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INTRODUCTION

In [Jon83], Jones introduced the notion of index for an inclusion of II1 factors and proved

the striking theorem that the index of any subfactor is contained in the set

{4cos2 π

n
| n≥ 3}∪ [4,∞].

Moreover, he showed that all these numbers are realized as indices of subfactors of the

hyperfinite II1 factor. In this paper, Jones proved that subfactors with indices less than 4

are automatically irreducible, but the examples of subfactors of the hyperfinite II1 factor he

gave with indices in (4,∞] are all reducible.

In [Pop93], Popa showed that any number above 4 is an index of an irreducible subfactor

of some non-hyperfinite II1 factor. It is an open problem to determine what all possible

indices of irreducible subfactors of the hyperfinite II1 factor are, but various examples and

obstructions related to several different construction methods are known.

Commuting squares ([Pop83]) can be used to construct irreducible subfactors of the hyperfi-

nite II1 factor and many such examples were given by Haagerup and Schou in [HS89] (see

[Sch90] for details). These examples typically arise from finite-dimensional commuting

squares. In [Sch90], Schou showed that subfactors of the hyperfinite II1 factor could be

constructed from certain infinite-dimensional commuting squares as well and found exam-

ples of irreducible hyperfinite subfactors that cannot be constructed from finite-dimensional

commuting squares.

In Chapter 1 we describe the method of constructing an irreducible subfactor of the hyper-

finite II1 factor from a (finite-dimensional or infinite-dimensional) symmetric commuting

square as it appears in [Sch90].

In this construction, the resulting subfactor has index equal to the square of the norm of

a certain connected, locally finite, bipartite graph that the commuting square is based on.
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This somewhat limits what indices could potentially be obtained in this manner. Also, if this

graph has a certain type of vertex with degree 1, then the subfactor is irreducible ([Wen88],

[Sch90]).

In [Bis94b], Bisch used an infinite-dimensional symmetric commuting square to construct

the first example of an irreducible subfactor of the hyperfinite II1 factor whose index is a

rational, non-integer number and thus not an algebraic integer. It cannot be constructed

from a finite-dimensional commuting square. To construct this subfactor, Bisch used a

commuting square based on graph called 4-star with A∞-tail and obtained an irreducible

hyperfinite subfactor with index 4.5. It is known that this subfactor has ”trivial” standard

invariant consisting just of Temperley–Lieb algebras ([Haa94], see also [AMP15]).

In Chapter 2 we construct new examples of irreducible hyperfinite subfactors with rational,

non-integer indices.

We first show that, for every N ≥ 4, the square of the norm of a graph given by an N-star

with A∞-tail is (N−1)2

N−2 = N + 1
N−2 . This means that if there exists a commuting square based

on any of these graphs, the resulting irreducible hyperfinite subfactor would have a rational,

non-integer index. We show that this indeed is the case for N ∈ {5, 6, 7, 9}. There exist

irreducible hyperfinite subfactors based on N-stars with A∞-tail for these N and their indices

are 16
3 = 5.333 . . . , 25

4 = 6.25, 36
5 = 7.2 and 64

7 = 9.142 . . .

For N = 5, we obtain the result by directly solving the equations arising from Ocneanu’s bi-

unitary condition ([Ocn88]) for the existence of a symmetric commuting square. For N = 6

and N = 7, we solve a subset of these equations numerically and then find the corresponding

exact solutions. For N = 7 we obtain two distinct solutions, but we do not know whether the

resulting subfactors are isomorphic.

Noticing certain symmetries in cases N = 5 and N = 7, we explore the possibility of

generalizing the solutions from these cases to the case of arbitrary odd N ≥ 5. This approach

enables us to find a solution for N = 9.
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CHAPTER 1

SYMMETRIC COMMUTING SQUARES

1.1 Preliminaries

Let I = {1, 2, . . . , n}, for some n ∈ N, or I = N. We call a direct sum A =
⊕

i∈I Ai of

finite-dimensional von Neumann algebras Ai ∼= Mai(C) for some ai ∈ N, i ∈ I, a (finite-

dimensional if I is finite or infinite-dimensional if I is countably infinite) multi-matrix

algebra. The dimension vector of A is~a = (ai)i∈I . A trace tr on A, which we will always

assume to be not identically zero and positive, is determined by a trace vector ~α = (αi)i∈I

where αi is the trace of a non-zero minimal projection in Ai for i ∈ I. The trace is faithful

if and only if all entries of its trace vector are positive. If tr(1) < ∞, we call the trace

finite and then ‖~α‖1 < ∞ which implies ‖~α‖2 < ∞. We say that the trace is normalized if

tr(1) = 1.

We will assume all inclusions of ∗-algebras to be unital, i.e. the notation A⊂ B will mean

1A = 1B whenever it makes sense. Let A⊂ B be an inclusion of two finite-dimensional or

two infinite-dimensional multi-matrix algebras. Then A =
⊕

i∈I Ai and B =
⊕

j∈J B j for

simple summands Ai and B j, i ∈ I, j ∈ J. Let i ∈ I, j ∈ J and fix any non-zero minimal

projection pAi ≤ zAi in Ai where zAi is the minimal central projection of A contained in Ai.

Then pAizB j is a projection in B j, where zB j is the minimal central projection of B contained

in B j. pAizB j can be decomposed into a sum of Gi j non-zero minimal projections in B j. The

number Gi j (called the multiplicity of Ai in B j) does not depend on the inital choice of

pAi . Let G be (finite or countably infinite) matrix such that G = (Gi j)i∈I, j∈J . We call G the

inclusion matrix of A⊂ B and write A⊂G B. All of its entries are non-negative integers.

The (finite or countably infinite) bipartite graph whose bipartite adjacency matrix is G is

called the Bratteli diagram ([Bra72]) or inclusion graph of A⊂G B. We will denote this

graph by ΓG.
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Let A⊂ B be an inclusion of finite von Neumann algebras and let tr be a normalized, faithful,

normal trace on B. We call the orthogonal projection eA : L2(B, tr)→ L2(A, tr
∣∣
A) the Jones

projection. B acts by left multiplication on L2(B, tr) and we denote by 〈B,eA〉 the von

Neumann algebra generated by B and eA as a subalgebra of B(L2(B, tr)). This is the Jones

basic construction ([Jon83]).

If A⊂G B are (finite-dimensional or infinite-dimensional) multi-matrix algebras with dimen-

sion vectors ~a and~b, and trace vectors ~α and ~β that define finite traces which agree on A,

then ~α = G~β and~b = Gt~a. Also B′ ⊂Gt A′ and B⊂Gt 〈B,eA〉 ([Jon83] in finite-dimensional

and [Sch90] in infinite-dimensional case).

We will only consider inclusions A⊂G B of multi-matrix algebras with inclusion graphs ΓG

that are:

(i) locally finite, hence all matrix polynomials in 0 G
Gt 0

( )
, GtG and GGt have well-defined

finite entries, and

(ii) connected, hence 0 G
Gt 0

( )
, GtG and GGt are irreducible matrices ([GHJ89]).

Example 1.1. Let A = C⊕M2(C)⊕C and B = M5(C)⊕M2(C). If A ⊂G B and the

inclusion is given by

x ⊕
y1 y2

y3 y4

 ⊕ z 7→

x 0 0 0 0

0 x 0 0 0

0 0 y1 y2 0

0 0 y3 y4 0

0 0 0 0 z




⊕

y1 y2

y3 y4

 , (1.1)

then its Bratteli diagram is
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A1 A2 A3

B1 B2

Figure 1: Bratteli diagram example

and its inclusion matrix is

G =

2 0

1 1

1 0


.

Note that any unital, injective ∗-homomorphism φ : A→ B between (both finite-dimensional

or both infinite-dimensional) multi-matrix algebras A and B is, up to unitary conjugacy, of

diagonal form (1.1). Also, the inclusion A⊂G B is determined by its inclusion matrix G (or

Bratteli diagram ΓG) only up to unitary conjugacy.

The notion of a commuting square was introduced by Popa in [Pop83]. Commuting squares

arise naturally in classification and construction of subfactors ([Pop90], [Ocn88], [GHJ89],

[JS97]). We recall the definition (see e.g. [GHJ89], [JS97]):

Definition 1.2. Let A, B, C, D be finite von Neumann algebras such that

C ⊂ D

∪ ∪

A ⊂ B

and let trD be a faithful, normal, finite trace on D. We call this a commuting square if

the unique trace-preserving (with respect to trD) conditional expectations EA, EB, EC of D

onto A, B, C satisfy EA = EB EC = EC EB. If A, B, C, D are multi-matrix algebras and the
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inclusions A⊂ B⊂D and A⊂C⊂D are given by inclusion matrices G, H, K, L, we write

C ⊂L D

∪K ∪H

A ⊂G B

Note that GH = KL. If moreover GtK = HLt , then we say that the commuting square is

a symmetric commuting square. We call a commuting square finite-dimensional (resp.

infinite-dimensional) if the involved multi-matrix algebras are all finite-dimensional (resp.

infinite-dimensional).

The following result of Ocneanu ([Ocn88]) appears in this form in [Sch90] and gives a

sufficient and necessary condition (the bi-unitary condition) for a symmetric commuting

square to exist. A proof in the finite-dimensional case can also be found in [JS97] and

[EK98].

Theorem 1.3. (Ocneanu’s bi-unitary condition) Let G, H, K, L be bipartite adjacency

matrices of connected, locally finite, bipartite graphs such that GH = KL and GtK = HLt .

(These matrices are all finite or all countably infinite.) Then the following are equivalent:

(i) There exists a symmetric commuting square of multi-matrix algebras A, B, C, D

C ⊂L D

∪K ∪H

A ⊂G B

with respect to a faithful, finite trace trD on D.

(ii) There exist unitary matrices u,v of the form

u = ⊕
(i,k)

u(i,k), v = ⊕
( j,l)

v( j,l)
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satisfying the bi-unitary condition, that is, their direct summands

u(i,k) =
(

u(i,k)
( j,φ ,ρ,l,σ ,ψ)

)
(i,φ , j,ρ,k)∈S
(i,σ ,l,ψ,k)∈T

for (i,k) such that (GH)ik 6= 0, and

v( j,l) =
(

v( j,l)
(i,φ ,ρ,k,σ ,ψ)

)
(i,φ , j,ρ,k)∈S
(i,σ ,l,ψ,k)∈T

for ( j, l) such that (GtK) jl 6= 0,

are unitary matrices where

v( j,l)
(i,φ ,ρ,k,σ ,ψ)

=

√
αiγk

β jδl
u(i,k)
( j,φ ,ρ,l,σ ,ψ)

for all (i,φ , j,ρ,k) ∈ S and (i,σ , l,ψ,k) ∈ T.

Here ~α, ~β , ~γ, ~δ denote the trace vectors of trD on A, B, C, D, and S and T are the sets of

paths in the Bratteli diagrams of A⊂G B⊂H D and A⊂K C ⊂L D (including multiplicities

labeled by φ and ρ , resp. σ and ψ), i.e.

S =
{
(i,φ , j,ρ,k) | Gi jH jk 6= 0, 1≤ φ ≤ Gi j, 1≤ ρ ≤ H jk

}
and

T = {(i,σ , l,ψ,k) | KilLlk 6= 0, 1≤ σ ≤ Kil, 1≤ ψ ≤ Llk} .

If (ii) holds, we may asumme that A is commutative.

1.2 Construction of hyperfinite subfactors

The construction of a subfactor of the hyperfinite II1 factor from a symmetric commuting

square relies heavily on the Perron-Frobenius theorem ([Per07], [Fro12]) and its conse-

quences.

Theorem 1.4. (Perron-Frobenius theorem [Fro12]) Let T be an irreducible, finite square

matrix with non-negative entries and λ its spectral radius (i.e. λ = ‖T‖). Then:

(i) λ is an eigenvalue of T with 1-dimensional eigenspace which contains a vector whose

entries are all positive.

(ii) Any eigenvector of T whose entries are all positive is associated to the eigenvalue λ .
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This eigenvalue and its positive eigenvectors (determined up to a positive scalar) are called

the Perron-Frobenius eigenvalue and Perron-Frobenius eigenvectors of T .

The proof of Theorem 1.4 can also be found in [Gan59] or [Sen81]. To construct hyperfinite

subfactors from infinite-dimensional symmetric commuting squares, a generalization of the

Perron-Frobenius theorem is needed:

Theorem 1.5. (Perron-Frobenius type theorem) Let T be the full adjacency matrix of a

connected, locally finite, countably infinite graph. Then T is irreducible, symmetric (i.e.

T t = T ) and T n has well-defined finite entries for all n ∈ N. If ~ξ is an eigenvector of T

whose entries are all positive, then:

(i) If ‖~ξ‖2 < ∞, then ~ξ is proportional to the unique (up to a scalar) positive eigenvector

of T associated with the largest eigenvalue λ of T .

(ii) If T has an `2 eigenvector whose entries are all positive, then ‖~ξ‖2 < ∞.

If T has an `2 eigenvector whose entries are all positive, then λ = ‖T‖, for the operator

norm in B(`2(N)), and λ has a 1-dimensional eigenspace. This eigenvalue and its pos-

itive eigenvectors are called the Perron-Frobenius eigenvalue and Perron-Frobenius

eigenvectors of T as in the finite case.

This theorem was used in similar form by Schou in [Sch90]. The result follows from

[Ken66], [Sen67] and [Moh82], see also [Sen81].

Corollary 1.6. Let T be a finite or countably infinite, positive-semidefinite matrix and ~ξ its

Perron-Frobenius eigenvector such that ‖~ξ‖2 = 1. Let ~ζ be any `2-vector whose entries are

indexed in the same way as those of ~ξ . Then

(
T
‖T‖

)n
~ζ
‖·‖2−−−→
n→∞

〈~ζ |~ξ 〉~ξ .

Proof. Define fn : [0,1]→ [0,1] by fn(x)= xn for x∈ [0,1] and n∈N. Then fn
pointwise−−−−−→

n→∞
χ{1}

and thus
(

T
‖T‖

)n s.o.−−−→
n→∞

projection onto C~ξ . This implies the result.
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These theorems can be used to prove properties of traces in relation to the Jones basic

construction applied to inclusions of multi-matrix algebras. The notion of a Markov trace

first appears in [Jon83]:

Definition 1.7. Let A⊂T B be multi-matrix algebras such that ΓT is connected and locally

finite, and let tr be a normalized, faithful trace on B. Then tr is λ -Markov for λ > 0 if there

is an extension of tr to 〈B,eA〉 such that tr(xeA) = λ tr(x) for all x ∈ B.

Theorem 1.8. ([Jon83]) Let A⊂T B be multi-matrix algebras such that ΓT is connected and

locally finite, and let tr be a normalized, faithful trace on B with trace vector~t. Let~s be the

trace vector of tr
∣∣
A on A. Then the following are equivalent:

(i) tr is a (λ−1)-Markov trace for A⊂T B.

(ii) T tT~t = λ~t and T T t~s = λ~s, i.e.~t and~s are Perron-Frobenius eigenvectors of T tT and

T T t , and λ is the Perron-Frobenius eigenvalue of T tT and T T t (hence λ = ‖T‖2).

Note that [Jon83] contains only the finite-dimensional case of Theorem 1.8. In [Sch90],

Schou showed that the theorem also holds in the infinite-dimensional case.

Corollary 1.9. Let A⊂T B be an inclusion of multi-matrix algebras such that ΓT is connected

and locally finite, and let tr be a normalized, faithful trace on B. If tr is λ -Markov for A⊂T B,

then the Markov extension of tr to 〈B,eA〉 is also λ -Markov for B⊂T t 〈B,eA〉.

This relation between Perron-Frobenius eigenvectors and Markov traces can be used to

obtain the following result about symmetric commuting squares:

Proposition 1.10. Let

C ⊂L D

∪K ∪H

A ⊂G B

be a symmetric commuting square of multi-matrix algebras with respect to a normalized,

9



faithful trace trD on D such that ΓG,ΓH ,ΓK,ΓL are connected and locally finite. Let

~α, ~β , ~γ, ~δ be the trace vectors of trD on A, B, C, D. Then:

(i) ‖K‖ = ‖H‖, trD is the (‖H‖−2)-Markov trace of the inclusion B ⊂H D and trD
∣∣
C is

the (‖K‖−2)-Markov trace of the inclusion A⊂K C.

(ii) ‖G‖= ‖L‖, trD is the (‖L‖−2)-Markov trace of the inclusion C ⊂L D and trD
∣∣
B is the

(‖G‖−2)-Markov trace of the inclusion A⊂G B.

(iii) ~δ is a Perron-Frobenius eigenvector of HtH and LtL. ~γ is a Perron-Frobenius eigen-

vector of LLt and KtK. ~β is a Perron-Frobenius eigenvector of HHt and GtG. ~α is a

Perron-Frobenius eigenvector of GGt and KKt .

For details, see [Sch90] and [GHJ89].

Remark 1.11. The following outlines the construction of a subfactor of the hyperfinite

II1 factor of finite index from a symmetric commuting square of (finite-dimensional or

infinite-dimensional) multi-matrix algebras.

The infinite-dimensional case was first described by Schou in [Sch90] and this outline

follows his construction. In addition to results mentioned in this section, the construction

also uses properties of projections in the Jones basic construction similar to those appearing

in [Jon83].

Let

B0 ⊂L B1

∪K ∪H

A0 ⊂G A1

be a symmetric commuting square of multi-matrix algebras, such that ΓG, ΓH , ΓK, ΓL are

connected and locally finite, with respect to a normalized, faithful trace trB1 on B1 given by

a Perron-Frobenius eigenvector ~ξ of LtL. We may and will assume that A0 is commutative.

10



Define

G j =


G, j even

Gt , j odd
, L j =


L, j even

Lt , j odd
and Tj =


K, j even

H, j odd
.

Define inductively B j = 〈B j−1,eB j−2〉 and A j = {A j−1,eB j−2}′′ for j ≥ 2 where eB j−2 :

L2(B j−1)→ L2(B j−2) are the Jones projections. Then A j ∼= 〈A j−1,eA j−2〉 and

B j−1 ⊂L j−1 B j

∪Tj−1 ∪Tj

A j−1 ⊂G j−1 A j

is a symmetric commuting square of multi-matrix algebras for each j ∈ N with respect to

the trace trB j on B j given by the trace vector ‖L‖−2 jL~ξ if j is even and ‖L‖−2 j~ξ if j is odd.

This way we obtain a sequence of symmetric commuting squares

B0 ⊂L B1 ⊂Lt B2 ⊂L B3 · · ·

∪K ∪H ∪K ∪H

A0 ⊂G A1 ⊂Gt A2 ⊂G A3 · · ·

(1.2)

Define A∞ =∪∞
j=0A j and B∞ =∪∞

j=0B j. Since the traces trB j (resp. trA j ) for j ∈N extend one

another, we can define a trace trB∞
(resp. trA∞

) on B∞ (resp. A∞) that extends each trB j (resp.

trA j ) for j ∈N. Define B (resp. A) to be the w.o.-closure of B∞ (resp. A∞) in B(L2(B∞, trB∞
)).

Since trB∞
extends trA∞

, A is equal to the w.o.-closure of A∞ in B(L2(A∞, trA∞
)). A and B

are factors since uniqueness (up to a scalar) of the Perron-Frobenius eigenvector implies

uniqueness of the (normalized) faithful, normal trace A and B. Thus A⊂ B is a hyperfinite

subfactor and

[B : A] = ‖H‖2 = ‖K‖2. (1.3)

11



Note that the index of a subfactor of the hyperfinite II1 factor constructed in this manner

from a finite-dimensional symmetric commuting square is always an algebraic integer. In

[Sch90], Schou constructed irreducible hyperfinite subfactors whose indices are algebraic

integers that do not arise as norms of finite graphs.

Subfactors A⊂ B constructed in this manner have the relative McDuff property ([Bis90])

as the Jones projections are non-trivial non-commuting central sequences (eB j)
∞
j=0 and

(eB j+1)
∞
j=0 of B contained in A. This argument was given in [Bis94a].

1.3 Irreducibility

A basic property of the relative commutant A′∩B of a subfactor A ⊂ B is that [B : A] <

∞ implies dim(A′ ∩B) < ∞ ([Jon83]). We say that a subfactor A ⊂ B is irreducible if

dim(A′ ∩B) = 1. The next theorem is Schou’s generalization of Wenzl’s irreducibility

criterion ([Wen88]) to the case of infinite-dimensional symmetric commuting squares

([Sch90]). We first give two lemmas. Wenzl gave a proof of the first lemma for the finite-

dimensional case in and Schou showed that it also holds in the infinite-dimensional case.

The second lemma is a technical result of Schou used in his proof of Theorem 1.14.

Lemma 1.12. ([Sch90]) Let

A0 ⊂G A1 ⊂Gt A2 ⊂G A3 · · ·

and let B be as in the construction following Remark 1.11. Let trB be the unique normalized,

faithful, normal trace on B. Let j ∈ N0. Note that each A2 j has the same number of simple

summands. Let z2 j
i be the minimal central projection of A2 j contained in its i-th simple

summand for some i ∈ N. Then there exists ci > 0 such that trB(z
2 j
i )≥ ci for all j ∈ N0. A

similar result holds for odd labeled Ak’s.

Proof. Let~aA j be the dimension vectors and ~αA j the trace vectors (with respect to trace trB)

of A j, for j ∈N0. Note that~aA2 j = (GGt) j~aA0 and ~αA2 j = ‖G‖−2 j~αA0 for j ∈N0. Let z2 j
i be
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the minimal central projection of A2 j contained in its i-th simple summand for some j ∈ N0

and i ∈ N. Then

trB(z
2 j
i ) = a

A2 j
i α

A2 j
i =

(
(GGt) j~aA0

)
i
‖G‖−2 j~αA0

i =

((
GGt

‖G‖2

) j

~aA0

)
i

~αA0
i .

Note that the trace vector ~αA0 of trB on A0 is given by the normalized Perron-Frobenius

eigenvector of GGt due to Proposition 1.10. Now, for i ∈ N,

lim
j→∞

trB(z
2 j
i ) = lim

j→∞

((
GGt

‖G‖2

) j

~aA0

)
i

~αA0
i =

(
〈~aA0|~αA0〉~αA0

)
i

~αA0
i

‖~αA0‖2
2

=

(
~αA0

i

)2

‖~αA0‖2
2

> 0

where we used Corollary 1.6 for the second equality and the fact that trB is normalized for

the last equality. This implies that, for every i ∈ N, the sequence
(

trB(z
2 j
i )
)

j∈N0
of positive

numbers is bounded from below, i.e. there exists ci > 0 such that trB(z
2 j
i )≥ ci for all j ∈N0.

The proof for the odd labeled Ak’s is similar.

Lemma 1.13. ([Sch90]) Let m ∈ N\{1}. Let {α1, α2, . . . , αm} be a set of m different real

numbers and let {t1, t2, . . . , tm} be a set of m positive numbers with sum 1. Then there

exists ε > 0 such that:

If A is a II1 factor, tr its normalized, faithful, normal trace, and a,b ∈ A are self-adjoint such

that:

(i) a = ∑
m
i=1 αi pi where pi ∈ A are mutually orthogonal projections such that tr(pi) = ti,

for 1≤ i≤ m, and

(ii) b has strictly less than m spectral values and ‖b‖ ≤ ‖a‖,

then ‖b−a‖2
2 ≥ ε .
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Proof. This proof is taken from [Sch90]. Define

S =

(β ,T )
∣∣∣ β = (β1, . . . , βm−1), 0≤ β j ≤max1≤i≤m|ai| for 1≤ j ≤ m−1;

T = (Ti j) ∈Mm×(m−1)([0,1]), ∑
m−1
j=1 Ti j = ti for 1≤ i≤ m.


and F : S→ R by F(β ,T ) = ∑

m
i=1 ∑

m−1
j=1 (αi−β j)

2Ti j. S is compact so F has a minimum on

S. Let (β ′,T ′) be the point where this minimum is attained. There exists i ∈ {1, . . . , m}

such that αi /∈ {β ′1, . . . , β ′m−1} and then ti > 0 implies that there exists j ∈ {1, . . . , m−1}

such that T ′i j > 0. Therefore F(β ′,T ′)> 0. Set ε = F(β ′,T ′). Let A be a II1 factor and tr

its normalized, faithful, normal trace.

Let a,b ∈ A be such that they satisfy the assumptions of the lemma. Then b = ∑
m−1
j=1 β jq j for

some β j ∈ [0,max1≤i≤m|ai|] and q j ∈ A mutually orthogonal projections, for 1≤ j ≤ m−1,

such that ∑
m−1
j=1 q j = 1. Note that ∑

m
i=1 tr(pi) = 1 implies ∑

m
i=1 pi = 1 so

a =
m

∑
i=1

m−1

∑
j=1

αi piq j, and

b =
m

∑
i=1

m−1

∑
j=1

β j piq j.

Now

tr((a−b)∗(a−b)) = tr

(
m

∑
i=1

m−1

∑
j=1

(αi−β j)q j pi

m

∑
i′=1

m−1

∑
j′=1

(αi′−β j′)pi′q j′

)
=

=
m

∑
i=1

m−1

∑
j=1

m

∑
i′=1

m−1

∑
j′=1

(αi−β j)(αi′−β j′) tr(q j pi pi′q j′) =

=
m

∑
i=1

m−1

∑
j=1

(αi−β j)
2 tr(piq j).

Note that for 1≤ i≤ m and 1≤ j ≤ m−1

0≤ tr(piq j)≤
m−1

∑
j=1

tr(piq j) = tr(pi) = ti ≤ 1

14



so for β = (β1, . . . , βm−1) and T = (Ti j) such that Ti j = tr(piq j), for 1 ≤ i ≤ m and

1≤ j ≤ m−1, we have (β ,T ) ∈ S. Then

‖a−b‖2
2 = tr((a−b)∗(a−b)) = F(β ,T )≥ F(β ′,T ′) = ε.

The following theorem will be used to construct irreducible hyperfinite subfactors from

infinite-dimensional symmetric commuting squares.

Theorem 1.14. ([Sch90]) Let

B0 ⊂L B1

∪K ∪H

A0 ⊂G A1

be a symmetric commuting square of multi-matrix algebras such that ΓG, ΓH , ΓK, ΓL are

connected and locally finite, with respect to a normalized, faithful trace trB1 on B1 given by

a Perron-Frobenius eigenvector ~ξ of LtL. Let A⊂ B be the hyperfinite subfactor constructed

from this commuting square as described after Remark 1.11. Then

dim(A′∩B)≤ (min{1-norm of rows of H and K})2.

Proof. This proof is taken from [Sch90]. Let n ∈ N be even, i.e. n = 2l for some l ∈ N.

Denote An =
⊕

∞
i=1 An

i and Bn =
⊕

∞
i=1 Bn

i and let an = (an
i )

∞
i=1 and bn = (bn

i )
∞
i=1 be the

dimension vectors of An and Bn. Then A2l ⊂K B2l . Let m0 = min{1-norm of rows of K}

and pick i0 ∈ N such that i0-th row of K has 1-norm equal to m0.

Let z2l
i0 be the minimal central projection of A2l contained in its i0-th simple summand, i.e.

in A2l
i0 . Then z2l

i0 ∈Z (A2l)⊂ A′2l ∩B2l . For j ∈ N, let q2l
j be the minimal central projection

of B2l contained in its j-th simple summand, i.e. q2l
j ∈ B2l

j . Then one can choose a matrix
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representation of the inclusion A2l ⊂ B2l such that the elements of A2lq2l
j are of the form

x1
. . .

x1

x2
. . .




where each xi ∈ A2l

i is repeated Ki j times and the matrix has b2l
j columns.

For z2l
i0 q2l

j ∈ A2lq2l
j then in the above form we have that

xi =


1a2l

i0
×a2l

i0
, if i = i0;

0, otherwise.

Note that A′2l ∩B2l
∼=
⊕

∞
i, j=1 MKi j(C) and z2l

i0 there corresponds to the identity in⊕
∞
j=1 MKi0 j(C) so z2l

i0 can be written as a sum of m0 mutually orthogonal non-zero projec-

tions in A′2l ∩B2l since m0 is the 1-norm of the i0-th row of K.

Let {p j | j = 1, 2, . . . , m} be a maximal family of non-zero minimal projections contained

in A′∩B whose sum is 1. This family is finite since A′∩B is finite-dimensional ([B : A]< ∞

and [Jon83]). Set x = ∑
m
j=1

j
m p j. Then x = x∗ and ‖x‖= 1. By Kaplansky’s density theorem

there exists (xn)
∞
n=1⊂ (∪∞

n=1Bn)s.a. such that ‖xn‖≤ 1 and xn
s.o.−−−→

n→∞
x, i.e. d2(∪∞

n=1Bn,x) = 0.

Since B0 ⊂ B1 ⊂ ... we can pick xn ∈ Bn with x2l
s.o.−−−→

l→∞
x.

Set y2l = EA′2l∩B2l
(x2l) = EA′2l∩B(x2l). Then

‖y2l− x‖2 ≤ ‖y2l−EA′2l∩B(x)‖2
+‖EA′2l∩B(x)− x‖

2
.
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Since A′2l ∩B↘ A′∩B we get

‖EA′2l∩B(x)− x‖
2
−−−→
l→∞

‖EA′∩B(x)− x‖2 = 0

and

‖y2l−EA′2l∩B(x)‖2
= ‖EA′2l∩B(x2l− x)‖

2
≤ ‖x2l− x‖2 −−−→l→∞

0

so y2l
s.o.−−−→

l→∞
x.

Since y2l ∈ A′2l ∩B2l and z2l
i0 ∈ A2l , we have [y2l,z2l

i0 ] = 0.

Now y2lz2l
i0 ∈ z2l

i0 B2lz2l
i0
∼=
⊕

j MKi0 j(C) which contains only m0 non-zero minimal projections

so y2lz2l
i0 has at most m0 spectral projections.

Since zi0 ∈ A and p j ∈ A′∩B we have trB(p jz2l
i0 ) = trB(p j) trB(z2l

i0 ) 6= 0, so p jz2l
i0 is a non-zero

projection and then xz2l
i0 = ∑

m
j=1

j
m p jz2l

i0 has exactly m spectral projections.

Assume m > m0. Now we use Lemma 1.13 with α j =
j

m and t j = trB(p j) for j = 1,2, . . . ,m,

and the II1 factor z2l
i0 Bz2l

i0 . By the lemma, there is ε > 0 such that for all y ∈ z2l
i0 Bz2l

i0 self-

adjoint with ‖y‖ ≤ ‖xz2l
i0 ‖ and such that y has less than m spectral values, we have

‖y− xz2l
i0 ‖

2
2,z2l

i0
Bz2l

i0
≥ ε.

The trace on z2l
i0 Bz2l

i0 is given by

trz2l
i0

Bz2l
i0
(·) = trB(·)

trB(z2l
i0 )

so

‖y− xz2l
i0 ‖

2
2 ≥ ε trB(z2l

i0 ).
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We have that ‖xz2l
i0 ‖= 1 and ‖y2lz2l

i0 ‖ ≤ ‖x2l‖ ≤ 1 so for y = y2lz2l
i0 we get

‖y2lz2l
i0 − xz2l

i0 ‖
2
2 ≥ ε trB(z2l

i0 )≥ εci0 > 0

where ci0 > 0 is the constant from Lemma 1.12 such that trB(z2l
i0 )≥ ci0 for all l ∈ N. But we

also have

‖y2lz2l
i0 − xz2l

i0 ‖2 ≤ ‖z
2l
i0 ‖‖y2l− x‖2 −−−→l→∞

0

which is a contradiction, and hence we must have m≤ m0.

We know that A′ ∩B ∼=
⊕r

i=1 Mki(C) for some r,k1,k2, . . . ,kr ∈ N such that ∑
r
i=1 ki = m.

Now

dim(A′∩B) =
r

∑
i=1

k2
i ≤

(
r

∑
i=1

ki

)2

= m2 ≤ m2
0

so dim(A′∩B)≤ (min{1-norm of rows of K})2. Proceeding similarly for n ∈ N odd and H

instead of K finishes the proof.

Corollary 1.15. (Wenzl’s irreducibility criterion) Let

B0 ⊂L B1

∪K ∪H

A0 ⊂G A1

be a symmetric commuting square of multi-matrix algebras such that ΓG, ΓH , ΓK, ΓL are

connected and locally finite. Let A⊂ B be the hyperfinite II1 factors constructed from this

commuting square as described after Remark 1.11. If H or K contains a row with exactly

one non-zero entry that is equal to 1, then A⊂ B is irreducible.
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1.4 Ocneanu compactness

Ocneanu compactness provides a method for computing the relative commutant of the sub-

factor constructed from a symmetric commuting square in the finite-dimensional case.

Theorem 1.16. (Ocneanu compactness [Ocn90]) Let

B0 ⊂L B1

∪K ∪H

A0 ⊂G A1

be a symmetric commuting square of finite-dimensional multi-matrix algebras such that

ΓG,ΓH ,ΓK,ΓL are connected. Let A ⊂ B be the subfactor of the hyperfinite II1 factor

constructed from this commuting square as described after Remark 1.11. Then A′∩B =

A′1∩B0.

A proof of the theorem can be found in [JS97] or [EK98]. It allows one to compute (in

principle) the standard invariant of such subfactors ([JS97]).

19



CHAPTER 2

NEW HYPERFINITE SUBFACTORS FROM N-STARS WITH A∞-TAIL

In [Bis94b], Bisch constructed the first example of an irreducible subfactor of the hyperfinite

II1 factor whose index is a rational, non-integer number and thus not an algebraic integer. It

was accomplished by giving an explicit construction of a symmetric commuting square of

infinite-dimensional multi-matrix algebras based on an inclusion graph given by a 4-star

with A∞-tail.

Definition 2.1. For N a positive integer, we call N-star with A∞-tail the infinite bipartite

graph

· · ·
· · ·

N vertices

Figure 2: N-star with A∞-tail

We will denote this graph by ΓN .

Remark 2.2. Graphs A∞ and D∞ (or more precisely, the B(`2(N)) operators represented

by their full adjacency matrices) do not have `2 Perron-Frobenius eigenvectors as they are

infinite graphs that appear as principal graphs of amenable subfactors ([Pop94]).

Remark 2.3. Let Γ be a graph that is a concatenation of a finite graph and A∞. Then the

norm of Γ is greater than or equal to 2.

Note that Γ1 and Γ2 are A∞ and that Γ3 is D∞. Our goal is to find symmetric commuting

squares based on inclusion graphs given by a N-stars with A∞-tail so, due to Proposition 1.10

and Remark 2.2, in the following we consider a fixed N ≥ 4.
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2.1 Perron-Frobenius eigenvalue and eigenvector

We will enumerate vertices of ΓN as follows:

1 N +1 N +3 N +5

N N +2 N +4

2 N−1

· · ·
· · ·

Figure 3: Labeled N-star with A∞-tail

and we call the elements of its partition

upper vertices = {1, 2, . . . , N−1}∪{N +2k+1 | k ∈ N0} , and

lower vertices = {N +2k | k ∈ N0} .

Let G be the full adjacency matrix of ΓN . Its rows and columns are both enumerated by all

vertices of ΓN , i.e. by N. G is symmetric since ΓN is undirected and G is irreducible since

ΓN is connected. For k ∈ N, G k is again an infinite matrix with well-defined finite entries

since ΓN is locally finite. Then

G =

1 2 · · · N−1 N N +1 N +2 · · ·

1 0 0 · · · 0 1 0 0 · · ·

2 0 0 · · · 0 1 0 0 · · ·
...

...
...

. . .
...

...
...

...

N−1 0 0 · · · 0 1 0 0 · · ·

N 1 1 · · · 1 0 1 0

N +1 0 0 · · · 0 1 0 1
. . .

N +2 0 0 · · · 0 0 1 0
. . .

...
...

...
...

. . .
. . .

. . .





.

We will call this the ω form of G (after the ordinal ω). This infinite matrix is a representation
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of a linear operator on `2(N) (by acting on sequences of complex numbers by matrix

multiplication) which we will also call G . Since the degrees of vertices of ΓN are bounded

by a constant, it follows that G ∈ B(`2(N)).

Let G be the bipartite adjacency matrix of ΓN such that its rows are enumerated by upper

vertices of ΓN and its columns are enumerated by lower vertices of ΓN . Then we can order

rows and columns of G so that

G =

upper lower

upper 0 G

lower Gt 0

 .

We will call this the ω ·2 form of G (after the ordinal ω ·2). We have

G =

N N +2 N +4 N +6 · · ·

1 1 0 0 0 · · ·

2 1 0 0 0 · · ·
...

...
...

...
...

N−1 1 0 0 0 · · ·

N +1 1 1 0 0

N +3 0 1 1 0
. . .

N +5 0 0 1 1
. . .

...
...

. . .
. . .

. . .




and G is also in B(`2(N)).

If G has an `2 eigenvector whose entries are all positive then due to Theorem 1.5 this

eigenvector is a Perron-Frobenius eigenvector and the corresponding eigenvalue is its

Perron-Frobenius eigenvalue. Since we want to use it to define a finite trace, we need this

Perron-Frobenius eigenvector to also be `1.
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G~ξ = λ~ξ is equivalent to:

ξN = λξ1,

ξN = λξ2,

...

ξN = λξN−1,

ξ1 +ξ2 + . . .+ξN−1 +ξN+1 = λξN ,

ξN+k−1 +ξN+k+1 = λξN+k for k ∈ N.

(2.1)

The last row of (2.1) is a recurrence relation with characteristic polynomial x2−λx+ 1

whose roots are x1 =
λ+
√

λ 2−4
2 and x2 =

λ−
√

λ 2−4
2 . Therefore there exist c1,c2 ∈ C so that,

for every k ∈ N, ξN+k−1 = c1xk−1
1 + c2xk−1

2 . Due to Remark 2.3, we are only interested in

solutions such that λ ≥ 2 and that implies x1 ≥ 1≥ x2 > 0. Due to Theorem 1.5, we are only

interested in solutions such that ‖~ξ‖2 < ∞ so we must have c1 = 0. Since we are looking

for an eigenvector ~ξ , we can set c2 = λ (or any other arbitrary non-zero scalar). Then we

have ξN = λ and ξN+1 = λx2. Now it follows from (2.1) that ξ1 = ξ2 = . . .= ξN−1 = 1 and

N−1+λx2 = λ 2. Solving the latter for λ ≥ 2 (with the condition N ≥ 4) gives a solution

to (2.1):

λ =
N−1√
N−2

,

ξ1 = ξ2 = . . .= ξN−1 = 1,

ξN+k−1 =
N−1(√
N−2

)k for k ∈ N.

(2.2)

Since 0 < 1√
N−2

< 1 for N ≥ 4, it follows that ‖~ξ‖1 = N−1+ N−1√
N−2−1

< ∞, so ~ξ is `1 and

`2. Since all entries of ~ξ are positive, it follows that λ is the Perron-Frobenius eigenvalue

and ~ξ is a Perron-Frobenius eigenvector of G due to Theorem 1.5. This implies:

‖ΓN‖2 = ‖G ‖2 = λ
2 =

(N−1)2

N−2
.
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2.2 Bi-unitary condition

We want to find a symmetric commuting square where G is the inclusion matrix on the

index defining side. A priori, the remaining inclusion matrices could be anything provided

that certain Perron-Frobenius eigenvalues and eigenvectors agree. Polynomials in G and

Gt are good candidates so we will attempt to find a symmetric commuting square of the

form:
C ⊂nG D

∪Gt ∪G

A ⊂nGt B

(2.3)

Clearly (nGt)tGt = G(nG)t .

In ω ·2 form G~ξ = λ~ξ means

0 G

Gt 0

  ~s

~t

 = λ
~s

~t

  where
upper ~s

lower ~t

  is the ω ·2 form of ~ξ .

Note that~s and~t are both `1 and `2, and all of their entries are positive since this is true for

~ξ .

0 G

Gt 0

  ~s

~t

 =
G~t

Gt~s

  so
G~t = λ~s,

Gt~s = λ~t.

In ω ·2 form λ 2~ξ = G 2~ξ means

λ
2 ~s

~t

 =
0 G

Gt 0

 2 ~s

~t

 =
GGt 0

0 GtG

  ~s

~t

 =
GGt~s

GtG~t

  so
GGt~s = λ 2~s,

GtG~t = λ 2~t.

GGt and GtG are symmetric, irreducible and have well-defined powers with finite entries.

Thus~s is a Perron-Frobenius eigenvector of GGt ,~t is a Perron-Frobenius eigenvector of GtG

and λ 2 = ‖G‖2 is their Perron-Frobenius eigenvalue. If there is a symmetric commuting
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square of this form then due to (1.3) the index of the resulting subfactor of the hyperfinite

II1 factor would be

‖G‖2 = λ
2 =

(N−1)2

N−2
= N +

1
N−2

. (2.4)

Since N ≥ 4, all these potential indices are rational, non-integer numbers and thus not al-

gebraic integers. Hence these indices cannot be obtained by using finite graphs. The values of

the first few of these numbers are 4.5, 5.333 . . . , 6.25, 7.2, 8.166 . . . , 9.142 . . . , 10.125, . . .

Let ~α, ~β , ~γ, ~δ be the trace vectors of A, B, C, D in (2.3) and let A be commutative, i.e. the

algebra
⊕

∞
i=1C = `∞(N). If we are to have a symmetric commuting square of this form,

then due to Proposition 1.10 we need to have ~δ =~t (up to a scalar) since it is the Markov

trace (after normalization) for the inclusion B⊂G D. Also, note that~t is `1 so it defines a

finite trace on D since the entries of the dimension vector of D are bounded by a constant.

Then

~γ = nG~δ = nG~t = nλ~s,

~β = G~δ = G~t = λ~s,

~α = nGt~β = nλGt~s = nλ
2~t,
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so the traces are given as follows:

~γ = nλ~s ~δ =~t

↖ ↗

C ⊂nG D

∪Gt ∪G

A ⊂nGt B

↙ ↘

~α = nλ 2~t ~β = λ~s

These traces are not normalized, but we can apply results from Chapter 1 to their normaliza-

tions when necessary. Now

√
αiδk

β jγl
=

√
nλ 2ti · tk

λ s j ·nλ sl
=

√
titk
s jsl

for i, j,k, l ∈ N.

Let S and T be the sets of paths in A⊂nGt B⊂G D and A⊂Gt C ⊂nG D, i.e.

S =
{
(i,φ , j,k) | (Gt)i jG jk 6= 0, 1≤ φ ≤ n(Gt)i j

}
and

T =
{
(i, l,ψ,k) | (Gt)ilGlk 6= 0, 1≤ ψ ≤ nGlk

}
.

Then by Theorem 1.3 the existence of a symmetric commuting square of this form is

equivalent to the existence of a pair of unitaries u and v such that:

u = ⊕
(i,k)

u(i,k), u(i,k) =
(

u(i,k)
( j,φ ,l,ψ)

)
(i,φ , j,k)∈S
(i,l,ψ,k)∈T

for (i,k) such that (GtG)ik 6= 0,

v = ⊕
( j,l)

v( j,l), v( j,l) =
(

v( j,l)
(i,φ ,k,ψ)

)
(i,φ , j,k)∈S
(i,l,ψ,k)∈T

for ( j, l) such that (GGt) jl 6= 0, and

v( j,l)
(i,φ ,k,ψ)

=

√
titk
s jsl

u(i,k)
( j,φ ,l,ψ)

for all (i,φ , j,k) ∈ S and (i, l,ψ,k) ∈ T.

26



We want to find such unitaries u and v for (2.3).

b1 bN bN+1 bN+2

a1 a2 a3

b2 bN−1

· · ·
· · ·

nGt

d1 d2 d3

· · ·
· · ·

G

Figure 4: Paths in S

We will use labels of the form (ai,φ ,b j,dk) for paths in S

c1 cN cN+1 cN+2

a1 a2 a3

c2 cN−1

· · ·
· · ·

Gt

d1 d2 d3

· · ·
· · ·

nG

Figure 5: Paths in T

and labels of the form (ai,cl,ψ,dk) for paths in T . Thick lines represent n edges.

Recall that in ω ·2 form we have

~ξ =
upper ~s

lower ~t

 
and upper = {1, 2, . . . , N− 1}∪{N + 2k+ 1 | k ∈ N0} and lower = {N + 2k | k ∈ N0}.
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Using (2.2) it follows that

sk = ξk = 1 for k = 1, 2, . . . , N−1,

sN+k = ξN+2k+1 =
N−1

(N−2)k+1 for k ∈ N0,

tk = ξN+2k−2 =
(N−1)

√
N−2

(N−2)k for k ∈ N.

(2.5)

We see that u has block structure of the form

u =

d1 d2 d3 d4 · · ·

a1 × × ·· ·

a2 × × × ·· ·

a3 × × ×

a4 × ×
. . .

...
...

...
. . .

. . .

where × at (ai,dk) denotes a non-empty block u(ai,dk), i.e. there exists at least one S-path

and at least one T -path from ai to dk.

Note that if we pick ai, b j, cl, dk such that there exist φ , ψ for which (ai,φ ,b j,dk) ∈

S and (ai,cl,ψ,dk) ∈ T then actually (ai,φ
′,b j,dk) ∈ S and (ai,cl,ψ

′,dk) ∈ T for every

φ ′, ψ ′ ∈ {1, 2, . . . , n}. So every u(ai,dk) (and every v(b j,cl)) is built from some number of

elementary n× n blocks (i.e. elements of Mn(C)). In the case of u(ai,dk) we label these

blocks by (b j,cl) and use the notation u(ai,dk)
(b j,cl)

=
(

u(ai,dk)
(b j,φ ,cl ,ψ)

)
1≤φ ,ψ≤n

. In the case of v(b j,cl)

we label the blocks by (ai,dk) and write v(b j,cl)

(ai,dk)
=
(

v(b j,cl)

(ai,φ ,dk,ψ)

)
1≤φ ,ψ≤n

. (For ai, b j, cl, dk

as above).

From Figure 4 and Figure 5 we deduce:

• For (a1,d1) all S-paths go through one of b1, b2, . . . , bN and all T -paths go through

one of c1, c2, . . . , cN so u(a1,d1) consists of N ·N = N2 elementary n×n blocks.
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• For (ai,di) s.t. i > 1 all S-paths go through bN+i−2 or bN+i−1 and all T -paths go

through cN+i−2 or cN+i−1 so u(ai,di) consists of 2 ·2 = 4 elementary n×n blocks.

• For (ai,di+1) all S-paths go through bN+i−1 and all T -paths go through cN+i−1 so

u(ai,di+1) consists of a single elementary n×n block.

• For (ai+1,di) all S-paths go through bN+i−2 and all T -paths go through cN+i−2 so

u(ai+1,di) consists of a single elementary n×n block.

Now we know that u is of the form

u =

· · ·
c1c2 · · ·cN−1cN

b1 �� · · · � �
b2 �� · · · � �
...

...
...
. . .

...
...

bN−1�� · · · � � cN
bN �� · · · � � bN �

cN cN cN+1
bN � bN � � cN+1

bN+1 � � bN+1 �
cN+1 cN+1cN+2

bN+1 � bN+1 � � cN+2
bN+2 � � bN+2 �

cN+2 cN+2cN+3
bN+2 � bN+2 � �

bN+3 � �
...

. . .

d1 d2 d3 d4

a1 · · ·

a2 · · ·

a3

a4
. . .

...
...

. . .

(2.6)

where at each (ai,dk) are blocks which constitute u(ai,dk) and each � represents some

elementary n×n block u(ai,dk)
(b j,cl)

.

Since the elementary n×n block u(ai,dk)
(b j,cl)

exists if and only if there exists an elementary n×n
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block v(b j,cl)

(ai,dk)
, we can read the block structure of v from the block structure of u:

v =

· · · · · ·
d1 d1 d1 d1

a1�a1� a1�a1�
d1 d1 d1 d1

a1�a1� a1�a1�
...

. . . · · ·
d1 d1 d1 d1

a1�a1� a1�a1�
d1 d1 d1 d1d2

a1�a1� a1�a1�� d2
a2��a2�

d2 d2d3
a2�a2�� d3

a3��a3�
d3 d3d4

a3�a3��
a4��

...
...

. . .

c1 c2 cN−1 cN cN+1 cN+2

b1 · · · · · ·

b2 · · · · · ·
...

...
...

...

bN−1 · · · · · ·

bN
· · · · · ·

bN+1

bN+2
. . .

...
...

...
...

. . .

(2.7)

Here at each (b j,cl) are blocks which constitute v(b j,cl) and each � represents some elemen-

tary n×n block v(b j,cl)

(ai,dk)
.

Note that

v(b j,cl)

(ai,φ ,dk,ψ)
=

√
titk
s jsl

u(ai,dk)
(b j,φ ,cl ,ψ)

for all (ai,φ ,b j,dk) ∈ S and (ai,cl,ψ,dk) ∈ T

is equivalent to

v(b j,cl)

(ai,dk)
=

√
titk
s jsl

u(ai,dk)
(b j,cl)

for all (ai,1,b j,dk) ∈ S and (ai,cl,1,dk) ∈ T.

For each elementary n×n block in v (or u) we now use (2.5) to compute the corresponding

value
√

titk
s jsl

:

• If 1≤ j, l ≤ N−1 then i = k = 1 and
√

titk
s jsl

= t1 = N−1√
N−2

.
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• If j = N and 1≤ l ≤ N−1 then i = k = 1 and
√

titk
s jsl

= t1√
sN

=
√

N−1.

• If l = N and 1≤ j ≤ N−1 then i = k = 1 and
√

titk
s jsl

= t1√
sN

=
√

N−1.

• If j, l ≥ N and l = j+1 then i = k = j−N +2 and
√

titk
s jsl

=
t j−N+2√s js j+1

= 1.

• If j, l ≥ N and j = l +1 then i = k = l−N +2 and
√

titk
s jsl

=
tl−N+2√

sl+1sl
= 1.

• If j = l ≥ N then i, k ∈ { j−N +1, j−N +2} so:

– If i = k = j−N +1 then
√

titk
s jsl

=
t j−N+1

s j
=
√

N−2.

– If i = k = j−N +2 then
√

titk
s jsl

=
t j−N+2

s j
= 1√

N−2
.

– If i 6= j then
√

titk
s jsl

=
√

t j−N+1t j−N+2
s j

= 1.

If we put each
(√

titk
s jsl

)−1
(i.e. the multiplicative inverse of the computed value) in the

corresponding spot inside the shape of the block structure of v (or u) we get a matrix that tells

us with what we need to multiply each elementary n×n block of v to get the corresponding

elementary n×n block of u.

This matrix, in the shape of the block structure of u, is

· · ·
√

N−2
N−1

√
N−2

N−1 · · ·
√

N−2
N−1

1√
N−1√

N−2
N−1

√
N−2

N−1 · · ·
√

N−2
N−1

1√
N−1

...
...

. . .
...

...√
N−2

N−1

√
N−2

N−1 · · ·
√

N−2
N−1

1√
N−1

1√
N−1

1√
N−1
· · · 1√

N−1
1√

N−2
1

1
√

N−2 1
1 1√

N−2
1

1
√

N−2 1
1 1√

N−2
...

. . .

d1 d2 d3

a1 · · ·

a2

a3
. . .

...
. . .

(2.8)

We see in (2.6) that each u(ai,di+1) has only one elementary n× n block u(ai,di+1)
(bN+i−1,cN+i−1)
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which thus must be unitary. The same is true for u(ai+1,di) and u(ai+1,di)
(bN+i−1,cN+i−1)

. Then (2.7)

shows that, for i ≥ 1, each v(bN+i−1,cN+i−1) contains v(bN+i−1,cN+i−1)
(ai,di+1)

= 1 · u(ai,di+1)
(bN+i−1,cN+i−1)

and

v(bN+i−1,cN+i−1)
(ai+1,di)

= 1 ·u(ai+1,di)
(bN+i−1,cN+i−1)

which are both unitary.

Lemma 2.4. Let

M =
M1 M2

M3 M4

 
be a 2n×2n block matrix where M1, M2, M3, M4 are n×n matrices such that M2 and M3

are unitary. Then the following are equivalent:

(i) M is unitary.

(ii) M1 = M4 = 0.

Proof. Trivial.

Applying Lemma 2.4 to v(bN+i−1,cN+i−1) we get that

v(bN+i−1,cN+i−1)
(ai,di)

= v(bN+i−1,cN+i−1)
(ai+1,di+1)

= 0 for all i ∈ N, which implies

u(ai,di)
(bN+i−1,cN+i−1)

= u(ai+1,di+1)
(bN+i−1,cN+i−1)

= 0 for all i ∈ N.
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Hence we deduce that u has to be of the form

u =

· · ·

� � · · · � �

� � · · · � �
...

...
...

. . .
...

� � · · · � �

� � · · · � 0 ∗

∗ 0 ∗

∗ 0 ∗

∗ 0 ∗

∗ 0
...

. . .

d1 d2 d3

a1
· · ·

a2

a3
. . .

...
. . .

(2.9)

and v has to be of the form

v =

c1 c2 · · · cN−1 · · ·

b1 � � · · · � � · · ·

b2 � � · · · � � · · ·
...

...
...

. . .
...

... · · ·

bN−1 � � · · · � � · · ·

� � · · · � 0 ∗

∗ 0 ∗

∗ 0 ∗

∗ 0
...

...
...

...
...

. . .

cN cN+1

bN

bN+1
. . .

. . .

(2.10)

where each � and ∗ is an elementary n×n block.
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Note that for every remaining non-zero elementary n×n block in all v(b j,cl) of v for j, l ≥ N

(denoted by ∗) we can pick an arbitrary n×n unitary matrix. This is because each such ∗ in

v is equal to some non-zero elementary n×n block in some u(ai,dk) of u for i+ k > 2 (again

denoted by ∗) because the corresponding
√

titk
s jsl

= 1. Thus each such choice is consistent and

all resulting v(b j,cl) for j, l ≥ N and u(ai,dk) for i+k > 2 are unitary due to Lemma 2.4.

Observe that if u and v are bi-unitary matrices of this form and we fix their � entries, then for

every choice of n×n unitaries for ∗ entries of v the resulting matrices u and v are bi-unitarily

equivalent (see [JS97]), i.e. all such commuting squares are ∗-isomorphic and thus give rise

to isomorphic subfactors.

All this proves the following proposition:

Proposition 2.5. A symmetric commuting square of the form (2.3) exists if and only if there

exist N2−1 n×n unitary matrices v(b j,cl) = v(b j,cl)

(a1,d1)
such that the (N ·n)× (N ·n) matrix

u(a1,d1) =

u(a1,d1)
(b1,c1)

u(a1,d1)
(b1,c2)

· · · u(a1,d1)
(b1,cN−1)

u(a1,d1)
(b1,cN)

u(a1,d1)
(b2,c1)

u(a1,d1)
(b2,c2)

· · · u(a1,d1)
(b2,cN−1)

u(a1,d1)
(b2,cN)

...
...

. . .
...

...

u(a1,d1)
(bN−1,c1)

u(a1,d1)
(bN−1,c2)

· · · u(a1,d1)
(bN−1,cN−1)

u(a1,d1)
(bN−1,cN)

u(a1,d1)
(bN ,c1)

u(a1,d1)
(bN ,c2)

· · · u(a1,d1)
(bN ,cN−1)

0




=

=

√
N−2

N−1 v(b1,c1)
√

N−2
N−1 v(b1,c2) · · ·

√
N−2

N−1 v(b1,cN−1) 1√
N−1

v(b1,cN)

√
N−2

N−1 v(b2,c1)
√

N−2
N−1 v(b2,c2) · · ·

√
N−2

N−1 v(b2,cN−1) 1√
N−1

v(b2,cN)

...
...

. . .
...

...
√

N−2
N−1 v(bN−1,c1)

√
N−2

N−1 v(bN−1,c2) · · ·
√

N−2
N−1 v(bN−1,cN−1) 1√

N−1
v(bN−1,cN)

1√
N−1

v(bN ,c1) 1√
N−1

v(bN ,c2) · · · 1√
N−1

v(bN ,cN−1) 0




is also unitary.
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2.3 Case n = 1, general N

Our goal is to find symmetric commuting squares based on N-stars with A∞-tail of the

form (2.3) for n = 1. According to Proposition 2.5 it is enough to find N2−1 1×1 unitary

matrices (i.e. complex numbers of absolute value 1) Vj,k, for 1 ≤ j, k ≤ N and j 6= N or

k 6= N such that

U =

√
N−2

N−1 V1,1

√
N−2

N−1 V1,2 · · ·
√

N−2
N−1 V1,N−1

1√
N−1

V1,N
√

N−2
N−1 V2,1

√
N−2

N−1 V2,2 · · ·
√

N−2
N−1 V2,N−1

1√
N−1

V2,N

...
...

. . .
...

...
√

N−2
N−1 VN−1,1

√
N−2

N−1 VN−1,2 · · ·
√

N−2
N−1 VN−1,N−1

1√
N−1

VN−1,N

1√
N−1

VN,1
1√

N−1
VN,2 · · · 1√

N−1
VN,N−1 0




is unitary.

Remark 2.6. If U is such that its corresponding u and v satisfy the conditions of Proposi-

tion 2.5, then pre-multiplying or post-multiplying U by diagonal unitary matrices results

with U ′ whose corresponding u′ and v′ again satisfy Proposition 2.5 and are bi-unitarily

equivalent (see [JS97]) to u and v, i.e. their commuting squares are ∗-isomorphic and

give rise to isomorphic subfactors. Additionaly, if we permute the first N−1 rows and/or

columns of such U in any way, then the u′ and v′ of the resulting matrix U ′ will again satisfy

Proposition 2.5 and, while strictly speaking they will not in general be bi-unitarily equivalent

to u and v, due to (2.8), (2.9) and (2.10) their commuting squares will be ∗-isomorphic and

give rise to isomorphic subfactors. We will say that matrices U and U ′ obtained from one

another by some finite sequence of these two types of transformations are equivalent.

Due to Remark 2.6 we are only interested in U up to equivalence, so we can take V1,1 =

Vj,N =VN,k = 1 for all 1≤ j, k≤N−1 by multiplying rows and columns of U by appropriate
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scalars and then we have

U =

√
N−2

N−1 V1,1

√
N−2

N−1 V1,2 · · ·
√

N−2
N−1 V1,N−1

1√
N−1

√
N−2

N−1 V2,1

√
N−2

N−1 V2,2 · · ·
√

N−2
N−1 V2,N−1

1√
N−1

...
...

. . .
...

...
√

N−2
N−1 VN−1,1

√
N−2

N−1 VN−1,2 · · ·
√

N−2
N−1 VN−1,N−1

1√
N−1

1√
N−1

1√
N−1

· · · 1√
N−1

0




(2.11)

where also V1,1 = 1.

Remark 2.7. Unless otherwise stated, U will be assumed to be of the form as in (2.11)

(along with V1,1 = 1).

U is unitary if and only if its rows form an orthonormal basis of CN with respect to the

standard inner product. Thus to find U , we are looking to solve the following system of

equations:
N−1

∑
k=1

Vj,k = 0, for 1≤ j ≤ N−1,

N−1

∑
l=1

Vj,lVk,l =−
N−1
N−2

, for 1≤ j < k ≤ N−1,

|Vj,k|= 1 for 1≤ j, k ≤ N−1;

(2.12)

or
N−1

∑
k=1

cosΦ j,k = 0, for 1≤ j ≤ N−1,

N−1

∑
k=1

sinΦ j,k = 0, for 1≤ j ≤ N−1,

N−1

∑
l=1

cos(Φ j,l−Φk,l) =−
N−1
N−2

, for 1≤ j < k ≤ N−1,

N−1

∑
l=1

sin(Φ j,l−Φk,l) = 0, for 1≤ j < k ≤ N−1;

(2.13)

when those equations are separated into their real and imaginary parts, where Φ j,k ∈ [0,2π)

is defined by Vj,k = ei·Φ j,k (i.e. Φ j,k = arg(Vj,k) = arg(U j,k)) for all 1≤ j, k ≤ N−1.
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The first and the third row of equations in (2.12) imply that for each j ∈ {1, 2, . . . , N−1}

the numbers Vj,1, Vj,2, . . . , Vj,N−1 are vectors in the complex plane that correspond to the

sides of some equilateral (N− 1)-gon, i.e. the rows of the upper left (N− 1)× (N− 1)

submatrix of U represent sides of some equilateral (N−1)-gons in the complex plane. Note

that these (N−1)-gons can be non-convex, degenerate or self-intersecting.

Analogous statements are also true for the columns of U , so this proves the following:

Lemma 2.8. Let U be as in Remark 2.7. Then the rows and the columns of its corresponding

matrix Φ = (Φ j,k)1≤ j,k≤N−1 consist of directions of sides of some equilateral (N−1)-gons

in the complex plane.

Note that Lemma 2.8 does not hold for all matrices equivalent to U , because changing the

last row (resp. column) of U means that the other rows (resp. columns) do not need to have

this property anymore.

We will denote the rows of U by R j and columns of U by Ck, i.e. we define

R j = (U j,k)1≤k≤N , for 1≤ j ≤ N,

Ck = (U j,k)1≤ j≤N , for 1≤ k ≤ N.

2.3.1 Case n = 1, N = 4

For N = 4, equilateral 3-gons are equilateral triangles.

Remark 2.9. The directions of sides of an equilateral triangle in the complex plane form the

set {α, α + 2π

3 , α + 4π

3 } for some α ∈ [0, 2π

3 ). The following is an example of an equilateral

triangle in the complex plane whose sides are labeled by their directions in this manner:
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α

α + 2π

3α + 4π

3

Figure 6: Equilateral triangle in the complex plane

Assume that, for N = 4, there exists a unitary matrix U as in Remark 2.7. Then we can

apply Lemma 2.8 to its corresponding matrix Φ. Note that V1,1 = 1 implies Φ1,1 = 0. Now,

without loss of generality (by reordering rows and columns if necessary), Remark 2.9 implies

that

Φ =

0 2π

3
4π

3

2π

3 ∗ ∗
4π

3 ∗ ∗


.

Using Remark 2.9 again, we get

Φ =

0 2π

3
4π

3

2π

3
4π

3 0

4π

3 0 2π

3


.

But now R1 =
(√

2
3 , −

√
2

6 +
√

6
6 i, −

√
2

6 −
√

6
6 i, 1

2

)
and

R2 =
(
−
√

2
6 +

√
6

6 i, −
√

2
6 −

√
6

6 i,
√

2
3 , 1

2

)
so 〈R1|R2〉=− 1

12−
√

3
3 i 6= 0. Thus U is not unitary

which is a contradiction.

Thus according to Proposition 2.5 there are no symmetric commuting squares of the form

(2.3) for N = 4 and n = 1. This is the reason why Bisch’s construction of an irreducible

hyperfinite subfactor with index 4.5 is more involved and is based on a symmetric commuting
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square of the form (2.3) for N = 4 and n = 2 ([Bis94b]).

2.3.2 Case n = 1, N = 5

For N = 5, equilateral 4-gons are equilateral quadrilaterals, i.e. rhombuses.

Remark 2.10. The directions of sides of a rhombus in the complex plane form the multiset

{α, β , α +π, β +π} for some α, β ∈ [0,π). The following is an example of a rhombus in

the complex plane whose sides are labeled by their directions in this manner:

α

β

α +π

β +π

Figure 7: Rhombus in the complex plane

We want to find unitary matrices U of the form from Remark 2.7. We can apply Lemma 2.8

to its corresponding matrix Φ. Note that V1,1 = 1 implies Φ1,1 = 0, so, without loss of

generality (by reordering rows and columns if necessary), Remark 2.10 implies that we need

to have

Φ =

0 π α α +π

π ∗ ∗ ∗

β ∗ ∗ ∗

β +π ∗ ∗ ∗




for some α, β ∈ [0,2π).

Note that additions of directions and equalities of directions are considered mod 2π .

If Φ2,2 = 0, then Remark 2.10 implies that Φ2,3 = γ and Φ2,4 = γ +π for some γ ∈ [0,2π).

But then 〈R1|R2〉 6= 0 so we must have Φ2,2 6= 0. Thus, due to Remark 2.10, without loss of
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generality (by reordering rows and columns if necessary), we must have

Φ =

0 π α α +π

π γ +π 0 γ

β 0 ∗ ∗

β +π γ ∗ ∗




for some α, β , γ ∈ [0,2π).

If any of α, β , γ is 0 or π , then 〈R1|R2〉 6= 0 or 〈C1|C2〉 6= 0 so we must have α, β , γ /∈

{0, π}.

If Φ3,3 = π , then Remark 2.10 implies that

Φ =

0 π α α +π

π γ +π 0 γ

β 0 π β +π

β +π γ α +π ∗




for some α, β , γ ∈ [0,2π).

Thus we have

〈R2|R3〉= 0

=⇒ 3
16

(−e−iβ − eiγ −1− ei(γ−β ))+
1
4
= 0

=⇒ (1+ e−iβ )(1+ eiγ) =
4
3

Similarly, 〈C2|C3〉 = 0 =⇒
(
1+ e−iα)(1+ eiγ) = 4

3 so α = β and then Remark 2.10

applied to the 4th row (or column) gives α = β = γ . But now 〈R1|R3〉 6= 0, so we must have

Φ3,3 6= π . Then, due to Remark 2.10, we must have Φ3,3 = α +π = β +π which implies
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Φ3,4 = Φ4,3 = π and α = β = γ so

Φ =

0 π α α +π

π α +π 0 α

α 0 α +π π

α +π α π 0




for some α ∈ [0,2π).

Solving 〈R1|R2〉 = 0 for eiα gives two solutions: eiα = 1
3
+− 2
√

2
3 i. Set z = 1

3 +
2
√

2
3 i. Two

matrices U

√
3

4 −
√

3
4

√
3

4 z −
√

3
4 z 1

2

−
√

3
4 −

√
3

4 z
√

3
4

√
3

4 z 1
2

√
3

4 z
√

3
4 −

√
3

4 z −
√

3
4

1
2

−
√

3
4 z

√
3

4 z −
√

3
4

√
3

4
1
2

1
2

1
2

1
2

1
2 0




and

√
3

4 −
√

3
4

√
3

4 z −
√

3
4 z 1

2

−
√

3
4 −

√
3

4 z
√

3
4

√
3

4 z 1
2

√
3

4 z
√

3
4 −

√
3

4 z −
√

3
4

1
2

−
√

3
4 z

√
3

4 z −
√

3
4

√
3

4
1
2

1
2

1
2

1
2

1
2 0




that correspond to these solutions are both unitary. Note that the second matrix is equivalent

to the first one via

→

√
3

4 z −
√

3
4 z

√
3

4 −
√

3
4

1
2

−
√

3
4 z −

√
3

4

√
3

4 z
√

3
4

1
2

√
3

4

√
3

4 z −
√

3
4 −

√
3

4 z 1
2

−
√

3
4

√
3

4 −
√

3
4 z

√
3

4 z 1
2

1
2

1
2

1
2

1
2 0




→

√
3

4 −
√

3
4

√
3

4 z −
√

3
4 z 1

2

−
√

3
4 −

√
3

4 z
√

3
4

√
3

4 z 1
2

√
3

4 z
√

3
4 −

√
3

4 z −
√

3
4

1
2

−
√

3
4 z

√
3

4 z −
√

3
4

√
3

4
1
2

1
2

1
2

1
2

1
2 0




where in the first step we multiply the first four rows by z and the last column by z, and in

the second step we permute the rows by (23) and the columns by (13)(24). So there is a
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unique (up to equivalence) unitary matrix U :

U =

√
3

4 −
√

3
4

√
3

12 +
√

6
6 i −

√
3

12 −
√

6
6 i 1

2

−
√

3
4 −

√
3

12 −
√

6
6 i

√
3

4

√
3

12 +
√

6
6 i 1

2
√

3
12 +

√
6

6 i
√

3
4 −

√
3

12 −
√

6
6 i −

√
3

4
1
2

−
√

3
12 −

√
6

6 i
√

3
12 +

√
6

6 i −
√

3
4

√
3

4
1
2

1
2

1
2

1
2

1
2 0




. (2.14)

Since α = arg(1
3 +

2
√

2
3 i) = arccos 1

3 , its corresponding matrix Φ is

Φ =

0 π arccos 1
3 arccos 1

3 +π

π arccos 1
3 +π 0 arccos 1

3

arccos 1
3 0 arccos 1

3 +π π

arccos 1
3 +π arccos 1

3 π 0




.

All rhombuses of Φ are the same (up to permutation of sides):

0

arccos 1
3

π

arccos 1
3 +π

Figure 8: Rhombus for N = 5 and n = 1

In the context of Remark 2.10, we have α = 0 and β = arccos 1
3 .

It follows from Proposition 2.5 that there exists a symmetric commuting square of the form

(2.3) for N = 5 and n = 1. Thus, by (1.3), (2.4) and Corollary 1.15, there is an irreducible

subfactor of the hyperfinite II1 factor constructed from this commuting square whose index

is (N−1)2

N−2 = 16
3 = 5.333 . . .
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2.3.3 Case n = 1, N = 6 and N = 7

We studied the question of existence of a unitary matrix U from (2.11) for N = 4 (in Sub-

section 2.3.1) and for N = 5 (in Subsection 2.3.2) by using a parametrization of equilateral

triangles (stated in Remark 2.9) and a parametrization of rhombuses (stated in Remark 2.10).

While such parametrizations are possible for equilateral (N−1)-gons for N ≥ 6, in these

cases the number of parameters (N − 2, or N − 3 when considered up to rotation) and

additional conditions on these parameters make them less useful for solving the problem

directly.

The examples for N = 6 and N = 7 were discovered by solving the equations in (2.13)

numerically and then finding the corresponding exact solutions.

For N = 6, there exists at least one unitary matrix U of the form as in Remark 2.7:

U =

2
5 − 1

10 +
√

15
10 i − 1

10 +
√

15
10 i − 1

10 −
√

15
10 i − 1

10 −
√

15
10 i 1√

5

− 1
10 +

√
15

10 i 2
5 − 1

10 −
√

15
10 i − 1

10 −
√

15
10 i − 1

10 +
√

15
10 i 1√

5

− 1
10 +

√
15

10 i − 1
10 −

√
15

10 i 2
5 − 1

10 +
√

15
10 i − 1

10 −
√

15
10 i 1√

5

− 1
10 −

√
15

10 i − 1
10 −

√
15

10 i − 1
10 +

√
15

10 i 2
5 − 1

10 +
√

15
10 i 1√

5

− 1
10 −

√
15

10 i − 1
10 +

√
15

10 i − 1
10 −

√
15

10 i − 1
10 +

√
15

10 i 2
5

1√
5

1√
5

1√
5

1√
5

1√
5

1√
5

0




.

Its corresponding matrix Φ is

Φ =

0 arccos −1
4 arccos −1

4 −arccos −1
4 −arccos −1

4

arccos −1
4 0 −arccos −1

4 −arccos −1
4 arccos −1

4

arccos −1
4 −arccos −1

4 0 arccos −1
4 −arccos −1

4

−arccos −1
4 −arccos −1

4 arccos −1
4 0 arccos −1

4

−arccos −1
4 arccos −1

4 −arccos −1
4 arccos −1

4 0




.

Note that −arccos −1
4 /∈ [0,2π) and that it is equal mod 2π to arccos 1

4 +π ∈ [0,2π).
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All equilateral pentagons (5-gons) of Φ (from Lemma 2.8) are the same (up to permutation

of sides). When its sides are ordered so that it is convex, it is degenerate, i.e. it is similar to

a triangle with sides 1, 2, 2:

0

arccos −1
4

arccos −1
4−arccos −1

4

−arccos −1
4

Figure 9: Equilateral pentagon for N = 6 and n = 1

It follows from Proposition 2.5 that there exists a symmetric commuting square of the form

(2.3) for N = 6 and n = 1 and, by (1.3), (2.4) and Corollary 1.15, there is an irreducible

subfactor of the hyperfinite II1 factor constructed from this commuting square whose index

is (N−1)2

N−2 = 25
4 = 6.25.

For N = 7, there exist at least two non-equivalent unitary matrices U of the form as in

Remark 2.7.

The first solution U is:

U =

√
5

6

√
5

10 +
2
√

5
15 i − 2

√
5

15 +
√

5
10 i − 2

√
5

15 +
√

5
10 i −

√
5

6 i −
√

5
6 i 1√

6√
5

10 +
2
√

5
15 i

√
5

6 −
√

5
6 i −

√
5

6 i − 2
√

5
15 +

√
5

10 i − 2
√

5
15 +

√
5

10 i 1√
6

− 2
√

5
15 +

√
5

10 i −
√

5
6 i

√
5

6 − 2
√

5
15 +

√
5

10 i −
√

5
6 i

√
5

10 +
2
√

5
15 i 1√

6

− 2
√

5
15 +

√
5

10 i −
√

5
6 i − 2

√
5

15 +
√

5
10 i

√
5

6

√
5

10 +
2
√

5
15 i −

√
5

6 i 1√
6

−
√

5
6 i − 2

√
5

15 +
√

5
10 i −

√
5

6 i
√

5
10 +

2
√

5
15 i

√
5

6 − 2
√

5
15 +

√
5

10 i 1√
6

−
√

5
6 i − 2

√
5

15 +
√

5
10 i

√
5

10 +
2
√

5
15 i −

√
5

6 i − 2
√

5
15 +

√
5

10 i
√

5
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

0




. (2.15)
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Its corresponding matrix Φ is

Φ =

0 arccos 3
5 arccos −4

5 arccos −4
5

3π

2
3π

2

arccos 3
5 0 3π

2
3π

2 arccos −4
5 arccos −4

5

arccos −4
5

3π

2 0 arccos −4
5

3π

2 arccos 3
5

arccos −4
5

3π

2 arccos −4
5 0 arccos 3

5
3π

2

3π

2 arccos −4
5

3π

2 arccos 3
5 0 arccos −4

5

3π

2 arccos −4
5 arccos 3

5
3π

2 arccos −4
5 0




.

All equilateral hexagons (6-gons) of Φ are the same (up to permutation of sides). When its

sides are ordered so that it is convex, it is degenerate, i.e. it is similar to a kite with sides

1, 1, 2, 2:

0

arccos 3
5

arccos −4
5

arccos −4
53π

2

3π

2

Figure 10: First equilateral hexagon for N = 7 and n = 1

The second solution U is

U =

√
5

6 z
√

5
30 +

√
30

15 i −
√

5
6 −z −

√
5

30 −
√

30
15 i 1√

6

z −
√

5
30 −

√
30

15 i −z
√

5
30 +

√
30

15 i −
√

5
6

√
5

6
1√
6√

5
30 +

√
30

15 i −z
√

5
6 −

√
5

30 −
√

30
15 i z −

√
5

6
1√
6

−
√

5
6

√
5

30 +
√

30
15 i −

√
5

30 −
√

30
15 i z

√
5

6 −z 1√
6

−z −
√

5
6 z

√
5

6 −
√

5
30 −

√
30

15 i
√

5
30 +

√
30

15 i 1√
6

−
√

5
30 −

√
30

15 i
√

5
6 −

√
5

6 −z
√

5
30 +

√
30

15 i z 1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

0




(2.16)
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where z = 3
√

30−2
√

5
60 + 6

√
5+
√

30
60 i. Its corresponding matrix Φ is

Φ =

0 α arccos 1
5 π α+π arccos 1

5+π

α arccos 1
5+π α+π arccos 1

5 π 0
arccos 1

5 α+π 0 arccos 1
5+π α π

π arccos 1
5 arccos 1

5+π α 0 α+π

α+π π α 0 arccos 1
5+π arccos 1

5
arccos 1

5+π 0 π α+π arccos 1
5 α




where α = arccos 3

√
6−2

10 .

All equilateral hexagons of Φ are again the same (up to permutation of sides):

0

arccos 3
√

6−2
10

arccos 1
5

π

arccos 3
√

6−2
10 +π

arccos 1
5 +π

Figure 11: Second equilateral hexagon for N = 7 and n = 1

It follows from Proposition 2.5 that there exists a symmetric commuting square of the form

(2.3) for N = 7 and n = 1 and, by (1.3), (2.4) and Corollary 1.15, there is an irreducible

subfactor of the hyperfinite II1 factor constructed from this commuting square whose index

is (N−1)2

N−2 = 36
5 = 7.2.

We do not know if the subfactors obtained from the two non-equivalent symmetric com-

muting squares based on the above connections are isomorphic. This appears to be a hard

problem.

2.4 Case n = 1, odd N

Note that if N is odd, then N−1 is even. It is easier to find somewhat symmetric non-trivial

equilateral (N−1)-gons when N−1 is even because one can simply pick any N−1
2 directions

and their additive inverses (i.e. add π). We can then order the sides of this (N−1)-gon so
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that it has parallel opposite sides. For N = 5, due to geometric constraints, all rhombuses

are of this form, but for N = 7 there exist equilateral hexagons which are not of this form.

Indeed, for N = 7, the first solution (2.15) is not of this form, but the second solution (2.16)

is of this form. We will be looking for solutions of this form for general odd N.

Let N ≥ 4 be an odd number and let M = N−3
2 . We will follow the notational convention of

Section 2.3. Let U be of the form as in Remark 2.7 such that its corresponding matrix Φ

is

Φ =

α0 α1 ··· αM−1 αM α0+π α1+π ··· αM−1+π αM+π

α1 α2 ··· αM α0 αM+π α0+π ··· αM−2+π αM−1+π
...

...
...

...
...

...
...

...
...

...

αM−1 αM ··· αM−3 αM−2 α2+π α3+π ··· α0+π α1+π

αM α0 ··· αM−2 αM−1 α1+π α2+π ··· αM+π α0+π

α0+π αM+π ··· α2+π α1+π αM αM−1 ··· α1 α0
α1+π α0+π ··· α3+π α2+π αM−1 αM−2 ··· α0 αM

...
...

...
...

...
...

...
...

...
...

αM−1+π αM−2+π ··· α0+π αM+π α1 α0 ··· α3 α2
αM+π αM−1+π ··· α1+π α0+π α0 αM ··· α2 α1




(2.17)

for α0 = 0 and α j ∈ [0,2π) for 1≤ j ≤M. More precisely:

Φ j,k =



α(( j+k−2) mod (M+1)), 1≤ j,k ≤M+1;

α((− j+k) mod (M+1))+π, 1≤ j ≤M+1 < k ≤ 2M+2;

α(( j−k) mod (M+1))+π, 1≤ k ≤M+1 < j ≤ 2M+2;

α((− j−k+1) mod (M+1)), M+1 < j,k ≤ 2M+2.

Here mod denotes the least non-negative remainder.

Note that Φ satisfies equations from the first and the second row in (2.13) automatically

since cosx+ cos(x+π) = sinx+ sin(x+π) = 0 for all x. We will now show that this is

also true for the equations from the fourth row in (2.13).

Lemma 2.11. Matrix Φ of the form as in (2.17) satisfies equations from the fourth row in
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(2.13) for any choice of α j ∈ [0,2π) for 1≤ j ≤M. The equations in question are

N−1

∑
l=1

sin(Φ j,l−Φk,l) = 0, for 1≤ j < k ≤ N−1.

Proof. Note that N−1 = 2M+2. For 1≤ j < k ≤ 2M+2 and 1≤ l ≤ 2M+2, let

S( j,k, l) = sin(Φ j,l−Φk,l) and

E( j,k) =
2M+2

∑
l=1

S( j,k, l).

Denote S1 = {1, 2, . . . , M+1} and S2 = {M+2, M+3, . . . , 2M+2}. We want to show

that E( j,k) = 0 for all 1≤ j < k ≤ 2M+2.

Case 1: 1≤ j < k ≤M+1

Let 1 ≤ l ≤M + 1 and l′ = M + 2+(( j+ k+ l− 3) mod (M + 1)). Note that l 7→ l′ is a

bijection between S1 and S2. We have

(− j+ l′) mod (M+1) =

=(− j+M+2+(( j+ k+ l−3) mod (M+1))) mod (M+1) =

=(− j+M+2+ j+ k+ l−3) mod (M+1) =

=(k+ l−2) mod (M+1)

and, similarly, (−k+ l′) mod (M+1) = ( j+ l−2) mod (M+1). This implies

Φ j,l′−Φk,l′ = α((− j+l′) mod (M+1))+π− (α((−k+l′) mod (M+1))+π) =

= α((k+l−2) mod (M+1))−α(( j+l−2) mod (M+1)) =

= Φk,l−Φ j,l
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so

S( j,k, l)+S( j,k, l′) = sin(Φ j,l−Φk,l)+ sin(Φ j,l′−Φk,l′) =

= sin(Φ j,l−Φk,l)+ sin(Φk,l−Φ j,l) =

= 0

which combined with the fact that l 7→ l′ is a bijection between S1 and S2 gives

E( j,k) =
2M+2

∑
l=1

S( j,k, l) = 0, for 1≤ j < k ≤M+1.

Case 2: M+1 < j < k ≤ 2M+2

Let 1 ≤ l ≤ M + 1 and l′ = M + 2+((− j− k + l) mod (M + 1)). Note that l 7→ l′ is a

bijection between S1 and S2. We have

(− j− l′+1) mod (M+1) =

=(− j− (M+2+((− j− k+ l) mod (M+1)))+1) mod (M+1) =

=(− j−M−2+ j+ k− l +1) mod (M+1) =

=(k− l) mod (M+1)

and, similarly, (−k− l′+1) mod (M+1) = ( j− l) mod (M+1). This implies

Φ j,l′−Φk,l′ = α((− j−l′+1) mod (M+1))−α((−k−l′+1) mod (M+1)) =

= α((k−l) mod (M+1))+π− (α(( j−l) mod (M+1))+π) =

= Φk,l−Φ j,l
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so

S( j,k, l)+S( j,k, l′) = sin(Φ j,l−Φk,l)+ sin(Φ j,l′−Φk,l′) =

= sin(Φ j,l−Φk,l)+ sin(Φk,l−Φ j,l) =

= 0

which combined with the fact that l 7→ l′ is a bijection between S1 and S2 gives

E( j,k) =
2M+2

∑
l=1

S( j,k, l) = 0, for M+1 < j < k ≤ 2M+2.

Case 3: 1≤ j ≤M+1 < k ≤ 2M+2

Let 1≤ l ≤M+1 and l′ = 1+((− j+ k− l +1) mod (M+1)). Note that since

(l′)′ = 1+((− j+ k− l′+1) mod (M+1)) =

= 1+(((− j+ k− (1+((− j+ k− l +1) mod (M+1))))+1) mod (M+1)) =

= 1+((− j+ k−1+ j− k+ l−1+1) mod (M+1)) =

= 1+((l−1) mod (M+1)) =

= l

l 7→ l′ is an involution on S1. We have

( j+ l′−2) mod (M+1) =

=( j+(1+(− j+ k− l +1) mod (M+1)))−2) mod (M+1) =

=( j+1− j+ k− l +1−2) mod (M+1) =

=(k− l) mod (M+1)
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and then

(k− l′) mod (M+1) = ( j+ l−2) mod (M+1)

follows from the fact that l 7→ l′ is an involution on S1. This implies

Φ j,l′−Φk,l′ = α(( j+l′−2) mod (M+1))− (α((k−l′) mod (M+1))+π) =

= α((k−l) mod (M+1))+π−α(( j+l−2) mod (M+1))−2π =

= Φk,l−Φ j,l−2π.

If l 6= l′, then

S( j,k, l)+S( j,k, l′) = sin(Φ j,l−Φk,l)+ sin(Φ j,l′−Φk,l′) =

= sin(Φ j,l−Φk,l)+ sin(Φk,l−Φ j,l−2π) =

= 0

and if l = l′, then

0 =S( j,k, l)−S( j,k, l′) = sin(Φ j,l−Φk,l)− sin(Φ j,l′−Φk,l′) =

=sin(Φ j,l−Φk,l)− sin(Φk,l−Φ j,l−2π) =

=2sin(Φ j,l−Φk,l) = 2S( j,k, l), so

0 =S( j,k, l)

which combined with the fact that l 7→ l′ is an involution on S1 gives

M+1

∑
l=1

S( j,k, l) = 0. (2.18)

51



Let M+1 < l ≤ 2M+2 and l′ = M+2+(( j− k− l) mod (M+1)). Note that since

(l′)′ = M+2+(( j− k− l′) mod (M+1)) =

= M+2+(( j− k− (M+2+(( j− k− l) mod (M+1)))) mod (M+1)) =

= M+2+(( j− k−M−2− j+ k+ l) mod (M+1)) =

= M+2+((l−M−2) mod (M+1)) =

= l

l 7→ l′ is an involution on S2. We have

(− j+ l′) mod (M+1) =

=(− j+(M+2+(( j− k− l) mod (M+1)))) mod (M+1) =

=(− j+M+2+ j− k− l) mod (M+1) =

=(−k− l +1) mod (M+1)

and then

(−k− l′+1) mod (M+1) = (− j+ l) mod (M+1)

follows from the fact that l 7→ l′ is an involution on S2. This implies

Φ j,l′−Φk,l′ = α((− j+l′) mod (M+1))+π−α((−k−l′+1) mod (M+1)) =

= α((−k−l+1) mod (M+1))− (α((− j+l) mod (M+1))+π)+2π =

= Φk,l−Φ j,l +2π.
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If l 6= l′, then

S( j,k, l)+S( j,k, l′) = sin(Φ j,l−Φk,l)+ sin(Φ j,l′−Φk,l′) =

= sin(Φ j,l−Φk,l)+ sin(Φk,l−Φ j,l +2π) =

= 0

and if l = l′, then

0 =S( j,k, l)−S( j,k, l′) = sin(Φ j,l−Φk,l)− sin(Φ j,l′−Φk,l′) =

=sin(Φ j,l−Φk,l)− sin(Φk,l−Φ j,l +2π) =

=2sin(Φ j,l−Φk,l) = 2S( j,k, l), so

0 =S( j,k, l)

which combined with the fact that l 7→ l′ is an involution on S2 gives

2M+2

∑
l=M+2

S( j,k, l) = 0. (2.19)

Now from (2.18) and (2.19) it follows that

E( j,k) =
M+1

∑
l=1

S( j,k, l)+
2M+2

∑
l=M+2

S( j,k, l) = 0, for 1≤ j ≤M+1 < k ≤ 2M+2.

This means that that it is enough to find matrix Φ of the form as in (2.17) that satisfies

equations from the third row in (2.13). These equations are

N−1

∑
l=1

cos(Φ j,l−Φk,l) =−
N−1
N−2

, for 1≤ j < k ≤ N−1. (2.20)
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2.4.1 Case n = 1, N = 9

We will now find a matrix Φ of the form as in (2.17) that satisfies (2.20) for N = 9. Taking

α0 = 0 into account, the system of equations (2.20) contains these distinct equations:

2cos(α1)+2cos(α3)+2cos(α1−α2)+2cos(α2−α3) =−
8
7
,

4cos(α2)+4cos(α1−α3) =−
8
7
,

−2cos(α3)−2cos(α1−α2)−2cos(α1−α3) =
6
7
,

−2cos(α1)−2cos(α2)−2cos(α2−α3) =
6
7
.

(2.21)

For 1≤ j ≤ 3 let x j be such that

cos(α j) =−
1
7
+ x j

and for 1≤ j < k ≤ 3 let x j,k be such that

cos(α j−αk) =−
1
7
+ x j,k.

Substituting these into (2.21) gives the following system of equations:

x1 + x3 + x1,2 + x2,3 = 0,

x2 + x1,3 = 0,

x3 + x1,2 + x1,3 = 0,

x1 + x2 + x2,3 = 0.
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Considered as a system of linear equations its solution is

x1,2 = x2− x3,

x1,3 =−x2,

x2,3 =−x1− x2,

x1, x2, x3, are free parameters.

(2.22)

For 1≤ j < k ≤ 3 we have

− 1
7
+ x j,k = cos(α j−αk) = cos(α j)cos(αk)+ sin(α j)sin(αk)

=⇒ sin2(α j)sin2(αk) =

(
−1

7
+ x j,k− cos(α j)cos(αk)

)2

=⇒ (1− cos2(α j))(1− cos2(αk)) =

(
−1

7
+ x j,k− cos(α j)cos(αk)

)2

=⇒

(
1−
(
−1

7
− x j

)2
)(

1−
(
−1

7
− xk

)2
)

=

(
−1

7
+ x j,k−

(
−1

7
− x j

)(
−1

7
− xk

))2

which after using (2.22) gives a system of polynomial equations:

(
1−
(
−1

7
− x1

)2
)(

1−
(
−1

7
− x2

)2
)

=

(
−1

7
+ x2− x3−

(
−1

7
− x1

)(
−1

7
− x2

))2

,(
1−
(
−1

7
− x1

)2
)(

1−
(
−1

7
− x3

)2
)

=

(
−1

7
− x2−

(
−1

7
− x1

)(
−1

7
− x3

))2

,(
1−
(
−1

7
− x2

)2
)(

1−
(
−1

7
− x3

)2
)

=

(
−1

7
− x1− x2−

(
−1

7
− x2

)(
−1

7
− x3

))2

.

This system has a solution

x1 =
2
√

2
7

,

x2 =−
4
√

2
7

,

x3 =−
2
√

2
7

.
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One possible matrix Φ of the form as in (2.17) that comes from this solution is characterized

by values

α1 = arccos
−1+2

√
2

7
,

α2 =−arccos
−1−4

√
2

7
,

α3 = arccos
−1−2

√
2

7
.

Note that matrix Φ with these entries satisfies (2.21). Matrix U that corresponds to this Φ

is

U =

√
7

8 z1 z2 z3 −
√

7
8 −z1 −z2 −z3

1
2
√

2

z1 z2 z3

√
7

8 −z3 −
√

7
8 −z1 −z2

1
2
√

2

z2 z3

√
7

8 z1 −z2 −z3 −
√

7
8 −z1

1
2
√

2

z3

√
7

8 z1 z2 −z1 −z2 −z3 −
√

7
8

1
2
√

2

−
√

7
8 −z3 −z2 −z1 z3 z2 z1

√
7

8
1

2
√

2

−z1 −
√

7
8 −z3 −z2 z2 z1

√
7

8 z3
1

2
√

2

−z2 −z1 −
√

7
8 −z3 z1

√
7

8 z3 z2
1

2
√

2

−z3 −z2 −z1 −
√

7
8

√
7

8 z3 z2 z1
1

2
√

2

1
2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
0




where

z1 =
−
√

7+2
√

14
56

+

√
70+7

√
2

28
i,

z2 =
−
√

7−4
√

14
56

−
√

28−14
√

2
28

i,

z3 =
−
√

7−2
√

14
56

+

√
70−7

√
2

28
i.
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This U is unitary and is of the form as in Remark 2.7. It follows already from the form of

Φ in (2.17) that all its equilateral octagons (8-gons) (from Lemma 2.8) are the same (up to

permutation of sides) and they are of the following form:

0 α2 +π

α1

α3

πα2

α1 +π

α3 +π

Figure 12: Equilateral octagon for N = 9 and n = 1

It follows from Proposition 2.5 that there exists a symmetric commuting square of the form

(2.3) for N = 9 and n = 1 and, by (1.3), (2.4) and Corollary 1.15, there is an irreducible

subfactor of the hyperfinite II1 factor constructed from this commuting square whose index

is (N−1)2

N−2 = 64
7 = 9.142 . . .

This method can similarly be used to obtain the solution (2.14) for N = 5 and the second

solution (2.16) for N = 7. For N ≥ 11, obtaining a solution in this manner that is simple

enough so that it can be written out explicitly does not seem feasible.

2.5 Summary and remarks

Regarding the existence of symmetric commuting squares based on the inclusion graph

N-star with A∞-tail of the form (2.3) for n = 1, we have shown that:

(i) they do not exist for N = 4,

(ii) there exists exactly one (up to equivalence as in Remark 2.6) for N = 5,

(iii) there exists at least one for N = 6,

(iv) there exist at least two non-equivalent (as in Remark 2.6) ones for N = 7, and

(v) there exists at least one for N = 9.
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We summarize the newly constructed hyperfinite subfactors in the following theorem:

Theorem 2.12. There exists an irreducible subfactor of the hyperfinite II1 factor constructed

from a symmetric commuting square based on N-star with A∞-tail for:

(i) N = 5 with index 16
3 = 5+ 1

3 = 5.333 . . . ,

(ii) N = 6 with index 25
4 = 6+ 1

4 = 6.25,

(iii) N = 7 with index 36
5 = 7+ 1

5 = 7.2,

(iv) N = 9 with index 64
7 = 9+ 1

7 = 9.142 . . .

All these indices are rational, non-integer numbers and thus not algebraic integers implying

that these subfactors cannot be obtained from finite-dimensional symmetric commuting

squares.

Numerical computations suggest that there are no commuting squares of the form (2.3)

for N = 8 and n = 1, but that there exist such commuting squares for n = 1 and several

consecutive numbers N ≥ 10. They also suggest that there exists such a commuting square

for N = 8 and n = 2.

Regarding the existence of such commuting squares for n = 1 and odd N whose correspond-

ing matrix Φ is of the form as in (2.17), numerical computations suggest that they exist for

many consecutive odd numbers N ≥ 11.

There exists a symmetric commuting square based on the inclusion graph 4-star with A∞-tail

of the form (2.3) for n = 2, this is the commuting square that gives rise to the subfactor

of index 4.5 of Bisch from [Bis94b]. Due to Haagerup ([Haa94]), its principal graph is

A∞. Subfactors constructed in this dissertation that arise from commuting squares based on

inclusion graphs N-star with A∞-tail of the form (2.3) for N ≥ 5 all have indices greater than

5.25 and are thus beyond the scope of the current classification of small index subfactors

([AMP15]). It is an open problem to determine their principal graphs, or more generally,

their standard invariant.
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There has been a lot of recent interest in quantum Fourier analysis and the bi-unitary

connections we have computed are explicit examples of what is called quantum Fourier

transform in [JJL+20]. It is not clear what the quantum symmetries are that they transform,

so there is more interesting work that can be done here.
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