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Chapter 1.

Introduction

1.1. Small cell lung cancer
1.1.1. History and treatment of small cell lung cancer

Small cell lung cancer (SCLC) is an extremely aggressive, fast growing form of lung cancer
that predominantly develops in current or former smokers (Alexandrov et al., 2016). SCLC is
characterized by high mutational burden, low immune infiltration, and early metastasis.
Furthermore, SCLC is associated with more paraneoplastic syndromes, a group of disorders caused
by the production of hormones or peptides by the tumor itself, that any other cancer potentially
due to the neuroendocrine (NE) nature of the disease (Kanaji et al., 2014). Though SCLC makes
up only 15% of lung cancer cases, it contributes to a large proportion of lung cancer deaths, making
lung cancer the leading cause of cancer deaths in the United States (ACS Cancer Facts & Figures
2021).

While smoking prevalence in the United States has decreased in recent years, lung and
bronchus cancers still make up over 12% of new cancer cases, second only to prostate cancer in
men and breast cancer in women. Smoking is also still increasing in prevalence in developing
countries, such that deaths from SCLC are increasing worldwide. Understanding how to
effectively target and treat SCLC is therefore a critical step to reducing cancer mortality
worldwide. Unfortunately, prospects for SCLC patients are dismal: the five-year survival rate
remains around 5%, with a median survival duration of less than 2 years for patients with early-

stage disease and about 1 year for patients with late-stage disease (Semenova et al., 2015).
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Figure 1.1. Timeline of major events in SCLC history.

In 1926, SCLC was first described as “oat-celled carcinoma” due to the small, flat
appearance of these cancer cells under a microscope (Gazdar et al., 2017) (Figure 1.1). Decades
later, Watson and Berg helped to further define this type of cancer and proposed nitrogen mustard
and radiation as the standard of care therapy. Because SCLC, in contrast to non-SCLC (NSCLC),
is characterized by early and frequent metastases, surgery is often not an option for treatment. The
resulting lack of SCLC tissue for research studies has hindered progress in treating this disease,
and the standard of care has remained a cytotoxic chemotherapy similar to the nitrogen mustard
treatment used almost a century ago. Today, patients receive a first-line therapeutic regimen of
etoposide and a platinum-based agent such as cisplatin (EP) and radiation, despite the fact that
virtually all patients relapse after therapy. Because of these statistics, SCLC was designated a
recalcitrant cancer by the Recalcitrant Cancer Research Act in 2012, which reinvigorated interest,
funding, and research for SCLC.

Recently, an increased understanding of the molecular characteristics of SCLC has allowed

for the development of targeted therapies, although most have been unsuccessful (Gadgeel, 2018).



For example, SCLC is characterized by extremely fast-growing tumors and rapid onset of
metastases, which suggests inhibition of pathways related to self-renewal (such as Hedgehog) or
DNA repair (such as Poly (ADP-ribose) polymerase enzymes, PARP) may be beneficial in SCLC
(Gadgeel, 2018). Unfortunately, PARP inhibitors have only shown modest improvement over the
standard of care in a subset of patients, and Hedgehog pathway inhibition, such as with the
Smoothened inhibitor vismodegib, did not improve progression-free or overall survival in a
clinical study (Belani et al., 2016; Owonikoko et al., 2017). Other targeted therapies that have seen
success, such as immune checkpoint inhibitors, are only beneficial in a minority of patients
(Hellmann et al., 2017; Ott et al., 2017). Therefore, there is an urgent need for a deeper
understanding of SCLC to develop better therapies for patients that both extend survival rates and
increase quality of life over that seen with cytotoxic chemotherapeutic regimens.
1.1.2. Genetic and epigenetic heterogeneity in SCLC

A defining feature of SCLC is the virtually ubiquitous biallelic inactivation of TP53 and
RBI1 (George et al., 2015). While silencing of these two tumor suppressors seems necessary for
SCLC to develop, no oncogenic drivers seen in other cancer types, such as BRAF in melanoma,
are necessary for SCLC development. Due to carcinogenic cigarette smoke, SCLC tends to have
an extremely high mutational burden, with an average of 7.4 protein-changing mutations per
million base pairs (Peifer et al., 2012). While the role of many of these mutations is still
incompletely understood (George et al., 2015), some signaling pathways show recurrent mutations
in a subset of patients.

For example, all three members of the MYC family genes are often mutated, with
expression of MYC, MYCL, and MYCN in a mutually exclusive manner. MYCL tends to be

amplified or highly expressed in the majority of neuroendocrine-high SCLC, while MYC is



amplified in about 20% of SCLC tumors, which tend to have a more non-neuroendocrine
phenotype. Notch pathway regulates NE differentiation and progression, and thus acts as a tumor
suppressor against ASCL1+ tumors. Genes in this pathway tend to be mutated in SCLC, with about
25% of SCLC harboring loss-of-function mutations in Notch receptors. Unfortunately, mutations
have been incapable of defining clinically relevant subtypes of SCLC. Therefore, our current
understanding of genetic heterogeneity in SCLC is not enough to identify clinically actionable
subgroups of patients.

Recently, efforts to stratify patients have led to the recognition of phenotypic heterogeneity
within and between SCLC tumors, raising hopes for more efficient subtype-based treatment
strategies (Figure 1.2). As first described over 30 years ago, human SCLC cell lines can be
categorized into two broad subtypes: a neuroendocrine (NE) stem-cell-like “classic” subtype and
a distinct non-NE “variant” subtype (Carney et al., 1985; Gazdar et al., 1985, 2017). In both human
and mouse tumors, most cells appear to belong to the NE subtype, corresponding to a pulmonary
neuroendocrine cell (PNEC) of origin (Sutherland et al., 2011), with high expression of
neuroendocrine genes such as ASCL1. However, several groups have found evidence for non-NE
variants within SCLC tumors (Calbo et al., 2011; Huang et al., 2018; Lim et al., 2017), as well as
an NE variant driven by MY C overexpression and NEURODI1 overexpression, instead of ASCL1
(Borromeo et al., 2016; Mollaoglu et al., 2017; Sos et al., 2012). Non-NE subtypes have further
been described by driving transcription factors, such as YAP1 and POU2F3. Our lab previously
described SCLC cell lines with hybrid expression of both NE and non-NE markers (Udyavar et
al., 2017) and proposed they could serve as a resistant niche since drug perturbations shifted most

cell lines towards hybrid phenotype(s).



Taken together, these observations indicate the existence of a complex landscape of SCLC
phenotypes that may form a tumor microenvironment robust to perturbations and treatment (Lim
et al., 2017; Tammela et al., 2017). The relationship between these subtypes is less clear; some
research has shown evidence of phenotypic transitions between subtypes, such as from the NE
subtype to the non-NE subtype (Lim et al., 2017). Understanding the plasticity of these subtypes
in different conditions, such as after chemotherapy, is one of the goals of this dissertation. To do
so, we use the theoretical systems biology notion of a phenotypic landscape, undergirded by gene
regulatory network dynamics, combined with bioinformatics approaches to analyze patterns of

behavior of single cells that reside within the landscape.

Poirier et al. (2013) ASCL1+ I:‘

Borromeo et al. (2016) Double negative
McColl et al. (2017) INSM1+ YAP1+
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Lim et al. (2017) REST-low REST-high
Huang et al. (2018) POU2F3+

Figure 1.2: History of subtype identification in SCLC. Over the last half century, SCLC heterogeneity has been clustered in
various ways. The first classification of phenotype heterogeneity considered classic and variant subgroups. Since then, gene
signatures and driving transcription factors have been used to identify subtypes.

1.2. Understanding cell identity in cancer
1.2.1. Layers of heterogeneity in cancer

Heterogeneity within tumors has been shown to be critical for acquired resistance to
therapy in several cancer types. As described for SCLC, several layers of heterogeneity exist:

genetic heterogeneity dependent on selection of mutants, and non-genetic heterogeneity



dependent on epigenetic regulation of phenotype and the inherent stochasticity in biology
(Hayford et al., 2021).

Variability in genotype is necessary for clonal selection through Darwinian evolution,
where clones with a higher fitness outcompete others. Genomic heterogeneity is often driven by
genomic instability, a hallmark of cancer, which generates random mutations including
rearrangement of entire chromosomes (Hanahan and Weinberg, 2000). While normal cells have
an extraordinary ability to detect and repair defects in DNA and therefore keep the rate of
spontaneous mutation to a minimum, cancer cells often increase the rates of mutation and
therefore decrease genomic stability. This may be achieved in a cancer cell by increased
sensitivity to mutagenic agents, such as cigarette smoke in the case of SCLC, and by defects in
the repair machinery that maintains genomic fidelity. In SCLC, virtually universal inactivation
of TP53, the “guardian of the genome,” plays a central role in compromising the repair
mechanisms that help to reduce mutagenesis (Lane, 1992).

However, it is becoming increasing clear that genetics alone cannot explain the variability
seen between and within tumors. Instead, non-genetic heterogeneity must also be considered.
Two main types of non-genetic heterogeneity exist: deterministic heterogeneity, which is often
used synonymously with epigenetic heterogeneity, and stochastic heterogeneity, often called
stochasticity, noise, or randomness. Deterministic heterogeneity describes the existence of
multiple stable phenotypic states given a particular genome. Epigenetic heterogeneity can be
attributed to several sources, including variability in chromatin accessibility, DNA methylation,
and DNA-binding proteins that regulate transcription levels of genes (Figure 1.3). In this work,
phenotypic state refers to the transcriptomic state of a cell or tumor, with an implicit

understanding that other levels of epigenomic regulation, such as chromatin modifications, help



%mmm@wo\

Promoter methylation Genome-wide methylation
Histone methylation Histone acetylation
&
TF TF
Target gene

Enhancer Promoter

Figure 1.3 Epigenetic modifications control gene expression. Various post-translational modifications are mechanisms of gene
regulation. Promoter and genome-wide methylation of DNA decreases gene expression, in normal development, this controls
tissue-specific gene expression, and in cancer, methylation often occurs near tumor suppressor genes to silence them (Wajed et
al., 2001). Histone acetylation tends to increase gene expression. Transcription factors (TFs) bind to promoters and enhancers
of genes to promote or inhibit transcription. Each of these modifications can therefore lead to an increase (or decrease) in
transcription (green arrow) of a target gene.

to determine a cell’s transcriptomic profile. We visualize and quantify this heterogeneity in the
following sections using epigenetic landscapes.

There is also a certain amount of variation in gene expression that can be expected between
isogenic cells in the same phenotypic state, which is attributed to stochasticity. Stochasticity
arises from intrinsic sources, such as the probabilistic nature of biochemical reactions within a
cell, or extrinsic sources, such as local fluctuations in chemical concentrations in the
microenvironment. While transient, this variability can probabilistically drive transitions between
phenotypes (Feinberg and Irizarry, 2010; Gupta et al., 2011; Hayford et al., 2021; Liao et al.,
2012).

Together, these layers of heterogeneity—genetic, epigenetic, and stochastic— define the
variability in cell identity, or phenotype. A critical need in cancer research, particularly for SCLC,
is understanding these levels of heterogeneity quantitatively, as each phenotype will respond

differently to treatment, and heterogeneity can lead to acquired resistance. To some extent, much



of this phenotypic variability was hidden before the advent of single-cell sequencing, which has
greatly amplified the ability of researchers to investigate heterogeneity within a population.
Previously, bulk sequencing methods that average transcriptomic profiles of thousands of cells
obfuscated the heterogeneity within cell populations of a single cell “type.” Now, with single cell
technology, it is clear that heterogeneity within cell “types” plays a huge role in cancer
progression and relapse (Marjanovic et al., 2020; Neftel et al., 2019; Stewart et al., 2020; Wahl
and Spike, 2017).

1.2.2. Cell type identification of single cells

With the explosion of information regarding phenotypic variability, single cell data has
redefined what is meant by cellular identity. It is often unclear whether cell phenotype should be
described by a continuous phenotype quantified by expression of gene signatures along major axes
of variance, or by discrete subtypes that can easily be teased apart (Wagner et al., 2016).

In SCLC, a small number of biomarkers are often used to describe cell identity in different
systems—for example, ASCL1 and NEURODI1 for NE subtypes. However, it is becoming
increasingly clear that a few biomarkers cannot fully capture the heterogeneity seen in SCLC cell
populations, and there is a need to use new tools for understanding cell identity more
comprehensively. Single cell sequencing allows for systematic identification of gene expression
signatures and biological signals, which is quickly becoming the standard for identifying cell
phenotypes. Furthermore, single cell data provides a source of phenotypic classification for
populations where biomarkers are not yet known, and can lead to identification of novel cell types,
such as recognition of phenotypic subtypes in various cancers that could not be teased apart with
previous methods (Abdelaal et al., 2019; Baron et al., 2016; Karaayvaz et al., 2018; Lieberman et
al., 2018; Marjanovic et al., 2020; Pellin et al., 2019; Plasschaert et al., 2018; Travaglini et al.,

2020; Weinreb et al., 2020; Wooten et al., 2019).



Discrete clustering is a powerful way to classify data into actionable, functional identities
in cancer and other diseases (Balanis et al., 2019; Bebber et al., 2021; Borromeo et al., 2016;
Bramsen et al., 2017; Gay et al., 2021; Karaayvaz et al., 2018; Poirier et al., 2015; Rudin et al.,
2019; Schafer et al., 2020; Simbolo et al., 2019; Simpson et al., 2020; Wang et al., 2019b; Yeo
and Guan, 2017). However, the variance in expression seen in single cell data is often more
continuous than binary, and many systems with biomarker- or cluster-defined cell types can
contain hidden diversity (Trapnell, 2015). In some cases, hybrid cell types between distinctly
defined clusters may exist (Antebi et al.,, 2013; Patel et al., 2014; Udyavar et al., 2017).
Furthermore, cell identity in several cancer types has been shown to be continuous, such as in
glioblastoma (Neftel et al., 2019; Wang et al., 2019a) and lung adenocarcinoma (LaFave et al.,
2020). Continuous states can be characterized based on prior knowledge, such as gene signatures
that are upregulated in a cell type of interest. For example, matrix factorization methods find
biological patterns across samples or single cells, which can then be characterized by function
(Stein-O’Brien et al.,, 2018). Alternatively, the expression level of pre-defined signatures
representing functions of interest can place single cells on a spectrum, such as a spectrum between
neuroendocrine (NE) and non-NE cells in SCLC (Zhang et al., 2018).

One of the benefits of a continuous paradigm for cell identity is that cell dynamics are
generally thought be continuous, i.e., state transitions occur smoothly through space from one cell
type to another (Brackston et al., 2018; Eizenberg-Magar et al., 2017; Mulas et al., 2021; Su et al.,
2017; Zhou et al., 2021). Continuums therefore allow us to understand the intermediate,
transitioning states and better characterize transition paths for dynamic processes. The lack of a
continuous description of phenotype in SCLC over the last few decades may have hindered our

understanding of how SCLC cells might move through these transition paths. Therefore, a more



comprehensive and continuous view of phenotypic heterogeneity in SCLC should lead to better
understanding of how SCLC tumors change in response to treatment (Udyavar et al., 2017).

To better understand how cell identity is regulated, this dissertation uses a combination of
top-down and bottom-up modeling approaches. Bottom-up approaches, which build models from
the underlying theory of biochemical interactions, can predict strategies for controlling cell
identity. In this dissertation, gene regulatory network inference is used to characterize cell identity
control by transcription factors. However, these models can be limited to less complex dynamics
of cell identity. Therefore, we supplement the network inference modeling with top-down
approaches, which build statistical models of cell identity directly from high dimensional data.
Together, these approaches are used synergistically to characterize and understand the regulatory

control of SCLC cell identity via the metaphor of an epigenetic landscape.
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Figure 1.4: Epigenetic landscape. (Waddington, 1957)
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1.2.3. Waddington’s epigenetic landscape in cancer

In 1957, C.H. Waddington proposed the concept of an epigenetic landscape for
understanding the regulation of phenotype in the context of biological differentiation
(Waddington, 1957). During development of an organism with a specific genome, cells can change
into very distinct-looking cells. Waddington proposed that differentiation could be thought of as

an epigenetic landscape, “a rough and ready picture of the developing embryo” (Waddington,
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1957). In this analogy, cells roll downhill through canalized channels or “chreods” representing
differentiation pathways. Cells at the top of the landscape are pluripotent stem cells, and as they
travel down the landscape, they gradually become more committed to a particular cell fate.

In normal development, cells are generally isogenic. In cancer, however, where the

EPIGENETIC LANDSCAPE OF G1

Quasi-potential U(S)

State 1 State 2 State 3

State 4  State space (possible
transcriptomes given
Phenotype transitions via gene regulation genome G1)

G1

FITNESS LANDSCAPE

Fitness F(G)

Genome 1 Genome 2 Genotype space

Mutation & selection

Figure 1.5: Relationship between the fitness landscape and epigenetic landscapes. Each epigenetic landscape is associated with
a single genome (G1). Selection of high-fitness mutants can be represented by cells “climbing” up a fitness landscape, where each
point along the horizontal axis is a different genome. For a specific genome, we can imagine an entire epigenetic landscape that
characterizes the phenotypes associated with that genome (since there is not a one-to-one, but one-to-many, relationship between

genotype and phenotype). Phenotypic transitions through epigenetic mechanisms allow for movement through the epigenetic
landscape.

mutation rate is higher and multiple subclones may exist within a single tumor, genetic
heterogeneity can be represented by a “fitness landscape” (Figure 1.5, bottom). In this landscape,
mutants with higher fitness will be selected for via Darwinian evolution. For each location in the
fitness landscape (each genome), an entire Waddington landscape of phenotypes exists (Figure

1.5, top). Similar to Waddington’s original conception, cells in the epigenetic landscape in Figure
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1.5 “fall downhill” towards the states with the lowest “potential.” These phenotypic transitions
depend on the instability of each cell state, and a cell’s ability to transition can be defined by its
plasticity.

1.2.4. System attractors, instability, and plasticity

The notion of plasticity goes hand in hand with the dynamical systems theoretical concept
of instability. In dynamical systems, stability of a state requires more than stationarity; a stable
state is one that is resilient to perturbations such that, after external influences such as changing
microenvironmental conditions, the system returns to its original state. This idea is represented
in the potential landscape, in which cells roll downhill toward local minima, as shown in Figure
1.6 (top). While there may be steady states throughout the landscape, such as the top of a flat hill
or the bottom of a valley, a small push to a cell on top of a hill will cause it to roll down to a local
minimum, far from its original starting state. On the contrary, a cell in a local minimum is resilient
to small perturbations: it is in a stable “attractor” state of the landscape. The high-dimensional
region around the attractor where a cell will roll towards the attractor is called the basin of
attraction (Figure 1.6, bottom). Cell states with larger basins of attraction can withstand larger
perturbations to their cell state, thereby demonstrating resilience of the system.

In dynamical systems theory, plasticity is a weaker kind of stability, in which a perturbed
system neither returns to its original state nor escapes from it, but instead tracks the environmental
change (Huang, 2013). However, in biology, plasticity and instability are often thought of as
interchangeable: a more plastic cell state responds to an external perturbation by changing its

state to a larger degree. In this view, cells with higher potential on the landscape are often more
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plastic. I therefore utilize this biological interpretation of plasticity when discussing plasticity in

future chapters.

Local maximum:

Local minimum: Unstable
Stable steady state Steady state

Local minimum
Stable steady state

Global minimum
Stable steady state

Quasi-potential U(S)

Attractor 1 Attractor 2 Attractor 3

Basins of Attraction

Quasi-potential U(S)

Figure 1.6: Phenotype stability and attractors. The epigenetic landscape shown above has
multiple stable and unstable steady states. While a cell at a local maximum could technically
be stable, small stochastic perturbations to the cell will quickly push it one direction or
another towards a local minimum. Attractor 2 has the lowest potential as the global minimum.

The region around each attractor where cells will move towards the attractor is known as the
basin of that steady state.

1.2.5. Quantifying quasi-potential of the landscape

While Waddington intended this picture as purely a metaphor, it has now been quantified
in various ways, borrowing ideas from physics and dynamical systems theory to describe the
underlying regulation of these processes (Wang et al., 2008, 2011; Zhou et al., 2012). The height
of the landscape describes instability of each phenotype as a “quasi-potential,” a correlate of
gravitational potential in a physical landscape (Figure 1.5, top). Quantification of this quasi-
potential is informative for processes in which plasticity and instability plays a central role,

including SCLC and other cancer systems. By modeling phenotypic potential of heterogeneous
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populations within an SCLC tumor, we can better determine ways to control the permissivity of
phenotype and prevent reprogramming of cell identity from a sensitive phenotype to a resistant
one.

Borrowing from physics, movement of cells in the landscape (i.e., changes in
Xi(X1,X2,...,XN) over time) may be due to some “force” F(x), similar to the effect of gravity on
movement through a physical landscape. A potential, U(x), can be defined such that the change in
phenotype is equal to the gradient of this potential:

dx

— =F@ = -VU@®)

Cells will therefore “roll down” the gradient of U(x) towards states with lower potential. It is
worth noting that most high-dimensional, non-equilibrium biological systems are not simple
gradient systems, and therefore the vector field F(x) is sometimes decomposed into two
components: the gradient of some quasi-potential, U(X), and a remainder term. Still, the gradient
term has been successfully used to understand pathways of transition through epigenetic
landscapes, describing everything from differentiation to cell fate reprogramming (Li and Wang,
2014; Luo et al., 2017; Wang, 2015; Wang et al., 2006, 2010a; Wu and Wang, 2013a, 2013b; Yan
et al., 2019; Zhou and Huang, 2010; Zhou et al., 2012, 2016a).
Several systems biology approaches have been developed to determine the driving force
F(x) that shapes the epigenetic landscape and defines phenotypic heterogeneity and paths of
transition. Classical dynamical systems modeling of underlying gene regulatory networks is a
bottom-up approach that can explain how phenotypic transitions are dependent on regulation of
gene expression by transcription factors (TFs). Alternatively, phenomenological top-down
approaches based on analysis of large datasets can approximate the potential landscape. For

example, single-cell sequencing sample cell density in the landscape, and trajectory inference
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methods uncover transition paths between attractors. These two orthogonal approaches are

detailed in the following two sections (1.3 and 1.4).

transcription
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Figure 1.7: A gene regulatory network (GRN) constructed from interactions between DNA-binding TFs and target genes. Each
connection in the GRN represents a physical interaction: the “parent node” is a transcription factor (protein) that binds to the
promoter or enhancer region associated with a target gene. When the target gene is also a transcription factor, the connection is
part of the GRN; otherwise, if the gene does not make a protein that feeds back into the network, it is often pruned, since the
transcription and translation of that gene will not affect the network dynamics.

1.3. Modeling epigenetic landscapes via gene regulatory networks
1.3.1. Gene regulatory network structure and dynamics

To understand the driving force F(x) that defines the landscape quasi-potential, it is first
important to understand gene regulatory networks (GRNs). A GRN is established by the fact that
certain genes encode transcription factors (TF), which are capable of binding to DNA and
regulating transcription of genes into RNA (Figure 1.3). Because TFs can control the transcription
of other TFs (and sometimes themselves), a network of TFs and the genes they regulate can be
constructed (Figure 1.7). The structure of the GRN for a particular cell is hardcoded in the genome
of a cell, as shown in Figure 1.8 (left), since each interaction in the network is a molecular

interaction between a DNA-binding protein and the cis-regulatory loci (such as promoter and
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enhancer regions) for a particular gene (Huang, 2013). On the other hand, the dynamics of the
network are described by the collective changes in gene expression over time. The dynamics of a
GRN allow for various stable states dependent on the expression of genes in the network (Figure
1.8, right). Therefore, the state of the GRN, given by the expression levels of the genes within it,
maps to a single location on the epigenetic landscape—the phenotypic state. We note that using
the transcriptomic profile of single cells as a proxy for phenotypic state is only one lens through

which we view the epigenetic state of a cell.
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Figure 1.8: Relationship between landscapes and GRNs. Each state in the fitness landscape (a single genome) is associated with
a different GRN structure; mutations can affect the physical interactions between TFs and their target genes, causing the addition
or removal of nodes or connections. Each state in the epigenetic landscape, alternatively, has the same genome, and thus the same
structure of a GRN. The states in the landscape here represent different states of the same network, where the same nodes in the
network are expressed at different levels. The stability of each pattern of expression partially determines the shape of the landscape.

Quantifying the dynamics of TF binding can be calculated by adapting Hill kinetics to
describe the rate at which a target gene is transcribed when regulated by TFs (Hill, 1913). The Hill
equation is a sigmoidal function that describes activation (or repression) of a gene as dependent
on the concentration of a regulator until it reaches saturation. This is a relatively realistic
description of many gene control functions and can be derived directly from the binding of the TF
to the promoter site. The dynamics, or the change over time, of each TF in the network can
therefore be represented as a function of all “upstream” parent nodes in the network that influence

its transcription. The system of such differential equations, where each TF in the network has a
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corresponding equation for its rate of change, defines the complete dynamics of the system. Based
on this system of equations, GRN dynamics are equivalent to the driving force that pushes cells
down the gradient of the potential in the landscape. Often, for high-dimensional systems, this
system of equations becomes intractable. Instead, we can approximate network interactions, for
example, by using Boolean functions or probabilistic dependencies.
1.3.2. Boolean and Bayesian network models of GRNs

In 1969, Stuart Kauffman introduced the idea of Boolean network models for biological
systems (Kauffman, 1969a, 1969b). Kauffman posited that, “while finely-graded intermediate
levels of gene activity could occur,” genes tended to be very active or very inactive (Kauffman,
1971), consistent with switch-like Hill kinetics with a high Hill coefficient. Therefore, it is often
useful to idealize the control of gene expression as a binary switch. A Boolean network model
suggests that these binary genes interact with one another under Boolean functions, such as AND,
OR, or NOT. Boolean logic determines the activity level of each gene given the binary states of
its regulating TFs by approximating the Hill equation, turning the smooth, monotonic function into
a step function with activation (or repression) threshold of S (Glass and Kauffman, 1973;
Kauffman, 1971; Thieffry and Thomas, 1998). An example of a Boolean network is shown in

Figure 1.9, where each TF in the network is some Boolean function of activation levels of other

TFs.
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Figure 1.9: Boolean network and wiring diagram. A. The network has connections between nodes that are Boolean functions of
parent nodes. For example, the function for node B might be fi,(A, C) = A AND C, meaning the expression of Bis “ON” if A and C
are both “ON,” and otherwise the expression of B is “OFF.” B. The “unraveled” network over two timepoints. The states of all of
the nodes (A, B, C) at time t will determine the states (4°, B, C’) at time t+1.
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Since Kauffman’s original idea, several studies have shown the utility of conceptualizing
gene regulation as a set of binary genes coupled together through Boolean functions (Albert et al.,
2008; Correia et al., 2018; Joo et al., 2018; Masoudi-Nejad et al., 2015; Pomerance et al., 2009;
Saadatpour and Albert, 2013; Steinway et al., 2015; Wooten et al., 2019; Yachie-Kinoshita et al.,
2018; Zhou et al., 2016b). While a Boolean approximation for transcriptional regulation is realistic
for many biological systems, some genes are regulated by multiple TFs in a manner that does not
use Boolean logic. For example, Kalir and Alon (2004) showed that gene regulation in an E. coli
network of flagella biosynthesis follows a summation function (SUM), rather than Boolean logic
gates (AND, OR, and NOT). Several studies have shown other functions, including complex
functions with many inputs, are also possible (Beer and Tavazoie, 2004; Istrail and Davidson,
2005; Yuh et al., 1998).

In order to understand systems with non-Boolean gene regulatory functions, probabilistic
methods of network inference, known as probabilistic graphical models (PGMs), may be used.
These models have multiple advantages over Boolean approaches. For example, they can infer
non-linear relationships between TFs, such that the rule of interaction is not required a priori to
have a particular form such as a Boolean function. One such PGM, known as Bayesian network
inference, considers a GRN to be a network (or graph) where each directed edge represents the
probabilistic dependence among genes. The goal in GRN inference is always two-fold: (1) to
determine the structure of the network (how the TFs interact) and (2) to quantify the causal
relationships between connected nodes so that the future state of the system can be predicted based
on its current state. In Bayesian networks, these causal relationships are completely encoded in the
joint probability distribution of the network, which details the probability of each state for each TF

conditioned on the state of its regulators:
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where Pa(i) is the set of parents of the node X; for all X; in the network. PGMs are more
phenomenological than Hill kinetics or Boolean network modeling, but they can mine information
from transcriptomic data—for example, RNA-seq profiles for the TFs in the network—without
assumptions about the relationships between TFs.

Regardless of the limitations or assumptions of network inference algorithms, these
methods require biological data to fully characterize a system. Transcriptomics data are often used,
sometimes in combination with other types of epigenomic or proteomic information (Duren et al.,
2017; Langfelder and Horvath, 2008; Liu et al., 2016; Margolin et al., 2004; Ramirez et al., 2017;
Wooten et al., 2019). Today, single-cell RNA-sequencing (scRNA-seq) is commonly used to
obtain a more granular picture of transcriptional regulation and stable phenotypes in a system than
bulk sequencing data can provide. Several computational algorithms have been developed to infer
single-cell dynamics based on Boolean, Bayesian, or other types of networks (Aibar et al., 2017;
Chen and Mar, 2018; Pratapa et al., 2020; Sanchez-Castillo et al., 2017; Sande et al., 2020).

Top-down, phenomenological approaches for modeling the epigenetic landscape can also
utilize scRNA-seq data directly to find empirical patterns of expression. Because intratumoral
heterogeneity and plasticity are relevant to acquire resistance in SCLC, it is important to determine
how cells change in phenotype in various contexts. These top-down approaches work towards the
long-term goal of personalizing SCLC treatment by providing a framework for understanding

plasticity in an individual patient’s tumor.
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1.4. Modeling epigenetic landscapes via single-cell dynamics

Single-cell sequencing methods have paved the way for data-driven approaches to
quantifying plasticity. While classical dynamical systems modeling—i.e., modeling a GRN that
determines a quasi-potential landscape—has the advantage of being predictive, it can be difficult
or impossible to model the complete dynamics of a high-dimensional system. Alternatively, it is
possible to use a data-driven, bottom-up approach by modeling single-cell dynamics as a
Markovian process, which can identify transition paths heuristically from scRNA-seq data.

Borrowing once again from physics, a drift-diffusion equation can model the change in cell

density for a given region of gene expression space (or, analogically, the phenotypic landscape):
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where ¢ is cell density of a given region of gene expression space, R describes the rate of
accumulation and loss due to cell proliferation, death, and movement through the region, and v is
the net average velocity (Weinreb et al., 2018). With additional assumptions, we can model the
velocity as related to the deterministic average velocity field (due to the epigenetic landscape, for
example) and a stochastic component related to diffusion. This velocity field may be calculated
heuristically from pseudo-temporal information using trajectory inference methods and can predict
cell-state transitions in the epigenetic landscape (Qiu et al., 2022). Furthermore, drift-diffusion
modeling of cell dynamics along a high-dimensional manifold in gene expression space can be
used to infer dynamics through a Markov chain, with defined transition probabilities between cell
states (Weinreb et al., 2018).

1.4.1. Trajectory inference and RNA velocity

Trajectory inference algorithms also aim to understand changes in cell density by ordering

cells along a trajectory based on transcriptomic similarity, empirically determining transition paths
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in the system (Guo et al., 2016; Haghverdi et al., 2016; Herring et al., 2018; Qiu et al., 2017;
Saelens et al., 2018; Trapnell et al., 2014; Welch et al., 2016; Wolf et al., 2019). These trajectory
inference algorithms tend to search for an underlying manifold of the data to delineate graph-based
trajectories. By interrogating the structure of the single cell data in gene expression space,
multifurcations, trees, and other graph structures can be identified. While these methods are
unbiased and often unsupervised, they tend to require identification of a “root cell” to determine
the directionality of transitions, as multiple trajectories could be explained by the same graph
structure.

Some methods utilize time-series data to determine directionality by optimal transport-
based algorithms (Kimmel et al., 2019; Marjanovic et al., 2020; Schiebinger et al., 2019). Because
scRNA-seq is a destructive method, the same single cells cannot be sequenced over time. Optimal
transport-based methods overcome this by inferring “temporal couplings” across timepoints to
determine the most likely phenotypic “descendants” of each cell at later timepoints. Ultimately,
lineage tracing provides a benchmark for interrogating trajectories, as cell lineages across
timepoints are identified via “barcodes,” thereby linking cell state in early timepoints to cell fate
in later timepoints (Griffiths et al., 2018; Wagner and Klein, 2020; Wang et al., 2021).

In 2018, a novel approach to trajectory inference was developed based on RNA splicing
dynamics (La Manno et al., 2018). By fitting an ordinary differential equation (ODE) model of
RNA transcription, splicing, and degradation, La Manno et al. discovered that it was possible to
infer short-term dynamics on a cell-by-cell basis (Figure 1.13). RNA velocity infers a steady-state
ratio of unspliced to spliced counts of RNA on a gene-by-gene basis to fit the ODE model
parameters, such as the degradation rate of the mRNA. As shown in Figure 1.12, an increase in

transcription of a particular gene is followed by a slow increase in unspliced RNA, followed by a
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delayed increase in spliced RNA. Therefore, by then comparing the unspliced and spliced counts

of a gene in each cell in this model, it is possible to determine the future state of each cell.
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Figure 1.10: RNA velocity model. By modeling transcription, splicing, and degradation of RNA as ODEs, we can determine the
steady state proportion of unspliced and spliced RNA and infer dynamics of single cells. An increase in transcription leads to an
increase in unspliced and then spliced RNA, with lag time. This difference helps to determine whether a snapshot proportion of
unspliced and spliced counts of a particular gene is increasing (induction) or decreasing (repression). Velocity vectors in gene
expression space are calculated for each individual cell. By comparing each velocity vector to the distance to neighboring sampled
cells, we can predict the probability of the cell transitioning to other states (defined by sampled cells). This allows us to generate a
Markov chain model and infer dynamics through the single cell data.

The timeframe for dynamic predictions is on the order of a few hours, similar to the average
splicing rate. However, RNA velocity can be extrapolated to longer timeframes by considering
the relationship between a cell’s velocity vector—i.e., the directionality and magnitude of its
inferred change in gene expression—and the location of neighboring cells (Figure 1.12). These
extrapolated dynamics can be used to make predictions about the future state of cells near the
beginning of the trajectory. Because this method does not rely on multiple sampled timepoints or
prior knowledge about the “root” cell of a trajectory, it is optimal for understanding the dynamics
of systems for which a temporal series of samples is not possible, such as tumor dynamics from
single biopsies. Together, these analysis methods can uncover an empirical epigenetic landscape
by defining stable phenotypes and transition paths in scRNA-seq data sampled from various cancer

systems, including human biopsies, to complement or replace quantification of GRN dynamics.
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1.5. Outline of dissertation

In this dissertation, I detail the results of my investigation into the relationships between
phenotypic heterogeneity, plasticity, and SCLC. Chapter 2 reports my work on the gene regulatory
network that defines SCLC phenotypes. I use clustering methods to delineate phenotypic subtypes
of SCLC and identify overexpressed gene programs in cell lines, mouse models, and human
tumors. The development of a gene regulatory network that defines these subtypes allows for
characterization of driving transcription factors that stabilize (or destabilize) each subtype,
suggesting methods of perturbation that may reprogram a cell from one phenotype to another.
Chapter 3 follows up this work by combining bioinformatics and evolutionary dynamics
approaches to investigate why multiple stable subtypes of SCLC may arise within a single tumor.
I quantify phenotypic transitions within these heterogeneous tumor populations by developing a
novel metric of plasticity and identify subpopulations that may drive resistance to chemotherapy.
Chapter 4 then applies the methods developed in these two chapters to elucidate the role of network
dynamics in a variant mouse model of SCLC and the role of plasticity in evading targeted therapy.
In total, this work uses mathematical modeling and bioinformatic methods to further our
understanding of the relationship between cell identity, system dynamics, and treatment resistance

in SCLC.
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Chapter 2.

Systems-level network modeling of Small Cell Lung Cancer subtypes identifies master
regulators and destabilizers'
2.1. Introduction

A major barrier to effective cancer treatment is the occurrence of heterogeneous cell
subpopulations that arise within a tumor via genetic or non-genetic mechanisms. Clonal evolution
of these subpopulations via plasticity, drug-induced selection, or transdifferentiation allows tumors
to evade treatment and relapse in a therapy-resistant manner. Characterizing cancer
subpopulations, or subtypes, has led to breakthrough targeted treatments that significantly improve
patient outcomes, as in the case of melanoma, breast, and lung cancer (Hauschild et al., 2012;
Robert et al., 2017; Travis et al., 2011). However, approaches to subtype identification suffer from
several limitations, including i) focus on biomarkers, which frequently possess insufficient
resolving power; ii) lack of consideration for the system dynamics of the tumor as a whole; and
ii1) often phenomenological, rather than mechanistic, explanations for subtype sources.

To accelerate progress in cancer subtype identification, we set out to develop a general
systems-level approach that considers underlying molecular mechanisms to generate multiple
stable subtypes within a histological cancer type. We focused on gene regulatory networks (GRN5s)
comprised of key transcription factors (TFs) that could explain the rise, coexistence and possibly
transdifferentiation of subtypes. To enumerate subtypes, identify key regulating TFs, and predict

reprogramming strategies for these subtypes, we established the workflow shown in Figure 2.1.

1 Adapted from Wooten, D. J.*, Groves, S.M.* et al. Systems-level network modeling of Small Cell Lung Cancer
subtypes identifies master regulators and destabilizers. Plos Comput Biol 15, e1007343 (2019). *authors contributed
equally to this work.
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Briefly, we use consensus clustering and weighted gene co-expression network analysis on
transcriptomics data to identify cancer subtypes distinguished by gene expression signatures,
biological ontologies, and drug response. We validate the existence of the subtypes in both human
and mouse tumors using CIBERSORT (Newman et al., 2015) and nearest neighbor analyses and
develop a GRN that can explain the existence of multiple stable subtypes within a tumor. We then
introduce BooleaBayes, a Python-based algorithm to infer partially constrained regulatory
interactions from steady-state gene expression data. Applied to this GRN, BooleaBayes identifies
and ranks master regulators and master destabilizers of each subtype. In a nutshell, starting from
transcriptomics data, the workflow can predict reprogramming strategies to improve the efficacy
of treatment.

We applied this workflow to Small Cell Lung Cancer (SCLC), in which genetic aberrations
cannot fully distinguish subtypes or point toward a targeted therapy (George et al., 2015).
Recently, efforts to stratify patients have led to the recognition of phenotypic heterogeneity within
and between SCLC tumors, raising hopes for more efficient subtype-based treatment strategies.
These observations indicate the existence of a complex landscape of SCLC phenotypes that may
form a tumor microenvironment robust to perturbations and treatment (Lim et al., 2017; Tammela
et al., 2017). However, previous SCLC subtype reports were limited in their ability to
systematically identify subtypes and understand plasticity across them. We hypothesized that our
workflow, by considering the dynamics of underlying GRNs, could make systems-level
predictions that more accurately reflect the occurrence and transdifferentiation of coexisting

subtypes within SCLC tumors.
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Figure 2.1: Workflow of our analysis. We use parallel analyses to identify strategies
to reprogram resistant SCLC subpopulations into sensitive ones. These strategies can
then be tested in vitro and in vivo.

Starting from transcriptomics data from SCLC cell lines, our pipeline identifies four
transcriptional subtypes, and a GRN that describes their dynamics. Three of these correspond to
previously identified subtypes (ASCL1+ NE, a NEURODI1+ NE variant, and a YAP1+ non-NE
variant). The fourth is a previously unreported NE variant (termed NEv2) with reduced sensitivity

to drugs. Both CIBERSORT and single-cell validation reveal that in virtually every human and
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mouse tumor heterogeneity encompasses NEv2, and that all other previously reported subtypes are
represented across tumors. BooleaBayes identifies both master regulators and master destabilizers
for each subtype, opening the way for treatment strategies that may take SCLC subtypes into
account. For instance, we hypothesize that by targeting these master TFs, the NEv2 phenotype

may be destabilized, leading to increased treatment sensitivity of SCLC tumors.

2.2. Results
2.2.1. Consensus clustering uncovers new SCLC variant phenotype

Recently, the occurrence of variant SCLC subtypes has been reported (Mollaoglu et al.,
2017; Sos et al., 2012; Udyavar et al., 2017). Given the translational value of defining subtypes, a
more global approach to comprehensively define SCLC subtypes would be desirable. To this end,
we devised the workflow described in Figure 2.1. First, we applied Consensus Clustering (Monti
et al., 2003) to RNA-seq gene expression data from the 50 SCLC cell lines in the CCLE (Barretina
et al., 2012). Here, the underlying assumption of bulk RNA-seq data is that single cells from each
cell line belong to one cellular state. While this is consistent with our previous findings that SCLC
cell lines resolve into discrete clusters by flow cytometry (Udyavar et al., 2017), future cell-line
analysis at single-cell resolution may refine our results, and it will be interesting to see to what
extent subtype heterogeneity may be reflected within one cell line. We clustered the cell lines using
a k-means method with a Pearson distance metric for k € {2, 20} (Figure 2.2A). Consensus
Clustering is a method in which multiple k-means clustering partitions have been obtained for each
k. Consensus Clustering is then used to determine the consensus (or best) clustering across these
multiple runs of the k-means algorithm, in order to determine the number and stability of clusters

in the data. Using criteria such as the tracking plot and delta area plot (Figure 2.2B), both k = 2
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and k = 4 gave well-defined clusters. Since recent literature suggests that more than two subtypes

are necessary to describe SCLC phenotypic heterogeneity, we selected k = 4 for further analyses.
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Figure 2.2: Consensus clustering and WGCNA of 50 SCLC cell lines reveal four subtypes differentiated by gene modules. A. Consensus
clustering with k = 4 gives most consistent clusters. K = 3 and K = 5 add complexity without a corresponding increase in accuracy. LDA plot
shows separation of 4 clusters, with non-SCLC cell lines falling near non-NE cell lines. B. The delta area plot shows the relative change in the
area under the CDF curve. The largest changes in area occur between k = 2 and k = 4, at which point the relative increase in area becomes
noticeably smaller (from an increase of 0.5 and 0.4 to 0.15). This suggests that k = 4,5, or 6 are the best clustering that maximizes detail (more,
smaller clusters present a more detailed picture than a few large clusters) and minimizes noise (by minimizing average pairwise consensus
values and maximizing extreme pairwise consensus values). Average cluster consensus scores (CCS) across clusters show that k = 4 may be
the best choice because it has the highest average (k = 4 average CCS: 0.848, k = 5 average CCS: 0.814, k = 6 average CCS: 0.762). Tracking
plot shows slight inconsistency for cell lines with k = 3. One of these is assigned to the “light green” cluster in the k = 3 clustering scheme,
whereas when k = 4, it returns to the “light blue” cluster. The others are in the “dark blue” cluster when k = 2 and “light blue” cluster when
k= 3. Thus k = 3 is not a good fit to the data.
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To align the 4-cluster classification (Figure 2.3) with existing literature, we considered well-
studied biomarkers of SCLC heterogeneity across the clusters. Three of the four consensus clusters
could be readily matched to subtypes previously identified with 2 to 5 biomarkers: the canonical
NE subtype (SCLC-A) (Borromeo et al., 2016; Rudin et al., 2019), an NE variant subtype (referred
to here as NEvI, corresponding to SCLC-N in Mollaoglu et al. (2017), and a non-NE variant
subtype (SCLC-Y) (Lim et al., 2017; Poirier et al., 2015). The fourth cluster (referred to here as
NEv2) could not be easily resolved using a few markers. For example, NEv2 may be considered a
tumor propagating cell (TPC, which encompasses the NE, or SCLC-A, subtype) by biomarkers in
Jachan et al (2016), yet the expression of a single biomarker, HES1, would suggest this subtype
falls outside of the NE subtype according to Lim et al (2017). Discrepancies like this drove us to
consider broader patterns of gene expression, rather than a limited number of biomarkers, to

characterize each subtype.
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Figure 2.3: SCLC Biomarkers. Current biomarkers in the field of SCLC are able to distinguish between three of the subtypes;
The fourth subtype, NEV2, is not separable from NE using markers from SCLC literature.

29



A. MODULE GENE EXPRESSION ACROSS SUBTYPES

NON-NE NE-V2 NE-V1 NE
T
Brown
Yellow
Turquoise
Black
Yellow = - Blue
Green
Midnight Blue
Salmon
Red
Turquoise Purple
Pink{ 1
Tan :
= = Light Cyan
Black : - z Magentar :
: = - Grey :
Blue = = = = Green-yellow 1
Midnight = - ' Cyan : FDR-CORRECTED
BlueGreen == Grey60 I SIGNIFICANCE LEVEL
Salmon T
Red == = = 00 25 50 75 100 125 15.0 175
Purple E = -log(p-value)
Pink
LOW  7-Score of Gene Expression HIGH
B. TOTAL PHENOSPACE OF ALL C. PeeNosiome. -
SCLC SUBTYPES STIMULUS 4

RUG CATABOLIC
PROCESS

GREEN
t-SNE 2

401 vik IMMUNE .

w TR — "
METABO‘IJSM‘/B;IO,SYIETHEI'IC PROCESSES . RESPONSE - - TEIN-LIPID
. -‘-:. . 0 - ~COMPLEX ASSEMBLY
. CELL DEATH ",“.:“'-‘GE'NE REGULATION 0w - 0 B » “©
o S " "l‘.CE‘kL CYCLE

. N
SIGNAL TRANSDU.CTLQI‘L

o e “v- - HOMEOSTASIS .. .. NEUROTRANSMITTER
w e ik t “ L SECRETION
Z 0 *E . IMMUN _RESPONSE’/ ON TRANSPORT ; TRANSMISSO! T Sy
(n PRy 3 - ® . -
@ WOUND HEALING ey . i oy . P AN
E SE it e = Sl
e W £ - CELL QRGANIZATION a3 ™
RESPONSE TO A “ G w il o o
S I CELLMOBILITY . / ST e, - o
A STMPES *  NEURONAL DEVELOPMENT LEARNING OR |« %, -
LEARNING A s e AL = MEMORY NEURON DIFFERENTIATION
A o —-30 —-20 -10 10 20 30
ADHESION - [ YNG DEVELOPMENT
g w2
401 EPITHELIAL DEVELOPMENT +SNE 1
' i i i ! y y ai009%9%e
-30 -20 -10 L] 10 20 30 p-value =10

t-SNE 1

Figure 2.4: SCLC subtypes can be distinguished by gene expression patterns. Transcriptional patterns that distinguish the four
subtypes are captured in WGCNA analysis. Gene modules by color show patterns of expression that are consistent across the subtypes.
Only modules that significantly distinguish between the subtypes are shown (ANOVA, FDR-corrected p-value < 0.05). B. SCLC
heterogeneity biological process phenospace. A dissimilarity score between pairs of SCLC-enriched GO terms was calculated using
GoSemSim and used to create a t-SNE projection grouping similar biological processes together. Several distinct clusters of related
processes can be seen. C. Module-specific phenospace. A breakdown of where some of the 11 statistically significant WGCNA modules
fall in the GO space from A. Of particular interest, the green module, which is highly upregulated in the NEv2 phenotype, is enriched
in metabolic ontologies, including drug catabolism and metabolism and xenobotic metabolism. The yellow module is enriched in
canonical neuronal features.

30



2.2.2. SCLC phenotypes are differentially enriched in diverse biological processes, including
drug catabolism and immuno-modulation

To capture global gene expression patterns, we applied Weighted Gene Co-expression
Network Analysis (WGCNA) (Langfelder and Horvath, 2008) to RNA-seq data from CCLE for
multiple SCLC cell lines (See Methods). This analysis revealed 17 groups, or modules, of co-
expressed genes. Module eigengenes could be used to describe trends of gene expression levels.
11 of these 17 groups of co-expressed genes could statistically distinguish between the four
consensus clusters (Figure 2.4A, Kruskal-Wallis, FDR-adjusted p < 0.05). To specify the
biological processes enriched in each of these 11 gene modules, we performed gene ontology (GO)
enrichment analysis using the Consensus Path Database (Kamburov et al., 2013), which resulted
in a combined total of 1,763 statistically enriched biological processes (Figure 2.4B).

In particular, the turquoise, yellow, salmon, and pink modules are enriched for
neuroendocrine differentiation and neurotransmitter secretion and are upregulated in the canonical
NE and NEv1 phenotypes, as quantified by Gene Set Enrichment Analysis (Subramanian et al.,
2005) (Figure 2.4C and 2.5). PNECs, the presumed cell of origin for SCLC, group into
neuroendocrine bodies (NEBs) that are innervated by sensory nerve fibers and secrete
neuropeptides that affect responses in the autonomic and/or central nervous system. This is
consistent with the NE- and NEvl-enriched GO terms “learning or memory” and “chemical
synaptic transmission” (Figure 2.4C). Evidently, such functions may be maintained in NE and
NE-v1 subtypes, as reflected by the frequent occurrence of paraneoplastic syndromes in SCLC
patients (Paraschiv et al., 2015). In contrast, the blue, black, and purple modules, enriched for cell
adhesion and migration processes, are upregulated in the non-NE variant phenotype, in agreement

with the observed adherent culture characteristics of these cell lines (Figure 2.5).

31



Enrichment plot: ME_TURQUOISE

g
s
8
§ os
E
b

NE (p y comelated

Zaro cross a¢ 3475

REST: (nagatively correlsted)
1230 1300

230 3000

Ranked list metric (Signal2Noise)

. 10
Rank in Ordered Dataset

[==Enrichment profile — Hits

NEV1

Enrichment plot: ME_PINK

Ranking metric scores

Enrichment plot: ME_YELLOW

El

]

E

0

@ os

£ oo Zaro cross a1 3475,

H

E 05

B

i <) 'REST' (negatively correlated)
£ o 250  so0 7300 10 300 13000
3 Rank in Ordered Dataset

[ Enrichment profile — Hits. Ranking metric scores|

Enrichment plot: ME_SALMON

Enrichment plot: ME_YELLOW

07
o6 07 N

8 2 os ¢
04 g

: fos fo

Zos £ fos

E £ E

£o2 £ £

: § oz 502
o1 & S

& 01 e,

o0 o0
3 I”|”| |‘H|| Hl“ H” 3 |||”|” ‘ H ’ ‘H” 3 ‘ |‘
i ] 2
2 2 H
5 10 510 § 10
£ o5 2 s £ o5
g Zero cross 37308 oo Zaro cross s 7306 £ Zero cross st 7306
Eos Eos Eos
3 REST: (negatively correlated) g0 REST:(negatively correlated) 3 REST:(negatively correlated)
£ o 2300 00 7500 10000 1250 15000 £ o 2500 5000 7300 10000 12500 15,000 £ o 2300 5000 7300 10000 12300 15,000
8 Rank in Ordered Dataset H Rank in Ordered Dataset a Rank in Ordered Dataset
[=Enrichment profile — Hits Ranking metric scores| [ Enrichment profile — Hits Ranking metric scores| [ Enrichment profile — Hits Ranking metric scores|
Enrichment plot: ME_BROWN Enrichment plot: ME_GREEN Enri plot: ME_| TBLUE
. @ o7
B o7 @ os & o8
) [} &
3 06 sl 1]
g g g™
g o g oa
2 os o -
§ § 03 § o3
gos £ £
2oz go2 g0
& o1 §oal So1
00 o0 o0
3 |HH||H 3 ‘ HI"” ‘ HH‘ 3 |”H H” ’
2 2 2 .
& 29 Nev2 (positively corelated) S 29[ Nev2' (positively correlated) & 29[ Nev2 (positively correlated)
3 1s 8 1s 3 1s
&1 g 10 g 10
g% Zaro crose ¢ 7612 g Zara crose st 7612 g% Zara crose e 7612
§ oo § oo g oo
Eos Eos Eos
= 'REST (negatively correlated) ; SL2 REST" (negatively correlated) ; s19 REST (negatively correlated)
2 o wm sw 7w ww  mio mw ¥ o ow sw 7w w0 uw ww E o mwm sw 7w mw  ue b
8 Rank in Ordered Dataset 3 Rank in Ordered Dataset 8 Rank in Ordered Dataset
[=Enrichment profile — Hits Ranking metric scores| [=Enrichment profile — Hits Ranking metric scores| [=Enrichment profile — Hits. Ranking metric scores|
Enrichment plot: ME_BLUE Enrichment plot: ME_PURPLE Enrichment plot: ME_BLACK
o7
o7
s _ o8 A
T o7 2 3 oe
& Los L
@ o6 os
& £ .. H
g os 8 8 oa
Eos §os §os
£ E £
Lo §o2 502
£ 02 Eoa &oa
01
o0 o0
o0
! - ! ] © —
H 210 g 10
2 3 os 3 os
2 S — g oo T coss steTE0 g oo Tara cos steTEY
5 g -0 g -0s
Elo Elo
£ as 2 s
REST:(nagatively corelated) 3 20 REST (negatively correlated) 3 20 REST:(negatively correlated)
2300 500 7300 10000 12300 15000 = 2300 750 10000 12300 15,000 E 2300 5000 7300 10000 12300 15000
Rank in Ordered Dataset 5 Rank in Ordered Dataset g Rank in Ordered Dataset

[ Enrichment profile — Hits Ranking metric scores| [ Enrichment profile — Hits Ranking metric scores|

[ Enrichment profile — Hits

Figure 2.5: Enrichment of WGCNA gene modules by subtype using GSEA.

Ranking metric scores|

Genes within the brown, midnight blue, and green modules are upregulated in the NEv2
phenotype (Figure 2.4A and 2.5). The brown module is enriched for canonical phenotypic

features of SCLC, particularly cellular secretion and epithelial differentiation, and accordingly is
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also upregulated in the canonical NE subtype. The midnight blue module, enriched in nervous
system processes and lipid metabolism, is highly expressed in the NEv2 cell lines. The green
module is enriched for immune/inflammatory response, wound healing, homeostasis, drug/
xenobiotic metabolism, and cellular response to environmental signals (Figure 2.4C). Enrichment
of these GO terms suggests that NEv2 cells may more easily adapt to external perturbations such
as therapeutic agents, and potentially show higher drug resistance.

To visualize these enriched GO terms in an organized way (Figure 2.4B), we used the
GOSemSim package (Yu et al., 2010) in R to compute a pairwise dissimilarity score, or distance,
between all enriched GO terms (FDR-adjusted p < 0.05 in at least one of the 11 significant
modules). We then projected all significant GO terms into a 2D space by t-distributed stochastic
neighbor embedding (t-SNE) (Van Der Maaten and Hinton, 2008). In this t-SNE projected
phenospace, GO terms that describe semantically similar biological processes are placed close to
one another and grouped into a general biological process. This map allows exploration of
biological processes enriched in individual gene modules or subtypes, and it shows that SCLC
heterogeneity spans biological processes that can largely be grouped as 1) related to neuronal,
endocrine, or epithelial differentiation; 2) metabolism and catabolism; 3) cell-cell adhesion and
mobility; and 4) response to environmental stimuli, including immune and inflammatory
responses. In summary, the phenospace constructed from global gene expression patterns captures
the unique characteristics of each SCLC subtype.

2.2.3. Drug resistance is a feature of the NEv2 subtype

As mentioned previously, the enriched GO terms for drug catabolism and xenobiotic

metabolism in the green module suggest that the NEv2 phenotype may have a higher ability to

metabolize drugs and therefore exhibit decreased sensitivity. To test this possibility, we reanalyzed
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drug responses of SCLC cell lines to a panel of 103 FDA-approved oncology agents and 423
investigational agents in the context of our four-subtype classification (Polley et al., 2016). We

used the Activity Area (AA) metric as a measure of the resultant dose-response curves. The drugs
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Figure 2.6: Differential response of SCLC subtypes to a wide variety of oncology drugs and investigational agents. A. Ranked
sensitivity of subtypes across 526 compounds. NEV2 is least sensitive for over half of the drugs tested. B. No significant differences
can be seen in response to etoposide and platinum-based agents cisplatin and carboplatin, the standard of care for SCLC. C-F.
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were analyzed individually and clustered by common mechanism of action and target type, and
the cell lines were grouped by the four subtypes.

As shown in Figure 2.6A, cross all evaluated drugs, the NEv2 subtype exhibited the most
resistance (54% of drugs showed NEv2 as most resistant). In contrast, both NE and NEv1 exhibited
less resistance (20%), with non-NE exhibiting the least resistance (6%). Taken together, these
results confirm that based on the prediction from the gene-regulation based classification, the
subtypes exhibit different levels of resistance, and that high resistance is a feature of the NEv2
subtype (Figure 2.4C), even though the subtypes do not show differential response to the standard
of care (etoposide and platinum-based agents, Figure 2.6B). In particular, mTOR inhibitors are a
class of compounds to which NEv2 was significantly more resistant (Figure 2.6C). PI3K pathway
mutations have previously been implicated as oncogenic targets for SCLC, as about a third of
patients show genetic alterations in this pathway (Umemura et al., 2014). Among the four
subtypes, NEv2 is also the least sensitive to AURKA, B, and C inhibitors (AURKA shown);
TOPO?2 inhibitors; and HSP90 inhibitors (Figure 2.6D-F). These results have implications for
interpreting expected or observed treatment response with respect to tumor heterogeneity in
individual patients.

2.2.4. Neuroendocrine variants are represented in mouse and human SCLC tumors

Next, we investigated whether the four subtypes we detected in human SCLC cell lines are
also present in tumors. We used CIBERSORT (Newman et al., 2015) to generate gene signatures
for each of the 4 subtypes. These gene signatures could then deconvolve RNA-seq measurements
on 81 SCLC tumors from George et al. (2015) to specify the relative prevalence of each subtype
within a single tumor. Consistent with studies of intra-tumoral heterogeneity in other types of

cancer, such as breast cancer (Yeo and Guan, 2017), CIBERSORT predicted that a majority of
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tumors were comprised of all four subtype signatures, in varying proportions across tumor samples
(Figure 2.7A). We then analyzed the patient/cell-derived xenograft models (PDXs/CDXs)
developed by Drapkin et al. (2018), and the tumors also showed vast differences across samples
(Figure 2.7B). Some of these samples were taken across multiple time points from the same
patient, thus enabling us to test both tumor composition and dynamic changes in tumor
subpopulations. Three samples taken from patient MGH1514, before and after treatment, indicated
a change in tumor composition in favor of the NE phenotype. In contrast, patient MGH1518
showed a reduction of NEvI and an increase in NEv2 after treatment. Similar observations of
phenotypic changes over treatment time courses, made in breast cancer patients (Yeo and Guan,
2017) have recently been explained in the context of a mathematical model of epithelial to
mesenchymal transition (EMT) (Bocci et al., 2019). It is possible that the tumor composition
changes we observe may also be explained by molecular level and/or cell population-level models
(Harris et al., 2019). Overall, the high variance in proportions of each subtype suggests a high
degree of intertumoral, as well as intratumoral, dynamic heterogeneity and plasticity.

We also investigated phenotypic patterns in mouse tumors from two different sources to
determine whether human SCLC subtype signatures are conserved across species (see Methods)
(Mollaoglu et al., 2017; Schaffer et al., 2010). The first mouse model is a triple knockout (Rbl1,
Tp53, and P130, conditionally deleted in lung cells via a Cre-Lox system, TKO), and these tumors
were primarily composed of the NE and NEv2 subtypes (Figure 2.7Ci). Of note is the lower
percentage of non-NE cells found in each tumor in Figure 2.7Ci; we suspect this is due to a
filtering step before sequencing (see Methods), as the non-NE subtype signature is more similar to
tumor-associated immune cells in an unfiltered tumor population. The second mouse model shown

in Figure 2.7Cii was generated with Myc overexpression (double knockout of Rb1 and Tp53, and
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Figure 2.7: Computational evidence for existence of subtypes in human and mouse tumors. A. Absolute proportion of each
subtype in 81 human tumors as determined by CIBERSORT. The 81 tumors can then be sorted by hierarchical clustering, which
finds four main groups of subtype patterns across tumors. B. Similar analysis in mouse PDX/CDX tumors from Drapkin et al.
(2018). Ci. TKO (Rb1, Tp53, P130 floxed) mouse tumors showing a high proportion of NE and NEv2 subtypes. C. Ci. As described
in Mollaoglu et al. (2017), these mouse tumors were generated by crossing Rb1 fl/fl Trp53 fl/fl (RP) animals to knockin Lox-Stop-
Lox (LSL)-MycT58A4IRES-Luciferase mice. These Rb1 fl/fl Trp53 fl/fl Myc LSL/LSL (RPM) mice have overexpressed Myc and have
been shown to be driven towards a variant phenotype, which is corroborated in this CIBERSORT analysis. It is clear that RPM
mice contain greater proportions of NEvl compared to the tumors in Ci., which seems to correspond to the Aurora-Kinase-inhibitor-
sensitive, Myc-high phenotype published by Mollaoglu et al. D. -SNE plots of single cell RNA-seq from two TKO mouse tumors.
The k-nearest neighbors (kNN) with k = 10 was computed for each mouse cell to predict subtypes of individual cell using signature
genes of each subtype. If at least 8 of the 10 nearest human cell line neighbors for a mouse cell were of one subtype, the cell was
assigned that subtype. Large amounts of intratumoral and intertumoral heterogeneity are evident.

overexpression of Myc) as reported previously (Mollaoglu et al., 2017). Using the subtype gene-
signatures developed in the previous sections, the Myc-high tumors showed a clear increase in the
percentage of NEvl detected compared to the triple knockout tumors in Figure 2.7Ci,
corroborating the correlation between NEv1 and a previously described Myc -high mouse tumor
subtype.

Lastly, we analyzed two primary TKO mouse tumors by single-cell RNA-seq (scRNA-seq).
For each mouse single-cell transcriptome, we computed the k = 10 nearest human cell line
neighbors (kNN with k = 10) and assigned each mouse cell to a subtype based on its neighbors
(Methods). As shown in Figure 2.7D, a large portion of the cells from each tumor correspond to
one of the four human subtypes. A small non-NE population can be seen in both tumors, and about
a third of the assigned cells correspond to the NE subtype (Figure 2.7D). Tumor 1 has a large
proportion of the NEv2 subtype, corresponding to the tumors in Figure 2.7Ci. In contrast, tumor
2 has a large NEv1 subpopulation, similar to the tumors in Figure 2.7Cii. Taken together, these
results indicate that subtypes in SCLC tumors are conserved across species and can be categorized
either by CIBERSORT analysis of bulk transcriptomics data or by kNN analysis of sScRNA-seq
data.
2.2.5. Genetic mutations alone cannot account for four SCLC phenotypes

The evidence above for intratumoral and intertumoral heterogeneity led us to investigate

how the subtypes arise and coexist in both human and mouse SCLC tumors. To determine whether
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mutations could be responsible for defining the four SCLC subtypes, we analyzed genomic data
in the Broad Cancer Dependency Map (Stransky et al., 2015) We subsetted these data to the 50
SCLC cell lines with matching CCLE RNA-seq data, and using MutSigCV (Lawrence et al.,
2013), we found 29 genes (Figure 2.8) mutated more often than expected by chance (using a
significance cutoff of g-value < 0.5 to be as inclusive as possible). However, none of these genes
were able to separate the four subtypes by mutational status alone (Figure 2.8), suggesting

alternative sources of heterogeneity.

SIGNIFICANT MUTATIONS IN HUMAN SCLC CELL LINES
NE-V2 NE-V1 NE NON-NE

J De Novo Start (Out of Frame)
|_] Frame Shift Deletion
|| Frame Shift Insertion
In frame Deletion
L] Missense Mutation
Nonsense Mutation
Silent
L] Splice Slte

Figure 2.8: Significant mutations across subtypes. Significantly mutated genes across 50 SCLC cell lines, as
determined by MutSigCV, ordered by significance. As expected, significant mutations were found in both the Rb1 and
Tp53 genes. Inspection by eye shows that no significant mutations can distinguish completely between two or more
phenotypes. This suggests an alternate source of heterogeneity, such as transcriptional regulation. Significance cut-
off: q (p-value corrected for multiple comparisons) < 0.25. g < 0.5 shown.
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2.2.6. Transcription factor network defines SCLC phenotypic heterogeneity and reveals master
regulators

To investigate these alternative sources of heterogeneity, we hypothesized that different
SCLC subtypes emerge from the dynamics of an underlying TF network. We previously identified
a TF network that explained NE and non-NE SCLC subtype heterogeneity (Udyavar et al., 2017).
That analysis suggested the existence of additional SCLC subtypes but did not specify
corresponding attractors (Udyavar et al., 2017). Here, we performed an expanded TF network
analysis to find stable attractors for all four SCLC subtypes. As an initial step, we identified
putative master TF regulators within each of the 11 WGCNA modules (Figure 2.4B) based on
differential expression. Regulatory interactions between these TFs were extracted from public
databases, including ChEA, TRANSFAC, JASPAR, and ENCODE, based on evidence of TF-
DNA binding sites in the promoter region of a target TF, as well as several sources from the
literature. This updated network largely overlaps with, but contains several refinements compared
to our previous report (Udyavar et al., 2017), as detailed in Figure 2.9A.

Following the procedure we previously used (Udyavar et al., 2017)., we simulated the
network as a dynamic Boolean model. In a Boolean model, the state of the network at a given time,
t, is defined by the value of all TFs, each of which can be either ON or OFF. Each TF can be
updated to determine its value at time t + 1 based on a Boolean rule, or logical statement, that
represents how that TF is regulated by its regulators. For example, if At+1 = Bt or Ct, and if A(t)
= OFF, B(t) = ON, and C(t) = OFF, then updating A will give A(t+ 1) = ON or OFF = ON, so A
turns ON. Boolean models are powerful tools to investigate the regulation of attractors
corresponding to stable subtypes or oscillators of biological systems. Because precise update rules
are often not known, one of two approximations are commonly applied: inhibitory dominant

(Albert et al., 2008), or majority rules (Albert et al., 2008; Font-Clos et al., 2018). Inhibitory
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dominant rules assert that the target node turns ON only when at least one activator is ON and all
inhibitors are OFF, otherwise the target turns OFF. Majority rules, conversely, assert that the target
node turns ON as long as it has more activators ON than inhibitors, otherwise the target turns OFF.
Using the network in Figure 2.9A, neither of these approximations stabilized attractors
corresponding to either the NEvl or NEv2 phenotypes, suggesting that the regulatory rules
governing stability of these phenotypes are more complex.

To address this complexity, we developed BooleaBayes, a method to infer logical
relationships in gene regulatory networks (Figure 2.9B) using gene expression data, by enhancing
confidence in Boolean rules via a Bayes-like adjustment approach (see Methods). BooleaBayes
leverages sparsity (the in-degree of any node is much less than the total number of nodes) in the
underlying regulatory network structure, allowing it to make partially constrained predictions
about regulatory dynamics, even in regions of state space that are not represented in the data. An
advantage of this method is that its predictions are intrinsic to the parts of the network in which
we are most confident, based only on relationships between each TF and its parent nodes. See
Methods for more details about the BooleaBayes algorithm.

BooleaBayes rules, like the Boolean example above, describe when a target node will be ON
or OFF, given that state of all its regulators. Unlike the Boolean example, BooleaBayes rules are
probabilistic, accounting for the (un)certainty with which we can state a target node will turn ON
or OFF. For instance, values of 0 means it is certain the target node will turn OFF, 1 means it is
certain the target node will turn ON, 0.5 means it is equally likely the target node will turn ON or
OFF. BooleaBayes rules were derived for each node of the SCLC TF network in Figure 2.9A. As
an example, Figure 2.9B shows the rule fitting for one node, ASCL1. Cross-validation suggested

BooleaBayes did not overfit the data. We simulated the dynamics of the Boolean network using a
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general-asynchronous update scheme (Albert et al., 2008). This formed a state transition graph
(STG), in which each state is defined by a vector of TF ON/OFF expression values.

Initial states for simulation were chosen near where we expected the four subtypes would
be, by discretizing the average TF expression for each of the four SCLC subtypes. We exhaustively
searched the neighborhood of each of these starting states out to a distance of 6 TF changes in the
STG (Algorithm 1). Within these neighborhoods, we found 10 states for which all 27 TFs had at
least a 50% chance of remaining unchanged. Transitions into these states are therefore more likely
and escapes less likely. Thus, these 10 states represent semi-stable states of the network dynamics
(Figure 2.9C), which we refer to as pseudo-attractors. We also searched within neighborhoods of
over 200 random initial states (allowing us to search over 200,000 total additional states) and found
no additional pseudo-attractors.

These 10 pseudo-attractor states each correlated with, and could be assigned to, one of the 4
SCLC subtypes (stars in Figure 2.9C); this indicates the updated network structure and
BooleaBayes rules are sufficient to capture stability of the four SCLC phenotypes. Having
identified network dynamics that closely match experimental observations, we are now in a
position to perform in silico (de)stabilizing perturbations and predict the resulting trajectory

through the STG for each subtype. We do so in the next section.

Figure 2.9: TF network simulations reproduce subtypes as attractors. (Next page) A. Regulatory network of differentially
expressed TFs from each of the 11 co-expressed gene modules in Figure 2.4. Colors indicate which phenotype each TF is
upregulated in. Red edges indicate inhibition (on average), and green activation (on average). B. Probabilistic Boolean rule fits
for ASCLI. The target gene is a function of all the genes along the binary tree at the top, while expression of the target is shown
on the left. Each row represents one cell line, each column represents one possible input state, and the bottom shows the inferred
function F for every possible input state. Color ranges from 0 = blue (highly confident the TF is off), to 0.5 = white, to 1 = red
(highly confident the TF is on). Rows are organized by subtype (top to bottom: NE, NEvI, NEv2, non-NE). C. Attractors found
with asynchronous updates of Boolean network. 10 attractors were found, and each correlates highly with one of the four defined
subtypes (represented by stars). Hamming distance between intra-subtype attractors and inter-subtype attractors are shown. The
average distance between intra-subtype attractors was around 2.5, while the average distance between subtype attractors was
around 16, signifying that the variation between subtypes is much greater that that within a single subtype. Specifics of the
probabilistic simulation are described in Results.
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2.2.7. In silico SCLC network perturbations identify master regulators and master destabilizers of
SCLC phenotypes

To quantify the baseline stability of the steady states in Figure 2.9C, we performed random
walks (algorithm described in Methods) starting from each of the 10 pseudo-attractors. We counted
how many steps were required to reach a state more than 4 TFs away (Hamming distance greater
than 4) from the starting state (Figure 2.10, Algorithm 2). We chose a 4-TF neighborhood to
account for the models’ greatest intra-subtype attractor variability (Figure 2.9C, Hamming
Distance), and therefore movement within the 4-TF neighborhood of a starting state is still
considered reflective of that subtype. For each simulation, one TF in the network was either
activated (held constant at TF = 1) or silenced (TF = 0) in each of the stable states (Figure 2.9C).
1000 random walks were executed for each condition. The number of steps in each random walk
required to leave the 4-TF neighborhood was recorded in a histogram (Figure 2.10A). We defined
(de)stabilization as the percent decrease or increase of the average number of steps under
perturbation relative to the unperturbed reference (Figure 2.10B). For example, either activation
of GATA4 or silencing FOXA1 are predicted to destabilize both the NE and NEv2 subtypes
(Figure 2.10B-C).

TFs that, when silenced, cause destabilization greater than 20% (score < -0.2) of a specific
subtype were considered master regulators of that subtype. They include REST (non-NE) (in
agreement with (Lim et al., 2017)), TEAD4 (non-NE), ISL1 (NE), and TCF4 (NEv1). TEAD4 is
a downstream mediator of YAPI action, which has been previously identified as a possible
phenotypic modulator in a subset of SCLC cell lines (Horie et al., 2016); our analyses suggest that
expression of TEAD4 may be able to stabilize this phenotype. Simulations of the network also

identified the novel NEv2 master regulators, ELF3 and NROB1.
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Figure 2.10: Destabilization of subtypes by perturbation to network. A. Random walks starting from the attractors in Figure 2.9C will
eventually leave the start state due to uncertainty in the Boolean rules. Control histogram shows how many random steps are required to
reach a state with a Hamming distance < 4 under the network’s natural dynamics. The knockdowns and activations shown here hold
expression of the perturbed gene OFF or ON in an attempt to destabilize the start state, such that the random walk leaves the neighborhood
sooner. A shift to the left in the perturbed distribution signifies that the perturbation “pushed” the simulated cell out of the 4-TF
neighborhood more quickly, and the perturbation thus “destabilized” the subtype represented by the start state. This indeed occurs for
several perturbations, shown for NE, NEvi, NEv2, and non-NE starting states. Dotted line shows mean for each histogram, which is used
to calculate the change in average number of steps under perturbation. B. Ranking of phenotype stabilization of NEv2 by TF activation
and knockdown. The percent change of stability measures the percent change in the average number of steps needed to leave the
neighborhood of the stable states. Negative stabilization scores indicate destabilizing perturbations, while positive indicates increasing
stability. Results are shown for 1000 iterations starting from NEv2. Dotted line at y = —0.2 signifies the cutoff for “destabilizing”
perturbations shown in C. C. A Venn diagram demonstrating overlap of destabilization strategies. A single activation (green text) or
knockdown (red text) can sometimes destabilize multiple phenotypes.
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Our network simulations further identified TFs that can be considered master “destabilizers”,
i.e., activation of these TFs destabilizes a specific phenotype by at least 20%. For instance,
activation of ELF3 is predicted to destabilize non-NE, while activation of NROB1 would
destabilize both non-NE and NE subtypes. Simulations identified a single master destabilizer for
NEv2, the TF TCF3 (Figure 2.10C). Taken together, our pipeline, which includes subtype
identification, drug response analysis, and network simulations, suggests possible therapeutic
perturbations that could shift the phenotypic landscape of SCLC into a more sensitive state for

treatment.

2.3. Discussion

We report a systems approach to understanding SCLC heterogeneity that integrates
transcriptional, mutational, and drug-response data. Our findings culminate in discrimination and
mechanistic insight into the four SCLC subtypes shown in Table 1: NE, non-NE, NEv1, and NEv2.
Within the context of the broader literature on SCLC heterogeneity, we showed that NE, non-NE,
and NEv1 correspond to several subtypes that have been previously reported based on a few
markers—more specifically, SCLC-A, SCLC-Y, and SCLC-N, respectively (Rudin et al., 2019).
Significantly, we find that one (NEv2) has not been described previously and is nearly
indistinguishable from NE based on currently used markers of SCLC heterogeneity. Because this
subtype has high expression of ASCL1, it would be SCLC-A2 in the nomenclature used in a recent
review (Rudin et al., 2019).

Tumor deconvolution by CIBERSORT and scRNA-seq data indicate that a large proportion
of human and mouse tumors comprise more than one subtype (Figure 2.7). While MutSigCV

mutational analysis did not find any significant differences in mutated genes between subtypes
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(Figure 2.8) we cannot rule them out, and future studies may uncover genomic mechanisms
interfacing with the epigenetic heterogeneity reported here. Existing examples of epigenetic
intratumoral heterogeneity are often framed in the context of transitions between epithelial and
mesenchymal differentiation states (Bocci et al., 2019). Mechanisms underlying SCLC
differentiation heterogeneity remain to be defined, and they may include functional states of
PNECs, distinct cells of origin, or response to microenvironmental factors. It remains to be seen
whether changes in tumor composition after treatment (Figure 2.6 and 2.7) are due to phenotypic
transitions, selection, or both.

A drug screen across a broad range of compounds indicated that the NEv2 subtype is more
resistant than the others, especially in response to AURK and mTOR inhibitors. This is reminiscent
of a new hybrid EMT phenotype recently identified as more aggressive and drug-resistant than
other phenotypes (Jolly et al., 2018; Kroger et al., 2019; Lu et al., 2013). More broadly, recent
reviews have suggested that both genetic mutations and epigenetic regulators such as histone
demethylases may affect intratumoral heterogeneity and modulate therapeutic response (Hinohara
and Polyak, 2019). Additionally, non-genetic processes such as phenotypic plasticity and
stochastic cell-to-cell variability may enable tumor cells to evade therapy and give rise to drug-
tolerant persisters (Jolly et al., 2018; Sharma et al., 2010). Our findings of differential drug
response across subtypes corroborate the significance of these reports. In vivo verification of
NEV2’s drug-resistant properties in mouse and human tumors will be an important next step. Along
these lines, it is tempting to speculate that the increase of the NEv2 signature in patient MGH1518
after drug treatment (Figure 2.7) may be responsible for acquired drug resistance in this patient.
However, this study was underpowered for our analyses, and more experimental data will be

necessary to strengthen this conclusion.
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A significant advance of our work is the introduction of BooleaBayes, which we developed
to infer mechanistic insights into the regulation of the heterogenecous SCLC subtypes. By
considering the distinct subtype clusters as attractors of a gene regulatory network, BooleaBayes
infers partially constrained mechanistic models. A key benefit of this method is that it does not
overfit data: predictions are based only on parts of the network for which available data can
constrain the dynamics, while states that lack constraining data diffuse randomly. With this
method, we were able to recapitulate known master regulators of SCLC heterogeneity, as well as
identify novel ones such as ISL1 (NE) and TEAD4 (non-NE). Additionally, we predict ELF3 and
NROBI1 to be master regulators of the NEv2 phenotype. Furthermore, we introduce the label of
“master destabilizers” to describe TFs whose activation will destabilize a phenotype. Our method
gives a systematic way to rank perturbations that may destabilize a resistant phenotype. We
emphasize that BooleaBayes provides an adaptive roadmap to systematically walk the circle from
prediction to experimental validation and back. Thus, a prediction from BooleaBayes about
stabilizers can be experimentally tested, and the outcome will inform a new datapoint to further
constrain the BooleaBayes model to refine predictions. For instance, if cells become stuck in a
previously unknown partially reprogrammed attractor (Lang et al., 2014), expression data from
these cells may be added to constrain BooleaBayes in a region where no data previously existed.
In ongoing work, we are validating these predictions experimentally. We propose that with
BooleaBayes, our approach for identifying master TFs could be applicable to other systems,
including other cancer types or transcriptionally-regulated diseases. This approach parallels other
modeling techniques to identify phenotypic stability factors, such as recent bifurcation analysis on

an EMT network (Hong et al., 2015; Jia et al., 2015).
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While many of the previously reported subtypes of SCLC fit into our framework, a few are
noticeably absent and will require further study. The vasculogenic subtype of SCLC described by
Williamson et al. (2016) did not emerge from our analysis. We speculate that this may be due to
the rarity and/or instability of this CTC-derived phenotype among the available SCLC cell lines.
Denny and Yang et al. (2016) have previously reported that Nfib amplification promotes
metastasis; however, our clusters do not correlate with the location of the tumor sample from which
each cell line was derived (e.g., primary vs metastatic, S1 Table). Poirier et al., using a similar
clustering approach to ours, identified highly methylated SCLC subtypes (M1 and M2) (Poirier et
al., 2015), and the correspondence of these subtypes with the ones described here is intriguing and
remains to be defined. Finally, Huang et al. (2018) recently reported an SCLC subtype defined by
the expression of POU2F3. In our data, POU2F3 was highly expressed in only four cell lines and
was placed into a small (328 genes, green-yellow) module, and therefore represented only a small
signal in our data. Overall, future studies with additional cell line and/or mouse data may be used
to further investigate these different subtypes, underscoring that the delineation of four subtypes
here does not preclude the existence of others.

To identify subtype clusters and BooleaBayes rules, we rely on the underlying assumption
of bulk RNA-seq data that single-cells from each cell line belong to one cellular state. While this
is consistent with our previous findings that SCLC cell lines resolve into discrete clusters by flow
cytometry (Udyavar et al., 2017), future cell-line analysis at single-cell resolution may refine our
results, and it will be interesting to see to what extent subtype heterogeneity may be reflected
within one cell line.

An advantage of our analyses is that each subtype is defined by distinct co-expressed gene

programs, rather than by the expression of one or few markers, which has been customary in the
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field but has limited ability to discriminate between phenotypes (Figure 2.3). In addition, these
modules participate in unique biological processes (e.g., as identified by GO), such that the
systems-level approach presented here may provide a comprehensive framework to understand the
regulation and functional consequences of SCLC heterogeneity in a tumor. This understanding can
be actionable since SCLC subtypes show differential drug sensitivity; for example, our analyses
in this paper support the hypothesis that NEv2 may be a drug-resistant phenotype of SCLC. We
propose that identification of drugs targeting the NEv2 subtype, or perturbagens that reprogram it

toward less recalcitrant states, may lead to improved treatment outcomes for SCLC patients.

2.4. Materials and Methods
2.4.1. Data

Human SCLC cell line data was taken from the Broad Institute’s CCLE RNA-seq expression
data (version from February 14, 2018) at https://portals.broadinstitute.org/ccle/data. 81 human
tumors were obtained from George et al. dataset, courtesy of R.K. Thomas (George et al., 2015).
The Myc-high mouse data set (Mollaoglu et al., 2017) was obtained from the NCBI GEO deposited
at GSE89660. PDX/CDX mouse data (Drapkin et al., 2018) was obtained from the NCBI GEO
deposited at GSE110853. Data from the CCLE was subsetted to only include SCLC cell lines (50).
Features with consistently low read counts (< 10 in all samples) and non-protein-coding genes
were removed. All expression data was then converted to TPM units and loglp normalized by

dataset.
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2.4.2. Clustering and WGCNA

We applied Consensus Clustering to RNA-seq gene expression data from the 50 SCLC cell
lines in the Cancer Cell Line Encyclopedia (CCLE) using the ConsensusClusterPlus R package
(Wilkerson and Hayes, 2010). Gene expression (TPM) was median-centered prior to clustering,
and we clustered the cell lines using a k-means method with a Pearson distance metric for k € {2,
12}. Other parameters were set as follows: reps = 1000, pltem = 0.8, pFeature = 0.8, seed = 1. Best
k value was chosen heuristically based on the cumulative distributive function plot, tracking plot,
delta area plot, and consensus scores. To identify gene programs driving the distinction between
the four SCLC phenotypic clusters, we performed weighted gene co-expression network analysis
(WGCNA) on the same RNA-seq data. The softPower threshold was chosen as 12 to generate a
signed adjacency matrix from gene expression. A topological overlap matrix (TOM) was created
using this adjacency matrix as input. Hierarchical clustering on 1-TOM using method = ‘average,’
and the function cutTreeDynamic was used to find modules with parameters: deepSplit = 2,
pamRespectsDendro = TRUE, minClusterSize = 100. These settings were chosen based on an
analysis of module stability and robustness. We then computed an ANOVA comparing the four
subtypes for each module. 11 out of 18 modules were able to statistically distinguish between the

four clusters with an FDR-adjusted p-value < 0.05.

2.4.3. Gene ontology enrichment analysis

We ran a gene ontology (GO) enrichment analysis on each module that was significantly
able to distinguish the phenotypes (11 total). The terms that were significantly enriched in at least
one module were culminated into a general list of terms enriched in SCLC, which had 1763 terms.

To visualize these terms, we computed a distance matrix between pairs of GO terms using
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GoSemSim (Yu et al., 2010) and used this matrix to project the terms into a low dimensional space
using t-SNE. t-SNE is a popular method that computes a low-dimensional embedding of data
points and seeks to preserve the high-dimensional distance between points in the low-dimensional

space.

2.4.4. Drug sensitivity analysis

Our drug sensitivity analysis used the freely available drug screen data from Polley et al.
(2016). This screen included 103 Food and Drug Administration-approved oncology agents and
423 investigational agents on 63 human SCLC cell lines and 3 NSCLC lines. We subsetted the
data to the 50 CCLE cell lines used for our previous analyses that had defined phenotypes
according to Consensus Clustering (above). As described in Polley et al. (2016), “the compounds
were screened in triplicate at nine concentrations with a 96-hour exposure time using an ATP Lite
endpoint.” Curve fitting, statistical analysis, and plotting was done by Thunor Web, a web
application for managing, visualizing and analyzing high throughput screen (HTS) data developed
by our lab at Vanderbilt University (Lubbock et al., 2021). To fit a dose response curve for each
drug and cell line pair, we fit percent viability data from the screen to a three-parameter log-logistic
model. The three parameters are Emax, EC50, and the Hill coefficient, where each coefficient is
constrained to reasonable ranges (Emax is constrained to be between 0 and 1, and the Hill
coefficient (slope) is constrained to be non-negative.) Activity area (AA) was calculated as
described in Harris et al. (2016). Briefly, AA is the area (on a log-transformed x-axis) between y
= 1 (no response) and linear extrapolations connecting the average measured response at each

concentration. A larger activity area indicates greater drug sensitivity, characterized either by
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greater potency or greater efficacy, or both. By segregating the cell lines by subtype, we were able

to evaluate the relationship between drug response and subtype.

2.4.5. CIBERSORT

CIBERSORT is a computational inference tool developed by Newman et al. at Stanford
University [4]. We utilized the interactive user interface of CIBERSORT Jar Version 1.06 at
https://cibersort.stanford.edu/runcibersort.php. Gene signatures were automatically determined by
the software from a provided sample file with a matching phenotype class file. For this sample file
and class file, the RNA-seq data from 50 human SCLC cell lines were inputted with their
consensus clustering class labels. For each run, 500 permutations were performed. Relative and
absolute modes were run together, with quantile normalization disabled for RNA-seq data, kappa
=999, g-value cut-off = 0.3, and 50-150 barcode genes considered when building the signature

matrix.

2.4.6. Single cell RNA sequencing of TKO SCLC tumors

The Tp53, Rbl and pl30 triple-knockout (TKO) SCLC mouse model with the
Rosa26membrane-Tomato/membrane-GFP (Rosa26mT/mG) reporter allele has been described
(Denny and Yang et al., 2016). Tumors were induced in 8-weeks old TKO; Rosa26mT/mG mice
by intratracheal administration of 4x107 PFU of Adeno-CMV-Cre (Baylor College of Medicine,
Houston, TX). 7 months after tumor induction, single tumors (one tumor each from two mice)
were dissected from the lungs and digested to obtain single cells for FACS as previously described
[10, 24]. DAPI-negative live cells were sorted using a 100 um nozzle on a BD FACSAria II,

spundown and resuspended in PBS with 10% bovine growth serum (Fisher Scientific) at a
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concentration of 1000 cells/pl. Single-cell capture and library generation was performed using the
Chromium Single Cell Controller (10x Genomics) and sequencing was performed using the

NextSeq High-output kit (Illumina).

2.4.7. Single-cell analysis

Cells with < 500 detected genes per cell or with < 10% of transcripts corresponding to
mitochondria-encoded genes were removed. Low abundance genes that were detected in less than
10 cells were excluded. Each cell was normalized to a total of 10,000 UMI counts and
log2transformed after the addition of 1. Top 1000 highly variable genes were selected, and clusters
of cells were identified by the shared nearest neighbor modularity optimization based on the top
10 PCs using the highly variable genes and visualized by t-SNE in R package Seurat [25]. The k-
nearest neighbors (kNN) with k = 10 of human cell lines was detected for each mouse cell to
predict subtypes of the individual cell based on the signature genes of each subtype. If at least 80%
nearest human cell line neighbors for a mouse cell belong to one subtype, the mouse cell was

assigned to that subtype. Otherwise, the subtype was undetermined (not assigned).

2.4.8. Genomic analysis

Mutational Analysis was performed by MutSigCV V1.2 from the Broad Institute [26].
First, a dataset of merged mutation calls (including coding region, germline filtered) from the
Broad Cancer Dependency Map [27] was subsetted to only include SCLC cell lines. Background
mutation rates were estimated for each gene-category combination based on the observed silent
mutations for the gene and non-coding mutations in the surrounding regions. Using a model based

on these background mutation rates, significance levels of mutation were determined by comparing
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the observed mutations in a gene to the expected counts based on the model. MutSigCV was run
on the GenePattern server using this mutation table, the territory file for the reference human
exome provided for the coverage table file, the default covariate table file (gene.covariates.txt),
and the sample dictionary (mutation_type dictionary_file.txt). Only genes with an FDR-corrected

q-value < 0.25 were considered significant.

2.4.9. Gene regulatory network construction

Transcription factors from significantly differentiating gene modules were used as input to
network structure construction. A list of connections between these TFs was curated from the
literature and added as edges between the TF nodes. The ChEA database of ChIP-seq-derived
interactions [28] was queried to add additional connections between TFs that may not have been
found in the literature. Our edge list thus comprises the literature-based connections that are
verified from ChEA, and additional connections from the ChEA database directly. The network

was built using NetworkX software (Hagberg et al., 2008).

2.4.10. BooleaBayes inference of logical relationships in the TF network
A Boolean function of N input variables is a function F: {0,1}N — {0,1}. The domain of

F is a finite set with 2N elements, and therefore F is completely specified by a 2N dimensional

vector in the space {0,1}2N in which each component of the vector corresponds to the output of F
for one possible input. In general, knowledge of the steady states of F is unlikely to be sufficient
to fully constrain all 2N components of the vector describing F. BooleaBayes is a practical approach
that constrains F in the neighborhood of stable fixed points based on steady-state gene expression

data. In practice, we let each component of the vector be a continuous real-value number vi €[0,1]
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reflecting our confidence in the output of F, based on available constraints. Components of F that
are near 0.5 will indicate uncertainty about whether the output should be 0 or 1, given the available
constraining data.

Given M observations (in our case, each observation is a measurement of gene expression

of the N regulator TFs and the target TF in M = 50 cell lines), we want to compute this vector (17)
describing a probabilistic Boolean function F of N variables. First, we organize the input-output

relationship as a binary tree with N layers leading to the 2N leaves, each of which corresponds to a
component of vector V. For instance, given two regulators A and B (N = 2), the leaves of the binary
tree correspond to the probabilities that (A A B), (A A B), (A A B), and (A A B). Collectively, the
observations define an M XN matrix R = [ﬁl, Rs,..., ﬁN] quantifying the input regulator
variables (columns) for each observation (rows), as well as an M dimensional vector T =

[t1, t2,..., tm] quantifying the output variable. A Gaussian mixed model is then used to transform
the columns of R (regulator variables) and the vector T into probabilities R and T’ of the variables
being OFF or ON in each observation (row).

Let P](ﬁ’l) be a function that quantifies the probability that the input variables of the i**
observation belong to the j” leaf of the binary tree. For instance, using the example above, the
second leaf of the binary tree is (A4 A B). Therefore,P;,_, (4, B) = (1 — A) - B. Note that by this
definition, 21221 P](ﬁ ’i) = 1. Using this, we define an M x 2N weight matrix W = wij as:

wi; = P (R @1
that describes how much the i observation constrains the j component of V. Additionally,
to avoid overfitting under-determined leaves, we define the uncertainty U= [ug, uz, ..., u,n] of

each leaf:
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=1 . 2.2
u =1 ier{rllfl..)l(vl}(wl’]) (2.2)

From these, we then define the vector 4 describing function F as:

M
i=1 t,i ' Wi,j +0.5- u]

M
i=1 Wi,j + u]

(2.3)

Thus, each component of V is the average of the output target variable T weighted by W,

with an additional uncertainty term U to avoid overfitting. For leaves j of the binary tree that are
poorly constrained by any of the observables, vj= 0.5, indicating maximal uncertainty in the output
of F at those leaves. Uncertainty of a leaf j also arises when observations i with large weight wi;

have inconsistent values for t'j, such as if t' =0 and t>= 1.

2.4.11. BooleaBayes network simulations

As input to the BooleaBayes simulations, we know the network structure defining
regulatory relationships as described above, and regulatory rules (from BooleaBayes algorithm for
rule fitting, see above). We first pick a random initial state by choosing a vector V = [vi, va, . . .,
vg], where g is the number of genes in the network. We initialize each v; in this vector to be 0
(OFF) or 1 (ON). For in silico perturbation experiments, this initial state is be chosen as one of the

pseudo-attractors corresponding to a specific subtype. We then randomly pick one transcription

factor x (where each gene has probability é of getting picked) to update.

Using the rule for x given by the rule fitting method above, find the column that
corresponds to the current state (V) of the parent genes (pa(x)) of x (in other words, find the column
corresponding to (V[pa(x)]). This column is defined by the state of the parent nodes of x, and it
has some probability associated with it for how likely it is to turn on x when in the state V[pa(x)].

In Results section Transcription factor network defines SCLC phenotypic heterogeneity and
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reveals master regulators, this probability is visualized as a color (blue to red) at the bottom of the
figures. We then flip a weighted coin with this probability and turn x ON or turn x OFF based on
the outcome. This will result in moving to a state 1 step away (if we do indeed flip the expression
of x from 0 to 1 or 1 to 0), or in staying in the same state (if we “flip” from 0 to 0 or 1 to 1). The
state has now moved to a new state in the state transition graph. If all transition probabilities to
neighboring states are less than 0.5, this state is considered a pseudo-attractor. For the in-silico
perturbation experiments, the number of steps in the shortest path from the current state to the

starting state is recorded instead.

See Algorithm 1 for pseudo-code describing the pseudo-attractor finding algorithm, and

Algorithm 2 for pseudo-code describing the random-walk stability scores.
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Algorithm 1 Limited Pseudo-Attractor Search

procedure SEARCH ENTIRE STG IN NEIGHBORHOOD OF GIVEN STATE TO FIND PSEUDO-ATTRACTORS
Inputs:
state_init € {0,1}¥  Initial Boolean state (N dimensional vector of 0’s and 1’s, where
N is the number of TFs)
f:{0,1}" +[0,1]N  Probabilistic update rules mapping the current state € {0,1}" to
a probability (value between 0 and 1) for each TF to flip (ON to
OFF, or OFF to ON)
d:{0,1}N x {0,1}¥ — R Function to calculate distance between two states (we use the
Hamming distance)
R Maximum radius to search from state_init
Pr  Threshold probability used to define pseudo-attractors (we used
Pr = 0.5 so that pseudo-attractors are defined to have out-
transitions with probability less than 50%.)

Output:
PseudoAttractors - A set of strongly connected components of the state transition graph for which transitions in have
probability greater than Pr

pending <+ {state_init} (A set containing the initial state)
STG + empty directed graph
00b < dummy vertex (this will be the “out-of-bounds” vertex - all states in the STG with distance greater than R
from the initial state will point to this vertex, preventing them from being detected as attractors)
Add oob to STG
Add state_init to STG
while pending is not empty do
state < POP any state from pending
if d(state, state_init) > R then
Add edge from state — oob with weight = 1
else
for i in 1..N do
neighbor < state
neighbor; < NOT state; (Flip TF i to get the neighbor)
if neighbor is not in STG then
Add neighbor to STG
Add neighbor to pending
Add edge from state — neighbor with weight = f(state); (add the transition, with probability given by f)

STGpruned < STG
Remove all edges with weight < Pp (prune edges with probability less than given threshold)
PseudoAttractors < empty set
for SCC in strongly connected components of STGprunea do

### First make sure this SCC does not contain the dummy vertex, which by definition has no out-transitions

if obb is not in SCC then

if There are no edges in STG,yned, from any node within SCC to any node not within SCC then
Add SCC to PseudoAttractors

Return: PseudoAttractors
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Algorithm 2 Probabilistic Boolean Random Walk

procedure RANDOM WALK TO DETERMINE STABILITY OF INITIAL CONDITION
Inputs:
state_init € {0,1}"  Initial Boolean state (N dimensional vector of 0’s and 1’s, where
N is the number of TFs)
f:{0,1}" + [0,1]N  Probabilistic update rules mapping the current state € {0,1}" to
a probability (value between 0 and 1) for each TF to flip (ON to
OFF, or OFF to ON)
d:{0,1}¥ x {0,1}¥ = R Function to calculate distance between two states (we use the
Hamming distance)
R Maximum allowed distance from state_init
fized_TFs Set of TFs that are held constant (i.e., perturbed to be ON or
OFF)
Output:
Number of steps taken before the random walk is a distance greater than R from state_init

state < state_init
steps <0
while d(state, state_init) < R do
steps < steps + 1
i < a random integer between 1 and N, excluding fized_TF's (randomly chose one, non-fixed, TF to update)
probability_update < f(state); (probability of flipping TF 1)
r < a uniform random number between 0 and 1
if r < probability_update then
state; < NOT state; (flip TF i from ON to OFF, or OFF to ON)

Return: steps
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Chapter 3.

Archetype tasks link intratumoral heterogeneity to plasticity in recalcitrant small cell lung
2
cancer

3.1. Introduction
3.1.1. The role of phenotypic plasticity in SCLC

Accumulating molecular and functional evidence has led to the identification of distinct
SCLC transcriptional subtypes across several model systems, including cell lines, human tumors,
and genetically engineered mouse models (GEMMs) (Borromeo et al., 2016; Gazdar et al., 1985;
Huang et al., 2018; Mollaoglu et al., 2017). Phenotypic heterogeneity, both genetic and non-
genetic, is intensively studied across cancer types because of its perceived impact on progression,
acquired resistance, and relapse (Altschuler and Wu, 2010; Gupta et al., 2011; Howard et al., 2018;
Jia et al., 2017; Pisco and Huang, 2015; Saez-Ayala et al., 2013; Su et al., 2019). As described in
Chapter 2, phenotypic heterogeneity is becoming increasingly more important to understand SCLC
cell identity, and several subtypes of SCLC have been described. Dynamics of these subtypes
within tumors are especially relevant for SCLC, since cooperativity and transitions among SCLC
subtypes have been postulated to underlie its recalcitrant features, i.e., early metastatic spread, and
inevitable relapse after therapy response (Ireland et al., 2020; Lim et al., 2017; Rudin et al., 2019).

In Chapter 2, we defined four subtypes of SCLC: a classic NE subtype, two NE variants
(NEvl and NEv2), and a non-NE variant. Soon after the publication of this work, Rudin et al.
(2019) published a review summarizing the impact of phenotypic heterogeneity in SCLC. This

review suggested consensus nomenclature for the subtypes, which can easily be aligned with the

2 Adapted from Groves, S. M. et al. Cancer Hallmarks Define a Continuum of Plastic Cell States between Small Cell
Lung Cancer Archetypes. bioRxiv (2021) doi:10.1101/2021.01.22.427865.
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work described in Chapter 2. Whereas the consensus nomenclature underscored four SCLC
subtypes, our recognition of two ASCL1+, NE subtypes (NE and NEv2) suggests that there are
five main subtypes of SCLC: SCLC-A (NE), SCLC-N (NEv1), SCLC-A2 (NEv2), SCLC-Y (non-
NE), and SCLC-P (which may have been missed in Chapter 2 due to its rarity).

While this delineation of SCLC into discrete subtypes can be useful for understanding the
subpopulation composition of a given tumor, this stark subtyping, either at bulk or single-cell level,
is difficult because often multiple or none of the eponymous TFs are expressed in a population of
SCLC cells. For instance, our work in Chapter 2 using CIBERSORT decomposition (Newman et
al., 2015) showed all tested SCLC tumors are composed of multiple NE and non-NE subtypes, and
several studies have reported changes of subtype prevalence during tumor progression or in
response to treatment (Ireland et al., 2020; Stewart et al., 2020; Wooten et al., 2019). Bulk RNA-
seq and immunohistochemistry (IHC) analyses confirm some samples are positive for more than
one TF, such as tumors that are positive for both ASCL1 and NEURODI1 (Simpson et al., 2020;
Zhang et al., 2018). In bulk data, it is unclear if this is due to a mix of discrete NE and non-NE
cells, or if intermediate phenotypes exist. These layers of heterogeneity suggest that single-cell
data may be necessary to fully parse subtype prevalence in SCLC cell lines and tumors.

3.1.2. Discrete versus continuous methods of subtype identification

Clustering methods, which identify prototypical gene expression profiles of cluster centers,
have often been used to characterize subtypes. These clusters are easily interpretable but are often
too rigidly defined in the case of mixed or intermediate samples. One method that is more flexible
than clustering and yet remains easily interpretable is Archetypal Analysis (AA) (Merup and
Hansen, 2012; Shoval et al., 2012). AA characterizes heterogeneous gene expression by finding
archetypes, or “pure subtypes,” in gene expression space that best explain the heterogeneity seen

across samples in a dataset. Using AA on SCLC cells from cell lines and tumors gives us the
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flexibility to identify and characterize the stability of intermediate states, which cannot be
described in a discrete-clustering framework, that may arise as cells transition between subtype
extremes.

The low-dimensional geometry of data uncovered by AA may be attributed to evolutionary
tradeoffs between multiple functional tasks (Figure 3.1) (Hausser et al., 2019; Shoval et al., 2012).
When cancer cells with limited resources (e.g. metabolic constraints) must optimize fitness in the
face of multiple competing tasks, such as proliferation and migration, they fill a polygonal shape
between archetypes in gene expression space (Gallaher et al., 2019; Hatzikirou et al., 2010). We
analyzed the low-dimensional polytope of single-cell data from SCLC cell lines within this context
and found the main trade-offs of SCLC cells include proliferation, migration, chemosensation,
secretion, and lung epithelium regeneration, which mirror the tasks performed by pulmonary
neuroendocrine cells (PNECs) under different environmental conditions (Garg et al., 2019; Gu et
al., 2014; Lommel, 2001). Where each cell falls with respect to the archetypes determines how
specifically it optimizes a single task (specialists near an archetype), or how it has generalized to
complete several tasks (near the center of the polytope or along an edge or face between two or
more tasks). If the proportion of tasks needed to optimize fitness changes rapidly, such as during
tumor evolution and metastasis, a population of generalists may have an advantage. We show here
that SCLC cell lines and tumors comprise continuums of cell states with both specialists and

generalists.
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Figure 3.1: The Pareto Front is the set of all optimal phenotypes that cannot simultaneously improve at multiple tasks. In
performance space, where each axis is the performance level for a specific task. Feasible but non-optimal phenotypes are less
optimal than phenotypes on the Pareto Front for at least task, so increasing fitness will push these cells towards the Pareto
Front. Once on the Front, a cell cannot become more optimal at one task without becoming less optimal for another. In trait
space, trade-off between two tasks force cells onto a line between archetypes, which are each optimal at a single task.
Generalists in between the archetypes optimize multiple tasks at once. For three tasks, the archetypes form a triangle.

3.1.3. Plasticity of cells within a phenotypic continuum

A continuum of transcriptomic states between archetypal extremes suggests that SCLC
cells may easily diversify and shift between archetypes to optimize fitness by fulfilling different
evolutionary tasks. To analyze changes in phenotype, we model single-cell dynamics as a
Markovian process along an underlying state manifold (Teschendorff and Feinberg, 2021), from
which we can calculate metrics of plasticity. We quantify the average change in expression over
the phenotypic transition from source states to terminal states, which we term Cell Transport
Potential (CTrP). Using this metric, we found that SCLC cells from human cell lines diversify
across the archetype space; in the cell lines studied, we delineate subpopulations of high and low
plasticity within each sample. We saw that, under some circumstances, such as MYC activation,
NE subtypes can acquire plasticity. Importantly, our subtyping and plasticity framework allows
for the characterization of transitions between intermediate phenotypes, which cannot be
adequately captured by a 4-TF framework. We also quantify multipotency of MYC-driven
transitioning cells and show that cells can transition towards two lineages: SCLC-Y, or Archetype
X, which does not match any of our previously defined subtypes of SCLC.

3.1.4. Plasticity of pulmonary neuroendocrine cells

In this chapter, we hypothesize that SCLC phenotypes may gain plastic capabilities from
the cell of origin from which they are derived. Over the last half century, our understanding of the
cell of origin of SCLC has been greatly refined. Because SCLC cells share many features with

pulmonary neuroendocrine cells (PNECs), such as small, dense core granules characteristic of
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neuroendocrine cells, and expression of NE genes like ASCL1, Bensch and colleagues in the 1960s
postulated that SCLC arose from PNECs (Bensch et al., 1968).

Using a Cre-Lox system, in which an adenovirus expressing Cre-recombinase driven by a
cell type-specific promoter is administered to a mouse, researchers can direct SCLC-promoting
inactivations in P53 and RBI into specific lung cell types of interest. In 2011, researchers in the
Berns’ lab used a double knockout model with adenoviruses that targeted three distinct respiratory
epithelial populations: CGRP targeted NE cells, SPC targets AT2 cells, and CC10 targeted club
cells (Sutherland et al., 2011). While SPC promoters induced SCLC with low efficiency, and CC10
produced no SCLC, CGRP was most effective in generating SCLC, with 27 of 30 models
developing the cancer. The same year, the Kim and Sage laboratories found similar results with a
tamoxifen-inducible CreER system, where all non-PNEC cells of origin did not develop into SCLC
(Park et al., 2011).

The following year, Song et al. (2012) used lineage tracing in CGRP-Cre®? mice crossed
to a double knockout mouse model (P53 and RB1) that labeled PNEC-lineages with eGFP. Almost
all mice that developed hyperplastic lesions were lineage-labeled, providing more definitive
evidence that PNECs are the predominant cell of origin for SCLC. However, this does not preclude
the existence of a non-NE cell of origin for SCLC. More recently, several groups have shown that
SCLC may develop from non-PNECs, which influences the eventual phenotypic landscape of the
tumor (Ferone et al., 2020; Park et al., 2018; Yang et al., 2018). Furthermore, evidence regarding
a newer subtype of SCLC driven by POU2F3 expression suggests these tumors may derive from
tuft-like cells in the lung (Huang et al., 2018). Overall, this evidence seems to suggest that lung
cells may have broad plasticity for SCLC transformation, but the most common cell of origin

remains the PNEC. Therefore, while we explore other cells of origin in Chapter 4, in this chapter
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we focus on PNECs, which are still considered the main cell of origin and the most efficient source
of SCLC in mouse models.

PNECs themselves have been shown to have broad plasticity in terms of functional state.
PNECs are capable of proliferating and transdifferentiating, particularly after injury to the lung
epithelium. Following exposure to naphthalene, which ablates club cells, PNECs repopulate the
club and ciliated cells in the lung, as experimentally shown by Song et al. (2012). The number of
PNECs, which were labeled by eGFP in a CGRPCER*:ROSA26™T™5"" mouse model, significantly
increased after injury. Furthermore, some of the club and ciliated cells were labeled with eGFP,
suggesting that they could be derived directly from PNECs. Recently, Ouadah et al. (2019) showed
that a subset of PNECs have stem cell capabilities, and injury induces PNEC stem cells to self-
renew and disperse to other areas in the lung. Through Notch signaling, these PNECs are then able
to deprogram into a transit-amplifying state. Finally, activation of Notch signaling late in repair
can induce reprogramming to mature cell fates such as club cells. This deprogramming ability
inherent to PNECs in response to injury may manifest in SCLC as phenotypic plasticity.

3.1.5. Overview of chapter

Overall, our work advances the field’s understanding of SCLC heterogeneity and plasticity
by revealing the prevalence of cells that fall in between extreme subtypes, thus demonstrating a
need for a more flexible method of phenotype characterization. We enumerate the extreme
archetypal phenotypes as optimizing PNEC-related functions that require tradeoffs. We provide a
theoretical basis for the existence of generalist cells, which are supported by recent evidence of
dual positive cells (such as ASCL1+/NEUROD1+ cells), by characterizing these tradeoffs that
SCLC tumors must make to thrive. We quantify plasticity as CTrP and show that SCLC NE cell

types under MY C activation may be multipotent. These findings suggest that SCLC tumors work
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as a complex ecosystem of plastic NE and non-NE cells that can phenotypically transition under

different environmental constraints to optimize tumor fitness and overcome therapy.

3.2. Results
3.2.1. Archetype analysis defines a 5-vertex polytope for SCLC

As described in previous Chapters, SCLC subtypes have recently been classified into
neuroendocrine (NE) and non-NE subtypes by expression of eponymous transcription factors:
ASCLI1+ (NE), NEURODI1+ (NE), POU2F3+ (non-NE), and triple-negative non-NE subtypes,
often but not always YAP1+ (Baine et al., 2020; Lim et al., 2017; Rudin et al., 2019; Simpson et
al., 2020). To further examine relationships between these discrete subtypes, we analyzed a dataset
of bulk RNA-seq on 120 human SCLC cell lines from two sources: the Cancer Cell Line
Encyclopedia (CCLE), and cBioPortal (Barretina et al., 2012; Cerami et al., 2012; Gao et al.,
2013). This combined dataset includes cell lines with overexpression of each of the four subtype-
driving TFs, suggesting it adequately covers the relevant phenotypic space for SCLC. Furthermore,
we defined the SCLC phenotypic space on cell line data under the assumption they are less
heterogeneous, and therefore may better capture SCLC cell-specific phenotypes, than tumor
samples that may contain other cell types like immune cells. In Chapter 2, we analyzed gene
expression profiles (RNA-seq) of human SCLC cell lines using Weighted Gene Co-expression
Network Analysis (WGCNA) and showed that each subtype expressed gene programs (modules)

enriched in distinct cellular functions, such as immune response or neuronal differentiation.
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In this Chapter, we update this characterization to include additional human cell line
samples and the SCLC-P subtype (Figure 3.2). We found groups of genes (gene modules) with
coordinated expression across the subtypes, each enriched in a distinct set of cellular functions.
Furthermore, a subset of the gene modules corresponded to each SCLC subtype. This diversity of
functions across subtypes may arise when cells, under selective pressure to optimize survival tasks,
cannot optimize all tasks at once and must tradeoff between them (Hausser et al., 2019; Shoval et
al., 2012). Therefore, we asked whether the presence of distinct subtype gene programs in SCLC

cell lines might similarly suggest trade-offs between functional tasks. To this end, we applied
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Figure 3.2: Clustering and WGCNA on Bulk Cell Lines (Updated from Chapter 2). A. Cell
line source in PCA, and clustering shown by color on PCA. B. WGCNA on cell lines shows
genes can be grouped into 15 coexpressed gene modules. Several of the modules (above
black line) distinguish subtype clusters and are labeled with enriched gene ontology terms
describing each gene program (see methods).
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Archetype Analysis (AA), which allows for a flexible characterization of gene expression space
constrained by functional phenotypic features (Merup and Hansen, 2012).

Briefly, AA approximates the cell phenotype space as a low dimensional shape, or
polytope, that envelops gene expression data. The vertices of this multi-dimensional shape
represent archetypes, constrained to be linear mixtures of some set of data points, that are each
optimal in a specific functional task. To determine the optimal number and location of the
archetype vertices in gene-expression space, we applied the Matlab package ParTI (Hart et al.,
2015). We used the Principal Convex Hull Analysis (PCHA) algorithm (Merup 2012), which finds
k points on the convex hull, or bounding envelope, of the data that enclose as much of the data as
possible (See Methods) (Korem et al., 2015). Using this method, we determined whether the cell
line data was enclosed within a low dimensional polytope and compared the fit to randomized
datasets to calculate statistical significance.

First, to determine how well the data is fit by polytopes of varying dimensionality, we
computed the variance in the data that is explained (Explained Variance, EV) by polytopes with
different possible numbers of k vertices (k = 2-15). We found that EV saturates around 5 or 6
archetypes, such that the variance explained by additional archetypes was minimal (Figure 3.3A).
This was confirmed by identifying the elbow, k*, in the EV versus k curve, which suggested k*=4,
5, or 6 (See Methods). Therefore, we fit the data to polytopes of each order (4, 5, or 6 vertices),
and computed the t-ratio, a measure comparing the volume enclosed by the data to that of a
polytope. As described in Korem et al. (2015), a larger t-ratio suggests that the data is more similar
to the polytope (Figure 3.3A). The t-ratio of the data can be compared to that of randomly shuffled

datasets to quantify the significance of the fit as a p-value.
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Figure 3.3: Archetype analysis on bulk RNA-seq data shows human cell lines and tumors fall in a polytope with five archetypes.
A. Archetype analysis of bulk RNA-seq from 120 human cell lines shows 5 archetypes fit the cell line data well (p = 0.034). Explained
sample variance increases for 5 archetypes compared to 4, and 5 archetypes is the lowest number with a significant p-value by a t-
ratio test. B. Subtype label enrichment. Data were binned by distance from archetype (x-axis), and enrichment of each subtype label
(y-axis) was computed. Enriched subtypes are highest at x=0, in the bin closest to one of the archetypes, and lowest near all other
archetypes. Each archetype shows enrichment in one of the five SCLC subtypes from literature. C. PCA of full human RNA-seq
dataset (tumors and cell lines). Projection of 5 archetypes by this PCA shows that tumors are mainly contained within the same
archetype space as cell lines. Variance explained by this combined-data PCA, a tumor-data PCA, and a randomized model shows
that the top 5 components of the combined-data PCA explains a significant percentage, around 80%, of the variance explained by

the tumor-only PCA.
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To avoid overfitting, the lowest number of archetypes that reached significance was
chosen. Therefore, a polytope with five archetypes best fits the data (Figure 3.3A, p-value = 0.034,
t-ratio test). Mathematically, each of the consensus SCLC subtypes was enriched at an archetype
(Figure 3.3B, p < 10-6 for each subtype) such that there is a one-to-one correspondence between
archetypes and consensus subtypes and the nomenclature is interchangeable. Fitting the data to a
polytope with fewer vertices, such as a tetrahedron (four-vertex polytope) did not achieve a
statistically significant t-ratio (p-value = 0.059). Furthermore, the only difference between the 4-
and 5-vertex polytopes was the SCLC-P archetype, which is a distinct, and not an intermediate
phenotype (Huang et al., 2018). When we compared the archetypes of the 5- and 6-vertex
polytopes (see Methods), we found that the 6-vertex polytope did not identify any distinct
archetypes, as two of the new archetypes matched one in the 5-vertex polytope, and each other
vertex matched one-to-one between polytopes. We used bootstrapping tests where we resampled
the data with replacement 1000 times to evaluate the robustness of the archetypes found. We found
the five archetypes were robust to data sampling and not dependent on any extreme points in the
dataset.

To determine if cell-line archetypes could adequately describe the variance in human
tumors, we batch-corrected 81 human SCLC tumor samples (George et al., 2015) to the cell line
data. If tumors are heterogeneous mixtures of different cell types, we would expect each of their
bulk (averaged) expression profiles to fall closer to the center of the polytope. When we project
the archetypes by a PCA fit to the combined dataset, we find that most tumors are contained by
the same phenotypic space as cell lines (Figure 3.3C). Furthermore, the variance explained by this

PCA is a significant proportion of the variance explained in a tumor-only PCA, with the top five
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components explaining 80% of the tumor variance (Figure 3.3C). The polytope best fit to the
combined dataset of cell lines and tumors had 5-archetypes (p = 0.09), and each archetype matched
at least one of the cell line archetypes.

In summary, AA explained SCLC heterogeneity in bulk transcriptomics data as a low-
dimensional phenotypic space between five archetype vertices corresponding to five major SCLC
phenotypes (SCLC-A, -A2, -N, -P, and -Y). The archetype space enables the placement of any
bulk transcriptome profile, including those that may not adhere to any of the canonical subtypes,
along a continuum anywhere within the polytope, rather than either remain unclassifiable or forced
into a class not fully reflective of their transcriptomic profile. Specifically, samples ill-defined due
to lack of expression of any of the eponymous TFs can be classified in this polytope based on
distance from the archetypes. In addition, functional tasks optimized by each subtype can be
inferred based on the expressed gene programs of cell lines nearest the archetypes.

3.2.2. The SCLC phenotypic polytope is bounded by functional tasks reminiscent of PNECs
Pulmonary neuroendocrine cells (PNECs), the physiological counterpart of SCLC in the

normal lung, are plastic cells that can trade-off between functions in response to
microenvironmental conditions, including lung epithelium repair in response to injury,
chemosensation, and secretion of neuro- and immuno-modulatory peptides (Figure 3.4A) (Garg
et al., 2019; Song et al., 2012). Therefore, we hypothesized that SCLC cells may be innately
programmed to fulfill similar tasks, albeit in a dysregulated manner, geared toward optimized

tumor fitness and increased survival.
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Figure 3.4: SCLC archetypes are enriched for PNEC-related gene programs. A. Pulmonary neuroendocrine cell (PNEC) related
tasks. PNECs can trade-off between these tasks to regenerate injured lung epithelium, respond to chemical signals in the
microenvironment, affect the nervous and immune systems, and migrate to new regions of the lung airways. A. A subset of PNECs
have been shown to act like stem cells that can proliferate under lung injury (Ouadah et al., 2019). B. PNECs and brush cells both
respond to chemicals and cytokines in the lung (Lommel et al., 2001). C. PNECs are innervated and can send neuronal signals by
releasing neurotransmitters and peptides such as serotonin (5-HT) (Lommel et al., 2001). They also have been shown to interact
with the immune system by releasing proteins such as CGRP, which can activate IL2 cells (Branchfield et al., 2016). D. A subset
of PNECs can “slither,” or migrate, by transiently downregulating epithelial genes to move toward and form neuroendocrine
bodies (NEBs), or clusters of PNECs (Kuo and Krasnow, 2015). E. After injury to the lung epithelium (ablation of club cells),
PNEC stem cells can deprogram into a transit amplifying cell type that can then differentiate into other lung types to regenerate
the epithelium (Ouadah et al., 2019). B. Each archetype is enriched in gene ontology terms related to PNEC tasks.
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To define functional tasks optimized by each archetype, we evaluated enrichment of genes
at each SCLC archetype location (Bonferroni-Hochberg-corrected q < 0.1). We then used
ConsensusPathDB on the most enriched genes to find enriched gene ontologies and used the
molecular signatures database (MSigDB) to evaluate the enrichment of cancer hallmarks
(Kamburov et al., 2013; Liberzon et al., 2011; Zhang et al., 2020). As shown in Figure 3.4B
and Table 3.1, each archetype optimized a task previously associated with PNECs and performed
functions to promote tumor survival.

Table 3.1: Archetype tasks are related to PNEC functions and increase tumor fitness through optimizing
cancer hallmarks.

*Cancer hallmark is inferred from GO term enrichment rather than the enrichment of Cancer Hallmark
Gene Sets.

Optimized function for increased

Archetype Associated PNEC task tumor fitness
SCLC-A Proliferation Increased cell proliferation*
Neuro- and immuno-modulatory Evading immune destruction
SCLC-A2 o e :
signaling & tumor-promoting inflammation
SCLC-N Slithering and. axon-like Activating invasion and metastasis™®
protrusions
SCLC-P Chemosensation and metabolism Reprogramming energy metabolism
Transdifferentiation to non-NE Inducing angiogenesis
SCLC-Y . . .2
state in response to injury & resisting cell death

Archetype 1, corresponding to the SCLC-A subtype (Figure 3.3B), is enriched in cell cycle
GO terms. This enrichment may reflect the self-renewal potential of PNECs, which proliferate
after lung injury and/or chronic hypoxia (McGovern et al., 2010; Noguchi et al., 2020). Previous
studies on ASCL1 positive, HES1 negative cells similar to the SCLC-A archetype have shown
them to be more proliferative than other SCLC cell types (Lim et al., 2017). Therefore, these
archetype tasks are consistent with the highly proliferative nature of the SCLC-A subtype,

evidenced by its often-larger proportion in primary tumors (Alam et al., 2020; Carney et al., 1985).
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Figure 3.5: SCLC cell line archetypes optimize PNE C-related tasks. A. SCLC-A is enriched for proliferation. i. Normalized activity
area (AA, a measure of sensitivity) to topoisomerase inhibitors. Cell lines in the bin closest to the SCLC-A archetype are more
sensitive (p <0.05). ii. Cell lines closest to A are less likely to have had prior therapy (p = 0.019). B. SCLC-A2 is enriched for
signaling. i. CALCA expression is highest at SCLC-A2 archetype. ii. Cell lines closest to SCLC-A2 are most sensitive to MAPK
signaling inhibitors (p < 0.05). C. SCLC-N is enriched for slithering-related tasks. i. Average expression of an axonogenesis gene set
from Yang et al. as a function of distance from the SCLC-N archetype, showing a correlation between expression and closeness to
the SCLC-N archetype. ii. Axon-like protrusions and filopodia are more prevalent in SCLC-N cell lines. Open arrows = protrusions,
closed arrows = filopodia. iii. EMT genes are shown in a heat map across archetypes. SCLC-N cells express some mesenchymal
markers at intermediate levels and downregulate CDH]I. iv. SCLC-N cell lines are more likely to be mixed (3/12) than non-N cell
lines (3/80) with p = 0.0087. D. SCLC-P is enriched for tuft cell-like features and metabolism tasks. i. Genes upregulated in the
SCLC-P archetype that are expressed in tuft cells. CHAT, GNAT3, and SUCNRI are part of the pathway by which succinate
stimulation affects the metabolism of intestinal tuft cells and the stimulation of type 2 immunity (Banerjee et al., 2020). ii. Basal
respiration rate (OCR) after overnight (12 hour) stimulation by succinate. H1048, which is closest to the SCLC-P archetype,
increases OCR after stimulation, while SCLC-A2 and SCLC-Y cell lines do not. E. SCLC-Y is enriched in injury repair tasks. Average
expression of genes related to the transit-amplifying subpopulation of PNEC stem cells from Ouadah et al. (2019) under lung injury
is correlated with closeness to the SCLC-Y archetype.

75



Furthermore, classic tumors containing mostly proliferative SCLC-A cells are initially
sensitive to DNA damaging agents that selectively kill fast-growing cells (Sen et al., 2018), such
that ASCL1 is downregulated in post-chemotherapy tumors and chemoresistant cell lines (Wagner
et al., 2018). Analysis of drug sensitivity to topoisomerase inhibitors, DNA alkylators, and cell
cycle inhibitors shows that cell lines closest to SCLC-A are more sensitive to these drug classes
(Figure 3.5Ai). This is reflected in the cell line data analyzed here: cell lines near the SCLC-A
archetype are more likely to be untreated than cell lines near other archetypes (p = 0.019), and
similarly treated cell lines are less likely to be near SCLC-A (p = 0.03, one-tailed binomial tests
on treatment status of cell lines, see Methods, Figure 3.5Aii). Together, this evidence suggests
that the SCLC-A archetype optimizes the cancer hallmark of increased cell proliferation (Table
3.1).

Archetype 2 (SCLC-A2), also driven by NE gene programs, is enriched for stimulus-
response, cytokine-mediated signaling, and signal transduction, suggesting these cells specialize
in the PNEC task of neuronal and immune-modulatory signaling and secretion. Together,
optimization of these tasks may allow SCLC-A2 cells to interact with the tumor microenvironment
quickly and effectively by sensing and responding to signals from other cells. This is consistent
with previous work from our co-authors that showed the SCLC-A2 subtype is enriched in GO
terms related to neuronal secretion and response to environmental signals (Wooten et al., 2019).
The SCLC-A2 archetype is enriched for CALCA expression (Figure 3.5Bi), overexpression of
which has been shown to modulate the immune system (Branchfield et al., 2016). Furthermore,
SCLC-A2 cell lines are preferentially sensitive to MAPK signaling inhibitors (Figure 3.5Bii).
Together, this evidence corroborates enrichment of the cancer hallmarks tumor-promoting

inflammation and evading immune destruction (Table 3.1).
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Archetype 3 (SCLC-N) is enriched in neurogenesis terms, including synapse and distal
axon terms. These functions may enhance tumor survival by specifying a protruding, axon-like
morphology. Yang et al. (2019) previously determined that some SCLC cells are capable of
forming axon-like protrusions, and disruption of protrusion formation impairs cell migration.
Therefore, we compared the expression of axon guidance-related genes from this study across cell
lines and found that distance to SCLC-N was inversely correlated to expression (Figure 3.5Ci).
To substantiate this, we imaged cell lines close to SCLC-N (H524 and H446) and found that they
had substantially more protrusions than cell lines far from the SCLC-N archetype (Figure 3.5Cii).
Furthermore, these protrusions were positive for Tujl, which is a marker for neuronal protrusions,
suggesting the protrusions we see here are truly axon-like (Yang et al., 2019). Such a morphology
may be related to the slithering observed in PNECs, whereby cells transiently downregulate
adhesion genes and use axon-like protrusions to migrate (Kuo and Krasnow, 2015; Osborne et al.,
2013). We therefore considered the expression of adhesion, migration, and epithelial-to-
mesenchymal transition (EMT) genes in the SCLC-N phenotype. We found that the mesenchymal
genes ZEB1, SNAII, and TWISTI are upregulated in SCLC-N, but not VIM, which may suggest a
hybrid E/M or M phenotype (Figure 3.5Ciii). This may be reflected in the growth of SCLC cell
lines, where cell lines close to SCLC-N are significantly more likely to have a mixed morphology
than non-N cell lines (p = 0.0087, Figure 3.5Civ). Thus, by performing the PNEC task of
slithering, Archetype 3 may optimize the hallmark activating invasion and metastasis to promote
survival (Table 3.1).

Archetype 4 (SCLC-P) is enriched in metabolic GO terms. While the cell of origin of
SCLC-P cells remains unclear, the phenotype has been described as tuft-like and shows remarkable

similarity to brush cells in the lung (Huang et al., 2018), which recent evidence suggests may act
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as precursors for PNECs (Goldfarbmuren et al., 2020). Chemosensory tuft cells respond to the
metabolite succinate through the receptor SUCNR1, promoting type 2 inflammation through ILC2
activation (Nadjsombati et al., 2018). We found that SCLC-P upregulates the receptor SUCNR1
and gustducin (GNAT3) (Figure 3.5Di). Therefore, we tested the ability of SCLC-P cells to
respond to succinate metabolically by measuring their basal oxygen consumption rate (OCR) after
an overnight stimulation. In response to succinate, SCLC-P cells (but not SCLC-A2 or -Y) adapted
their metabolism by increasing basal respiration rate (Figure 3.5Dii). Therefore, SCLC cells close
to the SCLC-P archetype may respond to metabolites like succinate, similar to the function of
chemosensory tuft cells. These functions validate our findings that the SCLC-P archetype shows
gene set enrichment of the cancer hallmark reprogramming energy metabolism (Table 3.1).
Archetype 5 (SCLC-Y) was enriched in GO terms such as stress response, wound healing,
and cell migration. This archetype showed gene set enrichment of the most cancer hallmark gene
sets, corroborating previous findings that it may be key to understanding resistance (Cai et al.,
2021; Lim et al., 2017; Wagner et al., 2018). The cancer hallmarks of inducing angiogenesis and
resisting cell death showed the greatest enrichment in SCLC-Y cell lines compared to others
(Table 3.1). Notably, normal PNECs transdifferentiate to a transit-amplifying (TA) state to repair
the lung epithelium after injury (Ouadah et al., 2019). We compared the transcriptomes of SCLC
cell lines to different cell types arising from this process. While sequencing data is limited for
understanding the transit-amplifying (TA) state of de-differentiated PNECs, we evaluated the
expression of genes related to the small number of transdifferentiated PNECs in Ouadah et al.
(2019). There is a clear correspondence between the SCLC-Y subtype and the TA signature
(Figure 3.5E). We conclude that this archetype is a dysregulated version of the transit-amplifying

cell type whose task is lung repair after injury. Upregulation of genes in the NOTCH and WNT
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pathways provides further evidence that SCLC-Y corresponds to PNECs that regenerate the lung
epithelium in response to Notch signaling after injury (Lim et al., 2017; Shi et al., 2015; Wagner
et al., 2018). In summary, these data indicate that SCLC subtypes in cell lines and tumors are
reminiscent of the functional tasks of normal PNECs. Furthermore, the functions can be tied to the
enrichment of cancer hallmark tasks, illustrating how SCLC cells may utilize PNEC functions for
survival (Table 3.1).

3.2.3. Intra-sample heterogeneity is aligned with inter-sample diversity

By considering bulk RNA-seq data, we characterized the diversity of SCLC cell line and
tumor samples and identified five archetypal gene programs enriched at the extremes of this
phenotypic space. However, it is unclear if single cells within each sample can be both generalists
and specialists. While specialist cell lines are most likely made up of specialist single cells, a
generalist cell line could comprise multiple specialist subpopulations or generalist single cells
(Figure 3.6A). Therefore, we considered the relationship between this inter-sample diversity and
intra-sample heterogeneity. To do this, we analyzed single-cell expression data from a panel of 8
cell lines, selected to maximally span the archetype space (see Methods, Figure 3.6B). The axes
of maximal variance with this dataset can be defined with Principal Components Analysis (PCA)
fit to the single-cell expression data. We compared the variance explained by this model to the
variance explained by projecting the single-cell data onto the space defined by the bulk data-
derived archetypes (Figure 3.6C). If intra-sample heterogeneity perfectly aligns with inter-sample
diversity, we would expect the single-cell variance explained by inter-sample diversity to equal
the single-cell variance explained by the single-cell PCA. Therefore, percent variance explained

by the single-cell PCA is an upper bound on the variance explained by inter-sample diversity.
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Figure 3.6: SCLC archetype gene signatures reveal generalists and specialists in cell lines at the single-cell level. A. Inter-sample
diversity is supported by intra-sample heterogeneity. Generalist cell lines may comprise several specialist subpopulations or both
specialists and generalists in a continuum of single cells. B. To investigate intra-sample heterogeneity, human cell lines for scRNA-
seq were chosen to span the phenotypic space of SCLC. Two cell lines from each neuroendocrine subtype (A, A2, and N) were chosen,
and one from each non-neuroendocrine subtype (P and Y) was chosen. Left: chosen cell lines in bulk PCA space. Right: Distance of
each bulk cell line gene expression profile to each archetype in PCA. C. Single-cell RNA-seq on sampled cell lines projected by PCA
fit to bulk RNA-seq on cell lines in A. Each sample occupies a distinct region, and many samples fall in between archetypes. D. Top:
Variance explained in single-cell data by PCA fit to bulk cell line data. Orange: Upper bound of EV for each number of components
is given by PCA fit to single-cell data. Blue: EV by the bulk PCA is a significant proportion of this, as compared to a randomized
model (gray). Bottom: Inter-sample diversity explains a significant percentage of the intra-sample variance, around 36%. This
fraction stays relatively constant for varying numbers of PCs. Black line: intra-sample variance explained by inter-sample diversity
as a percentage of upper bound. Grey dotted line: Mean +/- SEM (grey box). E. Lefi: single-cell archetypes from PCHA on imputed
cell line scRNA-seq data in single-cell PCA. 5% of cells closest to each archetype are colored, generalists are shown in gray. Right:
Cell lines labeled in single-cell PCA. F. Gene signature used for single-cell subtyping. Expression of genes at archetype location is
shown, with genes of interest highlighted. G. Using least-squares approximation, we score single cells by 5 bulk archetype signatures
in (F). H. Using a permutation test (see Methods), we compare average archetype scores of each single-cell specialist subpopulation
to background distributions (orange) from non-specialists to label archetypes. Circular a posteriori (CAP) plot of single-cell
archetype weights for each cell (see Methods), with archetypes labeled by enriched bulk signature.

Projection of the single cells onto the archetype-defined space suggests that inter-sample
diversity in human SCLC cell lines explains 36% of the intra-sample variance (Figure 3.6D). The
alignment between bulk and single-cell variation is not likely to be due to random chance: PCA
models fit to shuffled bulk data only explained about 0.26 +/- 0.008% of the single-cell variance
(50 shuffles, see Methods). The remaining unexplained single-cell variation may be due to the
inherent stochasticity of RNA expression in single cells (Hayford et al., 2021). Overall, intra-
sample variation in SCLC cell lines is well explained by variation between human SCLC samples.

3.2.4. Single cells in SCLC cell lines can be task specialists or generalists

Our analyses so far suggest that single cancer cells fit into the phenotypic space defined by
population-level measurements. We next sought to grade single cells along a continuum of
specialists and generalists in the bulk-derived archetype space. To do so, we compared a polytope
fit to single-cell data with the bulk data-derived archetypes. We first applied PCHA to the single-
cell data directly to determine if the geometry of the data was bounded by a polytope. We found
the sampled cell lines fall in a shape with four vertices with a t-ratio test p-value of 0.001 (Figure
3.6E, see note about SCLC-P in Methods). This suggests that cancer cells trade-off between

multiple functions at the individual, and not just the population, level.
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To align these single-cell archetypes with our previously defined bulk archetype space, we
asked whether each single-cell archetype was enriched for a bulk archetypal gene signature. We
generated gene expression signatures characteristic of each bulk archetype location by finding
genes enriched in the bulk expression profiles of cell lines closest to each archetype (Mann-
Whitney Test, q < 0.1, see Methods). We then perform feature selection by considering the
condition number of the gene signature matrix, which measures the sensitivity of the matrix to
changes, or errors, in input (i.e., the bulk RNA-seq profiles). A well-conditioned matrix with a low
condition number is better able to discriminate between archetypes and therefore can be used to
project other data into this lower-dimensional space more accurately. By minimizing the condition
number, we found a small signature matrix of 105 genes that can sufficiently define archetype
space (Figure 3.6F).

The resulting signature contains several NE and non-NE genes that have previously been
associated with SCLC subtypes. For example, Transgelin 3 (TAGLN3), growth-hormone-
releasing hormone (GHRH), and gastrin-releasing peptide (GRP) are all neuropeptides previously
associated with neuroendocrine tumors including SCLC (Bepler et al., 1988; Bostwick and
Bensch, 1985; Gola et al., 2006; Ratié et al., 2014; Wang and Conlon, 1993; Zhang et al., 2018),
while ASCL1, ISL1, ELF3, and FLI1 are NE transcription factors that drive distinct transcriptional
programs in SCLC-A and SCLC-A2 subtypes (Agaimy et al., 2013; Borromeo et al., 2016; Li et
al., 2017; Wooten et al., 2019). Several NEUROD family genes are enriched at the SCLC-N
archetype, as expected (Borromeo et al., 2016; Osborne et al., 2013; Wooten et al., 2019). The top
genes for the SCLC-P archetype have previously been associated with this SCLC subtype and tuft

cells (Huang et al., 2018). The top two genes enriched in the SCLC-Y archetype, LGALSI and
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VIM, are associated with a mesenchymal phenotype and have previously been implicated with
SCLC chemoresistance (Krohn et al., 2014; Tripathi et al., 2017).

We therefore use this signature matrix to score single cells by least-squares approximation
and tested enrichment of these scores near each single-cell archetype. The bulk archetype with the
greatest significant enrichment (family-wise error rate q < 0.1) labeled each single-cell archetype.
Each single-cell archetype was enriched in one of four SCLC signatures: A, A2, N, or Y (Figure
3.6G). We visualized the location of the single cells in relationship to these archetypes in two-
dimensional space by a Circular A Posteriori (CAP) projection.

Each cell line occupies a distinct region in archetype space, as expected from the bulk
transcriptomes (Figure 3.6B). While each cell line was predominantly a single subtype, some
included single cells that could be classified as generalists, as they fell in between multiple
archetypes (Figure 3.6H). Critically, these cells are not predicted to be doublets, a technical
artifact of scRNA-seq, suggesting they have a truly intermediate cell type. For example, CORL279
forms a continuum of A/N and A2/N generalists, consistent with its dual positivity for ASCL1 and
NEURODI at the bulk expression level. (Figure 3.7). In contrast, H841 is composed entirely of
SCLC-Y specialists and non-NE generalists (between Y and another archetype), consistent with
its sole expression of YAPI. Our classification was consistent with the bulk expression of the
canonical TFs (ASCL1, NEURODI, POU2F3, and YAP1) in each cell line (Figure 3.7). Some
intermediate cell types were more common, such as A-N and N-Y generalists, while others were
not found or were extremely rare, such as A-Y. Interestingly, H82 spanned states between the A,
N, and Y archetypes, which has been shown to be a possible transition path in mouse models
(Ireland et al., 2020) and is consistent with its bulk expression of ASCL1, NEURODI, and YAP1

(Figure 3.7).
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In conclusion, SCLC cell lines may each comprise archetypal specialists and generalists at
the single-cell level. The relative proportion of specialists and generalists varies in each cell line,
and generalist cell types may represent intermediate phenotypes or cells transitioning between two

archetypes.
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Figure 3.7: Bulk expression of key TFs in human cell lines.

3.2.5. A phenotypic continuum of specialist and generalist cells is detected in SCLC tumors

To determine whether generalists exist in tumors as well, we used the same method of
labeling single cell archetypes by bulk archetype gene signatures to analyze scRNA-seq data from
SCLC human tumors and genetically engineered mouse models (GEMMs) (Figure 3.8).

We sequenced single cells from human tumors from the lungs of two patients who had
been treated with and relapsed from the standard of care therapy (etoposide and a platinum-based
agent, EP; patient 1 also received prophylactic cranial irradiation; see Methods). Archetype

analysis showed that the two tumors fit within a triangle polytope (p = 0.008). Tumor 1 spanned
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two of the archetypes, one of which was enriched for ASCL1 expression (p =4.19¢-6) and the NE
subtypes SCLC-A and SCLC-A2 (Figure 3.8A-C). Interestingly, the second archetype did not
show significant enrichment in any bulk archetype signatures. Tumor 2 spanned the region
between the same A/A2 archetype and an archetype most enriched in the SCLC-Y signature and
YAPI1 (p=2.1e-49). This is also reflected in the projection of the tumors using the bulk archetype
space; Tumor 2 is closer to the SCLC-Y archetype, while most of the variance in Tumor 1 spans
the NE archetypes. In both samples, we found subpopulations of generalist cells spanning the
archetypes to different degrees, again supporting the existence of intermediate cell states.

We next analyzed three tumors isolated from an Rb1"/Tp53V1/Rb12"" mouse model (labeled
TKOL, 2, and 3). TKO1 and TKO2 were primary tumors from independent replicates, and TKO3
was a metastatic tumor from the same mouse as TKO2. Archetype analysis showed that the three
tumors fit within a four-vertex polytope (p = 0.001). In both the primary and metastatic tumors,
archetype signatures revealed a large proportion of SCLC-A2 (TKO1) or SCLC-A (TKO2 and
TKO3) specialists (Figure 3.8D-F). TKO2 and TKO3 also comprised specialists with a high
signature score for SCLC-P. In each mouse tumor analyzed, regardless of relative specialist
composition, a large proportion of cells were generalists. Thus, intermediate cell states are a staple
of GEMM tumors, further supporting the notion of a cell-state continuum.

Taken together, single-cell gene expression data indicated that SCLC cell lines, human
tumors, and GEMMs each comprised archetypal specialists and generalists. This characterization
of single cells into a continuous phenotypic spectrum between archetypes reveals critical facets of
cellular identity that cannot be captured in a discrete framework and may provide insights into the

adaptive, dynamic nature postulated for SCLC cells.
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3.2.6. Task trade-offs drive transitions in SCLC tumors

The intra-tumoral heterogeneity seen in the mouse and human tumors we analyzed may
have arisen due to the phenotypic plasticity of single cancer cells. Phenotypic plasticity, in the

context of SCLC archetype space, is tantamount to dynamics of task trade-offs, i.e., state
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transitions between specialists and/or generalists. We previously showed that a highly plastic non-
NE subpopulation emerges in human tumors (Gay et al., 2021). These tumors are largely ASCL1+
before treatment, which raises the possibility of a trade-off between the injury repair task optimized
by SCLC-Y specialists, and the proliferation task of SCLC-A, which is susceptible to
chemotherapy.

To test this possibility in independent datasets, we focused on task trade-offs along the
SCLC-A and SCLC-Y axis, using cell plasticity as a proxy. Previous studies from our co-authors
and others showed that SCLC cells transition between A and Y subtypes under certain
perturbations, such as Notch pathway activation (Lim et al., 2017) and c-Myc hyperactivation
(Ireland et al, 2020; Patel et al., 2021). In these studies, classical neuroendocrine (NE) cells, such
as SCLC-A, -A2, and -N, acquire non-NE properties such as variant morphology and expression
of non-NE markers (such as YAP1). These observations show c-Myc may be able to control SCLC
lineage plasticity and suggest NE subtypes could exhibit increased plasticity under c-Myc
activation.

To investigate whether task trade-offs could explain these dynamics, we analyzed a time-
course of a genetically engineered mouse tumor with hyperactivation of c-Myc (Rb1¥%;TP5311;
Lox-Stop-Lox [LSL]-Myc™8A RPM tumors, six time points, Figure 3.9A) (Ireland et al., 2020).
To align previous subtyping of these time points based on key transcription factors, we tested the
enrichment of our bulk archetypal signatures in the single-cell time series dataset (Figure 3.9B).
Using PCHA, we found that a six-vertex polytope best fit the data (p = 0.001), and 5 of the 6
archetypes were enriched for SCLC signatures (Figure 3.9C). This suggests that multi-objective

optimization of tasks may have a causal role in the time course.
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Figure 3.9: MYC-driven tumor progression transitions from NE to non-NE archetypes. A. UMAP of RPM time course with
timepoints labeled. Days 4 and 7 fall in the same region of the UMAP; Day 11 is mostly distinct; and Days 14-21 fall in the same
large cluster. B. Bulk archetype signature scores for single cells in time course. Days 4 and 7 are enriched in SCLC-A, -A2, and -
N archetype signatures; Day 11 is slightly enriched for SCLC-P and -Y signatures; and a subpopulation of Days 14 to 21 is
enriched in the SCLC-Y signature. C. Left: Specialists for 6 archetypes are shown on UMAP, with generalists in grey. 5 of 6
archetypes are enriched in SCLC signatures, the sixth archetype (Blue) is labeled as X. Top right: Two archetypes are enriched
for the SCLC-Y signature. One of these archetypes is actively cycling, with cells in the G2M and S phases of the cell cycle. The
other is non-cycling. Bottom right: Stacked bar plots show overall subtype composition change. D. Variant allele frequency for
beginning (Day 4) and end (Day 23) of an independent RPM time course. Only four variants unique to Day 23 are in coding
regions (triangles), and less than 7% of variants are high frequency, suggesting minimal clonal evolution. This supports the notion
that phenotype transitions, rather than clonal selection, drive movement from NE to non-NE archetypes.

As expected, there was a shift from NE subtype cells to non-NE (Figure 3.9C).
Specifically, at the earliest time points (day 4 and day 7) tumors were largely composed of SCLC-
A/N and SCLC-A2 specialist cells (>50%), forming a continuum of specialists and generalists near

the NE archetypes. By day 11 the population of cells was near an SCLC-P/Y archetype (Figure
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3.9C). Two archetypes in the dataset were enriched in the SCLC-Y signature (green in Figure
3.9C). While the transcriptomic profiles were similar, one key difference between these archetypes
was whether they were actively cycling; one was dominated by G2M and S genes, while the other
contained cells mostly in the G1 phase. From day 14 to 21, cells move towards these SCLC-Y
archetypes, consistent with the increase in YAP1 expression found in Ireland et al. (2020).
Interestingly, by day 21, cells fall near a new archetype that is not enriched in any of the SCLC
signatures (X specialists, blue in Figure 3.9C). Gene set enrichment analysis (GSEA) showed that
archetype X is enriched for the following hallmark gene sets: MYC targets, oxidative
phosphorylation, reactive oxygen species (ROS) pathway, and glycolysis. Archetype X is
significantly depleted in hallmark gene sets related cell cycle terms (mitotic spindle and G2M
checkpoint) and hypoxia. Further research will be necessary to characterize this non-NE archetype.
The changing proportions of archetypal subpopulations over the time course suggests that cells
maybe trading off between the NE and non-NE archetypal tasks.

We sought to validate that cell state transitions, rather than clonal selection, were
responsible for the shift in phenotype from NE to non-NE. To this end, we performed whole-
genome sequencing on independent samples from day 4 and day 23 (Figure 3.9D). We filtered
variants by read depth and compared the frequency of variants across the two time points. If clonal
selection of a pre-existing non-NE subpopulation was driving the dynamics of the time course, we
would expect to see a substantial number of subclonal variants in the day 4 sample increase in
allelic frequency in the day 23 sample. Instead, we found that only 7% of the total somatic variants
were unique to, and had high allelic frequencies, on day 23 (greater than 0.4). Furthermore, only
four of the variants unique to day 23 are in coding regions of genes (shown as triangles in Figure

3.9D). None of the four genes are associated with SCLC phenotype identity and show low to no
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expression dynamics in the scRNA-seq data, suggesting these variants do not drive phenotypic
evolution. Together, this shows there is minimal genetic evolution between days 4 and 23, and the
transformation of cell state over this time course is due to phenotypic transitions rather than clonal
selection. Together, these results show that RPM tumor cells can transition between NE and non-
NE states as a result of archetype task optimization.

3.2.7. Plasticity analysis identifies regulators of task trade-offs

We next sought a method that could deconvolve two aspects of plasticity, reflecting two
distinct qualities of the underlying phenotypic landscape: containment potential and drift potential
(Weinreb et al., 2018). Containment potential should be reflected in the multipotency of cells.
Therefore, we examined whether cell progressed along multiple lineages using CellRank (Lange
et al., 2022). To approximate drift potential, we calculate an expected distance of transition for
every single cell, here termed Cell Transport Potential (CTrP), to reflect movement across
phenotypic space (see Methods).

First, to determine the transition paths of cells along the time course, we applied RNA
velocity analysis using scVelo (Figure 3.10A) (Bergen et al., 2020; Manno et al., 2018). We fit
each gene using a dynamical model and investigated the genes with top fit likelihoods (see
Methods). A gene set enrichment analysis (GSEA) shows that genes ranked by their fit likelihood
were enriched for MYC target genes (q = 0.000), corroborating that MYC is critical for driving
the transitions across timepoints. We next used EnrichR (Chen et al., 2013) to investigate
transcription factors that regulate the top fit genes (fit likelihood > 0.3) which validated MYC as
an important regulator of the velocity dynamics (Figure 3.10B). E2F family proteins, REST, and
SMAD4 were also identified as regulators (Figure 3.10C), which have previously been implicated

in the progression of SCLC (Lim et al., 2017; Wang et al., 2017; Wooten et al., 2019).
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Figure 3.10: RNA velocity analysis identifies lineage drivers and high plasticity cells in RPM time course. A. RNA velocity shows
transition across the time course in UMAP projection. B. Hallmark gene set of MYC targets is enriched in gene set with high fit
likelihoods for dynamical RNA velocity model. C. ENCODE and ChEA consensus TFs from EnrichR analysis of top fit likelihood
genes (likelihood > 0.3). Consensus score from EnrichR shown. For genes from both sources (i.e. ENCODE and ChEA both have
the TF), a black bar shows 95% confidence interval on mean consensus score. E2F family genes and MYC are key drivers of the
transition. D. Using CellRank, we fit a Markov transition matrix to these dynamics using a weighted kernel of the RNA velocity
(weight = 0.8) and diffusion pseudotime (DPT) calculated in Ireland et al. (2020) (weight = 0.2). Using the CellRank
implementation of a GPCCA estimator, we find end states for the Markov chain model and display the top 30 most likely cells for
each absorbing (end) state. E. PAGA plot shows significant transitions between time points. Pie plots overlaid on PAGA show
aggregate lineage probabilities by timepoint. F. Aggregate lineage probabilities by timepoint shown as bar plot, with absorption
probability on y-axis. G. Lineage drivers of the SCLC-Y lineage. Genes correlated to absorption probabilities for the SCLC-Y
lineage are considered drivers of that lineage. UMAP with expression of select lineage drivers from the SCLC-Y archetype signature
are shown. EnrichR analysis shows TF regulators, ranked by consensus score, of the top 40 significant lineage drivers sorted by
correlation with lineage. TCF3 is in the SCLC network described in Wooten et al. (2019); RUNXI was predicted to regulate an
intermediate osteogenic state in an RPM mouse model with inactivated ASCL1 (Olsen et al., 2021). H. TF regulators of lineage
drivers for the X absorbing state. As in (K), EnrichR was used to rank regulators by consensus score. E2F family genes, MYC, and
RUNXI are regulators of the X lineage. I. Cell transport potential shows most plastic subtypes across the time course. Cells closer
to the NE archetypes SCLC-A and -A2 have higher plasticity in earlier time points. CTrP decreases over time, consistent with cells
that transition from NE phenotypes to non-NE phenotypes with lower plasticity.
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Using CellRank (Lange et al., 2022), we fit a Markov chain model by combining two
sources of dynamic information: diffusion pseudotime calculated in Ireland et al. (2020) and RNA
velocity. We find four regions of end states (absorbing states, Figure 3.10D), two in earlier
timepoints (days 7 and 11) and two in later timepoints (days 17 and 21). Interestingly, all of the
absorbing states are in specialist regions rather than generalists (SCLC-A2, P/Y, Y, and X
specialists). A coarse-grained PAGA graph shows significant transitions between timepoints as
expected, with varying proportions of cells in each timepoint transitioning towards each end state
(Figure 3.10E). While about two thirds of the cells in days 4 and 7 transition towards the A2 end
state in day 7, the remaining third transitions towards the Y and X end states. The remaining
timepoints (11-21) are split between the SCLC-Y and X lineages (Figure 3.10F).

We then correlated probabilities of absorption at either end state with gene expression to
find potential lineage drivers for SCLC-Y and X and applied EnrichR to investigate transcription
factors (TFs) regulating these genes (Figure 3.10G-H). VIM and LGALS1 were both top SCLC-
Y lineage drivers, consistent with their presence in our SCLC-Y archetype signature (Figure
3.10G). In fact, 19 of 24 genes from the SCLC-Y signature (Figure 3.6F) were identified as
significant lineage drivers (q < 0.05), confirming their role in driving this phenotype. The top
SCLC-Y lineage drivers were regulated by TCF3 and RUNX1, which we previously showed may
be important in SCLC progression (Figure 3.10G) (Olsen et al., 2021; Wooten et al., 2019).

SCLC-X lineage drivers are regulated by MYC, RUNXI, and E2F family genes,
suggesting MYC activation is key to reaching this archetype (Figure 3.10H). Furthermore, ChEA
identified as X lineage regulators several TFs that are important for maintenance of pluripotent

stem cells, such as OCT4, NANOG, and SOX2 (Figure 3.11A). To determine if the TF regulators
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of the SCLC-Y and X lineages interact, we used STRING to construct a regulatory network
(Figure 3.11B) (Snel, 2000; Szklarczyk et al., 2020). Twelve of the 86 drivers regulated both
lineages, including SOX2, RUNX1, and KLF and E2F family genes. An analysis of centrality
demonstrated that p300, which is often mutated in SCLC and may be associated with poor
prognosis (Gao et al., 2014; George et al., 2015; Hou et al., 2018; Jia et al., 2018), regulates the
most child nodes (38) in the network. Other central TFs include MYC, JUN, which is important
for the SCLC-to-NSCLC transition (Risse-Hackl et al., 1998; Shimizu et al., 2008), and CEBP
family genes, which have been shown to play a vital role in inflammatory diseases, including

cancer (Chi et al., 2021).
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Figure 3.12: Cell Transport Potential shows NE archetypes have highest plasticity. A. CTrP
shown on UMAP with RNA velocity overlaid. B. CTrP decreases from early-timepoint
archetypes, including A/N, A2, and P/Y to the X archetype. While SCLC-Y is an absorbing
state in the system, many of the Y specialists still have high plasticity.

Finally, we applied our CTrP pipeline. As expected for a time course of phenotype-
transitioning cells, transport potential decreased steadily over the time course (Figure 3.12A).
Despite the presence of early timepoint end states (A2 and P/Y), all specialist cells in early
timepoints had higher CTrP than later timepoints (Figure 3.12B). Together, our plasticity analysis
suggests that MYC may be capable of increasing the plasticity of early time-point cells, or NE
specialists, allowing them to transition to the non-NE SCLC-Y archetype and a new archetype

regulated by pluripotency TFs.
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3.2.8. Network analysis validates the role of MYC in driving SCLC plasticity

To gain mechanistic insights into the effect of MYC on plasticity, we introduced MYC into
an SCLC-specific transcription factor (TF) network (Figure 3.13A). As described in Wooten et
al. (Wooten et al., 2019), computer simulations of this TF network dynamics reveal attractors (i.e.,
network equilibrium states) that correspond well to the experimentally defined SCLC subtypes.
The stability of these attractors (i.e. subtypes) can be quantified with the BooleaBayes algorithm.
To mirror the experimental conditions of Ireland et al., we imposed constitutive activation to the
MYC node in simulations of dynamics of the SCLC TF network. This modification decreased the
number of steps needed to leave the NE attractors; in other words, MYC activation destabilized
the SCLC-A and SCLC-A2 attractors but did not significantly destabilize the SCLC-N or the non-
NE SCLC-Y attractors (Figure 3.13B). The in-silico perturbations suggest that activation of MYC
and the subsequent epigenetic regulations may be able to shift an NE-phenotype cell to a non-NE
one by destabilizing the NE attractor (cell state). Further experimental validation is needed to
determine whether MY C activation is sufficient for this phenotype shift to occur.

We next investigated this effect of MYC by measuring plasticity at the single-cell level in
a human tumor dataset comprising two PDXs from the same SCLC patient, generated before and
after relapse following chemotherapy. At the single-cell level, MYC expression was higher in the
PDX after relapse than the PDX before treatment, consistent with genomic amplification of MYC
in the tumor following treatment. CTrP analysis confirmed that plasticity was correlated with
MYC expression in each of the tumors.

The above independent lines of evidence indicate (1) MYC hyperactivation can drive
phenotype transitions from NE to non-NE states, as confirmed by whole genome sequencing

showing little clonal evolution; (2) MYC may be capable of increasing the plasticity of NE
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subtypes, as demonstrated by in silico simulations and RNA velocity analysis; and (3) a correlation
in MYC expression and plasticity after treatment may point to MYC’s role in SCLC tumors
acquiring resistance. Together, this suggests that upregulation or activation of Myc can increase

NE cell plasticity to promote cell state transitions toward a non-NE state, which may help cancer

cells overcome treatment.

B. SCLC-A Attractor SCLC-A2 Attractor
Less Stable ¢————  » More Stable Less Stable ¢———————  » More Stable
0.14 T 0.12 T
I Control | Control
0.12 - MYC Activation 0.10 | MYC Activation
1 :<_
g 010 Lo 0.08 |
% 0.08 L 1
> Ll ! 0.06 )
2 0.06 i 1
w i b 0.04 |
0.04 (1T ]
(1
0.02 i 0.02 1
I SCLC-A 1 SCLC-A2
0.00 -t 0.00 L
0 50 100 150 200 250 300 o 50 100 150 200 250
Number of Steps to Leave SCLC-A Basin Number of Steps to Leave SCLC-A2 Basin
SCLC-N Attractors
. 4 T
A\ ": 008 b Control 008 i Control
S = i ) MYC Activation H MYC Activation
AR ."\ X 0.06 )| 0.06 i
N4 "‘ IRy z 1 (|
‘ ‘ b LA g N 008 1l
| g o0 i [t
2 | ¢ i
\QA ‘ * i# I
| !r‘ . 0.02 I 0.02 it
/ ‘ 1 |
\ , 0.00 — 0.00 il
/ 0 20 40 60 80 100 0 20 40 60 80 100 120 140
L Number of Steps to Leave SCLC-N Basin Number of Steps to Leave SCLC-N Basin
y SCLC-Y Attractors
0.08 i Control 0.08 " Control
i MYC Activation H MYC Activation
i i
> 0.06 | 0.06 H
2 | 1
H i i
g o il 004 i
w {11 1]
il il
0.02 I 0.02 il
il il
il il
il il
0.00 — 0.00 i
0 50 100 150 200 250 300 0 20 40 60 80 00 120
Number of Steps to Leave SCLC-Y Basin Number of Steps to Leave SCLC-Y Basin

Figure 3.13: MYC activation destabilizes NE states. A. Transcription factor network adapted from Wooten et al. to incorporate
MYC activity. B. In silico destabilization of NE specialists by MYC activation. Using BooleaBayes simulations (Wooten et al.,
2019), we performed random walks with activated MYC and found that SCLC-A and SCLC-A2 states are destabilized, i.e. MYC
activation is capable of increasing plasticity of these subtypes in RPM tumors. SCLC-N and SCLC-Y attractors were not
significantly destabilized.

3.3. Discussion
SCLC is a heterogeneous cancer comprising neuroendocrine (NE) and non-neuroendocrine
(non-NE) subtypes, classified by eponymous transcription factors (Rudin et al., 2019). Our goal in

this study was to understand dynamics amongst these subtypes since plasticity is likely to play a
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crucial role in supporting the aggressive features of SCLC (Ireland et al., 2020; Lim et al., 2017;
Stewart et al., 2020). In analyzing SCLC datasets from diverse sources, we realized that applying
the current discrete subtype classification is insufficient to capture subtype dynamics because
many SCLC cells in cell lines and tumors fall between distinct subtypes. Therefore, our
understanding of SCLC plasticity was limited by the lack of (i) continuous definitions of cell state
and (ii) quantitative metrics for single-cell plasticity.

We propose an alternative, continuous view of SCLC heterogeneity based on SCLC
archetypes defined by functional tasks. While there was a high concordance between archetypes
and canonical subtypes, the archetype-bounded phenotypic space paradigm presented several
advantages that better represent SCLC heterogeneity. First, the transcriptional profile of every
single cell can be evaluated based on distance from archetypes and graded as a specialist or
generalist (e.g., a cell between archetypes N and Y has a generalist phenotype with a high degree
of N and Y character). Second, the plasticity of phenotypes can be quantified by tracing transition
paths between archetypes and identifying regions of high SCLC cell plasticity. Third, cell state
transitions are rooted in multi-objective evolutionary theory such that movement across the
continuum fulfills the goal of trading off between tasks, providing a functional interpretation of
SCLC phenotypes. Lastly, we can identify epigenetic strategies for targeting plastic SCLC cells,
which we propose is a high priority for effective SCLC treatment.

3.3.1. Cooperation of SCLC Archetypal Tasks

Using gene set enrichment analysis, we identified tasks optimized by each specialist cell
type that mirror tasks fulfilled by normal PNECs. We then projected single-cell data into an
archetype-defined polytope and found intratumoral heterogeneity aligns with intra-sample
diversity, with single cells capable of optimizing varying tasks within a single tumor. This palette

of biological tasks within a cell line or tumor agrees with recent reports indicating that lung tumors
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are capable of building their own microenvironment, where SCLC cell types (NE and non-NE)
were found to interact in a way that is mutually beneficial to the growth of the tumor (Calbo et al.,
2011; Huch and Rawlins, 2017; Kwon et al., 2015; Lim et al., 2017). Similarly, we expect SCLC
cells optimizing archetypal functions to cooperate in vivo by performing PNEC-related tasks that
contribute to the growth of a tumor in the face of changing external conditions, such as treatment.
It remains to be seen whether the normal functions of PNECs represent an actionable constraint
for SCLC cells.

Our analysis suggests that multi-objective optimization under Pareto theory shapes SCLC
phenotypic space, supported by the enriched gene programs and experimentally tested tasks of
each archetype. However, a polytope could result from other phenomena. For example, each
archetype could correspond to a weighted average of five transcriptional profiles. While we show
preliminary experimental evidence that each archetype optimizes a specific task, further work is
needed to validate task trade-offs characteristic of Pareto optimality. Phenotypic perturbation
experiments may help determine the cost trade-off between archetypes and uncover the
relationship between archetypal task optimization and tumor fitness. For example, Archetype 1
(SCLC-A) cells optimize proliferation (function) and, therefore, are highly chemosensitive (cost).
In contrast, a transition to Archetype 5 (SCLC-Y) under chemotherapy may decrease the rate of
growth of a tumor (cost) but are better able to respond to cell injury and may therefore better
survive treatment (function).

3.3.2. SCLC and PNEC Plasticity

We find that this heterogeneous ecosystem of phenotypes arises in SCLC tumors due to
cell state transitions. By quantifying Cell Transport Potential, we uncovered subpopulations of
high plasticity, capable of transitioning to multiple other phenotypes. We speculate that the

plasticity of SCLC cells may derive from dysregulation of the innate plasticity in normal PNECs.
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After injury to the lung epithelium, “specialist” stem-like PNECs can transdifferentiate to perform
repair tasks and regenerate “specialist” club cells, whose main task is the secretion of protective
proteins, most likely through non-genetic mechanisms (Oudah et al., 2019). As shown in the
tumors analyzed here, SCLC cells can likewise transition between NE and non-NE phenotypes.

It is tempting to speculate that such levels of adaptability may be responsible for the highly
aggressive features of SCLC tumors. For instance, an altered balance in favor of the wound-healing
SCLC-Y specialists may be expected in tumors immediately after treatment, supported by our
limited treated tumor data here and could be further tested experimentally in GEMM or PDX
tumors. These dynamics could explain the initial response to chemotherapy seen in patients, which
is inevitably followed by relapse as cells transition to generalist and non-NE specialist cells better
equipped to overcome chemotherapy.

3.3.3. Controlling plasticity in SCLC

Previously, a subset of SCLC cells has been shown to be capable of long-term propagation
of tumors (Tumor propagating cells, TPCs) (Jahchan et al., 2016), and it is unclear how these cells
relate to the archetypes described here or our definition of plastic potential. While SCLC-A cells
express markers for TPCs (positive for EPCAM, MYCL, and CD24, and negative for CD44), it
remains to be seen whether SCLC-A cells correspond to TPCs functionally or if TPCs can span
archetype space. Similarly, a PLCG2-expressing stem-like subpopulation was recently reported in
a survey of human SCLC tumors (Chan et al., 2021). This stem-like cell may be consistent with a
diverse, stem-like functional state since it is present across SCLC-A, -N, and -P
tumors. Interestingly, PLCG2, enriched in SCLC-P, was present in our archetype signature.
Further work is needed to understand the relationship between this archetype and stemness.

Plasticity is dependent on the underlying genetics that determine the shape of the

phenotypic landscape, the particular cellular state in which a cell resides, and any external
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conditions that may transiently distort the landscape. For this reason, epigenetic methods may
directly target plasticity, such as gene regulatory network perturbations. For example, two PDX
models from a single patient show elevated levels of MYC after relapse that is correlated with
plasticity. There are two possibilities for why MYC expression may correlate with plasticity: (1)
MYC may be driving an increase in plasticity, or (2) another driving genetic or epigenetic
mechanism may increase both MYC and plasticity. Our analyses of a hyperactivated MYC GEMM
show that MY C may promote NE cell plasticity, consistent with studies that MYC overexpression
in human ASCL1+ cells can promote N and Y subtypes (Ireland et al., 2020; Patel et al.,
2021). Therefore, MYC itself seems capable of driving the increase in plasticity seen after
treatment.

Furthermore, previous research suggests that MYC may play a role in genome-wide
transcriptional upregulation, allowing cells to change expressed gene programs and thus phenotype
(Lin et al., 2012). In other words, MYC may allow cells to “move further” in gene expression
space, exhibited by increased CTrP. However, future studies, such as using an inducible MYC
model in GEMMs or PDXs, will be necessary to determine the complete mechanism underlying
the relationship between MYC and phenotype plasticity.

3.3.4. Task trade-offs and acquired resistance
The current standard of care for SCLC is predicated upon targeting highly proliferative

cells. However, this treatment inevitably results in resistant relapse. Highly plastic cells detected
in SCLC cell lines and tumors suggests that plasticity may drive resistance in SCLC, consistent
with a recent study showing increased intratumoral heterogeneity upon chemotherapy relapse
(Stewart et al., 2020). The phenotypic continuum also shows that plasticity enables SCLC cells to
trade-off PNEC-related tasks, which translates to a high level of adaptability to diverse

microenvironments. Thus, plasticity may also be responsible for SCLC aggressive traits, such as
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local invasion and early metastatic spread. Therefore, we propose epigenetic strategies to target
plasticity directly that can be derived from analyses of TF network dynamics, such as MYC
inhibition. Given the primary role of TFs in driving SCLC phenotype (Wooten et al., 2019), SCLC

should be a prime candidate for plasticity-targeted therapy.

3.4. Methods
3.4.1. Bulk SCLC Cell Line RNA-seq Data Preprocessing

Bulk RNA sequencing expression data on SCLC cell lines were taken from two sources:
50 cell lines were taken from the Cancer Cell Line Encyclopedia (as in Chapter 2) and 70 cell lines
(not including H69 variants) were taken from cBioPortal (Cerami et al., 2012; Gao et al., 2013)
deposited by Dr. John Minna (2017). Access to data from cBioPortal was provided by participation
in the NCI SCLC Consortium. 29 cell lines overlapped between the datasets, so a “c” (CCLE) or
“m” (Minna) was used to denote the source of each cell line. Each dataset was filtered and
normalized independently and then batch corrected together. For each source, genes and cell lines
with all NAs were removed, as well as mitochondrial genes. The counts data was then normalized
by library size and transcript abundance to TPM values. The two datasets were combined using
overlapping genes and log-transformed, and genes with low expression across all samples were
removed (cutoff of log(TPM) >= 1). The two datasets were then batch corrected using the sva R
package, which includes a ComBat-based integration method (Johnson et al., 2007; Leek and
Storey, 2007). SVA, or surrogate variable analysis, uses a null model and a full model to derive
hidden variables, such as batch, that may contribute to gene expression variance across samples.
The four SCLC TF factors that define broad subtypes— ASCLI1 (A), NEUROD1 (N), YAPI (Y),
and POU2F3 (P)— were used to align the two datasets to each other. The resulting dataset

contained 120 samples and 15,950 genes.
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For labeling cell lines by subtype cluster in Figure 3.1A, the clustering method in Chapter
2 was adapted for the expanded dataset. Briefly, hierarchical clustering with the Spearman distance
metric was calculated. Cell lines previously characterized as SCLC-A in Chapter 2 comprised two
branches of the dendrogram separated by SCLC-N cell lines, most likely due to the dual positivity
of ASCL1 and NEURODI in some SCLC-A cell lines. Cell line H82 (from both data sources) was
considered “unclustered,” as it was considered an SCLC-N cell in Chapter 2 but was clustered
with SCLC-Y cell lines here. PCA was run on the bulk RNA-seq dataset and the elbow method on
explained variance per component was used to choose 12 principal components for downstream
analysis. The top 12 principal components were able to explain ~50% of the variance in the dataset,
suggesting a low-dimensional representation of the data was possible.

To identify gene programs associated with the five SCLC phenotypes found with
clustering, we performed weighted gene co-expression network analysis (WGCNA) on the same
RNA-seq data (Langfelder and Horvath, 2008) as in Chapter 2.

3.4.2. Archetypal Analysis using PCHA

Using an AA method known as Principle Convex Hull Analysis (PCHA) we found a low-
dimensional Principal Convex Hull (PCH) for the cell line dataset (Merup and Hansen, 2012). The
convex hull is the minimal convex set of data points that can envelop the whole dataset. The PCH
is a subset of the convex hull comprising a set of vertices, or archetypes, that form a polytope able
to capture the shape of the data. The vertices are constrained to be a weighted average of the data
points, and the data points are then approximated as a weighted average of the vertices. The
algorithm solves the optimization problem of minimizing the norm of the approximated data
subtracted from the original data. The algorithm constraints can be relaxed such that the vertices

can be found within a certain volume around the convex hull; i.e. relaxing the constraint that the
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vertices must fall on the convex hull. By comparing the convex hull to the PCH, we can determine
how well a low-dimensional shape fits the dataset with a statistical test, and thus ascertain the
optimal number of vertices, or archetypes, that best define the shape.

Archetypal Analysis was done using the Matlab package ParTl (Hart et al., 2015). To
determine the best k, we found the explained variance (EV) for each number of archetypes &, which
is computed by the PCHA algorithm (in the function ParTI lite) as previously described (Cutler
and Breiman, 1994; Korem et al., 2015) Then, we chose a number of archetypes, £*, for which the
EV doesn’t increase by much when adding additional archetypes. In practice, this is done by
finding the “elbow” of the EV versus k curve, which is the most distant point from the line that
passes through the first (k=2) and the last (k = kmax= 15) points in the graph. Because this could be
dependent on our choice of kmax, we varied kmax between 8 and 15 and found £* in each case. K*
= 5 for 6 of 8 EV versus k plots; £* = 4 when kmax = 12, and £* = 6 when kmax = 11. Therefore, we
proceeded with our analysis using k* =4, 5, or 6.

The function ParTI was then used for the full analysis for each k* with parameters dim =
12 (dimensions) and algNum = 5 (PCHA) to find the location of the archetypes in gene expression
space. To measure the similarity between the data and a polytope is its t-ratio. This was calculated
by comparing the ratio of the polytope volume to that of the convex hull. For PCHA, a bigger t-
ratio suggests the polytope is more similar to the data (and thus a better fit). Empirical p-values
were calculated by comparing the t-ratio of the data to that of 1000 sets of shuffled data, as
described in Korem et al. (2015). The p-value was defined as the fraction of sets for which the t-
ratio is equal to or larger than that of the data. The p-value for 5 archetypes, p = 0.034, suggests

the polytope fits the data well. As a side note, we also tested k* = 3, even though it was not
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suggested by ParTI software. We found this polytope has an insignificant p-value of 0.58,
suggesting it does not fit the data well.

We adapted a method from Hausser et al. (2019) to compare the archetypes for 4, 5, and 6-
vertex polytopes. Briefly, we compare the significantly enriched (FDR <10% and log2 fold change
>(0.1) gene sets at each archetype (described below in “Gene and ontology enrichment at archetype
locations™) using a hypergeometric test. This allows us to test if the number of overlapping
enriched sets for the two archetypes is significantly higher than expected, given the null hypothesis
of random sampling from the union of gene sets found at any archetype in a given polytope.

Errors were then calculated on each archetype location by sampling the data with
replacement and calculating the archetypes on the bootstrapped data sets (1000 times). Error on
the archetypes gives an idea of the variance in archetype position expected, and a smaller variance
suggests the archetype is robust to outlier samples. In the 5-vertex polytope, the errors on each
archetype are relatively small, suggesting none are dependent on outliers in the data.

3.4.3. Enrichment of cluster labels, genes, and gene ontologies at archetypes

Enrichment of subtype labels was determined using the ParT7l function
DiscreteEnrichment. Cell lines were binned into 10 bins according to distance from each
archetype. For each subtype label (from hierarchical clustering), the percentage of labels in the bin
closest to the archetype was compared to the percentage in the rest of the data using a
hypergeometric test. Enrichment was considered significant if the bin closest to the archetype was
maximal for that label and the FDR-corrected p-value for the hypergeometric test was significant
(Benjamini-Hochberg, q < 0.1). After binning the data into ten bins by distance to archetype, we

found that each archetype was enriched in cell lines from one of the five SCLC subtypes.
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To find genes enriched by each archetype, we tested the enrichment of each feature on the
bin closest to archetypes versus the rest of the data. The ParTI function ContinuousEnrichment
was used to analyze gene expression of all 15,950 genes and Cancer Hallmark Gene Sets. The
expression of each feature was compared between the closest bin to each archetype and the rest of
the data using a Mann-Whitney test (FDR-corrected p-value, q<0.1). To determine PNEC
functions enriched at each archetype, we used ConsensusPathDB (Kamburov et al., 2013) on the
top 300 most enriched genes for each archetype, as well as for PNECs and other airway cell types
from Montoro et al (Montoro et al., 2018). (using Scanpy’s function rank genes groups). As
described in Chapter 2, we used t-SNE to cluster the GO terms, using distances from GOSemSim
(Yu et al., 2010). We then chose clusters with GO terms related to PNEC tasks and evaluated
enrichment of these terms at each archetype.

3.4.4. Archetype analysis on bulk RNA-seq from 81 human tumors

We chose to define archetypes on cell lines because cell lines are generally thought to be
less heterogeneous than tumor samples, and therefore may better represent extreme, pure
phenotypes rather than mixed (averaged) phenotypes of tumors. To test whether it is true that cell
lines better represent extreme phenotypes in our particular SCLC samples, we combined our
dataset of 120 cell lines with an independent dataset of 81 human SCLC tumors (George et al.,
2015) and analyzed the relationships between the cell lines and tumor samples. First, we batch
corrected this data using SVA as described above. Cell line and tumor RNA-seq datasets were
preprocessed as described above. The ComBat method with a scale adjustment best aligned the
distributions of log-transformed expression.

We next fit a principal components analysis (PCA) model to this combined dataset. We

find that the tumor samples tend to be contained within the same archetype space as defined by
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cell lines. Next, we compared a PCA model fit to tumor samples only to this PCA on the combined
dataset, to determine how variance in the cell lines differs from variance in the tumors. We find
that the top PCs of the tumor-only model match the top PCs in the combined-dataset model.
Once we determined that the variance in SCLC cell lines and tumors is aligned, we applied
archetype analysis directly to the tumor data. We use the ParTI MATLAB package to run PCHA
and find archetypes associated with (a) the combined dataset and (b) the tumor data only, and used
a method described in Hausser et al. (2019) to match the archetypes to our 5 cell-line archetypes.
To find the best number of archetypes £* that explains this combined dataset, we found the
“elbow” of the Explained Variance (EV) versus k curve, which is the most distant point from the
line that passes through the first (k=2) and the last (k = kmax= 15) points in the graph. Because this
could be dependent on our choice of kmax, we varied kmax between 8 and 15 and found £* in each
case. The Elbow method on the EV vs k plot suggests k* =4 (when knax = 8), 5 (kmax = 9, 10, 11,
or 15) or 6 (kmax = 12, 13, or 14) archetypes best fit the tumor data. We ran ParTI for k* =4, 5, or
6 and found that 5 archetypes gave the most significant p-value (p = 0.59 for k*=4; p = 0.09 for
k*=5; p =0.33 for k* = 6).
We then compared tumor-only archetypes to the archetypes defined by cell lines alone.
Using the elbow method and varying kmax between 8 and 15, PCHA suggested k* = 3 (kmax = 8,
10), k* =4 (kmax =9, 12), k* =5 (kmax = 11, 13), or k* = 6 (kmax = 14, 15). Interestingly, no best fit
polytope with 3 to 7 vertices was significant according to its t-ratio. We wondered if this was due
to our hypothesis that tumors are more mixed than cell lines as mixing cell types in different
proportions should produce polytopes in linear but not logarithmic space. We, therefore, looked for
polytopes in linear gene expression space by exponentiating gene expression and subtracting 1

(inverse operation of log(x+1)) before mean-centering the data and performing a PCA. In linear
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space, the elbow method suggested k* = 5 for all kmax between 8 and 15. To ensure k* = 5 is the
best fit polytope, we tested k* between 3 and 7. We found k*= 5, 6, or 7 were all significant with
p-values of 0.021, 0, and 0.002 respectively. Therefore, while no polytope was significant in the
log-transformed dataset, at least three polytopes significantly fit the tumor samples in linear space;
generally, the lowest number of vertices that reach significance is chosen, which would mean that
a 5-vertex polytope best fit the tumor samples in linear space.

While these results do not preclude the possibility that a polytope in linear space best fits
the tumor data due to technical variation, as described in the ParTI Manual Caveats, the two
analyses together (combined data and tumor samples only) suggest the tumor samples may be
linear mixtures of cell types, defined by the original cell-line-based archetype analysis and the
combined-data analysis.

We then found the enriched gene sets (GO Biological Processes v7.2) for the combined
dataset, as described above for cell lines. We compared the combined dataset archetypes to the
original cell line archetypes using a hypergeometric test, as described in “Finding the best fit
polytope and evaluating significance with a t-ratio test,” above. We found that each cell-line
archetype matches at least one combined-dataset archetype, and each combined-dataset archetype
matches at least one cell-line archetype.

3.4.5. Pareto Task Inference

We used the same data from Polley, et al (2016) as in Chapter 2 and considered the activity
area (AA). We scored each drug using an adapted version of the method described in Hausser et
al. (2019). Briefly, for each archetype x, we binned the cell lines into 4 bins by distance to x. We

then calculated a score as a product over the difference between bins:

3
S = HAAL _AAi+1 + 2 % SEL
i
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Where i is the bin, 44; is the median activity area for bin i, and SE is the standard error of
the median of bin i. This method gives us a way to rank drugs for each archetype x where cell lines
closest to x are most sensitive to the drug, and there is an inverse relationship between sensitivity
and distance to x. If the difference between consecutive bins increases by more than twice the SE
of the first bin, such that AA;,; — AA; > 2 * SE;, the product is set to 0. Using the standard error
of the mean for each bin in this way allows for small increases in consecutive bins, but if the
increase between bins is too large, the score will be set to 0. Positive scores can then be ranked to
find drugs for which archetype x is most sensitive. Using the drug-archetype combinations with
positive scores, we then ran a one-tailed Mann Whitney test comparing AA of the closest bin to
AA of the remaining bins to determine which drug sensitivity was significantly higher for the bin
closest to an archetype. An FDR (Bonferroni-Hochberg) correction to these tests showed that no
corrected g-values were lower than 0.18. This may be due to the large number of comparisons
being made with relatively low numbers of samples (37 total cell lines). Keeping this in mind, we
report drugs for each archetype with a p-value < 0.05, which suggest trends in drug sensitivity that
should be further confirmed by additional experiments.

3.4.6. Binomial test on treatment of SCLC-A and growth properties of SCLC-N cell lines

To determine if there was a relationship between chemotherapy treatment status of cell
lines and the SCLC-A archetype, we ran two binomial tests. First, we mined the ATCC and CCLE
databases, and past literature, to determine the treatment status of as many cell lines in our dataset
as possible. We found this information for 43 cell lines near the SCLC-A archetype, and 49 non-
SCLC-A cell lines. Of the 43 SCLC-A cell lines, 6 had prior therapy and 6 did not. Of the 49 non-
A cell lines, 16 had prior therapy and 4 did not. We therefore tested the hypothesis that SCLC-A

cells are more likely to be untreated with the logic that, if chemotherapy selectively kills SCLC-A
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cells, we would be more likely to see SCLC-A cell lines from tumors prior to treatment. We
compared the probability of being untreated given an A cell line (6 out of 12) to the expected
distribution of untreated cell lines from non-A cell lines (4 out of 20, or p = 0.2). A one-tailed
binomial test with an alternative hypothesis that the probability of SCLC-A cells being untreated
is greater than non-A cells showed that we can reject the null with a p-value = 0.019.

Similarly, we asked whether an untreated cell line is more likely to have a phenotype near
the SCLC-A archetype. We compared the probability of being SCLC-A given an untreated cell
line (6 out of 10) to the expected distribution of SCLC-A from treated cell lines (6 out of 22).
Again, we reject the null of a one-tailed binomial test with a p-value of 0.03, suggesting that
untreated cell lines are more likely to be near SCLC-A.

We used a similar analysis to test whether SCLC-N cell lines are more likely to be mixed
in culture than non-N cell lines.

3.4.7. Filopodia staining

Glass coverslips were sterilized and then coated with 5 pg/mL Laminin (mouse, Corning Cat#
354232) diluted in PBS overnight at 4 degrees in a 12 well plate. PBS/Laminin solution was
aspirated from the coverslips the next day and cells were seeded into the wells at a concentration
of 5x10% cells per well for H524, H446, and H69, and 1x10* cells per well for H196 (due to their
larger size). 24 hours post-seeding, cells were fixed with 4% paraformaldehyde, permeabilized
with 0.2% saponin, and blocked for 1 hour with 5% BSA + 0.1% saponin, with PBS washes in
between. Cells were incubated with anti-Tubulin beta 3 (TUBB3 Clone TUJ1, Cat# 801213,
Biolegend) diluted 1:500 in Blocking solution for 1 hour at room temperature. Cells were washed
with PBS and then incubated for 1 hour in the dark at room temperature with secondary antibodies

diluted 1:1000 in Blocking solution as follows: Hoechst 33342, Rhodamine phalloidin (Cat# R415,

109



Invitrogen), and donkey anti-mouse Alexa Fluor 488 (Cat# A-21202, Invitrogen). Finally, cells
were washed with PBS and mounted onto glass slides for imaging. Images were acquired using a
Nikon-A1R-HD25 confocal microscope (ran by NIS-Elements) equipped with an Apo TIRF
60x/1.49 NA oil immersion lens. Twenty images of each cell type were acquired per experiment,
and each cell analyzed was isolated and not directly touching another cell, to ensure accurate
filopodia and protrusion counts per cell. Analysis was done using Fiji software by manually tracing
the cell border and using Analyze tab/Measure to quantify cell area and fluorescence intensity.
“Filopodia” were counted manually and are defined as the slender protrusions from the cell body
that are phalloidin-positive and TUBB3-negative. “Protrusions” were counted manually and are
defined as long slender protrusions of the cell body that are TUBB3-positive. Data was graphed in

GraphPad Prism as the number of filopodia or protrusions per 500 um? cell area.

3.4.8. Seahorse XF Cell Mito Stress Test

Response to succinate was tested by incubating 25,000-50,000 living cells per well onto
Seahorse cell culture plates. Sodium succinate dibasic hexahydrate was diluted into water at 0.25
M (6.75 g/mL), and HCI and KOH were added until the pH was between 7.2 and 7.4. Succinate
was then added to cell culture plates at three different concentrations (6mM, 12mM, and 24mM,
plus control) and left to incubate overnight for 12 hours. Oxygen consumption rate testing was
performed as described in the Seahorse XF Cell Mito Stress test kit User Guide. Cells were then
imaged using Hoechst and propidium iodide to count live cells for normalization.
3.4.9. Gene signature matrix generation

After testing each gene with a Mann-Whitney test as described above, genes that are not

maximized in the bin closest to an archetype or with a p-value higher than 0.05 are considered
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insignificant and are removed from the analysis. The remaining genes are assigned to the archetype
for which the mean difference (log-ratio) of log-transformed gene expression in the closest bin to
the archetype compared to the rest is highest. The matrix (with size [G, n], where G = total number
of genes and n = number of archetypes) is populated with the archetype gene expression profiles
(i.e. the average location in gene expression space after bootstrapping the archetype analysis). To
reduce the size of the gene matrix and choose the most salient genes for each archetype, an
algorithm is used to optimize the condition number, or stability, of the matrix. The condition
number of the matrix, k(A), is the value of the asymptotic worst-case relative change in output for
a relative change in input:
A(x + 6x)=b+ b

lIoxll _ K(4) 16D
lIxll — 161l

Where A is the signature matrix, b is the input expression matrix, x is the output signature score,
and 9 is the error. The condition number x thus gives an upper bound on the output error given a
perturbation to the input. Minimizing this value ensures that genes that do not well-distinguish
between the archetypes are not included in the matrix. With genes sorted by mean difference for
each archetype, the top g genes are chosen for each archetype, with g ranging from 20 to 200. For
each g, the condition number of the matrix is calculated using the Python function cond from
numpy.linalg (Oliphant, 2006) using the 2-norm (largest singular value, p = 2). The gene signature
matrix size with the lowest condition number, which includes g* genes, is chosen. For our
archetypes, g* = 21, so the resulting size of the gene signature matrix is [g* x n, n] =[105, 5]. This
method can be extended to other sorted lists of genes, such as genes sorted by adjusted p-value in
an ANOVA test between archetypes. For SCLC, the gene signature included the four consensus

TFs: ASCL1, NEURODI, POU2F3, and YAPI.
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3.4.10. Single-cell RNA sequencing

Eight SCLC human cell lines from the bulk data above were chosen for single-cell RNA-
sequencing. SCLC human cells lines were obtained from ATCC. We chose two cell lines from
each NE subtype (A: H69 and CORL279, A2: DMS53 and DMS454; N: H82 and H524) and one
cell line from each non-NE subtype (P: H1048; Y: H841). This approximates the distribution of
subtypes seen in bulk tumor data, where most tumors are largely NE. We also aimed to pick cell
lines that ranged in their distance from their “assigned” archetype, to better understand
intermediate samples as compared to ones close to an archetype location.

Cell lines were grown in the preferred media by ATCC in incubators at 37 degrees Celsius
and 5% CO2. In preparation for single-cell RNA-sequencing, cells were dissociated with TrypLE,
washed with PBS three times, and then the cells were counted, and concentration was adjusted to
100 cells/uL. Droplet-based single-cell encapsulation and barcoding were performed using the
inDrop platform (1CellBio), with an in vitro transcription library preparation protocol (Klein et
al., 2015). After library preparation, the cells were sequenced using the NextSeq 500 (Illumina).
DropEst pipeline was used to process scRNA-seq data and to generate count matrices of each gene
in each cell (Petukhov et al., 2018). Specifically, cell barcodes and UMIs were extracted by
dropTag, reads were aligned to the human reference transcriptome hg38 using STAR (Dobin et al.,
2013)and cell barcode errors were corrected and gene-by-cell count matrices and three other count
matrices for exons, introns, and exon/intron spanning reads were measured by dropEst. Spliced
and unspliced reads were annotated and RNA expression dynamics of single cells were estimated
by velocyto (Manno et al., 2018). SCLC human cell lines have been validated by matching

transcript abundance to the bulk RNA-seq data from CCLE.
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Patients with SCLC were prospectively identified and consented using an Institutional
Review Board (IRB, #030763) approved protocol for collection of tissue plus clinical information
and treatment history. All samples were de-identified and protected health information was
reviewed according to the Health Insurance Portability and Accountability Act (HIPAA)
guidelines. The two human SCLC tumors were collected in collaboration with Vanderbilt
University Medical Center. Tumor #1 was a relapsed tumor collected via bronchoscopy with
transbronchial needle aspiration of a left hilar mass. The patient had completed carboplatin and
etoposide and then prophylactic cranial irradiation. The tissue was washed in an RBC lysis buffer,
passed through a 70 pum filter, and washed in PBS. Cells were dissociated with cold DNAse and
proteases and titrated every 5-10 minutes to increase dissociation. Library preparation for sScRNA-
seq was performed according to previous protocols (Banerjee et al., 2020), and cells were
sequenced using BGI MGlI-seq. Human tumor #2 was a stage 1B SCLC tumor with a mixed large
cell NE component treated with etoposide and cisplatin and was surgically removed via right upper
lobectomy. The tumor was immediately placed in cold RPMI on ice for dissociation. Library
preparation for scRNA-seq was performed as described previously (Banerjee et al., 2020). Cells
were prepared for sequencing using TruDrop (Southard-Smith et al., 2020) and sequenced on
Nova-seq. As with cell lines, the DropEst pipeline was used to process scRNA-seq data and to
generate count matrices of each gene in each cell (Petukhov et al., 2018).

The Rb1/p53/Myc (RPM) mice are available at JAX#029971; RRID: IMSR JAX:029971
and all experiments with RPM cells were previously performed as in Ireland, et al. TKO mouse
lines used were the triple-knockout (TKO) SCLC mouse model bearing deletions of floxed (f1)

alleles of p53, Rb, and p130 as previously described (PMID: 20406986). For in vivo SCLC tumor
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studies with this model, 8 to 12 weeks old mice were used for cancer initiation, and tumors were
collected 6-7 months later.

3.4.11. Preprocessing of single-cell RNA-seq data

Single-cell RNA-seq counts matrices were primarily analyzed using the Python packages Scanpy
and scVelo (Bergen et al., 2020; Wolf et al., 2018). First, the scRNA-seq read counts, including
both spliced and unspliced counts, for each of the samples in each dataset were generated using
the command line interface (run_dropest) from velocyto on the BAM files generated from
DropEst, as described above. This tool generates loom files that can be used with Scanpy and
scVelo for preprocessing and velocity calculations. We then used Scanpy to read in the loom files
as an AnnData object (anndata.readthedocs.i0).

For cell lines, we used a combination of Scanpy and Dropkick v1.2.6
(https://github.com/KenLaulLab/dropkick) to label and filter out low-quality cells from each
sample. We then concatenate the datasets with a batch key for each cell line. We hierarchically
perform the filtering, following the recipe dropkick function from the Dropkick package, We
initially filter out cells with < 100 genes using scanpy.pp.filter cells with min_genes = 100. This
reduces the total number of cells (in all 8 samples) from 86,492 to 86,349. We remove genes found
in < 3 total spliced counts across all samples with scanpy.pp.filter genes with min_counts < 3.
This reduces the number of genes from 63,677 to 22,475. These filtering steps ensure we remove
any cells or genes with low or no reads, to prepare for further filtering steps below.

We normalize the data using scanpy.pp.normalize_total, log-transform with numpy.logip
Finally, the log-transformed, normalized counts are then scaled using scapy.pp.scale. We then
compute a 50-component PCA embedding of the data and use scvelo.pp.neighbors and

scvelo.tl.umap to generate a UMAP dimensionality reduction. After removing so many cells, we
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re-filter the genes with a low threshold (min cells = 3) to remove any genes that were only
expressed in the low-quality cells. This reduces the number of genes from 22,475 to 20,446.

We remove doublets by following the best practices for Scrublet (Wolock et al., 2019) at
github.com/swolock/scrublet and apply the tool on each sample independently. We run Scrublet
directly on the raw data with default parameters. Interestingly, in all samples except CORL279,
the detected doublet rate was exactly or near 0%, with less than 10 total doublets detected across
all 7 samples. In CORL279, however, Scrublet detected 20.8% of the cells as doublets (3148 cells).
We analyzed this cell line further by plotting the histograms of the doublet scores for the observed
data and the simulated data, which suggested that log-transformation may be more accurate. We
thus use the doublet prediction from the log-transformed data, which detected doublets at a rate of
28.6% (4328 cells). Imputation of single-cell data with a tool such as MAGIC has been shown to
improve archetype detection (Dijk et al., 2018). We, therefore, use MAGIC to build a model with
the default parameters (knn =5, decay = 1, t= 3).

Similar to human cell lines, for human tumors we use Dropkick v1.2.6 to label and filter
out low-quality cells from each sample and concatenate the two tumors. We initially filter out cells
with < 100 genes using scanpy.pp.filter cells with min_genes = 100, and we remove genes found
in < 3 total spliced counts across all samples. This reduces the number of genes from 43,306 to
15,344. We normalize, log transform, and rescale the data. We filter out the low-quality cells that
have low Dropkick scores. We use Scrublet to determine the number of possible doublets in the
data. One tumor had 6 predicted doublets (out of 7741 original cells before filtering); the other had
3 (out of 580 original cells), which were removed.

To remove immune cells, we filtered Leiden clusters by expression of PTPRC. To remove

fibroblasts, we filtered cells using COL1A1 expression, and we used CLDNS5 expression to remove
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endothelial cells. We also used EPCAM to identify epithelial cells. We found several small clusters
of immune cells and a single small population of likely fibroblasts. A single cluster had a few cells
with low expression of CLDNS, and higher average expression of EPCAM, so we chose not to
remove this cluster.

We use MAGIC to impute the dataset for archetype analysis. After cell cycle scoring, one
of the single cell archetypes (described below) was enriched for G2M cells. Therefore, we chose
to regress out the difference between the G2M and S scores (cell _cycle_diff).

TKO tumors were filtered using the same steps as above. TKO1 was predicted to have 11
doublets, which were removed with the filtering above. TKO2 was predicted to have 0 doublets.
TKO3 was predicted to have 1,052 doublets, or 27% of the samples, using the default parameters
for scrub_doublets. We, therefore, investigated this sample further and found that the observed
and simulated doublet score histograms were not bimodal, which would be expected if there were
true doublets in the data. This may be due to the homogeneity of the sample because Scrublet can
only detect neotypic doublets, “which are generated by cells with distinct gene expression (e.g.,
different cell types) and are expected to introduce more artifacts in downstream analyses” (from
scrublet basics tutorial). Log-transforming the data, as suggested by the demuxlet example
tutorial, gave a doublet percentage of 0.3% (12 cells). Therefore, we removed only these 12
doublets from the dataset.

For the RPM time series, we utilized the data from Ireland et al (2021). While calculating
velocity requires realignment to the genome (as described above) and therefore the counts matrices
are slightly different from those deposited by Ireland et al. (2020), we chose preprocessing steps
and parameters to be as consistent as possible with the original publication of the data, following

the above preprocessing steps. Because stringent filtering was already done in Ireland et al. (2020)

116



to remove low-quality cells and non-cancer populations such as immune and stromal cells, we
filtered to the same cells. Ireland et al. (2020) regressed out cell cycle effects to remove variation
due to the cell cycle phase, so we repeat this preprocessing step here. We remove variability due
to location in the cell cycle by regressing out the cell_cycle diff attribute. Finally, we use MAGIC
to impute the data.

We used the same filtering method as for the samples above for the PDX tumors. Scrublet
detected doublets at rates of 0% (1 cell) for MGH1518-1B3 and 0.1% (3 cells) for MGH1518-
3A2. Scoring cell cycle genes demonstrated that variance in the data was not highly dependent on
the cell cycle phase, so we did not regress out this effect.

3.4.12. Projection of single-cell data on principal components of bulk RNA-seq

We sought to assess whether variation across SCLC samples is aligned to variation within
SCLC samples. To do this, we adapt the method described in Hausser et al. (2019) for comparing
intra-tumor heterogeneity and inter-tumor diversity in human cell lines. We reduce the
dimensionality of the data by focusing on the genes that are profiled in the bulk cell line data and
are highly variable in the single-cell data. This reduces the dataset down to 3033 genes and 13,945
cells. We then project the single-cell data into the space defined by the bulk data-fitted PCA,
focusing on the top 7 principal components due to an elbow in the explained variance curve for
this number of components.

If intra-sample heterogeneity were perfectly aligned with inter-sample diversity, we would
expect the single-cell variance explained by the principal components computed on the bulk data
to equal the single-cell variance explained by the principal components computed on the single-
cell data. In other words, the percentage of variance explained by the single-cell PCA is an upper

bound on the variance explained by inter-sample diversity. We, therefore, computed each of these
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fractions for the single-cell data and compared them. We compare the fraction of variance
explained by the bulk PCA to the upper bound of variance explained by the single-cell PCA for
the imputed scRNA-seq data on cell lines. When we investigate this ratio for the top 7 components,
we find that inter-sample diversity explains 32% of the variance explained by the first 7 single-
cell PCs, while a PCA fit to shuffled data explains about 0.28 +/- 0.009% of this variance (50
shuffles). If we consider varying numbers of PCs (1 to 20), the percentage of intra-sample
heterogeneity explained by inter-sample diversity stays stable at 36 +/- 0.94%.
3.4.13. Bulk gene signature scoring of single cells using archetype signature matrix

To score the gene signature matrix in single cancer cells, we first subset the single-cell data
to the genes in the archetype signatures. Due to dropouts, the intersection of genes from the
signatures and the single-cell data may be less than the full signature (105 genes), and we refer to
this intersection as “shared genes.” We scale the gene signature and the single-cell gene expression
data by the L2 norm for each archetype and cell, respectively, to remove differences caused by
different platforms (bulk vs. single-cell sequencing). Each archetypal gene expression vector and
each cell’s gene expression vector were therefore scaled to have a length of 1 so that the archetype
space has basis vectors of length 1. We then transformed each cell signature into archetype space
using the least-squares approximate solution to Ax = b, where 4 is the signature matrix (shared
genes g by subtypes s) and b is the single-cell matrix (shared genes g by cells ¢). This is solved
using numpy.linalg.lstsq to generate a “pattern matrix” x (subtypes s by cells ¢).
3.4.14. Single cell PCHA

We used the R package ParetoTI (Kleshchevnikov, 2019) to run Archetype Analysis on
the scRNA-seq from 8 human cell lines, which we found to be more computationally efficient than

the original MATLAB package ParTI for the high-dimensional single-cell datasets. To reduce the

118



dimensionality of the data, we fita PCA and find the number of PCs where the additional explained
variance (variance explained on top of n-1 model) is less than 0.1%. We use 11 components, which
explain over 85% of the variance in the imputed data. We fit k* = 2 to 8 vertices to the 11-
component PCA of the imputed data, with delta = 0. Looking at the variance explained vs. the
number of archetypes k, we find that k* = 4 or k* = 6 based on the elbow method. We also
considered the mean variance in position of vertices upon bootstrapping (200 iterations with data
downsampled to 75%). We find that k* =4 and k* =6 give variances close to 0, while k* =5 gives
the highest mean variance, suggesting that k* = 5 is not fitting the data geometry well. Therefore,
we move forward with k* =4 and k* = 6 for t-ratio tests. We randomized the data 1000 times as
described previously to generate a background distribution of t-ratios. We find four archetypes
give significant polytopes using the t-ratio test as described in Methods (t-ratio = 0.3743, p =
0.001). Six archetypes were not significant with a t-ratio of 0.0012 and p = 0.940. Based on these
results, it seems k*=4 best fits the cell line data. H82, CORL279, and H1048 are all more central
in the polytope, suggesting they may comprise single-cell generalists. These results validate that
the human cell lines can be fit by a polytope, suggesting Pareto optimality applies to single cancer
cells in these cell lines.

Interestingly, we did not find an SCLC-P archetype. Even using k* = 6 did not result in an
archetype by the cell line expressing POU2F3 (H1048), but instead gives two SCLC-A archetypes
and two SCLC-A2 archetypes. This suggests that the lack of an SCLC-P archetype is not due to
the number of archetypes chosen. A few explanations exist for why there is not a POU2F3 enriched
archetype: First, bulk RNA-seq profiles of SCLC-P cell lines may give a spurious archetype in our
analysis that is actually a mixture of the other four archetypal transcriptomic profiles in varying

proportions. Secondly, due to our small sample size, we may miss an SCLC-P archetype in this
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single-cell data. Third, SCLC-P cell lines and tumors may represent a valid subtype that does not
fit within the Pareto theoretical polytope found here. In other words, the SCLC-P subtype may be
a distinct subtype not confined by the Pareto front of the other four SCLC subtypes. If SCLC-P
tumors are derived from an alternative cell of origin, we would not expect the functional tasks to
trade off with the others found here. This does not explain how some tumors may contain markers
for multiple subtypes, including SCLC-P, such as NEUROD1 (SCLC-N, Ireland et al., 2020).
We followed the same preprocessing steps as described for human cell lines above to run
PCHA on human tumors. After imputation, we fit a PCA to the data and found that 8 PCs explain
over 85% of the variance. The knee of the explained variance vs. PC plot is 7, suggesting a low
dimensional representation of the data is possible. We also consider the number of PCs where the
additional explained variance is less than 0.1%; this gives 11 components. We fit k* = 2 to 8
vertices to the 11-component PCA of the imputed data with delta = 0. We find that three or more
archetypes explain over 80% of the variance in the reduced dimensional data (2 archetypes explain
less than 70% of the variance). When considering the mean variance in position of vertices, we
find that K* = 2-4 archetypes show little variance (less than .05), suggesting the archetype
locations are robust to bootstrapping. K* = 5 gives the highest mean variance in position, at 0.8.
Furthermore, the t-ratio of the polytope dips significantly for k*= 5 (where a higher t-ratio close
to 1 is a better fit). Therefore, k* = 3 or 4 seems most likely to fit the data. We move forward with
these k* for t-ratio tests. As expected, we find k*= 3 is the smallest number of archetypes that
significantly fits the data, with a t-ratio of 0.596 (closer to 1 is better) and p = 0.008. K* =4 had a
much lower t-ratio of 0.396 (p = 0.001) and k* = 5 was insignificant, with a p-value of 0.753.

Based on these results, k* = 3 best fits the data.
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We wanted to ensure that mouse tumors could also be well described by Pareto theory and
applied archetype analysis to TKO mouse tumors. In this dataset of three tumors, nine principal
components explain over 85% of the variance in the imputed data. Furthermore, 16 PCs are needed
for the variance explained by additional components to be less than 0.1%. We, therefore, reduced
the dataset dimensionality to 16 dimensions for archetype analysis. We fit k* = 2 to 8 vertices to
this PCA with delta = 0 and found that three archetypes can explain over 65% of the variance in
the dataset. Using a bootstrapping method, we found that the mean variance in position of the
vertices significantly increases after four archetypes; 4 archetypes have a mean variance of less
than 0.025, while 5 gives over 0.25, and 6 gives over 0.175. Lastly, the t-ratio drops dramatically
after four archetypes, from over 0.2 to under 0.05. These results suggest that the number of
archetypes that best fit the data is k* = 3 or 4. We then performed a t-ratio test with the same
parameters as above to determine which was the better fit. Three archetypes were insignificant,
with a t-ratio of 0.33 and p = 0.999. Contrarily, four archetypes gave a significant polytope with p
=0.001 and t-ratio = 0.21. Therefore, four archetypes best fit the data.

We next analyzed the time course of RPM tumor cells. We found that the top 9 PCs explain
over 90% of the variance in the data, and the top 22 PCs are needed for the variance explained by
an additional PC to be less than 0.1%. We fit K* = 2-8 vertices with delta = 0 to 22 PCs and found
a knee in the EV vs. number of archetypes plot at k* = 3. Using a bootstrapping method, we found
that the mean variance in position of the vertices increases for k* =4 and k* =5, and decreases for
k* =6, suggesting k* = 3 or 6 are the most robust number of archetypes. We therefore ran a t-ratio
test on k* = 3-6 to determine the best number of archetypes. We found that k* = 6 was the only
polytope with a significant t-ratio (p-value = 0.001) and had a larger t-ratio than fewer archetypes

(k*=5). Therefore, k* = 6 archetypes best fit the data.
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Lastly, we test whether the two PDX tumors (MGH1518-1B3 and MGH1518-3A2) fit into
a polytope predicted by Pareto theory. We find that eight components represent the imputed data,
explaining 72% of the variance in the imputed data. We fit k* =2 to 8 vertices to the 8-component
PCA of the imputed data, with delta = 0 and find that at least three archetypes explain over 85%
of the data, while two explain less than 55%. We also considered the mean variance in position of
vertices upon bootstrapping (200 iterations with data down-sampled to 75%). We find that k* = 2,
3, and 5 give variances close to 0 (less than 0.1), while k* = 4 gives the highest mean variance at
over 0.6. Therefore, we move forward with k* = 3-6 for t-ratio tests. We find five archetypes is
the smallest k* that give significant polytopes using the t-ratio test (t-ratio=0.11, p=10.001). Three
and four archetypes were insignificant (p = 0.35 and p=.39, respectively). Similarly, a six-
archetype polytope was not significant (p = 0.105). Based on these results, it seems k*=5 best fits
the PDX tumor data.
3.4.15. Alignment of bulk and single-cell archetypes

PCHA constrains the archetype vertices to be a weighted average of the data points and
approximates the data points by a weighted average of the archetypes. Therefore, each cell has
archetypal weights given by a matrix S, such that the weights for each cell sum to 1. We can use
these weights to directly “score” the single cells and label them by archetype. Each cell is given
weights summing to 1, and we consider the cells with a score above 0.95 for a single archetype to
be a specialist. In order to align the single-cell archetypes with our predefined archetype space, we
consider the scores for each cell described in the Method section “Bulk gene signature scoring of
single cells using archetype signature matrix” above. For each bulk signature x and for each single-
cell archetype a, we ran the following significance test:

1. Find the mean bulk score x for a specialists, m.
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2. Choose a random sample of size n,, where n, is the number of a specialists, with
replacement from the remaining cells (i.e. cells that are not a specialists, including
generalists and other specialist cells). Find the mean bulk score for this sample. N.B.
Because some timepoints have very few cells, we sample evenly from each timepoint to
ensure adequate representation across the timepoints.
3. Repeat this random selection 1000 times.
4. Generate a p-value, which is equal to the percentage of means from this random distribution
above m.
5. Using statsmodels.states.multitest, correct p-values for multiple tests. We used the
Bonferroni-Holm method to control the family-wise error rate. Consider q < 0.1 significant.
3.4.16. Visualization by Circular A Posteriori (CAP) Projection Plots

To display archetype scores or probabilities p;i of archetype labels for each cell, we used a
method based on circular a posteriori (CAP) projection adapted from Jaitin et al. (2014) and Velten
et al. (2017). For the five-dimensional vectors p of archetype scores (shape of p is the number of
cells C X number of bulk archetypes N), we first arrange the archetypes on the edge of a circle
such that each archetype k is assigned an angle ax. The class probabilities pix for cell i are

transformed to Cartesian coordinates by

k

and

Vi = Z Pik Sin ay

k

Because the archetypes could be arranged in several different orders around the circle, we wish to

find the best arrangement such that the most similar archetypes are placed next to each other. In
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practice, this is done by calculating the proximity between archetypes, given for archetypes 1 and

k by

Dy = Z Pit X Pik

l

We calculate the proximity for each arrangement of archetypes as the sum of the proximity for
each pair of neighboring archetypes; for example, the arrangement of archetypes A > B 2> C >
D - E gives the proximity
Dypcpe = Dap + Dpc + Dep + Dpg + Dia

We test all possible arrangements (N! for N archetypes) and choose the arrangement with the
highest proximity.
3.4.17. RNA Velocity using scVelo and CellRank

We interrogated the dynamics of SCLC cells and tumors by analyzing RNA velocity with
the Python packages scVelo and CellRank (Bergen et al., 2020; Lange et al., 2022). RNA velocity
uses a splicing model to predict directionality and magnitude of gene expression change in the near
future for each cell sampled. Using the data without MAGIC imputation (because there are no
standardized ways to incorporate imputation and RNA velocity in the field), we used scVelo
packages to fit a neighborhood graph (adjacency matrix) and first-order moments with
scvelo.pp.neighbors and scvelo.pp.moments, respectively. We then used scVelo’s dynamical
modeling pipeline as described in https://scvelo.readthedocs.io/DynamicalModeling/, with the
velocity calculation grouped by timepoint. We then computed velocity graphs, confidences
(coherence of velocities), and velocity lengths, which indicate how coherent and significant the
velocity vectors are across gene expression space. This gives an idea of how much movement is

in the dataset.
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The dynamical model also reports fitting parameters and fit likelihoods for each gene. We
used the fit likelihood to rank-order the velocity genes, and visualizing investigated the top genes
for each dataset to determine if the fit could be used to make predictions about transitions. As
described in the tutorial, the plots of unspliced versus spliced counts for each gene should have a
characteristic “almond” shape. To determine possible regulators of the highly fit genes that are
driving transitions, we used EnrichR on the genes with a fit likelihood > 0.3 and report the
significant transcription factors from the “ENCODE and ChEA Consensus TF” list (Chen et al.,
2013; Kuleshov et al., 2016).

For the RPM dataset, the data samples span 17 days, and therefore the dynamics of the data
cover a longer timescale than that of splicing dynamics, which typically occurs on the timescale
of a few hours (Manno et al., 2018). To overcome this challenge, we use CellRank. CellRank is
capable of incorporating velocity information fit to each timepoint and alternative measures of
temporal dynamics such as pseudotime. We therefore use a previously calculated diffusion
pseudotime (Ireland et al., 2020) which adds information about the longer timescale dynamics
across days. We adapted the CellRank tutorial on “Kernels and estimators" to combine these two
sources of dynamical information into a combined kernel. We used the same weights as in the
tutorial—0.8 for the velocity kernel and 0.2 for the DPT kernel—though our results were robust
to these parameters from [.1 —.9] for each combination of velocity and DPT. The combined kernel
is used to compute a cell-cell transition matrix as a representation of the Markov chain underlying
the dynamics. We used the Generalized Perron Cluster Cluster Analysis (GPCCA) estimator,
which computes aggregate dynamics based on the Markov chain transition matrix by projecting

the Markov chain onto a small set of macrostates. We computed a Schur decomposition with 20
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components and default parameters. Finally, we computed the macrostates and terminal states on
the phenotype clusters (specialists and generalists).

We use the “gmres” solver to compute absorption probabilities using the solvers from
petsc4py. We computed driver genes for the X and SCLC-Y lineages and used EnrichR to
investigate the regulators of the top 40 drivers for each lineage. Because the significance of the
driver genes is quantified by a g-value, we used this to determine whether genes in the SCLC-Y
bulk archetype signature were drivers of the SCLC-Y lineage, including only gene with a positive
correlation to the lineage.

3.4.18. Cell Transport Potential Calculation and Analysis

In quantifying plasticity, we wanted to capture the local likelihood of phenotypic transition
(that is, change in gene expression profile) for each transcriptional state sampled. Furthermore, we
would like to consider size and variance of the phenotypic change. Colloquially, “plastic” cells,
such as stem cells, generally are considered plastic because they have at least these two
characteristics: they are poised to change their gene expression profile by a large amount
(differentiation potency), and they are able to change into multiple different end states
(multipotency). Weinreb et al. showed that single cell transitions could be quantified via the
velocity field of a phenotypic landscape, which is the gradient of a potential function. This
potential can be decomposed into two terms: a “transport” term and a “constraint” term. The
deterministic transport term counteracts sources and sinks in the landscape to keep the cell density
in dynamic equilibrium, assuming the population is at steady state. As a proxy for this potential
term, we calculate the Cell Transport Potential (CTrP). CTrP is the expected value for the

movement of each individual cell. More formally, it is the expected distance of travel for a cell,
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weighted by the time spent in each other cell state before absorption (reaching an end state). The
method is detailed below.

CTrP is a measure of the average distance a cell may travel according to its RNA velocity.
For each independent sample (untreated or treated), we ran the following pipeline:
1. Using RNA velocity calculated as described above, and for each category (‘treatment’),
compute a Markov Chain Model transition matrix. This is calculated using an adapted version
of ScVelo’s transition_matrix function, in which transition probabilities between each two cells, i
and j, is calculated from the velocity graph pairwise. Each entry is a probability describing the
likelihood of moving from state i to state j, and each row is the probability distribution of
transitions from state i. RNA velocity is compared to distances between other cells to get a pairwise
cosine correlation matrix (velocity graph). A scale parameter (default 10) is used to scale a
Gaussian kernel applied to the velocity graph, restricted to transitions in the PCA embedding. This
transition matrix, P, has dimensions nxn, where n = number of cells. It is then normalized to ensure
each row adds to 1 (because each row is the probability of cell i transitioning to any other cell j,
which should total 1). Diffusion for P is scaled to 0 (i.e., ignored). Alternatively (for RPM time
course), we used CellRank to compute a transition matrix as described above in “RNA Velocity
Calculation and Analysis.”
2. Calculate absorbing states (end states) using eigenvectors. Eigenvalues are calculated for the
transition matrix. Any eigenvalue / = 1 (here, with a tolerance of 0.01), is associated with an end
state distribution (eigenvector v); i.e., P(v) = Iv implies that a distribution of states v will not change
under further transformation (transitions) from P. If the Markov Chain is an absorbing Markov
Chain, it will contain both transient states (t = number of transient states, where P(i,i) < 1), and

absorbing states (r = number of absorbing states, where P(i,i) = 1). For every absorbing state in
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the matrix, there will be an associated eigenvalue/vector pair, with / =1, because any initial
configuration of states will continue to evolve until every cell has reached an absorbing state.
Therefore, the multiplicity of / = 1 is equal to the number of end states (absorbing states, or
irreducible cycles). The associated eigenvectors v thus correspond to the absorbing states in the
Markov Chain, within the tolerance of 0.01.

3. Calculate the fundamental matrix. In an absorbing Markov Chain, it is possible for every cell
to reach an absorbing state in a finite number of steps. Let us rewrite P, the transition matrix, that
has ¢ transient states and » absorbing states, as:

p= [0F]

01,
where Q is a t x t matrix, R is a non-zero t X r matrix, 0 is an r X t zero matrix, and I; isanr x r
identity matrix. Thus, Q describes the probability of transitioning between transient states, and R
describes the probability of transitioning from a transient state to an absorbing state. The
fundamental matrix N of P describes the expected number of visits to a transient state j from a
transient state i before being absorbed. Because the Markov Chain is absorbing, this number is the

sum for all k of QX for k in {0,1,2,...}:

inf

N= D= t-0

k=0
Because QX eventually goes to the zero matrix (all cells are absorbed), this sum converges for all
absorbing chains. Furthermore, each row of the fundamental matrix describes the expected amount
of time (i.e. number of steps in the Markov random walk) spent in state j starting from state i, and
thus the row can be thought of as a distribution of weights associated with each state j for each

starting state i. N is calculated as written above: the inverse of Q subtracted from the identity

matrix. In practice, Numpy’s function numpy.linalg.inv(I-Q) is used to calculate N.
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4. Calculate a distance matrix. A distance matrix D (n x n) is then calculated using scipy’s
function scipy.spatial.distance.cdist (Virtanen et al., 2020). Here, we calculate the Euclidean
distance on the PCA embedding of each sample. Distance may also be calculated directly on the
high dimensional data; alternatively, it may be calculated on nonlinear dimensionality reduction
techniques, such as UMAP and tSNE, but these distances tend to break down for samples that are
highly discontinuous (discrete clusters) and should only be applied to continuous data that falls on
a single manifold.
5. Calculate Cell Transport Potential. Finally, CTrP is calculated as the inner product of each
row in fundamental matrix N, and each row in distance matrix D. This gives an expected distance
(sum of distances to j from 1, weighted by time or number of steps spent in j before absorption).

The advantage of this metric over similar techniques, such as pseudotime and other
trajectory inference metrics, is that CTrP is an expected distance in linear (PCA) space, which can
be compared across samples (assuming they have been embedded in the same PCA).
3.4.19. Whole Genome Sequencing (WGS)

As described previously in Ireland et al. (2020), “30X WGS data was collected from Day
4 and Day 23 samples, as well as from a blood sample from RPM mice as the normal control.
Genomic DNA was extracted from flash frozen cell pellets of Day 4 and 23 cells along with whole
blood from the same RPM mouse using Qiagen’s DNeasy Blood and Tissue kit (Qiagen
cat#69504). Libraries were prepared using the Nextera DNA Flex Library Prep Kit (Illumina
cat#20018705). Libraries were sequenced on a NovaSeq 6000 instrument targeting 300 million
read-pairs on a 2 x 150 bp run (30x coverage of whole genome). Sequencing reads were aligned
to mouse genome mm10 by BWA 0.7.17-r1188 (Li and Durbin, 2009). Rbland Trp53 deletions

were examined in the Integrated Genome Viewer (IGV) software v2.5.0. SNVs were jointly called
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by Freebayes 1.2.0.” Somatic SNVs were filtered by the following criteria: DP >15 and AO =0 in
the normal sample. Somatic SNVs were further filter by AO>15 and AO<110 in day 4 and day 23

samples. Variants were annotated by SnpEff 4.3 (Cingolani et al., 2012).
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Chapter 4.

Elucidating the role of phenotypic plasticity and gene regulatory network dynamics in
therapy resistance of variant SCLC
4.1. Introduction

In the previous two chapters, we developed a comprehensive framework for understanding
phenotypic heterogeneity and plasticity in Small Cell Lung Cancer. This work showed that SCLC
tumors in humans and mouse models are often mixes of subtypes defined by gene regulatory
network dynamics. Perturbations to these dynamics are predicted to destabilize attractors
associated with each subtype, and therefore may be useful in designing treatment in the face of
acquired resistance, which is ubiquitous in SCLC patients. Furthermore, a continuous, archetype-
based framework allowed us to understand how cells may transition from one subtype to another
to optimize trade-offs between various survival tasks, such as proliferation or injury repair.

In this chapter, we apply the methods developed in the previous two chapters to elucidate
the role of network dynamics in a variant mouse model of SCLC and the role of plasticity in
evading targeted therapy. First, we use a novel approach to subtype SCLC patients and find a
variant SCLC subtype enriched in inflammatory signatures and immune infiltration (SCLC-I).
This class of SCLC is particularly susceptible to immune checkpoint blockade therapy, suggesting
relevance of our subtyping approach that may be beneficial to determine treatment options for
patients. While this non-NE subtype of patients seems distinct from the SCLC-Y, single cells
within this class are also enriched in SCLC-Y signatures. Furthermore, we see an enri8chment of
SCLC-I cells after cisplatin resistance that seem capable of regenerating the rest of the tumor,

suggesting relapse after therapy may be due to phenotypic plasticity. We therefore applied the
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plasticity pipeline developed in Chapter 3 and found that these cells are indeed more plastic after
therapy. Therefore, targeting this plasticity may be a good strategy for treatment of such tumors.
Finally, we investigate a distinct variant subtype of SCLC that arises in MYC-driven
tumors after ASCL1 loss. Using the RPM model discussed in Chapters 2 and 3, we knocked out
ASCLI to form an RPMA model with distinct and striking morphological and transcriptomic
features from RPM tumors. Specifically, RPMA tumors become ossified and turn on gene
programs related to bone ossification, suggesting that ASCL1 represses a latent osteogenic
program. Compared to the archetype space that defines classic SCLC tumors, this can be thought
of as an additional archetype that arises specifically under the genetic modification of ASCLI loss.
While these tumors seem to progress through similar stages as RPM tumors (i.e., they start in a
more NE state similar to RPM tumors, as shown by single cell data in Olsen et al., 2021), they end
up “escaping” the classic archetype space to reach a mesenchymal stem cell like state that seems
capable of chondrogenesis and osteogenesis. We use gene regulatory network analysis, similar to
Chapter 2, to analyze the mechanism by which ASCL1 loss may result in activation of an
osteogenic program. We then use in silico simulations of the network to determine master
regulators and destabilizers of the RPM and RPMA states. Overall, these sections demonstrate that
phenotypic transitions are critical to understanding both relapse to therapy and the acquisition of
a variant, bone-developmental gene program that may begin to explain the propensity of SCLC

tumors to metastasize preferentially to bone.
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4.2. Quantifying plasticity of an inflammatory subtype in resistant SCLC tumors?
4.2.1. Motivation

As mentioned previously, SCLC heterogeneity has been characterized by expression of a
few driving transcription factors. In Chapters 2 and 3, we saw that transcription factors (ASCL1,
NEURODI1, POU2F3, and YAP1) are not sufficient to fully capture the heterogeneity within
SCLC cell lines and tumors. Instead, gene signatures or programs (modules) and transcription
factor (TF) networks may be used to identify key phenotypes that define cell identity in SCLC. In
those chapters, we utilized cell line expression data to define the phenotypic space of SCLC, as
these are generally considered to be less heterogeneous that tumor populations. This approach was
used to understand the phenotypes of single cells; in other words, an SCLC cell could acquire any
of these phenotypes and potentially be forced to transition between them, which was modeled
using transcription factor network simulations.

Rather than subtyping based on cell lines, which may include ASCL1+, NEURODI1+,
POU2F3+, and YAPI1+ populations, we can also subtype human tumors directly. There is some
evidence that the YAP1+ phenotype is not prevalent in tumors (Baine et al., 2020). Furthermore,
it is currently unclear if subtype classifications predict responses to chemo-, targeted-, and
immune-based therapies. To address both of these gaps in knowledge, we took an alternative
approach to those in previous chapters to see if the subtypes of human tumors match the individual
subtypes we have found previously. This is helpful for defining classes of patients, rather than that

of individual cells, that may correspond to or predict response to therapy. For example, we found

3 This section is adapted from “Patterns of transcription factor programs and immune pathway activation define four
major subtypes of SCLC with distinct therapeutic vulnerabilities” published in Cancer Cell and has been reproduced
with the permission of the publisher and my co-authors. Gay, C. M., Stewart, C.A., Park, E.M., Diao, L., Groves,
S.M. et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of
SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39, 1-15 (2021) doi:10.1016/j.ccell.2020.12.014.
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an inflamed subtype of SCLC tumors which we term SCLC-I, and gene expression profiles of

tumors in this class have greater immune cell infiltration, as determined by CIBERSORTx

(Newman et al., 2019). Our approaches are summarized in Figure 4.1.

NEv1
NEv2 non-NE
SCLC-A SCLC-A2
‘Q—O—.—O
° o/
‘\

\/ SCLC-Y

Patient 1: Patient 2:
ASCL1-high Inflammatory

Chapter 2 Approach:

Discrete clustering on cell lines
at bulk and single cell level

to identify stable attractor
states in phenotypic space

Chapter 3 Approach:

Refine subtype identification
using archetype analysis

on cell lines and tumors

at bulk and single cell level

Chapter 4 Approach:

Classify SCLC patients

using Non-negative Matrix
Factorization (NMF) to identify
clinically-relevant classes

Figure 4.1: Evolution of approaches to characterizing SCLC heterogeneity. In Chapter 2, we use a discrete
clustering approach to find attractor states of a phenotypic landscape. In Chapter 3, we supplement this with
archetype analysis, which is capable of characterizing intermediate, generalist cells and provides an evolutionary
theoretical underpinning for the existing SCLC phenotypes. In this Chapter, we use patient data to find clinically
relevant classes of SCLC patient, including an inflamed subtype, SCLC-I. It is unclear if tumors with an inflamed
subtype comprise cells of the SCLC-Y subtype, a novel subtype, or a mix of both.

Lastly, it is now evident that intratumoral heterogeneity (ITH) and plasticity may impact

the natural history of a tumor. We and others have shown that multiple transcriptional subtypes

may exist within a single tumor and may switch between phenotypes during tumor progression or

under treatment pressure (Ireland et al., 2020; Simpson et al., 2020; Stewart et al., 2020). Here, we

investigate whether transcriptional subtyping of SCLC intertumoral heterogeneity can identify

molecular and immune subtypes with discrete therapeutic vulnerabilities. Furthermore, we
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consider whether subtype-specific ITH in response to treatment may underlie acquired therapeutic
resistance.
4.2.2. SCLC-I is a novel inflamed subtype of SCLC tumors

Non-negative matrix factorization (NMF) (Skoulidis et al., 2015) was applied to previously
published RNAseq data from 81 surgically resected, mostly limited-stage SCLC (LS-SCLC)
tumors (George et al., 2015). This method showed that three or four-cluster options best fit the
tumor data. Both three- and four-cluster options included an ASCL1-high and a NEUROD1-high
group; the four-cluster scheme separated a POU2F-high cluster from a cluster with lower
expression of all three TFs. Interestingly, this fourth subtype had several uniquely expressed,
immune-related genes such as immune checkpoints and human leukocyte antigens (HLAs). The
subtype was therefore designated as inflamed, or SCLC-I. As expected, there was a clear
distinction between NE subtypes (SCLC-A and SCLC-N) and non-NE subtypes (SCLC-P and
SCLC-I) when considering canonical NE genes, such as Chromogranin A (CHGA) and
Synaptophysin (SYP). Furthermore, the expression of YAP!I and its transcriptional targets were
higher in both SCLC-P and SCLC-I compared to the other two subtypes. This is consistent with
recent immunohistochemistry (IHC) characterization of SCLC tumors, which did not find a
subtype of tumors exclusively defined by YAP1 expression (Baine et al., 2020).

SCLC-I tumors had significantly higher expression of both CDS8A and CD8B, suggesting
greater cytotoxic T cell infiltration. CIBERSORTx deconvolution (Newman et al., 2019)
confirmed that SCLC-I tumors have the highest total immune infiltration. Several immune cell
populations were markedly increased in SCLC-I, including T-cells, NK cells, and macrophages.
Finally, SCLC-I tumors had consistently higher expression of an interferon-y-related T cell gene

expression profile (GEP) (Ayers et al., 2017), which predicts response to ICB in solid tumors
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independent of tumor mutational burden (TMB) (Ott et al., 2019), and of countless immune
checkpoint molecules, including CD274 (encoding Programmed Death Ligand 1, PD-L1), as well
as PDCDI1, (encoding PD-1). This may be significant due to alternative proposed mechanisms of
ICB resistance in SCLC, which include low expression of HLAs, interferon signatures, and
immune checkpoints (Hamilton and Rath, 2019).

SCLC-I tumors made up approximately 17% of the tumor samples in the George et al.
(2015) dataset. This proportion was corroborated in independent datasets, such as RNA-seq
profiles from treatment-naive patients enrolled in the Phase 3 Impower133 trial (n=276) and a
published RNA microarray dataset from 23 SCLC tumor samples (Sato et al., 2013). Subtypes in
these two datasets were determined using the same NMF-derived gene signature (n = 1300)
applied to the George et al. (2015) dataset, and four subtypes were observed in each validation
cohort. While the Impower133 trial was not statistically powered for subtype-specific subgroup
analyses, overall survival (OS) hazard ratios (HRs) for standard of care (etoposide and a platinum-

based agent, EP) plus atezolizumab support a modest trend toward improved overall survival in

Table 4.1: Single-cell expression of ASCLI/NEUROD1/POU2F3 in patient-derived SCLC xenografts.

A-N-P- A-N-P+ A-N+P- A-N+P+ A+N-P- A+N-P+  A+N+P- A+N+P+

Frontline
MDA-SC4 3.85% 0 0 0 95.80% 0 0.35% 0
MDA-SC39 1.60% 0 0 0 88.70% 0 9.70% 0
MDA-SC53 7.20% 0 0.40% 0 92.00% 0.10% 0.30% 0
MDA-SC68 1.15% 0 0 0 98.85% 0 0 0
MDA-SC75 5.60% 0 0 0 93.95% 0 0.45% 0
Relapsed
MDA-SC16 6.95% 0 0 0 88.25% 0 4.65% 0
MDA-SC49 9.90% 0 89.45% 0 0 0 0.55% 0
MDA-SC53rel 17.10% 0 0.85% 0 80.80% 0.10% 1.20% 0
MDA-SC55 6.45% 0 0.65% 0 89.30% 0.65% 2.95% 0
MDA-SC68rel 10.00% 0 0 0 89.45% 0 0.55% 0
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SCLC-I compared to the other three subtypes that is not observed in the EP + placebo arm.

Finally, RNA-seq from 62 SCLC cell lines (Stewart et al., 2021) contained cell line models of all

four subtypes, confirming that subtype can be defined in the absence of tumor microenvironment.
4.2.3. Emergence of SCLC-I accompanies platinum resistance

The prior analyses focused on subtype heterogeneity among SCLC tumors. To investigate
intratumoral heterogeneity, a series of CDX models from SCLC patients (Stewart et al., 2020) was
analyzed. Based on single-cell expression of ASCL1, NEURODI, and POU2F3, both SCLC-A
and SCLC-N dominate the models within our xenograft library.

Single cell RNA-seq also permits exploration of co-expression of subtype-defining
transcription factors. Each cell can be classified into one of seven categories on the basis of the
binary presence or absence of ASCL1, NEURODI, and POU2F3 expression (and co-expression)
(Table 4.1). While most cells express only one of the transcription factors, the expression is not
entirely mutually exclusive. As discussed in Chapter 3, this co-expression of key transcription
factors is to be expected, as SCLC cells may have gene expression profiles intermediate between
archetypal, transcription-factor defined extremes.

In our scRNA-seq data, there was an increase in triple-negative, SCLC-I cells in platinum-
relapsed models (Table 4.1). This suggested that intratumoral shifts toward increasing SCLC-I
may underlie platinum resistance. We selected two platinum sensitive, ASCL1-predominant CDX
models developed from treatment-naive patients (MDA-SC53 and MDA-SC68) to further analyze
this shift in phenotype. As described in Stewart et al. (2020), these models were treated with
cisplatin to maximal response and then throughout relapse (cis-relapsed) and collected for scRNA-
seq along with a matched vehicle treated tumor of same size (treatment-naive). In both models,

there was a reduction in ASCL1-positive proportion of cells and an emergence of a distinct
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“island” cluster that contained a majority of the ASCL1-negative cells that emerge post-relapse.

These ASCL1-negative cells do not gain expression of NEUROD1, POU2F3, or even YAPI, but
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Figure 4.2: Plasticity of emerging SCLC-I populations in cisplatin-resistant SC53 model. A and B. tSNE projection of all cells
from MDA-SC53 CDXs with treatment history (A) or Leiden clustering assignment (B)denoted. C. Expression of ASCLI. D.
Expression of ZEB2. E-H. RNA velocity vector streams and PAGA maps for cells from cisplatin-naive (E-F) and cisplatin-relapsed
(G-H) CDX tumors. I and J. Cell plasticity, as measured by cell transport potential, for cells from cisplatin-naive (I) and cisplatin-
relapsed (J) tumors highlighting areas of greatest plasticity appear within island cluster within relapsed tumor. K. Comparison of
transport potential between cisplatin-naive and —relapsed cells demonstrating higher overall plasticity in cisplatin-relapsed cells.
L-0. Expression of cell cycle-specific and apoptosis-specific gene lists in pooled cells from MDA-SC68 (L-M) and MDA-SC53 (N-
0). Sample sizes: n=4000 cells total (pooled) (4-O).

instead are largely triple negative (SCLC-I).

4.2.4. SCLC-I populations support tumor-wide resistance via transcriptional plasticity
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It is not clear whether the small populations of SCLC-I cells that emerge following
cisplatin-relapse are sufficient to drive the observed platinum resistance. There may be two
explanations for how the observed subtype switching could drive global resistance. Firstly, the
limitations of the binary assessment of single-cell subtype used here may underestimate the level

of subtype evolution. As discussed in previous chapters, subtyping by a few transcription factors
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Figure 4.3: Plasticity of emerging SCLC-I populations in cisplatin-resistant SC68 model. A-D. t-SNE projection of all cells from
MDA-SC68 CDXs with treatment history (4) or Leiden clustering assignment (B) denoted. C and D. Expression of ASCLI (C) and
ZEB2 (D) in these cells. E-H. Note the upper right, composed largely of cisplatin-relapsed cells, demonstrates lower ASCLI
expression, while the island clusters are essentially ASCLInull. RNA velocity vector streams and PAGA maps for cells from
cisplatin-naive (E-F) and cisplatin-relapsed (G-H) CDX tumors. I and J. Cell plasticity, as measured by cell transport potential,
for cells from cisplatin-naive (I) and cisplatin-relapsed (J) tumors highlighting areas of greatest plasticity in island cluster within
relapsed tumor. K. Comparison of transport potential between cisplatin-naive and -relapsed cells demonstrating higher overall
plasticity in cisplatin-relapsed cells. Sample sizes: n = 2000 cells per arm.

can lead to insights regarding broad changes in subtype but may be insufficient to fully capture the
evolution of phenotypic heterogeneity in SCLC. In both models (SC53 and SC68), we found that

ASCLI decreased in expression and the EMT score increased across the entire tumor following
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platinum resistance, suggesting that these changes are not solely due to the small SCLC-I
subpopulation. Together, these data suggest that even outside of the SCLC-I cluster containing
now fully triple-negative cells, there is ongoing evolution toward lower ASCL1 expression and
increasing features of SCLC-I (e.g., EMT) that may account for decreasing platinum sensitivity.
Secondly, the SCLC-I cells that emerge following platinum resistance may serve as a
highly resistant and plastic population with the potential to replenish the tumor even as the
remaining platinum-sensitive cells undergo cell death. To address this question, we explored
quantitative measures of single-cell plasticity using RNA velocity. First, we applied t-SNE and a
clustering algorithm to pooled cells from both cisplatin-naive and cisplatin-relapsed tumors
(Figures 4.5A-B and 4.6A-B). In each case, we again identified non-NE islands, similar to Figure
4.4, here almost exclusively composed of relapsed cells and showing an absence of ASCL1 and
presence of SCLC-I features (e.g., ZEB2, a transcriptional mediator of EMT) (Figures 4.5C and
D; 4.6C and D). Outside of the island clusters in both PDX models, sensitive and resistant cells
often cluster together, but a significant portion of cells from the resistant model shifts to occupy
an adjacent region of phenotypic space (such as clusters 1 and 4 in SC53, Figure 4.5A and B, and
clusters 4, 5, and 8 in SC68 Figure 4.6A and B). RNA velocity shows that both cisplatin-naive
and cisplatin-relapsed samples exhibit positive velocity trending toward these clusters (cluster 1
in SC53 and cluster 4 in SC68), making them sinks in the phenotypic landscape (Figures 4.SE-H
and 4.6 E-H). To fully visualize and investigate the movement in each model, we used Partition-
Based Graphical Abstraction (PAGA) (Wolf et al., 2019). PAGA is a computational tool that
reconciles clustering with continuous cell transitions inferred from RNA velocity. In each model,
subpopulations enriched in cisplatin-resistant cells and SCLC-I features act as sources for the rest

of the population (clusters 7, 9 and 10 in Figures 4.5F and clusters 9 and 10 in Figure 4.6F). As
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shown in Figure 4.5F, the SCLC-I cluster in the resistant sample is able to transition to cluster 6
in the main population, and in Figure 4.6F, a similar resistant SCLC-I cluster transitions to cluster
5. This suggests that, under dynamic equilibrium, SCLC-I cells act as a source that transitions
toward the resistant sink clusters enriched with relapsed cells.

These observations suggest that the SCLC-I clusters in each model are highly plastic and
may give rise to a more proliferative SCLC population. To test this possibility, we used our metric
Cell Transport Potential (CTrP). Because the CTrP metric is a distance, it can be compared across
samples, allowing us to compare the plasticity of SCLC-I cells to the rest of the resistant and the
sensitive cells. The island clusters composed of relapsed, SCLC-I cells have markedly higher CTrP
and, thus, plasticity (Figures 4.51-J and 4.6I-J). Furthermore, resistant tumors show a near-
universal increase in plasticity compared with sensitive tumors, and therefore SCLC-I cells are the
most plastic phenotype regardless of treatment (Figure 4.5K and 4.6K). This suggests plasticity
may be a defining characteristic of the resistant SCLC-I cells.

We also considered whether higher proliferation or lower death rates could explain SCLC-
I as a source of progenitor, treatment-refractory cells. SCLC-I cells are not significantly
upregulated in cell cycle (S or G2M) genes, nor do they significantly downregulate cell death
markers (Figure 4.5L-0). In fact, assigning a phase to each cell suggests most SCLC-I cells are
quiescent, with increased G1 genes, and may upregulate death markers slightly. Thus, SCLC-I
cells appear to be neither more proliferative nor less death-susceptible than the rest of the
population.

Together, these single-cell analyses suggest that cisplatin resistance coincides with the
emergence of a cluster of cells that typify the SCLC-I subtype, apparently derived from cells

originally SCLC-A that have undergone subtype switching associated with fluctuations in Notch
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pathway activation. These SCLC-I cells, in turn, are plastic such that the small population may be
able to drive a resistant tumor phenotype.
4.2.5. Discussion

By analyzing tumor data directly, we were able to identify classes of patients that seem to
have differential response to treatment. In particular, SCLC-I is an inflamed subtype of SCLC
tumors that is preferentially sensitive to immune checkpoint blockade therapy. While SCLC-A,
SCLC-N, and SCLC-P subtypes align with those we previously found in human cell lines in
Chapters 2 and 3, we did not previously detect an inflamed subtype. This may be due to the fact
that our previous methods, using cell lines that are generally considered to be less heterogeneous
than tumors, may be better at detecting single-cell subtypes, whereas the methods described in this
chapter find classes that are clinically relevant for subtyping patients. While a strict YAP1+
subtype was not found in tumors in this chapter, SCLC-P and SCLC-I tumors both showed an
increase in YAP1 expression over SCLC-A and SCLC-N tumors. This may be because SCLC-P
and SCLC-I tumor subtypes comprise SCLC-P and SCLC-Y cells in varying proportions, as well
as other intermediate phenotype cells (generalists), immune infiltrate (as demonstrated by
CIBERSORTX), and potentially true SCLC-I-subtype single-cells. Because both SCLC-P and
SCLC-I tumors are enriched in SCLC-Y single-cells, YAP1 does not emerge as enriched in a
single class of human SCLC tumors. Further analysis is needed to delineate the SCLC-Y single
cell subtype, SCLC-I tumor subtype, and presence of immune populations.

Single-cell analyses presented here corroborate the intratumoral heterogeneity and
plasticity predicted in previous chapters. Specifically, in the context of platinum resistance, a
small, plastic, non-NE subpopulation may be capable of regenerating the rest of the tumor to

overcome therapy. In favor of subtype switching as the underlying mechanism, one of the two

142



models analyzed (MDA-SC68) had virtually no SCLC-I cells before treatment relapse, as the few
that are triple negative lack other features of SCLC-I. On the other hand, those triple-negative cells
that emerge following relapse show consistent, robust features of SCLC-I, and we observe
evidence of transcriptional shifts away from SCLC-A and toward SCLC-I even among cells that
remain ASCL1 positive. This work reinforces the clinical implications of phenotypic plasticity,
and the need for treatment strategies that target plasticity directly to reduce acquired resistance in

SCLC.

4.3. Network dynamics of variant SCLC mouse models with ASCL1 loss*
4.3.1. Motivation

Classic SCLC tends to be driven by the neuroendocrine transcription factor ASCLI. In
contrast, about 25% of SCLC tumors have variant features, often driven by NEUROD! or non-
neuroendocrine transcription factors such as YAPI or POU2F3 (see Chapters 2 and 3).
Furthermore, MYC family genes are often mutated and/or overexpressed, suggesting they play a
critical role in SCLC progression. While ASCL1-driven SCLC is often characterized by high
expression of the MYC family gene L-MYC, variant, ASCLI-low SCLC is associated with high C-
MYC expression. As discussed in Chapter 3, the ASCLI-high subtype of SCLC can transition to

variant subtypes in a MYC-driven genetically engineered mouse model (GEMM, RPM model

4 This section is adapted from “ASCL1 represses a SOX9+ neural crest stem-like state in small cell lung cancer”
published in Genes & Development and has been reproduced with the permission of the publisher and my co-authors.
Olsen, R. R., Ireland, A.S., Kastner, D.W., Groves, S.M. et al. ASCL1 represses a SOX9+ neural crest stem-like state
in small cell lung cancer. Genes & Dev 35:1-23 (2021) doi:10.1101/gad.348295.121.
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discussed in Chapters 2 and 3). However, it is unclear if ASCL1 is a necessary precursor of SCLC-
N or other variant subtypes.

ASCLI and NEURODI are lineage-specifying transcription factors necessary for neural
differentiation (Borromeo et al., 2016; Rudin et al., 2019). ASCLI1, but not NEURODI, is
necessary for the development of pulmonary neuroendocrine cells (PNECs)(Ito et al., 2003),
which, as discussed in Chapter 3, are often the cell of origin for SCLC. ASCLI1, but not
NEURODI, is also required for the development of classical SCLC, as conditional deletion of
ASCL1 was sufficient to abolish tumor formation in the classical, triple knockout mouse model of
SCLC (RPR2) (Borromeo et al., 2016). However, in MY C-driven GEMMs, a similar deletion has
not been tested, which would determine whether ASCLI is also required for tumor formation in
the RPM mouse model (Rudin et al., 2019). Here, we used GEMMs to determine the function of
ASCLI on cell fate and plasticity in MY C-driven SCLC derived from multiple cells of origin.
4.3.2. ASCLI represses a SOX9+ neural crest stem-like state in small cell lung cancer

Ireland et al. (2020) showed that a MYC-driven mouse model of SCLC (RPM) can
transition from neuroendocrine SCLC-A cells to non-neuroendocrine SCLC-Y cells via SCLC-N.
In this model, mice are intratracheally infected with adenoviruses carrying cell type-specific
promoters driving Cre recombinase expression, such as a general CMV promoter (Ad-CMV-Cre).
Using various promoters to target different cell types (general CMV promoter, PNEC-specific
CGRP, club cell-specific CCSP, and AT2-specific SPC), we initiated tumorigenesis in RPM mice.
Interestingly, in situ tumors from each cohort were dominated by ASCL1-high cells, regardless of
cell of origin. In contrast, invasive tumors were dominated by an ASCL1-low phenotype, with

higher levels of NEURODI and YAPI.
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RPM mice were next crossed to Ascll-floxed animals to generate RbI: Trp53™"": Myc-
T58ALSUESE: 4scl "' (RPMA) mice. All promoter-driven models developed tumors, though with
significantly delayed latencies compared with RPM mice. This suggests that ASCLI is not
necessary for tumor formation in the MYC-driven mouse model. Interestingly, RPMA mice
developed tumors with a tissue density consistent with bone, and bone analysis by microCT
imaging confirmed that the tumors within the lung were bone-like. Histopathological analysis of
H&E-stained tissues further validated that the lungs contained high-grade osteosarcoma with well-
developed osteoid. These data suggest that ASCL1 represses a latent osteogenic fate in the context
of MY C-driven SCLC.

RNA sequencing of RPR2, RPM, and RPMA tumors confirmed that all three tumor types
are distinct, as they are well-separated in a principal components analysis. ASCLI target genes
were indeed reduced in RPMA tumors, and NEURODI1 was one of the most significantly down-
regulated genes in RPMA versus RPM tumors. GSEA showed a significant positive enrichment
for bone development genes in RPMA tumors, supporting the observed osteoid formation in these
tumors. Furthermore, ossification-related processes were significantly upregulated in RPMA
compared with RPM tumors, and neuronal development-related processes were significantly
downregulated, as revealed by gene ontology (GO) enrichment analysis. Together, these data
highlight a critical role of ASCL1 in promoting NE cell fate and repressing an underlying

osteosarcoma-like fate in RPM mice.
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Figure 4.4: WGCNA reveals co-expressed gene modules that distinguish RPM and RPMA tumors. A. WGCNA analysis on

RNA-seq from RPM and RPMA tumors shows distinct gene programs that regulate each tumor type. Key transcription factors in
the turquoise and blue gene modules shown. B. ANOVA statistical analysis of co-regulated gene modules identified by WGCNA
in RPM (n=11) vs RPMA (n=6) tumors corresponding with the color code in Fig. 44. Three modules had significant differential
gene expression. The turquoise module is highly expressed in RPMA tumors, and brown and blue modules are highly expressed
in RPM tumors. Data is shown as negative logl0-transformed p-value. Dotted line indicates p = 0.05. C. Principal component
(PC) analysis comparing bulk RNA-seq expression in human SCLC cell lines (SCLC lines from CCLE and cBioPortal and lung
adenocarcinoma (LUAD) cell lines from CCLE) with mouse RPM or RPMA tumors initiated with the indicated viruses. Human
SCLC cell lines were classified into subtypes as described in Chapter 3. Mouse tumors were harvested at the following time points
post infection: RPM-CMV 55 d, RPM-CGRP 47-61 d, RPMA-CMV 85-86 d, RPMA-CGRP 111 d, RPMA-CCSP 120-204 d, and
RPMA-SPC 204 d.

4.3.3. Network analyses predict transcriptional regulators that drive osteosarcoma cell fate upon
ASCLI loss

To identify the key transcription factors responsible for this dramatic change in cell fate
upon ASCL1 loss, we turned to weighted gene co-expression network analysis (WGCNA). We
used an adapted version of the method described in Chapter 2 to generate a co-expression network
of all genes, which allowed the identification of distinct gene modules across all RPM and RPMA
samples (Figure 4.4A and B). Strikingly, approximately one-third of the transcriptome was altered
upon ASCL1 loss (Figure 4.4A). Using PCA, we compared mouse tumors to the human SCLC
cell lines from Chapter 3 and 47 lung adenocarcinoma cell lines from CCLE. We found that RPMA
tumors clustered with the non-NE POU2F3 and YAP1 SCLC subtypes and lung adenocarcinoma

(Figure 4.4C), suggesting a similarity between RPMA tumors and human non-NE tumors.
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To generate a gene regulatory network, we focused on transcription factors predicted by
WGCNA to be central to differentially expressed gene (DEG) modules, as well as known
regulators of lung cancer cell fate. Using the BooleaBayes pipeline developed in Chapter 2, we
determined rules of interaction between transcription factors (Figure 4.5A). For example, ASCL1
is regulated by eight parent nodes (AR, E2F1, HES1, KLF4, MITF, NR3C1, PHC1, and RUNXT1)
where each ON/OFF combination of these parent nodes determines ASCL1 expression. Likewise,
ASCLI regulates expression of a number of downstream transcription factors. These regulations
define how a cell may change its identity or reach a stable phenotype (an “attractor state”).

Dynamic simulations identified two attractor states, each corresponding to either RPM or
RPMA tumors (Figure 4.5B). Using the Hamming distance between states (the difference between
two binary data strings), the RPM attractor was only one state away from the average RPM-CGRP
state, the adenovirus promoter of which is specific to PNECs. The RPM-CMV model, with a
general promoter, had an average state that was 7 states away from the RPM attractor. The RPMA
attractor was closest to the average RPMA-CMV and RPMA-CGRP states (Hamming distance =
2). This may reflect the propensity of SCLC to develop from PNECs versus other lung cell types,
as the resulting tumors are closer to an attractor and thus more stable.

4.3.4. TF network determines master regulators and destabilizers of RPMA tumors

Using the method described in Chapter 2, we ran a random walk simulation to predict
regulators driving these steady states. Satisfyingly, in silico silencing of the ASCL1 node
destabilized the RPM attractor, consistent with experimental results (Figure 4.6A). Conversely,
activation of ASCL1 or NEURODI1 in the RPMA attractor destabilized that steady state,

reminiscent of human SCLC, in which ASCLI is destabilizes SCLC-Y as shown in Chapter 2.
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Figure 4.6: Destabilization of attractors. A. Destabilization score of each perturbation (activation or silencing) of each TF.
B. Select perturbations with large destabilizations show a clear decrease in steps to leave an attractor basin.

Based on these results, we included other known NE fate specifiers like INSM1 and
transcription factors important in endodermal and lung adenocarcinoma fate, such as NKX2-1 and
FOXAZ2, in our network. While all of these genes were significantly reduced in invasive RPMA
tumors (Fig. 4D), only FOXA2 was predicted to significantly affect the dynamics of the
transcription factor network. In fact, activation of RPMA genes was more destabilizing, on
average, than silencing of RPM genes like INSM1 (Figure 4.6A). RUNXI activation was most
destabilizing to the RPM attractor and silencing was most destabilizing to the RPMA attractor,
suggesting it may play a central role in regulation of the RPMA fate (Figure 4.6B). Activation of
the androgen receptor gene, AR, significantly destabilized RPM (Figure 4.6B). Interestingly,
RUNXI is a target of AR and both function in chondrogenic lineage commitment of mesenchymal
progenitor cells (Hui et al., 2021; Smith et al., 2005). Furthermore, E2F1 is predicted to be a master
regulator of RPM and destabilizer of RPMA, such that silencing this gene destabilized RPM
whereas activating this gene pushes cells away from the RPMA attractor (Figure 4.4B).
Constitutive overexpression of E2F1 has previously been shown to delay bone formation by
inhibiting chondrocyte differentiation (Scheijen et al., 2003), which is consistent with our network
predictions and strengthens the connection between the RPMA state and chondrocyte and bone
differentiation.

4.3.5. Network simulations probe mesenchymal stem cell-like reprogramming of RPMA tumors

Several other transcription factors in the network were predicted to be master regulators or
destabilizers (Figure 4.6A). To deepen our understanding of these predicted regulators, we
considered their role in normal development. The lung epithelium is believed to derive largely
from endoderm, whereas bone and cartilage fates are derived from mesoderm or ectoderm

(Serizawa et al., 2019; Zepp and Morrisey, 2019). Mesenchymal stem cells (MSCs) from

150



mesodermal tissue and neural crest stem (NCS) cells from ectodermal tissue are capable of
differentiating into neuron, bone, or cartilage fates (Achilleos and Trainor, 2012; Jiang et al.,
2002). In the RPMA tumors analyzed here, GSEA revealed that both MSC and NCS cell signatures
were significantly enriched, suggesting that ASCL1 is associated with a more endodermal tumor
cell fate and may repress an MSC/NC-stem-like fate. We therefore considered the developmental
pathways that are known to drive bone fate from MSC and NCS progenitor cells, including Indian
hedgehog (Ihh), Hippo/Yapl, Transforming growth factor-p (Tgf-p), Bone morphogenic protein
(Bmp), Wnt, Notch, and others (Long, 2012; Pan et al., 2018; Vanyai et al., 2020). Consistent with
our GSEA analyses, several components of these pathways were upregulated in RPMA tumors,
and network analyses predicted that several destabilizers of the RPM phenotype fell within these
pathways (YAPI, CTNNBI1, HESI1, and REST). Together, these data suggest that ASCLI
represses the emergence of an MSC/NC-stem-like state as well as multiple developmental pathway

regulators in MY C-driven SCLC.
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Figure 4.7: Role of SOX9 in chondrocyte and bone differentiation.
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We examined the role of SOX9 in regulating the RPMA state, as pathway analysis
indicated that several enriched genes in RPMA compared to RPM are targets of SOX9. In normal
development, SOX9 marks osteoblast progenitors and precedes RUNX2 expression and bone

differentiation (Long, 2012) (Figure 4.7). Furthermore, RUNX1, a master regulator of the RPMA
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state, can directly regulate SOX9 and RUNX2 during bone development. In our data, RUNX1 and
SOX9 expression were enriched in noncalcified, “soft” RPMA tumors compared with more
differentiated osteosarcomas, whereas RUNX2 levels were high in both types of RPMA tumors.
SP7 expression, which normally follows RUNX2 expression in differentiation of bone-producing
osteoblasts, was predominantly expression in the more differentiated osteosarcomas. While
ASCLI knockdown induced SOX9 expression in human SCLC cell lines, ASCL1 ChIP-seq data
did not identify significant ASCL1 binding sites near SOX9, which suggests that SOX9 repression
by ASCLI1 is likely indirect.

To further investigate the transcriptional regulation of RPM to RPMA reprogramming, we
ran 1000 network simulations starting from the RPM attractor under unperturbed dynamics and
with ASCLI1 silenced during the entire walk (Figure 4.8). A PCA transformation of all of the
binary walks shows that a single dimension (PC1) is capable of separating the RPM and RPMA
attractors, which is corroborated by the loadings of each TF (Figure 4.8A and B). In PC2,
however, there is less of a clear split between RPM and RPMA TFs. Instead, RUNX1 and SPI1
dominate PC2, while FOXM1, CTNNBI1, SOX9, and AR are negatively correlated with PC2. In
Figure 4.8C, the random walks that successfully reach the RPMA attractor (within 10,000 steps)
are shown in a contour plot, with example random walks overlaid on the left plot. From these plots,
it is clear that most paths move somewhat monotonically through PC1, but first decrease and the
increase in PC2, finally evening out around the same location in PC2 as the RPM attractor once
they reach the RPMA attractor. This may indicate that most paths first activate SOX9, AR, and
CTNNBI (first dense region of states the paths reach), followed by an increase in SPI1, RUNXI,
and other RPMA -related TFs (second dense region). This ordering is consistent with activation in

MSC differentiation, where SOX9 precedes RUNX1 and RUNX2 expression (Figure 4.7).
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and SOX9. After reaching this state, cells move to a second dense region which increases in PC2, suggesting a state increasing expression of
SPI1, RUNXI, PRDMS, and MECOM. The successful walks then cross a “thin bridge” to the RPMA attractor, suggesting a bottleneck of
possible states before full reprogramming to the RPMA state. D. Compared to C, paths that do not successfully reach the RPMA attractor
(before maximum of 10,000 steps) are still capable of reaching the two dense regions in the PCA space. This suggests that the thin bridge in
Cis truly a bottleneck for accessing the RPMA attractor. E. With ASCLI silenced in silico (ASCL1 is kept OFF during the simulations), more
walks reach the RPMA attractor. This may be due to the fact that the bottleneck is widened by ASCLI loss, making it easier to reach the

attractor successfully.
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Even more notable is the fact that, after reaching each dense region in the PCA, the paths
that successfully reach the RPMA attractor seem to cross a “thin bridge” that acts as a bottleneck
to full reprogramming (Figure 4.8C, right). Compared to Figure 4.8D, it becomes clear that this
bottleneck is what prevents the unsuccessful simulations from reaching the RPMA attractor, as
the unsuccessful walks still reach both intermediate dense regions. This suggests that it may be
possible to reach the RPMA state under the normal dynamics of RPM development, but the
transition is unlikely due to this bottleneck in the reprogramming trajectory.

To mimic the RPMA tumor model, we silenced ASCL1 in silico (i.e., ASCL1 remains OFF
during the entire walk) and reran the simulations (Figure 4.8E). Interestingly, the paths follow
much the same trajectory as the unperturbed simulations, again reaching two dense regions
intermediately during reprogramming. However, ASCLI1 silencing removes the bottleneck,
allowing more of the simulations to successfully reach the RPMA attractor. This suggests that
ASCLI is indeed constraining evolution of RPM tumors from fully reprogramming to the RPMA
state, as suggested by ASCLI repression of the MSC-like state. While it is still unclear exactly
what the mechanism of this bottleneck is, further experimental analysis of the RPM to RPMA
reprogramming pathway, such as through lineage tracing or temporally controlled activation of
particular genes, may provide insight.

4.3.6. Discussion

In this work, we investigate the question of whether ASCL1 is necessary for SCLC development.
While it appears to be required for classic SCLC, as conditional deletion of ASCL1 is sufficient to
abolish tumor formation in a classical mouse model (RPR2) (Borromeo et al., 2016), ASCL1 is
not necessary for SCLC development in a MYC hyperactivated mouse model (RPM). The data
here suggest that loss of ASCL1 could potentially convert SCLC to an alternative cell fate, but

fate-tracking approaches will be needed to definitively address this possibility. Interestingly,
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RPMA tumors with ASCL1 silenced began to ossify in the lung, suggesting that ASCL1 is capable
of repressing a latent osteogenic program. This surprising result is supported by increases in
mesenchymal stem cell-like and neural crest stem cell-like gene programs, as well as activation of
Notch pathway genes and bone differentiation driving transcription factors, such as RUNX2.

Using a transcription factor network fit to RPM and RPMA tumor data, we made
predictions of master destabilizers and regulators that control the possible NE and bone fates of
these tumors. Interestingly, activation of many of the major drivers of bone fate significantly
destabilize the RPM attractor, whereas silencing of RPM drivers has a smaller effect. This signifies
that turning on bone and chondrocyte developmental genes, such as SOX9, RUNX1, RUNX2, is
critical to reprogramming RPM tumors to an RPMA state under ASCL1 loss.

The importance of SOX9 and possibility of a mesenchymal stem cell-like phenotype in this
work points toward the relevance of developmental biology in understand SCLC tumor dynamics
(Figure 4.9). Until recently, PNECs (and, as a correlate, SCLC) were thought to arise from the
neural crest, which is ectodermal in origin (similar to other neuronal cells) (Pearse and Polak,
1971). It is now clear that PNECs share the development origin of other lung cell types, arising
from local multipotent stem cells (Gazdar et al., 2017; Nikoli¢ et al., 2018; Rosai, 2011).
Answering the question of how cells with an ectodermal origin could potentially transition to a
mesenchymal stem cell-like state, which is mesodermal in origin, will be critical to our
understanding of RPMA dynamics. Do RPMA cells reprogram from a lung progenitor-like state
to fully pluripotent stem cells before transitioning to an MSC state? Calcification and ossification
of the lung is rare but possible (Chan et al., 2012), and SCLC tumors preferentially metastasize to
the bone, suggesting the relevance of this question (Ko et al., 2021; Nakazawa et al., 2012).

Furthermore, recent research shows that some mesenchymal stem cells may reside in the lung and
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possess lung-specific properties (Enes et al., 2016). These lung-resident mesenchymal stem cells
may play a role in tissue remodeling under conditions of oxidative stress and lung cancer
development (Chow et al., 2013; Sentek and Klein, 2021; Sveiven and Nordgren, 2020). Future

studies should investigate the relationship between the RPMA osteogenic state and these MSC

populations.
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Figure 4.9: RPMA progression to an osteogenic state can be understood in terms of normal developmental biology.

4.4. Conclusions
In this chapter, we explore variant SCLC tumors through the lens of systems biology.
While most SCLC are ASCLI1+, about a third can be considered variant, with different

morphology, expression of non-NE markers, and inflammatory properties. We first identified a
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new SCLC subtype of tumors, SCLC-I, that has increased immune infiltrate and higher levels of
immune checkpoints and human leukocyte antigens. This class of tumors from SCLC patients has
not been fit into our current paradigm of SCLC heterogeneity, as explored in Chapters 2 and 3.
There are a few possible explanations for this. Since we explored the same dataset of 81 human
tumors in Chapter 3 and showed that variance between these tumors is well explained by the
archetypes in that chapter, we may find that the SCLC-I subtype is describing a subset of tumors
close to the non-NE subtypes that do not have significantly increased YAP1 expression over the
SCLC-P tumors. While we define one of the archetypes in Chapter 3 by YAP1 expression due to
its enrichment over other archetypes, not all samples near the SCLC-Y archetype show high
expression of YAPI. In this Chapter, the SCLC-I subtype shows positive expression of SCLC-Y
that is not significantly enriched over the SCLC-P tumors, suggesting that the tumors were samples
not sufficiently close to, but still could be described by their distance from, the SCLC-Y archetype.
Alternatively, these SCLC-I tumors may be generalists in the archetype space, and therefore not
enriched for any of the four defining TFs in the field, including YAPI.

Another hypothesis, which was introduced in Chapter 3, is that the SCLC tumors are more
heterogeneous mixtures of phenotypes across archetype space, and it is the relative proportions of
these subpopulations that define the patterns seen in this Chapter. This is consistent with our
evidence in Chapter 3 that tumors form a polytope in linear space but not logarithmic space, which
is what would be seen if tumors were heterogeneous mixtures of distinct phenotypes, rather than
samples fit within a Pareto optimal polytope. In this case, the SCLC-I class of tumors would not
optimize a distinct task in trading off with other phenotypes, but instead these tumors would be a
mix of those other phenotypes, plus a higher number of immune cells, in such proportions that the

samples are distinct in bulk RNA-seq and IHC. Non-NE cancer cells in these tumors may be pulled
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away from YAP1+ and POU2F3+ phenotypes due to their interactions with more immune
infiltrate.

Another possible explanation for SCLC-I that is less consistent with our work in Chapter
3 is that it is indeed a completely distinct, novel phenotype that individual cells can acquire.
Further investigation into these hypotheses should be able to determine whether SCLC-I tumors
comprise cells within the archetype space defined in Chapter 3 with varying amounts of immune
infiltrate, or individual cells of a novel phenotype.

In this chapter, we explore the dynamics of tumors that increase in SCLC-I after treatment.
We use our plasticity pipeline described in Chapter 3 to calculate Cell Transport Potential and
show that the SCLC-I-enriched subpopulation after treatment may be capable of regenerating the
rest of the tumor. If this is true, SCLC-I and non-NE cell types may be capable of transitioning to
NE subtypes, particularly after treatment. Lineage tracing studies should be able to determine
whether non-NE cells can transition in this direction, as opposed to NE to non-NE transitions
which are more common (Lim et al., 2017). Critically, our plasticity analysis shows that the
majority of cells after treatment increase in plasticity, which may explain the aggressiveness of
relapsed SCLC. This increase in plasticity could be tested in mouse models of SCLC before and
after treatment in which distinct lineages can be labeled with a fluorescent reporter.

While many tumors, including the ones discussed in this chapter, decrease in ASCL1
expression after relapse from chemotherapy, it has been unclear whether progression of SCLC is
initially dependent on ASCL1 activation. In this chapter, we show that mouse models without
ASCL1 (RPMA) can form SCLC tumors from a variety of lung cell types. Furthermore, ASCLI
inactivation leads to a variant SCLC phenotype that is enriched in osteogenic and mesenchymal

stem cell-like gene programs.
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Because inactivating mutations of ASCL1 are not common in SCLC (George et al., 2015),
this novel phenotype may “escape beyond” the archetypes defined in Chapter 3. If a mutation is
capable of “rewiring” the cell’s gene regulatory network in such a way that the mutant is more
optimal at more than one task, the Pareto front that constrains cells may shift or become obsolete
(Li et al., 2019). In the case of ASCL1 inactivation, about a third of the transcriptome is altered,
suggesting that this single mutation is capable of significantly changing the accessible phenotypes
for MYC-driven SCLC and therefore may change the Pareto front and the associated fitness
function, which is dependent on trade-offs in performance of SCLC tasks. Interestingly, the
network analysis on the RPM to RPMA transition suggests that RPM cells can reach the RPMA
state without specific inactivation of ASCL1; the natural dynamics of the system may allow for
cells to turn off ASCL1 expression without a genetic modification. This suggests that the RPMA
state falls farther along the same phenotypic trajectory as normal MYC-driven SCLC, which is
corroborated by pseudotime analysis of scRNA-seq from RPM and RPMA tumors in Olsen et al.
(2021). Furthermore, if the RPMA attractor does match a new archetype in SCLC phenotypic
space, it may be accessible for RPM tumor cells under epigenetic modification. Lastly, there may
be a connection between the RPMA steady state and the archetype X absorbing state found in
Chapter 3, which was not enriched in any of the five canonical SCLC signatures. Further
investigation into both of these phenotypes is needed to uncover the specific relationship, if any,
that exists between them.

Together, this chapter investigates two phenotypes that have not been previously described
by our SCLC network or archetype analysis. A comprehensive understanding of SCLC phenotypes
and transitions between them will require incorporation of these distinct states into a broader

framework of heterogeneity.
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Chapter 5.

Conclusion

5.1. Discussion

While several cancer types have seen marked improvement in treatment options in recent
years, SCLC patients are still relegated to the same fate as half a century ago. Fortunately, the
Recalcitrant Cancer Research Act signed in 2012 imbued SCLC research with new funding and
enthusiasm that led to rapid developments in our understanding of the disease. In the last decade
alone, SCLC research has seen a substantial increase in resources, including new genetically
engineered mouse models (double- and triple-knockout models, and RPM/RPMA variant models),
xenograft models (PDXs and CDXs), and genomic and epigenomic data directly from human
tumors (Cui et al., 2014; Drapkin et al., 2018; George et al., 2015; Hodgkinson et al., 2014;
McFadden et al., 2014; Mollaoglu et al., 2017; Olsen et al., 2021; Peifer et al., 2012; Rudin et al.,
2012; Schaffer et al., 2010; Simpson et al., 2020; Song et al., 2012; Stewart et al., 2020; Sutherland
etal., 2011; Tlemsani et al., 2020; Williamson et al., 2016; Zhang et al., 2018). The rapid progress
of new translational discoveries has been called “The Second Golden Age” of SCLC (Gazdar et
al., 2017).

This increase in resources has been supported by a simultaneous explosion in technological
advancements in biology, due in part to the decreasing cost of genomic sequencing (Wetterstrand)
and the development of single cell sequencing (Hong et al., 2020). As described in this dissertation,
single cell data can be incredibly useful to understanding the epigenetic heterogeneity present
within SCLC cell lines and tumors and is beginning to illustrate the importance of phenotypic

plasticity in SCLC relapse (Gay et al., 2021; Groves et al., 2021; Ireland et al., 2020; Lim et al.,
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2017; Wooten et al., 2019). These recent improvements in our understanding of the biology of
SCLC impart optimism for therapies that can better treat patients, particularly after relapse from
the standard of care regimen. This work contributes to a larger goal of understanding how
phenotypic heterogeneity and plasticity may promote acquired resistance in SCLC and proposes
strategies to overcome plasticity-driven relapse.

In this work, we examine SCLC phenotypic heterogeneity by delineating subtypes
(Chapter 2), placing those subtypes in the context of multi-objective evolutionary theory (Chapter
3), and exploring new phenotypes that arise in variant SCLC models (Chapter 4). With this
comprehensive view of SCLC subtypes as occupying basins in an epigenetic landscape, we can
begin to develop new strategies for overcoming treatment evasion caused by phenotypic plasticity.
5.1.1. Systems biological approaches uncover strategies to control SCLC response

A systems-level understanding of biology ultimately requires the ability to control the
system (Kitano, 2002). In this dissertation, I both make and test predictions for ways to control
SCLC phenotypic heterogeneity. For example, in chapter 2, we make several predictions for
master stabilizers and destabilizers of each phenotype; experimental perturbations of these TFs are
critical to validate their importance in SCLC cell identity regulation. In chapter 3, we show
preliminary evidence that SCLC phenotypes may optimize functions related to normal PNECs,
causing differential sensitivity to drugs targeting those functions. Future work is needed to
determine how well cells can change phenotype in response to these drugs towards more-resistant
states. For example, if we find that an inactivation of a master regulator forces a phenotypic
transition from phenotype A to phenotype B, that same perturbation should affect the sensitivity
of the cells to treatments targeting phenotype A. Together, these ideas suggest a framework of

manipulating phenotypic identity to “corral” cells into a sensitive state for a given drug.
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In chapter 4, we use a transcription factor network to predict master regulators that may be
able to drive a transition from an RPM state to an RPMA state. We then investigate the role of a
key driver of the mesenchymal stem cell fate, SOX9, and find that ASCL1 represses expression of
SOX9 in SCLC. Further work is needed to test other predicted drivers, such as RUNX1 and
RUNX2. We also identify a new class of SCLC tumors that are inflamed and use a plasticity
analysis to show that cells high in the SCLC-I signature seem to be more plastic. This may be
tested in GEMMs or PDX models by lineage tracing to determine if SCLC-I cells after treatment
can truly regenerate the NE subpopulation. Finally, a true understanding of this system would
require the ability to push tumors in and out of the SCLC-I state, possibly in response to treatment.
5.1.2. Unlocking phenotypic plasticity may be key to relapse in SCLC

Cell state plasticity was first recognized in organogenesis where a stem cell, without
changing its genetics, is capable of terminally differentiating into various cell fates. Waddington’s
landscape, a metaphor now evoked in systems ranging from the cell cycle to cancer, was originally
advanced as an abstract picture of the developmental process, where cells roll down canalizations
in a landscape as they become more and more differentiated, less plastic, and therefore less able
to acquire new phenotypes (Waddington, 1957). The landscape metaphor has been shown to be a
useful model for non-genetic heterogeneity in several cancer systems (Brock et al., 2009; Huang,
2013; Huang and Kauffman, 2013; Huang et al., 2009; Menendez, 2015; Pisco and Huang, 2015;
Wooten and Quaranta, 2017; Zhou et al., 2016a). In particular, quantification of landscape
potential can help uncover key insights into the regulation of systems with multiple stable subtypes
(i.e. attractors), such as in SCLC. Our results in Chapter 2 show that attractors of the inferred
network—i.e. the most stable states as defined by regulatory network dynamics—match the

empirical phenotypes seen across cell lines and tumors, both in our work and as defined by other
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research groups (Baine et al., 2020; Borromeo et al., 2016; McColl et al., 2015; Rudin et al., 2019).
This concordance demonstrates that the phenotypic landscape is a good model for non-genetic
heterogeneity in SCLC that can be utilized to make predictions regarding control of cell identity
in this cancer..

Phenotypic heterogeneity and plasticity are now considered hallmarks of cancer (Hanahan,
2022). Heterogeneity in cancer may lead to resistance through selection of a pre-existing resistant
subpopulation, as shown in Figure 5.1. In contrast, phenotype plasticity allows cells to traverse
the epigenetic landscape to evade treatment by changing phenotype. Plasticity may be reflected in
the epigenetic landscape as lower barriers between cells and less stable attractors between them,

particularly after treatment (Figure 5.1).
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Figure 5.1: Heterogeneity vs plasticity in cancer relapse and treatment strategies.

As demonstrated in this dissertation, both phenotypic heterogeneity and plasticity are
critical to SCLC development, survival, and relapse. Furthermore, characterization of phenotype

plasticity via a quantifiable landscape leads to predictions for possible regulation strategies that
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could lead to better treatment. Chapter 2 shows how intra-tumoral heterogeneity is undergirded by
GRN dynamics and predicts strategies for controlling plasticity.

In chapter 4, plasticity plays a clear role in relapse of SCLC-I tumors. Furthermore, we
identified a relationship between MY C-driven SCLC with ASCL1 loss and a mesenchymal stem
cell-like state. Together, these results suggest that the phenotypic transitions of SCLC in various
contexts may be explained as “unlocking” plastic de-differentiation capabilities, similar to normal
multipotent progenitors.

5.1.3. Normal biology can inform our understanding of SCLC dynamics

The epigenetic landscape framework provides a quantifiable metaphor for understanding
the relationship between cancer and normal cell development. The idea of cancer states as
attractors can be integrated into a normal developmental landscape, where the genomic instability
of cancer cells allows them to reach new attractors previously inaccessible in the landscape. This
may explain how SCLC cells, in some contexts, seem to be able to replicate the de-differentiation
of normal cells; for example, the SCLC-A to SCLC-Y transition is reminiscent of the lung injury
repair ability of normal PNECs that trans-differentiate to other cell types to replenish the lung
epithelium (Ouadah et al., 2019). Similarly, the transition to an MSC-like state in RPMA tumors
may reflect the de-differentiation capability of some normal cell types. It is unclear how transition
paths from new cancer attractors within this landscape are capable of reaching these inherent
progenitor attractors.

While there seems to be a relationship between the landscape of PNECs, which can optimize
various functions through distinct gene regulatory programs, and SCLC subtypes, it is not yet clear
if PNEC functions represent an actionable constraint, or if they are simply a starting point that

SCLC cells can easily expand beyond. Mutations that allow for optimization of multiple objectives
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Figure 5.2: Mutations are capable of expanding the Pareto Front. A mutation may allow a cell to move beyond the
Pareto Front if it can become more optimal at both tasks. Selection of this more fit mutant will, over time, expand the
Pareto Front (vight).

at once may allow cells to move “beyond” archetypes, towards phenotypes that have higher fitness.
This is akin to changing the shape of the Pareto front, which may be achieved by the high
mutational burden of SCLC tumors (Figure 5.2).

The high mutational burden in SCLC would seem to promote completely unconstrained
progression of phenotypic heterogeneity, so it is interesting that the same five archetypes seem to
recur in various SCLC models, in various conditions like human cell lines, human tumors, classic
and variant GEMMs, and PDX models. Some of these models may pinpoint the mechanism of
expansion to novel archetypes— for example, RPM tumors seem to move beyond the five
archetypes defining SCLC phenotypic space toward an unknown Archetype X. Still, the recurrent
pattern of phenotypes across models suggests that the defined functions are key to SCLC
development and survival. It is currently unclear if any novel phenotypes, such as Archetype X or
SCLC-I, play a large role in acquired resistance, or if characterization of the five main SCLC
archetypes (A, A2, N, P, and Y) is sufficient to develop better treatment strategies targeting
plasticity of these cells within a phenotypic landscape. Further experimental work is necessary to

define the quantitative relationship between task performance and fitness in SCLC and may help

165



to explain why “escaping” the polytope defined by SCLC archetypes seems to be the exception

more than the rule.

5.1.4. Phenotypic landscapes and archetype analysis are complementary approaches to
understanding cell identity

Several different approaches to understanding phenotypic heterogeneity are used in this
work. In chapter 3, we introduced the idea of Pareto task inference. Because cells make a limited
amount of biological material, like proteins, they can only optimize a limited number of functional
programs. Therefore, cells face tradeoffs between tasks, and multi-objective evolution gives a
theoretical underpinning for the existence of multiple stable phenotypes in cancer. While an
epigenetic landscape and the underlying GRN dynamics describe the mechanism by which cells
change their phenotype and explain the stability of various cell states, it does not on its own provide
an evolutionary understanding for why cells may occupy different states. Archetype analysis, on
the other hand, provides this rationale, explaining that multiple stable subtypes exist, as defined
by GRN dynamics, to optimize the fitness of the tumor. Therefore, the archetype analysis is
complementary to the epigenetic landscape paradigm: while Pareto theory explains why multiple
stable subtypes exist, epigenetic landscapes explain how they exist.

Furthermore, the theory behind trading off between distinct gene programs is consistent
with many qualities of gene regulatory networks. As described, a network of interacting TFs
dictates the complex relationship between different gene programs regulated by TFs that a cell can
turn on or off to change its phenotype. Often, these networks are highly modular to accomplish
the trade-off, i.e., subgroups of the network are more highly connected within the subgroup than
between, and subgroups may be mutually inhibitory (Galvao et al., 2010; Kashtan and Alon, 2005;

Newman, 2006; Wagner et al., 2007). Essentially, many networks contain expanded “bowtie
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motifs” (the network structure described in the Introduction), where each node represents a
subgroup of coregulatory TFs specific to some cell fate rather than a single TF (Wang et al., 2011).
This allows for cells to easily turn on and off full gene programs to change phenotype identity
efficiently in response to environmental perturbations and paracrine signaling from other cells and
therefore may be more adaptable in new environments (Clune et al., 2013; Friedlander et al., 2013;
Kashtan and Alon, 2005). While it is not yet clear how the TF network structure defining SCLC
cell identity may be related to trade-offs between archetypal tasks, further computational analysis
should be able to clarify this important relationship. In other systems such as E. coli, for example,
evaluation of the evolutionary constraints of GRNs using Pareto optimality showed that
populations could expand along the Pareto front by fine-tuning relationships between TFs in the
network and could expand beyond the Pareto front by changing the network structure (Kogenaru
et al., 2020). While SCLC tumors could be considered much more complex than E. coli, a similar
approach may be possible to investigate the evolutionary constraints of the SCLC GRN and define
the relationships between response to environmental signals, network dynamics, task performance

of states in the epigenetic landscape, and evolutionary fitness (Figure 5.3). A quantitative metric
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Figure 5.3: Relationship between gene regulatory network dynamics, epigenetic landscape potential, and multi-objective
evolutionary fitness. The GRN defining cell identity, which may be determined using network inference algorithms as in chapters
2 and 4, responds to environmental signals and intrinsic stochasticity to determine the phenotypic location of a cell in the epigenetic
landscape. While the GRN dynamics and epigenetic landscape must be inferred indirectly using computational modeling,
environmental signals and fitness of the cell state can be observed directly using experimental perturbations. Movement through
the epigenetic landscape corresponds to changes in task performance, which determines evolutionary fitness. Over time, cells will
move towards the more fit states along the Pareto front. It remains to be seen how locations in the SCLC epigenetic landscape (and
states of the GRN) map to locations in performance and fitness space. This is dependent on the measure of fitness, and cell survival
in response to the standard of care therapies may be a relevant quantitative metric for fitness in SCLC.
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of fitness, such as cell proliferation in response to drug (i.e. drug-induced proliferation rate, DIP
rate) is needed to fully understand the relationship between GRN modeling and archetype analysis.

5.1.5. Integration of top-down and bottom-up modeling
GRN modeling (in chapters 2 and 4), archetype analysis, and the empirical plasticity

quantification (in chapters 3 and 4) represent distinct modeling paradigms along the continuum of
top-down to bottom-up modeling (Figure 5.4). In top-down modeling, analytical approaches are
used find empirical biological patterns in high-dimensional data, such as sequencing data
(Bruggeman and Westerhoft, 2007; Oulas et al., 2017). The machine learning methods we use in
chapters 2 (hierarchical clustering) and 4 (NNMF) to cluster SCLC cell lines and tumors are an
unsupervised, top-down approaches to characterize the heterogeneity in SCLC. The goal of these

methods is to integrate and analyze experimental data to characterize phenomenological dynamics

or patterns.
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The statistical modeling in chapter 3, where single cell dynamics are approximated as a
Markov chain model, is another top-down approach used in this work. While RNA velocity itself
may be considered a bottom-up approach due to the underlying ODE model of splicing dynamics,
imputation of single cell dynamics uses an RNA velocity-based Markov model that is dependent
on patterns in the entire dataset (such as the geometry of the data in transcriptomic space, used to
infer Markov state transition probabilities) (Bergen et al., 2020; La Manno et al., 2018;
Teschendorff and Feinberg, 2021).

Bottom-up modeling formulates interactions between parts as mechanistic equations that
can then be used to predict the emergent behavior of a system. The approach to GRN networking
presented here uses a pseudo-Boolean approximation of TF DNA binding. Interactions in this
network imply a biochemical interaction between a TF and the promoter region of a target gene,
which could be modeled by Hill kinetics using differential equations. While not quite mechanistic,
our current implementation of network modeling can predict future behavior, similar to
mechanistic models. Therefore, future work could expand the network model to include dynamics
of transcription, translation, and DNA binding, to derive true mechanistic explanations of cell
identity dynamics.

Archetype analysis could be considered in between these two modeling extremes. While
the method of identifying archetypes by determining the geometry of gene expression data is
purely a top-down approach, multi-objective optimality is an underlying evolutionary mechanism
for task trade-offs that could be modeled with a bottom-up approach. For example, archetype
fitness, as it relates to task performance, could be quantified by drug kinetic models based on first

principles of the biochemical effect of drug.
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Together, the various models in this work can inform our understanding of how a
phenotype is regulated. While network models may be used to make predictions about changing
phenotype, analyzing patterns in single cell data can show how cells behave phenomenologically.
Therefore, these complementary modeling approaches can uncover the mechanism and empirical
patterns of phenotype transitions in SCLC, particularly in response to treatment.

5.2. Future Directions

5.2.1. Network structure inference using epigenetic information

In Chapter 2, we develop a novel method for gene regulatory network (GRN) inference
that utilizes ChIP-seq data to identify connections between transcription factors and the genes they
regulate. However, ChIP-seq-based network construction requires mining databases of TFs
assayed in various cell contexts that may not be relevant to the cell type or process of interest.
Therefore, one possible improvement on network structure inference in the BooleaBayes algorithm
is to use a system-specific chromatin accessibility assay known as Assay of Transposase-
Accessible Chromatin with Sequencing (ATAC-seq) (Buenrostro et al., 2013). This method could
be applied to SCLC cell line and tumor samples to curate information about the chromatin
landscape of SCLC specifically. DNA footprinting, a method that detects regions of chromatin
that are protected due to direct occupation by DNA-binding proteins, can be applied to ATAC-seq
data to infer TF-TF relationships. Several packages, such as Wellington (Piper et al., 2013), are
available to determine the locations of such chromatin footprints. This method would allow for the
identification of transcriptional regulator binding sites specific to phenotypic identity in SCLC,
which could then be used to prune connections that are spurious or unrelated to SCLC phenotypic

identity from our preliminary network structure.
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5.2.2. Single cell network inference

One future direction for this work is to apply our network inference pipeline to single cell
data. As described in a review by Pratapa et al. (2020), many network inference methods built for
bulk transcriptomics are not suitable for single cell data. In contrast to bulk data, single cell data
is often plagued by dropouts, resulting in spurious zero counts of network genes that may influence
dynamics inference. Single cell data can also be dominated by noise, whereas the averaging effect
of bulk transcriptomics data helps to greatly reduce the variance attributed to stochastic processes
such as mRNA transcriptional bursting dynamics (Golding et al., 2005; Hsu and Moses, 2022).
Pratapa et al. (2020), suggests using the BEELINE framework for benchmarking an algorithm,
which could be useful in determining the stability of predictions from single-cell BooleaBayes.
Further experimental work is needed to validate our predictions of phenotype regulators. For
example, the CRISPR-CASY system could be used to turn off (or on) regulators of each attractor
in SCLC cell lines with different phenotypes, and sequencing before and after the perturbation at
multiple timepoints could corroborate predictions for transitions to other states.

In order to improve the rule inference in our single cell datasets, we took precautionary
steps and tested each method using the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve. As explained in Chapter 4, this gives an evaluation between 0 and 1
for how well the inference tool accurately labels transcription factors as ON or OFF according to
its parent nodes. If the rule were completely random (i.e., no significant inference was made), the
rule would have an AUC of 0.5, suggesting that the false positive rate and true positive rate was
equal on average. By comparing this metric for various methods, we chose the best preprocessing
steps for accurate prediction of transcription factor activity. For example, we used MAGIC
imputation (Dijk et al., 2018), which can recover signal from noisy or sparse single-cell data using

data diffusion. In a test between this imputation method and others, we found that MAGIC gave
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AUC values closest to 1 for a majority of the inferred rules. Similarly, other preprocessing steps
to help recover signal from the single cell data may improve the robustness of network rule
inference. One alternative method for inferring transcription factor activity in single cell data
would be to identify cells with expression of that transcription factor’s target gene set (its regulon)
using AUCell (Sande et al., 2020). As suggested by Pratapa et al. (2020), single cell network
inference tools tend to perform better when utilizing larger gene sets. While a single transcription
factor may be dropped out (and therefore appear to be turned OFF in network inference), presence
of that transcription factor, even in small quantities, should activate expression of its regulon
which, due to the size of the regulated gene set, would be less likely to be dropped out completely.
These suggested updates to the algorithm may be able to refine rule inference for single cell
datasets to make predictions of master regulators and destabilizers more accurate. Together,
improving single-cell network inference for SCLC datasets would provide a context-specific
understanding of regulatory mechanisms underlying phenotypic heterogeneity and plasticity.

5.2.3. Integrating stability of single cell-derived networks and plasticity quantification

There is a clear relationship between GRN dynamics, which determine cell phenotype, and
epigenetic landscape potential, as described in the Introduction and chapter 2. However, classical
modeling of epigenetic landscapes relating Hill kinetics to the gradient of the potential landscape
is only realistic for relatively small networks. Our implementation of BooleaBayes does not
provide the same quantitative measure of potential, but instead calculates the stability of pseudo-
attractors based on the time to leave basins of various sizes. Theoretically, this should be inversely
proportional to potential: the lower the potential, the higher our stability metric.

In chapter 3, we take an alternative, top-down approach to quantifying single cell dynamics
based on probabilistic modelling as a Markovian process, which we use to approximate the drift

potential and multipotency of cells (Teschendorff and Feinberg, 2021). One relationship between
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the two modeling approaches is the identification of relatively stable states; in network inference,
these are pseudo-attractors, and in single-cell Markov chain dynamics, these are known as
absorbing states. Further work is needed to understand how this empirical measurement of
plasticity in single cells relates to the stability metric derived from network inference. We expect
that there should be some mapping between the two such that the states with the most stability
based on network inference should be absorbing states in the Markov chain.

To do so, it will be critical to define what is meant by cell state in each modeling approach.
For example, the cell states in the probabilistic modeling of single-cell dynamics are sampled
single cells, i.e., each single cell is its own state. When discussing classical dynamical systems
from GRNs, a state is generally considered to be a broader region in the landscape, i.e., the entire
basin of attraction around an attractor may be considered a single state. Mapping definitions of
cell state between the modeling approaches will be necessary to determine the relationship between

our metrics of RNA velocity-inferred plasticity and network-inferred instability.

5.2.4. Targeting epigenetic heterogeneity and plasticity to overcome acquired resistance to
chemotherapy in SCLC
While the standard of care therapy for SCLC has not changed in half a century, new

targeted therapies are currently being developed and undergoing clinical trials (Coles et al., 2020;
Gardner et al., 2017; Horn et al., 2018; Iams et al., 2020; Jia et al., 2018; Rudin et al., 2021;
Saunders et al., 2015; Sen et al., 2017, 2018; Taniguchi et al., 2020). Unfortunately, the success
of these therapies is often limited by mechanisms of acquired resistance. Non-genetic plasticity
has emerged as a major cause of acquired resistance in several cancer types (Chan et al., 2021;
Hanahan, 2022; Marjanovic et al., 2013, 2020; Mu et al., 2017; Pisco and Huang, 2015; Qin et

al., 2020; Quintanal-Villalonga et al., 2020; Su et al., 2017; Zou et al., 2017). Targeting plasticity
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directly has been suggested as a possible treatment option for several of these cancers, including
melanoma, breast cancer, and prostate cancer (Ahmed and Haass, 2018; Arozarena and
Wellbrock, 2019; Boumahdi and Sauvage, 2020; Chapman et al., 2019; Kemper et al., 2014;
Risom et al., 2018; Saez-Ayala et al., 2013; Yabo et al., 2021). As discussed in this dissertation,
phenotypic plasticity also seems to play a central role in the progression and acquired resistance
of SCLC. Therefore, targeting plasticity may be a realistic future option for combating SCLC
relapse.

A few different methods for targeting plasticity can be envisioned. First, cell plasticity
could be used advantageously to reprogram cells towards more drug-sensitive states (Yuan et al.,
2019). For example, we propose several master regulators and destabilizers in chapter 2, which
could be used to direct phenotype switching to attractors that better respond to treatment, which
has been shown to be an effective strategy in melanoma (Sdez-Ayala et al., 2013). Further
experimental validation is necessary to confirm the role of these predicted TFs in determining
SCLC cell identity.

Second, preventing phenotype switching may be more desirable (Boumahdi and Sauvage,
2020). Phenotypic plasticity is intrinsic to the epigenetic landscape: GRN dynamics that shape
the landscape form transition paths and unused attractors, and cells may enter transition paths
between stable attractors due to extrinsic perturbations or intrinsic stochasticity (Huang, 2013).
The barrier to exit attractors may be lower in cancer than normal cells, with “de-canalized,”
shallow valleys and attractor basins, enabling cancer cells to stochastically sample the landscape
and find new attractors that evade treatment (Jia et al., 2017). Targeting the mechanisms that
allow for this stochastic search of drug-tolerant states in the landscape may lower plasticity and

acquired resistance to therapy.
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For example, chromatin remodeling may be a key mechanism by which cells reprogram to
other fates, and therefore promoting repressive chromatin organization may be able to keep cells
from transitioning. Several epigenetic modifiers that can control transcription of various gene
expression programs may be possible therapeutic targets in SCLC (Poirier et al., 2020). It also
may be possible to directly target molecular pathways that reactivate developmental programs in
cancer, such as the Wnt and Notch signaling pathways discussed in chapter 3 (associated with
the SCLC-Y archetypal task of transdifferentiation in response to injury) (Qin et al., 2020).

In chapter 3, we explore the role of MYC in driving plasticity of a variant SCLC mouse
model, which developed tumors much faster than classic SCLC mouse models. We hypothesize
that targeting MYC may be capable of reducing the plasticity of NE cells to prevent the switch
to a non-NE phenotype. As the non-NE phenotype has been shown to be more mesenchymal and
possibly correlated with poor prognosis (McColl et al., 2015; Song et al., 2020), preventing this
transition could have huge effects clinically.

In chapter 4, loss of ASCL1 reprograms NE cells into a mesenchymal stem cell-like state.
This single molecular perturbation allows cells to transition from an NE attractor in the landscape
to a state replicating a multipotent progenitor cell type with higher “potential.” Our work shows
that, even in the absence of direct ASCL1 loss, MYC-driven SCLC cells may be capable of
reaching this attractor. Therefore, therapeutic strategies to prevent this transition could be
essential to “re-canalization” of the landscape and stabilization of attractors. In this chapter, we
also find that a small non-NE subpopulation that arises in some tumors after treatment relapse
may be capable of regenerating drug-resistant NE cells. While future work is needed to
understand the plasticity of this population, one hypothesis explaining relapse in these tumors is

that the small non-NE population has a slow-cycling drug-tolerant persister phenotype that can
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reprogram to a re-proliferative, drug-resistant state, much like the drug-tolerant persisters in
several other cancer types (Jolly et al., 2018; Liau et al., 2017; Paudel et al., 2018; Rehman et al.,
2021; Risom et al., 2018; Sharma et al., 2010).

Together, the modeling approaches used in this work increase our understanding of cell
identity and plasticity, particularly in cancer. Development of strategies that target plasticity and

systematically reprogram cell identity may finally be able to overcome the recalcitrance of SCLC.
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