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CHAPTER I

Introduction

Athreya, Bufetov, Eskin and Mirzakhani [2] have shown the number of mapping class group lattice points

intersecting a closed ball of radius R in Teichmüller space is asymptotic to ehR, where h is the dimension

of the Teichmüller space. In this thesis, we first show the number of Dehn twist lattice points intersecting

a closed ball of radius R is coarsely asymptotic to e
h
2R. Moreover, we show the number of all multi-twists

lattice points intersecting a closed ball of radiusR grows coarsely at least at the rate ofR ·eh2R. Furthermore,

we show for any pseudo-Anosov mapping class f , there exists a power n, such that the number of lattice

points of the fn conjugacy class intersecting a closed ball of radius R is coarsely asymptotic to e
h
2R. At

the last section, we discuss a few open questions and a conjecture. The main results in this thesis are from

author’s papers [14] and [13].

I.1 Motivations

One can study a group by understanding its “growth” in various ways. Consider G acting on a metric space

S by isometries, one can measure the number of orbit or lattice points of G in a ball of radius R as R goes to

infinity. For example, consider Z3 acting on R3 in the standard way, the number of lattice points of Z3 in a

ball of radius R is roughly the volume of this ball, see [22] for example.

Let M be a compact, negatively curved Riemannnian manifold and denote M̃ its universal cover. Then

its fundamental group π1(M) acts on M̃ by isometries. Given any x ∈ M̃,R > 0, let BR(x) denote the ball

of radius R in M̃ centered at x. G.A. Margulis studied the growth rate of any orbit π1(M) · y by intersecting

with any metric balls Br(x). It’s a classical result from Margulis that

Theorem I.1.1 (Margulis [27]). There is a function c : M ×M → R+ so that for every x, y ∈ M̃ ,

|π1(M) · y ∩BR(x)| ∼ c(p(x), p(y))ehR

where h equals to the dimension of the manifold, which is the topological entropy of the geodesic flow on the

unit tangent bundle of M .

Here and throughout, the notation f(R) ∼ g(R) means limR→∞
f(R)
g(R) = 1.

Inspired by this result, Athreya, Bufetov, Eskin and Mirzakhani studied lattice point asymptotics in Te-

ichmüller space. Let Sg,n denote a closed surface of genus g with n punctures such that 3g − 3 + n > 0,

and we let Modg,n and (Tg,n, dT ) denote the corresponding mapping class group and Teichmüller space with
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Teichmüller metric. Then Modg,n acts on Tg,n by isometries. We use Modg, Tg to denote Modg,0, Tg,0 for

simplicity. They showed the orbits of mapping class group have analogous asymptotics.

Theorem I.1.2 (Athreya, Bufetov, Eskin and Mirzakhani [2]). For any X ,Y ∈ Tg , we have

|Modg · Y ∩BR(X )| ∼ ehR

Note in their original paper, there is a factor of Λ(X )Λ(Y) in front of e
h
2R, Λ is called the Hubbard-Masur

function. Mirzakhani later showed that Λ is a constant function, see [8]. Moreover, we recall the following

result from Parkkonen and Paulin about the lattice point asymptotics for conjugacy classes of π1(M).

Theorem I.1.3 (Parkkonen, Paulin [36]). Let G be a nontrivial conjugacy class of π1(M), for any x ∈ M̃ ,

we have

lim
R→∞

1

R
ln |G · x ∩BR(x)| = h

2
.

Inspired by this result, we wish to explore the lattice point asymptotics for conjugacy classes of Modg,n.

In analog to the Classification of Hyperbolic Isometries (Theorem II.4.1), the Nielsen-Thurston Classification

(Theorem II.1.3, Theorem II.2.1) says every element in Modg is one of the three types: periodic, reducible,

or pseudo-Anosov. Let PA ⊂ Modg denote the subset of pseudo-Anosov elements. Maher showed pseudo-

Anosov elements are generic in the following sense.

Theorem I.1.4 (Maher [26]). For any X ,Y ∈ Tg , we have

|PA · Y ∩BR(X )|
|Modg · Y ∩BR(X )|

∼ 1.

The above Theorems I.1.3, I.1.4, motivate us to explore the lattice point asymptotics for pseudo-Anosov

conjugacy class subgroups. Moreover, it is natural to consider the asymptotic growth rate of reducible and

periodic elements. A typical reducible element can be decomposed as a product of Dehn twists about disjoint

simple closed curves and a partial pseudo-Anosov element on subsurfaces [5]. Dehn twists are also in a sense

the most fundamental elements of mapping class groups, being both relatively elementary, yet sufficient to

generate the mapping class group [17]. This motivates us to understand the asymptotic growth behavior of

Dehn twist conjugacy class subgroups and pseudo-Anosov conjugacy class subgroups.
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I.2 Notations

Throughout this paper we let Sg,n denote a closed surface of genus g with n punctures such that 3g−3+n > 0,

and we let Modg,n, (Tg,n, dT ) andMg,n denote the corresponding mapping class group, Teichmüller space

with Teichmüller metric, and moduli space respectively. We use h = 6g+ 2n− 6 to denote the dimension of

Tg,n. For any ε > 0, we denote T εg,n the ε-thick part of Tg,n. By saying α is a simple closed curve on Sg,n,

we mean it’s a non-trivial isotopy class of essential simple closed curves on Sg,n. We say the simple closed

curve α is separating if the surface has two connected components after removing α. Otherwise, the surface

only has one connected component after removing α, and we say α is a non-separating curve.

A multicurve α is a formal sum α =
∑k
i=1 aiαi where 1 ≤ k ≤ h

2 , ai ∈ Z \ {0}, and αi are pairwise

disjoint simple closed curves on Sg,n. By this definition, simple closed curves are also multicurves. Let

ML(Z) denote the set of multicurves on Sg,n and let S ⊂ML(Z) denote the set of all simple closed curves.

A multicurve α =
∑k
i=1 aiαi is said to be positive if all coefficients are positive and is said to be negative

if all coefficients are negative. Otherwise, we say α is of mixed sign. Two multicurves are of the same

topological type if up to isotopy, there is an orientation-preserving homeomorphism taking one multicurve

to another. For any γ ∈ ML(Z), we denote the multicurves of topological type γ byML(γ). Since there

are only finitely many topological types of simple closed curves on Sg,n, S is a finite union of sets of the

formML(γ), where γ are simple closed curves. Meanwhile, there are infinitely many topological types of

multicurves, as can be seen by looking at the coefficients.

For reasons we will see, let’s denoteML∗(Z) the set of multicurves α =
∑k
i=1 aiαi satisfying one of

the following conditions.

1. α is a weighted or unweighted simple closed curve, i.e., k = 1.

2. α is positive or negative, i.e., all coefficients have the same sign.

3. α is of mixed sign where each |ai| ≥ 2.

For any simple closed curve α we let Tα denote the Dehn twist around α. In general, for any multicurve

α =
∑k
i=1 aiαi, we define Tα =

∏k
i=1 T

ai
αi and we call this a multi-twist. By this definition, Dehn twists

are also multi-twists, and let’s call them as twists in general. We will consider the following types subsets of

Modg,n consisting of twists:

1. [Tγ ] = {Tα | α ∈ ML(γ)} = {fTγf−1 | f ∈ Modg,n}, the set of twists about curves inML(γ) or,

equivalently, the conjugacy class of Tγ .

2. D = {Tα | α ∈ S}, the set of all Dehn twists without powers. D is a finite union of sets of the form

[Tγ ], where γ are simple closed curves.

3



3. M = {T kα | α ∈ S, k ∈ Z}, the set of all Dehn twists with any powers. M is a finite union of Mγ ,

where each Mγ =
⊔
k∈Z[T kγ ] is the infinite union of conjugacy classes of T kγ , k ∈ Z.

4. T = {Tα | α ∈ML(Z)}, the set of all twists.

We now introduce some notations. Let A > 0.

1. We say f(x)
+A� g(x) if g(x)−A ≤ f(x) ≤ g(x) +A for any x.

2. We say f(x)
∗A� g(x) if 1

A · g(x) ≤ f(x) ≤ A · g(x) for any x.

3. We say f(R)
∗A
� g(R) if for any λ > 1, there exists a M(λ) such that 1

λA · f(R) ≤ g(R) for any

R ≥M(λ).

4. We say f(R)
∗A∼ g(R) if f(R)

∗A
� g(R) and g(R)

∗A
� f(R).

Moreover, we say f, g are coarsely asymptotic if f(R)
∗A∼ g(R) for some coefficient A. Notice the notation

f(R) ∼ g(R) is the same as f(R)
∗1∼ g(R), i.e. f, g are asymptotic when they are coarsely asymptotic with

coefficient 1. Accordingly, we simply write �,∼ when A = 1.

I.3 Main Results

For any mapping class φ ∈ Modg,n, we use [φ] = {fφf−1 | f ∈ Modg,n} to denote its conjugacy class.

For simplicity of notation, we denote ΓR(X ,Y, φ) = |[φ] · Y ∩BR(X )|. The main results about the pseudo-

Anosov conjugacy class subgroups are the followings.

Theorem A. Fix Sg,n and ε > 0, there exists a constantA > 0 such that given any ε-thick pseudo-Anosov el-

ement φwith translation distance λ ≥ A and given anyX ,Y in Tg,n, there exists a correspondingG(X ,Y, φ)

such that

ΓR(X ,Y, φ)
G(X ,Y,φ)∼ e

h
2R.

Corollary B. Fix Sg,n, given any pseudo-Anosov element φ and given anyX ,Y in Tg,n. There exists a power

N depending on φ such that for any k ≥ N , there is a corresponding G(X ,Y, φ, k) so that the following

holds:

ΓR(X ,Y, φk)
G(X ,Y,φ,k)∼ e

h
2R.

In parallel with the Theorem I.1.3 above, we note the above Theorem A and Corollary B imply the

following.
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Corollary C. Fix Sg,n, given any pseudo-Anosov element φ and given any X ,Y in Tg,n, for all sufficiently

large k we have

lim
R→∞

1

R
ln ΓR(X ,Y, φk) =

h

2
.

To state the main results about Dehn twist conjugacy class subgroups, recall T εg,n denotes the ε-thick

part of Tg,n and h = 6g − 6 + 2n denotes the dimension of Tg,n. For any X ,Y ∈ Tg,n, we define

F (X ,Y) = e
h
2 dT (X ,Y). For any multicurve α =

∑k
i=1 aiαi, we denote the sum of absolute coefficients

as cα =
∑k
i=1 |ai| and we define Fα(X ,Y) = (cα)

h
2 e

h
2 dT (X ,Y). The theorem below gives coarse asymp-

totics for [Tγ ] when γ ∈ML∗(Z).

Theorem D. Given any Sg,n and given any ε > 0, there exists a J > 0 such that for any multicurve

γ ∈ML∗(Z) and for any X ,Y ∈ T εg,n, we have

ΓR(X ,Y, Tγ)
∗JFγ(X ,Y)∼ nX(γ) · eh2R

where nX(γ) is the corresponding Mirzakhani constant, see section II.7.

The above results says for example, the number of Dehn twist lattice points intersecting a closed ball of

radius R in the Teichmüller space is coarsely asymptotic to e
h
2R. Note that any X ∈ Tg,n lies in T εg,n for

some ε, thus another way to phrase the theorem is by picking X ,Y ∈ Tg,n first and then by picking any ε > 0

such that X ,Y ∈ T εg,n. The constant J and the above results follow.

For simplicity of notation, we denote ΓR(X ,Y,D) = |D · Y ∩BR(X )|, and similarly for the sets

M,T,T([γ]) which we will see later.

Corollary E. Given Sg,n and given any ε > 0, for any X ,Y ∈ T εg,n, we have

ΓR(X ,Y,D)
∗JF (X ,Y)∼ nX(S) · eh2R, if h > 0,

ΓR(X ,Y,M)
∗8JF (X ,Y)∼ nX(S) · eh2R, if

h

2
> 1

where nX(S) is the corresponding Mirzakhani constant, see section II.7.

We remark that when h
2 = 1, ML(Z) is one dimensional and M = T. The coarse asymptotic for

ΓR(X ,Y,M) when h
2 = 1 is separated out as a special case and treated in Corollary I.

In parallel with the Theorem I.1.3 and Corollary C above, Theorem D and Corollary E imply the following

results.
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Corollary F. Given any Sg,n and given any ε > 0, for any multicurve γ ∈ML∗(Z) and for anyX ,Y ∈ T εg,n,

we have

lim
R→∞

1

R
ln ΓR(X ,Y, Tγ) =

h

2
.

lim
R→∞

1

R
ln ΓR(X ,Y,D) =

h

2
, if h > 0.

lim
R→∞

1

R
ln ΓR(X ,Y,M) =

h

2
, if

h

2
> 1.

Our argument hinges on studying how the length of any simple closed geodesic τ on a hyperbolic structure

X changes after applying a twist Tα. To this end, in Theorem IV.1.2 we obtain an explicit bound on the length

of `TαX (τ) in terms of `X (τ), `X (α) and the intersection patterns between τ and α, up to additive error. We

then use this Theorem IV.1.2, together with results of Choi, Rafi [6] and Lenzhen, Rafi, Tao [23], to realize a

precise relationship between `X (α) and dT (X , TαX ). This relation is stated in the following theorem.

Theorem G (Coarse Distance Formula). Fix some Sg,n and given any ε > 0, there exists a constant H > 0

such that given any X ∈ T εg,n, we have

dT (X , TαX )
+H� log

(
k∑
i=1

|ai|`2X (αi)

)

for any α =
∑k
i=1 aiαi ∈ML

∗(Z).

Notice the above result only holds for α ∈ ML∗(Z). Indeed, we have constructed a sequence of multic-

urves inML(Z) \ML∗(Z) for which Theorem G does not hold, see Remark IV.2.2. There exists a H ′ > 0

depends on Sg,n and ε, so that for these multicurves the distances behave like

dT (X , TαX )
+H′� log

(
k∑
i=1

|ai|`X (αi)

)
.

This leads to some interesting questions and motivates our Conjecture J in the last section.

Let γ =
∑k
i=1 γi denote a multicurve with all coefficients equal to one and of maximal dimension k = h

2 .

We say γ =
∑k
i=1 aiγi ∈ [γ] if γ and γ are the same when without coefficients. Let’s denote

ML
(
[γ]
)

=
⊔
γ∈[γ]

ML(γ).

NoticeML([γ]) consists of infinity many conjugacy classes of multicurves. Let T([γ]) denote the set of all

twists around curves inML([γ]).
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Theorem H. Given any Sg,n such that h > 0, ε > 0, and γ =
∑k
i=1 γi a multicurve with all coefficients

equal to one and of maximal dimension k = h
2 . There exists a number f(γ) such that, for any X ,Y ∈ T εg,n,

ΓR(X ,Y,T) ≥ ΓR(X ,Y,T([γ]))
∗JF (X ,Y)

� f(γ) ·R · eh2R.

In particular, we can consider the case h
2 = 3g − 3 + n = 1, where Sg,n is either S1,1 or S0,4, and

Modg,n, Tg,n are SL2(Z),H2 respectively. In this case,ML(Z) is one dimensional and we haveML(Z) =

ML([γ]) for any simple closed curve γ. In correspondence, T = M = T([γ]) is the set of all parabolic

elements of SL2(Z). There are many results about the asymptotic growth of lattice points in H2, see [16], [36]

for example. The corollary below can also be interpreted as a coarse asymptotic for the number of parabolic

lattice points of SL2(Z) intersecting a closed ball of radius R in H2.

Corollary I. Given Sg,n equal to S1,1 or S0,4 and given any ε > 0. For any X ,Y ∈ T εg,n, we have

ΓR(X ,Y,T)
∗4JF (X ,Y)∼ nX(S) ·R · eR.

The upper bound in this Corollary follows from an alternation of the proof of Corollary E, see section

IV.3, and the lower bound follows from previous Theorem H, see section IV.4.

Recall that in the ε-thick part of Teichmüller space, there is a uniformly bounded difference, depending

on ε, between the Thurston metric and Teichmüller metric [23]. Thus many above results also hold for the

Thurston metric after a slight variation.

In conclusion, these results again indicate the similarity of Teichmüller spaces and hyperbolic spaces in

terms of lattice point asymptotics. In the meantime, we propose the Conjecture J below. If this holds true, in

comparison with Theorem I.1.3, it shows a difference of Teichmüller spaces and hyperbolic spaces in terms

of lattice point asymptotics. See section V for some open questions and an outlined idea about Conjecture J.

Conjecture J. Given any Sg,n and given any ε > 0, there exists a multicurve γ ∈ ML(Z) and l > h
2 such

that for any X ,Y ∈ T εg,n, we have

ΓR(X ,Y, Tγ)
∗JFγ(X ,Y)∼ nX(γ) · elR.

As a result, we have

lim
R→∞

1

R
ln ΓR(X ,Y, Tγ) = l >

h

2
.

7



CHAPTER II

Background

By saying a surface we mean a 2-dimensional topological manifold that is compact, connected and oriented.

We say a surface is closed if it is compact and have no boundary. Let Sbg,n denote the surface of genus g

with b boundary components and n punctures, the fundamental result from Mobius [42] states that every

surface S is homeomorphic to Sbg,n for some b, g, n ≥ 0. The Euler characteristic of such surface is χ(S) =

2 − 2g − (b + n). We say a surface is hyperbolic if χ(S) < 0. In which case, there exists a complete,

finite-area Riemannnian metric on S of constant curvature -1 where its boundaries, if non-empty, are totally

geodesic. If it’s a surface with any boundary components, then its universal cover S̃ is a simply connected

Riemannnian 2-dimensional manifold of constant curvature -1, thus is isometric to the hyperbolic plane H2

by the Killing-Hopf Theorem [15] [21]. It follows that S is isometric to the quotient of H2 by a freely,

properly discontinuous isometric action of π1(S).

In this thesis, we restrict ourselves to Sg,n such that 3g− 3 +n > 0, i.e., hyperbolic surfaces without any

boundary components. We refer the reader to [9] for more background materials.

II.1 Mapping Class Group

Let Homeo+
g,n denote the group of all the orientation-preserving homeomorphisms of Sg,n preserving the set

of punctures, and let Homeo0
g,n denote the connected component of the identity. The mapping class group of

Sg,n is defined to be the group of isotopy classes of orientation-preserving homeomorphisms:

Modg,n = Homeo+
g,n/Homeo0

g,n = Homeo+
g,n/ isotopy

LetA = S1×[0, 1] be an oriented annulus, the twist map T : A→ A is defined to be (θ, t) 7→ (θ+2πt, t),

so T is a homeomorphism of A relative to its boundary. Let a be a representative of a simple closed curve

α on Sg,n and let N be a regular neighborhood of a. Pick some orientation-preserving homeomorphism

φ : A→ N , the Dehn twist about a is defined by

Ta(x) =


φ ◦ T ◦ φ−1(x) if x ∈ N

x if x ∈ Sg,n \N
.

The isotopy class of Ta does not depend on choice of a in α. Thus Tα is an well-defined mapping class. If α is

homotopically trivial, then Tα is trivial as well. Now given any multicurve α =
∑k
i=1 aiαi, the composition
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Tα =
∏k
i=1 T

ai
αi is called a multi-twist.

Figure II.1: Before and after a Dehn twist.

As we mentioned in the introduction, Dehn twists are in a sense the most fundamental elements of map-

ping class groups, see the well-known result below.

Theorem II.1.1 (Dehn-Lickorish Theorem [24]). For g ≥ 0, the mapping class group Mod(Sg) is generated

by finitely many Dehn twists about non-separating simple closed curves.

Moreover, Humphries [18] showed we need at least 2g + 1 such curves to generated the mapping class

groups. Since Dehn twists are supported on simple closed curves, it’s natural to study the action of Dehn

twists on simple closed curves. One way to achieve that is via studying intersection numbers.

Given two simple closed curves α, β, the intersection number i(α, β) is defined to be i(α, β) = min |a∩b|

where a, b are in the isotopy classes α, β respectively and |a ∩ b| denotes how many times a and b intersect.

The following proposition of Ivanov shows how twists effect intersection numbers.

Proposition II.1.2 (Intersection Formula [19]). Let α =
∑k
i=1 aiαi be a multicurve on Sg,n, and Tα =∏k

i=1 T
ai
αi the corresponding twist. Given β, γ arbitrary simple closed curves on Sg,n. If α is positive or

negative, we have

∣∣∣∣∣i(Tα(β), γ)−
n∑
i=1

|ki|i(αi, β)i(αi, γ)

∣∣∣∣∣ ≤ i(β, γ). (II.1)

If α is of mixed sign, we have

n∑
i=1

(|ki| − 2)i(αi, β)i(αi, γ)− i(β, γ) (II.2)

≤ i(Tα(β), γ)

≤
n∑
i=1

|ki|i(αi, β)i(αi, γ) + i(β, γ).

Via the study of intersection numbers, one can show Dehn twists are infinite order elements. Dehn twists

are classified as reducible elements according to Nielsen and Thurston. See their complete classification of

mapping class group elements below.
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Theorem II.1.3 (Nielsen-Thurston Classification [43]). Given f ∈ Modg,n, at least one of the following

holds:

1. f is periodic, and some power of f is identity.

2. f is reducible, and f preserves some multicurve.

3. f is pseudo-Anosov, if it’s not periodic nor reducible.

Note one usually defines the concept of pseudo-Anosov relying on the notion of measured foliation intro-

duced by Thurston [43]. As we are interested in the “hyperbolicty” of mapping class group, one can compare

the Nielsen-Thurston Classification with the Classification of Hyperbolic Isometries, Theorem II.4.1. We will

restate the Nielsen-Thurston Classification again in the next section, after introducing Teichmüller Space.

One should observe the concepts of perodic, reducible, and pseudo-Anosov are reminiscent of the concepts

of elliptic, parabolic, and hyperbolic respectively.

II.2 Teichmüller Space and Moduli Space

A hyperbolic structure X on Sg,n is a pair (X,φ) where φ : Sg,n → X is a homeomorphism and X is a

hyperbolic surface. We say two hyperbolic structures X = (X,φ),Y = (Y, ψ) are isotopic if there is an

isometry I : X → Y isotopic to ψ ◦ φ−1. The Teichmüller space Tg,n is the set of hyperbolic structures on

Sg,n modulo isotopy. We let X = (X,φ),Y = (Y, ψ) denote elements in Tg,n. One can also define the

Teichmüller space via complex structures (marked Riemann surfaces) or view it as a representation space,

see [9] for more interpretations.

Given any X ,Y ∈ Tg,n, the Teichmüller distance between them is defined to be

dT (X ,Y) =
1

2
inf

f∼φ◦ψ−1
log(Kf )

where the infimum is over all quasi-conformal homeomorphisms f isotopic to φ ◦ ψ−1 and Kf is the quasi-

conformal dilatation of f . Equipped with the Teichmüller metric, the Teichmüller space is a complete, unique

geodesic metric space.

The mapping class group acts isometrically on Tg,n by changing the marking (f, (X,φ)) 7→ (X,φ◦f−1).

This action is properly discontinuous but not cocompact. The quotientMg,n = Tg,n/Modg,n is called the

moduli space, and it is a non-compact orbifold parameterizing hyperbolic surfaces homeomorphic to Sg,n.

Given any X = (X,φ) ∈ Tg,n and given any isotopy class γ of nontrivial simple closed curves on X ,

there exists a unique geodesic in this free homotopy class. We define the length function on X by setting
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`X(γ) equal to the length of this unique geodesic. We also let `X (α) denote `X(φ(α)) for any simple closed

curve α on Sg,n. For any multicurve α =
∑k
i=1 aiαi, we define `X (α) =

∑k
i=1 |ai|`X (αi) to be its length.

A pair of pants is a closed surface of zero genus with three boundary components or punctures. A pants

decomposition Γ of the surface Sg,n is a collection of pairwise disjoint non-trivial simple closed curves

γ1, · · · , γ3g−3+n on Sg,n, together they decompose the surface Sg,n into 2g + n − 2 pairs of pants. Us-

ing pants decomposition and by introducing Fenchel-Nielsen coordinates, Fricke [11] showed that Tg,n is

homeomorphic to R6g+2n−6 and its dimension is 6g + 2n− 6.

By studying projective measured foliations and projective space of functionals on simple closed curves on

the surfaces, one can define the Thurston boundary [10] of Tg,n and realize this boundary is homeomorphic

to a sphere of dimension 6g+ 2n− 7. The action of Modg,n on the Tg,n extends continuously over the union

with the boundary, in analogy with Isom+(H2) acting on H2. We restate the Nielsen-Thurston Classification

again, in comparison with the Classification of Hyperbolic Isometries, Theorem II.4.1.

Theorem II.2.1 (Nielsen-Thurston Classification [43]). Given f ∈ Modg,n, at least one of the following

holds:

1. f is periodic. There is a single fixed point X ∈ Tg,n.

2. f is reducible. There could be a fixed point, corresponding to the fixed multicurve under f , in the

Thurston boundary of Tg,n.

3. f is pseudo-Anosov. It fixed a pair of points in the Thurston boundary, and these points correspond to

stable and unstable foliations of Sg,n preserved by f . Moreover, there is a stretch factor λf > 1 so f

acts by stretching stable foliation by 1
λf

and by stretching unstable foliation by λf .

A theorem of Bers [4] says there exists a constant depending only on Sg,n such that for every X ∈ Tg,n,

there is a pants decomposition ΓX of X in which each simple closed curve has length bounded above by this

Bers’ constant.

Given any ε > 0, the ε-thick part of Teichmüller space is defined to be

T εg,n = {X ∈ Tg,n | `X (α) ≥ ε for any simple closed curve α on Sg,n}

and consequently the ε-thick part of moduli space is Mε
g,n = T εg,n/Modg,n. The Mumford compactness

criterion [33] saysMε
g,n is compact for any ε > 0.
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II.3 Short Marking

For any X ∈ Tg,n, a short marking [6] µX is a collection of simple closed curves {ηi}3g−3+n
i=1 ∪ {δi}3g−3+n

i=1

on Sg,n picked in the following way: First, choose a pant decomposition {ηi}3g−3+n
i=1 by taking a curve η1 on

Sg,n that is a shortest curve with respect to X , and then a next shortest disjoint curve from the first, and so

on until we complete a pants decomposition. Next, for each ηi, pick a shortest curve δi that intersects ηi and

is disjoint from all other pants curves. For each i, we say ηi, δi is a pair. The collection of curves obtained in

this way has the property that any two curves have intersection number bounded by 2. Note there could be a

finite number of possible short markings corresponding to each X ∈ Tg,n, we fix one such short marking and

call it the short marking µX . Moreover, given any ε > 0, by Bers’ Theorem and trigonometry, there exists

N > 0 depending on ε and Sg,n such that for any X ∈ T εg,n, all curves in the short marking µX have length

bounded above by N and bounded below by ε.

We recall a result from Choi and Rafi [6] stating that for any ε > 0, the Teichmüller distance in the ε-thick

part can be approximated by the maximum ratio of change of lengths of the short marking.

Theorem II.3.1 (Distance Formula [6]). For any ε > 0, there exists c > 0 depending on Sg,n and ε such that

for any X ,Y ∈ T εg,n

dT (X ,Y)
+c� log max

γ∈µX

`Y(γ)

`X (γ)
.

We also recall that Lenzhen, Rafi, Tao [23] showed that for any simple closed curve on Sg,n, its length

with respect to X can be estimated via its intersection pattern with the short marking µX .

Proposition II.3.2 (Length Formula [23]). There exists C ≥ 1 depending on Sg,n such that for any simple

closed curve β on Sg,n and for any X ∈ Tg,n, we have

`X (β)
∗C�

∑
γ∈µX

i(β, γ)`X (γ̄)

where γ̄ denotes the curve in the short marking paired with γ.

For a fixed ε, any curve γ in µX ,X ∈ T εg,n satisfies ε ≤ `X (γ) ≤ N . We can therefore rewrite the above

theorem and proposition for T εg,n.

Lemma II.3.3. For any Sg,n and ε > 0, there exists C depends on Sg,n and c,N depends on Sg,n and ε such

that

log

(
1

Nec
max
γ∈µX

`Y(γ)

)
≤ dT (X ,Y) ≤ log

(
ec

ε
max
γ∈µX

`Y(γ)

)
(II.3)
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ε

C

∑
γ∈µX

i(β, γ) ≤ `X (β) ≤ CN
∑
γ∈µX

i(β, γ) (II.4)

η1 η2η3

δ1 δ2

δ3
β

Figure II.2: A short marking µX = {η1, η2, η3, δ1, δ2, δ3} and a simple closed curve β on a hyperbolic surface
X homeomorphic to S2.

II.4 Upper Half Plane

Let H2 denote the upper half plane and let d denote the metric on H2 in the sense of H2 being a metric space.

One common model of H2 is {x+iy ∈ C | y > 0} equipped with the Riemannnian metric ds2 = dx2+dy2

y2 . In

this model, geodesic are semicircles and half-lines perpendicular to the real axis intersect with the upper half

plane. Another common model is the Poincaré disk {x+ iy ∈ C | r = x2 + y2 < 1} with the Riemannnian

metric ds2 = 4dx
2+dy2

(1−r2)2 . In this model, geodesic are semicircles and lines perpendicular to the circle intersect

with the open disk. Recall by the Killing-Hopf Theorem [21] [15], upper half plane is the universal cover of

hyperbolic surfaces without boundaries.

The group of orientation-preserving isometries of H2 is the group of Mobius transformation taking H2 to

itself. This group is denoted as Isom+(H2) and is isomorphic to

PSL2(R) = {±
(
a b
c d

)
| a, b, c, d ∈ R, ad− bc = 1}.

Any such element acts on the upper half-plane by z 7→ az+b
cz+d . Moreover, each f ∈ Isom+(H2) extends to a

homeomorphism f̄ on the closed Poincaré disk. It’s well-known that we can apply the Browser Fixed Point

Theorem and classify the non-trivial isometries of H2.

Theorem II.4.1 (Classification of Hyperbolic Isometries). Each f̄ is of one of the following cases.

1. Elliptic. f̄ has exactly one fixed point on H2, and f is a rotation around this point.

An example of such element would be
(

0 1
−1 0

)
, which is a rotation by π around i in the upper half-plane.

2. Parabolic. f̄ has exactly one fixed point on ∂H2.
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An example of such an element would be ( 1 t
0 1 ), a horizontal translation in the upper half-plane by t,

fixing the boundary point∞.

3. Hyperbolic. f̄ has exactly two fixed point a, b on ∂H2, and f is a translation along the unique geodesic

line γ from a to b with these two fixed points on the boundary acting like a source and a sink.

An example of such element would be
(
t 0
0 1
t

)
, which is translation by length 2 log(t) along the vertical

geodesic line (0, 0) to∞ in the upper half-plane model.

We observe that any two elements commuting means they must share the same fixed points, and vice

versa. Moreover, since all the elements are isometries, the translation length is conjugate invariant.

We recall the following useful lemma in hyperbolic geometry.

Lemma II.4.2 (Collar Lemma [9]). For any simple closed geodesic γ of length ` on a hyperbolic surface, it

is contained in an embedded cylinder of diameter of order `−1, and the diameter is

W (γ) = sinh−1

(
1

sinh( 1
2`)

)

For any two closed sets A,B ⊂ H2 we let d(A,B) denote the minimal distance between them. For any

geodesic η in H2, we let πη denote the closest point projection map, namely

πη(x) = {y ∈ η | d(x, y) = d(x, η)}.

For any two points x, y ∈ H2, we let [x, y] denote the unique geodesic connecting them. Given two points

x, y ∈ H2 separated by a bi-infinite geodesic η and far away from η, we let xη ∈ H2 denote the first point

that the geodesic [x, y] enters the L-neighborhood of η coming from the x side. Similarly, we can define

yη ∈ H2. If x is in the L-neighborhood of η to begin with, we just let xη = x, and similarly for y.

Being a hyperbolic space, geodesics are strongly contracting in H2, see [1] for example. That is, there

exists a constant L such that for any geodesic η and for any geodesic α that never enters the L-neighborhood

of η, the diameter of πη(α) is bounded by L. As a consequence, we have

Corollary II.4.3. There exists a constant L such that for any bi-infinite geodesic η in H2 and for any two

points x, y separated by η, we have

d(xη, πη(x)) ≤ 2L, d(yη, πη(y)) ≤ 2L.

This is because we have d(xη, πη(x)) ≤ d(xη, πη(xη)) + d(πη(xη), πη(x)) ≤ 2L. Similarly for yη .

14



Another important property of the projection map in H2 is that it’s 1-Lipschitz. Viewing in the upper half

plane model and up to isometry, we may assume η is the vertical line x = 0. For each point (0, r) ∈ η,

the points projecting to (0, r) are exactly the Euclidean semicircles of radius r centered at (0, 0). Given

two Euclidean semicircle centered at (0, 0), the minimal distance between them are realized by the points

intersecting the vertical line x = 0. This means

Lemma II.4.4. πη is 1-Lipschitz for any bi-infinite geodesic η in H2.

II.5 Lifts of Twists

Given an oriented bi-infinite geodesic β in H2 and a number lβ ∈ R, we can decompose H2 into two open

pieces, one to the left of β and one to the right of β, and then regule the two pieces along β after translation

according to lβ . When lβ is positive, we regule the pieces along β after translating distance |lβ | to the left.

When lβ is negative, we regule the pieces along β after translating distance |lβ | to the right. This process is

called shearing along β according to lβ , see [20] for more detail. We are mainly interested in what happens

to geodesics after shearing. Let τ be a bi-infinite geodesic in H2 transverse to β and let τ ′ be the image of

τ after shearing along β according to lβ , then τ ′ is a concatenation of two geodesic rays with a sub-segment

of β of length lβ connecting these two rays’ starting points, see Figure II.3 for an illustration in the Poincaré

disk model.

β

τ

τ ′

Figure II.3: After shearing along β according to lβ , τ becomes τ ′.

Given X = (X,φ) ∈ Tg,n and let p : H2 → X be the universal cover. For any multicurve α =∑k
i=1 aiαi, we let A = {αi}ki=1 and let Ã denote the set of lifts of curves in A. For each curve α̃ ∈ Ã, we

let αs(α̃) denote the curve such that α̃ is a lift of αs(α̃). Note the complements of ∪α̃∈Ãα̃ are infinitely many

open regions. Fixing one of these regions, we can shear along all these bi-infinite geodesics in Ã according

to as(ã)`X (αs(α̃)), and this is called shearing according to α.

Now, given any simple closed geodesic β on X , we let τ be a lift of β with a base point q0 ∈ τ . Fixing

the region containing q0, we can shear according to α. Let τ ′ denote the image of τ after shearing, then the
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projection of τ ′ is isotopic to the simple closed geodesic Tα(β). Let q′L, q
′
R ∈ ∂H2 denote the endpoints of

τ ′. The two end points q′L, q
′
R ∈ ∂H2 define a unique bi-infinite geodesic σ in H2 and σ is in the same isotopy

class of τ ′, see Figure II.4. This means σ is a lift of the simple closed geodesic p(σ) = Tα(β). Similarly, one

can obtain the simple closed geodesic T−1
α (β) by shearing in the opposite direction.

τ

τ ′

σ

q0

q′R

q′L

Figure II.4: After shearing according to α (blue curves are in Ã), the geodesic τ becomes τ ′, and the geodesic
σ is uniquely defined by the endpoints of τ ′.

For interested reader, what we are using here is a concrete case of an earthquake. There is a rich and

developing theory about earthquake and earthquake flow, and proven to be a useful tool. For example, Kerck-

hoff [20] answered the Nielsen realization problem [34] using the notion of mapping class groups acting on

surfaces using left earthquakes. To name a few more interesting results, see [44], [28], [35], [25], and [30].

II.6 Bass-Serre Tree

We briefly explain how to construct a Bass-Serre tree dual to an infinite collection of bi-infinite geodesics

in H2 that arise from a covering map. In particular, one may imagine how to construct a Bass-Serre dual to

the Figure II.4. See [41] for more detail about Bass-Serre trees in general, and see [7] for an example using

Bass-Serre tree in H2.

Let p : H2 → Sg,n be a universal cover. GivenA = {αi}ni=1 a collection of disjoint simple closed curves

on Sg,n, we let Ã denote the set of all liftings of curves in A to H2, and we let ∪Ã denote the union of all

elements in Ã. Define ZA to be the tree dual to Ã in H2. That is, ZA = (VA, EA) is a graph such that each

vertex in VA corresponds to a connected component in H2 \ ∪Ã and each edge is dual to an element in Ã.

We label each edge by the element in Ã that it is dual to.

Denote the connected component corresponding to a vertex v as C(v). Given two vertices v, w ∈ VA,

(v, w) ∈ EA if and only if C(v), C(w) represent bordered connected components. Denote dZ the metric on

the tree ZA where the length of each edge has length 1, (ZA, dZ) is a unique geodesic metric space.
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By the Collar Lemma II.4.2, there exists a r = min{W (αi)}ni=1 sufficiently small such that for any

curve α ∈ A, Nr(α) is an open annulus. We can define a π1-equivariant, continuous and surjective map

φA : H2 → ZA such that each Nr(α̃) maps to an edge and each connected component in H2 \ ∪α̃∈ÃNr(α̃)

gets mapped to a vertex.

Now, given any simple closed curve τ on Sg,n and let τ̃ be a lift of τ in H2. If τ does not intersect any

curve in A, then φA(τ̃) is a vertex. Otherwise, denote

i(τ,A) =

n∑
i=1

i(τ, αi)

the intersection number of τ with curves in A, φA(τ̃) is a bi-infinite geodesic in (ZA, dZ). The hyperbolic

isometry of H2 along τ̃ , with translation distance equals to the length of τ , is equivariant with respect to φA

and gives rise to an isometry ρτ̃ of (ZA, dZ) with translation length i(A, τ) and translation axis φA(τ̃). This

means for any vertex s on the axis φA(τ̃), we have dZ(s, ρτ̃ (s)) = i(τ,A).

II.7 Counting Simple Closed Geodesics

There are many interesting results about counting closed geodesics in a hyperbolic setting. Let X ∈ Mg,n,

we denote cX(L) the number of closed geodesics on X has length ≤ L. one of the classical result from

Delsarte, Huber, Selberg, and Margulis [27] showed that

cX(L) ∼ eL

L
as L→∞.

Interestingly, cX(L) is independent of the topology and geometry of X . And there are many interesting

results after, see [32], [39], [12], [40], [3] for more examples.

Since simple closed geodesics are generally non-generic among all closed geodesics [27], counting simple

closed geodesics is expected to be a difficult question. Given γ a simple closed curve or multicurve on any

X ∈Mg,n, we denote

sX(L, γ) = |{α ∈ Modg,n · γ | `X(α) ≤ L}|

the number of simple closed geodesics on X of topological type γ and of hyperbolic length at most L. The

following beautiful result is due to Mirzakhani.

Theorem II.7.1 (Counting Formula [31]). Fix some Sg,n, given γ a simple closed curve or a multicurve on
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any X ∈Mg,n, we have

sX(L, γ) ∼ nX(γ) · L6g+2n−6 (II.5)

where nX(γ) depends on the hyperbolic structure X and the topological type of γ.

Later in the paper, we will count the sum of several topological types of multicurves. Thus we phrase the

above Theorem II.7.1 in the following equivalent way.

Remark II.7.2. For any γ,X and λ > 1, there exist constants nX(γ) and rX(γ, λ) such that

1

λ
· nX(γ) · L6g+2n−6 ≤ sX(L, γ) ≤ λ · nX(γ) · L6g+2n−6 (II.6)

for any L ≥ rX(γ, λ).

It’s also necessary for us to know how nX(γ) and rX(γ, λ) behave with respect to scaling the curve γ for

later purposes.

Corollary II.7.3. For any γ,X, λ > 1 and c ∈ N, we have

rX(c · γ, λ) = c · rX(γ, λ)

nX(c · γ) =
nX(γ)

c6g+2n−6

Proof. Indeed, we have

sX(L, c · γ) = sX

(
L

c
, γ

)

and that

1

λ
· nX(γ)

c6g+2n−6
· L6g+2n−6 ≤ sX

(
L

c
, γ

)
≤ λ · nX(γ)

c6g+2n−6
· L6g+2n−6

for any L
c ≥ rX(γ, λ). This gives us the desired result.

Since there are only finitely many topological types of simple closed curves, we denote nX(S) the finite

sum of nX(γ) where γ ranges over all topological types of simple closed curves on Sg,n. We will use the

notation sX(L,S) to denote the number of all simple closed geodesics that have length bounded by L, and

we will denote rX(S, λ) = maxγ∈S rX(γ, λ) for any λ > 1.
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II.8 Projection Maps

Similar to hyperbolic isometrics acting on hyperbolic space, each pseudo-Anosov element φ ∈ Modg,n acts

on Tg,n by translating along its corresponding bi-infinite geodesic axis, denoted as axis(φ) with translation

distance denoted as λ(φ). Moreover, we say a pseudo-Anosov element φ ∈ Modg,n is called ε-thick if its

axis axis(φ) ⊂ T εg,n.

For any r > 0 and for every closed set W ⊂ Tg,n, denote Nr(W ) the r-neighborhood of W . For every

closed set C ⊂ Tg,n, the closest point projection map is defined as follows

πC(x) = {y ∈ C | d(x, y) = d(x,C) = inf
z∈C

d(x, z)}.

As one of the early works exploring negative curvature in Teichmüller space, the result below from Min-

sky [29] says that ε-thick geodesics in Teichmüller space satisfy the strongly contracting property.

Theorem II.8.1 (Minsky [29]). There exists a constant A > 0 depending on ε, χ(S) such that if L is an

ε-thick geodesic in Tg,n and d(X ,L) > A, then we have

diam
(
πL
(
Nd(X ,L)−A (X )

))
≤ A

for any X ∈ Tg,n.

For L a geodesic in Tg,n, we let dLπ (C,W ) = diam (πL (C) ∪ πL (W )). We can pick the constant A in

Theorem II.8.1 in a way so that the following holds.

Corollary II.8.2 (Arzhantseva, Cashen, and Tao [1]). Let L be an ε-thick geodesic in Tg,n and let X ,Y ∈

Tg,n be such that dLπ (X ,Y) > A, then

d (X ,Y) ≥ d (X , πL (X )) + dLπ (X ,Y) + d (πL (Y) ,Y)−A.

Moreover, if Y happens to be on the geodesic L, then πL(Y) = {Y} and

d(X ,Y) ≥ d (X , πL (X )) + d (πL (X ) ,Y)−A.

For any pseudo-Anosov element φ ∈ Modg,n, we denote πaxis(φ) as πφ. Since φ acts by translation along

its axis, it commutes with the projection map πφ. That is, for anyX ∈ Tg,n, we have πφ(φ(X )) = φ(πφ(X )).

By using Theorem II.8.1 and Corollary II.8.2, one can show if an ε-thick pseudo-Anosov element ψ has

sufficiently large translation length, then the distance it translates a point is roughly twice the distance from
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the point to the axis. See Figure II.5 for an illustration.

B

axis(ψ)

X ψ(X )

Figure II.5: Shaded area are ε-thin parts. Given a ε-thick pseudo-Anosov element ψ with λ(ψ) > A, the
diameter of projection of any balls like B to axis(ψ) is bounded by A, see Theorem II.8.1. The geodesic
from X to ψ(X ) fellow travels axis(ψ), see Corollary II.8.3.

Corollary II.8.3. Let φ be a ε-thick pseudo-Anosov element with translation distance λ(φ) > A. Then for

any X ∈ Tg,n and for any ψ ∈ [φ], we have

2d(X , πψ(X )) + λ(φ)−A ≤ d(X , ψ(X )) ≤ 2d(X , πψ(X )) + λ(φ) + 2A.

Proof. Since translation distance is invariant under conjugation, λ(ψ) = λ(φ) > A for any ψ ∈ [φ]. Thus

we have

dψπ (X , ψ(X )) = diam(πψ(X ) ∪ πψ(ψ(X ))) = diam(πψ(X ) ∪ ψ(πψ(X )))

where λ(φ) ≤ diam (πψ (X ) ∪ ψ (πψ (X ))) ≤ λ(φ) + 2A. Take any X ∈ Tg,n, by the triangle inequality,

we have

d(X , ψ(X )) ≤d(X , πψ(X )) + dψπ (X , ψ(X )) + d(ψ(X ), πψ(ψ(X )))

≤2d(X , πψ(X )) + λ(φ) + 2A.

Meanwhile we can apply the previous Corollary II.8.2 and get

d(X , ψ(X )) ≥d(X , πψ(X )) + dψπ (X , ψ(X )) + d(ψ(X ), πψ(ψ(X )))−A

≥2d(X , πψ(X )) + λ(φ)−A.

The result follows.
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CHAPTER III

Growth of Pseudo-Anosov Conjugacy Classes in Teichmüller Space

III.1 Proof of Theorem A

By Theorem I.1.2, for any X ∈ Tg,n, we have

|Modg,n · X ∩Br(X )| ∼ ehr.

For any r > 0, define the set

Ωr(X ) = {f ∈ Modg,n | d(X , fX ) ≤ r}

and denote N the maximal order of point stabilizer subgroups in Modg,n [20]. It follows that

|Modg,n · X ∩Br(X )| ≤ |Ωr(X )| ≤ N · |Modg,n · X ∩Br(X )| ,

ehr � |Ωr(X )| � N · ehr.

Moreover, given any φ ∈ Modg,n, we have

Γr(X ,Y, φ) ≤ |[φ] ∩ Ωr(X )| ≤ N · Γr(X ,Y, φ).

Combining things together, we have

1

N
· |[φ] ∩ Ωr(X )| ≤ Γr(X ,Y, φ) ≤ |[φ] ∩ Ωr(X )| . (III.1)

We first prove a simplified version of the main theorem.

Theorem III.1.1. For any Sg,n and ε > 0, there exists a constant A > 0 such that given any ε-thick pseudo-

Anosov element φ with translation distance λ ≥ A and given any X ∈ axis(φ), there exists a corresponding

constant G(X , φ) > 0 such that

ΓR(X ,X , φ)
G(X ,φ)∼ e

h
2R
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Proof. Given φ,X satisfying the assumptions. For any R, define

P+
R =

{
ψ ∈ [φ] | d (X , πψ(X )) ≤ R+A− λ

2

}
,

P−R =

{
ψ ∈ [φ] | d (X , πψ(X )) ≤ R− 2A− λ

2

}
.

Denote Ωr(X ) as Ω(r) for simplicity, by Corollary II.8.3 we have

P−R ⊂ [φ] ∩ Ω(R) ⊂ P+
R . (III.2)

We now work towards obtaining an upper bound for |P+
R |. Take any ψ ∈ P+

R , there exists a f ∈ Modg,n

such that ψ = fφf−1. Since X ∈ axis(φ), f(X ) therefore lies on the axis(ψ). In particular, this means there

exists a k ∈ Z such that

d
(
ψk ◦ f(X ), πψ(X )

)
≤ λ

2
,

d
(
ψk ◦ f(X ),X

)
≤ d

(
ψk ◦ f(X ), πψ(X )

)
+ d (X , πψ(X )) ≤ R+A

2
.

See Figure III.1 for an example.

πψ(X )

axis(ψ)axis(φ) X
x0

x1

x2
x3x4x5

Figure III.1: Each xi denotes ψi ◦ f(x) and distance between any two adjacent xi is λ. The injective map
maps X to x3 since x3 is the closest point to πψ(X ) in {xi}i∈Z.

We claim one can define an injective map from P+
R → Ω(R+A

2 ) by sending ψ to ψkf . Indeed, if there

is any another η ∈ P+
R , η 6= ψ, η = hφh−1 for some h ∈ Modg,n, then h(X ) ∈ axis(η) and there exists a
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m ∈ Z such that

d(ηm ◦ h(X ), πη(X )) ≤ λ

2
,

d(ηm ◦ h(X ),X ) ≤ R+A

2
.

We claim in this case ψkf 6= ηmh. Indeed, suppose they are equal, then

ψ = ψkψψ−k = ψkfφf−1ψ−k = ηmhφh−1η−m = ηmηη−m = η.

However, this contradicts ψ 6= η. This means for R large, we can inject P+
R into Ω(R+A

2 ), so that

∣∣P+
R

∣∣ ≤ ∣∣∣∣Ω(R+A

2

)∣∣∣∣ � ehA2 · ehR2 . (III.3)

To obtain the lower bound for |P−R |, we define

AR =
{

axis(ψ) | ψ ∈ P−R
}
.

This gives us a surjective map F : P−R → AR, ψ 7→ axis(ψ), and each Θ ∈ AR has the form Θ =

axis(fφf−1) for some f ∈ Ω(R−2A
2 ). For any L < R−2A−λ

2 , we define

ALR =

{
Θ ∈ AR | d (X , πΘ(X )) >

R− 2A− λ
2

− L
}

so that ALR ⊂ AR. For each Θ ∈ AR, we denote

H(Θ) = {f ∈ Ω(
R− 2A

2
) | axis(fφf−1) = Θ},

which is a subset of Ω(R−2A
2 ).

By Corollary II.8.2, for any Θ ∈ ALR, there are at most 2(L+A)
λ + 2 many f ∈ H(Θ) satisfying

axis(fφf−1) = Θ since d(X , πΘ(X )) ∈
(
R−2A−λ

2 − L, R−2A−λ
2

]
. In the example of Figure III.2, there are

six such f for this Θ. This means

∣∣ALR∣∣ ≥ λ

2(L+A+ λ)
·
∑

Θ∈ALR

|H (Θ)| . (III.4)

For any element f ∈ Ω(R−2A−λ
2 ), let’s denote Θf = axis(fφf−1), then each f is exactly one of the
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following types.

(a) Θf never enters BR−2A−λ
2 −L(X ).

(b) Θf enters BR−2A−λ
2 −L(X ) and d(X , f(X )) ≤ R−2A−λ

2 − L.

(c) Θf enters BR−2A−λ
2 −L(X ) and d(X , f(X )) > R−2A−λ

2 − L.

Θ

Υ
X

Figure III.2: Θ is of type (a) and Υ is of type (c). The lengths of Θ and Υ intersecting BR−2A−λ
2

can be
approximated by Corollary II.8.2, which showed as the dotted geodesic segments.

The union of type (a) elements is
⊔

Θ∈ALR
H(Θ), and the union of type (b) elements are Ω

(
R−2A−λ

2 − L
)
⊂

Ω
(
R−2A

2 − L
)
. By Corollary II.8.2, we notice there are at most 2(L+A)

λ many type (c) elements can share

the same axis, and the numbers of axes going through BR−2A−λ
2 −L(X ) is bounded by |Ω

(
R−2A

2 − L
)
|. In

the example of Figure III.2, there are six f satisfying type (c) conditions sharing the axis Υ. Notice there

are two f realize Υ = Θf but not satisfy the type (c) assumption. Since type (a), (b), (c) elements compose

Ω(R−2A−λ
2 ), we have

∑
Θ∈ALR

|H (Θ)| ≥
∣∣∣∣Ω(R− 2A− λ

2

)∣∣∣∣− (1 +
2(L+A)

λ

)
·
∣∣∣∣Ω(R− 2A

2
− L

)∣∣∣∣ .
Moreover, we let L be a constant satisfy ehL > 2 · ehλ2 ·N

(
1 + 2(L+A)

λ

)
, then

∑
Θ∈ALR

|H (Θ)| � e
h(R−2A−λ)

2 −
(

1 +
2(L+A)

λ

)
·N · e

h(R−2A)
2 −hL (III.5)

� eh2R · e−hA ·

 1

eh
λ
2

−
N ·

(
1 + 2(L+A)

λ

)
ehL


� eh2R · 1

2eh(λ2 +A)
,
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and this lower bound is nontrivial.

Thus, to construct the lower bound for |P−R |, we letL be a constant satisfy ehL > 2·ehλ2 ·N
(

1 + 2(L+A)
λ

)
.

Apply formulas (III.4) (III.5) from above, for R large we have

∣∣P−R ∣∣ ≥ |AR| ≥ ∣∣ALR∣∣ (III.6)

≥ λ

2(L+A+ λ)
·
∑

Θ∈ALR

|H (Θ)|

� eh2R · λ

2(L+A+ λ)ehA
· 1

2eh(λ2 +A)
.

Finally, combining formulas (III.1), (III.2), (III.6) we have

|[φ] · X ∩BR(X )| ≥ 1

N
· |[φ] ∩ Ω(R)| ≥ 1

N
·
∣∣P−R ∣∣ � GL(X , φ) · eh2R

where

GL(X , φ) =
λ

2N(L+A+ λ)ehA
· 1

2eh(λ2 +A)
.

And combining formulas (III.1), (III.2), (III.3) we have

|[φ] · X ∩BR(X )| ≤ |[φ] ∩ Ω(R)| ≤ P+
R � GU (X , φ) · eh2R

where

GU (X , φ) = Ne
hA
2 .

Recall f(R)
A
� g(R) is the same as f(R)

1
� Ag(R). Thus we have

e
h
2R

G−1
L (X ,φ)

� |[φ] · X ∩BR(X )|
GU (X ,φ)

� e
h
2R

This means by setting

G(X , φ) = max{G−1
L (X , φ), GU (X , φ)}

we obtain the desired result.

Now we are ready to prove the general case.
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Theorem A. Fix Sg,n and ε > 0, there exists a constantA > 0 such that given any ε-thick pseudo-Anosov el-

ement φwith translation distance λ ≥ A and given anyX ,Y in Tg,n, there exists a correspondingG(X ,Y, φ)

such that

ΓR(X ,Y, φ)
G(X ,Y,φ)∼ e

h
2R.

Proof of Theorem A. Take anyX ,Y ∈ Tg,n, and letD be the maximum between d(X , πφ(X )) and d(πφ(X ),Y)}.

We then have

|[φ] · Y ∩BR(X )| ≥ |[φ] · πφ(X ) ∩BR−D(X )| ≥ |[φ] · πφ(X ) ∩BR−2D(πφ(X ))| ,

|[φ] · Y ∩BR(X )| ≤ |[φ] · πφ(X ) ∩BR+D(X )| ≤ |[φ] · πφ(X ) ∩BR+2D(πφ(X ))| .

By applying these inequalities and by applying Theorem III.1.1 to φ and πφ(X ), without loss of generality,

we get the desired result by setting G(X ,Y, φ) = G(πφ(X ), φ) · ehD.

III.2 Proof of Corollary B and Corollary C

Corollary B. Fix Sg,n, given any pseudo-Anosov element φ and given anyX ,Y in Tg,n. There exists a power

N depending on φ such that for any k ≥ N , there is a corresponding G(X ,Y, φ, k) so that the following

holds:

ΓR(X ,Y, φk)
G(X ,Y,φ,k)∼ e

h
2R.

Proof of Corollary B. Given φ, we pick ε so that axis(φ) is in T εg,k. Since λ(φk) = k · λ(φ) for any pseudo-

Anosov element φ, there exists a N(φ) such that λ(φk) ≥ A for any k ≥ N(φ). We now can apply Theorem

A, and the corresponding error constant G depends on X ,Y, φ, k.

Corollary C. Fix Sg,n, given any pseudo-Anosov element φ and given any X ,Y in Tg,n, for all sufficiently

large k we have

lim
R→∞

1

R
ln ΓR(X ,Y, φk) =

h

2
.

Proof of Corollary C. Assuming the conditions, we can apply the Corollary B. This means for any k ≥ N
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and for any δ > 1, there exists a M(δ) such that

1

δG(X ,Y, φ, k)
· eh2R ≤ ΓR(X ,Y, φk) ≤ δG(X ,Y, φ, k) · eh2R

for any R ≥M(δ). Let ε > 0, one can pick δ > 0 and pick M(ε) ≥M(δ) so that

δG(X ,Y, φ, k) ≤ eεh2R,

e−ε
h
2R ≤ 1

δG(X ,Y, φ, k)
,

for any R ≥M(ε). This implies for any ε > 0, we have

e(1−ε)h2R ≤ ΓR(X ,Y, φk) ≤ e(1+ε)h2R,

(1− ε)h
2
R ≤ ln ΓR(X ,Y, φk) ≤ (1 + ε)

h

2
R,

(1− ε)h
2
≤ 1

R
ln ΓR(X ,Y, φk) ≤ (1 + ε)

h

2
,

whenever R ≥M(ε). That is,

lim
R→∞

1

R
ln ΓR(X ,Y, φk) =

h

2
.

This finishes the proof.
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CHAPTER IV

Growth Rate of Dehn Twist Lattice Points in Teichmüller Space

IV.1 The Effect of Twisting on Hyperbolic Length

In this section, we study how the length of simple closed geodesics on a hyperbolic surface change after

applying a twist. In the next section, we use the results below to estimate how far a point in Teichmüller

space moves after applying a twist.

As our first result, we may obtain the following estimate from the length formula (II.4) and intersection

formula (II.1).

Proposition IV.1.1. Fix some ε > 0. Given a multicurve α =
∑k
i=1 aiαi and a simple closed curve τ on a

hyperbolic surface X ∈ T εg,n, there exists a constant A depends only on Sg,n and ε such that

A

(
k∑
i=1

|ai|i(αi, τ)`X (αi) + `X (τ)

)
≥ `TαX (τ) ≥ 1

A

(
k∑
i=1

(|ai| − 2)i(αi, τ)`X (αi)− `X (τ)

)
.

Furthermore, if α is positive or negative, the lower bound can be sharpened to

`TαX (τ) ≥ 1

A

(
k∑
i=1

|ai|i(αi, τ)`X (αi)− `X (τ)

)
.

Proof. By the length formula (II.4), we know

CN
∑
γ∈µX

i(T−1
α (τ), γ) ≥ `TαX (τ) ≥ ε

C

∑
γ∈µX

i(T−1
α (τ), γ).

We can apply the signed intersection formula (II.2) to approximate i(T−1
α (τ), γ). This allows us to expand

the above inequality into the following:

CN
∑
γ∈µX

(
k∑
i=1

|ai|i(αi, γ)i(αi, τ) + i(τ, γ)

)

≥ `TαX (τ)

≥ ε

C

∑
γ∈µX

(
k∑
i=1

(|ai| − 2)i(αi, γ)i(αi, τ)− i(τ, γ)

)
.

By switching the order of summations
∑
γ∈µX and

∑k
i=1 and by applying the length formula (II.4) again,

we obtain the result in the proposition.
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If α is positive or negative, we can use the intersection formula (II.1), and going through the same proof

give us the sharpened lower bound.

Note the above proposition provides a good estimate for the length of multicurves up to a multiplicative

error. This error arises from our repeated use of length formula (II.4). Below we propose a more generalized

result that leads to removing this multiplicative error. Let b·c0 denote the 0 threshold function.

Theorem IV.1.2. Given a multicurve α =
∑k
i=1 aiαi and a simple closed curve τ on any hyperbolic struc-

ture X , we have

`X (τ) +

k∑
i=1

i(τ, αi)|ai|`X (αi) (IV.1)

≥ `TαX (τ)

≥
k∑
i=1

i(τ, αi) ·
⌊
(|ai| − 2) · `X (αi)− 2`X (τ)− L

⌋
0

where L is a constant that depends on H2.

Proof. Fix the hyperbolic structure we may assume curves are geodesics. Given a multicurveα =
∑k
i=1 aiαi,

we denote A = {αi}ki=1 and denote Ã the set of all liftings of curves in A to H2. Let ZA denote the corre-

sponding Bass-Serre tree, see section II.6.

For each β ∈ Ã, we denote ψβ ∈ π1(Sg,n) the corresponding hyperbolic isometry in H2. If β, γ ∈ Ã are

lifts of the same α ∈ A, then ψβ , ψγ are conjugate to each other and have the same translation distance equal

to `X (α). This also means there exists an isometry ψ in H2 that sends γ to β. We can choose this isometry

up to composing with any power of ψβ or pre-composing with any power of ψγ . In particular, suppose there

are geodesic segments β′ ⊂ β, γ′ ⊂ γ such that their length are less than `X (α), we can choose the isometry

ψ in a way such that β′ and ψ(γ′) both lie on β and intersect the same fundamental domain of the action of

ψβ .

Given a simple closed curve τ , we denote

i(τ, α) = m =

k∑
i=1

i(τ, αi) =

k∑
i=1

mi.

In the case of i(τ, α) = 0, Tα has no effect on τ and the theorem holds true. We may assume i(τ, α) ≥ 1.

Let τ̃ be a lifting of τ and say it has end points qL, qR ∈ ∂H2. τ̃ is therefore a bi-infinite geodesic in H2
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transverse to Ã, and φA(τ̃) is a bi-infinite geodesic in ZA, say the edges are labeled by

B = {· · · , β−2, β−1, β0, β1, β2, · · · }.

For each βi, let’s denote πβi(βi−1), πβi(βi+1) as βi,L, βi,R respectively. Define a index function s : N→

{1, · · · , k} so that αs(i) ∈ A is the simple closed curve such that βi is a lift of αs(i). For each i, we claim

d(βi,L, βi,R) ≤ 2`X (τ). In the case of i(τ,A) = 1, we pick κ ⊂ τ̃ to be the geodesic segment between

the points τ̃ ∩ βi−1 and τ̃ ∩ βi+1. Then κ is a concatenation of two consecutive path liftings of τ and

`X (κ) = 2`X (τ). For i(τ,A) ≥ 2, we pick κ to be the path lifting of τ starting from βi−1 ∩ τ̃ . In any

case, κ ⊂ τ̃ goes through βi−1, βi, βi+1 and has length bounded by 2`X (τ). By Lemma II.4.4 we know the

projection maps πβi are 1-Lipschitz, thus the distance between projections of the two endpoints of κ on βi

is smaller than the length of κ, which is less than 2`X (τ). Since the projections of the two endpoints lie in

βi,L, βi,R respectively, we have d(βi,L, βi,R) ≤ 2`X (τ).

Fix some point q0 ∈ τ̃ and let τ̃ ′ be τ̃ after shearing according to −α fixing the component of q0, see

section II.5. The projection of τ̃ ′ to the surface X has length equal to

`X (τ) +

k∑
i=1

i(τ, αi)|ai|`X (αi).

Denote the end points of τ̃ ′ as q′L, q
′
R ∈ ∂H2. Let σ be the geodesic with end points q′L, q

′
R ∈ ∂H2, then σ

is a lift of the geodesic T−1
α (τ) and its image φA(σ) is a geodesic in ZA. Since the projection of τ̃ ′ is in the

isotopy class T−1
α (τ), the upper bound in (IV.1) follows.

Once τ̃ ′ leaves a connected component of H2 \ ∪Ã, it never comes back. This means φA(τ̃ ′) does not

back track in ZA so φA(τ̃ ′) is a geodesic path in ZA. Since σ shares the same endpoints with τ̃ ′ and since

ZA is a unique geodesic space, we have φA(τ̃ ′) = φA(σ). Denote the edge labels of φA(σ) as

F = {· · · , η−2, η−1, η0, η1, η2, · · · }.

For each ηi, let’s denote πηi(ηi−1), πηi(ηi+1) as ηi,L, ηi,R respectively. Since each βi and ηi are lifts

of the same curve, we can use the same index function s denoting αs(i) ∈ A the simple closed curve such

that ηi is a lift of αs(i). Since for each i, the triples (τ̃ , βi, βi+1) and (τ̃ ′, ηi, ηi+1) realize the same intersec-

tion pattern on the surface, ηi,L, ηi,R are translations of βi,L, βi,R respectively and have the same diameters

respectively.

The relative location of ηi,L, ηi,R is the same as the relative location of βi,L and ψ
as(i)
βi

(βi,R), see Fig-
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ure IV.1 for an illustration. Recall for any point x on any βi and for any t ∈ Z, we have d(x, ψtβi(x)) =

|t|`X (αs(i)). Since both diam(βi,L),diam(βi,R) are bounded by `X (αs(i)), and since d(βi,L, βi,R) ≤

2`X (τ), we have diam(βi,L ∪ βi,R) ≤ 2`X (αs(i)) + 2`X (τ). It follows that

d(ηi,L, ηi,R) ≥ |as(i)|`X (αs(i))− diam(βi,L ∪ βi,R)

≥ (|as(i)| − 2)`X (αs(i))− 2`X (τ).

Denote

Di = (|as(i)| − 2)`X (αs(i))− 2`X (τ)

so that d(ηi,L, ηi,R) ≥ Di for any i.

τ

βiβi−1 βi+1

βi,L

βi,R ηiηi−1 ηi+1

ηi,R

ηi,L

wi+1

wi

τ ′

σ

Figure IV.1: Before and after shearing.

Denote the sequence of points {wi}i∈N on σ such that each wi is the first point on σ entering the L-

neighborhood of ηi from left. Since πηi(q
′
L) ∈ ηi,L, by Corollary II.4.3, for each i we have

d(πηi(wi), ηi,L) ≤ d(πηi(wi), πηi(q
′
L)) ≤ 2L.

Moreover, all these points are equivalent under translation of σ, i.e, for any i we have

d(wi, wi+m) = `X (T−1
α (τ)) = `TαX (τ).

By Lemma II.4.4, we know projection πηi is 1-Lipschitz for any i. Since πηi(ηj) ⊂ ηi,R, for any i < j we

have

d(wi, wj) ≥ d(ηi,L, ηi,R)− 4L ≥ bDi − 4Lc0. (IV.2)
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See Figure IV.1 for an illustration.

We use a � b to denote that σ goes through the point a first and then the point b from left to right.

We claim for any i such that Di > 4L and for any j > i, we have wi � wj . Indeed, suppose wj � wi,

then by definition the geodesic segment from wj to wi completely lies outside the L-neighborhood of ηi,

and this means d(πηi(wi), πηi(wj)) ≤ L because geodesics are strongly contracting in H2, see section II.4.

Meanwhile, we know

d(ηi,R, πηi(wj)) ≤ d(πηi(ηj), πηi(wj)) ≤ d(ηj , wj) = L

because πηi(ηj) ⊂ ηi,R and because the projection map πηi is 1-Lipschitz. Combining with the previous fact

d(πηi(wi), ηi,L) ≤ 2L, we conclude

Di ≤ d(ηi,L, ηi,R)

≤ d(πηi(wi), ηi,L) + d(πηi(wi), πηi(wj)) + d(ηi,R, πηi(wj))

≤ 2L+ L+ L = 4L.

And this contradicts Di > 4L. Therefore, we have a pattern of ordering

· · · � w0 � w1 � · · · � wm−1 � wm � · · ·

on σ provided that each Di > 4L. In this case we have

`TαX (τ) = d(w0, wm) ≥
m∑
i=1

d(wi−1, wi) ≥
m∑
i=1

bDi − 4Lc0. (IV.3)

If for some i, Di ≤ 4L, we can delete the point wi from our sequence and we only need to measure

d(wi−1, wi+1) instead. The same result (IV.3) holds. Replacing 4L by L gives us the lower bound in

(IV.1).

While the above Theorem IV.1.2 no longer has multiplicative error, we are not yet able to provide an

effective lower bound for multicurves with mixed sign and with each coefficient having absolute value ≤ 2.

The Proposition IV.1.5 below takes one more step and will lead to an effective lower bound for “long”

multicurves with mixed sign and with each coefficient having absolute value ≥ 2. Before that, we make the

following two remarks that would help us establish Proposition IV.1.5.

Remark IV.1.3. We notice the following in the proof of Theorem IV.1.2.
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Recall that we denote i(τ, α) = m =
∑k
i=1 i(τ, αi) =

∑k
i=1mi. Let’s fix m-many consecutive lifts in

B and denote it as Bm ⊂ B . Take any αi in the multicurve α and without loss of generality, say

βi(1), · · · , βi(mi)

are all the lifts of this αi in Bm. As discussed in the proof of Theorem IV.1.2, for all 1 ≤ j ≤ mi, there

exist isometries φj sending βi(j) to βi(1) such that all βi(1),R, φj(βi(j),R) lie on βi(1). For any distinct pair

βi(j1), βi(j2) where 1 ≤ j1, j2 ≤ mi, the orbits
〈
ψβi(1)

〉
· φj1(βi(j1),R) and

〈
ψβi(1)

〉
· φj2(βi(j2),R) are

either the same or completely disjoint. That is, for any distinct pair βi(j1),R, βi(j2),R, either φj1(βi(j1),R) =

φj2(βi(j2),R) or they are disjoint.

Thus except the repetitive ones, we can further assume all βi(1),R, ψj(βi(j),R) are disjoint, lie on βi(1),

and lie in a same fundamental domain of the action of ψβi(1) . Denote the intersection of this fundamental

domain with βi(1) as βRi(1), and it follows βRi(1) ⊂ βi(1) is a path lifting of αi and diam(βRi(1)) = `X (αi). This

means we have

diam
(
βi(1),R ∪ φ2(βi(2),R) ∪ · · · ∪ φmi(βi(mi),R)

)
≤ `X (αi).

After removing the repetitive ones, the disjoint union of all these right neighbor projections φj(βj,R) can

be arranged into βRi(1), a geodesic segment of diameter `X (αi). One can do the same thing to all the left

neighbors, and the union of all these left neighbor projections φj(βj,L) can be arranged into βLi(1), a geodesic

segment of diameter `X (αi)

Remark IV.1.4. Continuing on Remark IV.1.3, we recall there are mi many intersections points between αi

and τ , and let’s denote the set of these points on the surface as Xi = {x1, · · · , xmi}. On one hand, we can

lift Xi to Yi = {y1, · · · , ymi}, where each yj = τ̃ ∩ βi(j), βi(j) ∈ Bm. On the other hand, we can lift Xi

to Zi = {z1, · · · , zmi} where each zj = φj(yj), so all points in Zi lie in a geodesic segment of diameter

`X (αi), namely, βRi(1).

For any of these intersection points zj , we denote the corresponding lift of τ as τ̃j . The left neighbor of

zj is defined to be the previous α̃ ∈ A that τ̃j intersects, and the right neighbor of zj is the next α̃ ∈ A that

τ̃j intersects. Now, we notice the union of all these right neighbors projections of Zi are exactly the union of

right neighbor projections we considered in Remark IV.1.3 and lie in βRi(1). Similarly for the left neighbors.

Proposition IV.1.5. Given a multicurve α =
∑k
i=1 aiαi and a simple closed curve τ on any hyperbolic
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structure X . Let K ∈ (0, 1) be a constant, we have

`TαX (τ) ≥
k∑
i=1

min{Li1,Li2} (IV.4)

where

Li1 = i(τ, αi) ·
⌊
(|ai| − 2 +K) · `X (αi)− 2`X (τ)− L

⌋
0
,

Li2 =
⌊
i(τ, αi)−

K`X (αi) + 4`X (τ)

W (τ)

⌋
0
·
⌊
(|ai| − 1−K) · `X (αi)− 2`X (τ)− L

⌋
0
.

Proof. We will use the similar notations and ideas from Theorem IV.1.2. Recall we denote i(τ, α) = m =∑k
i=1 i(τ, αi) =

∑k
i=1mi. And recall φA(τ̃) is a bi-infinite geodesic in ZA, and its edges are labeled by

B = {· · · , β−2, β−1, β0, β1, β2, · · · }.

Define the index function s : N → {1, · · · , k} so that αs(t) ∈ A is the simple closed curve such that βt is a

lift of αs(t). Let K ∈ (0, 1), and we consider two different scenarios.

If diam(βt,L ∪ βt,R) ≤ (2 − K)`X (αs(t)) + 2`X (τ) for all t, following the argument from Theorem

IV.1.2, we can set

Dt = (|as(t)| − 2 +K)`X (αs(t))− 2`X (τ),

and we have d(ηt,L, ηt,R) ≥ Dt for all t. Following the same equation (IV.3) and the same argument gives

us the lower bound

`TαX (τ) ≥
k∑
i=1

i(τ, αi) ·
⌊
(|ai| − 2 +K) · `X (αi)− 2`X (τ)− L

⌋
0
.

In the second scenario, we have diam(βt,L ∪ βt,R) ≥ (2 − K)`X (αs(t)) + 2`X (τ) for some t. Let’s

i = s(t) for simplicity. For this t, since both diam(βt,L) and diam(βt,R) are bounded by `X (αi) respectively,

we have both

diam(βt,L),diam(βt,R) ≥ (1−K)`X (αi).

Since the βt,L is exhausting an interval length of at least (1 −K)`X (αi), as we discussed above in Remark

IV.1.3, the diameter of the union of all other right neighbor projections is bounded by `X (αi)−(1−K)`X (αi),
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that is, K`X (αs(t)). Similarly, the diameter of the union of all left neighbor projections except βt,L, is

bounded by K`X (αi).

Denote i = s(t) and let βi(1), · · · , βi(mi) denote distinct lifts of αi in Bm with βi(1) = βt, see Remark

IV.1.3. Define Xi, Yi, Zi just as in Remark IV.1.4. We say a zj is in vain if its left neighbor is βt−1 and its

right neighbor is βt+1, and we say zj is effective otherwise. Notice any points in Zi is within distance 2`X (τ)

of its left neighbor projection and its right neighbor projection, see the proof of Theorem IV.1.2.

If βt,L ∩ βt,R is empty, all points in vain lie in a geodesic segment of length 4`X (τ). If βt,L ∩ βt,R is

nontrivial, since

(2−K)`X (αi) + 2`X (τ) ≤ diam(βt,L ∪ βt,R) ≤ 2`X (αi) + 2`X (τ),

we have diam(βt,L∩βt,R) ≤ K`X (αi), and all points in vain is within 2`X (τ)-neighborhood of βt,L∩βt,R.

In any case, all points in vain can be arranged in a geodesic segment that has length bounded by diam(βi,L ∩

βi,R)+4`X (τ). By Collar Lemma II.4.2, there are at most K`X (αi)+4`X (τ)
W (τ) many intersections points in vain.

βt

βt,L

β′t,L

βt−1

β′t−1

βt,R

βt,R

τ̃1

τ̃2

τ̃3

τ̃4

τ̃0

Figure IV.2: In between the two dotted lines is the geodesic segment βRt . β′t−1 and βt−1 differ by ψβt ,
thus their projections βt,L, β′t,L differ by ψβt . τ̃0 is in vain and thus is not “counted” in Ti(K). Lifts like
τ̃1, τ̃2, τ̃3, τ̃4 are effective and hence will realize a translation distance no less than Di(K) after twisting. τ̃1
is of case (1), τ̃2, τ̃3, and τ̃4 is of case (2).

Thus, realized by αi and βt, there are at least Ti(K) many effective intersection points, where

Ti(K) =
⌊
i(αi, τ)− K`X (αi) + 4`X (τ)

W (τ)

⌋
0
.

For each effective intersection point zj , it’s of exactly one of the following cases.

1. Its left neighbor is βt−1 where its projection is βt,L, and its right neighbor projection is being squeezed
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into an interval of length bounded by K`X (αi).

2. Its left neighbor projection is being squeezed into an interval of length bounded by K`X (αi), and its

right neighbor is βt+1 where its projection is βt,L.

3. Both of its left and right neighbor projection are being squeezed into an interval of length bounded by

K`X (αi) respectively.

In any case, the diameter of the union of its left and right projection is bounded by

(1 +K)`X (αi) + 2`X (τ) = max {`X (αi) +K`X (αi) + 2`X (τ), 2K`X (αi) + 2`X (τ)} ,

which is like the upper bound for diam(βi,L∪βi,R) in the proof of Theorem IV.1.2. Apply the same argument

from Theorem IV.1.2 about “Di”, for any effective intersection point zj , and for its corresponding yj and

βi(j), it realizes a distance no less than

Di(K) = b(|ai| − 1−K) · `X (αi)− 2`X (τ)− Lc0

after twisting.

For example, let’s consider the situation in Figure IV.2. z0 is the only one in vain and is not “included” in

Ti(K). z1, z2 realize translation distances no less than

b(|ai| − 1) · `X (αi)− 2`X (τ)− Lc0

after twisting, because the union of projections of their left and right neighbors are bounded by `X (αi). z3, z4

realize translation distances no less than

b(|ai| − 1−K) · `X (αi)− 2`X (τ)− Lc0

after twisting since the union of projections of their left and right neighbors are bounded by (1 +K)`X (αi).

Finally, following the same procedure from Theorem IV.1.2 and only counting the sum of minimum

distances realized by effective intersection points, we have

`TαX (τ) ≥
k∑
i=1

Ti(K) ·Di(K).

This gives us the desired result.
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Notice that the bounds in Proposition IV.1.1, Theorem IV.1.2, Proposition IV.1.5 involve both the lengths

`X (αi) and the intersection numbers i(τ, αi). Note also that the lower bounds we obtain are all vacuous in

the case where the multicurve α is of mixed sign with all coefficients having absolute value 1. The following

example shows that there cannot exist a general lower bound, on the order of
∑k
i=1 i(τ, αi)`X (αi) as in

above results, that is effective in this case.

α
β

τ

η

Figure IV.3: A special example.

Example IV.1.6. Consider simple closed curves α, β, η, τ on a hyperbolic surface X as in the Figure IV.3

above. We can define two sequences of simple closed curves

αi = T iη(α), βj = T jη (β),

and note that the lengths `X (αn), `X (βn) and intersection numbers i(τ, αn), i(τ, βn) all tend to infinity with

n. Denote the multicurve γn = αn − βn for each n, then {γn}n∈N is a sequence of multicurves with mixed

sign and with each coefficient having absolute value equal to 1. Hence neither Proposition IV.1.1, Theorem

IV.1.2, nor Proposition IV.1.5 provides an effective lower bound on `TγnX (τ). One can use train tracks [37]

to study the images Tγn(τ) is, and then use length formula (II.4) to verify that

`TγnX (τ)
∗� `X (γn) = `X (αn) + `X (βn)

up to an uniform multiplicative error for all n ∈ N. In particular, we notice the intersection numbers

i(τ, αn), i(τ, βn), which go to infinity as n goes to infinity, do not play any roles in the length of `X (γn).

Thus there does not exist a constant λ such that

`TγnX (τ) ≥ λi(τ, αn)`X (αn) + λi(τ, βn)`X (βn).
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IV.2 Proof of Theorem G, Coarse Distance Formula

In this section we will adopt the results from the previous section to establish a coarse distance formula,

estimating how far a point in Teichmüller space moves after applying a twist.

The lemma below provides a lower bound of the length of `TαX (κ) where α is a multicurve of mixed

sign where each coefficient has absolute value ≥ 2, and κ is a particular curve in the short marking µX .

Lemma IV.2.1. Fix some ε > 0, there exists E,Q > 0 depends on ε so the following holds true. Given any

X ∈ T εg,n, let α =
∑k
i=1 aiαi be a multicurve where each coefficient has absolute value ≥ 2, and satisfying

`X (α) ≥ E. Let j denote an index such that |aj |`2X (αj) = max1≤i≤k |ai|`2X (αi). Let κ ∈ µX be a marking

curve such that i(αj , κ) = maxη∈µX i(αj , η), we have

`TαX (κ) ≥ 1

Q
· i(αj , κ)|aj |`X (αj). (IV.5)

Proof. Since k ≤ h
2 , `X (α) ≥ E and since any simple closed curve has length ≥ ε, we have

|aj |`X (αj) ≥
√
|aj |2`2X (αj) ≥

√
|aj |`2X (αj) ≥

√
2εE

h
.

First, we consider the case |aj | ≥ 3. Since |aj | − 2 ≥ 1
3 |aj | for any |aj | ≥ 3, by assuming E ≥

18h(2N+L)2

ε , we have

(|aj | − 2)`X (αj) ≥
1

3
|aj |`X (αj) ≥

1

3
·
√
εE

k
≥ 2(2N + L),

(|aj | − 2)`X (αj)− 2N − L ≥ 1

6
|aj |`X (αj).

Thus for this particular j and κ, since `X (κ) ≤ N we have

i(αj , κ) [(|aj | − 2)`X (αj)− 2`X (κ)− L] ≥ 1

6
· i(αj , κ)|aj |`X (αj).

Apply Theorem IV.1.2, we conclude

`TαX (κ) ≥ 1

6
· i(αj , κ)|aj |`X (αj).

Now, we consider the case |aj | = 2. Recall by fixing ε, any short marking curve corresponding to any

X ∈ T εg,n has length bounded on top by N . By Collar Lemma II.4.2, there exists a W depends on ε such that

collar width of any short marking curve corresponding to any X ∈ T εg,n has length bounded below by W .
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This means we have

K`X (αj) + 4`X (κ)

W (κ)
≤ hKCNi(αj , κ) + 4N

W
.

Since we have `X (αj) ≥ 1
2

√
2εE
h , by length formula (II.4),

i(αj , κ) ≥ `(αj)

hCN
≥ 1

hCN

√
εE

2h
.

Let E ≥ 32hN2

εK2 so that

hKCNi(αj , κ) ≥ 4N,

and take the constant K = min{ W
4hCN ,

1
2}, we have

hKCNi(αj , κ) + 4N

W
≤ 2hCNK

W
i(αj , κ) ≤ 1

2
i(αj , κ). (IV.6)

Moreover, by further assuming E ≥ 122h(2N+L)2

2ε , we have `X (αj) ≥ 6(2N + L). Since |aj | = 2,K ≤ 1
2 ,

we have

(|aj | − 1−K) · `X (αi)− 2N − L ≥ 1

2
`X (αj)− 2N − L ≥ 1

3
`X (αj). (IV.7)

Now we can apply Proposition IV.1.5. In the L1 case, |aj | = 2 and the lower bound is

`TαX (κ) ≥ i(αj , κ) (K`X (αj)− 2N − L) .

By further assuming

E ≥ max

{
122h(2N + L)2

2ε
,
h

2ε

(
16hCN(2N + L)

W

)2
}
,

we have

K`X (αj)− 2N − L ≥ 1

2
K`X (αj),

`TαX (κ) ≥ min

{
W

8hCN
,

1

4

}
· i(αj , κ)`X (αj).
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In the L2 case, our previous formulas (IV.6), (IV.7) guarantee

`TαX (τ) ≥
⌊
i(κ, αj)−

K`X (αj) + 2`X (κ)

W (κ)

⌋
0
·
⌊
(|aj | − 1−K) · `X (αj)− 2`X (κ)− L

⌋
0

≥ 1

2
i(κ, αj) ·

1

3
`X (αj) ≥

1

6
· i(κ, αj)`X (αj).

Let

E = max

{
122h(2N + L)2

ε
,

32hN2

εK2
,
h

2ε

(
16hCN(2N + L)

W

)2
}
,

Q = min

{
1

6
,

W

8hCN

}
.

The result follows.

Now we are ready to prove the main result of this section.

Theorem G (Coarse Distance Formula). Fix some Sg,n and given any ε > 0, there exists a constant H > 0

such that given any X ∈ T εg,n, we have

dT (X , TαX )
+H� log

(
k∑
i=1

|ai|`2X (αi)

)
(IV.8)

for any α =
∑k
i=1 aiαi ∈ML

∗(Z).

Proof. By the distance formula (II.3) and our formula (IV.1), we have

dT (X , TαX ) ≤ log

(
ec

ε
max
τ∈µX

`TαX (τ)

)
≤ log

(
Nec

ε
+
ec

ε
· max
τ∈µX

k∑
i=1

i(τ, αi)|ai|`X (αi)

)

≤ log

(
Nec

ε
+
ec

ε
·
∑
τ∈µX

k∑
i=1

i(τ, αi)|ai|`X (αi)

)

= log

(
Nec

ε
+
ec

ε
·
k∑
i=1

(∑
τ∈µX

i(τ, αi)

)
|ai|`X (αi)

)

≤ log

(
Nec

ε
+
ecC

ε2
·
k∑
i=1

|ai|`2X (αi)

)

where last inequality holds by applying the length formula (II.4). Since we always have |ai|`2X (αi) ≥ ε2, by
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using equality log(a+ b) = log(1 + a
b ) + log(b) we have

dT (X , TαX ) ≤ log

(
1 +

Nec

ε

ecC
ε2 ·

∑k
i=1 |ai|`2X (αi)

)
+ log

(
ecC

ε2
·
k∑
i=1

|ai|`2X (αi)

)

≤ log

(
1 +

N

hεC

)
+ log

(
ecC

ε2

)
+ log

(
k∑
i=1

|ai|`2X (αi)

)
.

This gives us the upper bound in (IV.8) after setting appropriate H .

Now we work toward the lower bound in (IV.8). Let’s assume that `X (α) ≥ E, E from Lemma IV.2.1.

First, we consider the case that α is positive or negative, i.e., all coefficients have the same sign. In this case,

by applying Proposition IV.1.1, similar to the argument obtaining the upper bound, we have

dT (X , TαX ) ≥ log

(
1

Nec
max
τ∈µX

`TαX (τ)

)
≥ log

(
1

ANec

)
+ log

(
max
τ∈µX

k∑
i=1

|ai|i(αi, τ)`X (αi)−N

)

≥ log

(
k∑
i=1

|ai|`2X(αi)

)
− log

(
2hACN2ec

)
Now, we consider the case where α is of mixed sign where each coefficient has absolute value ≥ 2. Let

j be the index of α such that |aj |`2X (αj) = max1≤i≤k |ai|`2X (αi) and let κ ∈ µX be the curve realizes

maxη∈µX i(αj , η), then by previous Lemma IV.2.1 we have

max
η∈µX

`TαX (η) ≥ `TαX (κ) ≥ 1

Q
· i(αj , κ)|aj |`X (αj).

Apply the length formula (II.4), we have

max
η∈µX

`TαX (η) ≥ 1

Q
i(αj , κ)|aj |`X (αj) =

1

Q
max
η∈µX

i(αj , η)|aj |`X (αj)

≥ 1

Q

∑
η∈µX i(αj , η)

h
|aj |`X (αj) ≥

1

hQCN
|aj |`2X (αj)

≥ 1

hQCN
max

1≤i≤k
|ai|`2X (αi).
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Apply the distance formula (II.3), we have

dT (X , TαX ) ≥ log

(
1

hQCN2ec
max

1≤i≤k
|ai|`2X (αi)

)
≥ log

(
1

h2QCN2ec

k∑
i=1

|ai|`2X (αi)

)

= log

(
k∑
i=1

|ai|`2X (αi)

)
− log

(
h2QCN2ec

)
.

And this gives us the lower bound in (IV.8) after setting appropriate H . Notice the above holds true for any

α ∈ ML∗≥E(Z). For any α ∈ ML(Z) that has length bounded by E, we have log
(∑k

i=1 |ai|`2X (αi)
)
≤

log
(
`2X (α)

)
≤ 2 log(E).

Finally, we set

H = max{ log

(
1 +

N

hεC

)
+ log

(
ecC

ε2

)
,

log
(
2hACN2ec

)
, log

(
h2QCN2ec

)
, 2 log(E)}.

The result follows.

Remark IV.2.2. Consider Example IV.1.6, if τ is chosen to be a short marking curve, using similar idea in

Theorem G, we would have

dT (X , TγnX )
+H� log (`X (αn) + `X (βn))

for some H . This implies our coarse distance formula does not hold for this sequence of multicurves {γn} ⊂

ML(Z) \ML∗(Z).

IV.3 Proof of Theorem D, Corollary E, and Corollary F

Assume the conditions in Theorem D, let D be one of the three sets [Tγ ], D, M. Since any mapping class is

an isometry for Tg,n, given any X ,Y ∈ T εg,n, we notice

|D · X ∩BR−dT (X ,Y)(X )| ≤ |D · Y ∩BR(X )| ≤ |D · X ∩BR+dT (X ,Y)(X )|. (IV.9)

Also, recall that

D · X ∩BR(X ) = {g · X ∈ Tg,n | g ∈ D, dT (g · X ,X ) ≤ R}.
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Since twists never stabilize any point in Tg,n, we have

|D · X ∩BR(X )| = |{g ∈ D | dT (g · X ,X ) ≤ R}|.

For simplicity of notation, we use t = h
2 to denote half the dimension of Tg,n. Recall we say f(R)

∗A∼ g(R)

if for any λ > 1, there exists a U(λ) such that 1
λA ≤

g(R)
f(R) ≤ λA for any R ≥ U(λ). We are now ready

to prove Theorem D and Corollary E. For each case and for any λ > 1, we will compute the corresponding

U(λ).

Theorem D. Given any Sg,n and given any ε > 0, there exists a J > 0 such that for any multicurve

γ ∈ML∗(Z) and for any X ,Y ∈ T εg,n, we have

ΓR(X ,Y, Tγ)
∗JFγ(X ,Y)∼ nX(γ) · eh2R

where nX(γ) is the corresponding Mirzakhani constant, see section II.7.

Proof of Theorem D. Let γ =
∑k
i=1 aiγi be a multicurve, then cα = cγ for any α ∈ ML(γ). We consider

the corresponding set of twists around curves of topological type γ

[Tγ ] = {Tα | α ∈ML(γ)}.

Define

S±R =

{
α =

k∑
i=1

aiαi ∈ML(γ) |
k∑
i=1

|ai|`2X (αi) ≤ eR±H
}
,

S++
R =

{
α =

k∑
i=1

aiαi ∈ML(γ) | `X (α) ≤
√
cα · e(R+H)/2

}
,

S−−R =

{
α =

k∑
i=1

aiαi ∈ML(γ) | `X (α) ≤ e(R−H)/2

}
.

By the coarse distance formula (IV.8), we have

|S−R | ≤ |[Tγ ] · X ∩BR(X )| ≤ |S+
R |.

Since

k∑
i=1

|ai|`2X (αi) ≤
k∑
i=1

|ai|2`2X (αi) ≤ (`X (α))2
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we have S−−R ⊂ S−R . Moreover, by Schwartz inequality, we have

(`X (α))2 = (

k∑
i=1

|ai|`X (αi))
2 ≤ (

k∑
i=1

|ai|) ·
k∑
i=1

|ai|`2X (αi) = cα ·
k∑
i=1

|ai|`2X (αi) (IV.10)

so S+
R ⊂ S

++
R . Together this means

|S−−R | ≤ |[Tγ ] · X ∩BR(X )| ≤ |S++
R |.

Mirzakhani’s counting formula (II.6) tells us for any λ > 1, we have

|S−−R | = sX(e(R−H)/2, γ) ≥ 1

λ
· nX(γ) · et(R−H),

|S++
R | = sX(

√
cα · e(R+H)/2, γ) ≤ λ · nX(γ) · ctγ · et(R+H)

whenever R ≥ U(λ) = 2 log(rX(γ, λ)) +H . This means

1

λ
· nX(γ) · et(R−H) ≤ |[Tγ ] · X ∩BR(X )| ≤ λ · ctγ · nX(γ) · et(R+H)

whenever R ≥ U(λ). By equation (IV.9), we have

1

λ · et(dT (X ,Y)+H)
≤ |[Tγ ] · Y ∩BR(X )|

nX(γ)etR
≤ λ · ctγ · et(dT (X ,Y)+H)

whenever R ≥ U(λ). Recall that we denote Fγ(X ,Y) = (cγ)tetdT (X ,Y). By setting J = etH , we are done

with the case D = [Tγ ] and Theorem D follows.

Corollary E. Given Sg,n and given any ε > 0, for any X ,Y ∈ T εg,n, we have

ΓR(X ,Y,D)
∗JF (X ,Y)∼ nX(S) · eh2R, if h > 0,

ΓR(X ,Y,M)
∗8JF (X ,Y)∼ nX(S) · eh2R, if

h

2
> 1

where nX(S) is the corresponding Mirzakhani constant, see section II.7.

Proof of Corollary E. We observe in the above proof of Theorem D, when γ is a simple closed curve, cγ = 1

and for R ≥ 2 log(rX(γ, λ)) +H we have

1

λ · et(dT (X ,Y)+H)
≤ |D · Y ∩BR(X )|

nX(γ)etR
≤ λ · et(dT (X ,Y)+H).
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Summing up all the topological types of simple closed curves, we have

1

λ · et(dT (X ,Y)+H)
≤ |D · Y ∩BR(X )|

nX(S)etR
≤ λ · et(dT (X ,Y)+H)

whenever R ≥ U(λ) = 2 log(rX(S, λ)) + H . Recall we denote F (X ,Y) = etdT (X ,Y) and J = etH . Thus

we are done with the case D = D and the first result of Corollary E follows.

Now, we consider the set of Dehn twists with powers

M = {Tnα | α ∈ S, n ∈ Z \ {0}}.

Define

M±R =
{
Tnα ∈M | |n|`2X (α) ≤ eR±H

}
,

S±R,n =

{
α ∈ S | `X (α) ≤ e(R±H)/2√

|n|

}

so that

|M±R | =
∑

n∈Z\{0}

|S±R,n| = 2 ·
∑
n∈N
|S±R,n|.

Thus we only need to consider n ∈ N. Since we are in T εg,n, S±R,n is empty when n ≥ eR±H

ε2 , we have

|M±R | = 2 ·

eR±H
ε2∑
n=1

|S±R,n|.

Fix some λ > 1 and let’s assume rX(S, λ) ≥ ε. Let’s also asssume that R ≥ 2 log(rX(S, λ)) so that

eR+H ≥ r2
X(S, λ). For simplicity let’s denote

a =
eR+H

ε2
, b =

eR+H

r2
X(S, λ)

.

Then the above assumptions say a ≥ b ≥ 1. By Corollary II.7.3 and the Mirzakhani’s counting formula

(II.6), we have

S+
R,n = sX(

e(R+H)/2

√
n

,S) ≤ λ · nX(S) · et(R+H) · 1

nt
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provided that n ≤ min{a, b} = b. Notice now we have

|M+
R | ≤ 2 ·

a∑
n=1

|S+
R,n| ≤ 2 ·

b∑
n=1

|S+
R,n|+ 2 ·

a∑
n=b

|S+
R,n|

where

b∑
n=1

|S+
R,n| ≤ λ · nX(S) · et(R+H) ·

b∑
n=1

1

nt
,

a∑
n=b+1

|S+
R,n| ≤

a∑
n=b+1

|S+
R,b| ≤

a∑
n=1

|S+
R,b| ≤

sX(rX(S, λ),S)

ε2
· eR+H

whenever R ≥ cλ = 2 log(rX(S, λ)).

When t > 1,
∑∞
n=1

1
nt converges and is bounded by 2. By assuming R is even larger,

R ≥ dλ = log

(
sX(rX(S, λ),S)

2λε2nX(S)

)
,

bigger exponential “wins” and we have

2λ · nX(S) · et(R+H) ≥ sX(rX(S, λ),S)

ε2
· eR+H

Thus we have

|M+
R | ≤ 8λ · nX(S) · et(R+H)

whenever R ≥ max{cλ, dλ}. By the coarse distance formula (IV.8) we have

|S−−R | ≤ |M · X ∩BR(X )| ≤ |M+
R |,

|S−−R | is from the proof of Theorem D. Similar to the previous cases, we have

1

λet(dT (X ,Y)+H)
≤ |M · Y ∩BR(X )|

nX(S)etR
≤ λ · 8et(dT (X ,Y)+H)

whenever R ≥ U(λ) = max{rX(S, λ), cλ, dλ}. The second result of Corollary E follows.

Corollary F. Given any Sg,n and given any ε > 0, for any multicurve γ ∈ML∗(Z) and for anyX ,Y ∈ T εg,n,
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we have

lim
R→∞

1

R
ln ΓR(X ,Y, Tγ) =

h

2
.

lim
R→∞

1

R
ln ΓR(X ,Y,D) =

h

2
, if h > 0.

lim
R→∞

1

R
ln ΓR(X ,Y,M) =

h

2
, if

h

2
> 1.

Proof of Corollary F. This is similar to how Corollary B implies Corollary C.

Proof of upper bound of Corollary I. We now consider t = h
2 = 1. Since in this caseML(Z) is 1 dimen-

sional, we have T = M.

Notice from the above proof of M, when t = 1,
∑b
n=1

1
n ≤ log(b+ 1) where

log(b+ 1) = log(
eR+H

r2
X(S, λ)

+ 1) ≤ R

by assuming rX(S, λ) sufficiently large. Moreover, we have

λ · nX(S) ·R · eR+H ≥ sX(rX(S, λ),S)

ε2
· eR+H

when R is large
(
R ≥ lλ = sX(rX(S,λ),S)

λε2nX(S)

)
. Thus we have

|M+
R | ≤ 4λ · nX(S) ·R · eR+H

whenever R ≥ U(λ) = max{cλ, lλ}. Similar to previous arguments, this shows

|M · Y ∩BR(X )|
∗4JF (X ,Y)

� nX(S) ·R · eh2R

when h
2 = 1.

IV.4 Proof of Theorem H and Corollary I

Let γ be a multicurve satisfying the conditions in Theorem H. Given s ∈ N, we denote

[γ, s] = {γ ∈ [γ] | cγ = s},

ML([γ, s]) =
⊔

γ∈[γ,s]

ML(γ),
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and we denote #[γ, s] the number of γ ∈ [γ], cγ = s. Indeed, this number equals, up to Modg,n, the number

of topological types of curves composing the setML([γ, s]). For any l < s ∈ N, we denote

[γ, s, l] =

{
γ =

k∑
i=1

aiγi ∈ [γ, s] | |ai| ≥ l for any i

}
,

andML([γ, s, l]),#[γ, s, l] are similarly defined as above.

Lemma IV.4.1. Let γ =
∑k
i=1 γi be a multicurve with all coefficients equal to one and of maximal dimension

k = h
2 . For s ≥ h− 2 we have

#[γ, s] ≥ sk−1

2k−1(k − 1)!
. (IV.11)

In particular, there exists a t such that for any s ≥ h− 2, we have

#[γ, s,
s

t
] ≥ 1

2
#[γ, s] ≥ sk−1

2k(k − 1)!
. (IV.12)

Proof. The number #[γ, s] equals to the number of ordered k-tuples (x1, · · · , xk) ∈ Nk such that
∑k
i=1 xi =

s. It’s a standard combinatorics fact this number is
(
s−1
k−1

)
, which is greater than sk−1

2k−1(k−1)!
whenever s ≥

2(k − 1) = h− 2.

For any x = (x1, · · · , xk) ∈ Rk+ we denote δx the corresponding dirac measure and denote ‖x‖ =∑k
i=1 xi. We define the following sets

C = {x ∈ Rk+ | ‖x‖ = 1},

Ct = {x ∈ C | xi ≥
1

t
for any i},

Cs = {x ∈ Nk | ‖x‖ = s},

C
s
t
s = {x ∈ Cs | xi ≥

s

t
for any i}

where t, s ∈ N. Define the measures δs =
∑
x∈Cs δ

x
s

and δ
s
t
s =

∑
x∈C

s
t
s

δ x
s

. Denote the standard probability

measure on C as µ, a classic measure theory result says the following ratio converges, and we have

lim
s→∞

#[γ, s, ts ]

#[γ, s]
= lim
s→∞

δ
s
t
s (C)

δs(C)
=
µ(Ct)

µ(C)
.

Thus by picking a t large enough the second equation (IV.12) above holds true.

Corollary IV.4.2. Let γ =
∑k
i=1 γi be a multicurve with all coefficients equal to one and of maximal
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dimension k = h
2 . For any γ ∈ [γ, s, st ], we have

(`X (γ))2 ≥ s

t
·
k∑
i=1

|ai|`2X (γi),

s

t
· `X (γ) ≤ `X (γ) ≤ s · `X (γ). (IV.13)

This means for any γ ∈ [γ, s, st ] and any λ > 1, we have

sX(L, γ) ≥ sX(L, s · γ) ≥ 1

λ
· L

h

sh
nX(γ) (IV.14)

for L ≥ s · rX(γ, λ).

Proof. The first two equations follow from the definition of [γ, s, st ]. The third equation follows from Corol-

lary II.7.3.

Now we are ready to prove the Theorem H.

Theorem H. Given any Sg,n such that h > 0, ε > 0, and γ =
∑k
i=1 γi a multicurve with all coefficients

equal to one and of maximal dimension k = h
2 . There exists a number f(γ) such that, for any X ,Y ∈ T εg,n,

ΓR(X ,Y,T) ≥ ΓR(X ,Y,T([γ]))
∗JF (X ,Y)

� f(γ) ·R · eh2R.

Proof of Theorem H. Define

SR = T([γ]) · X ∩BR(X ),

S−R =

{
α =

k∑
i=1

aiαi ∈ML([γ]) |
k∑
i=1

|ai|`2X (αi) ≤ eR−H
}
,

S−R (s) =

{
α =

k∑
i=1

aiαi ∈ML([γ, s]) |
k∑
i=1

|ai|`2X (αi) ≤ eR−H
}
,

S−R (s,
s

t
) =

{
α =

k∑
i=1

aiαi ∈ML([γ, s,
s

t
]) | `X (α) ≤

√
s

t
· e

R−H
2

}
.

Notice for any α ∈ S−R (s, st ), by previous Corollary IV.4.2 we have

s

t
·
k∑
i=1

|ai|`2X (αi) ≤ (`X (α))2 ≤ s

t
· eR−H

so that S−R (s, st ) ⊂ S
−
R (s).
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Fix some λ > 1, given that

√
s

t
· e

R−H
2 ≥ s · rX(γ, λ) and s ≥ h− 2,

and by Theorem II.7.1 and formulas (IV.12), (IV.14), we have

∣∣∣S−R (s,
s

t
)
∣∣∣ ≥ ∑

γ∈[γ,s, st ]

sX

(√
s

t
· e

R−H
2 , γ

)

≥ 1

λ
·#[γ, s,

s

t
] ·

(√
s
t · e

R−H
2

)h
sh

· nX(γ)

≥ 1

λ
· sk−1

2k(k − 1)!
· e

k(R−H)

sktk
· nX(γ)

=
1

λ
·
nX(γ) · ek(R−H)

2k(k − 1)!tk
· 1

s

That is,

h− 2 ≤ s ≤ eR−H

t · r2
X(γ, λ)

.

Thus, we have

|SR| ≥ |S−R | =
∑
s∈N
|S−R (s)|

≥

eR−H
t·r2
X

(γ,λ)∑
s=h−2

∣∣∣S−R (s,
s

t
)
∣∣∣

≥ 1

λ
·
nX(γ) · ek(R−H)

2k(k − 1)!tk
·

eR−H
t·r2
X

(γ,λ)∑
s=h−2

1

s

By assuming R is large,

R ≥ U(λ) = 2
(
H + log(t · rX(γ, λ)) + log(h− 2)

)
,

we have

eR−H
t·r2
X

(γ,λ)∑
s=h−2

1

s
≥ R

2
.
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We now have

|SR| ≥
1

λ
·

nX(γ)

2k+1(k − 1)!tk
·R · ehR2 .

Similar to the proof of Theorem D, we have

∣∣T([γ]) · Y ∩BR(X )
∣∣ ≥ ∣∣SR−dT (X ,Y)

∣∣
≥ 1

λJF (X ,Y)
· f(γ) ·R · ehR2

whenever R ≥ U(λ), and

f(γ) =
nX(γ)

2k+1(k − 1)!tk

This concludes the proof of Theorem H.

Finally, we discuss about how Corollary I follows from previous results.

Corollary I. Given Sg,n equal to S1,1 or S0,4 and given any ε > 0. For any X ,Y ∈ T εg,n, we have

ΓR(X ,Y,T)
∗4JF (X ,Y)∼ nX(S) ·R · eR.

Proof of Corollary I. When h
2 = 1, ML(Z) is one dimensional. Take any simple closed curve γ, then it’s

maximal dimension andML(Z) = ML([γ]). As a special case of Theorem H, we have f(γ) = nX(γ) =

nX(S) and

nX(S) ·R · eR
∗JF (X ,Y)

� |T · Y ∩BR(X )|

This gives us the lower bound. The upper bound follows from an alternation of proof of Corollary E, see

proof of upper bound of Corollary I in Section IV.3. This concludes the result.

Remark IV.4.3. We briefly discuss about the difficultly using Theorem G to obtain an upper bound estimate

for the coarse asymptotic rate of |T · Y ∩ BR(X )|. When we are dealing with a conjugacy class of multic-

urves, say the conjugacy class of γ =
∑k
i=1 aiγi, we have a “bounding relation” (IV.10) between `2X (γ) and∑k

i=1 |ai|`2X (γi) depends only on the coefficients of γ, and later we use this relation to estimate the number

of corresponding lattice points inside a ball of radius R. In the case ofML([γ]), γ being a maximal dimen-

sional multicurve with all coefficients equal to one, we consider a subset ofML([γ]) with “balanced weights”
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so that a uniform “bounding relation” (IV.13) holds. This idea in fact works for multicurves with“balanced

weights”. Namely, for any m ≥ 0, we can define the following subset of multicurves

ML(Z,m) = {α =

k∑
i=1

aiαi ∈ML(Z) | |ai| ≥
cα
m

for each i}

and denote T(m) the corresponds set of twists. By using similar ideas one can show

|T(m) · Y ∩BR(X )|
∗JF (X ,Y)

� s
h
2 · nX(S) ·R · eh2R

However, for a sequence of multicurves {γj}j∈N such that γj is outsideML(Z, j), the possible “bounding

relations” get more and more coarse, and does not yield a uniform upper bound as above forML(Z).
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CHAPTER V

Discussions

In Example IV.1.6, we have constructed a sequence of multicurves inML(Z)\ML∗(Z) for which Theorem

G does not hold, see Remark IV.2.2. Moreover, There exists a H ′ > 0 depends on Sg,n and ε, so that for

these multicurves the distances behave like

dT (X , TαX )
+H′� log

(
k∑
i=1

|ai|`X (αi)

)

for any X ∈ T εg,n. This leads to the following question.

Question V.0.1. for α ∈ ML(Z) \ ML∗(Z), how does the length of any simple closed geodesic τ on a

hyperbolic structure X changes after applying a twist Tα? How far does a point move in Teichmüller space

after applying the corresponding twist Tα?

Recall that Mirzakhani’s Theorem II.7.1 says

|{α ∈ML(·) | `X(α) ≤ eR2 }| ∼ nX(·) · eh2R,

which is at the same coarse asymptotic rate of |D · Y ∩ BR(X )| for the three cases as in Theorem D and

Corollary E. Moreover, Mirzakhani [31] also proves that for any X ∈Mg,n, there exists a constant nX such

that

|{α ∈ML(Z) | `X(α) ≤ eR2 }| ∼ nX · e
h
2R.

We may wonder whether ΓR(X ,Y,T) is coarsely asymptotic to nX · e
h
2R as well? This turns out to be false.

Namely, Theorem H showed there is a subset ML([γ]) ⊂ ML(Z) such that ΓR(X ,Y,T([γ])) is at least

coarsely asymptotic to R · eh2R, forcing a lower bound for the coarse asymptotic rate of ΓR(X ,Y,T). In

the Remark IV.4.3, we discussed the difficultly using Theorem G to obtain an upper bound estimate for the

coarse asymptotic rate of ΓR(X ,Y,T). A natural question prompted by above is the following.

Question V.0.2. What is the coarse asymptotics for ΓR(X ,Y,T)?

Two more general questions we may ask:

Question V.0.3. For a set of twists D with known coarse asymptotics, we may next ask for more precise

asymptotics, i.e., what is the best coarse asymptotic coefficient J we can achieve?
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Question V.0.4. What about the asymptotics growth behavior of thin pseudo-Anosov conjugacy classes?

Inspired by Example IV.1.6 and Remark IV.2.2, we conjecture there exists a multicurve γ, such that the

number of lattice points of the γ conjugacy class intersecting a closed ball of radius R is coarsely asymptotic

to elR, l strictly greater than h
2 . If this conjecture holds true, in comparison with Theorem I.1.3, it shows a

difference of Teichmüller spaces and hyperbolic spaces in terms of lattice point asymptotics.

Conjecture J. Given any Sg,n and given any ε > 0, there exists a multicurve γ ∈ ML(Z) and l > h
2 such

that for any X ,Y ∈ T εg,n, we have

ΓR(X ,Y, Tγ)
∗JFγ(X ,Y)∼ nX(γ) · elR.

As a result, we have

lim
R→∞

1

R
ln ΓR(X ,Y, Tγ) = l >

h

2
.

In particular, let’s consider the following example illustrated by Figure V.1. Let X be a hyperbolic surface

that is homeomorphic to Sg for some large g. We can cut Sg open along the simple closed curve δ and

decompose Sg as two subsurfaces S1
g−2 ∪ S1

2 as the Figure V.1 below, so that δ = ∂S1
g−2 = ∂S1

2 . Let

Tg−2,1,Modg−2,1 denote the Teichmüller space, and mapping class group of the S1
g−2 that preserves the

boundary δ pointwise, respectively. The dimension of Tg−2,1 equals to 6g− 16, which is strictly greater than

3g − 3 when g is large.

α β

τ

η

S1
g−2S1

2
δ

Figure V.1: Sg with large g can be decomposed as S1
g−2 and S1

2 .

Note that Modg−2,1 · γ is a subset ofML(γ) = Modg · γ for any simple closed curve γ on Sg . Thus

assume the conditions in Conjecture J, we have

|D (Modg−2,1 · γ) · Y ∩BR(X )| ⊂ ΓR(X ,Y, Tγ)
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where D (Modg−2,1 · γ) denote the set {Tα | α ∈ Modg−2,1 · γ}.

We now explicitly conjecture the following, which would imply the above Conjecture J holds true.

Conjecture K. Assume the conditions in Conjecture J and in Figure V.1, we let γ = γ0 = α− β. We have

|D (Modg−2,1 · γ) · Y ∩BR(X )| ∗JFγ(X ,Y)∼ nX(γ) · e(6g−16)R.

As a result, we have

lim
R→∞

1

R
ln ΓR(X ,Y, Tγ) ≥ 6g − 16.

Remark V.0.5. Given simple closed curves α, β, τ, η as shown in the Figure V.1 and Conjecture K, denote

γn = Tnη (γ0). Let τ̃ be a lift of τ to H2 and let T̃ (τ̃ , γn) be τ̃ after shearing according to γn, see Section

II.5. Denote T (τ, γn) the projection of T̃ (τ̃ , γn) back to the surface, so it’s in the free homotopy class of the

simple closed geodesic Tγn(τ) on X .

One can check T (τ, γ1) would be the curve as shown in the left Figure V.2. And T (τ, γ1) is carried on

the train track in the right Figure V.2. After tightening T (τ, γ1) to the geodesic in its free homotopy class

Tγ1(τ), one can check Tγ1(τ) would be the curve as shown in the left Figure V.3, and Tγ1(τ) is carried on

the “reduced” train track in the right Figure V.3. In general, one can check the Tγn(τ) can be carried by the

train track in Figure V.4.

2

1

1 1
3

2 1 2
1

Figure V.2: The simple closed curve T (γ, 1) and a train track carrying it.

2

1
1

Figure V.3: The simple closed geodesic Tγ1(τ) and a train track carrying it.
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n
1

2n 2n− 1 1
n− 1

n− 1

n− 1

Figure V.4: A general train track that can carry all Tγn(τ).

Similar to Example IV.1.6 and Remark IV.2.2, one should expect

`X (Tγn(τ))
∗� `X (γn).

Now, we outline our idea about Conjecture K.

Similar to the proof of Theorem D, it’s enough to show

|D (Modg−2,1 · γ) · X ∩BR(X )| ∗J∼ nX(γ) · e(6g−16)R.

By the Distance Formula II.3, we only need to count the following sets

{f · γ | f ∈ Modg−2,1, max
κ∈µX

log `X(Tf(γ)κ) < R±H}, (V.1)

H is some constant error term.

Next, for any f ∈ Modg−2,1, let κf denote the curve in µX realizing the maximum

`X(Tf(γ)κf ) = max
κ∈µX

`X(Tf(γ)κ).

Motivated by Remark V.0.5, we conjecture

`X (f(γ))
∗� `X(Tf(γ)κf ) (V.2)
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so that

log `X (f(γ))
+� log `X(Tf(γ)κf ) = max

κ∈µX
log `X(Tf(γ)κ).

Notice Remark V.0.5 considers the case that f is in the cyclic subgroup 〈Tη〉 ≤ Modg−2,1. In which case,

we have

`X (f(γ))
∗� `X (Tf(γ)τ).

To prove or disprove Formula V.2, perhaps one could think “combinatorially” and start with constructing

a finite train track Γ on Sg so that any curve, including η, α, β, τ, f(α), f(β), f(τ), can be carried on Γ.

Understand and generalizing the Figure V.4 might be a good first step to approach this question.

By Formula V.2, we can simplify the Formula V.1 and only need to count the following set

{f · γ | f ∈ Modg−2,1, `X (f(γ)) < eR±H}. (V.3)

Ideally, we would like to apply Mirzakhani’s Counting Formula II.7.1 to the Formula V.3 with the surface

being Sg−2,1. However, f(γ) does not sit in Sg−2,1 necessarily. Thus, we purpose two possible routes

“solving” this issue.

For the first route, let Sg′,n′ denote a subsurface of Sg,n, we define

sg
′,n′

X (L, γ) = |{α ∈ Modg′,n′ · γ | `X(α) ≤ L}| .

We conjecture the following variation of Mirzakhani’s Counting Formula, Theorem II.7.1.

Conjecture L. Fix a subsurface Sg′,n′ of Sg,n, given γ a simple closed curve or a multicurve on any X ∈

Mg,n, we have

sg
′,n′

X (L, γ) ∼ ng
′,n′

X (γ) · L6g′+2n′−6

where ng
′,n′

X (γ) depends on Sg′,n′ , Sg,n, the hyperbolic structure X , and the topological type of γ.

For the second route, we would like to find a curve γ′ in Sg−2,1 that behaves similarly with γ under

the action of Modg−2,1. The idea is based on the observations from Rafi’s combinatorial model for the Te-

ichmüller metric and subsurface projections, see [38]. Although, we remark that, taking the honest subsurface

projection of γ to Sg−2,1 does not work.
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Conjecture M. There exists a A and a multicurve γ′ ⊂ Sg−2,1 such that, for any f ∈ Modg−2,1, we have

`X(f(γ))
+A� `X(f(γ′)).

If the Formula V.2 and the Conjecture L holds true, by applying Conjecture L to Formula V.3, we obtain

the desired result.

If the Formula V.2 and the Conjecture M holds true, by applying Conjecture M to Formula V.3, we have

{f · γ′ | f ∈ Modg−2,1, `X (f(γ)) < eR±H}. (V.4)

By applying Mirzakhani’s Counting Formula II.7.1 to the Formula V.4 with the surface being Sg−2,1, we

obtain the desired result.
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[16] Huber, H. (1956). Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der
hyperbolischen Ebene. I. Comment. Math. Helv., 30:20–62 (1955).

[17] Humphries, S. P. (1979a). Generators for the mapping class group. In Topology of low-dimensional
manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), volume 722 of Lecture Notes in Math.,
pages 44–47. Springer, Berlin.

[18] Humphries, S. P. (1979b). Generators for the mapping class group. In Topology of low-dimensional
manifolds, pages 44–47. Springer.

[19] Ivanov, N. V. (1992). Subgroups of Teichmüller modular groups, volume 115 of Translations of Math-
ematical Monographs. American Mathematical Society, Providence, RI. Translated from the Russian by
E. J. F. Primrose and revised by the author.

59



[20] Kerckhoff, S. P. (1983). The Nielsen realization problem. Ann. of Math. (2), 117(2):235–265.

[21] Killing, W. (1891). Ueber die clifford-klein’schen raumformen. Mathematische Annalen, 39(2):257–
278.

[22] Lax, P. D. and Phillips, R. S. (1982). The asymptotic distribution of lattice points in Euclidean and
non-Euclidean spaces. J. Functional Analysis, 46(3):280–350.

[23] Lenzhen, A., Rafi, K., and Tao, J. (2012). Bounded combinatorics and the Lipschitz metric on Te-
ichmüller space. Geom. Dedicata, 159:353–371.

[24] Lickorish, W. B. (1964). A finite set of generators for the homeotopy group of a 2-manifold. In Math-
ematical Proceedings of the Cambridge Philosophical Society, volume 60, pages 769–778. Cambridge
University Press.

[25] Lindenstrauss, E. and Mirzakhani, M. (2008). Ergodic theory of the space of measured laminations.
International Mathematics Research Notices, 2008(9):rnm126–rnm126.

[26] Maher, J. (2010). Asymptotics for pseudo-Anosov elements in Teichmüller lattices. Geom. Funct.
Anal., 20(2):527–544.

[27] Margulis, G. A. (2004). On some aspects of the theory of Anosov systems. Springer Monographs in
Mathematics. Springer-Verlag, Berlin. With a survey by Richard Sharp: Periodic orbits of hyperbolic
flows, Translated from the Russian by Valentina Vladimirovna Szulikowska.

[28] McMullen, C. (1998). Complex earthquakes and teichmüller theory. Journal of the American Mathe-
matical Society, 11(2):283–320.

[29] Minsky, Y. N. (1996). Quasi-projections in Teichmüller space. J. Reine Angew. Math., 473:121–136.

[30] Mirzakhani, M. (2008a). Ergodic theory of the earthquake flow. International Mathematics Research
Notices, 2008(9):rnm116–rnm116.

[31] Mirzakhani, M. (2008b). Growth of the number of simple closed geodesics on hyperbolic surfaces.
Ann. of Math. (2), 168(1):97–125.

[32] Mirzakhani, M. and Petri, B. (2019). Lengths of closed geodesics on random surfaces of large genus.
Commentarii Mathematici Helvetici, 94(4):869–889.

[33] Mumford, D. (1971). A remark on Mahler’s compactness theorem. Proc. Amer. Math. Soc., 28:289–294.

[34] Nielsen, J. (1932). Studies on the topology of the closed two-sided surfaces. iii. Acta Mathematica,
58:87–167.

[35] Papadopoulos, A. (1991). On thurston’s boundary of teichmüller space and the extension of earthquakes.
Topology and its Applications, 41(3):147–177.

[36] Parkkonen, J. and Paulin, F. (2015). On the hyperbolic orbital counting problem in conjugacy classes.
Math. Z., 279(3-4):1175–1196.

[37] Penner, R. C. and Harer, J. L. (1992). Combinatorics of train tracks, volume 125 of Annals of Mathe-
matics Studies. Princeton University Press, Princeton, NJ.

[38] Rafi, K. (2007). A combinatorial model for the teichmüller metric. GAFA Geometric And Functional
Analysis, 17(3):936–959.

[39] Rivin, I. (2001). Simple curves on surfaces. Geometriae Dedicata, 87(1):345–360.

[40] Sapir, J. (2016). Bounds on the number of non-simple closed geodesics on a surface. International
Mathematics Research Notices, 2016(24):7499–7545.

60



[41] Scott, P. and Wall, T. (1979). Topological methods in group theory. In Homological group theory (Proc.
Sympos., Durham, 1977), volume 36 of London Math. Soc. Lecture Note Ser., pages 137–203. Cambridge
Univ. Press, Cambridge-New York.

[42] Thomassen, C. (1992). The jordan-schönflies theorem and the classification of surfaces. The American
Mathematical Monthly, 99(2):116–130.

[43] Thurston, W. P. (1988). On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer.
Math. Soc. (N.S.), 19(2):417–431.

[44] Thurston, W. P. (1998). Minimal stretch maps between hyperbolic surfaces. arXiv preprint
math/9801039.

61


	ACKNOWLEDGMENTS
	LIST OF FIGURES
	I Introduction
	I.1 Motivations
	I.2 Notations
	I.3 Main Results

	II Background
	II.1 Mapping Class Group
	II.2 Teichmüller Space and Moduli Space
	II.3 Short Marking
	II.4 Upper Half Plane
	II.5 Lifts of Twists
	II.6 Bass-Serre Tree
	II.7 Counting Simple Closed Geodesics
	II.8 Projection Maps

	III Growth of Pseudo-Anosov Conjugacy Classes in Teichmüller Space
	III.1 Proof of Theorem A
	III.2 Proof of Corollary B and Corollary C

	IV Growth Rate of Dehn Twist Lattice Points in Teichmüller Space
	IV.1 The Effect of Twisting on Hyperbolic Length
	IV.2 Proof of Theorem G, Coarse Distance Formula
	IV.3 Proof of Theorem D, Corollary E, and Corollary F
	IV.4 Proof of Theorem H and Corollary I

	V Discussions
	 References 

