
INVESTIGATING THE BIOLOGICAL DETERMINANTS OF EARLY LUNG

ADENOCARCINOMA BEHAVIOR THROUGH DATA INTEGRATION

By

Maria Fernanda Senosain Ortega

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Cancer Biology

May 31st, 2022

Nashville, Tennessee

Approved:

Vito Quaranta, Ph.D.

Carlos F. Lopez, Ph.D.

Jonathan M. Irish, Ph.D.

Ken S. Lau, Ph.D.



In memory of my dearest friend, colleague and mentor, Dr. Pierre P. Massion.

”Inspired by patients, driven by science.”

ii



ACKNOWLEDGMENTS

My time at Vanderbilt has been immensely rewarding, exciting and full of gratifying experi-
ences. My journey actually started several years ago, when I was given then opportunity to
participate of the Vanderbilt International Summer Research Academy as an undergraduate
back in the summer of 2014. My first experience in cancer research was by the hand of Dr.
Pierre Massion and his amazing lab, which ignited in me the desire to purse a career in this
field. Few years later, I returned to his lab as a graduate student and the rest is history. This
wonderful journey would not have been possible without the support and help of a long list
of people to whom I will be eternally grateful.

First, I would like to thank my former advisor Dr. Pierre Massion, whose untimely
passing left on all of us who knew him a deep void which is slowly but surely being filled by
gratitude and hope. Thanks for believing in me more than I ever could, and for supporting my
crazy dream of becoming a computational scientist even when I had no idea what the heck I
was doing. Thanks for never giving up on me and for always being my greatest cheerleader.
Thanks for all our long talks about science, faith and life in general. It hurts not being able
to cross this finish line with you physically present, but I know that you are by my side and
we will see each other again.

I would also like to thank my other academic advisors, Dr. Vera Pancaldi and Dr. Carlos
Lopez. Thanks Vera for welcome me into your lab with open arms. My time with your group
was an integral part of my training and I will be forever in debt. Thanks for helping me get to
the finish line, for pushing me when I needed it the most and for always being there for me.
Thanks Carlos for also welcome me into your lab and becoming my primary advisor upon
Pierre’s passing. I enjoyed very much my time in the LoLab and I will be forever grateful
for having your unconditional support, especially during the last stretch of this marathon.
I would be remiss without thanking my other committee members, Dr. Vito Quaranta, Dr.
Jonathan Irish and Dr. Ken Lau. To all these amazing scientists that have been part of my
training, thanks for providing thoughtful and critical feedback of my research, I have learned
so much from you throughout these past years. It has been an honor to be mentored by such
talented group of scientists.

To the Massion Lab family, thanks for teaching me how to do translational cancer re-
search as a team, particularly those who were part of my project, I could not have made it
without your help. To the LoLab family, thanks for make me feel welcome since day one and
for all the insightful feedback and scientific discussions. I am also thankful for my training
from the IGP to the Cancer Biology Program, for the support of the BRET office and for all
the career development opportunities that have been given to me.

To the friendships I forged while in Nashville, my second home, especially Mehnaaz and
John, thanks for making this ride much more fun and enjoyable! To my partner Victor, thanks
for your unconditional love and support, for introducing me to the world of computational
sciences and for being a role model for me. To my friends and family in Peru, thanks for
being by my side all this time and for making feel home a bit closer with your constant love
and support. Special thanks to my all time best friends Alondra, Dyanne, Claudia, Brenda
and Fania!

iii



To my Mom and Dad, thanks for supporting my education since my early years and for
always believing that nothing was impossible for me. I owe you each and every one of my
achievements and I am extremely grateful for all the sacrifices you made to get me where I
am today. To my siblings Josecito and Analu, my life companions, thanks for bringing me so
much light and joy and inspiring me to be a better version of myself. And of course, to my
sweet puppies Olivia and Leia, for their endless loving licks. You all have been a constant
source of love and happiness.

And last but not least, to God for all the blessings He has given me and the wonderful
people He put in my life.

iv



TABLE OF CONTENTS

Page

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Clinical overview of Lung Adenocarcinoma . . . . . . . . . . . . . . . . 1

1.4 Computer Tomography-based detection and risk stratification of LUADs . 2

1.5 The molecular landscape of Lung Adenocarcinoma . . . . . . . . . . . . . 4

1.6 Intratumor heterogeneity and clonal architecture . . . . . . . . . . . . . . 9

1.7 The tumor microenvironment of Lung Adenocarcinoma . . . . . . . . . . 14

1.8 Multi-omic Data Integration Strategies and Limitations . . . . . . . . . . 19

1.9 Summary and Dissertation Outline . . . . . . . . . . . . . . . . . . . . . 21

2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Cell lines and cell culture . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Human specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Sample collection and processing . . . . . . . . . . . . . . . . . . . . . . 27

v



2.4 Patient risk stratification and radiomics assessment . . . . . . . . . . . . . 27

2.4.1 Computer-Aided Nodule Assessment and Risk Yield (CANARY) . 27

2.4.2 Score Indicative of Lung Cancer Aggression (SILA) . . . . . . . . 28

2.4.3 HealthMyne© . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Mass cytometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Antibody panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Sample preparation and data acquisition . . . . . . . . . . . . . . 29

2.5.2.1 Cell lines . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2.2 Human samples . . . . . . . . . . . . . . . . . . . . . . 32

2.5.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.3.1 Data cleaning: manual . . . . . . . . . . . . . . . . . . 32

2.5.3.2 Data cleaning: automated . . . . . . . . . . . . . . . . . 32

2.5.4 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.4.1 Cell lines . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.4.2 Human samples . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Multiplex immunofluorescence validation of CyTOF data . . . . . . . . . 38

2.6.1 Tissue microarray . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.2 Staining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.3 Single cell analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 TCGA LUAD data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Cell type enrichment analysis with xCell . . . . . . . . . . . . . . . . . . 40

2.9 Whole Exome Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9.1 Sample preparation and data acquisition . . . . . . . . . . . . . . 40

2.9.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Bulk RNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10.1 Sample preparation and data acquisition . . . . . . . . . . . . . . 42

vi



2.10.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.11 Single Cell RNA Sequencing . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11.1 Sample preparation and data acquisition . . . . . . . . . . . . . . 43

2.11.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.12 Data integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.13 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.14 Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 HLA-DR cancer cells expression correlates with T cell infiltration and is en-

riched in lung adenocarcinoma with indolent behavior . . . . . . . . . . . . 46

3.1 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 LUAD mass cytometry antibody panel captures the cellular diver-

sity between LUAD cell lines and PBMC . . . . . . . . . . . . . . 48

3.4.2 Mass cytometry analysis identifies main cell types in LUADs and

captures differences between tumors with long and short predicted

survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.3 Unsupervised analysis of ECC reveals HLA-DR+ subsets associ-

ated with T cell infiltration . . . . . . . . . . . . . . . . . . . . . 56

3.4.4 Validation with mIF suggests immunogenic profile in LSP tumors

and RNA-Seq-based cell type enrichment analysis of independent

cohort supports findings . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



4 Multi-omics profiling of early lung adenocarcinoma reveals an association be-

tween radiomics features and tumor biology . . . . . . . . . . . . . . . . . 66

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Multi-omic profiling of LUAD tumors using radiomics as a surro-

gate of behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 LUADs of predicted indolent behavior are enriched in HLA-DR

protein expression . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3 Transcriptomic profiles of lung ADCs are associated with prolifer-

ation, immune response and extracellular matrix organization . . . 74

4.3.4 Data integration reveals an association between radiomics features

and tumor biology . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.5 In depth profiling of the LUAD tumor microenvironment by single

cell RNA-Seq analysis . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Discussion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Further validation using an independent/larger cohort . . . . . . . 93

5.2.2 The role of MHC-II in LUAD tumorigenesis and tumor progression 94

5.2.3 The role of the extracellular matrix and stromal cells in LUAD be-

havior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.4 The study of LUAD as a system and advancement in multi-omics

data integration strategies . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

ix



LIST OF TABLES

Table Page

2.1 LUAD Cell lines genomic profiles . . . . . . . . . . . . . . . . . . . . . 23

2.2 Summarized patient characteristics for Chapter 3 . . . . . . . . . . . . . 25

2.3 Summarized patient characteristics for Chapter 4 . . . . . . . . . . . . . 27

2.4 Mass cytometry antibody panel for lung adenocarcinoma. . . . . . . . . 31

x



LIST OF FIGURES

Figure Page

1.1 Canonical molecular pathways altered in LUAD. . . . . . . . . . . . . . 7

1.2 Branching process of tumor evolution in LUAD. . . . . . . . . . . . . . 12

1.3 Investigating intratumor heterogeneity and the TME with single cell ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Gaussian Parameters-based manual gating example. . . . . . . . . . . . 34

2.2 Debris model data workflow. . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Beads model data workflow. . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Mass cytometry panel and unsupervised computational analysis capture

cellular diversity in LUAD cell lines and PBMC. . . . . . . . . . . . . . 50

3.2 Clustering analysis of LUAD cell lines and PBMC. . . . . . . . . . . . . 52

3.3 Mass cytometry antibody panel distinguishes epithelial and non-epithelial

cell types in 10 early LUADs. . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Unsupervised analysis of ECC reveals intra- and inter-tumor heterogeneity. 58

3.5 Validation by mIF on matching samples and cell enrichment analysis on

RNA-Seq data from TCGA . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Summary of LUAD datasets and study workflow. . . . . . . . . . . . . . 69

4.2 CyTOF analysis of LUAD samples reveal subsets associated with HLA-

DR protein expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Transcriptomic analysis of LUAD highlights profiles associated with risk

stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Data integration reveals an association between radiomics features and

tumor biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



4.5 Profiling of LUAD tumor microenvironment by single cell RNA-Seq anal-

ysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



CHAPTER 1

Introduction

1.1 Acknowledgements

This chapter is adapted from “Intratumor Heterogeneity in Early Lung Adenocarcinoma”

published in Frontiers in Oncology and has been reproduced in line with publisher policies

[1].

1.2 Introduction

Over the last decades, several efforts have been made to reduce mortality among lung cancer

patients. While advances in diagnostic and therapeutics have occurred, long-term survival

rates compared to other cancers have barely improved [2]. Therefore, new approaches are

needed. In the context of lung adenocarcinoma (LUAD), this is of great importance due to

the high rate of overdiagnosis and lack of accuracy in predicting indolent vs. aggressive be-

havior of the tumor [3]. In order to better predict disease behavior, it is crucial to understand

the cellular and molecular underpinnings of the tumor. Thus, the study of intratumor het-

erogeneity and its clonal composition has become an attractive strategy to understand tumor

progression and behavior [4, 5, 6, 7, 8]. In the recent years emerging single-cell analysis

platforms have allowed the deep profiling of the tumor microenvironment (TME), and seem

promising approaches for the dissection and of tumor heterogeneity [9].

1.3 Clinical overview of Lung Adenocarcinoma

Adenocarcinoma is a subclass of non-small cell lung cancer, which develops within the glan-

dular cells of smaller airways along the outer edges of the lungs. It is the most common

histological type, accounting for about 40% of all lung cancer cases. This type of lung can-

cer mostly occurs among current or former smokers, however it is also the most prevalent

type of lung cancer in non-smokers [2]. Thus, the exposure to environmental carcinogens
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combined with genetic susceptibility may also play an important role in the development of

the disease [10, 11].

The survival rate for lung cancer mostly depends on the stage at the time of diagnosis.

On average, the current 5-year survival rate is about 18%, but if detected early it can lead to

a better prognosis, with a 5-year survival rate of 54% for localized stage [2]. However, only

15% of all cases are diagnosed on time, while the vast majority (57%) are diagnosed at a late

stage [12]. Therefore, screening for lung cancer in high risk individuals is important.

1.4 Computer Tomography-based detection and risk stratification of LUADs

In the past years, numerous randomized trials have assessed the power of lung cancer screen-

ing showing that it is possible to detect lung cancer at an early stage in more than 40% of

the cases [13, 14]. Furthermore, the 5- and 10-year survival rates among lung cancer pa-

tients enrolled in screening programs were close to 90%, which is very reassuring [15].

The largest lung cancer screening trial at the moment, The National Lung Screening Trial

(NLST), enrolled 53,452 high risk individuals for lung cancer across 33 U.S. medical centers

and reported a 20% relative risk reduction in mortality using low-dose computed tomogra-

phy (CT) screening compared to chest radiography (CXR) screening [16]. Despite these

encouraging statistics, it is worth to mention that 96% of the nodules detected through CT

screening were benign. Moreover, confirmed lesions detected through CT screening range

from very indolent to severely aggressive cancers. Therefore, screening, which by definition

seeks to spot malignant nodules in asymptomatic individuals, bears the inherent feature of

overdiagnosis. This phenomenon can be defined as the detection of a cancer that in other

circumstances would have not become clinically evident , and represents a serious drawback

for lung cancer screening in that it generates unnecessary treatment, morbidity, additional

expenses, and anxiety and distress to the patient. A while after the NLST results were pub-

lished, another study focused on the estimation of overdiagnosis in the NLST, reporting a

probability of 18.5% that any lung cancer detected by CT was an overdiagnosis, as well as
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probabilities of 22.5% for non-small cell lung cancer and 78.9% for adenocarcinoma in situ

[3]. In that sense, a careful assessment of the images is crucial to ensure a more accurate

prognosis. Additionally, the ongoing investigation in the discovery of new biomarkers offers

a promising avenue to assist or eventually guide the screening and diagnosis process of high

risk individuals.

The current clinical treatment decisions are mostly based on the composition of the le-

sions on single time point or serial imaging (pure ground glass = indolent, significant or

increasing solid component = concern for invasion). However, this practice is subjective

and limited by intra-observer and inter-observer variability[17]. In that context, Foley et

al.[18, 19] developed and validated an imaging software Computer-Aided Nodule Assess-

ment and Risk Yield (CANARY), which successfully risk stratifies screen-detected lung

adenocarcinomas based on clinical disease outcomes. 294 eligible patients diagnosed with

LUAD spectrum lesions in the low-dose CT arm of the National Lung Screening Trial were

identified retrospectively. The most recent low-dose CT scan before the diagnosis of LUAD

was analyzed using CANARY blinded to clinical data. Using unsupervised clustering, nine

natural exemplars were identified as basic radiographic features of LUAD nodules. Based

on their parametric CANARY signatures, all the LUAD nodules were risk stratified into

Good, Intermediate, and Poor, and yielded significantly different survival curves, allowing

for noninvasive risk stratification of the nodules into three groups with distinct post-treatment

progression-free survival. In a following publication, this group presented a cumulative ag-

gregate of normalized distributions of ordered CANARY exemplars, the Score Indicative of

Lung Cancer Aggression (SILA)[20]. The SILA discriminated between indolent and inva-

sive LUAD and, prediction of linear extent of histopathologic tumor invasion was possible.

In stage I LUAD, three separate SILA prognosis groups were identified: indolent, interme-

diate, and poor, with 5-year survival rates of 100%, 79%, 58%, respectively. Cox propor-

tionality hazard modeling predicted a 50% increase in mortality, for a 0.1 unit increase in

the SILA over a median follow-up time of 3.6 years. In conclusion, tools like CANARY
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and SILA could ultimately facilitate individualized management of incidentally or screen-

detected LUADs.

1.5 The molecular landscape of Lung Adenocarcinoma

Over the years, genomic alterations occur and accumulate and in some cases those alterations

may lead to oncogenesis. The somatic genomic alterations that are involved in cancer devel-

opment are known as “driver alterations” and the ones that are not are known as “passenger

alterations” [21]. LUAD has one of the highest mutational burdens compared to other can-

cers [22, 23]. Those high rates of somatic alterations and genomic rearrangements include

a large load of passenger events per tumor genome, which makes the identification of driver

alterations even more challenging [24]. Despite the difficulties, several genomic alterations

have been described in the past years, some of which are currently known as canonical driver

alterations, and some others that have recently been reported and may be novel driver events

[24, 25, 26, 27].

Driver genomic alterations in LUAD are generally associated with events that lead to

the constitutive activation of signaling proteins, which commonly occur in oncogenes of

the receptor tyrosine kinase (RTK)/RAS/ RAF pathway [28]. In the TCGA study, 62% of

the tumors harbored such alterations [26]. KRAS driver mutations were reported in 32% of

TCGA samples [26]. Along with HRAS and NRAS (0.9%), the other members of the RAS

family, these proteins play an important role in the regulation of signaling pathways that

control cell proliferation [29]. Additionally, KRAS mutations are highly correlated with poor

prognosis in early LUAD [30]. Cancer-associated mutations in EGFR were present in 11%

of TCGA samples [26]. EGFR, as well as other member of the EGFR family the oncogene

HER2 (1.7%), are known to be involved in the regulation of several cellular processes in-

cluding cell motility, angiogenesis, cell proliferation and apoptosis [31]. Likewise, some

EGFR mutations are related to an improved prognosis [32]. Another important oncogene is

BRAF, which works downstream of RAS proteins and has a crucial role in the RAS-MAPK
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pathway. Driver mutations of this gene were present in 7% of TCGA samples and are not

known to be associated with prognosis [26, 33]. MAP2K1 encodes for a protein that oper-

ates downstream of BRAF and was found mutated in 0.9% of TCGA samples [26]. MET

exon 14 skipping is another cancer driver event which results in the loss of a negative reg-

ulatory site, and occured in 4.3% of TCGA samples [26]. Gene fusions, were reported for

the genes ROS1, ALK and RET, which were altered in 1.7%, 1.3%, 0.9% of TCGA samples,

respectively [26, 28, 34].

In addition to the drivers described above, for the 38% of the samples that did not carry a

driver oncogene mutation, the TCGA study proposed previously unrecognized driver genes

that might be involved in the RTK/RAS/RAF pathway activation [26]. They identified sig-

nificant amplification events of HER2 and MET in the oncogene-negative samples. Higher

MET copy number in primary LUAD at the time of diagnosis has been associated with poor

prognosis [33]. NF1, a tumor suppressor that negatively regulates the RAS oncogene, was

mutated in 8.3% of the samples [26, 35]. RIT1 is mutated in 2.2% of LUAD cases, and has

been identified as a new oncogene driver as its mutations have been shown to activate MAPK

and PI(3)K signaling in NIH3T3 cells [26, 36].

Besides the RTK/RAS/RAF pathway, other relevant somatic genomic alterations have

been identified. TP53 was commonly mutated in 46% of the samples [26]. PIK3CA, a

crucial positive regulator of the PI(3)K-mTOR pathway, was mutated in 7% of the cases, and

STK11, a tumor suppressor from the same pathway, was mutated in 17% of the cases [26].

Other mutated tumor suppressors were KEAP1 (17%), RB1 (4%), and CDKN2A (4%). In a

large-scale project that characterized copy-number alterations in LUAD, the most common

amplification was found in chromosome 14q13.3, which corresponds to NKX2-1 (TTF1),

a transcription factor involved in lung development [25]. The inhibition of this gene led to

reduced cell viability and colony formation in LUAD cell lines [25]. This gene was also

reported amplified in 14% of TCGA samples [26]. Other significant amplifications in the

TCGA study included the telomerase reverse transcriptase TERT (18%), and MDM2 (8%),

5



a negative regulator of p53 [26]. The most significant deletion (19%) was the CDKN2A

locus, which codes for the proteins p16 and p14arf, two important tumor suppressors and

cell cycle regulators of the TP53 pathway [26, 37]. Some of the alterations described above

are depicted in Fig. 1.1.
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Figure 1.1: Canonical molecular pathways altered in LUAD. Graphical representation
of the most mutated pathways in lung adenocarcinoma. The numbers correspond to the
percentage of samples that carry that genomic alteration in TCGA.

7



The understanding of LUAD molecular alterations has significantly impacted patient sur-

vival in the past years through the development of targeted therapies. Patients with advanced

or metastatic tumors bearing EGFR mutations, EML4-ALK rearrangement or ROS1 fusions

have benefited from those. Erlotinib, gefitinib and afatinib are some of the drugs currently

used to treat patients with EGFR exon 19 deletion or exon 21 mutations [38, 39, 40]. Alec-

tinib, ceritinib and crizotinib have shown effectiveness in patients with ALK alterations, and

the latter is also used in patients with ROS1 translocation [41, 42, 43, 44]. The advances

on genomic phenotyping of LUAD have also benefited the development of immunother-

apy. In a healthy individual, the immune checkpoint PD-1 expressed in T cells protects

against autoimmunity and inflammation. In cancer, PD-L1 expressed on tumor cells binds to

PD-1 resulting in immunosupression and immune evasion. Nivolumab, pembrolizumab and

atezolizumab are some of the PD-1/PD-L1 FDA approved inhibitor drugs that have shown

improved survival in advanced NSCLC patients compared to standard therapies [45, 46, 47].

Another immunecheckpoint under the radar is CTLA-4. Two clinical trials (NCT02000947,

NCT02352948) are currently investigating the effects of a combination therapy of dual

checkpoint inhibition using durvalumab and tremelimumab, PD-1 and CTLA-4 inhibitors

respectively. However, early results suggest that this strategy did not significantly improved

overall survival, although treatment with durvalumab alone provided a significant overall

survival improvement. [48, 49]. These and other targeted therapies have been extensively

reviewed previously [35, 50, 51].

More recently, the molecular characterization of early LUAD lesions has also provided

some insights on tumor behavior. A recent study from our group has characterized 21 ade-

nocarcinoma in situ (AIS), 27 minimally invasive adenocarcinoma (MIA) and 54 fully in-

vasive adenocarcinoma using deep targeted genome sequecing [52]. This work uncovered

molecular features associated with aggressive early LUAD clinical behavior and disease pro-

gression. Most genomic alterations in LUAD were already present in AIS and 21 signifi-

cantly mutated genes including known drivers such as KRAS, EGFR and TP53 were shared
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among the three groups, suggesting their step-wise role in malignant transition. APOBEC

signature was associated with worse survival compared to DNA mismatch repair signature,

and KRAS codon 12 mutations were associated with aggressive tumor behavior. Finally,

an ensemble-level progression model using phylogenetic analysis inferred the role of many

known alterations in LUAD progression and introduced several new players such as EPPK1,

ATM, SMAD4, KMT2C and KMT2D, which deserve to be further investigated. This brings

new insights into the distinction between indolent and aggressive tumor behavior and will

potentially have future implications in early LUAD clinical management.

1.6 Intratumor heterogeneity and clonal architecture

Intratumor heterogeneity is a highly complex phenomenon and it represents a major chal-

lenge in the assessment of cancer, as it acts as a confusing factor resulting in inaccurate

diagnosis, prognosis and treatment of the disease [4]. As mentioned before, LUAD is a very

heterogeneous disease with one of the highest mutational burdens across different cancer

types [22, 23]. Therefore, a comprehensive understanding of the natural history of these

tumors is urgently needed.

The study of tumor growth from an evolutionary perspective is not a new approach. In

the early 70’s, Alfred Knudson proposed that for a particular cell to became cancerous, both

alleles of a given tumor suppressor gene must be mutated, also known as the ”two-hit hypoth-

esis” [53]. In 1976, Peter Nowell applied evolutionary models to study tumor progression

and treatment failure, and proposed a clonal evolution model in which a tumor arises from

a single mutated cell (“clone”) and tumor progression occurs as a result of subsequent alter-

ations, in which fitter and more aggressive clones replace the original clone cells [54]. This

linear evolution model was supported mostly by early studies that focused in a single gene

rather than in the whole genome , and therefore clonal diversity was underestimated [55].

Advances in new sequencing technologies allowed genome wide sequencing, which have

elucidated a more complex clonal structure than previously thought [23].
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In the past years, other evolutionary models have derived from applied phylogenetic in-

ference to next-generation sequencing data. In neutral evolution, all driver alterations are

thought to be present in the original neoplastic cell and subsequent alterations are neutral,

thus it is characterized by the absence of selection and heterogeneity arises from stochastic

processes as a byproduct of tumor progression [56]. In punctuated evolution, it is postu-

lated that tumor heterogeneity is generated in the early development of the neoplasia as a

punctuated burst, followed by neutral evolution [57, 58]. Branching evolution, also known

as the trunk-branch model, is defined by the gradual accumulation of driver mutations in

subclonal populations [59]. In this model, the “trunk” of the tumor consists of progenitor

clones bearing early somatic alterations that drive tumorigenesis. Those early alterations are

potentially ubiquitous events. Conversely, somatic events that occur later are heterogeneous

events and are present in the subclones which make up the “branches” of the tumor and are

tumor progression drivers.

Multiregion sequencing has been the most successful strategy to investigate intratumor

heterogeneity and clonal evolution in LUAD to date [5, 6, 7]. The studies conducted by

De Bruin and colleagues, Zhang and colleagues, and most recently Jamal-Hanjani and col-

leagues, provide evidence suggesting that intratumor heterogeneity and branched evolution

might be a universal phenomenon across LUAD (Fig. 1.2). Most known driver alterations

[26, 28] were mapped to the trunks of the tumors, which suggests that those canonical al-

terations occur early in tumor evolution. Truncal driver mutations almost always occurred

before genome doubling suggesting a particular role in tumorigenesis. On the other hand,

truncal genome doubling events occurred before subclonal diversification but after the ac-

quisition of driver mutations, which suggests that chromosomal instability may be a crucial

step that induces copy number alterations followed by a burst of mutational heterogeneity

(Fig. 1.2). Furthermore, the association of drug resistance and patient relapse with chro-

mosomal instability [60], supports the hypothesis that the ability of chromosomal instability

to generate extensive subclonal divergence could be compromising the effectiveness of ther-
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apeutics strategies that target truncal driver mutations due to the overlooked and already

present clonal heterogeneity [5]. Besides, data from these studies suggest that certain al-

terations in non-canonical cancer genes may also drive tumor development and subclonal

diversification.
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Figure 1.2: Branching process of tumor evolution in LUAD. A tumor is depicted as a
tree structure with the trunk representing ubiquitous (clonal) mutations present in all tumor
regions (blue); shared branches representing heterogeneous (subclonal) mutations present
in some tumor regions (purple), and private branches (also subclonal) representing unique
mutations present in one tumor region only (green). The blue right triangle shows how as the
chromosomal instability increases, the subclonal diversification is triggered. The bottom bar
indicates that the smoking signature is associated with early events whereas the APOBEC
signature is associated with late events.
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Another important feature of the disease addressed by these groups was the influence

of smoking status in the clonal history of the tumors. Smoking signature (signature 4) is

characterized by a high proportion of C>A transversions [23]. In these studies, tumors

from former and current smokers showed a decrease in the proportion of C>A transversions

in subclonal mutations compared to early mutations, which suggests a relative decrease in

the mutational burden due to smoking during tumor development [5, 6, 7]. Moreover, the

decrease of C>A transversions was followed by an increase in C>T and C>G mutations,

which indicates APOBEC cytidine deaminase activity [23]. This suggests that APOBEC

mutagenesis may be playing a role in subclonal expansion in these tumors. In addition, a

prolonged tumor latency period was reported by two groups [5, 7]. In the study conducted

by De Bruin and colleagues, a tumor from a patient that ceased smoking 20 years before

surgery bore the smoking signature in more than 30% of truncal mutations, which suggests

that these events occurred within a smoking tumorigenic setting more than 20 years ago [5].

Likewise, Jamal-Hanjani and colleagues reported that 7 patients that were former smokers

for several years before surgery, presented a smoking mutational signature suggesting tu-

mor latency for several years before clinical manifestation of the disease [7]. Furthermore,

Zhang and colleagues and Jamal-Hanjani and colleagues found an association between the

proportion of subclonal genomic alterations and recurrence [6, 7]. In the cohort studied by

first group, the three patients that relapsed had a significantly higher proportion of subclonal

mutations compared to the patients with no relapse, suggesting that the degree of subclonal

divergence may be associated with post-surgical relapse [6]. In contrast, the second group

did not find a significant association between the proportion of subclonal mutations and

disease recurrence in their cohort, but found that patients with a large proportion of copy-

number alterations were at higher risk for relapse or death compared to patients with a low

proportion [7]. Additionally, this group found that many late driver mutations corresponded

to alterations that have been reported in other tumor types, and most of them are involved in

genome maintenance processes such as DNA damage response, chromatin remodeling and
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histone methylation. They hypothesized that late mutations may be responsible for providing

advantages to the emerging subclones and enabling the late stages of the disease as they may

remove tissue specific constrains on the neoplastic genome [7].

These studies raised the question if single-region biopsy is informative enough to help the

health providers make accurate treatment decisions. Intratumor heterogeneity has proven to

be an intrinsic phenomenon to LUAD, and it may compromise the ability of a single biopsy

to comprehensively and accurately describe the complexity of the disease for an optimal

cancer control. In a handful of cases, a large proportion of subclonal events were found in a

single region but were absent in other regions of the same tumor, evidencing the limitations

of a single-region biopsy in accurately explaining the clonal architecture of the tumor and

highlighting the power of multiregion sequencing to better capture the clonality of the tumor

which could help to prioritize some drug targets [5, 6, 7]. Nonetheless, in the study con-

ducted by Zhang et al., while they observed that multiregion sequencing is a better strategy

to understand intratumor heterogeneity they also provided evidence that demonstrates that

an increase in sequencing depth (∼277x to ∼863x) allowed the identification of most of the

driver mutations in the tumors studied and many subclonal mutations were detectable in all

regions of individual tumors. This suggests that a single biopsy analysis might be sufficient

if the sequencing depth is increased [6].

1.7 The tumor microenvironment of Lung Adenocarcinoma

It is known that the immune microenvironment plays a pivotal role in LUAD development,

thus it may also shape intratumor heterogeneity. Neoantigen presentation is an important step

for cytolytic T cell response and it is guided by the human leukocyte antigen (HLA) class I

molecule, which presents intracellular peptides on the cell surface for the T cell receptors to

recognize [61]. A person’s genome contains up to six different HLA class I alleles encoded

by the genes HLA-A, HLA-B and HLA-C. Each HLA allotype presents peptide antigens based

on specific anchor residues within the peptide sequence that are required for the peptides to
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bind. Therefore, loss of heterozygosity (LOH) results in loss of an HLA allotype and thus

loss of the ability to bind those peptides that only contain anchor residues able to bind to the

lost HLA molecule, hence fewer neoantigens can be presented to T cells. The impairment of

tumor neoantigen presentation as a consequence of LOH in HLA class I was recently sug-

gested as a mechanism of immune evasion in NSCLC [62]. In this study, both lung adenocar-

cinomas and squamous cell carcinomas tumors with HLA LOH presented higher mutational

burden compared to tumors without HLA LOH, with a significant increase in subclonal mu-

tations. Furthermore, tumors harboring HLA LOH were enriched in neoantigens predicted

to bind the missing HLA alleles and presented high PD-L1 staining on immune cells. This

mechanism may facilitate the sub clonal expansion of cells harboring previously antigenic

mutations that had become undetectable to the immune system. A following study from

the same group, found that the immune microenvironment tends to be highly heterogeneous

between and within patients, showing distinct regions with different levels of immune eva-

sion within individual tumors [63]. Additionally, tumors showing high immune infiltration

and HLA allelic preservation also presented neoantigen depletion suggesting that immune

evasion occurs by HLA LOH or neoantigen suppression. One of the possible mechanisms

for the latter is promoter hypermethylation, which explains 23% of the neoantigens included

in this study, suggesting that other mechanisms must be in place. Further elucidation of the

mechanisms involved in neoantigen-associated immune escape could have important clinical

implications in therapy selection and response prediction.
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Figure 1.3: Investigating intratumor heterogeneity and the TME with single cell ap-
proaches. A lung tumor resection is dissociated into single cell suspension which can be
used in different applications. CyTOF uses metal-labeled antibodies to detect a limited num-
ber of proteins in the cells. Single cell RNA-Seq reveals the transcriptome of each individual
cell. Both can be analyzed through computational strategies to dissect intratumor hetero-
geneity.
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In recent years, more studies focusing on the TME are starting to implement the use of

single-cell based technologies, which can elucidate tumor heterogeneity with high resolu-

tion by detecting cells individually instead of a bulk signal and yield loads of information

(Fig. 1.3). Using single-cell proteomics mass cytometry analysis with paired tumor tissue,

normal tissue and peripheral blood, Lavin and colleagues intended to provide an innate im-

mune cell atlas of early LUAD [64]. In this study, early lesions have shown to bear a unique

and TNM stage-independent immune signature, with a particular subset of tumor-infiltrating

myeloid cells different from normal lung –PPARγhi macrophages enrichment and CD141+

dendritic cells (DC) depletion)– which could be compromising T cell immunity and may

offer a new avenue of intervention in T cell immunotherapies. PPARγ is a transcription fac-

tor known to drive an immunosuppressive program [65]. Lymphotoxin beta, inflammatory

response inducer, has been previously shown to act on high endothelial venules (HEV) to

promote lymphocyte homing to peripheral lymph nodes in vivo [66]. The authors found

that the CD141+ DC subset expressed lymphotoxin beta transcripts in lung tumor tissues

which suggests that CD141+ DC contribute to tertiary lymphoid structure formation likely

through HEV-mediated recruitment of lymphocytes. Therefore, an induced expansion of in-

tratumoral CD141+ DC may serve as a potential anti-tumor immunity strategy. This study

highlights the importance of paired analysis to identify tumor-associated immune alterations

from normal tissue-imprinting. Other study that also focused on tumor infiltrating myeloid

cells (TIM), used single-cell RNA seq to profile a compare TIM populations between mice

and humans in the context of NSCLC [67]. Although the goal of this study was to estab-

lish similarities between mouse and human TIM expression programs, the comprehensive

annotation of the different myeloid populations is an important contribution for future stud-

ies on clinical implications of the heterogeneity of these cell types. The authors reported

that mouse and human TIM subsets show one-to-one equivalence and that blood myeloid

cells poorly reflect TIM states. Due to the overlap of TIM states between patients they as-

sessed the association with patient survival addressing the expression of genes specific to
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each subpopulation. They identified three conserved subsets of neutrophils, N1 that express

canonical neutrophil markers, N2 which are tumor specific and promote tumor growth, and

N2 which have a expression signature of type I interferon response. They found that hu-

man neutrophil subsets N2 and N5 showed an abundance of marker genes associated with

poor survival. Conversely, the marker genes of human DC subset 2, which preferentially

interacts with CD4+ T cells, showed positive association with survival. Guo and colleagues

also investigated the immune system of NSCLC with single-cell RNA seq but focusing on T

cell subpopulations of 14 patients [68]. They identified two new CD8+ T cell pre-exhausted

subsets, which together with the presence of highly migratory effector T cells may provide

an explanation for positive responses to immunotherapy. When they interrogated LUAD

TGCA data with their expression signature, they found that patients mainly clustered into

two groups: one enriched in pre-exhausted CD8+ T cells, non-activated Tregs and activated

CD4+ T cells, and the other enriched in exhausted T cells and activated Tregs. Patients

from group 1 had significantly better prognosis than patients from group 2, therefore T cell

composition could be a potential clinical biomarker for LUAD patients. In a different study,

Lambrechts and colleagues used single-cell RNA sequencing and reported a comprehensive

52,698-cell catalog of the TME transcriptome of lung cancer samples, most of which were

LUAD patients [69]. They identified 52 different stromal subtypes including different popu-

lations of cancer-associated fibroblasts, endothelial cells and infiltrating immune cells, some

of which were further validated through immunofluorescence. Further analysis of TCGA

data indicated that the abundances of some subpopulations and their correlation with patient

survival differ between LUAD and squamous cell carcinoma (SCC) and that they were in-

fluenced by clinical characteristics such as stage. Low expression of CD8+ T cell cluster 8

marker genes were positively and negatively associated with survival in LUAD patients and

SCC, respectively. This cluster represented CD8+ cytotoxic T cells per their high granzyme

and IFN expression, and was characterized by high T cell exhaustion marker expression

(LAG3). These and other gene expression changes in tumor stroma reveal potential new
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directions for intervention.

In conclusion, the TME represents an important component of tumor heterogeneity in

LUAD and is strongly associated with disease progression and predicted outcome. Although

the different flavors of bulk profiling of the tumors are still providing a significant amount of

information, it is important to acknowledge that single-cell approaches offer a new level of

granularity that are allowing us to deeply dissect and further understand LUAD heterogeneity

and its implications in early stages of the disease. Nevertheless, such techniques are highly

expensive which currently limits the number of samples per study. A combination of both

bulk and single-cell approaches as reported in some of the studies mentioned above may be

a suitable alternative to get the most out of the data while state-of-the-art techniques become

more affordable through the years.

1.8 Multi-omic Data Integration Strategies and Limitations

As biological data acquisition for some data types becomes increasingly more affordable,

the amount of data collected at different molecular levels also increases. One of the main

aims of using a multi-omic strategy is to put that wealth of information to good use to better

classify biological samples, such as in medical studies aiming to improve patient stratifi-

cation. Unsupervised data integration can potentially capture complex relationships within

data types and reveal groups of samples that otherwise would go unnoticed. Multi-omics

data integration can also be done in a supervised way to predict response variables, such

as clinical outcomes, or for the identification of biomarkers associated with the response

variable[70]. There are multiple tools and methods that have been developed in the pre-

vious years to leverage multi-omics data. In a recent review published by Subramanian et

al.[71], they described some of these tools grouped base on their approach (similarity, cor-

relation, network, Bayesian, multivariate, fusion) and their applications (disease subtyping,

disease insight, biomarker prediction). One of these tools is the Multi-Omics Factor Analysis

(MOFA), which is a Bayesian method intended for biomarker prediction[72]. MOFA is an

19



unsupervised method to integrate multi-omics datasets on the same or partially overlapped

samples. It infers an interpretable low-dimensional data representation as hidden factors on

multiple data modalities using a Bayesian framework that supports both numerical and cat-

egorical data. Nevertheless, as MOFA use linear models to represent relationships between

data it can fail to capture nonlinear associations between and within modalities. Another

very solid and versatile toolkit is mixOmix, which provides a set of supervised and unsuper-

vised multivariate methods for data integration focused on disease subtyping and biomarker

prediction[73]. This package offers a variety of methods such as PCA, independent PCA,

partial least squares regression (PLS), sparse PLS, canonical correlation analysis (CCA), and

PLS discriminant analysis (PLS-DA) to classify or cluster samples. Additionally, their novel

DIABLO framework enables the integration of the same biological N samples measured

on different omics platforms using sparse PLS-DA to identify highly correlated multiomics

signatures to discriminate disease subtypes. Finally, an example of a network method is Sim-

ilarity Network Fusion (SNF)[74], which as its name states creates an individual network for

each data type and then fuses these into a single similarity network using a nonlinear method

based on message passing theory. In this process, weak connections disappear with iterations

while strong connections are propagated till convergence. This method focuses on disease

subtyping.

These tools and many others contribute to the rapidly developing field of multi-omics

data integration. However, it is important to consider and address some limitations[70].

One overlooked challenge in data collection of multi-omics studies is the lack of uniformity

in methods for missing value imputation and the need for sensitivity analysis to assess the

impact of imputation in the downstream analyses. In terms of the integrative analysis itself,

some of the limitations include the heterogeneity in signal-to-noise ration among different

omics technologies, the poor biological interpretability of multi-omic models, and the need

for more biologists trained to use cloud-based services as the datasets are becoming bigger

and demand more computational power. Finally, despite the large amount of multi-omics
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studies and publicly available datasets, the retrieval of multi-omics data is still a problem

as most of the times there is a lack of connection of samples across modalities, making this

task usually manual when not impossible. Therefore, there is an urgent need for standards

for data annotation and storage in multi-omic studies. In conclusion, with the advent of high

throughput technologies and those becoming more accessible there has been an increase in

the numbers of multi-omics studies in the past years, which is revolutionizing the field of

biomedical research and systems biology. However, there are still several challenges need to

be addressed or for which solutions are still limited.

1.9 Summary and Dissertation Outline

LUAD is a devastating disease and despite the ongoing research efforts, the overall sur-

vival rates have barely improved in the past years. While screening programs have proven

to significantly increase the chance of survival in high risk individuals, there is also a high

probability of overdiagnosis. Therefore, the molecular determinants of early tumor develop-

ment behavior need to be further investigated. In the past years, it has become more evident

that intratumor heterogeneity profiling of LUAD is the most effective strategy to understand

tumor progression. In this context, the rapidly evolving field of single-cell technologies of-

fers a novel set of tools that is unraveling the complexity of LUAD and other cancers with

a resolution never reached before. Furthermore, as LUAD is a consequence of complex

biological processes, it is necessary to take an integrative approach combining data from dif-

ferent modalities to understand the interrelationships of multiple biological layers and their

functions.

In this dissertation, I aim to investigate the biological determinants of early lung ade-

nocarcinoma indolence or aggressiveness. I hypothesize that the integration of biological,

clinical and radiomics data of early stage LUAD will improve the discrimination between

indolent and aggressive tumors which in turn may offer novel and personalized avenues for

intervention. In the next chapters, I will present the methodologies and results of my re-
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search studies. In Chapter 2, I will describe in detail the methods used to acquire, process

and analyze the data collected from LUAD cell lines and LUAD patients across different

data modalities. In Chapter 3, I hypothesize that single-cell proteomic analysis of early stage

LUAD will provide new insights into the cellular and molecular determinants of indolent

and aggressive tumors. I will report the validation of a LUAD-focused Mass Cytometry an-

tibody panel on LUAD cell lines and present the analysis of a set of ten early stage primary

LUADs with indolent and aggressive behaviors showing some valuable insights on immuno-

genicity of the tumors. In Chapter 4, I will present the results of my investigation of the

biological determinants of early lung adenocarcinoma indolence or aggressiveness using ra-

diomics as a surrogate of behavior. The integration of Next Generation Sequencing (NGS)

data, proteomics and radiomics features is the central piece of this section and will reveal

novel insights that connect tumor biology and clinical characteristics of LUAD. Finally, in

Chapter 5 I will summarize the main conclusions of this work and discuss the implications

of future directions of this research.
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CHAPTER 2

Materials and Methods

2.1 Cell lines and cell culture

Human lung adenocarcinoma cell lines A549, PC9, H23 and Human Burkitt’s lymphoma

cell line Ramos were obtained from ATCC. H3122 was provided by Dr. Christine Lovly

(Vanderbilt University) [75]. Cells were grown in RPMI 1640 medium containing 10%

heat-inactivated FBS (Life Technologies, cat# 16140071) and 1X Pen/Strep at 37◦C, 100%

humidity, and 5% CO2. All cells used were in a low passage number (<5). These cell lines

harbor different genetic alterations (Table 2.1).

Cell line Genetic Alteration
A549

KRAS activating mutation
CDKN2A locus deletion

H3122
EML4-ALK variant 1, activating mutation

PC9
EGFR activating mutation
TP53 inactivating mutation

H23
TP53 inactivating mutation
KRAS activating mutation

Table 2.1: LUAD Cell lines genomic profiles

2.2 Human specimens

PBMCs were obtained from a healthy donor under an Internal Review Board (IRB) approved

protocol 030763 and tumor tissues samples were collected from patients undergoing lung

resection surgery following an IRB approved protocol 000616 at the Vanderbilt University

Medical Center. Informed consent was obtained from all subjects. Samples from Chapter 3

were obtained from 10 lung adenocarcinoma patients, from which 5 were males and 6 were
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females. The ages from this patients ranged from 58 to 88 with a median of 72 (Table 2.2).

Samples from Chapter 4, were obtained from 92 lung adenocarcinoma patients, from which

43 were males and 49 were females. The ages from this patients ranged from 48 to 90 with

a median of 66.5 (Table 2.3).
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Characteristic Patients (N=10)
Sex

Male 4
Female 6

Age
Median 68.5
Range 56 - 86

Race
Caucasian 10

Smoking Status
Smoker 1
Ex-smoker 9

Family History of Cancer
Lung 2
Other 5

Nodule size (mm)
Median 31.5
Range 9.7 - 61

Pathological Stage
Stage 0 1
Stage IA 2
Stage IB 1
Stage IIA 1
Stage IIB 4
Stage IIIB 1

Tumor Location
RLL 3
RUL 4
LLL 3

Risk Stratification (CANARY)
LPS 4
SPS 6

Table 2.2: Summarized patient characteristics for Chapter 3
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Characteristic Patients (N=92)
Sex

Male 43
Female 49

Age
Median 66.5
Range 48 - 90

Race
African American 6
Asian 2
Caucasian 84

Smoking status
Never smoked 15
Smoker 11
Ex-smoker 66

Family history of cancer
Lung 12
Unknown 29
Other 51

Nodule size (cm)
Median 2.3
Range 0.8 - 7.3

Pathological Stage
Stage 0 1
Stage IA 43
Stage IB 11
Stage IIA 13
Stage IIB 15
Stage IIIA 5
Stage IIIB 2
Stage IV 2

Predominant histology
Acinar 52
Lepidic 2
Micropapillary 9
Mucinous acinar 3
Papillary 9
Solid 17

Tumor location
LLL 12
LUL 15
RLL 16
RML 1
RUL 43
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SILA score
Median 0.625
Range 0.049 - 0.853

SILA groups
Indolent 14
Intermediate 26
Aggressive 52

Table 2.3: Summarized patient characteristics for Chapter 4

2.3 Sample collection and processing

All tissue samples were processed within one hour of surgery. Lung tissues were minced,

digested with Collagenase and DNase I for one hour at 37°C. Single-cell suspension was

filtered (70 um and 40 um) and cryopreserved for long-term storage as previously described

[76]. Cell viability was assessed before cryopreservation and after thawing. For bulk analy-

ses, lung tissues were snap froze and stored at -80 °C.

2.4 Patient risk stratification and radiomics assessment

2.4.1 Computer-Aided Nodule Assessment and Risk Yield (CANARY)

We analyzed the chest CT scans of the patients using a Computer-Aided Nodule Assessment

and Risk Yield (CANARY) software to differentiate and stratify risk of lung adenocarcino-

mas [18]. CANARY analysis was performed on the CT images taken within 3 months prior

surgery for all patients involved in this study. Semi-automated nodule segmentation using

CANARY software detects nine classes of nodule characteristics based on voxel histogram

features within the CT images which in turn helps in risk stratification of the nodule. These

features are coded as Violet (V), Indigo (I), Blue (B), Green (G), Yellow (Y), Orange (O),

Red (R), Cyan (C), and Pink (P). The V, I, R, O class represents solid density voxel. Classes

B, C, G represent ground-glass opacity and P and Y classes indicate lepidic and invasive

growth. The overall prediction of histopathological tissue invasion helps in a risk stratifica-

tion of the lesions into Good (G) and Poor (P) risk groups, which we refer in the main paper

as LPS and SPS, respectively. Samples were classified as shown (Table 2.2).
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2.4.2 Score Indicative of Lung Cancer Aggression (SILA)

SILA is a cumulative aggregate of normalized distributions of above mentioned 9 ordered

CANARY exemplars and provides a continuous variable in range of 0 to 1[20]. In addition to

discrimination between indolent and invasive adenocarcinoma, it also helps in predicting the

degree of invasion, disease-free survival and cancer-related mortality in stage I LUAD on the

basis of CT. The continuous scale can be thresholded at multiple levels, if needed. We set

two SILA thresholds and categorized three distinct histopathologic and prognostic groups

for stage I LUAD. These thresholds were computed by using two approaches: automatic

histogram-based multilevel thresholding and pathology-based threshold selection. In the au-

tomatic approach, the histogram constructed from the SILA values for stage I LUAD nodules

in the cohort is divided into three partitions by using a well-known multilevel thresholding al-

gorithm. Pathology-based SILA thresholds were assigned based on TImax (maximum linear

extent of tumor invasion) in stage I LUAD. Three distinct survival groups were discovered:

best survival in indolent tumors (AIS and MIA), intermediate survival in tumors with TImax

from 6 to 20 mm, and worst survival in tumors with TImax greater than 20 mm. The group

with a SILA of 0.338 or lower (SILA at the upper 95% confidence interval [CI] of the in-

dolent group) was defined as the good-prognosis group. The group with a SILA of 0.338 to

0.675 (SILA at the upper 95% CI of the TImax ¼ 15- to 20-mm group) was defined as the

intermediate prognosis group, and the group with a SILA of 0.675 or higher was defined as

the poor-prognosis group.

2.4.3 HealthMyne©

HealthMyne©platform allows semi-automatic lesion segmentation of the delineated volumes

of interest, followed by extraction of radiomic features. The user initializes the lesion seg-

mentation by drawing a long axis on ROI in an axial plane of the multiplanar reconstruction.

A 2D segmentation is updated in real-time with interactive feedback of the lesion boundary

and 2D segmentations on the other MPR planes are immediately proposed. If the contour
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on a MPR plane seem unsatisfactory, the user can update the segmentation by either draw-

ing long axes on the other MPR views or using a 2D brush tool. When the segmentation

is satisfactory, the user can confirm to initiate the 3D segmentation computation. Based on

these initial user interactions, the RPM™ algorithms combined statistical sampling methods

together with deep learning strategies in order to delineate the target volume and provide an

automatic 3D segmentation. The 3D segmentation is reviewed by scrolling through slices

on the MPR views. Interactive editing tools including 2D and 3D brushes can be used to

reduce/enlarge or add details to the proposed volume segmentation. As the 3D segmenta-

tion is confirmed by the user, the measure of the long and short lesion axes is automatically

determined by leveraging the volume delineation. A large number of radiomic features are

extracted from the segmented volume. Redundant features or features with high inter/intra-

user variability were removed. The radiomic risk score is derived from regression shrinkage

and subset selection via LASSO method.

2.5 Mass cytometry

2.5.1 Antibody panel

We have developed a comprehensive antibody panel that comprises a total of 34 antibod-

ies, including markers for cellular lineage (immune cells, epithelial cells, endothelial cells,

fibroblasts/mesenchymal cells), cancer markers and signaling pathways. Metal-conjugated

antibodies were purchased from Fluidigm and customized conjugations were performed us-

ing Maxpar Multi-Metal labeling Kits (Fluidigm) with purified antibodies from different

sources (see Table 2.4).

2.5.2 Sample preparation and data acquisition

Cryopreserved samples were thawed and stained with our antibody panel (Table 2.4) as pre-

viously described [76]. Cell lines were detached from culture flasks using TrypLE Express

(Gibco) and processed following the same protocol. For intracellular staining, cells were

permeabilized with methanol. To prevent cell loss, an additional fixation step was added
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to the protocol after the washing steps of the intracellular staining. We controlled for batch

effect using EQ Four Element Calibration Beads (DVS Sciences/Fluidigm). Prior sample ac-

quisition, cells were resuspended in 1X calibration beads in deionized water to reach a con-

centration of 5×105 cells/ml. Cells were filtered using FACS tubes with filter caps (Corning

Falcon) and collected using a standard/narrow bore on a Helios CyTOF system at the Mass

Cytometry Center of Excellence at Vanderbilt University.

30



Antigen Isotope Level Clone Source Catalog #

EpCAM 141-Pr Surface 9C4 Fluidigm 3141006B
c-caspase3 142-Nd Intracellular D3E9 Fluidigm 3142004A
TP53∗ 143-Nd Intracellular DO-7 Biolegend 645802
HLA-ABC 144-Nd Surface W6/32 Fluidigm 3144017B
CD31 145-Nd Surface WM59 Fluidigm 3145004B
Thioredoxin 146-Nd Intracellular 2G11/TRX Fluidigm 3146016B
b-CAT 147-Sm Intracellular D10A8 Fluidigm 3147005A
HER2 148Nd Surface 29D8 Fluidigm 3148011A
p-STAT6 149-Sm Intracellular 18/P-Stat6 Fluidigm 3149004A
p-STAT5 150-Nd Intracellular Y694 Fluidigm 3150005A
TTF1∗ 151-Eu Intracellular D2E8 CST 12373
p-AKT 152-Sm Intracellular D9E Fluidigm 3152005A
ki67∗ 153-Eu Intracellular ki67 Biolegend 350523
CD45 154-Sm Surface HI30 Fluidigm 3154001B
CD56/NCAM 155-Gd Surface B159 Fluidigm 3155008B
Vimentin 156-Gd Intracellular RV202 Fluidigm 3156023A
p-STAT3 158-Gd Intracellular Y705 Fluidigm 3158005A
CD4∗ 159-Tb Surface RPA T4 Biolegend 300502
MDM2∗ 160-Gd Intracellular Polyclonal Abcam ab38618
Cytokeratin∗ 161-Dy Intracellular C-11 Abcam ab7753
MET∗ 162-Dy Surface L6E7 CST 8741
TP63∗ 163-Dy Intracellular W15093A Biolegend 687202
CK7 164-Dy Intracellular RCK105 Fluidigm 3164020A
EGFR∗ 165-Ho Surface AY13 Biolegend 352902
CD44 166-Er Surface BJ18 Fluidigm 3166001B
p-ERK 167-Er Intracellular D13.14.4E Fluidigm 3167005A
CD8 168-Er Surface RPA-T8 Fluidigm 3168002B
CD24 169-Tm Surface ML5 Fluidigm 3169004B
CD3e 170-Yb Surface SP34-2 Fluidigm 3170007B
CD11b∗ 171-Yb Surface ICRF44 Biolegend 301337
p-S6 172-Yb Intracellular N7-548 Fluidigm 3172008A
HLA-DR 174-Yb Surface L243 Fluidigm 3172008A
CD274/PDL1 175-Lu Surface 29E.2A3 Fluidigm 3175017B
Histone H3 176-Yb Intracellular D1H2 Fluidigm 3176016A

Table 2.4: Mass cytometry antibody panel for lung adenocarcinoma.
*Customized conjugated antibodies.

2.5.2.1 Cell lines

To validate our antibody panel we used four LUAD cell lines (Table 2.1) and PBMCs from

a healthy donor. In one experiment, we pooled and stained the 4 cell lines and PBMCs
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in the same proportions (0.5 million cells per group) and we repeat this experiment. In

other experiment, we stained and run the different cell groups separately (1 million cells

per group). All cells were stained with the same panel (Table 2.4) and we used Histone H3

expression to identify nucleated intact cells.

2.5.2.2 Human samples

Patient samples were stained and processed in the same fashion as cell lines. For every

batch, a control was stained and run on the same day. This control was a mixture of A549

and Ramos cells, 1 million cells of each.

2.5.3 Data preprocessing

Collected events from both validation experiments with cell lines and human samples were

processed in the same fashion. Prior to analysis, all mass cytometry FCS files were normal-

ized using the premessa R package (https://github.com/ParkerICI/premessa, version 0.2.4),

an R implementation of the MATLAB bead normalization software [77]. Normalized data

was initially analyzed in Cytobank [78].

2.5.3.1 Data cleaning: manual

For the first dataset that will be presented in Chapter 3, noise reduction parameters were as

follows: cells with Histone H3 < 10 were considered dead and excluded, only cells with an

event length 10-70 were considered singlets and included.

2.5.3.2 Data cleaning: automated

For the complete CyTOF dataset that will be presented in Chapter 4, I applied an automated

data cleaning strategy, which was deployed in an R package. This tool uses classification

models to automatically remove the noise from the data having as input the normalized files

of the samples and their batch controls. An initial phase removes debris in two steps: first

removes events with no expression of ”mandatory” markers (e.g. His H3 for nucleated cells)
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and events not expressing at least one of the cell type specific markers; the second step

removes debris using a classification model trained on Gaussian Discrimination parameters

gating, per Fluidigm recommendations (Fig. 2.1). The final phase removes the beads using

another classification model trained on the designated beads channels.

To train the first model, we used a random sample of FCS files from our dataset and

proceed with manual gating, labeling and then spliting the dataset into training and test (Fig.

2.2). To train the beads model, we first used a random random sample of FCS files, applied

arcsinh tranformation (cofactor=5) and performed an unsupervised detection of the beads

using a clustering method, which can be either by k-means or Gaussian Mixture Models (Fig.

2.3). Clustering results will be evaluated and only the files in which the events identified as

beads show a coefficient of variation (CV) < 0.05 (”good” files) will be selected to be part

of the training and test sets. For both models, since CyTOF experiments usually render

a large number of events and we do not need that many events to train a model, labeled

events from the initial files are concatenated and we take a random sample from it. Models

evaluation and further details can be found in the package website (https://msenosain.github.

io/denoisingCTF/index.html.)
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Figure 2.1: Gaussian Parameters-based manual gating example. Based on Fluidigm
recommendations
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Figure 2.2: Debris model data workflow. Strategy to build the training and test sets for the
debris classification model. A total of 220 000 and 80 000 events (i.e. cells, rows) were used
for training and test sets, respectively.
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Figure 2.3: Beads model data workflow. Strategy to build the training and test sets for the
beads classification model. A total of 170 000 and 60 000 events (i.e. cells, rows) were used
for training and test sets, respectively.
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2.5.4 Data analysis

2.5.4.1 Cell lines

For data shown in Figs. 3.1-3.2 we used the data acquired for each cell line individually, per-

formed random equal subsampling (15,000 events per sample), and concatenated the files.

UMAP plots shown in Figs. 3.1-3.2 were generated in R using all markers of Table 2.4, ex-

cept for Histone H3. We used k-means for clustering analysis and applied the same markers.

To determine the optimal number of clusters k to target, we used the ’elbow’ criterion, for

which the total within-cluster sum of squares was calculated for a range of values of k [79].

Clustering was performed with k = 8.

2.5.4.2 Human samples

For Chapter 3, to determine cellular identity, we performed k-means using markers that

identify main cellular populations (EpCAM, CD31, CD45, vimentin, cytokeratin and cytok-

eratin7). We targeted for a large number of clusters (k=10) to allow for more granularity and

prevent rare cell populations from being engulfed into dominant clusters. These were anno-

tated based on protein expression and clusters with similar characteristics were merged. Final

cell types were annotated as epithelial cancer cells, endothelial cells, mesenchymal cells and

immune cells. Epithelial cancer cells were defined as EpCAM+/cytokeratin+/cytokeratin7+,

endothelial cells as CD45-/CD31+, mesenchymal cells as vimentin+/CD45-/CD31-/EpCAM-

/cytokeratin-/cytokeratin7- and immune cells as CD45+. We performed a second clustering

round for immune cells only(k=10) using immune cell markers CD8, CD24, CD3, CD11b,

CD56 and HLA-DR. Cluster were annotated into myeloid cells (CD45+ /CD3-/CD11b+),

cytotoxic T cells (CD45+/CD3+/CD8+), helper T cells (CD45+/CD3+/CD4+) and other im-

mune as the remaining CD45+ cells. Fig. 3.3A is a representation of the annotated cell

types of the 10 tumors using the same markers from the two clustering rounds to gener-

ate the UMAP plots, for which we obtained a random sample without replacement for a

total of 4000 events per sample. Epithelial cancer cells from each entire sample were sub-
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seted and clustered using k-means (k = 10) and the following markers: EpCAM, c-casp3,

TP53, HLA-DR, HLA-ABC, CD31, thioredoxin, beta-catenin, HER2, p-STAT3, p-STAT5,

p-STAT6, TTF1, p-AKT, Ki67, CD56, vimentin, MDM2, cytokeratin, MET, TP63, CK7,

EGFR, CD44, p-ERK, CD24, p-S6, PDL1. Fig. 3.4A is a representation of the clusters of

the 10 tumors using the same markers from the previous clustering to generate the UMAP

plots, with random sampling without replacement for for a total of 2000 events per sam-

ple. For Chapter 4, to determine cellular identity, we performed k-means using markers

that identify main cellular populations (EpCAM, CD31, CD45, vimentin, cytokeratin and

cytokeratin7). The optimal number of clusters was determined by calculating the Within

Cluster Sum of Squares (WSS) for different k values, plotting k vs WSS and choosing the

k in which we see a pronounced bend or ”elbow” (k=10). The clusters were annotated

based on protein expression and clusters with similar characteristics were merged. Final

cell types were annotated as Epithelial cancer cells (EpCAM+/cytokeratin+/cytokeratin7+),

Endothelial cells(CD45-/CD31+), Fibroblasts/Mesenchymal cells (vimentin+/CD45-/CD31-

/EpCAM-/cytokeratin-/cytokeratin7-) and Immune cells (CD45+). We performed a second

clustering round for immune cells only using immune cell markers CD8, CD4, CD3, CD11b,

and CD56. Clusters were annotated into Myeloid cells (CD45+/CD3-/CD11b+), CD8+ T

cells (CD45+/CD3+/CD8+), CD4+ T cells (CD45+/CD3+/CD4+), Double negative T cells

(CD45+/CD3+/CD4-/CD8-) and Other immune as the remaining CD45+ cells. Each iden-

tified cell subset, including the non-immune cells, underwent an independent round of clus-

tering using the protein markers showed in their corresponding heatmap (Fig. S2-S9, panel

C). We then calculated the percentage of each subset per patient and compared cluster fre-

quencies between groups using non-parametric test Wilcoxon rank-sum (Fig. S2-S9, panel

D). For each cell type we calculated the Spearman correlation between protein markers (Fig.

S2-S9, panel E). We also calculated the Spearman correlation of the proportion of cell type

clusters among the patients (Fig. S10). Finally, we calculated the bulk median protein per

patient and compared patients between groups using non-parametric test Wilcoxon rank-sum
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(Fig. S11).

2.6 Multiplex immunofluorescence validation of CyTOF data

2.6.1 Tissue microarray

TMA was generated from lung tissue blocks from patients with LPS and SPS lung adeno-

carcinoma. Two tissue cores were used to represent one patient. First, specific cases were

selected to match samples, analyzed by CytOF, next, every core was evaluated by pathologist

to ensure tissue quality (no massive areas with necrosis, stroma, large vessels; no processing

artefacts).

2.6.2 Staining

TMA paraffin blocks were cut into 5 µm sections. Hematoxylin Eosin staining was used

for visual evaluation of morphology to ensure comparable tissue samples were used for

analysis. Multiplexed Immunofluorescent (mxIF) stain was performed with following an-

tibodies: anti-PanCK, Clone AE1/AE3 (Invitrogen); anti-CD45, Clone HI30 (Biolegend);

anti-CD3 (Agilent Inc., Dako); anti-HLADR, Clone SPM288 (Novus Biologicals LLC.).

Multistep mxIF staining was perform, where after blocking, in a first step tissue was incu-

bated with mouse anti-CD45 antibodies, followed by Fab fragment anti-mouse-Cy3 (Jack-

son ImmunoResearch). Tissue was washed well to remove unbound antibodies, blocked

with mouse IgG and incubated with directly conjugated mouse PanCK-FITC, HLADR-Cy7

and rabbit anti-CD3 antibodies. Next, after washing, CD3 was detected in additional step

with anti-rabbit-Cy5 (Thermo Fisher Scientific) antibodies. Nuclei were stained with DAPI

(Thermo Fisher Scientific). Slides were coverslip with prolong gold (Invitrogen) and dried

overnight. Whole slide imaging was performed on Aperio Versa 200 (Leica) scanner.

2.6.3 Single cell analysis

To perform single cell analysis of multiplexed fluorescent stained images, image analysis

pipeline was built in KNIME (Knime.com) analytical platform (KNIME 4.1.2 with inte-
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grated image processing and analysis extensions) [80, 81]. DAPI-stained images were used

to generate nuclear masks using deep learning algorithm [82]. Cell segmentation was gen-

erated by circular outgrow of nuclear masks. Single cell features were extracted by aligning

nuclear or cell masks to specific fluorescent stain images. Geometrical, statistical, and tex-

ture features were extracted for each segmented cell. For cell classifications, training set

of positive and negative cells was annotated. These annotations along with extracted from

each specific stain features, were used for machine learning where XG boost AI models

were generated for each marker. These models were applied to whole data set and result-

ing probabilities with p≥0.9 cutoff were used for initial binary cell classification: “PanCK+

or PanCK-” “CD45+ or CD45-” “CD3+ or CD3-”. Cell classification using combination

of binary markers yielded following cell classes: “Epithelial/Tumor cells” (PanCK+CD45-

CD3-), “T-cells” (CD3+CD45+PanCK-), “Immune (none-T) cells” (CD45+CD3-PanCK-),

“Other cells” (CD45-CD3-PanCK-). Quantitative data from single cell features (such as X,

Y coordinates, HLA-DR expression and etc.) was used for correlation and spatial analysis.

Continuous scale of fluorescent signal was used to quantify HLA-DR expression on tumor

cells. For this, signal intensities normalized to DAPI (sums fluorescent signals) were used.

Total cell number and specific class cell number per image were quantified and percent cal-

culations were made. Correlation between HLA-DR expression on Tumor cells and T cell

number was determined by Spearman’s rank-order correlation test. In neighborhoods of 100

micrometers diameter for each (processing) Tumor cell, HLA-DR median signal intensity

on neighboring Tumor cells and number of T cells were calculated in Python and used as

inputs for correlation analysis. Spatial analysis was performed in KNIME by calculation of

distances from each T cell to nearest 1st and 2nd Tumor cell using similarity search node.

2.7 TCGA LUAD data set

Fragments Per Kilobase of transcript per Million (FPKM) normalized read counts of RNA-

Seq from LUAD patients and matching clinical data were downloaded from National Cancer
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Institute Genomic Data Commons Data Portal (https://portal.gdc. cancer.gov/projects/TCGA-

LUAD).

2.8 Cell type enrichment analysis with xCell

Using TCGA data, we selected patients with disease stage between I and III. After applying

log transformation (log2(FPKM +1)) we computed the quantiles of expression of MHC-II

related genes. Patients were labeled as ”low” if the expression of the gene in question was

below the first quantile (25%) and ”high” if it was higher than the third quantile (75%). Cell

type enrichment analysis results for TCGA data were downloaded from the xCell website

(https://xcell.ucsf.edu/) and patient groups were compared.

2.9 Whole Exome Sequencing

2.9.1 Sample preparation and data acquisition

DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen) following the kit pro-

tocol. A quantitation and integrity assessment were completed using the whole genomic

DNA. An aliquot of each sample was analyzed on the Agilent TapeStation and quantitated

using a Picogreen assay. The samples were normalized and plated using the BioMek FX

liquid handler. Libraries were prepared using 12-50 ng of DNA and the Twist Biosciences

library preparation kit (P/N 104207) per manufacturer’s instructions. Libraries were then

captured using the Twist Comprehensive Exome panel (P/N 102031). Individual libraries

were assessed for quality using the Agilent 2100 Bioanalyzer and quantified with a Qubit

Fluorometer. The adapter ligated material was evaluated using qPCR prior to normalization

and pooling for sequencing on the QuantStudio 12K Flex. The libraries were sequenced

using the NovaSeq 6000 instrument with 150 bp paired end reads. RTA (version 2.4.11;

Illumina) was used for base calling and data QC was completed using MultiQC v1.7. Each

sample was analyzed using the DRAGEN Enrichment Pipeline v3.7.5 to calculate alignment

and capture metrics.
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2.9.2 Data preprocessing

Sequence data from genomic DNA were aligned to the reference human genome (GRCh38)

by BWA aligner[83]. For quality Control purpose, multiple stages of quality control (QC) on

sequencing data were carried out. Raw data QC was performed by FastQC[84] and QC3[85].

Alignment QC and Variants QC were performed using QC3[85]. GATK software 4.1.8.1

was used for somatic single nucleotide variants (SNVs), short insertion and deletion variant

(INDELs), and somatic CNV calling[86]. Briefly, the reads pre-processing (RealignerTar-

getCreator, IndelRealigner, BaseRecalibrator) was performed as described in GATK Best

Practices Workflows[86]. Then MuTect2 [87] was used for somatic mutation (SNVs and IN-

DELs) calling and GATK was used for somatic CNV calling. All the identified variants were

annotated by ANNOVAR to gene and transcript level[88]. All variants outside the target re-

gions or synonymous variants were removed. Then all the variants were annotated to public

database including dbSNP[89], Exome Aggregation Consortium (ExAC)[90], NHLBI GO

Exome Sequencing Project (ESP) and COSMIC[91]. To remove possible germline muta-

tions, variants reported in dbSNp or ExAC or ESP with minor allele frequency in normal

population larger than 1% were removed.

2.9.3 Data analysis

The resulting processed file (Mutation Annotation Format, MAF), was analyzed using the

R package maftools[92]. We used the Oncoplot to visualize the top 25 mutated genes, and

the Forest plot to compare Indolent + Intermediate tumors versus Aggressive and identify

the significantly mutated genes (Fig. S12A,C). Finally, we calculated the Spearman corre-

lation between the SILA score and the logarithm base 10 of the mutational load (number of

mutations per patients) (Fig. S12B).
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2.10 Bulk RNA Sequencing

2.10.1 Sample preparation and data acquisition

RNA was extracted using the RNeasy Plus Mini Kit (Qiagen) following the kit protocol.

RNASeq libraries were prepared using 300 ng of RNA and the NEBNext Ultra II Direc-

tional RNA Library Prep kit (NEB, Cat: E7760L). Fragmentation, cDNA synthesis, end

repair/dA-tailing, adaptor ligation and PCR enrichment were performed per manufacturer’s

instructions. Individual libraries were assessed for quality using the Agilent 2100 Bioana-

lyzer and quantified with a Qubit Fluorometer. The adapter ligated material was evaluated

using qPCR prior to normalization and pooling for sequencing. The libraries were sequenced

using the NovaSeq 6000 with 150 bp paired end reads. RTA (version 2.4.11; Illumina) was

used for base calling and data QC was completed using MultiQC v1.7 by the Vanderbilt

Technologies for Advanced Genomics (VANTAGE) core (Vanderbilt University, Nashville,

TN).

2.10.2 Data preprocessing

Quality control (QC) analysis was performed on all sequencing reads using FastQC package

developed by the Babraham Institute bioinformatics group. Reads with poor quality were

trimmed and adapter sequences were removed by cutadapt g. Reads were then aligned to

human genome (hg38) using STAR[93] and quantified by featureCounts[94]. Alignment

quality was checked by QC3[85]. Any RNA-Seq experiment with poor quality was removed.

2.10.3 Data analysis

Starting from the raw counts, we removed low variance genes and filtered out genes from

chromosomes X and Y. We used the package DESeq2 to perform differential gene expres-

sion analysis[95] and the package fgsea for the Gene Set Enrichment Analyses[96] with

the Molecular Signature Database (MSigDB) hallmark gene set collection[97] and the RE-

ACTOME database[98]. The transcription factor activity was inferred using the VIPER

package[99]. Individual pathways scores per patient sample were obtained using the Gene
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Set Variation Analysis (GSVA) tool[100]. Liberzon2015Gillespie2022

2.11 Single Cell RNA Sequencing

2.11.1 Sample preparation and data acquisition

After dead cell removal with MACS Dead Cell Removal Kit, (Miltenyi Biotec, Germany),

cells (5,000-10,000 cells per sample) were submitted for processing using the 10X Genomics

platform. Libraries were prepared using P/N 1000006, 1000080, and 1000020 following the

manufacturer’s protocol. The libraries were sequenced using the NovaSeq 6000 with 150 bp

paired end reads. RTA (version 2.4.11; Illumina) was used for base calling and analysis was

completed using 10X Genomics Cell Ranger software v4.0.0.

2.11.2 Data preprocessing

We used 10x Genomics Cell Ranger 4.0.0 software to obtain the feature barcode matrices

per sample. For further preprocessing steps we used the scanpy tool[101]. For more details

see https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html.

2.11.3 Data analysis

We first computed a principal component analysis to reduce the dimensionality of the data

and then computed a neighborhood graph on the first 40 principal components. We then

used the Leiden graph-clustering method[102] and obtained 25 clusters which then were an-

notated into 7 major cell types: B cells, Cancer cells, Endothelial cells, Mural cells, Myeloid

cells and T cells. We calculated the cell type proportions for each patient and compared

indolent versus aggressive tumors using non-parametric test Wilcoxon rank-sum. Each cell

type underwent an additional clustering step and again cluster proportions between groups

were compared. To better understand the identity of the clusters we used the split violin visu-

alization from scanpy, and showed the top 30 marker genes for each cluster when compared

to the rest.
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2.12 Data integration

For the data integration effort, we selected only the features that were significantly asso-

ciated with tumor behavior. From the CyTOF dataset, we included the cell type cluster

proportions and the bulk protein expression per patient. In the latter, for a protein marker

to be considered, the median of at least one patient group (indolent, intermediate or aggres-

sive) should be above 1.44, which in raw values (before the arcsinh transform) correspond

to 10 ”pushes” which is the default lower limit of the HeliosTM[103]. From the RNA-Seq

data set, we selected all the pathways with adjusted p value ¡ 0.05, and a normalized enrich-

ment score (NES) ¿ 1.5. We then used the GSVA package to calculate individual expression

scores of these pathways for each patient. For the HealthMyne radiomics features dataset, we

performed a Spearman pairwise correlation against the SILA score and selected only those

significantly correlated (adjusted p value ¡ 0.05). Only patients with complete data were se-

lected, all the matrices concatenated and the features were scaled and centered. Patients and

features were clustered independently using k means (k=4, by elbow method as described

in the CyTOF methods section). Cluster IDs for each patient and feature can be found in

Tables S11-12. To visualize the feature interactions we computed a similarity matrix and

also performed a PCA and plotted the first two components for both features and patients.

2.13 Statistical analysis

For correlation analysis we used Spearman’s rank correlation test and adjusted p-values for

multiple hypothesis using the Benjamini & Hochberg method [104]. Comparison of cat-

egorical variables was performed using the Mann-Whitney U test. Survival curves were

generated using the Kaplan-Meier method, and statistically significant differences were an-

alyzed with the log rank test. All statistical tests were two-sided and p values less than 0.05

were considered statistically significant. The analyses were performed in R 4.0.3 and Python

3.
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2.14 Code Availability

All the code used to analyze the data and generate the visualizations and tables can be ac-

cessed at https://github.com/msenosain/TMA36 data-analysis.
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CHAPTER 3

HLA-DR cancer cells expression correlates with T cell infiltration and is enriched in

lung adenocarcinoma with indolent behavior

3.1 Acknowledgements

This chapter is adapted from “HLA-DR cancer cells expression correlates with T cell infiltra-

tion and is enriched in lung adenocarcinoma with indolent behavior” published in Scientific

Reports and has been reproduced in line with publisher policies. [105]

3.2 Abstract

Lung adenocarcinoma (LUAD) is a heterogeneous group of tumors associated with different

survival rates, even when detected at an early stage. To investigate whether CyTOF iden-

tifies cellular and molecular predictors of tumor behavior. We developed and validated a

CyTOF panel of 34 antibodies in four LUAD cell lines and PBMC. We tested our panel in a

set of 10 LUADs, classified into long- (LPS) (n=4) and short-predicted survival (SPS) (n=6)

based on radiomics features. We identified cellular subpopulations of epithelial cancer cells

(ECC) and their microenvironment and validated our results by multiplex immunofluores-

cence (mIF) applied to a tissue microarray (TMA) of LPS and SPS LUADs. The antibody

panel captured the phenotypical differences in LUAD cell lines and PBMC. LPS LUADs had

a higher proportion of immune cells. ECC clusters (ECCc) were identified and uncovered

two LUAD groups. ECCc with high HLA-DR expression were correlated with CD4+ and

CD8+ T cells, with LPS samples being enriched for those clusters. We confirmed a posi-

tive correlation between HLA-DR expression on ECC and T cell number by mIF staining

on TMA slides. Spatial analysis demonstrated shorter distances from T cells to the nearest

ECC in LPS. In conclusion, our results demonstrate a distinctive cellular profile of ECC and

their microenvironment in LUAD. We showed that HLA-DR expression in ECC is correlated

with T cell infiltration, and that a set of LUADs with high abundance of HLA-DR+ ECCc
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and T cells is enriched in LPS samples. This suggests new insights into the role of antigen

presenting tumor cells in tumorigenesis.

3.3 Introduction

Recently, the National Lung Screening Trial (NLST) reported a 20% relative mortality risk

reduction using low-dose computed tomography (CT) over chest X-ray screening [16]. How-

ever, lung tumors detected through CT screening range from indolent to aggressive. Aggres-

sive lung cancers have doubling times of 50 to 150 days, yet CT screening has been shown

to detect slow growing tumors with doubling times of 400 days or more [106]. Lung cancer

screening bears the inherent risk of overdiagnosis in up to 18% of tumors [107]. Recent

efforts in radiomics have been reported to predict this phenomenon, however its biological

determinants remain unknown [19, 108, 109].

LUAD is a highly heterogeneous disease. Assuming that subpopulations may be respon-

sible for a particular behavior, these may be rare and difficult to detect at an early stage with

standard bulk analyses [5, 6, 7]. Until recently, the molecular profiling of tumors has been

based on an average phenotype of hundreds of thousands of cells, including neoplastic cells

and cells of the tumor microenvironment (TME). Although this approach has proven to be

useful in many applications, there is a significant loss of information, particularly affecting

the detection of rare cell subsets that could be responsible for cancer initiation, plasticity and

recurrence. Emerging single-cell technologies can overcome such limitation, providing high

resolution information essential for a better understanding of the tumor cellular composition

[9]. Among those, mass cytometry is a rapidly evolving technology capable of measuring

the expression of ∼40 proteins on individual cells using antibodies labeled with heavy metal

isotopes [110]. To date, some studies have investigated LUAD from a single-cell perspective

[64, 67, 68, 69, 111, 112], however the molecular determinants of early LUAD behavior as

for why some tumors progress faster than others remain unknown.

Here, we hypothesized that single-cell proteomic analysis of early stage adenocarcinoma
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of the lung will provide new insights into the cellular and molecular determinants of indolent

and aggressive tumors which in turn may offer novel and personalized avenues for interven-

tion. We developed a comprehensive mass cytometry antibody panel that will allow us to

investigate LUAD behavior, which includes markers for cellular lineage, tumor cell markers

and signaling pathways. To this end, we have validated our panel using LUAD cell lines and

PBMC and we present the analysis of a set of ten early stage primary LUADs of the lung

with indolent and aggressive behaviors showing some valuable insights on immunogenicity

of the tumors.

3.4 Results

3.4.1 LUAD mass cytometry antibody panel captures the cellular diversity between

LUAD cell lines and PBMC

To validate our mass cytometry panel, we used a combination of LUAD cell lines that harbor

different mutations and therefore have different protein expression patterns (Table 2.1). We

also included PBMC from a healthy donor in the mix to mimic the immune cells that can be

found in a tumor. All cells were pooled in the same proportion, stained and run through the

CyTOF machine as a single sample. Additionally, cells were run separately to confirm our

findings. Protein expression by cell line was consistent across replicates (see Appendix A

Fig. S1-S7). Dimensionality reduction algorithm UMAP [113] allowed us to visualize the

multiple parameters measured in a two dimensional map (Fig. 3.1A-B). Our panel captured

phenotypic differences among the cell lines and PBMC in the parameter space, visualized

as independent islands in the UMAP plot (Fig. 3.1A). Epithelial markers EpCAM, pan-

cytokeratin and cytokeratin 7 were positive in LUAD cell lines, but not always expressed on

the same cells (Fig. 3.1B). Receptor tyrosine kinases EGFR and MET were highly expressed

in all LUAD cell lines as expected. Cell line H3122 was positive for TTF1 as previously re-

ported [75], and cell lines PC9 and H23 which harbor inactivating TP53 mutations expressed

high levels of the latter (Table 2.1). A549 expressed high levels of CD24. Human PBMC
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were all CD45 positive and divided into three major islands: CD3+ CD4+ (T helper cells),

CD3+ CD8+ (cytotoxic T cells), and CD3- CD11b+ cells (myeloid cells). Additionally, basal

kinase activity as represented by phosphorylation of ERK, S6, STAT5 and, in lesser degree,

AKT was detected mostly in LUAD cell lines, reflecting the constitutive activation of these

pathways (Fig. 3.1C).
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Figure 3.1: Mass cytometry panel and unsupervised computational analysis capture
cellular diversity in LUAD cell lines and PBMC. (A) Density (above) and cell identity
(below) UMAP representations show separation of the cellular populations based on single-
cell protein expression. (B) UMAP plots correspond to the same cells from (A) showing
single cell expression of the labeled protein. (C) Heatmap shows median protein expression
of arcsinh transformed values (cofactor = 5) for each protein on each cell population. Colors
on the left represent the cellular populations and match those represented in (A).
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To test if our clustering strategy was successful in identifying the different cell types

in the mix, we determined the optimal number of clusters and studied their composition.

To determine the optimal number of clusters k to target with k-means clustering, we used

the ‘elbow’ criterion, for which the total within-cluster sum of squares was calculated for

a range of values of k [79]. Clustering was performed with k = 8. The resulting clusters

represented with high accuracy the different cell types present in the mix (Fig. 3.2). Cluster

2 was 94.6% composed by H23 cells, cluster 3 was 97.4% composed by A549 cells; cluster

5 was 86% composed by H3122 cells and cluster 7 was 90% composed of PC9 cells. For the

immune clusters, clusters 4, 6 and 8 were 100% composed by PBMC. Based on their protein

expression, these could be annotated as CD11b+ monocytes, CD8+ T cells and CD4+ T

cells, respectively. Finally, cluster 1 is a mix of cells dominated by A549 and H3122 cells,

driven by a high pan-cytokeratin and cytokeratin 7 expression. Altogether, these results show

that our mass cytometry antibody panel can successfully identify different cancer subsets as

well as some immune populations.
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Figure 3.2: Clustering analysis of LUAD cell lines and PBMC. (A) UMAP plot is the
same as in Fig. 1 but colors represent 8 clusters obtained with k-means. (B) Heatmap shows
median protein expression of arcsinh transformed values (cofactor = 5) for each protein on
each cluster. (C) Stacked barplots represent cluster composition (percentage per cell type).
Colors match those represented in (A)(bottom).
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3.4.2 Mass cytometry analysis identifies main cell types in LUADs and captures dif-

ferences between tumors with long and short predicted survival

LUADs human samples characterized by different predicted behavior classified into long-

(LPS) (n = 4) and short-predicted survival (SPS) (n = 6) were stained with our antibody

panel (Table 2.4, see Appendix A Fig. S8). We identified the major cell types (ECC,

endothelial, mesenchymal and immune cells) based on the expression of protein mark-

ers (Fig. 3.3B). EpCAM+/pan-cytokeratin+/cytokeratin 7+ cells were annotated as ECC;

CD31+/CD45- cells were annotated as endothelial cells; vimentin+ CD31- CD45- and neg-

ative for epithelial markers cells were annotated as mesenchymal cells. All CD45+ cells

and negative for epithelial markers were annotated as immune cells. The latter were further

classified into T helper cells (CD3+/CD4+/CD8-), cytotoxic T cells (CD3+/CD8+/CD4-),

myeloid cells (CD11b+/CD3-) and the remainder CD45+ cells were annotated as ”Other im-

mune”. While the number of cells acquired varied between samples, we included all cells

collected for each tumor in the analysis and used the cell type relative abundances (i.e. per-

centages) for comparisons.
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Figure 3.3: Mass cytometry antibody panel distinguishes epithelial and non-epithelial
cell types in 10 early LUADs. (A) UMAP plots of a random sample of 4000 cells per
patient colored by Density, Cell identity, Patient ID and CANARY prediction. Seven cell
types were identified based on k-means clustering and marker expression profiles. Patient
CANARY risk stratification is represented as a light blue for long-predicted survival (LPS)
and dark blue for and short-predicted survival (SPS). (B) UMAP plots correspond to the
same cells from (A) showing single cell expression of selected labeled protein. (C) Stacked
barplots with cell type percentage per patient. Colors match those in (A) Cell identity plot.
Dendrogram was calculated from a patient-patient Spearman correlation matrix. (D) Spear-
man correlation analysis of the relative abundance of immune cells vs. endothelial cells.
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Fig. 3.3A is a representation of an equal sampling of annotated cell types of the 10 tu-

mors using dimensionality reduction algorithm UMAP [113]. Cell types separated based

on their marker expression (Fig. 3.3A, Cell identity). Additionally, events (i.e. cells) did

not cluster by sample but were mixed among the different islands in the plot (Fig. 3.3A,

Patient ID). We further investigated the distribution of these cell types across the 10 tumors

by performing hierarchical clustering on the correlation matrix based on the subpopulations

relative abundances (Fig. 3.3C). Samples clustered in two main groups, one enriched in T

cells and myeloid cells and one with lower to no abundance of those cell types and higher

abundance of mesenchymal cells on average. The first group of samples was composed by 3

LPS samples (7984, 11522, 8356) and one SPS sample (12924). The other group of samples

was mainly composed of SPS samples (13622, 12994, 13197, 13436, 12929) and one LPS

sample(13376) (see Appendix A Table S1). Additionally, we found a statistically significant

positive correlation between endothelial cells and immune cells in the LUAD samples (Fig.

3.3D, see Appendix A Fig. S9). When LPS and SPS tumor samples were compared, we

found that LPS had a higher median percentage of endothelial cells and immune subtypes,

whereas SPS samples had a higher median percentage of fibroblasts/mesenchymal cells (see

Appendix A Fig. S10) We compared LPS vs SPS protein expression by cell types (see Ap-

pendix A Fig. S10-S16). We found a tendency towards a higher expression of HLA-DR

and HLA-ABC in endothelial cells from LPS tumors (see Appendix A Fig. S11). In epithe-

lial and mesenchymal cells there was higher HLA-DR expression in LPS compared to SPS

tumors, with the latter cell type showing a significant difference (p=0.038) (see Appendix

A Fig. S12-S13). The immune cells as a whole also showed a tendency towards higher

HLA-DR expression in LPS tumors (see Appendix A Fig. S14). CD8+ T cells showed

a significantly higher expression of HLA-ABC in LPS tumors (p=0.032) (see Appendix A

Fig. S15). CD4+ T cells showed a tendency towards higher expression of activation marker

CD44 in LPS tumors (see Appendix A Fig. S16). Finally, myeloid cells presented a ten-

dency towards higher expression of HLA-ABC and HLA-DR in LPS tumors (see Appendix
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A Fig. S17). To confirm that the HLA-DR higher expression in most cell types of LPS

tumors was not due to an artifact of the antibody, we assessed the expression of this protein

in our batch control cell lines A549 and Ramos (see Appendix A Fig. S18). Results were

consistent across batches, with A549 showing minimal expression of HLA-DR and Ramos

showing high expression of the protein in question as expected.

Based on these results, we conclude that our mass cytometry antibody panel enables

the identification of major cell types in LUADs, allowing for comparison across tumors of

different predicted behavior. We found that our set of samples divided in two main groups

based on their cellular composition, one enriched on T cells (LPS predominant) and one

depleted on T cells (SPS predominant). Additionally, we found a tendency towards a higher

HLA-DR expression in LPS samples, suggesting an immunogenic profile on these tumors.

3.4.3 Unsupervised analysis of ECC reveals HLA-DR+ subsets associated with T cell

infiltration

Because distinct subpopulations of malignant cells have been associated with disease out-

come [7], we tested whether our antibody panel detects different subsets of ECC and whether

LPS or SPS tumors are particularly enriched for any subset. We computationally extracted

the ECC of each tumor from the pool of cells (Fig. 3.3).

We used k = 10 to achieve more granularity and dig deeper into the differences of the

ECC. Fig. 3.4A is an equal-sampling representation of the 10 ECCc of the 10 LUAD sam-

ples using dimensionality reduction algorithm UMAP [113]. ECCc separated based on their

protein expression (Fig. 3.4A-B, Cluster ID) and cells did not grouped by sample but were

mixed among the different islands in the plot (Fig. 3.4A, Patient ID). We then assessed the

sample ECCc composition across the 10 tumors by hierarchical clustering on the correlation

matrix based on the cluster relative abundances as described above (Fig. 3.4C). A first set of

samples with very similar profile composed by 3 LPS samples(7984, 11522, 8356) and one
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SPS sample (12924) were enriched in clusters 7, 8 and 9, which have a high expression of

HLA-DR, TTF1, beta-catenin, and all three epithelial markers EpCAM, pan cytokeratin and

cytokeratin 7. This group of LUADs is composed by the same patients that clustered together

in Fig. 3.3C as well. Another set of LUADs composed by 3 SPS samples (13436, 13197,

12994) and one LPS sample (13376) were enriched in clusters 1, 3 and 6, which are HLA-

DR and TTF1 negative. Within this group, SPS samples 13197 and 12994 were also enriched

in cluster 4, which is also HLA-DR and TTF1 negative and has high vimentin expression. A

last set of 2 SPS samples (13622, 12929) were enriched in clusters 5 and 10, which present

high expression of vimentin, MDM2 and p-STAT3, and are negative for HLA-DR, TTF1 and

beta-catenin. When we assessed the correlation of these epithelial clusters with the other cell

types in the TME, we found that 3 clusters were significantly correlated with some immune

subsets (Fig. 3.4D, see Appendix A Fig. S19). Epithelial cancer clusters 7, 8 and 9 were

significantly correlated with CD4+ (r=0.96, p<2.2e-16; r=0.9, p<0.001; r=0.78, p=0.012)

and CD8+ T cells (r=0.95, p<2.2e-16; r=0.89, p=0.0014; r=0.76, p=0.016). Interestingly,

these specific clusters as described above, are characterized by high HLA-DR, TTF1 and

beta-catenin, among which the former has been associated with an immunogenic profile and

favorable prognosis in several cancers [114, 115].
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Figure 3.4: Unsupervised analysis of ECC reveals intra- and inter-tumor heterogeneity.
(A) UMAP plots of a random sample of 2000 ECC per patient colored by Density, Cell iden-
tity, Patient ID and CANARY prediction. Ten clusters were obtained based on k-means clus-
tering. Patient CANARY risk stratification is represented as a light blue for long-predicted
survival (LPS) and dark blue for and short-predicted survival (SPS). (B) Heatmap shows
median protein expression of arcsinh transformed values (cofactor = 5) for each protein on
each ECCc. (C) Stacked barplots with ECCc percentage per patient. Colors match those
in (A). Dendrogram was calculated from a patient-patient Spearman correlation matrix. (D)
Spearman correlation analysis of the relative abundance of ECCc 7, 8 and 9 vs CD4+ and
CD8+ T cells, respectively.
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Thus, our results show that this mass cytometry antibody panel allows the detection of

subpopulations of malignant epithelial cells. Based on the cellular subsets described here, we

found a high degree of intra- and inter-tumor heterogeneity. Furthermore, a significant posi-

tive correlation of HLA-DR+ ECCc with T cell infiltration and the enrichment of HLA-DR+

ECCc predominantly in LPS tumors suggests the occurrence of an immunogenic process

that may be associated with a more favorable outcome.

3.4.4 Validation with mIF suggests immunogenic profile in LSP tumors and RNA-

Seq-based cell type enrichment analysis of independent cohort supports findings

To validate our mass cytometry results and to gain insights into the spatial distribution of cel-

lular interactions, we used mIF staining of TMA sections of LUAD. We generated a TMA

from lung tissue blocks from patients with LPS and SPS LUAD, using two tissue cores per

patient. Cases were selected to match samples analyzed by CyTOF and every tissue core

was evaluated by a pathologist to ensure tissue quality (no areas of necrosis, predominant

stroma or large vessels. With the exception of one patient sample (ID 7984) which stained

cores were excluded due to a significant loss of material during staining, all CyTOF samples

were included in this analysis along with some extra to increase statistical power. Fluores-

cent staining was performed for PanCK, CD45, CD3, HLA-DR, DAPI. Slides were scanned

and images were extracted. Cell nuclei were segmented using deep learning algorithm (cell-

pose.org) [82] and were further processed in KNIME analytical platform where cell segmen-

tation, feature extraction and cell classification were performed [80]. Using a combination of

binary markers we annotated the following cell types: “ECC/Tumor cells” (PanCK+CD45-

CD3-), “T-cells” (CD3+CD45+PanCK-), “Immune (none-T) cells” (CD45+CD3-PanCK-),

“Other cells” (CD45-CD3-PanCK-). Quantitative data from single cell features (such as X,

Y coordinates, HLA-DR expression and etc.) was used for correlation and spatial analy-

sis (Fig.3.5A-C). We computed the correlation between HLA-DR expression on tumor cells

and T cell number by Spearman’s rank-order correlation test. For this, in neighborhoods of
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100 micrometers diameter for each (processing) tumor cell, HLA-DR median signal inten-

sity on neighboring tumor cells and number of T cells were calculated and used as inputs for

correlation analysis. We found a significant positive correlation of HLA-DR expression in tu-

mor cells and T cell number (r=0.25, p=2.2e-5), confirming our previous findings (Fig.3.5B,

Fig.3.4D). Next, spatial analysis was performed in KNIME by calculation of distances from

each T cell to nearest 1st and 2nd tumor cell. T cells in LPS tumors showed a shorter dis-

tance to the first tumor cell compared to SPS tumors (Fig.3.5C, see Appendix A Fig. S20),

demonstrating that LPS tumors are more immunogenic than SPS tumors. These results sup-

port our CyTOF findings and further demonstrate by spatial analysis that LPS tumor cells

are in closer proximity with T cells compared to SPS tumors, suggesting that the HLA-DR

and T cell infiltration play an important role in the indolent behavior of these tumors.
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Figure 3.5: Validation by mIF on matching samples and cell enrichment analysis on
RNA-Seq data from TCGA (A) Experiment design. TMA was generated from lung tissue
blocks from patients with LPS and SPS lung adenocarcinoma. Two tissue cores were used
to represent one patient. Fluorescent staining was performed for PanCK, CD45, CD3, HLA-
DR, DAPI. Slides were scanned and images were extracted. Cell nuclei were segmented
using deep learning algorithm (cellpose.org) and were further processed in KNIME ana-
lytical platform. Cell classification using combination of binary markers yielded following
cell classes: “ECC/Tumor cells” (PanCK+CD45-CD3-), “T-cells” (CD3+CD45+PanCK-),
“Immune (none-T) cells” (CD45+CD3-PanCK-), “Other cells” (CD45-CD3-PanCK-). (B)
Correlation between HLA-DR expression on Tumor cells and T cell number was determined
by Spearman’s rank-order correlation test. For this, in neighborhoods of 100 micrometers
diameter for each (processing) Tumor cell, HLA-DR median fluorescence intensity in Tu-
mor cells and average number of neighboring T cells per sample were calculated and used as
inputs. (C) Spatial analysis was performed in KNIME by calculation of distances from each
T cell to nearest 1st and 2nd Tumor cell. (D) Cell enrichment analysis on LUAD RNA-Seq
data from TCGA using xCell, comparing enrichment of CD4+ memory T cells and CD8+ T
cells between patients with high (n=120) vs. low (n=120) gene expression of HLA-DRA and
HLA-DRB1. Significance was assessed by Mann-Whitney U test (*** = pvalue <0.001).
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Finally, acknowledging the limited sample size of our study we decided to further val-

idate our results using the LUAD cohort from The Cancer Genome Atlas Research Net-

work (TCGA). In a recent study, Ma and colleagues used the same cohort and found that

the top pathways associated with better prognosis were enriched for immune cell signaling-

related pathways, and that MHC-II genes were among the common genes shared by these

pathways[116]. When performing survival analysis they found that up-regulation of MCH-

II genes was significantly associated with an improved overall survival rate. Taking these

results into account, we decided to take a step further and performed cell type enrichment

analysis on the same RNA-Seq data using xCell, a gene signatures-based method robustly

trained and validated that identifies immune and stroma cell types[117]. When comparing

samples with high vs low expression of MHC-II-related genes we found that those with high

expression had significantly higher enrichment scores for multiple T cell subtypes such as

CD4+ memory T cells and CD8+ T cells (Fig.3.5D, see Appendix A Table S3). Altogether,

these results provide an additional validation to our findings and highlighting the potential

role of HLA-DR in tumor behavior and prognosis of LUAD.

3.5 Discussion

Predicting behavior of early detected LUAD presents a major challenge to patients and their

providers. In this study, we presented the development and validation of a mass cytome-

try antibody panel that aims to further our understanding of the biological determinants of

early LUAD behavior and thus improve the discrimination between indolent and aggressive

tumors. First, we tested our panel in LUAD cell lines and PBMC and showed that dimen-

sionality reduction and unsupervised clustering algorithms performed optimally. We were

able to accurately capture the cellular diversity between and within different cell types. Sec-

ond, when we tested our panel on ten primary LUAD we saw that the relative abundance of

endothelial cells is positively correlated with immune cell infiltration. LUADs with LPS had

a higher proportion of endothelial and immune cells, whereas a group of LUADs predicted

62



to have SPS had higher proportion of mesenchymal cells. Third, when considering the ECC

compartment, samples showed high inter- and intra-tumor heterogeneity and HLA-DR+ sub-

populations were positively correlated with T cell infiltration. Specifically, a group of four

samples that clustered together by cell type abundance in Fig. 3.3C which presented a high

percentage of CD8+ and CD4+ T cells and myeloid cells, also clustered together based on

their ECCc profile (Fig. 3.4) which was enriched in HLA-DR+ cells. Three of these samples

were LPS tumors classified as stage IA or 0 cancers with small nodule size based on their CT

scans (Table 2.1), and their histology is mostly lepidic which is associated with a favorable

prognosis [118] (see Appendix A Table S2). Conversely, the one LPS sample that deviated

from this profile is a stage IB cancer, presents a bigger nodule size compared to the other LPS

samples and has a predominant lepidic pattern but it also has a micropapillary component

which is typically associated with a worse prognosis [118]. Finally, we validated our CyTOF

findings by immunofluorescence and spatial analysis, in which we confirmed that the T cell

abundance was positively correlated with HLA-DR expression in pan-cytokeratin+ cells and

that T cells in LPS samples were closer to the first tumor cell in the space compared to SPS

samples (Fig. 3.5).

The hypothesis that intra-tumor heterogeneity is associated with disease progression is

not novel per se [119]. However, most studies in LUADs are based on bulk tissue analysis,

which provides an average phenotype affecting the detection of rare subsets and overlooking

the contribution of the TME. Single-cell technologies can overcome such limitation, pro-

viding high resolution information. Recently, the development and improvement of tissue

dissociation protocols have made possible the application of single cell analysis to solid tu-

mors [76]. A recent study using mass cytometry investigated the TME of LUAD focusing

on the innate immune component [64]. The authors focused on comparing blood to nor-

mal and cancer tissues, for which the latter had a higher T cell content and they identified

changes in tumor infiltrating myeloid cell subpopulations that could impair anti-tumor T cell

immunity. Association with clinical outcome was not reported, however. Another study used
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single-cell RNA Seq and obtained a deep profile of lung cancer samples, most of which were

LUAD patients, focusing on the TME and highlighting its heterogeneity and importance in

tumor development [69]. Additional analysis of TCGA data showed that the abundances of

some subpopulations and their correlation with patient survival differ between LUAD and

squamous cell carcinoma and that they were influenced by clinical characteristics such as

stage. An important component of the immune response in tumor biology is played by the

interaction of the major histocompatibility complex molecules class I and II. MHC-I has

been widely studied in cancer and there are some pivotal publications dedicated to LUAD

specifically [62, 63]. In contrast, the role of MHC-II or HLA-DR in LUAD is less well un-

derstood. HLA-DR is constitutively expressed in antigen presenting cells but its expression

can be induced in other tissues under, such as tumor cells, under inflammatory conditions

[115]. Their main role is antigen presentation to CD4+ T cells, which when activated sup-

port CD8+ T cell activation and generation of memory T cells. Furthermore, tumor specific

HLA-DR expression is associated with favorable outcomes in cancer patients [115]. In a

recent study, Johnson and colleagues addressed the effect of HLA-DR expression in cancer

cells on T cell recruitment and anti-PD1 therapy response using non-small cell lung cancer

murine models [120]. They found that HLA-DR expression in cancer cells correlated with

response to anti-PD1 therapy and showed by mechanistic experiments that overexpression

of CIITA, a master regulator of the MHC-II pathway, in anti-PD1 resistant cells resulted in

HLA-DR expression and increased T cell infiltration, whereas loss of CIITA in anti-PD1

responsive cells resulted in reduced HLA-DR expression and decreased T cell infiltration.

In our data we found a strong association between HLA-DR expression in ECC and T cell

abundance, mainly in LPS tumors. In addition, we found by spatial analysis an increased

proximity of T cells to tumor cells in LPS tumors, suggesting that an immunogenic process

could be responsible for the indolent behavior. How HLA-DR expressing ECC and closely

related T cell infiltration in space contribute to the behavior of early LUAD remains to be

studied.
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Our results prove mass cytometry as a suitable tool to dissect LUAD biology at the single

cell level and to investigate the interplay between the TME and the epithelial compartment

[114, 121, 122]. Our work also has limitations. In this preliminary study, we are including

a limited number of tumors per group (LPS, SPS) and we present these results as a proof of

concept for the use of mass cytometry as a relatively novel application in LUAD research.

Results will be further validated in a larger cohort which is part of an ongoing study. Addi-

tionally, with this analysis we are limited to a fixed number of proteins compared to single

cell RNA Seq in which thousands of transcripts can be analyzed. Yet, the latter carries the un-

certainty that missing data could be non-expressed genes or non-detected genes, and for that

mass cytometry data is more reliable. Additionally, protein expression of tumors presents

high variability, and normal lung tissue control is not always available. We are also limited

by the amount of tissue that we could collect and by the overrepresentation of SPS LUADs

as we are biased towards larger lesions. As for clinical limitations, the aggressiveness and

indolence of LUADs are confounded by the heterogeneous treatments patients undergo and

we do not know the true natural history of early LUAD. Finally, is important to consider that

CANARY is not a perfect tool, and that other predictors should be consider in the future.

The difficulty in predicting behavior of early detected LUAD presents a major challenge

to patients and their providers. These preliminary results of mass cytometry in early LUAD

suggest a distinct cellular profile among LPS vs SPS tumors, implying an important role

for T cell infiltration linked to HLA-DR expression. Future work will refine these results,

integrate data from other platforms (i.e. radiomics, transcriptomics, genomics, etc.) and

determine whether the combination of ECC subpopulations with specific subpopulations of

cells in the TME predicts tumor behavior. We postulate that ultimately this work will allow us

to better predict tumor behavior and integrate this evidence to improve current management

of early LUADs.
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CHAPTER 4

Multi-omics profiling of early lung adenocarcinoma reveals an association between

radiomics features and tumor biology

4.1 Abstract

Lung adenocarcinoma (LUAD) is a heterogeneous group of tumors associated with different

survival rates, even when detected at an early stage. Here, we aim to investigate the biologi-

cal determinants of early LUAD indolence or aggressiveness using radiomics as a surrogate

of behavior. We present a set of 92 LUAD patients with data collected across different

methodologies. Patients were risk-stratified using the Computed Tomography–Based Score

Indicative of Lung Cancer Aggression (SILA) tool (continuous score, 0=least aggressive,

1= most aggressive). We grouped the patients as indolent (x <= 0.4, n=14), intermediate

(0.4 > x <= 0.6, n=27) and aggressive (0.6 > x <= 1, n=52). Using CyTOF we iden-

tified subpopulations characterized by high HLA-DR expression that were associated with

indolent behavior. In the RNA-Seq dataset, pathways related to immune response were as-

sociated with indolent behavior, while pathways associated with cell cycle and proliferation

were associated with aggressive behavior. We used HealthMyne (HM) software to extract

radiomics features from the CT scans of the patients and computed pairwise correlation with

SILA to select significant variables. When we integrated these datasets we identified four

feature signatures and four patient clusters that were associated with survival. Using single

cell RNA-Seq, we found that indolent tumors had significantly more T cells and less B cells

than aggressive tumors, and that the latter had a higher abundance of regulatory T cells and

T helpers. In conclusion, we found a bridge between radiomics and tumor biology which

could improve the discrimination between indolent and aggressive ADC tumors and in turn

may offer novel and personalized avenues for intervention.
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4.2 Introduction

Lung cancer has the highest mortality rate among cancers worldwide, causing more deaths

than breast, cervical, prostate and colorectal cancers, which have established population-

based screening programs[123]. The 5-year survival rate for these patients is only 15%,

mainly because 70% of them are diagnosed at a late stage[124]. Among lung cancer sub-

types, lung adenocarcinoma (LUAD) still remains the more frequent[125]. In the past years,

the NLST trial and more recently the NELSON trial have shown that lung cancer mortal-

ity is significantly reduced in individuals who undergo low-dose and volume CT screening,

respectively[16, 126]. However, in both cases the overdiagnosis rate for a follow-up of 10

years is relatively high, 18.5% and 19.9% respectively. Additionally, LUAD is a heteroge-

neous disease both clinically and biologically. The recent advances in single cell technolo-

gies have allowed researchers to dissect the cellular heterogeneity of the tumor and learn

more about the tumor microenvironment (TME) and its role in tumorigenesis, tumor de-

velopment, progression and metastasis[64, 67, 69, 127]. On the other hand, advances in

imaging technologies, specifically in the radiomics field, have allowed for the development

of new tools to aid diagnosis and prognosis of these tumors[18, 20, 109, 128, 129, 130, 131].

Despite these research efforts, the biological determinants for the difference in tumor behav-

ior remain obscure even though these have a direct implication in the efficacy and cost-

effectiveness of lung cancer screening, particularly when considering the risks of over-

diagnosis and overtreatment[3, 132]. In a recent publication, we showed that using a sin-

gle cell technology we could dissect some of the main cell types of LUAD and found that

the protein expression of MHC-II was associated with indolent behavior and increased T

cell infiltration[105]. Here, we investigate the biological determinants of early lung ade-

nocarcinoma indolence or aggressiveness using radiomics as a surrogate of behavior. We

hypothesize that integration of biological, clinical and radiomics data of early stage LUAD

will improve the discrimination between indolent and aggressive tumors which in turn may

offer novel and personalized avenues for intervention. To this end, we generated a unique
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and comprehensive multi-omics dataset and an integrative analytical strategy that provides

a deep prolifiling of tumor biology of LUAD in association with noninvasive CT-based risk

stratification, granting a link between a widely used medical tool and the biology of the

tumor.

4.3 Results

4.3.1 Multi-omic profiling of LUAD tumors using radiomics as a surrogate of behav-

ior

To characterize the biological landscape of lung adenocarcinoma in association with their

radiomics-based predicted behavior (i.e. indolent vs aggressive), we designed a multi-omic

profiling study of surgically resected primary tumors. We present a comprehensive set of

92 lung adenocarcinoma patients who were treatment naive at the time of surgery and were

representative of the lung adenocarcinoma distribution across age, sex, mutational status,

and smoking status (Table 2.3, see Appendix B Table S1). Additionally, over 90% of the

cohort is composed by early stage tumors.

Data was collected across different methodologies (Fig.4.1, see Appendix B Table S2).

Surgically resected specimens (one per patient) were split and processed as: single cell sus-

pension for CyTOF and single cell RNA-Seq, and fresh frozen tissue for RNA seq and whole

exome seq (WES). Although data collection at every level was not possible for all specimens,

close to 60% of the patients have data collected for CyTOF, RNA-Seq, and radiomics, al-

lowing data integration (Fig.4.1A).
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Figure 4.1: Summary of LUAD datasets and study workflow. (A) Heatmap showing the
datasets included in this study (rows) by patient (columns) where red means data has been
collected for that specific patient and gray that it has not. The bottom annotation show some
clinical characteristics of the patient cohort. (B) Study workflow. For each of the 92 patients,
tumor nodules from CT scans were analyzed to obtain SILA score and radiomics features
(left), and for some of them biological data was collected from surgically resected tumors
(right).
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In addition to the clinical data, chest CT scans for each patient were analyzed and ra-

diomics features were extracted with the HealthMyne software[128]. To risk-stratify the

patients we used the Computed Tomography-Based Score Indicative of Lung Cancer Ag-

gression (SILA) which analyses the CT scans of the patients and outputs a continuous score

that ranges between 0 and 1, 0 being the least aggressive and 1 the most aggressive. This

score has been validated to accurately correlate with histopathologic assessment, providing

a scoring system to noninvasively predict the degree of histologic tumor invasion in LUAD

[20]. We then grouped these into indolent (0-0.4), intermediate (>0.4-0.6), and aggressive

(<0.6 - 1) (Fig.4.1B left).

4.3.2 LUADs of predicted indolent behavior are enriched in HLA-DR protein expres-

sion

LUADs human samples characterized by different predicted behavior classified into indo-

lent (n = 10), intermediate (n = 21), and aggressive (n = 39) were stained with our previously

validated antibody panel[105]. We identified the major cell types (epithelial cancer cells

(ECC), endothelial cells, mesenchymal cells and immune cells) based on the expression of

protein markers (Fig. 4.2A). EpCAM+/pan cytokeratin+/cytokeratin 7+ cells were anno-

tated as ECC; CD31+/CD45- cells were annotated as endothelial cells; vimentin+/CD31-

/CD45- and negative for epithelial markers cells were annotated as mesenchymal cells. All

CD45+ cells were annotated as immune cells. The latter were further classified into CD4+

T cells (CD3+/CD4+/CD8-), CD8+ T cells (CD3+/CD8+/CD4-), double negative T cells

(CD3+/CD8-/CD4-), myeloid cells (CD11b+/CD3-) and the remainder CD45+ cells were

annotated as ”Other Immune”. The relative abundance (frequencies) of these main cell types

were not significantly different between patient groups (see Appendix B Fig. S1).
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Figure 4.2: CyTOF analysis of LUAD samples reveal subsets associated with HLA-
DR protein expression (A)UMAP representation colored by cell type (epithelial cancer
cells (blue), endothelial cells (red), fibroblasts/mesenchymal cells (green), CD8+ T cells (or-
ange), CD4+ T cells (pink), double negative T cells (yellow), myeloid cells (purple) and
other immune cells (grey)), by density, by patient ID, and by protein expression of lineage
markers (bottom). (B) Analysis workflow of the clustering by cell subset. (C) Heatmap of
median protein expression per protein marker per cluster (left) and differential abundance
analysis (right) for ECC (top) and fibroblast/mesenchymal cells (bottom). Y axis corre-
sponds to the fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05,
**=pvalue<0.01, ***=pvalue<0.001. (D) Spearman correlation analysis of the relative
abundance of ECC3, 5 and Fmes 3 vs CD4+, CD8+ T cells, and myeloid cells respectively.
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Each subset individually went through an additional clustering step. Clusters were anno-

tated by protein expression and then their frequencies within individual patient samples were

compared between groups (Fig. 4.2B). In the ECC compartment, from a total of 6 clusters

ECC cluster 3 (ECC3) relative abundance was significantly higher in patients with predicted

indolent and intermediate behavior compared to aggressive (Fig. 4.2C, see Appendix B

Fig. S2). ECC3 is characterized by a high expression of HLA-DR, pan-cytokeratin, cytok-

eratin 7 (CK7), beta-catenin and TTF1, as opposed to ECC4 which is other ECC cluster

that expresses HLA-DR but lacks expression of the former. ECC5 and ECC2 were signifi-

cantly higher in aggressive LUAD compared to intermediate, however the latter was mainly

composed by two tumors only. The former lacked expression of every other marker except

for EpCAM and CK7, whereas the latter presented high expression of EpCAM, vimentin,

MDM2 and p-STAT3. ECC6 was the only cluster expressing the proliferation marker Ki67,

with aggressive tumors having a slightly higher median compared to the other groups. In

terms of protein co-expression, HLA-DR, HLA-ABC and EpCAM protein expression were

highly correlated (r>0.45), and PD-L1 expression was also correlated with the first two

(r>0.4) (see Appendix B Fig. S2E). Another group of highly correlated proteins were pan-

cytokeratin, CK7 and beta-catenin, as well as the pairs of MET and EGFR, and TTF1 and

Ki67 (r>0.45, see Appendix B Fig. S2E). In the fibroblasts/mesenchymal cells compartment

cluster 3 (Fmes3) relative abundance was significantly higher in patients with predicted in-

dolent and intermediate behavior compared to aggressive (Fig. 4.2C, see Appendix B Fig.

S4). Fmes3 presented the highest expression of HLA-DR among the 5 clusters and also had

a moderate expression of HLA-ABC. This cell type also presented a subset engaged in pro-

liferation (Fmes2) with high expression of Ki67, TTF1 and MDM2 (see Appendix B Fig.

S2C). In the protein co-expression analysis, Ki67 and TTF1 showed the highest correlation

(r=0.65), followed by p-STAT3 and MDM2 (r=0.47), and HLA-DR and PD-L1 (r=0.45) (see

Appendix B Fig. S4E). HLA-DR and HLA-ABC correlation was also significant but not as

high as in the cancer cells (r=0.38). Although our CyTOF panel did not include sufficient
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markers to further annotate the identified immune cell types, we also performed reclustering

on these with the aim of undercover some degree of heterogeneity if present (e.g. prolifer-

ative vs non proliferative) (see Appendix B Fig. S5-9). OIC cluster 4 (OIC4) was signifi-

cantly enriched in patients with predicted indolent behavior compared to aggressive, and it

was characterized by a high HLA-DR, HLA-ABC and vimentin expression (see Appendix

B Fig. S9). OIC2 was significantly enriched in aggressive compared to indolent tumors,

and it was characterized for the lack of expression of most markers and a moderate to low

vimentin expression. Furthermore, the expression of HLA-DR and HLA-ABC was highly

correlated (r=0.61), as was the expression of Ki67, TTF1 and MDM2 (r>0.45). Addition-

ally, as HLA-DR (an isotype of MHC-II) is known to be involved in antigen presentation,

we wanted to see if the relative abundance of the above mentioned subsets were significantly

correlated with enrichment or depletion of CD8+ and CD4+ T cells and myeloid cells (Fig.

4.2D, see Appendix B Fig. S10). Indeed, ECC3, fmes3 and OIC4, clusters enriched in in-

dolent tumors, were positively correlated with CD8+ and CD4+ T cells and myeloid cells,

whereas ECC5 and OIC2, clusters enriched in aggressive tumors were negatively correlated

with CD8+ and CD4+ T cells and myeloid cells. Finally, we calculated the median ”bulk”

protein expression for each protein per sample (see Appendix B Fig. S11). We found that

bulk HLA-DR protein expression is significantly higher in indolent and intermediate tumors

compared to aggressive. Altogether, these results validate our previous findings[105], show-

ing that HLA-DR expression in cancer cells and now also in fibroblasts/mesenchymal cells

correlates with T cell and myeloid cell enrichment and that these cells are particularly abun-

dant in LUADs with indolent behavior, calling for a potentially immunogenic environment

and therefore a more favorable prognosis.
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4.3.3 Transcriptomic profiles of lung ADCs are associated with proliferation, immune

response and extracellular matrix organization

Fresh frozen tissue from a set of 77 LUADs human samples characterized by different pre-

dicted behavior (indolent n=10, intermediate n=21, aggressive n=46) was processed and the

RNA was extracted and sequenced. A subset of those were also used to obtain whole exome

sequence (WES) (indolent n=5, intermediate n=15, aggressive n=36) for genomic analysis.

The mutational landscape of our LUAD cohort was very similar to what is expected for this

cancer type [1, 26], with KRAS being the top mutated gene (41%) followed by RYR2 (34%)

and MUC16 (32%) (see Appendix B Fig. S12A). TP53 (27%) and EGFR (21%) were also

among the top 15 mutated genes, and the latter was exclusive from KRAS alterations, as ex-

pected. We computed the mutational load for all 56 samples and found that it was mildly

but significantly correlated with the SILA score (r=0.27, p=0.04), suggesting that genomic

instability increases with the degree of predicted aggressiveness of the tumor (see Appendix

B Fig. S12B). To perform a clinical enrichment analysis of the mutations, we opted for

combining Indolent and Intermediate tumors, as the former was too small to compare on its

own. Among the top significantly enriched tumors in Aggressive samples versus the Indo-

lent+Intermediate group were CTNND2, CACNA1E, SORCS1, PRDM9, NPAP1, APOB and

ADAMTS12 (see Appendix B Fig. S12C).
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regulated in both indolent and aggreSsive tumors when compared to intermediate.
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We then performed differential gene expression analysis on the RNA-Seq data (Fig.

4.3A, see Appendix B Table S3). When comparing indolent vs aggressive, among the

top dysregulated genes were SLC6A4, KIF1A, HMGA2, ATP10B, POLR3H, GRIP1, and

INTS4L1. When comparing indolent vs intermediate, some of the top dysregulated genes

were HHLA2, GRIP1, DLGAP1-AS5, INTS4L1, PKHD1, and IGHV4-61. When compar-

ing intermediate vs aggressive, the top dysregulated genes were ABCC2, FGA, B4GALNT1,

MEGF10, CPS1, and STC2. A detailed list of the differentially expressed genes (DEG) is

presented in Table S3 (see Appendix B). Furthermore, gene set enrichment analysis (GSEA)

of the differentially expressed genes was performed to understand their biological func-

tions in the patient groups with different predicted behavior using the Hallmark[97] and

REACTOME[98] databases (Fig. 4.3B-C, see Appendix B Tables S5-7). When comparing

aggressive vs indolent or aggressive vs intermediate, pathways associated with proliferation

and cell cycle were up-regulated, such as G2M Checkpoint, E2F targets, DNA replication

and elongation, etc. This suggests that the tumors predicted to be aggressive, share a strong

proliferative signal compared to tumors with lower SILA scores. On the other hand, when

comparing indolent vs aggressive or indolent vs intermediate, pathways related with im-

mune response were up-regulated, such as Inflammatory response, Complement, TGF-beta

signaling, TNFal pha signaling via NFkB, Leishmania infection, IL-3, IL5 and GM-CSF,

Innate immune system, etc. Eventhough we saw the ”Allograft rejection” pathway (a path-

way associated with the expression of MHC classes I and II genes) present when comparing

indolent or intermediate vs aggressive tumors, the pathways ”Antigen processing-Cross pre-

sentation” and ”MHC class II antigen presentation” were only up-regulated in aggressive

when compared to intermediate, suggesting that the high HLA-DR protein expression we

previously saw associated with indolent tumors (Fig. 4.2C-D) might be a consequence of an

inflammatory microenvironment rather than the cause of inflammation by antigen presenta-

tion. Interestingly, when comparing either aggressive or indolent vs intermediate, pathways

related to structural components such as extracellular matrix (ECM) organization, collagen
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formation or degradation, epithelial mesenchymal transition (EMT), angiogenesis, hypoxia,

among others, were up-regulated. A detailed list of the dysregulated pathways is presented

in Tables S5-7 (see Appendix B). Finally, we used the VIPER algorithm to infer transcrip-

tion factor (TF) activity from gene expression data in the compared groups (see Appendix B

Table S4). When comparing indolent vs aggressive gene expression, the FOXO1 and SPI1

regulons were down-regulated in aggressive tumors; when comparing indolent vs interme-

diate, the HIF1A and SPI1 regulons were down-regulated in intermediate tumors; and when

comparing intermediate vs aggressive, the FOXM1 and HIF1A regulons were up-regulated

in aggressive tumors (see Appendix B Table S4 for more details). We see once again a pat-

tern shared by indolent and aggressive tumors, this time the activation of the HIF1A regulon,

which correlates well with the structural pathways up-regulated in these patients.

4.3.4 Data integration reveals an association between radiomics features and tumor

biology

A fundamental part of this study is the use of computer extracted quantitative features from

the chest CT scans of the LUAD patients, also known as radiomics. We first used SILA

to obtain a score predictive of tumor aggressiveness and risk-stratify our cohort (Fig. 4.1.

However, we are also interested in dissecting these images at a more granular level. Using

the HealthMyne picture archiving and communication system (www.healthmyne.com) lung

nodules were segmented from CT scans for feature extraction. We obtained 300+ features,

and then we filtered those that were significantly correlated with the SILA score. We then

ended up with 61 features, and only 5 of them were negatively correlated with the SILA score

(i.e. features associated with good prognosis) (see Appendix B Table S8). Percentage of

ground glass opacity was one of the them, whereas solid percentage was positively correlated

with SILA.
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78



To this end, we have obtained several features at different biological and clinical levels

that are significantly associated with the SILA score and therefore with the predicted level

of aggressiveness of the tumors. Using those results as our feature selection strategy, we

integrated a total of 301 features from the CyTOF, RNA-Seq and radiomics datasets on 59

patients with complete data across all modalities (Fig. 4.4, see Appendix B Tables S9-10).

From the RNA-Seq dataset we used the significantly dysregulated pathways from the gene

set enrichment analysis (Fig. 4.3B-C, see Appendix B Tables S5-7) to avoid redundancy.

We used the Gene Set Variation Analysis (GSVA) algorithm to compute individual pathway

scores for each patient sample. Features were scaled, centered and then clustered, resulting

in four feature clusters (I - IV) (Fig. 4.4A, see Chapter 2 for details). Feature cluster I (FI)

included all CyTOF features that were significantly enriched in indolent tumors (HLA-DR+

subpopulations), and bulk HLA-DR protein expression. It also included the five radiomics

features that were positively correlated with SILA score such as percent GGO, root mean

square and surface area to volume ratio (see Appendix B Table S8 for definitions). From

the gene expression data a variety of pathways fell here: pathways associated with immune

response, antigen presentation, cytokine cascades, etc; pathways associated with tumor ini-

tiation and growth signals such as NOTCH1 and MYC but also pathways associated with

tumor suppression such as TP53 and PTEN signaling; and finally pathways associated with

apoptosis, hypoxia and reactive oxygen species (ROS). All of these features together sug-

gested a scenario in which the tumors were initiating or attempting growth but opposing sig-

nals were fighting back to prevent proliferation and the immune response could either be the

cause or the consequence of this process. Feature cluster II (FII) included mostly radiomics

features positively correlated with SILA score, a CyTOF subpopulation (ECC5) enriched in

aggressive tumors, and the pathways ”O-linked glycosylation of mucins” and ”KRAS sig-

naling down”. Feature cluster III (FIII) included the radiomic feature ”GLCM homogeneity”

and then pathways associated with structural components such as collagen degradation and

formation, ECM organization, angiogenesis, cell motility and EMT. Finally, cluster IV (FIV)

79



was composed by pathways associated with cell proliferation, mytosis, DNA replication and

cell cycle. When we performed a PCA on the features clusters and plotted the first two

components (>70% of variance explained) we observed that FI and FIV showed almost no

overlap, whereas FIII mostly overlapped with FI, and FII overlapped mostly with FIV (Fig.

4.4B bottom). To better understand those overlapping features, we generated similarity ma-

trix (see Appendix B see Appendix B Fig. S13). These results show that there is an almost

exclusive expression of either features from FI or FIV, and that some radiomics features from

FII behave very similarly to features from FIV. This suggests a potential of using radiomics

features to predict the degree of proliferative activity of the tumor. We then clustered the

patients to find groups with similar feature characteristics and we found four clusters (1 - 4)

(Fig. 4.4A). Patient cluster 1 (P1) was expressing low levels of most of the features clusters,

except for a subset of it that were expressing moderate levels of FIV. Patient cluster 2 (P2),

was a group of patients with moderate to high levels of FII and low levels of FIV, and a subset

of them presented high levels of FIII. Patient cluster 3 (P3) presented moderate levels of FII

and FIII and low levels of F1 and FIV. Finally, patient cluster 4 (P4) was characterized for a

high level of FIV, moderate levels of FII and FIII, and low FI. When we performed a PCA

on the patient clusters and plotted the first two components (<55% of variance explained),

we observed that clusters P1, P2 and P4 were fairly different from each other, while P3 over-

lapped with P1 and P2 (Fig. 4.4B top). Lastly, when we assessed the recurrence (RFS) and

progression free survival (PFS) of the patient clusters, we found that patients from P4 had

the worst prognosis when compared with the other three clusters and also, but with reduced

significance, when compared to P1 alone. Altogether, these results demonstrated the feasi-

bility of integrating data from different modalities to obtain insights on the tumor biology

which can be linked to clinical features.
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4.3.5 In depth profiling of the LUAD tumor microenvironment by single cell RNA-Seq

analysis

In an effort to better understand the microenvironment of tumors with different predicted

behavior, we performed single cell RNA Sequencing of 15 tumors (indolent n=6 of which 3

were P2, intermediate n=2, aggressive n=7 of which 1 was P1 and 4 P4) (Fig. 4.5). After

quality filtering (see Chapter 2), we obtained 44867 cells. Out of these, 14795 cells (%33)

came from indolent tumors, 7107 cells (%16) from intermediate tumors, and 22974 (%51)

from aggressive tumors. After gene normalization and filtering, we applied PCA on 1871

highly variable genes, and performed a graph-based clustering[102] to classify the cells into

groups of similar gene expression. We annotated those clusters and identified 7 major cell

types: B cells, T cells, myeloid cells, endothelial cells, cancer cells, mural cells and fibrob-

lasts (Fig. 4.5A-B, Fig S14). Aggressive tumors were significantly enriched in B cells, while

indolent tumors showed a significantly higher proportion of T cells (see Appendix B Fig.

S14C), and we see a similar pattern for patients from P4 and P2, respectively (see Appendix

B Fig. S14B).
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Figure 4.5: Profiling of LUAD tumor microenvironment by single cell RNA-Seq anal-
ysis. (A) UMAP representation colored by cell type using all cells (left) and by density
grouped by risk group (right). (B) UMAP representation colored by gene expression of
top lineage gene markers for each main cell type. (C) Reclustering analysis for T cells,
(D) myeloid cells, and (E) B cells. UMAP representation colored by cluster, followed by
UMAP representation colored by gene expression of some subset representative markers.
On the far right we have UMAP by density grouped by risk group (top) and differential
abundance analysis (bottom). Y axis corresponds to the fraction of cells per patient sample.
ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001.82



We then performed an additional clustering step to find subclusters within each of these

main cell types (Fig. 4.5C-E, see Appendix B Fig. S15-21). In the T cell group we ob-

tained 9 clusters (Fig. 4.5C, see Appendix B Fig. S15). Clusters 0,4,5,6 and 7 were iden-

tified as CD4+ T cells and clusters 1,2 and 3 were identified as CD8+ T cells. Clusters

5 and 6 were significantly enriched in aggressive tumors compared to indolent. Cluster 5

showed high FOXP3 expression which is characteristic of regulatory T cells, whereas cluster

6 showed high expression of CXCL13, a chemokine expressed by helper T cells. Numerous

CD8+T cells also expressed GZMA, GZMB, GZMK and GNLY, which encode the cytotoxic

molecules granzymes A, B and K and granulosyn, respectively. In addition to granzymes an

other cytotoxic molecules, cluster 3 also expressed FCGR3A, a gene that encodes CD16,

which presumably indicates that these are NKT cells (see Appendix B Fig. S15B). Clus-

ter 8 corresponded to proliferating T cells, both CD8+ and CD4+. A fair amount of cells,

particularly those in cluster 6 were expressing LAG3 and PDCD1, markers of T cell exhaus-

tion. When we look at the samples classified by the data integration clusters from Fig. 4.4,

patients from P4 and P2 followed similar patterns as aggressive and indolent, respectively,

while the patient from P1 behaved like the indolent group but with less concentration of

cytotoxic T cells (Fig S15A). In the myeloid cell compartment we found 7 clusters, from

which clusters 1, 3 and 4 were tumor associated macrophages (TAM) expressing genes such

as HLA-DRB1 and CD14 Fig. 4.5D, see Appendix B Fig. S16). Cluster 3 was enriched in

proinflammatory TAM markers such as IL1B, while clusters 4 and 1 expressed C1QC and

SPP1 genes. Clusters 0, 5 and 6 were dendritic cells (DC), with 0 being CDC1+ DCs, 5

being LAMP3+ DCs and 6 being plasmacytoid DCs expressing IL3A. Finally, cells from

cluster 2 were identified as mast cells for their unique expression of MS4A2. Aggressive

tumors as well as P4 tumors were enriched in cluster 1, while the mast cell subset (cluster 2)

was dominated by one particular indolent tumor (11522) (see Appendix B Fig. S16A,C-D).

In the B cell compartment we found 8 clusters, from which clusters 0, 1 and 7 corresponded

to follicular B cells, given their expression of MS4A1 and CD19 and HLA-DR related genes
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(Fig. 4.5E, Fig S17B). Cluster 5 was identified as naı̈ve B cells, and clusters 2, 3, 4 and

6 were plasma B cells. Indolent tumors, but no P2 tumors, were enriched in cluster 0, and

aggressive tumors were enriched in cluster 4. Tumors from P2 had little to no fraction of B

cells in general, while tumors from P1 and P4 behaved similarly to each other and also were

similar to aggressive tumors (see Appendix B Fig. S17A). Mural cells are composed by 6

clusters, from which clusters 0, 1, 2, 4 and 5 are characterized by the expression of some col-

lagen genes, NOTCH3, ACTA2, PDGFRB which are commonly expressed in smooth muscle

cells (SMC), and cluster 3 is characterized by the expression of KLF4 and MGP, genes asso-

ciated with mesenchymal cells and regulation of SMC. Indolent and P2 are slightly enriched

in cluster 3 cells while aggressive tumors appear to be enriched in cluster 0 cells (see Ap-

pendix B Fig. S18). In the fibroblasts compartment we found 7 clusters, from which both

indolent and aggressive tumors were enriched in clusters 1 and 3, which were characterized

for the expression of various collagen genes including COL1A1 and COL1A2, and interme-

diate tumors were enriched in cluster 2, characterized by the expression of some MFAP4,

A2M, LIMCH1, among others (see Appendix B Fig. S19). In terms of the data integration

patient groups, P2 and P4 were also enriched in clusters 1 and 3. In the endothelial com-

partment we found 7 clusters, however, the majority of these cells come from patients 14428

(intermediate) and 13634 (indolent) (see Appendix B Fig. S20). Finally, in the cancer cell

compartment, indolent tumors present very few cells, intermediate tumors were enriched in

cluster 1, and aggressive tumors were enriched in cluster 0 (see Appendix B Fig. S21). Cells

from cluster 1 were characterized for the expression of some HLA-DR related genes, as well

as lung-specific markers SFTPB and MUC1. Cells from cluster 0 expressed THE the col-

lagen III gene COL3A1 and MIF, a gene that encodes the macrophage migration inhibitory

factor. To recapitulate some of the main findings of this section, indolent tumors show higher

percentage of T cells compared to aggressive tumors, but aggressive tumors are significantly

enriched in regulatory and helper T cells. Aggressive tumors show a higher percentage of B

cells compared to indolent tumors, which can be explained by a lack of plasma B cells in the
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latter. Aggressive tumors also show a higher percentage of CD14+/C1QC+/SPP1+/IL1B-

TAMs. Indolent tumors also present an enrichment in mesenchymal mural cells, while ag-

gressive tumors seem to be enriched in SMC-like cells, which correlates well with a more

solid tumor component. The interesting finding from the RNA-Seq dataset in which both in-

dolent and aggressive tumors appear to share an up-regulated signature for structural cellular

pathways could be explained by looking at the fibroblasts compartment, in which tumors

from both groups have an enrichment in fibroblasts with high expression of several collagen

genes. In summary, these results give us a deeper understanding of the cellular subsets in

LUAD and their transcriptomic profiles which help us to better understand the biological

differences between indolent and aggressive tumors.

4.4 Discussion

Understanding the biology of lung adenocarcinomas in the context of tumor behavior is cru-

cial to improve the current clinical standards of diagnosis and treatment, particularly in early

stages of the disease. In this study, we presented a comprehensive set of early stage LUAD

patients risk-stratified into predicted indolent, intermediate or aggressive behavior groups

based on radiomics, with data collected across different biological layers. First, we used our

previously validated CyTOF panel [105] to assess the difference between indolent and ag-

gressive tumors at the proteomic level4.2. We found that indolent tumors were significantly

enriched in a subset of cancer cells and a subset of fibroblast/mesenchymal cells character-

ized by high HLA-DR protein expression, compared to aggressive tumors and that these sub-

sets were positively correlated with CD8+ T cells, CD4+ T cells and Myeloid cell abundance.

HLA-DR bulk protein expression was also significantly higher in indolent vs aggressive tu-

mors. We previously showed that HLA-DR expression was enriched in indolent tumors and

that it was correlated with an increased abundance of T cells [105]. In the present study, we

were able to confirm those CyTOF results in a bigger cohort and the other data modalities

also suggested an increased immune response in indolent tumors compared to aggressive.
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While MHC-II expression is usually restricted to antigen presenting cells (APC), it has been

shown that its expression can also be induced in non-APCs in response to an inflammatory

microenvironment and there is evidence of MHC-II molecule expression in cancer cells as-

sociated with good prognosis in various cancer types such as melanoma, breast cancer and

esophageal cancer[114, 115, 122, 133, 134]. In a recent study[120], the authors assessed the

effect of cancer cell-specific MHC-II expression in LUAD on T cell recruitment to tumors

and response to anti-PD-1 therapy in murine models. They found that loss of CIITA, a master

regulator of the MHC-II pathway, decreased MHC-II expression in cancer cells and turned

the cells anti-PD-1 resistant. This effect was associated with reduced levels of Th1 cytokines,

reduced T cell infiltration and macrophage recruitment, and increased B cell abundance.

The opposite occurred with enforced expression of CIITA. They validated these results in

surgically resected human LUADs, showing that MHC-II expression improved survival and

positively correlated with T cell expression. These results align well with our findings, and

highlight the potential of MHC-II expression in cancer cells as an independent biomarker of

sensitivity to checkpoint inhibitors. In our single cell RNA-Seq data we found that indolent

tumors were enriched in T cells, but aggressive tumors were enriched in T regs and T helpers

specifically 4.5. Also aggressive tumors were enriched in B cells and indolent tumors mostly

lacked plasma B cells. The influence of plasma B cells in NSCLC, has been mostly studied

in the context of immunotherapies or adjuvant chemotherapies, in which cases it has been as-

sociated with improved prognosis[135, 136]. However is important to note that most of these

tumors are late stage or metastatic. We then investigated the difference in gene expression

between tumors of different predicted behavior4.3. When comparing indolent vs aggressive,

the serotonin transporter SLC6A4 was the top downregulated gene. It has been reported to be

overexpressed in normal lung compared to LUAD and its deregulation has been associated

with tobacco consumption [137, 138]. KIF1A and HMGA2 were some of the top upregulated

genes in aggressive tumors, the first one has been associated with drug resistance in breast

cancer [139, 140] and the latter was reported to be associated with reduced overall survival in
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LUAD patients, positively regulating lung cancer proliferation, progression and metastasis

[141, 142]. In the Gene Set Analysis, when comparing aggressive vs indolent or interme-

diate, pathways associated with proliferation and cell cycle were up-regulated, and when

comparing indolent vs aggressive or intermediate, pathways related with immune response

were up-regulated. Although we found that the Hallmark pathway Allograft rejection[97], a

gene set that includes MHC-I and II related genes as well as granzymes and cytokines such as

INFG, was up-regulated in indolent tumors, pathways related with antigen presentation were

not, suggesting that the high HLA-DR protein expression we saw in indolent tumors might

be a consequence of an inflammatory microenvironment rather than the cause of inflamma-

tion by antigen presentation. An unexpected finding appeared when we compared either

aggressive or indolent vs intermediate. Patients from both extremes shared up-regulation of

pathways related to structural functions such as extracellular matrix organization, collagen

formation and degradation, EMT, etc. These patients also presented an increased inferred

activity of the HIF-1 alpha transcription factor, which is a master regulator of cellular and

systemic homeostatic response to hypoxia[143, 144]. One possible explanation is the dual

effect of some of these actors. For example, HIF-1 alpha may promote both tumorigene-

sis and apoptosis under different circumstances [145]. The authors claim that most of the

conflicting data can be explained by the different cutoffs used to define high HIF-1 alpha

expression. They analyzed the expression of HIF-1 alpha in NSCLC by immunohistochem-

istry, defining as low cutoff the median staining (¿5%) and as high cutoff ¿60%, and found

that when using the latter an association with poor prognosis was significant. In a recent

study of ours[146] using the same LUAD patient samples we described in Chapter 3[105],

we found, by multiplex immunofluorescence, that indolent and aggressive tumors did not

show significant different in neither the amount of collagen fibers or the average length of

fibers. However, when we performed spatial analysis we found that tumor cells from the

indolent group were co-localized with an increased number of immune cells. Additionally,

tumor cells from aggressive LUADs were co-localized with lower number of collagen fibers
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and these fibers generally had smaller length, which may indicate involvement of these cells

in the processes of collagen degradation and ECM remodeling. It is known that increased

collagen deposition also increases the stiffness of the tumor and this has been associated

with poor prognosis in several cancer types[147]. Some in vitro studies show that T cells

migrate slower through collagen gels of high density compared to low density[148, 149].

Other in vitro studies have also demonstrated that T cells preferentially migrate along the

collagen fibers, indicating that the collagen orientation could control the migration of T

cells[150]. The overexpression of these signatures in our cohort could also suggest that both

tumor types have the potential for metastasis but indolent tumors have other tools to coun-

teract these while aggressive tumors have tools to support them. Additionally, when we

looked into the fibroblasts compartment in our single cell RNA-Seq data (see Appendix B

Fig. S19), we see similarities between indolent and aggressive tumors, however in the mural

cells compartment aggressive tumors appear to have higher density of smooth-muscle-like

cells which show high collagen expression compared to other cells in this subset (Fig S.18).

We also see a higher number of T regs and T helpers in aggressive tumors, which has been

associated with an stiffer microenvironment[151]. In that study, collagen led to an increase

in the CD4:CD8 ratio among the infiltrating T cells and the CD4+ T cells were skewed

toward a Th2 phenotype. We then integrated biological and radiomics features that were

significantly associated predicted tumor behavior4.4. We found 4 main feature signatures:(I)

immune response, growth initiation signals, and tumor suppression; (II) radiomics features

positively correlated with SILA; (III) ECM organization and other structural components;

(IV) proliferation and cell cycle. I and IV were strongly negatively correlated, and some

features from II such as percentage of solid component were positively correlated with IV,

while percent of GGO was positively correlated with I. Multiple radiomics studies and tools

have focused on prediction of invasiveness, and association of solid or glass ground opacity

(GGO) component with outcome. Our results are in agreement with the literature in that

tumors with increased GGO percent show improved prognosis whereas tumors with higher
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solid percentage are associated with poor survival[129, 130, 131, 152]. However, there is no

study in LUAD at the moment that has demonstrated correlation between radiomics features

and specific and detailed biological signatures such as cell cycle, proliferation, DNA replica-

tion, mitosis, immune response, etc. We demonstrated a strong positive correlation between

features associated with solid components and proliferation signatures, and these were also

strongly but negatively correlated with immune response (Fig. 4.4). Similarly, GGO and

other radiomics features negatively correlated with SILA showed an opposite relationship.

This is a unique and unprecedented finding that connects a tool widely use in the clinic with

biological insights of the tumor.

Our results show a unique and previously unseen potential bridge between tumor biol-

ogy and the developing field of radiomics. However, our work also has its limitations. In

the clinic, there is fewer patients that come with indolent tumors compared to aggressive

ones, therefore our cohort has a reduced number of these samples which limits the study

of intra-patient heterogeneity in this subset and introduces some degree of bias as we have

an overrepresentation of aggressive tumors. In the same line, aggressive tumors are, for

the most part, bigger than indolent tumors, which inherently influences the total number of

cells and thus our ability to capture intracellular heterogeneity. These tissues are also less

affected by cell loss during tissue processing. As for clinical limitations, the approach to

define the aggressiveness or indolence of LUAD is still at the discretion of the researcher

as there is no gold standard. The behavior of LUADs are confounded by the heterogeneous

treatments patients undergo and we do not know the true natural history of early LUAD, as

prospective studies to simply observe the natural history of the tumor without intervention

would be unethical. In this study, all patients had resection of their primary lung nodule and

an accompanying CT scan of that nodule obtained few weeks or days before surgery. We

decided to use SILA, a CT-based tool that predicts the degree of histologic tissue invasion

and patient survival specifically design for LUAD. We acknowledge that this, as any other

predictive tool, is not flawless but it has been thoroughly validated[20]. Finally, each data set
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that we presented in this study has its own limitations and its own biases. For instance, the

CyTOF dataset is limited to a fixed number of proteins compared to single cell RNA Seq in

which thousands of transcripts can be analyzed. Yet, the latter is affected by sparsity and the

cost limits the number of samples and number of cells to be sequenced. Additionally, both

datasets require the tumor to be processed to obtain single cells, introducing an additional

component of perturbation to the system and incidentally selecting for some cell types. The

RNA-Seq and WES technologies are much more affordable, thus we can sequence more

samples but can only interpret the results as a bulk. Despite these limitations, the strength

of this study is to have all those datasets together to fill in the missing pieces. Although

we present unique findings in each dataset, we were also able to find a common thread and

results that complement each other.

In conclusion, we presented a unique and comprehensive collection of datasets in LUAD

from which we were able to elucidate previously unknown insights on the biology of the

tumors related to their predicted behavior, and data integration provided an evident and un-

precedented link between tumor biology and radiomics. We also showed the important role

of the TME, both in the immune compartment and the stromal compartment, in defining

the indolence or aggressiveness of the tumors. Finally, experimental and mechanistic vali-

dations are needed to further understand these relationships. This is a rich data collection

with huge potential that could be further explored in the future to answer multiple other re-

search questions regarding LUAD. We believe that this work contributes to the knowledge

and characterization of LUAD tumor biology in relation with its indolence or aggressiveness

and further research can potentially integrate this evidence into clinical settings to improve

current management of early LUADs.
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CHAPTER 5

Discussion and Future Directions

5.1 Summary

In Chapter 1, I introduced the clinical and biological current knowledge on LUAD, and

highlighted one of the unanswered questions remaining in the field: How can we better

predict the disease behavior? The data presented in this dissertation begins to address that

question by dissecting the biology of LUAD tumors of opposite behavior. Clinically, it is

known that screening dramatically reduces lung cancer mortality[16, 126], but we also know

that there is a significant percentage of overdiagnosis which can potentially translate into

overtreatment[3]. This is of especial interest because a large number of LUAD patients

detected at an early stage are senior of have other, which puts them at a higher risk during

invasive procedures. We could reduce the number of patients that undergo those procedures

if we knew how to identify potentially inconsequential lung cancers from aggressive ones,

and therefore improve patient care. In an attempt to do that, several radiological tools have

been developed in recent years[18, 20]. However, the link between the clinical diagnosis and

the biological understanding of the disease is still very limited. In this chapter, I also outlined

some of the main basic science research findings that have improved our understanding on

LUAD biology, such as TCGA[26]. As research technologies developed, we have been

able to dig deeper into the systemic processes of LUAD. Three pivotal studies brought our

attention into intratumor heterogeneity and clonal architecture[5, 6, 7], suggesting that it

is a universal phenomenon across LUAD and that it might be associated with survival and

drug resistance. Then, single cell technologies allowed us to learn more about the tumor

microenvironment and how it interacts with the cancer cells influencing tumorigenesis, tumor

development and tumor progression[64, 67, 68, 69]. I closed the chapter on the importance

of multi-omics data integration for the advancement of LUAD research and also stating some
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of its limitations.

In Chapter 2, I provided a detailed description of the materials and methods used for this

dissertation.

In Chapter 3, I presented the validation of what became one of my main tools to dissect

LUAD biology, a customized CyTOF antibody panel focused on LUAD oncogenic markers.

I used LUAD cell lines and PBMCs to validate the panel in a controlled dataset. Our antibody

panel captured the heterogeneity between and within cell lines. Then, I tested the panel in

a sample of 10 LUADs, 4 being indolent and 6 aggressive tumors. I was able to identify

main cell types such as epithelial cancer cells, endothelial cells, fibroblasts/mesenchymal

cells, CD8+ T cells, CD4+ T cells, myeloid cells, and other unclassified immune cells. I

further dissected the cancer cell compartment and found a subset of them characterized by

high HLA-DR expression and were enriched in indolent tumors. Interestingly, the abundance

of these subsets were positively correlated with CD8+ and CD4+ T cell abundance. These

results were then validated by multiplex immunofluorescence, which confirmed a positive

correlation of HLA-DR expression in cancer cells and T cell number. The spatial analysis

also showed shorter distances from T cells to the nearest cancer cell in indolent tumors.

These preliminary results proved our CyTOF antibody panel as a reliable tool to dissect

intratumor heterogeneity.

Finally, in Chapter 4 I presented a comprehensive study that involved the use of ra-

diomics, our previously validated CyTOF panel, WES, RNA-Seq, and single cell RNA-Seq

and the integration of some of those to provide a deeper understanding of LUAD biology

with respect to their radiomics-based predicted indolence or aggressiveness. The CyTOF

results were in agreement with our previous findings presented in Chapter 3, HLA-DR ex-

pression associated with indolent behavior and with the abundance of T cells, but this time

shown in a larger cohort. The transcriptomic analysis followed this line, showing that path-

ways associated with immune response were enriched in indolent tumors, while pathways

associated with cell cycle and proliferation were enriched in aggressive tumors. As part of
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the data integration effort, I found that some radiomics features were correlated with immune

response and some with cell proliferation, and those two were, for the most part, mutually

exclusive. The single cell RNA-Seq data provided more detailed insights, such as the enrich-

ment of T regs and Plasma B cells in aggressive tumors, and indolent tumors having more T

cells overall.

5.2 Future Directions

5.2.1 Further validation using an independent/larger cohort

One of the most immediate things that remains to be done is to validate these results in an

independent cohort. Due to the uniqueness and complexity of this data collection, and in

particular in the data integration step, is quite challenging to find something similar in a

public repository. At the bare minimum, we need chest CT images taken within 3 months

prior surgery, and some high-throughput biological data collected on them, preferably RNA-

Seq. As most of CT images in LUAD-related studies are acquired as part of routine care

and not as part of a controlled research study, such as the TCGA collection, one of the

biggest issues that can introduce confounding effects is the heterogeneity of these images

in terms of scanner modalities, manufacturers and acquisition protocols. A potential option

is to use one of our research group’s previous LUAD cohorts for which we have CT scans

and tissue microarray from which biological data could be obtained. Another possibility, is

to use TCGA image repository, The Cancer Imaging Archive (TCIA), to retrieve CT scans

and matching RNA-Seq data. However, as mentioned before one of the biggest issues is the

heterogeneity of the images and also that these are at least a couple of decades old, which

is a big gap in terms of imaging technology advances. Furthermore, in our study most of

the clinical data was not noticeably associated with the patient clusters we found, perhaps

in a larger cohort one can see differences (e.g. smokers vs non smokers). Along the same

line, there is need for a more diverse cohort, as the majority of the patients in our cohort are

Caucasian. Finally, as mentioned in the previous chapter, the datasets collected for this study
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can be further explored and this represents a potential opportunity to apply for a research

grant that can address similar research questions in a bigger cohort, and the main results of

this dissertations could be used as strong preliminary data.

5.2.2 The role of MHC-II in LUAD tumorigenesis and tumor progression

The high HLA-DR protein expression in indolent tumors was one of the main findings of this

dissertation. Initially shown in a small cohort and then in a larger one, it was demonstrated

that HLA-DR protein expression was negatively correlated with the SILA score, and that

specific subsets of cancer cells and fibroblasts/mesenchymal cells also expressed these and

their abundance was positively correlated with T cell and myeloid cell abundance. However,

the functional and mechanistic role of MHC-II in the indolence of LUAD tumors is unclear.

It has been reported that the expression of MHC-II and related pathway components is as-

sociated with improved prognosis in many other cancers [114, 115, 120, 122, 133, 134], but

correlative associations in human tumors do not establish causality, therefore in vitro and in

vivo experiments are necessary to understand the role of MHC-II. This is of particular inter-

est for immunotherapy research, as response biomarkers are still not well established. Tumor

specific MHC-II may play a role in CD4+ T cell stimulation, although different depending

on the subset its function could be pro- and anti-tumor. For instance, Th1 cells secrete ac-

tivating cytokines, whereas regulatory T cells have an immunosuppressive effect, playing a

central role in tumor immune evasion. However, since most of the literature suggests that

tumor specific MHC-II expression is associated with favorable prognosis this could suggest

that it is somehow failing to activate T regs. Another intriguing avenue regarding the mech-

anistic function of MHC-II in tumor cells, is the origin of its expression and the status of its

regulatory elements during cancer. The expression of MHC-II and its related machinery is

driven by the transcriptional master regulator class II transactivator (CIITA)[115]. Promot-

ers I and III drive constitutive expression of MHC-II in dendritic and B cells, respectively.

Promoter IV is inducible by INFγ stimulation in various cell types, and it depends on JAK/-
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STAT signaling. The transcription factor INF regulatory factor-1 (IRF-1) is also induced

by INFγ and its loss also impairs INFγ-mediated CIITA induction[153]. The inducible ex-

pression of HLA-DR may also be regulated by retinoblastoma (Rb) protein [154]. It has

been reported that some cells can induce CIITA expression with INFγ stimulation without

producing functional MHC-II at the cell surface, and in instances where Rb function is lost

as result of mutation, the defect can be rescued by reconstitution of functional Rb protein.

This suggests that MHC-II expression at cell surface can be also regulated at the post-CIITA

level. Additionally, in a breast cancer study MHC-II suppression by RAS/MAPK activa-

tion was reported[155]. This is in line with our findings, although not exclusively related

with HLA-DR expression, where pathways associated with proliferation and cell cycle were

negatively correlsted with immune response. All this considered, it would be interesting to

understand what mechanisms of regulation are influencing the expression of HLA-DR in

indolent tumors or which are inhibiting it in aggressive tumors.

5.2.3 The role of the extracellular matrix and stromal cells in LUAD behavior

One of the most surprising findings in this dissertation was the similarities in pathway ex-

pression of indolent and aggressive tumors when compared to intermediate, which were

associated with stromal components. This was also reflected in the single cell RNA-Seq data

in the fibroblasts subset, but in the mural cell compartment aggressive tumors were enriched

in smooth-muscle-like cells while indolent tumors were enriched in mesenchymal-like cells,

possibly pericytes. In a previous publication[146], we found that there was no difference in

the amount of collagen fibers between indolent and aggressive tumors, but indolent tumors

showed longer fibers. Understanding the role of these components is crucial, as it is known

that collagen and ECM remodeling has an important role in cancer development[147]. An

increased stiffness has been associated with poor outcome in other cancers, and it might

support tumor progression, vascularization, and metastasis[147, 156]. The type of collagen

may also affect tumor behavior differently, and although we did not find differences in over-
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all density it would be interesting to explore if these tumors have a different composition

of collagen fibers. Additionally, ECM components, such as collagen, have been reported

to directly or indirectly influence T cell migration, phenotype and function. In vitro studies

have also shown that T cells preferentially migrate along the collagen fibers, thus collagen

orientation could also control the migration of T cells[150]. Therefore, collagen orientation

is another interesting avenue to explore.

5.2.4 The study of LUAD as a system and advancement in multi-omics data integra-

tion strategies

LUAD, as other cancers and medical conditions in general, is a disease that must be stud-

ied as a system. Although we see that drugs treating specific actors in a pathway can have

initial good results in some patients, the disease usually comes back and then the drug is no

longer effective. One of the reasons is intra-tumor heterogeneity, meaning heterogeneity in

cancer cell populations but also in TME cell types and stromal components. Thus, system

approaches are needed and so is the development of multi-omics data integration strategies.

In the data integration section presented in Chapter 4 (Fig. 4.4), we saw that even though the

main topic of Feature cluster 1 (F1) was immune response, there was also a decent amount of

other pathways associated with tumor initiation as well as tumor suppression. One can spec-

ulate that tumors enriched in F1 (P2), most of them indolent or intermediate, are in a stage in

which the tumor is actively sending growth signals but the mechanisms of tumor suppression

and immune response are still functional and fighting the tumor back. A systems approach

to study these tumors and their mechanisms in vitro or in vivo would be ideal to better under-

stand the picture, however recreating the TME is still a challenging task. 3D cancer models

are important step towards that goal. In a recent study, the authors developed and validated a

3D lung cancer model in fibrin gel to investigate the angiogenic potential of cancer cells and

its responses to hypoxia and therapeutics [157]. Another research group developed a similar

model, which they call microphysiologic 3D tumor model with vascularized properties, to
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assess the effectiveness of ROR1-CAR T cells in lung and breast cancer[158]. They showed

that ROR1-CAR T cells penetrated deep into tumor tissue and eliminated multiple layers of

tumor cells located above and below the basal membrane. These two studies, however, use

established cancer cell lines, thus 3D models or 2D culturing of tumor derived cells is still

an unsolved challenge. Regarding data analytics, we need to keep developing and improv-

ing multi-omics data integration strategies in cancer research. In a recent perspective article

by Tarazona and colleagues[70], the authors highlight some of the neglected challenges in

multi-omics studies going from data collection, through data integration, to community dis-

tribution. The authors suggest, among other things, that we must improve our awareness on

the differences of the methods we aim to integrate and think about how our missing data im-

putation strategies may affect the integrative analysis results. However, one of the issues that

caught my attention the most was the need for standardization of multi-omics studies data

distribution. Even though the amount of multi-omics studies have significantly increased in

the past years, our way to distribute the data is still highly heterogeneous, calling for bet-

ter sample annotation across modalities, more detailed data acquisition descriptions, and a

unified storage strategy to allow widely use of data available to the public.

5.3 Concluding Remarks

In conclusion, this dissertation provided a comprehensive and deep profiling of LUAD in-

dolence and aggressiveness at the biological bulk and single cell levels, as well as at the

clinical and radiomics levels. This is a hypothesis generating study that has uncovered sev-

eral potential future research avenues. It has also highlighted the importance and power of

data integration to improve our systemic understanding of LUAD and to help reduce the gap

between basic science research and clinical practice. Ultimately, I hope that my scientific

findings contribute to the advancement of cancer research and directly or indirectly impact

LUAD patient lives for the best.
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APPENDIX

Appendix A
Supplementary material for Chapter 3. This section is adapted from the Online Supplemen-
tary Information of “HLA-DR cancer cells expression correlates with T cell infiltration and
is enriched in lung adenocarcinoma with indolent behavior” published in Scientific Reports
and has been reproduced in line with publisher policies[105].
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Patient ID CANARY Batch ID Batch # Events*
7984 LPS 32618 4 16787
8356 LPS 32118 2 7471
11522 LPS 32418 3 8194
12924 SPS 32618 4 255991
12929 SPS 32418 3 48359
12994 SPS 32118 2 104147
13197 SPS 32418 3 51198
13376 LPS 31618 1 653176
13436 SPS 31618 1 32681
13622 SPS 32618 4 501184

Table S1. CyTOF Sample batches. 
*Number of events (cells) after pre-processing.



Pt ID CANARY Age at 
collection Sex Race Smoking Status Age 

Started Age Quit Pack Years Family History Cancer 
Type

CT Nodule Size 
(mm)

CT Nodule 
Location

8th Edition Path 
Stage Biological data

7984 LPS 66 Female Caucasian Ex-smoker 15 69 50 Unknown 9.7 RLL Stage IA1 CyTOF
8356 LPS 72 Female Caucasian Ex-smoker 18 60 37 Pancreatic 23.4 LLL Stage 0 Both

11522 LPS 57 Female Caucasian Ex-smoker 16 57 20.5 Unknown 28 RUL Stage IA3 Both
12924 SPS 70 Male Caucasian Ex-smoker 17 70 53 Melanoma Skin Cancer 31 LLL Stage IIB Both
12929 SPS 86 Female Caucasian Ex-smoker 16 41 37.5 Unknown 37 LLL Stage IIB Both
12994 SPS 76 Male Caucasian Ex-smoker 20 44 24 Brain 60 RUL Stage IIIB Both
13197 SPS 78 Male Caucasian Ex-smoker 20 55 35 Lung Cancer 13 RLL Stage IIB Both
13376 LPS 64 Female Caucasian Current smoker 16 N/A 20 Bladder 41 RUL Stage IB Both
13436 SPS 56 Male Caucasian Ex-smoker 21 51 45 Gynecological Cancer 61 RLL Stage IIB Both
13622 SPS 67 Female Caucasian Ex-smoker 12 67 110 Lung Cancer 32 RUL Stage IIA Both

11918 LPS 68 Male African 
American Ex-smoker 18 43 25 Gastrointestinal Cancer 22 RUL Stage IA1 MxIF

12911 LPS 72 Male African 
American Ex-smoker 31 61 15 Unknown 12 LUL Stage IA2 MxIF

13634 LPS 67 Female Caucasian Current Smoker 13 N/A N/A Other N/A RUL Stage IIIB MxIF
14428 LPS 73 Male Caucasian Current Smoker N/A N/A 45 Gynecological Cancer 38 RUL Stage IA2 MxIF
14965 LPS 62 Female Caucasian Never smoker N/A N/A N/A Other N/A LUL Stage IA3 MxIF

Table S2. Detailed patient clinical characteristics



Pt ID CANARY Solid Acinar Lepidic Mucinous Micropapillary
7984 LPS +++ +
8356 LPS +++
11522 LPS +++
12924 SPS + + +
12929 SPS + +++
12994 SPS +++ +
13197 SPS +++ +
13376 LPS + +++ +
13436 SPS +++ + +++ +
13622 SPS +

Table S3. Histologic subtypes of ADC



Gene Cell type Size.high Size.low Median.High Median.Low p.value p.adjusted
HLA.DRA CD4+ memory T-cells 120 120 0.2415 0.1475 1.05E-18 3.93E-18
HLA.DRA CD4+ naive T-cells 120 120 0.10225 0.02488 6.61E-24 4.96E-23
HLA.DRA CD8+ naive T-cells 120 120 0.0067875 0.005175 0.16879963 0.19781206
HLA.DRA CD8+ T-cells 120 120 0.037765 0.006478 2.23E-13 5.08E-13
HLA.DRA CD8+ Tcm 120 120 0.05113 0.008943 6.63E-26 8.29E-25

HLA.DRB5 CD4+ memory T-cells 120 120 0.2002 0.15705 5.77E-05 7.46E-05
HLA.DRB5 CD4+ naive T-cells 120 120 0.08357 0.028725 5.51E-17 1.53E-16
HLA.DRB5 CD8+ naive T-cells 120 120 0.0053235 0.005488 0.93774746 0.96609699
HLA.DRB5 CD8+ T-cells 120 120 0.022435 0.0100045 7.07E-05 8.99E-05
HLA.DRB5 CD8+ Tcm 120 120 0.034265 0.010875 6.01E-12 1.13E-11
HLA.DRB6 CD4+ memory T-cells 120 120 0.21425 0.16055 6.07E-08 9.10E-08
HLA.DRB6 CD4+ naive T-cells 120 120 0.08662 0.026945 1.04E-12 2.10E-12
HLA.DRB6 CD8+ naive T-cells 120 120 0.006645 0.005613 0.65471749 0.70148302
HLA.DRB6 CD8+ T-cells 120 120 0.03306 0.011785 7.97E-07 1.13E-06
HLA.DRB6 CD8+ Tcm 120 120 0.04045 0.01496 4.07E-13 8.98E-13
HLA.DRB1 CD4+ memory T-cells 120 120 0.2232 0.1545 1.01E-09 1.69E-09
HLA.DRB1 CD4+ naive T-cells 120 120 0.100035 0.02494 6.49E-23 4.06E-22
HLA.DRB1 CD8+ naive T-cells 120 120 0.005806 0.005212 0.23544515 0.27166748
HLA.DRB1 CD8+ T-cells 120 120 0.032355 0.006944 3.71E-09 5.80E-09
HLA.DRB1 CD8+ Tcm 120 120 0.04474 0.0102135 1.12E-17 3.49E-17
HLA.DQA1 CD4+ memory T-cells 119 120 0.2328 0.1486 7.12E-13 1.48E-12
HLA.DQA1 CD4+ naive T-cells 119 120 0.09937 0.025295 2.78E-24 2.60E-23
HLA.DQA1 CD8+ naive T-cells 119 120 0.005452 0.005777 0.97313001 0.97313001
HLA.DQA1 CD8+ T-cells 119 120 0.02962 0.0100045 1.17E-07 1.73E-07
HLA.DQA1 CD8+ Tcm 119 120 0.04678 0.0092275 1.13E-20 5.28E-20
HLA.DQB1 CD4+ memory T-cells 118 120 0.2117 0.1659 2.71E-05 3.57E-05
HLA.DQB1 CD4+ naive T-cells 118 120 0.09492 0.02308 5.31E-22 3.06E-21
HLA.DQB1 CD8+ naive T-cells 118 120 0.005436 0.0053665 0.91751113 0.96609699
HLA.DQB1 CD8+ T-cells 118 120 0.02703 0.00977 3.78E-06 5.16E-06
HLA.DQB1 CD8+ Tcm 118 120 0.03978 0.01308 7.20E-14 1.74E-13
HLA.DQA2 CD4+ memory T-cells 120 120 0.2308 0.149 1.15E-13 2.70E-13
HLA.DQA2 CD4+ naive T-cells 120 120 0.08491 0.02863 2.99E-17 8.98E-17
HLA.DQA2 CD8+ naive T-cells 120 120 0.0055865 0.0053505 0.96662672 0.97313001
HLA.DQA2 CD8+ T-cells 120 120 0.031205 0.009417 3.61E-09 5.76E-09
HLA.DQA2 CD8+ Tcm 120 120 0.047205 0.014475 8.83E-18 2.88E-17
HLA.DQB2 CD4+ memory T-cells 117 120 0.1855 0.15905 0.00865005 0.01081256
HLA.DQB2 CD4+ naive T-cells 117 120 0.09023 0.02578 1.32E-18 4.70E-18
HLA.DQB2 CD8+ naive T-cells 117 120 0.005838 0.004884 0.25157037 0.28160863
HLA.DQB2 CD8+ T-cells 117 120 0.02652 0.0076725 5.58E-06 7.48E-06
HLA.DQB2 CD8+ Tcm 117 120 0.03031 0.011095 1.41E-09 2.31E-09
HLA.DOB CD4+ memory T-cells 120 120 0.2475 0.1467 8.62E-18 2.88E-17
HLA.DOB CD4+ naive T-cells 120 120 0.1095 0.02623 3.79E-25 4.06E-24
HLA.DOB CD8+ naive T-cells 120 120 0.006561 0.005043 0.11101426 0.13215983
HLA.DOB CD8+ T-cells 120 120 0.041405 0.0056895 2.12E-19 8.39E-19
HLA.DOB CD8+ Tcm 120 120 0.056605 0.0078265 3.51E-27 6.57E-26
HLA.DMB CD4+ memory T-cells 119 120 0.2486 0.1475 7.56E-20 3.15E-19
HLA.DMB CD4+ naive T-cells 119 120 0.1043 0.024645 1.82E-21 9.73E-21
HLA.DMB CD8+ naive T-cells 119 120 0.006214 0.0054535 0.52646757 0.58066276
HLA.DMB CD8+ T-cells 119 120 0.04049 0.007085 6.30E-13 1.35E-12
HLA.DMB CD8+ Tcm 119 120 0.05465 0.008451 1.66E-26 2.48E-25
HLA.DMA CD4+ memory T-cells 120 120 0.2063 0.15705 2.67E-06 3.71E-06
HLA.DMA CD4+ naive T-cells 120 120 0.090215 0.02454 3.55E-23 2.42E-22
HLA.DMA CD8+ naive T-cells 120 120 0.0062675 0.0054115 0.24704118 0.28072861
HLA.DMA CD8+ T-cells 120 120 0.029275 0.0072795 3.88E-09 5.94E-09
HLA.DMA CD8+ Tcm 120 120 0.033825 0.01038 5.33E-17 1.53E-16
HLA.DOA CD4+ memory T-cells 120 119 0.2183 0.1504 2.64E-11 4.61E-11
HLA.DOA CD4+ naive T-cells 120 119 0.10365 0.02488 1.27E-28 4.75E-27
HLA.DOA CD8+ naive T-cells 120 119 0.005298 0.006384 0.05667027 0.06855275
HLA.DOA CD8+ T-cells 120 119 0.0355 0.009776 3.64E-10 6.21E-10
HLA.DOA CD8+ Tcm 120 119 0.041985 0.009255 2.91E-20 1.28E-19
HLA.DPA1 CD4+ memory T-cells 119 120 0.233 0.14855 4.20E-15 1.05E-14
HLA.DPA1 CD4+ naive T-cells 119 120 0.1043 0.022955 1.48E-27 3.70E-26
HLA.DPA1 CD8+ naive T-cells 119 120 0.005774 0.0053435 0.9403344 0.96609699
HLA.DPA1 CD8+ T-cells 119 120 0.03645 0.007038 1.13E-11 2.07E-11
HLA.DPA1 CD8+ Tcm 119 120 0.05308 0.007936 4.79E-24 3.99E-23
HLA.DPB1 CD4+ memory T-cells 120 120 0.23745 0.15055 2.00E-12 3.94E-12
HLA.DPB1 CD4+ naive T-cells 120 120 0.1132 0.024285 1.18E-29 8.82E-28
HLA.DPB1 CD8+ naive T-cells 120 120 0.006382 0.006102 0.64400735 0.70000798
HLA.DPB1 CD8+ T-cells 120 120 0.040475 0.0073185 3.08E-12 5.92E-12
HLA.DPB1 CD8+ Tcm 120 120 0.052265 0.0092275 6.63E-21 3.31E-20
HLA.DPB2 CD4+ memory T-cells 120 119 0.23275 0.1523 1.74E-11 3.11E-11
HLA.DPB2 CD4+ naive T-cells 120 119 0.089785 0.03013 6.64E-16 1.72E-15
HLA.DPB2 CD8+ naive T-cells 120 119 0.007628 0.005168 0.0457618 0.05626451
HLA.DPB2 CD8+ T-cells 120 119 0.03291 0.009776 3.98E-07 5.74E-07
HLA.DPB2 CD8+ Tcm 120 119 0.048415 0.01312 5.91E-16 1.58E-15

Table S4. Summary of cell type enrichment analysis on ADC TCGA using xCell.



Figure S1. A549 protein expression across replicates. Samples 1 and 2 correspond to experimental mix of cell lines 
stained and run through the CyTOF machine separately. Sample 3 corresponds to a computational mix, for which each cell 
line and PBMCs were stained and run through the CyTOF machine independently and then files were concatenated to 
obtain a labeled mix. All samples were analyzed in Cytobank, where cell types were manually gated and annotated based 
on protein expression. This is the data for  A549 cell line.



Figure S2. H23 protein expression across replicates. Samples 1 and 2 correspond to experimental mix of cell lines stained 
and run through the CyTOF machine separately. Sample 3 corresponds to a computational mix, for which each cell line 
and PBMCs were stained and run through the CyTOF machine independently and then files were concatenated to obtain 
a labeled mix. All samples were analyzed in Cytobank, where cell types were manually gated and annotated based on 
protein expression. This is the data for  H23 cell line.



Figure S3. H3122 protein expression across replicates. Samples 1 and 2 correspond to experimental mix of cell lines 
stained and run through the CyTOF machine separately. Sample 3 corresponds to a computational mix, for which each cell 
line and PBMCs were stained and run through the CyTOF machine independently and then files were concatenated to 
obtain a labeled mix. All samples were analyzed in Cytobank, where cell types were manually gated and annotated based 
on protein expression. This is the data for  H3122 cell line.



Figure S4. PC9 protein expression across replicates. Samples 1 and 2 correspond to experimental mix of cell lines stained 
and run through the CyTOF machine separately. Sample 3 corresponds to a computational mix, for which each cell line 
and PBMCs were stained and run through the CyTOF machine independently and then files were concatenated to obtain 
a labeled mix. All samples were analyzed in Cytobank, where cell types were manually gated and annotated based on 
protein expression. This is the data for  PC9 cell line.



Figure S5. Monocytes protein expression across replicates. Samples 1 and 2 correspond to experimental mix of cell lines 
stained and run through the CyTOF machine separately. Sample 3 corresponds to a computational mix, for which each cell 
line and PBMCs were stained and run through the CyTOF machine independently and then files were concatenated to 
obtain a labeled mix. All samples were analyzed in Cytobank, where cell types were manually gated and annotated based 
on protein expression. This is the data for monocytes from the PBMC sample.



Figure S6. Cytotoxic T cells protein expression across replicates. Samples 1 and 2 correspond to experimental mix of cell 
lines stained and run through the CyTOF machine separately. Sample 3 corresponds to a computational mix, for which 
each cell line and PBMCs were stained and run through the CyTOF machine independently and then files were 
concatenated to obtain a labeled mix. All samples were analyzed in Cytobank, where cell types were manually gated and 
annotated based on protein expression. This is the data for CD8+ T cells from the PBMC sample.



Figure S7. T helper cells protein expression across replicates. Samples 1 and 2 correspond to experimental mix of cell 
lines stained and run through the CyTOF machine separately. Sample 3 corresponds to a computational mix, for which 
each cell line and PBMCs were stained and run through the CyTOF machine independently and then files were 
concatenated to obtain a labeled mix. All samples were analyzed in Cytobank, where cell types were manually gated and 
annotated based on protein expression. This is the data for CD4+ T cells from the PBMC sample.



Figure S8. Survival analysis of LPS vs SPS ADC samples. Survival curves were generated using the Kaplan-Meier method, 
and statistically significant differences were analyzed with the log rank test.



Figure S9. Spearman correlation of main cell types. Only significant  correlations (p value >0.05) are colored. P values are 
adjusted for multiple hypothesis testing by Benjamini-Hochberg procedure.



Figure S10. Differential abundance analysis.  P value >0.05 for all comparisons. “Immune” correspond to the percentages 
of all immune subtypes added up per patient.



Figure S11. Protein expression comparison for endothelial cells. Only the protein markers which have an average protein 
expression > 1.4 for at least one patient are shown.



Figure S12. Protein expression comparison for fibroblasts/mesenchymal cells. Only the protein markers which have an 
average protein expression > 1.4 for at least one patient are shown.



Figure S13. Protein expression comparison for epithelial cells. Only the protein markers which have an average protein 
expression > 1.4 for at least one patient are shown.



Figure S14. Protein expression comparison for immune cells. Only the protein markers which have an average protein 
expression > 1.4 for at least one patient are shown.



Figure S15. Protein expression comparison for CD8+ T cells. Only the protein markers which have an average protein 
expression > 1.4 for at least one patient are shown.



Figure S16. Protein expression comparison for CD4+ T cells. Only the protein markers which have an average protein 
expression > 1.4 for at least one patient are shown.



Figure S17. Protein expression comparison for myeloid cells. Only the protein markers which have an average protein 
expression > 1.4 for at least one patient are shown.



Min 1st Qu. Median Mean 3rd Qu Max

A549 0.4604 0.7593 0.8666 0.8193 0.9267 1.0836

Ramos 1.186 3.244 4.329 3.726 4.812 5.059

Figure S18. HLA-DR expression in batch control cell lines A549 and Ramos.



Figure S19. Spearman correlation of main all cell types and 10 epithelial clusters. Only significant  correlations (p value 
>0.05) are colored. P values are adjusted for multiple hypothesis testing by Benjamini-Hochberg procedure.
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Figure S20. Extended Figure 5C showing results for each individual patient (2 cores/patient). 
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Pt ID SILA score Group Age at 
collection

Sex Race Smoking Status Pack 
Years

Family History Cancer 
Type

Chest CT 
Location

Path_T Path_N Path_M 8th ed path 
stage

Path Nodule Size 
(cm)

Histology 
predominant

Histology other patterns

7984 0.049 Indolent 66 Female Caucasian Ex-smoker 50 Unknown NA T1a N0 M0 Stage IA1 0.8 solid acinar, lepidic
8356 0.115 Indolent 72 Female Caucasian Ex-smoker 37 Pancreatic LLL Tis N0 M0 Stage 0 2.1 lepidic NA

11424 0.75 Aggressive 72 Male Caucasian Current smoker 61 Unknown RUL T1c N0 M0 Stage IA3 2.1 solid NA
11522 0.23 Indolent 57 Female Caucasian Ex-smoker 20.5 Unknown RUL T1c N0 M0 Stage IA3 2.2 acinar lepidic
11538 0.758 Aggressive 69 Male African American Ex-smoker 60 Unknown LLL T2 N0 NA Stage IB 2 micropapillary NA
11561 0.555 Intermediate 58 Male Caucasian Ex-smoker 28 Breast LUL T1c N0 M0 Stage IA3 2.2 papillary acinar, micropapillary
11601 0.61 Aggressive 53 Male Caucasian Current smoker 38 Hematological Cancer RUL T1a N0 M0 Stage IA1 1.7 solid acinar
11646 0.695 Aggressive 71 Male Caucasian Ex-smoker 100 Pancreatic RUL T1b N0 Mx Stage IA2 2.5 micropapillary solid, acinar
11652 0.479 Intermediate 66 Male Caucasian Ex-smoker 50 Colon RLL T1a N0 M0 Stage IA1 1.8 papillary micropapillary
11728 0.408 Intermediate 65 Male Caucasian Ex-smoker 50 Melanoma Skin Cancer RUL T1b N0 NA Stage IA2 1.7 micropapillary acinar, solid
11759 0.634 Aggressive 80 Male Caucasian Ex-smoker 48 Unknown RUL T1b N0 M0 Stage IA2 2 acinar micropapillary
11813 0.547 Intermediate 60 Female Caucasian Ex-smoker 10 Lung - Small Cell RLL T1b N0 M0 Stage IA2 1.3 acinar lepidic
11817 0.797 Aggressive 68 Female Caucasian Ex-smoker 48 Unknown LUL T2b N1 M0 Stage IIB 4.4 acinar solid
11820 0.665 Aggressive 80 Male Caucasian Ex-smoker NA Unknown RUL T1a N0 M0 Stage IA1 1.3 acinar solid
11851 0.428 Intermediate 81 Male Caucasian Ex-smoker 90 Unknown LUL T2a N0 M0 Stage IB 3.8 acinar NA
11855 0.761 Aggressive 59 Male Caucasian Ex-smoker 15 Esophagus RLL T1c N0 M0 Stage IA3 2.5 acinar NA
11886 0.315 Indolent 59 Female Caucasian Ex-smoker 10 Esophagus RUL T2a N0 M0 Stage IB 0.9 acinar solid
11901 0.647 Aggressive 83 Male Caucasian Ex-smoker NA Other RUL T1c N0 M0 Stage IA3 2.7 acinar solid
11906 0.505 Intermediate 62 Female Caucasian Ex-smoker 27 Pancreatic RLL T1b N0 M0 Stage IA2 1.4 acinar lepidic
11918 0.36 Indolent 68 Male African American Ex-smoker 25 Gastrointesti l Cancer RUL T1a N0 M0 Stage IA1 1.3 solid acinar, lepidic
11938 0.417 Intermediate 63 Male Caucasian Current smoker 72 Hematological Cancer RUL T2a N0 M0 Stage IB 1.4 acinar lepidic
11952 0.822 Aggressive 61 Female Caucasian Ex-smoker 63 Melanoma Skin Cancer RUL T1c N0 M0 Stage IA3 2.1 acinar NA
11957 0.712 Aggressive 68 Male Caucasian Ex-smoker 24 Unknown RLL T3 N1 M0 Stage IIIA 4.3 acinar solid
12177 0.649 Aggressive 74 Male Caucasian Ex-smoker 15 Bone LUL T1b N2 M0 Stage IIIA 2 acinar solid
12281 0.34 Indolent 60 Female Caucasian Ex-smoker 25 Unknown RUL T1b N0 M0 Stage IA2 1.4 acinar lepidic, micropapillary
12323 0.794 Aggressive 59 Female Caucasian Ex-smoker 20 Unknown LLL T4 N0 M0 Stage IIIA 1.8 acinar micropapillary
12546 0.476 Intermediate 69 Male Caucasian Ex-smoker 60 Breast RUL T1a N0 Mx Stage IA1 1.8 papillary acinar
12889 0.768 Aggressive 74 Female Caucasian Ex-smoker 50 Breast RUL T3 N0 M0 Stage IIB 6.1 solid NA
12890 0.791 Aggressive 64 Male Caucasian Current smoker 48 Unknown NA T2b N0 M0 Stage IIA 4.5 acinar micropapillary
12911 0.322 Indolent 72 Male African American Ex-smoker 15 Unknown LUL T1b N0 M0 Stage IA2 1.5 acinar micropapillary, lepidic
12915 0.435 Intermediate 61 Female Caucasian Never smoked NA Unknown NA T2a N0 M0 Stage IB 3.5 acinar lepidic
12924 0.669 Aggressive 70 Male Caucasian Ex-smoker 53 Melanoma Skin Cancer LLL T2a N1 M0 Stage IIB 4 papillary acinar
12929 0.622 Aggressive 86 Female Caucasian Ex-smoker 37.5 Unknown LLL T3 N0 M0 Stage IIB 3.3 acinar lepidic
12931 0.79 Aggressive 65 Male African American Ex-smoker 50 Lung Cancer RLL T2b N0 M0 Stage IIA 4.9 solid acinar
12935 0.441 Intermediate 58 Male Caucasian Ex-smoker 96 Liver NA T1c Nx M1a Stage IV 2.4 solid NA
12994 0.75 Aggressive 76 Male Caucasian Ex-smoker 24 Brain RUL T3 N2 M0 Stage IIIB 3.5 micropapillary acinar
13014 0.735 Aggressive 82 Female Caucasian Ex-smoker 27 Lung Cancer LUL T2b N0 M0 Stage IIA 4.1 acinar micropapillary
13034 0.551 Intermediate 70 Male Caucasian Ex-smoker 39 Lung Cancer RUL T2a N0 M0 Stage IB 3.7 micropapillary acinar
13055 0.418 Intermediate 79 Female Caucasian Never smoked NA Unknown RUL T1c N0 M0 Stage IA3 2.4 acinar micropapillary
13074 0.742 Aggressive 76 Female Caucasian Never smoked NA Unknown RUL T1b N0 M0 Stage IA2 1.7 solid acinar
13155 0.731 Aggressive 64 Male Caucasian Ex-smoker 144 Unknown RUL T1c N0 M0 Stage IA3 3 acinar micropappilary
13197 0.697 Aggressive 78 Male Caucasian Ex-smoker 35 Lung Cancer RLL T1b N1 M0 Stage IIB 1.3 acinar micropapillary
13207 0.675 Aggressive 60 Female Caucasian Ex-smoker 43 Prostate RLL T1c N0 M0 Stage IA3 2.3 micropapillary NA
13276 0.459 Intermediate 63 Female Caucasian Ex-smoker 47 Breast RUL T1b N0 M0 Stage IA2 1.8 acinar micropapillary
13317 0.697 Aggressive 62 Male Caucasian Current smoker 78 Prostate RUL T1c N0 M0 Stage IA3 2.5 micropapillary solid
13356 0.621 Aggressive 50 Female Caucasian Ex-smoker 78 Unknown RUL T3 N0 M0 Stage IIB 1.7 acinar solid
13376 0.274 Indolent 64 Female Caucasian Current smoker 20 Bladder RUL T2a Nx M0 Stage IB 3.2 lepidic acinar
13436 0.739 Aggressive 56 Male Caucasian Ex-smoker 45 Gynecological Cancer RLL T3 N0 M0 Stage IIB 6.9 acinar NA
13536 0.502 Intermediate 76 Female Caucasian Ex-smoker 46 Prostate RUL T1b N0 M0 Stage IA2 1.7 acinar NA
13538 0.368 Indolent 62 Male Caucasian Ex-smoker 30 Unknown LLL T1a N0 M0 Stage IA1 0.9 papillary lepidic
13579 0.664 Aggressive 52 Male Caucasian Ex-smoker 45 Lung Cancer RLL T3 N0 M0 Stage IIB 5.5 acinar NA
13622 0.799 Aggressive 67 Female Caucasian Ex-smoker 110 Lung Cancer RUL T2b N0 M0 Stage IIA 4.1 solid NA
13634 0.25 Indolent 67 Female Caucasian Current smoker NA Other RUL T3 N2 M0 Stage IIIB 2 solid NA
13636 0.853 Aggressive 75 Female Caucasian Ex-smoker 120 Breast RUL T4 N0 M0 Stage IIIA 7.3 papillary NA
13651 0.548 Intermediate 59 Female Caucasian Ex-smoker 35 Bladder RUL T1b N2 M0 Stage IIIA 1.9 acinar lepidic
13724 0.789 Aggressive 75 Female Caucasian Ex-smoker 15 Melanoma Skin Cancer RLL T2b N0 M0 Stage IIA 5 solid acinar
13746 0.821 Aggressive 64 Male Caucasian Ex-smoker 30 Prostate LUL T4 N0 M1a Stage IV NA acinar NA
13769 0.699 Aggressive 66 Female Caucasian Ex-smoker 10.5 Lung Cancer RUL T2b N0 M0 Stage IIA 4.6 acinar lepidic
13771 0.554 Intermediate 74 Female Caucasian Ex-smoker NA Prostate LLL T1c N0 M0 Stage IA3 2.2 papillary acinar
13774 0.735 Aggressive 54 Female Caucasian Ex-smoker 35.25 Unknown LUL T1c N0 M0 Stage IA3 2.7 acinar papillary
13801 0.705 Aggressive 65 Female Caucasian Ex-smoker 20 Unknown RUL T1b N0 M0 Stage IA2 1.7 acinar NA
13922 0.359 Indolent 82 Female Caucasian Current smoker 60 UNknown RUL T1a N1 M0 Stage IIB 1 acinar solid
13988 0.575 Intermediate 56 Male Caucasian Ex-smoker 28.5 Melanoma Skin Cancer NA T2b N0 M0 Stage IIA 4.1 acinar NA
14048 0.774 Aggressive 62 Female Caucasian Ex-smoker 35 Lung Cancer LLL T2a N0 M0 Stage IB 3.5 acinar NA
14201 0.416 Intermediate 82 Male Caucasian Ex-smoker 1.25 Breast LLL T1b N0 M0 Stage IA2 1.8 acinar lepidic
14301 0.826 Aggressive 82 Female Caucasian Ex-smoker 40 Brain RUL T2b N1 M0 Stage IIB 4.8 micropapillary solid, acinar
14330 0.732 Aggressive 50 Female Caucasian Ex-smoker 39 Colon LUL T2b N0 M0 Stage IIA 4.8 acinar lepidc
14428 0.493 Intermediate 73 Male Caucasian Current smoker 45 Gynecological Cancer RUL T1b N0 NA Stage IA2 3.9 acinar micropapillary, lepidic
14610 0.758 Aggressive 64 Female Caucasian Never smoked 31 Unknown RUL T2b N0 M0 Stage IIA 4.5 mucinous acinar lepidic
14813 0.627 Aggressive 69 Male Caucasian Ex-smoker 61.5 Prostate RUL T1b N0 NA Stage IA2 1.6 solid acinar, lepidic
14825 0.418 Intermediate 59 Female Asian Never smoked NA Unknown LUL T1c N1 M0 Stage IIB 2.7 acinar micropapillary
14836 0.773 Aggressive 66 Female Caucasian Never smoked NA Lung Cancer RUL T1c N0 M0 Stage IA3 2.2 solid acinar
14855 0.513 Intermediate 79 Male Caucasian Ex-smoker 50 Other LLL T2a N0 M0 Stage IB 3.5 acinar micropapillary
14933 0.599 Intermediate 75 Male Caucasian Ex-smoker 80 Other RLL T1c N0 NA Stage IA3 2.6 acinar micropapillary
14953 0.821 Aggressive 73 Male Caucasian Ex-smoker 57 Unknown LUL T2b N0 M0 Stage IIA 4.4 solid NA
14955 0.56 Intermediate 79 Female Caucasian Ex-smoker 27 Breast RLL T3 N0 M0 Stage IIB 1.3 solid acinar
14958 0.148 Indolent 68 Female Caucasian Current smoker 23.5 Other LUL T2a N0 M0 Stage IB 3.2 solid acinar
14962 0.721 Aggressive 68 Female Caucasian Ex-smoker 32 Breast LLL T2b N1 M0 Stage IIB 5 papillary acinar
14965 0.35 Indolent 62 Female Caucasian Never smoked NA Other LUL T1c N0 NA Stage IA3 2.5 acinar lepidic
15001 0.532 Intermediate 66 Female Caucasian Never smoked NA Unknown RUL T2a N0 M0 Stage IB 2.3 micropapillary acinar
15002 0.724 Aggressive 90 Male Asian Ex-smoker 28.5 Prostate RUL T2b N0 M0 Stage IIA 4.2 solid NA
15083 0.421 Intermediate 75 Male Caucasian Current smoker 75 Unknown RUL T1b N0 M0 Stage IA2 2.1 acinar micropapillary, lepidic
15187 0.616 Aggressive 70 Male Caucasian Never smoked NA Unknown RLL T1b N0 M0 Stage IA2 1.9 acinar lepidic
15224 0.716 Aggressive 48 Female Caucasian Never smoked NA Colon LLL T1b N0 Mx Stage IA2 1.9 acinar papillary, micropapillary
15325 0.622 Aggressive 82 Female Caucasian Ex-smoker 30 Colon RML T1a N0 M0 Stage IA1 0.9 papillary NA
15326 0.612 Aggressive 55 Female Caucasian Ex-smoker 3 Pancreatic RLL T1c N0 M0 Stage IA3 2.1 acinar micropapillary
15467 0.699 Aggressive 61 Female African American Never smoked NA Colon LUL T1c N0 M0 Stage IA3 2.4 mucinous acinar NA
15506 0.777 Aggressive 81 Female Caucasian Never smoked NA Gastrointesti l Cancer RUL T2b N0 M0 Stage IIA 4.6 mucinous acinar NA
15569 0.687 Aggressive 62 Male Caucasian Never smoked NA Prostate RUL T2b N1 M0 Stage IIA 4.9 acinar solid
15626 0.699 Aggressive 71 Female Caucasian Never smoked NA Lung Cancer RLL T1c N1 M0 Stage IIB 2.2 acinar micropapilary, papillary, lepidic
15641 0.38 Indolent 60 Male Caucasian Ex-smoker 52 Lung Cancer LUL T1b N1 M0 Stage IIB 1.8 acinar solid, micropapillary
15741 0.405 Intermediate 56 Female African American Never smoked NA Head and Neck Cancer RUL T1b N0 NA Stage IA2 1.8 acinar lepidic

Table S1. Detailed patient clinical characteristics



Pt ID CyTOF RNA-Seq WES scRNA-Seq MxIF
7984 1 0 0 0 1
8356 1 1 0 1 1

11424 0 1 1 0 1
11522 1 0 0 1 1
11538 1 1 1 0 1
11561 1 1 1 0 1
11601 0 1 1 0 1
11646 1 1 1 0 1
11652 1 1 1 0 1
11728 0 0 0 0 1
11759 1 1 0 0 1
11813 1 1 0 0 1
11817 1 1 1 1 1
11820 0 1 1 0 1
11851 1 1 0 0 1
11855 1 1 1 0 1
11886 1 1 0 0 1
11901 1 0 0 0 1
11906 1 1 0 0 1
11918 1 0 0 1 1
11938 1 1 1 0 1
11952 1 1 0 0 1
11957 0 1 1 0 1
12177 0 1 0 0 1
12281 1 1 1 0 1
12323 1 1 0 0 1
12546 1 1 1 0 1
12889 1 1 1 1 1
12890 1 1 1 0 1
12911 0 0 0 0 1
12915 1 1 1 0 1
12924 1 1 1 0 1
12929 1 1 0 1 1
12931 1 1 1 0 1
12935 1 0 0 1 1
12994 1 1 1 0 1
13014 1 1 1 0 1
13034 1 0 0 0 1
13055 1 0 0 0 1
13074 1 1 1 0 1
13155 1 1 0 0 1
13197 1 0 0 0 1
13207 1 1 1 0 1
13276 1 1 1 0 1
13317 1 1 1 0 1
13356 0 0 1 0 1
13376 1 1 1 0 1
13436 1 1 1 0 1
13536 1 1 0 0 1
13538 1 1 0 0 1
13579 0 1 1 0 1
13622 1 1 1 0 1
13634 0 1 0 1 1
13636 1 0 0 1 1
13651 1 1 0 0 1
13724 1 1 1 0 1
13746 0 0 0 0 1
13769 1 1 1 0 1
13771 1 1 1 0 1
13774 1 0 0 1 1
13801 0 1 0 0 1
13922 0 1 0 0 1
13988 1 1 1 0 1
14048 1 1 1 0 1
14201 0 1 1 0 1
14301 1 1 1 0 1
14330 0 1 0 0 1
14428 0 0 0 1 1
14610 1 1 1 0 1
14813 0 1 1 0 1
14825 0 1 1 0 1
14836 1 1 1 0 1
14855 1 1 1 0 1
14933 0 1 1 0 1
14953 0 1 1 0 1
14955 1 1 1 0 1
14958 1 1 1 1 1
14962 1 1 0 0 1
14965 1 1 1 1 1
15001 1 1 1 0 1
15002 1 1 1 1 1
15083 1 1 1 0 1
15187 1 1 1 0 1
15224 1 1 0 0 1
15325 1 1 1 0 1
15326 1 1 1 0 1
15467 1 1 1 1 1
15506 1 1 1 0 1
15569 1 1 1 0 1
15626 0 1 0 0 1
15641 0 1 1 0 1
15741 1 1 0 0 1

Table S2. Data collection by patient. (0=No, 1=Yes)



Reference group Test group ENSEMBL ID Symbol log2FoldChange p value p value (adj)
Indolent Aggressive ENSG00000108576.5 SLC6A4 -3.631980607 7.02E-08 0.001515953
Indolent Aggressive ENSG00000130294.10 KIF1A 4.33966982 4.68E-07 0.003527126
Indolent Aggressive ENSG00000149948.9 HMGA2 3.844206007 6.30E-07 0.003527126
Indolent Aggressive ENSG00000118322.8 ATP10B 2.905940066 9.28E-07 0.003527126
Indolent Aggressive ENSG00000197301.3 RP11-366L20.2 3.200667758 9.55E-07 0.003527126
Indolent Aggressive ENSG00000100413.12 POLR3H -1.820271699 9.80E-07 0.003527126
Indolent Aggressive ENSG00000155974.7 GRIP1 1.630370299 8.97E-06 0.026885401
Indolent Aggressive ENSG00000164669.8 INTS4L1 2.072296832 9.96E-06 0.026885401
Indolent Aggressive ENSG00000065618.12 COL17A1 2.72584176 1.13E-05 0.027183728
Indolent Aggressive ENSG00000152669.8 CCNO 2.330335431 1.30E-05 0.028040319
Indolent Aggressive ENSG00000178343.4 SHISA3 3.387560179 2.33E-05 0.040539858
Indolent Aggressive ENSG00000270358.1 IGHV4-61 2.960817134 2.49E-05 0.040539858
Indolent Aggressive ENSG00000167588.8 GPD1 -1.898779478 2.57E-05 0.040539858
Indolent Aggressive ENSG00000173432.6 SAA1 2.36048576 2.73E-05 0.040539858
Indolent Aggressive ENSG00000021826.10 CPS1 3.322625723 2.94E-05 0.040539858
Indolent Aggressive ENSG00000223532.5 HLA-B 3.228191816 3.09E-05 0.040539858
Indolent Aggressive ENSG00000187950.4 OVCH1 -1.899695931 3.19E-05 0.040539858
Indolent Aggressive ENSG00000211936.2 IGHV4-4 2.843440501 3.45E-05 0.041405362
Indolent Aggressive ENSG00000263001.1 GTF2I -2.175708756 4.30E-05 0.048867056
Indolent Aggressive ENSG00000159263.11 SIM2 2.137299378 5.03E-05 0.054335045
Indolent Intermediate ENSG00000114455.9 HHLA2 3.297350463 1.20E-06 0.015688676
Indolent Intermediate ENSG00000155974.7 GRIP1 1.807818465 1.37E-06 0.015688676
Indolent Intermediate ENSG00000233008.1 RP11-475O6.1 1.815365747 2.14E-05 0.119137532
Indolent Intermediate ENSG00000261520.1 DLGAP1-AS5 2.271273463 2.57E-05 0.119137532
Indolent Intermediate ENSG00000164669.8 INTS4L1 1.920458303 2.81E-05 0.119137532
Indolent Intermediate ENSG00000170927.10 PKHD1 2.549510284 3.12E-05 0.119137532
Indolent Intermediate ENSG00000270358.1 IGHV4-61 2.541562662 6.77E-05 0.189433624
Indolent Intermediate ENSG00000106278.7 PTPRZ1 2.240801218 7.43E-05 0.189433624
Indolent Intermediate ENSG00000118322.8 ATP10B 2.369693016 9.77E-05 0.205018187
Indolent Intermediate ENSG00000117983.13 MUC5B 2.690841405 9.83E-05 0.205018187
Indolent Intermediate ENSG00000065618.12 COL17A1 1.649864878 0.000149181 0.220366412
Indolent Intermediate ENSG00000168143.8 FAM83B 2.531825427 0.000173943 0.233516248
Indolent Intermediate ENSG00000211670.2 IGLV3-9 2.5512349 0.000190422 0.233516248
Indolent Intermediate ENSG00000171724.2 VAT1L -1.844174433 0.000203624 0.233516248
Indolent Intermediate ENSG00000170579.10 DLGAP1 1.799082807 0.00021949 0.239724509
Indolent Intermediate ENSG00000133063.11 CHIT1 -1.993177776 0.000301518 0.286879103
Indolent Intermediate ENSG00000149948.9 HMGA2 2.669493727 0.000351529 0.298617436
Indolent Intermediate ENSG00000223532.5 HLA-B 3.241208651 0.000392787 0.321717861
Indolent Intermediate ENSG00000136883.8 KIF12 1.982682171 0.000406776 0.321717861
Indolent Intermediate ENSG00000197301.3 RP11-366L20.2 2.283482651 0.000782513 0.492954247

Intermediate Aggressive ENSG00000023839.6 ABCC2 2.48154518 4.53E-08 0.000837745
Intermediate Aggressive ENSG00000171560.10 FGA 3.761217094 9.69E-08 0.000837745
Intermediate Aggressive ENSG00000135454.9 B4GALNT1 2.424251387 1.19E-07 0.000837745
Intermediate Aggressive ENSG00000145794.12 MEGF10 1.911906096 4.73E-07 0.002500355
Intermediate Aggressive ENSG00000021826.10 CPS1 2.837783429 9.10E-07 0.003732077
Intermediate Aggressive ENSG00000113739.6 STC2 1.531248536 1.06E-06 0.003732077
Intermediate Aggressive ENSG00000240216.3 CPHL1P 2.087821087 6.91E-06 0.013871314
Intermediate Aggressive ENSG00000173432.6 SAA1 1.855845949 7.02E-06 0.013871314
Intermediate Aggressive ENSG00000025423.7 HSD17B6 -1.518457392 8.20E-06 0.013871314
Intermediate Aggressive ENSG00000164283.8 ESM1 1.731011117 8.52E-06 0.013871314
Intermediate Aggressive ENSG00000179603.13 GRM8 1.557691984 1.09E-05 0.014425084
Intermediate Aggressive ENSG00000160862.8 AZGP1 2.192218506 1.94E-05 0.020323777
Intermediate Aggressive ENSG00000136231.9 IGF2BP3 1.91423555 2.01E-05 0.020323777
Intermediate Aggressive ENSG00000167779.3 IGFBP6 1.559799682 2.02E-05 0.020323777
Intermediate Aggressive ENSG00000101057.11 MYBL2 1.610033045 2.34E-05 0.022491299
Intermediate Aggressive ENSG00000145920.10 CPLX2 1.817142293 2.54E-05 0.022985436
Intermediate Aggressive ENSG00000144452.10 ABCA12 1.763964205 3.25E-05 0.025447451
Intermediate Aggressive ENSG00000106236.3 NPTX2 2.004396803 3.47E-05 0.026222061
Intermediate Aggressive ENSG00000152578.8 GRIA4 1.68515163 3.62E-05 0.026433707
Intermediate Aggressive ENSG00000206557.5 TRIM71 -1.605200172 4.82E-05 0.030873329

Table S3. Top 20 differentially expressed per group comparison



Reference group Test group Regulon Size NES p.value FDR
Indolent Aggressive FOXO1 34 -2.78 0.00541 0.233

Indolent Aggressive SPI1 81 -2.5 0.0123 0.264
Indolent Intermediate HIF1A 128 -2.1 0.036 0.797

Indolent Intermediate SPI1 81 -2.08 0.0377 0.797
Intermediate Aggressive FOXM1 32 2.37 0.0178 0.766

Intermediate Aggressive HIF1A 128 1.89 0.0588 0.892

Table S4. Transcription factor activity inferred with VIPER



database pathway pval padj log2err NES size state pvlabel
HALLMARK HALLMARK_TNFA_SIGNALING_VIA_NFKB 1.27E-25 6.35E-24 1.31101476 -3.0500513 189 down ***
HALLMARK HALLMARK_E2F_TARGETS 2.31E-15 5.77E-14 1.00731796 2.40633076 182 up ***
HALLMARK HALLMARK_GLYCOLYSIS 1.30E-12 1.62E-11 0.91011973 2.32426556 172 up ***
HALLMARK HALLMARK_TGF_BETA_SIGNALING 1.33E-06 1.11E-05 0.64355184 -2.3235829 52 down ***
HALLMARK HALLMARK_G2M_CHECKPOINT 3.24E-13 5.39E-12 0.93259521 2.27985762 181 up ***
HALLMARK HALLMARK_INFLAMMATORY_RESPONSE 2.29E-09 2.29E-08 0.77493903 -2.105593 179 down ***
HALLMARK HALLMARK_APOPTOSIS 1.12E-05 8.03E-05 0.59332548 -1.8363303 144 down ***
HALLMARK HALLMARK_MYC_TARGETS_V2 0.00075123 0.00313011 0.47727082 1.82136349 56 up **
HALLMARK HALLMARK_KRAS_SIGNALING_UP 6.59E-05 0.00041206 0.5384341 -1.6794626 170 down ***
HALLMARK HALLMARK_COMPLEMENT 8.11E-05 0.00045029 0.5384341 -1.6701543 168 down ***
HALLMARK HALLMARK_ALLOGRAFT_REJECTION 0.0001696 0.00084798 0.51884808 -1.6607444 156 down ***
HALLMARK HALLMARK_ESTROGEN_RESPONSE_LATE 0.00036704 0.00166838 0.49849311 1.65497782 174 up **
HALLMARK HALLMARK_CHOLESTEROL_HOMEOSTASIS 0.00253117 0.00844963 0.4317077 -1.6526158 67 down **
HALLMARK HALLMARK_IL6_JAK_STAT3_SIGNALING 0.00424795 0.01132538 0.40701792 -1.6374488 73 down *
HALLMARK HALLMARK_SPERMATOGENESIS 0.00277594 0.00867482 0.31827968 1.63514195 87 up **
HALLMARK HALLMARK_KRAS_SIGNALING_DN 0.00345843 0.01017187 0.27986565 1.59126171 114 up *
HALLMARK HALLMARK_MITOTIC_SPINDLE 0.00430365 0.01132538 0.24169839 1.49227903 187 up *
HALLMARK HALLMARK_P53_PATHWAY 0.00115331 0.00443579 0.45505987 -1.4903422 182 down **
HALLMARK HALLMARK_UV_RESPONSE_DN 0.0063868 0.015967 0.40701792 -1.4698557 135 down *
HALLMARK HALLMARK_IL2_STAT5_SIGNALING 0.00253489 0.00844963 0.4317077 -1.4338598 182 down **
REACTOME Nuclear Events (kinase and transcription factor activation) 1.35E-07 2.85E-05 0.69013246 -2.4255931 54 down ***
REACTOME NGF-stimulated transcription 2.07E-06 0.00025325 0.62725674 -2.4108058 34 down ***
REACTOME Activation of the pre-replicative complex 1.21E-06 0.00016557 0.64355184 2.23448667 31 up ***
REACTOME DNA strand elongation 9.04E-07 0.0001311 0.6594444 2.22474877 30 up ***
REACTOME Interleukin-3, Interleukin-5 and GM-CSF signaling 2.01E-05 0.00146279 0.57561026 -2.1745332 40 down **
REACTOME DAP12 interactions 5.61E-05 0.0031775 0.55733224 -2.1729129 34 down **
REACTOME Defective C1GALT1C1 causes Tn polyagglutination syndrome (TNPS) 2.37E-05 0.00157126 0.57561026 2.12940602 12 up **
REACTOME Cell-extracellular matrix interactions 0.00066629 0.01982641 0.47727082 -2.1096974 16 down *
REACTOME Leishmania infection 1.33E-09 7.71E-07 0.78818681 -2.1082288 187 down ***
REACTOME Activation of ATR in response to replication stress 2.51E-05 0.0016169 0.57561026 2.10696801 36 up **
REACTOME Unwinding of DNA 4.94E-05 0.00286659 0.55733224 2.09279556 12 up **
REACTOME Signaling by BMP 0.00027553 0.01031466 0.49849311 -2.0891351 23 down *
REACTOME FOXO-mediated transcription 2.25E-05 0.00153646 0.57561026 -2.0867589 53 down **
REACTOME RUNX3 regulates NOTCH signaling 0.00122689 0.0289566 0.45505987 -2.083939 12 down *
REACTOME DNA Double-Strand Break Repair 6.49E-08 1.67E-05 0.70497572 2.07315574 120 up ***
REACTOME Incretin synthesis, secretion, and inactivation 0.00069843 0.02026323 0.47727082 -2.0682918 11 down *
REACTOME Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) 0.00069843 0.02026323 0.47727082 -2.0682918 11 down *
REACTOME Kinesins 7.58E-06 0.00073264 0.61052688 2.06489404 50 up ***
REACTOME Defective GALNT12 causes colorectal cancer 1 (CRCS1) 9.39E-05 0.0048445 0.5384341 2.06032814 12 up **
REACTOME FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 0.00123512 0.0289566 0.45505987 -2.0559994 19 down *
REACTOME DNA Replication 1.72E-07 3.12E-05 0.69013246 2.04900338 118 up ***
REACTOME Regulation of signaling by CBL 0.00098723 0.02633757 0.45505987 -2.0441653 20 down *
REACTOME IRAK4 deficiency (TLR2/4) 0.00097442 0.02633757 0.47727082 -2.0298925 10 down *
REACTOME Homology Directed Repair 1.79E-06 0.0002311 0.64355184 2.02929939 94 up ***
REACTOME Scavenging of heme from plasma 6.79E-05 0.00375496 0.5384341 2.02296598 10 up **
REACTOME O-linked glycosylation of mucins 0.000103 0.00517635 0.5384341 1.993646 51 up **
REACTOME GPVI-mediated activation cascade 0.00053526 0.01701839 0.47727082 -1.975532 31 down *
REACTOME COPI-dependent Golgi-to-ER retrograde traffic 6.52E-06 0.00068756 0.61052688 1.97196418 88 up ***
REACTOME Cell Cycle Checkpoints 2.77E-09 1.07E-06 0.77493903 1.96189352 233 up ***
REACTOME DNA Replication Pre-Initiation 2.16E-05 0.00151982 0.57561026 1.96158714 77 up **
REACTOME Defective GALNT3 causes familial hyperphosphatemic tumoral calcinosis (HFTC) 0.00056732 0.01779406 0.47727082 1.95890832 12 up *
REACTOME Platelet activation, signaling and aggregation 5.66E-08 1.64E-05 0.71951283 -1.9574309 220 down ***
REACTOME Anti-inflammatory response favouring Leishmania parasite infection 1.49E-05 0.00128326 0.59332548 -1.9315853 111 down **
REACTOME Leishmania parasite growth and survival 1.49E-05 0.00128326 0.59332548 -1.9315853 111 down **
REACTOME HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 1.84E-05 0.00142717 0.57561026 1.92443859 88 up **
REACTOME Cell recruitment (pro-inflammatory response) 0.00119399 0.02886708 0.45505987 -1.9131797 23 down *
REACTOME Purinergic signaling in leishmaniasis infection 0.00119399 0.02886708 0.45505987 -1.9131797 23 down *
REACTOME G2/M Checkpoints 6.97E-06 0.00070355 0.61052688 1.90920141 121 up ***
REACTOME Cell surface interactions at the vascular wall 1.79E-05 0.00142717 0.57561026 -1.9080789 105 down **
REACTOME Synthesis of DNA 2.02E-05 0.00146279 0.57561026 1.90445803 111 up **
REACTOME Deposition of new CENPA-containing nucleosomes at the centromere 0.00098485 0.02633757 0.45505987 1.89385046 22 up *
REACTOME Nucleosome assembly 0.00098485 0.02633757 0.45505987 1.89385046 22 up *
REACTOME ADORA2B mediated anti-inflammatory cytokines production 7.43E-05 0.00391948 0.5384341 -1.893381 79 down **
REACTOME Resolution of Abasic Sites (AP sites) 0.00060691 0.01878175 0.47727082 1.89207068 37 up *
REACTOME Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 3.32E-05 0.00203034 0.55733224 -1.8844226 93 down **
REACTOME Cell Cycle 3.33E-13 7.74E-10 0.93259521 1.87569927 560 up ***
REACTOME Homologous DNA Pairing and Strand Exchange 0.00041154 0.01384326 0.49849311 1.87256783 40 up *
REACTOME Chromosome Maintenance 0.00011223 0.00542683 0.5384341 1.86602503 77 up **
REACTOME Resolution of Sister Chromatid Cohesion 3.30E-05 0.00203034 0.55733224 1.86547463 105 up **
REACTOME HDR through Homologous Recombination (HRR) 0.00033003 0.011606 0.49849311 1.85740471 63 up *
REACTOME Resolution of D-Loop Structures 0.00106369 0.02683507 0.45505987 1.85019033 31 up *
REACTOME CDC6 association with the ORC:origin complex 0.0017821 0.03977167 0.45505987 1.84890144 11 up *
REACTOME Mitotic Prometaphase 5.17E-06 0.00057116 0.61052688 1.84206804 174 up ***
REACTOME DNA Repair 2.63E-07 4.36E-05 0.67496286 1.83108338 260 up ***
REACTOME Cell Cycle, Mitotic 2.57E-10 1.99E-07 0.81403584 1.82777151 452 up ***
REACTOME G1/S-Specific Transcription 0.00140525 0.03229303 0.45505987 1.82660188 26 up *
REACTOME Amplification  of signal from unattached  kinetochores via a MAD2  inhibitory signal 0.00013728 0.00637259 0.51884808 1.82618397 84 up **
REACTOME Amplification of signal from the kinetochores 0.00013728 0.00637259 0.51884808 1.82618397 84 up **
REACTOME Resolution of D-loop Structures through Holliday Junction Intermediates 0.00113307 0.02827805 0.45505987 1.82533528 30 up *
REACTOME Mitochondrial translation elongation 0.00015651 0.00698583 0.51884808 1.81290592 82 up **
REACTOME Presynaptic phase of homologous DNA pairing and strand exchange 0.00165654 0.03732841 0.45505987 1.81172358 37 up *
REACTOME Processing of DNA double-strand break ends 0.00049027 0.01602712 0.47727082 1.8110077 56 up *
REACTOME Cilium Assembly 8.67E-06 0.00080469 0.59332548 1.80801633 171 up ***
REACTOME Mitochondrial translation 0.00019339 0.00846918 0.51884808 1.80158903 88 up **
REACTOME Signaling by NTRK1 (TRKA) 0.00014127 0.00642926 0.51884808 -1.799561 104 down **
REACTOME FCGR3A-mediated phagocytosis 0.00106247 0.02683507 0.45505987 -1.7995403 55 down *
REACTOME Leishmania phagocytosis 0.00106247 0.02683507 0.45505987 -1.7995403 55 down *
REACTOME Parasite infection 0.00106247 0.02683507 0.45505987 -1.7995403 55 down *
REACTOME Golgi-to-ER retrograde transport 7.38E-05 0.00391948 0.5384341 1.79642641 121 up **
REACTOME Ca2+ pathway 0.00066278 0.01982641 0.47727082 -1.7951431 57 down *
REACTOME Neutrophil degranulation 1.66E-09 7.71E-07 0.78818681 -1.7951194 394 down ***
REACTOME Extra-nuclear estrogen signaling 0.00081884 0.02317726 0.47727082 -1.786353 67 down *
REACTOME Mitochondrial translation termination 0.00024427 0.00989219 0.49849311 1.78346669 82 up **
REACTOME Mitochondrial translation initiation 0.0002472 0.00989219 0.49849311 1.7819652 82 up **
REACTOME G alpha (s) signalling events 0.00020404 0.00876984 0.51884808 -1.7707473 104 down **
REACTOME EML4 and NUDC in mitotic spindle formation 0.00032996 0.011606 0.49849311 1.76329106 100 up *
REACTOME Mitotic Spindle Checkpoint 0.00028045 0.01033202 0.49849311 1.76124987 101 up *
REACTOME Anchoring of the basal body to the plasma membrane 0.00046732 0.01549496 0.49849311 1.76124411 86 up *
REACTOME Peptide hormone metabolism 0.00195738 0.04308285 0.4317077 -1.751031 54 down *
REACTOME G1/S Transition 0.00025243 0.0099305 0.49849311 1.7346799 123 up **
REACTOME Signaling by TGFB family members 0.00034791 0.01205218 0.49849311 -1.7308303 94 down *
REACTOME Assembly of the pre-replicative complex 0.0016547 0.03732841 0.45505987 1.71971142 62 up *
REACTOME Signaling by Interleukins 1.32E-07 2.85E-05 0.69013246 -1.7021115 365 down ***
REACTOME Mitotic G1 phase and G1/S transition 0.00028651 0.01039048 0.49849311 1.69987083 141 up *
REACTOME S Phase 0.00021969 0.00910525 0.51884808 1.69408643 150 up **
REACTOME GPCR ligand binding 2.65E-06 0.00030729 0.62725674 -1.6940602 257 down ***
REACTOME Innate Immune System 2.82E-12 3.28E-09 0.89867123 -1.6910333 814 down ***
REACTOME PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 0.00120911 0.02893137 0.45505987 -1.6696285 88 down *
REACTOME Class A/1 (Rhodopsin-like receptors) 0.00010482 0.00517635 0.5384341 -1.6613907 183 down **
REACTOME Signaling by NTRKs 0.00071853 0.02058906 0.47727082 -1.645622 123 down *
REACTOME Separation of Sister Chromatids 0.0002086 0.00880293 0.51884808 1.64117651 164 up **
REACTOME G alpha (q) signalling events 0.00027369 0.01031466 0.49849311 -1.6336741 141 down *
REACTOME Signaling by GPCR 3.62E-08 1.20E-05 0.71951283 -1.6311137 536 down ***
REACTOME M Phase 1.61E-05 0.00133695 0.57561026 1.62827778 315 up **
REACTOME Toll Like Receptor 9 (TLR9) Cascade 0.00241048 0.04995293 0.4317077 -1.6111875 81 down *
REACTOME Hemostasis 1.75E-07 3.12E-05 0.69013246 -1.5989495 488 down ***
REACTOME RHO GTPases Activate Formins 0.00201998 0.04381652 0.4317077 1.59770504 120 up *
REACTOME Intra-Golgi and retrograde Golgi-to-ER traffic 0.00037493 0.01279732 0.49849311 1.59128784 184 up *
REACTOME Organelle biogenesis and maintenance 0.00026677 0.01031466 0.49849311 1.58863657 236 up *
REACTOME GPCR downstream signalling 2.98E-07 4.61E-05 0.67496286 -1.5815009 489 down ***
REACTOME Mitotic Metaphase and Anaphase 0.00050328 0.01622373 0.47727082 1.57064193 207 up *
REACTOME ESR-mediated signaling 0.00101266 0.0267088 0.45505987 -1.5677657 148 down *
REACTOME Mitotic Anaphase 0.00090891 0.02541673 0.47727082 1.56260303 206 up *
REACTOME Mitotic G2-G2/M phases 0.00196759 0.04308285 0.35481951 1.53409666 176 up *
REACTOME Intracellular signaling by second messengers 0.00117335 0.02886708 0.45505987 -1.3869739 267 down *
REACTOME Cytokine Signaling in Immune system 3.51E-05 0.0020876 0.55733224 -1.3703931 710 down **

Table S5. Pathway analysis Indolent vs Aggressive



database pathway pval padj log2err NES size state pvlabel
HALLMARK HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 9.18E-30 4.59E-28 1.4172759 -3.1252756 184 down ***
HALLMARK HALLMARK_TNFA_SIGNALING_VIA_NFKB 3.43E-16 8.57E-15 1.03769616 -2.5234635 189 down ***
HALLMARK HALLMARK_MYOGENESIS 1.85E-12 2.31E-11 0.89867123 -2.4106909 162 down ***
HALLMARK HALLMARK_APICAL_JUNCTION 8.54E-13 1.42E-11 0.921426 -2.4033342 163 down ***
HALLMARK HALLMARK_TGF_BETA_SIGNALING 1.07E-07 6.68E-07 0.70497572 -2.3688587 52 down ***
HALLMARK HALLMARK_COAGULATION 4.56E-08 3.80E-07 0.71951283 -2.2260988 97 down ***
HALLMARK HALLMARK_ANGIOGENESIS 1.51E-05 5.02E-05 0.59332548 -2.1844579 29 down ***
HALLMARK HALLMARK_CHOLESTEROL_HOMEOSTASIS 8.66E-06 3.09E-05 0.59332548 -2.0948751 67 down ***
HALLMARK HALLMARK_UV_RESPONSE_UP 1.32E-07 7.35E-07 0.69013246 -2.0916139 133 down ***
HALLMARK HALLMARK_COMPLEMENT 1.76E-08 1.76E-07 0.73376199 -2.0873569 168 down ***
HALLMARK HALLMARK_INFLAMMATORY_RESPONSE 7.80E-08 5.57E-07 0.70497572 -2.0063356 179 down ***
HALLMARK HALLMARK_APOPTOSIS 7.88E-07 3.94E-06 0.6594444 -1.988896 144 down ***
HALLMARK HALLMARK_HYPOXIA 1.65E-06 6.87E-06 0.64355184 -1.9040023 168 down ***
HALLMARK HALLMARK_KRAS_SIGNALING_UP 2.02E-06 7.75E-06 0.62725674 -1.877361 170 down ***
HALLMARK HALLMARK_MITOTIC_SPINDLE 9.89E-07 4.50E-06 0.64355184 -1.8755572 187 down ***
HALLMARK HALLMARK_UV_RESPONSE_DN 3.95E-05 0.00012333 0.55733224 -1.8272038 135 down ***
HALLMARK HALLMARK_WNT_BETA_CATENIN_SIGNALING 0.00191833 0.00417027 0.45505987 -1.8122958 38 down **
HALLMARK HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 0.00173325 0.0039392 0.45505987 -1.769168 44 down **
HALLMARK HALLMARK_KRAS_SIGNALING_DN 0.00020797 0.00061168 0.51884808 1.75752017 114 up ***
HALLMARK HALLMARK_IL6_JAK_STAT3_SIGNALING 0.00229528 0.00478183 0.4317077 -1.6949363 73 down **
HALLMARK HALLMARK_HEDGEHOG_SIGNALING 0.00728863 0.01349746 0.24518806 -1.6835071 28 down *
HALLMARK HALLMARK_XENOBIOTIC_METABOLISM 0.00029223 0.00081175 0.49849311 -1.6669577 159 down ***
HALLMARK HALLMARK_P53_PATHWAY 0.0005545 0.0014592 0.47727082 -1.6014024 182 down **
HALLMARK HALLMARK_INTERFERON_ALPHA_RESPONSE 0.00374352 0.00719907 0.4317077 -1.5952132 87 down **
HALLMARK HALLMARK_ANDROGEN_RESPONSE 0.0034353 0.00687061 0.4317077 -1.5762568 90 down **
HALLMARK HALLMARK_INTERFERON_GAMMA_RESPONSE 0.00089535 0.00223837 0.47727082 -1.5186357 185 down **
HALLMARK HALLMARK_MTORC1_SIGNALING 0.0016116 0.00383714 0.45505987 -1.5093321 187 down **
HALLMARK HALLMARK_ADIPOGENESIS 0.00924001 0.01650002 0.22908938 -1.4211755 178 down *
HALLMARK HALLMARK_IL2_STAT5_SIGNALING 0.00973349 0.01678188 0.22347912 -1.405853 182 down *
HALLMARK HALLMARK_HEME_METABOLISM 0.01654032 0.0275672 0.17000428 -1.3675008 162 down *
REACTOME Extracellular matrix organization 9.28E-21 1.08E-17 1.17789326 -2.5838576 252 down ***
REACTOME Smooth Muscle Contraction 3.33E-09 4.07E-07 0.77493903 -2.518818 33 down ***
REACTOME Degradation of the extracellular matrix 2.48E-11 5.75E-09 0.86341539 -2.4368108 116 down ***
REACTOME Post-translational protein phosphorylation 6.64E-10 1.03E-07 0.80121557 -2.4210396 78 down ***
REACTOME Cell-extracellular matrix interactions 3.59E-07 2.88E-05 0.67496286 -2.388933 16 down ***
REACTOME Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) 2.00E-09 2.73E-07 0.77493903 -2.3634061 88 down ***
REACTOME Platelet degranulation 1.09E-09 1.58E-07 0.78818681 -2.3374584 103 down ***
REACTOME Elastic fibre formation 3.35E-07 2.78E-05 0.67496286 -2.3251077 41 down ***
REACTOME Collagen formation 1.50E-08 1.66E-06 0.73376199 -2.3009142 78 down ***
REACTOME Collagen degradation 4.33E-07 3.36E-05 0.67496286 -2.2897096 54 down ***
REACTOME Response to elevated platelet cytosolic Ca2+ 5.78E-09 6.72E-07 0.7614608 -2.2857702 108 down ***
REACTOME Neutrophil degranulation 3.26E-17 1.51E-14 1.06720999 -2.2586806 394 down ***
REACTOME Semaphorin interactions 7.51E-07 5.29E-05 0.6594444 -2.2420796 60 down ***
REACTOME ECM proteoglycans 4.83E-07 3.62E-05 0.6594444 -2.2354289 62 down ***
REACTOME Integrin cell surface interactions 2.08E-07 1.85E-05 0.69013246 -2.2257978 77 down ***
REACTOME Collagen biosynthesis and modifying enzymes 7.84E-07 5.35E-05 0.6594444 -2.2161643 58 down ***
REACTOME Molecules associated with elastic fibres 7.75E-06 0.00047392 0.59332548 -2.1968759 34 down ***
REACTOME RHO GTPases Activate ROCKs 3.51E-05 0.00159267 0.55733224 -2.1620137 19 down **
REACTOME Crosslinking of collagen fibrils 5.24E-05 0.00221382 0.55733224 -2.152575 16 down **
REACTOME Platelet activation, signaling and aggregation 2.88E-11 6.08E-09 0.86341539 -2.1455071 220 down ***
REACTOME Assembly of collagen fibrils and other multimeric structures 1.08E-05 0.00064368 0.59332548 -2.133815 53 down ***
REACTOME RHO GTPases activate CIT 6.86E-05 0.00279676 0.5384341 -2.1236945 20 down **
REACTOME Non-integrin membrane-ECM interactions 1.66E-05 0.00083742 0.57561026 -2.1062156 49 down ***
REACTOME Laminin interactions 0.0001422 0.00532786 0.51884808 -2.061494 28 down **
REACTOME Leishmania infection 2.09E-08 2.21E-06 0.73376199 -2.0540501 187 down ***
REACTOME RHO GTPases activate PAKs 0.00028273 0.00925031 0.49849311 -2.0169528 22 down **
REACTOME Innate Immune System 1.29E-19 9.95E-17 1.1421912 -2.0155004 814 down ***
REACTOME Hemostasis 1.82E-13 6.05E-11 0.94363223 -2.0046589 488 down ***
REACTOME Other semaphorin interactions 0.00066233 0.0158619 0.47727082 -1.9959244 18 down *
REACTOME Sema4D induced cell migration and growth-cone collapse 0.00043874 0.01273998 0.49849311 -1.984 20 down *
REACTOME Antigen processing-Cross presentation 1.36E-05 0.0007525 0.59332548 -1.9818782 81 down ***
REACTOME Signal regulatory protein family interactions 0.00106653 0.02337313 0.45505987 -1.972806 14 down *
REACTOME RHO GTPases activate PKNs 0.00043176 0.01273998 0.49849311 -1.9715525 32 down *
REACTOME L1CAM interactions 1.87E-05 0.00092533 0.57561026 -1.9615634 96 down ***
REACTOME Sema4D in semaphorin signaling 0.00055557 0.01452075 0.47727082 -1.9550738 24 down *
REACTOME Nervous system development 3.18E-12 9.22E-10 0.89867123 -1.9513299 491 down ***
REACTOME Cell surface interactions at the vascular wall 1.62E-05 0.00083742 0.57561026 -1.948758 105 down ***
REACTOME NR1H2 and NR1H3-mediated signaling 0.00021118 0.00743305 0.51884808 -1.9445925 39 down **
REACTOME Chondroitin sulfate/dermatan sulfate metabolism 0.00023921 0.00805331 0.51884808 -1.9425917 41 down **
REACTOME Signaling by VEGF 1.64E-05 0.00083742 0.57561026 -1.9414436 99 down ***
REACTOME ROS and RNS production in phagocytes 0.00033667 0.01071355 0.49849311 -1.9385759 31 down *
REACTOME Signaling by Receptor Tyrosine Kinases 4.13E-11 7.38E-09 0.85133906 -1.934458 451 down ***
REACTOME RHO GTPase Effectors 3.45E-08 3.49E-06 0.71951283 -1.931323 234 down ***
REACTOME Defective C1GALT1C1 causes Tn polyagglutination syndrome (TNPS) 0.00182703 0.03478846 0.45505987 1.92937477 12 up *
REACTOME Signaling by Rho GTPases 2.53E-09 3.27E-07 0.77493903 -1.9293146 347 down ***
REACTOME Axon guidance 1.58E-11 4.08E-09 0.86341539 -1.9249773 472 down ***
REACTOME Pre-NOTCH Processing in Golgi 0.0009298 0.02117575 0.47727082 -1.9178488 17 down *
REACTOME Plasma lipoprotein assembly 0.00115645 0.02464624 0.45505987 -1.9146705 10 down *
REACTOME Defective GALNT3 causes familial hyperphosphatemic tumoral calcinosis (HFTC) 0.00203585 0.03582789 0.4317077 1.91300704 12 up *
REACTOME Cell-Cell communication 5.20E-05 0.00221382 0.55733224 -1.906027 95 down **
REACTOME EPH-Ephrin signaling 5.39E-05 0.00223642 0.55733224 -1.9042689 81 down **
REACTOME Collagen chain trimerization 0.00049943 0.01352655 0.47727082 -1.8993863 38 down *
REACTOME Signaling by NTRK1 (TRKA) 2.17E-05 0.00105113 0.57561026 -1.8939485 104 down **
REACTOME Signaling by BMP 0.00132968 0.02733483 0.45505987 -1.8928437 23 down *
REACTOME IRAK4 deficiency (TLR2/4) 0.00166846 0.03229864 0.45505987 -1.8859702 10 down *
REACTOME Caspase activation via extrinsic apoptotic signalling pathway 0.00152106 0.03063498 0.45505987 -1.8803012 24 down *
REACTOME MET activates PTK2 signaling 0.00190173 0.03485247 0.45505987 -1.8784132 28 down *
REACTOME NOTCH4 Intracellular Domain Regulates Transcription 0.00210857 0.03655381 0.4317077 -1.8778881 16 down *
REACTOME Trafficking and processing of endosomal TLR 0.00186302 0.03485247 0.45505987 -1.8762937 10 down *
REACTOME Extra-nuclear estrogen signaling 0.00017462 0.0063383 0.51884808 -1.8679957 67 down **
REACTOME Regulation of actin dynamics for phagocytic cup formation 0.00042803 0.01273998 0.49849311 -1.8668407 55 down *
REACTOME Integrin signaling 0.0010598 0.02337313 0.45505987 -1.8661049 26 down *
REACTOME Signal Transduction 4.55E-26 1.06E-22 1.3267161 -1.8580881 1901 down ***
REACTOME FCGR3A-mediated phagocytosis 0.00050077 0.01352655 0.47727082 -1.8527082 55 down *
REACTOME Leishmania phagocytosis 0.00050077 0.01352655 0.47727082 -1.8527082 55 down *
REACTOME Parasite infection 0.00050077 0.01352655 0.47727082 -1.8527082 55 down *
REACTOME MET promotes cell motility 0.00075783 0.0179637 0.47727082 -1.8496116 39 down *
REACTOME Signaling by NTRKs 3.66E-05 0.00160465 0.55733224 -1.8456228 123 down **
REACTOME RHO GTPases Activate WASPs and WAVEs 0.0009711 0.02190163 0.47727082 -1.8453884 33 down *
REACTOME Muscle contraction 1.16E-05 0.00067594 0.59332548 -1.8364811 149 down ***
REACTOME Metabolism of fat-soluble vitamins 0.00130805 0.02713029 0.45505987 -1.834388 31 down *
REACTOME Defective B3GALTL causes Peters-plus syndrome (PpS) 0.00112857 0.02427477 0.45505987 -1.8322655 33 down *
REACTOME Signaling by NOTCH1 0.00042851 0.01273998 0.49849311 -1.8231585 65 down *
REACTOME NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflux 0.00155059 0.03063498 0.45505987 -1.821391 31 down *
REACTOME Potential therapeutics for SARS 0.0005589 0.01452075 0.47727082 -1.8155625 71 down *
REACTOME Diseases associated with glycosaminoglycan metabolism 0.00195778 0.03525517 0.4317077 -1.8092494 36 down *
REACTOME Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 0.00058758 0.01452075 0.47727082 -1.8076456 50 down *
REACTOME Constitutive Signaling by NOTCH1 PEST Domain Mutants 0.00058758 0.01452075 0.47727082 -1.8076456 50 down *
REACTOME Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 0.00058758 0.01452075 0.47727082 -1.8076456 50 down *
REACTOME Signaling by NOTCH1 PEST Domain Mutants in Cancer 0.00058758 0.01452075 0.47727082 -1.8076456 50 down *
REACTOME Signaling by NOTCH1 in Cancer 0.00058758 0.01452075 0.47727082 -1.8076456 50 down *
REACTOME Peptide hormone metabolism 0.00112628 0.02427477 0.45505987 -1.796514 54 down *
REACTOME Signaling by TGFB family members 0.00018166 0.00649221 0.51884808 -1.7815595 94 down **
REACTOME EPHB-mediated forward signaling 0.00176685 0.03392057 0.45505987 -1.7807072 39 down *
REACTOME Fcgamma receptor (FCGR) dependent phagocytosis 0.00045814 0.01308856 0.49849311 -1.7780155 76 down *
REACTOME N-glycan trimming in the ER and Calnexin/Calreticulin cycle 0.00191663 0.03485247 0.45505987 -1.7769467 33 down *
REACTOME Infectious disease 7.47E-11 1.24E-08 0.83908894 -1.7730144 670 down ***
REACTOME Anti-inflammatory response favouring Leishmania parasite infection 0.00022021 0.0075227 0.51884808 -1.7704998 111 down **
REACTOME Leishmania parasite growth and survival 0.00022021 0.0075227 0.51884808 -1.7704998 111 down **
REACTOME Signaling by Interleukins 3.31E-07 2.78E-05 0.67496286 -1.7688599 365 down ***
REACTOME Developmental Biology 3.93E-11 7.38E-09 0.85133906 -1.764564 733 down ***
REACTOME Immune System 2.15E-19 1.25E-16 1.1421912 -1.7604151 1697 down ***
REACTOME Nuclear Events (kinase and transcription factor activation) 0.00155615 0.03063498 0.45505987 -1.7596944 54 down *
REACTOME Synthesis of substrates in N-glycan biosythesis 0.00160773 0.03138453 0.45505987 -1.7565131 54 down *
REACTOME Glycosaminoglycan metabolism 0.00046202 0.01308856 0.49849311 -1.7549442 105 down *
REACTOME Signaling by Nuclear Receptors 1.46E-05 0.00079083 0.59332548 -1.7521654 206 down ***
REACTOME Binding and Uptake of Ligands by Scavenger Receptors 0.00283042 0.04597537 0.4317077 -1.7479678 37 down *
REACTOME Interleukin-4 and Interleukin-13 signaling 0.00056322 0.01452075 0.47727082 -1.7391344 89 down *
REACTOME Oncogenic MAPK signaling 0.0012457 0.02607002 0.45505987 -1.7328605 77 down *
REACTOME Clathrin-mediated endocytosis 0.00010199 0.00401567 0.5384341 -1.7314737 126 down **
REACTOME SARS-CoV Infections 0.00011508 0.00439857 0.5384341 -1.7285216 133 down **
REACTOME Regulation of PTEN gene transcription 0.00308442 0.04941449 0.4317077 -1.7284962 53 down *
REACTOME VEGFA-VEGFR2 Pathway 0.00039517 0.01223984 0.49849311 -1.7266565 91 down *
REACTOME ADORA2B mediated anti-inflammatory cytokines production 0.00081836 0.01886382 0.47727082 -1.7191098 79 down *
REACTOME ER-Phagosome pathway 0.0020897 0.03649912 0.4317077 -1.694822 69 down *
REACTOME Unfolded Protein Response (UPR) 0.00228537 0.03847033 0.4317077 -1.6889865 83 down *
REACTOME Signaling by NOTCH 0.00025852 0.00857908 0.49849311 -1.6825778 161 down **
REACTOME Signaling by NOTCH4 0.00201987 0.03581794 0.4317077 -1.6820226 73 down *
REACTOME Disease 1.54E-13 5.97E-11 0.94363223 -1.678673 1273 down ***
REACTOME G alpha (12/13) signalling events 0.00215959 0.03688777 0.4317077 -1.6576341 70 down *
REACTOME Vesicle-mediated transport 8.68E-08 8.40E-06 0.70497572 -1.6511391 597 down ***
REACTOME Beta-catenin independent WNT signaling 0.00043789 0.01273998 0.49849311 -1.6509538 134 down *
REACTOME ESR-mediated signaling 0.00080858 0.01886382 0.47727082 -1.6342273 148 down *
REACTOME Programmed Cell Death 0.00039045 0.01223984 0.49849311 -1.6331326 164 down *
REACTOME Diseases of signal transduction by growth factor receptors and second messengers 3.43E-05 0.00159267 0.55733224 -1.6203755 347 down **
REACTOME Toll-like Receptor Cascades 0.00066105 0.0158619 0.47727082 -1.6181034 133 down *
REACTOME Rho GTPase cycle 0.0018999 0.03485247 0.45505987 -1.596725 123 down *
REACTOME Signaling by GPCR 1.70E-06 0.00011255 0.64355184 -1.5958335 536 down ***
REACTOME G alpha (s) signalling events 0.00199222 0.0355994 0.4317077 -1.5954721 104 down *
REACTOME Transcriptional regulation by RUNX2 0.00274598 0.04492197 0.4317077 -1.5951699 106 down *
REACTOME Cytokine Signaling in Immune system 1.49E-07 1.38E-05 0.69013246 -1.594206 710 down ***
REACTOME Apoptosis 0.00106432 0.02337313 0.45505987 -1.5905708 154 down *
REACTOME GPCR downstream signalling 7.16E-06 0.00044928 0.61052688 -1.5774446 489 down ***
REACTOME PTEN Regulation 0.00268722 0.04427245 0.4317077 -1.5756801 123 down *
REACTOME Membrane Trafficking 4.72E-06 0.00030485 0.61052688 -1.5487379 562 down ***
REACTOME Cellular responses to external stimuli 8.05E-05 0.00322436 0.5384341 -1.5115655 463 down **
REACTOME MAPK family signaling cascades 0.00082017 0.01886382 0.47727082 -1.4991865 282 down *
REACTOME RAF/MAP kinase cascade 0.00154048 0.03063498 0.45505987 -1.4964892 243 down *
REACTOME MAPK1/MAPK3 signaling 0.00188394 0.03485247 0.45505987 -1.4851827 249 down *
REACTOME GPCR ligand binding 0.00265749 0.0440953 0.4317077 -1.4597466 257 down *
REACTOME Cellular responses to stress 0.00031655 0.01021308 0.49849311 -1.4489898 455 down *
REACTOME Asparagine N-linked glycosylation 0.00239451 0.04001764 0.4317077 -1.4407313 268 down *
REACTOME Neuronal System 0.00192041 0.03485247 0.45505987 -1.4402002 293 down *
REACTOME Metabolism of proteins 5.88E-07 4.27E-05 0.6594444 -1.4167175 1616 down ***
REACTOME Post-translational protein modification 1.25E-05 0.00071044 0.59332548 -1.4057764 1147 down ***
REACTOME Transport of small molecules 0.00212986 0.03664937 0.4317077 -1.3522642 561 down *
REACTOME Adaptive Immune System 0.00284996 0.04597537 0.35481951 -1.3252782 637 down *

Table S6. Pathway analysis Indolent vs Intermediate



database pathway pval padj log2err NES size state pvlabel
HALLMARK HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 7.85E-32 3.92E-30 1.46752398 2.96464727 184 up ***
HALLMARK HALLMARK_G2M_CHECKPOINT 8.14E-24 2.04E-22 1.26273989 2.75793334 181 up ***
HALLMARK HALLMARK_E2F_TARGETS 2.63E-21 4.38E-20 1.19534448 2.6413625 182 up ***
HALLMARK HALLMARK_GLYCOLYSIS 1.84E-14 2.30E-13 0.97599468 2.37906185 172 up ***
HALLMARK HALLMARK_APICAL_JUNCTION 2.65E-14 2.65E-13 0.97599468 2.36438684 163 up ***
HALLMARK HALLMARK_MITOTIC_SPINDLE 6.05E-13 5.04E-12 0.921426 2.26840735 187 up ***
HALLMARK HALLMARK_HYPOXIA 3.19E-10 2.28E-09 0.81403584 2.17106762 168 up ***
HALLMARK HALLMARK_MYOGENESIS 1.02E-09 6.40E-09 0.78818681 2.12772364 162 up ***
HALLMARK HALLMARK_ANGIOGENESIS 3.26E-05 0.00013568 0.55733224 2.09364182 29 up ***
HALLMARK HALLMARK_MTORC1_SIGNALING 2.01E-08 1.12E-07 0.73376199 2.00440556 187 up ***
HALLMARK HALLMARK_DNA_REPAIR 7.00E-07 3.50E-06 0.6594444 1.93899792 134 up ***
HALLMARK HALLMARK_COAGULATION 1.18E-05 5.38E-05 0.59332548 1.91598583 97 up ***
HALLMARK HALLMARK_SPERMATOGENESIS 0.00029827 0.00099425 0.49849311 1.79579906 87 up ***
HALLMARK HALLMARK_ALLOGRAFT_REJECTION 9.06E-05 0.00034842 0.5384341 -1.6917798 156 down ***
HALLMARK HALLMARK_MYC_TARGETS_V1 0.00018124 0.00064727 0.51884808 1.66622261 183 up ***
HALLMARK HALLMARK_MYC_TARGETS_V2 0.01216924 0.03053655 0.15535473 1.57911431 56 up *
HALLMARK HALLMARK_HEDGEHOG_SIGNALING 0.01898148 0.04126409 0.12954747 1.57727787 28 up *
HALLMARK HALLMARK_XENOBIOTIC_METABOLISM 0.00307844 0.00962012 0.29109092 1.54628242 159 up **
HALLMARK HALLMARK_INTERFERON_ALPHA_RESPONSE 0.0090812 0.02522555 0.17500402 1.53404824 87 up *
HALLMARK HALLMARK_UNFOLDED_PROTEIN_RESPONSE 0.01228437 0.03053655 0.14850014 1.49434909 102 up *
HALLMARK HALLMARK_UV_RESPONSE_UP 0.01282535 0.03053655 0.14247037 1.45846464 133 up *
HALLMARK HALLMARK_ESTROGEN_RESPONSE_LATE 0.00896752 0.02522555 0.16765853 1.45834726 174 up *
HALLMARK HALLMARK_KRAS_SIGNALING_UP 0.01387368 0.03153108 0.13464697 1.42511621 170 up *
REACTOME Collagen formation 2.96E-17 2.30E-14 1.06720999 2.72546534 78 up ***
REACTOME Collagen biosynthesis and modifying enzymes 8.39E-14 3.25E-11 0.95454163 2.64806459 58 up ***
REACTOME Assembly of collagen fibrils and other multimeric structures 2.63E-12 7.65E-10 0.89867123 2.54397651 53 up ***
REACTOME Collagen chain trimerization 1.52E-10 3.21E-08 0.8266573 2.48494283 38 up ***
REACTOME Collagen degradation 8.12E-10 1.45E-07 0.80121557 2.41935313 54 up ***
REACTOME Extracellular matrix organization 7.89E-21 9.17E-18 1.17789326 2.40670989 252 up ***
REACTOME Degradation of the extracellular matrix 1.90E-12 6.31E-10 0.89867123 2.34826544 116 up ***
REACTOME ECM proteoglycans 3.77E-09 4.61E-07 0.7614608 2.33366953 62 up ***
REACTOME Post-translational protein phosphorylation 1.01E-09 1.68E-07 0.78818681 2.31452917 78 up ***
REACTOME MET activates PTK2 signaling 2.66E-07 1.77E-05 0.67496286 2.29515363 28 up ***
REACTOME Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs) 2.04E-09 2.94E-07 0.77493903 2.27703604 88 up ***
REACTOME Integrin cell surface interactions 6.57E-09 7.27E-07 0.7614608 2.26816878 77 up ***
REACTOME Non-integrin membrane-ECM interactions 1.53E-07 1.11E-05 0.69013246 2.25301281 49 up ***
REACTOME G2/M Checkpoints 6.52E-11 1.68E-08 0.83908894 2.2494859 121 up ***
REACTOME Activation of ATR in response to replication stress 8.00E-07 4.65E-05 0.6594444 2.2374103 36 up ***
REACTOME DNA Replication 1.45E-10 3.21E-08 0.8266573 2.22565686 118 up ***
REACTOME Activation of the pre-replicative complex 1.18E-06 6.36E-05 0.64355184 2.21255291 31 up ***
REACTOME DNA strand elongation 1.15E-06 6.35E-05 0.64355184 2.21186884 30 up ***
REACTOME Cell Cycle Checkpoints 2.07E-15 9.63E-13 1.00731796 2.21184814 233 up ***
REACTOME Translocation of ZAP-70 to Immunological synapse 0.00029363 0.00688993 0.49849311 -2.1817147 10 down **
REACTOME Homology Directed Repair 2.69E-08 2.41E-06 0.73376199 2.17752243 94 up ***
REACTOME Synthesis of DNA 8.02E-09 8.46E-07 0.74773966 2.16788417 111 up ***
REACTOME Unwinding of DNA 9.92E-06 0.00041808 0.59332548 2.15105225 12 up ***
REACTOME Crosslinking of collagen fibrils 7.55E-06 0.00032798 0.61052688 2.14820394 16 up ***
REACTOME Generation of second messenger molecules 0.00019511 0.00492665 0.51884808 -2.1385729 22 down **
REACTOME MET promotes cell motility 2.94E-06 0.00014532 0.62725674 2.12885125 39 up ***
REACTOME Phosphorylation of CD3 and TCR zeta chains 0.00072505 0.01439555 0.47727082 -2.1271819 13 down *
REACTOME Syndecan interactions 1.09E-05 0.00042809 0.59332548 2.11716413 24 up ***
REACTOME DNA Replication Pre-Initiation 5.41E-07 3.31E-05 0.6594444 2.11189343 77 up ***
REACTOME DNA Double-Strand Break Repair 1.95E-08 1.97E-06 0.73376199 2.10507761 120 up ***
REACTOME Laminin interactions 1.76E-05 0.0006375 0.57561026 2.09531526 28 up ***
REACTOME Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 2.15E-06 0.00010868 0.62725674 -2.0902903 93 down ***
REACTOME HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 9.18E-07 5.20E-05 0.6594444 2.07567528 88 up ***
REACTOME NCAM1 interactions 1.23E-05 0.00046741 0.59332548 2.07492209 33 up ***
REACTOME Binding and Uptake of Ligands by Scavenger Receptors 1.53E-05 0.0005624 0.59332548 2.06400311 37 up ***
REACTOME Resolution of D-Loop Structures 2.26E-05 0.00075856 0.57561026 2.0636425 31 up ***
REACTOME Cell Cycle 1.68E-21 3.89E-18 1.20397524 2.05312697 560 up ***
REACTOME Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SDSA) 3.51E-05 0.00111792 0.55733224 2.0352638 25 up **
REACTOME Resolution of D-loop Structures through Holliday Junction Intermediates 3.50E-05 0.00111792 0.55733224 2.03304206 30 up **
REACTOME HDR through Homologous Recombination (HRR) 4.25E-06 0.00019768 0.61052688 2.03291587 63 up ***
REACTOME Presynaptic phase of homologous DNA pairing and strand exchange 3.07E-05 0.00100299 0.55733224 2.03053447 37 up **
REACTOME Cell Cycle, Mitotic 4.24E-17 2.46E-14 1.06720999 2.02519999 452 up ***
REACTOME Homologous DNA Pairing and Strand Exchange 5.15E-05 0.00153379 0.55733224 2.01566225 40 up **
REACTOME Diseases of glycosylation 3.13E-07 2.02E-05 0.67496286 2.00869184 122 up ***
REACTOME Mitotic Prometaphase 3.17E-08 2.73E-06 0.71951283 1.99229043 174 up ***
REACTOME Chondroitin sulfate biosynthesis 0.00025775 0.00618287 0.49849311 1.97834361 16 up **
REACTOME S Phase 1.75E-07 1.23E-05 0.69013246 1.97016902 150 up ***
REACTOME Kinesins 5.38E-05 0.00158055 0.55733224 1.96133665 50 up **
REACTOME Assembly of the pre-replicative complex 4.66E-05 0.00142316 0.55733224 1.96011854 62 up **
REACTOME Separation of Sister Chromatids 1.41E-07 1.05E-05 0.69013246 1.95845125 164 up ***
REACTOME Costimulation by the CD28 family 7.33E-05 0.00202759 0.5384341 -1.9572152 57 down **
REACTOME Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 2.29E-05 0.00075856 0.57561026 1.95690616 70 up ***
REACTOME Processing of DNA double-strand break ends 3.95E-05 0.00123949 0.55733224 1.95547655 56 up **
REACTOME Resolution of Sister Chromatid Cohesion 3.20E-06 0.00015488 0.62725674 1.95361547 105 up ***
REACTOME Switching of origins to a post-replicative state 1.06E-05 0.00042809 0.59332548 1.94955295 84 up ***
REACTOME Diseases associated with O-glycosylation of proteins 4.96E-05 0.00149756 0.55733224 1.94943526 55 up **
REACTOME G1/S-Specific Transcription 0.00025817 0.00618287 0.49849311 1.94914861 26 up **
REACTOME APC/C-mediated degradation of cell cycle proteins 1.97E-05 0.00067196 0.57561026 1.94731723 81 up ***
REACTOME Regulation of mitotic cell cycle 1.97E-05 0.00067196 0.57561026 1.94731723 81 up ***
REACTOME Polo-like kinase mediated events 0.00055146 0.01133662 0.47727082 1.93758979 16 up *
REACTOME Mitotic Spindle Checkpoint 1.25E-05 0.00046741 0.59332548 1.93522836 101 up ***
REACTOME Smooth Muscle Contraction 0.00015343 0.00396009 0.51884808 1.93440599 33 up **
REACTOME Signaling by MET 1.82E-05 0.0006422 0.57561026 1.93398525 73 up ***
REACTOME G1/S Transition 1.36E-06 7.19E-05 0.64355184 1.92462139 123 up ***
REACTOME Mitotic Metaphase and Anaphase 2.70E-08 2.41E-06 0.73376199 1.92306695 207 up ***
REACTOME L1CAM interactions 1.01E-05 0.00041808 0.59332548 1.92139157 96 up ***
REACTOME APC/C:Cdc20 mediated degradation of mitotic proteins 6.82E-05 0.00190901 0.5384341 1.91251566 69 up **
REACTOME Mitotic Anaphase 3.91E-08 3.24E-06 0.71951283 1.91057245 206 up ***
REACTOME Protein-protein interactions at synapses 6.60E-05 0.0018702 0.5384341 1.89855806 64 up **
REACTOME RHO GTPase Effectors 4.19E-08 3.36E-06 0.71951283 1.88229733 234 up ***
REACTOME Amplification  of signal from unattached  kinetochores via a MAD2  inhibitory signal 5.83E-05 0.00167144 0.55733224 1.87849122 84 up **
REACTOME Amplification of signal from the kinetochores 5.83E-05 0.00167144 0.55733224 1.87849122 84 up **
REACTOME Regulation of APC/C activators between G1/S and early anaphase 8.72E-05 0.00238415 0.5384341 1.87697881 74 up **
REACTOME RHO GTPases Activate Formins 1.17E-05 0.00045294 0.59332548 1.87666738 120 up ***
REACTOME Retrograde neurotrophin signalling 0.00117469 0.0214866 0.45505987 1.87440863 12 up *
REACTOME Anchoring fibril formation 0.00104554 0.01958709 0.45505987 1.87374501 13 up *
REACTOME M Phase 4.64E-10 8.98E-08 0.81403584 1.87340485 315 up ***
REACTOME Phosphorylation of the APC/C 0.00075522 0.01474267 0.47727082 1.87174401 20 up *
REACTOME COPI-dependent Golgi-to-ER retrograde traffic 9.21E-05 0.00248656 0.5384341 1.86292783 88 up **
REACTOME Condensation of Prometaphase Chromosomes 0.00131402 0.02384737 0.45505987 1.86151047 10 up *
REACTOME Elastic fibre formation 0.00040568 0.00897511 0.49849311 1.85948316 41 up **
REACTOME Mitotic G1 phase and G1/S transition 6.96E-06 0.0003109 0.61052688 1.85723691 141 up ***
REACTOME APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/early G1 0.00010103 0.00269759 0.5384341 1.8518421 68 up **
REACTOME Diseases associated with glycosaminoglycan metabolism 0.00108071 0.01999687 0.45505987 1.84922082 36 up *
REACTOME O-glycosylation of TSR domain-containing proteins 0.00041358 0.00906375 0.49849311 1.8464064 34 up **
REACTOME Orc1 removal from chromatin 0.00016509 0.00421431 0.51884808 1.84554391 64 up **
REACTOME Chondroitin sulfate/dermatan sulfate metabolism 0.00053789 0.01115651 0.47727082 1.84391226 41 up *
REACTOME Defective B3GALTL causes Peters-plus syndrome (PpS) 0.00062595 0.01275501 0.47727082 1.84016555 33 up *
REACTOME APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the cell cycle checkpoint 0.00030687 0.00705798 0.49849311 1.83895395 67 up **
REACTOME DNA Repair 1.14E-07 8.85E-06 0.70497572 1.83638718 260 up ***
REACTOME Mitotic G2-G2/M phases 1.68E-06 8.66E-05 0.64355184 1.83630309 176 up ***
REACTOME Receptor-type tyrosine-protein phosphatases 0.00184155 0.03216488 0.45505987 1.83524473 14 up *
REACTOME Cell junction organization 0.00046619 0.01006489 0.49849311 1.83086384 66 up *
REACTOME G2/M Transition 4.13E-06 0.00019578 0.61052688 1.82673007 174 up ***
REACTOME Dissolution of Fibrin Clot 0.0022413 0.03745706 0.4317077 1.82406189 10 up *
REACTOME EML4 and NUDC in mitotic spindle formation 4.51E-05 0.00139814 0.55733224 1.82359413 100 up **
REACTOME G2/M DNA damage checkpoint 0.00089332 0.01700978 0.47727082 1.82341382 54 up *
REACTOME Signaling by PDGF 0.00049695 0.0105909 0.47727082 1.81705658 53 up *
REACTOME FCERI mediated Ca+2 mobilization 0.00323428 0.04702775 0.4317077 -1.8157686 32 down *
REACTOME Deposition of new CENPA-containing nucleosomes at the centromere 0.00254165 0.03858996 0.34452129 1.80793158 22 up *
REACTOME Nucleosome assembly 0.00254165 0.03858996 0.34452129 1.80793158 22 up *
REACTOME Signaling by Rho GTPases 4.20E-09 4.88E-07 0.7614608 1.80627341 347 up ***
REACTOME EPH-Ephrin signaling 0.00024433 0.006103 0.49849311 1.80398443 81 up **
REACTOME Synaptic adhesion-like molecules 0.00231228 0.03768318 0.4317077 1.80162303 17 up *
REACTOME Cdc20:Phospho-APC/C mediated degradation of Cyclin A 0.00068713 0.01376035 0.47727082 1.79955163 66 up *
REACTOME TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest 0.00253656 0.03858996 0.35481951 1.79713333 13 up *
REACTOME Inactivation of APC/C via direct inhibition of the APC/C complex 0.0024189 0.03771205 0.35481951 1.79398478 21 up *
REACTOME Inhibition of the proteolytic activity of APC/C required for the onset of anaphase by mitotic spindle checkpoint components 0.0024189 0.03771205 0.35481951 1.79398478 21 up *
REACTOME Plasma lipoprotein remodeling 0.0030356 0.04520325 0.4317077 1.78615245 17 up *
REACTOME Antigen processing-Cross presentation 0.00033744 0.0076105 0.49849311 1.78531045 81 up **
REACTOME Centrosome maturation 0.00025613 0.00618287 0.49849311 1.78525776 73 up **
REACTOME Recruitment of mitotic centrosome proteins and complexes 0.00025613 0.00618287 0.49849311 1.78525776 73 up **
REACTOME Defective GALNT12 causes colorectal cancer 1 (CRCS1) 0.0033389 0.04817553 0.31077692 1.78336331 12 up *
REACTOME AURKA Activation by TPX2 0.00046793 0.01006489 0.49849311 1.77249201 64 up *
REACTOME Resolution of Abasic Sites (AP sites) 0.00143293 0.02580391 0.45505987 1.77048599 37 up *
REACTOME CDK-mediated phosphorylation and removal of Cdc6 0.00108463 0.01999687 0.45505987 1.77000107 66 up *
REACTOME Platelet degranulation 0.00014748 0.00384946 0.51884808 1.76555422 103 up **
REACTOME Diseases of metabolism 4.89E-06 0.00022253 0.61052688 1.76071603 204 up ***
REACTOME A tetrasaccharide linker sequence is required for GAG synthesis 0.00353008 0.0493998 0.29109092 1.75973012 22 up *
REACTOME Recruitment of NuMA to mitotic centrosomes 0.00051851 0.01094993 0.47727082 1.75235933 81 up *
REACTOME WNT5A-dependent internalization of FZD4 0.0032391 0.04702775 0.31077692 1.75093469 15 up *
REACTOME MHC class II antigen presentation 0.00053229 0.01113975 0.47727082 1.74812809 98 up *
REACTOME Axon guidance 1.17E-09 1.81E-07 0.78818681 1.7470376 472 up ***
REACTOME Plasma lipoprotein assembly, remodeling, and clearance 0.00212812 0.03582336 0.4317077 1.74463263 52 up *
REACTOME Chromosome Maintenance 0.00081447 0.01563657 0.47727082 1.74208258 77 up *
REACTOME Response to elevated platelet cytosolic Ca2+ 0.00034735 0.00775852 0.49849311 1.74060717 108 up **
REACTOME Neurexins and neuroligins 0.00249082 0.03857455 0.33506856 1.73848857 42 up *
REACTOME Resolution of AP sites via the multiple-nucleotide patch replacement pathway 0.00338362 0.04851941 0.29723292 1.73391539 24 up *
REACTOME Nervous system development 2.15E-09 2.94E-07 0.77493903 1.72158647 491 up ***
REACTOME Golgi-to-ER retrograde transport 0.00032047 0.00729848 0.49849311 1.71545853 121 up **
REACTOME Autodegradation of Cdh1 by Cdh1:APC/C 0.00231971 0.03768318 0.4317077 1.7148864 60 up *
REACTOME NCAM signaling for neurite out-growth 0.00229563 0.03768318 0.34452129 1.71221178 53 up *
REACTOME Regulation of TP53 Activity through Phosphorylation 0.00078764 0.01524747 0.47727082 1.71032456 82 up *
REACTOME APC/C:Cdc20 mediated degradation of Securin 0.00168784 0.02970337 0.45505987 1.70723816 62 up *
REACTOME The role of GTSE1 in G2/M progression after G2 checkpoint 0.00188768 0.03272448 0.45505987 1.70632025 65 up *
REACTOME ABC transporter disorders 0.00211649 0.03582336 0.4317077 1.69930069 65 up *
REACTOME O-linked glycosylation 0.00065785 0.01328849 0.47727082 1.69786686 92 up *
REACTOME Loss of Nlp from mitotic centrosomes 0.00238142 0.03771205 0.4317077 1.68297167 61 up *
REACTOME Loss of proteins required for interphase microtubule organization from the centrosome 0.00238142 0.03771205 0.4317077 1.68297167 61 up *
REACTOME Regulation of PLK1 Activity at G2/M Transition 0.00240964 0.03771205 0.32635161 1.65035813 79 up *
REACTOME Cell-Cell communication 0.00200779 0.03454895 0.35481951 1.64430863 95 up *
REACTOME PCP/CE pathway 0.00227736 0.03768318 0.33506856 1.62856264 85 up *
REACTOME Mitochondrial translation initiation 0.00348767 0.04910221 0.26984231 1.60656287 82 up *
REACTOME Intra-Golgi and retrograde Golgi-to-ER traffic 0.00029131 0.00688993 0.49849311 1.60654029 184 up **
REACTOME Metabolism of carbohydrates 0.00030196 0.00701451 0.49849311 1.54789275 241 up **
REACTOME Developmental Biology 2.48E-07 1.70E-05 0.67496286 1.52419154 733 up ***
REACTOME Signaling by Receptor Tyrosine Kinases 1.80E-05 0.0006422 0.57561026 1.51408645 451 up ***
REACTOME Vesicle-mediated transport 7.62E-06 0.00032798 0.61052688 1.502957 597 up ***
REACTOME Post-translational protein modification 3.96E-07 2.49E-05 0.67496286 1.42526866 1147 up ***
REACTOME Transcriptional Regulation by TP53 0.00300487 0.04515546 0.26984231 1.41410483 323 up *
REACTOME Signal Transduction 3.57E-09 4.60E-07 0.77493903 1.40068291 1901 up ***
REACTOME Metabolism of proteins 2.48E-08 2.40E-06 0.73376199 1.39415494 1616 up ***
REACTOME Disease 7.54E-07 4.49E-05 0.6594444 1.38725974 1273 up ***
REACTOME Membrane Trafficking 0.00074406 0.01464787 0.47727082 1.38349814 562 up *
REACTOME Infectious disease 0.00301296 0.04515546 0.26521689 1.30890624 670 up *
REACTOME Metabolism 0.00309969 0.04586357 0.26082057 1.20509032 1675 up *

Table S7. Pathway analysis Intermediate vs Aggressive



X Y r p-adjust Feature description
SILA ANTPOST_LENGTH_MM 0.425 0.007 A measure of the anterior-posterior distance.

SILA AUTO_LARGEST_PLANAR_DIAMETER_MM 0.447 0.002 A measure of the longest straight line that can fit entirely inside an XY-planar slice of the 3D structure (from edge to edge, without ever leaving structure), in 
millimeters, computed by the program.

SILA AUTO_LARGEST_PLANAR_ORTHO_DIAMETER_MM 0.401 0.020 A measure of the longest orthogonal line to the longest planar line, that can fit entirely inside an XY-planar slice of the 3D structure (from edge to edge, 
without ever leaving structure), in millimeters, computed by the program.

SILA AUTO_CORONAL_LONG_AXIS_MM 0.379 0.049 A measure of the longest straight line that can fit entirely inside an XZ-planar slice of the 3D structure (from edge to edge, without ever leaving structure), in 
millimeters, computed by the program.

SILA AUTO_CORONAL_SHORT_AXIS_MM 0.426 0.007 A measure of the longest orthogonal line to the longest planar line, that can fit entirely inside an XZ-planar slice of the 3D structure (from edge to edge, 
without ever leaving structure), in millimeters, computed by the program.

SILA AUTO_SAGITTAL_LONG_AXIS_MM 0.409 0.014 A measure of the longest straight line that can fit entirely inside an YZ-planar slice of the 3D structure (from edge to edge, without ever leaving structure), in 
millimeters, computed by the program.

SILA AUTO_SAGITTAL_SHORT_AXIS_MM 0.453 0.002 A measure of the longest orthogonal line to the longest planar line, that can fit entirely inside an YZ-planar slice of the 3D structure (from edge to edge, 
without ever leaving structure), in millimeters, computed by the program.

SILA AVG_AXIAL_DIAMETER_MM 0.434 0.004 The average of largest axial planar and orthogonal diameters, in millimeters

SILA AVG_CORONAL_DIAMETER_MM 0.401 0.020 The average of largest coronal planar and orthogonal diameters, in millimeters

SILA AVG_DENSITY_OF_SOLID_REGION 0.888 0.000 The average density of voxels identified as Solid ( -450HU <= voxel < 1050).

SILA AVG_SAGITTAL_DIAMETER_MM 0.442 0.003 The average of largest sagittal planar and orthogonal diameters, in millimeters

SILA LARGEST_PLANAR_DIAMETER_MM 0.447 0.002 A measure of the longest straight line that can fit entirely inside an XY-planar slice of the 3D structure (from edge to edge, without ever leaving structure), in 
millimeters.

SILA LARGEST_PLANAR_ORTHO_DIAMETER_MM 0.401 0.020 A measure of the longest orthogonal line to the longest planar line, that can fit entirely inside an XY-planar slice of the 3D structure (from edge to edge, 
without ever leaving structure), in millimeters

SILA COMPACTNESS1_MM 0.444 0.003 Dimensionfull measure of compactness of ROI, independent of scale and orientation (first of three implementations), using standard unit shape-derived 
information.

SILA CORONAL_LONG_AXIS_MM 0.379 0.049 A measure of the longest straight line that can fit entirely inside an XZ-planar slice of the 3D structure (from edge to edge, without ever leaving structure), in 
millimeters.

SILA CORONAL_SHORT_AXIS_MM 0.426 0.007 A measure of the longest orthogonal line to the longest planar line, that can fit entirely inside an XZ-planar slice of the 3D structure (from edge to edge, 
without ever leaving structure), in millimeters

SILA CRANIALCAUDAL_LENGTH_MM 0.427 0.006 A measure of the cranial-caudal distance.

SILA ENERGY_VOXELS 0.619 0.000 A measure of the magnitude of raw voxel values in an image. A greater amount of larger values implies a greater sum of the squares of these values.
SILA FOOTPRINT_Y_MM 0.401 0.020 The Y dimensions of the bounding box of the ROI, in millimeters.
SILA GLCM_COL_MEAN 0.838 0.000 Average column means of GLCM in all 26 directions.
SILA GLCM_ENTROPY 0.380 0.048 Average entropies of GLCM in all 26 directions.
SILA GLCM_HOMOGENEITY 0.504 0.000 Average homogeneities of GLCM in all 26 directions.
SILA GLCM_ROW_MEAN 0.807 0.000 Average row means of GLCM in all 26 directions.

SILA KURTOSIS_HU 0.493 0.000
A measure of the 'peakedness' of the distribution of HU values in the image ROI. A higher kurtosis implies that the mass of the distribution is concentrated 
towards the tail(s) rather than towards the mean. A lower kurtosis implies the reverse, that the mass of the distribution is concentrated towards a spike the 
mean.

SILA KURTOSIS_VOXELS 0.493 0.000
A measure of the 'peakedness' of the distribution of raw voxel values in the image ROI. A higher kurtosis implies that the mass of the distribution is 
concentrated towards the tail(s) rather than towards the mean. A lower kurtosis implies the reverse, that the mass of the distribution is concentrated 
towards a spike the mean.

SILA L1_DISTANCE_MM 0.388 0.035 The length of the long (L1) full principal axis, in millimeters, from edge to edge of the ROI.
SILA L2_DISTANCE_MM 0.410 0.013 The length of the short (L2) full principal axis, in millimeters, from edge to edge of the ROI.
SILA L3_DISTANCE_MM 0.467 0.001 The length of the normal (L3) full principal axis, in millimeters, from edge to edge of the ROI.
SILA PART_SOLID_DIAMETER_MM 0.571 0.000 The average diameter of the solid portions of a part-solid lesion.
SILA LESION_TYPE 0.490 0.000 The density classification of the lesion. A value of: 3 == SOLID, 2 == PART_SOLID, 1 == GGO.
SILA LUNG_RADS_DIAMETER_MM 0.434 0.004 The average of largest planar and largest planar orthogonal diameters, in millimeters

SILA LUNG_RADS_ISOLATION 0.423 0.007 The Lung-RADS estimate for this structure isolating the study from its priors (treating the current study as a baseline scan). NOTE: This metric ranges from 0 
to 5, corresponding respectively to a Lung-RADS score of 0, 1, 2, 3, 4A, and 4B.)

SILA LUNG_RADS 0.423 0.007 The Lung-RADS estimate taking priors into account. NOTE: This metric ranges from 0 to 5, corresponding respectively to a Lung-RADS score of 0, 1, 2, 3, 4A, 
and 4B.)

SILA MAX_HU 0.494 0.000 The maximum of the HU values within the image ROI.
SILA MAX_VOXELS 0.517 0.000 The maximum raw voxel values within the image ROI.
SILA MEAN_HU 0.801 0.000 The mean of the HU values within the image ROI.
SILA MEAN_VOXELS 0.797 0.000 The mean of the raw voxel values within the image ROI.
SILA MEDIAN_HU 0.861 0.000 The median of the HU values within the image ROI.
SILA MEDIAN_VOXELS 0.858 0.000 The median of the raw voxel values within the image ROI.

SILA NORMALIZED_ABOVE_MEAN_DEVIATION_VOXELS 0.463 0.001 Another uniformity measurement.

SILA PERCENT_GGO -0.609 0.000 The estimated percent ground glass density of this ROI.
SILA PERCENT_SOLID 0.609 0.000 The estimated percent solid density of this ROI.
SILA PERCENT_SOLID_INCL_AIR 0.592 0.000 The estimated percent solid density of this ROI including AIR in structure as part of volume.
SILA ROOT_MEAN_SQUARE -0.651 0.000 The square-root of the mean of the squares of the HU values in the image ROI. It is another measure of the magnitude of the image values.

SILA ROOT_MEAN_SQUARE_VOXELS 0.828 0.000 The square-root of the mean of the squares of the raw voxel values in the image ROI. It is another measure of the magnitude of the image values.

SILA SAGITTAL_LONG_AXIS_MM 0.409 0.014 A measure of the longest straight line that can fit entirely inside an YZ-planar slice of the 3D structure (from edge to edge, without ever leaving structure), in 
millimeters.

SILA SAGITTAL_SHORT_AXIS_MM 0.453 0.002 A measure of the longest orthogonal line to the longest planar line, that can fit entirely inside an YZ-planar slice of the 3D structure (from edge to edge, 
without ever leaving structure), in millimeters

SILA SKEWNESS_HU -0.815 0.000 Measures the asymmetry of the distribution of HU values in the image ROI about the mean of the values. Depending on where the tail is elongated and the 
mass of the distribution is concentrated, this value can be positive or negative.

SILA SKEWNESS_VOXELS -0.815 0.000 Measures the asymmetry of the distribution of raw voxel values in the image ROI about the mean of the values. Depending on where the tail is elongated 
and the mass of the distribution is concentrated, this value can be positive or negative.

SILA SOLID_VOLUME_ML 0.602 0.000 Volume of the solid density of the specified ROI in milliliters.
SILA SOLID_VOLUME_MM3 0.602 0.000 Volume of the solid density of the specified ROI in cubic millimeters.
SILA SOLID_VOLUME_VOXELS 0.599 0.000 Volume of the solid density of the specified ROI in voxels.
SILA SURFACE_AREA_MM2 0.431 0.005 Surface area of the specified ROI of the image in square millimeters.

SILA SURFACE_AREA_TO_VOLUME_RATIO_MM -0.451 0.002 Ratio of surface area to volume, in standard units.

SILA TRANSVERSE_LENGTH_MM 0.403 0.019 A measure of the transverse distance.

SILA UNIFORMITY_HU 0.678 0.000 A measure of the sum of the squares of each discrete HU value in the image ROI. This is a measure of the heterogeneity of an image, where a greater 
uniformity implies a greater heterogeneity or a greater range of discrete image values.

SILA UNIFORMITY_ACR 0.462 0.001 A uniformity measurement as defined by the American College of Radiology.
SILA VOLUME_ML 0.433 0.005 Volume of the specified ROI of the image in milliliters.
SILA VOLUME_MM3 0.433 0.005 Volume of the specified ROI of the image in cubic millimeters.
SILA VOLUME_VOXELS 0.435 0.004 Volume derived from voxel count inside ROI
SILA VOLUMETRIC_LENGTH_MM 0.385 0.039 A measure of the longest straight line that can fit entirely inside the 3D structure (from edge to edge, without ever leaving structure).

Table S8. Pairwise Spearman correlation between SILA score and HealthMyne Radiomics Features



Pt ID Cluster
11938 1
13376 2
13436 3
8356 2
12994 2
12929 4
12924 1
13622 3
13771 1
13651 2
13074 2
11817 4
13536 2
11906 2
13276 2
13207 4
13317 1
12915 1
13769 1
11855 1
11851 2
11538 2
12889 4
12931 4
11813 1
11646 2
11759 2
13014 1
14855 3
11952 2
11561 1
11886 2
13724 4
14958 2
12281 2
12323 1
14955 1
15001 1
14048 3
15224 2
14965 2
15325 1
14962 2
15187 1
15506 3
14301 3
13538 2
15326 1
15569 4
14610 3
13988 3
13155 4
15083 1
11652 1
15002 4
12546 1
12890 1
15467 1
15741 2

Table S9. Data integration patient clusters



Feature name Dataset of origin Cluster
ECC_3 CyTOF I
ECC_5 CyTOF II
fmes_3 CyTOF I
OtherI_4 CyTOF I
HLA DR CyTOF I
ANTPOST_LENGTH_MM HealthMyne (radiomics) II
AUTO_LARGEST_PLANAR_DIAMETER_MM HealthMyne (radiomics) II
AUTO_LARGEST_PLANAR_ORTHO_DIAMETER_MM HealthMyne (radiomics) II
AUTO_CORONAL_LONG_AXIS_MM HealthMyne (radiomics) II
AUTO_CORONAL_SHORT_AXIS_MM HealthMyne (radiomics) II
AUTO_SAGITTAL_LONG_AXIS_MM HealthMyne (radiomics) II
AUTO_SAGITTAL_SHORT_AXIS_MM HealthMyne (radiomics) II
AVG_AXIAL_DIAMETER_MM HealthMyne (radiomics) II
AVG_CORONAL_DIAMETER_MM HealthMyne (radiomics) II
AVG_DENSITY_OF_SOLID_REGION HealthMyne (radiomics) II
AVG_SAGITTAL_DIAMETER_MM HealthMyne (radiomics) II
LARGEST_PLANAR_DIAMETER_MM HealthMyne (radiomics) II
LARGEST_PLANAR_ORTHO_DIAMETER_MM HealthMyne (radiomics) II
COMPACTNESS1_MM HealthMyne (radiomics) II
CORONAL_LONG_AXIS_MM HealthMyne (radiomics) II
CORONAL_SHORT_AXIS_MM HealthMyne (radiomics) II
CRANIALCAUDAL_LENGTH_MM HealthMyne (radiomics) II
ENERGY_VOXELS HealthMyne (radiomics) II
FOOTPRINT_Y_MM HealthMyne (radiomics) II
GLCM_COL_MEAN HealthMyne (radiomics) II
GLCM_ENTROPY HealthMyne (radiomics) II
GLCM_HOMOGENEITY HealthMyne (radiomics) III
GLCM_ROW_MEAN HealthMyne (radiomics) II
KURTOSIS_HU HealthMyne (radiomics) II
KURTOSIS_VOXELS HealthMyne (radiomics) II
L1_DISTANCE_MM HealthMyne (radiomics) II
L2_DISTANCE_MM HealthMyne (radiomics) II
L3_DISTANCE_MM HealthMyne (radiomics) II
PART_SOLID_DIAMETER_MM HealthMyne (radiomics) II
LUNG_RADS_DIAMETER_MM HealthMyne (radiomics) II
MAX_HU HealthMyne (radiomics) II
MAX_VOXELS HealthMyne (radiomics) II
MEAN_HU HealthMyne (radiomics) II
MEAN_VOXELS HealthMyne (radiomics) II
MEDIAN_HU HealthMyne (radiomics) II
MEDIAN_VOXELS HealthMyne (radiomics) II
NORMALIZED_ABOVE_MEAN_DEVIATION_VOXELS HealthMyne (radiomics) II
PERCENT_GGO HealthMyne (radiomics) I
PERCENT_SOLID HealthMyne (radiomics) II
PERCENT_SOLID_INCL_AIR HealthMyne (radiomics) II
ROOT_MEAN_SQUARE HealthMyne (radiomics) I
ROOT_MEAN_SQUARE_VOXELS HealthMyne (radiomics) II
SAGITTAL_LONG_AXIS_MM HealthMyne (radiomics) II
SAGITTAL_SHORT_AXIS_MM HealthMyne (radiomics) II
SKEWNESS_HU HealthMyne (radiomics) I
SKEWNESS_VOXELS HealthMyne (radiomics) I
SOLID_VOLUME_ML HealthMyne (radiomics) II
SOLID_VOLUME_MM3 HealthMyne (radiomics) II
SOLID_VOLUME_VOXELS HealthMyne (radiomics) II
SURFACE_AREA_MM2 HealthMyne (radiomics) II
SURFACE_AREA_TO_VOLUME_RATIO_MM HealthMyne (radiomics) I
TRANSVERSE_LENGTH_MM HealthMyne (radiomics) II
UNIFORMITY_HU HealthMyne (radiomics) II
VOLUME_ML HealthMyne (radiomics) II
VOLUME_MM3 HealthMyne (radiomics) II
VOLUME_VOXELS HealthMyne (radiomics) II
VOLUMETRIC_LENGTH_MM HealthMyne (radiomics) II
HALLMARK_ALLOGRAFT_REJECTION RNA-Seq I
HALLMARK_ANDROGEN_RESPONSE RNA-Seq I
HALLMARK_ANGIOGENESIS RNA-Seq III
HALLMARK_APICAL_JUNCTION RNA-Seq III
HALLMARK_APOPTOSIS RNA-Seq I
HALLMARK_CHOLESTEROL_HOMEOSTASIS RNA-Seq I
HALLMARK_COAGULATION RNA-Seq I
HALLMARK_COMPLEMENT RNA-Seq I
HALLMARK_DNA_REPAIR RNA-Seq IV
HALLMARK_E2F_TARGETS RNA-Seq IV
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION RNA-Seq III
HALLMARK_ESTROGEN_RESPONSE_LATE RNA-Seq I
HALLMARK_G2M_CHECKPOINT RNA-Seq IV
HALLMARK_GLYCOLYSIS RNA-Seq IV
HALLMARK_HEDGEHOG_SIGNALING RNA-Seq III
HALLMARK_HYPOXIA RNA-Seq I
HALLMARK_IL6_JAK_STAT3_SIGNALING RNA-Seq I
HALLMARK_INFLAMMATORY_RESPONSE RNA-Seq I
HALLMARK_INTERFERON_ALPHA_RESPONSE RNA-Seq I
HALLMARK_INTERFERON_GAMMA_RESPONSE RNA-Seq I
HALLMARK_KRAS_SIGNALING_DN RNA-Seq II
HALLMARK_KRAS_SIGNALING_UP RNA-Seq I
HALLMARK_MITOTIC_SPINDLE RNA-Seq IV
HALLMARK_MTORC1_SIGNALING RNA-Seq I
HALLMARK_MYC_TARGETS_V1 RNA-Seq I
HALLMARK_MYC_TARGETS_V2 RNA-Seq IV
HALLMARK_MYOGENESIS RNA-Seq III
HALLMARK_P53_PATHWAY RNA-Seq I
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY RNA-Seq I
HALLMARK_SPERMATOGENESIS RNA-Seq IV
HALLMARK_TGF_BETA_SIGNALING RNA-Seq I
HALLMARK_TNFA_SIGNALING_VIA_NFKB RNA-Seq I
HALLMARK_UV_RESPONSE_DN RNA-Seq III
HALLMARK_UV_RESPONSE_UP RNA-Seq I
HALLMARK_WNT_BETA_CATENIN_SIGNALING RNA-Seq I
HALLMARK_XENOBIOTIC_METABOLISM RNA-Seq I
Cell Cycle RNA-Seq IV
Innate Immune System RNA-Seq I
Cell Cycle  Mitotic RNA-Seq IV
Leishmania infection RNA-Seq I
Neutrophil degranulation RNA-Seq I
Cell Cycle Checkpoints RNA-Seq IV
Signaling by GPCR RNA-Seq I
Platelet activation  signaling and aggregation RNA-Seq I
DNA Double Strand Break Repair RNA-Seq IV
Nuclear Events  kinase and transcription factor activation RNA-Seq I
Signaling by Interleukins RNA-Seq I
DNA Replication RNA-Seq IV
Hemostasis RNA-Seq I
DNA Repair RNA-Seq IV
GPCR downstream signalling RNA-Seq I
DNA strand elongation RNA-Seq IV
Activation of the pre replicative complex RNA-Seq IV
Homology Directed Repair RNA-Seq IV
NGF stimulated transcription RNA-Seq I
GPCR ligand binding RNA-Seq I
Mitotic Prometaphase RNA-Seq IV
COPI dependent Golgi to ER retrograde traffic RNA-Seq IV
G2 M Checkpoints RNA-Seq IV
Kinesins RNA-Seq IV
Cilium Assembly RNA-Seq IV
Anti inflammatory response favouring Leishmania parasite infection RNA-Seq I
Leishmania parasite growth and survival RNA-Seq I
M Phase RNA-Seq IV
HDR through Homologous Recombination  HRR  or Single Strand Annealing  SSA RNA-Seq IV
Cell surface interactions at the vascular wall RNA-Seq I
Interleukin 3  Interleukin 5 and GM CSF signaling RNA-Seq I
Synthesis of DNA RNA-Seq IV
DNA Replication Pre Initiation RNA-Seq IV
FOXO mediated transcription RNA-Seq I
Activation of ATR in response to replication stress RNA-Seq IV
Immunoregulatory interactions between a Lymphoid and a non Lymphoid cell RNA-Seq I
Resolution of Sister Chromatid Cohesion RNA-Seq IV
DAP12 interactions RNA-Seq I
ADORA2B mediated anti inflammatory cytokines production RNA-Seq I
Golgi to ER retrograde transport RNA-Seq IV
O linked glycosylation of mucins RNA-Seq II
Class A 1  Rhodopsin like receptors RNA-Seq I
Chromosome Maintenance RNA-Seq IV
Amplification  of signal from unattached  kinetochores via a MAD2  inhibitory signal RNA-Seq IV
Amplification of signal from the kinetochores RNA-Seq IV
Signaling by NTRK1  TRKA RNA-Seq I
Mitochondrial translation elongation RNA-Seq IV
Mitochondrial translation RNA-Seq IV
G alpha  s  signalling events RNA-Seq I
Separation of Sister Chromatids RNA-Seq IV
S Phase RNA-Seq IV
Mitochondrial translation termination RNA-Seq IV
Mitochondrial translation initiation RNA-Seq IV

Feature name Dataset of origin Cluster
G1 S Transition RNA-Seq IV
G alpha  q  signalling events RNA-Seq I
Organelle biogenesis and maintenance RNA-Seq IV
Mitotic Spindle Checkpoint RNA-Seq IV
Mitotic G1 phase and G1 S transition RNA-Seq IV
HDR through Homologous Recombination  HRR RNA-Seq IV
EML4 and NUDC in mitotic spindle formation RNA-Seq IV
Signaling by TGFB family members RNA-Seq I
Intra Golgi and retrograde Golgi to ER traffic RNA-Seq IV
Homologous DNA Pairing and Strand Exchange RNA-Seq IV
Anchoring of the basal body to the plasma membrane RNA-Seq IV
Processing of DNA double strand break ends RNA-Seq IV
Mitotic Metaphase and Anaphase RNA-Seq IV
GPVI mediated activation cascade RNA-Seq I
Resolution of Abasic Sites  AP sites RNA-Seq IV
Ca2  pathway RNA-Seq I
Signaling by NTRKs RNA-Seq I
Extra nuclear estrogen signaling RNA-Seq I
Mitotic Anaphase RNA-Seq IV
ESR mediated signaling RNA-Seq I
Resolution of D Loop Structures RNA-Seq IV
FCGR3A mediated phagocytosis RNA-Seq I
Leishmania phagocytosis RNA-Seq I
Parasite infection RNA-Seq I
Resolution of D loop Structures through Holliday Junction Intermediates RNA-Seq IV
PI5P  PP2A and IER3 Regulate PI3K AKT Signaling RNA-Seq I
Presynaptic phase of homologous DNA pairing and strand exchange RNA-Seq IV
Assembly of the pre replicative complex RNA-Seq IV
Peptide hormone metabolism RNA-Seq I
Mitotic G2 G2 M phases RNA-Seq IV
RHO GTPases Activate Formins RNA-Seq IV
Toll Like Receptor 9  TLR9  Cascade RNA-Seq I
Extracellular matrix organization RNA-Seq III
Disease RNA-Seq I
Nervous system development RNA-Seq I
Axon guidance RNA-Seq I
Degradation of the extracellular matrix RNA-Seq III
Signaling by Receptor Tyrosine Kinases RNA-Seq I
Developmental Biology RNA-Seq I
Infectious disease RNA-Seq I
Post translational protein phosphorylation RNA-Seq III
Platelet degranulation RNA-Seq I
Regulation of Insulin like Growth Factor  IGF  transport and uptake by Insulin like Growth Factor Binding Proteins  IGFBPs RNA-Seq III
Signaling by Rho GTPases RNA-Seq I
Smooth Muscle Contraction RNA-Seq III
Response to elevated platelet cytosolic Ca2 RNA-Seq I
Collagen formation RNA-Seq III
RHO GTPase Effectors RNA-Seq I
Vesicle mediated transport RNA-Seq I
Cytokine Signaling in Immune system RNA-Seq I
Integrin cell surface interactions RNA-Seq III
Elastic fibre formation RNA-Seq III
Collagen degradation RNA-Seq III
ECM proteoglycans RNA-Seq III
Semaphorin interactions RNA-Seq I
Collagen biosynthesis and modifying enzymes RNA-Seq III
Membrane Trafficking RNA-Seq I
Molecules associated with elastic fibres RNA-Seq III
Assembly of collagen fibrils and other multimeric structures RNA-Seq III
Muscle contraction RNA-Seq III
Antigen processing Cross presentation RNA-Seq I
Signaling by Nuclear Receptors RNA-Seq I
Non integrin membrane ECM interactions RNA-Seq III
Signaling by VEGF RNA-Seq I
L1CAM interactions RNA-Seq III
Diseases of signal transduction by growth factor receptors and second messengers RNA-Seq I
Cell Cell communication RNA-Seq I
EPH Ephrin signaling RNA-Seq I
Cellular responses to external stimuli RNA-Seq I
Clathrin mediated endocytosis RNA-Seq I
SARS CoV Infections RNA-Seq I
Chondroitin sulfate dermatan sulfate metabolism RNA-Seq III
Signaling by NOTCH RNA-Seq I
ROS and RNS production in phagocytes RNA-Seq I
VEGFA VEGFR2 Pathway RNA-Seq I
Programmed Cell Death RNA-Seq I
Regulation of actin dynamics for phagocytic cup formation RNA-Seq I
Signaling by NOTCH1 RNA-Seq I
Beta catenin independent WNT signaling RNA-Seq I
Fcgamma receptor  FCGR  dependent phagocytosis RNA-Seq I
Glycosaminoglycan metabolism RNA-Seq III
Collagen chain trimerization RNA-Seq III
Potential therapeutics for SARS RNA-Seq I
Constitutive Signaling by NOTCH1 HD PEST Domain Mutants RNA-Seq I
Constitutive Signaling by NOTCH1 PEST Domain Mutants RNA-Seq I
Signaling by NOTCH1 HD PEST Domain Mutants in Cancer RNA-Seq I
Signaling by NOTCH1 PEST Domain Mutants in Cancer RNA-Seq I
Signaling by NOTCH1 in Cancer RNA-Seq I
Interleukin 4 and Interleukin 13 signaling RNA-Seq I
Toll like Receptor Cascades RNA-Seq I
MET promotes cell motility RNA-Seq III
RHO GTPases Activate WASPs and WAVEs RNA-Seq I
Apoptosis RNA-Seq I
Defective B3GALTL causes Peters plus syndrome  PpS RNA-Seq III
Oncogenic MAPK signaling RNA-Seq I
Synthesis of substrates in N glycan biosythesis RNA-Seq I
EPHB mediated forward signaling RNA-Seq I
MET activates PTK2 signaling RNA-Seq III
Rho GTPase cycle RNA-Seq III
Diseases associated with glycosaminoglycan metabolism RNA-Seq III
Signaling by NOTCH4 RNA-Seq I
ER Phagosome pathway RNA-Seq I
G alpha  12 13  signalling events RNA-Seq III
Unfolded Protein Response  UPR RNA-Seq I
PTEN Regulation RNA-Seq I
Transcriptional regulation by RUNX2 RNA-Seq I
Binding and Uptake of Ligands by Scavenger Receptors RNA-Seq I
Regulation of PTEN gene transcription RNA-Seq I
Diseases of glycosylation RNA-Seq III
G2 M Transition RNA-Seq IV
Diseases of metabolism RNA-Seq III
Switching of origins to a post replicative state RNA-Seq IV
Signaling by MET RNA-Seq III
APC C mediated degradation of cell cycle proteins RNA-Seq IV
Regulation of mitotic cell cycle RNA-Seq IV
Activation of APC C and APC C Cdc20 mediated degradation of mitotic proteins RNA-Seq IV
Diseases associated with O glycosylation of proteins RNA-Seq III
Protein protein interactions at synapses RNA-Seq III
APC C Cdc20 mediated degradation of mitotic proteins RNA-Seq IV
Costimulation by the CD28 family RNA-Seq I
Regulation of APC C activators between G1 S and early anaphase RNA-Seq IV
APC C Cdh1 mediated degradation of Cdc20 and other APC C Cdh1 targeted proteins in late mitosis early G1 RNA-Seq IV
Orc1 removal from chromatin RNA-Seq IV
Centrosome maturation RNA-Seq IV
Recruitment of mitotic centrosome proteins and complexes RNA-Seq IV
Metabolism of carbohydrates RNA-Seq IV
APC Cdc20 mediated degradation of cell cycle proteins prior to satisfation of the cell cycle checkpoint RNA-Seq IV
O glycosylation of TSR domain containing proteins RNA-Seq III
Cell junction organization RNA-Seq III
AURKA Activation by TPX2 RNA-Seq IV
Signaling by PDGF RNA-Seq III
Recruitment of NuMA to mitotic centrosomes RNA-Seq IV
MHC class II antigen presentation RNA-Seq IV
O linked glycosylation RNA-Seq III
Cdc20 Phospho APC C mediated degradation of Cyclin A RNA-Seq IV
Regulation of TP53 Activity through Phosphorylation RNA-Seq IV
G2 M DNA damage checkpoint RNA-Seq IV
CDK mediated phosphorylation and removal of Cdc6 RNA-Seq IV
APC C Cdc20 mediated degradation of Securin RNA-Seq IV
The role of GTSE1 in G2 M progression after G2 checkpoint RNA-Seq IV
Plasma lipoprotein assembly  remodeling  and clearance RNA-Seq IV
ABC transporter disorders RNA-Seq IV
Autodegradation of Cdh1 by Cdh1 APC C RNA-Seq IV
NCAM signaling for neurite out growth RNA-Seq III
PCP CE pathway RNA-Seq IV
Loss of Nlp from mitotic centrosomes RNA-Seq IV
Loss of proteins required for interphase microtubule organization from the centrosome RNA-Seq IV
Regulation of PLK1 Activity at G2 M Transition RNA-Seq IV
Neurexins and neuroligins RNA-Seq III
A tetrasaccharide linker sequence is required for GAG synthesis RNA-Seq III

Table S10. Data integration features clusters



Figure S1. Differential abundance analysis. Y axis corresponds to the fraction of cells per patient sample. P 
value >0.05 for all comparisons.
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Figure S2. Epithelial cancer cells cluster analysis. (A) UMAP representation of the clusters colored by cluster identity, density, and patient ID.
(B) UMAP representation of the clusters colored by protein expression intensity. These are the features used for both clustering and UMAP
visualization. (C) Heatmap of median protein expression per protein marker per cluster. (D) Differential abundance analysis. Y axis
corresponds to the fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.01, ***=pvalue<0.001. (E) Protein-
protein Spearman correlation analysis. Only significant correlations (p value >0.05) are colored.
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Figure S3. Endothelial cells cluster analysis. (A) UMAP representation of the clusters colored by cluster identity, density, and patient ID. (B)
UMAP representation of the clusters colored by protein expression intensity. These are the features used for both clustering and UMAP
visualization. (C) Heatmap of median protein expression per protein marker per cluster. (D) Differential abundance analysis. Y axis
corresponds to the fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.01, ***=pvalue<0.001. (E) Protein-
protein Spearman correlation analysis. Only significant correlations (p value >0.05) are colored.
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Figure S4. Fibroblasts/Mesenchymal cells cluster analysis. (A) UMAP representation of the clusters colored by cluster identity, density, and
patient ID. (B) UMAP representation of the clusters colored by protein expression intensity. These are the features used for both clustering
and UMAP visualization. (C) Heatmap of median protein expression per protein marker per cluster. (D) Differential abundance analysis. Y axis
corresponds to the fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.01, ***=pvalue<0.001. (E) Protein-
protein Spearman correlation analysis. Only significant correlations (p value >0.05) are colored.
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Figure S5. CD8+ T cells cluster analysis. (A) UMAP representation of the clusters colored by cluster identity, density, and patient ID. (B) UMAP
representation of the clusters colored by protein expression intensity. These are the features used for both clustering and UMAP visualization.
(C) Heatmap of median protein expression per protein marker per cluster. (D) Differential abundance analysis. Y axis corresponds to the
fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.01, ***=pvalue<0.001. (E) Protein-protein Spearman
correlation analysis. Only significant correlations (p value >0.05) are colored.
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Figure S6. CD4+ T cells cluster analysis. (A) UMAP representation of the clusters colored by cluster identity, density, and patient ID. (B) UMAP
representation of the clusters colored by protein expression intensity. These are the features used for both clustering and UMAP visualization.
(C) Heatmap of median protein expression per protein marker per cluster. (D) Differential abundance analysis. Y axis corresponds to the
fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.01, ***=pvalue<0.001. (E) Protein-protein Spearman
correlation analysis. Only significant correlations (p value >0.05) are colored.
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Figure S7. CD8-/CD4- T cells cluster analysis. (A) UMAP representation of the clusters colored by cluster identity, density, and patient ID. (B)
UMAP representation of the clusters colored by protein expression intensity. These are the features used for both clustering and UMAP
visualization. (C) Heatmap of median protein expression per protein marker per cluster. (D) Differential abundance analysis. Y axis
corresponds to the fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.01, ***=pvalue<0.001. (E) Protein-
protein Spearman correlation analysis. Only significant correlations (p value >0.05) are colored.
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Figure S8. Myeloid cells cluster analysis. (A) UMAP representation of the clusters colored by cluster identity, density, and patient ID. (B)
UMAP representation of the clusters colored by protein expression intensity. These are the features used for both clustering and UMAP
visualization. (C) Heatmap of median protein expression per protein marker per cluster. (D) Differential abundance analysis. Y axis
corresponds to the fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.01, ***=pvalue<0.001. (E) Protein-
protein Spearman correlation analysis. Only significant correlations (p value >0.05) are colored.
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Figure S9. Other immune cells cluster analysis. (A) UMAP representation of the clusters colored by cluster identity, density, and patient ID.
(B) UMAP representation of the clusters colored by protein expression intensity. These are the features used for both clustering and UMAP
visualization. (C) Heatmap of median protein expression per protein marker per cluster. (D) Differential abundance analysis. Y axis
corresponds to the fraction of cells per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.01, ***=pvalue<0.001. (E) Protein-
protein Spearman correlation analysis. Only significant correlations (p value >0.05) are colored.



Figure E19. 

Figure S10. Spearman correlation of fraction per patient sample of main cell types and cell types clusters. Only 
significant  correlations (p value >0.05) are colored. 



Figure S11. Differential bulk protein expression analysis per patient sample. No star=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001.



A B

C

Figure S12. Whole Exome Sequencing data analysis. (A) Oncoplot showing top 25 mutated genes. (B) Spearman correlation of SILA score and
Log10 of mutational load per patient. (C) Clinical enrichment analysis of mutations comparing Indolent+Intermediate versus Aggressive tumor
samples.



Figure S13. Similarity matrix of features used for data integration.
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Figure S14. Single cell RNA-Seq analysis of 15 tumor samples. (A) Fraction of cells per cell type colored by patient ID, risk group, data
integration patient cluster, and number of cells per cell type. (B) UMAP representation of 44867 cells from 15 patients colored by cell density.
Labels correspond to data integration patient cluster 1=P1, 2=P2, 4=P4, 0=patients not included in data integration. (C) Differential abundance
analysis. Y axis corresponds to the fraction of cells per patient sample. ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001.
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Figure S15. T cells cluster analysis. (A) UMAP representation of 27708 cells from 15 patients colored by cell density. Labels correspond to data
integration patient cluster 1=P1, 2=P2, 4=P4, 0=patients not included in data integration. (B) Split violin visualization showing the top 30
marker genes for each cluster when compared to the rest.. (C) Differential abundance analysis. Y axis corresponds to the fraction of cells per
patient sample. ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001. (D) Fraction of cells per cluster colored by patient ID, risk group, data
integration patient cluster, and number of cells per cluster.
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Figure S16. Myeloid cells cluster analysis. (A) UMAP representation of 2497 cells from 15 patients colored by cell density. Labels correspond
to data integration patient cluster 1=P1, 2=P2, 4=P4, 0=patients not included in data integration. (B) Split violin visualization showing the top
30 marker genes for each cluster when compared to the rest.. (C) Differential abundance analysis. Y axis corresponds to the fraction of cells
per patient sample. ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001. (D) Fraction of cells per cluster colored by patient ID, risk group, data
integration patient cluster, and number of cells per cluster.
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Figure S17. B cells cluster analysis. (A) UMAP representation of 11246 cells from 15 patients colored by cell density. Labels correspond to
data integration patient cluster 1=P1, 2=P2, 4=P4, 0=patients not included in data integration. (B) Split violin visualization showing the top 30
marker genes for each cluster when compared to the rest.. (C) Differential abundance analysis. Y axis corresponds to the fraction of cells per
patient sample. ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001. (D) Fraction of cells per cluster colored by patient ID, risk group, data
integration patient cluster, and number of cells per cluster.
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Figure S18. Mural cells cluster analysis. (A) UMAP representation of 695 cells from 15 patients colored by cluster identity, and cell density
devided by risk group (up) or data integration patient clusters (down) (1=P1, 2=P2, 4=P4, 0=patients not included in data integration). (B) Split
violin visualization showing the top 30 marker genes for each cluster when compared to the rest.. (C) Differential abundance analysis. Y axis
corresponds to the fraction of cells per patient sample. ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001. (D) Fraction of cells per cluster
colored by patient ID, risk group, data integration patient cluster, and number of cells per cluster.
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Figure S19. Fibroblasts cells cluster analysis. (A) UMAP representation of 1442 cells from 15 patients colored by cluster identity, and cell
density devided by risk group (up) or data integration patient clusters (down) (1=P1, 2=P2, 4=P4, 0=patients not included in data integration).
(B) Split violin visualization showing the top 30 marker genes for each cluster when compared to the rest.. (C) Differential abundance analysis.
Y axis corresponds to the fraction of cells per patient sample. ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001. (D) Fraction of cells per
cluster colored by patient ID, risk group, data integration patient cluster, and number of cells per cluster.



A

B

C
D

Figure S20. Endothelial cells cluster analysis. (A) UMAP representation of 839 cells from 15 patients colored by cluster identity, and cell
density devided by risk group (up) or data integration patient clusters (down) (1=P1, 2=P2, 4=P4, 0=patients not included in data integration).
(B) Split violin visualization showing the top 30 marker genes for each cluster when compared to the rest.. (C) Differential abundance analysis.
Y axis corresponds to the fraction of cells per patient sample. ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001. (D) Fraction of cells per
cluster colored by patient ID, risk group, data integration patient cluster, and number of cells per cluster.
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Figure S21. Cancer cells cluster analysis. (A) UMAP representation of 449 cells from 15 patients colored by cluster identity, and cell density
devided by risk group (up) or data integration patient clusters (down) (1=P1, 2=P2, 4=P4, 0=patients not included in data integration). (B) Split
violin visualization showing the top 30 marker genes for each cluster when compared to the rest.. (C) Differential abundance analysis. Y axis
corresponds to the fraction of cells per patient sample. ns=pvalue>0.05, *=pvalue<0.05, **=pvalue<0.001. (D) Fraction of cells per cluster
colored by patient ID, risk group, data integration patient cluster, and number of cells per cluster.
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