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Chapter 1: Introduction 
 

Clinical prediction models are increasingly common, particularly with advances in 

machine learning and artificial intelligence. A major bottleneck in the development and 

improvement of clinical prediction models is the assignment of an outcome label on which to 

train models. Traditionally considered the gold-standard for whether a patient experienced an 

outcome of interest, manual chart reviews are time-consuming and resource-intensive, 

particularly within extremely large data sets of patient records.  

Our overall motivation in this work was to examine whether noisy labels 

generated from subject matter experts’ heuristics using heterogenous data types could 

be used to provide labels to large, observational datasets to support predictive modeling.  

 

Clinical Prediction Models 

Clinicians have used current and historical patient data for diagnosis and treatment since 

the beginnings of medical care. For example, a patient presents with a set of symptoms or 

complaints that the clinician attempts to diagnose, usually with additional data from physical 

assessments and/or objective measures (e.g., laboratory studies). This diagnosis helps create a 

treatment plan that hopefully helps the patient return to their desired a state of health. A growth 

in biomedical knowledge (and technology) has enabled clinicians to use the same collected data 

not only to diagnosis a current problem but also to anticipate future problems a patient might 

have. A landmark example of this capability was the Framingham Heart Study in which 

approximately 5,000 individuals were prospectively monitored for several decades in order to 

evaluate their development of cardiovascular disease. Based on several risk factors (e.g., age, 

laboratory values), clinical prediction models have been developed to provide a new patient’s 

risk of developing cardiovascular disease within as few as 6 years and as long as 30 years.1,2 
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Because it is infeasible to prospectively monitor thousands of individuals for every 

disease one could develop in the future, the number of predictive models remained relatively 

small until recently. Largely driven by the Health Information Technology for Economic and 

Clinical Health (HITECH) Act of 2009 that provided financial incentives from the United States 

federal government for acute care hospitals to transition to EHRs,3 the last two decades of 

healthcare informatics have brought widespread implementation of electronic health records 

(EHR).4 The HITECH Act required hospitals to demonstrate “meaningful use” of EHRs through 

increasingly complex capture, use, and sharing of patient data in an electronic format.5 The 

resulting emergence of extremely large datasets and accompanying growth in statistical 

processing capabilities have provided researchers and clinicians the ability to answer many 

questions that were not previously possible to answer. Many believe the use of clinical 

prediction models (also commonly referred to as predictive analytics) is the next step in 

expanding the clinician’s toolkit because it provides a new set of information that can now be 

analyzed from available data.6-8  

The purpose of predictive modeling is to collect and analyze data in real-time while 

providing end-users with a probability of a particular condition or event (e.g., hospital 

readmission, acute decompensation, or adverse drug events6). There are many published, peer-

reviewed papers describing the performance of predictive analytic models in healthcare.9,10  

Learning from Data 

 While predictive modeling continues to gain increasing attention in the healthcare 

community, the idea of creating a mathematical model to represent a phenomenon is not new. 

Researchers have developed models to learn from data for many years.11,12 Such models can 

be used for activities beyond prediction, such as inference, including a focus on generating a 

probability distribution that a patient is associated with a particular condition in order to support 

phenotyping efforts.13  
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The three broadest approaches to modeling include: supervised, unsupervised, and 

reinforcement learning. While all modeling approaches require numerical representations of 

input measures (or features) created from source data, each approach differs with respect to the 

outcome measure. Supervised models require an outcome measure and have the goal of 

predicting the value of that measure based on the inputs. Unsupervised methods have no 

outcome measure but rather identify the patterns or groupings within the inputs.12 

Reinforcement learning methods use a reward system in which an agent seeks to control a 

system, using a numerical reward that the agent seeks to maximize as it moves through each 

state.14 Supervised models are the most widely used within healthcare and are the primary 

focus here.  

Common supervised learning techniques include regression, linear discriminant 

analysis, k-nearest neighbors, decision trees, random forests, Naïve Bayes, and multilayer 

perceptrons (i.e., neural network).12,15,16 Regression modeling is a foundational technique that 

has been one of the longest-used methods. The use of regression methods benefits from 

familiarity by many investigators from many disciplines as well as easier interpretability of the 

results. A disadvantage of regression is the requirement to meet many statistical assumptions of 

the data (compared to other methods) and the need to explicitly specify interactions between 

input variables. Linear discriminant analyses are used to separate the data into maximally-

different groups but requires several assumptions of the underlying data, including that all input 

measures be on the continuous scale. The k-nearest neighbor algorithm uses similar records in 

the data to label the new record based on a majority vote and extends well to multi-class labels; 

however, there is not clear guidance on the appropriate value of how many k neighbors should 

be specified maximize performance. The Naïve Bayes algorithm is very simple to implement 

because it has no hyper-parameters to specify; however, it does not allow for interactions 

between variables and assumes complete independence of the classes. Random forests 

aggregate many decision trees by splitting input variables at a threshold that maximizes the 
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difference between classes. Random forests require few assumptions of the input data and 

handle large data and variable interactions easily. Multilayer perceptrons are the newest 

algorithms to be widely used. Multilayer perceptrons have the benefit of very few assumptions 

about the underlying data but require extremely large data sets, are difficult to interpret how the 

models work, and are computationally intensive.  

Several quantitative metrics exist to evaluate how well these supervised methods can 

predict an outcome. Common metrics include: (a) sensitivity – the proportion of records that 

truly have the condition that are labeled by the model as having the condition, (b) specificity – 

the proportion of records that truly lack the condition that are labeled by the model as not having 

the condition, (c) positive predictive value – the proportion of records that are labeled as by the 

model as having the condition that truly have the condition, (d) F1 score – the harmonic mean of 

sensitivity and positive predictive value, (e) area under the curve (AUC) – a summary statistic 

the combines the sensitivity and specificity of the model over all threshold values, (f) accuracy – 

the proportion of correct predictions, and (g) mean squared error – the square root of the sum of 

differences between predicted and actual values after being squared and divided by the number 

of records.12,17  

Challenges in Developing Clinical Prediction Models 

Although data availability and scientific/statistical computing capacity have increased, 

developing high-performing clinical prediction models remains a challenge due to the complexity 

of attempting to model phenomena in the natural world (including healthcare). Common 

challenges include, but are not limited to: (a) selecting a statistical or machine learning method 

that meets the assumptions of predictor and outcome variables, (b) dealing with missing data, 

(c) variable selection, dimensionality reduction, and feature engineering, and (d) validation 

techniques.11,18,19 Addressing these challenges has been the focus of many statisticians, data 

scientists, informaticians, and others for several decades. There are many proposed solutions to 

these challenges, but they are beyond the scope of this thesis work.   
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An additional challenge that has received less attention when working with larger data 

sets is generating reliable outcome labels in large enough quantities to function as training data. 

Manual (human) review of records has traditionally been considered the gold-standard of 

phenotyping. Unfortunately, manual reviews are time-consuming and resource-intensive, 

particularly within extremely large data sets of patient records.20,21 Therefore, the primary 

focus of this work was the development of a phenotyping process that assigns outcomes 

labels to large data sets for downstream tasks, such as predictive modeling.  

 

Phenotyping within Large Data Sets 

To overcome the challenge of manual reviews within EHRs, two broad approaches have 

been used: (a) condition-specific algorithms that leverage rule-based logic incorporating diverse 

data sources such as diagnostic billing codes, clinical notes, and laboratory values, among 

others,22,23 and (b) high-throughput methods that assign thousands of phenotypes to the EHR 

data, such as PheCodes which are groupings of diagnostic billing codes.23-26 Condition-specific 

algorithms can be iteratively developed to improve recall and precision. High-throughput 

methods have the benefit of greater generalizability across institutions as well as the speed and 

scale by which they can apply numerous phenotypes. However, drawbacks of high-throughput 

methods include: (a) the available phenotypes might not include the specific phenotype 

identified a priori by an investigator, and (b) investigators are sometimes more interested in less 

well-defined phenotypes that do not have diagnostic billing codes (e.g., adverse events) or 

where coding practices change for policy reasons (e.g., opioid use disorder-related diagnoses).  

Both unsupervised and supervised methods have been examined for their ability to 

assist with phenotyping.22 In unsupervised methods, features extracted from source data are 

engineered with the goal of organizing records into similar clusters, topics, or sub-types that are 

described or characterized by subject matter experts,22,27 including the potential to describe 

clusters as containing either cases or controls.28 While unsupervised methods can be helpful for 
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identifying latent groupings within a population (e.g., more granular sub-types of diabetes), they 

do not facilitate the application of a phenotype an investigator seeks to identify a priori.  

In supervised methods, features extracted from source data are engineered to serve as 

predictors in statistical or machine learning models where an outcome is supplied in at least 

some of the data. Therefore, the use of supervised algorithms for phenotyping is primarily 

helpful when one has a training set in which labels have already been applied and the goal is to 

conduct phenotyping with the same input features in a new data set. The task of assigning 

outcome labels to each record within at least one training set remains.  

To expedite the process of labeling within larger data sets, some have advocated for the 

use of noisy labels. When using noisy labels, investigators make the assumption that a large set 

of data with imperfect labels (i.e., some inaccuracies present) could train a machine learning 

model just as well as smaller data sets with clean (i.e., high confidence in accuracy) 

labels.13,29,30 Noisy labels can be derived from processes such as using experts to create a set 

of heuristics that generate an approximation of the ground truth label across all records or using 

a readily-available proxy label that is correlated with the ground truth label. A promising starting 

point that balances the knowledge of subject-matter experts with the speed of data-driven 

approaches is the use of anchor learning.31 In anchor learning, a subject matter expert creates a 

set of imperfect rules that satisfy two conditions: (1) the rule has high positive predictive value 

and (2) conditional independence wherein no additional information would facilitate improved 

labeling if the label were already known.31 These rules serve as an imperfect (or noisy) label on 

which to build supervised models that can generalize beyond the specified anchors and yield 

the probability of a record having the label of interest. This framework has been applied to 

phenotyping for healthcare and standardized within the Observational Health Sciences and 

Informatics (OHDSI) network and is known as the Automated Phenotype Routine for 

Observational Definition, Identification, Training, and Evaluation (APHRODITE).32 

A related, newer, and less-evaluated framework is the specification of multiple imperfect 
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labels developed by subject matter experts. In this data programming paradigm (introduced 

by Ratner et al. at Stanford University33 and incorporated into a software program known as 

Snorkel), a developer writes multiple labeling functions (LF) that serve as noisy labels based on 

heuristics, patterns, or external information. Each LF processes input data and returns a vote of 

a Yes (1), No (0), and/or Abstain (-1). LFs can be overlapping such that multiple LFs might use 

the same input data. LFs can be conflicting such that the same record yields different votes 

(e.g., one LF yields a Yes vote while another LF yields No vote on the same record). While LFs 

could potentially return any of the three vote options, each LF only needs to return 2 of the 3 

vote options (e.g., Yes versus Abstain, Yes versus No). LFs produce an m x n label matrix with 

m examples and n LFs. Without any ground-truth data, Snorkel uses the label matrix to model 

accuracies and correlations between LFs to optimize a Generative model that yields 

probabilistic labels. Then, probabilistic labels are used to train a Discriminative model with any 

statistical or machine learning model of the developer’s choice.  

While the Discriminative model is not technically necessary, this step confers the added 

benefit of increased generalizability. A Discriminative model can be used by external 

stakeholders or with future unlabeled data without needing the Snorkel software, LFs, or access 

to the same input data used for the Generative model. For example, a single LF for a 

Generative model might comprise complex if-else logic related to the number of clinical notes 

written by respiratory therapists and whether the patient has an extended mechanical ventilation 

period and certain respiratory conditions. This complex logic yields a simple vote of Yes, No, or 

Abstain for populating a column in the label matrix. However, a Discriminative model could 

include separate features for respiratory therapy clinical note counts, actual mechanical 

ventilation duration, and a binary indicator of existing respiratory conditions. Each of these 

features would serve as a separate predictor in the Discriminative model. Additional benefits of 

using a Discriminative model are: (a) the ability to include the labels from manually-reviewed 

records (e.g., those used during development and validation of the Generative model) as labels 
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to improve the model’s performance as well as (b) the option to use a noise-aware 

Discriminative model that can account for the uncertainty within the probabilistic Generative 

labels (e.g., models that can use probabilities as outcome labels or models that allow sample 

weighting during the training process).  

As with any modelling approach, one can include features engineered from a variety of 

sources when developing either the Generative or Discriminative models. Structured data, as 

previously described in the condition-specific and high-throughput methods, are commonly 

leveraged. Unstructured data (e.g., text-based notes) can also be included after they undergo 

natural language processing (NLP) techniques in order to be transformed into computable 

features. NLP methods for modelling may include, but are not limited to: bag-of-words, keyword 

searching, concept extraction,22 and vector embeddings.34 NLP methods tend to perform better 

in highly-specific domains rather than being generalized techniques that apply to a multiple 

clinical domains and phenotypes.35  

A benefit of the data programming approach over techniques such as the semi-

supervised PheCAP26 is that phenotypes need not be well-established, universally agreed-upon 

phenotypes. While these phenotypes will not be perfect, it is possible to specify the amount of 

uncertainty in the estimates. Describing the uncertainty allows each user (i.e., research 

investigator, policy maker) to make decisions on whether the phenotype can be used for their 

purposes.36  

 

Use Case: Opioid-Induced Respiratory Depression 

In our exploration of predictive modeling approaches, we selected opioid-induced 

respiratory depression (OIRD) as our clinical use case. With almost 1 in 10 hospitalized patients 

experiencing an adverse event annually,37 improving patient safety is greatly needed. Among 

perioperative patients, respiratory failure is the most common adverse event (9.13 per 1000 

patients38) and costs up to $23.5 billion annually.39 Respiratory depression can occur in a variety 
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of hospitalized patients, but surgical patients are particularly susceptible due to opioid 

administration for postoperative analgesia. While attention to opioid problems has increased in 

recent years,40-42 adverse events associated with opioid administration are not new to 

healthcare. A 2004 literature review of 165 papers revealed an OIRD incidence of 0.1-1.3% with 

a definition of naloxone administration, 0.7-1.7% with a definition of hypoventilation, 1.4-7.6% 

with a definition of hypercarbia, and 10.2-26.9% with a definition of oxygen saturation.43 A more 

recent (2018) literature review of 13 studies reported a similar incidence with a total average of 

0.5%.44  

Predictive Models for OIRD 

Operational definitions of OIRD have included naloxone administration, hypoventilation, 

hypercarbia, and oxygen de-saturation.43,45 The lack of a standardized definition makes building 

predictive models (and comparing performance between different models) challenging due to  

the difficulties in the assignment of outcome labels, both in the setting of manual chart reviews 

and automated approaches. In manual chart reviews, it can be difficult for a reviewer to 

determine if naloxone administration resulted in the intended benefit. It is not uncommon for 

naloxone to be administered in the setting of altered mental status as a way of determining if 

opioids are responsible. However, simply because a patient is receiving opioids does not mean 

that is the etiology of their altered mental status. Similarly, a patient could experience 

hypoventilation or hypoxia as a result of a non-opioid related disease process.  

To our knowledge, there is no automated approach to identifying OIRD. The most 

relevant criteria for identifying patients with OIRD at scale would be Patient Safety Indicator 

(PSI) 11 focused on post-operative respiratory failure from the Agency for Healthcare Research 

and Quality (AHRQ).46,47 Although the criteria focus on respiratory failure, they are not specific 

to opioids.  External validation studies of the PSI-11 criteria have demonstrated a sensitivity of 

0.19-0.44 and a positive predictive value of 0.4-0.83 for post-operative respiratory failure.48-52 

However, notably in one study,48 oversedation was not the cause of any respiratory failure 
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events. Therefore, how well PSI-11 criteria identify OIRD is unknown.  

Regarding predictors, adverse events are commonly attributed to organizational or 

systems factors,37 but biological factors also play a role in the respiratory failure cases 

associated with opioid administration.44 In a 2018 literature review of OIRD risk factors 

comprising 13 articles, Gupta et al.44 identified several possible risk factors. Surgical risk factors 

included: first 24 hours after surgery, orthopedic and transplant surgeries, greater than 60 years 

of age, female gender, American Society of Anesthesiologists’ Physical Status Classes 3 and 4, 

opioid dependence, and genetic polymorphisms. Comorbidities included: diagnosed or 

suspected obstructive sleep apnea; many cardiovascular diseases; diabetes mellitus; obesity; 

and renal, pulmonary, neurological, and liver diseases. Peri-operative risk factors included: 

respiratory events in the post-anesthesia care unit; concomitant sedative use; patient-controlled 

analgesia administration; excessive opioids; multiple routes of opioid administration; multiple 

prescribers; two or more opioids; excessive sedation; inadequate monitoring; hyperoxemia; and 

supplemental oxygenation. These risk factors could serve as a candidate features for a clinical 

prediction model. At the beginning of this thesis work, we found no OIRD clinical prediction 

models in the literature.  

To build a model, it is important to include predictors that would best help predict the 

outcome, drawing on these data streams: structured data, unstructured data, and genetic data. 

Predictors derived from structured and unstructured data within the EHR have been used 

extensively within clinical prediction models, but genetic data are not routinely included.  

Several studies have explored the influence of genetic variants in OIRD. If simple 

genetic etiologies of OIRD can be identified and used to decrease its incidence, we have the 

opportunity to provide individualized treatments (e.g., changing opioid type or dose) to mitigate 

adverse events while reducing overall healthcare costs. Previous studies have identified 

approximately 6 statistically significant single nucleotide polymorphisms (SNPs) associated with 

OIRD, but the small sample sizes (largest n=347) and suboptimal analysis methods leave 
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several gaps for continued exploration. Given that SNP identification costs less than $2,53-55 

collecting relevant SNP data on the 16 million U.S. surgical inpatients every year56 could be a 

cost effective approach to OIRD reduction.  

Genetic Associations with OIRD 

 Given the current understanding of opioid pathways, which include numerous proteins 

present in cellular membrane opioid receptor sites, intra-cellular pathways, and liver 

metabolism, many genes could influence an organism’s response to opioids. In older studies of 

knockout mice, researchers discovered a lack of respiratory depression when administering 

morphine to mice with the µ receptor removed,57 and there was less respiratory depression in 

those with µ receptor  deficiencies following morphine-6-glucuronide (morphine’s active 

metabolite) administration.58 One study of 87 human brain autopsy tissue samples suggested 

the 118A>G variant significantly reduces mRNA and µ receptor protein production.59 Some 

researchers have noted that human cell lines with the OPRM 118A>G variant have µ receptors 

with lower binding-site availability;60 however, another study of the same cell line (i.e., HEK293) 

did not find evidence of reduced receptor function.61 Mura et al. explicitly noted the inability to 

extrapolate findings to clinical scenarios due to current conflicting basic science evidence and 

additional complexities of the clinical environment.62 The most commonly explored genetic 

variant (likely due to its high frequency in many populations) is SNP 118A>G (rs1799971) found 

on the µ-opioid receptor gene OPRM1. The 118A>G variant ranges in frequency from 0.8% 

(Sub-Saharan ethnicity) to 8.2-17% (Caucasians) to 48.9% (Asians).63 Other common variants 

are those found in the CYP2D6, ABCB1, UGT, and COMT genes. Table 1 lists most of the 

variants that have been proposed as having an association with opioid effects. The following 

sections describe published reports of genetic variations associated with opioid-induced 

respiratory depression in clinical settings with human subjects.  
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Case Reports: Although they provide low-level evidence for decision-making, case 

reports can help generate hypotheses for developing larger studies. One report of a fatal 

hydrocodone overdose in a child identified poor first-phase metabolism as a result of a 

functionally impaired CYP2D6 (with a *2A/*41 variant).64  Another report by the same authors 

described two adult patients who received morphine in the perioperative setting and 

subsequently developed respiratory depression. The first patient had both a UGT2B7 C802 TT 

genotype (rs7439366) variant, which might have increased opioid metabolite formation, and a 

COMT haplotype TCA (rs4633, rs4818, rs4680), which might have increased opioid sensitivity. 

The second patient had an ABCB1 haplotype TTT (rs1128503, rs2032582, rs1045642) and 

COMT haplotype CCG (rs4633, rs4818, rs4680), which might have increased opioid sensitivity, 

and conversely, an OPRM1 variant (rs1799971 [G/G]), which might increase opioid 

requirements.65 Finally, a patient receiving tramadol who experienced respiratory depression 

identified a CYP2D6 UM variant (i.e., an “ultra-metabolizer” with a duplicate gene more 

susceptible to increases in active metabolite concentrations). The author also reported 3 other 

similar cases of codeine- or tramadol-induced respiratory depression in patients with CYP2D6 

duplications.66 Similar case reports of codeine- and morphine-related respiratory depression 

have been noted among patients with CYP2D6 polymorphisms, and the Food and Drug 

Administration now how several warnings related to codeine.67-70 
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Table 1.1. Genetic variants with proposed opioid effects.  

Gene SNP Location (rs…) Potential Effect(s)68,71-74 

ABCB1 
 

1128503, 2032582, 1045642 Decreased intestinal expression,71 
Reduced function,68 and Respiratory 
depression73 

9282564 Reduced function68 or Respiratory 
depression73 

2229109 Respiratory depression73 

ADRB2 11958940, 1432623, 2400707, 
1042713, 1042714, 1042717 

Unspecified72 

ANKK1 1800497 Unspecified72 

COMT  
4633, 4818, 4680 Decreased opioid response71 and 

Reduced function68 
6269 Unspecified72 

FAAH 324420, 932816, 4141964, 3766246, 
324419, 2295632 

Enhanced response75 

CYP2D6 

16947, 1135840, 769258 Rapid metabolism71 or Reduced 
function68 

28371706, 28371725 Reduced function68 
35742686, 3892097 Loss of function68 

5030655 Poor metabolism71 and Loss of 
function68 

5030867, 1065852, 1065858  Loss of function68 

CYP2B6 
2279343, 34223104 

3211371, 3745274, 2279343, 
28399499 

Enhanced function68 
Reduction function68 

CYP3A4 2740574 
35599367 

Unknown71 
Reduced function68 

CYP3A5 
776746 

10264272, 41303343 
Poor metabolism71 and Loss of 
function68 
Loss of function68 

DRD2 2734838, 6279 Unspecified72 
GCH1 4411417, 3783641, 8007267, 752688 Unspecified72 
MC1R 1805005 Loss of function71 
MRP2 n/a Impaired activity71 

OATP2 4149056 Possible transporter for endogenous 
opioids71  

OPRM1 

1799971 Higher morphine requirement71 and 
Impaired receptor function68 

1799974 Altered receptor signaling71 
2234918 Unspecified72 

Methylation Decreased expression74 
OPRK1 1051660, 702764 Unknown71 
OPRD1 1042114, 2234918 Unknown71 
SLCO1A2 11568563 Unknown71 
SLCO1B3 4149117, 7311358 Unknown71 
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TRPA1 
222747, 13279503, 1947913, 
13255063, 3735942, 3735943, 
1443952, 1025928, 1198795 

Unspecified72 

UGT1A1 
35350960, 815347 Decreased expression71 and Reduced 

function68 
8175347 Enhanced function68 

UGT2B7 
7439366, 12233719, 7438135 No differences71 or Reduced function68 

7668258 Unspecified72 
 

Prospective Cohort Studies: A group of researchers at Cincinnati Children’s Hospital 

Medical Center has been particularly productive in publishing their prospective cohorts involving 

pediatric surgical patients treated with morphine. Their studies with a clinical outcome 

comprising at least OIRD include a GWAS with 259 children;75 a regression analysis focused on 

a few SNPs with 88 children76 and 263 children;73 a single SNP with 101 children;77 and a 

cluster analysis with 347 children.72 With the exception of Biesiada et al. who explored a panel 

of 42 SNPs,72 these researchers have primarily focused on genetic variants within ABCB1, 

FAAH, and OPRM1 genes. The studies were well-described and attempted to adjust for 

potential confounders; however, in my opinion, they did not use the best regression modeling 

approaches to minimize false discovery in small samples while including all relevant covariates. 

Effect sizes from these studies suggest children with genetic variants could have up to 4.7 times 

greater odds (95%CI: 2.1-10.8)73 or 2.1-3.8 times greater relative risk 72 of OIRD compared to 

wild-type genotypes.  

Exploring fentanyl administration in the perioperative setting with Korean adult patients, 

the presence of a TTT haplotype (at rs1128503, rs2032582, rs1045642) on the ABCB1 gene 

increased the risk of OIRD.78 Conversely, no associations were found with OPRM1 118A>G and 

respiratory depression in surgical Han Chinese adult patients.79 The study’s analyses included 

only simple tests of differences (i.e., ANOVA, t-test) without adjusting for covariates. Henker et 

al. found the 118A>G variant to be associated with less sedation (albeit, with a very small effect 

size and no subsequent respiratory depression) in a sample of 79 patients after adjusting for 
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several covariates in a multivariable regression analysis. However, they applied questionable 

exclusion of patients and variables in the analysis.80  

After my academic work began, a relevant prospective clinical trial was registered with 

clinicialtrials.gov (NCT03441281). The researchers aim to examine the influence of several 

(unspecified) candidate SNPs on fentanyl-induced OIRD in the pre-operative setting before 

traditional anesthesia induction agents are administered. At the writing of this thesis (Fall 2021), 

no results were available.  

 Experimental Studies: To our knowledge, the only randomized trial exploring the 

association between the OPRM1 118A>G variant and OIRD was a small sample of 16 healthy 

adults randomized to 4 different groups of morphine-6-glucuronide (morphine’s active 

metabolite) administration in a laboratory environment. The study found no association with 

OIRD even though pain levels were higher in those with the variant.81 A similar study with 20 

healthy adults who were selected to represent all 3 possible 118 variants (AA, AG, and GG) 

found higher alfentanil doses were needed in the presence of a G variant with respiratory 

depression similar in the AA vs. AG groups and no respiratory depression in the GG group.82 

Another experimental study with a sample of 33 healthy adults participated in a cross-over study 

where they were randomized to an oxycodone or placebo arm and then moved to the opposite 

study arm after a 1-week washout period. The study focused on pain responses and a few 

adverse events, and the authors reported a number of variants that could play a role in pain 

response and adverse events.83  

Summary of Genetic Influence on OIRD: Non-clinical studies in mouse and human 

models suggest the µ receptor is responsible for OIRD given that deficiency or absence of µ 

receptors curtail OIRD. A variety of case reports and cohort studies have identified associations 

between genetic variants (particularly CPY2D6) and OIRD. The cohort studies had relatively 

small sample sizes and primarily included perioperative patients. Further, results from cohort 

trials revealed some contradictory findings, and among the cohort trials with statistically 
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significant associations, the effect sizes were typically small. I also question several of the 

authors’ analytical choices for developing their regression models (e.g., variable selection based 

on association with the outcome, assuming linearity of covariates, and excluding patients for 

any missing outcome). In spite of several studies providing evidence of reduced opioid effects in 

carriers of a G variant on OPRM1 118,84 a 2009 meta-analysis of OPRM1 118A>G variants 

included 5 studies where opioid side effects were considered as outcomes (sample size not 

reported but less than 1,480), and no significant association was found with respiratory 

depression.63 Given the reported statistically significant findings from my literature review, Table 

2 identifies the genetic variants possibly associated with OIRD.  

Gaps in Knowledge of Genetic Influence on OIRD: While the previously described works 

identify the role of genetic variants in OIRD with 8 of the ~80 hypothesized SNPs yielding 

statistically significant associations, the small sample sizes and suboptimal analysis methods 

leave several gaps for continued exploration. The current state of OIRD genetic association 

evidence does not warrant modifying opioid administration clinical decisions based on an 

individual patient’s genetic profile. A literature review made a similar conclusion (with the 

exception of codeine and tramadol administration in the presence of CYP2D6 polymorphisms as 

previously described).68  
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Table 1.2. Possible associations between genetic variants and opioid-induced respiratory depression.  
Gene Variant Opioid Supporting Evidence* 

ABCB1 
 

TTT (rs1128503, 
rs2032582, 
rs1045642) 

Morphine 
 

Case Report65 
Prospective trial (n=347) of peri-operative 

children72 [rs1045642 only] 
Fentanyl Prospective trial (n=126) of peri-operative adults78 

GG, GA 
(rs9282564) 

Morphine Prospective trial (n=263) of peri-operative 
children73 

ADRB2 rs1042713 Morphine Prospective trial (n=347) of peri-operative 
children72 

COMT  
 

TCA & CCG 
(rs4633, rs4818, 

rs4680) 

Morphine Case Report65 

FAAH 

rs324420 Morphine Prospective trials (n=259 and n=101) of peri-
operative children75 

rs2295632 Morphine Prospective trial (n=347) of peri-operative 
children72 

CYP 

2D6 *2A/*41 Hydrocodo
ne 

Case Report64 

2D6 UM 
(Duplication) 

Tramadol Several Case Reports66 

OPRM
1 

118A>G 
(rs1799971) 

Morphine Case Report65 
Prospective trial (n=88) of peri-operative children76 

Experimental study (n=16)81 
Morphine-

6-
glucuronide 
Alfentanil 

Experimental study (n=20)82 

UGT2B
7 

C802 TT 
(rs7439366) 

Morphine Case Report65 

*Note: All variants listed for case reports. Only statistically significant variants listed for experimental and 
quasi-experimental trials.  
 
 For case reports, there were many confounders (e.g., other medications metabolized in 

the same pathway as opioids, renal dysfunction) that might also contribute to respiratory 

depression. Most cohort studies exploring opioid pharmacogenetics have focused on pain 

control and dosage requirements as outcomes with far fewer including OIRD as an outcome. 

Regression analyses routinely included several covariates (e.g., age, sex, race, morphine 

dosage, pain scores); however, they removed variables that did not demonstrate strong 

predictive influence of OIRD before including genetic variants, a method which can produce 

biased results.11 Similarly, no study included all potential genetic variants that align with the 

(currently understood) opioid pathway even though attention to gene-gene interactions for OIRD 
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has increased since approximately 2009.85 For example, even though OPRM1 118A>G variants 

might reduce OIRD (due to reduced receptor activity), a CYP2D6 duplication could increase 

OIRD (due to rapid metabolism to more potent metabolites). Even if we could control for 

interactions in genetic variations, there are many non-genetic factors that also moderate 

respiratory depression, such as concurrent medications, renal function for drug secretion, 

cognitive status, and possibly epigenetic changes.86 Finally, several studies used vitals in the 

immediate post-operative period as indicators of OIRD; however, this approach can greatly limit 

sample size and misses many patients who develop OIRD after returning to an inpatient 

hospital bed.  

Summary 

In summary, OIRD is an important clinical condition that affects a non-trivial number of 

patients receiving opioids. A clinical prediction model to identify those at highest risk for OIRD 

could be beneficial for prevention efforts. While all clinical prediction models have challenges in 

their development and evaluation, an OIRD model is further complicated by the challenge of 

ascertaining which patients experienced OIRD and thus assigning the appropriate outcome 

label for modeling. This thesis work addressed two main challenges in developing such a 

prediction model: (1) assigning outcome labels to a large observational data set without relying 

on manual chart reviews and (2) including heterogenous data types as predictors. If a clinical 

prediction model could be used to decrease OIRD incidence, we have the opportunity to provide 

individualized treatments to mitigate adverse events while reducing overall healthcare costs.  
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Chapter 2: Use of Noisy Labels as Weak Learners to Identify Incompletely Ascertainable 

Outcomes: A Feasibility Study with Opioid-Induced Respiratory Depression  

 

Introduction 

Before a prediction model can be created to identify high-risk patients, we first need a 

large dataset of labeled data on which to train a model. Our specific aim in this study was to use 

an ensemble of clinically-informed noisy labels that act as weak learners to create outcome 

labels for post-operative opioid-induced respiratory depression (OIRD) in a large, observational 

data set. 

 

Methods 

Design 

We applied the data programming paradigm known as Snorkel, which we described in 

Chapter 1.  

 

Sample & Setting 

We collected data from post-operative adult patients in the de-identified electronic health 

record at Vanderbilt University Medical Center making use of the BioVU Sample Repository and 

“Synthetic Derivative” databases. The Synthetic Derivative (SD) is a de-identified copy of the 

main hospital medical record databases created for research purposes. The de-identification of 

SD records was achieved primarily through the application of a commercial electronic program, 

which was applied and assessed for acceptable effectiveness in scrubbing identifiers. For 

instance, if the name “John Smith” appeared in the original medical record, its corresponding 

record in the SD does not contain “John Smith”. Instead, it is permanently replaced with a tag 

[NAMEAAA, BBB] to maintain the semantic integrity of the text. Similarly, dates, such as 

“January 1, 2004” have been replaced with a randomly generated date, such as “February 3, 
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2003.”   

We limited the cohort to surgical procedures eligible for inclusion in the Agency for 

Healthcare Research & Quality’s (AHRQ) Patient Safety Indicator-11 (Postoperative Respiratory 

Failure Rate).46,47 These criteria exclude procedures with increased risk for respiratory failure 

(e.g., airway/lung & esophageal procedures) as well as people with degenerative neurological 

disorders. The AHRQ criteria also restrict encounters to elective surgical procedures, which is a 

data element not available in our de-identified database. As a proxy for elective status, we 

chose to exclude encounters where the qualifying surgical procedure occurred on the same day 

as an Emergency Department visit.  

Our cohort comprised 52,861 visits representing 44,999 patients, which we divided into 

Training, Development, Validation, and Testing sets (see Table 1). We initially created the Test 

Set based on those with available genetic data (n=2,189 patients). We included all visits that 

met AHRQ PSI-11 criteria (n=264, 0.50% of cohort) and randomly sampled 500 visits (0.95% of 

cohort) that did not meet AHRQ PSI-11 criteria. Of the remaining 52,097 visits, we excluded 285 

of those visits from further assignment because they were associated with patients who had 

visits already included in the Test Set. Then, we randomly selected 50 visits for the Validation 

Set and Development Set using 2:1 over-sampling based on AHRQ criteria with 2 AHRQ-

defined cases per 1 AHRQ-defined control.  

 
Table 2.1. Characteristics of data sub-sets for study.  
Data Set Sample Size  Purpose Selection Process 
Test 764 Final evaluation of 

Discriminative model 
Random from those with 
genetic data  

Validation 90 (originally 50) Discriminative model 
selection 

Random with oversampling 
from AHRQ criteria 

Development 90 (originally 50) LF development & 
Generative model validation 

Random with oversampling 
from AHRQ criteria 

Training 51,632 
(originally 
51,712) 

Generative model 
development 

Not in Test, Validation, or 
Development sets 
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Generative Model Development & Evaluation 

Developing the Generative model involved an iterative process of: (a) developing 

candidate LFs, (b) examining performance of candidate LFs in the Development Set, (c) using 

the Snorkel paradigm to develop a candidate Generative model in the Training Set, and (d) 

evaluating performance of the candidate Generative model in the Development Set.  

The dually trained biomedical informaticist and critical care nurse (ADJ) conducted chart 

reviews of visits in the Development Set to create candidate LFs in Python and determine 

whether each visit had evidence of OIRD. LFs comprised data from medication information, 

clinical note text (using regular expressions for words and short phrases), and administrative 

diagnostic and procedure codes. In contrast to Snorkel’s recommended context hierarchy, we 

found collapsing all relevant data for a visit into a single row for LF application improved 

performance. Performance metrics guiding LF creation and modification included: (a) coverage 

– the proportion of visits in which the LF could yield a vote, (b) conflicts – whether another rule 

yielded a different vote, and (c) empirical accuracy – the proportion of visits correctly labeled, 

excluding Abstain votes, based on the single reviewer’s determination. We used the 

performance metrics to iteratively modify LFs.  

Following LF creation and modification, we used Snorkel’s paradigm to generate a 

probability of whether a visit included an OIRD event. We conducted hyper-parameter tuning of 

the neural networks using learned LF weights in the Training Set and empirical accuracy in the 

Development Set (except in the final round where we combined the Training Set and 

Development Set and used Validation Set to assess empirical accuracy). We selected hyper-

parameters that, in general, yielded higher LF weights for clinically-important rules. For 

example, an LF that uses information about naloxone administration (i.e., a specific treatment 

for OIRD reversal) should be more important than an LF that assess for altered mental status, 

which is less specific to OIRD.  

Due to the low number of positive Cases in the initial Development Set (2/50, 4%), we 
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applied this iterative process to enrich the Development Set and Validation Set by extracting 

visits with the top 20 probability values from the Training Set and dividing those equally among 

the Development Set and Validation Set. After Round 4, the primary LF developer facilitated a 

focus group with clinicians and biomedical informaticists to discuss face validity of the current 

LFs and solicit additional heuristics for additional LFs. Table 2 delineates the staged process of 

iterative LF development through 5 rounds.  

 
Table 2.2. Labeling function (LF) development process with Training and Development Sets.  
Round Visits with 

OIRD 
Post-Review Actions 

1. Review 50 Development 
Set visits 

2/50 -Draft LFs.  
-Extract top 20 from Training Set, sending 10 to 
Development Set & 10 to Validation Set 

2. Review 10 new 
Development Set visits 

6/10 -Modify LFs & Add LFs 
-Repeat top 20 extraction  

3. Review 10 new 
Development Set visits 

1/10 -Modify LFs & Add LFs to correct for overfitting 
-Repeat top 20 extraction 

4. Review 10 new 
Development Set visits 

9/10 -Solicit feedback from clinicians & biomedical 
informaticists on LFs 
-Modify LFs & Add LFs 

5. Review 10 new 
Development Set visits 

9/10 -Create final Generative model in the combined 
Training & Development Sets 

 
Discriminative Model Development & Evaluation 

We used the final Generative model’s probabilistic labels as the outcome labels for 

developing a Discriminative model. Unlike the Generative model that makes predictions using 

the output from LFs, the Discriminative model uses features directly from the source data. In our 

model, we selected age, gender, binary indicators related to administrative codes and naloxone 

administration, and frequency of keywords/phrases in clinical notes to serves as predictors. 

Administrative codes included diagnostic and procedure codes related to respiratory 

failure/disease, prolonged mechanical ventilation, sepsis, cardiovascular disease, and 

cerebrovascular accidents. Keywords and phrases related to naloxone administration and its 

effectiveness, narcotic overdose, absence of pain medications, decreasing or holding opioids, 

presence of acute events, altered mental status, pinpoint pupils, and hypoxia. We also included 
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the number of notes from respiratory therapists and mentions of rapid response teams.  

We began Discriminative model development with off-the-shelf12 machine learning 

algorithms from Python’s scikit-learn to identify the most promising algorithms for hyper-

parameter tuning. Classification algorithms comprised logistic regression, linear discriminant 

analysis, k-nearest neighbors, decision trees, random forest, Naïve Bayes, and a multilayer 

perceptron (i.e., neural network).12 Regression algorithms comprised linear regression, random 

forest, and a multilayer perceptron.12 Based on F1-scores, AUC, and mean squared error,17,19 

we chose the random forest and multilayer perceptron algorithms for hyper-parameter tuning12 

in both the classification and regression tasks.  

To estimate the Discriminative model’s future performance in an unbiased manner, we 

performed nested cross-validation with a manual grid search on the combined 

Training/Development Set using 3 inner folds and 10 outer folds. The nested cross-validation 

suggested F1 scores will range 0.6-0.8 for classifiers and 0.4-0.7 for regressors, AUCs will 

range 0.75-0.9 for classifiers and 0.6-0.8 for regressors, and mean squared errors will range 

0.005-0.008 for classifiers and 0.005-0.01 for regressors (see Figures 1-3).  

 

Figure 2.1. Comparison of F1 score values from nested cross-validation of the Discriminative 
model.  
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Figure 2.2. Comparison of AUC values from nested cross-validation of the Discriminative model. 

 
 
 
Figure 2.3. Comparison of mean squared error values from nested cross-validation of the 
Discriminative model.  

 
 
 
 
 

Based on F1-scores, AUC, and mean squared error, the classification algorithms 

outperformed the regression algorithms, and the random forest classifiers (weighted and 

unweighted) outperformed the multilayer perceptron classifier. Given some overlapping 

performance (dependent on hyper-parameter choices), we trained each of the 5 models using 

the hyper-parameters that most frequently had the highest performance on the outer folds to 

serve as our best candidate models and evaluated their performance in the Validation Set. The 

weighted random forest classifier performed best and was designated the final Discriminative 

model.  
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We made two choices during the final Discriminative model development that potentially 

added information about the true labels. Therefore, we conducted a post-hoc sensitivity 

analysis. Specifically, in the final model, we specified the outcome label from the Generative 

model’s predicted probability for the 51,712 records in the Training Set; however, for the 

additional 90 records in the Development Set, we specified the outcome label based on the 

manually-adjudicated determination. Additionally, we weighted samples during model fitting 

based on the absolute value of the Generative model probability’s distance from 0.5. To achieve 

this, we created a vector containing a value ranging 0-0.5 to represent the Generative model’s 

certainty of a record being a case versus control. Values closer to 0 represented low certainty 

(i.e., a random guess) while values closer to 0.5 represented greater certainty. We passed this 

vector as an argument to the scikit-learn implementation of the random forest algorithm, which 

was used to determine the penalty of mis-classifications (i.e., mis-classified predictions where 

the probabilistic outcome label was closer to 0.5 were penalized less than those closer to 0 or 

1). We examined the influence of specifying the outcome label entirely from the Generative 

model (versus including the manually-adjudicated labels from the smaller Development Set) and 

weighting (versus not weighting) samples during the model fit.  

In the last estimate of performance, we compared our final Discriminative model with the 

hold-out Test Set that was manually adjudicated via crowdsourcing. We used the Vanderbilt 

University Medical Center’s Crowdsourcing Core services as an external review of the Test Set. 

The Crowdsourcing Core has an established workflow for assisting investigators in the 

describing desired outcomes for clinical chart reviews, recruiting and compensating qualified 

reviewers (known as “workers”), managing and displaying complex clinical data for review, and 

ensuring sufficient numbers of reviews to make a determination.87 Workers completed the 

review in a two tasks, which were completely independent of the investigative team’s activities. 

In the first task, workers evaluated whether the visit included an elective surgery. Visits without 

an elective surgery (i.e., those with no surgery or an emergent surgery) were excluded from 
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further review. In the second task containing only those visits with a confirmed elective surgery, 

workers evaluated whether respiratory depression occurred and whether it was likely due to 

opioid administration.  

We received IRB approval for all activities involving human subjects.  

 

Results 

Labeling Functions in Training and Development Sets 

After 5 rounds of LF creation and modification using our Training and Development data 

sets, we finalized our Generative model with 14 LFs (see Table 3 for final rules).  
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Table 2.3. Final LFs for identifying OIRD in the Generative model. 
 Yes No 
Received naloxone (Narcan)? CASE, if nearby keywords suggested 

naloxone administration was effective in 
reversing OIRD 
or 
CONTROL, if nearby keywords suggested 
naloxone administration was ineffective in 
reversing OIRD 

CONTROL 

The count of keywords 
suggesting naloxone 
ineffectiveness was greater than 
the count of keywords suggesting 
naloxone effectiveness?   

CONTROL CASE, if 
count > 0 
or 
ABSTAIN, 
if no 
keywords 
present 
  

Had an extended period (>= 4 
days) of mechanical ventilation?  

CONTROL ABSTAIN 

Had diagnostic codes for 
respiratory failure? 

CONTROL, if mechanical ventilation also 
present 

ABSTAIN 

Absence of clinical notes with a 
title of “Respiratory Care”?  

CONTROL ABSTAIN 

Keywords related to narcotic 
overdose were present? 

CASE ABSTAIN 

Keywords related to hypoxia 
were present in clinical notes 
near variations of the word opioid 
or narcotic?  

CASE ABSTAIN 

Keywords related to decreasing 
opioids were present?  

CASE ABSTAIN 

Keywords related to holding 
opioids were present? 

CASE ABSTAIN 

Keywords related no pain meds 
were present?   

CONTROL ABSTAIN 

Keywords related to altered 
mental status were present?  

ABSTAIN, if a confounding diagnosis (e.g., 
sepsis, myocardial infarction) present  
or 
CASE, if confounding diagnoses absent 

ABSTAIN 

Keywords related to pinpoint 
pupils were present?   

CASE ABSTAIN 

The phrase “no acute events” 
was present? 

ABSTAIN, if acute event keywords (e.g., 
“rapid response”, “altered mental status”) 
present 
or 
CONTROL, if acute event keywords absent 

ABSTAIN 

There were no keywords to 
support OIRD (e.g., hypoxia, 
rapid response, pinpoint pupils) 
present?  

CONTROL ABSTAIN 
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Validation Set Performance 

In the Validation Set, the empirical accuracy of individual LFs ranged 0.47-1.00, the final 

Generative model achieved an accuracy of 0.83, an F1 score of 0.73, and an AUC of 0.96 (see 

Figure 4), and the final Discriminative model achieved an accuracy of 0.88, an F1 score of 0.80, 

and an AUC of 0.92 (see Figure 5). Performance of the final Discriminative model in the 

Validation Set was consistent with expected performance from the nested cross-validation 

process.  

In the post-hoc sensitivity analysis, the Discriminative model trained with the removal of 

manually-adjudicated outcome labels from the Development Set (i.e., all outcome labels were 

produced by the Generative model’s probabilistic labels) yielded the same accuracy, F1 score, 

and AUC values in the Validation Set. Conversely, the Discriminative model trained without 

sample weighting during the model fit yielded decreased accuracy (0.87), F1 score (0.79), and 

AUC (0.91) values in the Validation Set. During a review of record-level performance in the 

Validation Set, records with large a discrepancy between the predicted probabilities of 

Generative and Discriminative models primarily occurred when the Generative model indicated 

a probability close to 1 yet the manually-adjudicated label was “control.” In sum, sample 

weighting during model fit improved overall model performance while the presence of manually-

adjudicated labels corrected some records mis-classified as being a “case” in the Validation Set 

data.   
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Figure 2.4. Comparison of OIRD predicted probabilities from the Generative model with 
manually-adjudicated labels in Validation Set.  

 
 
Figure 2.5. Comparison of OIRD predicted probabilities from the Discriminative model with 
manually-adjudicated labels in Validation Set.  

 
 
 
Test Set Performance 

In the first task, workers  excluded 165 visits (21.6%) where the surgery was emergent, 

rather than elective. In the remaining 599 visits for the second task, workers determined OIRD 

was present in 5 (0.83%) visits. In the manually-adjudicated Test Set, the final Generative and 

Discriminative models achieved an accuracy of 0.977, an F1 score of 0.417, and an AUC of 

0.988. Figures 7 and 8 illustrate the recall-precision curves for both models.  
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Figure 2.7. Recall-precision curve for Generative model in the Test Set. 
 

 
 
Figure 2.8. Recall-precision curve for the Discriminative model in the Test Set. 
 

 
 
 

The Discriminative models used in the post-hoc sensitivity analysis for the Validation Set 

were associated with improved positive predictive values and F1 scores in the Test Set (see 

Table 4). The original AHRQ PSI-11 criteria performance in Test Set was lower than the 

Generative and Discriminative models (see Table 4) with 4 of the original 196 “cases” 

determined to be cases and 1 of the original 402 “controls” determined to be a case.  
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Table 2.4. Performance of all phenotyping approaches in Test Set.   
 Sensitivity Specificity Positive 

Predictive 
Value 

Accuracy AUC F1 
Score 

Generative 
Model 

1.0 0.98 0.263 0.977 0.988 0.417 

Final 
Discriminative 
Model (with 
weighting and 
some manual 
labels) 

1.0 0.98 0.263 0.977 0.988 0.417 

Discriminative 
Model without 
weighting 

1.0 0.98 0.278 0.978 
 

0.989 0.435 

Discriminative 
Model without 
any manual 
labels 

1.0 0.98 0.278 0.978 0.989 0.435 

Discriminative 
Model without 
weighting or 
any manual 
labels 

1.0 0.98 0.278 0.978 0.989 0.435 

AHRQ PSI-11 
Criteria 

0.8 0.68 0.020 0.677 0.738 0.040 

 
 

When examining the final Test Set status in the context of both the Generative and 

Discriminative models, all of those identified as a Case have a Generative model probability > 

0.8 and a Discriminative model probability > 0.7 (see Figure 9). If one used these higher, joint 

thresholds, a revised scoring system would have an F1 score of 0.625.  
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Figure 2.9. Comparison of predicted probabilities between Generative and Discriminative 
models with final case/control status denoted. TOP: All results. BOTTOM: Visits determined to 
be a Control with full agreement on manual review are removed.  
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Review of Misclassified Patients 

In the Validation Set, 11 of the 90 patients were classified as Cases based on the 

Discriminative model when the manual review (blinded to the Discriminative model’s assigned 

probability) classified the patients as Controls. None of the patients were misclassified as 

controls. Table 4 contains the predicted probabilities along with comments from manual review 

of the Validation Set.  
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Table 2.4. Predicted probabilities and manual review comments from misclassified visits in the Validation 
Set.  
Predicted 
Probability 

Comments from Manual Review 

1.0 Urethral cancer removal. Complex pain management for chronic cancer pain - 
always in pain but also became somnolent - no naloxone administration but 
suggested altered mental status.  

0.98 Colostomy placement. Given naloxone & intubated after altered mental status - 
seems to be more like aspiration pneumonia. Naloxone only mentioned once & 
that patient became very anxious after administration.  

0.96 Knee replacement. Rapid response team for respiratory compromise - likely 
due to metabolic acidosis or other causes. Naloxone was administered 
according the medication administration record but not in clinical notes (in fact 
one note suggests she had very little opioids).  

0.95 No surgery described in clinical notes. Transferred from outside hospital for 
complex septicemia. Multiple notes discussed how the patient was given 
naloxone pre-hospital following opioid use at home.  

0.93 Colectomy performed. Was somnolent & bradypneic requiring rapid response 
team - no effect from naloxone administration - likely due to alcohol withdrawal.  

0.93 Dialysis patient presented to Emergency Department after blood cultures 
positive during dialysis & their operation was elective surgery for severely 
infected teeth. 1-month stay in the hospital. Lots of discussion regarding 
suboxone, high opioid use, & holding opioids. No evidence of OIRD during 
visit. Interestingly, the patient returned within 5 days of discharge with OIRD in 
the community.  

0.92 Artificial hip irrigation & debridement. Coded & died after a complication with 
septic shock - no evidence of OIRD. Had been on oral naloxone.  

0.90 No surgery described in clinical notes. Transferred from outside hospital for 
sepsis. Pulmonary note identified decreased respiratory drive on mechanical 
ventilation due to "delayed clearance of sedating meds" because they had 
ruled out other neurological etiologies of altered mental status. Naloxone had 
been administered, but this was via oral route and likely for constipation. 
Etiology of respiratory depression is unclear.  

0.82 No surgery described in clinical notes. Transfer from outside hospital for sickle 
cell-related stroke. Had been taking high doses of narcotics at home.  

0.82 Kidney & heart transplant. Didn't do well with extubation on post-operative day 
1 & naloxone administration didn't help. Unlikely OIRD.  

0.78 Pituitary tumor resection. No complications.  
 
 

During a post-hoc manual review of the Test Set visits with high (>= 0.5) Discriminative 

model probabilities but labeled as Controls (n=14), the investigative team agreed with all 

crowdsourcing results and did not re-classify any Controls as Cases. However, one visit was 

deemed ambiguous/unclear by the crowdsourcing workers with one worker labeling the visit as 

a Case and one worker labeling the visit as a Control with no tie-breaker available. The 
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investigative team re-classified the visit from Unknown to Case. Table 5 contains the predicted 

probabilities along with comments from investigative team’s post-hoc manual review of the Test 

Set visits with high Discriminative model probabilities among Control visits.  

Table 2.5. Predicted probabilities and manual review comments from misclassified visits in the Test Set. 
Predicted 
Probability 

Comments from Manual Review 

1.0 Hip replacement. No complications.  
1.0 LVAD implant. Lengthy hospital stay with a discharge summary noting their 

"respiratory status remained tenuous".  
0.99 Cystectomy for prostate cancer. Originally on room air, then increasing oxygen 

requirements and re-intubated on post-operative day 2 for unclear etiology, but 
not likely opioids.  

0.98 Heart transplant. Very lengthy hospital stay and was intubated for a while.  
0.97 Parathyroidectomy and thymectomy. Altered mental status that resulted in 

imaging evaluation where they received morphine and mental status 
worsened. Clinical notes reported some improvement with Narcan; however, 
OIRD seems unlikely given that they were tachypneic during that event. 

0.96 Liver transplant. Improved gradually and uneventfully.  
0.94 Liver transplant. Improved gradually and uneventfully.  
0.94 Ileostomy takedown. Altered mental status of unknown origin. Seizure activity 

was originally assumed but no diagnostic evidence. Their morphine patient-
controlled analgesia was making them sleepy, so it was discontinued. They 
received a couple doses of naloxone but no immediate improvement.  

0.93 Partial nephrectomy for mass. Uneventful hospital course.  
0.84 Fine needle aspiration and craniotomy for volumetric stereotaxy. Uneventful 

hospital course.  
0.82 Pancreatojejunostomy for pancreatitis and hepatitis. Altered mental status and 

acute kidney injury that resulted in discontinuation of patient-controlled 
analgesia and naloxone administration. It appears sepsis was the complicating 
etiology rather than OIRD.  

0.63 Percutaneous nephrolithotomy. Altered mental status with hypoxia and 
hypotension. Naloxone administered twice without improvement, and they 
ultimately died in the hospital.  

0.54 Choleduodenostomy. Uneventful hospital course.  
0.51 Esophageal hernia repair. There were multiple mentions of naloxone in the 

medication lists from copy and paste of progress notes. They had post-
operative complications involving being reintubated for hernia return and went 
to the Surgical ICU.  

 
Discussion and Conclusion 

We applied a data programming paradigm with the use of weak learners and 

heterogenous data types to the problem of identifying OIRD among post-operative adult 

patients. While our Generative model performed well in a small Validation Set, our 
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Discriminative model had lower performance in the larger, hold-out Test Set. Post-hoc review of 

misclassified visits from the Test Set provide insights into additional LFs that could be written to 

improve performance in future work. Notably, all of the confirmed Cases were identified by the 

Generative and Discriminative models. For rare outcomes, this finding is encouraging because it 

reduces the number of manual reviews needed by excluding visits/patients with low 

probabilities. As new patient records are added to our de-identified EHR database, we could 

score each record with the Discriminative model quickly and follow up with a manual review for 

records with high scores. While it would be possible to use the Generative model for scoring, it 

would be more challenging to incorporate data from external organizations (and similarly, to 

share the Generative model with external collaborators) due to the additional pre-processing 

steps required for applying LFs and creating a label matrix.  

In our post-hoc sensitivity analysis of potential information added to the Discriminative 

model in the Validation Set, our results suggested sample weighting (based on the degree of 

uncertainty in the Generative model) improved overall performance and incorporating the 

outcome labels from manual adjudication corrected some mis-classification. This latter finding is 

likely due to the iterative enrichment of our Development Set and Validation Set with the top 20 

Generative model probabilities as we developed LFs. Enriching both Sets with relatively 

homogenous records (i.e., the highest probabilities) and then building a Discriminative model 

with the combined Training and Development Sets resulted in added information that improved 

predictions in the Validation set. We did not see this added information influence performance in 

the hold-out Test Set where the Generative and Discriminative models performed similarly. 

However, we did observe improved performance in the Test Set (with respect to both positive 

predictive value and F1 score) of the unweighted model as well as removal of the manually-

adjudicated labels. This observation suggests our final Discriminative model was slightly over-fit 

with a higher number of false positives.  

Other biomedical studies have started to use the paradigm proposed by Snorkel (e.g., 
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post-market medical device surveillance88, extraction of pain levels from EHR notes33). Others’ 

work using Snorkel suggests the Discriminative models perform better than Generative 

models,33 so we hypothesized model performance on the hold-out Test Set would be high. What 

we found was that the two models performed differently, and there could be merit in considering 

both for creating outcome labels.  

We initially followed the Snorkel developers’ guidance for all steps in the labeling 

process but ultimately made some modifications, which we believe add to the literature. We 

abandoned the suggested context hierarchy33 in favor of treating an entire visit as a single 

record/exemplar, which resulted in individual LF performance improvement. We also proposed a 

new method for Generative model hyper-parameter tuning by emphasizing the learned weights 

of the LFs rather than focusing on empirical accuracy, a modification which makes theoretical 

sense but should be examined more robustly in future studies.  

Our work also has its limitations. Our data source did not identify the elective nature of 

its surgeries, so several non-elective surgeries were present. We attempted to overcome this 

limitation with the removal of visits where the surgical date occurred on the same day as an 

Emergency Department visit. Given some data sources will have direct access to this 

information, it is worth noting the limitation of data generated from a single organization in this 

study. Further, in the external manual review of the hold-out Test Set, the workers’ first task was 

to remove non-elective surgeries. Another limitation of our work is a relative reduction in the 

potential data types included in LFs. For example, when exploring the effectiveness of naloxone 

administration, we attempted to incorporate the cosine similarity of vector embeddings of text 

data compared to examples of text suggesting naloxone effectiveness without success. Future 

studies could examine whether this contemporary natural language processing method 

improves LF performance. Similarly, clinical notes authored by nurses were not typically 

available in our data source. Although it is unlikely a nurse would document evidence of OIRD 

when a prescribing provider does not, that scenario could occur and should be examined in 
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future work. Finally, our iterative LF development process depended on enriching the 

Development Set and Validation Set based on the highest probabilities of candidate Generative 

models. We did not enrich our data sets for Control status (i.e., lower probabilities), but Control 

enrichment could easily be included depending on the clinical outcome under investigation.  

In conclusion, we believe that a number of weak learners, when combined within a 

Snorkel framework, can facilitate identification of a complex outcome with a reduced number of 

manual chart reviews.  
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Chapter 3: Risk Prediction Modeling for Opioid-Induced Respiratory Depression 
 

Introduction 

Given the prior work in providing labels to a large observational data set, we can now 

use the labels to develop a clinical risk prediction model for opioid-induced respiratory 

depression (OIRD).  

 

Methods 

Design 

We conducted a retrospective cohort analysis of post-operative patients to develop a 

predictive model for OIRD.  

 

Sample & Setting 

We collected data from post-operative adult patients in the de-identified electronic health 

record at Vanderbilt University Medical Center through process described in Chapter 2. 

However, rather than separate Training, Development, and Validation Sets, we combined these 

three sets into a single Training Set. The Test Set remained the same as described in Chapter 

2.  

 

Outcome 

To define the OIRD outcome, we used our prior work from Chapter 2 where we 

developed a Discriminative Model to apply outcome labels to all records in the Training Set. Of 

the 51,812 visits in the Training Set, the Discriminative Model classified 594 (1.15%) visits as 

having OIRD. We used the manually-reviewed (i.e., crowdsourced) determinations as outcome 

labels for records in the Test Set. Of the 599 visits in the Test Set following removal of non-

elective surgeries, 5 (0.83%) visits were classified as having OIRD.  
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Predictors 

We sought to include a heterogenous set of predictor variables that represented the 

causal pathway of OIRD (see Discussion section). Due to data availability in our de-identified 

data source (see Limitations section), we had a limited feature set comprising: age on 

admission, serum creatinine level, billing diagnostic codes grouped into the top 15 categories 

from the Clinical Classification System (CCS),89,90 American Society of Anesthesiologists’ 

Physical Classification Systems class, and whether general anesthesia was administered.  

We generated the CCS categories from versions 9 and 10 of the International 

Classification of Diseases (ICD). The CCS system, developed by the AHRQ as part of the 

Healthcare Cost and Utilization Project, maps individual ICD codes to fewer, clinically 

meaningful categories, which facilitates dimensionality reduction. ICD-9 codes can be mapped 

directly to CCS categories with software from AHRQ; however, the mapping of ICD-10 codes is 

still under development. To overcome this limitation, we leveraged the widely-used, hierarchical 

Systematized Nomenclature of Medicine (SNOMED) – Clinical Terminology91 as an 

intermediary mapping vocabulary to first map ICD-10 codes to SNOMED codes and then 

determined whether an ICD-9 code could be mapped to the same SNOMED code. If no ICD-9 

code mapped to the SNOMED code, we then looked for a match in the parent (i.e., one level up 

in the hierarchy) and grandparent (i.e., two levels up in the hierarch) SNOMED codes. If an ICD-

9 code match was found in any of these three levels, we mapped the ICD-10 code to the 

associated CCS category. This process resulted in mapping 26,604 of 28,593 (93.0%) unique 

ICD codes and 4,278,308 of 4,398,328 (97.3%) total ICD codes found in our cohort to a CCS 

category. We reviewed a random subset of approximately 100 mappings, which revealed 

accurate mapping.  
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Data Pre-Processing 

To account for missing data in the prediction features, we first imputed a value of “0” for 

administrative billing diagnostic codes – i.e., if missing, we assumed those patients did not have 

the associated diagnosis. For the remaining predictors, we applied the IterativeImputer function 

from scikit-learn92 initialized with a median value and constraining minimum and maximum 

values to be bounded by the observed minimum and maximum values. To prepare for common 

machine learning algorithms, we scaled and centered the imputed features with the 

StandardScaler function from scikit-learn.92  

 

Analysis 

 Following data pre-processing, we developed multiple machine learning algorithms 

available within scikit-learn to generate candidate prediction models. Our machine learning 

algorithms included: logistic regression (LR), linear discriminant analysis (LDA), k-nearest 

neighbors (KNN), classification and regression trees (CART), a random forest (RF), Gaussian 

Naïve Bayes (NB), and a multi-layer perceptron (NN).12 All models attempted to predict a binary 

OIRD outcome at any point during hospitalization using predictor variable values available 

within the first eight hours of a hospital admission. We used 5-fold cross-validation to estimate 

performance without overfitting.12 We evaluated model performance using both areas under the 

receiver operating characteristic curve and F1 scores.17,19 Due to poor initial model performance 

with default hyper-parameters (see Results), we did not perform hyper-parameter tuning.  

 

Results 

Using default hyper-parameters from several machine learning algorithms within scikit-

learn, we were unable to create a prediction model that performed better than chance. AUC 

scores ranged 0.50-0.62, and F1 scores ranged 0.00-0.04.  



 42  

Figure 3.1. Area under the receiver operating characteristic curve values for several off-the-shelf 
machine learning algorithms.  
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Figure 3.2. F1 score values for several off-the-shelf machine learning algorithms.  

 
 
 

 

Discussion and Conclusion 

We built an OIRD clinical prediction model with a small set of predictor variables. We 

were unable to develop a predictive model that performed better than chance; however, we now 

have an infrastructure for building a more robust model as new data are available.  

 

Limitations 

Based on a mechanistic understanding of OIRD, we originally intended to include the 

following additional predictor variables: temperature, heart rate respiratory rate, pulse oximetry, 

systolic blood pressure, diastolic blood pressure, a patient’s pain level, amount of opioid 

received, information extracted from nurses’ unstructured clinical note documentation, and 
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genetic data. We were unable to include the vital signs data due to a large amount of 

missingness (i.e., >50% of visits had missing vital signs in the pre-operative period). We were 

unable to include a patient’s pain level because those structured data have not been reliably 

mapped from the operational/clinical data warehouse into the research data warehouses. 

Similarly, we were unable to include the amount of opioid received due to a data warehouse 

mapping error in which the mapping of drug exposures experienced a programming error for 

more than 18 months and had not been resolved at the time this work was completed. We were 

unable to include nurses’ unstructured notes because they were not available in the data source 

(with the exception of Braden scoring system values). We were unable to include genetic data 

as predictors because there has not been a published GWAS for OIRD from which we could 

build a polygenic risk score, and the OIRD event rate in our data was not high enough to 

separately conduct a GWAS and then develop a polygenic risk score. All of these predictors 

should be considered for inclusion in future OIRD prediction studies.  

Also aligning with our understanding the mechanistic underpinnings of OIRD, we had 

originally intended to develop the prediction model using a random forest within a discrete-time 

survival framework. This approach is in contrast to the method we used in the study where we 

used the last measured value occurring within the first eight hours of a hospital admission to 

predict OIRD at any point during hospitalization. In cases where variables can be measured at 

multiple time points (e.g., vital signs, laboratory values), a discrete-time survival framework 

permits the inclusion of repeated measures without performing case-control matching on an 

arbitrary time point. To prepare the data, each row of the matrix represents one timestamp for 

one patient. The matrix would be grouped by patient and sorted in chronological order; once a 

variable has a measured value, a last-one-carried-forward imputation would be applied. The 

outcome variable for each row would be a binary variable of whether the outcome occurred 

within the next 24 hours. This approach mimics clinical decision-making activities, mitigates the 

need for developing dependencies within patients, and has been a successful analysis 
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approach in others’ work.93 Further, developing a random forest model allows complex 

interactions that are more difficult to model in traditional regression. A random forest averages 

the results of many decision trees created by splitting a random selection of predictor variables 

in each tree.12 Random forests are commonly used in the machine learning space and have 

demonstrated superior performance to other machine learning and traditional statistical 

approaches for outcomes related to inpatient clinical deterioration.93 We plan to attempt this 

approach in the future when the data become available.  
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Chapter 4: Genome-Wide Association Study 
 

Introduction 

 Given the prior work of developing an OIRD outcome label (i.e., phenotype) for a large 

observational data set and the lack of available genetic information for building OIRD predictive 

models, we sought to perform a genome-wide association study (GWAS) for OIRD.   

 

Methods 

Design 

We performed a retrospective cohort analysis of post-operative patients to conduct a 

GWAS of OIRD.  

 

Sample & Setting 

 As described in detail in Chapter 3, we collected data from de-identified EHR records at 

Vanderbilt University Medical Center. In addition to the EHR-based data, we used genetic 

information from BioVU. BioVU is a large DNA Databank with over 200,000 adult samples and 

almost 30,000 pediatric samples linked to detailed electronic health record data. Samples are 

obtained from leftover blood specimens collected during routine clinical care.94 Samples were 

genotyped with Illumina MEGA-ex Array.  

 

Phenotype Definition 

To define the OIRD phenotype, we used our prior work from Chapter 2 where we 

developed a Discriminative Model to apply outcome labels to all records. We retained both the 

continuous probability value from the Discriminative Model as well as a binary (0/1) 

representation based on a threshold of 0.5. In records with a manually-adjudicated label (i.e., 
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Development Set, Validation Set, and Test Set), we used the manually-adjudicated label (rather 

than the Discriminative Model label) as the binary phenotype.  

 

Quality Control 

To ensure adequate quality of the genetic data prior to a GWAS, we applied commonly-

performed procedures based on recommendations by Marees et al.95 and Reed et al.96 

We removed single nucleotide polymorphisms (SNP) missing in > 5% of people and 

removed individuals missing more than 5% of SNPs. We assessed for sex discrepancies and, 

when discrepancies were present, we imputed sex based on SNP data. We originally observed 

1,054 males and 1,134 females. The imputation procedure resulted in 1,055 males, 1,128 

females, and 5 ambiguous individuals. Because none of the ambiguous/misclassified sexes 

were cases, we removed the ambiguous individuals from further analysis. We removed SNPs 

with a minor allele frequency <5% (in autosomal [1-22] SNPs only). We assessed Hardy-

Weinberg equilibrium, but given the multi-ethnic cohort in our data, we did not exclude those 

48,544 potentially problematic SNPs.  

To identify and account for population substructure, we first extracted the variants 

present in our dataset from the 1000 genomes dataset, extracted the variants present in 1000 

Genomes dataset from our dataset, and merged our data with the 1000 Genomes data set. We 

set the reference genome, resolved strand issues, and removed problematic SNPs from our 

data and the 1000 Genomes data. We performed multi-dimensional scaling (based on a 

principal component analysis) on our data anchored by the 1000 Genomes data and stored 

those features to serve as covariates in downstream regression models. We also used the 

scaling to estimate super-population association, and we excluded ethnic outliers that did not 

belong to the two largest sub-populations. This resulted in a European population comprising 

1,927 individuals (with 14 cases) and an African population comprising 221 individuals (with 2 

cases).  
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Finally, we removed individuals who deviated more than 3 standard deviations from the 

heterozygosity rate mean as well as individuals who were potentially related (first based on 

whether they were a case or control, then by keeping those with a higher call rate [i.e., a larger 

proportion of samples with a confident result from the genetic probe]).  

 

Analysis 

Following quality control procedures, we performed a GWAS with both a binary trait and a 

quantitative trait. We created the binary trait using a probability threshold of 0.5 from the 

Discriminative Model described in Chapter 2. We created the quantitative trait using the raw 

probability from the Discriminative Model. For both trait types, we calculated associations 

between all SNPs and the outcome with and without population sub-structure covariates. When 

including covariates, we used logistic regression for the binary trait and linear regression for the 

quantitative trait. To account for multiple testing, we performed unadjusted, Bonferroni-adjusted, 

and permutation-adjusted analyses. In the permutation-adjusted analyses, we attempted to 

include 1,000,000 permutations; due to computational feasibility, we restricted the number of 

permutations to 100,00 in the quantitative trait without covariates and 10,000 in the quantitative 

trait with covariates.  

For post-hoc analyses, we created QQ plots to assess model quality and Manhattan 

plots to assist with interpretation of unadjusted and Bonferroni-adjusted results. Following the 

genome-wide association study, we compared the statistically significant SNPs to published 

studies and genome databases.  

 

Results 

Our genetic cohort comprised 17,271 patients who experienced a hospitalization (based 

on CPT codes beginning with 992). After restricting to AHRQ PSI-11 criteria (n=2,189) and 
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following quality control assessment, 14 cases and 1877 controls remained among those of 

European ancestry (the largest super-population in our cohort).  

In the simple association studies with a binary phenotype, two single nucleotide 

polymorphisms (SNP) reached Bonferroni-adjusted statistical significance (p < 0.05), and one 

SNP neared significance (see Figure 1). With a continuous (i.e., probabilistic) phenotype, five 

SNPs reached significance, and one SNP neared significance (see Figure 3). In the regression 

models adjusted for population sub-structures as covariates, the binary phenotype was not 

associated with any statistically significant SNPs, but the continuous phenotype was associated 

with five significant SNPs and one near-significant SNP (see Figure 5). All Q-Q plots (see 

Figures 2, 4, and 6) suggest poorly-fit models. In the permutation-adjusted models, there were 

no statistically significant associations.  

None of the significant SNPs had been previously identified from our literature review 

(see Chapter 1). An exploration of genes comprising (or closest to) the SNP revealed relatively 

frequent associations with previously published traits including anthropomorphic measures (e.g., 

height, waist circumference, body mass index), cognitive abilities, red blood cell measures, sex 

hormones, mental health disorders, Alzheimer’s dementia, white blood cell counts or disorders 

(e.g., leukemias), lung function, diastolic blood pressure, scoliosis, and platelet counts. Table 1 

contains details of each SNP finding, and Table 2 provides counts of the number of studies 

suggesting a trait is associated with a gene near a significant SNP in our study.  
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Figure 4.1. Manhattan plot of GWAS results with binary phenotype and unadjusted for 
covariates.  

 

Figure 4.2. Q-Q plot of GWAS results with binary phenotype and unadjusted for covariates.  
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Figure 4.3. Manhattan plot of GWAS results with continuous phenotype and unadjusted for 
covariates.  

 

Figure 4.4. Q-Q plot of GWAS results with continuous phenotype and unadjusted for covariates.  
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Figure 4.5. Manhattan plot of GWAS results with continuous phenotype sub-population 
covariate adjustment.  

 

Figure 4.6. Q-Q plot of GWAS results with continuous phenotype with sub-population covariate 
adjustment.  
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Table 4.1. GWAS results of SNP findings.  

Phenotype SNP Illumina Probe 
Covariate-
Adjusted 

Regression? 

p-value 
(Bonferroni-
adjusted) 

Chromosome 
Closest 
Gene(s) Within 

Gene? 
Protein 

Encoding? 

Binary 
rs7416532 JHU_1.164445356 N < 0.03336 1 

PBX1 N Y 

HMGB3P6 N Processed 
Pseudogene 

rs73477358 JHU_12.131516369 N < 0.043 12 ADGRD1 Y Y 
rs511310 4:46240004-A-G N < 0.05967 4 GABRA2 N Y 

Quantitative 

rs60757058 rs60757058 
N < 0.0004107 

7 
C7orf65 N N 

Y < 0.0003671 LINC01447 N N 

rs7605011 rs7605011 
N < 0.01842 

2 GLI2 Y Y 
Y < 0.0178 

rs113513760 JHU_13.95615048 
N < 0.02209 

13 LINC00557 N N 
Y < 0.04921 

rs114457728 rs114457728 
N < 0.03251 

5 EFNA5 Y Y 
Y < 0.0561 

rs72778715 rs72778715 
N < 0.03841 

16 CPNE2 Y Y 
Y < 0.04921 

rs90213 exm2270266 N < 0.0855 
5 DOCK2 Y Y Y < 0.02343 

rs90213 Y < 0.0288 
Note: Closest gene(s) identified from https://www.ncbi.nlm.nih.gov/snp/   
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Table 4.2. Counts of the number of studies suggesting a trait is associated with a gene near a significant SNP in our study.  
 

Anthropo
morphic 

Measures 
Cognitive 

Ability 

Red 
Blood 
Cells 

Sex 
Hormones 

Mental 
Health 

Disorders 
Alzheimer's 
Dementia 

White 
Blood Cell 
Counts or 
Disorders 

Lung 
Function 

Diastolic 
BP Scoliosis Platelets 

Other Reported Traits 
(https://www.ebi.ac.uk

/gwas/home) 
Total 35 23 15 11 9 7 6 5 4 3 3  

Gene             
PBX1 13 1 3 6   4  1  3 ACEI cough (1), 

Hepatitis B (1), 
Night sleep (1), 

Intrinsic epigenetic 
age acceleration 
(1), Pre-treatment 
HIV viral load (1) 

HMGB3P6        1  1   
ADGRD1 6   2 1 1    1  Systolic BP (1), 

Serum phosphate 
levels (3), 

Amygdala volume 
(1), Macrophage 

migration inhibitory 
factor levels (1), 

Longevity (1), ALS 
(1), RR interval 

[heart rate] (1), Gut 
microbiota relative 

abundance (1), 
Neurofibrillary 

tangle (1) 
GABRA2  1    1  2    Risk tolerance & 

adventerousness 
(2), Epilepsy (2), 

Protein quantitative 
trait loci [liver] (1), 

Age at diagnosis of 
Type 1 diabetes (1), 
Mononucleosis (1) 

C7orf65         1   Corneal curvature 
(3), Refractive error 

(1), ALT in 
excessive ETOH 
consumption (1) 
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LINC01447   12      1    
GLI2 13   3    1 1   eGFR (1), Acne (1) 

LINC00557      5 1      Paternal language 
impairment (1) 

EFNA5 

2 17   7   1    GGT levels (6), ALT 
levels (3),  Smoking 

status (5), Brain 
region volumes (4), 
Household income 

(1), Metabolite 
levels (1), 

Chronotype (1), 
Age at first sexual 

intercourse (1), 
Daytime nap (1), 

CTACK levels (1), 
Non-del(5q) 

myelodysplastic 
syndromes (1), 

Sedentary behavior 
duration (1),  AST 

levels (1), Reaction 
time (1), Number of 
children ever born 

(1) 

CPNE2 

           HDL levels (3), 
Apolipoprotein A1 

levels (2), 
Oligosaccharide 
concentration of 
human milk (2), 
HDL interaction 
with short sleep 

time (1) 

DOCK2 

1 4   1  1   1  Placental abruption 
(2), PLT-derived 
growth factor BB 

levels (1), 
Pneumococcal 
bacteremia (1), 
Coronary artery 

aneurysm in 
Kawasaki disease 

(1), Protein 
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quantitative trait loci 
[leptin] (1), IgG 

glycosylation (1),  
Age-related hearing 

impairment with 
SNP x SNP 

interaction (1) 
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Discussion and Conclusion 

 We conducted a GWAS for binary and continuous representations of OIRD. While the 

GWAS yielded potentially informative associations, the findings should be interpreted with 

caution due to the small sample size (particularly the number of cases) as evidenced by poor 

model fits on Q-Q plots and lack of significant associations in permutation-adjusted models. We 

are encouraged by the increased the number of statistically significant associations when using 

a continuous (rather than binary) phenotype, which theoretically facilitates less information loss 

during phenotype development.  

 In the future, we plan to gather additional samples from Vanderbilt’s genetic biobank to 

increase our sample size. With a larger sample, we should have the ability to conduct a more 

robust GWAS followed by the development of a polygenic risk score that could be included in 

OIRD risk prediction models.   
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Chapter 5: Conclusion 
 

In this thesis work, we applied a data programming paradigm with the software system 

Snorkel33 to develop outcome labels for (i.e., opioid-induced respiratory depression [OIRD]) and 

attempted to use those labels to build a predictive model. The use of Snorkel to phenotype 

OIRD in a large observational data set was successful, particularly with its 100% sensitivity in a 

hold-out Test Set. This method opens new opportunities for identifying rare, incompletely 

ascertainable outcomes in large clinical data sets. Although the F1 score suggested only 

moderate overall performance, the high sensitivity of Snorkel’s predictions combined with the 

low prevalence of OIRD results in significantly fewer manual chart reviews (compared to not 

using Snorkel) necessary to apply phenotypes to the entirety of a large data set.  

We made two modifications to the data programming paradigm within Snorkel that 

should continue to be examined in other domains. We first collapsed the context hierarchy in 

order to treat a patient’s longitudinal data during their hospital encounter as a single row of data, 

which was not only a simpler method for applying labeling functions but also resulted in greater 

empirical accuracy. We also introduced an approach to hyper-parameter tuning of the 

Generative model that relied on the learned weights of the labeling functions rather than the 

empirical accuracy of the Generative model in a validation set. In this work, we used a single 

reviewer to determine which rank ordering had the greatest face validity for clinical relevance. 

Additional work is needed to explore whether a more reliable and valid approach for determining 

the most appropriate ranking is possible. In the future, we plan to apply Snorkel to other clinical 

domains to evaluate performance and explore under what conditions (e.g., data types, data 

quality, number of labeling functions, scientific programming experience of research 

investigators) Snorkel performs well.  

We were unsuccessful in building an OIRD prediction model due to a number of missing 

variables. This problem could be resolved in future work once we have access to the missing 
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data. Notably, no published OIRD clinical prediction models were available at the beginning of 

this work; however, during the execution of this thesis work, two relevant studies were 

published. One group used a medical device to continuously monitor the exhaled carbon dioxide 

as well as oxygenation status of patients for patients at high OIRD risk.97 To identify high-risk 

patients who might benefit from continuous monitoring, they developed a predictive model 

considering the following candidate predictors: age, sex, body mass index, smoking status, 

acute bronchitis, aortic aneurysm, aortic valve disease, asthma, cerebral aneurysm, chronic 

bronchitis, heart failure, chronic obstructive pulmonary disease, coronary artery disease, 

diabetes mellitus, hypertension, kidney failure, liver failure, mitral valve disease, myocardial 

infarction, known or suspected sleep disorders, peripheral vascular disease, pulmonary 

hypertension, sepsis, stroke, transient ischemic attack, number of different opioids, opioid 

naivety, high risk surgery, open surgery, and duration of surgery. The final predictor list 

comprised only age, sex, opioid naivety, sleep disorders, and chronic heart failure. Using their 

predictive model, they applied their continuous monitoring device to high-risk patients, and they 

found the device to be accurate. A separate study of 60 patients also used continuous 

monitoring and developed a model to predict OIRD in the immediate post-operative recovery 

period, but its limited sample size and lack of methodological detail make it difficult to critically 

evaluate the findings.98 We plan to use these predictors as candidate features for consideration 

in future prediction model work. Once we have the necessary data to build a more robust OIRD 

predictive model, we will compare our findings to these published studies.  

Our genome-wide association study (GWAS) for OIRD identified a few statistically-

significant associations. However, the permutation-adjusted analysis results suggested these 

associations were spurious relationships (likely due to the small sample size). We plan to gather 

additional samples in the future for conducting a GWAS with greater power. Notably, though, 

our quantitative representation of OIRD yielded more statistically-significant associations than 

the binary representation, which is logical given that a continuous distribution has greater 
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statistical power than a binary representation. While this could also be spurious, it would be 

worth examining the influence of quantitative (i.e., continuous level) measures of traditionally-

binary traits in future studies to determine whether new genetic insights are uncovered.  

 From a personal perspective in my journey as a scientist, I gained greater familiarity with 

managing and analyzing large data sets. I learned how to apply noisy labels for the purpose of 

phenotyping while implementing and evaluating a novel framework that has additional 

applications for the biomedical informatics community. I learned more about the representation 

of standardized concepts using the Observational Medical Outcomes Partnership during the 

pre-processing and feature engineering phases of the study. I made an incremental 

advancement to using the common data model to map International Classification of Diseases 

(10th version) to the Clinical Classification System categories based on existing maps within the 

9th version of the International Classification of Diseases and the Systematized Nomenclature of 

Medicine (SNOMED) – Clinical Terminology. These skills have already been leveraged in other 

aspects of my research activities and research grant applications. As a lifelong learner, I look 

forward to continuing my learning journey beyond this thesis work.   
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