and 

then stained for intracellular markers for at least 30min at 4°C. Ghost Dye Red 780 viability dye 

(1:4000, Cell Signaling 18452S) was used identically to surface antibodies. The anti-mouse and 

cross-reactive antibodies used were: CD45 BV510 (1:1600, 30-F11, Biolegend 103138), B220 

e450 (1:400, RA3-6B2, ThermoFisher 48-0452-82), CD11b e450 (1:1600, M1/70, ThermoFisher 

48-0112-82), CD11b FITC (1:1600, M1/70, Biolegend 101206), CD8a AF488 (1:1600, 53-6.7, 

Biolegend 100723), CD8a BV510 (1:600, 53-6.7, BD 563068), CD8a APC (1:200, 53.6-7, BD 

17-0081-82), Ly6C FITC (1:4000, HK1.4, Biolegend 128006), CD11c PE (1:1000, N418, 

BioLegend 117308), FOXP3 PE (1:125, FJK-16s, ThermoFisher 12-5773-82), pS6 Ser235/236 

PE (1:100, D57.2.2E, Cell Signaling 5316S), CD4 PerCP-Cy5.5 (1:600, RM4-5, BioLegend 

100540), Ly6G PerCP-Cy5.5 (1:800, 1A8, BioLegend 127616), F4/80 PE-Cy7 (1:800, BM8, 

BioLegend 123114), NKp46 PE-Cy7 (1:200, 29A1.4, BioLegend 137618), CD3 PE-Cy7 (1:200, 

17A2, BioLegend 100220), CD3 FITC (1:200, 17A2, BioLegend 100204), CD3 APC (1:200 

17A2, BioLegend 100236), CD206 APC (1:500, C068C2, BioLegend 141708), GLUT1 AF647 

(1:500, EPR3915, Abcam ab195020), EPCAM PE (1:1500, G8.8, BioLegend 118206), Thy1.1 

PerCP-Cy5.5 (1:2000, HIS51, ThermoFisher 45-0900-82), Thy1.1 FITC (1:2000, HIS51, 

ThermoFisher 11-0900-85), CD45 PE (1:1600, 30-F11, ThermoFisher 12-0451-83), Ly6C 

BV570 (1:400, HK1.4, BioLegend 128030), CD68 BV605 (1:200, FA-11, BioLegend 137021), 

HK1 AF647 (1:100, EPR10134(B), Abcam ab197864), HK2 AF647 (1:200, EPR20839, Abcam 
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EPR20839), CD71 APC (1:100, RI7217, BioLegend 113820), CD98 PE (1:400, RL388, 

ThermoFisher 12-0981-81), MHCII I-A/I-E APC (1:4000, M5/114.15.2, BioLegend 107614), 

CD103 PE-Cy7 (1:200, 2E7, BioLegend 121425), LAG3 e450 (1:100, eBioC9B7W, 

ThermoFisher 48-2231-82), PD1 PE (1:100, 29F-1A12, BioLegend 135206), TIM3 APC (1:100, 

RMT3-23, BioLegend 119706), IFNγ APC (1:250, XMG1.2, BioLegend 505810), CD25 e450 

(1:500, PD61.5, ThermoFisher 48-0251-82), CD44 PE-Cy7 (1:1000, IM7, BioLegend 103030), 

and CD62L APC (1:200, MEL-14, ThermoFisher 17-0621-82), CD69 FITC (1:200, H1.2F3, 

BioLegend), TCF1 AF647 (1:200, C64D9, Cell Signaling), TBET PE-Cy7 (1:100, eBio4B10, 

eBioscience  25-5825-82), EOMES PE (1:100, Dan11mag, eBioscience 12-4875-82), Perforin 

APC (1:100, eBioOMAK-D, eBioscience 17939280), Granzyme B PE (1:100, NGZB, 

eBioscience 12-8898-80), IL-2 PE (1:100, BD 554428), and TNFα PE-Cy7 (1:200, MP6-XT22, 

BioLegend 506324). The anti-human antibodies used were: CD45 BV421 (1:400, HI30, 

BioLegend 304032), CD3 APC (1:200, UCHT1, BioLegend 300439), CD11b PerCP-Cy5.5 

(1:200, ICRF44, BioLegend 301328), CD14 BV510 (1:200, M5E2, BioLegend 301842), CA9 

AF647 (1:200, 303123, R&D Systems FAB2188R-100UG), and Human Fc Block (1:50, BD 

564220). For in vivo intravenous CD45 PE labelling, MC38 tumor-bearing mice were injected 

with 5μg anti-CD45 PE diluted to 150 μL in PBS via tail vein and euthanized 5min later. For ex 

vivo fluorescent palmitate uptake, tumor single cell suspensions were incubated for 1hr in Krebs 

buffer (125mM NaCl, 2.5mM KCl, 25mM NaHCO3, 1mM NaH3PO4, 1mM MgCl2, 2.5mM 

CaCl2, pH 7.2) at 37°C 5% CO2, incubated with BODIPY™ FL C16 (1μM in Krebs buffer, 

Thermo D3821) for 45min, washed twice with FACS, and then stained for surface markers. For 

the myeloid suppression assay, microbead-isolated CD11b+ myeloid cells were co-incubated 

with 100,000 CellTrace Violet-labelled (CTV, Thermo C34557) OT-I splenocytes per well in a 
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96-well plate in the presence of 1μg/mL SIINFEKL peptide for 3 days prior to analysis by flow 

cytometry. Mitochondrial mass was measured with 200nM MitoTracker Green FM (Invitrogen 

M7514) and mitochondrial membrane potential was measured with 150nM TMRE (Lifetech T-

669) staining for 30min at 37°C 5% CO2 in complete media. Flow cytometry data were analyzed 

using FlowJo v10.7.1. NIH Tetramer Core Facility for provided the SIINFEKL PE tetramer 

(1:1000). 

 

In vivo 2NBDG and flow sorting 

 2NBDG (Cayman Chemical 11046) was dissolved in PBS at 5 mM (1.71 mg/mL) and 100μL 

(500ng) was injected retro-orbitally. Mice were sacrificed 40 minutes later and tumor cells and 

splenocytes were harvested as indicated above. Splenic T cells were isolated according to 

manufacturer’s instructions using the Pan T cell Isolation Kit (Miltenyi 130-095-130). 2NBDGhi/lo 

cells were collected on the Nanocellect (San Diego, USA) WOLF cell sorter and subsequently 

gamma counted as described in the 18F-FDG and 18F-Gln nutrient uptake assay. 

 

Immunohistochemistry and light microscopy 

MC38 tumors were fixed overnight in 10% formalin and then switched to 70% ethanol. Single 

color IHC was performed by Vanderbilt University Medical Center Translation Pathology 

Shared Resource. Staining was conducted on the Leica Bond Max IHC stainer. All steps besides 

dehydration, clearing and coverslipping are performed on the Bond Max. Slides were first 

deparaffinized. Antigen retrial and antibody dilution were altered for maximal staining with each 

antibody. For CD11b staining (Catalog # NB110-89474, Novus Biologicals, Centennial, CO) 

slides were placed in a Protein Block (Ref# x0909, DAKO, Carpinteria, CA) for 10min prior to 

staining. Then, the slides were incubated in epitope retrieval 2 solution for ten minutes, and 
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subsequently stained (1:10,000 dilution).  For CD3 staining (Ab16669, abcam, Cambridge, MA), 

epitope retrieval 2 solution for 10min prior to staining (1:250 dilution). For F4/80 staining 

(NB600-404, Novus Biologicals LLC, Littleton, CO), epitope retrieval was conducted in 

proteinase K for 5 minutes prior to primary antibody staining (1:300 dilution). Rabbit anti rat 

secondary (BA-4001, Vector Laboratories, Inc., Burlingame, CA) was used at a 1:2000 dilution 

for 15min for antigen detection. For CD31 staining (Cat.# DIA-310, Dianova, Hamburg, 

Germany,), epitope retrieval occurred in epitope retrieval 2 solution for 20min and then 

subsequently stained (1:75ul dilution). Staining with Biotinylated anti rat (Cat.# BA-4000, 

Vector Laboratories, Inc., Burlingame, CA) was used for antigen detection at a 1:2000 dilution 

for 15min. For CD45lca staining (cat# HS-427 017, SySy (Synaptic Systems), Goettingen, 

Germany) epitope retrieval occurred in epitope retrieval solution 2 for 20min, followed by 

primary antibody (1:500 dilution. Rabbit anti-rat secondary (BA-4001, Vector Laboratories, Inc., 

Burlingame, CA) was used at a 1:2000 dilution for 15min to detect the antigen. The Bond Refine 

(DS9800, Buffalo Grove, IL, USA) detection system was used for visualization. Images were 

captured using an Olympus BX53 microscope (Olympus Corporation, Center Valley, PA), an 

Olympus DP73 camera, and Olympus cellSens Standard imaging software version 1.17. Low-

power images were captured with a 4X objective lens and high-power images were captured with 

a 40X objective lens. 

 

MC38 anti-F4/80 microbead-fractionated TAM were mounted onto slides using Wescor Cytopro 

cytocentrifuge and stained with hematoxylin and eosin following manufacturer’s guidelines 

(Fisher 23-122952). Images were captured under oil immersion (100x objective) using an Olympus 
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BX53 microscope (Olympus Corporation, Center Valley, PA), an Olympus DP73 camera, and 

Olympus cellSens Standard imaging software. 

 

Extracellular flux assay 

Tumor cell fractions were obtained as described above. Each fraction was plated at 200,000 live 

cells/well in technical quadruplicate on a Cell-Tak-coated plate (Corning 354240) in Agilent 

Seahorse RPMI 1640 supplemented with 10mM glucose, 1mM sodium pyruvate, and 2mM 

glutamine. Cells were analyzed on a Seahorse XFe 96 bioanalyzer using the Mitostress assay 

(Agilent 103015–100) with 1μM oligomycin, 2μM FCCP, and 0.5μM rotenone/antimycin A. For 

in vitro activated T cells, 150,000 live cells/well were plated. Data were analyzed in Agilent Wave 

software version 2.6. 

 

Cell sorting and mRNA transcript analysis 

CD45+ and CD45- tumor cell fractions were obtained as described above. Cell fractions were 

stained for the indicated surface markers and viability dye and sorted on a BD FACSAria III cell 

sorter. RNA was isolated from tumor cell populations and unstained whole tumor single cell 

suspensions using the Quick-RNA™ Microprep Kit (Zymo R1050) according to manufacturer’s 

instructions. RNA transcripts were quantified using the NanoString nCounter Metabolic Pathways 

Gene Expression Panel (XT-CSO-MMP1-12) according to manufacturer’s instructions. Transcript 

counts of 768 genes enriched in cellular metabolic pathways were analyzed using NACHOv1.0.1 

(Canouil et al 2020), an R package for parsing, visualization, quality control, and normalization 

designed for NanoString nCounter data. While parsing raw transcript counts, manufacturer-

designated housekeeping genes were used to normalize between samples: Abcf1, Agk, Cog7, 

Dhx16, Dnajc14, Edc3, Fcf1, G6Pdx, Mrps5, Nrde2, Oaz1, Polr2a, Sap130, Shda, Stk11ip, 
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Tbc1d10b, Tbp, Tlk2, Ubb, Usp39. Sample quality was evaluated based on normal ranges provided 

by the manufacture for 1) binding density (0.1-2.25), 2) Field of View (<75), 3) Positive Control 

Linearity (<0.95), and 4) limit of detection (<2). Samples were excluded if they failed any of the 

four conditions. The third replicates of M-MDSC Rapa and CD4 Rapa were excluded as outliers 

for abnormal positive control linearity and limit of detection, respectively. Normalization was 

performed using geometric means based on housing genes, positive, and negative controls. The 

normalized data from this experiment has been deposited in Geo and can be accessed at 

GSE165223.  Principal component analysis was performed using “FactoMineRv2.3” (Lê et al 

2008) package in R. Differentially expressed metabolic genes were identified using a one-way 

ANOVA performed on transcript count across samples. P-values were adjusted for multiple testing 

using Benjamini & Hochberg false discovery rate using the “p.adjust” R function. For metabolic 

genes passing an adjusted p-value <0.01, we performed hierarchical clustering across samples and 

genes using default settings with the 'seaborn' package (version v0.11.0) in Python. Based on the 

hierarchical clustering, we grouped genes and performed gene set enrichment analyses using 

gProfiler (Raudvere et al 2019) with Reactome gene sets compared to all genes. “Metabolism” was 

the most highly enriched pathway for each cell type and was excluded from bar graphs for space. 

Differentially expressed genes between the rapamycin and vehicle treated samples for each cell 

type were identified using “edgeR” (Robinson et al 2010) (version 3.28.1). First, the dispersion 

(variance of transcript counts) was estimated using the function "estimateDisp". Next, the 

differential expression between conditions was evaluated using a likelihood ratio test for a negative 

binomial generalized log-linear model. We considered transcripts with a false discovery rate < 

10% and/or a 2-tailed t-test p-value <0.01 as being differentially expressed. All analyses were 

performed using the R (version 4.0.2). 



134 

 

Protein quantification 

Whole cell lysate was extracted using radioimmunoprecipitation assay (RIPA) buffer 

supplemented with 1x Halt protease and phosphatase inhibitors (Thermo Fisher Scientific). 

Protein concentration was quantified with a Pierce BCA assay (Thermo Fisher 23227). 

 

CyTOF Mass Cytometry analysis of patient CAR T cells 

Samples were collected from two advanced Non-Hodgkin Lymphoma patients receiving 

Axicabtagene ciloleucel therapy as standard of care. Patient CAR T cell sample collection was 

approved by the Vanderbilt University Medical Center IRB (#171340). 

All mass cytometry antibodies and concentrations used for analysis can be found in Table 6.1. 

Primary conjugates of mass cytometry antibodies were prepared using the MaxPAR antibody 

conjugation kit (Fluidigm, South San Francisco, CA) according to the manufacturer’s 

recommended protocol sourcing metals from Fluidigm (Fluidigm, South San Francisco, CA) 

For experiments with human samples, blood and was obtained from two advanced Non-Hodgkin 

Lymphoma patients receiving axicabtagene ciloleucel therapy as standard of care. Residual CAR 

T product was rinsed from infusion bags immediately following infusion completion and frozen 

until analysis. Within two hours of blood collection, patient PBMCs were isolated by 

centrifugation in CPT tubes (BD, Franklin Lakes, NJ) and frozen at 80°C until analysis. 

PBMCs isolated from advanced non-Hodgkin Lymphoma patients as above were thawed, 

washed in RPMI media supplemented with 10% FBS, glutamine, HEPES, and beta 

mercaptoethanol, and rested for 15min in media at 37°C, 5% CO2. Cells were counted, 
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and then dispensed into a 96-well plate for staining. Cells were stained in 200nM cisplatin, 

washed, stained with surface antibodies, washed, fixed with 1.6% PFA, washed, permeabilized 

in methanol, washed, stained with intracellular antibodies, washed, and resuspended with 

191/193Ir DNA intercalator overnight at 4°C as above. Mass cytometry samples were washed, 

resuspended to 500,000 cells/mL containing bead standards for acquisition on a Helios mass 

cytometer. 

Table 6.1: Metal-conjugated CyTOF antibodies used for patient CAR T cell analysis 
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T cell culturing and adoptive transfer 

OT-I Thy1.12 mouse splenocytes were ACK-lysed and resuspended to 2 million splenocytes/mL 

in complete RPMI media supplemented with 10% FBS, pen/strep, HEPES, glutamine, and β-

mercaptoethanol, or in complete RPMI without glutamine. OT-I cells were activated with 100 

IU/mL recombinant human IL-2 (NCI) and 10ng/mL SIINFEKL peptide. CB839 (vehicle 

DMSO) and DON (vehicle PBS) were added to a final concentration of 1μM (Johnson et al 

2018, Leone et al 2019, Nabe et al 2018). 24hr later, CD8 T cells were isolated via negative 

selection using the CD8 isolation kit (Miltenyi 130-095-236) according to manufacturer 

instructions and T cells were resuspended at 200,000 cells/mL in media plus drug and 100IU/mL 

rhIL-2. For bulk processing of cells prior to 24hr for extracellular flux analysis, RNAseq, and 

CUT&RUNseq, OT-I cells were always isolated with a CD8 isolation kit and purity was always 

checked by flow cytometry. 500,000 48hr-activated OT-I cells were transferred into mice via 

retroorbital injection. For transfer of persisting memory-like cells into a second recipient, Thy1.1 

positive selection beads were used on splenocytes, purity was measured by flow cytometry, and 

400 OT-I cells were transferred into recipient mice with carrier splenocytes before Lm-OVA 

infection the next day. 

 

Lm-OVA infection 

Listeria monocytogenes expressing OVA (Lm-OVA) was generated by Aduro Biotech and 

provided by the Mary Philip lab (Gomathinayagam et al 2009). Lm-OVA was stored at -80°C. 

Mice were injected intraperitoneally with 1x107 CFU. 
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Adipose tissue processing to single cells 

Gonadal adipose tissue was dissected from mice and minced with scissors in FACS buffer. To 

isolate the stromal vascular fraction, minced adipose tissue was incubated for 30min with 

rocking in FACS buffer supplemented with 4mg/mL Type II collagenase (Worthington 

LS00418) and 0.25mg/mL DNase 1, passed through a 100μm filter, ACK-lysed, and filtered 

again prior to analysis. 

 

RNA-sequencing 

RNA was extracted from isolated T cells using the Quick-RNA™ Microprep Kit (Zymo R1050) 

according to manufacturer’s instructions. Quality control analysis was performed and mRNA 

enrichment and cDNA library preparation utilizing the stranded mRNA (polyA-selected) library 

preparation kit was performed. Sequencing was performed at Paired-End 150 bp on the Illumina 

NovaSeq 6000 targeting an average of 50M reads per sample. Library preparation and 

sequencing occurred at the Vanderbilt Technologies for Advanced Genomics (VANTAGE). Raw 

read quality was assessed using FastQC (v0.11.5). STAR (v2.7.3a) was used to align reads to the 

mouse genome (GRCm38.primary assembly from gencode). The transcript quantification was 

done using featureCounts using the pair-end mode to count both reads that mapped uniquely. 

Then the differentially expressed genes were called using edgeR (v2.26.5) with Benjamini-

Hochberg adjusted p-value < 0.05. Multidimensional scaling analysis (MDS) was done within 

edgeR. 
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CUT&RUNseq 

CUT&RUN was performed using a CUT&RUN kit (Cell Signaling, CUT&RUN Assay Kit, 

Cat#86652) with a magnetic based method. Briefly, 250,000 cells were harvested by 

centrifugation (600g, 3 min) and washed twice with kit wash buffer. The cells were resuspended 

in 100l wash buffer and mixed with 10l pre-activated Concanavalin A beads on a rotator for 

5min. Then cells were incubated in antibody binding buffer containing either 2.5l H3K27me3 

antibody (Cell Signaling 9733S), 2.5l H3K27ac antibody (Cell Signaling 8173S), or 5l IgG 

control and incubated at 4°C for 2hr on a rotator. Beads were then washed once in digitonin 

buffer and resuspended in 100 µl digitonin buffer containing 1.5µl pAG-MNase and incubated at 

4°C for 1hr on a rotator. After 2 washes with digitonin buffer beads were resuspended in 150µl 

digitonin buffer and pAG-MNase was activated with the addition of 3l CaCl2 to a final 

concentration of 2 mM. Beads incubated in a ice/water mix for 30min to digest, and the reaction 

was quenched with 150µl stop buffer. Cleaved fragments were liberated into the supernatant by 

incubating the beads at 37°C for 10min. DNA fragments were extracted from the supernatant and 

uniquely dual indexed libraries were prepared. Sequencing was performed at PE 150 on the 

NovaSeq 6000 targeting an average of 10M reads per sample. Library preparation and 

sequencing occurred at the Vanderbilt Technologies for Advanced Genomics (VANTAGE). 

Paired-end fragments were first trimmed with Trimmomatic (version 0.39) to remove adapter 

and low-quality nucleotides and then mapped to the mouse genome GRCm38.p6 using bowtie2 

(version 2.3.5.1) with options: --local --very-sensitive-local --no-unal --no-mixed --no-discordant 

--phred33 -k 1 -I 10 -X 700. Then the alignment SAM files were transformed to BAM and 

BIGWIG files using samtools (version 1.9) and deeptools (version 3.3.1) for the following data 

analysis and visualization. For mapping signal around gene promoters, the gene annotation track 
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(geocode version 23 known genes track) was downloaded from the UCSC table browser as a bed 

file and used as reference for heatmaps. MACS2 (version 2.2.7.1) was used for calling peaks 

with options: --broad -p 1e-5 -f BAMPE --keep-dup all. 

 

Quantification and statistical analysis 

Graphs and statistical tests were generated using GraphPad Prism 9 unless otherwise noted. 

Sample sizes were chosen based on previous studies. Graphs show mean and SEM unless 

otherwise stated.   
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