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CHAPTER I

Introduction

The aim of this project is to detect and characterize electrical signals in the brain that represent local activity. These

signals will be used to apply electrical stimulation to modulate activity and generate a behavioral response. The

detection and characterization will inform the electrical stimulation because stimulation based on underlying neu-

ronal dynamics has been shown to augment connections [1]. Augmenting fronto-striatal circuits may alter learning

because these circuits are associated with learning either through action selection [2] or through the prediction error

(the difference between the reward from a task and the predicted reward)[3].

I.1 Neurons

To describe neuronal signals, it is illustrative to start with the structure of the neuron itself. The typical neuron

consists of three parts, the soma, the dendrites, and the axon [4]. The soma is the cell body where many of the

organelles reside [4]. The dendrites and axons are the inputs and outputs of the neuron [4, 5]. Usually, an axon from

one cell connects to a dendrite of another across a gap known as a synaptic cleft [4]. The connection across the gap

is called a synapse [4]. The dendrites are extensions from the soma that act as antenna gathering input from other

neurons[5]. The axon extends from the soma starting at a structure called the axon hillock and ending at the axon

terminal which synapses to other neurons (or other cells) [4, 5].

The membrane of the neuron maintains a negative potential from the inside to the outside of the cell [4]. This

is done through active and passive ion transport across the membrane [4, 6]. When the spike-initiation zone (the

axon hillock in a typical neuron of the brain or spinal cord) is sufficiently depolarized by inputs from other neurons

there is a rush of ions across the membrane [4, 5]. This electrical signal propagates along the axon, as an action

potential or spike, releasing neurotransmitters into the synaptic cleft and taken up by the postsynaptic neuron [4, 5].

The neurotransmitter increases or decreases the membrane potential of the post-synaptic neuron [4, 5]. This either

prevents or initiates another spike [4, 5]. This is the process of information transfer from the presynaptic neuron to

the postsynaptic neuron [4, 5]. To summarize, one neuron is excited and sends it electrical excitement on to other

neurons. This signal typically travels from axon to dendrites within a neuron and from dendrite to axons across

neurons.

Neurons are a connection of inputs and outputs that form networks which process information. Some of the neu-

rons in a network may fire synchronously [4]. This synchrony of spikes may occur either within a group of neurons

following a central pacemaker or they may synchronize without a pacemaker to create a de facto timing function
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that works to excite or inhibit each other [4]. The firing of these interconnected neurons generates electric potentials

in the extracellular medium around the neurons, mostly from action potentials, but also from the aggregated ion

diffusion which combine to form the Local Field Potential (LFP) [7].

I.2 Signal Measurement

The activity of neurons in the brain generates global signals that can be recorded via Functional Magnetic Resonance

Imaging (fMRI), Electroencephalography (EEG), Electrocorticography (ECoG), and other methods [8]. More local-

ized recording of neuronal activity is also done. The signal (spike train) from one neuron can be recorded by inserting

a fine electrode into it [8]. The collective activity of a small network of neurons can be measured with electrodes

that register the LFP [8]. This thesis focuses on measurements of the LFP of neural networks with electrodes.

The other types of recordings give other kinds of neural information. fMRI shows brain activity by measuring

oxygen flow, which can indicate levels of activity based on energy usage [8]. The temporal resolution of fMRI is 1

to 2 seconds and the time between brain activity and blood oxygen response is 3 to 6 seconds [8]. EEG and ECoG

are measures of the electric fields using a grid of electrodes either placed on the outside of the skull, EEG, or on

top of the brain’s surface, ECoG [8]. EEG represents the aggregate activity of several centimeters [9]. Penetrating

electrodes are used to record single unit activity and the LFP [7, 8]. The LFP signal represents a local population

of neurons and the signal can be different for electrodes separated by 1 mm [10] or about 250 µm [11]. ECoG is in

between the spatial resolution of EEG and LFP recorded by penetrating electrodes [8].

I.3 Use of Measurements

Recorded signals, like LFP, are used to clarify the understanding of the brain based on the features found in them.

One feature with a multitude of functions seen in various modalities is a burst event [12, 13]. Transient oscillatory

activity, or burst events, has been defined in multiple ways. One definition is a short duration spontaneous increase

in power of a particular frequency [14, 15]. These events can be found in a number of brain areas, including the

primary somatosensory neocortex and the inferior frontal cortex [15], prefrontal cortex [12], striatum and motor-

premotor cortex [16]. For this work the bursts are detected and characterized in the LFP measured from penetrating

electrodes.

Direct electrical stimulation of the brain can alter brain function by either enhancing desired aspects or sup-

pressing undesired aspects [1, 8, 17]. Because the LFP signal has oscillatory activity an instantaneous amplitude,

frequency, and phase can be attributed to it [18]. Using the instantaneous phase, stimulation during burst events

of LFP offer avenues to explore stimulation at certain phases, referred to as phase specific stimulation [1, 19–21].

Phase specific stimulation has been used to augment synaptic plasticity (the ability of a neuron to strengthen or
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weaken a synapse) [1], enhance performance on spatial tasks relating to memory [22], reduce signal power in the

beta band, 12.5 Hz to 30 Hz, alter reaction time [23], reduce oscillations in the beta band [19], and suppress tremors

in Parkinson’s patients [17]. Phase dependent stimulation had been shown to have an effect on information trans-

fer in a simulated system as well [24]. Part of this project aims to improve the characterization of bursts for more

accurate timing of phase specific stimulation.

Knowing when to stimulate, the next question is how to stimulate. There are many stimulation methods for

transmitting encoded information to the brain such as transcranial magnetic stimulation, optogenetics, surface elec-

trodes, etc. [8]. Depth electrodes are implanted into the brain tissue and typical stimulate with large currents or

sustained high frequencies [25, 26]. This can cause unwanted byproducts to build up [27]. The electrode can be

modeled as a capacitor and variable resistor in parallel with the brain tissue [27–31]. During stimulation, ions in the

brain migrate to the electrode depending on the voltage until the capacitive component of the electrode is saturated

[27–31]. After saturation, oxidation and reduction of the electrode and compounds in the brain will begin to occur,

introducing potentially harmful chemicals into the brain [27]. While such stimulation is effective, it injects more

energy than other methods that use the underlying brain signal, such as phase specific stimulation [1].

Phase specific stimulation requires the detection and characterization of burst events. There are many different

methods for identifying bursts and characterizing them such as applying a threshold to the power in a specific

frequency band [1, 32, 33]. Neuroscientists have performed experiments using phase specific stimulation to test

their hypotheses [1, 32, 33]. The strength of these results depends on how well the bursts are characterized and

detected [34]. The parameters of a method are typically selected ad hoc [1, 34, 35]. Validation of methods employed

is typically not the aim of these kinds of experiments, which may not reveal all downsides of the methods [1, 32, 33].

An example of one group’s validation data has been a chirp over a narrow band [36]. A chirp or sweep signal is

a signal that has an increase or decrease in frequency over the time of the signal [37]. This is a typical method

but may be too simple for our purposes because it does not entail a sharp increase in amplitude over a brief time

similar to a burst event. Current comparison of methods using performance metrics have significant limitations.

Some comparisons do not separate detection and characterization [33, 38]. Others use a narrow range of metrics for

comparison [39], or only compare a small number of methods [40, 41]. It is important to analyze both detection and

characterization which can be used for burst classification and also provide valuable characteristics such as phase

that should be accurate for the stimulation methods. This project will include a range of metrics on validation data

that more closely resembles recorded data in addition to using recorded data.

Because of the above problems with evaluating performance, we want a systematic and broadly-applicable way

of comparing the performance of burst detection and characterization algorithms. An important goal of the work

3



reported in this thesis is a framework for comparing and tuning LFP burst detection and characterization algorithms.

Similar approaches have been proposed for other problems. Frameworks for another neuroscience signal processing

component, spike sorting, has been developed by other researchers [42]. Our main goal is to determine the highest

performing algorithm for use in phase specific stimulation experiments through a robust way to measure algorithm

performance and tune existing algorithms with future work leading to the development of new extensions of these

algorithms. The performance before tuning will come from literature implementations. The comparison will be

done by extending an existing framework for burst detection and characterization methods developed in our lab. The

extensions will include more methods, and addition of metrics for comparison and tuning. A number of performance

metric values will facilitate comparison. A suitable metric will be chosen from these to use as an objective function

for tuning the parameters of the method eliminating the need to hand-tune method specific parameters.
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CHAPTER II

Background

In this work five methods are explored for LFP burst detection and characterization. These methods represent dif-

ferent signal processing approaches. The methods will be called in this work Hilbert Magnitude, Peak and Trough,

Wavelet, Template Fitting, and Frequency Stability. Frequency Stability method is an unpublished work by Wom-

elsdorf lab [43], using their library functions [44].The background for understanding these methods is explained in

the following sections. The implementation of each method is explained in the following chapter.

This section illustrates how the methods are applied to a signal and how to evaluate the method. The methods

are categorized as having two parts as shown in Equation II.1. The j-th method, Mj(·; τj) is the composition of

the j-th characterization,Cj(·; τj) and j-th detection,Dj(·; τj) functions. These functions have tuning parameters,

which are aggregated into the vector τj , where some of the parameters adjust the detection and some adjust the

characterization. The method acts on a signal, S(t), to produced a detected and characterized signal, Mj(t).

Mj(t) = Mj(S(t); τj) = Cj(Dj(S(t); τj); τj) = (Cj ◦Dj)(S(t); τj) (II.1)

The first part is a detection method identifying where the burst is as shown in Equation II.2. The detection

function outputs when there is a burst, which is shown here as a binary function where 1 indicates the detection of a

burst and 0 does not indicate a burst.

Dj(t) = Dj(S(t); τj) =


1 if burst detected by Dj(·; τj)

0 else
(II.2)

The second is a characterization method, which identifies the instantaneous amplitude A(t), instantaneous phase

φ(t), and instantaneous frequency f(t) of the burst as shown in Equation II.3. The characterization function has a

domain only over the time points where the detection function is 1 otherwise there is no need for characterization

since no burst is detected.

Cj(t) = C(Dj(S(t); τj); τj) =


A(t) sin(φ(t))where φ(t) =

∫ t
0 2πf(x) dx+ θ if Dj(t) = 1

Undefined else
(II.3)
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In implementations of these methods, the tuning parameters are usually set ad-hoc without being tuned first. The

parameters will alter how the bursts are detected and characterized.

Once a method is applied to the signal the quality of the method is assessed using performance metrics, µ.

Equation II.4 shows that the application of the i-th metric function, µi(·), on a detected and characterized signal

using the j-th method, Mj(t), yields the scalar value for the i-th metric on the j-th method, µij .

µij = µi(Mj(t)) (II.4)

All of the metric functions are applied to the result of the j-th method leading to the set of metric values for the

j-th method as shown in Equation II.5. This set of metric values for the method are used for comparison to other

methods. Single metric values or combinations of metric values can also be used to optimize the tuning parameters

of a method by comparing the results of a method to itself with different values for tuning parameters.

µj = {µ1j , . . . , µij , . . . , µnj } (II.5)

Figure II.1 shows how the methods are evaluated. The burst is detected and characterized by the chosen method.

Then this method is evaluated using the chosen metric. This process is performed for all methods j ∈ {1, . . . , L}

and all metrics i ∈ {1, . . . ,K}.

Mj(·; τj)

S(t) Dj(t) Mj(t) µij
Dj(·; τj) Cj(·; τj) µi(·)

Figure II.1: This diagram shows the process of the metric experiment. The method,Mj , is applied to the signal, S(t).
Mj is composed of two parts, the detection function, Dj , and the characterization function, Cj . These components
use the tuning parameters, τj , which are associated with the method. These are applied to S(t) to first get the
detected events, represented by Dj(t) then the events are characterized to get the detected and characterized signal
by the j-th method, Mj(t). The i-th metric function µi is applied to the detected and characterized events of the j-th
method to obtain the metric value, µij .
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To compare and validate burst detection and characterization methods metrics will be used (e.g. false positive

rate used in spike train burst detection [45], phase jitter [20, 34], confusion matrix statistics [46, 47]). In addition to

comparing and validating a method metrics can be used to tune the parameters of a method (e.g Fβ [33]). Tuning

optimization is often handpicked using an acceptable value for a metric, but more systematic approaches offer a

way to tune multiple parameters at the same time (e.g.grid search method described in [33] or genetic algorithm

optimization described in [20]).

Figure II.2 shows how the methods will be tuned. A metric is chosen beforehand, µ∗(·) that will be used as

the objective function for tuning. The calculation of the metric proceeds the same as above. The difference is that

the selection of τj is determined by an optimizing function Ωk)(·). This process is repeated until the criteria for

optimization are satisfied leading to τ∗j , which represents the tuning parameters for the j-th method that are optimal

according to the selected metric.

Mj(·; τj)

S(t) Dj(t) Mj(t) µ∗j
Dj(·; τj) Cj(·; τj) µ∗(·)

Ωk(·)

Figure II.2: This diagram shows the process of the tuning experiment. The method,Mj , is applied to the signal, S(t),
similarly to the metric experiment. Mj is composed of two parts the detection function, Dj , and the characterization
function, Cj . These components use the tuning parameters, τj , which are associated with the method. These are
applied to S(t) to first get the detected events, represented by Dj(t) then the events are characterized to get the
detected and characterized signal by the j-th method, Mj(t). The difference between the tuning and the metric
experiment is that a metric has been chosen from the set µi to be used as the objective function for tuning, which
is labeled, µ∗ here. The value of µ∗ is optimized using an optimization function, Ωk, over its input τj . This alters
the tuning parameters for method Mj , leading to different detection and characterization by Cj and Dj . This in turn
changes the value of µ∗. This process is repeated until the value of µ∗ has reached a stopping criteria, which outputs
τ∗j , the optimal set of tuning parameters for the j-th method using µ∗ as the objective function.

II.1 Detection and Characterization Approaches

The Hilbert Magnitude method is fairly common in LFP burst detection that uses the Hilbert transform to detect

and characterize the burst[48]. The Peak and Trough method uses the waveform in the time domain to characterize

the signal and then detect the characterized signal[23, 33, 36, 48]. The Wavelet method uses wavelets to generate

a time-frequency representation of the signal for both detection and characterization [35, 39]. The Template Fitting

method uses a Hilbert magnitude method for detection, with template fitting for characterization[1]. The Frequency

Stability method detects the stability of the Hilbert frequency and uses the Hilbert transform for characterization

[43].
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In the following sections the background information for these burst detection and characterization methods is

explored.

II.1.1 Hilbert Magnitude

An analytic signal is a signal that has no negative frequency components. The analytical signal is useful because it

gives the in-phase and quadrature components, which can give the instantaneous magnitude and phase of oscillat-

ing signals. Because real signals inherently have symmetric frequency components then an analytic signal can be

constructed from the Fourier transform of a real signal, s(t), based on Equation II.6 and Equation II.7. The Fourier

transform of the analytic signal is described in Equation II.6, which is a result of the Fourier transform of a real

signal, s(t), having only real components. The analytic signal, sa(t), is the inverse Fourier transform of, Sa(f).

Equation II.7 shows this algebra, which demonstrates that the real part of the analytic signal is the original signal,

s(t), but the imaginary part is exactly the Hilbert transform of the original signal, ŝ(t).

With a given input signal the Hilbert transform is used to generate an analytical signal, which is represented as

real (in-phase) and imaginary (quadrature) components. From that, the instantaneous magnitude is taken as the norm

and the instantaneous phase is taken as the arctan of the real and imaginary components. The frequency is calculated

as the derivative of the unwrapped phase. The unwrapped phase is smoothed in order to reduce noise[48].

Sa(f) ,


2S(f), for f > 0

S(f), for f = 0

0 for f < 0

= 2u(f)︸ ︷︷ ︸
1+sgn(f)

S(f) = S(f) + sgn(f)S(f) (II.6)
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sa(t) ,F−1[Sa(f)]

=F−1[S(f) + sgn(f)S(f)]

=F−1{S(f)}︸ ︷︷ ︸
s(t)

+

convolution︷ ︸︸ ︷
F−1{sgn(f)}︸ ︷︷ ︸

j 1
πt

∗F−1{S(f)}︸ ︷︷ ︸
s(t)

=s(t) + j

[
1

πt
∗ s(t)

]
︸ ︷︷ ︸
H[s(t)]

=s(t) + jŝ(t) (II.7)

The analytic signal has properties such that the instantaneous amplitude, frequency, and phase can be calculated.

The instantaneous amplitude is calculated per Equation II.8, the instantaneous phase is calculated per Equation II.9,

and the instantaneous frequency is calculated per Equation II.10 [49, 50].

A(t) = |sa(t)| =
√
s(t)2 + ŝ(t)2 (II.8)

φ(t) = ∠sa(t) = arctan
(
ŝ(t)

s(t)

)
(II.9)

f(t) =
dφ(t)

dt
(II.10)

For the Hilbert Magnitude detection, a burst is detected when the magnitude of the signal obtained from the

Hilbert transform surpasses a threshold. A multiple of the standard deviation of magnitude [1], standard deviation

of power [23], or percentile of amplitude[39, 51] are used to determine thresholds.

II.1.2 Peak and Trough

Peak and Trough methods are described in [23, 33, 36, 48]. This method aims to bypass the use of sinusoidal basis

functions that may alter the estimates of the envelope and carrier functions if the burst is not accurately described

by a sinusoid. Peak and trough and zero-crossing based detection estimates signal magnitude, frequency, and phase

without computing the analytic signal[48]. Some implementations use midpoints with the aid of zero-crossings[33]

and another method using zero-crossings of the derivative of the smoothed signal to find peaks and troughs [36]. An

example signal is shown in Figure II.3.
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Figure II.3: This figure shows an example of the Peak and Trough method. Here the black saw tooth line represents
the signal to analyze. Zero crossings of the signal are marked and noted as either positive (positive slope) or negative
(negative slope). These values divide the signal into distinct cycles. The maximum or minimum of the signal is
marked depending on the value of the prior zero crossing, maximum for a positive zero crossing and minimum for a
negative zero crossing.

With these methods the phase is assigned based on the point and interpolated between points [33]. The magnitude

is taken as a function of the amplitude in the neighborhood of the point [33]. The frequency can be derived from the

period, which comes from the time between the designated points [33].

II.1.3 Wavelet

An example wavelet method is described in [14, 35]. A wavelet transform is used to obtain the spectrogram of the

signal. This shows the evolution of the signal power in time and frequency. After obtaining this two dimensional

representation of the signal various templates can be fit onto it to isolate components in the signal, features can be

extracted, or thresholds applied [46]. This will result in the detection of events in the signal that are determined with

both time and frequency.

Ψ is the initial wavelet, the transform then dilates and shifts that template to get other wavelets that are convolved

with the signal to get a spectrogram, a time-frequency representation [52]. The wavelet transform, W (u, s), of the

signal, x(t), is shown in Equation II.12. The wavelet can be any signal that is concentrated in time with zero mean

and for use in the transform is normalized to 1 [52, 53]. The dilation and translation of the “Mother” wavelet are

done through parameters s and u as shown in Equation II.11 [52, 54]. To convert to a time-frequency response

the dilation and translation parameters are varied with the translation representing the time and the dilation being
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inversely proportional to frequency [52]. Because of the dilation parameter the support size of the transform scales

with the frequency. At lower frequencies, larger values of s, the wavelet is expanded and the time support of the

wavelet is larger, but at higher frequencies, smaller values of s, the wavelet is contracted and the time support of the

wavelet is smaller. This gives the advantage of having resolution that adapts to the given frequency, a component

that is not found in other time-frequency methods such as the short time Fourier transform that uses a fixed window

size [52, 54].

ψu,s(t) =
1√
s
ψ(
t− u
s

) (II.11)

W (u, s) =

∫
1√
s
ψ∗(

t− u
s

)x(t)dt (II.12)

Many functions can be used for the “Mother” wavelet, but here a handful of examples will be shown. The Gabor

wavelet is shown in Equation II.13 [53]. the Morlet wavelet is shown in Equation II.14 [53]. The Morse wavelet is

shown in Equation II.15 and is defined in the frequency domain [55]. In this equation U(ω) is the Heaviside step

function and α(β, γ) is defined with Equation II.16 .

ψ(t, σ, η) =
1√
πσ

e−
t2

2σ2 eiηt (II.13)

ψ(t, η) = e−
t2

2 eiηt (II.14)

Ψ(ω, β, γ) = U(ω)α(β, γ)ωβeω
γ

(II.15)

α(β, γ) = 2

(
eγ

β

)β
γ

(II.16)

The wavelet transform using the Morse wavelet provides the most accurate instantaneous phase because the

Morse wavelet is an exactly analytic wavelet [55]. The other wavelets are close but not exactly analytic and will

have negative frequency components leading to a mischaracterization of instantaneous frequency and phase [55].

II.1.4 Template Fitting

Template fitting methods use a predefined shape and match it to the input signal. Templates can be either parametric

or non-parametric. The non-parametric templates represent an extension of dictionary based offline algorithms.
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These methods use parts of the signal as templates to match with other parts of the signal. The signal templates can

be generated in a variety of ways including principal component analysis [56] and signal statistics [57].

Other template fitting methods use a parametric approach to template fitting. One method uses a Hilbert mag-

nitude based detection and characterizes by fitting a sine curve as shown in Equation II.17 to the signal [1]. This is

similar to dictionary methods that use a basis function with free parameters to fit the detected burst. In the example

template in Equation II.17, A, φ0, and T represent the free parameters.

y(t;A, φ0, T ) = A sin(φ0 + 2π
t

T
) (II.17)

To fit this template to the signal, x(t), the difference between the template and the signal is taken as the error.

The error is squared and summed and shown in Equation II.18. The detector determines the start and end time for

the burst, which correspond with i and M in this equation.

SSE(A, φ0, T ) =
M∑
i=1

(x(i)− y(i;A, φ0, T ))2 (II.18)

An optimization is performed over the free parameters to minimize the sum of squared errors. These free

parameters are then used to characterize the magnitude, frequency, and phase of the burst.

II.1.5 Frequency Stability

Frequency stability and phase stability are methods that detect bursts when the phase or frequency is roughly con-

stant. First these methods extract the instantaneous frequency or phase of the signal. Then they transform this signal

to get one that is constant when a distinct burst is occurring.

In one method the instantaneous phase is calculated from the continuous Gabor transform of the signal [58–60].

This transform is similar to the wavelet transform from Equation II.12 using a Gabor wavelet, Equation II.13, for the

mother wavelet. After the insantaneous phase is obtain the rotated phase is caalculated using Equation II.19. The

rotated phase, φR(t, ω), represents the time shifted phase relative to a starting phase. ∆t represents the time from

the reference phase and T = 1/ω [58–60].

φR(t, ω) = φ(t, ω)−∆φ = φ(t, ω)− 2π mod(∆t, T )/T (II.19)

The rotated phase will stay within a small range when the signal is coherent indicating that there is a burst. To

determine a burst the rotated phase must stay within a certain range such as 45◦ [58–60].

Another method developed in our lab uses frequency stability to detect bursts [44]. For the Frequency Stability
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detection, noise is added to the signal and then the frequency is obtained from the Hilbert transform just as with the

Hilbert Magnitude method. The frequency is only stable when the signal is coherent. The addition of noise reduces

strong correlation between neighboring samples. This allows for the detection of bursts when the estimate of the

frequency stabilizes. This method was selected because it has a large number of tuning parameters that lends itself

to the analysis.

II.2 Optimization Approaches

There are many approaches to solving optimization problems. The methods for solving these include approaches

based on the local topography such as gradient based methods, random based methods such as random search,

and brute force methods such as grid search[61–63]. There are many more approaches, but here two methods for

optimization are used. The first is a grid search method and the second is a “creeping” random search.

Grid search methods first require a search space to be determined a priori if the domain is infinite for the func-

tion to optimize [61]. Once a suitable domain for all of the parameters is chosen then a particular permutation of

the parameters is chosen, which will determine the order that they are optimized for univariate optimization[64].

After this the each domain is split into probe points and the combination is tested for one parameter, univariate, to

determine the best combination of inputs[61, 64]. The univariate grid search prevents the combinatorial explosion

of having to search over higher dimensional domains[61].

“Creeping” random search is a type of random search that looks for optimal points in an area around the current

optimal point[65]. The initial point is given and then a random vector is drawn from a given distribution and

added onto the initial point[66]. The objective function is evaluated at this new point and if it is higher (lower) for

maximization (minimization) than the previous point, the new point is accepted and the next random vector is added

to this point otherwise a new random vector is added to the initial point[67–69]. The probability density function

of the random vector is different in various applications and for some the random vector will become smaller and

smaller as the optimization proceeds similar to simulated annealing[61–63].
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CHAPTER III

Implementation of Methods

The goal of the project is to implement several burst detection and characterization methods, measure their per-

formance, and automatically tune their performance in a useful way. Tuning and performance measurement are

described in subsequent chapters. This chapter describes the methods that were implemented and the datasets that

were tested. This includes the synthetic and real data used for the analysis, the model of the data and methods, and

each of the previously described methods.

The methods used in this work Hilbert Magnitude, Hilbert Frequency, Peak and Trough, Cosine Template, and

Wavelet.

The datasets are one synthetic dataset with realistic noise spectrum and events, and one real primate dataset,

described in this chapter.

III.1 Description of Data

III.1.1 Signal Model

There are many ways to model the signal. Some have used Gabor atoms, which are sinusoids of the desired frequency

modulated by a Gaussian [54, 70]. For this work, it is convenient to model the signal as having each event represented

as a wavelet-like event with additive red noise, also known as Brownian noise. The event has a representative

envelope function and carrier function. The carrier function has an associated frequency function and phase while

the envelope function has an associated magnitude function, which is nonzero only within a finite interval . The

magnitude and frequency functions are not necessarily constant over the event. The events occur at various time

points in the overall signal and may be overlapping.

Red noise is defined as having a power spectrum that falls off with the inverse of the square of frequency.

SA(t) =

(
N∑
n=1

Ψn(An(t), fn(t), φ0n, t0n)

)
+ ε(t) (III.1)

Sε(f) ∝ 1

f2
(III.2)

In Equation III.1 the recorded local field potential is represented as SA(t). The event function Ψ has input values

describing the envelope An(t), t0n and inputs describing the carrier function fn(t), φ0n. In this representation there

are N bursts which are summed to produce the recorded signal along with a background red noise error term, ε(t),
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that has a power spectrum described by Equation III.2. This model does not specify the type of envelope or its

characteristics, which are assumed in the methods used to estimate the events. The carrier function is assumed to be

periodic, from the parameters that it has a frequency and phase, but the frequency is not fixed over the burst event.

The various methods will assume functional forms for the parameters, reducing the generality.

III.1.2 Synthetic Data

The synthetic signal is generated by the existing framework developed by the Womelsdorf lab [44]. Various param-

eters for the synthetic signal are first defined. The next step is to generate the background red noise of the signal,

which is done using the function dsp.ColoredNoise() from MATLAB. The signal is then band pass filtered over the

wide band (1 to 40% of the sampling frequency).

The next step is to add bursts to the background noise trace. Bursts are added according to the specified param-

eters. The magnitude envelope is a cosine roll off and roll on with either a logarithmic or linear ramp between the

starting and ending magnitude values. The frequency is also a logarithmic or linear ramp between the starting and

ending values. The phase is determined from the frequency and a phase offset term. The phase is used to generate

the carrier function, which is the cosine of the phase. The synthetic data is illustrated in Equation III.3 where the

Amplitude, Ak(t), is non-zero for a finite interval only during the burst event.

Each burst is recorded in an event list, which includes the time of the burst, magnitude, frequency, phase and the

parameters used to generate each burst. This event list is the ground truth for the synthetic data [44].

S(t) =

(
K∑
k=1

Ψn(Ak(t), fk(t), φ0k, t0k)

)
+ ε(t) (III.3)

III.1.3 Real Data - Non-Human Primate

The real dataset comes from recordings in non-human primates. The recording is segmented by individual trials,

lasting less than 10 seconds, that occurred during the recording experiment. If an event is detected near the edge of

a segment it is not counted as it may have been an artifact.

To show that the synthetic and real datasets are similar Figure III.1 shows the power spectrum of two signals

from the datasets. The real data appears to show a steeper drop off with higher frequencies that the synthetic data

indicating that the noise may drop off more than 1
f2

as is the case with Brownian noise. This shows that the synthetic

dataset has some similar spectral qualities to the real dataset.
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Figure III.1: This figure shows the power spectrum of the real and the synthetic data. The frequency range stops at
50 Hz to because higher frequencies are not discussed in this work. The two spectra align well with the real data
shower a slightly steeper drop off for increased frequency. The real data also shows an increase in power between
10 and 20 Hz which aligns with the band of interest in this work

III.1.4 Method Model

Various methods attempt to detect the events, generating their own event lists. Each location is then characterized

to obtain the magnitude, frequency, and phase estimates. The methods have multiple tuning parameters τj that alter

the events detected and how they are characterized.

Mj(S(t), τj) = Mj(t) =

(
L∑
l=1

Ψl(Al(t), fl(t), φ0l, t0l)

)
(III.4)

The method model, illustrated in Equation III.4, shows that for a given method, each burst is recorded in an

event list, which includes the time of the burst, magnitude, frequency, phase and the parameters used to generate

each burst. L bursts are detected by the method, which extracted events from the signal, S(t). Each method has a

different way of modeling the events, which is shown through how it uses the parameters to construct the burst in

the Ψ(·) function.

III.2 Burst Methods

Most of these work on signals that have been band-pass-filtered. They do a detection step to recognize when oscil-

lations are occurring in-band and then a parameter extraction step to get magnitude, frequency, and phase during the

event. The wavelet method applies to the wide band, but analyzes events on a per band basis just the same.
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III.2.1 Hilbert Magnitude

Analytic magnitude and phase are taken as being correct obtained from the Hilbert transform of the bandpass filtered

signal. This is typically done in a standard band such as the beta band, 12.5 Hz to 30 Hz [12, 23]. Frequency is

calculated as the derivative of smoothed phase. Magnitude-based thresholding is done similar to [48]. This method

will be referred to as the “Hilbert Magnitude” algorithm.

To start the Hilbert Magnitude method the signal is bandpass filtered to the desired band. The Hilbert transform is

applied to generate the analytic signal. The instantaneous magnitude is obtained from the magnitude of the analytic

signal. The instantaneous phase is obtained similarly as the phase of the analytic signal. The instantaneous frequency

is found as the derivative of the instantaneous phase with smoothing applied. A base magnitude is obtained from

lowpass filtering the magnitude signal. This will give a reference to determine any excursions that would indicate

a burst. The power of the instantaneous amplitude and the lowpass instantaneous amplitude are obtained. The ratio

between these two determines whether a burst is detected if the ratio surpasses a value set by the dBpeak tuning

parameter. If a burst is detected its end points are extended to a lower threshold of this ratio set by the dBend tuning

parameter. To remove spurious events and combine small dropouts that should be from one event, gaps between

detected events that are larger than maxdrop are filled in and events shorter than maxglitch are removed. This

gives a list of events by when they start and how long they occur.

A further extension of Hilbert magnitude and Hilbert frequency uses template fitting to get event parameters.

This is the implementation provided by the wlBurst_v2 library used for experiments. Template fit used is “chirp

ramp” [44]. Unless otherwise noted, Hilbert Magnitude and Hilbert Frequency used for experiments have ”chirp

ramp” parameter fits for detected events.

For characterization of the detected events, the waveform is parameterized using starting and ending amplitude,

starting and ending frequency, staring phase, roll on, roll off, sample start and duration. These parameters are used

to generate waveforms that are compared to the bandpass signal. To calculate these parameters a grid search is

performed. Using the values from that step creeping random search is performed to obtain better estimates.

17



Algorithm 1 Hilbert Magnitude Method

1: Signal is bandpass filtered for the specified band, generating Sbp(t)
2: The analytic signal, sa(t) is obtained using the Hilbert transform
3: A(t) = abs(Sa(t))
4: θ(t) = angle(Sa(t))

5: f(t) = dθ(t)
dt

6: Aslow(t) comes from A(t) lowpass filtered with time constant τDC
7: Pslow(t) = Aslow(t)2

8: Pfast(t) = A(t)2

9: The ratio of Pfast(t) to Pslow(t) with a putative burst detected if the ratio exceeds the threshold dBpeak
10: Extend detected bursts by comparing to another threshold dBend only extended previous bursts to this lower

threshold
11: Combine bursts separated by time gap smaller than maxdrop
12: Remove events shorter than maxglitch
13: This gives a list of M burst events
14: for each event, i, of M bursts do
15: Do Grid Search for initial amplitude, frequency, phase, roll on, roll off, sample start and duration
16: Do Creeping Random Search for starting and ending amplitude, roll on, roll off, sample start and duration
17: Do Creeping Random Search for starting and ending amplitude, starting and ending frequency, staring phase,

roll on, roll off, sample start and duration
18: end for
19: return List of M events with Ai, fi, θi for each event

III.2.2 Hilbert Frequency

This is an extension of “Hilbert magnitude” algorithm that uses local variance of the frequency estimate for detection

rather than magnitude. During clean oscillations, variance is low, but outside of oscillations, variance is high. This

is an unpublished work by Womelsdorf lab [43], using their library functions [44]. This method will be referred to

as the “Hilbert Frequency” algorithm.

To start the Hilbert Frequency method the signal is bandpass filtered to the desired band. The Hilbert transform

is applied to generate the analytic signal. The instantaneous magnitude is obtained from the magnitude of the

analytic signal. The instantaneous phase is obtained similarly as the phase of the analytic signal. The instantaneous

frequency is found as the derivative of the instantaneous phase with smoothing applied. A new signal is generated by

adding white noise in a band determined by the tuning parameters Limlower and Limupper with power determined

by SNRnoise. The instantaneous frequency of this new signal is obtained in the same way as described earlier.

A slowly changing instantaneous frequency of this noisy frequency is obtained by lowpass filtering with corner

frequency determined by the parameter, Qlong. Next variance as a function of time is calculated. A slow and fast

changing variance are calculated using corner frequencies set byQshort andQlong respectively. The ratio of the slow

to fast variance are compared to a threshold determined by dBpeak. f a burst is detected its end points are extended

to a lower threshold of this ratio set by the dBend tuning parameter. To remove spurious events and combine small
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dropouts that should be from one event, gaps between detected events that are larger than maxdrop are filled in and

events shorter than maxglitch are removed. This gives a list of events by when they start and how long they occur.

These events are characterized in the same manner as with Hilbert Magnitude (Section III.2.1).

Algorithm 2 Hilbert Frequency Method

1: Signal is bandpass filtered for the specified band, generating Sbp(t)
2: The analytic signal, sa(t) is obtained using the Hilbert transform
3: A(t) = abs(Sa(t))
4: θ(t) = angle(Sa(t))

5: f(t) = dθ(t)
dt

6: White noise is added to Sbp(t) generating Sn(t) in the band [Limlower, Limupper] with power such that the SNR
is SNRnoise

7: The instantaneous frequency fn(t) is obtained similarly to the above using sn(t)
8: Calculate a slowly changing mean fn,µ(t) by low pass filtering fn(t) with corner frequency based on Qlong
9: V arn(t) = (fn(t)− fn,µ(t))2

10: Obtain V arn,fast by low pass filtering V arn(t) with corner frequency based on Qshort
11: Obtain V arn,slow by low pass filtering V arn(t) with corner frequency based on Qlong
12: The ratio of V arn,slow to V arn,fast with a putative burst detected if the ratio exceeds the threshold dBpeak
13: Extend detected bursts by comparing to another threshold dBend only extended previous bursts to this lower

threshold
14: Combine bursts separated by time gap smaller than maxdrop
15: Remove events shorter than maxglitch
16: This gives a list of M burst events
17: for each event, i, of M bursts do
18: Do Grid Search for initial amplitude, frequency, phase, roll on, roll off, sample start and duration
19: Do Creeping Random Search for starting and ending amplitude, roll on, roll off, sample start and duration
20: Do Creeping Random Search for starting and ending amplitude, starting and ending frequency, staring phase,

roll on, roll off, sample start and duration
21: end for
22: return List of M events with Ai, fi, θi for each event

III.2.3 Peak and Trough

This work uses an implementation of published work[33]. This method will be referred to as the “peak and trough

algorithm”.

To obtain estimates of the magnitude, frequency, and phase the method illustrated in Figure III.2 must locate

various marker points in the signal. The first step is to band pass filter the signal in the band of interest. This allows

for the zero-crossings to be calculated. The next steps strictly use the wide band signal. The extrema are determined

between each zero-crossing, maxima or minima depending on the type of zero-crossings. The next step is to get the

flank points, which are the points at which the signal reaches halfway between adjacent extrema. This gives a value

that will be different from the zero-crossing the less sinusoidal the input waveform is.

These points are used to determine magnitude, phase, and frequency. The magnitude is half the absolute differ-
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Figure III.2: This figure shows an example of the peak and trough method described in [33]. Here the blue saw tooth
line represents the signal to be analyzed and the orange line is the band passed version of the same signal in the
band of interest. Zero crossings of the band pass signal are marked and noted as either positive (positive slope) or
negative (negative slope). These values divide the wide band signal into distinct cycles. The maximum or minimum
of the wide band signal is marked depending on the value of the prior zero crossing, maximum for a positive zero
crossing and minimum for a negative zero crossing. The flank points represent the signal value that is the average of
the adjacent extrema. Because the original signal is not always symmetric the flank point will not always correspond
with the zero crossing. As the original signal becomes more asymmetric the farther the flank and zero crossings
become. This type of method is supposed to capture elements of the waveform that would be distorted by band pass
filtering since it assumes sinusoidal basis functions, which are symmetric.

ence between adjacent extrema. The phase is assigned 0 at a maxima, π at a minima, π2 at a negative flank point, and

3π
2 at a positive flank point.

For burst detection amplitude consistency, period consistency, and monotonicity are calculated. Amplitude con-

sistency is the ratio between adjacent amplitude calculations. Period consistency is the ratio between adjacent period

calculations. Lastly, monotonicity is the ratio of the number of samples that are increasing between consecutive mini-

mum and a maximum or the number of samples that are decreasing between consecutive maximum and a minimum.

A threshold is then applied to determine if a burst is occurring, because bursts would represent excursions from

baseline amplitude, period, or monotonicity. This gives a list of events by when they start and how long they occur.

Amplitude is taken from the previous amplitude calculations. Frequency is the inverse of the period calculations.

Phase is the same as above. To get a continuous estimate for phase that is not step wise the estimate for phase is

unwrapped and linearly interpolated between each successive estimate.
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Algorithm 3 Peak and Trough Method

1: Signal is bandpass filtered for the specified band, generating Sbp(t)
2: Signal is lowpass filtered with corner frequency based on lowband generating Slow(t)
3: Using the zero crossings from Sbp(t), Slow(t) is divided into cycles
4: The maximum or minimum within each cycle is determined based on the type of zero crossing
5: The flank points are determined as the time at which the value is exactly half of the adjacent extrema
6: The amplitude is half the absolute difference between adjacent extrema
7: The period is the time between each of the specified points (flanks and extrema)
8: The amplitude consistency, AC(t) is calculated and the ratio between consecutive amplitude estimates
9: The period consistency, PC(t), is calculated and the ratio between consecutive period estimates for a given

cycle
10: The monotonicity, MON(t), is calculated as the ratio of number of samples between a minimum to a maximum

are increasing or from a maximum to a minum are decreasing for consecutive extrema
11: Each of AC(t), PC(t), and MON(t) are compared to separate thresholds where a burst is detected if all

thresholds are passed
12: Combine bursts separated by time gap smaller than maxdrop
13: Remove events shorter than maxglitch
14: for each event, i, of M bursts do
15: The amplitude over time, A(t) is determined as the amplitude as shown previously
16: The phase is over time, θ(t) is the interpolation of the following assignments: 0 at a maxima, π at a minima,

π
2 at a negative flank point, and 3π

2 at a positive flank point.
17: The frequency, f(t), is the inverse of the period as shown previously
18: end for
19: return List of M events with Ai, fi, θi for each event

III.2.4 Cosine Template

This method is an extension of ”Hilbert Magnitude” method that uses analytic magnitude for detection but cosine

template fitting to get event amplitude, frequency, and phase[1]. This is a implementation of published work[1]

modified for extracted the parameter values over the whole course of the burst. This method will be referred to as

the “Cosine Template” algorithm.

This method is exactly the same as the ”Hilbert Magnitude” method up until all the events must be characterized.

The detection method has generated a list of events by start time and duration.

Each event is split into several stride points at which points, amplitude, phase offset, and period will be estimated.

Windows determine how much of the signal to use for fitting. Then each section is fit using Equation III.5. This gives

estimates at the stride points. At each point amplitude is estimated as the value of A. The frequency is estimated as

1
T . And phase is estimated over the whole window as φ0+2π t

T . For amplitude and frequency, values are interpolated

over the stride points. For phase the values are averaged since there are overlapping sections.

A sin(φ0 + 2π
t

T
) (III.5)
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Algorithm 4 Cosine Template Method

1: Signal is bandpass filtered for the specified band, generating Sbp(t)
2: The analytic signal, sa(t) is obtained using the Hilbert transform
3: A(t) = abs(Sa(t))
4: θ(t) = angle(Sa(t))

5: f(t) = dθ(t)
dt

6: Aslow(t) comes from A(t) lowpass filtered with time constant τDC
7: Pslow(t) = Aslow(t)2

8: Pfast(t) = A(t)2

9: The ratio of Pfast(t) to Pslow(t) with a putative burst detected if the ratio exceeds the threshold dBpeak
10: Extend detected bursts by comparing to another threshold dBend only extended previous bursts to this lower

threshold
11: Combine bursts separated by time gap smaller than maxdrop
12: Remove events shorter than maxglitch
13: This gives a list of M burst events
14: for each event, i, of M bursts do
15: Each event is split into points at which parameters will be estimated, J
16: for each stride point, j in J do
17: A section of the event for curve fitting is determined by the forward and backward windows wforward and

wbackward
18: The section of the original signal, S(t) is fit using A sin(φ0 + 2π t

T )
19: Values for A, φ0, and T are obtained
20: end for
21: The amplitude A(t) is constructed from the interpolation of each estimate of A of the event
22: The frequency is constructed from the interpolation of each estimate of 1

T of the event
23: The phase is constructed from the interpolation of each estimate of φ0 + 2π t

T of the event and averaged over
overlapping sections

24: end for
25: return List of M events with Ai, fi, θi for each event
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III.2.5 Wavelet

Gabor-Morlet wavelet algorithms perform time-frequency decomposition to get magnitude and phase as a function

of both time and frequency, expressing the signal as a sum of Gaussian-modulated sine waves [55]. Implementations

differ depending on whether the Gaussian envelope has constant time duration over all frequencies or lasts for a

constant number of cycles, constant-Q transform [70]. This work uses the continuous wavelet transform. This

method will be referred to as the “Wavelet” algorithm.

This method starts by using either the constant Q transform cqt or the continuous wavelet transform cwt from

MATLAB’s Wavlet Library. The continuous wavelet transform with Morse wavelets was used for this method.

Then the power is calculated from that, shown in Figure III.3. The power is then thresholded, shown in Figure

III.4. The time values and frequency values are obtained for the portion above threshold. Opening and closing are

both morphology functions found in image processing that are used in this method. Opening removes any features

smaller than the given input structure or shape. Closing connects any features that are smaller than the given input

structure or shape. Next opening is performed using an ellipse structuring element because the values in the x

direction represent time and y direction represent frequency so a symmetric structuring element is not necessarily

the best choice. Next border removal is performed, which removes any clusters that are connected to the borders.

This removes extraneous above threshold detections and also removes any detections that may be at the border of

a band if the analysis is done in a band. Lastly, closing is performed using an ellipse structuring element. Figure

III.4 shows the resulting detection after each step. The groups are segmented into different blobs. These values are

averaged for the center frequency and center time of the burst. The maximum and minimum frequencies are used

as the burst edges, shown in Figure III.3. To get a more accurate frequency measurement, frequency is calculated

within each time period of the detected burst by either taking the median, shown in Figure III.3 as the magenta line,

or the power weighted average of the frequencies in the time slice. The detected power is calculated for each time

slice as well as the summation of the magnitude values, where power values are converted to magnitude, summed,

then converted back to power. The blue line in Figure III.3 represents the true burst. The frequency and burst power

are also displayed in Figure III.5.
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Algorithm 5 Wavelet Method
1: Spectrogram, S of signal is obtained using wavelet transform
2: Smag = abs(S)
3: Sang = angle(S)
4: Median Spectrogram, Smed obtained as median value of S per frequency
5: Srel = Smag − Smed
6: Convert Srel into binary mask, Smask, by threshold
7: Apply opening on Smask with structuring element sopen
8: Remove foreground points connected to border of Smask
9: Apply closing on Smask with structuring element sclose

10: Isolate connected sections of Smask
11: for each of M isolated sections of Smask do
12: Smaski is the mask in Smask represented by the i section
13: Apply mask Smaski to S to get Si
14: for Each sample of Si do
15: Ain, fin, and θin is amplitude, frequency and phase of the n sample of section i
16: Ain = maxSmagin
17: fin = (Sfreqin ∗ Smagin)/

∑
Smagin

18: θin = Sangin at which maxSmagin occurs
19: end for
20: Ai is the set of Ain
21: fi is the set of fin
22: θi is the set of θin
23: end for
24: return List of M events with Ai, fi, θi for each event
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Figure III.3: Example detection with the wavelet method showing the spectrogram with detected burst indicated.
The method outlines the start and end of each detected burst and the maximum and minimum frequency in each
burst in red. The true burst is denoted in blue and the detected burst is denoted in magenta. The detected burst
follows the true burst where it has highest amplitude in the middle of the burst and trails off at the ends.

Figure III.4: Example detection with the wavelet method showing how the detection proceeds after getting the
spectrogram from the wavelet transform. The top left plot shows the values in the spectrogram that are above the
threshold and distinguishes them as separate groupings if they are unconnected. The top right plot shows the results
after applying opening with an elliptical support. This process removes above threshold sections smaller than the
structuring element, but preserving the sections that are larger than the structuring element. The bottom left plot
shows the results after removing any sections that are connected to the border. This removes any events that may be
distortions from either the beginning or end of the signal or the band pass. The bottom left plot shows the results
after applying closing with an elliptical support. This process fills in sections that are closer together than the size of
the structuring element.
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Figure III.5: Example detection with the wavelet method showing true burst parameters with detected burst parame-
ters. The top plot shows that the amplitude detection of the detected burst is higher than the ground truth burst. This
could be from the added power of the noise which increases the detected burst power. The bottom plot shows the
frequency of the ground truth and detected bursts. The frequency tracks well in the center of the burst and trails off
near the edges.
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CHAPTER IV

Metrics for Performance Evaluation

IV.1 Introduction

The goal of this chapter is to evaluate the performance of detection and characterization methods in a meaningful

way. This allows for comparison between different methods and will be used to indicate the effect of tuning. The

metrics used are listed and described in the following sections. They are examined in detail for their use in tuning

and ability to distinguish true and false detection. A good metric for tuning should provide information distinct from

the others, demonstrate a search space with a well-behaved optimum, and represent a desirable feature.

To measure the detection performance the methods are compared to a known ground truth in the synthetic data

set. Bursts that are identified by the selected method are compared to a list of events that are known to be in the

signal. Matches between the ground truth list and the output of the method are True Positive (TP). A False Negative

(FN) occurs when a ground truth event is not matched to a detected event from the method. The noise in the signal

may cause events to be flagged that do not match any ground truth in the dataset leading to a False Positive (FP).

There are no True Negatives (TN) because there are not single events that are not bursts in the ground truth sets.

These counts make up the confusion matrix. Furthermore, additional detection metrics exist that are based on this

count, including precision, recall, false positive rate, F1 Score,and Fβ Score.

To measure the characterization performance the methods are compared to a baseline, which in this case is the

band pass waveform and the acausal Hilbert derived magnitude, frequency, and phase unless otherwise noted[22].

None of the methods exactly output these values, but they do use them to construct their own characterizations.

With this given baseline error can be calculated as the difference between the output of the selected method and

the baseline. Value, shape, distribution of error values indicate various aspects of the error that may differentiate

the performance of methods. The characterization metrics are a way to convert the vector of errors into a scalar

value measuring some aspect of the overall error. Metrics dependent on the phase error come from circular statistics,

namely mean direction, circular variance, and phase-locking value. Metrics for the remaining errors of signal,

magnitude, and frequency are computed as the root mean square of the error and the relative error.

To obtain a metric that better encompasses the phase error in both the overall phase offset and the consistency of

the error, the combined angle metric is proposed. This metric combines mean direction and circular variance.
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IV.2 Confusion Matrix

Metrics based on the confusion matrix are used to measure the efficacy of the detection. This gives counts for

True Positives, False Positives, and False Negatives. These are aggregated to obtain false positive rate, precision

(Equation IV.5) and recall (Equation IV.9) can be calculated which allows for a relative comparison across methods.

Combining these even further results in the F1 (Equation IV.13)and Fβ (Equation IV.18) scores, which encapsulate

correctly identifying events and identifying as many true events as possible. These detection metrics will be called

the confusion matrix family

A detected event is labeled as a True Positive if there is a matching ground truth event (as seen in Fig. IV.1a) and

a False Positive otherwise (as seen in Fig. IV.1b); a ground truth event is labeled as a False Negative if there is no

matching detected event (as seen in Fig. IV.1c).

(a) True Positive Example (b) False Positive Example (c) False Negative Example

Figure IV.1: Examples of True Positive, False Positive, and False Negative Burst Detections.For each column, the
top panel shows the detected and ground truth events relative to the band pass signal and the bottom panel shows the
detected and ground truth events relative to the wide band signal. In (a) since there is a detected event that matches
with the ground truth event this is labeled as a True Positive. In (c) the top panel shows that the ground truth event
has no detected event in its band that matched. The bottom panel shows that there is not wide band detected event
that matches the ground truth event. Since there is no matching detected event for the ground truth it is labeled as
a False Negative. In (b) the top panel shows that there is no ground truth event in the band pass. The bottom panel
shows that there is a potential corresponding ground truth event, but it does not match up with the detected event.
The detected event is too short and is therefore classified as a False Positive.

IV.3 Detection Metrics

Detection metrics come from the confusion matrix information. They combine True Positive, False Positive, and

False Negative to evaluate the detection.

To determine the error in the detection metrics the confusion matrix counts are modeled as Poisson random vari-

ables with parameter equal to the given count. This is because this closely models count data. Thus, the generation

of an event in the synthetic data is a Poisson process, which is assumed to be similar in recorded data. From this the
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True Positive, False Positive, and False Negative are also Poisson distributed since they represent a proportion of a

Poisson process [71].

δFP =
√
FP (IV.1)

δTP =
√
TP (IV.2)

δFN =
√
FN (IV.3)

Because these counts are distributed as Poisson random variables their error, δ is represented accordingly in

Equations IV.1, IV.2, and IV.3.

For combinations of these metrics error propagation must be done. In order to propagate the error Equation IV.4

shows error propagation for a function with three inputs.

f(x, y, z)

δfx =

∣∣∣∣∂f∂x
∣∣∣∣ δx

δfy =

∣∣∣∣∂f∂y
∣∣∣∣ δy

δfz =

∣∣∣∣∂f∂z
∣∣∣∣ δz

δf =
√
δ2fx + δ2fy + δ2fz (IV.4)

The partial derivative of the function is taken with respect to each input to determine the contribution of each to

the error. Then the square root of the sum of errors squared gives the combined error for the function. This error

propagation will be used with the detection metrics to determine the error of each.

IV.3.1 Precision

Also called Positive Predictive Value (PPV), represents the proportion of true positives within the number of detected

events. A value of 1 indicates that all detected events are true events. A value of 0.5 indicates that half of the detected

events are true events. A value of 0 indicates that none of the detected events are true events. The precision or PPV

is defined,

PPV =
TP

TP + FP
(IV.5)
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Its standard deviation is shown in IV.8.

δPPV,TP =

∣∣∣∣∂Precision∂TP

∣∣∣∣ δTP =

∣∣∣∣ FP

(FP + TP )2

∣∣∣∣√TP (IV.6)

δPPV,FP =

∣∣∣∣∂Precision∂FP

∣∣∣∣ δFP =

∣∣∣∣− TP

(FP + TP )2

∣∣∣∣√FP (IV.7)

δPPV =
√
δ2PPV,TP + δ2PPV,FP =

√
FP ∗ TP

(FP + TP )3
(IV.8)

IV.3.2 Recall

Also called True Positive Rate (TPR), hit rate, or sensitivity, recall represents the proportion of true events that are

detected. A value of 1 indicates that all true events were detected. A value of 0.5 indicates that half of true events

were detected. A value of 0 indicates that none of the true events were detected. The true positive rate or TPR is

defined,

TPR =
TP

TP + FN
(IV.9)

Its standard deviation is shown in IV.12.

δTPR,TP =

∣∣∣∣∂TPR∂TP

∣∣∣∣ δTP =

∣∣∣∣ FN

(FN + TP )2

∣∣∣∣√TP (IV.10)

δTPR,FN =

∣∣∣∣∂TPR∂FN

∣∣∣∣ δFN =

∣∣∣∣− TP

(FN + TP )2

∣∣∣∣√FN (IV.11)

δTPR =
√
δ2TPR,TP + δ2TPR,FN =

√
FN ∗ TP

(FN + TP )3
(IV.12)

IV.3.3 F1 Score

The F1 Score compares TP, FP, FN counts. A value of 1 indicates that all the true events were detected and all the

detected events were true events. A value of 0.5 indicates that there are just as many false detections and missed

events (FP,FN) as there are correctly detected events (TP). A value of 0 indicates that none of the true events were

detected or none of the detected events were true events. This metric combines evaluating detected events and the

true events. The F1 Score is defined,

F1 = 2
PPV · TPR
PPV + TPR

(IV.13)
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Its standard deviation is shown in IV.17.

δF1,FP
=

∣∣∣∣ ∂F1

∂FP

∣∣∣∣ δFP =

∣∣∣∣ ∂F1

∂PPV

∂PPV

∂FP
+

∂F1

∂TPR

∂TPR

∂FP

∣∣∣∣ δFP
=

∣∣∣∣∣
(

2 ∗ TPR2

(PPV + TPR)2

)(
−

TP

(FP + TP )2

)
+

(
2 ∗ PPV 2

(PPV + TPR)2

)
(0)

∣∣∣∣∣√FP
=

∣∣∣∣∣
(

2 (FP + TP )2

(FP + FN + 2TP )2

)(
−

TP

(FP + TP )2

)∣∣∣∣∣√FP
=

2 ∗ TP
√
FP

(FP + FN + 2TP )2
(IV.14)

δF1,TP
=

∣∣∣∣ ∂F1

∂TP

∣∣∣∣ δTP =

∣∣∣∣ ∂F1

∂PPV

∂PPV

∂TP
+

∂F1

∂TPR

∂TPR

∂TP

∣∣∣∣ δTP
=

∣∣∣∣∣
(

2 ∗ TPR2

(PPV + TPR)2

)(
FP

(FP + TP )2

)
+

(
2 ∗ PPV 2

(PPV + TPR)2

)(
FN

(TP + FN)2

)∣∣∣∣∣√TP
=

∣∣∣∣∣
(

2 (FP + TP )2

(FP + FN + 2TP )2

)(
FP

(FP + TP )2

)
+

(
2 (FN + TP )2

(FP + FN + 2TP )2

)(
FN

(TP + FN)2

)∣∣∣∣∣√TP
=

2 (FN + FP )
√
TP

(FP + FN + 2TP )2
(IV.15)

δF1,FN
=

∣∣∣∣ ∂F1

∂FN

∣∣∣∣ δFN =

∣∣∣∣ ∂F1

∂PPV

∂PPV

∂FN
+

∂F1

∂TPR

∂TPR

∂FN

∣∣∣∣ δFN
=

∣∣∣∣∣
(

2 ∗ TPR2

(PPV + TPR)2

)
(0) +

(
2 ∗ PPV 2

(PPV + TPR)2

)(
−TP

(TP + FN)2

)∣∣∣∣∣√FN
=

∣∣∣∣∣
(

2 (FN + TP )2

(FP + FN + 2TP )2

)(
−TP

(TP + FN)2

)∣∣∣∣∣√FN
=

2 ∗ TP
√
FN

(FP + FN + 2TP )2
(IV.16)

δF1
=
√
δ2
F1,FP

+ δ2
F1,TP

+ δ2
F1,FN

=

√√√√( 2 ∗ TP
√
FP

(FP + FN + 2TP )2

)2

+

(
2 (FN + FP )

√
TP

(FP + FN + 2TP )2

)2

+

(
2 ∗ TP

√
FN

(FP + FN + 2TP )2

)2

= 2

√
TP (FP + FN) (FP + TP + FN)

(FP + 2 ∗ TP + FN)4
(IV.17)

IV.3.4 Fβ Score

The Fβ Score is similar to the F1 score, but weights the evaluation of the detected events and the true events

differently. The Fβ Score is defined,

Fβ = (1 + β2)
PPV · TPR

β2PPV + TPR
(IV.18)

Its standard deviation is shown in IV.22.
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δFβ,FP
=

∣∣∣∣ ∂Fβ
∂FP

∣∣∣∣ δFP =

∣∣∣∣ ∂Fβ

∂PPV

∂Precision

∂FP
+

∂Fβ

∂TPR

∂TPR

∂FP

∣∣∣∣ δFP
=

∣∣∣∣∣
(

(1 + β2)TPR2(
(β2PPV + TPR

)2
)(
−

TP

(FP + TP )2

)
+

(
(1 + β2)β2PPV(
(β2PPV + TPR

)2
)

(0)

∣∣∣∣∣√FP
=

∣∣∣∣∣
(

(1 + β2) (FP + TP )2(
FP + β2FN + (1 + β2)TP

)2
)(
−

TP

(FP + TP )2

)∣∣∣∣∣√FP
=

(1 + β2)TP
√
FP(

FP + β2FN + (1 + β2)TP
)2 (IV.19)

δFβ,TP
=

∣∣∣∣ ∂Fβ
∂TP

∣∣∣∣ δTP =

∣∣∣∣ ∂Fβ

∂PPV

∂PPV

∂TP
+

∂Fβ

∂TPR

∂TPR

∂TP

∣∣∣∣ δTP
=

∣∣∣∣∣
(

(1 + β2)TPR2(
(β2PPV + TPR

)2
)(

FP

(FP + TP )2

)
+

(
(1 + β2)β2PPV(
(β2PPV + TPR

)2
)(

FN

(TP + FN)2

)∣∣∣∣∣√TP
=

∣∣∣∣∣
(

(1 + β2) (FP + TP )2(
FP + β2FN + (1 + β2)TP

)2
)(

FP

(FP + TP )2
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IV.4 Characterization Metrics

For characterization metrics, the residual is used. The residual is defined here as the difference between the i-th

extracted feature of the j-th event and a reference for the i-th feature of the j-th event as shown in Equation IV.23.

ei,j(t) = Exti,j(t)−Refi,j(t) (IV.23)

This residual between the detected feature and a reference feature are computed for signal, magnitude, frequency,

and phase. Equation IV.24 gives the residual for the m-th event for the signal, magnitude, frequency, and phase

represented by the indices s, m, f , and φ respectively. Here es,m(t) represents the signal residual of the given

event, m, for the given method described by Ψm(Am(t), fm(t), φ0m, t0m). NA(t). The subsequent residual terms

represent the calculations for magnitude, frequency, and phase residual.
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es,m(t) = Ψm(Am(t), fm(t), φ0m, t0m)−NA(t)

em,m(t) = Am(t)−Hm(NA(t))

ef,m(t) = fm(t)−Hf (NA(t))

eφ,m(t) = φm(t)−Hφ(NA(t)) (IV.24)

In the following two sections the residuals for signal, magnitude, and frequency are treated with RMS calcu-

lations (per section IV.5), and phase, which is defined on a circular domain, is treated with circular statistics (per

section IV.6)

IV.5 RMS Metrics

For signal, magnitude, and frequency residual values, one metric is to take the Root Mean Square (RMS), Equation

IV.25, of the residuals from Equation IV.24. Here the index, i, represetns the type of residual used (signal, magnitude,

or frequency) and the index, j, represents the event overall. For the j-th event it has N samples. Additionally for

each a relative error can be calculated, whereby the value of the error is scaled by the value at that point from the

reference method. This is so that errors at very large values and errors at very small values will have proportional

effects on the error metric. For the relative signal value, the error associated with points near a zero crossing of the

sinusoid are either removed or interpolated with both implemented.

RMSi,j =

√√√√ 1

N

N∑
n=1

ei,j(n)2 (IV.25)

In this section ten RMS signal metrics are explored. They all are functions of the residuals and incorporate the

RMS.

1. Signal Metric

2. Magnitude Metric

3. Frequency Metric

4. Relative Event Power to Bandpass Metric

5. Relative Event Power to Wideband Metric

6. Relative Signal Metric
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7. Removed Relative Signal Metric

8. Interpolated Relative Signal Metric

9. Relative Magnitude Metric

10. Relative Frequency Metric

IV.5.1 Signal Metric

Signal Metric is the RMS of the instantaneous signal residual. This is calculated using Equation IV.25 with signal

residuals. This is a measure of how much the estimated burst signal deviates from a reference signal. In Figure IV.2

two events with different Signal Metric values are shown. Figure IV.2a shows a low value for the Signal Metric which

is indicative of an event that closely follows the reference signal. This incorporates a good estimate of amplitude,

phase, and frequency to match the reference well. Figure IV.2b shows a high value for the Signal Metric, showing

an event that does not correspond well with the reference signal indicating a poorer characterization of the event.
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(a) Good Signal Metric (b) Bad Signal Metric

(c) Good Signal Metric His-

togram of Residuals

(d) Bad Signal Metric His-

togram of Residuals

Figure IV.2: Here examples of good and bad event characterizations are shown as determined by Signal Metric. In
(a) a low value of Signal Metric is shown indicating an event that closely follows the reference event. In (b) a high
value of Signal Metric is shown indicating an event that does not closely follow the reference event.

Figure IV.3 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.3a shows how the metric separates the true or false detections. The detections cluster around

each other indicating that this metric cannot be used on its own to filter true detections from false detections without

rejecting many true detections. Figure IV.3b shows how the metric separates the true and false detections along with

how it separates based on the signal to noise ratio. While this figure shows that low SNR events are not well detected

which is expected, it does not show that the Signal Metric does not provide a useful metric for separating the events

by true and false detections without rejecting many true detections. A cutoff around 0.2 will reject almost all false

detections and also reject many true detections.
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(a) Histogram Signal Metric (b) Signal Metric Vs SNR

Figure IV.3: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Signal Metric. These
events are also shown in a scatter plot in (b) which are separated by the Signal Metric and the signal to noise ratio.
These plots show how the metric could be used for determining true and false detections.

IV.5.2 Magnitude Metric

Magnitude Metric is the RMS of the instantaneous magnitude residual. This is calculated using Equation IV.25

with magnitude residuals. The Magnitude Metric is a measure of how much the estimated burst magnitude deviates

from a reference magnitude. In Figure IV.4 two events with different Magnitude Metric values are shown. Figure

IV.4a shows a low value for the Magnitude Metric which is indicative of an event that closely follows the reference

magnitude. Figure IV.4b shows a high value for the Magnitude Metric, showing an event that does not correspond

well with the reference magnitude indicating a poorer characterization of the event magnitude.
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(a) Good Magnitude Metric (b) Bad Magnitude Metric

(c) Good Magnitude Metric

Magnitude Plot

(d) Good Magnitude Metric

Histogram of Residuals

(e) Bad Magnitude Metric

Magnitude Plot

(f) Bad Magnitude Metric

Histogram of Residuals

Figure IV.4: Here examples of good and bad event characterizations are shown as determined by Magnitude Metric.
In (a) a low value of Magnitude Metric is shown indicating an event that closely follows the reference. In (b) a high
value of Magnitude Metric is shown indicating an event that does not closely follow the reference. Both (c) and (e)
show the extracted magnitude in red and how it compares to the reference in blue, with the addition of ground truth
events in green. Both (d) and (f) show the residuals for the detected events.

Figure IV.5 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.5a shows how the metric separates the true or false detections. The detections cluster around

each other indicating that this metric cannot be used on its own to filter true detections from false detections without

rejecting some true detections. Figure IV.5b shows how events separates along the metric and the signal to noise

ratio. While this figure shows that low SNR events are typically false positives, it does not show that the Magnitude

Metric is a useful metric for separating the events by true and false detections without rejecting some true detections.

A cutoff around 0.15 will reject almost all false detections and also reject some true detections.
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(a) Histogram Magnitude Metric (b) Magnitude Metric Vs SNR

Figure IV.5: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Magnitude Metric.
These events are also shown in a scatter plot in (b) which are separated by the Magnitude Metric and the signal to
noise ratio. These plots show how the metric could be used for determining true and false detections.

IV.5.3 Frequency Metric

Frequency Metric is the RMS of the instantaneous frequency residual. This is calculated using Equation IV.25

with frequency residuals. The Frequency Metric is a measure of how much the estimated burst frequency deviates

from a reference frequency. In Figure IV.6 two events with different Frequency Metric values are shown. Figure

IV.6a shows a low value for the Frequency Metric which is indicative of an event that closely follows the reference

frequency. Figure IV.6b shows a high value for the Frequency Metric, showing an event that does not correspond

well with the reference frequency indicating a poorer characterization of the event frequency.
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(a) Good Frequency Metric (b) Bad Frequency Metric

(c) Good Frequency Metric

Frequency Plot

(d) Good Frequency Metric

Histogram of Residuals

(e) Bad Frequency Metric Fre-

quency Plot

(f) Bad Frequency Metric His-

togram of Residuals

Figure IV.6: Here examples of good and bad event characterizations are shown as determined by Frequency Metric.
In (a) a low value of Frequency Metric is shown indicating an event that closely follows the reference. In (b) a high
value of Frequency Metric is shown indicating an event that does not closely follow the reference. Both (c) and (e)
show the extracted frequency in red and how it compares to the reference in blue, with the addition of ground truth
events in green. Both (d) and (f) show the residuals for the detected events.

Figure IV.7 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.7a shows how the metric separates the true or false detections. The detections cluster around

each other indicating that this metric cannot be used on its own to filter true detections from false detections. Figure

IV.7b shows how events separates along the metric and the signal to noise ratio. While this figure shows that low

SNR events are typically false positives, it does not show that the Frequency Metric is a useful metric for separating

the events by true and false detections.
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(a) Histogram Frequency Metric (b) Frequency Metric Vs SNR

Figure IV.7: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Frequency Metric.
These events are also shown in a scatter plot in (b) which are separated by the Frequency Metric and the signal to
noise ratio. These plots show how the metric could be used for determining true and false detections.

IV.5.4 Relative Event Power to Bandpass Metric

Relative Event Power to Bandpass Metric is the RMS of the signal residual relative to the RMS of bandpass signal.

For an event, j, Equation IV.26 shows how relative power is calculated. Here The reference is the signal, either

wideband or bandpass, with length N. Relative Event Power to Bandpass Metric is calculated using Equation IV.26

with signal residuals and the reference signal as the bandpass signal.

RelPowj =
RMSs,j√

1
N

∑N
n=1Refs,j(n)2

(IV.26)

Relative Event Power to Bandpass Metric is a metric that uses the power of the reference signal and the power in

the error signal. The power in the error signal is calculated as the RMS of the Signal Residual as above. The power

in the reference signal is RMS of the bandpass of the signal. The ratio of the RMS of the Signal Residual to the

RMS of the bandpass signal over the time period of the event is the Relative Event Power to Bandpass Metric.

The Relative Event Power to Bandpass Metric is a measure of how much the estimated burst signal matches the

bandpass signal. This gives a measure of signal error that is relative to the power of the signal. Events with greater

power might have larger RMS of the Signal Residual not because of larger error, but simply because of a larger

magnitude. This metric would aim to scale that value to be able to compare events more fairly.
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In Figure IV.8 two events with different Relative Event Power to Bandpass Metric values are shown. Figure

IV.8a shows a low value for the Relative Event Power to Bandpass Metric which is indicative of an event that closely

follows the reference. Figure IV.8b shows a high value for the Relative Event Power to Bandpass Metric, showing

an event that does not correspond well with the reference indicating a poorer characterization of the event.

(a) Good Relative Event Power to Bandpass Metric (b) Bad Relative Event Power to Bandpass Metric

(c) Good Relative Event

Power to Bandpass Metric

Magnitude Plot

(d) Good Relative Event

Power to Bandpass Metric

Histogram of Residuals

(e) Bad Relative Event Power

to Bandpass Metric Magni-

tude Plot

(f) Bad Relative Event

Power to Bandpass Metric

Histogram of Residuals

Figure IV.8: Here examples of good and bad event characterizations are shown as determined by Relative Event
Power to Bandpass Metric. In (a) a low value of Relative Event Power to Bandpass Metric is shown indicating an
event that closely follows the reference. In (b) a high value of Relative Event Power to Bandpass Metric is shown
indicating an event that does not closely follow the reference. Both (c) and (e) show the extracted magnitude in red
and how it compares to the reference in blue, with the addition of ground truth events in green. Both (d) and (f) show
the residuals for the detected events.

Figure IV.9 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.9a shows how the metric separates the true or false detections. The detections cluster around

each other indicating that this metric cannot be used on its own to filter true detections from false detections. Figure
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IV.9b shows how events separates along the metric and the signal to noise ratio. While this figure shows that low

SNR events are typically false positives, it does not show that the Relative Event Power to Bandpass Metric is a

useful metric for separating the events by true and false detections. The metric performs better as a filter with a

cutoff of 0.25 for events with SNR above 10.

(a) Histogram Relative Event Power to Bandpass Metric (b) Relative Event Power to Bandpass Metric Vs SNR

Figure IV.9: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Relative Event
Power to Bandpass Metric. These events are also shown in a scatter plot in (b) which are separated by the Relative
Event Power to Bandpass Metric and the signal to noise ratio. These plots show how the metric could be used for
determining true and false detections.

IV.5.5 Relative Event Power to Wideband Metric

Relative Event Power to Wideband Metric is the RMS of the signal residual relative to the RMS of wideband signal.

This is calculated using Equation IV.26 with signal residuals and the reference signal as the wideband signal

The Relative Event Power to Wideband Metric is a metric that uses the power of the reference signal and the

power in the error signal. The power in the error signal is calculated as the RMS of the Signal Residual as above. The

power in the reference signal is RMS of the wide band of the signal. The ratio of the RMS of the Signal Residual to

the RMS of the wide band signal over the time period of the event is the Relative Event Power to Wideband Metric.

The Relative Event Power to Wideband Metric is a measure of how much the estimated burst signal matches

the wide band signal. This gives a measure of signal error that is relative to the power of the signal. Events with

greater power might have larger RMS of the Signal Residual not because of larger error, but simply because of a

larger magnitude. This metric would aim to scale that value to be able to compare events more fairly.
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In Figure IV.10 two events with different Relative Event Power to Wideband Metric values are shown. Figure

IV.10a shows a low value for theRelative Event Power to Wideband Metric which is indicative of an event that

closely follows the reference. Figure IV.10b shows a high value for the Relative Event Power to Wideband Metric,

showing an event that does not correspond well with the reference indicating a poorer characterization of the event.

(a) Good Relative Event Power to Wideband Metric (b) Bad Relative Event Power to Wideband Metric

(c) Good Relative Event

Power to Wideband Metric

Magnitude Plot

(d) Good Relative Event

Power to Wideband Metric

Histogram of Residuals

(e) Bad Relative Event Power

to Wideband Metric Magni-

tude Plot

(f) Bad Relative Event

Power to Wideband Metric

Histogram of Residuals

Figure IV.10: Here examples of good and bad event characterizations are shown as determined by Relative Event
Power to Wideband Metric. In (a) a low value of Relative Event Power to Wideband Metric is shown indicating an
event that closely follows the reference. In (b) a high value of Relative Event Power to Wideband Metric is shown
indicating an event that does not closely follow the reference. Both (c) and (e) show the extracted magnitude in red
and how it compares to the reference in blue, with the addition of ground truth events in green. Both (d) and (f) show
the residuals for the detected events.

Figure IV.11 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.11a shows how the metric separates the true or false detections. The detections cluster around

each other but not as much as previous metrics, indicating that this metric could provide useful information on its
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own to filter true detections from false detections. Figure IV.11b shows how events separates along the metric and the

signal to noise ratio. This figure shows that low SNR events are typically false positives, and also that the Relative

Event Power to Wideband Metric is a possibly useful metric for separating the events by true and false detections.

A cutoff around 0.7 will reject many false detections and also reject some true detections.

(a) Histogram Relative Event Power to Wideband Metric (b) Relative Event Power to Wideband Metric Vs SNR

Figure IV.11: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Relative Event Power
to Wideband Metric. These events are also shown in a scatter plot in (b) which are separated by the Relative
Event Power to Wideband Metric and the signal to noise ratio. These plots show how the metric could be used for
determining true and false detections.

IV.5.6 Relative Signal Metric

Relative Signal Metric is the RMS of the instantaneous relative signal residual. Equation IV.27 shows how the

relative residual for the i-th feature for the j-th event is calculated. The Relative Signal Metric is calculated using

Equation IV.25 with relative signal residuals.

êi,j(t) =
Exti,j(t)−Refi,j(t)

Refi,j(t)
(IV.27)

Relative Signal Metric is a measure of how much the estimated burst signal deviates from a reference signal. In

Figure IV.12 two events with different Relative Signal Metric values are shown. Figure IV.12a shows a low value for

the Relative Signal Metric which is indicative of an event that closely follows the reference signal. This incorporates

a good estimate of amplitude, phase, and frequency to match the reference well. Figure IV.12b shows a high value
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for the Relative Signal Metric, showing an event that does not correspond well with the reference signal indicating a

poorer characterization of the event.

(a) Good Relative Signal Metric (b) Bad Relative Signal Metric

(c) Good Relative Signal Met-

ric Histogram of Residuals

(d) Bad Relative Signal Met-

ric Histogram of Residuals

Figure IV.12: Here examples of good and bad event characterizations are shown as determined by Relative Signal
Metric. In (a) a low value of Relative Signal Metric is shown indicating an event that closely follows the reference.
In (b) a high value of Relative Signal Metric is shown indicating an event that does not closely follow the reference.
Both (c) and (d) show the residuals for the detected events.

Figure IV.13 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.13a shows how the metric separates the true or false detections. The detections cluster around

each other indicating that this metric cannot be used on its own to filter true detections from false detections. Figure

IV.13b shows how events separates along the metric and the signal to noise ratio. While this figure shows that

low SNR events are typically false positives, it does not show that the Relative Signal Metric is a useful metric for

separating the events by true and false detections.
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(a) Histogram Relative Signal Metric (b) Relative Signal Metric Vs SNR

Figure IV.13: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Relative Signal
Metric. These events are also shown in a scatter plot in (b) which are separated by the Relative Signal Metric and
the signal to noise ratio. These plots show how the metric could be used for determining true and false detections.

IV.5.7 Removed Relative Signal Metric

Removed Relative Signal Metric is the RMS of the instantaneous relative signal residual with outliers removed. The

Removed Relative Signal Metric is calculated using Equation IV.25 with relative signal residuals, but whenever the

reference is close to zero, those samples are removed. This prevents the relative residual from approaching infinity

as the denominator approaches zero.

Removed Relative Signal Metric is a measure of how much the estimated burst signal deviates from a reference

signal. In Figure IV.14 two events with different Removed Relative Signal Metric values are shown. Figure IV.14a

shows a low value for the Removed Relative Signal Metric which is indicative of an event that closely follows the

reference signal. This incorporates a good estimate of amplitude, phase, and frequency to match the reference well.

Figure IV.14b shows a high value for the Removed Relative Signal Metric, showing an event that does not correspond

well with the reference signal indicating a poorer characterization of the event.
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(a) Good Removed Relative Signal Metric (b) Bad Removed Relative Signal Metric

(c) Good Removed Relative

Signal Metric Histogram of

Residuals

(d) Bad Removed Relative

Signal Metric Histogram of

Residuals

Figure IV.14: Here examples of good and bad event characterizations are shown as determined by Removed Relative
Signal Metric. In (a) a low value of Removed Relative Signal Metric is shown indicating an event that closely
follows the reference. In (b) a high value of Removed Relative Signal Metric is shown indicating an event that does
not closely follow the reference. Both (c) and (d) show the residuals for the detected events.

Figure IV.15 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.15a shows how the metric separates the true or false detections. The detections cluster around

each other indicating that this metric cannot be used on its own to filter true detections from false detections. Figure

IV.15b shows how events separates along the metric and the signal to noise ratio. While this figure shows that low

SNR events are typically false positives, it does not show that the Removed Relative Signal Metric is a useful metric

for separating the events by true and false detections.
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(a) Histogram Removed Relative Signal Metric (b) Removed Relative Signal Metric Vs SNR

Figure IV.15: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Removed Relative
Signal Metric. These events are also shown in a scatter plot in (b) which are separated by the Removed Relative
Signal Metric and the signal to noise ratio. These plots show how the metric could be used for determining true and
false detections.

IV.5.8 Interpolated Relative Signal Metric

Interpolated Relative Signal Metric is the RMS of the instantaneous relative signal residual with outliers removed.

The Interpolated Relative Signal Metric is calculated using Equation IV.25 with relative signal residuals, but when-

ever the reference is close to zero, those samples are removed. This prevents the relative residual from approaching

infinity as the denominator approaches zero. Additionally, after removing samples around zeros, the relative error is

linearly interpolated across the removed points.

Interpolated Relative Signal Metric is a measure of how much the estimated burst signal deviates from a reference

signal. In Figure IV.16 two events with different Interpolated Relative Signal Metric values are shown. Figure IV.16a

shows a low value for the Interpolated Relative Signal Metric which is indicative of an event that closely follows

the reference signal. This incorporates a good estimate of amplitude, phase, and frequency to match the reference

well. Figure IV.16b shows a high value for the Interpolated Relative Signal Metric, showing an event that does not

correspond well with the reference signal indicating a poorer characterization of the event.
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(a) Good Interpolated Relative Signal Metric (b) Bad Interpolated Relative Signal Metric

(c) Good Interpolated Rela-

tive Signal Metric Histogram

of Residuals

(d) Bad Interpolated Relative

Signal Metric Histogram of

Residuals

Figure IV.16: Here examples of good and bad event characterizations are shown as determined by Interpolated
Relative Signal Metric. In (a) a low value of Interpolated Relative Signal Metric is shown indicating an event that
closely follows the reference. In (b) a high value of Interpolated Relative Signal Metric is shown indicating an event
that does not closely follow the reference. Both (c) and (d) show the residuals for the detected events.

Figure IV.17 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.17a shows how the metric separates the true or false detections. The detections cluster around

each other indicating that this metric cannot be used on its own to filter true detections from false detections. Figure

IV.17b shows how events separates along the metric and the signal to noise ratio. While this figure shows that low

SNR events are typically false positives, it does not show that the Interpolated Relative Signal Metric is a useful

metric for separating the events by true and false detections. The metric performs better as a filter with a cutoff of

0.55 for events with SNR above 10.
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(a) Histogram Interpolated Relative Signal Metric (b) Interpolated Relative Signal Metric Vs SNR

Figure IV.17: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Interpolated Relative
Signal Metric. These events are also shown in a scatter plot in (b) which are separated by the Interpolated Relative
Signal Metric and the signal to noise ratio. These plots show how the metric could be used for determining true and
false detections.

IV.5.9 Relative Magnitude Metric

Relative Magnitude Metric is the RMS of the instantaneous relative magnitude residual. The Relative Magnitude

Metric is calculated using Equation IV.25 with relative magnitude residuals, described in Equation IV.27.

The Relative Magnitude Metric is a measure of how much the estimated burst magnitude deviates from a ref-

erence magnitude. In Figure IV.18 two events with different Relative Magnitude Metric values are shown. Figure

IV.18a shows a low value for the Relative Magnitude Metric which is indicative of an event that closely follows the

reference magnitude. Figure IV.18b shows a high value for the Relative Magnitude Metric, showing an event that

does not correspond well with the reference magnitude indicating a poorer characterization of the event magnitude.
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(a) Good Relative Magnitude Metric (b) Bad Relative Magnitude Metric

(c) Good Relative Magnitude

Metric Magnitude Plot

(d) Good Relative Magnitude

Metric Histogram of Residu-

als

(e) Bad Relative Magnitude

Metric Magnitude Plot

(f) Bad Relative Magnitude

Metric Histogram of Residu-

als

Figure IV.18: Here examples of good and bad event characterizations are shown as determined by Relative Magni-
tude Metric. In (a) a low value of Relative Magnitude Metric is shown indicating an event that closely follows the
reference. In (b) a high value of Relative Magnitude Metric is shown indicating an event that does not closely follow
the reference. Both (c) and (e) show the extracted magnitude in red and how it compares to the reference in blue,
with the addition of ground truth events in green. Both (d) and (f) show the residuals for the detected events.

Figure IV.19 shows how well this metric does at separating events by whether they represent a true or false

detection. Figure IV.19a shows how the metric separates the true or false detections. The detections cluster around

each other indicating that this metric cannot be used on its own to filter true detections from false detections. Figure

IV.19b shows how events separates along the metric and the signal to noise ratio. While this figure shows that low

SNR events are typically false positives, it does not show that the Relative Magnitude Metric is a useful metric for

separating the events by true and false detections. The metric performs better as a filter with a cutoff of 0.4 for events

with SNR above 10.
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(a) Histogram Relative Magnitude Metric (b) Relative Magnitude Metric Vs SNR

Figure IV.19: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Relative Magnitude
Metric. These events are also shown in a scatter plot in (b) which are separated by the Relative Magnitude Metric and
the signal to noise ratio. These plots show how the metric could be used for determining true and false detections.

IV.5.10 Relative Frequency Metric

Relative Frequency Metric is the RMS of the instantaneous relative frequency residual. The Relative Frequency

Metric is calculated using Equation IV.25 with relative frequency residuals, described in Equation IV.27.

The Relative Frequency Metric is a measure of how much the estimated burst frequency deviates from a reference

frequency. In Figure IV.20 two events with different Relative Frequency Metric values are shown. Figure IV.20a

shows a low value for the Relative Frequency Metric which is indicative of an event that closely follows the reference

frequency. Figure IV.20b shows a high value for the Relative Frequency Metric, showing an event that does not

correspond well with the reference frequency indicating a poorer characterization of the event frequency.
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(a) Good Relative Frequency Metric (b) Bad Relative Frequency Metric

(c) Good Relative Frequency

Metric Frequency Plot

(d) Good Relative Frequency

Metric Histogram of Residu-

als

(e) Bad Relative Frequency

Metric Frequency Plot

(f) Bad Relative Frequency

Metric Histogram of Residu-

als

Figure IV.20: Here examples of good and bad event characterizations are shown as determined by Relative Frequency
Metric. In (a) a low value of Relative Frequency Metric is shown indicating an event that closely follows the
reference. In (b) a high value of Relative Frequency Metric is shown indicating an event that does not closely follow
the reference. Both (c) and (e) show the extracted frequency in red and how it compares to the reference in blue,
with the addition of ground truth events in green. Both (d) and (f) show the residuals for the detected events.

Figure IV.21 shows how this metric does at separating events by whether they represent a true or false detection.

Figure IV.21a shows how the metric separates the true or false detections. The detections cluster around each

other indicating that this metric cannot be used on its own to filter true detections from false detections. Figure

IV.21b shows how events separates along the metric and the signal to noise ratio. While this figure shows that low

SNR events are typically false positives, it does not show that the Relative Frequency Metric is a useful metric for

separating the events by true and false detections.
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(a) Histogram Relative Frequency Metric (b) Relative Frequency Metric Vs SNR

Figure IV.21: This figure shows the types of events, either true positive, false positive, or false negative, that the
Magnitude Method generates. These events are shown in a histogram in (a) are binned by the Relative Frequency
Metric. These events are also shown in a scatter plot in (b) which are separated by the Relative Frequency Metric and
the signal to noise ratio. These plots show how the metric could be used for determining true and false detections.

IV.6 Circular Metrics

For metrics that relate to phase circular statistics must be used. Because phase wraps around the residuals of phase,

eφ,j must be treated differently. To this end three metrics are used that are derived from calculations shown in

Equation IV.28. Here the phase residual, eφ,j , is calculated from Equation IV.24 for phase. The event is the j-th

event and it has N samples.

Cp,j =

N∑
n=1

cos(p · eφ,j(n))

Sp,j =

N∑
n=1

sin(p · eφ,j(n))

Rp,j =
√
C2
p,j + S2

p,j

R̄p,j =
Rp,j
N

(IV.28)
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IV.6.1 Mean Direction

Mean Direction (MD) represents the average angle by which the phase estimate is off because it is an average of the

phase residual which is the difference between the detected and reference phase. It can show a consistent bias in the

phase estimate.

Equation IV.29 shows how it is calculated. The Mean Direction is measured relative to the phase of the band

pass filtered signal. When there is a prominent ground truth event the Mean Direction should indicate the phase shift

relative to the ground truth event.

MDj =atan2(S̄1,j , C̄1,j) (IV.29)

In Fig.IV.22b the detected wave has a large phase shift relative to the ground truth, causing it to have a large

Mean Direction value, whereas in Fig.IV.22a the detected wave has a small phase shift relative to the ground truth,

leading to a small Mean Direction value. This phase error may be averaging to a low value with Mean Direction, but

could be inconsistent, which would be illustrated by a large value for Circular Variance.
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(a) Good MD (b) Bad MD

(c) Good MD Phase Plot (d) Good MD Histogram of

Residuals

(e) Bad MD Phase Plot (f) Bad MD Histogram of

Residuals

Figure IV.22: Here examples of good and bad event characterizations are shown as determined by MD. In (a) a low
value of MD is shown indicating an event that closely follows the reference. In (b) a high value of MD is shown
indicating an event that does not closely follow the reference. Both (c) and (e) show the extracted frequency in red
and how it compares to the reference in blue, with the addition of ground truth events in green. Both (d) and (f) show
the residuals for the detected events.

IV.6.2 Circular Variance

Circular Variance (CV) represents the random component phase error, because it is the variance of the phase residual

which is the difference between the detected and reference phase. Equation IV.29 shows how it is calculated.

A circular variance between 0.8 and 1 is viewed as random whereas a value between 0 and 0.3 is viewed as

autocoherent meaning that the phase is consistent [58]. A value of 0 indicates that the phase error stays constant.

The Circular Variance is measured relative to the phase of the band pass filtered signal. When there is a prominent

ground truth event the Circular Variance should indicate the consistency of the phase relative to the ground truth

event.
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CVj =1− R̄1,j (IV.30)

In Fig.IV.23b the detected wave does not consistently track the ground truth, which indicates a phase residual

that is not concentrated on one value, indicating a large value for Circular Variance. However, in Fig.IV.23a the

detected wave does consistently track the ground truth, which indicates a phase residual that is concentrated on one

value, indicating a large value for Circular Variance. This phase error may be consistent with a low Circular Variance

value, but it could be shifted, which would be illustrated by a larger Mean Direction value.

(a) Good CV (b) Bad CV

(c) Good CV Phase Plot (d) Good CV Histogram of

Residuals

(e) Bad CV Phase Plot (f) Bad CV Histogram of

Residuals

Figure IV.23: Here examples of good and bad event characterizations are shown as determined by CV. In (a) a low
value of CV is shown indicating an event that closely follows the reference. In (b) a high value of CV is shown
indicating an event that does not closely follow the reference. Both (c) and (e) show the extracted frequency in red
and how it compares to the reference in blue, with the addition of ground truth events in green. Both (d) and (f) show
the residuals for the detected events.
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IV.6.3 Combined Angle Metric

The Combined Angle Metric (CAM) introduces a way to evaluate the phase shift and the consistency of the phase

shift over the detected burst. It combines the phase shift tracking of MD with the consistency/jitter measurement of

CV. Equation IV.31 shows how it is calculated.

This gives a value of 1 when the phase shift and consistency are both low indicating a good phase estimate. A

lower value means that the phase shift relative to the reference is large or the phase varies greatly from the reference

phase.

CAMj =

√(
1− |MDj |

π

)
(CVj − 1) (IV.31)

In Fig.IV.24b the detected wave does not consistently track the ground truth, which indicates a phase residual

that is not concentrated on one value or has a bias from the reference, leading to a large value for Combined Angle

Metric. However, in Fig.IV.24a the detected wave does consistently track the ground truth, which indicates a phase

residual that is concentrated on one value with a small shift from the reference, leading to a value closer to 1 for

Combined Angle Metric.
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(a) Good CAM (b) Bad CAM

(c) Good CAM Phase Plot (d) Good CAM Histogram of

Residuals

(e) Bad CAM Phase Plot (f) Bad CAM Histogram of

Residuals

Figure IV.24: Here examples of good and bad event characterizations are shown as determined by CAM. In (a) a
low value of CAM is shown indicating an event that closely follows the reference. In (b) a high value of CAM is
shown indicating an event that does not closely follow the reference. Both (c) and (e) show the extracted frequency
in red and how it compares to the reference in blue, with the addition of ground truth events in green. Both (d) and
(f) show the residuals for the detected events.

IV.7 Results

One of the aims of using metrics is to use them to tune the methods. A good metric should provide information

distinct from the others, demonstrate a search space with a well-behaved optimum, and most importantly represent

a feature that is desirable.

To find metrics that allow discrimination between optimal and non-optimal tuning values, and provide infor-

mation distinct from other metrics they are plotted for a sweep of a primary tuning parameter, threshold, for the

magnitude method. This is used to determine if the metric has the desired qualities without having to visualize over

all possible tuning parameters.

Figure IV.25 shows the various metrics derived from the confusion matrix over the primary tuning parameter,
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threshold, for the magnitude detection method. The primary tuning parameter, threshold, range is selected as be-

tween 0 dB and 30 dB. Any value lower than this range is below the noise floor and any value over this range does

not lead to any true positive detections. In IV.25a true positive count is the metric. As the threshold is increased

the number of true positive detections decreases because more ground truth events are being missed. In IV.25b false

positive count is the metric. As the threshold is increased the number of false positive detections decreases because

fewer events are being detected. In IV.25c false negative count is the metric. As the threshold is increased the num-

ber of false negatives increases because more ground truth events are not being detected. In IV.25d false positive rate

is the metric. As the threshold is increased the false positive rate decreases meaning more of the detected events are

true positive events, but this does not continue past 12 dB where is begins to increase again. In IV.25e precision is the

metric. As the threshold is increased the precision increases meaning more of the detected events are true positive

events, but this does not continue past 12 dB where is begins to increase again. In IV.25f recall is the metric. As the

threshold is increased the recall decreases because fewer of the ground truth events are being identified correctly.

In IV.25g F1 score is the metric. Over the range of the threshold F1 score has a maximum at 8 dB. In IV.25h Fβ

score is the metric. Over the range of the threshold Fβ score has a maximum at 12 dB. Precision, F1 score and Fβ

score have distinct maxima that occur in the middle of the threshold range so they are possible candidates for tuning

a method. False positive rate also has similar properties, but is not considered because it is a linear transform of

precision.
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(a) True Positive Count (b) False Positive Count (c) False Negative Count

(d) False Positive Rate (e) Precision (f) Recall

(g) F1 Score (h) Fβ Score

Figure IV.25: This figure shows the various metrics derived from the confusion matrix over the primary tuning
parameter, threshold, for the Magnitude Method. To obtain these figures, the Magnitude Method was used to extract
events. This was repeated for many values of the tuning parameter, threshold, to provide a view of the optimization
space

Figure IV.25 it shows that F1 score and Fβ score are good candidates for tuning. They have an optimum

that is within the expected range for the primary tuning parameter that appears to be well behaved. Figure IV.25g

shows a clear maximum around 8 dB, whereas Figure IV.25h shows a maximum around 12 dB. This reflects the

different weighting between correctly identifying events and identifying as many true events as possible. The metrics

represent a desirable measure of the detection, since a high value indicates that of the events detected more of them

are true events and many of the true events are found by the detection. The other metrics do not show characteristics

that are desirable for tuning.

Figure IV.26 shows the various RMS Metrics over the primary tuning parameter, threshold, for the magnitude

detection method similarly to Figure IV.25. In IV.26a Signal Metric is the metric. As the threshold is increased the

characterization of the events gets worse until reaching a maximum around 10 dB after which the characterization

of events gets better. In IV.26b Magnitude Metric is the metric. As the threshold is increased the characterization

of the magnitude of the events gets worse until reaching a maximum around 10 dB after which the characterization
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of events gets better. In IV.26c Frequency Metric is the metric. As the threshold is increased the characterization of

the frequency of the events improves but the improvement is modest until no events are detected. In IV.26d Relative

Event Power to Wideband Metric is the metric. As the threshold is increased the characterization improves until

reaching a minimum around 14 dB after which the characterization of events gets worse. In IV.26e Relative Event

Power to Bandpass Metric is the metric. As the threshold is increased the characterization of events continually

worsens until no more events are detected. In IV.26f Relative Frequency Metric is the metric. As the threshold is

increased the characterization of the frequency of the events improves until no more events are detected. In IV.26g

Relative Magnitude Metric is the metric. As the threshold is increased the characterization of the magnitude of

events worsens until no more events are detected. In IV.26h Relative Signal Metric is the metric. As the threshold

is increased the characterization of the events worsens until no more events are detected with an increase at the

start due to edge effects. In IV.26i Removed Relative Signal Metric is the metric. As the threshold is increased

the characterization of the events worsens until no more events are detected. In IV.26j Interpolated Relative Signal

Metric is the metric. As the threshold is increased the characterization of the events worsens until no more events

are detected.

Figure IV.26 it shows that Relative Event Power to Wideband Metric might be a good candidate for tuning.

It have an optimum that is within the expected range for the primary tuning parameter that appears to be well

behaved. Figure IV.26d shows a clear minimum around 14 dB. Additionally, a minimum for Relative Event Power

to Wideband Metric represents a better characterization of events, as opposed to a maximum, which would represent

worsening characterization such as with Signal Metric. However, Relative Event Power to Wideband Metric does

not quite represent a value that would be useful for experiments since it does not incorporate accurate burst detection

or phase characterization.
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(a) Signal Metric (b) Magnitude Metric (c) Frequency Metric

(d) Relative Event Power to Wideband Metric (e) Relative Event Power to Bandpass Metric (f) Relative Frequency Metric

(g) Relative Magnitude Metric (h) Relative Signal Metric (i) Removed Relative Signal Metric

(j) Interpolated Relative Signal Metric

Figure IV.26: This figure shows the various RMS Metrics over the primary tuning parameter, threshold, for the
Magnitude Method. To obtain these figures, the Magnitude Method was used to extract events. This was repeated
for many values of the tuning parameter, threshold, to provide a view of the optimization space

63



Figure IV.27 shows the various Circular Metrics over the primary tuning parameter, threshold, for the magnitude

detection method similarly to Figure IV.25. In IV.27a CV is the metric. As the threshold is increased the charac-

terization of the phase of the events becomes more varied until no events are detected. In IV.27b MD is the metric.

As the threshold is increased the characterization of the phase of the events stays fairly constant until worsening at

the end. In IV.27c CAM is the metric. As the threshold is increased the characterization of the phase of the events

becomes worse until no events are detected.

(a) Circular Variance (b) Mean Direction (c) Combined Angle Metric

Figure IV.27: This figure shows the various Circular Metrics over the primary tuning parameter, threshold, for the
Magnitude Method. To obtain these figures, the Magnitude Method was used to extract events. This was repeated
for many values of the tuning parameter, threshold, to provide a view of the optimization space

Figure IV.27 does not show any metrics that would be good candidates for tuning based on the behavior for

the primary tuning parameter because none of them have clear optimum. However, CV does represent a value that

would be useful for experiments since it incorporates one of two desirable aspects which is phase characterization.

If CV showed a clear maximum then it would be a good candidate for tuning methods.

IV.8 Conclusion

There are several families of performance metrics described, confusion matrix based metrics, circular statistic based

metrics, and RMS based metrics. These different families allow for a more complete comparison across burst

detection and characterization methods.

Characterization metrics show some ability to discriminate between True Positive and False Positive events. Fu-

ture work will be to use these as post-detection filters or clustering for detection algorithms, which the wlBurst_v2

library already does with the frequency detection.

Additionally, these metrics enable tuning. The primary tuning parameter figures show how the metrics behave as

an objective function. Only F1 score, Fβ score, and Relative Event Power to Wideband Metric appeared to be well-

behaved objective functions. While these could be used as objective functions for tuning they did not all represent

desirable metrics for the phase specific experiments. F1 score, Fβ score, and CAM do represent desirable metrics

since they measure accurate detection of bursts or accurate characterization of phase.
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Given this information, the Fβ score will be used for tuning. It provides a desirable metric and shows good

behavior for possible tuning.
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CHAPTER V

Metric-Guided Tuning of Detection and Characterization Algorithms

V.1 Introduction

The methods that were described in chapter III have many tuning parameters that affect the outcome of the detection

and characterization. Parameters that are expected to be tuned for a given experiment are designated as primary

tuning parameters. One example is the magnitude threshold for the Hilbert Magnitude method. Other parameters

that are expected to be set during the design of the algorithm are designated as secondary tuning parameters. An

example of a secondary tuning parameter is the dropout parameter, which is used to ignore times when the magnitude

briefly falls below-threshold in the wlBurst_v2 implementation of the Hilbert Magnitude method.

Setting both types of parameter is usually ad-hoc. For primary parameters, traditional values often exist such as

2-σ or 3-σ for magnitude thresholds [1] or 98th percentile for wavelet thresholds [72]. For secondary parameters,

the choice is typically arbitrary and/or based on trial and error. The purpose of this experiment is to apply automated

optimization approaches to tuning primary and secondary parameters, so that these may be set in a systematic way

and may provide performance that is closer to optimal, for some given choice of performance measurement.

The goal is to find a global maximum of one performance metric across tuning parameter space. For this

optimization problem the objective function is the metric value obtained after detection and characterization of

the data. Constraints using additional performance metrics may be explicitly implemented or may be considered

modifications of the objective function such as dropping the value to zero if another specified metric goes outside

the permitted range.

Baseline global search method is a brute force grid search, offered by wlBurst_v2, but is expensive for two

parameters and prohibitive for more than two. Many local search, hill-climbing, approaches exist that analyze a local

region of parameter space around a point and incrementally move that point towards a local maximum which imay

or may not be the global maximum [62, 65, 68]. For a smooth well-behaved objective function this is a plausible

method, but the objective function may include many local maxima especially if it is discontinuous or sampled.

Two approaches are used in this work: (1) an iterated univariate grid search sometimes called one-at-a-time

optimization [64, 65]. It globally searches each axis of the tuning parameter space in succession. (2) A random

search algorithm sometimes called creeping random search from the wlBurst_v2 library [61–63, 65–69]. It

explores neighborhoods of points with some probability distribution around a starting point and moving to any

better point found.
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Chapter IV showed that the Fβ score is a good metric to use for tuning. For all of the tuning the Fβ score will

be used.

The following sections describe optimization approaches, describe the choice of metric being optimized, list the

algorithms used for the test, and describe the primary and secondary tuning parameters for these algorithms

V.2 Methods

Here the optimization experiments are described. First is an example of the data structure that describes the tuning

parameters. Next is a description of the grid search method and the stochastic gradient descent method. Examples

are given to show how these two methods work on a two dimensional problem.

Table V.1 shows an example data structure used for optimization. This is the data structure for the Wavelet

Method. The first field is the parameter name. This includes parameters that are never tuned such as the detection

function since they determine the method to use. It also inclused primary tuning parameters such as threshold, and

secondary tuning parameters such as support sizes. The next column, Parameter Type, indicates whether the param-

eter is primary, secondary, or neither. Primary tuning parameters are those that are typically tuned and secondary

are those that are normally set ad-hoc. The next column indicates the range of the parameter. Method Specific is

used for parameters that do not have a range because they specify the method to use. Real is used for parameters

that can take any real value. Binary is used for a parameter that can have only two values. Lastly Integer is used for

parameters that can take on only integer values. The structure also includes field for a boolean for whether the tuning

parameter should be tuned. A value of 1 indicates that this parameter will be tuned in the optimization, whereas 0

means that it will stay constant for the optimization. Lastly there are fields for maximum and minimum values of the

tuning parameter. The first value represents the theoretical maximum or minimum and the second value represents

the practical maximum and minimum. This structure is used to guide the optimizations.
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Parameter Name Parameter Type Range Type Want Tune Maximum Value Minimum Value

Type of Detection Function 0 Method Specific 0 [NaN,NaN] [NaN,NaN]

Detection Function 0 Method Specific 0 [NaN,NaN] [NaN,NaN]

Burst Threshold (dB) 1 Real 1 [Inf,30] [-Inf,0]

Maximum Frequency (Hz) 2 Real 1 [Inf,100] [1,1]

Time Close Support Size (period) 2 Real 1 [Inf,10] [0,0]

Frequency Close Support Size (decade) 2 Real 1 [Inf,15] [0,0]

Time Open Support Size (period) 2 Real 1 [Inf,10] [0,0]

Frequency Open Support Size (decade) 2 Real 1 [Inf,15] [0,0]

Border Connectivity 2 Binary 1 [8,8] [4,4]

Use Constant Q Transform 0 Binary 0 [1,1] [0,0]

Bins Per Octave 0 Integer 0 [96,96] [1,1]

Record All Parameters 0 Binary 0 [1,1] [0,0]

Background Window Size (s) 2 Real 1 [Inf,20] [0,0]

Background Window Stride (s) 2 Real 1 [Inf,20] [0,0]

Use Magnitude for Calculations 0 Binary 0 [1,1] [0,0]

Table V.1: This shows an example of the data structure used to describe the tuning parameters to be used in the
various optimization methods for the Wavelet Method. The first column is the parameter name. Each adjustable
component of the method is listed. The next column, Parameter Type, describes whether the parameter is typically
tuned (primary) denoted with a 1, able to be tuned but not typically (secondary) denoted with a 2or not able to be
tuned (neither) denoted with a 0. The next column is range type. These can be Method Specific, Real, Binary, or
Integer. Method Specific is used for parameters that should not vary. Real is used for parameters that can vary over
the real numbers. Integer is used for parameters that can only vary over integers. Binary is used for parameters that
can only vary over two values. The next column describes a Boolean for whether the parameter should be altered
for the optimization process. If the value is 1 then this parameter will be tuned during the optimization. If the value
is 0 then this parameter will be kept constant over the optimization. The last two columns are the maximum and
minimum values that the parameters can assume. There are two values in each column. The first value represents
the theoretical maximum or minimum, while the second value represents the practical maximum or minimum.

V.2.1 Grid Search

The grid search first selects a tuning parameter then divides the suitable range of the parameter into linearly spaced

points depending on the number of probes selected. Evaluation of the objective function is performed with each

value of the tuning parameter set by the spacing with all other tuning parameters held constant. The optimal value

for the objective function is used to determine the tuning parameter value. The range is then changed to the value

above and below the selected tuning parameter value and this range is divided into linearly spaced points depending

on the number of probes selected. The number of levels of fine tuning is a parameter of the optimization. After a

value of the tuning parameter is chosen the next tuning parameter is chosen in the same manner.
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Algorithm 6 Grid Search Algorithm

1: Initialize x∗ = x0 where x0 is the initial values for each parameter and x∗ is the optimum
2: for i = 1 to Number of Loops do
3: for j = 1 to Number of Tuning Parameters do
4: Where the number of tuning parameters is equal to the size of x0 and xj represents the j-th value in x
5: for k = 1 to Number of Granularity Levels do
6: Sx = ∅ where Sx is the set of values for the j-th parameter for the current Granularity level
7: Sf = ∅
8: Select Number of Probes, N , for this Level
9: if k = 1 First Level then

10: Select maximum and minimum for xj from range of the input signal
11: else
12: Select maximum and minimum for xj from xj ±∆xj
13: end if
14: Calculate current Range, r, from maximum and minimum
15: ∆xj = r

N
16: Construct set of test points Sx from the maximum to the minimum at intervals of ∆xj , for replacing xj

in x∗

17: for l = 1 to Number of Probes do
18: x′ = x∗

19: Replace the j-th parameter of x′ with xj selected from Sx
20: if f(x′) > f(x∗) where f is the objective function then
21: x∗ = x′

22: end if
23: end for
24: end for
25: end for
26: end for
27: return x∗ and f(x∗)
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V.2.2 Creeping Random Search

The creeping random search method works by selecting random displacements from an original point and generating

a new starting point, only if the value of the objective function is better. First a random vector is sampled from a

multivariate normal distribution with zero mean and unit standard deviation,which generates uniform distribution

of the direction. This vector is scaled by a random value uniformly distributed in the log domain, allowing for

insensitivity to characteristic scales in the search space at a small performance penalty. Lastly, this vector is scaled

by a scale factor for each dimension. This displacement vector is added the original point. The value of the objective

function is computed and if the value is greater than the previous value then the starting point is updated along with

the new best value.

Algorithm 7 Creeping Random Search Algorithm

1: Initialize x∗ = x0 where x0 ∈ Rn
2: Initialize Nf = 0 and Nt = 0 where Nf is the number of failed probes and Nt is the total number of probes
3: while Nf is less than the number of allowable failed probes and Nt is less than the number of allowable total

probes
4: Create a random vector x+ ∈ Rn
5: Scale x+ by scale vector s ∈ Rn with elementwise multiplication obtaining xs

+

6: x′ = x∗ + xs
+

7: if f(x′) > f(x∗) then
8: x∗ = x′

9: Nf = 0 and Nf = Nf + 1
10: else
11: Nf = Nf + 1 and Nf = Nf + 1
12: end if
13: return x∗ and f(x∗)

V.2.3 Optimization Examples

In this part the optimization methods are tested on three different search spaces: a smooth Gaussian, two Gaussians

with different maxima, and single Gaussian distribution with low passed Gaussian noise. The termination criteria of

these optimizations was that a predetermined number of iterations was reached. The optimization was determined

to have reached a maximum if it identifies a maximum in the area of the known maximum.

Figure V.1 shows examples of a smooth Gaussian distribution. These show how each optimization may perform

under an ideal condition. In Figure V.1a the grid search optimization climbs the hill along a diagonal, whereas in

Figure V.1b the creeping random search optimization climbs more directly to the maximum.
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(a) Grid Search (b) Creeping Random Search

(c) Grid Search (d) Grid Search (Zoomed) (e) Creeping Random Search (f) Creeping Random Search
(Zoomed)

Figure V.1: Example function used to illustrate how the grid search and creeping random search perform on a simple
optimization. In (a) the grid search method is shown reaching the maximum by searching for maxima along each
direction. In (b) the creeping random search method is shown reaching the maximum after several iterations. The
function value per iteration for the grid search method is shown in (c) and (d). Both show the quick incremental
increase in the identified maximum. In (e) and (f) the standard and zoomed iteration of the creeping random search
are shown respectively. They show that the creeping random search method locates the maximum as well.

Figure V.2 shows examples of two Gaussians with different maxima. These show how each optimization may

perform under conditions where two maxima exist. In Figure V.2a the grid search optimization climbs to a maximum,

but it is not the global maximum, whereas in Figure V.2b the Creeping Random Search optimization climbs to the

closer maxima, but tunnels to the other hill to find the global maximum. This example shows how the grid search

method may fail if there are local maxima that are not orthogonal to the global maximum, but the Creeping Random

Search method is able to visit the local maxima, but keep moving to the global maxima.
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(a) Grid Search (b) Creeping Random Search

(c) Grid Search (d) Grid Search (Zoomed) (e) Creeping Random Search (f) Creeping Random Search
(Zoomed)

Figure V.2: Example function used to illustrate how the grid search optimization may get stuck where the Creeping
Random Search optimization will find the global optimum. In (a) the grid search method is shown starting close to
a local maximum and finding that instead of the global maximum. In (b) the Creeping Random Search method is
shown starting close to a local maximum, but finding the global maximum. The function value per iteration for the
grid search method is shown in (c) and (d). Both show the quick location of the local maximum. In (e) and (f) the
standard and zoomed iteration of the Creeping Random Search are shown respectively. They show that the Creeping
Random Search method locates the local maximum, but then finds the global maximum.

Figure V.3 shows examples of a single Gaussian distribution with low passed Gaussian noise. This noise sim-

ulates many possible maxima. These show how each optimization may perform under conditions where multiple

maxima exist and noise heavily distorts the search path. In Figure V.3a the grid search optimization climbs to a

maximum, but it is not the noiseless maximum as previously seen, but rather a maximum created by the noise. In

Figure V.3b the Creeping Random Search optimization climbs to the global maximum, but passes by other maxima

created by the noise. This example shows how the grid search method may fail if the noise is such that it cannot find

maxima in any orthogonal direction, but the Creeping Random Search method is able to visit the maxima, but keep

moving to the global maxima.
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(a) Grid Search (b) Creeping Random Search

(c) Grid Search (d) Grid Search (Zoomed) (e) Creeping Random Search (f) Creeping Random Search
(Zoomed)

Figure V.3: Example function used to illustrate how the grid search optimization may get stuck where the Creeping
Random Search optimization will find the global optimum when there are many local optima. The objective function
was constructed from a Gaussian with low frequency noise to mimic several optima. In (a) the grid search method is
shown finding a local maximum that is close to the starting point, but does not represent the global maximum. In (b)
the Creeping Random Search method is shown starting at the same point, but finding the global maximum. It finds
several local maxima, but eventually converges on the global maxima. The function value per iteration for the grid
search method is shown in (c) and (d). Both show the quick location of a local maximum. In (e) and (f) the standard
and zoomed iteration of the Creeping Random Search are shown respectively. They show that the Creeping Random
Search method locates several local maxima, but then finds the global maximum.
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V.3 Results

To tune the methods described in chapter III an objective function is necessary. In chapter IV many metrics are

explored and these can be used as objective functions. A good objective function for tuning the methods should

provide information distinct from the others, demonstrate a search space with a well-behaved optimum, and most

importantly represent a feature that is desirable. As discussed in chapter IV, the F1 score or Fβ scores are best

suited. They represent a desirable measure of the detection, since a high value indicates that of the events detected

more of them are true events and many of the true events are found by the detection. While they do not measure the

performance of the burst characterization, they are still good candidates for objective functions.

Here Fβ score is chosen with β = 0.2, because it has been used with neural data before with the given value of β

[33]. Tuning using both optimization methods was performed on both synthetic and real data. The initial parameter

settings were obtained from literature where available or set ad-hoc if there were not exact matches to literature

values.

The tuning for Fβ score on synthetic data is shown in Figure V.4. This shows a comparison of the methods and

how they perform on Fβ Score. It also shows the improvement that is made by tuning the primary or all parameters.

For the Frequency and Peak and Trough methods creeping random search does not improve detection when all

parameters are allowed to vary. This is because there was not enough iterations to allow for convergence since the

iteration count was the stopping criteria for optimization.
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Figure V.4: Tuning results for given methods. The methods were tuned using Fβ Score, with β = 0.2, on synthetic
data using creeping random search for optimization. The initial point is given by the standard parameter values for
the given method. The primary tuning is the result of tuning for Fβ score and only adjusting the primary tuning
parameter that would normally be adjusted when a method is used. The secondary tuning is the result of tuning for
Fβ Score and adjusting all adjustable parameters of the method. This chart shows that tuning primary parameters
will lead to a more desired method and that tuning for secondary tuning parameters leads to even more of a desired
result measured with Fβ score.

The tuning for Fβ score on synthetic data is shown in Figure V.5. This shows a comparison of the methods and

how they perform on Fβ Score. It also shows the improvement that is made by tuning the primary or all parameters.

All methods improved when more parameters were tuned.
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Figure V.5: Tuning results for given methods. The methods were tuned using Fβ Score, with β = 0.2, on synthetic
data using univariate grid search for optimization. The initial point is given by the standard parameter values for
the given method. The primary tuning is the result of tuning for Fβ score and only adjusting the primary tuning
parameter that would normally be adjusted when a method is used. The secondary tuning is the result of tuning for
Fβ Score and adjusting all adjustable parameters of the method. This chart shows that tuning primary parameters
will lead to a more desired method and that tuning for secondary tuning parameters leads to even more of a desired
result measured with Fβ score.

The tuning for Fβ score on real data is shown in Figure V.6. This shows a comparison of the methods and how

they perform on Fβ Score. It also shows the improvement that is made by tuning the primary or all parameters. For

the Frequency and Curve Fit methods creeping random search does not improve detection when all parameters are

allowed to vary. This is because there was not enough iterations to allow for convergence since the iteration count

was the stopping criteria for optimization.
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Figure V.6: Tuning results for given methods. The methods were tuned using Fβ Score, with β = 0.2, on real data
using Creeping Random Search for optimization. The initial point is given by the standard parameter values for
the given method. The primary tuning is the result of tuning for Fβ score and only adjusting the primary tuning
parameter that would normally be adjusted when a method is used. The secondary tuning is the result of tuning for
Fβ Score and adjusting all adjustable parameters of the method. This chart shows that tuning primary parameters
will lead to a more desired method and that tuning for secondary tuning parameters leads to even more of a desired
result measured with Fβ score.

The tuning for Fβ score on synthetic data is shown in Figure V.7. This shows a comparison of the methods and

how they perform on Fβ Score. It also shows the improvement that is made by tuning the primary or all parameters.

All methods improved when more parameters were tuned.
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Figure V.7: Tuning results for given methods. The methods were tuned using Fβ Score, with β = 0.2, on real data
using univariate grid search for optimization. The initial point is given by the standard parameter values for the given
method. The primary tuning is the result of tuning for Fβ score and only adjusting the primary tuning parameter
that would normally be adjusted when a method is used. The secondary tuning is the result of tuning for Fβ Score
and adjusting all adjustable parameters of the method. This chart shows that tuning primary parameters will lead
to a more desired method and that tuning for secondary tuning parameters leads to even more of a desired result
measured with Fβ score.

V.4 Conclusion

Using these optimization approaches methods for extracting bursts can be improved. Using the metric of Fβ Score

each method was shown to improve from the initial conditions. Optimizing for this metric means that the methods

with the new tuning parameters will extract more true bursts and fewer false bursts.

This work suggests that to obtain better results for burst detection and characterization methods tuning should be

performed over all possible tuning parameters. The metric to use as the objective function should be the Fβ score.

Future work in this optimization could include using different data sets for the optimization. This could show

how sensitive the tuning is to the data. It may show that tuning is data set specific and that optimization should be

done for each different data set.

Future work could also include using different kinds of metrics that would tune for specific requirements such

as a good frequency match between detected and ground truth events. In this case a metric that focuses on frequency

match such as the Frequency Metric metric might be used. Other metrics could be combined in an averaging scheme

so multiple metrics could make a combined metric like CAM.
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CHAPTER VI

Conclusion

Detecting and characterizing oscillations in brain signals is an active field of study. Tuning the algorithms used

to do so is a non-trivial problem, especially for secondary tuning parameters that are set ad-hoc at design time.

This work presents a rigorous study of performance metrics that are useful for measuring how well an algorithm is

performing its desired tasks with different performance metrics being important for different chosen applications. A

new performance metric useful for tuning algorithms when phase characterization is important is also presented, the

CAM.

This work then applies these performance metrics to automated tuning of primary and secondary tuning pa-

rameters. In conclusion, the tools presented in this work enable improved performance of oscillation detection and

characterization methods and make it practical to tune algorithms that have a large number of tuning parameters.

The design of new detection and characterization methods using performance metrics to cluster, accept or reject

detected events is identified as an avenue for future work.

This work suggests that to obtain better results for burst detection and characterization methods tuning should be

performed over all possible tuning parameters. The metric to use as the objective function should be the Fβ score.
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