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CHAPTER 1

Introduction

1.1 Overview

This dissertation deals with problems arising within the multiplexed imaging pipeline, using traditional sta-

tistical methods and algorithms in a new type of biological imaging data. In Chapter 2, we demonstrate the

utility of applying normalization algorithms in multiplexed imaging data to remove slide effects and provide

an evaluation criteria for better data quality. In Chapter 3, we introduce the mxnorm R package to imple-

ment, evaluate, and visualize normalization techniques in multiplexed imaging, which also provides options

for researchers to introduce and assess user-defined normalization methods. In Chapter 4, we build upon the

removal of technical variation in this pipeline, adapting spatial statistics methods that leverage marked point

processes for use in analyzing multiplexed imaging data.

Before we dive in, we will introduce the basics of multiplexed imaging and some of the statistical meth-

ods used in this thesis to equip the reader with background information to understand the later chapters.

1.2 Multiplexed imaging

Multiplexed imaging methods have only been developed and introduced within the last decade – these meth-

ods extend the idea of single-cell sequencing (e.g., assigning some quantitative value for a biomarker or

protein to a specific cell) and seek to take this measure in situ, or within a tissue sample. These can be consid-

ered “stacked” images which provide detailed spatial information about interactions between cells and tissue

types in complex biological processes like cancer, tumor development, and more. The “stacked” component

is better defined as staining a sample for a biomarker of interest, generating a set of images, washing the

sample, and re-staining it for a separate marker. This process is repeated dozens of times depending on the

number of markers used in a given study. Biological samples are typically a section of tissue, usually related

to a type of tumor or cancer. Images are collected as “regions of interest”, or ROIs – subsets of the full tissue

sample, where the entire tissue sample is not always imaged and images are not necessarily contiguous. This

criteria for creating multiplexed images broadly sets the scene for the kind of studies and data we work with

– the types of methods introduced to perform these processes vary across research labs and technologies, and

will be discussed more in depth in the chapters below.
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1.3 Pipelines and data

Multiplexed imaging experiments generate data across hundreds of slides and images, creating terabytes of

data via imaging analysis pipelines. Data are collected in batches for multiple marker channels across slides,

where, as noted above, the images comprise smaller regions of the tissue sample. Within a given slide or im-

age, individual cells are identified using segmentation algorithms – this introduces the problem of a “ground

truth” in this type of data, where cell- and tissue-labels are often identified in an unsupervised manner. Quan-

titative values for a marker channel are then assigned at the median- or mean-cell level, where some cell has

coordinates (x,y) on ROI j, taken from slide i, for some marker channel c. This data structure allows for the

in situ analysis of multiple marker channels over a large number of cells within a tissue sample.

One major issue in multiplexed imaging data is the presence of systematic noise at a variety of levels, in-

cluding batch and slide effects, imaging and clinical variables, and optical effects (Berry et al., 2021). This

complexity and the within-slide dependence structure of the data can disrupt inference, while technical vari-

ability can be confounded through this complicated pipeline. In general, it is difficult to develop standardized

pre-processing pipelines because of substantial variability in markers used across different studies and differ-

ences in target proteins across organs and cancer types (Schapiro et al., 2022). Furthermore, the field lacks

a set of unified tools to perform many discrete components in the pipeline – visualization, cell segmenta-

tion, normalization, spatial analysis, and more. Below we will introduce the two main components of the

multiplexed imaging pipeline that are relevant to this thesis – normalization and spatial analysis methods.

1.4 Normalization methods

Thematically, this dissertation began as an exploration of applying traditional spatial statistics methodology

in multiplexed imaging data. However, we quickly discovered the presence of severe batch effects in many

of the data sources discussed later that recalibrated our research interests. Broadly, normalization is a sta-

tistical technique used to adjust the input data values to improve data quality and remove systematic noise.

These methods have been introduced widely in other fields of interest, particularly with regards to genetic

sequencing data and neuroimaging. The first algorithm of interest in this thesis is the ComBat algorithm –

this method is a location-scale model that uses empirical Bayes methods to adjust for batch effects in genetic

micro-array data (Johnson et al., 2007). We are also interested in functional data analysis (FDA), which is a

set of statistical methods designed for curves, densities, and functions of some domain. Curve registration is

a non-parametric tool from the functional data field that non-linearly transforms the domain of the input data

to align curves across some covariate (e.g., subject, time, site, etc.) (Ramsay and Silverman, 2005). Both the

ComBat algorithm and FDA registration method are further discussed in our implementation of normalization

2



algorithms in multiplexed imaging data in Chapters 2 and 3.

1.5 Spatial statistics

After developing approaches for normalization in multiplexed imaging data, we then adapt methods from the

spatial statistics field – the methods in this thesis largely rely on point process theory (Illian et al., 2008).

Broadly, point processes are stochastic models of point patterns, which are an irregular collection of points

in some area or set. Point processes describe data at some set of finite points, where we implement statistical

methods to understand the distribution of this set, spatial relationships between the points, and more. In

multiplexed imaging data, we are interested in the spatial relationship of these points (e.g., cell locations) with

the value of some marker channel at those cells. This means that the point processes we discuss are marked

point processes – here we consider some random number of cells in a multiplexed image as the points, and

some set of quantitative marker values as the marks. These definitions are important for summarizing point

processes, which is the motivation for the summary measures discussed and introduced in Chapter 4 of this

thesis.
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CHAPTER 2

Quantifying and correcting slide-to-slide variation in multiplexed immunofluorescence images

2.1 Summary

Multiplexed imaging is a nascent single-cell assay with a complex data structure susceptible to technical vari-

ability that disrupts inference. These in situ methods are valuable in understanding cell-cell interactions, but

few standardized processing steps or normalization techniques of multiplexed imaging data are available. We

implement and compare data transformations and normalization algorithms in multiplexed imaging data. Our

methods adapt the ComBat and functional data registration methods to remove slide effects in this domain,

and we present an evaluation framework to compare the proposed approaches. We present clear slide-to-slide

variation in the raw, unadjusted data, and show that many of the proposed normalization methods reduce this

variation while preserving and improving the biological signal. Further, we find that dividing multiplexed

imaging data by its slide mean, and the functional data registration methods, perform the best under our pro-

posed evaluation framework. In summary, this approach provides a foundation for better data quality and

evaluation criteria in multiplexed imaging.

2.2 Background

Single-cell assays are increasingly valued for their ability to provide information about the cell micro-

environment and cell population interactions in healthy and cancerous tissues (Islam et al., 2020; McKin-

ley et al., 2022; Shrubsole et al., 2008). Multiplexed imaging methods like multiplexed immunofluorescence

(MxIF) (Gerdes et al., 2013), multiplexed immunohistochemistry (IHC) (Tsujikawa et al., 2017) and CODEX

(Goltsev et al., 2018) are in situ analyses of multiple marker channels over a large number of cells within a

given tissue sample. These methods build upon dissociative single cell analysis methods like flow cytometry

(Bradford et al., 2004) and single-cell RNA sequencing (Chen et al., 2019) to allow scientists to better under-

stand spatial cell-cell interactions in biological samples.

One significant issue in multiplexed imaging data is the presence of systematic noise at a variety of lev-

els, related to batch and slide effects, imaging variables, and optical effects (Berry et al., 2021; Chang et al.,

2020). A single experiment may contain hundreds of slides and terabytes of data across which a researcher

seeks to make inference (Maric et al., 2021). However, this data complexity and the within-slide dependen-

cies induce complex effects that can disrupt inference. This technical variability can be compounded through

the complex image pre-processing pipeline and may contribute to biases that increase type 1 or type 2 error.
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Table 2.1: Summary of normalization procedures implemented. Transformations (rows) and normaliza-
tion (columns) performed on the data. Here y is the median cell intensity values for an arbitrary marker
channel c, and µic is the slide mean for slide i of the median cell intensity values for marker channel c.

Furthermore, it is difficult to develop a standardized pre-processing pipeline because of substantial variability

in the markers used across different studies, as target proteins differ across organs and cancer types (Schapiro

et al., 2022; Yapp et al., 2021). Image normalization is a technique used to adjust the input pixel- or image-

level values of an image to remove noise and improve image quality. Due to the nascent development of

multiplexed imaging, there are few established statistical tools that address challenges related to technical

variation in this data set (Chang et al., 2020). Normalization methods may improve similarity across images

by removing the unknown effect of technical variability. Moreover, statistical methods for batch correction

and image normalization can be modified to fit this complex data structure to ultimately reduce systematic

noise and improve statistical inference.

Extensive work has been done in other fields to adjust for batch effects and systematic noise, particularly

with regards to neuroimaging and genetic sequencing data. One primary method employed in both of these

fields is the ComBat method, introduced for genetic micro-array data (Johnson et al., 2007) and then adapted

to neuroimaging in the analysis of magnetic resonance imaging (MRI) data (Fortin et al., 2017; Yu et al.,

2018). The ComBat method is a location-scale model that implements an empirical Bayes algorithm to ad-

just for batch effects, and is robust to outliers in small sample sizes. Curve registration, a non-parametric

tool from functional data analysis (FDA), has been used in recent work to adjust for systematic variability in

accelerometry and MRI data (Marron et al., 2015; Wrobel et al., 2020, 2019). In the neuroimaging context,

curve registration is used to normalize the imaging data by non-linearly transform the image intensity domain

so that it is similar across images from different subjects, potentially collected on different scanners. Multi-

plexed imaging data are further complicated because it is non-negative, which other groups have remarked

upon in similar imaging applications like spatial transcriptomics (Elosua-Bayes et al., 2021) – this requires

unique derivations and/or applications of normalization methods to ensure no contradictions arise from neg-

ative marker intensities.
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While adaptable, existing methods for normalizing data from other domains cannot be directly applied within

multiplexed imaging due to the unusual format of the data (cell populations can differ substantially across

samples), and the heavy skewness of the image histogram. The few algorithms adapted specifically for nor-

malizing multiplex imaging data still could benefit from upstream normalization using algorithms adapted

from other domains (Chang et al., 2020; Raza et al., 2016). For example, the RESTORE algorithm is a

method developed for multiplexed imaging that uses negative control cells to remove unwanted variation

across slides (Chang et al., 2020). However, this method relies on clustering mutually exclusive marker

pairs using cell-level labels that are defined using unnormalized marker intensities and thus embed biases

as detailed in this chapter. Raza et al also introduced normalization methods in the multiplexed imaging

that implement a procedure of image filters and transformations (Raza et al., 2016). These methods show

improvements at the pixel and image level, but do not correct for slide or batch effects that are prevalent as

detailed in this work. Hence, the normalization methods proposed here can be applied early in the image

processing pipeline to reduce bias in subsequent steps like phenotyping and spatial correlation analyses.

In this chapter we introduce and compare normalization and data transformation methods for multiplexed

imaging data introduced previously in Harris et al. (2022b). These techniques combine transformations of

the scale of the data from its raw form with algorithms (namely, ComBat and functional data registration)

adapted to remove slide effects from the data. We further develop multiple novel metrics to quantify and

measure the removal of technical variation in these data, where cell populations can differ across slides. We

use data from the Human Tumor Atlas Network to evaluate the methods we compare here (Rozenblatt-Rosen

et al., 2020; Chen et al., 2021). While we apply the methods here to segmented and quantified single-cell

data from multiplexed imaging, they can also be applied at the pixel level.

2.3 Methods

2.3.1 Implementation

We compare three data transformations: log10, mean division (division by the slide-level mean), and mean

division with log10, and three normalization procedures: no normalization, ComBat, and functional data

registration, for a total of nine potential multiplex image normalization algorithms (Table 2.1).

2.3.1.1 Transformations

Let Yic(u) denote the raw intensity of unit u on slide i for marker channel c (here u corresponds to segmented

cell intensities). We consider the following transformations: the log10 transformation, log10(Yic(u) + 1),
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where the addition of 1 follows since Yic(u) is integer-valued; the mean division transformation: Yic(u)
µic

,

where µic is the mean intensity value on slide i for channel c; and the mean division log10 transformation,

log10

(
Yic(u)

µic
+ 1

2

)
, where again µic is the mean intensity value on slide i for channel c. Here the data are no

longer integer-valued, and the addition of 1
2 ensures values greater than 1

2 are positive and less than 1
2 are

negative to properly adjust this scale of data. Other transformations that are less relevant to this thesis were

performed in the Supplement of Harris et al. (2022b) that under-performed the optimal methods discussed

here and are available online with that publication.

2.3.1.2 ComBat normalization

We adapted the empirical Bayes framework of the ComBat algorithm (Fortin et al., 2017; Johnson et al.,

2007) for multiplexed imaging data. We parameterize mean and variance of the slide-level batch effects, with

the location-scale model

Yic(u) = αc + γic +δicεic(u),

where we define Yic(u) as the intensity of unit u on slide i for marker channel c and αc as the the grand

mean of Yic(u) for channel c. Though in principle, units can be at the pixel or cell level, in our application,

Yic(u) is the median cell intensity (or its transformed counterpart) of a selected marker for a given segmented

cell on a specific slide in the dataset. Here γic is the the mean batch effect of slide i for channel c and

we assume γic ∼ N(γc,τ
2
c ), δ 2

ic is the variance batch effect of slide i for channel c and we assume δ 2
ic ∼

IG(ωc,βc), and we assume the random errors εic(u) ∼ N(0,1). We use the data to estimate α̂c and then

estimate γ̂ic =
1

Uic
∑u Yic(u), or the sample mean intensity on slide i for channel c. We further define σ̂c =

1
N ∑ic(Yic(u)− α̂c − γ̂ic)

2 and let:

Zic(u) =
Yic(u)− α̂c

σ̂2
c

,

where we assume Zic(u) ∼ N(γic,δ
2
ic). Based on the posterior conditional means, we find the following

empirical Bayes estimators of the two batch effect parameters (a detailed derivation of these estimators can

be found in the Appendix):

δ
2∗
ic =

β̄c +
1
2 ∑u(Zic(u)− γ∗ic)

2

Uic
2 + ω̄c −1

,γ∗ic =
Uic · τ̄2

c · γ̂ic +δ 2∗
ic · γ̄c

Uic · τ̄2
c +δ 2∗

ic

Where we define Uic as the number of quantified cells present on a particular slide i for a given channel

c. We calculate the hyper-parameter estimates of β̄c, ω̄c, τ̄
2
c , γ̄c using the method of moments and iterate

between estimating the hyper-parameters and batch effect parameters until convergence (Dempster et al.,
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1977; Johnson et al., 2007). Upon convergence, we use these batch effects to adjust the data,

Y ∗
ic(u) =

σ̂2
c

δ̂ ∗
ic

(Zic(u)− γ̂
∗
ic)+ α̂c.

This model adjusts the Z-normalized intensity data, Zic(u), by the mean and variance batch effects, and re-

scales back to the initial scale of the data with the mean and variance of the raw marker intensity values. Note

that zeroes were left in the data prior to the ComBat normalization, since for each scale transformation we

perform on the data the zeroes are meaningful rather than an absence of signal.

2.3.1.3 Functional data registration

For the second normalization algorithm we implemented functional data registration using the fda R pack-

age (Ramsay and Silverman, 2005; Ramsay et al., 2020). This approach uses functional data analysis (FDA)

methods to approximate the histograms for each slide and channel as smooth densities, and uses functional

registration to align the densities to their average at the slide-level. Functional registration is performed by

estimating a monotonic warping function for each density that stretches and compresses the intensities such

that densities are aligned. These warping functions are then used to transform the marker intensity values in

the images so that non-biological variability is reduced across slides.

Here, let our observed cell intensity values Yic(u) have density Yic(u) ∼ f (y | i,c). Our goal is to remove

technical variation related to the slide by estimating a warping function, φic(y), which is a monotonic trans-

formation of the intensities. We first use a 21 degree of freedom cubic B-spline basis to approximate the

densities of the median cell intensities for each slide and marker, f (y | i,c) ≈ β T g(y) where β ∈ R21 is an

unknown coefficient vector and g(y) is a vector of known basis functions. We then register the approximated

histograms to the average, restricting the warping function to be a 2 degree of freedom linear B-spline basis

for some functions h1(y) and h2(y) and for constants C0 and C1 to be estimated from the data,

φic(x) =C0 +C1

∫ x

0
exp{β1ich1(y)+β2ich2(y)}dy,

such that the transformation is monotonic (Ramsay and Silverman, 2005). Unknown parameters β1ic and β2ic

are estimated to minimize, ∫
y
∥ fic(φic(y))− f (y)∥2dy
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Where f (y) is the average density across slides. We then use φic(y) to calculate the normalized intensity

values, Y ∗
ic(u):

Y ∗
ic(u) = φic(Yic(u))

Note that the warping function φic(y) is a map that takes in the raw median cell intensity value and outputs

a new, normalized intensity value. Images are then normalized by taking the original intensity values in the

image, and transforming them using the map defined by the warping function. This combined process can

be summarized as first taking the raw data, smoothing the histogram of these data using a B-spline basis

expansion, and then calculating a warping function to transform the smoothed data so that densities across

slides within marker channel c are approximately aligned.

2.3.2 Evaluation framework

There is no accepted gold standard for evaluating normalization methods in multiplexed imaging because the

same tissue sample cannot be imaged twice and there is substantial heterogeneity across samples (Nadarajan

et al., 2019; Rozenblatt-Rosen et al., 2020). Here, our evaluation framework relies on the two following

conditions to be deemed successful: (1) reduction in slide-to-slide variance in the cell intensity data and (2)

preservation (and potential improvement) of existing biological signal in the data.

2.3.2.1 Alignment of marker densities

To determine if between-slide noise is visible when comparing densities, we visually inspect the changes in

density curves for each transformation method. A priori, we expect that a successful transformation method

will align the density curves across slides, and subsequently we inspect the placement of slide-level Otsu

thresholds, a commonly used thresholding algorithm used in imaging analysis (Otsu, 1979), to confirm a

reduction in variability between slides. To quantitatively measure the alignment of marker densities, we

implement the k-sample Anderson-Darling statistic to quantify the likelihood that each slide is drawn from the

same population (Scholz and Stephens, 1987). A higher value of this test statistic indicates greater evidence

that the k-samples are drawn from different distributions.

2.3.2.2 Threshold discordance and accuracy

Otsu thresholding is a commonly used thresholding algorithm that defines an optimal threshold in gray-scale

images and histograms, maximizing the between-class variance of pixel values to separate the data into two

classes (Otsu, 1979). In this use case, we define Otsu thresholds at the slide-level for each of the markers

in the study, where a cell with intensity value greater than the Otsu threshold is deemed marker positive.

We then compare this to a global Otsu threshold, combining all slides, for each marker to calculate a mean
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Figure 2.1: Visual comparison of vimentin marker densities for each transformation method. Density
plots for the median cell intensity of the marker vimentin, where each color represents a different slide in
the dataset. Each row is aligned with the scale transformations present in Table 2.1, where each column also
matches with the normalization algorithms in Table 2.1. The ticks on the x-axis represent the Otsu thresholds
for each slide for that transformed data, where the color again corresponds to the slide (such that the colors
are one-to-one between threshold and density plot). Anderson-Darling test statistics for the marker vimentin
are presented for each method in the top right corner.
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discordance score across all slides for a given marker. For some marker channel c, slide i, and set of marker

intensity values Yic(u), define the indicator function for a given Otsu threshold o as Oic(u,o) = I(Yic(u)> o).

Here, Oic(u,o) indicates which cells are in the expressed category using threshold o. The discordance metric

is then defined as:
1
N

N

∑
i

(
∑y | Oic(u,oic)−Oc(u,oc) |

Uic

)
Where Uic is the number of quantified cells present on a particular slide i for a given channel c, oic is the slide

and channel specific Otsu threshold, and oc is the threshold estimated across all slides for a given channel.

Here we calculate a slide-level discordance score, e.g. the proportion of cells misclassified on each slide,

and take an average of the score across slides for each marker channel. This measures the slide-to-slide

discordance across all markers and transformation methods, to determine how similar Otsu thresholds are

across slides following transformation. In this framework, a lower value of the threshold discordance score

indicates better agreement across slides in the data.

2.3.2.3 Proportions of variance

To further assess the removal of slide related variance following each transformation of the data, we fit a

random effects model using the lme4 R package (Bates et al., 2015) with a random intercept for slide to

assess what proportion of variance is present at the slide-level for each marker. A successful normalization

algorithm will reduce the slide-level variance, ultimately removing technical variability to improve the quality

of the data.

2.3.2.4 UMAP embedding

The Uniform Manifold Approximation and Projection (UMAP) is a technique for dimension reduction (McInnes

et al., 2018) commonly used in the biological sciences to distinguish differences in cell populations between

single-cell data (Becht et al., 2019). Here we reduce the data into two UMAP embeddings for each of the

transformation methods using only four markers in the dataset: vimentin, collagen, pan-cytokeratin, and

Na+/K+-ATPase. These markers were chosen for their ability to easily distinguish epithelial and stromal

cells. We expect the UMAP embeddings to yield clear separation of the data when using the epithelium label

in our dataset (see the Dataset Section). To quantify this separation of groups, we implement a k-means

clustering model on the UMAP embeddings to predict the class label, and use the adjusted Rand index to

measure the similarity with the true labels (Hartigan and Wong, 1979; Hubert and Arabie, 1985). Larger

values of this index indicate better agreement between two sets of labels, adjusted for the chance grouping

of elements. Note that across each slide in the dataset, approximately 10% of the data was used to derive the

UMAP embeddings to reduce computational and visualization time.

11



Method
Mean

AD Test
Statistic

Mean Otsu
Discordance

Score

Adj. Rand
Index

(Slide ID)

Mean
Variance

Proportion
(Slide ID)

None; None 275.019 0.085 0.033 0.138

log10 ; None 225.413 0.134 0.083 0.301

log10 ; ComBat 291.900 0.138 0.089 0.000

log10 ; Registration 217.649 0.110 0.037 0.232

Mean division ; None 138.774 0.041 0.007 0.000

Mean division ; ComBat 247.612 0.109 0.064 0.000

Mean division ; Registration 174.933 0.164 0.120 0.333

Mean division log10 ; None 114.653 0.055 0.010 0.046

Mean division log10 ; ComBat 321.810 0.132 0.071 0.000

Mean division log10 ; Registration 104.330 0.049 0.018 0.081

Table 2.2: Quantitative metrics comparing normalization methods. Results from the k-samples Anderson-
Darling test statistic, the threshold discordance score, and the variance proportion at the slide level from the
random effects modeling, all averaged across marker channels, as well as the adjusted Rand index for the slide
identifiers comparing the raw data to the normalized data. For each of these metrics, small values indicate
better performance for a given method.
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2.3.3 Dataset

The data were collected from human colorectal cancer tissue samples from the Human Tumor Atlas Net-

work (Rozenblatt-Rosen et al., 2020; Chen et al., 2021). The final dataset comprises over 2.2 million cells in

the MxIF modality across over 2400 images on 43 different slides, with single-cell segmentation performed

using an algorithm developed in-house (McKinley et al., 2022). Cell intensities for each marker were quanti-

fied as the median pixel value within the segmented cell, with tissue samples stained for 33 different marker

channels. For the purpose of evaluating the algorithms compared in the chapter, we restricted our attention

to the following markers: beta catenin (BCATENIN), CD3D (CD3), CD8 (CD8), collagen (COLLAGEN),

Na+/K+-ATPase (NAKATPASE), olfactomedin 4 (OLFM4), pan-cytokeratin (PANCK), SRY-Box 9 (SOX9),

vimentin (VIMENTIN). These markers were chosen because of their ability to distinguish between epithelial

and stromal cells, PANCK, COLLAGEN, NAKATPASE, VIMENTIN (Blom et al., 2017; Ijsselsteijn et al.,

2019); as immune markers, CD3, CD8 (Galon et al., 2006); as stem cell markers, OLFM4, SOX9 (Van der

Flier et al., 2009; Scott et al., 2010); and as implicated in colon cancer, BCATENIN, (Shang et al., 2017).

We used epithelial and stromal cell labels and manually labeled marker positive cells as biological vari-

ables in order to quantify loss or improvement of biological signal due to each normalization method. The

epithelial labels were created for each slide at the image level using a random forest trained on all of the

markers included in the dataset. A cell was labeled as being in a particular cell class if that was the most

likely class probability within the segmented cell area. We defined marker positive cells by first manually

thresholding the immune marker images to create marker positive image masks. Then, for each segmented

cell, the cell was defined as marker positive if more that 30% of its area contained marker-positive pixels. We

refer to these as manual labels for CD3 and CD8. We also used a tumor image mask to denote whether a cell

is in a tumor-containing region.

2.4 Results

2.4.1 Removal of slide-to-slide variation

2.4.1.1 Alignment of marker densities

Density curves of the marker vimentin for each transformation algorithm and corresponding slide-level Otsu

thresholds, along with test statistics from the k-sample Anderson-Darling test were compared to determine

alignment of curves across slides after transformation (Figure 2.1, Table 2.2). Beginning with the unnormal-

ized transformed values, the log10 transformation produces density curves that are somewhat well-aligned

(AD Test: 130.08), while the mean division and mean division log10 methods both compress the scale of

the data and align well across slides (AD Test: 125.45, 89.90). Furthermore, each ComBat method performs
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poorly at aligning and reducing noise in the data, yielding the largest statistics from the Anderson-Darling test

and visually noisy density curves. This is likely due to the Gaussian assumptions of the ComBat model that

are not met in either the bi-modal (log10, mean division log10) or right-skewed (mean division) methods. The

functional data registration aligns the log10 and mean division log10 well, and the algorithm yields marginal

improvements for some of these transformations.

The best performing methods for this metric are the mean division, mean division log10, and mean divi-

sion log10 combined with the functional data registration algorithm: the data is well-aligned across slides and

when averaging Anderson-Darling statistics across all marker channels (Table 2.2), we see these methods

yield the lowest values presenting stronger evidence these values are derived from the same parent distribu-

tion.

2.4.1.2 Threshold discordance score

In order to quantify how the normalization methods impact cell classification, we compared Otsu thresholding

estimated at the slide level and across slides for each method to generate a discordance score and compare

this to raw data (Figure 2.2A). Compared to the epithelium/stromal markers in the dataset, less identifiable

markers like CD3 and CD8 yield the worst performance across nearly all methods, with large increases in the

discordance score. Most methods increase the mean discordance score relative to the unadjusted data, with

the exception of the mean division, mean division log10, and the mean division log10 with functional data

registration. This evaluation again aligns with earlier assessments and suggests that these methods present

improvements in the slide-to-slide agreement across all markers compared to the unadjusted data. We also

observe that when comparing threshold discordance scores across all markers, these three methods yield the

lowest values, and are the only methods to reduce this rate relative to the raw data (Table 2.2).

2.4.1.3 Proportions of variance

To understand how well each method removes slide-related variability, we fit a random effects model on the

median cell intensities after applying each combination of transformation and normalization. The ComBat

algorithm, by design, removed all of the variability related to slide across all methods (Figure 2.3, Table

2.2). The only other method that entirely removes all slide-to-slide variance across all marker channels

is the mean division method – for the mean division log10 and mean division log10 with functional data

registration methods, we also observe reduction in variance (though not completely removed) relative to the

unnormalized data. And while ComBat reduces slide variability, it completely removes slide effects that may

include biological differences. In short, the results of this metric suggest the utility of the mean division
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Figure 2.2: Threshold discordance & accuracy. (A) Otsu thresholds were calculated at the slide-level for
each marker and compared to a global Otsu threshold for each marker to calculate a discordance score to
compare transformation methods. The mean difference of the slide-level Otsu thresholds and the global Otsu
threshold is then calculated for each marker, and presented as a point for each of the 9 markers, with the
white diamond representing the mean discordance score across all markers for a given method. Given that
this is a discordance score, lower values indicate better agreement across slides. (B) Otsu thresholds
were calculated across slides for each marker to determine marker positive cells, which were then compared
to the manual labels for the markers CD3 and CD8 to determine the accuracy of defining a cell as marker
positive. This is presented as the accuracy rate of recapitulating the ground truth labels - given that this is
a measurement of accuracy, higher values indicate better agreement between the normalized data and
labels. Note also that for each of these plots, the top row indicates the results from the raw, unadjusted data.
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Figure 2.3: Proportion of variance present at slide-level in random effects model. Scatter plots that denote
the proportion of variance at the slide-level for each normalization method for each of the marker channels in
this dataset. Variance proportions were calculated using a random effects model with a random intercept for
slide – methods that perform well should reduce the slide level variance. Note also that the top row indicates
the results from the raw, unadjusted data.

methods in removing slide-level variance across marker channels.

2.4.2 Preservation of existing biological signal

2.4.2.1 Marker-positive accuracy using Otsu thresholds

We further utilized Otsu thresholding to identify marker positive cells and compared these to the manual

labels for CD3 and CD8 to determine which normalization methods most accurately recapitulate the raw data

(Figure 2.2B). Results suggest that the scale of the data is pivotal in whether a method maintains marker-

positive accuracy, with each of the methods on the log10 scale demonstrating dramatic reductions in marker-

positive accuracy compared to the raw data, while the mean division method performs the best across all

methods. The methods that have performed well in the aforementioned evaluation metrics perform well

here, namely the mean division method and the mean division log10 with functional data registration. This

continues to suggest these methods reduce the slide-to-slide variation present in the data while accurately

capturing marker-positive cells after transformation.

2.4.2.2 UMAP embedding

We compared UMAP embeddings of four related markers across normalization methods to compare the sep-

aration of epithelium and stromal tissue labels. In the raw data, the embeddings separate well (Adj. Rand

Index: 0.82), however the data includes the presence of outliers that suggest mixing of the tissue classes in

the UMAP embedding space (Figure 2.4A). Nearly all methods implemented improve upon the separation
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of groups based on the adjusted Rand index, yet many of these methods present co-localization that does

not clearly depict separation as desired. We do observe distinct separation of the aforementioned methods of

interest: mean division (Adj. Rand Index: 0.94), mean division log10 (Adj. Rand Index: 0.95), and the mean

division log10 with functional data registration (Adj. Rand Index: 0.97) - each of these UMAP embeddings

presents distinct groups that suggests these methods are improving the separation of these two tissue classes.

We also compared the distribution of the unique slide identifiers in the UMAP embeddings of these four

markers, which in the raw data (Adj. Rand Index: 0.033) points to specific slide co-localization in the data

(Figure 2.4B, Table 2.2). In this case, we desire low values of the adjusted Rand index, which suggest poor

prediction of slide labels and indicate the removal of slide-level variance. Many of the methods, particularly

those implementing the ComBat algorithm, worsen the distribution of these slide identifiers and increase the

adjusted Rand index, suggesting additional slide-to-slide noise added to the data. This suggests that ComBat

removes both biological signal and slide-to-slide effects that are exaggerated in the UMAP embedding space.

In contrast, there is reduced slide-to-slide clustering in the UMAP embeddings for each of the following

methods: mean division (Adj. Rand Index: 0.01), mean division log10 (Adj. Rand Index: 0.01), and mean

division log10 with functional data registration (Adj. Rand Index: 0.02). These methods appear to both re-

duce the observed slide-to-slide variation noted here and in the aforementioned results, while maintaining the

necessary biological signal of interest.

2.5 Discussion

In this chapter, we derived the ComBat algorithm for a new modality and employed a novel use of functional

data registration to align histograms of multiplexed imaging data. In the absence of a gold standard for com-

parison in multiplexed imaging data, validating any normalization procedure is challenging. The suggested

evaluation framework introduced here can be used to assess the presence and reduction of slide effects in

multiplexed imaging data, which we implemented to evaluate 9 combinations of transformations and nor-

malization methods. Further, our framework can be applied in the absence of a ground truth by quantifying

the amount of slide related variability and comparing to manually labeled biological features, providing a

foundation for further development of evaluation criteria in the multiplexed domain. Also note that since the

proposed methods are applied within a given marker channel, this work can be extended into other imaging

domains like IHC that do not involve multiplexing.

Similarly, the use of Otsu thresholding in this chapter is the standard procedure for imaging domains like

IHC (Tsujikawa et al., 2019; Trinh et al., 2017). However, markers like the phosphorylated epidermal growth
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Figure 2.4: UMAP embedding of data for each transformation method. UMAP embedding of the trans-
formed data with points colored by slide identifier (A) and tissue type (B). The rectangle in (B) denotes the
mixing of tissue classes present in the raw, unadjusted data UMAP embedding. Adjusted Rand index values
for each embedding are presented in the top right corner.

factor receptor (p-EGFR) are typically categorized into multiple groups based on staining intensity (Hashmi

et al., 2018; Shan et al., 2017). While the Otsu threshold may not capture this categorization, it remains a rea-

sonable proxy for these quantitative markers in the absence of a pathologist, and other metrics implemented

here like the Anderson-Darling statistic may be more appropriate. Furthermore, future methods development

could focus on implementing multi-Otsu thresholding methods into the threshold discordance score, or adapt

marker-specific thresholding methods that better capture variability in the quantitative markers. Notably, the

correspondence between a marker positive cell defined by an Otsu threshold and biological signal is not nec-

essarily one-to-one. For example, the log10 transformation non-linearly compresses the domain, such that

a larger proportion of the x-axis is allotted to cells that are marker negative (background and unexpressed

cells), which may have led to greater variability in the Otsu thresholds.

We find that the raw data scale has clear slide-to-slide variation present, and that normalization methods

can reduce slide level variation while preserving and improving biological signal relative to the raw, unad-

justed data. These findings suggest that the mean division transformation method reduces slide variability

and improves the biological signal. In addition, the mean division log10 scale (unnormalized) performs well
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across all evaluation metrics, with the noted exclusion of results for the marker CD8. This discrepancy is

remedied with the functional data registration, which is a limitation of the mean division log10 transformation

but points to the robustness of the registration algorithm to maintain and improve the quality of the data.

However, note that the registration algorithm does not perform well with skewed data, suggesting that im-

provements we see in data that appears bi-modal (e.g., better suited to the non-parametric assumption of

functional data) is not necessarily transferable to right-skewed data that violates assumptions of smoothness

in the B-spline basis – future work could explore this result. The ComBat method performs adequately, but

appears to over normalize the data and relies heavily on a Gaussian assumption that is violated in this skewed-

right dataset. The clear limitation of this normalization method and others is that when applied to whole tissue

slides, any between slide variability is confounded with biological variability. Recent adaptations of ComBat

like ComBat-seq for RNA-seq data may provide a better framework to implement in the multiplexed imaging

space (Zhang et al., 2020), including future work that could address how the algorithm handles zeroes. Note

also that recent advances applying deep learning in fluorescence microscopy analysis combine information

across heterogeneous combinations of markers to ameliorate similar problems that we address in this chapter,

namely technical variation and comparing disparate data sources (Gomariz et al., 2021) – this could be a

valuable avenue for future normalization approaches.

In practice, the mean division method is “good enough” – it is simple, computationally efficient, and ap-

pears the least likely to introduce error while still reducing slide-to-slide variation and maintaining biological

signal. The mean division log10 method may be necessary in the case of statistical modeling, since skewed

distributions are not suitable for many statistical models, but may not be the best way to represent cell inten-

sities as a predictor variable (as appears the case for the mean division method). We see that in the case of

mean division log10 data, it may be necessary to use the registration algorithm to remedy discrepancies like

those visible for the marker CD8.
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CHAPTER 3

mxnorm: An R package to normalize multiplexed imaging data

3.1 Summary

As multiplexed imaging research develops at a rapid pace, there is a growing necessity for computational

implementations of cutting-edge methods in the multiplexed imaging pipeline. Here we extend our previous

work applying normalization methods in this data type and introduce the mxnorm R package, which provides

two key services: (1) a collection of normalization methods and analysis metrics to implement and compare

normalization in multiplexed imaging data, and (2) a foundation for storing multiplexed imaging data in R

using S3. We adapt both previously introduced normalization algorithms and analysis methods like the Otsu

discordance metric, and further introduce options for users to provide user-defined normalization algorithms.

This allows users the ability to leverage our robust evaluation framework of normalization efficacy and de-

velop optimal normalization frameworks (and analysis pipelines) in multiplexed imaging data, ultimately

setting a foundation for evaluating these normalization methods in the field.

3.2 Package Overview

3.2.1 Background

Multiplexed imaging is an emerging single-cell assay that can be used to understand and analyze complex pro-

cesses in tissue-based cancers, autoimmune disorders, and more. These imaging technologies, which include

co-detection by indexing (CODEX), multiplexed ion beam imaging (MIBI), and multiplexed immunoflu-

orescence imaging (MxIF), provide detailed information about spatial interactions between cells (Goltsev

et al., 2018; Angelo et al., 2014; Gerdes et al., 2013). Multiplexed imaging experiments generate data across

hundreds of slides and images, often resulting in terabytes of complex data to analyze through imaging anal-

ysis pipelines. Methods are rapidly developing to improve particular parts of the pipeline, including software

packages in R and Python like spatialTime, imcRtools, MCMICRO, and Squidpy (Creed et al., 2021;

Windhager et al., 2021; Schapiro et al., 2022; Palla et al., 2022). An important, but understudied component

of this pipeline is the analysis of technical variation within this complex data source – intensity normalization

is one way to remove this technical variability. The combination of disparate pre-processing pipelines, imag-

ing variables, optical effects, and within-slide dependencies create batch and slide effects that can be reduced

via normalization methods. Current state-of-the-art methods vary heavily across research labs and image ac-

quisition platforms, without one singular method that is uniformly robust – optimal statistical methods seek

to improve similarity across images and slides by removing this technical variability while maintaining the
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underlying biological signal in the data.

mxnorm is open-source software built with R and S3 methods that implements, evaluates, and visualizes

normalization techniques for multiplexed imaging data. Extending methodology described in and Chapter 2

and Harris et al. (2022b), we intend to set a foundation for the evaluation of multiplexed imaging normaliza-

tion methods in R. This easily allows users to extend normalization methods into the field, and provides a

robust evaluation framework to measure both technical variability and the efficacy of various normalization

methods. One key component of the R package is the ability to supply user-defined normalization meth-

ods and thresholding algorithms to assess normalization in multiplexed imaging data. This chapter builds

upon previously published core features, usage details, and extensive tutorials from Harris et al. (2022a), the

package documentation and vignette in the software repository and on CRAN (Harris, 2022).

3.2.2 Motivation

Multiplexed imaging measures intensities of dozens of antibody and protein markers at the single-cell level

while preserving cell spatial coordinates. This allows single-cell analyses to be performed on biological

samples like tissues and tumors, much like single-cell RNA sequencing, with the added benefit of in situ

coordinates to better capture spatial interactions between individual cells (McKinley et al., 2022; Chen et al.,

2021). Current research using platforms like MxIF and MIBI demonstrate this growing field that seeks to

better understand cell-cell populations in cancer, pre-cancer, and various biological research contexts (Ptacek

et al., 2020; Gerdes et al., 2013).

In contrast to the field of sequencing & micro-array data and the established software, analysis, and methods

therein, multiplexed imaging lacks established analysis standards, pipelines, and methods. Recent develop-

ments in multiplexed imaging seek to address the broad lack of standardized tools – the MCMICRO pipeline

seeks to provide a set of open-source, reproducible analyses to transform whole-slide images into single-cell

data (Schapiro et al., 2022). Researchers in the field have also developed a ground truth dataset to evalu-

ate differences in batch effects and normalization methods (Graf et al., 2022), while other open issues in

the field that may produce open-source solutions include tissue segmentation, end-to-end image processing,

and removal of image artifacts. With this diversity of open issues in multiplexed imaging, our work focuses

specifically on normalization methods and evaluating these results in multiplexed imaging data. Namely,

standard normalization software in the sequencing field includes open-source packages in R and Python like

sva, limma, and Scanorama (Leek et al., 2012; Smyth, 2005; Hie et al., 2019), but an analogue for eval-

uating and developing normalization methods does not exist for multiplexed imaging data.
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Figure 3.1: mxnorm Package Structure: Diagram demonstrating the basic structure of the mxnorm package
and associated functions included in the software.

We recently proposed and evaluated several normalization methods for multiplexed imaging data, which

along with other recent work shows that normalization methods are important in reducing slide-to-slide vari-

ation (Chang et al., 2020; Burlingame et al., 2021; Harris et al., 2022b). These recently developed algorithms

are the beginning of contributions to normalization literature, but lack a simple, user-friendly implementa-

tion. Further, there is no software researchers can use to develop and evaluate normalization methods in their

own multiplexed imaging data; multiplexed imaging software is limited mostly to Matlab, Python, and only a

scattered few R packages exist. Two prominent packages, cytomapper and giotto, contain open-source

implementations for analysis and visualization of highly multiplexed images (Eling et al., 2020; Dries et al.,

2021b), but do not explicitly address normalization of the single-cell intensity data. Hence, there is a major

lack of available tools for researchers to explore, evaluate, and analyze normalization methods in multiplexed

imaging data. The mxnorm package provides this framework, with easy-to-implement and customizable

normalization methods along with a foundation for evaluating their utility in the multiplexed imaging field.

3.2.3 Functionality

As shown in Figure 3.1, there are three main types of functions implemented in the mxnorm package –

infrastructure, analysis, and visualization. The first infrastructure function, mx dataset(), specifies and

creates the S3 object used throughout the analysis, while the mx normalize() function provides a routine

to normalize the multiplexed imaging data, which specifically allows for normalization algorithms defined by

the user. Each of the three analysis functions provides methods to run specific analyses that test for slide-to-

slide variation and preservation of biological signal for the normalized and unnormalized data, while the four
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visualization functions provide methods to generate ggplot2 plots to assess the results. We also extend the

summary() generic function to the mx dataset S3 object to provide further statistics and summaries.

The statistical methodology underlying the methods we implemented in mxnorm builds upon existing work

in both R and Python. Normalization algorithms available in mx normalize() leverage methodology de-

rived in the ComBat paper, the fda package, and the tidyverse framework (Johnson et al., 2007; Ramsay

et al., 2020; Wickham et al., 2019). The threshold discordance methods available in

run otsu discordance() leverage methodology from Otsu’s original paper and the scikit-image

implementation of Otsu thresholding in Python (Otsu, 1979; van der Walt et al., 2014). Our implementation

of the UMAP algorithm in run reduce umap() leverages both the UMAP paper and the uwot imple-

mentation of the UMAP algorithm in R (McInnes et al., 2018; Melville, 2021). The random effects modeling

options available in run var proportions() leverage the lme4 R package (Bates et al., 2015).

3.3 Basic Example

In general, we expect multiplexed imaging data in a data.frame format that includes columns for slide &

image identifiers, separate columns for marker intensity values, and some set of metadata columns like tissue

identifiers, phenotypic traits, medical conditions, etc. Alongside the mxnorm package itself, we introduce

the mx sample dataset that demonstrates the expected structure of multiplexed imaging data, and provides

simulated marker intensity values that demonstrate strong slide effects. The first 3 rows of this dataset appear

as follows:

#> slide_id image_id marker1_vals marker2_vals marker3_vals metadata1_vals

#> 1 slide1 image1 15 17 28 yes

#> 2 slide1 image1 11 22 31 no

#> 3 slide1 image1 12 16 22 yes

This dataset consists of 3 markers across 4 slides (with 750 ”cells” on each slide) and 1 metadata column,

and was specifically created to demonstrate the effect of normalization methods in multiplexed imaging

data. To ensure a streamlined framework for the analysis of this type of data, we have created an S3 ob-

ject mx dataset to store the data and continue building upon as we normalize the data and analyze our

results.
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3.3.1 Creating the S3 object

3.3.1.1 Using mxnorm::mx dataset()

Let’s load the mx sample dataset into the S3 object we’ll use for our analyses, the mx dataset object.

Here we specify the following parameters,

• data: the input dataset in a data.frame format

• slide id and image id: the identifiers of interest in our dataset

• marker cols: the set of marker columns in our input data that we want to include

• metadata cols: metadata columns in our input data that we want to include

Now we make the following call:

mx_data = mx_dataset(data=mx_sample,

slide_id="slide_id",

image_id="image_id",

marker_cols=c("marker1_vals",

"marker2_vals",

"marker3_vals"),

metadata_cols=c("metadata1_vals"))

And now the mx dataset S3 object becomes the foundation for each of the methods and analyses we have

implemented in mxnorm. After we create this S3 object, we can then run the normalization, analysis, and

visualize our results using the other exposed functions in mxnorm. First, we must run the normalization of

the data itself via the mx normalize() method. Here, we leverage the S3 structure of the mx dataset

object to build upon and add attributes to keep our analysis in one consistent object.

3.3.2 Normalization of multiplexed imaging data

3.3.2.1 Using mxnorm::mx normalize()

Now that we’ve created the object, we can use the mx normalize() function to normalize the imaging

data. Here we specify:

• mx data: the mx dataset object with the data we want to normalize

• transform: the transformation method we want to perform, which in this case is mean divide.

• method: the normalization method we want to implement, which in this case is None.
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• method override: an optional parameter to provide a user-defined normalization method (see the

details below for an example)

• method override name: an optional parameter to re-name the method attribute when specifying

user-defined normalization

Now we make the following call:

mx_data = mx_normalize(mx_data = mx_data,

transform = "mean_divide",

method="None",

method_override=NULL,

method_override_name=NULL)

The mx dataset object now has normalized data in the following form in the norm data attribute, with

additional transform and method attributes added to the mx dataset object as well:

#> slide_id image_id marker1_vals marker2_vals marker3_vals metadata1_vals

#> 1 slide1 image1 0.6293173 0.4091531 0.5264357 yes

#> 2 slide1 image1 0.3063198 0.6621725 0.6367893 no

#> 3 slide1 image1 0.3870692 0.3585492 0.3057285 yes

Note that there are multiple normalization approaches implemented into the mxnorm package (including

user-defined normalization) – namely, the ComBat algorithm and an adaptation of functional data analysis

using the fda package.

3.3.2.2 Implementation of ComBat

The original ComBat algorithm is implemented in the Surrogate Variable Analysis (sva) Bioconductor

package, which is a popular and well-maintained package “for removing batch effects and other unwanted

variation in high-throughput experiment” (Leek et al., 2012). The ComBat function is well-documented

and versatile for correcting batch effects using the method introduced originally in microarray data via

sva::ComBat(), however, the assumptions made for this function are based largely on the expression

matrices produced in microarray studies, not those typical to imaging or multiplexed studies.

Efforts to extend into the neouroimaging space provide a good foundation for adapting the ComBat algo-

rithm to alternate modalities (Fortin et al., 2017), which inspired our extension into the multiplexed domain.

Our implementation here is similar to that adapted by Fortin et al in the neuroCombat package, but is
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focused largely on datasets typical in the multiplexed imaging field.

There are a handful of distinctions to discuss regarding the ComBat implementation in mxnorm. As noted

previously, we expect multiplexed imaging data to be marker-dependent and in the “long” format. This means

that for some set of multiplexed n slides and m images, we don’t expect a perfect n×m expression matrix for

a given marker channel. We can also take advantage of working with “long” data to leverage tidyverse

packages & functions like dplyr for easier/faster calculation of batch effects – this algorithm is detailed in

the /R/combat helpers.R file in the software repository. Ultimately, we then take the same approach

with running the ComBat algorithm – initialize values of our parameters of interest, run the algorithm to cal-

culate batch effects using empirical Bayes, and then standardize the data to correct for slide-to-slide variation.

3.3.2.3 Implementation of functional data registration

While the fda package is the basis of much functional data analysis in R (and the basis of the analyses per-

formed in mxnorm), there are a handful of other implementations/extensions of this field that are relevant to

the mxnorm package both for underlying methods and better understanding of functional data. Extensions of

the FDA paradigm in R include the refund package (Goldsmith et al., 2021), which includes methods for

regression of functional data and similar applications to imaging data, and the registr package (Wrobel

et al., 2021) that focuses on the registration of functional data generated from exponential families. There

are also similar extensions of registration algorithms like the mica package (Wrobel, 2021), which seeks to

apply FDA registration algorithms to the harmonization of multi-site neuroimaging data.

Again as noted previously, we expect multiplexed imaging data to be marker-dependent and in the “long”

format – hence we run the registration algorithm across slides for a given marker. Here we are using the fda

package to setup the basis functions, run initial registration, generate the inverse warping functions, and then

register the raw data to the mean registered curve to create a normalized intensity value. This process and

the extensive hyper-parameters available are detailed in the /R/registration helpers.R file in the

software repository.

3.3.3 Otsu discordance scores

3.3.3.1 Using mxnorm::run otsu discordance()

Now that we’ve normalized the multiplexed imaging data, we can start to analyze the results and understand

the performance of our normalization. Using the above normalized data, we can run an Otsu discordance

score analysis to determine how well our normalization method performs. Broadly, this method calculates
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the distance of slide-level Otsu thresholds from the ”global” Otsu threshold for a given marker channel to

quantify the slide-to-slide alignment of values via a summary metric (this is discussed in depth in Chapter 2).

In this analysis, we look for lower discordance scores to distinguish better performing normalization methods,

which indicates better agreement between slides for a given marker. To run this analysis we specify:

• mx data: the mx dataset object with the data we want to analyze

• table: the set of data we want to analyze using Otsu discordance, either raw, normalized, or

both

• threshold override: an optional parameter to provide a user-defined thresholding method (see

the details below for example)

• plot out: an optional parameter to output plots when running Otsu discordance

And to run this method we use:

mx_data = run_otsu_discordance(mx_data,

table="both",

threshold_override = thold_override,

plot_out = FALSE)

This method adds an otsu data table to the mx dataset object that contains the results of the discor-

dance analysis, with an additional attribute threshold to denote the type of thresholding algorithm used

and the otsu table to denote which tables in our object we ran the analysis on:

#> slide_id marker table slide_threshold marker_threshold

#> 1 slide1 marker1_vals raw 12.01758 54.89844

#> 2 slide2 marker1_vals raw 20.01367 54.89844

#> 3 slide3 marker1_vals raw 87.05664 54.89844

#> discordance_score

#> 1 0.4506667

#> 2 0.4306667

#> 3 0.2573333

We see in the above table that for each slide and marker pair, we generate a discordance score that

summarizes the distance between the slide threshold and marker threshold. Since we have com-

pleted this analysis, we can also begin to visualize some of the results. First, we plot the densities of each

marker before and after normalization, along with the associated Otsu thresholds visible as a ticks in the rug

plot for each density curve in Figure 3.2.
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Figure 3.2: Marker density alignment of the mx sample dataset. Demonstrates the alignment of marker
values across simulated slides in the mx sample dataset for both the raw and normalized datasets.

In Figure 3.2 we observe that not only are the density curves for each marker in the analysis far better aligned

after normalization, we also see that the Otsu thresholds (ticks on the x-axis) have moved far closer than

in the raw data. In general, also note that all plots generated using mxnorm are ggplot2 plots and can

be adjusted and adapted as needed given the ggplot2 framework. We can also visualize the results of

the threshold discordance analysis stratified by slide and marker, with slide means indicated by the white

diamonds, as demonstrated in Figure 3.3 below.

Figure 3.3: Average Otsu discordance scores in the mx sample dataset. Demonstrates the Otsu discor-
dance scores across all simulated marker and slide combinations in the mx sample dataset, with slide-level
averages depicted as white diamonds.

Note that for each slide and marker pair in the dataset (denoted as colored points in the above plot), we

see a reduction in threshold discordance in the normalized data compared to the raw data. Further, we

also see dramatic improvements in the mean threshold discordance denoted by the white diamonds for the
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normalized data.

3.3.3.2 Implementation of Otsu discordance scores

We implement this metric as defined in the Harris et al. (2022b) in the mxnorm package as an analysis

method, e.g. run otsu discordance(), which takes in the mx dataset object and produces an out-

put table in the mx dataset object called otsu data which is shown above. The mean and SD of the

discordance is also produced when summarizing the object using summary.mx dataset() for a given

mx dataset object if the Otsu discordance analysis has already been run.

To calculate Otsu thresholds in our package, we use the thresholding options from the scikit-image.filters

Python module which provide a notable speed increase on Otsu thresholding methods available in R (van der

Walt et al., 2014). Note that thresholding options extend beyond just the Otsu threshold – the discordance

score can be overridden to either accept an user-defined thresholding method or one of the univariate thresh-

olds from scikit-image.filters.

3.3.4 UMAP dimension reduction

3.3.4.1 Using mxnorm::run reduce umap()

We can also use the UMAP algorithm to reduce the dimensions of our markers in the dataset as follows,

using the metadata col parameter for later (e.g., this metadata is similar to tissue type, medical condition,

subject group, etc. in practice). The UMAP algorithm is stochastic, so we use set.seed() below to ensure

results are reproducible. Here we specify:

• mx data: the mx dataset object with the data we want to analyze

• table: the set of data we want to analyze using UMAP dimension reduction, either raw, normalized,

or both

• marker list: the markers in the mx dataset object we want to use for dimension reduction

• downsample pct: UMAP embedding can be computationally expensive for big datasets, so we

present a downsample percentage to reduce the input data size

• metadata col: any metadata in mx dataset to store for plotting later (see below for plotting

using metadata1 vals)

And now run the following command:
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set.seed(1234)

mx_data = run_reduce_umap(mx_data,

table="both",

marker_list = c("marker1_vals",

"marker2_vals",

"marker3_vals"),

downsample_pct = 0.5,

metadata_cols = c("metadata1_vals"))

This adds UMAP dimensions to our mx dataset object in the following form (note the inclusion of

slide id as an identifier, which we’ll use later) and the umap table attribute to denote which tables

in our object we ran the analysis on. We can observe this data, and note the inclusion of UMAP coordinates:

#> marker1_vals marker2_vals marker3_vals metadata1_vals slide_id table

#> 1004 22 22 30 no slide2 raw

#> 623 12 19 28 yes slide1 raw

#> 2953 60 89 91 yes slide4 raw

#> U1 U2

#> 1004 -3.63464 -0.9834719

#> 623 -10.35462 -2.0627188

#> 2953 10.10994 -4.7028897

We can further visualize the results of the UMAP dimension reduction as follows using the metadata column

we specified above in Figure 3.4.
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Figure 3.4: UMAP embedding of mx sample dataset for simulated metadata. Demonstrates theo-
retical separation of groups in the raw and normalized datasets for UMAP embedding coordinates in the
mx sample.

Note that since the sample data is simulated, we don’t see separation of the groups like we would expect

with biological samples that have some underlying correlation. What we can observe, however, is the clear

separation of slides in the raw data and subsequent mixing of these slides in the normalized data in Figure

3.5. This points to a removal of slide effects in the raw data when normalizing this dataset using the mean

division method, as defined previously in Chapter 2.

Figure 3.5: UMAP embedding of mx sample dataset for simulated slide identifiers. Demonstrates sep-
aration of slides in the raw and normalized datasets for UMAP embedding coordinates in the mx sample.

3.3.4.2 Implementation of UMAP embedding

The UMAP embedding algorithm McInnes et al. (2018), a dimension reduction commonly used in the bi-

ological sciences, is implemented here using the uwot R package (Melville, 2021). The method is often
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used to distinguish differences between groups and here can be used to highlight slide effects (clustering of

slides) or determine biological separation of groups as shown in Figures 3.4 and 3.5. These options must be

included in the run reduce umap() call using the metadata cols parameter, and then can be visually

inspected using the plot mx umap() method. Also note that the UMAP algorithm may take up signif-

icant computational time for large datasets – we’ve allowed for random downsampling of the data via the

downsample pct parameter to alleviate these concerns.

To further quantify the separation of groups for some given metadata, we implement the Cohen’s kappa met-

ric from the psych package and adjusted Rand index from the fossil package (Revelle, 2021; Vavrek,

2011). Each of these are executed using summary.mx dataset() on an mx dataset object that has

already run a UMAP embedding analysis.

3.3.5 Variance components analysis

3.3.5.1 Using mxnorm::run var proportions()

We can also leverage lmer() from the lme4 package to perform random effects modeling on the data to

determine how much variance is present at the slide level. The default model specified is as follows for each

marker in the mx dataset object (e.g. a random intercept model where the intercept is slide id for each

marker), with any specifications of metadata cols in the run var proportions() call adding fixed

effects into the model below:

marker ∼ metadata cols+(1|slide id)

Note that the model we fit below sets the metadata cols to NULL, implying the following basic random

intercepts model:

marker ∼ (1|slide id)

In general, for an effective normalization algorithm we seek a method that reduces the proportion of variance

at the slide level after normalization. Here we specify the following to run this analysis:

• mx data: the mx dataset object with the data we want to analyze

• table: the set of data we want to analyze using random effects, either raw, normalized, or both

• metadata cols: any metadata in mx dataset to add as fixed effects covariates,
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• formula override: an optional parameter to provide a user-defined random effects formula (see

the details below for example)

• save models: an optional parameter to save the lme4 models in the mx dataset object

And now we run the following command:

mx_data = run_var_proportions(mx_data,

table="both",

metadata_cols = NULL,

formula_override = NULL,

save_models = FALSE)

After running the analysis, we see the addition of variance proportions to our mx dataset object in the

following form:

#> proportions level marker table

#> 1: 0.97044933 slide marker1_vals raw

#> 2: 0.02955067 residual marker1_vals raw

#> 3: 0.97345576 slide marker2_vals raw

#> 4: 0.02654424 residual marker2_vals raw

These values summarize the proportion of variance explained by the random effect for slide, and any

residual variance in the model. To understand how normalization impacts these values, we can further

visualize these proportions in Figure 3.6.

Figure 3.6: Variance proportions for mx sample dataset. Demonstrates reduction in slide-to-slide vari-
ance proportions in the normalized data compared to raw mx sample values.
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In Figure 3.6 see that most of the variance in these models is due to slide-level effects in the raw data,

but after normalization, nearly all of the variance in these random effects models due to slide-level effects

is removed. This points to a normalization method that is performing well and removing the slide-to-slide

variation in this type of data.

3.3.5.2 Implementation of variance components

Here we utilize random effects modeling in the lme4 package (Bates et al., 2015). The default analysis

fits a model for each marker in the dataset using only a slide-level intercept – this model can include ad-

ditional covariates when using the metadata cols parameter or re-define the modeling formula using

formula override.

3.4 User-defined normalization

As discussed in this chapter, one of the most important contributions of the mxnorm R package is the ability

for users to define their own normalization methods. The goal of this functionality is to rapidly accelerate the

development and evaluation of normalization methods in multiplexed imaging data, and ultimately add a vital

tool to the multiplexed imaging pipeline. Here, we demonstrate a brief example of user-defined normalization

– of less relevance to this thesis is the ability for users to define custom thresholding algorithms and random

effects modeling using mxnorm. These are explored further in the package vignette.

As discussed in both Harris et al. (2022b) and Harris et al. (2022a), we find that the mean division nor-

malization method performs the best across all evaluation metrics. However, let us consider a user-defined

normalization method that instead of dividing the marker values by the slide mean, we divide by the median

value. First, let us define this normalization function as follows:

quantile_divide <- function(mx_data, ptile=0.5){

## data to normalize

ndat = mx_data$data

## marker columns

cols = mx_data$marker_cols

## slide id

slide = mx_data$slide_id

## get column length slide medians
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y = ndat %>%

dplyr::group_by(.data[[slide]]) %>%

dplyr::mutate(dplyr::across(all_of(cols),quantile,ptile))

## divide to normalize

ndat[,cols] = ndat[,cols]/y[,cols]

## rescale

ndat = ndat %>%

dplyr::mutate(dplyr::across(all_of(cols),function(a){a + -min(a)}))

## set normalized data

mx_data$norm_data = ndat

## return object

mx_data

}

We first note a handful of important aspects of the quantile divide function. First, we take in the

mx data object and some quantile that we wish to divide by (in this case, 0.5 since we are considering

the median). We then use tidyverse methods to calculate a slide-level median, normalize all values, and

re-scale. The mx data object is then returned, with the added normalized data as an attribute. In general,

applying user-defined normalization is as simple as this – any method and/or computation can be performed

on the data, as long as the function takes in the mx dataset object as input, and returns the same object

with newly-normalized data. This is then passed to the mx normalize() function, which would look

something like the following:

## setup object

mx_user = mx_dataset(data=mx_sample,

slide_id="slide_id",

image_id="image_id",

marker_cols=c("marker1_vals","marker2_vals","marker3_vals"),

metadata_cols=c("metadata1_vals"))

## normalize with user-defined function

mx_user = mx_normalize(mx_user,

method_override = quantile_divide,
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method_override_name = "median_divide")

Hence, we have now normalized the multiplexed imaging data using our own normalization technique. As

noted above, analogous approaches exist to define threshold override and formula override for

the Otsu discordance scores and variance components analysis respectively. In short, this added flexibility

provides additional control to users of mxnorm to best handle the normalization of multiplexed imaging data

within their respective processing pipelines.
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CHAPTER 4

Applying spatial statistics methods to multiplexed imaging data

4.1 Summary

While multiplexed imaging methods are relatively new, cutting-edge research contributions in this field in-

troduce a handful of the spatial analysis methods one might utilize when analyzing spatial relationships in

multiplexed imaging data. These include visualization and exploration tools, spatial modeling approaches

similar to differential expression testing in sequencing data analysis, and statistical learning models. Here we

provide a brief survey of these spatial analysis methods, with a particular focus on three methods that leverage

the statistical framework of point process theory. We then adapt each of these methods to compare statistical

measures of spatial co-expression in multiplexed imaging data, including a new statistic that we define as the

cumulative mark cross-correlation (CMCC). Finally, we develop a novel evaluation criteria using correlation

analysis and predictive modeling in a non-small cell lung cancer (NSCLC) dataset to compare spatial analysis

methods and determine which spatial index is best suited for multiplexed imaging data.

4.2 Introduction

Multiplexed imaging is a rapidly growing field of research that combines single-cell information with spatial

coordinates to better understand complex biological processes like cancer development and tumor growth.

Multiplexed imaging experiments generate data across hundreds of slides and images, creating terabytes of

complex, spatial data via imaging analysis pipelines. One major development in this field is the application

of spatial data analysis methods to visualize, explore, and analyze relationships between markers and tissue

classes in this complex data source (Dries et al., 2021a; Wilson et al., 2021).

The first class of spatial methods introduced in the multiplexed imaging field is high-level visualization and

exploration tools. These include packages like Seurat and Giotto (Hao et al., 2021b; Dries et al., 2021b),

which function as toolkits that incorporate dozens of visualization methods and analysis functions. Both

of these packages began as single-cell data analysis tools for use in sequencing data, and have evolved to

adapt many of these methods for imaging and spatial data. Methods specific to visualizing and exploring

multiplexed imaging data have also recently been introduced – the histoCAT toolbox provides an interactive

exploration of cell phenotypes and neighborhood analyses (Schapiro et al., 2017), cytoMAP is a user-friendly,

comprehensive platform for the spatial analysis of multiplexed tissues (Stoltzfus et al., 2020), and Squidpy

is a tool for the visualization and analysis of spatial molecular data (Palla et al., 2022). Each of these toolk-
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its provides similar features – a unified framework to visualize and perform basic spatial analysis within an

interactive application or programming environment (typically R or Python), for a handful of multiplexed

imaging types.

Considering that many of the methods in multiplexed imaging have evolved and taken inspiration from the

single-cell sequencing field, analysis methods have also been developed to generate spatial models for dif-

ferential expression. This was first introduced by Edsgärd et al. (2018) with the Trendsceek method, which

is based on marked-point processes to identify genes with statistically significant spatial expression trends.

More recently, Sun et al. (2020) introduce SPARK as a generalized linear spatial model for identifying spatial

expression patterns of genes, and the recently introduced SPARK-X adapts this method non-parametrically

to detect spatially expressed genes (Zhu et al., 2021). Further developments include other differential ex-

pression methods applied in the spatial domain like SpatialDE and SOMDE, which both model spatial data

as Gaussian processes to identify spatially variable genes (Svensson et al., 2018; Hao et al., 2021a). The

biggest distinction for each of these differential expression methods is that they identify spatial trends at the

gene level, rather than for a given region or marker, which is most applicable for technologies like spatial

transcriptomics. While relevant, we ultimately seek to make inference beyond the gene level for many types

of multiplexed imaging studies.

A handful of these methods have also adapted various statistical learning models to either identify spatial

gene expression or spatial neighborhoods. These include hidden Markov random fields (HMRF) as applied

in sequential fluorescence in situ hybridization data (Zhu et al., 2018), and has been adapted for use in the

Giotto package (Dries et al., 2021b). The BayesSpace method further implements a fully Bayesian model

with Markov random field for use in spatial transcriptomic studies (Zhao et al., 2021). staNMF is a method

that implements non-negative matrix factorization (Wu et al., 2016), while recent developments include ap-

plying spatial latent Dirichlet allocation to multiplexed imaging analysis (Chen et al., 2020). Again, these

methods provide a foundation for the breadth of methods applied in multiplexed imaging and similar fields,

but ultimately do not address our question of interest in this work.

Broadly, we are interested in a statistical method to quantify spatial co-expression of biological markers in

multiplexed imaging data. A few relevant methods have leveraged marked point process theory to introduce

measures of spatial co-expression. The SpatialTIME package includes many first-order summary statistics

used in spatial analysis like Ripley’s K-function that are applied to multiplexed imaging data, including some

basic neighborhood analysis functions that introduce the idea of co-expression (Creed et al., 2021). How-
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ever, of particular relevance to this work are second-order characteristics that incorporate both the spatial

coordinates of multiplexed imaging data and the values of quantitative markers, which in this case we will

consider the “marks” in the marked point processes. Keren et al. (2018) first introduced a spatial proximity

measure and permutation testing procedure that is widely adopted in multiplexed imaging, while Chervoneva

et al. (2021) introduced a method based on marked point processes to create a spatial index as a predictor for

outcomes of interest.

In this chapter, we explore the methods introduced by Keren and Chervoneva, and adapt these methods into

more reasonable summary statistics for spatial co-expression in multiplexed imaging data – a normalized ver-

sion of the Keren’s statistic and the introduction of a new spatial index, the cumulative mark cross-correlation

(CMCC), based broadly on Chervoneva’s approach. Furthermore, the Keren’s statistic is uncompared to other

spatial statistics methods in the multiplexed imaging literature. We also introduce the Lee’s L-statistic for bi-

variate spatial data to compare the aforementioned spatial statistics with a more classical statistical summary,

and to present the first comparison of this kind for spatial co-expression in multiplexed imaging data. We

then evaluate this comparison in a NSCLC dataset using a correlation analysis to understand the amount of

shared information between these quantities and implement a cross-validated prediction model to quantify

which method best summarizes the available spatial information.

4.3 Background

Point processes are stochastic models of point patterns, an irregular collection of points in some area (or set).

These models are commonly used in many different fields, for example, to understand the distribution of

plants in ecology (Law et al., 2009), determining optimal use of neurophysiological measurements in neu-

roscience (Brown et al., 2004), and exploring the impact of quotes on financial trades in economics (Engle

and Lunde, 2003). In multiplexed imaging, a handful of methods have implemented point process methods

(Chervoneva et al., 2021; Keren et al., 2018; Edsgärd et al., 2018), which we seek to define, extend, and

evaluate to explore bivariate spatial relationships among marker channels in multiplexed imaging data.

Mathematically we define some stationary point process N as a random counting measure observed in a

bounded region S ⊂ R2, where we interpret some observed point pattern of cell coordinates as a random re-

alization of N. Let N(B) be defined as the number of points falling into any Borel set B ⊂ S, and the random

set Np = {xn, . . .} as the set of all points in the process. For this definition we assume both additivity (for

disjoint sets) and simplicity (that all points are different) (Chervoneva et al., 2021; Illian et al., 2008).
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In multiplexed imaging, we are interested in the spatial relationship of some set of points {x1,x2, . . .} that

represent cell locations, and the value of some marker channel at each of those cells {m1,m2, . . .}. Marked

point process methods consider a stationary process defined previously as a random counting measure, M(B),

for B ⊂ Rd and C ⊂ R. M(B×C) thus denotes the random number of marked points [xn;m(xn)] with xn ∈ B

and m(xn)∈C. We can also consider the random set of all points in the process, Mp = {[xn;m(xn)], . . .} (Illian

et al., 2008).

We are often interested in summarizing the relationship between points {xn} and marks {mn}, for exam-

ple, understanding how markers are co-expressed within tissue types or tumors, which are spatially depen-

dent biological processes. Example summary statistics at the point-level include the point process intensity

Λ(B) = E(N(B)) that measures the number of units per region, common summary statistics like Ripley’s

K-function that measures the average number of points within some distance from the typical point (Ripley,

1976), and Moran’s index for spatial autocorrelation (Moran, 1948). Of interest in this chapter is Ripley’s

K-function, as it relates to Keren’s permutation test as described below. The classic Ripley’s K (which does

not count the starting point u) can be defined by:

λK(r) = E [N(b(u,v)\{u})] for r ≥ 0

Hence, λK(r) is mean number of points in a sphere of radius r centered at the starting point u (irrespective

of mark values). Note here that the K-function is a first-order summary characteristic, e.g., one that concerns

only one value of the process, such as the locations of the points or the probability that a point has some mark

value. To study relationships between cell types in multiplexed imaging, we are interested in second-order

summary statistics that are calculated using both the coordinates of the point process as well as the values

of the marks. First, let us introduce the conditional mean of a mark, as defined in Chervoneva et al. (2021),

given there is another point of the process a distance r away, can be written as (Schlather et al., 2004):

cMean(r) = E [m(u)|u,v ∈ Mp, ||u−v||= r]

Hence cMean(r) denotes the conditional mean of the marks at some set of points u = {[xu;m(xu)], . . .}, given

some set v= {[xv;m(xv)], . . .} of points at distance r away, where the expectation is taken over different values

of u. Further, the mark correlation function is useful for quantifying the relationship between quantitative

marks – for example in multiplexed imaging data, the co-expression of two biological markers. We first
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define the non-normalized mark correlation function given some test function, t(m1,m2):

ct(r) = E [t(m(u),m(v))|u,v ∈ Mp, ||u−v||= r]

This is the mean of the test function t(m(u),m(v)), at some set of points u = {[xu;m(xu)], . . .} with some set

v = {[xv;m(xv)], . . .} of points at radius r (Illian et al., 2008). For the mark correlation function, we define

the test function as t(m1,m2) = m1 ·m2 and normalize by the normalizing factor

ct(∞) = E [m(u) ·m(v)|u,v ∈ Mp, ||u−v||= ∞]

= E [m(u)] ·E [m(v)]

= µ
2,

which is the value the function takes at very large distances r when the marks are effectively independent.

We can now define the mark correlation function,

kmm(r) =
ct(r)
ct(∞)

=
E [m(u)|u,v ∈ Mp, ||u−v||= r]

µ2

The numerator is the conditional mean of the mark product of points in marked point process M with distance

r from the starting point – we then divide by µ2 to determine departures from theoretical independence (Illian

et al., 2008). Hence, if kmm(r) ≈ 1 we conclude effective independence of the marks at some distance r, if

kmm(r)> 1 we conclude that the marks are spatially correlated at distance r, and if kmm(r)< 1 we conclude

that the marks are spatially anti-correlated at distance r.

We can further manipulate the definition of some arbitrary ct(r) and its normalized counterpart kt(r) with

alternate test functions to provide quantities useful for describing papers in the Evaluation section. For ex-

ample, if we define some test function t(m1,m2) = (m1 − µ)(m2 − µ), we generate a function similar to the

Moran’s I-statistic (Shimatani, 2002), defined as (Illian et al., 2008):

I(r) =
E [(m(u)−µ)(m(v)−µ)]

σ2
µ

This becomes especially useful when considering Lee’s L test for bivariate spatial data as defined below. We

are interested in the following three methods that use the point process statistics defined above to understand

spatial relationships of marker values in multiplexed imaging data. Here we introduce these methods and

how we have adapted them for comparison in the Evaluation section.
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4.4 Methods

4.4.1 Keren’s statistic for spatial proximity

Keren et al. (2018) recently introduced a permutation test for assessing spatial proximity enrichment for pairs

of markers that accounts for differential tissue structure across varying cell numbers and composition. They

describe quantifying the number of marker-positive cells for marker X that are located within some radius r

to marker-positive cells for marker Y , which we will define as Keren’s statistic. The authors then randomized

the locations of Y -positive cells to generate a null distribution of empirical Keren’s statistics and calculated a

Z-score representing the enrichment of X-positive cells close to Y -positive cells. This approach can be con-

sidered as a bootstrapped test of the Keren’s statistic for some empirical null distribution of spatial proximity

in the multiplexed images.

Despite its utility, Keren did not describe their method statistically. Here, we derive Keren’s statistic in the

context of marked point processes by comparing it to Ripley’s K-function. Let M(B) and Mp be as defined

above in Section 4.3; the estimator of K(r) is of the form (Baddeley et al., 2015; Ripley, 1988):

K̂(r) =
a

n(n−1) ∑
i

∑
j

I(di j ≤ r) · ei j

where a is the area of the window, n is the number of points, and the sum is over all points i and j in the point

pattern. Here di j is the distance between two points, ei j as the edge correction weight, and I(di j ≤ r) is an

indicator that the distance between two points is less than some value r. Empirically, this estimator is biased

for K(r) due to the edge correction method and considering we only record observed points. Translating

Keren’s statistic as the number of “close” interactions between marker-positive cells for two given markers

into a mathematical formula gives:

KS(r) = ∑
i

∑
j

I(di j ≤ r)I (m1(xi)≥ k) I(m2(x j)≥ k)

where m1(xi) is the quantitative mark of some marker channel for point xi, m2(x j) is the quantitative mark

of some marker channel for point x j, and k is some threshold of marker positivity. We recognize this as

an estimator of the mark-weighted K-function, as defined elsewhere including Illian et al. (2008) Section

5.3.4. Hence, we can consider Keren’s raw statistic as a mark-weighted, un-normalized K-function. Note

that this summary is a second order characteristic, as it depends on the mark values of the process. Noting
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the similarity between K̂(r) above and K̂S(r), we normalize Keren’s statistic as follows:

K̂S(r) =
a

n(n−1) ∑
i

∑
j

I(di j ≤ r)I (m1(xi)≥ k) I(m2(x j)≥ k).

Hence K̂S(r) is a consistent estimator for KS(r), a form of the mark-weighted K-function to identify “close”

interactions between two marker channels in multiplexed imaging data.

4.4.2 Lee’s L test for bivariate spatial data

It is of interest to compare the popular Keren’s statistic with more classical measures of spatial relationships

like Moran’s I-statistic (Moran, 1948). However, even a bivariate Moran’s I-statistic is a global spatial sum-

mary that summarizes the spatial auto-correlation, rather than spatial co-dependence between two variables.

Pointing to the drawbacks of using the classical Moran’s I and Pearson’s r correlation in spatial data, Lee

(2001) introduces a bivariate spatial association measure (the L-statistic) to capture spatial co-patterning be-

tween two variables that incorporates both the point-to-point relationship and the spatial relationship between

the variables. Although defined in context without marked point process theory, let us re-formulate the L-

statistic using the marked point process M(B) defined above, with two quantitative mark vectors of interest,

m1(xn) and m2(xn).

Lm1,m2 =
∑i

[(
∑ j wi j(m1 j − m̄1)

)
·
(
∑ j wi j(m2 j − m̄2)

)]√
∑(m1i − m̄1)2

√
∑(m2i − m̄2)2

Here, note that the W is the row-standardized spatial weights matrix for the point locations {xn} of the point

process M. We also recognize that the formulation for Lee’s L is quite similar to the bivariate Moran’s I,

however, Lee (2001) shows further that the derivation of the bivariate Moran’s I from Wartenberg (1985)

is vulnerable as a bivariate measure of spatial relationships due to its calibration and susceptibility to false

negatives.

Hence, we prefer the Lee’s L-statistic as a spatially weighted and smoothed correlation of the quantitative

marks, which improves upon classical spatial statistics like Moran’s I that we seek to apply in this work to

multiplexed imaging data.

4.4.3 Cumulative mark summaries

Recall again the definition of the conditional mark mean, cMean(r), as defined above:

cMean(r) = E [m(u)|u,v ∈ Mp, ||u−v||= r] .
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In this paper, the authors estimate the quantity non-parametrically using the following form from Schlather

et al. (2004); Schlather (2001):

ĉMean(r) =
1

Nd
∑

|||u−v||−d|≤ε/2
m(u),

where d is the distance between two points, ε > 0 is a fixed bin width, and Nd is the number of pairs (u,v)

such that the distance between the points meets the criterion: |||u−v||−d| ≤ ε/2. Since these are functions

of the distance r between points in the marked point process pattern, the authors adapt the function into

a suitable cumulative index that can be investigated as a predictor of outcomes of interest. This quantity,

AUcMeani(r) is defined as

̂AUcMeani(dmax) =
1

dmax

∫ dmax

0
ĉMean(r)dr

Here, AUcMean is the average conditional mean of the mark in the set of marked points between 0 and the

value of dmax. However, in this chapter, we are interested in bivariate spatial relationships in multiplexed

imaging data, e.g. the relationship between some marker mi and another marker m j in regards to biological

variables of interest like tissue type and tumor class. Hence, we re-derive a new index following the methods

of Chervoneva et al. (2021) using the mark cross-correlation function, similar to the kmm(r) as defined above.

First, let us define the mark cross-correlation k∗mm(r) in the following form similar to the mark correlation

defined in 4.3:

k∗mm(r) =
E [mi(u) ·m j(v)]

µi ·µ j

for some set of two marks, mi(xn) = min and m j(xn) = m jn, and the mean mark values across the set of data

µi and µ j respectively. Hence we can derive an estimator of this function using many of the same quantities

defined in Chervoneva et al. (2021):

k̂∗mm(r) =
1

Nd
∑

|||u−v||−d|≤ε/2

mi(u) ·m j(v)
µ̂i · µ̂ j

,

where again d is the distance between two points, ε > 0 is a fixed bin width, Nd is the number of pairs (y,v)

such that the distance between the points meets the criterion: |||u−v||−d| ≤ ε/2, and µ̂i and µ̂ j are the mean

mark values across the set of data respectively. Lastly, we define

CMCC(dmax) := AUk∗mm(dmax) =
1

dmax

∫ dmax

0
k̂∗mm(r)dr

as the mean mark cross-correlation over the set of marked points between 0 and the value of dmax, or similar

to the cumulative mark product function (Shimatani and Kubota, 2004). Since we are considering this func-
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tion between two sets of marks mi and m j, we define this statistic as the cumulative mark cross-correlation

(CMCC). Hence, we have taken the approach from Chervoneva et al in the context of Shimatani and Kubota,

and adapted a new spatial index to compare bivariate relationships of marker values in multiplexed imaging.

4.4.4 Data source

The NSCLC data was collected to analyze the relationship between tumor-infiltrating immune cells and major

histocompatibility II expressing cancer cells in the NSCLC tumor microenvironment (TME), and consists of

761 mIF-imaged regions of interest (ROIs) from 153 patients (Johnson et al., 2021), e.g. roughly 5 ROIs per

patient. Images were stained for DAPI, five phenotypic markers (CD3, CD8, CD14, CD19, cytokeratin) and

one functional marker HLADR (MHCII), allowing for identification of CD4+, CD8+, CD14+, and CD19+

immune cells. The dataset has values at the cell-level, where we focus on four markers – two immune cell

markers CD8 & CD14, a cancer-cell marker cytokeratin, and the functional marker HLADR. Marker values

were normalized using the mxnorm R package (Harris et al., 2022a). We then use a cell-level identifier of

tumor vs. stromal cells to infer the proportion of tumor cells within a region/image, which we use as an

outcome of interest in the Evaluation.

4.4.5 Evaluation

4.4.5.1 Pairwise comparisons of spatial results

We quantify pairwise spatial relationships between marks by quantifying each of the three spatial summary

statistics in a given ROI for all possible combinations of the markers discussed above. We then summarize

these values across all ROIs to best understand the spatial co-expression of each marker pair of interest, and

how each of the three statistical summaries captures that relationship.

4.4.5.2 Correlation analysis

After calculating each spatial summary statistic in a given ROI as discussed above, we can then further

explore these statistical methods by comparing the values of each statistic produced for a given region/image

to determine if any of the explored methods captures the same information from the NSCLC data. We

consider this a correlation analysis, e.g., quantifying the amount of shared information between the statistical

summaries within a ROI for a particular marker comparison.

4.4.5.3 Cross-validated prediction accuracy

To explore the prediction accuracy of each of the introduced spatial statistics summaries, we now formulate a

prediction model. This model uses the proportion of tumor cells on a given image as the outcome of interest,

and we formulate three models (one for each spatial statistic) with the following covariates: the spatial statistic
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summary (defined below as X), a factor variable marker comparison that denotes which quantitative

markers we are comparing like CD8 vs. CD14, and an interaction between these two variables. Hence,

in R modeling notation we write each of these models as follows:

tumor proportion ∼ X + marker comparison + X ∗ marker comparison

where the tumor proportion and each statistic are both calculated at the image level, with the values

of each statistic varying depending on the marker comparison implemented. To estimate prediction

accuracy, we holdout 25% of the ROIs and train a linear regression model as formulated above on the training

set, with the spatial statistics scaled (e.g., divided by their standard deviation). We then predict the proportion

of tumor in the holdout set using this model, and compute the sum of squared errors (SSE) to measure

prediction accuracy. Lastly, we repeat this process 100 times to estimate the average SSE of these prediction

models.

4.5 Evaluation

4.5.1 Methods of interest

In summary of the above, here we are interested in the following methods:

• Lee’s L-statistic, which we define as the correlation between the spatial lag vectors of two random

variables X and Y , weighted by a spatial smoothing scalar. We interpret this quantity as a spatially

weighted and smoothed correlation coefficient of two marker values.

• Keren’s statistic, which we define as the average number of X-positive points within some distance r

of Y-positive points. Here we have normalized this statistic using the area and number of points akin

to the estimator K̂(r). We interpret this quantity as the number of close interactions in a region

between marker-positive cells.

• CMCC (adapted from Chervoneva), which we define as the average mark cross-correlation over

the set of marked points between o and some distance r for two marks, X and Y . We interpret this

quantity as the local departure of observed marker co-expression from theoretical independence.

The Keren’s statistic for measuring spatial proximity is widely used for spatial-omics data, and we showed

it is analogous to a form of the mark-weighted K-function (Keren et al., 2018). It has not been compared

to other spatial analysis methods. The first of these we chose to evaluate in comparison is the Lee’s statis-

tic for spatial autocorrelation, which combines the classical Pearson’s correlation with the popular Moran’s
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I statistic into a bivariate spatial association measure (Lee, 2001). We adapted the univariate marker sum-

maries introduced by Chervoneva et al. (2021) to handle bivariate spatial associations via the cumulative mark

cross-correlation function (CMCC). Below we evaluate these three approaches using a correlation analysis

and predictive modeling to understand if these methods capture similar spatial information from multiplexed

imaging data and whether each provides a valuable summary in terms of predicting biological variables of

interest.

Notably, both Keren’s statistic and Chervoneva’s AUcMean methods have a distance parameter that is op-

timized for the data sources in these respective papers. However, in this chapter we maintain indices with

some fixed d for continuity between the three measures discussed – for computing both Keren’s statistic and

for CMCC, we set d = 40µm. This choice is deliberate, and future work could address these methods over

some varying set of distances, as well as implement Lee’s local bivariate spatial association measure, to de-

rive parameters as a function of some distance d and potentially implement a modeling comparison using

functional data methods as performed by Vu et al. (2021) for example.

4.5.2 Comparison of spatial results across images

Using the four markers identified above, we first explore the three statistical summaries outlined above at

the image/region level for each of the marker comparisons of interest. In the original analysis, the authors

computed co-expression of the CD8 and CD14 markers in MHCII (HLADR) expressing cells (Johnson et al.,

2021), using the phenoptrReports R package which generates reports and visualizations from data cre-

ated by Akoya Biosciences’ inForm software (Johnson, 2022). These researchers also point to a spatial

interaction between cells expressing higher levels of cytokeratin and lower marker co-expression levels of

immune cell markers like CD8 and CD14.
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Figure 4.1: Distribution of statistics across images in NSCLC dataset. Boxplots comparing values of
each statistic implemented across images/regions in the NSCLC multiplexed dataset.

The results in Figure 4.1 from Lee’s L-statistic point to a positive spatial correlation between both CD14 and

CD8 marker expression with HLADR expression, and co-expression patterns between the two immune cell

markers CD8 and CD14. However, all other expression patterns are mostly inconclusive – in contrast, we

can interpret the CMCC summary as the departure of the average marker co-expression from the theoretical

null within some radius. Across images, we see that both CD14 and CD8 marker expression are positively

co-expressed with the functional marker HLADR as expected, and again note that the immune markers CD8

and CD14 exhibit positive spatial co-expression of marker values for cells that are within the radius.

We further note that the CMCC points to reduced co-expression patterns between the two immune mark-

ers, CD8 and CD14, with the cancer-cell marker cytokeratin, which suggests a reduction in immune cell

activity when in close proximity to cancer cells. This result, and the more reasonable interpretation of CMCC

compared to Lee’s L-statistic, provide a strong case for using CMCC going forward. Finally, we note that

although Keren’s statistic can be interpreted as an average number of ”close” interactions between marker

positive cells, it is quite difficult to interpret the results in Figure 4.1 and distinguish marker activity from the

summary even when normalized by the number of cells. Below we will explore the efficacy of the Keren’s
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statistic in both a correlation analysis and in regards to predictive modeling, but it is of note that the raw

values of the statistic are difficult to interpret, especially when looking at distinct marker-marker interactions.

4.5.3 Correlation analysis

Figure 4.2: Correlation of each statistic implemented in the NSCLC dataset. Scatter plots comparing
values of each summary across images/regions in the NSCLC multiplexed dataset with lines of best fit for
each marker comparison.

We first note in the top-left panel of Figure 4.2 that Lee’s L-statistic and Keren’s statistic are largely uncor-

related, while Keren’s statistic is only correlated with the CMCC for marker comparisons that do not include

cytokeratin. This may perhaps be a result of the thresholding for marker-positivity in the Keren’s method,

effectively dichotomizing a continuous relationship, or may also point to the inability of Keren’s method to

provide a relative statistic that can be quickly interpreted for marker-marker interactions beyond a simple

count measure.

We also note that for all marker comparisons, the CMCC is strongly positively correlated with Lee’s L-

statistic. This result is important, considering that above we point to the improvement in interpretability

provided by CMCC in multiplexed imaging, and further conclude that the methods appear to be capturing
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similar spatial information from the data. Hence, in this correlation analysis we again provide support for

the interpretability of CMCC that captures underlying spatial interactions between markers in multiplexed

imaging data.

4.5.4 Cross-validated prediction accuracy

In Figure 4.3, we observe the average model performance using each of the three spatial statistics as covariates

in predicting tumor proportion. We first note that the Lee statistic does not perform as well as either the

CMCC or Keren statistic in terms of prediction, with a much higher average SSE over the cross-validated

models.

Figure 4.3: Cross-validated prediction accuracy of models in the NSCLC dataset. Raincloud plots com-
paring the distribution of SSEs for each spatial statistic model, for 100 cross-validated prediction models.

Further, we note similar performance by both the CMCC and Keren statistic, with a slightly longer tail and

lower average error in the models that use the CMCC as a covariate. While inconclusive about a better spatial

summary measure between the CMCC and Keren statistics, in terms of SSE it is clear these two methods

both provide strong spatial summaries in predicting tumor proportion at the ROI level.

To further explore these models, we can also compare the absolute and relative importance of each variable

as presented in Table 4.1.
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Method Variable Avg. Absolute Im-

portance

Avg. Relative Im-

portance

CMCC C 0.51 0.104

C:marker comparison 0.881

marker comparison 0.014

Keren KS -0.127 0.348

KS:marker comparison 0.650

marker comparison 0.002

Lee L -0.005 0.075

L:marker comparison 0.912

marker comparison 0.013

Table 4.1: Variable importance of each statistic in prediction models. Average absolute and relative
importance of each group of variables in the linear regression models over the 100 cross-validated prediction
models.

As noted previously, we have scaled the spatial statistics to allow for comparison of average absolute impor-

tance – on this metric, clearly the CMCC is the most absolutely important coefficient in the cross-validated

models out of the statistics explored here, while Keren’s statistic is the most important relative to other

variables in those models. We hypothesize that this is because the Keren’s statistic is a counting measure

conditional on some set of marks, while the CMCC is a quantitative summary of mark values. Hence, we see

a larger impact of which mark values are compared and their interaction term with the value of CMCC, in

contrast to the Keren’s statistic.
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Method Variables Percent of

Models

CMCC C 1.00

C:marker comparisonCD14 vs. HLADR 1.00

C:marker comparisonCD8 vs. CD14 1.00

C:marker comparisonCD8 vs. HLADR 1.00

C:marker comparisonCK vs. HLADR 1.00

marker comparisonCD14 vs. HLADR 1.00

marker comparisonCD8 vs. CD14 1.00

marker comparisonCD8 vs. HLADR 1.00

marker comparisonCK vs. HLADR 1.00

Keren KS:marker comparisonCD8 vs. CK 0.85

KS:marker comparisonCD8 vs. CD14 0.97

KS:marker comparisonCK vs. HLADR 0.98

marker comparisonCD8 vs. CD14 0.98

KS 1.00

KS:marker comparisonCD14 vs. HLADR 1.00

KS:marker comparisonCD8 vs. HLADR 1.00

marker comparisonCD14 vs. HLADR 1.00

marker comparisonCD8 vs. HLADR 1.00

Lee marker comparisonCD8 vs. CD14 0.83

L:marker comparisonCD14 vs. HLADR 0.86

L:marker comparisonCD8 vs. CD14 1.00

Table 4.2: Relevant covariates across prediction models. Percent of total models that each variable listed is
identified as significant (p < 0.05) in the cross-validated linear regression models (note that only coefficients
that arise in more than 80% of models are included here).

Lastly, we can compare significant model coefficients and the percentage of cross-validated models in which

they arise in Table 4.2. The first result of note is that Lee’s L-statistic does not arise as a significant coefficient

in those models, while both the CMCC and Keren’s statistics are significant in all 100 regression models.

This, along with the previously discussed results, points to the lack of biologically relevant information

maintained in Lee L-statistic and it’s underperformance as a predictor of tumor proportion. Focusing on the

model coefficients from the CMCC and Keren models, we observe that the following marker co-expression
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pairs are of most importance: co-expression of all markers CD14 & CD8 & CK with HLADR and co-

expression of CD8 with CD14. These not only re-affirm the results of Johnson et al. (2021) but also support

the initial correlation results presented in Figure 4.1 for the CMCC.

4.6 Discussion

Here we provided a comprehensive review of spatial statistics methods as implemented in multiplexed imag-

ing, and identified and adapted three methods based on marked point processes for further evaluation. Each

of these methods – Lee’s L-statistic, the normalized Keren’s statistic, and the CMCC – were introduced to

capture bivariate spatial measures of marker co-expression in multiplexed imaging data. Specifically, we first

showed that Keren’s raw statistic is a form of the mark-weighted K-function and introduced a normalized

estimate of the Keren statistic to better compare with the other spatial measures discussed here. Further, we

adapted Chervoneva’s approach of taking the average conditional mark mean in the set of some marked point

pattern within a distance dmax and introduced an average mark cross-correlation taken over the same set that

we interpret as the mean local departure of observed marker co-expression from theoretical independence.

Both this CMCC and the normalized Keren’s statistic are introduced for the first time here, and compared

with the classical Lee’s L-statistic for the first time in multiplexed imaging data.

In the Evaluation section we find that Lee’s L-statistic is reasonably interpreted as a smoothed spatial cor-

relation coefficient between marker values and captures the marker-marker interactions as expected in the

NSCLC dataset. However, the prediction accuracy of this measure is much worse than the other two methods

introduced here, and further explorations of the L-statistic in these prediction models points to a lack of im-

portance of this variable as a predictor of the biological outcome of interest. In contrast, we find that Keren’s

statistic performs quite well in terms of prediction accuracy, and further explorations of this variable in the

prediction models show this statistic is important in these models. However, even in its normalized form, we

find that Keren’s statistic is difficult to interpret and does not reasonably distinguish strong marker-marker

interactions like either Lee’s L-statistic or the CMCC.

This points to two potential drawbacks of using the Keren’s statistic in biological research. The first is

that while the Keren’s statistic is an intuitive measure of marker-marker interactions, it was originally imple-

mented as a testing procedure to compare the observed value of the statistic to a bootstrapped null distribution.

While this is a reasonable method of testing (the spatstat R package offers methods for bootstrapping

Lee’s L-statistic in a similar fashion (Baddeley et al., 2015)), Keren’s statistic lacks a reasonable method to

distinguish bivariate spatial co-expression patterns between markers without some method of testing. Further,
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the method also relies heavily on thresholding biological markers as marker-positive – broadly, thresholding

is an open question in multiplexed imaging data (Bortolomeazzi et al., 2022), and likely requires a discussion

about normalization methods rather than a blanket marker-positive threshold (Harris et al., 2022b; Chang

et al., 2020).

Due to the concerns with prediction accuracy using Lee’s L-statistic and interpretability when using Keren’s

statistic, we introduced the CMCC to best summarize bivariate spatial co-expression of marker values in

multiplexed imaging data. This method combines Chervoneva’s approach with the mark cross-correlation

statistic to introduce a new spatial index for marker co-expression. Here we have shown that CMCC is corre-

lated, and therefore captures similar spatial information, with the Lee’s L-statistic and maintains a similarly

simple interpretation of marker-marker interactions. However, the CMCC does not suffer from the same

reduced predcition accuracy of the L-statistic and instead achieves a slight improvement in prediction mod-

eling when compared to Keren’s statistic. Further, we find that the interpretability of the CMCC as a marker

co-expression summary supercedes the unclear definition of Keren’s statistic in practice. Hence, we have

introduced a new bivariate spatial summary statistic that identifies marker co-expression patterns of interest,

provides a good predictive summary of biological outcomes of interest, and ultimately serves as an easy to

communicate index for marker-marker interactions in multiplexed imaging data.

There are a handful of reasonable limitations of this chapter that are also worth surfacing. First, due to

the difficulty with simulating multiplexed imaging data, we use real data from the NSCLC study to cross-

validate results rather than generating theoretical scenarios. In the future, developing simulation methods

for multiplexed imaging data would allow for better analysis and comparison of these methods. Further,

predictive modeling was performed using linear regression of tumor proportion on a given region (image)

– functional data regression as some function of radius or distance could be explored in the future to better

understand how these methods interaction. Finally, future work could explore more markers of interest and

utilize other biological outcomes like survival endpoints or cancer type to allow for more diverse predictive

modeling scenarios.
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CHAPTER 5

Conclusion

In Chapter 2, we implemented and compared data transformations and normalization algorithms in multi-

plexed imaging data. Our methods adapted the ComBat algorithm and functional data registration methods

to remove slide effects in this data, and we developed an evaluation framework to compare the proposed

approaches. This framework introduced new ideas to the multiplexed imaging field, including the threshold

discordance score and multiple methods of measuring slide-to-slide variation. We then present clear system-

atic variation in the raw, unadjusted data and show that normalizing multiplexed imaging data by its slide

mean reduces this variation while preserving and improving the biological signal.

In Chapter 3, we developed the R package, mxnorm, to implement, evaluate, and visualize normalization

techniques for multiplexed imaging data. This software allows users to extend normalization methods in

multiplexed imaging, and provides our robust evaluation framework to measure both technical variability and

the efficacy of various normalization methods. Further, the package allows users to supply user-defined nor-

malization methods and thresholding algorithms, introducing a platform for comparing the utility of different

normalization techniques.

Chapter 4 introduces spatial statistics methods in multiplexed imaging data to understand the spatial rela-

tionship of different biological markers following the removal of slide-to-slide variation. Here we leveraged

marked point process theory to derive and compare three spatial statistics methods: Keren’s permutation test

for spatial proximity, Lee’s L test for bivariate spatial data, and a proposed cumulative mark cross-correlation

(CMCC) statistic. We then provide an evaluation of the adapted methods – a correlation analysis to quantify

the amount of shared information between the statistics and a cross-validated prediction modeling analysis to

determine each measure’s prediction accuracy.

Altogether, this dissertation addresses two major components of the multiplexed imaging pipeline – removing

systematic noise from this data and adapting spatial analysis methods in this field. The methods introduced

here are important for determining and maintaining data quality to leverage this valuable data resource for

future biological research. We hope this work provides the foundation (and inspiration) for introducing and

evaluating normalization techniques and spatial analysis methods across the multiplexed imaging pipeline.
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CHAPTER 6

Appendix

6.1 Application of ComBat

Note from Chapter 2 of this thesis that we have assumed that the standardized data Zic(u) ∼ N(γic,δ
2
ic) with

the following priors on the batch effects:

γic ∼ N(γc,τ
2
c ),δ

2
ic ∼ IG(ωc,βc)

Recall that i denotes the slide from which the data was collected, c denotes the marker of interest, and u

defines the unit of measuring intensity, which for this study is the median quantified marker intensity of the

segmented cell. Note also that we defined Uic = ∑ic u, or the number of quantified cells present on a particular

slide i for a given channel c.

6.1.1 Posterior Derivation for γic

Using the empirical Bayes methodology, we must derive the posterior mean estimator of γic to utilize in the

ComBat model. Hence:

π
(
γic|Zic(u),δ 2

ic
)
= L

(
Zic(u)|γic,δ

2
ic
)
·π(γic)

∝ exp
{
− 1

2δ 2
ic

∑
u
(Zic(u)− γic)

2
}
· exp

{
− 1

2τ2
c
(γic − γc)

2
}

= exp
{
− 1

2δ 2
ic

(
∑
u

Y 2
ic(u)−2∑

u
Zic(u)γic +Uic · γ2

ic

)
− 1

2τ2
c

(
γ

2
ic −2γicγc + γ

2
c
)}

∝ exp
{
− 1

2

(
Uicτ2

c +δ 2
ic

δ 2
icτ2

c

)[
γ

2
ic −2

(
τ2

c ∑u Zic(u)+δ 2
icγc

Uicτ2
c +δ 2

ic

)
γic

]}

Which after we complete the square, we see this is posterior follows the Normal distribution with the follow-

ing expectation:

E
[
γic|Zic(u),δ 2

ic
]
=

τ2
c ∑u Zic(u)+δ 2

icγc

Uicτ2
c +δ 2

ic

To derive an estimator of the batch effect parameter, we must define the following estimators of the hyperpa-

rameters:

γ̄c =
1

Uic
∑

i
γ̂ic and, τ̄

2
c =

1
Uic −1 ∑

i
(γ̂ic − γ̄c)

2
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Hence we now derive the following estimator of γic:

γ
∗
ic =

τ̄2
c Uicγ̂ic +δ 2∗

ic γ̄c

Uicτ̄2
c +δ 2∗

ic

6.1.2 Posterior Derivation for δ 2
ic

We employ the same methodology to derive the posterior mean estimator of δ 2
ic:

π
(
δ

2
ic|Zic(u),γic

)
= L

(
Zic(u)|γic,δ

2
ic
)
·π(δ 2

ic)

∝ δ
2
ic
−Uic

2 exp
{
− 1

2δ 2
ic

∑
u
(Zic(u)− γic)

2
}
·δ 2

ic
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exp
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− βc

δ 2
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2
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2 +ωc
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2δ 2
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δ 2
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}
∝ δ

2
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]
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)
exp

{
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δ 2
i jc

(
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1
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Which we note is an Inverse Gamma distribution with the following expectation:

E
[
δ

2
ic|Zic(u),γic

]
=

βc +
1
2 ∑u (Zic(u)− γic)

2

Uic
2 +ωc −1

To derive an estimator of the batch effect parameter, we must define the following estimators:

δ̂
2
ic =

1
Uic −1 ∑

u
(Zic(u)− γ̂ic)

2

We then calculate the sample mean of the δ̂ 2
ic, M̄c and S̄2

c and set these equal to the moments of an Inverse

Gamma distribution to yield the following estimators:

ω̄c =
M̄c +2S̄2

c

S̄2
c

and, β̄c =
M̄3

c + M̄cS̄2
c

S̄2
c

Hence we now derive the following estimator of δ 2
ic:

δ
2∗
ic =

β̄c +
1
2 ∑u (Zic(u)− γ̂ic)

2

Uic
2 + ω̄c −1
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