NEW EXAMPLES OF IRREDUCIBLE SUBFACTORS OF THE HYPERFINITE II $_{1}$ FACTOR WITH RATIONAL, NON-INTEGER INDEX

By

Hrvoje Stojanovic

Dissertation
Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY
in

Mathematics

December 18, 2021

Nashville, Tennessee

Approved:

Dietmar Bisch, Ph.D.
Jesse Peterson, Ph.D.
Marcelo Disconzi, Ph.D.
Alexander Powell, Ph.D.
Robert Scherrer, Ph.D.

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor Dietmar Bisch for suggesting the problem solved in this dissertation and for his guidance and patience. I am very grateful for his support, encouragement and for the time spent in mathematical conversation with me, listening and sharing his knowledge.

I would like to thank the faculty, the staff and my fellow graduate students of the Math Department for the wonderful years I spent at Vanderbilt.

Finally, I would like to thank my family, my parents Ljiljana and Kazo, sister Zrinka and brother Mislav, and my partner in life Ana for their love and support.

TABLE OF CONTENTS

Page
LIST OF FIGURES iv
INTRODUCTION 1
1 SYMMETRIC COMMUTING SQUARES 3
1.1 Preliminaries 3
1.2 Construction of hyperfinite subfactors 7
1.3 Irreducibility 12
1.4 Ocneanu compactness 19
2 NEW HYPERFINITE SUBFACTORS FROM N-STARS WITH A_{∞}-TAIL 20
2.1 Perron-Frobenius eigenvalue and eigenvector 21
2.2 Bi-unitary condition 24
2.3 Case $n=1$, general N 35
2.3.1 \quad Case $n=1, N=4$ 37
2.3.2 \quad Case $n=1, N=5$ 39
2.3.3 \quad Case $n=1, N=6$ and $N=7$ 43
2.4 \quad Case $n=1$, odd N 46
2.4.1 \quad Case $n=1, N=9$ 54
2.5 Summary and remarks 57
BIBLIOGRAPHY 60

LIST OF FIGURES

Figure Page
1 Bratteli diagram example 5
$2 \quad N$-star with A_{∞}-tail 20
3 Labeled N-star with A_{∞}-tail 21
4 Paths in S 27
5 Paths in T 27
6 Equilateral triangle in the complex plane 38
7 Rhombus in the complex plane 39
$8 \quad$ Rhombus for $N=5$ and $n=1$ 42
9 Equilateral pentagon for $N=6$ and $n=1$ 44
$10 \quad$ First equilateral hexagon for $N=7$ and $n=1$ 45
11 Second equilateral hexagon for $N=7$ and $n=1$ 46
12 Equilateral octagon for $N=9$ and $n=1$ 57

INTRODUCTION

In [Jon83], Jones introduced the notion of index for an inclusion of II_{1} factors and proved the striking theorem that the index of any subfactor is contained in the set

$$
\left\{\left.4 \cos ^{2} \frac{\pi}{n} \right\rvert\, n \geq 3\right\} \cup[4, \infty] .
$$

Moreover, he showed that all these numbers are realized as indices of subfactors of the hyperfinite II_{1} factor. In this paper, Jones proved that subfactors with indices less than 4 are automatically irreducible, but the examples of subfactors of the hyperfinite II_{1} factor he gave with indices in $(4, \infty]$ are all reducible.

In [Pop93], Popa showed that any number above 4 is an index of an irreducible subfactor of some non-hyperfinite II_{1} factor. It is an open problem to determine what all possible indices of irreducible subfactors of the hyperfinite II_{1} factor are, but various examples and obstructions related to several different construction methods are known.

Commuting squares ([Pop83]) can be used to construct irreducible subfactors of the hyperfinite II_{1} factor and many such examples were given by Haagerup and Schou in [HS89] (see [Sch90] for details). These examples typically arise from finite-dimensional commuting squares. In [Sch90], Schou showed that subfactors of the hyperfinite II_{1} factor could be constructed from certain infinite-dimensional commuting squares as well and found examples of irreducible hyperfinite subfactors that cannot be constructed from finite-dimensional commuting squares.

In Chapter 1 we describe the method of constructing an irreducible subfactor of the hyperfinite II_{1} factor from a (finite-dimensional or infinite-dimensional) symmetric commuting square as it appears in [Sch90].

In this construction, the resulting subfactor has index equal to the square of the norm of a certain connected, locally finite, bipartite graph that the commuting square is based on.

This somewhat limits what indices could potentially be obtained in this manner. Also, if this graph has a certain type of vertex with degree 1, then the subfactor is irreducible ([Wen88], [Sch90]).

In [Bis94b], Bisch used an infinite-dimensional symmetric commuting square to construct the first example of an irreducible subfactor of the hyperfinite II_{1} factor whose index is a rational, non-integer number and thus not an algebraic integer. It cannot be constructed from a finite-dimensional commuting square. To construct this subfactor, Bisch used a commuting square based on graph called 4 -star with A_{∞}-tail and obtained an irreducible hyperfinite subfactor with index 4.5. It is known that this subfactor has "trivial" standard invariant consisting just of Temperley-Lieb algebras ([Haa94], see also [AMP15]).

In Chapter 2 we construct new examples of irreducible hyperfinite subfactors with rational, non-integer indices.

We first show that, for every $N \geq 4$, the square of the norm of a graph given by an N-star with A_{∞}-tail is $\frac{(N-1)^{2}}{N-2}=N+\frac{1}{N-2}$. This means that if there exists a commuting square based on any of these graphs, the resulting irreducible hyperfinite subfactor would have a rational, non-integer index. We show that this indeed is the case for $N \in\{5,6,7,9\}$. There exist irreducible hyperfinite subfactors based on N-stars with A_{∞}-tail for these N and their indices are $\frac{16}{3}=5.333 \ldots, \frac{25}{4}=6.25, \frac{36}{5}=7.2$ and $\frac{64}{7}=9.142 \ldots$

For $N=5$, we obtain the result by directly solving the equations arising from Ocneanu's biunitary condition ([Ocn88]) for the existence of a symmetric commuting square. For $N=6$ and $N=7$, we solve a subset of these equations numerically and then find the corresponding exact solutions. For $N=7$ we obtain two distinct solutions, but we do not know whether the resulting subfactors are isomorphic.

Noticing certain symmetries in cases $N=5$ and $N=7$, we explore the possibility of generalizing the solutions from these cases to the case of arbitrary odd $N \geq 5$. This approach enables us to find a solution for $N=9$.

CHAPTER 1

SYMMETRIC COMMUTING SQUARES

1.1 Preliminaries

Let $I=\{1,2, \ldots, n\}$, for some $n \in \mathbb{N}$, or $I=\mathbb{N}$. We call a direct sum $A=\bigoplus_{i \in I} A_{i}$ of finite-dimensional von Neumann algebras $A_{i} \cong \mathrm{M}_{a_{i}}(\mathbb{C})$ for some $a_{i} \in \mathbb{N}, i \in I$, a (finitedimensional if I is finite or infinite-dimensional if I is countably infinite) multi-matrix algebra. The dimension vector of A is $\vec{a}=\left(a_{i}\right)_{i \in I}$. A trace tr on A, which we will always assume to be not identically zero and positive, is determined by a trace vector $\vec{\alpha}=\left(\alpha_{i}\right)_{i \in I}$ where α_{i} is the trace of a non-zero minimal projection in A_{i} for $i \in I$. The trace is faithful if and only if all entries of its trace vector are positive. If $\operatorname{tr}(1)<\infty$, we call the trace finite and then $\|\vec{\alpha}\|_{1}<\infty$ which implies $\|\vec{\alpha}\|_{2}<\infty$. We say that the trace is normalized if $\operatorname{tr}(1)=1$.

We will assume all inclusions of $*$-algebras to be unital, i.e. the notation $A \subset B$ will mean $1_{A}=1_{B}$ whenever it makes sense. Let $A \subset B$ be an inclusion of two finite-dimensional or two infinite-dimensional multi-matrix algebras. Then $A=\bigoplus_{i \in I} A_{i}$ and $B=\bigoplus_{j \in J} B_{j}$ for simple summands A_{i} and $B_{j}, i \in I, j \in J$. Let $i \in I, j \in J$ and fix any non-zero minimal projection $p_{A_{i}} \leq z_{A_{i}}$ in A_{i} where $z_{A_{i}}$ is the minimal central projection of A contained in A_{i}. Then $p_{A_{i}} z_{B_{j}}$ is a projection in B_{j}, where $z_{B_{j}}$ is the minimal central projection of B contained in $B_{j} . p_{A_{i}} z_{B_{j}}$ can be decomposed into a sum of $G_{i j}$ non-zero minimal projections in B_{j}. The number $G_{i j}$ (called the multiplicity of A_{i} in B_{j}) does not depend on the inital choice of $p_{A_{i}}$. Let G be (finite or countably infinite) matrix such that $G=\left(G_{i j}\right)_{i \in I, j \in J}$. We call G the inclusion matrix of $A \subset B$ and write $A \subset_{G} B$. All of its entries are non-negative integers. The (finite or countably infinite) bipartite graph whose bipartite adjacency matrix is G is called the Bratteli diagram ([Bra72]) or inclusion graph of $A \subset_{G} B$. We will denote this graph by Γ_{G}.

Let $A \subset B$ be an inclusion of finite von Neumann algebras and let tr be a normalized, faithful, normal trace on B. We call the orthogonal projection $e_{A}: \mathrm{L}^{2}(B, \operatorname{tr}) \rightarrow \mathrm{L}^{2}\left(A,\left.\operatorname{tr}\right|_{A}\right)$ the Jones projection. B acts by left multiplication on $\mathrm{L}^{2}(B, \operatorname{tr})$ and we denote by $\left\langle B, e_{A}\right\rangle$ the von Neumann algebra generated by B and e_{A} as a subalgebra of $\mathrm{B}\left(\mathrm{L}^{2}(B, \operatorname{tr})\right)$. This is the Jones basic construction ([Jon83]).

If $A \subset_{G} B$ are (finite-dimensional or infinite-dimensional) multi-matrix algebras with dimension vectors \vec{a} and \vec{b}, and trace vectors $\vec{\alpha}$ and $\vec{\beta}$ that define finite traces which agree on A, then $\vec{\alpha}=G \vec{\beta}$ and $\vec{b}=G^{t} \vec{a}$. Also $B^{\prime} \subset_{G^{t}} A^{\prime}$ and $B \subset_{G^{t}}\left\langle B, e_{A}\right\rangle$ ([Jon83] in finite-dimensional and [Sch90] in infinite-dimensional case).

We will only consider inclusions $A \subset_{G} B$ of multi-matrix algebras with inclusion graphs Γ_{G} that are:
(i) locally finite, hence all matrix polynomials in $\left(\begin{array}{cc}0 & G \\ G^{t} & 0\end{array}\right), G^{t} G$ and $G G^{t}$ have well-defined finite entries, and
(ii) connected, hence $\left(\begin{array}{cc}0 & G \\ G^{t} & 0\end{array}\right), G^{t} G$ and $G G^{t}$ are irreducible matrices ([GHJ89]).

Example 1.1. Let $A=\mathbb{C} \oplus \mathrm{M}_{2}(\mathbb{C}) \oplus \mathbb{C}$ and $B=\mathrm{M}_{5}(\mathbb{C}) \oplus \mathrm{M}_{2}(\mathbb{C})$. If $A \subset_{G} B$ and the inclusion is given by

$$
x \oplus\left(\begin{array}{ll}
y_{1} & y_{2} \tag{1.1}\\
y_{3} & y_{4}
\end{array}\right) \oplus z \mapsto\left(\begin{array}{ccccc}
x & 0 & 0 & 0 & 0 \\
0 & x & 0 & 0 & 0 \\
0 & 0 & y_{1} & y_{2} & 0 \\
0 & 0 & y_{3} & y_{4} & 0 \\
0 & 0 & 0 & 0 & z
\end{array}\right) \oplus\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{3} & y_{4}
\end{array}\right)
$$

then its Bratteli diagram is

Figure 1: Bratteli diagram example
and its inclusion matrix is

$$
G=\left(\begin{array}{ll}
2 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right) .
$$

Note that any unital, injective $*$-homomorphism $\phi: A \rightarrow B$ between (both finite-dimensional or both infinite-dimensional) multi-matrix algebras A and B is, up to unitary conjugacy, of diagonal form (1.1). Also, the inclusion $A \subset_{G} B$ is determined by its inclusion matrix G (or Bratteli diagram Γ_{G}) only up to unitary conjugacy.

The notion of a commuting square was introduced by Popa in [Pop83]. Commuting squares arise naturally in classification and construction of subfactors ([Pop90], [Ocn88], [GHJ89], [JS97]). We recall the definition (see e.g. [GHJ89], [JS97]):

Definition 1.2. Let A, B, C, D be finite von Neumann algebras such that

$$
\begin{array}{lll}
C & \subset & D \\
\cup & & \cup \\
A & \subset & B
\end{array}
$$

and let tr_{D} be a faithful, normal, finite trace on D. We call this a commuting square if the unique trace-preserving (with respect to tr_{D}) conditional expectations $\mathrm{E}_{A}, \mathrm{E}_{B}, \mathrm{E}_{C}$ of D onto A, B, C satisfy $\mathrm{E}_{A}=\mathrm{E}_{B} \mathrm{E}_{C}=\mathrm{E}_{C} \mathrm{E}_{B}$. If A, B, C, D are multi-matrix algebras and the
inclusions $A \subset B \subset D$ and $A \subset C \subset D$ are given by inclusion matrices G, H, K, L, we write

Note that $G H=K L$. If moreover $G^{t} K=H L^{t}$, then we say that the commuting square is a symmetric commuting square. We call a commuting square finite-dimensional (resp. infinite-dimensional) if the involved multi-matrix algebras are all finite-dimensional (resp. infinite-dimensional).

The following result of Ocneanu ([Ocn88]) appears in this form in [Sch90] and gives a sufficient and necessary condition (the bi-unitary condition) for a symmetric commuting square to exist. A proof in the finite-dimensional case can also be found in [JS97] and [EK98].

Theorem 1.3. (Ocneanu's bi-unitary condition) Let G, H, K, L be bipartite adjacency matrices of connected, locally finite, bipartite graphs such that $G H=K L$ and $G^{t} K=H L^{t}$. (These matrices are all finite or all countably infinite.) Then the following are equivalent:
(i) There exists a symmetric commuting square of multi-matrix algebras A, B, C, D

with respect to a faithful, finite trace tr_{D} on D.
(ii) There exist unitary matrices u, v of the form

$$
u=\underset{(i, k)}{\oplus} u^{(i, k)}, \quad v=\underset{(j, l)}{\oplus} v^{(j, l)}
$$

satisfying the bi-unitary condition, that is, their direct summands

$$
\begin{aligned}
& u^{(i, k)}=\left(u_{(j, \phi, \rho, l, \sigma, \psi)}^{(i, k)}\right)_{\substack{(i, \phi, j, \rho, k) \in S \\
(i, \sigma, l, \psi, k) \in T}} \text { for }(i, k) \text { such that }(G H)_{i k} \neq 0, \text { and } \\
& v^{(j, l)}=\left(v_{(i, \phi, \rho, k, \sigma, \psi)}^{(j, l)}\right)_{\substack{(i, \phi, j, \rho, k) \in S \\
(i, \sigma, l, \psi, k) \in T}} \text { for }(j, l) \text { such that }\left(G^{t} K\right)_{j l} \neq 0,
\end{aligned}
$$

are unitary matrices where

$$
v_{(i, \phi, \rho, k, \sigma, \psi)}^{(j, l)}=\sqrt{\frac{\alpha_{i} \gamma_{k}}{\beta_{j} \delta_{l}}} u_{(j, \phi, \rho, l, \sigma, \psi)}^{(i, k)} \quad \text { for all }(i, \phi, j, \rho, k) \in S \text { and }(i, \sigma, l, \psi, k) \in T
$$

Here $\vec{\alpha}, \vec{\beta}, \vec{\gamma}, \vec{\delta}$ denote the trace vectors of tr_{D} on A, B, C, D, and S and T are the sets of paths in the Bratteli diagrams of $A \subset_{G} B \subset_{H} D$ and $A \subset_{K} C \subset_{L} D$ (including multiplicities labeled by ϕ and ρ, resp. σ and $\psi)$, i.e.

$$
\begin{aligned}
S & =\left\{(i, \phi, j, \rho, k) \mid G_{i j} H_{j k} \neq 0,1 \leq \phi \leq G_{i j}, 1 \leq \rho \leq H_{j k}\right\} \quad \text { and } \\
T & =\left\{(i, \sigma, l, \psi, k) \mid K_{i l} L_{l k} \neq 0,1 \leq \sigma \leq K_{i l}, 1 \leq \psi \leq L_{l k}\right\}
\end{aligned}
$$

If (ii) holds, we may asumme that A is commutative.

1.2 Construction of hyperfinite subfactors

The construction of a subfactor of the hyperfinite II_{1} factor from a symmetric commuting square relies heavily on the Perron-Frobenius theorem ([Per07], [Fro12]) and its consequences.

Theorem 1.4. (Perron-Frobenius theorem [Fro12]) Let T be an irreducible, finite square matrix with non-negative entries and λ its spectral radius (i.e. $\lambda=\|T\|$). Then:
(i) λ is an eigenvalue of T with 1-dimensional eigenspace which contains a vector whose entries are all positive.
(ii) Any eigenvector of T whose entries are all positive is associated to the eigenvalue λ.

This eigenvalue and its positive eigenvectors (determined up to a positive scalar) are called the Perron-Frobenius eigenvalue and Perron-Frobenius eigenvectors of T.

The proof of Theorem 1.4 can also be found in [Gan59] or [Sen81]. To construct hyperfinite subfactors from infinite-dimensional symmetric commuting squares, a generalization of the Perron-Frobenius theorem is needed:

Theorem 1.5. (Perron-Frobenius type theorem) Let T be the full adjacency matrix of a connected, locally finite, countably infinite graph. Then T is irreducible, symmetric (i.e. $\left.T^{t}=T\right)$ and T^{n} has well-defined finite entries for all $n \in \mathbb{N}$. If $\vec{\xi}$ is an eigenvector of T whose entries are all positive, then:
(i) If $\|\vec{\xi}\|_{2}<\infty$, then $\vec{\xi}$ is proportional to the unique (up to a scalar) positive eigenvector of T associated with the largest eigenvalue λ of T.
(ii) If T has an ℓ^{2} eigenvector whose entries are all positive, then $\|\vec{\xi}\|_{2}<\infty$.

If T has an ℓ^{2} eigenvector whose entries are all positive, then $\lambda=\|T\|$, for the operator norm in $\mathrm{B}\left(\ell^{2}(\mathbb{N})\right)$, and λ has a 1-dimensional eigenspace. This eigenvalue and its positive eigenvectors are called the Perron-Frobenius eigenvalue and Perron-Frobenius eigenvectors of T as in the finite case.

This theorem was used in similar form by Schou in [Sch90]. The result follows from [Ken66], [Sen67] and [Moh82], see also [Sen81].

Corollary 1.6. Let T be a finite or countably infinite, positive-semidefinite matrix and $\vec{\xi}$ its Perron-Frobenius eigenvector such that $\|\vec{\xi}\|_{2}=1$. Let $\vec{\zeta}$ be any ℓ^{2}-vector whose entries are indexed in the same way as those of $\vec{\xi}$. Then

$$
\left(\frac{T}{\|T\|}\right)^{n} \vec{\zeta} \xrightarrow[n \rightarrow \infty]{\|\cdot\|_{2}}\langle\vec{\zeta} \mid \vec{\xi}\rangle \vec{\xi}
$$

Proof. Define $f_{n}:[0,1] \rightarrow[0,1]$ by $f_{n}(x)=x^{n}$ for $x \in[0,1]$ and $n \in \mathbb{N}$. Then $f_{n} \xrightarrow[n \rightarrow \infty]{\text { pointwise }} \chi_{\{1\}}$ and thus $\left(\frac{T}{\|T\|}\right)^{n} \xrightarrow[n \rightarrow \infty]{\text { s.o. }}$ projection onto $\mathbb{C} \vec{\xi}$. This implies the result.

These theorems can be used to prove properties of traces in relation to the Jones basic construction applied to inclusions of multi-matrix algebras. The notion of a Markov trace first appears in [Jon83]:

Definition 1.7. Let $A \subset_{T} B$ be multi-matrix algebras such that Γ_{T} is connected and locally finite, and let tr be a normalized, faithful trace on B. Then tr is λ-Markov for $\lambda>0$ if there is an extension of tr to $\left\langle B, e_{A}\right\rangle$ such that $\operatorname{tr}\left(x e_{A}\right)=\lambda \operatorname{tr}(x)$ for all $x \in B$.

Theorem 1.8. ([Jon83]) Let $A \subset_{T} B$ be multi-matrix algebras such that Γ_{T} is connected and locally finite, and let tr be a normalized, faithful trace on B with trace vector \vec{t}. Let \vec{s} be the trace vector of $\left.\operatorname{tr}\right|_{A}$ on A. Then the following are equivalent:
(i) tr is a $\left(\lambda^{-1}\right)$-Markov trace for $A \subset_{T} B$.
(ii) $T^{t} T \vec{t}=\lambda \vec{t}$ and $T T^{t} \vec{s}=\lambda \vec{s}$, i.e. \vec{t} and \vec{s} are Perron-Frobenius eigenvectors of $T^{t} T$ and $T T^{t}$, and λ is the Perron-Frobenius eigenvalue of $T^{t} T$ and $T T^{t}$ (hence $\lambda=\|T\|^{2}$).

Note that [Jon83] contains only the finite-dimensional case of Theorem 1.8. In [Sch90], Schou showed that the theorem also holds in the infinite-dimensional case.

Corollary 1.9. Let $A \subset_{T} B$ be an inclusion of multi-matrix algebras such that Γ_{T} is connected and locally finite, and let tr be a normalized, faithful trace on B. If tr is λ-Markov for $A \subset_{T} B$, then the Markov extension of tr to $\left\langle B, e_{A}\right\rangle$ is also λ-Markov for $\mathrm{B} \subset_{T^{t}}\left\langle B, e_{A}\right\rangle$.

This relation between Perron-Frobenius eigenvectors and Markov traces can be used to obtain the following result about symmetric commuting squares:

Proposition 1.10. Let

be a symmetric commuting square of multi-matrix algebras with respect to a normalized,
faithful trace tr_{D} on D such that $\Gamma_{G}, \Gamma_{H}, \Gamma_{K}, \Gamma_{L}$ are connected and locally finite. Let $\vec{\alpha}, \vec{\beta}, \vec{\gamma}, \vec{\delta}$ be the trace vectors of tr_{D} on A, B, C, D. Then:
(i) $\|K\|=\|H\|, \operatorname{tr}_{D}$ is the $\left(\|H\|^{-2}\right)$-Markov trace of the inclusion $B \subset_{H} D$ and $\left.\operatorname{tr}_{D}\right|_{C}$ is the $\left(\|K\|^{-2}\right)$-Markov trace of the inclusion $A \subset_{K} C$.
(ii) $\|G\|=\|L\|, \operatorname{tr}_{D}$ is the $\left(\|L\|^{-2}\right)$-Markov trace of the inclusion $C \subset_{L} D$ and $\left.t r_{D}\right|_{B}$ is the $\left(\|G\|^{-2}\right)$-Markov trace of the inclusion $A \subset_{G} B$.
(iii) $\vec{\delta}$ is a Perron-Frobenius eigenvector of $H^{t} H$ and $L^{t} L . \vec{\gamma}$ is a Perron-Frobenius eigenvector of $L L^{t}$ and $K^{t} K . \vec{\beta}$ is a Perron-Frobenius eigenvector of $H H^{t}$ and $G^{t} G . \vec{\alpha}$ is a Perron-Frobenius eigenvector of $G G^{t}$ and $K K^{t}$.

For details, see [Sch90] and [GHJ89].
Remark 1.11. The following outlines the construction of a subfactor of the hyperfinite I_{1} factor of finite index from a symmetric commuting square of (finite-dimensional or infinite-dimensional) multi-matrix algebras.

The infinite-dimensional case was first described by Schou in [Sch90] and this outline follows his construction. In addition to results mentioned in this section, the construction also uses properties of projections in the Jones basic construction similar to those appearing in [Jon83].

Let

be a symmetric commuting square of multi-matrix algebras, such that $\Gamma_{G}, \Gamma_{H}, \Gamma_{K}, \Gamma_{L}$ are connected and locally finite, with respect to a normalized, faithful trace $\operatorname{tr}_{B_{1}}$ on B_{1} given by a Perron-Frobenius eigenvector $\vec{\xi}$ of $L^{t} L$. We may and will assume that A_{0} is commutative.

Define

$$
G_{j}=\left\{\begin{array}{ll}
G, & j \text { even } \\
G^{t}, & j \text { odd }
\end{array}, \quad L_{j}=\left\{\begin{array}{ll}
L, & j \text { even } \\
L^{t}, & j \text { odd }
\end{array} \quad \text { and } \quad T_{j}=\left\{\begin{array}{ll}
K, & j \text { even } \\
H, & j \text { odd }
\end{array} .\right.\right.\right.
$$

Define inductively $B_{j}=\left\langle B_{j-1}, e_{B_{j-2}}\right\rangle$ and $A_{j}=\left\{A_{j-1}, e_{B_{j-2}}\right\}^{\prime \prime}$ for $j \geq 2$ where $e_{B_{j-2}}$: $\mathrm{L}^{2}\left(B_{j-1}\right) \rightarrow \mathrm{L}^{2}\left(B_{j-2}\right)$ are the Jones projections. Then $A_{j} \cong\left\langle A_{j-1}, e_{A_{j-2}}\right\rangle$ and

$$
\begin{array}{ccc}
B_{j-1} & \subset_{L_{j-1}} & B_{j} \\
\cup_{T_{j-1}} & & \cup_{T_{j}} \\
A_{j-1} & \subset_{G_{j-1}} & A_{j}
\end{array}
$$

is a symmetric commuting square of multi-matrix algebras for each $j \in \mathbb{N}$ with respect to the trace $\operatorname{tr}_{B_{j}}$ on B_{j} given by the trace vector $\|L\|^{-2 j} L \vec{\xi}$ if j is even and $\|L\|^{-2 j} \vec{\xi}$ if j is odd. This way we obtain a sequence of symmetric commuting squares

Define $A_{\infty}=\cup_{j=0}^{\infty} A_{j}$ and $B_{\infty}=\cup_{j=0}^{\infty} B_{j}$. Since the traces $\operatorname{tr}_{B_{j}}\left(\right.$ resp. $\left.\operatorname{tr}_{A_{j}}\right)$ for $j \in \mathbb{N}$ extend one another, we can define a trace $\operatorname{tr}_{B_{\infty}}\left(\right.$ resp. $\left.\operatorname{tr}_{A_{\infty}}\right)$ on $B_{\infty}\left(\right.$ resp. $\left.A_{\infty}\right)$ that extends each $\operatorname{tr}_{B_{j}}$ (resp. $\operatorname{tr}_{A_{j}}$) for $j \in \mathbb{N}$. Define B (resp. A) to be the w.o.-closure of B_{∞} (resp. $\left.A_{\infty}\right)$ in $\mathrm{B}\left(\mathrm{L}^{2}\left(B_{\infty}, \operatorname{tr}_{B_{\infty}}\right)\right)$. Since $\operatorname{tr}_{B_{\infty}}$ extends $\operatorname{tr}_{A_{\infty}}, A$ is equal to the w.o.-closure of A_{∞} in $\mathrm{B}\left(\mathrm{L}^{2}\left(A_{\infty}, \operatorname{tr}_{A_{\infty}}\right)\right) . A$ and B are factors since uniqueness (up to a scalar) of the Perron-Frobenius eigenvector implies uniqueness of the (normalized) faithful, normal trace A and B. Thus $A \subset B$ is a hyperfinite subfactor and

$$
\begin{equation*}
[B: A]=\|H\|^{2}=\|K\|^{2} . \tag{1.3}
\end{equation*}
$$

Note that the index of a subfactor of the hyperfinite II_{1} factor constructed in this manner from a finite-dimensional symmetric commuting square is always an algebraic integer. In [Sch90], Schou constructed irreducible hyperfinite subfactors whose indices are algebraic integers that do not arise as norms of finite graphs.

Subfactors $A \subset B$ constructed in this manner have the relative McDuff property ([Bis90]) as the Jones projections are non-trivial non-commuting central sequences $\left(e_{B_{j}}\right)_{j=0}^{\infty}$ and $\left(e_{B_{j+1}}\right)_{j=0}^{\infty}$ of B contained in A. This argument was given in [Bis94a].

1.3 Irreducibility

A basic property of the relative commutant $A^{\prime} \cap B$ of a subfactor $A \subset B$ is that $[B: A]<$ ∞ implies $\operatorname{dim}\left(A^{\prime} \cap B\right)<\infty$ ([Jon83]). We say that a subfactor $A \subset B$ is irreducible if $\operatorname{dim}\left(A^{\prime} \cap B\right)=1$. The next theorem is Schou's generalization of Wenzl's irreducibility criterion ([Wen88]) to the case of infinite-dimensional symmetric commuting squares ([Sch90]). We first give two lemmas. Wenzl gave a proof of the first lemma for the finitedimensional case in and Schou showed that it also holds in the infinite-dimensional case. The second lemma is a technical result of Schou used in his proof of Theorem 1.14.

Lemma 1.12. ([Sch90]) Let

$$
A_{0} \subset_{G} A_{1} \subset_{G^{t}} A_{2} \subset_{G} A_{3} \cdots
$$

and let B be as in the construction following Remark 1.11. Let tr_{B} be the unique normalized, faithful, normal trace on B. Let $j \in \mathbb{N}_{0}$. Note that each $A_{2 j}$ has the same number of simple summands. Let $z_{i}^{2 j}$ be the minimal central projection of $A_{2 j}$ contained in its i-th simple summand for some $i \in \mathbb{N}$. Then there exists $c_{i}>0$ such that $\operatorname{tr}_{B}\left(z_{i}^{2 j}\right) \geq c_{i}$ for all $j \in \mathbb{N}_{0}$. A similar result holds for odd labeled A_{k} 's.

Proof. Let $\vec{a}^{A_{j}}$ be the dimension vectors and $\vec{\alpha}^{A_{j}}$ the trace vectors (with respect to trace tr_{B}) of A_{j}, for $j \in \mathbb{N}_{0}$. Note that $\vec{a}^{A_{2 j}}=\left(G G^{t}\right)^{j} \vec{a}^{A_{0}}$ and $\vec{\alpha}^{A_{2 j}}=\|G\|^{-2 j} \vec{\alpha}^{A_{0}}$ for $j \in \mathbb{N}_{0}$. Let $z_{i}^{2 j}$ be
the minimal central projection of $A_{2 j}$ contained in its i-th simple summand for some $j \in \mathbb{N}_{0}$ and $i \in \mathbb{N}$. Then

$$
\operatorname{tr}_{B}\left(z_{i}^{2 j}\right)=a_{i}^{A_{2 j}} \alpha_{i}^{A_{2 j}}=\left(\left(G G^{t}\right)^{j} \vec{a}^{A_{0}}\right)_{i}\|G\|^{-2 j} \vec{\alpha}_{i}^{A_{0}}=\left(\left(\frac{G G^{t}}{\|G\|^{2}}\right)^{j} \vec{a}^{A_{0}}\right)_{i} \vec{\alpha}_{i}^{A_{0}}
$$

Note that the trace vector $\vec{\alpha}^{A_{0}}$ of tr_{B} on A_{0} is given by the normalized Perron-Frobenius eigenvector of $G G^{t}$ due to Proposition 1.10. Now, for $i \in \mathbb{N}$,

$$
\lim _{j \rightarrow \infty} \operatorname{tr}_{B}\left(z_{i}^{2 j}\right)=\lim _{j \rightarrow \infty}\left(\left(\frac{G G^{t}}{\|G\|^{2}}\right)^{j} \vec{a}^{A_{0}}\right)_{i} \vec{\alpha}_{i}^{A_{0}}=\left(\left\langle\vec{a}^{A_{0}} \mid \vec{\alpha}^{A_{0}}\right\rangle \vec{\alpha}^{A_{0}}\right)_{i} \frac{\vec{\alpha}_{i}^{A_{0}}}{\left\|\vec{\alpha}^{A_{0}}\right\|_{2}^{2}}=\frac{\left(\vec{\alpha}_{i}^{A_{0}}\right)^{2}}{\left\|\vec{\alpha}^{A_{0}}\right\|_{2}^{2}}>0
$$

where we used Corollary 1.6 for the second equality and the fact that tr_{B} is normalized for the last equality. This implies that, for every $i \in \mathbb{N}$, the sequence $\left(\operatorname{tr}_{B}\left(z_{i}^{2 j}\right)\right)_{j \in \mathbb{N}_{0}}$ of positive numbers is bounded from below, i.e. there exists $c_{i}>0$ such that $\operatorname{tr}_{B}\left(z_{i}^{2 j}\right) \geq c_{i}$ for all $j \in \mathbb{N}_{0}$. The proof for the odd labeled A_{k} 's is similar.

Lemma 1.13. ([Sch90]) Let $m \in \mathbb{N} \backslash\{1\}$. Let $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ be a set of m different real numbers and let $\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ be a set of m positive numbers with sum 1. Then there exists $\varepsilon>0$ such that:

If A is a $I I_{1}$ factor, tr its normalized, faithful, normal trace, and $a, b \in A$ are self-adjoint such that:
(i) $a=\sum_{i=1}^{m} \alpha_{i} p_{i}$ where $p_{i} \in A$ are mutually orthogonal projections such that $\operatorname{tr}\left(p_{i}\right)=t_{i}$, for $1 \leq i \leq m$, and
(ii) b has strictly less than m spectral values and $\|b\| \leq\|a\|$,
then $\|b-a\|_{2}^{2} \geq \varepsilon$.

Proof. This proof is taken from [Sch90]. Define

$$
S=\left\{\begin{array}{l|l}
(\beta, T) & \begin{array}{l}
\beta=\left(\beta_{1}, \ldots, \beta_{m-1}\right), 0 \leq \beta_{j} \leq \max _{1 \leq i \leq m}\left|a_{i}\right| \text { for } 1 \leq j \leq m-1 \\
\\
T=\left(T_{i j}\right) \in \mathrm{M}_{m \times(m-1)}([0,1]), \sum_{j=1}^{m-1} T_{i j}=t_{i} \text { for } 1 \leq i \leq m
\end{array}
\end{array}\right\}
$$

and $F: S \rightarrow \mathbb{R}$ by $F(\beta, T)=\sum_{i=1}^{m} \sum_{j=1}^{m-1}\left(\alpha_{i}-\beta_{j}\right)^{2} T_{i j} . S$ is compact so F has a minimum on S. Let $\left(\beta^{\prime}, T^{\prime}\right)$ be the point where this minimum is attained. There exists $i \in\{1, \ldots, m\}$ such that $\alpha_{i} \notin\left\{\beta^{\prime}{ }_{1}, \ldots, \beta^{\prime}{ }_{m-1}\right\}$ and then $t_{i}>0$ implies that there exists $j \in\{1, \ldots, m-1\}$ such that $T^{\prime}{ }_{i j}>0$. Therefore $F\left(\beta^{\prime}, T^{\prime}\right)>0$. Set $\varepsilon=F\left(\beta^{\prime}, T^{\prime}\right)$. Let A be a II_{1} factor and tr its normalized, faithful, normal trace.

Let $a, b \in A$ be such that they satisfy the assumptions of the lemma. Then $b=\sum_{j=1}^{m-1} \beta_{j} q_{j}$ for some $\beta_{j} \in\left[0, \max _{1 \leq i \leq m}\left|a_{i}\right|\right]$ and $q_{j} \in A$ mutually orthogonal projections, for $1 \leq j \leq m-1$, such that $\sum_{j=1}^{m-1} q_{j}=1$. Note that $\sum_{i=1}^{m} \operatorname{tr}\left(p_{i}\right)=1$ implies $\sum_{i=1}^{m} p_{i}=1$ so

$$
\begin{aligned}
& a=\sum_{i=1}^{m} \sum_{j=1}^{m-1} \alpha_{i} p_{i} q_{j}, \quad \text { and } \\
& b=\sum_{i=1}^{m} \sum_{j=1}^{m-1} \beta_{j} p_{i} q_{j} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{tr}\left((a-b)^{*}(a-b)\right) & =\operatorname{tr}\left(\sum_{i=1}^{m} \sum_{j=1}^{m-1}\left(\alpha_{i}-\beta_{j}\right) q_{j} p_{i} \sum_{i^{\prime}=1}^{m} \sum_{j^{\prime}=1}^{m-1}\left(\alpha_{i^{\prime}}-\beta_{j^{\prime}}\right) p_{i^{\prime}} q_{j^{\prime}}\right)= \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m-1} \sum_{i^{\prime}=1}^{m} \sum_{j^{\prime}=1}^{m-1}\left(\alpha_{i}-\beta_{j}\right)\left(\alpha_{i^{\prime}}-\beta_{j^{\prime}}\right) \operatorname{tr}\left(q_{j} p_{i} p_{i^{\prime}} q_{j^{\prime}}\right)= \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m-1}\left(\alpha_{i}-\beta_{j}\right)^{2} \operatorname{tr}\left(p_{i} q_{j}\right) .
\end{aligned}
$$

Note that for $1 \leq i \leq m$ and $1 \leq j \leq m-1$

$$
0 \leq \operatorname{tr}\left(p_{i} q_{j}\right) \leq \sum_{j=1}^{m-1} \operatorname{tr}\left(p_{i} q_{j}\right)=\operatorname{tr}\left(p_{i}\right)=t_{i} \leq 1
$$

so for $\beta=\left(\beta_{1}, \ldots, \beta_{m-1}\right)$ and $T=\left(T_{i j}\right)$ such that $T_{i j}=\operatorname{tr}\left(p_{i} q_{j}\right)$, for $1 \leq i \leq m$ and $1 \leq j \leq m-1$, we have $(\beta, T) \in S$. Then

$$
\|a-b\|_{2}^{2}=\operatorname{tr}\left((a-b)^{*}(a-b)\right)=F(\beta, T) \geq F\left(\beta^{\prime}, T^{\prime}\right)=\varepsilon .
$$

The following theorem will be used to construct irreducible hyperfinite subfactors from infinite-dimensional symmetric commuting squares.

Theorem 1.14. ([Sch90]) Let

be a symmetric commuting square of multi-matrix algebras such that $\Gamma_{G}, \Gamma_{H}, \Gamma_{K}, \Gamma_{L}$ are connected and locally finite, with respect to a normalized, faithful trace $\operatorname{tr}_{B_{1}}$ on B_{1} given by a Perron-Frobenius eigenvector $\vec{\xi}$ of $L^{t} L$. Let $A \subset B$ be the hyperfinite subfactor constructed from this commuting square as described after Remark 1.11. Then

$$
\operatorname{dim}\left(A^{\prime} \cap B\right) \leq(\min \{1 \text {-norm of rows of } H \text { and } K\})^{2} .
$$

Proof. This proof is taken from [Sch90]. Let $n \in \mathbb{N}$ be even, i.e. $n=2 l$ for some $l \in \mathbb{N}$. Denote $A_{n}=\bigoplus_{i=1}^{\infty} A_{i}^{n}$ and $B_{n}=\bigoplus_{i=1}^{\infty} B_{i}^{n}$ and let $a_{n}=\left(a_{i}^{n}\right)_{i=1}^{\infty}$ and $b_{n}=\left(b_{i}^{n}\right)_{i=1}^{\infty}$ be the dimension vectors of A_{n} and B_{n}. Then $A_{2 l} \subset_{K} B_{2 l}$. Let $m_{0}=\min \{1$-norm of rows of $K\}$ and pick $i_{0} \in \mathbb{N}$ such that i_{0}-th row of K has 1 -norm equal to m_{0}.

Let $z_{i_{0}}^{2 l}$ be the minimal central projection of $A_{2 l}$ contained in its i_{0}-th simple summand, i.e. in $A_{i_{0}}^{2 l}$. Then $z_{i_{0}}^{2 l} \in \mathscr{Z}\left(A_{2 l}\right) \subset A_{2 l}^{\prime} \cap B_{2 l}$. For $j \in \mathbb{N}$, let $q_{j}^{2 l}$ be the minimal central projection of $B_{2 l}$ contained in its j-th simple summand, i.e. $q_{j}^{2 l} \in B_{j}^{2 l}$. Then one can choose a matrix
representation of the inclusion $A_{2 l} \subset B_{2 l}$ such that the elements of $A_{2 l} q_{j}^{2 l}$ are of the form

$$
\left(\begin{array}{ccccc}
x_{1} & & & & \\
& \ddots & & & \\
& & & & \\
& & x_{1} & & \\
& & & x_{2} & \\
& & & & \ddots
\end{array}\right)
$$

where each $x_{i} \in A_{i}^{2 l}$ is repeated $K_{i j}$ times and the matrix has $b_{j}^{2 l}$ columns.
For $z_{i_{0}}^{2 l} q_{j}^{2 l} \in A_{2 l} q_{j}^{2 l}$ then in the above form we have that

$$
x_{i}= \begin{cases}1_{a_{i_{0}}^{2 l} \times a_{i_{0}}^{2 l}}, & \text { if } i=i_{0} \\ 0, & \text { otherwise }\end{cases}
$$

Note that $A_{2 l}^{\prime} \cap B_{2 l} \cong \bigoplus_{i, j=1}^{\infty} \mathrm{M}_{K_{i j}}(\mathbb{C})$ and $z_{i_{0}}^{2 l}$ there corresponds to the identity in $\bigoplus_{j=1}^{\infty} \mathbf{M}_{K_{i_{0} j}}(\mathbb{C})$ so $z_{i_{0}}^{2 l}$ can be written as a sum of m_{0} mutually orthogonal non-zero projections in $A_{2 l}^{\prime} \cap B_{2 l}$ since m_{0} is the 1-norm of the i_{0}-th row of K.

Let $\left\{p_{j} \mid j=1,2, \ldots, m\right\}$ be a maximal family of non-zero minimal projections contained in $A^{\prime} \cap B$ whose sum is 1 . This family is finite since $A^{\prime} \cap B$ is finite-dimensional $([B: A]<\infty$ and [Jon83]). Set $x=\sum_{j=1}^{m} \frac{j}{m} p_{j}$. Then $x=x^{*}$ and $\|x\|=1$. By Kaplansky's density theorem there exists $\left(x_{n}\right)_{n=1}^{\infty} \subset\left(\cup_{n=1}^{\infty} B_{n}\right)_{\text {s.a. }}$ such that $\left\|x_{n}\right\| \leq 1$ and $x_{n} \xrightarrow[n \rightarrow \infty]{\text { s.o. }} x$, i.e. $\mathrm{d}_{2}\left(\cup_{n=1}^{\infty} B_{n}, x\right)=0$. Since $B_{0} \subset B_{1} \subset \ldots$ we can pick $x_{n} \in B_{n}$ with $x_{2 l} \xrightarrow[l \rightarrow \infty]{\text { s.o. }} x$.
Set $y_{2 l}=\mathrm{E}_{A_{2 l}^{\prime} \cap B_{2 l}}\left(x_{2 l}\right)=\mathrm{E}_{A_{2 l}^{\prime} \cap B}\left(x_{2 l}\right)$. Then

$$
\left\|y_{2 l}-x\right\|_{2} \leq\left\|y_{2 l}-\mathrm{E}_{A_{2 l}^{\prime} \cap B}(x)\right\|_{2}+\left\|\mathrm{E}_{A_{2 l}^{\prime} \cap B}(x)-x\right\|_{2} .
$$

Since $A_{2 l}^{\prime} \cap B \searrow A^{\prime} \cap B$ we get

$$
\left\|\mathrm{E}_{A_{2 l}^{\prime} \cap B}(x)-x\right\|_{2} \xrightarrow[l \rightarrow \infty]{ }\left\|\mathrm{E}_{A^{\prime} \cap B}(x)-x\right\|_{2}=0
$$

and

$$
\left\|y_{2 l}-\mathrm{E}_{A_{2 l}^{\prime} \cap B}(x)\right\|_{2}=\left\|E_{A_{2 l}^{\prime} \cap B}\left(x_{2 l}-x\right)\right\|_{2} \leq\left\|x_{2 l}-x\right\|_{2} \xrightarrow[l \rightarrow \infty]{\longrightarrow} 0
$$

so $y_{2 l} \xrightarrow[l \rightarrow \infty]{\text { s.o. }} x$.
Since $y_{2 l} \in A_{2 l}^{\prime} \cap B_{2 l}$ and $z_{i_{0}}^{2 l} \in A_{2 l}$, we have $\left[y_{2 l}, z_{i_{0}}^{2 l}\right]=0$.
Now $y_{2 l} z_{i_{0}}^{2 l} \in z_{i_{0}}^{2 l} B_{2 l} z_{i_{0}}^{2 l} \cong \bigoplus_{j} \mathrm{M}_{K_{i_{0} j}}(\mathbb{C})$ which contains only m_{0} non-zero minimal projections so $y_{2 l} z_{i_{0}}^{2 l}$ has at most m_{0} spectral projections.

Since $z_{i_{0}} \in A$ and $p_{j} \in A^{\prime} \cap B$ we have $\operatorname{tr}_{B}\left(p_{j} z_{i_{0}}^{2 l}\right)=\operatorname{tr}_{B}\left(p_{j}\right) \operatorname{tr}_{B}\left(z_{i_{0}}^{2 l}\right) \neq 0$, so $p_{j} z_{i_{0}}^{2 l}$ is a non-zero projection and then $x z_{i_{0}}^{2 l}=\sum_{j=1}^{m} \frac{j}{m} p_{j} z_{i_{0}}^{2 l}$ has exactly m spectral projections.
Assume $m>m_{0}$. Now we use Lemma 1.13 with $\alpha_{j}=\frac{j}{m}$ and $t_{j}=\operatorname{tr}_{B}\left(p_{j}\right)$ for $j=1,2, \ldots, m$, and the II_{1} factor $z_{i_{0}}^{2 l} B z_{i_{0}}^{2 l}$. By the lemma, there is $\varepsilon>0$ such that for all $y \in z_{i_{0}}^{2 l} B z_{i_{0}}^{2 l}$ selfadjoint with $\|y\| \leq\left\|x z_{i_{0}}^{2 l}\right\|$ and such that y has less than m spectral values, we have

$$
\left\|y-x z_{i_{0}}^{2 l}\right\|_{2, z_{i_{0}}^{2 l} B z_{i_{0}}^{2 l}}^{2} \geq \varepsilon
$$

The trace on $z_{i_{0}}^{2 l} B z_{i_{0}}^{2 l}$ is given by

$$
\operatorname{tr}_{z_{i_{0}}^{2 l} B z_{i_{0}}^{2 l}}(\cdot)=\frac{\operatorname{tr}_{B}(\cdot)}{\operatorname{tr}_{B}\left(z_{i_{0}}^{2 l}\right)}
$$

so

$$
\left\|y-x z_{i_{0}}^{2 l}\right\|_{2}^{2} \geq \varepsilon \operatorname{tr}_{B}\left(z_{i_{0}}^{2 l}\right)
$$

We have that $\left\|x z_{i_{0}}^{2 l}\right\|=1$ and $\left\|y_{2 l} z_{i_{0}}^{2 l}\right\| \leq\left\|x_{2 l}\right\| \leq 1$ so for $y=y_{2 l} z_{i_{0}}^{2 l}$ we get

$$
\left\|y_{2 l} z_{i_{0}}^{2 l}-x z_{i_{0}}^{2 l}\right\|_{2}^{2} \geq \varepsilon \operatorname{tr}_{B}\left(z_{i_{0}}^{2 l}\right) \geq \varepsilon c_{i_{0}}>0
$$

where $c_{i_{0}}>0$ is the constant from Lemma 1.12 such that $\operatorname{tr}_{B}\left(z_{i_{0}}^{2 l}\right) \geq c_{i_{0}}$ for all $l \in \mathbb{N}$. But we also have

$$
\left\|y_{2 l} z_{i_{0}}^{2 l}-x z_{i_{0}}^{2 l}\right\|_{2} \leq\left\|z_{i_{0}}^{2 l}\right\|\left\|y_{2 l}-x\right\|_{2} \underset{l \rightarrow \infty}{\longrightarrow} 0
$$

which is a contradiction, and hence we must have $m \leq m_{0}$.
We know that $A^{\prime} \cap B \cong \bigoplus_{i=1}^{r} \mathbf{M}_{k_{i}}(\mathbb{C})$ for some $r, k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{N}$ such that $\sum_{i=1}^{r} k_{i}=m$. Now

$$
\operatorname{dim}\left(A^{\prime} \cap B\right)=\sum_{i=1}^{r} k_{i}^{2} \leq\left(\sum_{i=1}^{r} k_{i}\right)^{2}=m^{2} \leq m_{0}^{2}
$$

so $\operatorname{dim}\left(A^{\prime} \cap B\right) \leq(\min \{1 \text {-norm of rows of } K\})^{2}$. Proceeding similarly for $n \in \mathbb{N}$ odd and H instead of K finishes the proof.

Corollary 1.15. (Wenzl's irreducibility criterion) Let

$$
\begin{array}{ccc}
B_{0} & \subset_{L} & B_{1} \\
\cup_{K} & & \cup_{H} \\
A_{0} & \subset_{G} & A_{1}
\end{array}
$$

be a symmetric commuting square of multi-matrix algebras such that $\Gamma_{G}, \Gamma_{H}, \Gamma_{K}, \Gamma_{L}$ are connected and locally finite. Let $A \subset B$ be the hyperfinite $I I_{1}$ factors constructed from this commuting square as described after Remark 1.11. If H or K contains a row with exactly one non-zero entry that is equal to 1 , then $A \subset B$ is irreducible.

1.4 Ocneanu compactness

Ocneanu compactness provides a method for computing the relative commutant of the subfactor constructed from a symmetric commuting square in the finite-dimensional case.

Theorem 1.16. (Ocneanu compactness [Ocn90]) Let

be a symmetric commuting square of finite-dimensional multi-matrix algebras such that $\Gamma_{G}, \Gamma_{H}, \Gamma_{K}, \Gamma_{L}$ are connected. Let $A \subset B$ be the subfactor of the hyperfinite $I I_{1}$ factor constructed from this commuting square as described after Remark 1.11. Then $A^{\prime} \cap B=$ $A_{1}^{\prime} \cap B_{0}$.

A proof of the theorem can be found in [JS97] or [EK98]. It allows one to compute (in principle) the standard invariant of such subfactors ([JS97]).

CHAPTER 2

NEW HYPERFINITE SUBFACTORS FROM N-STARS WITH A_{∞}-TAIL

In [Bis94b], Bisch constructed the first example of an irreducible subfactor of the hyperfinite II_{1} factor whose index is a rational, non-integer number and thus not an algebraic integer. It was accomplished by giving an explicit construction of a symmetric commuting square of infinite-dimensional multi-matrix algebras based on an inclusion graph given by a 4 -star with A_{∞}-tail.

Definition 2.1. For N a positive integer, we call N-star with A_{∞}-tail the infinite bipartite graph

Figure 2: N-star with A_{∞}-tail

We will denote this graph by Γ_{N}.
Remark 2.2. Graphs A_{∞} and D_{∞} (or more precisely, the $\mathrm{B}\left(\ell^{2}(\mathbb{N})\right)$ operators represented by their full adjacency matrices) do not have ℓ^{2} Perron-Frobenius eigenvectors as they are infinite graphs that appear as principal graphs of amenable subfactors ([Pop94]).

Remark 2.3. Let Γ be a graph that is a concatenation of a finite graph and A_{∞}. Then the norm of Γ is greater than or equal to 2 .

Note that Γ_{1} and Γ_{2} are A_{∞} and that Γ_{3} is D_{∞}. Our goal is to find symmetric commuting squares based on inclusion graphs given by a N-stars with A_{∞}-tail so, due to Proposition 1.10 and Remark 2.2, in the following we consider a fixed $N \geq 4$.

2.1 Perron-Frobenius eigenvalue and eigenvector

We will enumerate vertices of Γ_{N} as follows:

Figure 3: Labeled N-star with A_{∞}-tail
and we call the elements of its partition

$$
\begin{aligned}
& \text { upper vertices }=\{1,2, \ldots, N-1\} \cup\left\{N+2 k+1 \mid k \in \mathbb{N}_{0}\right\}, \quad \text { and } \\
& \text { lower vertices }=\left\{N+2 k \mid k \in \mathbb{N}_{0}\right\} .
\end{aligned}
$$

Let \mathscr{G} be the full adjacency matrix of Γ_{N}. Its rows and columns are both enumerated by all vertices of Γ_{N}, i.e. by \mathbb{N}. \mathscr{G} is symmetric since Γ_{N} is undirected and \mathscr{G} is irreducible since Γ_{N} is connected. For $k \in \mathbb{N}, \mathscr{G}^{k}$ is again an infinite matrix with well-defined finite entries since Γ_{N} is locally finite. Then

We will call this the ω form of \mathscr{G} (after the ordinal ω). This infinite matrix is a representation
of a linear operator on $\ell^{2}(\mathbb{N})$ (by acting on sequences of complex numbers by matrix multiplication) which we will also call \mathscr{G}. Since the degrees of vertices of Γ_{N} are bounded by a constant, it follows that $\mathscr{G} \in \mathrm{B}\left(\ell^{2}(\mathbb{N})\right)$.

Let G be the bipartite adjacency matrix of Γ_{N} such that its rows are enumerated by upper vertices of Γ_{N} and its columns are enumerated by lower vertices of Γ_{N}. Then we can order rows and columns of \mathscr{G} so that

$$
\mathscr{G}=\begin{array}{cc}
\text { upper } & \text { lower } \\
\text { lower }\left(\begin{array}{cc}
0 & G \\
G^{t} & 0
\end{array}\right) .
\end{array}
$$

We will call this the $\omega \cdot 2$ form of \mathscr{G} (after the ordinal $\omega \cdot 2$). We have

$$
\begin{gathered}
\\
1 \\
k=\begin{array}{c}
N+2
\end{array} \\
2\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & N+6 \\
1 & 0 & 0 & 0 & \cdots \\
\vdots \\
\vdots & \vdots & \vdots & \vdots & \\
N+1 \\
N+3 \\
1 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & \\
N+5 & 1 & 1 & 0 & \ddots \\
\vdots \\
0 & 0 & 1 & 1 & \ddots \\
\vdots & & \ddots & \ddots & \ddots
\end{array}\right)
\end{gathered}
$$

and G is also in $\mathrm{B}\left(\ell^{2}(\mathbb{N})\right)$.
If \mathscr{G} has an ℓ^{2} eigenvector whose entries are all positive then due to Theorem 1.5 this eigenvector is a Perron-Frobenius eigenvector and the corresponding eigenvalue is its Perron-Frobenius eigenvalue. Since we want to use it to define a finite trace, we need this Perron-Frobenius eigenvector to also be ℓ^{1}.
$\mathscr{G} \vec{\xi}=\lambda \vec{\xi}$ is equivalent to:

$$
\begin{gather*}
\xi_{N}=\lambda \xi_{1} \\
\xi_{N}=\lambda \xi_{2} \\
\vdots \tag{2.1}\\
\xi_{N}=\lambda \xi_{N-1}, \\
\xi_{1}+\xi_{2}+\ldots+\xi_{N-1}+\xi_{N+1}=\lambda \xi_{N} \\
\xi_{N+k-1}+\xi_{N+k+1}=\lambda \xi_{N+k} \quad \text { for } k \in \mathbb{N} .
\end{gather*}
$$

The last row of (2.1) is a recurrence relation with characteristic polynomial $x^{2}-\lambda x+1$ whose roots are $x_{1}=\frac{\lambda+\sqrt{\lambda^{2}-4}}{2}$ and $x_{2}=\frac{\lambda-\sqrt{\lambda^{2}-4}}{2}$. Therefore there exist $c_{1}, c_{2} \in \mathbb{C}$ so that, for every $k \in \mathbb{N}, \xi_{N+k-1}=c_{1} x_{1}^{k-1}+c_{2} x_{2}^{k-1}$. Due to Remark 2.3, we are only interested in solutions such that $\lambda \geq 2$ and that implies $x_{1} \geq 1 \geq x_{2}>0$. Due to Theorem 1.5, we are only interested in solutions such that $\|\vec{\xi}\|_{2}<\infty$ so we must have $c_{1}=0$. Since we are looking for an eigenvector $\vec{\xi}$, we can set $c_{2}=\lambda$ (or any other arbitrary non-zero scalar). Then we have $\xi_{N}=\lambda$ and $\xi_{N+1}=\lambda x_{2}$. Now it follows from (2.1) that $\xi_{1}=\xi_{2}=\ldots=\xi_{N-1}=1$ and $N-1+\lambda x_{2}=\lambda^{2}$. Solving the latter for $\lambda \geq 2$ (with the condition $N \geq 4$) gives a solution to (2.1):

$$
\begin{align*}
\lambda & =\frac{N-1}{\sqrt{N-2}}, \\
\xi_{1} & =\xi_{2}=\ldots=\xi_{N-1}=1, \tag{2.2}\\
\xi_{N+k-1} & =\frac{N-1}{(\sqrt{N-2})^{k}} \quad \text { for } k \in \mathbb{N} .
\end{align*}
$$

Since $0<\frac{1}{\sqrt{N-2}}<1$ for $N \geq 4$, it follows that $\|\vec{\xi}\|_{1}=N-1+\frac{N-1}{\sqrt{N-2}-1}<\infty$, so $\vec{\xi}$ is ℓ^{1} and ℓ^{2}. Since all entries of $\vec{\xi}$ are positive, it follows that λ is the Perron-Frobenius eigenvalue and $\vec{\xi}$ is a Perron-Frobenius eigenvector of \mathscr{G} due to Theorem 1.5. This implies:

$$
\left\|\Gamma_{N}\right\|^{2}=\|\mathscr{G}\|^{2}=\lambda^{2}=\frac{(N-1)^{2}}{N-2}
$$

2.2 Bi-unitary condition

We want to find a symmetric commuting square where G is the inclusion matrix on the index defining side. A priori, the remaining inclusion matrices could be anything provided that certain Perron-Frobenius eigenvalues and eigenvectors agree. Polynomials in G and G^{t} are good candidates so we will attempt to find a symmetric commuting square of the form:

$$
\begin{array}{ccc}
C & \subset_{n G} & D \\
\cup_{G^{t}} & & \cup_{G} \tag{2.3}\\
A & \subset_{n G^{t}} & B
\end{array}
$$

Clearly $\left(n G^{t}\right)^{t} G^{t}=G(n G)^{t}$.
In $\omega \cdot 2$ form $\mathscr{G} \vec{\xi}=\lambda \vec{\xi}$ means

$$
\left(\begin{array}{cc}
0 & G \\
G^{t} & 0
\end{array}\right)\binom{\vec{s}}{\vec{t}}=\lambda\binom{\vec{s}}{\vec{t}} \quad \text { where } \quad \begin{aligned}
& \text { upper } \\
& \text { lower }
\end{aligned}\binom{\vec{s}}{\vec{t}} \quad \text { is the } \omega \cdot 2 \text { form of } \vec{\xi} .
$$

Note that \vec{s} and \vec{t} are both ℓ^{1} and ℓ^{2}, and all of their entries are positive since this is true for $\vec{\xi}$.

$$
\left(\begin{array}{cc}
0 & G \\
G^{t} & 0
\end{array}\right)\binom{\vec{s}}{\vec{t}}=\binom{G \vec{t}}{G^{t} \vec{s}} \quad \text { so } \quad \begin{aligned}
& G \vec{t}=\lambda \vec{s} \\
& G^{t} \vec{s}=\lambda \vec{t}
\end{aligned}
$$

In $\omega \cdot 2$ form $\lambda^{2} \vec{\xi}=\mathscr{G}^{2} \vec{\xi}$ means

$$
\lambda^{2}\binom{\vec{s}}{\vec{t}}=\left(\begin{array}{cc}
0 & G \\
G^{t} & 0
\end{array}\right)^{2}\binom{\vec{s}}{\vec{t}}=\left(\begin{array}{cc}
G G^{t} & 0 \\
0 & G^{t} G
\end{array}\right)\binom{\vec{s}}{\vec{t}}=\binom{G G^{t} \vec{s}}{G^{t} G \vec{t}} \quad \text { so } \quad \begin{aligned}
& G G^{t} \vec{s}=\lambda^{2} \vec{s}, \\
& G^{t} G \vec{t}=\lambda^{2} \vec{t}
\end{aligned}
$$

$G G^{t}$ and $G^{t} G$ are symmetric, irreducible and have well-defined powers with finite entries. Thus \vec{s} is a Perron-Frobenius eigenvector of $G G^{t}, \vec{t}$ is a Perron-Frobenius eigenvector of $G^{t} G$ and $\lambda^{2}=\|G\|^{2}$ is their Perron-Frobenius eigenvalue. If there is a symmetric commuting
square of this form then due to (1.3) the index of the resulting subfactor of the hyperfinite II_{1} factor would be

$$
\begin{equation*}
\|G\|^{2}=\lambda^{2}=\frac{(N-1)^{2}}{N-2}=N+\frac{1}{N-2} \tag{2.4}
\end{equation*}
$$

Since $N \geq 4$, all these potential indices are rational, non-integer numbers and thus not algebraic integers. Hence these indices cannot be obtained by using finite graphs. The values of the first few of these numbers are $4.5,5.333 \ldots, 6.25,7.2,8.166 \ldots, 9.142 \ldots, 10.125, \ldots$

Let $\vec{\alpha}, \vec{\beta}, \vec{\gamma}, \vec{\delta}$ be the trace vectors of A, B, C, D in (2.3) and let A be commutative, i.e. the algebra $\bigoplus_{i=1}^{\infty} \mathbb{C}=\ell^{\infty}(\mathbb{N})$. If we are to have a symmetric commuting square of this form, then due to Proposition 1.10 we need to have $\vec{\delta}=\vec{t}$ (up to a scalar) since it is the Markov trace (after normalization) for the inclusion $B \subset_{G} D$. Also, note that \vec{t} is ℓ^{1} so it defines a finite trace on D since the entries of the dimension vector of D are bounded by a constant. Then

$$
\begin{aligned}
& \vec{\gamma}=n G \vec{\delta}=n G \vec{t}=n \lambda \vec{s} \\
& \vec{\beta}=G \vec{\delta}=G \vec{t}=\lambda \vec{s} \\
& \vec{\alpha}=n G^{t} \vec{\beta}=n \lambda G^{t} \vec{s}=n \lambda^{2} \vec{t}
\end{aligned}
$$

so the traces are given as follows:

$$
\vec{\gamma}=n \lambda \vec{s} \quad \vec{\delta}=\vec{t}
$$

These traces are not normalized, but we can apply results from Chapter 1 to their normalizations when necessary. Now

$$
\sqrt{\frac{\alpha_{i} \delta_{k}}{\beta_{j} \gamma_{l}}}=\sqrt{\frac{n \lambda^{2} t_{i} \cdot t_{k}}{\lambda s_{j} \cdot n \lambda s_{l}}}=\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}} \text { for } i, j, k, l \in \mathbb{N} \text {. }
$$

Let S and T be the sets of paths in $A \subset_{n G^{t}} B \subset_{G} D$ and $A \subset_{G^{t}} C \subset_{n G} D$, i.e.

$$
\begin{aligned}
S & =\left\{(i, \phi, j, k) \mid\left(G^{t}\right)_{i j} G_{j k} \neq 0,1 \leq \phi \leq n\left(G^{t}\right)_{i j}\right\} \text { and } \\
T & =\left\{(i, l, \psi, k) \mid\left(G^{t}\right)_{i l} G_{l k} \neq 0,1 \leq \psi \leq n G_{l k}\right\} .
\end{aligned}
$$

Then by Theorem 1.3 the existence of a symmetric commuting square of this form is equivalent to the existence of a pair of unitaries u and v such that:

$$
\begin{gathered}
u=\underset{(i, k)}{\oplus} u^{(i, k)}, \quad u^{(i, k)}=\left(u_{(j, \phi, l, \psi)}^{(i, k)}\right)_{\substack{(i, \phi, j, k) \in S \\
(i, l, \psi, k) \in T}} \quad \text { for }(i, k) \text { such that }\left(G^{t} G\right)_{i k} \neq 0, \\
v=\underset{(j, l)}{\oplus} v^{(j, l)}, \quad v^{(j, l)}=\left(v_{(i, \phi, k, \psi)}^{(j, l)}\right)_{\substack{(i, \phi, j, k) \in S \\
(i, l, \psi, k) \in T}} \quad \text { for }(j, l) \text { such that }\left(G G^{t}\right)_{j l} \neq 0, \text { and } \\
v_{(i, \phi, k, \psi)}^{(j, l)}=\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}} u_{(j, \phi, l, \psi)}^{(i, k)} \quad \text { for all }(i, \phi, j, k) \in S \text { and }(i, l, \psi, k) \in T .
\end{gathered}
$$

We want to find such unitaries u and v for (2.3).

Figure 4: Paths in S

We will use labels of the form $\left(a_{i}, \phi, b_{j}, d_{k}\right)$ for paths in S

Figure 5: Paths in T
and labels of the form $\left(a_{i}, c_{l}, \psi, d_{k}\right)$ for paths in T. Thick lines represent n edges.
Recall that in $\omega \cdot 2$ form we have

$$
\vec{\xi}=\begin{gathered}
\text { upper }\left(\begin{array}{l}
\vec{s} \\
\text { lower } \\
\vec{t}
\end{array}\right) .
\end{gathered}
$$

and upper $=\{1,2, \ldots, N-1\} \cup\left\{N+2 k+1 \mid k \in \mathbb{N}_{0}\right\}$ and lower $=\left\{N+2 k \mid k \in \mathbb{N}_{0}\right\}$.

Using (2.2) it follows that

$$
\begin{align*}
s_{k} & =\xi_{k}=1 \text { for } k=1,2, \ldots, N-1, \\
s_{N+k} & =\xi_{N+2 k+1}=\frac{N-1}{(N-2)^{k+1}} \text { for } k \in \mathbb{N}_{0}, \tag{2.5}\\
t_{k} & =\xi_{N+2 k-2}=\frac{(N-1) \sqrt{N-2}}{(N-2)^{k}} \quad \text { for } \quad k \in \mathbb{N} .
\end{align*}
$$

We see that u has block structure of the form

where \times at $\left(a_{i}, d_{k}\right)$ denotes a non-empty block $u^{\left(a_{i}, d_{k}\right)}$, i.e. there exists at least one S-path and at least one T-path from a_{i} to d_{k}.

Note that if we pick $a_{i}, b_{j}, c_{l}, d_{k}$ such that there exist ϕ, ψ for which $\left(a_{i}, \phi, b_{j}, d_{k}\right) \in$ S and $\left(a_{i}, c_{l}, \psi, d_{k}\right) \in T$ then actually $\left(a_{i}, \phi^{\prime}, b_{j}, d_{k}\right) \in S$ and $\left(a_{i}, c_{l}, \psi^{\prime}, d_{k}\right) \in T$ for every $\phi^{\prime}, \psi^{\prime} \in\{1,2, \ldots, n\}$. So every $u^{\left(a_{i}, d_{k}\right)}$ (and every $v^{\left(b_{j}, c_{l}\right)}$) is built from some number of elementary $n \times n$ blocks (i.e. elements of $\mathbf{M}_{n}(\mathbb{C})$). In the case of $u^{\left(a_{i}, d_{k}\right)}$ we label these blocks by $\left(b_{j}, c_{l}\right)$ and use the notation $u_{\left(b_{j}, c_{l}\right)}^{\left(a_{i}, d_{k}\right)}=\left(u_{\left(b_{j}, \phi, c_{l}, \psi\right)}^{\left(a_{i}, d_{k}\right)}\right)_{1 \leq \phi, \psi \leq n}$. In the case of $v^{\left(b_{j}, c_{l}\right)}$ we label the blocks by $\left(a_{i}, d_{k}\right)$ and write $v_{\left(a_{i}, d_{k}\right)}^{\left(b_{j}, c_{l}\right)}=\left(v_{\left(a_{i}, \phi, d_{k}, \psi\right)}^{\left(b_{j}, c_{l}\right)}\right)_{1 \leq \phi, \psi \leq n}$. (For $a_{i}, b_{j}, c_{l}, d_{k}$ as above).

From Figure 4 and Figure 5 we deduce:

- For $\left(a_{1}, d_{1}\right)$ all S-paths go through one of $b_{1}, b_{2}, \ldots, b_{N}$ and all T-paths go through one of $c_{1}, c_{2}, \ldots, c_{N}$ so $u^{\left(a_{1}, d_{1}\right)}$ consists of $N \cdot N=N^{2}$ elementary $n \times n$ blocks.
- For $\left(a_{i}, d_{i}\right)$ s.t. $i>1$ all S-paths go through b_{N+i-2} or b_{N+i-1} and all T-paths go through c_{N+i-2} or c_{N+i-1} so $u^{\left(a_{i}, d_{i}\right)}$ consists of $2 \cdot 2=4$ elementary $n \times n$ blocks.
- For $\left(a_{i}, d_{i+1}\right)$ all S-paths go through b_{N+i-1} and all T-paths go through c_{N+i-1} so $u^{\left(a_{i}, d_{i+1}\right)}$ consists of a single elementary $n \times n$ block.
- For $\left(a_{i+1}, d_{i}\right)$ all S-paths go through b_{N+i-2} and all T-paths go through c_{N+i-2} so $u^{\left(a_{i+1}, d_{i}\right)}$ consists of a single elementary $n \times n$ block.

Now we know that u is of the form

where at each $\left(a_{i}, d_{k}\right)$ are blocks which constitute $u^{\left(a_{i}, d_{k}\right)}$ and eachrepresents some elementary $n \times n$ block $u_{\left(b_{j}, c_{l}\right)}^{\left(a_{i}, d_{k}\right)}$.
Since the elementary $n \times n$ block $u_{\left(b_{j}, c_{l}\right)}^{\left(a_{i}, d_{k}\right)}$ exists if and only if there exists an elementary $n \times n$
block $v_{\left(a_{i}, d_{k}\right)}^{\left(b_{j}, c_{l}\right)}$, we can read the block structure of v from the block structure of u :

Here at each $\left(b_{j}, c_{l}\right)$ are blocks which constitute $v^{\left(b_{j}, c_{l}\right)}$ and each \square represents some elementary $n \times n$ block $v_{\left(a_{i}, d_{k}\right)}^{\left(b_{j}, c_{l}\right)}$.

Note that

$$
v_{\left(a_{i}, \phi, d_{k}, \psi\right)}^{\left(b_{j}, c_{l}\right)}=\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}} u_{\left(b_{j}, \phi, c_{l}, \psi\right)}^{\left(a_{i}, d_{k}\right)} \quad \text { for all }\left(a_{i}, \phi, b_{j}, d_{k}\right) \in S \text { and }\left(a_{i}, c_{l}, \psi, d_{k}\right) \in T
$$

is equivalent to

$$
v_{\left(a_{i}, d_{k}\right)}^{\left(b_{j}, c_{l}\right)}=\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}} u_{\left(b_{j}, c_{l}\right)}^{\left(a_{i}, d_{k}\right)} \quad \text { for all }\left(a_{i}, 1, b_{j}, d_{k}\right) \in S \text { and }\left(a_{i}, c_{l}, 1, d_{k}\right) \in T
$$

For each elementary $n \times n$ block in v (or u) we now use (2.5) to compute the corresponding value $\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}$:

- If $1 \leq j, l \leq N-1$ then $i=k=1$ and $\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}=t_{1}=\frac{N-1}{\sqrt{N-2}}$.
- If $j=N$ and $1 \leq l \leq N-1$ then $i=k=1$ and $\sqrt{\frac{t_{t_{i} t_{k}}^{s_{j}}}{s_{l}}}=\frac{t_{1}}{\sqrt{s_{N}}}=\sqrt{N-1}$.
- If $l=N$ and $1 \leq j \leq N-1$ then $i=k=1$ and $\sqrt{\frac{t_{i} i_{k}}{s_{j} s_{l}}}=\frac{t_{1}}{\sqrt{s_{N}}}=\sqrt{N-1}$.
- If $j, l \geq N$ and $l=j+1$ then $i=k=j-N+2$ and $\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}=\frac{t_{j-N+2}}{\sqrt{s_{j} s_{j+1}}}=1$.
- If $j, l \geq N$ and $j=l+1$ then $i=k=l-N+2$ and $\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}=\frac{t_{l-N+2}}{\sqrt{s_{l+1} s_{l}}}=1$.
- If $j=l \geq N$ then $i, k \in\{j-N+1, j-N+2\}$ so:
- If $i=k=j-N+1$ then $\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}=\frac{t_{j-N+1}}{s_{j}}=\sqrt{N-2}$.
- If $i=k=j-N+2$ then $\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}=\frac{t_{j-N+2}}{s_{j}}=\frac{1}{\sqrt{N-2}}$.
- If $i \neq j$ then $\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}=\frac{\sqrt{t_{j-N+1} t_{j-N+2}}}{s_{j}}=1$.

If we put each $\left(\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}\right)^{-1}$ (i.e. the multiplicative inverse of the computed value) in the corresponding spot inside the shape of the block structure of v (or u) we get a matrix that tells us with what we need to multiply each elementary $n \times n$ block of v to get the corresponding elementary $n \times n$ block of u.

This matrix, in the shape of the block structure of u, is

We see in (2.6) that each $u^{\left(a_{i}, d_{i+1}\right)}$ has only one elementary $n \times n$ block $u_{\left(b_{N+i-1}, c_{N+i-1}\right)}^{\left(a_{i}, d_{i+1}\right)}$
which thus must be unitary. The same is true for $u^{\left(a_{i+1}, d_{i}\right)}$ and $u_{\left(b_{N+i-1}, c_{N+i-1}\right)}^{\left(a_{i+1}, d_{i}\right)}$. Then (2.7) shows that, for $i \geq 1$, each $v^{\left(b_{N+i-1}, c_{N+i-1}\right)}$ contains $v_{\left(a_{i}, d_{i+1}\right)}^{\left(b_{N+i-1}, c_{N+i-1}\right)}=1 \cdot u_{\left(b_{N+i-1}, c_{N+i-1}\right)}^{\left(a_{i}, d_{i+1}\right)}$ and $v_{\left(a_{i+1}, d_{i}\right)}^{\left(b_{N+i-1}, c_{N+i-1}\right)}=1 \cdot u_{\left(b_{N+i-1}, c_{N+i-1}\right)}^{\left(a_{i+1}, d_{i}\right)}$ which are both unitary.

Lemma 2.4. Let

$$
M=\left(\begin{array}{ll}
M_{1} & M_{2} \\
M_{3} & M_{4}
\end{array}\right)
$$

be a $2 n \times 2 n$ block matrix where $M_{1}, M_{2}, M_{3}, M_{4}$ are $n \times n$ matrices such that M_{2} and M_{3} are unitary. Then the following are equivalent:
(i) M is unitary.
(ii) $M_{1}=M_{4}=0$.

Proof. Trivial.

Applying Lemma 2.4 to $v^{\left(b_{N+i-1}, c_{N+i-1}\right)}$ we get that

$$
\begin{array}{ll}
v_{\left(a_{i}, d_{i}\right)}^{\left(b_{N+i-1}, c_{N+i-1}\right)}=v_{\left(a_{i+1}, d_{i+1}\right)}^{\left(b_{N+i-1}, c_{N+i-1}\right)}=0 & \text { for all } i \in \mathbb{N}, \text { which implies } \\
u_{\left(b_{N+i-1}, c_{N+i-1}\right)}^{\left(a_{i}, d_{i}\right)}=u_{\left(b_{N+i-1}, c_{N+i-1}\right)}^{\left(a_{i+1}, d_{i+1}\right)}=0 & \text { for all } i \in \mathbb{N} .
\end{array}
$$

Hence we deduce that u has to be of the form

and v has to be of the form

where each \square and $*$ is an elementary $n \times n$ block.

Note that for every remaining non-zero elementary $n \times n$ block in all $v^{\left(b_{j}, c_{l}\right)}$ of v for $j, l \geq N$ $($ denoted by $*)$ we can pick an arbitrary $n \times n$ unitary matrix. This is because each such $*$ in v is equal to some non-zero elementary $n \times n$ block in some $u^{\left(a_{i}, d_{k}\right)}$ of u for $i+k>2$ (again denoted by $*$) because the corresponding $\sqrt{\frac{t_{i} t_{k}}{s_{j} s_{l}}}=1$. Thus each such choice is consistent and all resulting $v^{\left(b_{j}, c_{l}\right)}$ for $j, l \geq N$ and $u^{\left(a_{i}, d_{k}\right)}$ for $i+k>2$ are unitary due to Lemma 2.4.

Observe that if u and v are bi-unitary matrices of this form and we fix their \square entries, then for every choice of $n \times n$ unitaries for $*$ entries of v the resulting matrices u and v are bi-unitarily equivalent (see [JS97]), i.e. all such commuting squares are $*$-isomorphic and thus give rise to isomorphic subfactors.

All this proves the following proposition:
Proposition 2.5. A symmetric commuting square of the form (2.3) exists if and only if there exist $N^{2}-1 n \times n$ unitary matrices $v^{\left(b_{j}, c_{l}\right)}=v_{\left(a_{1}, d_{1}\right)}^{\left(b_{j}, c_{l}\right)}$ such that the $(N \cdot n) \times(N \cdot n)$ matrix

$$
\begin{aligned}
& u^{\left(a_{1}, d_{1}\right)}=\left(\begin{array}{ccccc}
u_{\left(b_{1}, c_{1}\right)}^{\left(a_{1}, d_{1}\right)} & u_{\left(b_{1}, c_{2}\right)}^{\left(a_{1}, d_{1}\right)} & \cdots & u_{\left(b_{1}, c_{N-1}\right)}^{\left(a_{1}, d_{1}\right)} & u_{\left(b_{1}, c_{N}\right)}^{\left(a_{1}, d_{1}\right)} \\
u_{\left(b_{2}, c_{1}\right)}^{\left(a_{1}\right)} & u_{\left(b_{2}, c_{2}\right)}^{\left(a_{1}, d_{1}\right)} & \ldots & u_{\left(b_{2}, c_{N-1}\right)}^{\left(a_{1}, d_{1}\right)} & u_{\left(b_{2}, c_{N}\right)}^{\left(a_{1}, d_{1}\right)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
u_{\left(b_{N-1}, c_{1}\right)}^{\left(a_{1}, d_{1}\right)} & u_{\left(b_{N-1}, c_{2}\right)}^{\left(a_{1}, d_{1}\right)} & \cdots & u_{\left(b_{N-1}, c_{N-1}\right)}^{\left(a_{1}, d_{1}\right)} & u_{\left(b_{N-1}, c_{N}\right)}^{\left(a_{1}, d_{1}\right)} \\
u_{\left(b_{N}, c_{1}\right)}^{\left(a_{1}\right)} & u_{\left(b_{N}, c_{2}\right)}^{\left(a_{1}, d_{1}\right)} & \cdots & u_{\left(b_{N}, c_{N-1}\right)}^{\left(a_{1}, d_{1}\right)} & 0
\end{array}\right)= \\
&=\left(\begin{array}{cccccc}
\frac{\sqrt{N-2}}{N-1} v^{\left(b_{1}, c_{1}\right)} & \frac{\sqrt{N-2}}{N-1} v^{\left(b_{1}, c_{2}\right)} & \ldots & \frac{\sqrt{N-2}}{N-1} v^{\left(b_{1}, c_{N-1}\right)} & \frac{1}{\sqrt{N-1}} v^{\left(b_{1}, c_{N}\right)} \\
\frac{\sqrt{N-2}}{N-1} v^{\left(b_{2}, c_{1}\right)} & \frac{\sqrt{N-2}}{N-1} v^{\left(b_{2}, c_{2}\right)} & \ldots & \frac{\sqrt{N-2}}{N-1} v^{\left(b_{2}, c_{N-1}\right)} & \frac{1}{\sqrt{N-1}} v^{\left(b_{2}, c_{N}\right)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\sqrt{N-2}}{N-1} v^{\left(b_{N-1}, c_{1}\right)} & \frac{\sqrt{N-2}}{N-1} v^{\left(b_{N-1}, c_{2}\right)} & \ldots & \frac{\sqrt{N-2}}{N-1} v^{\left(b_{N-1}, c_{N-1}\right)} & \frac{1}{\sqrt{N-1}} v^{\left(b_{N-1}, c_{N}\right)} \\
\frac{1}{\sqrt{N-1}} v^{\left(b_{N}, c_{1}\right)} & \frac{1}{\sqrt{N-1}} v^{\left(b_{N}, c_{2}\right)} & \ldots & \frac{1}{\sqrt{N-1}} v^{\left(b_{N}, c_{N-1}\right)} & 0
\end{array}\right)
\end{aligned}
$$

is also unitary.

2.3 Case $n=1$, general N

Our goal is to find symmetric commuting squares based on N-stars with A_{∞}-tail of the form (2.3) for $n=1$. According to Proposition 2.5 it is enough to find $N^{2}-11 \times 1$ unitary matrices (i.e. complex numbers of absolute value 1) $V_{j, k}$, for $1 \leq j, k \leq N$ and $j \neq N$ or $k \neq N$ such that

$$
U=\left(\begin{array}{ccccc}
\frac{\sqrt{N-2}}{N-1} V_{1,1} & \frac{\sqrt{N-2}}{N-1} V_{1,2} & \cdots & \frac{\sqrt{N-2}}{N-1} V_{1, N-1} & \frac{1}{\sqrt{N-1}} V_{1, N} \\
\frac{\sqrt{N-2}}{N-1} V_{2,1} & \frac{\sqrt{N-2}}{N-1} V_{2,2} & \cdots & \frac{\sqrt{N-2}}{N-1} V_{2, N-1} & \frac{1}{\sqrt{N-1}} V_{2, N} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\sqrt{N-2}}{N-1} V_{N-1,1} & \frac{\sqrt{N-2}}{N-1} V_{N-1,2} & \cdots & \frac{\sqrt{N-2}}{N-1} V_{N-1, N-1} & \frac{1}{\sqrt{N-1}} V_{N-1, N} \\
\frac{1}{\sqrt{N-1}} V_{N, 1} & \frac{1}{\sqrt{N-1}} V_{N, 2} & \cdots & \frac{1}{\sqrt{N-1}} V_{N, N-1} & 0
\end{array}\right)
$$

is unitary.
Remark 2.6. If U is such that its corresponding u and v satisfy the conditions of Proposition 2.5, then pre-multiplying or post-multiplying U by diagonal unitary matrices results with U^{\prime} whose corresponding u^{\prime} and v^{\prime} again satisfy Proposition 2.5 and are bi-unitarily equivalent (see [JS97]) to u and v, i.e. their commuting squares are $*$-isomorphic and give rise to isomorphic subfactors. Additionaly, if we permute the first $N-1$ rows and/or columns of such U in any way, then the u^{\prime} and v^{\prime} of the resulting matrix U^{\prime} will again satisfy Proposition 2.5 and, while strictly speaking they will not in general be bi-unitarily equivalent to u and v, due to (2.8), (2.9) and (2.10) their commuting squares will be $*$-isomorphic and give rise to isomorphic subfactors. We will say that matrices U and U^{\prime} obtained from one another by some finite sequence of these two types of transformations are equivalent.

Due to Remark 2.6 we are only interested in U up to equivalence, so we can take $V_{1,1}=$ $V_{j, N}=V_{N, k}=1$ for all $1 \leq j, k \leq N-1$ by multiplying rows and columns of U by appropriate
scalars and then we have

$$
U=\left(\begin{array}{ccccc}
\frac{\sqrt{N-2}}{N-1} V_{1,1} & \frac{\sqrt{N-2}}{N-1} V_{1,2} & \cdots & \frac{\sqrt{N-2}}{N-1} V_{1, N-1} & \frac{1}{\sqrt{N-1}} \tag{2.11}\\
\frac{\sqrt{N-2}}{N-1} V_{2,1} & \frac{\sqrt{N-2}}{N-1} V_{2,2} & \cdots & \frac{\sqrt{N-2}}{N-1} V_{2, N-1} & \frac{1}{\sqrt{N-1}} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\sqrt{N-2}}{N-1} V_{N-1,1} & \frac{\sqrt{N-2}}{N-1} V_{N-1,2} & \cdots & \frac{\sqrt{N-2}}{N-1} V_{N-1, N-1} & \frac{1}{\sqrt{N-1}} \\
\frac{1}{\sqrt{N-1}} & \frac{1}{\sqrt{N-1}} & \cdots & \frac{1}{\sqrt{N-1}} & 0
\end{array}\right)
$$

where also $V_{1,1}=1$.
Remark 2.7. Unless otherwise stated, U will be assumed to be of the form as in (2.11) (along with $V_{1,1}=1$).
U is unitary if and only if its rows form an orthonormal basis of \mathbb{C}^{N} with respect to the standard inner product. Thus to find U, we are looking to solve the following system of equations:

$$
\begin{align*}
\sum_{k=1}^{N-1} V_{j, k} & =0, \quad \text { for } 1 \leq j \leq N-1 \\
\sum_{l=1}^{N-1} V_{j, l} \overline{V_{k, l}} & =-\frac{N-1}{N-2}, \quad \text { for } 1 \leq j<k \leq N-1, \tag{2.12}\\
\left|V_{j, k}\right| & =1 \quad \text { for } 1 \leq j, k \leq N-1
\end{align*}
$$

or

$$
\begin{gather*}
\sum_{k=1}^{N-1} \cos \Phi_{j, k}=0, \quad \text { for } 1 \leq j \leq N-1, \\
\sum_{k=1}^{N-1} \sin \Phi_{j, k}=0, \quad \text { for } 1 \leq j \leq N-1, \\
\sum_{l=1}^{N-1} \cos \left(\Phi_{j, l}-\Phi_{k, l}\right)=-\frac{N-1}{N-2}, \quad \text { for } 1 \leq j<k \leq N-1, \tag{2.13}\\
\sum_{l=1}^{N-1} \sin \left(\Phi_{j, l}-\Phi_{k, l}\right)=0, \quad \text { for } 1 \leq j<k \leq N-1
\end{gather*}
$$

when those equations are separated into their real and imaginary parts, where $\Phi_{j, k} \in[0,2 \pi)$ is defined by $V_{j, k}=e^{i \cdot \Phi_{j, k}}$ (i.e. $\left.\Phi_{j, k}=\arg \left(V_{j, k}\right)=\arg \left(U_{j, k}\right)\right)$ for all $1 \leq j, k \leq N-1$.

The first and the third row of equations in (2.12) imply that for each $j \in\{1,2, \ldots, N-1\}$ the numbers $V_{j, 1}, V_{j, 2}, \ldots, V_{j, N-1}$ are vectors in the complex plane that correspond to the sides of some equilateral $(N-1)$-gon, i.e. the rows of the upper left $(N-1) \times(N-1)$ submatrix of U represent sides of some equilateral ($N-1$)-gons in the complex plane. Note that these $(N-1)$-gons can be non-convex, degenerate or self-intersecting.

Analogous statements are also true for the columns of U, so this proves the following:
Lemma 2.8. Let U be as in Remark 2.7. Then the rows and the columns of its corresponding matrix $\Phi=\left(\Phi_{j, k}\right)_{1 \leq j, k \leq N-1}$ consist of directions of sides of some equilateral ($N-1$)-gons in the complex plane.

Note that Lemma 2.8 does not hold for all matrices equivalent to U, because changing the last row (resp. column) of U means that the other rows (resp. columns) do not need to have this property anymore.

We will denote the rows of U by R_{j} and columns of U by C_{k}, i.e. we define

$$
\begin{array}{ll}
R_{j}=\left(U_{j, k}\right)_{1 \leq k \leq N}, & \text { for } 1 \leq j \leq N, \\
C_{k}=\left(U_{j, k}\right)_{1 \leq j \leq N}, & \text { for } 1 \leq k \leq N .
\end{array}
$$

2.3.1 Case $n=1, N=4$

For $N=4$, equilateral 3-gons are equilateral triangles.

Remark 2.9. The directions of sides of an equilateral triangle in the complex plane form the set $\left\{\alpha, \alpha+\frac{2 \pi}{3}, \alpha+\frac{4 \pi}{3}\right\}$ for some $\alpha \in\left[0, \frac{2 \pi}{3}\right)$. The following is an example of an equilateral triangle in the complex plane whose sides are labeled by their directions in this manner:

Figure 6: Equilateral triangle in the complex plane

Assume that, for $N=4$, there exists a unitary matrix U as in Remark 2.7. Then we can apply Lemma 2.8 to its corresponding matrix Φ. Note that $V_{1,1}=1$ implies $\Phi_{1,1}=0$. Now, without loss of generality (by reordering rows and columns if necessary), Remark 2.9 implies that

$$
\Phi=\left(\begin{array}{ccc}
0 & \frac{2 \pi}{3} & \frac{4 \pi}{3} \\
\frac{2 \pi}{3} & * & * \\
\frac{4 \pi}{3} & * & *
\end{array}\right)
$$

Using Remark 2.9 again, we get

$$
\Phi=\left(\begin{array}{ccc}
0 & \frac{2 \pi}{3} & \frac{4 \pi}{3} \\
\frac{2 \pi}{3} & \frac{4 \pi}{3} & 0 \\
\frac{4 \pi}{3} & 0 & \frac{2 \pi}{3}
\end{array}\right)
$$

But now $R_{1}=\left(\frac{\sqrt{2}}{3},-\frac{\sqrt{2}}{6}+\frac{\sqrt{6}}{6} i,-\frac{\sqrt{2}}{6}-\frac{\sqrt{6}}{6} i, \frac{1}{2}\right)$ and $R_{2}=\left(-\frac{\sqrt{2}}{6}+\frac{\sqrt{6}}{6} i,-\frac{\sqrt{2}}{6}-\frac{\sqrt{6}}{6} i, \frac{\sqrt{2}}{3}, \frac{1}{2}\right)$ so $\left\langle R_{1} \mid R_{2}\right\rangle=-\frac{1}{12}-\frac{\sqrt{3}}{3} i \neq 0$. Thus U is not unitary which is a contradiction.

Thus according to Proposition 2.5 there are no symmetric commuting squares of the form (2.3) for $N=4$ and $n=1$. This is the reason why Bisch's construction of an irreducible hyperfinite subfactor with index 4.5 is more involved and is based on a symmetric commuting
square of the form (2.3) for $N=4$ and $n=2$ ([Bis94b]).

2.3.2 Case $n=1, N=5$

For $N=5$, equilateral 4-gons are equilateral quadrilaterals, i.e. rhombuses.
Remark 2.10. The directions of sides of a rhombus in the complex plane form the multiset $\{\alpha, \beta, \alpha+\pi, \beta+\pi\}$ for some $\alpha, \beta \in[0, \pi)$. The following is an example of a rhombus in the complex plane whose sides are labeled by their directions in this manner:

Figure 7: Rhombus in the complex plane

We want to find unitary matrices U of the form from Remark 2.7. We can apply Lemma 2.8 to its corresponding matrix Φ. Note that $V_{1,1}=1$ implies $\Phi_{1,1}=0$, so, without loss of generality (by reordering rows and columns if necessary), Remark 2.10 implies that we need to have

$$
\Phi=\left(\begin{array}{cccc}
0 & \pi & \alpha & \alpha+\pi \\
\pi & * & * & * \\
\beta & * & * & * \\
\beta+\pi & * & * & *
\end{array}\right) \quad \text { for some } \alpha, \beta \in[0,2 \pi)
$$

Note that additions of directions and equalities of directions are considered $\bmod 2 \pi$.
If $\Phi_{2,2}=0$, then Remark 2.10 implies that $\Phi_{2,3}=\gamma$ and $\Phi_{2,4}=\gamma+\pi$ for some $\gamma \in[0,2 \pi)$. But then $\left\langle R_{1} \mid R_{2}\right\rangle \neq 0$ so we must have $\Phi_{2,2} \neq 0$. Thus, due to Remark 2.10, without loss of
generality (by reordering rows and columns if necessary), we must have

$$
\Phi=\left(\begin{array}{cccc}
0 & \pi & \alpha & \alpha+\pi \\
\pi & \gamma+\pi & 0 & \gamma \\
\beta & 0 & * & * \\
\beta+\pi & \gamma & * & *
\end{array}\right) \quad \text { for some } \alpha, \beta, \gamma \in[0,2 \pi)
$$

If any of α, β, γ is 0 or π, then $\left\langle R_{1} \mid R_{2}\right\rangle \neq 0$ or $\left\langle C_{1} \mid C_{2}\right\rangle \neq 0$ so we must have $\alpha, \beta, \gamma \notin$ $\{0, \pi\}$.

If $\Phi_{3,3}=\pi$, then Remark 2.10 implies that

$$
\Phi=\left(\begin{array}{cccc}
0 & \pi & \alpha & \alpha+\pi \\
\pi & \gamma+\pi & 0 & \gamma \\
\beta & 0 & \pi & \beta+\pi \\
\beta+\pi & \gamma & \alpha+\pi & *
\end{array}\right) \quad \text { for some } \alpha, \beta, \gamma \in[0,2 \pi)
$$

Thus we have

$$
\begin{aligned}
\left\langle R_{2} \mid R_{3}\right\rangle & =0 \\
\Longrightarrow \quad \frac{3}{16}\left(-e^{-i \beta}-e^{i \gamma}-1-e^{i(\gamma-\beta)}\right)+\frac{1}{4} & =0 \\
\Longrightarrow \quad\left(1+e^{-i \beta}\right)\left(1+e^{i \gamma}\right) & =\frac{4}{3}
\end{aligned}
$$

Similarly, $\left\langle C_{2} \mid C_{3}\right\rangle=0 \Longrightarrow\left(1+e^{-i \alpha}\right)\left(1+e^{i \gamma}\right)=\frac{4}{3}$ so $\alpha=\beta$ and then Remark 2.10 applied to the 4th row (or column) gives $\alpha=\beta=\gamma$. But now $\left\langle R_{1} \mid R_{3}\right\rangle \neq 0$, so we must have $\Phi_{3,3} \neq \pi$. Then, due to Remark 2.10, we must have $\Phi_{3,3}=\alpha+\pi=\beta+\pi$ which implies
$\Phi_{3,4}=\Phi_{4,3}=\pi$ and $\alpha=\beta=\gamma$ so

$$
\Phi=\left(\begin{array}{cccc}
0 & \pi & \alpha & \alpha+\pi \\
\pi & \alpha+\pi & 0 & \alpha \\
\alpha & 0 & \alpha+\pi & \pi \\
\alpha+\pi & \alpha & \pi & 0
\end{array}\right) \quad \text { for some } \alpha \in[0,2 \pi)
$$

Solving $\left\langle R_{1} \mid R_{2}\right\rangle=0$ for $e^{i \alpha}$ gives two solutions: $e^{i \alpha}=\frac{1}{3} \pm \frac{2 \sqrt{2}}{3} i$. Set $z=\frac{1}{3}+\frac{2 \sqrt{2}}{3} i$. Two matrices U

$$
\left(\begin{array}{ccccc}
\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} z & \frac{1}{2} \\
-\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} z & \frac{1}{2} \\
\frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} & \frac{1}{2} \\
-\frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccccc}
\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} \bar{z} & -\frac{\sqrt{3}}{4} \bar{z} & \frac{1}{2} \\
-\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} \bar{z} & \frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} \bar{z} & \frac{1}{2} \\
\frac{\sqrt{3}}{4} \bar{z} & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} \bar{z} & -\frac{\sqrt{3}}{4} & \frac{1}{2} \\
-\frac{\sqrt{3}}{4} \bar{z} & \frac{\sqrt{3}}{4} \bar{z} & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)
$$

that correspond to these solutions are both unitary. Note that the second matrix is equivalent to the first one via

$$
\rightarrow\left(\begin{array}{ccccc}
\frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & \frac{1}{2} \\
-\frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} & \frac{1}{2} \\
\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} z & \frac{1}{2} \\
-\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} z & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} z & \frac{1}{2} \\
-\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} z & \frac{1}{2} \\
\frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} & \frac{1}{2} \\
-\frac{\sqrt{3}}{4} z & \frac{\sqrt{3}}{4} z & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right)
$$

where in the first step we multiply the first four rows by z and the last column by \bar{z}, and in the second step we permute the rows by (23) and the columns by $(13)(24)$. So there is a
unique (up to equivalence) unitary matrix U :

$$
U=\left(\begin{array}{ccccc}
\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{12}+\frac{\sqrt{6}}{6} i & -\frac{\sqrt{3}}{12}-\frac{\sqrt{6}}{6} i & \frac{1}{2} \tag{2.14}\\
-\frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{12}-\frac{\sqrt{6}}{6} i & \frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{12}+\frac{\sqrt{6}}{6} i & \frac{1}{2} \\
\frac{\sqrt{3}}{12}+\frac{\sqrt{6}}{6} i & \frac{\sqrt{3}}{4} & -\frac{\sqrt{3}}{12}-\frac{\sqrt{6}}{6} i & -\frac{\sqrt{3}}{4} & \frac{1}{2} \\
-\frac{\sqrt{3}}{12}-\frac{\sqrt{6}}{6} i & \frac{\sqrt{3}}{12}+\frac{\sqrt{6}}{6} i & -\frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right) .
$$

Since $\alpha=\arg \left(\frac{1}{3}+\frac{2 \sqrt{2}}{3} i\right)=\arccos \frac{1}{3}$, its corresponding matrix Φ is

$$
\Phi=\left(\begin{array}{cccc}
0 & \pi & \arccos \frac{1}{3} & \arccos \frac{1}{3}+\pi \\
\pi & \arccos \frac{1}{3}+\pi & 0 & \arccos \frac{1}{3} \\
\arccos \frac{1}{3} & 0 & \arccos \frac{1}{3}+\pi & \pi \\
\arccos \frac{1}{3}+\pi & \arccos \frac{1}{3} & \pi & 0
\end{array}\right)
$$

All rhombuses of Φ are the same (up to permutation of sides):

Figure 8: Rhombus for $N=5$ and $n=1$

In the context of Remark 2.10, we have $\alpha=0$ and $\beta=\arccos \frac{1}{3}$.
It follows from Proposition 2.5 that there exists a symmetric commuting square of the form (2.3) for $N=5$ and $n=1$. Thus, by (1.3), (2.4) and Corollary 1.15, there is an irreducible subfactor of the hyperfinite II_{1} factor constructed from this commuting square whose index is $\frac{(N-1)^{2}}{N-2}=\frac{16}{3}=5.333 \ldots$

2.3.3 \quad Case $n=1, N=6$ and $N=7$

We studied the question of existence of a unitary matrix U from (2.11) for $N=4$ (in Subsection 2.3.1) and for $N=5$ (in Subsection 2.3.2) by using a parametrization of equilateral triangles (stated in Remark 2.9) and a parametrization of rhombuses (stated in Remark 2.10). While such parametrizations are possible for equilateral ($N-1$)-gons for $N \geq 6$, in these cases the number of parameters ($N-2$, or $N-3$ when considered up to rotation) and additional conditions on these parameters make them less useful for solving the problem directly.

The examples for $N=6$ and $N=7$ were discovered by solving the equations in (2.13) numerically and then finding the corresponding exact solutions.

For $N=6$, there exists at least one unitary matrix U of the form as in Remark 2.7:

$$
U=\left(\begin{array}{cccccc}
\frac{2}{5} & -\frac{1}{10}+\frac{\sqrt{15}}{10} i & -\frac{1}{10}+\frac{\sqrt{15}}{10} i & -\frac{1}{10}-\frac{\sqrt{15}}{10} i & -\frac{1}{10}-\frac{\sqrt{15}}{10} i & \frac{1}{\sqrt{5}} \\
-\frac{1}{10}+\frac{\sqrt{15}}{10} i & \frac{2}{5} & -\frac{1}{10}-\frac{\sqrt{15}}{10} i & -\frac{1}{10}-\frac{\sqrt{15}}{10} i & -\frac{1}{10}+\frac{\sqrt{15}}{10} i & \frac{1}{\sqrt{5}} \\
-\frac{1}{10}+\frac{\sqrt{15}}{10} i & -\frac{1}{10}-\frac{\sqrt{15}}{10} i & \frac{2}{5} & -\frac{1}{10}+\frac{\sqrt{15}}{10} i & -\frac{1}{10}-\frac{\sqrt{15}}{10} i & \frac{1}{\sqrt{5}} \\
-\frac{1}{10}-\frac{\sqrt{15}}{10} i & -\frac{1}{10}-\frac{\sqrt{15}}{10} i & -\frac{1}{10}+\frac{\sqrt{15}}{10} i & \frac{2}{5} & -\frac{1}{10}+\frac{\sqrt{15}}{10} i & \frac{1}{\sqrt{5}} \\
-\frac{1}{10}-\frac{\sqrt{15}}{10} i & -\frac{1}{10}+\frac{\sqrt{15}}{10} i & -\frac{1}{10}-\frac{\sqrt{15}}{10} i & -\frac{1}{10}+\frac{\sqrt{15}}{10} i & \frac{2}{5} & \frac{1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0
\end{array}\right) .
$$

Its corresponding matrix Φ is

$$
\Phi=\left(\begin{array}{ccccc}
0 & \arccos \frac{-1}{4} & \arccos \frac{-1}{4} & -\arccos \frac{-1}{4} & -\arccos \frac{-1}{4} \\
\arccos \frac{-1}{4} & 0 & -\arccos \frac{-1}{4} & -\arccos \frac{-1}{4} & \arccos \frac{-1}{4} \\
\arccos \frac{-1}{4} & -\arccos \frac{-1}{4} & 0 & \arccos \frac{-1}{4} & -\arccos \frac{-1}{4} \\
-\arccos \frac{-1}{4} & -\arccos \frac{-1}{4} & \arccos \frac{-1}{4} & 0 & \arccos \frac{-1}{4} \\
-\arccos \frac{-1}{4} & \arccos \frac{-1}{4} & -\arccos \frac{-1}{4} & \arccos \frac{-1}{4} & 0
\end{array}\right) .
$$

Note that $-\arccos \frac{-1}{4} \notin[0,2 \pi)$ and that it is equal $\bmod 2 \pi$ to $\arccos \frac{1}{4}+\pi \in[0,2 \pi)$.

All equilateral pentagons (5-gons) of Φ (from Lemma 2.8) are the same (up to permutation of sides). When its sides are ordered so that it is convex, it is degenerate, i.e. it is similar to a triangle with sides $1,2,2$:

Figure 9: Equilateral pentagon for $N=6$ and $n=1$

It follows from Proposition 2.5 that there exists a symmetric commuting square of the form (2.3) for $N=6$ and $n=1$ and, by (1.3), (2.4) and Corollary 1.15, there is an irreducible subfactor of the hyperfinite II_{1} factor constructed from this commuting square whose index is $\frac{(N-1)^{2}}{N-2}=\frac{25}{4}=6.25$.

For $N=7$, there exist at least two non-equivalent unitary matrices U of the form as in Remark 2.7.

The first solution U is:

$$
U=\left(\begin{array}{ccccccc}
\frac{\sqrt{5}}{6} & \frac{\sqrt{5}}{10}+\frac{2 \sqrt{5}}{15} i & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i-\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i & -\frac{\sqrt{5}}{6} i & -\frac{\sqrt{5}}{6} i & \frac{1}{\sqrt{6}} \tag{2.15}\\
\frac{\sqrt{5}}{10}+\frac{2 \sqrt{5}}{15} i & \frac{\sqrt{5}}{6} & -\frac{\sqrt{5}}{6} i & -\frac{\sqrt{5}}{6} i & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i \frac{1}{\sqrt{6}} \\
-\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i & -\frac{\sqrt{5}}{6} i & \frac{\sqrt{5}}{6} & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i & -\frac{\sqrt{5}}{6} i & \frac{\sqrt{5}}{10}+\frac{2 \sqrt{5}}{15} i & \frac{1}{\sqrt{6}} \\
-\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i & -\frac{\sqrt{5}}{6} i & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i & \frac{\sqrt{5}}{6} & \frac{\sqrt{5}}{10}+\frac{2 \sqrt{5}}{15} i & -\frac{\sqrt{5}}{6} i & \frac{1}{\sqrt{6}} \\
-\frac{\sqrt{5}}{6} i & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i & -\frac{\sqrt{5}}{6} i & \frac{\sqrt{5}}{10}+\frac{2 \sqrt{5}}{15} i & \frac{\sqrt{5}}{6} & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i \frac{1}{\sqrt{6}} \\
-\frac{\sqrt{5}}{6} i & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i \frac{\sqrt{5}}{10}+\frac{2 \sqrt{5}}{15} i & -\frac{\sqrt{5}}{6} i & -\frac{2 \sqrt{5}}{15}+\frac{\sqrt{5}}{10} i & \frac{\sqrt{5}}{6} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0
\end{array}\right) .
$$

Its corresponding matrix Φ is

$$
\Phi=\left(\begin{array}{cccccc}
0 & \arccos \frac{3}{5} & \arccos \frac{-4}{5} & \arccos \frac{-4}{5} & \frac{3 \pi}{2} & \frac{3 \pi}{2} \\
\arccos \frac{3}{5} & 0 & \frac{3 \pi}{2} & \frac{3 \pi}{2} & \arccos \frac{-4}{5} & \arccos \frac{-4}{5} \\
\arccos \frac{-4}{5} & \frac{3 \pi}{2} & 0 & \arccos \frac{-4}{5} & \frac{3 \pi}{2} & \arccos \frac{3}{5} \\
\arccos \frac{-4}{5} & \frac{3 \pi}{2} & \arccos \frac{-4}{5} & 0 & \arccos \frac{3}{5} & \frac{3 \pi}{2} \\
\frac{3 \pi}{2} & \arccos \frac{-4}{5} & \frac{3 \pi}{2} & \arccos \frac{3}{5} & 0 & \arccos \frac{-4}{5} \\
\frac{3 \pi}{2} & \arccos \frac{-4}{5} & \arccos \frac{3}{5} & \frac{3 \pi}{2} & \arccos \frac{-4}{5} & 0
\end{array}\right) .
$$

All equilateral hexagons (6-gons) of Φ are the same (up to permutation of sides). When its sides are ordered so that it is convex, it is degenerate, i.e. it is similar to a kite with sides 1, 1, 2, 2 :

Figure 10: First equilateral hexagon for $N=7$ and $n=1$

The second solution U is

$$
U=\left(\begin{array}{ccccccc}
\frac{\sqrt{5}}{6} & z & \frac{\sqrt{5}}{30}+\frac{\sqrt{30}}{15} i & -\frac{\sqrt{5}}{6} & -z & -\frac{\sqrt{5}}{30}-\frac{\sqrt{30}}{15} i \frac{1}{\sqrt{6}} \tag{2.16}\\
z & -\frac{\sqrt{5}}{30}-\frac{\sqrt{30}}{15} i & -z & \frac{\sqrt{5}}{30}+\frac{\sqrt{30}}{15} i & -\frac{\sqrt{5}}{6} & \frac{\sqrt{5}}{6} & \frac{1}{\sqrt{6}} \\
\frac{\sqrt{5}}{30}+\frac{\sqrt{30}}{15} i & -z & \frac{\sqrt{5}}{6} & -\frac{\sqrt{5}}{30}-\frac{\sqrt{30}}{15} i & z & -\frac{\sqrt{5}}{6} & \frac{1}{\sqrt{6}} \\
-\frac{\sqrt{5}}{6} & \frac{\sqrt{5}}{30}+\frac{\sqrt{30}}{15} i & -\frac{\sqrt{5}}{30}-\frac{\sqrt{30}}{15} i & z & \frac{\sqrt{5}}{6} & -z & \frac{1}{\sqrt{6}} \\
-z & -\frac{\sqrt{5}}{6} & z & \frac{\sqrt{5}}{6} & -\frac{\sqrt{5}}{30}-\frac{\sqrt{30}}{15} i & \frac{\sqrt{5}}{30}+\frac{\sqrt{30}}{15} i & \frac{1}{\sqrt{6}} \\
-\frac{\sqrt{5}}{30}-\frac{\sqrt{30}}{15} i & \frac{\sqrt{5}}{6} & -\frac{\sqrt{5}}{6} & -z & \frac{\sqrt{5}}{30}+\frac{\sqrt{30}}{15} i & z & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0
\end{array}\right)
$$

where $z=\frac{3 \sqrt{30}-2 \sqrt{5}}{60}+\frac{6 \sqrt{5}+\sqrt{30}}{60} i$. Its corresponding matrix Φ is

$$
\Phi=\left(\begin{array}{cccccc}
0 & \alpha & \arccos \frac{1}{5} & \pi & \alpha+\pi & \arccos \frac{1}{5}+\pi \\
\alpha & \arccos \frac{1}{5}+\pi & \alpha+\pi & \arccos \frac{1}{5} & \pi & 0 \\
\arccos \frac{1}{5} & \alpha+\pi & 0 & \arccos \frac{1}{5}+\pi & \alpha & \pi \\
\pi & \arccos \frac{1}{5} & \arccos \frac{1}{5}+\pi & \alpha & 0 & \alpha+\pi \\
\alpha+\pi & \pi & \alpha & 0 & \arccos \frac{1}{5}+\pi & \arccos \frac{1}{5} \\
\arccos \frac{1}{5}+\pi & 0 & \pi & \alpha+\pi & \arccos \frac{1}{5} & \alpha
\end{array}\right)
$$

where $\alpha=\arccos \frac{3 \sqrt{6}-2}{10}$.
All equilateral hexagons of Φ are again the same (up to permutation of sides):

Figure 11: Second equilateral hexagon for $N=7$ and $n=1$

It follows from Proposition 2.5 that there exists a symmetric commuting square of the form (2.3) for $N=7$ and $n=1$ and, by (1.3), (2.4) and Corollary 1.15, there is an irreducible subfactor of the hyperfinite II_{1} factor constructed from this commuting square whose index is $\frac{(N-1)^{2}}{N-2}=\frac{36}{5}=7.2$.

We do not know if the subfactors obtained from the two non-equivalent symmetric commuting squares based on the above connections are isomorphic. This appears to be a hard problem.

2.4 Case $n=1$, odd N

Note that if N is odd, then $N-1$ is even. It is easier to find somewhat symmetric non-trivial equilateral ($N-1$)-gons when $N-1$ is even because one can simply pick any $\frac{N-1}{2}$ directions and their additive inverses (i.e. add π). We can then order the sides of this $(N-1)$-gon so
that it has parallel opposite sides. For $N=5$, due to geometric constraints, all rhombuses are of this form, but for $N=7$ there exist equilateral hexagons which are not of this form. Indeed, for $N=7$, the first solution (2.15) is not of this form, but the second solution (2.16) is of this form. We will be looking for solutions of this form for general odd N.

Let $N \geq 4$ be an odd number and let $M=\frac{N-3}{2}$. We will follow the notational convention of Section 2.3. Let U be of the form as in Remark 2.7 such that its corresponding matrix Φ is

$$
\Phi=\left(\begin{array}{ccccccccc}
\alpha_{0} & \alpha_{1} & \cdots & \alpha_{M-1} & \alpha_{M} & \alpha_{0}+\pi & \alpha_{1}+\pi & \cdots & \alpha_{M-1}+\pi \tag{2.17}\\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{M} & \alpha_{0} & \alpha_{M}+\pi & \alpha_{0}+\pi & \cdots & \alpha_{M-2}+\pi \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{M-1} & \alpha_{M} & \cdots & \alpha_{M-3} & \alpha_{M-2} & \alpha_{2}+\pi & \alpha_{3}+\pi & \cdots & \alpha_{0}+\pi \\
\alpha_{M} & \alpha_{0} & \cdots & \alpha_{M-2} & \alpha_{M-1} & \alpha_{1}+\pi & \alpha_{2}+\pi & \cdots & \alpha_{M}+\pi \\
\alpha_{0}+\pi & \alpha_{M}+\pi & \cdots & \alpha_{2}+\pi & \alpha_{1}+\pi & \alpha_{M} & \alpha_{M-1} & \cdots & \alpha_{1} \\
\alpha_{1}+\pi & \alpha_{0}+\pi & \cdots & \alpha_{3}+\pi & \alpha_{2}+\pi & \alpha_{M-1} & \alpha_{M-2} & \cdots & \alpha_{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{M-1}+\pi & \alpha_{M-2}+\pi & \cdots & \alpha_{0}+\pi & \alpha_{M}+\pi & \alpha_{1} & \alpha_{0} & \cdots & \alpha_{3} \\
\alpha_{M}+\pi & \alpha_{M-1}+\pi & \cdots & \alpha_{1}+\pi & \alpha_{0}+\pi & \alpha_{0} & \alpha_{M} & \cdots & \alpha_{2} \\
\vdots \\
\alpha_{M} & \alpha_{1}
\end{array}\right)
$$

for $\alpha_{0}=0$ and $\alpha_{j} \in[0,2 \pi)$ for $1 \leq j \leq M$. More precisely:

$$
\Phi_{j, k}= \begin{cases}\alpha_{((j+k-2) \bmod (M+1))}, & 1 \leq j, k \leq M+1 \\ \alpha_{((-j+k) \bmod (M+1))}+\pi, & 1 \leq j \leq M+1<k \leq 2 M+2 \\ \alpha_{((j-k) \bmod (M+1))}+\pi, & 1 \leq k \leq M+1<j \leq 2 M+2 \\ \alpha_{((-j-k+1) \bmod (M+1))}, & M+1<j, k \leq 2 M+2\end{cases}
$$

Here mod denotes the least non-negative remainder.
Note that Φ satisfies equations from the first and the second row in (2.13) automatically since $\cos x+\cos (x+\pi)=\sin x+\sin (x+\pi)=0$ for all x. We will now show that this is also true for the equations from the fourth row in (2.13).

Lemma 2.11. Matrix Φ of the form as in (2.17) satisfies equations from the fourth row in
(2.13) for any choice of $\alpha_{j} \in[0,2 \pi)$ for $1 \leq j \leq M$. The equations in question are

$$
\sum_{l=1}^{N-1} \sin \left(\Phi_{j, l}-\Phi_{k, l}\right)=0, \quad \text { for } 1 \leq j<k \leq N-1
$$

Proof. Note that $N-1=2 M+2$. For $1 \leq j<k \leq 2 M+2$ and $1 \leq l \leq 2 M+2$, let

$$
\begin{aligned}
\mathrm{S}(j, k, l) & =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right) \quad \text { and } \\
\mathrm{E}(j, k) & =\sum_{l=1}^{2 M+2} \mathrm{~S}(j, k, l)
\end{aligned}
$$

Denote $S_{1}=\{1,2, \ldots, M+1\}$ and $S_{2}=\{M+2, M+3, \ldots, 2 M+2\}$. We want to show that $\mathrm{E}(j, k)=0$ for all $1 \leq j<k \leq 2 M+2$.

Case 1: $1 \leq j<k \leq M+1$
Let $1 \leq l \leq M+1$ and $l^{\prime}=M+2+((j+k+l-3) \bmod (M+1))$. Note that $l \mapsto l^{\prime}$ is a bijection between S_{1} and S_{2}. We have

$$
\begin{aligned}
& \left(-j+l^{\prime}\right) \bmod (M+1)= \\
= & (-j+M+2+((j+k+l-3) \bmod (M+1))) \bmod (M+1)= \\
= & (-j+M+2+j+k+l-3) \bmod (M+1)= \\
= & (k+l-2) \bmod (M+1)
\end{aligned}
$$

and, similarly, $\left(-k+l^{\prime}\right) \bmod (M+1)=(j+l-2) \bmod (M+1)$. This implies

$$
\begin{aligned}
\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}} & =\alpha_{\left(\left(-j+l^{\prime}\right) \bmod (M+1)\right)}+\pi-\left(\alpha_{\left(\left(-k+l^{\prime}\right) \bmod (M+1)\right)}+\pi\right)= \\
& =\alpha_{((k+l-2) \bmod (M+1))}-\alpha_{((j+l-2) \bmod (M+1))}= \\
& =\Phi_{k, l}-\Phi_{j, l}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{S}(j, k, l)+\mathrm{S}\left(j, k, l^{\prime}\right) & =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)+\sin \left(\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}}\right)= \\
& =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)+\sin \left(\Phi_{k, l}-\Phi_{j, l}\right)= \\
& =0
\end{aligned}
$$

which combined with the fact that $l \mapsto l^{\prime}$ is a bijection between S_{1} and S_{2} gives

$$
\mathrm{E}(j, k)=\sum_{l=1}^{2 M+2} \mathrm{~S}(j, k, l)=0, \quad \text { for } 1 \leq j<k \leq M+1
$$

Case 2: $M+1<j<k \leq 2 M+2$
Let $1 \leq l \leq M+1$ and $l^{\prime}=M+2+((-j-k+l) \bmod (M+1))$. Note that $l \mapsto l^{\prime}$ is a bijection between S_{1} and S_{2}. We have

$$
\begin{aligned}
& \left(-j-l^{\prime}+1\right) \bmod (M+1)= \\
= & (-j-(M+2+((-j-k+l) \bmod (M+1)))+1) \bmod (M+1)= \\
= & (-j-M-2+j+k-l+1) \bmod (M+1)= \\
= & (k-l) \bmod (M+1)
\end{aligned}
$$

and, similarly, $\left(-k-l^{\prime}+1\right) \bmod (M+1)=(j-l) \bmod (M+1)$. This implies

$$
\begin{aligned}
\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}} & =\alpha_{\left(\left(-j-l^{\prime}+1\right) \bmod (M+1)\right)}-\alpha_{\left(\left(-k-l^{\prime}+1\right) \bmod (M+1)\right)}= \\
& =\alpha_{((k-l) \bmod (M+1))}+\pi-\left(\alpha_{((j-l) \bmod (M+1))}+\pi\right)= \\
& =\Phi_{k, l}-\Phi_{j, l}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{S}(j, k, l)+\mathrm{S}\left(j, k, l^{\prime}\right) & =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)+\sin \left(\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}}\right)= \\
& =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)+\sin \left(\Phi_{k, l}-\Phi_{j, l}\right)= \\
& =0
\end{aligned}
$$

which combined with the fact that $l \mapsto l^{\prime}$ is a bijection between S_{1} and S_{2} gives

$$
\mathrm{E}(j, k)=\sum_{l=1}^{2 M+2} \mathrm{~S}(j, k, l)=0, \quad \text { for } M+1<j<k \leq 2 M+2 .
$$

Case 3: $1 \leq j \leq M+1<k \leq 2 M+2$
Let $1 \leq l \leq M+1$ and $l^{\prime}=1+((-j+k-l+1) \bmod (M+1))$. Note that since

$$
\begin{aligned}
\left(l^{\prime}\right)^{\prime} & =1+\left(\left(-j+k-l^{\prime}+1\right) \bmod (M+1)\right)= \\
& =1+(((-j+k-(1+((-j+k-l+1) \bmod (M+1))))+1) \bmod (M+1))= \\
& =1+((-j+k-1+j-k+l-1+1) \bmod (M+1))= \\
& =1+((l-1) \bmod (M+1))= \\
& =l
\end{aligned}
$$

$l \mapsto l^{\prime}$ is an involution on S_{1}. We have

$$
\begin{aligned}
& \left(j+l^{\prime}-2\right) \bmod (M+1)= \\
= & (j+(1+(-j+k-l+1) \bmod (M+1)))-2) \bmod (M+1)= \\
= & (j+1-j+k-l+1-2) \bmod (M+1)= \\
= & (k-l) \bmod (M+1)
\end{aligned}
$$

and then

$$
\left(k-l^{\prime}\right) \bmod (M+1)=(j+l-2) \bmod (M+1)
$$

follows from the fact that $l \mapsto l^{\prime}$ is an involution on S_{1}. This implies

$$
\begin{aligned}
\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}} & =\alpha_{\left(\left(j+l^{\prime}-2\right) \bmod (M+1)\right)}-\left(\alpha_{\left(\left(k-l^{\prime}\right) \bmod (M+1)\right)}+\pi\right)= \\
& =\alpha_{((k-l) \bmod (M+1))}+\pi-\alpha_{((j+l-2) \bmod (M+1))}-2 \pi= \\
& =\Phi_{k, l}-\Phi_{j, l}-2 \pi
\end{aligned}
$$

If $l \neq l^{\prime}$, then

$$
\begin{aligned}
\mathrm{S}(j, k, l)+\mathrm{S}\left(j, k, l^{\prime}\right) & =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)+\sin \left(\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}}\right)= \\
& =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)+\sin \left(\Phi_{k, l}-\Phi_{j, l}-2 \pi\right)= \\
& =0
\end{aligned}
$$

and if $l=l^{\prime}$, then

$$
\begin{aligned}
0 & =\mathrm{S}(j, k, l)-\mathrm{S}\left(j, k, l^{\prime}\right)=\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)-\sin \left(\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}}\right)= \\
& =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)-\sin \left(\Phi_{k, l}-\Phi_{j, l}-2 \pi\right)= \\
& =2 \sin \left(\Phi_{j, l}-\Phi_{k, l}\right)=2 \mathrm{~S}(j, k, l), \quad \text { so } \\
0 & =\mathrm{S}(j, k, l)
\end{aligned}
$$

which combined with the fact that $l \mapsto l^{\prime}$ is an involution on S_{1} gives

$$
\begin{equation*}
\sum_{l=1}^{M+1} \mathrm{~S}(j, k, l)=0 \tag{2.18}
\end{equation*}
$$

Let $M+1<l \leq 2 M+2$ and $l^{\prime}=M+2+((j-k-l) \bmod (M+1))$. Note that since

$$
\begin{aligned}
\left(l^{\prime}\right)^{\prime} & =M+2+\left(\left(j-k-l^{\prime}\right) \bmod (M+1)\right)= \\
& =M+2+((j-k-(M+2+((j-k-l) \bmod (M+1)))) \bmod (M+1))= \\
& =M+2+((j-k-M-2-j+k+l) \bmod (M+1))= \\
& =M+2+((l-M-2) \bmod (M+1))= \\
& =l
\end{aligned}
$$

$l \mapsto l^{\prime}$ is an involution on S_{2}. We have

$$
\begin{aligned}
& \left(-j+l^{\prime}\right) \bmod (M+1)= \\
= & (-j+(M+2+((j-k-l) \bmod (M+1)))) \bmod (M+1)= \\
= & (-j+M+2+j-k-l) \bmod (M+1)= \\
= & (-k-l+1) \bmod (M+1)
\end{aligned}
$$

and then

$$
\left(-k-l^{\prime}+1\right) \bmod (M+1)=(-j+l) \bmod (M+1)
$$

follows from the fact that $l \mapsto l^{\prime}$ is an involution on S_{2}. This implies

$$
\begin{aligned}
\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}} & =\alpha_{\left(\left(-j+l^{\prime}\right) \bmod (M+1)\right)}+\pi-\alpha_{\left(\left(-k-l^{\prime}+1\right) \bmod (M+1)\right)}= \\
& =\alpha_{((-k-l+1) \bmod (M+1))}-\left(\alpha_{((-j+l) \bmod (M+1))}+\pi\right)+2 \pi= \\
& =\Phi_{k, l}-\Phi_{j, l}+2 \pi
\end{aligned}
$$

If $l \neq l^{\prime}$, then

$$
\begin{aligned}
\mathrm{S}(j, k, l)+\mathrm{S}\left(j, k, l^{\prime}\right) & =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)+\sin \left(\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}}\right)= \\
& =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)+\sin \left(\Phi_{k, l}-\Phi_{j, l}+2 \pi\right)= \\
& =0
\end{aligned}
$$

and if $l=l^{\prime}$, then

$$
\begin{aligned}
0 & =\mathrm{S}(j, k, l)-\mathrm{S}\left(j, k, l^{\prime}\right)=\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)-\sin \left(\Phi_{j, l^{\prime}}-\Phi_{k, l^{\prime}}\right)= \\
& =\sin \left(\Phi_{j, l}-\Phi_{k, l}\right)-\sin \left(\Phi_{k, l}-\Phi_{j, l}+2 \pi\right)= \\
& =2 \sin \left(\Phi_{j, l}-\Phi_{k, l}\right)=2 \mathrm{~S}(j, k, l), \quad \text { so } \\
0 & =\mathrm{S}(j, k, l)
\end{aligned}
$$

which combined with the fact that $l \mapsto l^{\prime}$ is an involution on S_{2} gives

$$
\begin{equation*}
\sum_{l=M+2}^{2 M+2} \mathrm{~S}(j, k, l)=0 \tag{2.19}
\end{equation*}
$$

Now from (2.18) and (2.19) it follows that

$$
\mathrm{E}(j, k)=\sum_{l=1}^{M+1} \mathrm{~S}(j, k, l)+\sum_{l=M+2}^{2 M+2} \mathrm{~S}(j, k, l)=0, \quad \text { for } 1 \leq j \leq M+1<k \leq 2 M+2 .
$$

This means that that it is enough to find matrix Φ of the form as in (2.17) that satisfies equations from the third row in (2.13). These equations are

$$
\begin{equation*}
\sum_{l=1}^{N-1} \cos \left(\Phi_{j, l}-\Phi_{k, l}\right)=-\frac{N-1}{N-2}, \quad \text { for } 1 \leq j<k \leq N-1 \tag{2.20}
\end{equation*}
$$

2.4.1 Case $n=1, N=9$

We will now find a matrix Φ of the form as in (2.17) that satisfies (2.20) for $N=9$. Taking $\alpha_{0}=0$ into account, the system of equations (2.20) contains these distinct equations:

$$
\begin{align*}
2 \cos \left(\alpha_{1}\right)+2 \cos \left(\alpha_{3}\right)+2 \cos \left(\alpha_{1}-\alpha_{2}\right)+2 \cos \left(\alpha_{2}-\alpha_{3}\right) & =-\frac{8}{7} \\
4 \cos \left(\alpha_{2}\right)+4 \cos \left(\alpha_{1}-\alpha_{3}\right) & =-\frac{8}{7} \\
-2 \cos \left(\alpha_{3}\right)-2 \cos \left(\alpha_{1}-\alpha_{2}\right)-2 \cos \left(\alpha_{1}-\alpha_{3}\right) & =\frac{6}{7} \tag{2.21}\\
-2 \cos \left(\alpha_{1}\right)-2 \cos \left(\alpha_{2}\right)-2 \cos \left(\alpha_{2}-\alpha_{3}\right) & =\frac{6}{7}
\end{align*}
$$

For $1 \leq j \leq 3$ let x_{j} be such that

$$
\cos \left(\alpha_{j}\right)=-\frac{1}{7}+x_{j}
$$

and for $1 \leq j<k \leq 3$ let $x_{j, k}$ be such that

$$
\cos \left(\alpha_{j}-\alpha_{k}\right)=-\frac{1}{7}+x_{j, k}
$$

Substituting these into (2.21) gives the following system of equations:

$$
\begin{aligned}
x_{1}+x_{3}+x_{1,2}+x_{2,3} & =0, \\
x_{2}+x_{1,3} & =0, \\
x_{3}+x_{1,2}+x_{1,3} & =0, \\
x_{1}+x_{2}+x_{2,3} & =0 .
\end{aligned}
$$

Considered as a system of linear equations its solution is

$$
\begin{align*}
& x_{1,2}=x_{2}-x_{3} \\
& x_{1,3}=-x_{2} \tag{2.22}\\
& x_{2,3}=-x_{1}-x_{2}
\end{align*}
$$

$x_{1}, x_{2}, x_{3}, \quad$ are free parameters.

For $1 \leq j<k \leq 3$ we have

$$
\begin{aligned}
& -\frac{1}{7}+x_{j, k}=\cos \left(\alpha_{j}-\alpha_{k}\right)=\cos \left(\alpha_{j}\right) \cos \left(\alpha_{k}\right)+\sin \left(\alpha_{j}\right) \sin \left(\alpha_{k}\right) \\
\Longrightarrow & \sin ^{2}\left(\alpha_{j}\right) \sin ^{2}\left(\alpha_{k}\right)=\left(-\frac{1}{7}+x_{j, k}-\cos \left(\alpha_{j}\right) \cos \left(\alpha_{k}\right)\right)^{2} \\
\Longrightarrow & \left(1-\cos ^{2}\left(\alpha_{j}\right)\right)\left(1-\cos ^{2}\left(\alpha_{k}\right)\right)=\left(-\frac{1}{7}+x_{j, k}-\cos \left(\alpha_{j}\right) \cos \left(\alpha_{k}\right)\right)^{2} \\
\Longrightarrow & \left(1-\left(-\frac{1}{7}-x_{j}\right)^{2}\right)\left(1-\left(-\frac{1}{7}-x_{k}\right)^{2}\right)=\left(-\frac{1}{7}+x_{j, k}-\left(-\frac{1}{7}-x_{j}\right)\left(-\frac{1}{7}-x_{k}\right)\right)^{2}
\end{aligned}
$$

which after using (2.22) gives a system of polynomial equations:

$$
\begin{aligned}
& \left(1-\left(-\frac{1}{7}-x_{1}\right)^{2}\right)\left(1-\left(-\frac{1}{7}-x_{2}\right)^{2}\right)=\left(-\frac{1}{7}+x_{2}-x_{3}-\left(-\frac{1}{7}-x_{1}\right)\left(-\frac{1}{7}-x_{2}\right)\right)^{2} \\
& \left(1-\left(-\frac{1}{7}-x_{1}\right)^{2}\right)\left(1-\left(-\frac{1}{7}-x_{3}\right)^{2}\right)=\left(-\frac{1}{7}-x_{2}-\left(-\frac{1}{7}-x_{1}\right)\left(-\frac{1}{7}-x_{3}\right)\right)^{2} \\
& \left(1-\left(-\frac{1}{7}-x_{2}\right)^{2}\right)\left(1-\left(-\frac{1}{7}-x_{3}\right)^{2}\right)=\left(-\frac{1}{7}-x_{1}-x_{2}-\left(-\frac{1}{7}-x_{2}\right)\left(-\frac{1}{7}-x_{3}\right)\right)^{2}
\end{aligned}
$$

This system has a solution

$$
\begin{aligned}
& x_{1}=\frac{2 \sqrt{2}}{7}, \\
& x_{2}=-\frac{4 \sqrt{2}}{7}, \\
& x_{3}=-\frac{2 \sqrt{2}}{7} .
\end{aligned}
$$

One possible matrix Φ of the form as in (2.17) that comes from this solution is characterized by values

$$
\begin{aligned}
& \alpha_{1}=\arccos \frac{-1+2 \sqrt{2}}{7} \\
& \alpha_{2}=-\arccos \frac{-1-4 \sqrt{2}}{7} \\
& \alpha_{3}=\arccos \frac{-1-2 \sqrt{2}}{7}
\end{aligned}
$$

Note that matrix Φ with these entries satisfies (2.21). Matrix U that corresponds to this Φ is

$$
U=\left(\begin{array}{ccccccccc}
\frac{\sqrt{7}}{8} & z_{1} & z_{2} & z_{3} & -\frac{\sqrt{7}}{8} & -z_{1} & -z_{2} & -z_{3} & \frac{1}{2 \sqrt{2}} \\
z_{1} & z_{2} & z_{3} & \frac{\sqrt{7}}{8} & -z_{3} & -\frac{\sqrt{7}}{8} & -z_{1} & -z_{2} & \frac{1}{2 \sqrt{2}} \\
z_{2} & z_{3} & \frac{\sqrt{7}}{8} & z_{1} & -z_{2} & -z_{3} & -\frac{\sqrt{7}}{8} & -z_{1} & \frac{1}{2 \sqrt{2}} \\
z_{3} & \frac{\sqrt{7}}{8} & z_{1} & z_{2} & -z_{1} & -z_{2} & -z_{3} & -\frac{\sqrt{7}}{8} & \frac{1}{2 \sqrt{2}} \\
-\frac{\sqrt{7}}{8} & -z_{3} & -z_{2} & -z_{1} & z_{3} & z_{2} & z_{1} & \frac{\sqrt{7}}{8} & \frac{1}{2 \sqrt{2}} \\
-z_{1} & -\frac{\sqrt{7}}{8} & -z_{3} & -z_{2} & z_{2} & z_{1} & \frac{\sqrt{7}}{8} & z_{3} & \frac{1}{2 \sqrt{2}} \\
-z_{2} & -z_{1} & -\frac{\sqrt{7}}{8} & -z_{3} & z_{1} & \frac{\sqrt{7}}{8} & z_{3} & z_{2} & \frac{1}{2 \sqrt{2}} \\
-z_{3} & -z_{2} & -z_{1} & -\frac{\sqrt{7}}{8} & \frac{\sqrt{7}}{8} & z_{3} & z_{2} & z_{1} & \frac{1}{2 \sqrt{2}} \\
\frac{1}{2 \sqrt{2}} & 0
\end{array}\right)
$$

where

$$
\begin{aligned}
& z_{1}=\frac{-\sqrt{7}+2 \sqrt{14}}{56}+\frac{\sqrt{70+7 \sqrt{2}}}{28} i \\
& z_{2}=\frac{-\sqrt{7}-4 \sqrt{14}}{56}-\frac{\sqrt{28-14 \sqrt{2}}}{28} i, \\
& z_{3}=\frac{-\sqrt{7}-2 \sqrt{14}}{56}+\frac{\sqrt{70-7 \sqrt{2}}}{28} i
\end{aligned}
$$

This U is unitary and is of the form as in Remark 2.7. It follows already from the form of Φ in (2.17) that all its equilateral octagons (8-gons) (from Lemma 2.8) are the same (up to permutation of sides) and they are of the following form:

Figure 12: Equilateral octagon for $N=9$ and $n=1$

It follows from Proposition 2.5 that there exists a symmetric commuting square of the form (2.3) for $N=9$ and $n=1$ and, by (1.3), (2.4) and Corollary 1.15, there is an irreducible subfactor of the hyperfinite II_{1} factor constructed from this commuting square whose index is $\frac{(N-1)^{2}}{N-2}=\frac{64}{7}=9.142 \ldots$

This method can similarly be used to obtain the solution (2.14) for $N=5$ and the second solution (2.16) for $N=7$. For $N \geq 11$, obtaining a solution in this manner that is simple enough so that it can be written out explicitly does not seem feasible.

2.5 Summary and remarks

Regarding the existence of symmetric commuting squares based on the inclusion graph N-star with A_{∞}-tail of the form (2.3) for $n=1$, we have shown that:
(i) they do not exist for $N=4$,
(ii) there exists exactly one (up to equivalence as in Remark 2.6) for $N=5$,
(iii) there exists at least one for $N=6$,
(iv) there exist at least two non-equivalent (as in Remark 2.6) ones for $N=7$, and
(v) there exists at least one for $N=9$.

We summarize the newly constructed hyperfinite subfactors in the following theorem:

Theorem 2.12. There exists an irreducible subfactor of the hyperfinite I_{1} factor constructed from a symmetric commuting square based on N-star with A_{∞}-tail for:
(i) $N=5$ with index $\frac{16}{3}=5+\frac{1}{3}=5.333 \ldots$,
(ii) $N=6$ with index $\frac{25}{4}=6+\frac{1}{4}=6.25$,
(iii) $N=7$ with index $\frac{36}{5}=7+\frac{1}{5}=7.2$,
(iv) $N=9$ with index $\frac{64}{7}=9+\frac{1}{7}=9.142 \ldots$

All these indices are rational, non-integer numbers and thus not algebraic integers implying that these subfactors cannot be obtained from finite-dimensional symmetric commuting squares.

Numerical computations suggest that there are no commuting squares of the form (2.3) for $N=8$ and $n=1$, but that there exist such commuting squares for $n=1$ and several consecutive numbers $N \geq 10$. They also suggest that there exists such a commuting square for $N=8$ and $n=2$.

Regarding the existence of such commuting squares for $n=1$ and odd N whose corresponding matrix Φ is of the form as in (2.17), numerical computations suggest that they exist for many consecutive odd numbers $N \geq 11$.

There exists a symmetric commuting square based on the inclusion graph 4 -star with A_{∞}-tail of the form (2.3) for $n=2$, this is the commuting square that gives rise to the subfactor of index 4.5 of Bisch from [Bis94b]. Due to Haagerup ([Haa94]), its principal graph is A_{∞}. Subfactors constructed in this dissertation that arise from commuting squares based on inclusion graphs N-star with A_{∞}-tail of the form (2.3) for $N \geq 5$ all have indices greater than 5.25 and are thus beyond the scope of the current classification of small index subfactors ([AMP15]). It is an open problem to determine their principal graphs, or more generally, their standard invariant.

There has been a lot of recent interest in quantum Fourier analysis and the bi-unitary connections we have computed are explicit examples of what is called quantum Fourier transform in $\left[\mathrm{JLL}^{+} 20\right]$. It is not clear what the quantum symmetries are that they transform, so there is more interesting work that can be done here.

BIBLIOGRAPHY

[AMP15] N. Afzaly, S. Morrison, and D. Penneys, The classification of subfactors with index at most $5 \frac{1}{4}$ (2015), to appear in Mem. Amer. Math. Soc.
[Bis90] D. Bisch, On the existence of central sequences in subfactors, Trans. Amer. Math. Soc. 321 (1990), no. 1, 117-128.
[Bis94a] D. Bisch, Central sequences in subfactors. II, Proc. Amer. Math. Soc. 121 (1994), no. 3, 725-731.
[Bis94b] D. Bisch, An example of an irreducible subfactor of the hyperfinite $I I_{1}$ factor with rational, noninteger index, J. Reine Angew. Math. 455 (1994), 21-34.
[Bra72] O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
[EK98] D. E. Evans and Y. Kawahigashi, Quantum symmetries on operator algebras, Clarendon Press - Oxford, 1998.
[Fro12] G. Frobenius, Über Matrizen aus nicht negativen Elementen, Berl. Ber. 1912 (1912), no. 1, 456-477.
[Gan59] F. R. Gantmacher, The theory of matrices, Vol. 2, Chelsea Publishing Co., 1959. (Translated by K. A. Hirsch).
[GHJ89] F. M. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter graphs and towers of algebras, Springer-Verlag, 1989.
[Haa94] U. Haagerup, Principal graphs of subfactors in the index range $4<[M: N]<$ $3+\sqrt{2}$, in: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras, World Sci. Publ. (1994), 1-38.
[HS89] U. Haagerup and J. K. Schou, Some new subfactors of the hyperfinite I_{1} factor, Mittag-Leffler Institute (1989). Preprint.
[JJL $\left.{ }^{+} 20\right]$ A. Jaffe, C. Jiang, Z. Liu, Y. Ren, and J. Wu, Quantum Fourier analysis, Proc. Natl. Acad. Sci. USA 117 (2020), no. 20, 10715-10720.
[Jon83] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25.
[JS97] V. F. R. Jones and V. S. Sunder, Introduction to subfactors, Cambridge Univ. Press, 1997.
[Ken66] D. G. Kendall, Discussion on Mr E. Seneta's paper, in: Quasi-stationary distributions and time-reversion in genetics, J. Roy. Statist. Soc. Ser. B 28 (1966), 253-277.
[Moh82] B. Mohar, The spectrum of an infinite graph, Linear Algebra Appl. 48 (1982), 245-256.
[Ocn88] A. Ocneanu, Quantized groups, string algebras and Galois theory for algebras, in: Operator algebras and applications, Vol. 2, Cambridge Univ. Press (1988), 119-172.
[Ocn90] A. Ocneanu, Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes 45 (1990). (Notes recorded by Y. Kawahigashi).
[Per07] O. Perron, Zur Theorie der Matrices, Math. Ann. 64 (1907), no. 2, 248-263.
[Pop83] S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory 9 (1983), no. 2, 253-268.
[Pop90] S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19-43.
[Pop93] S. Popa, Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math. 111 (1993), no. 2, 375-405.
[Pop94] S. Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163-255.
[Sch90] J. K. Schou, Commuting squares and index for subfactors, Ph.D. Thesis, Odense University, 1990.
[Sen67] E. Seneta, Finite approximations to infinite non-negative matrices, Proc. Cambridge Philos. Soc. 63 (1967), 983-992.
[Sen81] E. Seneta, Non-negative matrices and Markov chains, Springer-Verlag, 1981.
[Wen88] H. Wenzl, Hecke algebras of type A_{n} and subfactors, Invent. Math. 92 (1988), no. 2, 349-383.

