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Chapter 1

General Introduction

“Every act of perception is to some degree an act of creation and every act of memory

is to some degree an act of imagination”

-Oliver Sacks

When I was a child, I would often lay in the grass and take in the world around me.

I would be in awe at how my senses were filled with information as I felt a caterpillar

crawl up my leg or heard a dog bark in the distance. In these moments, I was always

left wondering: how did I distinguish the caterpillar from the blades of grass? How did I

instantly know it was a dog and not another animal? While I have added some layers of

refinement, these are fundamentally the same questions I am asking in my studies today.

How does the brain transform an exuberant number of incoming noisy signals at imperfect

noisy receptors, and convert them into meaningful percepts? Ostensibly, this process must

involve a number of different neural computations. Thus, understanding the process of

perception requires a deeper dive into the underlying neural computations. Specifically,

what neural computations are being performed by the brain and what features are extracted

from incoming signals as a result? When do these neural computations occur and do they

contain any temporal patterns? And finally, where in the brain do they occur and do these

computations form repeating motifs that are present throughout several brain areas?

Studying the what, when, and where of neural computations benefits from analyzing

the brain at different levels of detail in order to provide varying constraints to the questions.

In this dissertation, I have adopted Marr’s computational, algorithmic, and implementa-

tion levels of analysis (Marr, 1982) as initial guides of different levels of description to

approach perceptual processes. While there are a number of criticisms regarding Marr’s in-

formation processing framework, such as the independence between the levels (Bechtel &

Shagrir, 2015; McClamrock, 1991), overemphasis of the computational level (Love, 2015),
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omission of learning and development (Poggio, 2012), Marr’s levels nevertheless provide

a helpful framework for studying perceptual phenomena with varying constraints.

This dissertation is thus divided into three main parts (Figure 1.1) beginning with the

implementation level and ending at the computational level. I will investigate: 1) informa-

tion processing embedded within neural spikes, local field potentials, and current source

density within a localized microcircuit 2) broaden out to whole field EEG recordings to

study algorithms the brain uses to optimize object recognition, and 3) finally compare ob-

ject recognition between humans and artificial neural networks to find how these two model

systems of vision converge (or diverge). By focusing individually at each of these levels, I

will sacrifice varying degrees of specificity in answering the what, when, and where of neu-

ral computations. For example, focusing on the implementation level by studying a specific

neural circuit in primary visual cortex (V1) will necessarily constrain the neural computa-

tions I can uncover in other brain areas in response to a visual stimulus. However, I will

gain improved resolution into when and where within V1 these neural computations are

actualized. Similarly, I will lose spatial and temporal resolution when I study the algorithm

and computational levels but gain insights into interactions between brain areas.

Figure 1.1: Dissertation organization and project summary.

2



A common thread that will pervade all of the chapters will be the use of machine learn-

ing decoding methods to characterize the information present across the respective neural

spikes, current source density, local field potential, and layers activations within artificial

neural networks. While there are a number of different methods including reverse correla-

tions, choice probability, information theory, amongst others that could characterize stimu-

lus features as well, I have chosen decoding methods because they provide a rich framework

to generalize information states in space (Cichy, Pantazis, & Oliva, 2014), time (Carlson,

Hoogendoorn, Kanai, Mesik, & Turrett, 2011; King & Dehaene, 2014), frequency, and be-

tween model systems (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, Mur, Ruff, &

Kiani, 2008a; Kriegeskorte, Mur, & Bandettini, 2008). In effect, I will search for the what

when and where of perception using “machines” as both a tool and as a comparative model

to “men”.

1.1 Implementation Level: Information embedded in neural spikes, local field po-

tentials, and current source density

Looking at the physical properties that constitute the brain can be a daunting task. There

are several different scales at which one can investigate the physical embodiment of per-

ception: from the large structural white matter tracks that connect the two hemispheres

together to the structure of specific proteins present in signaling cascades. Beyond scale,

the physical properties of the brain can also be divided into different broad categories:

electrical, chemical, structural, and vasculature. These categories are tightly interwoven

and interdependent. For example, it is the chemical gradient between intercellular and ex-

tracellular spaces that leads to inward and outward electrical currents. While nonspecific,

these categories serve as conceptual scaffolds and are closely linked to the tools we use in

measuring brain function. In this section, I will limit my discussion to the measurement

of the brain’s electrical properties while ignoring other physical properties, with one no-

table exception when discussing how structure/cytoarchitecture directly affects electrical
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measurements.

1.1.1 Action Potentials

Electrical activity in the brain can be measured using action potentials (neural spikes),

local field potentials, and current source density. Each of these signals have slightly differ-

ent biophysical origins. An action potential is observed when a neuron reaches its thresh-

old potential leading to an abrupt depolarization due to changes in membrane permeability

from the opening of voltage gated channels (Bean, 2007). Action potentials have his-

torically been recorded either as single-unit activity or as multi-unit activity. Single unit

activity is achieved by isolating a single neuron either extracellularly by being sufficiently

close to a neuron or by piercing the neuron’s membrane altogether in patch clamp or volt-

age clamp techniques (Perkins, 2006). Isolating individual action potentials from neurons

without piercing the membrane, or spike sorting, can be difficult and subjective (Neymotin,

Lytton, Olypher, & Fenton, 2011). While newer algorithms, including ones making use of

convolutional neural networks, have shown promise in performing automated spike sorting

(Buccino et al., 2020; Tolooshams, Song, Temereanca, & Ba, 2019), an alternative is to use

multiunit activity if there is less emphasis on isolating individual units. Multiunit activ-

ity does not attempt to isolate individual neuron contribution but rather isolates the action

potential signal more generally through the use of filters (Zeitler, Fries, & Gielen, 2006).

1.1.2 Local Field Potentials

In contrast to the action potential, which reflects the all-or-none depolarization of a

neuron, the local field potential (LFP) is more complex and reflects a non-specific con-

glomeration of neuronal signals, including contributions from action potentials (Buzsáki,

Anastassiou, & Koch, 2012), sodium currents (Ray, Crone, Niebur, Franaszczuk, & Hsiao,

2008), calcium currents (Schiller, Major, Koester, & Schiller, 2000), and gap junctions

(Traub & Bibbig, 2000). Obtained by filtering out the low frequency signals from record-

ings, LFPs also capture the graded potentials, the input signals that do not depolarize a
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cell enough to reach the threshold potential (Bijanzadeh, Nurminen, Merlin, Clark, & An-

gelucci, 2018).

A number of studies have found the LFP to be of particular behavioral and mechanistic

relevance (for review see Fries, 2015), in some instances explaining behavior better than

action potentials (Pesaran, Pezaris, Sahani, Mitra, & Andersen, 2002). In addition, dif-

ferent frequency bands within the LFP signal contain different types of information, with

some associated more with feedforward processes, while other frequency bands associ-

ated with feedback processing (Bastos et al., 2015; Belitski et al., 2008; Van Kerkoerle et

al., 2014). These oscillatory components have been particularly relevant in multisensory

research, which I will expand upon in section 1.2.

However, there are a number of issues of interpretability with LFPs, in particular linking

the relative contribution of different components to different frequency bands. For example,

it has long been believed that high gamma is tightly linked to action potentials (Mukamel et

al., 2005; Nir et al., 2007). However, a study which manipulated how effective the stimuli

was in driving responses, found that MUA and high gamma disassociate in both primary

auditory and visual cortex, especially during the sustained response for V1 and to a lesser

degree A1 (Leszczyński et al., 2020). Thus, the relationship between different components,

such as action potentials, to different frequency bands of the LFP is not well known. These

are compounded by issues in localizing the origin of LFP signals due to passive volume

conduction.

1.1.3 The role of volume conduction in local field potentials

Measuring the amount of spatial spread of the local field potential is difficult for a

number of reasons. When a local neuron is activated, the signal may get propagated by ex-

citing other neurons in the network, leading a traveling wave of activity (Sato, Nauhaus, &

Carandini, 2012; Zanos, Mineault, Nasiotis, Guitton, & Pack, 2015), but it can also simply

volume conduct. Therefore, it is difficult to know whether the stimuli evoked activity is
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leading to LFP spread through passive or active ways (Dubey & Ray, 2016). Additionally,

modeling work (Lindén et al., 2011) has shown that cell morphology and signal correla-

tions between populations of nearby cells is a considerable factor in determining the extent

of passive spread. For example, with uncorrelated synaptic activity, the spatial reach can

be a few micrometers (Xing, Yeh, & Shapley, 2009) but for correlated signals in pyrami-

dal cells the spread can be several millimeters (Kajikawa & Schroeder, 2011). Pyramidal

cells, due to their asymmetry are amongst the largest contributors to the LFP signal, with

symmetrical cells contributing considerably less to the LFP signal. In addition horizontal

connections in the superficial layers which can lead to higher coherence have also been

shown to be contributing factors in LFP spread (Dubey & Ray, 2016).

1.1.4 Examples of volume conduction potentially leading to incorrect localization

inferences

There are a number of studies that have initially localized processes to various brain

locations that have been later shown to reflect neural activity that was volume conducted

from other distant brain structures. For example, theta oscillations in the dorsal lateral stria-

tum were initially proposed to mediate behaviorally relevant interactions between striatum

and cortex (Tort et al., 2008; von Nicolai et al., 2014). However, a recent study applied a

bipolar derivation to the LFP to reduce volume conduction, and found that theta oscillations

disappeared altogether from the striatum (Lalla, Rueda Orozco, Jurado-Parras, Brovelli, &

Robbe, 2017). Similarly, local field potentials that were once thought to originate in the

lateral habenula were found to be in fact volume conducted from theta rhythms originating

in the hippocampus (Bertone-Cueto et al., 2020). In this study, theta waves persisted in

the lateral habenula, despite pharmacological inactivation to the lateral habenula using a

sodium channel blocker. Furthermore, independent component analysis showed that the

lateral habenula was not the generator of the theta signal.

Similar localization problems have emerged in multisensory studies, where areas of
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sensory convergence have been labeled as sites of cross-modal modulation when they are in

fact volume conducted spread from two separate sensory areas (Galindo-Leon et al., 2019;

Kajikawa, Smiley, & Schroeder, 2017). For example, one study used laminar probes in

inferotemporal (IT) cortex and auditory cortex while macaques either viewed faces of other

macaques or heard vocalizations, or both and found that the LFP signals in auditory cortex

from visual stimulus presentations were no longer found in the CSD signal (Kajikawa et

al., 2017). This study and others demonstrate the need to quantify and characterize local

and distant signals, as volume conduction can particularly become an issue in localization

when the distant signal is stronger than the local signal.

1.1.5 Current Source Density

One way to reduce the effects of volume conduction is to use the current source den-

sity (CSD), which is the second spatial derivative of the LFP (Mitzdorf, 1985). The CSD

signal is composed of sinks which are the active inward currents, and sources which are

the accompanying passive and equal passive outward currents, dissipated in time. The

main contributors to the CSD signal are dendritic excitatory post synaptic potentials, with

relatively less inhibitory post synaptic potentials coming from the soma (Mitzdorf, 1985).

While the CSD signal might contain some passive diffusive and displacement current out-

side of synaptic transmembrane currents, these are typically only present at frequencies

below 4hz (Gratiy et al., 2017). Interestingly, the CSD has shown to generally be a more

complex signal than LFP and MUA, requiring more principle components to explain signal

variance (Einevoll et al., 2007; Schaefer, Kössl, & Hechavarría, 2017). Thus, it captures

the temporal and spatial summation found in the LFP signal, preserving the complexity in

that signal, but also eliminates much of the volume conduction. It is for this reason, that a

number of studies have adopted the CSD and CSD derived signals in order to quantify the

amount of volume conduction present in a given area (Kajikawa & Schroeder, 2011, 2015;

Kajikawa, Smiley, & Schroeder, 2017)
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1.1.6 Constraints at the implementation level

The primary constraints of the implementation level is that the meaning of the findings

largely depend on the algorithms and functions used at the two other levels. The biophysical

components of the action potential, LFP, and CSD become meaningful in the context of

the information these signals convey. It was for this reason that David Marr observed,

“Trying to understand perception by studying only neurons is like trying to understand

bird flight by studying only feathers: It just cannot be done” (Marr, 1982). Nevertheless,

without proper understanding at the implementation level, incorrect inferences can be made

regarding function and the algorithms underlying those functions as discussed earlier in this

introduction. Therefore, the implementation level is best studied when the “what” of the

neural computation has been previously explored. Thus, in chapter 2 and 3 and of this

dissertation, I will constrain the what to specific features, namely eye of origin, orientation,

and stimulus history, while studying where and when these features are extracted within the

V1 microcircuit. This type of study can then be expanded upon with further studies with

added complexity, such as exploring how features are combined when they are present in

disparate sensory modalities, which I explore in the Appendix chapter. The combination of

the senses will be the focus of the algorithmic level in the next section.

1.2 Algorithmic Level: Combining the senses

The integration of multisensory cues depends on the stimulus properties of incoming

stimuli (Ernst & Banks, 2002; Parise & Ernst, 2016). For the brain to integrate and weigh

the relative reliability of incoming sensory cues (Ernst & Banks, 2002; Morgan, DeAngelis,

& Angelaki, 2008), they must be sufficiently close in space (Meredith & Stein, 1986) and

time (Meredith, Nemitz, & Stein, 1987). In addition, the semantic congruence of sensory

cues influences how well multisensory signals are combined (Laurienti, Kraft, Maldjian,

Burdette, & Wallace, 2004). These multisensory integration principles, as written above,

have traditionally been formulated from a stimuli-centric perspective. However, from a
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brain-centric perspective these principles can be reduced back to the original three ques-

tions presented in this dissertation: where, when, and what types of sensory information

must be present in the brain for integration to occur. Said in another way, these become

questions of what stimulus features are extracted from each sensory modality and where

and when in the brain might they converge.

Thus, understanding the neural underpinnings of how the brain combines the senses

can be improved through a broader look into its functional organization. The neocortex

has been commonly segmented into areas dedicated to processing incoming information

from our five senses (Felleman & Van Essen, 1991). However, this compartmentalization

has been questioned by many studies (Kayser, Petkov, Augath, & Logothetis, 2005; Kayser,

Petkov, & Logothetis, 2008; Martuzzi et al., 2007; Murray et al., 2005), leading some to the

other extreme—is the entirety of neocortex multisensory (Ghazanfar & Schroeder, 2006)?

A number of fMRI studies in blind individuals have shown that in the absence of vision,

visual cortex activation commonly associated with visual objects is utilized to encode sound

objects (Amedi, Raz, Pianka, Malach, & Zohary, 2003; van den Hurk, Van Baelen, & Op

de Beeck, 2017; Vetter, Smith, & Muckli, 2014). Similar recruitment of auditory areas

and reweighting of visual cues has been found in deaf individuals and cochlear implant

users (Benetti et al., 2017; Bola et al., 2017; Butera et al., 2018). Overall, these studies

demonstrate the brain’s capacity for marked cross-modal plasticity, in which areas normally

associated with one sensory modality can be influenced (and even taken over) by other

sensory modalities. Further, they speak to a general ability of the brain to use information

across senses to optimize encoding even at early areas.

1.2.1 Evidence of feedforward cross-modal modulation

Conceptually, there are two broad ways by which disparate senses might modulate each

other—during the feedforward pass of sensory processing or through convergence in asso-

ciation cortices following the initial feedforward sweep and subsequent feedback (Brand-
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man, Avancini, Leticevscaia, & Peelen, 2020). Crossmodal activation early along the sen-

sory hierarchy, suggesting potential feedforward modulation, has been found in a number

of studies. For instance, an fMRI optogenetic study in rats found that excitation of infra-

granular excitatory pyramidal neurons in V1 enhanced auditory brainstem BOLD responses

in the inferior colliculus (Leong et al., 2018). At the level of the cerebral cortex, an fMRI

study found that noise bursts activated primary visual cortex and checkerboards activated

primary auditory cortex, and when presented together these stimuli shortened the latency of

the hemodynamic BOLD response in each area, suggesting multisensory facilitation (Mar-

tuzzi et al., 2007). In another fMRI study, investigators showed movies consisting of video,

audio, and audiovisual components to awake and anesthetized macaques. Here, they found

that core and belt auditory cortical areas were activated by just the visual components of

the movie, and demonstrated audiovisual convergence in the caudal portion of primary au-

ditory cortex, as well as in belt and parabelt areas (Kayser et al., 2008). Similarly, touch

has been shown to modulate activity in early auditory areas with integration of touch and

sound in the auditory caudal belt (Kayser et al., 2005). Using EEG, combined somatosen-

sory and auditory stimulation has been found to elicit multisensory responses greater than

the summed responses of either sound or touch alone as early as 50ms post-stimulus onset

(Murray et al., 2005).

A number of different mechanisms may underlie the modulation of feedforward au-

ditory processes. One potential mechanism is through oscillatory phase resets across the

different sensory modalities (Fries, 2015). Links between phase reset and perception were

found in an electrocorticography (ECoG) study in which epilepsy patients performed a

speeded reaction time test in which they were asked to identify the presence of visual,

auditory, and audiovisual stimuli. In the audiovisual condition, it was found that visual

stimulation modulated auditory activity via phase reset in delta and theta bands. Further-

more, stronger synchrony between regions led to faster reaction times (Mercier et al., 2015).

Similar phase resets have also been noted in a number of other studies (Romei, Gross, &
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Thut, 2012; Simon & Wallace, 2017). However, it is important to note that oscillations can

also play a role through attentional mechanisms with phase resets coming through feedback

from supramodal areas (Lakatos et al., 2009). Further mechanisms by which other sensory

modalities might influence auditory processes include nonspecific increases in membrane

potential. They may come from increased arousal or other mechanisms such as stochastic

resonance—the phenomenon where inserting noise into a non-linear system such as the

human brain paradoxically increases perceptual awareness (Fujioka, Ross, Kakigi, Pantev,

& Trainor, 2006; Lugo, Doti, & Faubert, 2008). Interestingly, these mechanisms do not

rely on the stimulus being semantically congruent in order to enhance sensory processing.

1.2.2 Evidence of feedback cross-modal modulation

In contrast, top-down enhancement from feedback processes rely on higher level se-

mantic properties to help with causal inference, helping bind sensory stimuli that are com-

ing from a common source (Körding et al., 2007). Speech in particular relies on binding the

semantic components found in the visual and auditory stream. In a study using EEG and

fMRI, subjects listened/viewed auditory and visual syllables alone, congruent audiovisual

syllables, and incongruent syllables. It was found that the reliability of the visual compo-

nent influenced connectivity between visual and auditory cortices, but the congruence of the

audiovisual stimulus determined the connectivity between superior temporal sulcus (STS)

and primary visual and auditory areas (Arnal, Morillon, Kell, & Giraud, 2009). Further

MEG and EEG studies found that there was a shift in oscillations from delta oscillations

(3-4 Hz) in congruent speech to beta high-gamma coupling (15 Hz, 60-80 Hz) in incongru-

ent and noisy speech in STS (Arnal, Wyart, & Giraud, 2011; Schepers, Schneider, Hipp,

Engel, & Senkowski, 2013). A recent EEG study has further found that delta oscillations

(1-4 Hz) specifically tracks speech comprehension, whereas theta (4-8 Hz) tracks speech

clarity (Etard & Reichenbach, 2019). To further investigate the role of vision on speech

comprehension, one study manipulated the timing between visual and auditory stimuli. In
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this study, it was found that perception was better when audio lagged behind video, and

resulted in reduced activity in STG, presumably due to inhibition of phonemes that would

not be compatible with the video (Karas et al., 2019). These results complement another

study which manipulated subjects’ expectations of upcoming words, showing priming ef-

fects in STG at about 100 ms latency (Wang, Zhang, Zou, Luo, & Ding, 2019). Together,

these results point to the importance of the STG in speech perception.

While top-down modulation occurs in association cortices, such as the STG, top-down

influences can extend as far back as primary sensory cortices. A recent MEG study showed

that visual lip reading can create a coarse auditory speech representation in early auditory

cortices, independent of initial auditory input (Bourguignon, Baart, Kapnoula, & Moli-

naro, 2020). Complementing this finding, a study found frequency specific neural patterns

from auditory predictions that activated auditory cortex in a tonotopic fashion (Demarchi,

Sanchez, & Weisz, 2019). The interplay between feedforward and feedback were delin-

eated further in a 7T fMRI study where subject viewed visual, auditory and audiovisual

stimuli with varying levels of attention. Remarkably, they found that audiovisual interac-

tions were found most prominently in infragranular layers of primary auditory cortex and

attentional influence present in supragranulars layer, suggesting distinct circuits for these

processes (Gau, Bazin, Trampel, Turner, & Noppeney, 2020).

1.2.3 The role of causal structure in cross-modal modulation

The interplay between feedforward and feedback activity has led to further exploration

of the role of causal inference in multisensory integration. Recent EEG studies have sug-

gested that multisensory integration occurs in a hierarchical manner beginning with an ini-

tial segregation of information at the level of the early sensory cortices, followed by infor-

mation fusion according to stimulus reliability in intermediate areas, and finally by causal

inference in decision-making areas which ultimately determines whether the stimuli should

remain fused or segregated (Cao, Summerfield, Park, Giordano, & Kayser, 2019; Rohe &
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Noppeney, 2018). However, what defines an early area, intermediate area, and area needed

for decision making? And is this gradient fixed or can it change depending on how relevant

the multisensory information is to behavior? These are important questions as even within

typical integration sites such STG, demarcations have been found between anterior and

posterior STG with decisional activity localizing to more posterior regions (Ozker, Schep-

ers, Magnotti, Yoshor, & Beauchamp, 2017). The demarcation is corroborated by studies

that show anterior STG responds more vigorously to clear auditory components while pos-

terior STG responds more vigorously when speech has lower signal to noise, suggesting

that posterior STG is more sensitive to the reliability of the incoming visual and auditory

signals and thus more suited to perform multisensory integration (Ozker et al., 2017).

1.2.4 Towards characterizing the stimulus feature contained in sensory streams

The majority of the multisensory literature reviewed thus far have relied on univariate

analyses, using response magnitudes as a way to gauge multisensory integration in both

EEG and fMRI. However, a larger BOLD or EEG response does not necessarily equate

to more information present at a given location (Harrison & Tong, 2009; Jehee, Brady, &

Tong, 2011; Kok, Jehee, & de Lange, 2012; Laurienti, Perrault, Stanford, Wallace, & Stein,

2005). Furthermore, it is becoming increasingly evident that an understanding of how the

brain codes for stimulus properties and their respective reliability will requires studying

neuronal populations (Ma, Beck, Latham, & Pouget, 2006). In particular, multivariate pat-

tern analysis (decoding) has been useful in abstracting the increased information present

in a multisensory signal when compared to unisensory signals (Jung, Larsen, & Walther,

2018) rather than activation. Additionally, a decoding framework makes it possible to fuse

the information gained from EEG and fMRI and place them into a common computa-

tional space with the use of representational similarity analysis (Cichy & Pantazis, 2017;

Radoslaw Martin Cichy, Pantazis, Oliva, 2014, 2016; Kriegeskorte, Mur, & Bandettini,

2008b).
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1.2.5 Representational Similarity Analysis (RSA) as a framework for testing algo-

rithms

The basic premise behind RSA (Kriegeskorte et al., 2008b) is to use similarity as a

metric between two “entities” to construct a representational map or geometry between

all of the possible “entities” of interest. I purposely use the vague word “entity” here, as

what is compared can be completely arbitrary and all depends on the research questions

being asked. For example, the “entity” can be the neurophysiological responses to visual

objects, or it can be of the relative number of vertical lines contained within visual objects.

The similarity metric that is used is also somewhat arbitrary as similarity can be deter-

mined by the correlation between the entities, or the Euclidean distance, or determined

through cross-validated decoding performance in distinguishing between two entities. The

comparison of neural responses shares many common threads to earlier perceptual frame-

works (see ‘similarity rule’ in Teller, 1984), but what has made RSA an especially powerful

tool in recent years is the use of similarity across several stimuli comparisons to construct

representational dissimilarity matrices (RDMs). The RDMs can be thought of as represen-

tational geometries, mapping out the unique distance/difference each entity has in relation

to every other entity measured. The key advance in this process is that all of the entities

are now within representational space and are no longer limited by the original measure-

ments used to measure that entity. In other words, the RDMs make it possible to connect

millions of voxels to EEG recordings containing 128 channels to laminar recordings with

24 channels to behavior. As a result RSA has become a framework for hypothesis test-

ing of different algorithms (Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cecere, Gross,

Willis, & Thut, 2017; Cichy et al., 2014; Giordano, McAdams, Zatorre, Kriegeskorte, &

Belin, 2013; Kriegeskorte et al., 2008a), as well as for comparing between model systems

(Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte et al., 2008a; Tovar, Murray, & Wal-

lace, 2020; Xu & Vaziri-Pashkam, 2021). In this regard, RSA also aligns with the ’analogy

rule’ in Teller’s perceptual framework in that psychophysical and physiological data can be
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plotted on meaningfully similar axes.

1.2.6 Animacy as an organizing principle in the brain

Using RSA and other analyses, it has been found that one of the guiding principles or

algorithms the brain utilizes is whether an object is living (animate) or non-living (inani-

mate). This organizational principle will be the focus of Chapter 4 and was first noticed in

patients with brain damage that exhibited category-specific deficits in naming animate ob-

jects (Capitani, Laiacona, Mahon, & Caramazza, 2003; Kolinsky et al., 2002; Warrington

& Mccarthy, 1987). Since then, a body of literature in both audition and vision have shown

a distinct behavioral, fMRI, and M/EEG divide between animate and inanimate objects

(Carlson, Ritchie, Kriegeskorte, Durvasula, & Ma, 2014; De Lucia, Tzovara, Bernasconi,

Spierer, & Murray, 2012; Grootswagers, Ritchie, Wardle, Heathcote, & Carlson, 2017;

Huth, Nishimoto, Vu, & Gallant, 2012; Kriegeskorte, Mur, Ruff, & Kiani, 2008; Mur-

ray, 2006; Ritchie, Tovar, & Carlson, 2015). The division in the brain for animate and

inanimate objects is thought to have arisen due to evolutionary forces (Mahon, Anzellotti,

Schwarzbach, Zampini, & Caramazza, 2009; New, Cosmides, & Tooby, 2007). Support-

ing this theory, a study by Kriegeskorte et al. 2008 found a common categorical animacy

distinction in monkey inferotemporal (IT) cortex and human IT cortex. The animacy dis-

tinction was more prominent in IT than primary visual cortex, and several lower level mod-

els of vision were not able to account for the category clustering observed in IT cortex.

Despite these shared similarities between species, and evidence of animate and inanimate

categories in infants (Simion, Regolin, & Bulf, 2008), it is an open question how much

experience affects the animate/inanimate divide with a number of studies showing consid-

erable category effects from stimulus exposure and subject expertise for different categories

(Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; Livingstone et al., 2017).

Nevertheless, whether through innate brain development or through experience, the

overall categorical nature of animacy has been reinforced with the use of carefully con-
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trolled animate/inanimate stimuli that account for shape (Bracci, Ritchie, & Op de Beeck

2017; Ritchie & Op De Beeck 2018). Further, the animate/inanimate category bound-

ary has been used to show that representational spaces are perceptually relevant, linking

spatial and temporal properties of representational space with behavior (Carlson, Ritchie,

Kriegeskorte, Durvasula, & Ma, 2014; Ritchie, Tovar, & Carlson, 2015). Using the relative

distances of objects from the animate inanimate category boundary, studies (Carlson et al.,

2014; Ritchie et al., 2015) have been able to make predictions on categorization reaction

times. Namely, objects closer to the animate inanimate category boundary are more dif-

ficult to distinguish as animate or inanimate and as such will have longer reaction times.

Conversely, objects far apart from the category boundary are easier to distinguish as ei-

ther animate or inanimate and as such have shorter reaction times. These predications fall

within the framework of perceptual decision-models which state that evidence close to a

decision boundary is more ambiguous, resulting in more decision time, while evidence far

from a boundary is less ambiguous, resulting in more rapid decisions (Ashby & Maddox,

1994; Dunovan, Tremel, & Wheeler, 2014; Pike, 1973).

Similarly, auditory studies have also shown animacy to be an abstract category dis-

tinction, accounting for lower level features (Giordano et al., 2013; M. M. Murray, 2006).

Furthermore, the visual cortex of blind individuals mirror the neural organization of visual

objects in sighted individuals, supporting a possible shared semantic animacy distinction

between sensory modalities (Bedny, Pascual-Leone, Dodell-Feder, Fedorenko, & Saxe,

2011; Mahon et al., 2009; van den Hurk et al., 2017). Beyond sharing a category distinction

for animacy, a common perceptual advantage for animate objects over inanimate has been

observed in both modalities. In vision, animate objects are categorized faster than inani-

mate objects, are consciously perceived more in the attentional blink and are found faster

in visual search tasks (Carlson et al., 2014; Jackson & Calvillo, 2013; Lindh, Sligte, As-

secondi, Shapiro, & Charest, 2019; New et al., 2007; Ritchie et al., 2015). Auditory studies

have similarly found faster categorization times for animate objects (Vogler & Titchener,
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2011; Yuval-Greenberg & Deouell, 2009). These behavioral differences suggest that these

category classes may have neural encoding differences with more effective processing for

animate objects. This difference may be from evolutionary origins with survival depending

on recognition and further processing of living stimuli (Laws, 2000). Neurally, the number

of specialized areas that have been identified for animate subcategories such as faces in the

fusiform face area (FFA) and bodies in the extrastriate body area (EBA) further support an

encoding difference between animate and inanimate objects (Downing, Jiang, Shuman, &

Kanwisher, 2001; Kanwisher, McDermott, & Chun, 1997).

Furthermore, visual degradation of stimuli selectively contracts the representational

space of animate objects without affecting inanimate objects (Grootswagers et al., 2017).

The asymmetric compression for degraded animate objects suggests that the neural repre-

sentational space is malleable and furthermore the initial encoding of neural representations

influences how stimulus perturbations warp the representational space. Thus, there is ample

opportunity to test how combining visual and auditory information might influence object

encoding at the category level.

1.2.7 Constraints at the algorithm level

It is important to note that whole brain recording methods are far removed from the

underlying neural spikes discussed in the implementation level section. The fMRI signal

in particular has been shown to diverge from neural spiking under conditions of percep-

tual suppression (Maier et al., 2008; Self, van Kerkoerle, Goebel, & Roelfsema, 2017).

In these circumstances, it more closely resembles the low frequency local field potential.

Local field potentials in turn form the basis of EEG and MEG studies, which provide an

estimation of the synaptic inputs in a given location. However, LFP signals carry potential

problems as I have noted previously when investigating multisensory integration, as they

are known to volume conduct across electrodes (Kajikawa & Schroeder, 2011). Thus, ap-

plying the multisensory concepts of superadditivity (Wallace, Meredith, & Stein, 1998) at a
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given electrode becomes difficult as it can simply reflect the activity of a neighboring brain

structure without necessarily signifying that there is integration (Laurienti et al., 2005).

1.3 Computational Level: Convolutional neural networks as models of the brain

One of the underlying assumptions when using model systems of the human brain is

that models capture a function that the brain performs. For instance, Hubel and Wiesel’s

finding of orientation columns in cats would lose much of its impact if a cat’s visual expe-

rience was significantly poorer than humans (Hubel & Wiesel, 1962). One of the reasons

non-human primate research is incredibly valuable is the assumed perceptual similarity be-

tween the species and ability to therefore generalize results. This assumption is of course

bolstered by histological and structural similarities that bare evidence to the shared evolu-

tionary history between the species. While animal models have provided and will continue

to provide a wealth of information regarding perceptual experience, they come with their

inherent limitations in their ability to probe causal manipulations. Despite the advances in

optogenetics, gene editing with CRISPR, DREADDs (designer receptors exclusively ac-

tivated by designer drugs), as well as electrical stimulation and ablation studies of years

past, the ability to flexibly manipulate neural architecture and connectivity is still quite

laborious. This type of flexibility however can be gained in artificial models of the brain.

1.3.1 Computer vision and models of vision converge

Early models of the visual system assumed that function would follow form. Models

such as HMAX (Poggio & Riesenhuber, 1999) aimed to recreate the architecture of the

ventral visual stream, hierarchically building upon orientation tuned filters and then sub-

sequently performing max pooling over receptor fields in downstream areas. In parallel,

computer vision was using a number of different approaches, from light detection and rang-

ing sensors (LiDAR) (Huang & Barth, 2009; Li & Olson, 2011) to feature segmentation

algorithms. The feature segmentation algorithms required fine-tuning and expert selection

of the features that would be extracted from images (Lecun, Bengio, & Hinton, 2015). In
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the past decade, these two fields converged in the form of convolutional neural networks.

In the 2012 ImageNet computer vision challenge, an 8-layer convolutional neural network

(CNNs), AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), outperformed other computer

vision models by an order of magnitude. Unlike previous models, CNNs do not require

explicit feature selection. Instead, they use labeled examples coupled with gradient descent

(LeCun, Haffner, Bottou, & Bengio, 1999) as an optimization algorithm to fine tune the

connections and weights of all the layers sequentially in a process termed backpropaga-

tion. Early on, it was found that the early layers in these models remarkably resembled

the orientation tuning in V1, despite these features never being explicitly programmed into

the model (Lecun et al., 2015). When CNNs were used as models of human vision, sev-

eral groups with different analytical approaches (Cadieu et al., 2014; Khaligh-Razavi &

Kriegeskorte, 2014; Yamins & DiCarlo, 2016), found that CNNs better explained vision

than previous models of vision, including those that were directly biologically inspired

such as HMAX (Kubilius, Bracci, & Op de Beeck, 2016). Thus, it has become apparent

that form has followed function for vision models.

1.3.2 The rapid progress and sophistication of CNNs has unintentionally made them

more brain like

Since the development of AlexNet, modifications to CNNs have continued to push the

boundaries of computer performance on visual object recognition tasks. These modifica-

tions can be grouped into two broad categories, architecture and training data. A non-

exhaustive list of changes to architecture include: increase depth with added layers, mul-

tiple sequential convolutional layers (inception layers) (Szegedy et al., 2014), skip con-

nections (He, Zhang, Ren, & Sun, 2015), different types of pooling layers (max, average,

pyramidal) (Kleppmann et al., 2018), and recurrence (bidirectional flow of information

between layers) (Sherstinsky, 2018). A recent study shows the architectures that most re-

semble the brain also tend to be the architectures that have the best performance on object
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recognition benchmarks, such as the ImageNet contest (Schrimpf, Kubilius, Hong, Majaj,

Rajalingham, Issa, Kar, Bashivan, Prescott-Roy, Schmidt, et al., 2018a).

In terms of training data, a vast majority of visual CNNs are trained using ImageNet,

a compilation of images grouped by 1000 object categories that amongst other things in-

cludes an inordinate amount of dog breeds. Recent studies have begun to incorporate train-

ing images based on ecological categories that are more representative of the objects people

mention and are exposed to in everyday life (Mehrer, Spoerer, Jones, Kriegeskorte, & Ki-

etzmann, 2021). These studies have found that CNNs trained on ecological categories are

more brain like, primarily assessed using CNN RDMs and neural RDMs. While no bench-

marks have been set to compare the performance of these networks with networks trained

on ImageNet, there is reason to believe that training set that make the CNNs more brain like

will improve network performance. A number of studies have manipulated the ecological

nature of the training images to be more similar to how humans learn to recognize objects

with encouraging results in terms of network task performance. For example, one study

manipulated a network so it was trained using images that have been obtained from video

cameras that were mounted on infants and compared it to images obtained from cameras

mounted on adults. The network that used the images from cameras mounted on infants

had better performance and ability to generalize to new categories (Bambach, Crandall,

Smith, & Yu, 2018). Another study emulated the gradual sharpening of an infant’s spatial

acuity during development, by training a network with images that were initially spatially

low pass filtered but progressively sharpened during training. Here, too, the networks that

were trained in this coarse to fine manner had the best object recognition performance and

were able to generalize the most to image perturbations (Vogelsang et al., 2018; Avbersek,

Zeman, & Op de Beeck, 2021).
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1.3.3 Perturbing the networks: Adversarial examples to vision and CNNs

While CNNs have been able to model the ventral visual stream remarkably well (Cadieu

et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Schrimpf, Kubilius, Hong, Majaj, Ra-

jalingham, Issa, Kar, Bashivan, Prescott-Roy, Schmidt, et al., 2018b; Yamins & DiCarlo,

2016; Zhuang et al., 2021), small perturbations, changes to images that would not seem-

ingly affect human visual recognition, can completely change the predictions made by a

CNN. These examples are known as adversarial examples. One explanation for why they

are thought to arise is because the neural computations in a CNN are more linear than

the brain and thus extrapolate to points within its latent (i.e. computational) space that do

not exist in real data sets (Goodfellow, Shlens, & Szegedy, 2015). However, other studies

have pointed out that comparing human and CNN performance with adversarial examples

is not always a reasonable comparison as machines are provided access to all properties

of an image as the images are fed digitally, while humans must process the image through

an imperfect sensor that is not privy to all of the information that is added to the image

under an adversarial attack (Zhou & Firestone, 2019). Additionally, if humans are asked

to predict how a CNN might label an adversarial example, they are often quite proficient

at doing so, demonstrating that there is some common thread between CNNs and humans

(Zhou & Firestone, 2019). Furthermore, if an adversarial image is shown sufficiently quick

(6̃0ms as to prevent recurrent processing), they will also fool humans (Elsayed et al., 2018).

However, these explanations are not entirely sufficient to explain recent studies that demon-

strated that CNNs, including recurrent networks, fail to capture the variance in the fMRI

signal if subjects are shown degraded and artificial objects (Xu & Vaziri-Pashkam, 2021).

In chapter 4 of this dissertation, I will further explore the role of image perturbations on the

correspondence between visual CNNs and human vision.
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1.3.4 Visualizing the “black box”

One of the most frequent critiques of CNNs are that they are over parametrized, mak-

ing them impossible to understand, replacing one black box with another (Goodfellow,

Shlens, & Szegedy, 2015b; Kietzmann, Mcclure, & Kriegeskorte, 2019; Ribeiro, Singh,

& Guestrin, 2016). While it is true that the millions of computations cannot be individ-

ually understood in the way one could understand simpler biologically inspired models,

there are number of algorithms that make it easier to unravel some of the inner workings

within CNNs. These approaches include DeconvNet (Zeiler & Fergus, 2014), GradCam

(Selvaraju et al., 2017) and Google’s DeepDream. For this introduction, I will briefly sum-

marize the concept behind DeconvNet (Zeiler & Fergus, 2014). In this this procedure, an

image is passed forward through the network up until the layer and particular neuron be-

ing visualized. From there, all other activations aside from the chosen neuron are zeroed

out within that layer. Then as the name implies, there are a series of deconvolution and

reverse pooling steps, using the forward pass of the image as a guide of where to reverse

pool the activations and transpose the original convolutions of the image. In effect, these

steps can be used to build salience maps of the image properties that were most important

for classification. While there is some controversy regarding how rectification (i.e. ReLU

units) are incorporated in the deconvolution/backpropagation procedure used to create the

saliency maps, it lies beyond the scope of this brief overview (but see Adebayo et al., 2018

for further discussion). Together, these visualization techniques provide rich tools that can

be used to manipulate and visualize CNNs.

1.3.5 Expanding beyond visual objection recognition: Using neural networks to model

other sensory systems and cognitive processes

While much of the excitement in neuroscience for CNNs was initially found in their

ability to model object recognition in the ventral visual stream, they are expanding to serve

as models for other brain processes. For example, a recent study found that CNNs that
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were trained on a visual categorization task also inadvertently coded for the memorabil-

ity of the object. The overall activation magnitude of different layers, especially those in

the last couple of fully connected layers to a given objects, predicted which objects were

memorable and which ones were not. The magnitude code in the CNNs matched the ones

in IT cortex (Jaegle et al., 2019). For auditory processes, it was found that early layers os-

tensibly capturing low level auditory features (timbre, loudness, etc.) of a CNN trained to

classify between music genere showed more correspondence with fMRI voxels in anterior

STG, while later layers tuned more towards the classification of music genres shared more

correspondence with posterior STG (Güçlü, Thielen, Hanke, & Van Gerven, 2016). In ad-

dition to modeling fMRI responses, auditory CNN models are now showing human level

performance for word and music genre classification tasks, while at the same time exceed-

ing previous standard spectrotemporal models in terms of explained variance of auditory

cortex voxel activations (Kell et al., 2018). Further studies have shown that increasing

the phonetic similarity of languages used in the training sets of CNNs improves how well

they model auditory brain responses (Millet & King, 2021). Much like the advances that

improved object recognition in visual CNNs, manipulations to training data, architectures,

and preprocessing are leading to improvements in auditory CNNs.

1.3.6 Constraints at the computational level and room for improvement in indexing

a “brain-like” network

When comparing two model systems, one of the key challenges is to determine what

metrics are used to assess correspondence. For CNNs and brains, this poses a particular

challenge as several different analysis decisions are taken when measuring correspondence.

The first choice is to choose which brain measure to use as a model. As discussed in the im-

plementation level of this introduction, this is not a trivial choice as the dynamics and infor-

mation captured varies considerably by brain measure. Thus far, fMRI studies and neural

spikes have predominated the types of brain signals analyzed, with relatively fewer M/EEG
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studies and no LFP or CSD studies of which I am aware. Another issue is choosing which

network layers of the CNN to use to test for correspondence with brain activity. Different

studies have taken different approaches, with some using convolutional and fully connected

layers (Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Khaligh-Razavi & Kriegeskorte,

2014; Mehrer et al., 2021) while others choose pooling layers (O’Connell & Chun, 2018;

Xu & Vaziri-Pashkam, 2021). Beyond which layer selection, the analytical framework

used to measure brain and network correspondence also vary between studies with some

using RSA and RDMs (Cichy, Khosla, et al., 2016; Khaligh-Razavi & Kriegeskorte, 2014;

Mehrer et al., 2021; Xu & Vaziri-Pashkam, 2021) while others use linear transformations,

training and cross validation to link fMRI voxels or electrodes to CNN layers (Kar, Ku-

bilius, Schmidt, Issa, & DiCarlo, 2019; Schrimpf, Kubilius, Hong, Majaj, Rajalingham,

Issa, Kar, Bashivan, Prescott-Roy, Geiger, et al., 2018; Yamins & DiCarlo, 2016; Güçlü &

van Gerven, 2015). Within RSA approaches, the distance measurement used to build the

RDMs from neural network layer activations varies with some using Euclidean distance

measurements (Xu & Vaziri-Pashkam, 2021) while other use correlation distance measure-

ments (Cichy, Khosla, et al., 2016; Khaligh-Razavi & Kriegeskorte, 2014; Mehrer et al.,

2021). While these are not all of the possible analysis choices, this non-exhaustive list

demonstrates the need to systematically assess the effects of these analysis choices and

possibly offer broad recommendations if some analytical steps consistently show better

correspondence.

1.4 References

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., and Kim, B. (2018). Sanity

checks for saliency maps. Advances in Neural Information Processing Systems, 2018-

Decem(NeurIPS):9505–9515.

Amedi, A., Raz, N., Pianka, P., Malach, R., and Zohary, E. (2003). Early ’visual’ cortex

24



activation correlates with superior verbal memory performance in the blind. Nature

Neuroscience, 6(7):758–766.

Arnal, L. H., Morillon, B., Kell, C. A., and Giraud, A. L. (2009). Dual neural routing of

visual facilitation in speech processing. Journal of Neuroscience, 29(43):13445–13453.

Arnal, L. H., Wyart, V., and Giraud, A. L. (2011). Transitions in neural oscillations reflect

prediction errors generated in audiovisual speech. Nature Neuroscience, 14(6):797–801.

Ashby, F. G. and Maddox, W. T. (1994). A response time theory of separability and inte-

grality in speeded classification. Journal of Mathematical Psychology, 38(4):423–466.

Bambach, S., Crandall, D. J., Smith, L. B., and Yu, C. (2018). Toddler-inspired vi-

sual object learning. Advances in Neural Information Processing Systems, 2018-

Decem(NeurIPS):1201–1210.

Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J. M., Oostenveld, R., Dowdall, J. R.,

DeWeerd, P., Kennedy, H., and Fries, P. (2015). Visual areas exert feedforward and

feedback influences through distinct frequency channels. Neuron, 85(2):390–401.

Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews

Neuroscience, 8(6):451–465.

Bechtel, W. and Shagrir, O. (2015). The non-redundant contributions of marr’s three lev-

els of analysis for explaining information-processing mechanisms. Topics in Cognitive

Science, 7(2):312–322.

Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E., and Saxe, R. (2011). Lan-

guage processing in the occipital cortex of congenitally blind adults. Proceedings of the

National Academy of Sciences, 108(11):4429–4434.

Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M. A., Logothetis, N. K.,

and Panzeri, S. (2008). Low-frequency local field potentials and spikes in primary visual

25



cortex convey independent visual information. Journal of Neuroscience, 28(22):5696–

5709.

Benetti, S., Van Ackeren, M. J., Rabini, G., Zonca, J., Foa, V., Baruffaldi, F., Rezk, M.,

Pavani, F., Rossion, B., and Collignon, O. (2017). Functional selectivity for face pro-

cessing in the temporal voice area of early deaf individuals. Proceedings of the National

Academy of Sciences of the United States of America, 114(31):E6437–E6446.

Bertone-Cueto, N. I., Makarova, J., Mosqueira, A., García-Violini, D., Sánchez-Peña, R.,

Herreras, O., Belluscio, M., and Piriz, J. (2020). Volume-conducted origin of the field

potential at the lateral habenula. Frontiers in Systems Neuroscience, 13(January).

Bijanzadeh, M., Nurminen, L., Merlin, S., Clark, A. M., and Angelucci, A. (2018). Distinct

laminar processing of local and global context in primate primary visual cortex. Neuron,

100(1):259–274.e4.

Bola, , Zimmermann, M., Mostowski, P., Jednoróg, K., Marchewka, A., Rutkowski, P.,

and Szwed, M. (2017). Task-specific reorganization of the auditory cortex in deaf hu-

mans. Proceedings of the National Academy of Sciences of the United States of America,

114(4):E600–E609.

Bourguignon, M., Baart, M., Kapnoula, E. C., and Molinaro, N. (2020). Lip-reading en-

ables the brain to synthesize auditory features of unknown silent speech. Journal of

Neuroscience, 40(5):1053–1065.

Bracci, S., Ritchie, J. B., and de Beeck, H. O. (2017). On the partnership between neural

representations of object categories and visual features in the ventral visual pathway.

Neuropsychologia, 105(June):153–164.

Brandman, T., Avancini, C., Leticevscaia, O., and Peelen, V. M. (2020). Auditory and

semantic cues facilitate decoding of visual object category in meg. Cerebral Cortex,

30(2):597–606.

26



Butera, I. M., Stevenson, R. A., Mangus, B. D., Woynaroski, T. G., Gifford, R. H., and

Wallace, M. T. (2018). Audiovisual temporal processing in postlingually deafened adults

with cochlear implants. Scientific Reports, 8(1):1–12.

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields and

currents-eeg, ecog, lfp and spikes. Nature Reviews Neuroscience, 13(6):407–420.

Cadieu, C. F., Hong, H., Yamins, D. L., Pinto, N., Ardila, D., Solomon, E. A., Majaj, N. J.,

and DiCarlo, J. J. (2014). Deep neural networks rival the representation of primate it

cortex for core visual object recognition. PLoS Computational Biology, 10(12).

Cao, Y., Summerfield, C., Park, H., Giordano, B. L., and Kayser, C. (2019). Causal infer-

ence in the multisensory brain. Neuron, 102(5):1076–1087.e8.

Capitani, E., Laiacona, M., Mahon, B., and Caramazza, A. (2003). What are the facts of

semantic category-specific deficits? A critical review of the clinical evidence, volume 20.

Carlson, T., Tovar, D. A., Alink, A., and Kriegeskorte, N. (2013). Representational dynam-

ics of object vision: The first 1000 ms. Journal of Vision, 13(10):1–19.

Carlson, T. A., Hoogendoorn, H., Kanai, R., Mesik, J., and Turrett, J. (2011). High temporal

resolution decoding of object. Journal of Vision, 11(2011):1–17.

Carlson, T. A., Ritchie, J. B., Kriegeskorte, N., Durvasula, S., and Ma, J. (2014). Reac-

tion time for object categorization is predicted by representational distance. Journal of

Cognitive Neuroscience, 26(1):132–142.

Cecere, R., Gross, J., Willis, A., and Thut, G. (2017). Being first matters: topographical

representational similarity analysis of erp signals reveals separate networks for audio-

visual temporal binding depending on the leading sense. The Journal of Neuroscience,

pages 2926–16.

27



Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A., and Oliva, A. (2016a). Comparison

of deep neural networks to spatio-temporal cortical dynamics of human visual object

recognition reveals hierarchical correspondence. Scientific Reports, 6(June):1–13.

Cichy, R. M. and Pantazis, D. (2017). Multivariate pattern analysis of meg and eeg: A

comparison of representational structure in time and space. NeuroImage, 158(July):441–

454.

Cichy, R. M., Pantazis, D., and Oliva, A. (2014). Resolving human object recognition in

space and time. Nature Neuroscience, 17(3):455–462.

Cichy, R. M., Pantazis, D., and Oliva, A. (2016b). Similarity-based fusion of meg and

fmri reveals spatio-temporal dynamics in human cortex during visual object recognition.

Cerebral Cortex, 26(8):3563–3579.

De Lucia, M., Tzovara, A., Bernasconi, F., Spierer, L., and Murray, M. M. (2012). Auditory

perceptual decision-making based on semantic categorization of environmental sounds.

NeuroImage, 60(3):1704–1715.

Demarchi, G., Sanchez, G., and Weisz, N. (2019). Automatic and feature-specific

prediction-related neural activity in the human auditory system. Nature Communica-

tions, 10(1):1–11.

Downing, P. E., Jiang, Y., Shuman, M., and Kanwisher, N. (2001). A cortical area selective

for visual processing of the human body. Science, 293(5539):2470–2473.

Dubey, A. and Ray, S. (2016). Spatial spread of local field potential is band-pass in the

primary visual cortex. Journal of Neurophysiology, 116(4):1986–1999.

Dunovan, K. E., Tremel, J. J., and Wheeler, M. E. (2014). Prior probability and feature

predictability interactively bias perceptual decisions. Neuropsychologia, 61(1):210–221.

28



Einevoll, G. T., Pettersen, K. H., Devor, A., Ulbert, I., Halgren, E., and Dale, A. M. (2007).

Laminar population analysis: Estimating firing rates and evoked synaptic activity from

multielectrode recordings in rat barrel cortex. Journal of Neurophysiology, 97(3):2174–

2190.

Elsayed, G. F., Papernot, N., Shankar, S., Kurakin, A., Cheung, B., Goodfellow, I.,

and Sohl-Dickstein, J. (2018). Adversarial examples that fool both computer vision

and time-limited humans. Advances in Neural Information Processing Systems, 2018-

Decem:3910–3920.

Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic information in

a statistically optimal fashion. Nature, 415(24):429–433.

Etard, O. and Reichenbach, T. (2019). Neural speech tracking in the theta and in the

delta frequency band differentially encode clarity and comprehension of speech in noise.

The Journal of neuroscience : the official journal of the Society for Neuroscience,

39(29):5750–5759.

Felleman, D. J. and Van Essen, D. C. (1991). Distributed hierarchical processing in the

primate cerebral cortex. Cerebral Cortex, 1(1):1–47.

Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron,

88(1):220–235.

Fujioka, T., Ross, B., Kakigi, R., Pantev, C., and Trainor, L. J. (2006). One year of musical

training affects development of auditory cortical-evoked fields in young children. Brain,

129(10):2593–2608.

Galindo-Leon, E. E., Stitt, I., Pieper, F., Stieglitz, T., Engler, G., and Engel, A. K. (2019).

Context-specific modulation of intrinsic coupling modes shapes multisensory process-

ing. Science Advances, 5(4):eaar7633.

29



Gau, R., Bazin, P. L., Trampel, R., Turner, R., and Noppeney, U. (2020). Resolving multi-

sensory and attentional influences across cortical depth in sensory cortices. eLife, 9:1–26.

Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., and Gore, J. C. (1999). Activation

of the middle fusiform ’face area’ increases with expertise in recognizing novel objects.

nature neuroscience 2, 6 (. June, 2(6):568–573.

Ghazanfar, A. A. and Schroeder, C. E. (2006). Is neocortex essentially multisensory?

Trends in Cognitive Sciences, 10(6):278–285.

Giordano, B. L., McAdams, S., Zatorre, R. J., Kriegeskorte, N., and Belin, P. (2013).

Abstract encoding of auditory objects in cortical activity patterns. Cerebral Cortex,

23(9):2025–2037.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversar-

ial examples. 3rd International Conference on Learning Representations, ICLR 2015 -

Conference Track Proceedings, pages 1–11.

Gratiy, S. L., Halnes, G., Denman, D., Hawrylycz, M. J., Koch, C., Einevoll, G. T., and

Anastassiou, C. A. (2017). From maxwell’s equations to the theory of current-source

density analysis. European Journal of Neuroscience, 45(8):1013–1023.

Grootswagers, T., Ritchie, J. B., Wardle, S. G., Heathcote, A., and Carlson, T. A. (2017).

Asymmetric compression of representational space for object animacy categorization

under degraded viewing conditions. Journal of cognitive neuroscience, 29(12):1995–

2010.

Güçlü, U., Thielen, J., Hanke, M., and Van Gerven, M. A. (2016). Brains on beats. In

Advances in Neural Information Processing Systems, pages 2109–2117.

Güçlü, U. and van Gerven, M. A. (2015). Deep neural networks reveal a gradient in the

30



complexity of neural representations across the ventral stream. Journal of Neuroscience,

35(27):10005–10014.

Güçlü, U. and van Gerven, M. A. (2017). Increasingly complex representations of natural

movies across the dorsal stream are shared between subjects. NeuroImage, 145:329–336.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recogni-

tion. Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 1–17.

Huang, L. and Barth, M. (2009). Tightly-coupled lidar and computer vision integration for

vehicle detection. IEEE Intelligent Vehicles Symposium, Proceedings, pages 604–609.

Hubel, D. N. and Wiesel, T. N. (1962). And functional architecture in the cat ’ s visual cor-

tex from the neurophysiolojy laboratory , department of pharmacology central nervous

system is the great diversity of its cell types and inter- receptive fields of a more complex

type ( part i ) and to. Journal of Physiology, 160(1):106–154.

Huth, A. G., Nishimoto, S., Vu, A. T., and Gallant, J. L. (2012). A continuous semantic

space describes the representation of thousands of object and action categories across the

human brain. Neuron, 76(6):1210–1224.

Jackson, R. E. and Calvillo, D. P. (2013). Evolutionary psychology. Evolutionary Psychol-

ogy, 11(5):1011–1026.

Jaegle, A., Mehrpour, V., Mohsenzadeh, Y., Meyer, T., Oliva, A., and Rust, N. (2019).

Population response magnitude variation in inferotemporal cortex predicts image mem-

orability. eLife, 8:1–12.

Jung, Y., Larsen, B., and Walther, D. B. (2018). Modality-independent coding of scene

categories in prefrontal cortex. Journal of Neuroscience, 38(26):5969–5981.

31



Kajikawa, Y. and Schroeder, C. E. (2011). How local is the local field potential? Neuron,

72(5):847–858.

Kajikawa, Y. and Schroeder, C. E. (2015). Generation of field potentials and modulation

of their dynamics through volume integration of cortical activity. Journal of Neurophys-

iology, 113(1):339–351.

Kajikawa, Y., Smiley, J. F., and Schroeder, C. E. (2017). Primary generators of visu-

ally evoked field potentials recorded in the macaque auditory cortex. Journal of Neuro-

science, 37(42):10139–10153.

Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: a module

in human extrastriate cortex specialized for face perception. The Journal of neuroscience

: the official journal of the Society for Neuroscience, 17(11):4302–11.

Kar, K., Kubilius, J., Schmidt, K., Issa, E. B., and DiCarlo, J. J. (2019). Evidence that

recurrent circuits are critical to the ventral stream’s execution of core object recognition

behavior. Nature Neuroscience, 22(6):974–983.

Karas, P. J., Magnotti, J. F., Metzger, B. A., Zhu, L. L., Smith, K. B., Yoshor, D., and

Beauchamp, M. S. (2019). The visual speech head start improves perception and reduces

superior temporal cortex responses to auditory speech. eLife, 8:1–19.

Kayser, C., Petkov, C. I., Augath, M., and Logothetis, N. K. (2005). Integration of touch

and sound in auditory cortex. Neuron, 48(2):373–384.

Kayser, C., Petkov, C. I., and Logothetis, N. K. (2008). Visual modulation of neurons in

auditory cortex. Cerebral Cortex, 18(7):1560–1574. In monkeys, Kayser et al. (2008)

found that visual modulation in auditory cortex was sensitive to stimulus asynchrony:

i.e., visual stimuli had significant effects only when presented 20–80 ms be- fore the au-

ditory stimuli. This timing difference is consistent with the delayed processing of visual

32



stimuli compared to other sensory modalities. In macaque monkeys, the visual response

latency in V1 is in the range of 20–30 ms, compared to shortest sensory response laten-

cies of about 10 ms in primary auditory cortex, and about 6 ms in primary somatosensory

cortex (Schroeder et al., 1998; Sch- roeder and Foxe, 2002; Musacchia and Schroeder,

2009). Visual re- sponses in association areas STP and the intraparietal sulcus occur only

slightly later than V1, at about 25 ms (Schroeder and Foxe, 2002). Thus the approximate

time frame of 20–80 ms visual-audi- tory disparity of described by Kayser et al. (2008) is

at least consis- tent with the possibility that auditory cortex is modulated by connections

with very early stages of cortical visual processing, but it does not exclude the possibility

that this input comes from downstream association areas.

Kell, A. J. E., Yamins, D. L. K., Shook, E. N., Norman-haignere, V. S., Mcdermott, J. H.,

Kell, A. J. E., Yamins, D. L. K., Shook, E. N., and Norman-haignere, V. S. (2018).

A task-optimized neural network replicates human auditory behavior, predicts brain re-

sponses, and reveals a cortical processing hierarchy. Neuron, 98(3):1–15.

Khaligh-Razavi, S. M. and Kriegeskorte, N. (2014). Deep supervised, but not unsupervised,

models may explain it cortical representation. PLoS Computational Biology, 10(11).

Kiar, L., Zeman, A., and Op de Beeck, H. (2021). Training for object recognition with in-

creasing spatial frequency : A comparison of deep learning with human vision . bioRxiv.

Kietzmann, T. C., Mcclure, P., and Kriegeskorte, N. (2019). Oxford research encyclopedia

of neuroscience deep neural networks in computational neuroscience explaining brain

information processing requires complex , task-performing models. (January):1–29.

King, J. R. and Dehaene, S. (2014). Characterizing the dynamics of mental representations:

The temporal generalization method. Trends in Cognitive Sciences, 18(4):203–210.

Kleppmann, B., Bizer, C., Yaqub, E., Temme, F., Schlunder, P., Arnu, D., and Klinkenberg,

R. (2018). Spp:spatial pyramid pooling. CEUR Workshop Proceedings, 2191:191–194.

33



Kok, P., Jehee, J. F. M., and de Lange, F. P. (2012). Less is more: Expectation sharpens

representations in the primary visual cortex. Neuron, 75(2):265–270.

Kolinsky, R., Fery, P., Messina, D., Peretz, I., Evinck, S., Ventura, P., and Morais, J. (2002).

The fur of the crocodile and the mooing sheep: A study of a patient with a category-

specific impairment for biological things. Cognitive Neuropsychology, 19(4):301–342.

Kriegeskorte, N., Mur, M., and Bandettini, P. (2008a). Representational similarity analysis

- connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience,

2(NOV):4.

Kriegeskorte, N., Mur, M., Ruff, D. A., and Kiani, R. (2008b). Matching categorical object

representations in inferior temporal cortex of mand and monkey. Neuron, 60(6):1126–

1141.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. Advances In Neural Information Processing Systems,

pages 1–9.

Kubilius, J., Bracci, S., and Op de Beeck, H. P. (2016). Deep neural networks as a compu-

tational model for human shape sensitivity. PLoS Computational Biology, 12(4):1–26.

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., and Shams, L.

(2007). Causal inference in multisensory perception. PLoS ONE, 2(9).

Lakatos, P., O’Connell, M. N., Barczak, A., Mills, A., Javitt, D. C., and Schroeder, C. E.

(2009). The leading sense: Supramodal control of neurophysiological context by atten-

tion. Neuron, 64(3):419–430.

Lalla, L., Rueda Orozco, P. E., Jurado-Parras, M. T., Brovelli, A., and Robbe, D. (2017).

Local or not local: Investigating the nature of striatal theta oscillations in behaving rats.

eNeuro, 4(5).

34



Laurienti, P. J., Kraft, R. A., Maldjian, J. A., Burdette, J. H., and Wallace, M. T. (2004).

Semantic congruence is a critical factor in multisensory behavioral performance. Exper-

imental Brain Research, 158(4):405–414.

Laurienti, P. J., Perrault, T. J., Stanford, T. R., Wallace, M. T., and Stein, B. E. (2005).

On the use of superadditivity as a metric for characterizing multisensory integration in

functional neuroimaging studies. Experimental Brain Research, 166(3-4):289–297.

Laws, K. R. (2000). Category-specific naming errors in normal subjects: The influence of

evolution and experience. Brain and Language, 75(1):123–133.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

LeCun, Y., Haffner, P., Bottou, L., and Bengio, Y. (1999). Object recognition with gradient-

based learning. Shape, Contour and Grouping in Computer Vision, pages 319–345.

Leong, A. T., Dong, C. M., Gao, P. P., Chan, R. W., To, A., Sanes, D. H., and Wu, E. X.

(2018). Optogenetic auditory fmri reveals the effects of visual cortical inputs on auditory

midbrain response. Scientific Reports, 8(1):1–11.

Leski, S., Lindén, H., Tetzlaff, T., Pettersen, K. H., and Einevoll, G. T. (2013). Frequency

dependence of signal power and spatial reach of the local field potential. PLoS Compu-

tational Biology, 9(7).
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Part 1

“You’re nothing but a pack of neurons”

-Francis Crick
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Chapter 2

Stimulus Feature-Specific Information Flow Along the Columnar Cortical

Microcircuit Revealed by Multivariate Laminar Spiking Analysis

The contents of this chapter are adapted from

Tovar, D. A., Westerberg, J. A., Cox, M. A., Dougherty, K., Carlson, T. A., Wallace, M. T.,

& Maier, A. (2020). Stimulus Feature-Specific Information Flow Along the Columnar

Cortical Microcircuit Revealed by Multivariate Laminar Spiking Analysis. Frontiers in

Systems Neuroscience, 14, 1–14.

2.1 Abstract

Most of the mammalian neocortex is comprised of a highly similar anatomical structure,

consisting of a granular cell layer between superficial and deep layers. Even so, different

cortical areas process different information. Taken together, this suggests that cortex fea-

tures a canonical functional microcircuit that supports region-specific information process-

ing. For example, the primate primary visual cortex (V1) combines the two eyes’ signals,

extracts stimulus orientation, and integrates contextual information such as visual stimula-

tion history. These processes co-occur during the same laminar stimulation sequence that

is triggered by the onset of visual stimuli. Yet, we still know little regarding the laminar

processing differences that are specific to each of these types of stimulus information. Uni-

variate analysis techniques have provided great insight by examining one electrode at a time

or by studying average responses across multiple electrodes. Here we focus on multivariate

statistics to examine response patterns across electrodes instead. Specifically, we applied

multivariate pattern analysis (MVPA) to linear multielectrode array recordings of laminar

spiking responses to decode information regarding the eye-of-origin, stimulus orientation,

and stimulus repetition. MVPA differs from conventional univariate approaches in that it

examines patterns of neural activity across simultaneously recorded electrode sites. We
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were curious whether this added dimensionality could reveal neural processes on the popu-

lation level that are challenging to detect when measuring brain activity without the context

of neighboring recording sites. We found that eye-of-origin information was decodable for

the entire duration of stimulus presentation, but diminished in the deepest layers of V1.

Conversely, orientation information was transient and equally pronounced along all layers.

More importantly, using time-resolved MVPA, we were able to evaluate laminar response

properties beyond those yielded by univariate analyses. Specifically, we performed a time

generalization analysis by training a classifier at one point of the neural response and testing

its performance throughout the remaining period of stimulation. Using this technique, we

demonstrate repeating (reverberating) patterns of neural activity that have not previously

been observed using standard univariate approaches.

2.2 Introduction

Certain anatomical motifs are repeated across disparate brain areas with wide-ranging

functions. The mammalian neocortex is one such example as it predominantly features the

same laminar structure. A popular model for cortical function resting upon this stereotypi-

cal structure is the canonical cortical microcircuit (CCM: Douglas et al., 1989; Douglas and

Martin, 1991; Bastos et al., 2012). The CCM gives rise to a series of distinct, yet overlap-

ping, activation steps that are spatially segregated between the superficial (supragranular),

deep (infragranular), and middle (granular) layers of cortex (Rockland and Pandya, 1979;

Rockland and Virga, 1989; Callaway, 1998; Binzegger et al., 2004; Douglas and Martin,

2004). According to this model, ascending (feedforward) signals from parts of the brain

that are closer to the sensory periphery terminate in the middle layers of cortical areas

while descending (feedback) signals from downstream areas target the layers above and

below (Rockland and Pandya, 1979; Rockland and Virga, 1989; Felleman and Van Essen,

1991, but see Self et al., 2013).

Since the CCM applies virtually ubiquitously across neocortex, an improved under-
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standing of the laminar cortical processing chain is bound to translate into an improved

understanding of cortical processing more generally (Hubel and Wiesel, 1977; Douglas

et al., 1989; Felleman and Van Essen, 1991; Douglas and Martin, 2004; Bastos et al.,

2012). Our knowledge of laminar neural activity in primates has grown greatly over the

last decade thanks to the prevalence of linear electrode arrays (Schroeder et al., 1998; Xing

et al., 2009, 2012; Burns et al., 2010; Buffalo et al., 2011; Kajikawa and Schroeder, 2011;

Maier et al., 2011, 2014; Hansen et al., 2012; Spaak et al., 2012; Smith et al., 2013; Bastos

et al., 2014, 2018; Van Kerkoerle et al., 2014; Nandy et al., 2017; Cox et al., 2019a,b;

Westerberg et al., 2019; Dougherty et al., 2019a; Gieselmann and Thiele, 2020). Yet, our

knowledge about laminar neuronal activation remains limited (e.g., Mignard and Malpeli,

1991). Recent studies demonstrated that—matching predictions by the CCM—there are

two distinct sequences of laminar activation for feedforward and feedback activation, re-

spectively (Maier, 2013; Van Kerkoerle et al., 2014, 2017; Cox et al., 2019a). Much less is

known about the different types of feedforward processes that occur along cortical layers.

Specifically, we still know little about how one and the same feedforward sweep of neural

activation across cortical layers entails multiple streams of stimulus-specific information

that manifest differently across space and time.

Our knowledge regarding laminar cortical processing is bound to rapidly increase since

there have been notable advances in microelectrode technology. Specifically, the increase

in simultaneously placed electrodes and the associated increase dimensionality of laminar

neurophysiological data obtained by second generation laminar arrays is rapidly approach-

ing those of other techniques such as fMRI (Jun et al., 2017; Steinmetz et al., 2018; Musk

and Neuralink, 2019). Yet, laminar recordings are usually analyzed using the same uni-

variate techniques that have been established for single electrodes, rather than utilizing the

additional, contextual information provided by neighboring electrode contacts in a multi-

variate fashion.

There are several statistical approaches that quantify information distributed across
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neighboring measurements in the brain, directly capturing neuronal interactions on the pop-

ulation level. Specifically, machine-learning based multivariate pattern classification anal-

ysis (MVPA) has proven fruitful in systems neuroscience (Haxby et al., 2001; Kriegesko-

rte and Bandettini, 2007; Kriegeskorte et al., 2008; Kriegeskorte and Kreiman, 2012;

Rutishauser et al., 2018; Kamitani & Tong, 2005). More recently, time-resolved MVPA

has emerged as a powerful technique to study the time courses with which information

processing occurs across the brain (Carlson et al., 2013; Cichy and Pantazis, 2017; Tovar

et al., 2020). While time-resolved MVPA has been applied to multielectrode recordings

(Goddard et al., 2017), to date no study to our knowledge probed whether this technique

can reveal aspects of laminar cortical activation that are opaque to univariate analyses. For

instance, through time generalization, which is achieved by training a classifier at a specific

time point—such as early in the neuronal response to a stimulus—then testing it through-

out the remainder of the response, one can search for repeating patterns of neural activity

across electrodes that might be invisible when analyzing single channels in isolation.

Here we use time-resolved MVPA to analyze the pattern of spiking activity across 24

and 32 channel (first generation) linear multielectrode array recordings in primate primary

visual cortex (V1). Instead of relying on the average response across all electrode channels

or only examining one channel at a time, MVPA uses patterns of activity across neigh-

boring channels to classify neuronal responses. We use both time-resolved MVPA and an

MVPA-based “searchlight” analysis commonly used for neuroimaging data to map how in-

formation regarding stimulus orientation, eye-of-origin, and stimulus history differentially

flows within the laminar activation sequence of V1. We found that MVPA can be utilized

effectively despite the relatively low channel counts of first generation laminar linear ar-

rays. We then explored time-generalization, as this analysis provides insight that cannot

be gained from more conventional, univariate approaches that are blind to patterns of ac-

tivity that span multiple electrodes. This analysis revealed repeating patterns in neuronal

activity that entailed information about whether a stimulus had previously been shown or
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not, which we had not observed in a prior study that had relied on univariate analyses ex-

clusively (Westerberg et al., 2019). We discuss these findings and their implications for

the advent of massively increased channel counts for linear multielectrode arrays that are

rapidly gaining prominence (Jun et al., 2017; Steinmetz et al., 2018; Musk and Neuralink,

2019).

2.3 Materials and Methods

2.3.1 Animal Care and Surgical Procedures

Data were collected from two macaque monkeys [Macaca radiata, one female (desig-

nated Monkey 1) and one male (designated Monkey 2)]. All procedures were in compliance

with regulations set forth by the Association for the Assessment and Accreditation of Labo-

ratory Animal Care (AALAC), approved by the Vanderbilt University Institutional Animal

Care and Use Committee, and followed National Institutes of Health guidelines. A detailed

description of the surgical procedures can be found in previous publications (Westerberg

et al., 2019, 2020a,b). Briefly, in a series of surgeries, each monkey was implanted with a

custom MRI-compatible headholder and recording chamber over perifoveal V1 concurrent

with a craniotomy.

2.3.2 Behavioral Paradigm

In each recording session, monkeys viewed a 20” CRT monitor (Diamond Plus 2020u,

Mitsubishi Electric Inc.) operating at 60 or 85 Hz. Monkeys passively fixated within a

one-degree radius around a central fixation dot and viewed stimuli through a custom mirror

stereoscope so that stimuli could be viewed monocularly or binocularly (Figure 2.1A). To

eliminate potential response differences due to binocular disparity, prior to the main tasks,

a mirror calibration task was performed. In this task, monkeys shifted gaze to a series of

stimuli positioned across the visual display and held fixation at each position to receive

fluid reward. Each stimulus was presented to only one eye at a time. This resulted in two

maps of fixation positions, one for the set of stimuli presented to each eye. The stereoscope
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was then adjusted if differences were observed in those maps (e.g., the maps were not

completely overlapping). Stimuli were generated using MonkeyLogic (Asaad et al., 2013;

Hwang et al., 2019) via MATLAB (R2012, R2014a, The Mathworks, Inc.) running on a

computer using a Nvidia graphics card. Following 300 ms of fixation, monkeys viewed five

sequentially presented stimuli for 200 ms each, with a 200 ms inter-stimulus interval (ISI).

If fixation was maintained throughout the five presentations, the monkey was rewarded with

juice and relieved of the fixation constraint for an inter-trial interval (ITI). If the monkey

broke fixation during trial performance, the presentation was eliminated from analysis and

the monkey experienced a short timeout (1–5 s) before starting the next trial. Each stim-

ulus in the presentation sequence was a sinusoidal bar grating of equivalent size, spatial

frequency, and phase, with variable orientation and eye-of-origin (Figure 2.1B). For each

recording session, the stimuli were optimized for the measured neural activity evaluated by

listening to the multi-unit activity (MUA) during exposure to a wide variety of stimuli. We

selected stimulus parameters that evoked the greatest neural response. For a more detailed

description of the paradigm, as well as further information on stimulus optimization and

receptive field mapping (Supplementary Figure 2.6), see previous publications (Cox et al.,

2013, 2019a,b; Dougherty et al., 2019a; Westerberg et al., 2019).

2.3.3 Neurophysiological Procedure

All data used in this paper are available upon request from the communicating au-

thor, pending approval by Vanderbilt University. During task performance, broadband (0.5

Hz12.207 kHz) intracranial voltage measurements were taken at a sampling rate of 30

kHz and amplified, filtered, digitized using a 128-channel Cerebus™ Neural Signal Pro-

cessing System (NSP, Blackrock Microsystems LLC). Neuronal data was downsampled

offline to 1 kHz, following low-pass filtering with an anti-aliasing filter. Gaze position was

recorded at 1 kHz (NIDAQ PCI-6229, National Instruments) using an infrared light sensi-

tive camera and commercially available eye tracking software (Eye Link II, SR Research
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Ltd.; iView, SensoMotoric Instruments). Recordings took place inside an electromagnetic

radio frequency-shielded booth and were performed using one or two acute laminar mul-

tielectrode arrays with 24 or 32 contacts with 0.1 mm electrode spacing and impedances

ranging between 0.2 and 0.8 megaohms at 1 kHz (U-Probe, Plexon, Inc.; Vector Array™,

NeuroNexus). Electrodes were connected to the NSP using analog headstages. In each

recording, the electrode array(s) were introduced into dorsal V1 through the intact dura

mater using a chamber-mounted microdrive (custom modification of a Narishige Interna-

tional Inc. Micromanipulator) and adjusted such that the majority of recording contacts

spanned the cortical sheet. This procedure was repeated across the 61 experimental ses-

sions (n = 13 for monkey I34).

2.3.4 Receptive Field Mapping

Since achieving single-unit isolation on every channel is difficult, we instead opted to

estimate the local population spiking response by quantifying the time-varying activity in

the spiking frequency range (multi-unit activity, MUA) as we wanted to ensure overlapping

receptive fields along the cortical depth. Verifying overlapping receptive fields provides

confidence that the activity we are recording across columns originates from the same cor-

tical location rather than spanning adjacent columns (i.e., that the electrode penetration was

orthogonal to cortex). Monkeys performed a visual fixation task where a visual stimulus

was presented repeatedly in the contralateral visual hemifield – relative to the position of

the electrode array. Up to five stimuli were presented on each trial for 200 ms with a 200

ms interstimulus interval. Stimulus size and positioned varied between recording sessions,

but each session usually consisted of a “coarse” receptive field mapping task followed by

a more focused version once an estimation for the exact position was found. We mapped

receptive fields using a reverse-correlation technique (Supplementary Figure 2.6) which re-

sulted in 3-dimensional receptive field matrices where 2 dimensions corresponded to visual

space and the third, response magnitude (Cox et al., 2013). Only sessions where the recep-
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tive field matrices were overlapping along cortical depth were included for further analysis.

Additionally, this procedure determined the position where the stimulus was positioned to

stimulate the column receptive field for the main task (see section Behavioral Paradigm).

2.3.5 Laminar Alignment

Current source density (CSD) in response to brief visual stimulation was used to find

the boundary between the granular and infragranular compartments of V1 as per previ-

ously documented methods (Schroeder et al., 1998; Maier et al., 2010; Maier, 2013; Ni-

nomiya et al., 2015; Cox et al., 2019a,b; Dougherty et al., 2019a; Westerberg et al., 2019).

Only sessions that were found to be perpendicular to the cortical surface were included

in analysis (see section Receptive Field Mapping). Additional neurophysiological criteria

were used, such as well-defined patterns of LFP power spectral density (Van Kerkoerle et

al., 2014; Bastos et al., 2018; Westerberg et al., 2019), signal correlations between LFP

recorded on differing channels (Westerberg et al., 2019), and latency (Self et al., 2013) of

stimulus-evoked MUA. The granular to supragranular boundary was set to 0.5 mm above

the granular to infragranular boundary (Figure 2.1C). Supplementary Figure 2.7 demon-

strates the reliability of these functional markers following alignment of all sessions. Both

extracranial to intracranial and gray matter to white matter boundaries were determined by

finding the pair of recording electrodes where no multiunit response to visual stimuli was

observed on one channel and a significant response was observed on the other (Cox et al.,

2019b; Westerberg et al., 2019). Recording channels positioned between these pairs all

showed significant responses. That is, we found no instances of a lack of response on a

channel determined to be within the gray matter. The L2/3–L4 boundary was set to 0.5

mm above the L4–L5 boundary as we do not have a reliable functional marker and that dis-

tance is consistent with histological studies of V1 laminar structure (see Cox et al., 2019b;

Westerberg et al., 2019 for details).
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2.3.6 Data Preprocessing

All contiguous recording channels found to be within the gray matter were taken and

multiunit signals were computed. Channels in the gray matter were found by determining

first whether a visual response could be evoked on the channel and second, whether a recep-

tive field was present for the multiunit and/or LFP activity through a previously described

receptive field mapping paradigm (Westerberg et al., 2019). If the channel was found to be

in the gray matter, the broadband neural signal recorded at that channel was then band-pass

filtered between 500 and 5,000 Hz, rectified, and low-pass filtered at 200 Hz using But-

terworth filters (Self et al., 2013; Shapcott et al., 2016; Westerberg et al., 2020a). These

derived neural signals, with no further filtering of the multiunit activity, were then used in

performing both the univariate and multivariate analyses (Figure 2.1D).

2.3.7 Multivariate Pattern Analysis

To track how sensory information from different stimulus features are processed within

this laminar microcircuit, we applied multivariate pattern analysis (MVPA) using CoS-

MoMVPA (Oosterhof et al., 2016) to the MUA of each of the three laminar compartments

(Figure 2.1E, left-most panel). To do so, we assembled two-dimensional neuronal re-

sponse matrices (NRMs) that contained the millisecond-by-millisecond population spiking

response at each electrode channel as a function of trials. Each row/electrode in the NRM

can be thought of as a separate axis forming a multidimensional space whose dimension-

ality is determined by the number of electrodes. Each stimulus presentation will elicit a

different response across each of the dimensions. The specific stimulus features we tested

comprised of grating orientation, the eye that the stimuli were presented to (eye-of-origin)

and the relative position of each stimulus within the stimulation sequence (Figure 2.1F).

We next randomly divided trials within sessions to perform a 4-fold cross-validation pro-

cedure. In this procedure, 3/4 of the data is used to train an MVPA classifier (Figure 2.1E,

second-to-left panel). The remaining 1/4 of the NRMs are used to determine classifier per-
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formance. To classify a given stimulus feature, a different hyperplane or set of hyperplanes

(as is the case with the orientation where we have four orientations) is used to distinguish

stimulus feature on a trial by trial basis. The decoding accuracy is the number of trials over

the total number of trials that classifier is able to correctly identify for each session. We

performed this computation separately within each recording session on a millisecond-by-

millisecond basis, evaluating the accuracy of classifier performance as a function of time

(Figure 2.1E, second-to-rightmost panel). The resulting time courses of decoding accuracy

for each laminar compartment were then pooled together and compared to a randomized

trial shuffle control to determine statistical significance (Figure 2.1E, rightmost panel). To

correct for multiple comparisons, we used the false discovery rate (FDR) adjusted p-values

with = 0.01. For each of the decoding distinctions, the subsets were balanced, such that

both training subsets and testing subsets contained the same number of trials for each stim-

ulus category.

For orientation decoding, all recording sessions were used for analysis. However, some

recording sessions included orientation presentations that were not shown in other record-

ing sessions (i.e., 22.5° in one recording session and 30° in another sessions). Therefore,

orientation presentations were binned into four categories: 0–44°, 45–89°, 90–134°, and

135–179°. For trial repetition decoding, the five stimuli presentations for a given trial were

grouped as either the first presentation or as a repetition. To have an equal number of first

presentations and repetitions, we randomly subsampled from the repetitions to match the

number of first presentations.

For each stimulus feature, we also performed a time generalization analysis (Carlson

et al., 2011; King and Dehaene, 2014) which uses a similar decoding procedure described,

with one notable exception — the classifier is trained on the information at one time point

for each stimulus feature and the model is subsequently tested on all timepoints. This pro-

cedure is repeated across all timepoints resulting in a 2D “time generalization matrix” that

plots training time against decoding time to gain insight into how information at specific
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timepoints evolve throughout the time course. Lastly, to determine the effects of repeated

stimuli presentations on orientation and eye of origin decoding, we further divided the rep-

etition subset of data into balanced eye of origin subsets and balanced orientation subsets.

We then again performed a 4-fold classification using a linear discriminant analysis classi-

fier.
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Figure 2.1: Experimental setup, paradigm, preprocessing, and analysis. (A) Monkeys were
positioned in front of a monitor and tasked to passively fixate a central dot through a custom
mirror stereoscope. (B) Monkeys were shown a series of five grating stimuli of randomly
varying orientations and ocular configuration with all other parameters were held constant.
(C) Linear multicontact array recording laminar neuronal responses at 100 micron spatial
resolution spanning through visual cortex. (D) Grand average multiunit spiking responses
(MUA) to the stimulus sequence for all three main laminar compartments (both animals,
all sessions). (E) Schematic of multivariate pattern analysis (MVPA). Population spiking
responses (MUA) from each laminar compartment were reorganized as a function of elec-
trode contact and time. A classifier was trained at each timepoint using linear discriminant
analysis and 4-fold cross validation. (F) Decoding analysis was separately performed for
grating orientations, stimulus history (initial stimulus vs. repetitions), and eye-of-origin.
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2.4 Results

2.4.1 Stimulus specific information within neural activation of the CCM

Before investigating each stimulus feature in isolation, we evaluated whether the grand

average spiking response to our stimuli matched predictions from the CCM (Figure 2.2A).

To do so, we spatially aligned the spiking data from each recording session to the layer

4C/5 boundary. Using these aligned datasets, we computed the grand average spiking re-

sponse to all stimuli as a function of cortical depth and time (Figure 2.2B). The resulting

laminar profile of activation was consistent with both the expectations set by the CCM

and previous studies of laminar visual activation in that layer 4C activity preceded that of

the other layers (Mitzdorf, 1985; Schroeder et al., 1998; Maier et al., 2010; Spaak et al.,

2012; Van Kerkoerle et al., 2014). Interestingly, however, both the supragranular and in-

fragranular layers responded virtually simultaneously, which might either be explained by

(i) V1’s idiosyncratic laminar connections [i.e., there are also, less pronounced, geniculate

projections outside layer 4C (Callaway, 1998)], (ii) limitations of the CCM model itself

(e.g., Godlove et al., 2014; Ninomiya et al., 2015), or both. This pattern of sensory acti-

vation occurs regardless of stimulus feature, raising the question of how stimulus-specific

information is extracted within this activation sequence. To answer this question, we ap-

plied MVPA using a “moving searchlight” analysis (Etzel et al., 2013). Specifically, we

limited both our training and test data sets to three neighboring electrode channels, per-

formed MVPA over time, and then repeated the process after moving this “searchlight” 0.1

mm deeper along the electrode array. In this analysis a classifier is trained and tested for

each timepoint of the response, in 1 ms increments (Figure 2.2C). No spatial or temporal

smoothing were added.

We first focused on the eye-of-origin for each stimulus presentation. While V1 harbors

both neurons that respond to one or both eyes, most of the neurons that respond to one eye

only (monocular neurons) are located in the middle, granular layers (Hubel and Wiesel,

1977; Dougherty et al., 2019a). This finding is consistent with neuroanatomy, as the gran-
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ular layers receive the bulk of (monocular, eye-specific) inputs from the lateral geniculate

nucleus of the thalamus (LGN) that connects eye and cortex (Casagrande and Boyd, 1996).

A long-standing hypothesis is that the eye-specific inputs in the middle layers are merged to

a combined (binocular) response in the layers above, even though most V1 neurons main-

tain preference for one eye over the other (Hubel and Wiesel, 1972; Ohzawa and Freeman,

1986; Prince et al., 2002; Read and Cumming, 2004). Neurons in the uppermost layers of

V1 project to neurons in V1’s lower layers, so if the upper layers form a combined binoc-

ular signal, this signal should be present in the lower layers as well (Hubel and Wiesel,

1972; Cox et al., 2019b; Dougherty et al., 2019a). However, based on several other pieces

of empirical evidence, an alternative hypothesis postulates that the two eyes’ signals are

interacting at or before LGN responses arrive in the middle layers of V1 (see Dougherty et

al., 2019b for review).

Using MVPA, we found information regarding eye-of-origin initially followed the CCM

profile of general activation, with neurons reliably indicating whether a stimulus was shown

to left or right eye in the middle layers, followed by the upper layers of V1. This eye-

specific information largely diminished once neuronal activation reached the lower layers

of V1 (Figure 2.2C, left panel). These timing differences can clearly be seen for a layer-

specific MVPA using all electrode channels within the middle, upper and lower layers of

V1, respectively (Figure 2.2D). We utilized this analysis to perform several statistical com-

parisons. First, we compared decoding performance on a millisecond-by-millisecond basis

against a randomized trial shuffle control. Second, we compared decoding across laminar

compartments. Decoding of eye-of-origin first emerged in the middle layers (29 ms), fol-

lowed by the upper (40 ms) and lower layers (40 ms). Decoding which eye the stimuli were

shown to was comparable between middle and upper layers but significantly reduced in the

lower layers, suggesting that eye-specific information is largely preserved when granular

neurons project to neurons in the layers above. However, decoding of eye-of-origin is rela-

tively poor in the lower layers of V1, suggesting that, at least on the multiunit-level, there is
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significant binocular convergence after activation reaches the upper layers of cortex. This

finding demonstrates that eye-of-origin is more robustly represented in supragranular com-

pared to infragranular layers.

Next, we computed the laminar evolution of stimulus orientation information. A com-

mon notion regarding the functional layout of V1 states that orientation selectivity (tuning)

is less pronounced in the middle layers of V1 (Hubel and Wiesel, 1972, 1977; Ringach et

al., 2002). Several authors have since challenged this idea, arguing that V1 already receives

orientation-biased inputs (Daniels et al., 1977; Vidyasagar and Urbas, 1982; Leventhal and

Schall, 1983; Smith et al., 1990; Pugh et al., 2000; Xu et al., 2002). We thus wondered

what the laminar profile of MVPA-based decoding of stimulus orientation across V1 layers

might be.

We binned our grating stimuli into four groups (0°, 45°, 90°, and 135°, respectively) and

trained a classifier to discriminate between them (Figure 2.2C). Interestingly, we found that

information regarding stimulus orientation was more transient than information regarding

of eye-of-origin. Moreover, the laminar profile was strikingly different: the center of the

granular layers discriminated relatively poorly between gratings of varying orientation, and

neurons in the layers above and below did so without any significant temporal delay. Closer

inspection of the layer-resolved decoding (Figure 2.2D), collapsed across time, revealed

that there was no significant difference between any of the laminar compartments (bar

plots). These results seem to suggest that stimulus orientation information is extracted

almost uniformly across V1 layers. However, visual inspection reveals clear differentiation

within the middle layers, which is lost when collapsing this layer into a single measure.

This heterogeneous pattern within the granular layers might at least be partially explained

by the fact that the middle layers host several sublayers that each receive separate inputs

from the LGN (Casagrande and Boyd, 1996), although it is not immediately clear how the

granular sublayers relate to the specific pattern we found.

Given that V1 is known to modulate its responses depending on contextual cues, such
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as the behavioral state of the animal or stimulus history (Van Kerkoerle et al., 2014; Cox

et al., 2019a; Westerberg et al., 2019), we next examined how stimulus history affects the

laminar flow of stimulus-specific information. To do so, we first studied the laminar flow

of information of whether a stimulus was novel or preceded by another stimulus in the

stimulation sequence. We found that this information regarding stimulus history yielded

yet another pattern of laminar information flow (Figure 2.2C). We found that the bulk of

information regarding stimulus history resided outside the granular input layers. This find-

ing was also apparent in layer-specific MVPA (Figure 2.2D). These results are in line with

earlier work showing that V1 granular layers are least affected by the adaptive effects of

repeated visual stimulation (Westerberg et al., 2019).
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Figure 2.2: Stimulus feature-specific information within neural activation of the CCM.
(A) Canonical microcircuit model (CCM) of neural activation in V1. Feedforward activa-
tion initially excites the middle layers before reaching upper and lower layers of cortex.
(B) Grand average laminar MUA profile to all stimulus presentations along the depth of
the electrode (all sessions, both monkeys). (C) Decoding performance using a “moving
searchlight” along the electrode array for eye of origin (leftmost panel), grating orientation
(middle panel), and stimulus repetition (rightmost panel). (D) Time series of MVPA de-
coding for eye of origin (leftmost panel), grating orientation (middle panel), and stimulus
repetitions (rightmost panel). Graphs show decoding accuracy as a function of time and
laminar compartment, together with a randomized shuffled control as a baseline. Signif-
icance is indicated with colored asterisks above the abscissa using Wilcoxon signed-rank
test, FDR corrected, q < 0.01. Bar plots to the right indicate time-averaged statistics of the
data with Wilcoxon signed-rank test P values (*p < 0.05, **p < 0.01, ***p < 0.001) above
the plots.
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2.4.2 Quantifying Differences Between Spatiotemporal Searchlight Maps.

We next quantified the visual difference we observed between the spatiotemporal maps

for the stimulus-specific information (Figure 2.3). Since we were primarily interested in

relative decoding performance throughout the cortical columns, we normalized each chan-

nel (electrode contact) by subtracting mean decoding performance across channels for each

individual timepoint in the time series for each stimulus feature. We then calculated the Eu-

clidean distance between each of our stimulus feature at each timepoint. These results were

then compared to a shuffled label control where we similarly normalized our electrodes at

each timepoint and then calculated the Euclidean distance (Figure 2.3B). Here, we find that

the spatiotemporal differences between eye of origin, orientation, and stimulus history are

all higher than the differences found in the respective shuffled label control. Eye-of-origin,

which was more readily decoded in the granular layers was distinct from the decoding of

stimulus orientation and repetition, which both lead to higher decoding in superficial and

deeper layers. To statistically compare the differences across space and time, we next con-

verted the searchlight matrices into one-dimensional vectors and then normalized across

channels before conducting a pairwise signed rank test. Using this approach, we found

significant decoding differences between eye of origin and orientation (p < 0.001), eye-of-

origin (p < 0.001) and repetition (p < 0.001), and orientation and stimulus history (p <

0.001). As expected, there were no significant differences between the shuffled label con-

trols. These decoding differences between stimulus features indicate that processing these

stimulus features occurs distinctly but simultaneously with the laminar microcircuit.
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Figure 2.3: Statistical comparison of columnar flow of stimulus feature-specific informa-
tion. (A) Schematic for comparison between stimulus-feature specific searchlight analyses.
Decoding results from the searchlight analyses for each of the stimulus features, normal-
ized across all the channels for each individual timepoint from 100 ms prior to stimulus
presentation to 400 ms after stimulus presentation (B) Euclidean distance of the normal-
ized decoding values calculated between each stimulus feature. A shuffled control where
stimulus labels have been shuffled prior to channel normalization and Euclidean distance
calculation is shown for comparison.
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2.4.3 Temporal Dynamics of Stimulus Information Using Time Generalization

To further investigate how feature information evolves over time (see also: Ringach

et al., 1997, 2002, 2003; Bair et al., 2002; Smith et al., 2006; Shapley et al., 2007), we

decoded neuronal data based on a classifier that was trained for another time period of the

same neuronal response (“time generalization”) (Carlson et al., 2011; King and Dehaene,

2014). The result of this analysis is a 2D “time generalization matrix” that plots training

time against decoding time. Figure 2.4A illustrates several possible outcomes for general-

ization matrices. It is possible, for example, that there is little to no generalization between

a classifier trained at one time and tested on the remaining time of a neuronal response.

In other words, spiking might be constantly changing in a way that any information used

to discriminate between stimuli is specific to each individual point in time of the neuronal

response (“unique states”). In contrast, if the information used to discriminate between

stimuli were static across the neuronal response, we would expect a square-like pattern

(“sustained”). This analysis can also show information decaying over time (“information

decay”). An asymmetric pattern occurs because a classifier trained on lower signal-to-noise

ratio (SNR) data generalizes better to higher SNR data than the converse (van den Hurk and

Op de Beeck, 2019). Lastly, information might reoccur at a later time point of a response

(“recurrence”).

We performed time generalization analysis for the decoding of eye-of-origin, stimulus

orientation as well as stimulation history within each laminar compartment (Figure 2.3 and

Supplementary Figure 2.7). Decoding eye-of-origin was mostly sustained but also exhib-

ited some information decay within each laminar compartment (Figure 2.4). Decoding of

stimulus orientation, in contrast, was less sustained. Interestingly, whether or not a stimulus

preceded or succeeded other stimuli showed a very different pattern. Specifically, the time

generalization matrix was suggestive of recurrent processing, in that the initial information

emerges, weakens and then re-emerges at a later time point. This reactivation pattern was

most prominent in the supragranular and infragranular layers (Figure 2.4).
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Figure 2.4: Temporal dynamics of stimulus information using time generalization. (A) Car-
toon models of possible results. (B) Significant time generalization results, FDR corrected
for multiple comparisons, q < 0.025, for: (B) Eye-of-origin, (C) Orientation, (D) Stimulus
repetitions (see Methods for details). Chance decoding level is indicated on each color bar
by a red line. Red and white arrows are added for emphasis.65



To further investigate how the temporal dynamics for each of the stimulus features

varies within compartments. We combined the searchlight and time generalization anal-

yses (Figure 2.5 and Supplementary Video 2.8). Using this approach, we found that the

electrode-specific time generalization matrices were generally representative of their re-

spective compartments. However, within compartments there was notable heterogeneity.

For example, for eye of origin decoding, time generalization was comparable across con-

tiguous electrodes. In contrast, for decoding stimulus history (repetition), the reactivation

pattern noted in Figure 2.5 waxes and wanes even within laminar compartments. These

results provide evidence for the notion that sub-layers within laminar compartments differ-

entially process distinct stimulus features.
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Figure 2.5: Combined time generalization and moving searchlight analysis along the depth
of the linear electrode array. (We performed this analysis for each of the main stimulus fea-
tures analyzed in this paper: Stimulus (A) eye-of-origin, (B) orientation and (C) repetition.
Each sub-panel shows a series of time generalization plots ranging from 100 ms before
stimulus to presentation to 400 ms post stimulus presentation using a moving searchlight
of three electrodes and two electrodes at the end of the electrode array.
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2.5 Discussion

Recent studies using linear multielectrode arrays in V1 have successfully contrasted

externally evoked feedforward activation with internally generated feedback (Spaak et al.,

2012; Maier, 2013; Van Kerkoerle et al., 2014, 2017). These results are encouraging as they

demonstrate that the flow of neural activation across cortical layers is highly informative

regarding the context of neuronal activation – an important insight that is largely absent

in single electrode recordings. In this study we went beyond these earlier findings by

showing how the build-up of cortical laminar activation contains several parallel streams for

information specific to stimulus features that are difficult to trace using univariate analyses,

even when laminar data has been obtained.

2.5.1 Drawing Insight From Multivariate Spiking Profiles

In recent work, layer-specific processes are often grouped to perform univariate anal-

yses to investigate differences between layers (see Westerberg et al., 2019 for example).

This is because we often consider cortical processes that follow a model known as the

canonical cortical microcircuit (see Bastos et al., 2012 for review). This model hypothe-

sizes three functional compartments in granular cortex: a feedforward recipient granular

compartment sandwiched between supragranular and infragranular compartments. While

this model has provided powerful insight into cortical function, we know that even within

layers there can be degree of heterogeneity in the distribution of neurons. That is, neuron

“A” might exist in layer 2 of cortex where neuron “B” exists in layer 3. While both neu-

rons are present in the supragranular compartment and their activity might reflect the same

process, the information they carry might vary in meaningful ways. MVPA incorporates

information across all channels comprising a predefined laminar compartment. This allows

a more integrative approach in evaluating the activity of laminar compartments than pre-

vious approaches. Namely, previous work considers independent channels from a laminar

compartment representative of the compartment’s overall activation state (Westerberg et al.,
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2019). However, information might be encoded in the dynamics within a layer that would

be lost in univariate analyses.

Another advancement afforded by the MVPA approach is by being able to generalize

information states across time. The time generalization analysis allows us to track patterns

of information encoding. That is, by evaluating decoding performance by training and

testing the classifier at different time periods, we can observe how information processing

is remaining consistent or evolving. A stable representation of a feature will not only be

decodable at the timepoint in which a classifier is trained, but also at later timepoints.

Meanwhile, with a dynamic representation, a classifier will not generalize far beyond the

trained time (Carlson et al., 2011; King and Dehaene, 2014; Mohsenzadeh et al., 2018).

Furthermore, we can infer how certain stimuli features vary in time and match potential

models of neural encoding found across a number of studies (for review see King and

Dehaene, 2014).

2.5.2 Implications for the Circuitry of Binocular Combination, Orientation Repre-

sentation, and Repetition Suppression

The analyses performed here further our understanding of several processes along the

V1 laminar microcircuit. First to consider is the laminar profile of binocular combination.

Through our analyses, we found that visual signals of each eye are more strongly integrated

once they reach the deep layers. We found a drastic reduction in eye-specific information

in the lower layers of V1, suggesting the information regarding eye-of-origin are largely re-

solved prior to the lower layers. This pattern is in line with earlier reports, locating the bulk

of V1 binocular neurons in both the upper and lower layers (Hubel and Wiesel, 1977). This

apparent paradox might be explained by a recent finding that a large fraction of monocular

V1 neurons are sensitive to both eyes (Dougherty et al., 2019a). Thus, a neuron’s pref-

erence for one or the other eye may not necessarily be predictive of how it responds to

binocular stimulation (see also Read and Cumming, 2004). Furthermore, eye-specific in-
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formation also seemed to decrease in both the searchlight decoding and time generalization

results, indicating that it is more readily dispensed by V1’s CCM compared to other types

of stimulus information, which seems in line with the fact that eye-of-origin information

is of low behavioral relevance (Blake and Cormack, 1979; Solomon and Morgan, 1999;

Schwartzkopf et al., 2010). While our findings regarding the representation of eye infor-

mation the lower layers requires more direct testing to reconcile with previous work, our

other finding that each eye’s stream of information stays largely separate until visual acti-

vation reaches the upper layers of V1 are compatible with hypotheses regarding the origins

of binocular combination.

Our results also revealed a fine-grained spatiotemporal laminar pattern of orientation

tuning, with some but not all sublayers of granular layer 4 exhibiting less sensitivity to

stimulus orientation than the superficial and deep layers of V1. Although it is not imme-

diately clear how the specific pattern produced by MVPA relates to the magno- and par-

vocellular recipient sublayers, our finding seems to be generally in line with the idea that

V1 receives at least some LGN inputs that are somewhat “biased” toward certain stimulus

orientations, with further processing within V1 producing the more discerning orientation

tuning that characterizes this area.

With respect to the circuitry of adaptation in V1, it is interesting to note that stimu-

lus repetition yielded a unique signature of time generalization in the feedback-recipient

layers of V1. Previous work suggested that adaptive changes largely arise from changes in

feedback activation in V1 (Westerberg et al., 2019). The temporal features of this time gen-

eralization pattern are somewhat reminiscent of prior descriptions of feedback modulation

in V1 (Van Kerkoerle et al., 2014). However, our finding goes beyond the demonstration

of a secondary peak in activation by revealing that the information content within this acti-

vation is specific to contextual information.
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2.5.3 Sources for Feature-Specific Activation Patterns in V1

It is interesting to speculate as to the source of these differences in layer-specific infor-

mation flow. Could it be that differences arise through differences in processing local to

V1 or is another brain area affecting feature-specific change in the V1 laminar microcir-

cuit? Previous work has begun to investigate such questions. For example, investigation

into the origins of adaptation resulting from visual repetition suggests that the reduction

in neural responses in V1 associated with visual repetition comes about through a reduc-

tion in the feedback activity to the V1 laminar microcircuit rather than through changes

in feedforward processing local to V1 (Westerberg et al., 2019). This is in contrast to the

process of binocular combination which is largely thought to be accomplished even prior

to the feedforward activation of the supragranular layers of V1. It is through these differ-

ences in activation that might elicit the observed differences in information flow along the

layers. Further investigation, perhaps through causal inactivation of feedback connections

to V1 (Nurminen et al., 2018), would shed light on whether feedback activation is indeed

necessary for the observed patterns of information flow described here.

2.5.4 Toward Ultra-High-Resolution Laminar Neurophysiology

We are on the cusp of a revolution in primate neurophysiology that will allow for mas-

sively increased insights into the function of mesoscopic neural circuits (Jun et al., 2017;

Steinmetz et al., 2018; Musk and Neuralink, 2019). Modern recording technologies have

advanced to allow for the simultaneous recording from thousands of channels. This sub-

stantial advance in resolution of data allows for the interrogation of data through novel

analytical methods. With increased resolution of data comes the ability to investigate data

in more integrative approaches. MVPA has proven highly useful in the functional imaging

literature where large multichannel datasets have been commonplace for decades. Through

the analyses demonstrated here, we propose these same analyses as useful approaches to

investigating ultra-high-resolution neurophysiology as these recording techniques become
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more and more common.
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2.7 Supplemental Figures

Figure 2.6: Receptive field mapping. For each contact of the linear multielectrode array, we
computed the magnitude of MUA spiking responses as a function of visual field stimulation
using a reverse-correlation technique (see Methods). Colored plots to the left show aver-
aged neuronal response in units of standard deviation as a function of angle and magnitude
in visual degrees. Panels are arranged in descending order with each column represent-
ing neighboring channels on the electrode array so that each row represents the electrode
channel that is 200 microns below the channel above. Note that the receptive field loca-
tions deviate little between the top and the bottom of the array, indicating that the electrode
was inserted perpendicularly to the cortical surface. The topmost and bottommost channels
of the array produced no visual responses as these electrode channels reached outside the
cortical thickness.
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Figure 2.7: Supplemental searchlight analysis separated by monkey. Decoding perfor-
mance using a moving searchlight along the electrode array for (A) eye of origin, (B)
grating orientation, and (C) stimulus repetition. Monkey 1 (left panel) and Monkey 2 (right
panel).
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Figure 2.8: Video of Combined Time Generalization and Searchlight Analysis. Video can
be found here: https://ndownloader.figstatic.com/files/25628039
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Chapter 3

Volume conduction masks feature information in locally generated LFP

3.1 Abstract

Local field potentials (LFP) are low-frequency voltage fluctuations which reflect neural

coding within and across brain areas. However, unlike neuronal spiking which is highly lo-

calized, LFP is spatially non-specific – what is measured at one location is not necessarily

generated there. This volume-conducted component of the LFP might therefore interfere

with accurate measurement, and subsequent interpretation, of the information conveyed in

the locally generated low-frequency signal. We sought to uncover whether information em-

bedded in locally generated low-frequency activity was masked by the volume-conducted

signals. Monkeys viewed sequences of multifeatured stimuli while laminar recordings were

performed in area V1. We compared information content of volume-conducted and locally

generated LFP through spatiotemporal multivariate pattern analysis of cortical columns.

Volume-conducted vs. locally generated information dissociated in two important ways.

For stimulus features (orientation and eye-of-origin), locally generated LFP held more in-

formation. Conversely, the volume conducted signal was more informative with respect

to temporal context (stimulus position in sequence). These relationships were layer spe-

cific. We further explored these relationships with respect to frequency bands. This re-

vealed distinct patterns of shared information between frequency bands which differed for

volume-conducted and locally generated signals. These findings reveal low-frequency neu-

ral activity generated at the level of laminar cortical microcircuits encode information and

display cross-frequency relationships which are masked by volume-conducted activity.

3.2 Introduction

The local field potential (LFP) is a complex, far-reaching signal comprising transmem-

brane potentials arising from incoming synaptic inputs (Buzsáki, Anastassiou, & Koch,

2012; Mitzdorf, 1985), sodium currents (Ray, Crone, Niebur, Franaszczuk, & Hsiao, 2008),
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calcium currents (Schiller, Major, Koester, & Schiller, 2000), and gap junctions (Traub &

Bibbig, 2000). LFP captures graded potentials in addition to the all-or-none response of the

action potential, effectively providing a larger population response (Bijanzadeh, Nurminen,

Merlin, Clark, & Angelucci, 2018). As a result, the information contained in LFPs often

complements what is found from action potentials (Leszczyński et al., 2020; Mineault,

Zanos, & Pack, 2013), and in some cases explains behavioral responses better than ac-

tion potentials (e.g., Pesaran, Pezaris, Sahani, Mitra, & Andersen, 2002). Additionally,

LFPs show more consistency across recording sessions than population spiking activity,

as they are not affected as much by the position of the electrode relative to the recorded

population (Bédard, Kröger, & Destexhe, 2004). This stability can be partially explained

by the LFPs proclivity to diffuse through space. However, this otherwise helpful property

can be problematic for identifying the structures involved in generating or receiving neural

signals. There are a number of known instances where a brain structure thought to have

been involved in producing a neural signal, was in fact the result of volume conducted

LFPs from nearby structures (Bertone-Cueto et al., 2020; Kajikawa, Smiley, & Schroeder,

2017; Lalla, Rueda Orozco, Jurado-Parras, Brovelli, & Robbe, 2017). Accounting for this

volume conduction is important given that stimulus features are processed preferentially

across sensory cortical areas, within areal maps comprised of columns, and even across the

layers of a cortical column (Tovar et al., 2020).

Variability exists in reports of the extent to which LFP volume conducts through neural

tissue. Reports range from a few hundred micrometers (Katzner et al., 2009; Xing, Yeh,

& Shapley, 2009) to a few millimeters horizontally and centimeters vertically (Kajikawa

& Schroeder, 2011, 2015; Kreiman et al., 2006; Nauhaus, Busse, Carandini, & Ringach,

2009). A number of factors contribute to this variability. Cell morphology is a considerable

factor, with modeling showing that pyramidal cells, due to their asymmetry, have larger

LFP spread than any other cell type (Lindén et al., 2011). Complicating matters further,

the spontaneous correlation between cells at rest as well as during stimulus presentation,
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affected by factors such as the presence of horizontal cells and the particular stimulus fea-

tures encoded, can affect passive spread by an order of magnitude (Leski, Lindén, Tetzlaff,

Pettersen, & Einevoll, 2013; Lindén et al., 2011; Rosenbaum, Smith, Kohn, Rubin, & Do-

iron, 2017). Lastly, volume conducted passive spread from the activation observed when

neural activity in one brain area elicits activity in neighboring brain areas, propagating a

traveling wave (Sato, Nauhaus, & Carandini, 2012; Zanos, Mineault, Nasiotis, Guitton, &

Pack, 2015). These factors can make triangulation of a source for LFP difficult.

However, the implications of the volume conducted component can be investigated

through careful transformation of the LFP signal. Current source density (CSD), the sec-

ond spatial derivative of the LFP (Mitzdorf, 1985), estimates localized synaptic activa-

tions comprising the spatially non-specific LFP. Interestingly, the CSD seems to be a more

complex signal than LFP and population spiking, requiring more principle components

to explain signal variance (Einevoll et al., 2007; Schaefer, Kössl, & Hechavarría, 2017).

Importantly, the CSD can be re-summed into LFPCal – an estimate of locally generated

LFP (at the columnar microcircuit scale) minimizing contamination by volume conduction.

However, investigation using the LFPCal signal is limited. The LFPCal has primarily been

used to quantify the amount of volume conduction in the original LFP signal (Kajikawa &

Schroeder, 2011). This recalculated signal has not been used to study how feature process-

ing is affected by volume conduction.

Here, we used multivariate pattern analysis, exploiting information captured by the

laminar response variability, to study the information present in the volume conducted and

locally generated LFP in V1 during visual presentation of multifeatured stimuli. Since dif-

ferent stimulus features are uniquely processed across brain areas and as such might have

different degrees of volume conduction, we studied stimulus features primarily localized

to V1 as well as stimulus features that may also be processed outside of V1. We find that

decoding performance for features processed within V1 suffer from volume conduction

effects while decoding performance for stimulus features processed outside of V1 appear
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enhanced by volume conduction. Additionally, we found that volume conduction differen-

tially affected stimulus features information across frequency bands associated with vary-

ing degrees of feedforward and feedback processes (Bastos et al., 2012; Bastos et al., 2015;

Belitski et al., 2008; Peter et al., 2019; Van Kerkoerle et al., 2014). Our findings demon-

strate that volume conducted signals can mask information relayed in locally generated

low-frequency signals. Moreover, these findings depend on the feature being processed

and are differentially impacted with respect to the frequency measured.

3.3 Methods

3.3.1 Animal care and surgical procedures

Procedures were in accordance with National Institutes of Health Guidelines, Associa-

tion for Assessment and Accreditation of Laboratory Animal Care Guide for the Care and

Use of Laboratory Animals, and approved by the Vanderbilt Institutional Animal Care and

Use Committee following United States Department of Agriculture and Public Health Ser-

vices policies. Two macaque monkeys (Macaca radiata: monkey E48 [male], monkey I34

[female]) underwent a series of surgeries implanting MR compatible head posts and cranial

recording chambers positioned over one hemisphere of V1. A craniotomy was performed

concurrent with the location of the recording chamber. All surgical procedures were per-

formed under general anesthesia. Anesthetic induction was performed with ketamine (5-25

mg/kg). Monkeys were then catheterized and intubated. Surgeries were performed under

aseptic conditions. N2O/O2, isoflurane (1-5%) anesthesia was used. Vital signs were moni-

tored continuously. Postoperative antibiotics and analgesics were administered. Additional

descriptions of animal care and surgical procedures can be found elsewhere (Westerberg,

Cox, Dougherty, & Maier, 2019; Westerberg, Maier, & Schall, 2020; Westerberg, Maier,

Woodman, & Schall, 2020).

85



3.3.2 Magnetic resonance imaging

Magnetic resonance (MR) imaging was used to guide recording chamber implant surg-

eries as well as to guide linear electrode array penetrations. All MR scans were conducted

with animals under general anesthesia per the procedures described in Animal care and

surgical procedures. Scans were obtained using a Philips 3T MR scanner. T1-weighted

3D MPRAGE scans were acquired with a 32-channel head coil equipped for sense imag-

ing. Images were acquired using 0.5 mm isotropic voxel resolution with the following

parameters: repetition 5 s, echo 2.5 ms, and flip angle 7°.

3.3.3 Visual display and stimuli

Monkeys viewed stimuli presented on a 20” CRT monitor at 60 or 85 Hz. Stimuli were

presented through a custom mirror stereoscope allowing for monocular or binocular pre-

sentation of stimuli (Figure 3.1A) (Cox et al., 2019b; Dougherty et al., 2019, 2021). Prior

to performance of the main task, monkeys performed a stereoscope calibration task as to

eliminate any potential confound of binocular disparity (see Tovar and Westerberg et al.,

2020). Each recording session (N = 61, monkey E48: 48, monkey I34: 13) comprised

several hundred trials each with sequences of 1-5 stimulus presentations (Figure 3.1B).

Stimulus displays were generated using MonkeyLogic (Asaad & Eskandar, 2008; Hwang,

Mitz, & Murray, 2019). Monkeys initiated trials by fixating within 1 degree of visual angle

(dva) of a central fixation dot. Following a short (300 ms) fixation period, stimuli appeared

in sequence (1-5 stimuli) each for 200 ms with a 200 ms inter-stimulus interval. If monkeys

maintained fixation throughout the stimulus sequence, they received a juice reward before

an inter-trial interval ensued. If monkeys failed to maintain fixation throughout the trial,

they received a brief timeout before the inter-trial interval. Each stimulus presented was a

sinusoidal bar grating stimulus localized to the visual receptive field of the cortical column

(see Receptive field mapping below). The stimuli maintained the same size, spatial fre-

quency, and phase throughout each recording session (optimized for the column multi-unit
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activity, see Cox et al., 2013, 2019a, 2019b), but had variable orientation and eye-of-origin.

Stimuli were only presented monocularly.
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Figure 3.1: Experimental setup and laminar alignment. A. Stereoscope setup for stimulus
presentation. Monkey is positioned behind a series of mirrors which provide stimulation
to each of the eyes independently. B. Stimulus presentation sequence. Monkeys fixated
for 300 ms after which a stimulus was presented to the receptive field of the V1 column
for 200 ms. 5 stimuli were presented sequentially with 200 ms inter-stimulus intervals
while monkeys maintained central fixation. C. Laminar alignment across sessions using
current source density (CSD). For each session (n=61), CSD was computed and the L4/5
boundary identified as the early sink with an accompanying deeper source. Color plot
shows session average CSD response to stimulus in the column RF following alignment.
D. LFP correlations were also used to confirm laminar alignment. Color plot shows profile
of contact-by-contact correlations across time (512 ms moving window) during each ses-
sion then averaged across all sessions following laminar alignment. E. Representative RF
mapping for a single session. Each gray circle represents the estimated multiunit RF for a
recording site identified to be in cortex. The red circle indicates the average along contacts.
All circles overlap indicating perpendicular penetration. F. Average column RF for each
session where color indicates the monkey-hemisphere combination where the column was
recorded.
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3.3.4 Neurophysiological procedure

Broadband (0.5-12.207 kHz) neurophysiological signal was recorded during task per-

formance. Signals were amplified and digitized at 30 kHz using a 128-channel Cerebus

Neural Signal Processing System (Blackrock Microsystems). LFP signals were downsam-

pled to 1 kHz. All neural recordings were performed using 24- or 32-channel linear micro-

electrode arrays with 0.1 mm interelectrode spacing (S-probe, U-Probe, V-Probe – Plexon;

Vector array – NeuroNexus) positioned orthogonal to the cortical surface in dorsal V1.

Microelectrode recording contacts had impedances between 0.2-0.8 MOhms. Electrode ar-

rays were held in position using a custom Narishige micromanipulator. Electrode arrays

were interfaced with the amplifier system using the Blackrock analog headstage. Gaze was

measured binocularly at 1 kHz using an Eyelink system (SensoMotoric Instruments). All

recordings took place in a radio frequency-isolated booth.

3.3.5 Receptive field mapping

Receptive field mapping was performed during the neural recordings to ascertain the

receptive field of the cortical column being recorded from as well as to confirm an orthog-

onal electrode array penetration into V1 (Figure 3.1E-F). Multiunit and local field potential

activity was measured while a series of stimuli were presented in the contralateral lower

quadrant of the visual hemifield relative to the position of the recording chamber. Monkeys

fixated a central fixation dot while 1-5 stimuli were presented. Successful maintenance

of fixation throughout the stimuli presentations yielded a juice reward. Qualitative (audi-

tory evaluation) and quantitative assessment of the visual responses was performed online.

More detailed description of the procedure is detailed elsewhere (Cox et al., 2013). Mon-

keys proceeded to perform the main task described in Section 3.3.3 if there was an observ-

able receptive field which was consistent along cortical depth, indicative of an orthogonal

presentation. The measured receptive field in this task was used as the location for stimuli

presentation in the main task.
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3.3.6 Current source density and laminar alignment

Current source density (CSD) served to identify the location of the electrode relative

to the layers of V1 (Mitzdorf, 1985). The spatiotemporal profile of CSD has a distinct

pattern which allows for the reliable identification of the boundary between the granular

input layers and the infragranular layers of V1 (Schroeder et al., 1998). To compute the

CSD from the LFP, we used previously describe procedure (Nicholson & Freeman, 1975):

CS D(t,d) = −σ

(
x(t,d− z) + x(t,d + z)−2x(t,d)

z2

)
(3.1)

Where the CSD at timepoint t and at cortical depth d is the sum of voltages x at elec-

trodes immediately above and below (z is the interelectrode distance) minus 2 times the

voltage at d divided by the interelectrode-distance-squared. That yields the voltage local to

d. To transform the voltage to current, we multiplied that by - σ, where σ is a previously

reported estimate of the conductivity of cortex (Logothetis, Kayser, & Oeltermann, 2007).

In addition to using CSD for laminar alignment (Figure 3.1C), we confirmed positioning of

the electrode array relative to the layers by identifying reliable patterns in the correlations

between LFP across electrodes (Figure 3.1D) and in the LFP power spectral density (PSD,

Figure 3.3) through previously reported means (Maier, Adams, Aura, & Leopold, 2010;

Westerberg et al., 2019).
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Figure 3.2: Laminar power spectral density for volume conducted and locally generated
LFP signals. Left column shows raw LFP signal and right column, the LFPCal. PSD
normalized by finding the average power for each frequency along depth and then power
for each contact for each frequency was taken as the percent difference from the column
average. Profiles were first normalized at the session level then averaged across sessions
(n=61). Ordinates are the depth relative to the L4/5 boundary and abscissa, the frequency.
Red indicates greater that column average power in that frequency at that depth. Blue
indicates lower than column average power. The transformation of LFP to LFPCal modifies
the laminar profile of field potential power.
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3.3.7 Locally generated LFP recalculation

The configuration of microelectrodes in the linear array provides the opportunity to

recalculate the low-frequency LFP signal without contamination of volume-conduction.

We calculated the locally generated component of the LFP from the measured laminar

CSD (LFPCal) using a previously described model (Kajikawa & Schroeder, 2011,2015;

Nicholson & Llinas, 1971):

LFPCal(d j, t) = A
∑

j

CS D(d j, t)√
h2 + |d j−di|2

(3.2)

where LFPCal at depth i (di) for each timepoint t is taken as the sum of CSD at depths

j (dj) for each timepoint divided by the Euclidean distance to account for the attenuating

impact of local currents on distant field potentials. The factor A acts only as a scaling

factor and we cannot accurately estimate the magnitude of the one-dimensional CSD-

derived waveform, so we eliminate this parameter from the calculation. This omission

is consistent with previous reports (Kajikawa and Schroeder, 2011) and limits our com-

parisons of volume-conducted LFP and the locally generated LFPCal to only shape of the

waveforms. However, magnitude differences can be observed between conditions for the

volume-conducted and locally generated LFP, independently. Also, for our purposes, we

set h, the displacement distance of the center of mass of CSD from the array electrode as-

suming vertically aligned CSD components, to 0 as we assume that our observed CSD and

the recalculated LFP are colocalized.
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Figure 3.3: Calculation of locally-generated LFP from volume-conducted signal for a rep-
resentative session. A. Procedure for finding LFPCal. Raw LFP signal is taken at each elec-
trode contact. CSD is computed as the second spatial derivative of the LFP signal. LFPCal
is then calculated from the CSD as the sum of field potentials generated at each of the elec-
trodes in the column accounting for the attenuation of magnitude with respect to distance
from contact. Blue, purple, and green background indicate the laminar compartment from
which the data was taken from. B. Cartoon exemplifying the concept behind the LFPCal
procedure. Cylinders represent columns. Dashed lines represent field potentials. LFP sig-
nals stem from both locally-generated and volume-conducted signals including LFP gener-
ated in nearby cortical columns as well as deeper neural structures. The LFPCal procedure
attenuates or eliminates the signals generated outside of the recorded column to estimate
the LFP that is locally-generated in isolation. C. LFP frequency bands comprising both the
raw LFP signal as well as the LFPCal can be filtered out.
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3.3.8 LFP frequency analysis

Once the volume conducted LFP was recalculated and locally generated LFPCal were

isolated, we performed a filtering step (where necessary) to investigate differences that

might exist with respect to component frequency bands. Filtering was done using a bidirec-

tional bandpass 2nd order Butterworth filter (Maier et al., 2011). Filtering was performed

on the raw neurophysiological signal prior to extracting trials. Power spectral density was

calculated on the raw neurophysiological signal through a Fourier transform.

3.4 Results

3.4.1 Dissociated information in volume conducted versus locally generated LFP

LFP data was recorded using linear microelectrode arrays affording laminar localiza-

tion and alignment (Figure 3.1C). Moreover, we can recompute the locally generated LFP

– broadband and in distinct frequency bands – from the volume conducted signal using

CSD as an intermediary. This process is detailed for an example session in Figure 3.3. The

volume conducted and locally generated LFP signals will hereafter be referred to as LFP

and LFPCal, respectively, to reflect the underlying measurement type/derivation. We assure

the transformation between LFP and LFPCal alters the spatial profile of LFP by evaluating

the power spectral density (PSD) along the layers of cortex (Figure 3.3). This demonstrates

a difference – at least in the spectral power and content – between the volume conducted

and locally generated LFP. However, we were interested in evaluating the information con-

tent in the LFP between these spatial scales. This derivation affords that opportunity. To

compare how stimulus features differed and evolved over time and space for the LFP and

LFPCal signals, we extracted information regarding stimulus features by performing a mov-

ing searchlight analysis (Etzel, Zacks, & Braver, 2013; Tovar et al., 2020) for each of the

signals. In this analysis, we trained and tested a linear discriminant analysis (LDA) classi-

fier for each session using one electrode and its immediate neighboring electrodes at each

timepoint, iteratively repeating the process until we have performed the analysis for the
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entire laminar probe across the stimulus interval [-100 ms to 400 ms]. This analysis cre-

ates spatiotemporal maps of feature information flow within the V1 microcircuit for each

session. To isolate the information that is present in the LFP signal due to volume con-

duction, we subtracted the stimulus feature information found in the LFPCal from the LFP

searchlight results. This volume conducted signal can be coming from cortical columns

immediately surrounding the electrodes, as well as structures outside of V1 altogether

(Bertone-Cueto et al., 2020; Kajikawa & Schroeder, 2011; Kajikawa et al., 2017). For

the LFP and LFPCal spatiotemporal maps, we used Wilcoxon signed rank tests to evaluate

for significance against chance decoding. Chance decoding is the percentage that would be

obtained if the classifier guessed stimuli labels randomly, with FDR correction for multiple

comparisons over time and space. For the LFP and LFPCal differences, significance was

evaluated against zero.

For eye-of-origin (Figure 3.4A), the spatiotemporal decoding maps between LFP and

LFPCal varied primarily during the initial transient response. In the LFP, eye-of-origin in-

formation first emerged in the granular layer and quickly spread to the supragranular layer,

but was greatly diminished in the infragranular layers. Conversely, for the LFPCal signal,

information was present in all layers, including in the infragranular layers near L4/L5 bor-

der. Initially, it was somewhat surprising to find information in infragranular layers of the

LFPCal signal, given our own previous findings of reduced eye-of-origin information in in-

fragranular neural spikes along with others (Dougherty, Cox, Westerberg, & Maier, 2019;

Hubel & Wiesel, 1972; Tovar et al., 2020). The finding, however, may be a product of LFP

and CSD signals largely representing synaptic inputs (Buzsáki et al., 2012; Mitzdorf, 1985)

while spikes represent output signals, contributing to them having different spatiotempo-

ral profiles (Leszczyński et al., 2020). Nevertheless, there was more information in the

LFPCal signal throughout the transient response when subtracting LFPCal from the LFP

signal, with the most prominent difference seen in the infragranular layer at the transient

and shortly following the transient response. Together, these findings show that the volume
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conducted signals from surrounding cortical columns and other areas in the brain add noise

to signals containing eye-of-origin information.

The LFPCal signal also contained more orientation information than the LFP signal

(Figure 3.4B), varying most notably during the transient response. The LFP signal in-

formation was uneven across layers, localizing primarily to the supragranular layers near

the L3/L4 border. Meanwhile, the LFPCal transient response contained orientation infor-

mation evenly throughout the compartments. The orientation information in the LFPCal

also appeared to be more prolonged than the LFP. These differences become evident when

subtracting the two signals, with the most sustained differences observed in the granular

layers. These results show that in addition to eye-of origin, volume conduction obscures

orientation information in the V1 microcircuit. Additionally, they support the overarching

idea that more signal is not necessarily better, with reduced LFP signals derived from CSD

containing more information.

However, for stimulus history, the pattern of LFPCal containing more information than

LFP was broken (Figure 3.4C). Additionally, stimulus history information is distributed

differently for the LFP and LFPCal signals. For LFP, stimulus history is most prominently

found in the granular and supragranular layers. However, for the LFPCal signal, stimulus

history information is found in the supragranular layers and infragranular layer. The LFPCal

spatiotemporal profile is more consistent with previous reports of where the feedback recip-

ient layers in V1 are located (Van Kerkoerle et al., 2014; Westerberg et al., 2019). Despite

the different spatiotemporal profiles, overall there was more stimulus history information

in the LFP signal both before and after stimulus presentation, especially in the granular

and supragranular layers. These results show that while stimulus history is present in local

signals, information is found to an even greater degree in distant signals – including those

that are likely coming from structures downstream of V1. Together, these results show how

volume conduction selectively increases or decreases stimulus information at the recording

site depending on how local and distant brain areas process stimulus features.
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Figure 3.4: More information in the reduced LFPCal signal depending on stimulus feature.
A 3-electrode searchlight along the laminar probe was used to decode (A) eye-of-origin,
(B) orientation, and (C) stimulus repetitions. Left column shows results for the LFP sig-
nal, middle column shows the LFPCal decoding results and right column shows the LFPCal
searchlight maps subtracted from the LFP searchlight maps. All results tested for signif-
icance against chance decoding: 50% for eye-of-origin and stimulus repetitions, 25% for
orientation, and 0% for the searchlight map differences, FDR corrected q=0.05. Ordinates
are the depth relative to the L4/5 boundary and abscissa, the time in milliseconds. Blue
indicates lower decoding performance and yellow higher decoding performance.
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3.4.2 Unique frequency patterns evolve for stimulus features over time

Next, we investigate how the relative distribution of information regarding stimulus

features in different LFP frequency bands is affected by volume conduction. To this end, we

used a novel frequency generalization analysis on the localized CSD signal using electrodes

from all laminar compartments. In this analysis we began by constructing a time frequency

spectrogram, collapsing across trials regardless of stimulus features. This time-frequency

spectrogram was used to identify key epochs of interest that capture the evolution of the

neural response to stimulus presentation. Specifically, we selected epochs representing:

(1) time window prior to stimulus presentation, (2) the transient peak following stimulus

presentation, (3) sustained response, (4) stimulus offset, and (5) time window after stimulus

presentation. Note that the signal is centered at these times, but there was a degree of

temporal imprecision, as we found signal prior to stimulus presentation in the spectrogram

(Figure 3.5A). Thus, the relative relationship between frequencies for different stimulus

features is our metric of interest. In Figure 3.6B, we show a schematic explaining the

frequency generalization analysis. Briefly, we trained a classifier at one frequency band

and then tested the classifier at all remaining frequency bands to reveal how well different

types of stimulus feature information at a particular frequency band generalized across

frequency bands. We iteratively repeated this process until we had constructed a matrix

in which all frequency bands were used for training and testing. This analysis was done

separately for the selected epochs of interest.

In Figure 3.5C, we show various cartoon models of matrix patterns that might arise from

the frequency generalization analysis. Patterns found through this analysis have unique

interpretations. For a shared broadband pattern, the information at one frequency is equally

shared across all frequency bands, creating a square like pattern. For unique narrowband,

each frequency bands contains unique information regarding the stimulus feature and thus

information will not generalize across frequencies, creating a diagonal along the matrix.

Conversely, if information is shared and contained within distinct bands, we would expect
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that two distinct squares would emerge within the generalization matrix. Lastly, we show

what the matrix information might be contained and shared amongst the low frequency

bands or high frequency bands. While these are examples of discrete model patterns, it is

more likely that stimulus information will adopt combinations of these matrix patterns.

In Figures 3.5D-F, we show the frequency generalization matrices at various times

for eye-of-origin, orientation, and stimulus history evolving over time. All matrices were

thresholded for significance using FDR correction for multiple comparisons, q<0.05. Dur-

ing the pre-stimulus period, eye-of-origin and orientation is localized to a narrowband 5-7

Hz. For stimulus history, the decoding information generalizes from 5 Hz all the way to

65 Hz, highlighting the baseline shifts that may be informing the decoding differences in

the stimulus history. Additionally, there is significant pre-stimulus decoding for both eye-

of-origin and orientation to a localized narrowband 5-7 Hz. However, this isolated low

frequency information most likely reflects the temporal imprecision of the method for low

frequency band. At the transient peak, marked differences emerge in the frequency pat-

tern across stimulus features. Eye-of-origin and orientation both show a shared broadband

response, but orientation information shows more shared information across frequencies.

Stimulus history on the other hand contains distinct low frequency and high frequency

bands of information delineated approximately around low gamma (>30 Hz.) For the

sustained period of activity, eye-of-origin has distinct bands of information, one unique

narrowband from 5-25 Hz and then another shared broadband pattern of information from

45-85 Hz. Orientation information on the other hands was largely localized to the lower

frequency bands at <25 Hz. Stimulus history does not considerably change from what

was observed in the transient peak. At stimulus offset, eye-of-origin and orientation infor-

mation is decreased and diffuse across frequency bands, with modest differences between

frequency bands lower and higher than 20 Hz. Stimulus history is similarly diffuse, without

distinct bands. Following stimulus offset, stimulus feature information dissipates with only

some remnant eye-of-origin and stimulus history information in the low frequency bands
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(>20 Hz). Together, these results demonstrated how feature information contained in dif-

ferent frequency bands varies dramatically over the course of a stimulus presentation, and

how this may subsequently potentially affect volume conduction.
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Figure 3.5: Frequency generalization of stimulus information evolving over time. (A) CSD
full wave rectified time frequency spectrogram of mean stimulus locked responses. Stim-
ulus timeline is shown above for reference, indicating five key timepoints of interest (B)
Schematic of time frequency generalization procedure. An LDA classifier was iteratively
trained on a frequency bin and tested on all frequency bins, repeating the process until all
frequency bins are used for training and testing to create a frequency generalization ma-
trix. This procedure was done for the five key timepoints of interest. (C) Cartoon models
of possible results. (D-F) Frequency generalization matrices FDR corrected for multiple
comparisons, q<0.05, for: (D) Eye-of-origin, (E) Orientation, (F) Stimulus repetitions.
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3.4.3 Relative information found in LFP and LFPCal signals vary by stimulus fea-

tures across frequency bands

We next directly tested how volume conduction effects varied across stimulus features

along different frequency bands. Using the LFP Power and LFPCal Power signals (Figure

3.2C), we once again employed a moving searchlight analysis to construct spatiotemporal

maps of stimulus features. All results were thresholded by significance, FDR corrected

across electrodes and time, q<0.05. Beginning at theta (Figure 3.6A), a frequency band

associated with feedforward activity (Bastos et al., 2015), there was more information in

the localized signal in cortical layers associated with the initial feedforward volley. For

eye-of-origin and orientation, these features first emerge in the granular layer (Casagrande

& Boyd, 1996; Hubel & Wiesel, 1972), while stimulus history first emerges prominently in

the supragranular layer (Tovar et al., 2020; Westerberg et al., 2019). During the sustained

response, we noticed that this pattern changed for eye-of-origin and orientation with more

information contained in the LFP signal than LFPCal signal outside of the initial feedfor-

ward volley – supragranular and infragranular layers. Meanwhile, there is more stimulus

history information in the LFP signal within the granular and infragranular layer both be-

fore and after stimulus presentation. Given that there may be information regarding stimu-

lus history, prior to presentation, it is not surprising to find significant decoding. However,

we do note that there is some temporal imprecision with significant decoding for eye-of-

origin and orientation, but the relative temporal relationship between layers and between

the LFP and LFPCal signals is preserved. In total, we find that in theta, layers that are not

associated with the initial volley of sensory information are the layers in which volume

conduction effects predominate.

For alpha (Figure 3.6B), there was more eye-of-origin information found in the local-

ized LFPCal signal, for the initial feedforward sweep in the granular layer as well as the

supragranular layer for the sustained response. These results are consistent with recent

work (Gieselmann & Thiele, 2020) showing alpha is associated with feedforward in ad-
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dition to the more commonly associated feedback processing (Buffalo, Fries, Landman,

Buschman, & Desimone, 2011; Van Kerkoerle et al., 2014) depending on the stimulus

feature. By removing volume conduction, the eye-of-origin information in the feedforward

sweep becomes more apparent. For orientation, there was more localized information along

the transient, spread out equally across layers during the initial feedforward sweep. These

results suggest that the volume conducted signal adds noise for orientation information,

as decoding improves for the reduced LFPCal signal. For stimulus history, the LFP signal

predominates throughout the spatiotemporal map. Overall, these results demonstrate the

utility of the LFPCal in highlighting the role alpha may have in feedforward processing for

select stimuli features.

In beta (Figure 3.6C), the LFPCal signal from the supragranular and infragranular lay-

ers near the 4/5 border contained more eye-of-origin information during the sustained re-

sponse, mirroring what was observed alpha frequency. Similarly, but to a much lesser

extent, low gamma and high gamma eye-of-origin information showed differences during

the sustained response (Figure 3.6D-E). Low gamma, but not high gamma showed more

information in the LFP signal than the LFPCal signal. Meanwhile, differences in orientation

information between the LFP and LFPCal were minimal from beta to high gamma (Figure

3.6C-F). For stimulus history, there was more information found in the LFP signal than

LFPCal signal from beta to high gamma (Figure 3.6D-E), but interestingly became increas-

ingly localized to the infragranular layer at higher frequencies. These results are consistent

with previous studies that have found that volume conduction effects are most prominent

in the infragranular layers (Kajikawa & Schroeder, 2015). Overall, across frequencies, dif-

ferent spatiotemporal profiles emerged for the LFP signal and CSD derived LFPCal signal

depending on the stimulus feature, in turn leading to different degrees of volume conduc-

tion.
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Figure 3.6: Relative information found in LFP and LFPCal signals vary by stimulus features
across frequency bands. A 3-electrode searchlight along the laminar probe was used to
decode Eye-of-Origin, Orientation, and Stimulus Repetitions for (A) theta 4-8 hz, (B) alpha
8-15hz, (C) beta 15-30hz, (D) low gamma 30-60hz, and (E) high gamma 60-100hz. LFP,
LFPCal, and difference maps tested for significance from chance decoding, FDR corrected,
q=0.05.
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3.5 Discussion

In this study, we used MVPA to extract information regarding stimulus features from

volume conducted LFP and the localized LFPCal signal. By analyzing more than just the

magnitude of these respective signals, we were able to show that added volume conduc-

tion in the LFP signal reduced the amount of information found for some stimuli features

but enhanced information in other features. We then explored how stimulus feature in-

formation might vary along frequency in local signals, finding different stimulus features

exhibited drastically different patterns of shared information in the time course of a stim-

ulus presentation. In turn, we showed that the stimulus feature differences in frequency

led to differing volume conduction effects across frequency bands. Together, these results

provide an analytical framework that in addition to informing investigation in V1, can be

applied to any brain area to decipher whether feature information is contained to a local

circuit or outside of it.

Within the literature there’s been a longstanding debate about how localized the local

field potential is (Kajikawa & Schroeder, 2011, 2015; Katzner et al., 2009; Mineault et

al., 2013; Xing et al., 2009). The results of our work suggest that perhaps the question

that we should be asking is what type of stimulus information is local within the LFP.

This question becomes increasingly important when we consider that both experimental

and modeling studies have shown that specific properties of the LFP signal, primarily cor-

relation of the synaptic inputs, can have an order of magnitude difference in the degree of

volume conduction (Buffalo et al., 2011; Leski et al., 2013; Lindén et al., 2011; Rosen-

baum et al., 2017). Not surprisingly, one of the biggest factors that influences whether the

synaptic inputs are correlated is the content of the stimulus being processed (Peter et al.,

2019). Beyond determining the extent by which the signal is able to physically propagate,

the specific stimulus being processed determines which parts of the brain are active. The

relative distribution of brain activity can considerably influence volume conduction effects,

as volume conduction is most prominently observed when distant signals are stronger than
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the local signals from the recording site (Kajikawa et al., 2017). Importantly, even simple

stimuli, such as the orientation gratings used in this study can contain wildly different spa-

tiotemporal feature maps within a cortical column (Tovar et al., 2020) and may conceivably

vary even more across brain areas. As the complexity of stimuli increases, the number of

possible stimuli features exponentially increases, and the possible different types of volume

conduction across stimulus features exponentially rises with it as well. Thus, it becomes

increasingly important to characterize the information present in local and distant signals.

The debate regarding the extent of volume conduction spread also extends into fre-

quency space. Here, the question is whether volume conduction effects are spread evenly

across frequencies (Kajikawa & Schroeder, 2011, 2015), or whether volume conduction is

more prominently seen in some frequency bands but not others (Leski et al., 2013). Much

like the broader question regarding LFP spread, the discrepancy between studies might be

explained by the specific information contained within different frequency bands. Differ-

ences between frequency bands have been highlighted by a number of studies investigating

feedforward and feedback activity (Bastos et al., 2015; Van Kerkoerle et al., 2014), sig-

nal synchrony along frequencies (Buffalo et al., 2011), or shared mutual information using

information theory approaches (Belitski et al., 2008; Kayser, Montemurro, Logothetis, &

Panzeri, 2009). However, stimuli features such as the specific size of stimuli or if attention

is directed towards the stimuli, can influence synchronization within frequency bands (Buf-

falo et al., 2011; Ferro, van Kempen, Boyd, Panzeri, & Thiele, 2021; Gieselmann & Thiele,

2020). In the current study, we show that within stimulus presentations, shared information

between frequency bands changes completely depending on both the stimulus feature and

the particular time epoch within the neural response. Our analysis focused on only local

processes with the assumption that if shared information between frequencies changed lo-

cally, frequency “information profiles” will change across brain areas. As a result, whether

volume conduction is uniform or localized to a frequency band depends on the local brain

area and surrounding neighbors processes the particular feature being studied.
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A valid question that might arise from our study is why quantify information present

in LFP at all? If volume conduction contaminates information present at electrodes, why

not simply quantify everything using CSD or a CSD derived signal like the LFPCal. How-

ever, when volume conduction is isolated from the localized signal, it can be informative of

processes that are arising in areas outside of the local circuit. In the current study, for ex-

ample, we found that stimulus history information was more prominently found outside of

V1 than within the V1 microcircuit. This finding is consistent with what is known about the

role of many brain areas including the visual pulvinar, middle and inferior temporal gyri,

and frontal gyri in repetition suppression (Kaas & Lyon, 2007; Wig, Buckner, & Schacter,

2009). However, there are a number of circumstances where potential brain areas might

encode stimulus features that have not been as well studied. Recently, convolutional neural

networks (CNNs) have been used to model the ventral visual stream with remarkable accu-

racy(Kar & DiCarlo, 2020; Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019; Schrimpf et al.,

2018; Yamins & DiCarlo, 2016). However, while we can visualize the features captured by

CNN layers (Bashivan, Kar, & DiCarlo, 2019), the features are not anchored in cognitive

theories and experiments specifically targeting those features. In this circumstance, isolat-

ing local signals and volume conducted signal would help guide whether a particular CNN

layer matched the area being recorded or if the CNN features are likely to be found outside

of the recording site.

In total, we have presented the utility of using MVPA to extract feature specific infor-

mation from local and distant signals in the V1 microcircuit. The different spatiotemporal

profiles between LFP and LFPCal for eye-of-origin, orientation, and stimulus history high-

lights the importance of accounting for possible contamination from distant signals. By

focusing on stimulus features, rather than activation, our results also help reconcile the

conflicting findings from previous studies quantifying volume conduction in the LFP sig-

nal as a whole, as well as how volume conduction is affected by frequency. Lastly, our

study provides a method with potential practical applications. For example, if it were only
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possible to record from an early sensory area and late motor area, but not an intermedi-

ate area, comparing between LFP and LFPCal would provide clues on how information

transforms from early to late brain area. This added flexibility can be invaluable in under-

standing cognitive processes when the number of recording sites is limited by practical or

theoretical constraints.
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Part 2

“All our knowledge begins with the senses, proceeds then to the understanding, and ends

with reason.”

-Immanuel Kant
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Chapter 4

Selective enhancement of object representations through multisensory integration

The contents of this chapter are adapted from

Tovar, D.A., Murray, M.M., & Wallace, M.T. (2020). Selective enhancement of object

representations through multisensory integration. Journal of Neuroscience, 40(29),

5604–5615.

4.1 Abstract

Objects are the fundamental building blocks with which we construct a representation

of the external world. One major distinction amongst objects is between those that are

animate versus inanimate. In addition, many objects are specified by more than a sin-

gle sense, yet the nature by which multisensory objects are represented by the brain re-

mains poorly understood. Using representational similarity analysis of male and female

human EEG signals, we show enhanced encoding of audiovisual objects when compared

to their corresponding visual and auditory objects. Surprisingly, we discovered that the

often-found processing advantages for animate objects was not evident under multisensory

conditions. This was due to a greater neural enhancement of inanimate objects—which

are more weakly encoded under unisensory conditions. Further analysis showed that the

selective enhancement of inanimate audiovisual objects corresponded with an increase in

shared representations across brain areas, suggesting that the enhancement was mediated

by multisensory integration. Moreover, a distance-to-bound analysis provided critical links

between neural findings and behavior. Improvements in neural decoding at the individual

exemplar level for audiovisual inanimate objects predicted reaction time differences be-

tween multisensory and unisensory presentations during a go/no-go animate categorization

task. Links between neural activity and behavioral measures were most evident at inter-

vals 100-200ms and 350-500ms after stimulus presentation, corresponding to time periods
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associated with sensory evidence accumulation and decision-making, respectively. Col-

lectively, these findings provide key insights into a fundamental process the brain uses to

maximize information it captures across sensory systems to perform object recognition.

4.2 Introduction

The brain is constantly bombarded with sensory information, much of which is com-

bined to form building blocks of our perception representation of the external world. Previ-

ous multisensory literature has shown that the brain tends to optimally combine sensory in-

formation when the information between senses is equally reliable (Ernst & Banks, 2002).

Furthermore, prior work has shown that the maximum gains from multisensory integra-

tion are seen when responses to the individual senses are weak (Stein & Meredith, 1993;

Wallace, Ramachandran, & Stein, 2004). In large measure, these studies have focused

on manipulating stimulus reliability and effectiveness through changing low-level stimulus

features, such as introducing differing levels of noise, to gauge the effects on multisensory

integration. However, emerging literature in vision and audition suggests that higher-level

semantic features, such as the binding of stimulus elements into objects, may also play a

key role in dictating reliability and effectiveness (Cappe, Thelen, Romei, Thut, & Murray,

2012; Ritchie, Tovar, & Carlson, 2015). Given that many objects are specified through their

multisensory features, an open question is how might differences in object categorization

lead to differences in perceptual gains from multisensory integration.

One of the major categorical distinctions between objects is animacy. In vision, animate

objects offer substantial processing and perceptual advantages over inanimate objects, in-

cluding being categorized faster, more consciously perceived, and found faster in search

tasks (Carlson et al., 2014; Jackson & Calvillo, 2013; Lindh, Sligte, Assecondi, Shapiro, &

Charest, 2019; New, Cosmides, & Tooby, 2007; Ritchie et al., 2015). Auditory studies have

similarly found faster categorization times for animate objects (Vogler & Titchener, 2011;

Yuval-Greenberg & Deouell, 2009). This difference may be a remnant of an evolutionary
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need to rapidly recognize and process living stimuli that could pose threats or be sources

of sustenance (Laws, 2000). Furthermore, many inanimate objects such as cars, trains, and

cellphones have not existed long enough for there to be specialized brain areas to represent

them. In contrast, a number of specialized areas exist for the processing of categories of

animacy, such as faces in the fusiform face area (FFA), bodies in the extrastriate body area

(EBA) and voices in the temporal voice areas (TVAs) (Belin, Zatorre, Lafaille, Ahad, &

Pike, 2000; De Lucia, Clarke, & Murray, 2010; Downing, Jiang, Shuman, & Kanwisher,

2001; Kanwisher, McDermott, & Chun, 1997).

To study how perceptual differences in visual and auditory categories influence their

subsequent integration as audiovisual objects, it is critical to quantify neural encoding dif-

ferences between objects. Representational similarity analysis (RSA) (Kriegeskorte, Mur,

& Bandettini, 2008) constructs a representational space quantifying relationships between

stimuli with representational distance indicating the difference in their neural signatures.

A greater distance in representational space signifies more distinct neural signals between

stimuli, while shorter distances signify less distinct neural signals. Studies using RSA have

shown that visual and auditory objects have a clear encoding distinction between animate

and inanimate categories (Cichy, Pantazis, & Oliva, 2014; Giordano, McAdams, Zatorre,

Kriegeskorte, & Belin, 2013; Kriegeskorte, Mur, Ruff, & Kiani, 2008), while also show-

ing that representational space can contract if stimuli are degraded (Grootswagers, Ritchie,

Wardle, Heathcote, & Carlson, 2017) or expand in cases of increased attention (Nastase

et al., 2017). Although RSA has been increasingly used to study object representations, it

has not been fully leveraged to examine objects as they are often represented in naturalistic

setting – as multisensory entities.

In this study, we presented subjects with auditory, visual, and semantically congruent

audiovisual animate and inanimate objects while we recorded high-density EEG. Our over-

arching hypothesis was that greater behavioral benefits would be seen for objects specified

in a multisensory manner and that these gains would be accompanied by an expansion in
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representational space as measured using RSA. A secondary hypothesis was that greater

benefits would be observed for inanimate objects, given evidence that multisensory inte-

gration benefits are greatest for weakly effective stimuli (Ernst & Banks, 2002; Stein &

Meredith, 1993; Wallace et al., 2004)

4.3 Methods

4.3.1 Participants

The experiment included 14 adults (9 males) aged 27± 4.2 years. All subjects had nor-

mal or corrected-to-normal vision and reported normal hearing. The study was conducted

in accordance with the Declaration of Helsinki, and all subjects provided their informed

consent to participate in the study. Each participant was compensated financially for their

participation. The experimental procedures were approved by the Ethics Committee of the

Vaudois University Hospital Center and University of Lausanne. Behavioral data for all

subjects was used. However, EEG data for one subject was removed from further decod-

ing analysis due to poor signal quality in the evoked potential response. Stimuli The ex-

periment took place in a sound-attenuated chamber (Whisper room), where subjects were

seated centrally in front of a 20” computer monitor (HP LP2065) and located 140 cm

away from them (visual angle of objects 4°). The auditory stimuli were presented over

insert earphones (Etymotic model: ER4S), and the volume was adjusted to a comfortable

level ( 62dB). The stimuli were presented and controlled by E-Prime 2.0, and all behav-

ioral data were recorded in conjunction with a serial response box (Psychology Software

Tools, Inc.; www.pstnet.com). The auditory stimuli included 48 animate and 48 inanimate

sounds from a library of 500ms-duration sounds, used in previous studies and have been

evaluated in regard to their acoustics and psychoacoustics as well as brain responses as

a function of semantic category (De Lucia et al., 2010; Murray, 2006; Thelen, Cappe, &

Murray, 2012). The visual stimuli were semantically congruent line drawings that were

taken from a standardized set (Snodgrass & Vanderwart, 1980) or obtained from an online
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library (dgl.microsoft.com).

4.3.2 Experimental Design

Participants performed 10-13 experimental blocks (median 10 blocks) of a Go/No-Go

task. Each block contained 1 audio, visual, and audiovisual presentation for each of the 96

stimuli exemplars, totaling 288 stimulus presentations per block. For half of the blocks,

subjects were instructed to press a button when they perceived an animate object and for

the other half when they perceived an inanimate object. Animate and inanimate blocks

were randomized for each subject. Auditory, visual, and synchronous audiovisual stimuli

were presented for 500ms, followed by a randomized interstimulus interval (ISI) ranging

from 900 to 1500ms, and participants had to respond within this 1.4-2s window. Stimuli

modality was randomized for each trial (see Figure 4.1 for schematic). To control for

motor confounds, the block instructions alternated between indicating whether the stimuli

was animate or inanimate (Grootswagers, Wardle, & Carlson, 2017). Reaction times and

accuracy were measured for each response. Participants did not receive feedback during

the experiment.
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Figure 4.1: Experiment Schematic. A Go/No-Go discrimination task of animate and inan-
imate objects. The responses were counterbalanced such that the number of responses
for animate and inanimate objects was equivalent. The stimuli consisted of 96 visual line
drawings and 96 environmental sounds of common animate and inanimate objects, as well
semantically congruent pairings of these objects. The sounds of animate object were non-
verbal vocalizations. The stimulus duration was 500ms with a variable inter-stimulus in-
terval of 900-1500ms.
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4.3.3 Statistical Inference

All statistical inference for behavior and neural data was assessed with Bayes factors

(Jeffreys, 1998; Wetzels et al., 2011) using a JZS prior (Rouder, Speckman, Sun, Morey,

& Iverson, 2009), with a scale factor of 0.707. For decoding analysis, chance level de-

coding was estimated by randomly shuffling all trial labels for each subject once prior to

classification to construct a null distribution. The probability of the group data assuming

the alternative hypothesis relative to the probability of group data assuming chance level

decoding was computed to calculate a Bayes Factor at each time point. Bayes Factors pro-

vide the added advantage over frequentist inference because in addition to rejecting the null

hypothesis, they can provide support for the null hypothesis as well as determine whether

the data is insensitive, and as a result help avoid overstating the evidence against the null

hypothesis (Berger & Delampady, 1987; Edwards, Lindman, & Savage, 1963; Johnson,

2013; Sellke, Bayarri, & Berger, 2001). The theoretical differences underlying Bayesian

and frequentist analysis have spurred debate on whether and how Bayes factors should be

corrected for multiple comparisons (Berry & Hochberg, 1999), since they intrinsically al-

ready reduce type I errors (Gelman, Hill, & Yajima, 2012; Gelman & Tuerlinckx, 2000;

Johnson, 2013). In this study, we report Bayes Factors without additional multiple com-

parison correction, but provide Bayes factors with varying levels of evidence, consistent

with recent EEG decoding studies (Grootswagers, Robinson, & Carlson, 2019; Robinson,

Grootswagers, & Carlson, 2019). Using Jeffreys’ scheme, Bayes factors > 3 and >10 in-

dicate substantial and strong evidence for the alternative hypothesis respectively, anything

between 3 and 1/3 indicates insufficient evidence, and Bayes factors less than 1/3 and 1/10

indicate substantial and strong evidence for the null hypothesis (Jarosz & Wiley, 2014; Jef-

freys, 1998). We further compared Bayes Factors with a cluster-based sign permutation test

(Maris & Oostenveld, 2007) and found Bayes Factors to be more conservative. Therefore,

we report only Bayes Factors in the Results.
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4.3.4 EEG acquisition and preprocessing

Continuous EEG was acquired from 160 scalp electrodes (sampling rate at 1024 Hz)

using a Biosemi ActiveTwo system. Data preprocessing was performed offline using the

Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) in MATLAB. Data were

filtered using a Butterworth IIR filter with 1 Hz highpass, 60 Hz lowpass, and notch at

50Hz. All channels were rereferenced to an average reference. Epochs were created for

each stimulus presentation ranging from -100ms to 600ms relative to stimulus onset. Each

epoch was baseline corrected using the prestimulus period.

4.3.5 Representational Similarity Analysis

Following data preprocessing, we used CoSMoMVPA (Oosterhof, Connolly, & Haxby,

2016) and custom scripts to perform cross-validated representational similarity analysis

(RSA). We used a linear discriminate classifier after default regularization (0.01) with 4-

fold, leave one-fold out cross validation, for all exemplar pair combinations across audio,

visual, and audiovisual stimuli presentations. In this procedure, trials are randomly as-

signed to one of four subsets of data. Three of the four subsets (75% of the data) are then

pooled together to train the classifier and then decoding accuracy is tested on the remain-

ing subset (25% of the data). This procedure is repeated a total of four times, such that

each of the subsets is tested at least once. Decoding results are reported in percent cor-

rect of classifications at each time point for each exemplar pair in the time series [-100ms

600ms]. This analysis was conducted independently to build representational dissimilarity

matrices (RDM) for each subject and modality over 1 millisecond increments. The RDMs

were then separated into animate exemplar pairwise comparisons, inanimate exemplar pair-

wise comparisons, and pairwise comparisons between categories. Using these comparison

groupings, mean decoding accuracies were then calculated for each modality and subject.

Significant above-chance accuracies were assessed against a randomized trial shuffle con-

trol using Bayes factors.
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4.3.6 Representational Connectivity Analysis

To characterize connectivity changes for different modalities and object categories, we

used a combination of a searchlight analysis and representational connectivity analysis

(Kriegeskorte et al., 2008). Due to this analysis being computationally-intense, data was

downsampled to 100 Hz. Electrode specific RDMs, using the same procedure describe

for the RSA analysis, were built by using a moving searchlight which included the elec-

trode of interest and every immediate adjacent electrode. Depending on the location of

the electrodes, the RDMs can potentially be more descriptive of lower-level properties of

the stimuli or contain higher-level object category information. Importantly, the analysis is

not designed to distinguish between any particular stimulus dimension, such as animacy,

but rather used to calculate the local representational geometry present at those electrodes.

Electrode-specific RDMs were then correlated to each other in pairwise fashion for each

electrode combination using a Spearman correlation to form a matrix of RDM correlations

between electrodes. We then averaged the Spearman correlations from across all electrode

comparisons to compute a mean connectivity measure. If the representational geometry is

distributed across several electrodes, then the expectation is that this value would increase

and if it is unique to a particular electrode, this value would decrease. This analysis was

performed for visual, auditory, and audiovisual presentations. Additionally, to compare the

audiovisual response to the visual and auditory response more directly, we also summed

evoked responses for auditory and visual presentations for each specific exemplar and per-

formed RCA on these trials. Note that in this calculation, the searchlight will change sizes

depending on the chosen electrode and searchlights will overlap for electrodes leading to

a non-zero baseline level of connectivity in neighboring RDMs, regardless of the evoked

responses to stimulus presentations. Therefore, we repeated the analysis above, but shuf-

fled all of the exemplar labels when calculating the RDMs to create a shuffled control.

All connectivity measurements were compared to their respective shuffled labels control.

This procedure was done for all exemplars as well as within the animate and inanimate
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category along the timeseries [-100ms 600ms] to compute time-resolved representational

connectivity measures.

4.3.7 Distance to Bound Analysis

To link neural representational space back to individual exemplar categorization times,

we used a distance to bound analysis (for review see Ritchie & Carlson, 2016). Similar to

RSA, this analysis represents individual exemplars as points in representational space. A

decision boundary for animacy is then fitted using a linear discriminant analysis classifier

to the representational space, defining an optimal decision boundary that separates animate

and inanimate exemplars. The distance to the decision boundary is determined for each

exemplar and subsequently pooled and averaged across subjects to calculate average exem-

plar distance across subjects for each timepoint in the timeseries [-100ms 600ms]. Next, the

median exemplar reaction time, pooled across subjects, is calculated for each exemplar. We

then performed a time-varying Spearman correlation between mean exemplar distance and

median exemplar reaction time for each modality using a fixed-effects analysis to reduce

noise and improve statistical power. The distance to bound analysis was performed across

all electrodes as well as on an electrode by electrode basis using a moving searchlight.

4.3.8 Model Fitting

To account for low level visual features in our visual and auditory stimuli, we con-

structed model RDMs and calculated their correlations to electrode specific RDMs and the

neural RDM from all electrodes. The low-level feature auditory RDM was constructed us-

ing a Welch’s power spectral density (PSD) estimate for each of the 96 sounds. The result-

ing stimulus PSD was then organized into vectors and pairwise non-parametric spearman

distance measurements were calculated for all exemplar pair combinations to form a model

RDM. We then calculated the Spearman correlations between the PSD model RDM and the

modality specific neural RDMs at each timepoint. An identical procedure was followed for

the visual images, but instead of using PSD, image contrast was used. Note that since the
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images were black and white Snodgrass images, the contrast values will be equivalent to the

image intensity values. In addition to these low-level feature models, we also constructed

an abstract animacy category model. The animacy category model was constructed using

a 0 to indicate no differences between stimuli pairs for within animacy category exemplars

and a 1 to indicate complete dissimilarity for between category exemplars. This model was

then also tested across modality specific neural RDMs.

4.4 Results

4.4.1 Behavior: Advantage for Animate Objects on Unisensory but not Multisensory

(i.e., Audiovisual) Presentations

Subjects were shown 48 animate and 48 inanimate auditory, visual, and audiovisual ob-

jects while they performed a go/no-go categorization task, as shown in Figure 4.1. Subjects

performed near ceiling on the categorization task for objects presented in both visual (an-

imate: 98%, inanimate: 98%) and audiovisual contexts (animate: 98%, inanimate 99%),

and were less accurate for auditory presentations (animate: 86%, inanimate 87%). A two-

way repeated measures ANOVA for accuracy revealed a main effect for modality F(2,26)

= 27.14, p=0.00, but no main effect for animacy F(1,26) = 0.64, p = 0.44.

When examining reaction times (RTs), a two-way repeated measures ANOVA revealed

main effects for modality, F(2,26) = 238.18, p = 0.00, and animacy, F(1,26) = 10.39, p

= 0.01, as well as an interaction effect F(2,26) = 3.68, p = .04. We then performed post-

hoc tests across sensory modalities and categories, as shown in Figure 4.2. Figure 4.2A

shows median RTs for the go/no-go task across participants for the three sensory condi-

tions. Using Bayes factors to compare median RTs across subjects, we found very strong

evidence (B.F. > 30) that the auditory condition was slower than the visual and audiovisual

conditions. Next, behavior was split by animate and inanimate categories to investigate the

effects of animacy on RTs. Figure 4.2B shows that there was strong evidence (B.F. > 10)

for faster RTs for animate objects compared to inanimate objects when presented in either
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the auditory or visual modalities, consistent with the results from previous studies (Carlson

et al., 2014; Murray, 2006; Vogler & Titchener, 2011; Yuval-Greenberg & Deouell, 2009).

However, there was inconclusive evidence (B.F. = 0.75) for the audiovisual condition.

To further investigate this surprising lack of a difference in audiovisual performance,

we created an index of sensory bias for each participant, operationalized as the difference

in reaction times to the auditory and visual stimuli, and correlated this bias score to au-

diovisual RTs on a subject-by-subject basis using a Spearman correlation. Figure 4.2C

shows that the only significant correlation between sensory bias and audiovisual RTs was

for inanimate objects. The positive correlation indicates that subjects whose RTs for visual

and auditory stimuli were more similar had faster multisensory RTs. Note, that these cor-

relations included all subjects, since there were no outliers for sensory bias or audiovisual

reaction times.
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Figure 4.2: Behavior: Advantage for Animate Objects for Unisensory Presentations but not
Audiovisual Presentations. (A) Reaction time (RT) results for each modality and (B) bro-
ken down by animacy. Bayes factors for substantial evidence (* B.F. > 3), strong evidence
(** B.F. > 10) and very strong evidence (*** B.F. > 30) above comparisons. (C) Subject
sensory bias and audiovisual RT Pearson correlations across subjects for all exemplars,
only animate exemplars, and only inanimate exemplars. Sensory bias is only significantly
correlated to audiovisual RT for inanimate exemplars (B.F. > 3).
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4.4.2 Representational Similarity Analysis: The Influence of Sensory Modality on

Between and Within Animacy Category Decoding

To investigate the neural correlates of the behavioral differences noted across condi-

tions, we used RSA (Figure 4.3A-4.3C). Specifically, we built representational dissimilar-

ity matrices (RDM) for each subject and modality over 1 millisecond intervals using linear

discriminant analysis for each exemplar pair. From each RDM, we explored the effect of

sensory modality on the distinction between animate and inanimate exemplars by calcu-

lating the mean pairwise decoding for between category pairs (e.g., dog vs. bell, dog vs.

cannon). As can be seen in figure 4.3D, prior to stimulus onset, decoding is close to the

shuffled label control at chance level (i.e., 50%), because the classifier does not have any

meaningful neural data that will distinguish between category pairs. However, shortly af-

ter stimulus onset, decoding performance becomes significantly above the shuffled label

control (B.F. > 3) across all three modalities. The latency of the onset of these decod-

ing differences, defined as at least 20ms of sustained significant decoding (see Carlson,

Tovar, Alink, & Kriegeskorte, 2013), was 183 ms for auditory, 91 ms for visual, and 65

ms for audiovisual stimulus conditions. Visual and audiovisual decoding peaked at 162ms

and 154ms, respectively, with higher absolute peak decoding for audiovisual presentations

(61%) compared to visual presentations (58%). Decoding of auditory stimuli was compar-

atively poorer, peaking at 53% at 190 ms. Note that while there were differences in sig-

nificant decoding onsets, caution should be taken when comparing decoding onsets across

conditions with different maximum decoding peaks (see figure 14 in Grootswagers, War-

dle, & Carlson, 2017). Collectively, the results of these decoding analyses illustrate the

temporal emergence of distinct neural representations for auditory, visual and audiovisual

objects when subjects are performing an animacy/inanimacy categorization.

To statistically compare decoding performance across modalities, we computed the

mean decoding for the interval spanning 50 to 500ms post-stimulus presentation. When

comparing mean decoding values across subjects, audiovisual stimuli was significantly
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higher when compared with both visual and auditory decoding (B.F. >30) and visual de-

coding was higher than auditory decoding. These modality focused RSA results suggest

that the audiovisual presentation of an object creates a more distinct representation between

animate and inanimate objects when compared to either of the corresponding unisensory

presentations.

We further explored whether audiovisual presentations expanded exemplar distinctions

within animacy categories by calculating the mean within category pairwise decoding ac-

curacies (Figure 4.3E). In this analysis, onset latencies for significant decoding for auditory,

visual, and audiovisual stimuli were 184 ms, 91 ms, and 79 ms, respectively. The corre-

sponding peak decoding latencies were 189 ms, 139 ms, and 152 ms. The modality-specific

comparisons for within-category decoding mirrored those seen for between-category de-

coding, with higher audiovisual decoding when compared with visual and auditory de-

coding, and higher visual decoding than auditory decoding (B.F. > 30). A comparison of

between-category decoding and within-category decoding demonstrated higher between-

category decoding for auditory, visual and audiovisual stimulus presentations (B.F. > 3)

during the stimulus period [50-500ms]. In sum, when compared to unisensory presenta-

tions, audiovisual stimulus presentations not only expand the representational space be-

tween animacy categories, but also make exemplars within the animacy categories easier

for a classifier to distinguish.
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Figure 4.3: Representational Similarity Analysis: Sensory Modality Influences Between
Animacy Category and Within Animacy Category Decoding. (A) RSA Schematic for pair-
wise decoding. Linear discriminate analysis with a 4-fold leave one-fold out cross vali-
dation was used for all exemplar pair combinations (B) Dissimilarity matrices for each of
the modalities was built across time in 1 millisecond increments from pairwise exemplar
classifications. (C) Mean between category and within category exemplar decoding ac-
curacies were averaged across exemplars at each time point. (D-E) Resulting time series
and summary bar plots for (D) between and (E) within categories for each of the modali-
ties. Shaded area around lines indicates standard error across subjects. Asterisks indicate
thresholded Bayes Factors for alternative and null hypothesis (see inset). Mean decoding
across time (50ms to 500ms) for each modality with Bayes factors for substantial evidence
(* B.F. > 3), strong evidence (** B.F. > 10) and very strong evidence (*** B.F. > 30) above
comparisons.
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4.4.3 Category-Specific RSA: Audiovisual Presentations Selectively Enhance Inani-

mate Object Decoding

We further investigated representational space broken down by animacy categories to

study the neural underpinnings for the observed reaction time differences between animate

and inanimate categorization (Figure 4.4). The decoding curves for animate and inanimate

exemplars did not differ for auditory conditions (Figure 4.4A) with evidence for the null

hypothesis present throughout the timecourse. However, this was not the case for visual ex-

emplars, which have higher decoding performance for animate exemplars when compared

with inanimate exemplars from 160 to 184 ms and from 220 to 228 ms after stimulus pre-

sentation (Figure 4.4B). Surprisingly, this difference is no longer apparent for audiovisual

conditions with in fact a few sporadic timepoints with substantial evidence (B.F. >3) that

inanimate objects have higher decoding than animate objects.

Since the audiovisual condition had overall higher within category pairwise decoding

than the visual condition (Figure 4.3E), we additionally wanted to explore whether the lack

of an animate and inanimate within-category decoding difference for audiovisual presen-

tations was due to visual inanimate objects incurring a special benefit from audiovisual

presentation. Figure 4.4D shows the difference between audiovisual decoding and visual

decoding for animate and inanimate exemplars. Notably, the difference is significantly

above a shuffle control subtraction of visual and audiovisual presentations for a sustained

period of time extending from 137-216 ms post stimulus onset for inanimate objects (B.F.

> 3) but is much sparser for animate objects without a significant sustained difference ever

exceeding 20 ms
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Figure 4.4: Category-Specific RSA: Audiovisual Presentations Selectively Enhance Inan-
imate Object Decoding. (A-C) Audio, visual and audiovisual within-category decoding
for animate and inanimate exemplars. Colored asterisks indicate substantial evidence and
strong evidence (see inset) compared to the shuffled control, while black asterisks indicat-
ing substantial and strong evidence for a difference between animate and inanimate objects.
(D) The audiovisual-visual within category decoding difference for animate and inanimate
exemplars with asterisks indicating evidence (see inset) for differences from the shuffle
control.
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4.4.4 Representational Connectivity Analysis: Response Patterns between Areas in

the Brain are Influenced by Modality and Object Category

Given that different sensory modalities and different object classes have been shown

to engage different brain networks (Braga, Hellyer, Wise, & Leech, 2017; Hillebrandt,

Friston, & Blakemore, 2014), we investigated whether the pairwise decoding differences

we found using RSA would also be associated with differences in mean connectivity. To

carry out this analysis, we constructed electrode specific representational dissimilarity ma-

trices (RDMs) and performed Spearman correlations across all electrode combinations to

calculate a mean representational connectivity measure between electrodes. The mean rep-

resentational connectivity measure is an index of how similar the representational space is

between electrodes. This value is driven by two factors: spatial proximity (i.e., neighbor-

ing electrodes will have higher connectivity) and representational similarity due to stimulus

features. As a control, we performed the analysis on shuffled labels for each of the respec-

tive stimulus modalities, which will account for the shared signal due to spatial proximity

of neighboring electrodes, but not for the evoked responses to the specific stimuli. The

shuffled control served as our comparison for all statistical comparisons.

We found that auditory, visual, and audiovisual presentations all diverged from the shuf-

fled control (B.F. > 3), beginning at 97 ms, 107 ms, and 78 ms after stimulus presentation,

respectively. Averaging across the 50-500ms stimulus period, we found that audiovisual

presentations had more mean connectivity than visual presentations (B.F. >10) and au-

ditory presentations (B.F. >30), but there was inconclusive evidence between visual and

auditory connectivity (B.F. = 0.52). In addition, to compare the audiovisual response to the

visual and auditory response more directly, we summed the evoked potentials for auditory

and visual stimuli for each individual exemplar and then used this summed potential as

input to the RCA. We found that the summed unisensory mean connectivity was signifi-

cantly lower (B.F. > 30) than the mean audiovisual representational connectivity. These

results suggest that shared representations across areas that lead to an increase in the mean
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connectivity for audiovisual presentations is due to the simultaneous processing of auditory

and visual stimuli, and not simply due to visual and auditory signals collectively activating

more (or at least a more extensive set of) areas in the brain.

Similar to the RSA findings, we also found that the animate and inanimate category

selectively affected connectivity measurements across the different sensory modalities. For

auditory objects, connectivity diverged from the shuffled control for animate and inanimate

exemplars at 156 ms. Mean connectivity over the stimulus period between groups showed

substantial evidence for the null hypothesis (B.F. < 1/3), indicating no animacy difference

for representational connectivity in audition. For visual objects, mean connectivity for an-

imate objects and inanimate objects began to diverge from the shuffled control at 137 ms

and 107 ms, respectively. However, visual animate exemplars had a greater mean repre-

sentational connectivity than inanimate exemplars from 176-186 ms and summed over the

stimulus period (B.F. >3). For audiovisual presentations inanimate objects diverge from

baseline earlier at 107 ms compared to 127 ms for animate objects. In contrast to visual

presentations, audiovisual animate and inanimate categories showed inconclusive evidence

over the stimulus period (B.F. = 0.39). Lastly, for the summed unisensory responses, an-

imate and inanimate objects diverged from the shuffled control at 146 ms and 107 ms,

respectively. Averaged over the stimulus period there was inconclusive evidence (B.F =

0.71) for group differences. In summary, these results build off of the RSA analyses, and

suggest that the presentation of objects in an audiovisual manner increase the represen-

tational connectivity when compared to when they are presented in a unisensory context,

and furthermore that these connectivity measures increase to a greater extent for inanimate

exemplars.
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Figure 4.5: Representational Connectivity Analysis: Response Patterns between Brain Net-
works are Influenced by Object Category. (A) Moving searchlight to create electrode spe-
cific RDMs. The searchlight included the electrode of interest and every immediate sur-
rounding electrode to produce an electrode specific RDM for each modality. (B) Each
electrode was correlated in a pairwise fashion using a Spearman correlation. (C) This pro-
cedure was done for all exemplars as well as within the animate and inanimate category
along the timecourse (-100 to 600ms) to build time-resolved electrode similarity matrices
of representational space. The mean value of these matrices is the representational connec-
tivity across all electrodes. (D-E) Representational connectivity was measured (D) across
modalities and summed unisensory responses as well as (E) within the animate and inani-
mate categories across modalities.
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4.4.5 Distance-to-Bound Analysis: Behavior can be Predicted by Exemplar Distance

to the Decision Boundary in Representational Space

Having found both behavioral and neural differences between modality of presentation

and animacy categories, we next considered whether the two measures were associated

with one another. To do this, we computed the distance to the classifier decision boundary

for all exemplars and correlated these distances with behavioral performance (i.e., reaction

times). A negative correlation would denote that exemplars that are farthest away from

the classifier decision boundary are those that are most rapidly categorized. Indeed, Figure

4.6A shows substantial evidence for a significant negative Spearman correlation (B.F. > 3)

between representational distance and reaction time at several timepoints between 100-200

ms post-stimulus onset for both visual and audiovisual presentations and between 270-

400 ms post-stimulus onset for all sensory modalities. Below the timecourse we show the

results from the topographic results from applying the distance to bound analysis using a

moving searchlight. We found that for visual and audiovisual presentations, occipital and

temporal electrodes were most correlated to behavior for the time period spanning 100-200

ms post-stimulus onset. In contrast, frontoparietal electrodes were most correlated with

behavior for the interval spanning 270-400 ms post-stimulus onset across all modalities.

Figure 4.6B shows the corresponding scatter plot for the highest negative correlations in the

100-200 ms time window for visual and audiovisual presentations. These plots show that

for both visual and audiovisual presentations, inanimate objects had slower categorization

times than animate objects and were also closer to the decision boundary. Additionally,

consistent with our behavioral and RSA results, inanimate exemplars appeared to show a

greater shift along the reaction time and representational axes than animate exemplars when

comparing between visual and audiovisual scatter plots.

In Figure 4.6C, we quantified this observation by using a Spearman correlation to link

the reaction time difference for audiovisual versus visual exemplars with the representa-

tional difference for animate and inanimate exemplars. A negative correlation denotes: 1)
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exemplars that were further away from the decisional boundary for audiovisual presen-

tations when compared with visual presentations (positive AV-V distance value) are also

the exemplars that demonstrated either more of an audiovisual RT bias (positive AV-V RT

value) or less of a visual bias (negative AV-V RT value); and 2) exemplars that were further

away from the decision boundary for visual presentations when compared with audiovi-

sual presentations (negative AV-V distance value) are also the exemplars that demonstrated

less of an audiovisual RT bias (positive AV-V RT value) or more of a visual bias (negative

AV-V RT value). We found significant timepoints between 100-200 ms and 370-450 ms

post-stimulus onset supporting the alternative hypothesis (B.F. >3) for inanimate exem-

plars, but only evidence for a null correlation (B.F. < 1/3) for animate exemplars. If we

pool the correlations across the entire stimulus analysis epoch (50-500 ms post-stimulus)

we find very strong evidence for a negative correlation for inanimate exemplars (B.F.> 30)

but inconclusive evidence for animate exemplars (B.F. = 2.00). Figure 4.6D shows the

corresponding scatterplot with the highest negative correlation in the 100-200 ms window

for visual and audiovisual presentations at 137ms (same as figure 4.6B). Collectively, these

results show associations between neural decoding differences and behavioral performance

differences between audiovisual and visual stimulus presentations, but only when these

stimuli are inanimate.
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Figure 4.6: Distance-to-Bound Analysis: Behavior can be predicted by Exemplar Dis-
tance to the Decision Boundary in Representational Space. (A) Time-varying Spearman
correlation between mean exemplar representational distance from animacy discriminate
bound and respective average exemplar reaction time for each modality. Asterisks in-
dicate substantial and strong evidence for the alternative hypothesis (B.F. > 3 and >10)
of a correlation above 0 and null hypothesis (B.F. < 1/3 and <1/10). Below the x-axis,
results from the topographic results from applying the distance to bound analysis using
a moving searchlight for select timepoints (B) Scatterplot for mean exemplar visual and
audiovisual representational distance and RT at a significant timepoint for both modali-
ties. (C) Time-varying Spearman correlation between mean representational enhancement
(Audiovisual-Visual distance) and median reaction time enhancement (Audiovisual-Visual
RT) with asterisks indicating significant Spearman correlation (B.F. > 3) (D) Scatterplot
for audiovisual representational and RT enhancement at a marginally significant timepoint
for inanimate exemplars.
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4.4.6 Model Testing: Abstract Category Models Predict Neural Activity Better than

Low-Level Feature Models

To account for the potential contribution of low-level features to the neural RDMs, we

constructed contrast dissimilarity matrices for images and power spectral density dissim-

ilarity matrices for sounds as shown in Figure 4.7. The models were correlated using a

Spearman correlation to each subject’s neural RDM across channels and neighborhoods of

electrodes using a moving searchlight to build topographic maps. Along the time series, we

tested for significance using Bayes Factors (B.F. > 3). The contrast model and power spec-

trum model only had sporadic time points that had substantial evidence for the alternative

hypothesis. The power spectrum model was most correlated with the auditory RDM with

time points between 170-200 ms post stimulus presentation while the contrast model was

most correlated with the visual RDM from 90-170 ms post stimulus presentation. Further

as shown in Figure 4.7C, at early times, such as 107 ms, the occipital electrodes are most

correlated with the contrast model. Similarly, for the auditory RDMs, temporoparietal elec-

trodes correlate most with power spectrum model early at 78 ms and late in the timecourse

at 400ms. In contrast, when we used an abstract model that ignored low level features and

instead separated stimuli based on object animacy category, we found a significant corre-

lation (B.F. > 3) with the visual RDMs beginning at 150ms and audiovisual RDMs at 158

ms. Occipital and temporal electrodes for visual and audiovisual presentations were most

correlated to the animacy model at timepoints such as 176ms but not later at 400ms. The

animacy model did not show a sustained correlation to the auditory RDM, implying that

the animacy distinction is not as prominent in audition.
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Figure 4.7: Model Testing: Abstract Category Models Predict Neural Activity Better than
Low-Level Feature Models. (A) Category and low level visual and auditory feature mod-
els. The animacy category model was constructed using a “0” for within animacy category
exemplars and “1” for between animacy category exemplars. For the image contrast RDM,
since all images were black and white drawings, the contrast vector consisted of the in-
tensity values of each image. The power spectral density RDM was built using a Welch’s
power spectral density estimate and converted to a single vector for each sound. Each RDM
was then constructed by taking the Spearman distance of each respective pairwise stimulus
comparison. (B) Each model RDM was then tested with the Auditory, Visual, and Audio-
visual time resolved RDMs on a subject by subject basis. Shaded area around lines indicate
standard error across subjects with asterisks indicating substantial and strong evidence for
the alternative hypothesis (B.F. > 3 and >10) of a correlation above 0 and null hypothesis
(B.F. < 1/3 and <1/10). (C) Model testing performed on electrode specific RDMs using a
searchlight analysis.
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4.5 Discussion

In this study, we leveraged the visual and auditory encoding bias that has been observed

for animate objects over inanimate objects (Grootswagers, Ritchie, et al., 2017; Guerrero

& Calvillo, 2016; Murray, 2006; Tzovara et al., 2012; Vogler & Titchener, 2011) to study

how perceptual biases across object categories influence the multisensory enhancement of

audiovisual objects. Using behavioral measures and neural decoding, we found additional

support for previous findings showing visual and auditory perceptual advantages for ani-

mate objects over inanimate objects. However, and somewhat surprisingly, we found that

the advantage for animacy was not evident when objects were presented as audiovisual ob-

jects. Using RSA, we show that the lack of an animacy bias in audiovisual objects is in

the context of an overall expansion of representational space when compared to visual and

auditory objects. Further analysis showed that audiovisual presentations preferentially en-

hanced neural decoding of inanimate objects. A searchlight analysis and representational

connectivity analysis showed that the presentation of inanimate objects in an audiovisual

context may improve their encoding through increased representational connectivity be-

tween brain areas. We finally linked neural decoding and behavioral performance by using

a distance to bound analysis and found that improved neural decoding for visual and au-

diovisual objects was associated with faster reaction times in the animacy categorization

task. Furthermore, the decoding differences between visual and audiovisual objects was

also predictive of their reaction time differences. Taken together, the results of our study

provide new insights into the encoding of unisensory and multisensory objects, establishes

critical links between neural activity and behavior in the context of object categorization,

as well as explores potential mechanistic differences in multisensory integration for weakly

and strongly encoded objects.

Although stimulus features clearly contribute to the formation of object categories, in-

cluding the distinction between animate and inanimate objects, there is ample evidence that

the animate-inanimate distinction transcends stimulus features and can be thought of as an
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abstract category distinction. The distinction is present for stimuli presented in both the

visual and auditory modalities, suggesting that animacy is a general organizing principle.

Furthermore, category-specific deficits in naming animate objects have been found in pa-

tients who have suffered brain damage (Capitani, Laiacona, Mahon, & Caramazza, 2003;

Clarke et al., 2002; Kolinsky et al., 2002; Vignolo, 1982; Vignolo, 2004; Warrington & Mc-

carthy, 1987). The category distinction is preserved across species; being present in both

monkey inferotemporal (IT) cortex and human IT cortex. Furthermore, the use of carefully

controlled stimuli that account for stimulus features have reinforced the categorical nature

of animacy (Bracci, Ritchie, & de Beeck, 2017; Ritchie & Op De Beeck, 2018). Similarly,

auditory studies have also provided evidence for animacy as an abstract category distinction

(De Lucia et al., 2010; Giordano et al., 2013; Murray, 2006). In the current study, we cor-

roborate these findings by showing a significant correlation between an animacy model and

neural response patterns, but a lack of consistent correlations between low-level stimulus

features such as visual contrast and auditory power spectrum with neural response patterns.

Our study showed overall magnitude and temporal enhancement for audiovisual ob-

jects over visual and auditory objects consistent with recent findings (Brandman et al.,

2019; Mercier & Cappe, 2019), and we additionally provide new insights into how au-

diovisual benefits selectively enhance the category of inanimate objects. Specifically, we

found that the animacy bias for auditory and visual objects is absent in audiovisual objects.

We hypothesized that the brain may be preferentially integrating the visual and auditory

components of the more weakly encoded inanimate objects. Thus, greater multisensory in-

tegration for inanimate objects may serve to close the perceptual gap between animate and

inanimate objects, consistent with the concept of inverse effectiveness (Stein & Meredith,

1993; Wallace et al., 2004). To test whether there were behavioral differences in multisen-

sory integration across categories, we examined our behavioral data for a prediction made

by maximum likelihood estimate models (Ernst & Banks, 2002): there is stronger multisen-

sory benefit when the unisensory reliability or other measure of variability between senses
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is closer (i.e. smaller differences between visual and auditory reaction time). In agreement,

we found that smaller RT differences between visual and auditory objects led to faster mul-

tisensory reaction times for inanimate, but not for animate objects. In the same vein, the

neural decoding bias for animate over inanimate objects was no longer present for audio-

visual presentations. When we subtracted audiovisual decoding from visual decoding, we

found that decoding was only enhanced for inanimate objects, lending further evidence that

audiovisual presentations selectively improved encoding of inanimate objects.

To investigate the potential mechanism by which audiovisual presentations asymmetri-

cally enhance the decoding of inanimate objects, we utilized representational connectivity

analysis across all EEG sensors. Representational connectivity analysis has been previ-

ously used in a more limited way to assess representational similarity between two brain

areas (Kriegeskorte et al., 2008). In our analysis, we used a moving searchlight consisting

of each electrode and its immediately surrounding neighbors to measure the different pat-

terns of activity for each given stimulus. By doing so, we are able to use RCA as a tool to

acquire a data driven measure of how similar response patterns are topographically across

the brain. We predicted that animate and inanimate exemplars might demonstrate differ-

ences in connectivity measures, as previous studies have shown increased connectivity for

biologically plausible motion over mechanical motion (Hillebrandt et al., 2014). Note that

in this analysis, neighboring electrodes will have shared signals simply due to proximity.

Therefore, the importance of these connectivity measures is the relative difference between

animate and inanimate categories. We found increased representational connectivity for an-

imate objects when presented in vision and when compared with inanimate objects. How-

ever, much like for our RSA results, these connectivity differences were no longer present

for when these objects were presented in an audiovisual context. Additionally, the con-

nectivity increase for inanimate objects occurs within the 100-200 ms time epoch we have

previously noted as the time period in which audiovisual presentations showed the greatest

enhancement over visual presentations. One possible explanation for these results is that

145



there may be increased audiovisual integration for inanimate objects relative to animate

objects, leading to greater spread of neural representation across brain areas. However, the

current analysis cannot exclude the possibility that the increase in inanimate connectivity

for audiovisual presentations may also be due a more localized spread within electrodes in

close proximity.

Next, we directly linked the neural results to behavioral results at the exemplar level

by using a distance to bound approach (Carlson et al., 2014; Grootswagers, Ritchie, et al.,

2017; Ritchie et al., 2015). This approach is a data-driven way of determining the relation-

ship between neural representational space and behavioral measures (i.e., reaction times).

In this analysis, we found a significant relationship between visual and audiovisual decod-

ing distances and reaction times during two distinct post-stimulus time epochs. One corre-

sponded to peak decoding in our RSA analysis (i.e., 100-200 ms) and the other emerged ap-

proximately 150-200ms later. These intervals and the corresponding topographic analyses

in Figure 4.6A correspond to periods and electrodes associated with sensory evidence accu-

mulation and decision-making, respectively (Murray, Imber, Javitt, & Foxe, 2006; Tzovara

et al., 2012). We next directly correlated multisensory neural decoding enhancements to

reaction time improvements. Interestingly, we found that despite an overall neural enhance-

ment for audiovisual presentations, some exemplars showed possible effects of audiovisual

interference effects. In these cases, visual decoding distances were greater than audiovisual

decoding distances. These effects were largely reflected in the reaction time differences be-

tween audiovisual and visual presentation, with an overall significant negative correlation

between behavioral audiovisual enhancement and neural audiovisual enhancement. These

results provide evidence that the added sensory information in audiovisual presentations did

not just provide the classifier with more information, but in fact provide further value for

the object categorization task (Grootswagers, Cichy, & Carlson, 2018). However, it does

not eliminate the possibility that added neural information was also used for other aspects

of the perceptual response not tapped in the current paradigm (e.g., response confidence).
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In conclusion, our study introduces new insights into the brain’s representation of sen-

sory and multisensory information as it relates to object encoding. The greater neural en-

coding benefits for inanimate stimuli seen under audiovisual conditions compliments prior

work, where sensory information was selectively removed from object stimuli, resulting

in a selective contraction of the representational space of animate objects (Grootswagers,

Ritchie, et al., 2017). Collectively, these findings show that neural representational space

and the encoding of objects is impacted by both semantic congruence and stimulus modal-

ity (stimulus combinations) in a dynamic fashion. Future directions of our current work

include approaches to investigate the interplay between parametrically reducing neural en-

coding by degrading visual stimuli while simultaneously using audiovisual presentations

to enhance neural encoding. Understanding the computational framework the brain uses

to maximize the sensory information it captures across sensory systems has broad implica-

tions for how stimuli perturbations and sensory integration affects object encoding.
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Part 3

“What I cannot create I do not understand”

-Richard Feynman
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Chapter 5

Getting the gist faster: Blurry images enhance the early temporal similarity between

neural signals and convolutional neural networks

The contents of this chapter are adapted from

Tovar, D. A., Grootswagers, T., Jun, J., Cha, O., Blake, R., & Wallace, M. T. (In Prep).

Getting the gist faster: Blurry images enhance the early temporal similarity between

neural signals and convolutional neural networks.

5.1 Abstract

Humans are able to recognize objects under a variety of noisy conditions, so models

of the human visual system must account for how this feat is accomplished. In this study,

we investigated how image perturbations, specifically reducing images to their low spa-

tial frequency (LSF) components, affected correspondence between convolutional neural

networks (CNNs) and brain signals recorded using magnetoencephalography (MEG). Us-

ing the high temporal resolution of MEG, we found that CNN-Brain correspondence for

deeper and more complex layers across CNN architectures emerged earlier for LSF images

than for their unfiltered broadband counterparts. The early emergence of LSF components

is consistent with the coarse-to-fine theoretical framework for visual image processing,

but surprisingly shows that LSF signals from images are more prominent when high spa-

tial frequencies are removed. In addition, we decomposed MEG signals into oscillatory

components and found correspondence varied based on frequency bands, painting a full

picture of how CNN-Brain correspondence varies with time, frequency, and MEG sensor

locations. Finally, we varied image properties of CNN training sets, and found marked

changes in CNN processing dynamics and correspondence to brain activity. In sum, we

show that image perturbations affect CNN-Brain correspondence in unexpected ways, as

well as provide a rich methodological framework for assessing CNN-Brain correspondence

across space, time, and frequency.
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5.2 Introduction

The human visual system has been characterized as a hierarchical system that begins

with extraction of information about simple features (e.g., oriented contours) registered

by neurons whose receptive fields are retinotopically organized, followed by increasingly

refined analysis of more complex aspects of the visual scene via neurons with increas-

ingly large receptive fields (Hubel & Wiesel, 1977; Poggio & Riesenhuber, 1999; Serre,

Oliva, & Poggio, 2007; Vinckier et al., 2007). Generally, inspired by this biological or-

ganization, convolutional neural networks (CNNs) built for image classification have been

similarly constructed such that early convolutional layers register simple features in small

receptive fields, followed by pooling layers that progressively increase receptive field size,

allowing subsequent convolutions to extract complex features that are then passed to fully

connected layers for classification (Kietzmann, Mcclure, & Kriegeskorte, 2019; Lecun,

Bengio, & Hinton, 2015; Richards et al., 2019). Although neural networks are biologically

implausible in some ways, such as weight sharing and backpropagation, they are never-

theless increasingly recognized as useful models of neural processing (Cadieu et al., 2014;

Khaligh-Razavi & Kriegeskorte, 2014; Yamins & DiCarlo, 2016). Still, recent studies

question the generality of the correspondence between neural networks and neural activ-

ity, noting that the relationship between fMRI activation patterns and CNNs is considerably

weakened when visual images are degraded or comprised of artificial objects (Xu & Vaziri-

Pashkam, 2021). However, it remains possible that the poor temporal resolution of fMRI

obscures the category structure that emerges as a function of the temporal dynamics of pro-

cessing within the visual stream (Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pan-

tazis, & Oliva, 2014; Wardle & Baker, 2020). Thus, the degree of correspondence between

CNN models and dynamic brain signals associated with degraded visual images remains an

open question. In the current work, we address this question by measuring brain responses

to degraded images using high temporal resolution magnetoencephalography (MEG) and

comparing these to performance in a number of CNNs.
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The form of visual image degradation we have focused on is motivated by the coarse-to-

fine manner by which the brain is thought to optimize object recognition (Bar, 2003a; Bar,

Kassam, Ghuman, Boshuan, et al., 2006; Petras, ten Oever, Jacobs, & Goffaux, 2019). This

view posits that low spatial frequency information is processed by the faster magnocellular

pathway (Kauffmann, Ramanoël, Guyader, Chauvin, & Peyrin, 2015; Tootell, Silverman,

Hamilton, Switkes, & De Valois, 1988), which creates an initial coarse representation of

the image/object. Called “scene gist”, those initial representations or “hunches” are then

refined as more detailed information emerges in the form of high spatial frequencies pro-

cessed by the slower parvocellular pathway traveling through the ventral visual stream (Bar,

2003a; Bar, Kassam, Ghuman, Boshuan, et al., 2006; Bruner & Potter, 1964; Snodgrass &

Hirshman, 1991; Tootell et al., 1988). Low frequency information was initially thought to

enhance processing within the ventral visual stream through feedback signals originating

in the orbitofrontal cortex (OFC) to category selective areas in inferotemporal (IT) cor-

tex (Bar, 2003; Bar, Kassam, Ghuman, Boshuan, et al., 2006). However, recent evidence

suggests that feedback processes are more diffuse along the ventral visual stream. For

example, an fMRI occlusion paradigm that selectively manipulated the spatial frequency

along different receptive fields found that low frequency information is conveyed through

feedback signals throughout the ventral visual stream, including in primary visual cortex

(Revina, Petro, & Muckli, 2018). Additionally, high spatial frequency processing domains

are segregated from low spatial frequency processing domains as far upstream as V4, indi-

cating that unique spectral information is preserved within feedforward processing (Lu et

al., 2018). Collectively, it thus appears that coarse-to-fine processing comprises a combi-

nation of dynamic feedforward and feedback interactions. This implies that the extent to

which the brain relies on low spatial frequencies to initiate top-down processes depends on

the available spectral and contextual information present in an image.

Modeling the visual system requires capturing the dynamics of object recognition under

a variety of task constraints, including degraded images that necessitates varying degrees
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of feedback/top-down processing. The sluggish fMRI signal makes it difficult to differ-

entiate between the dynamics of early feedforward and later feedback processes; these

dynamics take on particular importance as we go beyond assessing CNN-Brain correspon-

dence with natural images (Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016; Güçlü & van

Gerven, 2015, 2017; Khaligh-Razavi & Kriegeskorte, 2014; Kietzmann, Spoerer, et al.,

2019; Kong, Kaneshiro, Yamins, & Norcia, 2020; Mehrer, Spoerer, Jones, Kriegeskorte,

& Kietzmann, 2021; Schrimpf, Kubilius, Hong, Majaj, Rajalingham, Issa, Kar, Bashivan,

Prescott-Roy, Schmidt, et al., 2018). Behavioral studies have shown that CNNs differ from

human vision in terms of susceptibility to the impact of image distortion on object recog-

nition. For example, distortions such as color remapping, low pass filtering and high pass

filtering reduce CNN performance in object classification but have considerably less effects

on human performance (Geirhos et al., 2018). Thus, the effect of image perturbations on

CNN-Brain correspondence is best suited using brain signals measured with high temporal

resolution techniques such as M/EEG.

Consequently, in the current work, we have studied the temporal correspondence be-

tween neural activity collected using MEG and a diverse set of CNN architectures for clear

images as well as for degraded images containing only low spatial frequency components.

The added temporal resolution in the MEG allows us to make inferences regarding how

the correspondence between MEG signals and the CNN activations evolves throughout the

stimulus presentation, and whether image perturbations change the timing of when the cor-

respondence emerges. We predicted that for all images (clear and degraded) there would

be a general temporal relationship between CNN layer depth and the time course of the

MEG signal following stimulus presentation. In such a framework, shallow CNN layers

(those close to the input layer) will correspond to earlier times in the MEG signal and deep

CNN layers will correspond to later times in the MEG signal when participants have been

allowed more time to fully process an object. However, for the low spatial frequency im-

ages, we hypothesized that an enhanced contribution of top-down feedback would result in
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the more rapid emergence of correspondence between deep CNN layers and MEG signals.

5.3 Methods

5.3.1 Data Set

We used a data set originally published in Grootswagers, et al., 2017. The data com-

prised results from 20 participants (four men; mean age = 29.3 years) with normal or

corrected-to-normal vision participating in an MEG experiment. Stimuli consisted of 48

grayscale images comprised of an even split of animate and inanimate objects on a phase-

scrambled natural image background (Figure 1A). Importantly, the stimuli did not include

humans and better accounted for shape and other confounds present in the stimuli in other

datasets (Grootswagers & Robinson, 2021). The objects were presented in a clear condi-

tion and a degraded condition intermixed within eight blocks, resulting in 32 trials for each

respective clear and degraded object. Degraded images were constructed by convolving a

sombrero function over a Fourier transformed image and selecting varying radii of pixels

from the image, resulting in different degrees of low spatial frequency blur (Figure 1A and

Supplemental Figure 1). Given that different types of blurring can affect object recogni-

tion to different degrees (Kadar & Ben-shahar, 2012), each image was blurred based on

the results from a separate online MTurk experiment with blur being set as the radii by

which at least 25% of participants could name the object in a naming task. Stimuli were

projected (at 9° × 9° visual angle) on a black background for 500ms with a random inter-

trial interval between 1000 and 1200 milliseconds. Participants categorized the stimulus as

animate or inanimate as fast and accurately as possible. Motor responses were remapped

between alternating blocks to avoid potential motor confounds. Prior to the MEG experi-

ment, a familiarization task was used to make sure that all participants could categorize all

clear and degraded stimuli as animate or inanimate with accuracy scores of at least 80%.

Each MEG recording was done with a whole-head MEG system (model PQ1160R-N2;

KIT, Kanazawa, Japan) while participants lay in a supine position inside a magnetically
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shielded room. Trials were sliced into 700ms epochs spanning from 100ms prior to stimu-

lus onset to 600ms post stimulus onset.

5.3.2 Decoding between clear and degraded images

To determine when differences emerged in time between clear and low spatial frequency

degraded images (Figure 1B), we trained and tested a classifier using linear discriminant

analysis (LDA) (Duda & Hart, 2001). In this procedure, we used a four-fold, leave one-

fold out train to test split, iteratively changing which folds were trained and tested. We

performed this analysis using all of the MEG sensors to compute an overall decoding clas-

sification performance for clear unfiltered images and for low spatial frequency degraded

images. Statistical significance was computed by comparing the decoding performance to

chance level decoding (50%), correcting for multiple comparisons using FDR correction.

In addition, to obtain a topographic estimate of how clear and degraded images are distin-

guished in the brain, we performed a moving searchlight analysis (Etzel, Zacks, & Braver,

2013), iteratively decoding clear from degraded images at each sensor and its immedi-

ate surrounding neighboring sensors. This procedure produced a topographic heat map

of decoding performance along 100ms intervals, spanning from 100ms prior to stimulus

presentation to 600ms post stimulus presentation.

5.3.3 Neural RDMs

To capture the time resolved neural relationship between objects, we used representa-

tional similarity analysis (RSA) (Kriegeskorte, Mur, & Bandettini, 2008). For each exem-

plar, we performed pairwise decoding using LDA with four-fold leave one-fold out cross

validation for all stimulus comparisons within the clear and low spatial frequency degraded

images until we had decoding scores across all possible exemplar comparisons across all

time points. Together, these formed time-resolved representational dissimilarity matrices

(RDMs) for clear and degraded images respectively (Figure 1C).
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5.3.4 CNN RDMs

Network RDMs were similarly constructed using RSA (Figure 1C). We chose a diverse

set of six CNNs of varying depth as well as different types of connections, including skip

connections (He, Zhang, Ren, & Sun, 2015), inception layers (Szegedy et al., 2014), and

recurrence (Kubilius et al., 2018). Instead of using cross validation, we used the square

Euclidian distance between layer activations for each exemplar comparison to build the

RDMs. We chose this distance measurement to make the fewest necessary assumptions re-

garding the relationship between layer activations for each object. Note that in this process,

each n × n layer activation is converted to 1 × n vectors preserving the relative relationship

of activation within each layer. To measure network dynamics and correspondence with

brain activity, we selected all of the convolutional and fully connected layers within each

network. However, we also performed the analysis using all possible computations within

each network, including pooling layers where convolutional features are pooled, ReLU

activation functions that convert all negative values to zero, and normalization layers that

scale and center the activations, finding qualitatively similar results.

5.3.5 Probing Neural and Network Dynamics Separately

To probe whether CNNs and brain activity exhibit similar dynamics when processing

clear images and degraded images, we correlated RDM averaged across all participants for

each time across all other RDMs in our stimulus window (-100ms to 600ms). This analysis

was performed using participant averaged brain RDMs instead of individual RDMs in order

to have more stable neural representations. The RDMs are consistently changing in time,

so by doing a cross correlation across timepoints we are capturing the dynamics of how

each participant processed the clear and degraded objects. We performed a similar proce-

dure separately for CNNs, using layers instead of time (Figure 1D). Given that the neural

time window included time before stimulus presentation and that additional time elapses

for neural signals to travel from the retina to visual cortex, we chose to begin the cross cor-
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relations 50 ms after stimulus. Additionally, since each of the different CNN architectures

contains different depths and layer, we interpolated each of the network activations to fit the

same dimensions as the brain RDMs (Figure 2A) using a nearest-neighbor interpolation.

The nearest-neighbor interpolation duplicates individual pixel values to fit the brain RDM

values. We performed this analysis for clear images and for degraded images, and then

correlated the relative representational geometry between the clear and degraded images

for the brain RDMs and the various CNN architectures separately.

5.3.6 Correspondence between brain and CNN RDMs

To relate brain RDMs to the CNN layer specific RDMs, we used a non-parametric

Spearman correlation between the brain and CNN matrices across each time point and

network layer to avoid making any assumptions of linearity for the Brain-CNN correspon-

dence. We then measured the time in which each CNN layer was maximally correlated

to brain data. In addition, we calculated the lower bound of the brain noise ceiling for

clear image presentations and degraded image presentations separately. The lower bound

of the noise ceiling was approximated by iteratively calculating across all participants the

mean correlation between each individual participant with the grand mean RDM minus that

participant (Nili et al., 2014) (Figure 3A).

5.3.7 Topographic Correspondence between Brain and CNN RDMs

To assess how CNN-Brain correspondence changed as a function of sensor location,

we constructed sensor by sensor RDMs using an electrode and its immediate surrounding

neighbor sensors. As mentioned in the previous sections, we assessed CNN-Brain corre-

spondence using Spearman correlations for each individual participant and then averaged

the correlations across participants (Figure 4A). These results were tested for significance

against zero correlation and corrected for multiple comparisons using FDR. To highlight

the difference between clear and degraded images, we performed a pairwise test between

conditions, correcting for multiple comparisons. For this analysis, we chose CORnet-S as
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it was found to be one of the most brain-like networks (Kubilius et al., 2018; Schrimpf, Ku-

bilius, Hong, Majaj, Rajalingham, Issa, Kar, Bashivan, Prescott-Roy, Geiger, et al., 2018)

consisting of only five layers (layers 1-5 are labeled V1, V2, V4, IT and Decoder) and

ResNet-50 (included in the supplemental material) which was the largest net we tested.

5.3.8 Spectral Correspondence between Brain and CNN RDMs

To capture spectral information, MEG signals were passed through a series of band-pass

bidirectional Butterworth filters from 5 Hz to 45 Hz. We used a sliding window including

the frequency of interest and 2 Hz above that frequency, such that 5 Hz represents 5-7 Hz,

and 6 Hz represents 6-8 Hz, and so on and so forth. From the band-passed signals, we

constructed frequency specific RDMs and then for each one of these frequencies measured

the correspondence with CORnet-S RDMs and ResNet-50 RDMs (Figure 5A) for the same

reasons described for the topographic correspondence. For ResNet-50, the RDMs were

limited to one shallow, middle and deep layer; for CORnet-S, we included all the layers.

5.3.9 Stylized images and CNN transfer learning

To test how CNN training, and specifically the features included within the images in

the training set, affected CNN-Brain correspondence, we made use of a ResNet-50 archi-

tecture trained on a stylized ImageNet set (Geirhos et al., 2019), which we will refer to

as “StyleNet”. The stylized images are the various images from ImageNet but with style

transfer (Huang & Belongie, 2017) of textures from a diverse set of paintings (Figure 6A).

For this network, the training parameters were as follows: 60 epochs with stochastic gra-

dient decent, momentum term of 0.9, learning rate of 0.1 multiplied by 0.1 after 20 and 40

epochs, and a batch size of 256. In addition, we performed transfer learning on an AlexNet

architecture, applying to ImageNet the low spatial frequency degradation that was used in

the MEG experiment. Here, we used a degradation radius of 8 pixels on the cylinder in

the sombrero convolution and applied this across all images. During transfer learning, we

used a randomized subset of 250 of the 1000 image categories in ImageNet. The transfer
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learning parameters were as follows: 60 epochs with stochastic gradient decent, momen-

tum term of 0.9, learning rate of 0.001, and batch size of 64. We then used these networks

to measure the dynamics, CNN-Brain correspondence, and topographic CNN-Brain corre-

spondence using the procedures described in the previous sections.

5.4 Results

5.4.1 Difference between degraded low spatial frequency images and clear (i.e., un-

filtered) images lateralizes to the right hemisphere

To determine when brain signals begin to diverge for low spatial frequency and clear,

unfiltered images, we trained a classifier to distinguish between the two image types re-

gardless of the specific exemplar. We found significant decoding onset at 50ms (Figure

1B), defined as at least two consecutive time points of significant decoding (Carlson et

al., 2013). Decoding remained above chance throughout the stimulus period (500ms),

peaking at 100ms post stimulus onset and extended to the end of the decoding window

(100ms after stimulus offset). Using a searchlight analysis, we also measured topographic

variation in the information regarding whether the image was clear or degraded. In the

topographic maps, we found evidence of lateralization to the right hemisphere beginning

at about 200ms and becoming more lateralized in time until 400ms. The lateralization of

low spatial frequency information to the right hemisphere has been noted in previous stud-

ies (Flevaris & Robertson, 2016; Kauffmann, Ramanoël, & Peyrin, 2014; Schyns & Oliva,

1999). However, given that the difference between the low spatial frequency and the clear

unfiltered image is the high frequency content, these results were somewhat surprising;

high frequency information has been shown to lateralize to the left hemisphere (Flevaris

& Robertson, 2016; Kauffmann et al., 2014; Schyns & Oliva, 1999). Thus, these results

seem to suggest that the primary neural difference between the low spatial frequency and

the unfiltered images are attributable to neural processing of low spatial frequencies.
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Figure 5.1: Study Design and Analysis Overview. A) Stimuli consisted of 48 achromatic
visual objects that included 24 animate and 24 inanimate objects shown in prototypical
viewpoints. No human faces were included in the data set. Images were placed on a phase
scrambled background. Images were degraded using a Fourier transform and sombrero
function to preserve the low spatial frequencies individually calibrated for each image to
preserve recognition. (B) Time-resolved decoding plot between clear and degraded images
for MEG signals. On the x-axis time in milliseconds; on the y-axis decoding performance.
Significance is indicated with asterisks above the abscissa using Wilcoxon signed-rank
test against chance decoding (50%), FDR corrected, q < 0.025. On the top of the plot,
exploratory searchlight analysis shows the topographic distribution of the decoding per-
formance in time. (C) Representational Dissimilarity matrices were calculated using LDA
4-fold cross validation MEG signals and across layers using squared Euclidean distance
for each layer activation. RDMs in time and across layers were correlated between MEG
and neural networks (D) The evolution of the signal was assessed by correlating RDMs
iteratively across all timepoints for MEG signals and layers for neural network activation,
creating a RDM generalization matrix.
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5.4.2 Relative responses to unfiltered and low spatial frequency images are similar

between neural networks and brains

We investigated the dynamics of how clear and degraded images were processed within

brain signals and within CNNs by correlating RDMs for each respective model system

(Figure 2A-B). In the correlation plots (Figure 2C-D), dark blue indicates low correlation

between RDMs and bright yellow indicates higher correlations between RDMs. Qualita-

tively, we found similarities in the ways that both brain signals and CNNs process images

(Figure 2C). While there were correlations in neighboring time points as well as between

layers, there appeared to be a chain-like sequential processing of stimuli, such that the rep-

resentational dynamics changed in time and across layers and no longer shared correlations

to earlier times or layers. However, there were some notable differences from this general

pattern. For example, CORnet-S had more shared similarity in shallow layers than deeper

layers, a pattern that was in contrast to brain responses. For degraded images (Figure 2D),

we found similar dynamics but found that there was relatively less correlation between

neural signals and time as well as between CNN layers in architectures such as CORnet-S.

Of greatest relevance for our purposes, we computed the correlations between clear

images and degraded images for both brain signals and CNN architectures (Figure 2E).

Here, we found that degraded image information appears closely related to the information

found in clear images at approximately 200ms. Moreover, the various CNN architectures

embody this clear-degraded relationship to different degrees. To assess the similarity in

the relative dynamics between CNN and brain signals for clear and degraded images, we

calculated a similarity score by computing the squared Euclidean distance. We subtracted

the total distance from one, such that higher scores indicate more similarity and lower

scores indicate less similarity. The scores indicated that of all of the networks tested, VGG-

19 had the most similar dynamic relationship between clear and degraded images to the

brain. Overall, these results show that the dynamics and processing of clear and degraded

images are similar between CNNs and brains.
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Figure 5.2: Image processing dynamics to clear and degraded images in brains and net-
works. (A) Correlations between neural RDMs (using all channels) for clear, degraded,
and between conditions were calculated using a Spearman correlation. To compare the
temporal evolution of the signals in time between neural RDMs and network RDMs, the
neural RDM time interval was restricted to approximately when the signals first appear in
V1. (B) Neural network RDMs across a wide assortment of networks that include shallow
CNNs and deep CNNs, skip connections, as well as recurrence. To compare to the neural
RDMs, the RDMs of the various networks were scaled to match the dimensions of the neu-
ral RDM using a nearest neighbor interpolation. (C-E) Resulting RDM correlation matrices
with neural RDMs on the leftmost column and CNN RDMS to the right for clear images
(C) degraded images (D), and the cross correspondence between clear and degraded im-
ages (E). For panel E, the similarity score was calculated as (1-squared Euclidean distance)
between neural RDMs and CNN RDMs shown on the abscissa.
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5.4.3 Degraded images lead to earlier brain CNN correspondence with deeper CNN

layers

To directly assess correspondence between CNN activations and brain signals, we used

a Spearman correlation to correlate the RDMs for each layer across CNNs in time. In

general, we noted emergence of similar patterns across network architectures (Figure 3B

and Supplemental Figure 3). For the clear images, there exist distinct peaks of correspon-

dence for the shallow and deeper layers within the CNNs. In contrast, for the low spatial

frequency degraded images, only a single peak was evident. We next quantified this ob-

servation by measuring the time at which the maximum correlation for each of the layers

emerged (Figure 3C). First, we found that there was a positive correlation between layer

depth and time across all architectures and across both types of image presentations with

the exception of AlexNet with degraded images. Additionally, we found a steeper slope and

higher degree of correlation for the clear images when compared with the degraded images

across CNN architectures. We next measured the total amount of explained variance max-

imally achieved by each network architecture across each layer (Figure 3D). Using this

approach, we found that the largest differences between clear and degraded images arose

within the shallow layers.

In comparing across the various CNN architectures, we note some subtle differences

between them. Deeper CNNs (i.e., those with more layers) as well as those that included

recurrence showed sustained correlations later in the signal for deeper layers. For example,

the last layer of CORnet-S had the highest explained variance (58.3%) at stimulus offset

(500ms) for clear images. In comparison, the highest explained variance for ResNet-50 for

clear images (51.0%) was seen 100 ms post stimulus offset (600ms). The highest explained

variance regardless of layer depth or image presentation was found for ResNet-50 at 160ms

in layer 17—a convolutional layer (res3c_branch2a). The high degree of explained variance

(92%) was seen for degraded images. Collectively, the observed pattern of results imply

that recurrence and deeper layers allow CNNs to be better models at higher stages of visual
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processing, agreeing with previous studies (Kietzmann, Spoerer, et al., 2019). Overall,

we found that restricting an image to low spatial frequencies led to earlier CNN-Brain

correspondence for the deeper layers when compared with clear images.
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Figure 5.3: Temporal correspondence between MEG and Convolutional Neural Networks.
(A) Schematic of the calculation to measure representational correspondence between
MEG and CNNs. Spearman correlations were calculated iteratively in time between each
participant’s MEG RDMs in 10ms increments from -100 to 600ms and across CNN RDMs
derived from layer activations. Lower bound of the noise ceiling was calculated by it-
eratively correlating individual RDMs to the group mean RDM, excluding the individual
RDM. Standard deviation is shown as shading around noise ceiling. (B) Time-resolved
neural-CNN correspondence with x-axis as time in milliseconds and y-axis as Spearman
rho. Color indicates CNN layer depth with blue representing shallow layers and red repre-
senting deep layers. (C) Top and bottom row show the time of maximum correspondence
for each of the network layers with layers on x-axis and time in milliseconds on the y-axis.
(D) Maximum explained variance calculated by neural-CNN correspondence divided by
the lower bound of the noise ceiling for each CNN layer.

171



5.4.4 Topographic CNN-Brain correspondence differs between clear and degraded

images

Next, we quantified topographic correspondence between brain signals and CNNs by

using a moving searchlight analysis to create electrode specific RDMs from the MEG sig-

nal. For this analysis, we limited the correlations to CORnet-S in our main analysis (Figure

4A) and ResNet-50 as a supplemental analysis. We chose CORnet-S due to the differences

noted in the timings in the later layers in the previous section, its recurrence connections,

and its relatively lower number of layers compared to other networks, allowing for eas-

ier visualization of the CNN-Brain correspondence. At 110ms, we find that CNN-Brain

correspondence is primarily localized to the occipital MEG sensors across all CORnet-S

layers. When we look at significant differences between the clear and degraded images

(Figure 4D), we find that the correlation is significantly stronger for the clear images in

layers V1 and V2 of CORnet-S. In comparison, the degraded images have stronger corre-

spondence to frontal sensors, including sensors over orbitofrontal cortex. Over time, this

pattern begins to change in such that CORnet-S layers V4 and IT show overall stronger

correspondence with degraded images, including occipital sensors. Progressing forward

in time, we find that the clear image correspondence stays fairly localized to visual cortex

while the degraded image correspondence becomes more diffuse. This difference becomes

most apparent at 210ms in nearly all layers except for layer V2. Progressing yet further in

time, the CNN-Brain correspondence in later network layers is now lateralized to the right

hemisphere and the differences between clear and degraded images become less apparent.

However, topographic differences still exist in layer V1 with degraded images showing

strong correspondence with frontal sensors and clear images showing some small local-

ized increased correspondence in the right lateralized sensors. Together, these results show

how the CNN-Brain correspondence in both time and across layers changes depending on

whether participants and CNNs are processing clear images vs degraded images.
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Figure 5.4: Topographic correspondence between MEG and CORnet-S. (A) Schematic of
the searchlight procedure used to build electrode specific RDMs that can then be used to
assess time resolved topographic correspondence between MEG and CORnet-S. (B-C) To-
pographic correspondence between all layers of CORnet-S at representative time periods to
display how correspondence across MEG electrodes evolves in time. All correspondence is
thresholded for significance using a Wilcoxon signed-rank test across participants against a
null correlation, FDR corrected for multiple comparisons, q<0.05. (D) Differences in neu-
ral network correspondence between clear and degraded images at the same representative
times, similarly thresholded for significance and corrected for multiple comparisons as in
(B) and (C).
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5.4.5 Spectral CNN-Brain correspondence differs between clear and degraded im-

ages at different CORnet-S layers

Given the known existence of functional differences in information processing between

frequency bands, such as gamma being more associated with feedforward processing and

alpha and beta being more associated with feedback processing (Bastos et al., 2015; Be-

litski et al., 2008; Van Kerkoerle et al., 2014), we tested how correlations between brain

signals and CNNs varied as a function of frequency. We again chose CORnet-S as the CNN

for the reasons cited earlier. To extract frequency specific data, we used bidirectional But-

terworth filters (Maier, Aura, & Leopold, 2011), capturing 3 Hz bands over the frequency

range spanning 5 Hz to 45 Hz. After the results were tested for significance against zero cor-

relation using a Wilcoxon signed rank test with FDR correction for multiple comparisons

(Figure 5B and 5C), we found a general pattern emerge. In this pattern, early CORnet-S

layers sharing broadband correspondence to brain signals, especially during the transient

response for both clear and degraded images. Following this transient, frequency bands

below 30 Hz captured the most correspondence between signals. Progressing into deeper

CORnet-S layers, the correspondence was primarily localized to the lower frequency bands

(<15hz).

In this frequency analysis, the difference between clear and degraded image correspon-

dence showed a dissociation between network layers. The V2 layer in CORnet-S had higher

correspondence in low frequency bands (< 30 Hz) for clear images than for degraded im-

ages. However, in deeper layers, specifically layer IT, degraded images had higher corre-

spondence extending into the gamma range (30 - 45 Hz) for the transient peak. This advan-

tage for degraded images was observed at the final decoder layers at low frequency bands

(<30hz) during the sustained response, especially in the lowest frequency bands tested (5

Hz). In general, these findings support the notion that early CNN layers are more closely

tuned to features that are present in brain signals of clear images but are missing from de-

graded images. In contrast, the degraded images, which still contain the conceptual aspects

174



of the image, correspond more with the later layers of a neural network at low frequencies.

175



Figure 5.5: Time frequency correspondence between MEG and CORnet-S. (A) Schematic
of time frequency analysis using 2nd order Butterworth filters to iteratively filter out fre-
quency components. A 3 Hz sliding window, moving 1 Hz at a time until all frequency
bands between 5-45 Hz were extracted. RDMs were then constructed at each frequency
and correspondence between MEG frequency and CORnet-S was assessed (B-C) Time fre-
quency correspondence between MEG signals and CORNet-S from shallow (top) to deep
(bottom), thresholded for significance against 0 and corrected for multiple comparisons
(q<0.05) for both clear (B) and degraded (C) images. (D) Significant difference between
clear and degraded images for MEG-CORnet correspondence and corrected for multiple
comparisons (q<0.05).
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5.4.6 Training CNNs with stylized images disrupts CNN-brain correspondence

Previous studies have shown that training CNNs with images of varying levels of ab-

straction shifts the focus of the CNN (such as StyleNet) more to shape rather than texture

(Geirhos et al., 2019). Here, we tested the CNN-Brain correspondence for StyleNet and

BlurNet. StyleNet is a ResNet-50 architecture trained on a stylized ImageNet image com-

posed a wide variety of artistic styles. BlurNet is an AlexNet architecture that was trained

using the same low spatial frequency manipulation used in the current study. As shown

in figure 6B, we find that the dynamics in StyleNet are different than those seen in the

brain, with each layer having shared representations with other layers. This pattern is seen

for clear images as well as degraded images. Furthermore, when looking at the relation-

ship between clear and degraded images, we find that clear-degraded generalization pattern

in CNNs is different than the clear-degraded generalization pattern in the brain signals.

Specifically, the RDMs for clear images in deeper layers correlate with degraded images

across all layers for the CNNs but not for the brain. BlurNet showed similar dynamics for

clear images as StyleNet with widely shared representations following the initial layers.

Interestingly with the degraded images, there was a more chain-like dynamic as observed

in the CNNs in Figure 2. However, the clear-degraded generalization pattern was again

different from what was observed in the brain signals.

When looking at the direct CNN-Brain correspondence, we see that all of the layers

correspond to early times within the MEG signal (Figure 6C). This result most likely re-

flects the shared correlation between the layers shown in Figure 6B. For clear images, the

explained variance at later times dropped from what was found in the ResNet-50 architec-

ture with StyleNet explained variances at layer 50 of 0.5% and -8.0% at 500ms and 600ms.

In comparison, the last layer in ImageNet-trained ResNet-50 yielded explained variance of

49.9% and 51.0%. For BlurNet, explained variance to clear images was 10.6% and 11.9%

at 500ms and 600ms while AlexNet had explained variances of 36.3% and 21.9%.

For degraded images, the CNN-Brain correspondence decreased for StyleNet but im-
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proved for BlurNet. StyleNet had explained variance of -15.5% and 12.5% at 500ms and

600ms while the comparable values for ResNet-50 at these times was 23.3% and 23.0%.

The last layer of BlurNet had explained variance of 31.2% and 25.1% at 500ms and 600ms

while the last layer of AlexNet had explained variance of 14.8% and -1.7% at those times.

However, there was no longer a direct linear relationship in time and within layers for ei-

ther StyleNet or BlurNet for degraded images. Lastly, the late layers for both clear and

degraded images in StyleNet localized to occipital sensors (Figure 6D) across time points.

Overall, these results show that training a neural network with stylized images leads to

poor correspondence with brain responses, especially for signals in the later portions of the

evoked MEG response to stimuli; the notable exception to this generalization are results

from BlurNet on degraded images.
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Figure 5.6: Assessing MEG-CNN correspondence with CNNs trained on stylized and low
spatial frequency degraded images. (A) Schematic of procedures used to assess CNN
trained on either a stylized version of ImageNet or on reduced ImageNet (250 categories)
using LSF degraded image. Similar procedures as described in previous figures were then
used to assess neural network correspondence. (B) Image processing dynamics as done in
Figure 2 shown for StyleNet (Stylized ResNet-50) and BlurNet as well as previously shown
neural dynamics for reference. (C) Temporal correspondence between modified CNNs and
MEG (left panel) along with times of best correspondence for each layer. (D) Topographic
correspondence for the last layers of StyleNet (Stylized-ResNet-50). See Supplemental
Figure 4 for reference of ResNet-50 trained without image stylization.

179



5.5 Discussion

In this study, we investigated the effects of image perturbations, notably LSF blurring,

on how well CNNs modeled dynamic brain signals by measuring layer-by-layer correspon-

dence between CNNs and the time resolved MEG signal. The major finding of the study

is that CNN-Brain correspondence emerged earlier in time when images were degraded

than when they were clear. When comparing brain activity associated with viewing clear

vs. degraded images, we found that decoding was lateralized to MEG sensors in the right

hemisphere, the brain hemisphere that preferentially processes low spatial frequency visual

information (Flevaris & Robertson, 2016; Kauffmann et al., 2014; Schyns & Oliva, 1999).

These results suggest that the earlier CNN-Brain correspondence to degraded images is

primarily driven by differences in how the brain processes low spatial frequencies. The ab-

sence of high spatial frequency content in the blurred images effectively boosted the impact

of the low spatial frequency information on brain activity, perhaps through what Bar (2021)

refers to as “initial guesses” about what one is viewing that is signaled via feedback from

higher brain areas. The CNN-Brain topographic results further fit within a broader coarse-

to-fine theoretical framework (Bar, 2003b, 2021; Goddard, Carlson, Dermody, & Woolgar,

2016; Kauffmann et al., 2015; Lu et al., 2018) in which we find correspondence between

early visual sensory areas and shallow CNN layers early in time for clear unfiltered images

while degraded low spatial frequency images have stronger correspondence to deeper CNN

layers and MEG sensors in frontal areas soon after stimulus presentation.

Our findings are at odds with recent fMRI results pointing to shared Brain-CNN cor-

respondence within low level visual areas but not high level visual areas, and particularly

decreased correspondence with degraded images (Xu & Vaziri-Pashkam, 2021). We be-

lieve these apparent contradictions are attributable, at least in part, to the temporal fine

structure that can be resolved in MEG signals but not in fMRI BOLD signal. For example,

Xu and Vaziri-Pashkam (2021) found that ResNet-50 was one of the only CNNs that had

shared correspondence with higher level visual areas. Similarly, we found that ResNet-50

180



accounted for the greatest variance in later times of the MEG evoked response for clear

images (i.e.,100ms following stimulus offset). However, by using the time-resolved MEG

signal, we also found that earlier correspondence for degraded images was localized in

MEG parietal and frontal sensors. Thus, we conjecture that fMRI studies are unable to

resolve this aspect of CNN-Brain correspondence owing to the sluggishness of the BOLD

response. In turn, this suggests that the fMRI signal is likely to be unable to register signals

associated with recurrent dynamics, signals that are best captured with recurrent CNNs.

Indeed, our study showed that CORnet-S improved late brain-fMRI correspondence com-

pared with other CNNs that did not have recurrent connections, in agreement with previous

work (Kietzmann, Spoerer, et al., 2019).

Beyond demonstrating that aspects of CNN-Brain correspondence may be obscured

within the sluggish BOLD signals measured using fMRI, MEG studies reveal a key tempo-

ral correspondence between brain signals and CNN layers: early brain signals correspond

to shallow CNN layers and late brain signals correspond to deep CNN layers (Cichy et

al., 2016; Greene & Hansen, 2018; Kietzmann, Spoerer, et al., 2019; Kong et al., 2020;

Seeliger et al., 2018). Thus, information is lost if we do not account for the time vary-

ing signals that the brain uses (Carlson et al., 2013; Cichy et al., 2014) when measuring

correspondence to object processing in the layers of a CNN. In our study, we found such

temporal correspondence but further leveraged this relationship and specifically probed the

dynamics in time and between CNN layers by generalizing RDMs in time as well as across

layers. We found that not only were there shared dynamics in processing clear and de-

graded images, but also similarities in the way that CNNs and brains respond to image

perturbations. By using dynamics to gauge for similarity in processing dynamics, we were

able to learn another important lesson: when CNNs are trained using stylized image sets

(Geirhos et al., 2019) or degraded image sets, they no longer share similar processing dy-

namics as the brain, despite explaining comparable variance during the peak of the MEG

signal. From this, we put forth that when modifying training sets to build CNNs that can
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serve as better models of the brain (Mehrer et al., 2021), measuring dynamics to image

perturbations may serve as an effective metric to index CNN-brain correspondence.

The dynamic MEG signal also allows one to probe how correspondence between brains

and CNNs may change as a function of brain oscillations. We found correspondence was

strongest between the V2 layers of CORnet-S and MEG signals for clear images during

the sustained response and predominated in the alpha/beta range to lower theta frequency

bands. However, this pattern reversed with higher correspondence in deeper CORnet-S

layers for degraded images in the gamma band during the transient and theta band during

the sustained response. These findings are consistent with earlier work showing that low

spatial frequency image information is preferentially carried in gamma bands while higher

frequency image information is preferentially carried in alpha bands (Bar, Kassam, Ghu-

man, Boyshan, et al., 2006; Flevaris & Robertson, 2016; Fründ, Busch, Körner, Schadow,

& Herrmann, 2007). Additionally, gamma band oscillations have also been linked with

magnocellular and dorsal stream activity (Merigan & Maunsell, 1993; Tootell et al., 1988),

which ostensibly carry the coarse information in the coarse-to-fine processing framework

(Bar, Kassam, Ghuman, Boshuan, et al., 2006). The differences found between frequency

bands in MEG signals provides motivation to further investigate the correspondence in

laminar and direct local field potential (LFP) recordings, which have shown rich frequency

specific LFP differences in feedforward and feedback processes within localized circuits

(Bastos et al., 2012; Bastos et al., 2015; Maier et al., 2011; Mineault, Zanos, & Pack, 2013;

Van Kerkoerle et al., 2014). For such studies, there are a number of potential targets includ-

ing the distinct magno- and parvocellular layers in LGN (Poltoratski, Ling, McCormack,

& Tong, 2017; Tootell et al., 1988), V1 layers where spatial frequency continues to be dis-

associated between layers 4Cb and 4Ca respectively (Tootell et al., 1988), as well as area

V4 which contains separate low spatial frequency and high spatial frequency domains (Lu

et al., 2018).

The general tendency we observed for deep CNN layers to show higher correspon-
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dence with degraded images earlier in time may point to categorical commonalities between

CNNs and brains that are largely missing at the exemplar level (Rajalingham et al., 2018).

Since low spatial frequency images prompt the processing of visual images at the superor-

dinate level, which defines category wide attributes (Ashtiani, Kheradpisheh, Masquelier,

& Ganjtabesh, 2017), individual CNN-Brain correspondence may become higher as the

exemplar become less distinguishable and the images are reduced to possible membership

in broad categories. In addition, correspondence could be improved through modifica-

tions to CNNs that create more stable exemplar representations. For example, a recent

study found that exemplar representations vary between network initializations (Mehrer,

Spoerer, Kriegeskorte, & Kietzmann, 2020), and that averaging across several different

initializations can improve CNN representations. Alternatively, CNNs trained on datasets

that include object categories that are more relevant to humans rather than those comprising

ImageNet, which includes an overemphasis on categories such as dog breeds, could also

provide more brain-like exemplar representations (Mehrer et al., 2021). Finally, another po-

tential avenue to explore are CNNs that have been trained on sets of low spatial frequency

images with decreasing degrees of blur, thus simulating visual development in infants.

CNNs trained in that way have shown better performance than CNNs trained on unblurred

images from the outset, leading to the speculation that graded training makes the CNN

more brain-like (Avbersek, Zeman, & Op de Beeck, 2021). Probing different modifications

to CNN training paradigms will be essential in testing how the image statistics in trainings

affect the Brain-CNN correspondence across a number of different image perturbations

and differing levels of occlusion (Rajaei, Mohsenzadeh, Ebrahimpour, & Khaligh-Razavi,

2019; Schrimpf, Kubilius, Hong, Majaj, Rajalingham, Issa, Kar, Bashivan, Prescott-Roy,

Geiger, et al., 2018).
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5.5.1 Conclusion

In conclusion, we have provided evidence of earlier correspondence between brains and

deep CNN layers in degraded images that support the coarse-to-fine conceptual framework

of visual image processing. In addition, we have provided a rich methodological framework

by introducing a number of analyses that can be used to assess the dynamics of CNNs and

compare these with brain activity across the dimensions of space, time, and frequency.

This framework can be extended to include a number of image perturbations as we test the

limits of CNN-brain correspondence with CNNs that are purposefully created to be more

brain-like (Kubilius et al., 2018) or those that inadvertently become so (Schrimpf, Kubilius,

Hong, Majaj, Rajalingham, Issa, Kar, Bashivan, Prescott-Roy, Geiger, et al., 2018). Finally,

there are a number of potentially revealing experimental manipulations that could enhance

efforts to examine possible CNN-brain correspondence. Those include manipulations of

stimulus duration (Grootswagers, Robinson, & Carlson, 2019), creation of visual stimuli

comprising object textures devoid of explicit shapes (Grootswagers, Robinson, Shatek, &

Carlson, 2019; Long, Yu, & Konkle, 2018), visual images that are accompanied by con-

gruent or incongruent sounds (Tovar, Murray, & Wallace, 2020), and creation of hybrid

stimuli consisting of conflicting low spatial frequency and high spatial frequency informa-

tion (Schyns & Oliva, 1999). These kinds of manipulations, together with expanded CNN

architectures and training sets, will push the boundaries of understanding of the potential

correspondence between brains and CNNs.
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5.7 Supplemental Figures

Figure 5.7: Supplemental for Figure 5.1. (Example LSF degradation of one of the exem-
plars.
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Figure 5.8: Supplemental for Figure 5.3. Correspondence between MEG and CNNs using
all operations including pooling, ReLU, and normalization.

Figure 5.9: Supplemental for Figure 5.4. (Supplemental topographic correspondence be-
tween MEG and ResNet50 that largely complement the findings found using CORnet.
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Figure 5.10: Supplemental 1 for Figure 5.5. Time frequency decoding between clear and
degraded images, showing the spectrotemporal profile differentiating between the images.
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Figure 5.11: Supplemental spectrotemporal correspondence between MEG and ResNet50
that shows some differences between CORnet-S and ResNet50. Namely, that there is higher
correspondence between degraded images and ResNet50. However, note that these are not
all of the layers in ResNet50, just representative ealy, middle, and layers.
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“They fell into a silence. They looked at one another, amazed. This thing they had never

really believed in was coming true.”

-John Steinbeck, Of Mice and Men
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Chapter 6

General Discussion

By studying perceptual phenomena at three broad levels, one potentially risks having a

disjointed group of projects. Indeed, at first glance, my work looking at stimulus feature

specific information within the V1 microcircuit seems to be far removed from looking at

the effects of image perturbations on brain correspondence with convolutional networks.

However, there is a unifying thread between chapters in that I use machine learning meth-

ods throughout each chapter to extract information from neural signals. I will elaborate on

this theme and provide commentary on why it is a useful analytical method. Furthermore,

after summarizing the main findings from each part of the dissertation and contextualizing

them within the extant literature, I will then discuss how the findings from each of the stud-

ies connects to the other levels. Finally, I will conclude with a broad vision of how I see

neuroscience progressing symbiotically with artificial intelligence.

6.1 Multivariate pattern analysis as a method of extracting neural information

One of the ways that neuroscientists have historically sought to understand the brain is

by defining discrete areas that contain different functions—such as with Brodmann areas,

which divide the brain based on its cytoarchitecture (Judaš, Cepanec, & Sedmak, 2012),

to more recent fMRI studies that define areas based on their responses to different objects,

such as faces or places (Epstein, Harris, Stanley, & Kanwisher, 1999; Kanwisher, McDer-

mott, & Chun, 1997). This type of modular approach has lent itself well to univariate anal-

yses that average responses over a number of trials and defines areas based on the object or

feature that induces the most vigorous overall response. However, these approaches have

lacked the granularity to investigate distributed codes that the brain might use to have the

necessary computational flexibility to accurately code for a diverse set of stimuli (DiCarlo

& Cox, 2007; Haxby et al., 2001). For example, with objects, any given object can have

multiple viewpoints, levels of occlusion, lighting, and size. With a distributed code, similar

198



objects can be teased apart from each other in a variety of viewing conditions (Olshausen

& Field, 2004; Quiroga, Kreiman, Koch, & Fried, 2008). Thus, in order to understand the

brain with the granularity needed to differentiate distributed codes, we require analyses that

do not average over these codes, but rather account for different activity patterns.

In order to be able to account for distributed codes, in this dissertation, I have used mul-

tivoxel (multivariate) pattern analysis (MVPA) to extract information from neural signals.

These methods have shown that even when modular areas such as the fusiform face area

(FFA) and parahippocampal place area (PPA) are removed from fMRI analysis, it is still

possible to determine the categories of face and place exemplars based on the surrounding

brain areas (Grill-Spector, 2003; Haxby et al., 2001). One of the dangers in using decoding

methods as a means of extracting neural information is that it is possible that the codes

extracted by the classifier are epiphenomenal in that they can be used for classification

but are not necessarily used in their current state by the brain. Ostensibly, all of the neu-

ral information from a visual object is hypothetically present beginning at the level of the

retina and with a sufficiently complex non-linear classifier, it would be possible to decode

this information and falsely attribute a host of functions to the retina. To address these

concerns, I have a made a number of analysis choices. First, I have used linear classifiers

with the assumption that the brain reduces information or representations such that it can

apply a linear read out process (Grootswagers, Cichy, & Carlson, 2018; Tong & Pratte,

2012). Then, where appropriate, I have linked these linear readouts to behavior (Carlson,

Ritchie, Kriegeskorte, Durvasula, & Ma, 2014; Grootswagers, Ritchie, Wardle, Heathcote,

& Carlson, 2017; Ritchie, Tovar, & Carlson, 2015), such as in Chapter 4 (Tovar, Murray,

& Wallace, 2020). Furthermore, I have grounded multivariate results where possible to

previous univariate results, as in Chapter 2 (Tovar et al., 2020), providing added confidence

to the analytical extensions that could only be found in multivariate analyses.

Thus, I generally view MVPA as an analytical tool that can supplement univariate anal-

yses in probing the distributed code the brain uses to encode information. Furthermore,
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beyond providing added granularity, it makes it possible to generalize specific information

across a wide assortment of stimulus features (Chapter 2 and 3), object categories (Chap-

ter 4) and relationship between objects (Chapter 5) across modalities, time, frequency,

and model systems. MVPA has been widely used in fMRI studies (for review see Tong

& Pratte, 2012), with more recent M/EEG applications (for review see Wardle & Baker,

2020) and with the emergence of multichannel arrays with increasingly higher number of

electrode contacts, will see expanded use in neurophysiology studies. In the next sections,

I will summarize the take home points and lessons we learned using MVPA, particularly in

neurophysiology studies (Part 1) and M/EEG (Part 2 and Part 3).

6.2 Part 1

In part 1, we found that stimulus features embedded in spiking data are distributed with

unique spatiotemporal profiles within the V1 microcircuit. For example, we found that

eye-of-origin information was significantly decreased in the infragranular layers, agreeing

with previous studies (Blake & Cormack, 1979; Dougherty, Cox, Westerberg, & Maier,

2019; Hubel & Wiesel, 1977). Information regarding stimulus history was found primarily

in the supra- and infragranular layers, consistent with previous reports (Van Kerkoerle et

al., 2014; Westerberg, Cox, Dougherty, & Maier, 2019). The agreement with the literature

validated the use of MVPA and a moving searchlight analysis as a framework to extract

stimulus features from spiking activation sequences. Furthermore, adopting a multivari-

ate pattern framework allowed us to apply time generalization techniques to relate spike

patterns in time, something we would have otherwise been unable to do using traditional

univariate analysis.

Next, we quantified spatiotemporal profiles for LFP data, specifically focusing on the

role of volume conduction on LFP signals. The study added to previous literature that

studied volume conduction (Kajikawa & Schroeder, 2011; Katzner et al., 2009; Kreiman

et al., 2006; Xing, Yeh, Burns, & Shapley, 2012) by going beyond grand mean responses,
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but specifically quantifying which stimulus features were most volume conducted. The

need to characterize the features contained in the volume conducted signal was apparent

given earlier findings that signal correlation and coherence could affect the amount of vol-

ume conduction by an order of magnitude (Leski, Lindén, Tetzlaff, Pettersen, & Einevoll,

2013; Lindén et al., 2011; Rosenbaum, Smith, Kohn, Rubin, & Doiron, 2017). Addition-

ally, given reports that volume conduction differed as a function of frequency (Leski et al.,

2013) we used a butterworth bandpass filter to decompose a CSD derived LFP signal to

quantify volume conduction. In the process, we further contributed to previous literature

that characterized the relationship between LFP frequency bands (Bastos et al., 2015a; Be-

litski et al., 2008; Van Kerkoerle et al., 2014). Together, these findings provide an analytical

framework regarding which specific stimulus features are processed locally.

Comparing the spatiotemporal profile features contained within spiking data with those

found to the LFP data in chapters 2 and 3, it is apparent that the spatiotemporal profiles

differed, especially in higher frequency bands. These findings agree with a recent study that

showed that high gamma colocalizes with spikes in supragranular layers, but not elsewhere

(Leszczynski et al., 2020). Planned future work will make the relationship between spikes

and LFP signals more explicit. Specifically, I plan to use confusion matrices to make input

(LFPcal) and output (spike) inferences for both LFPs and spikes.

One of the biggest limitations to my work is that all the findings are all contained

within one laminar probe. However, the analytical framework we have developed can be

readily adopted to track how feature information flows from one cortical area to another,

as well as within lamina. Additionally, multiple probes could also help in identifying the

directionality of signals as done in previous work (Bastos et al., 2015a). Another limitation

is that the stimulus conditions were too few in the studies of part 1 and thus limited our

ability to make use of tools such as representational similarity analysis (RSA). Using RSA,

I could adapt Granger analysis with RDM (Contini, Wardle, & Carlson, 2017) to make

further directionality inferences both within and across laminar probes but doing so using
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feature specific information rather than just grand mean responses. The findings in part one

can thus be succinctly summarized in three broad statements. We: 1) established a MVPA

framework to extract stimulus features in time and space from activation sequences, 2)

characterized the information found in volume conducted signals and 3) noted differences

between spiking and LFP/CSD signals.

6.3 Part 2

In part 2, we learned that inherent noise attributed to an object’s membership to a cat-

egory influenced how much benefit these objects incur in a multisensory context. In this

study we specifically used the animate and inanimate distinction, one of the fundamen-

tal organizing principles the brain uses to process sensory information (Carlson, Tovar,

Alink, & Kriegeskorte, 2013; Grootswagers, Ritchie, Wardle, Heathcote, & Carlson, 2017;

Kriegeskorte, Mur, Ruff, & Kiani, 2008; Lindh, Sligte, Assecondi, Shapiro, & Charest,

2019; Ritchie, Tovar, & Carlson, 2015). We made use of previous studies that found that

animate objects are processed preferentially over inanimate objects (Jackson & Calvillo,

2013; New, Cosmides, & Tooby, 2007; Vogler & Titchener, 2011). The results were con-

sistent with what would be expected from maximum likelihood estimate models (Ernst &

Banks, 2002) in that multi- sensory benefits are most evident when the reliability of the

dominant signal is lower. We showed that this reliability weighting was found at the cat-

egory level apart from low level visual attributes. By using black and white drawings as

opposed to realistic images, we avoided many of the critiques surrounding the contribu-

tion of texture to the animate/inanimate distinction (Grootswagers, Robinson, Shatek, &

Carlson, 2019; Long, Yu, & Konkle, 2018). There are several experimental design and

analytical extensions that I would like to add to this study. The first would be to paramet-

rically manipulate the visual and auditory sensory streams by introducing varying levels

of noise to assess the interaction between low level and high-level sensory properties. The

other would be to manipulate the causal structure (Körding et al., 2007) of the stimuli by

202



manipulating temporal and spatial synchrony of the visual and auditory component. Along

these lines, it would also be beneficial to have video and audio streams and compare these

to the static and dynamic coupling of vision and sound in this study. In terms of analyt-

ical approaches, I would like to use Granger causality using RDMs (Contini et al., 2017)

in order to better quantify whether the multisensory effects were primarily feedforward or

feedback.

6.4 Part 3

In Part 3, we investigated how image perturbations, specifically reducing images to their

low special frequency components, affected the correspondence between CNNs and MEG

signals. By doing this in a time-resolved manner, we were able to find that CNN-Brain

correspondence emerged earlier when images were degraded than when they were clear.

This finding fits within the broader coarse-to-fine theoretical framework (Bar, 2003, 2021;

Goddard, Carlson, Dermody, & Woolgar, 2016; Kauffmann, Ramanoël, Guyader, Chau-

vin, & Peyrin, 2015; Lu et al., 2018) and additionally shows that low spatial frequency

information is emphasized more in the brain for degraded low spatial frequency images

than in their clear image counterparts. While other studies have similarly looked at how

image degradation affected the correspondence between CNNs and the visual system, they

were done with fMRI and as a result missed out on possible temporal effects (Xu, Vaziri,

& Pashkam, 2021). In addition, I made use of the temporal structure of the MEG signal

in order to compare how visual representations generalize across time, and how these then

compare with how representations generalize within network layers. I introduced a number

of analyses exploring components of the MEG signal that had previously been untapped.

These analyses showed that correspondence varied based on frequency bands and the sen-

sor locations of the MEG signal. While this study is an advance in terms of quantifying

correspondence between brains and CNNs, I am just barely scratching the surface of the

possible stimuli and analytical manipulations that can be done.
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I have immediate plans to quantify the effects of several different analytical steps as

previewed in the introduction section 1.3.6. In brief, these include the distance measure-

ments used to build the RDM matrices, the effects of decoding or distance measurements

used to create the neural RDMs, task demands on the subjects (i.e. active categorization vs

passive viewing) as well as the layer selections from the CNN used to quantify the brain-

CNN correspondence. In addition, I would like to measure the opposite of the stimulus

manipulation we used in this study, the low spatial frequency blur. But rather than inves-

tigate high special frequencies, I will use textforms that are devoid of form, in order to

specifically investigate the much-beleaguered role of texture in CNNs (Grootswagers et al.,

2019; Long et al., 2018) and its resulting correspondence between brains and CNNs.

6.5 Connecting Part 1 to Part 2

The lessons learned in part 1 can serve as a framework for how we interpret some of

the research regarding multisensory integration studied in part 2. Specifically, multisensory

integration relies on similar stimulus features being temporally and spatially close in order

to be integrated (Meredith, Nemitz, & Stein, 1987; Meredith & Stein, 1986). Much of the

early multisensory integration research investigated this at the level of individual neurons

(Meredith et al., 1987; Wallace, Meredith, & Stein, 1998). However, we know that these

effects are present at the population level (Ma, Beck, Latham, & Pouget, 2006). Thus,

the spatiotemporal framework for spikes as well as LFPs in part 1 will be helpful in terms

of indexing measures of multisensory integration at the circuit level. Furthermore, using

decoding to extract feature information allows us to avoid the fallacy that more activation

in an area translates to more information (Harrison & Tong, 2009; Jehee, Brady, & Tong,

2011; Kok, Jehee, & de Lange, 2012; Laurienti, Perrault, Stanford, Wallace, & Stein,

2005).

In addition, the volume conduction results in part 1 serve as a caution to multisensory

researchers from relying on LFP signals for source localization. Otherwise, researchers
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run the risk of falsely identifying areas as sites of multisensory integration when they are in

fact volume conducted signals (Kajikawa, Smiley & Schroeder, 2017). It is for this reason,

that we were cautious in our interpretation of representational connectivity in figure 4.5.

If direct electrical probes are used instead of EEG, it is much easier to use current source

density or a current source density derived signal in order to make localization claims.

6.6 Connecting Part 1 to Part 3

While many of the same caveats found between part 1 and part 2 apply to localizing

CNN-Brain correspondence in part 3, the link between CNNs and brain signals carry yet

another dimension. While there are a considerable number of studies investigating how

neural spikes relate back to layer activations (Kar DiCarlo, 2020; Kar, Kubilius, Schmidt,

Issa, & DiCarlo, 2019; Bashivan, Kar, & DiCarlo, 2019), the links between CNNs and

CSD or even LFP have been largely ignored. Given that is possible to create localized LFP

signals like we did in part 1 and decompose the LFP signal into frequency bands, these are

missed opportunities. This is especially true given that there are distinct types of informa-

tion embedded within different frequency bands (Bastos et al., 2015b; Belitski et al., 2008;

Van Kerkoerle et al., 2014). Add in the possibility of also doing this analysis with lami-

nar recordings with distinct compartments associated with feedforward and feedback (Van

Kerkoerle et al., 2014; Westerberg et al., 2019), and the possibilities are seemingly limit-

less. Furthermore, there are powerful predictions that can be made between feedforward

and recurrent neural networks activations and laminar compartments. For example, one

would expect that the granular layer would have the most correspondence with feedforward

networks, but a recurrent network might also show correspondence with supragranular and

infragranular layers.

6.7 Connecting Part 2 to Part 3

The connections between 2 and part 3 of the dissertation are amongst the most excit-

ing. As CNNs continue to become more sophisticated at modeling auditory brain responses
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(Kell et al., 2018; Millet & King, 2021), there is rich opportunity to begin to build audio-

visual neural networks for object recognition. One of the current challenges in doing this

is finding sufficiently large training data of common audio and visual components. For the

time being, much of the audiovisual training data sets are limited to examples of audiovi-

sual speech.

However, there are a group of networks, named capsule networks, that theoretically will

not require as much data as traditional CNNs (Doerig, Schmittwilken, Sayim, Manassi, &

Herzog, 2020; Sabour, Frosst, & Hinton, 2017). While they are still in their infancy and

have issues scaling up to image recognition datasets, they are promising architectures that

contain units within the networks that behave somewhat similarly to multisensory neurons.

Instead of using pooling as CNNs do, which either averages or takes the max value from

a previous convolution, capsule networks use routing by agreement, hierarchically sending

votes from the initial feature and therefore preserving more of the original input. Thus, in

this way, they behave similarly to a multisensory neuron that is receptive to both visual and

auditory input, instead of decidedly having to be one or the other.

6.8 Broad Implications for Neuroscience and AI

The title of this dissertation “Of Machines and Men” implies a symbiotic relationship

between the brain and artificial neural networks/machine learning. Given my initial re-

search interests and the fact that this is a neuroscience dissertation, my telling of the story

has been predictably one sided. The chapters I have written are example cases of the ways

we can use machine learning and artificial neural networks to improve our understanding

of the brain. However, if we are to use the rich contributions of simple and complex cells in

the genesis of convolutional neural networks (Lecun, Bengio, & Hinton, 2015), as a guide,

there are still lessons that artificial systems can learn from the brain. Thus, the discussion

here will focus on the symbiotic relationship between machines and men, briefly providing

a short description of the areas of synergy listed in figure 6.1. These will include some

206



reference to my work in this dissertation but is not limited by them.

6.8.1 Using artificial neural networks to advance neuroscience

The following list is not exhaustive and instead include my personal biases of where

I foresee machine learning assisting our understanding of the brain. I will begin with the

topics that were touched upon in projects covered in this dissertation. Namely, those belong

to the areas where we used CNNs as models of the visual stream. We were able to use a

neural network model to capture the dynamics of the MEG signal in part 3. Different CNN

models had different components such as skip connections, inception layers, and recurrence

and like previous work (Kietzmann et al., 2019) we found that recurrence was especially

useful at capturing variance later in time epochs. While we did not use the CNN models

to discover new computations, it is quite possible to do so and an avenue for future work.

Other groups have been able to modify neural networks in order to synthesize stimuli that

maximally activate different regions in the brain (Bashivan, Kar, & DiCarlo, 2019; Ponce

et al., 2019). This process in effect uses CNN architectures to reveal what different brain

areas might be processing. In addition, by selectively adding and removing connections,

and assessing CNN correspondence to brain activity, future work can provide additional key

insights into how different algorithms are implemented across brain areas (Kar & DiCarlo,

2020; Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019). Lastly, exploring how AI and brain

activity can directly interface are appealing avenues of continued symbiosis. The efforts

in brain machine interface have captured the imagination of many since Miguel Nicoleilis’

lab (Carmena et al., 2003) was able to use a macaque’s brain signals in order to control

a robotic arm. In more recent times, Elon Musk’s Neuralink implants (Musk, 2019) have

pushed the boundaries in engineering with recording devices being housed in self contained

bluetooth Neuralink implants. As recording technology continues to advance and allow for

the simultaneous recording from thousands of channels, the importance of using machine

learning and AI to improve our understanding of the brain will only increase as we attempt
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makes sense of the added dimensionality in our data sets.

6.8.2 Using neuroscience to advance artificial networks

The fingerprints of neuroscience are evident in many facets of current CNNs. The most

obvious being the initial idea behind using convolutional layers in a hierarchical fashion.

However, many will argue that CNNs have notably now diverged from biology, rely heavily

on non-biological backpropogation (Marblestone, Wayne, & Kording, 2016) and as a result

there is not much that AI can learn from the brain. I however am of the opinion that by con-

tinuing to explore how the brain functions, we may stumble upon several valuable lessons

that will create more efficient, flexible, and ultimately better performing artificial networks

across a number of tasks. Even with backpropagation, we are finding biological evidence

for mechanisms for the ultimate goal of backpropogation which is credit assignment-the

process of assigning weights for optimization throughout a network. Evidence of credit

assignment has been found in processes occurring between apical and basilar dendrite

(Richards et al., 2019). By investigating these processes further, the brain may still yet

offer learning algorithms that supplement or replace backpropogation. Furthermore, while

hierarchical organization was an initial contribution from the brain to CNN, there are con-

tinued ways in which the brain might influence artificial network architectures as is evident

in current efforts with capsule networks (Sabour et al., 2017) which I have discussed pre-

viously. When looking at learning in general, AI can further take lessons from how the

brain performs meta learning, the human ability to learn how to learn something. Even

currently, years of research of the reward system within the brain has formed the basis of

reinforcement learning in AI research (Vu et al., 2018). In looking at the training sets we

use for AI systems, we can also use developmental neuroscience research. The applica-

tions of such research are evident in recent efforts in modifying neural network training to

include training images that are more representative of how humans learn object categories

through development. These studies have shown that using training images that simulate
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human development are successful in improving a networks’ ability to generalize between

tasks (Bambach, Crandall, Smith, & Yu, 2018; Kiar, Zeman, & Op de Beeck, 2021). Thus,

by manipulating the training data, these studies represent promising inroads for improving

the ability of networks to learn with fewer examples (i.e. one-shot learning), making for

more efficient artificial networks. Lastly, the brain provides a wonderful constraint in terms

of the limited energy that can be used to power neural computations. Thus, we can study

the brain as a means of finding algorithms that will limit energetics and computational costs

required to train CNNs as AI research continue to look to expand (Thompson, Greenewald,

Lee, & Manso, 2020).

Figure 6.1: Opportunities to improve AI and neuroscience
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Appendix A

Appendix Ch A: The Neural Computations for Stimulus Presence and Modal

Identity Diverge Along a Shared Circuit

The contents of this chapter are adapted from

Tovar, D. A., Noel, J.-P., Ishizawa, Y., Patel, S. R., Eskandar, E. N., Wallace, M. T.

(2020). The neural computations for stimulus presence and modal identity diverge along a

shared circuit. BioRxiv, 2020.01.09.900563. https://doi.org/10.1101/2020.01.09.900563

1.1 Abstract

The brain is comprised of neural circuits that are able to flexibly represent the com-

plexity of the external world. In accomplishing this feat, one of the first attributes the brain

must code for is whether a stimulus is present and subsequently what sensory information

that stimulus contains. One of the core characteristics of that information is which sensory

modality(ies) are being represented. How information regarding both the presence and

modal identity of a given stimulus is represented and transformed within the brain remains

poorly understood. In this study, we investigated how the brain represents the presence

and modal identity of a given stimulus while tactile, audio, and audio-tactile stimuli were

passively presented to non-human primates. We recorded spiking activity from primary so-

matosensory (S1) and ventral pre-motor (PMv) cortices, two areas known to be instrumen-

tal in transforming sensory information into motor commands for action. Using multivari-

ate analyses to decode stimulus presence and identity, we found that information regarding

stimulus presence and modal identity were found in both S1 and PMv and extended beyond

the duration of significant evoked spiking activity, and that this information followed dif-

ferent time-courses in these two areas. Further, we combined time-generalization decoding

with cross-area decoding to demonstrate that while signaling the presence of a stimulus

involves a feedforward-feedback coupling between S1-PMv, the processing of modal iden-
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tity is largely restricted to S1. Together, these results highlight the differing spatiotemporal

dynamics of information flow regarding stimulus presence and modal identity in two nodes

of an important cortical sensorimotor circuit.

1.2 Significance Statement

It is unclear how the structure and function of the brain support differing sensory func-

tions, such as detecting the presence of a stimulus in the environment vs. identifying it.

Here, we used multivariate decoding methods on monkey neuronal data to track how infor-

mation regarding stimulus presence and modal identity flow within a sensorimotor circuit.

Results demonstrate that while neural patterns in both primary somatosensory (S1) and

ventral pre-motor (PMv) cortices can be used to detect and discriminate between stimuli,

they follow different time-courses. Importantly, findings suggest that while information

regarding the presence of a stimulus flows reciprocally between S1 and PMv, information

regarding stimulus identity is largely contained in S1.

1.3 Introduction

Single-unit neurophysiological recordings demonstrate that neural activity within the

primary somatosensory area (S1) is monotonically related to stimulus amplitude (Mount-

castle et al., 1969). This suggests that a rate code is used to signal the probability of a

somatosensory stimulus being present in the environment (Ahissar et al., 2000). Beyond

this first cortical area, however, neurons show a variety of response patterns to different

stimulus features. For example, some neurons show increasing spiking activity with in-

creasing stimulus frequency, whereas others show the opposite relationship (Salinas et al.,

2000). Furthermore, non-linear computations may effectively help filter which information

is propagated forward in the cortical hierarchy to solve discrimination problems (Romo de

Lafuente, 2012). Thus, the computational principles that appear best suited for stimulus

detection are unlikely to be those best suited for stimulus discrimination. It is currently

unclear how brain circuits support these various aspects of processing a sensory stimulus,
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and how the same brain regions differ in this regard.

Arguably, understanding the mechanistic bases of how the brain signals the presence

and the identity of a stimulus has been challenging partly due to the widespread use of

univariate techniques and the heavy focus on characterizing the responses of single neu-

rons. However, it is increasingly common to record multiple neurons concurrently across

areas, and using multivariate frameworks, uncover neural codes (i.e., response patterns)

that are present at the population level (Jonas Kording, 2017). In addition to understand-

ing the basic characteristics of neural activity of specific neurons and within specific areas,

multivariate analyses are able to further probe the manner by which distinct modules com-

municate with one another, and thus how information is propagated and transformed within

the brain (Kumar et al., 2010l Stringer et al., 2019). With large-scale simultaneous multi-

area recordings becoming commonplace (Jun et al., 2017; Steinmetz et al., 2018), these

analyses are becoming increasingly important tools (Buzsaki, 2004; Stevenson Kording,

2011).

In the current study, we sought to track information flow relating to the presence and

modal identity of a stimulus by examining global neural patterns using multivariate pattern

analysis. We simultaneously recorded neuronal activity from two intermediate stages along

the hierarchy from sensory input to motor output – primary somatosensory (S1) and ventral

pre-motor (PMv) cortex. These areas are two key nodes in a well-established circuit for

tactile detection and discrimination (Romo et al., 2004; de Lafuente Romo, 2005, 2006). In

addition to its role in somatosensory function, the PMv cortex is known to be important in

auditory discrimination (Lemus et al., 2009) and also possesses multisensory audio-tactile

neurons (Graziano et al., 1997). Hence, recording simultaneously from these two areas

provides the opportunity to not only examine how information flows between S1 and PMv

to support tactile stimulus detection, but also to examine information encoding and flow in

the context of determining stimulus modal identity (i.e., auditory, tactile, audio-tactile).

To address this question, tactile, auditory, and audio-tactile stimulation was passively
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delivered to rhesus monkeys, and neural signals related to the presence and/or modal iden-

tity of the stimulus were decoded using multivariate methods (Edelman et al., 1998; Haxby

et al., 2001; Kriegeskorte Kievit, 2013; Goddard et al., 2017). In addition to training

and testing within neural areas and at similar time-points, we dissociate these time-periods

(time-generalization technique; King Dehaene, 2014), as well as train and test neural de-

coders across brain regions. The novel joint application of the time-generalization tech-

nique and cross-area decoding allows the tracking of information transfer between S1

and PMv. This combination highlights strikingly different spatiotemporal dynamics in the

transfer of information related to the presence vs. modal identity of the stimulus.

1.4 Methods

1.4.1 Animal Model

Two adult male monkeys (Macaca mulatta, 10 –12 kg; Monkey E and Monkey H)

were used. Animals were handled according to the institutional standards of the National

Institutes of Health (NIH) and protocols were approved by the institutional animal care and

use committee at Massachusetts General Hospital.

1.4.2 Surgical Procedures

A titanium head post and a vascular access port in the internal jugular vein (Model CP6;

Access Technologies) were surgically implanted on each of the two animals. Once the ani-

mals learned the behavioral task (see below), a craniotomy was performed and extracellular

microelectrode arrays (Floating Microelectrode Arrays; MicroProbes) were implanted into

S1 and PMv by following landmarks on the cortical surface and stereotaxic coordinates (Fig

1A). Each array (1.95x2.50 mm) contained 16 platinum–iridium recording microelectrodes

(0.5 M, 1.5– 4.5 mm staggered length) separated by 400 µm. Monkey E had two arrays in

S1 and another two in PMv (total of 32 electrodes in each area, all in the left hemisphere).

Implantation for Monkey H was identical to that of Monkey E, with the exception that

all electrodes were implanted in the right hemisphere. The recording experiments were
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performed after 2 weeks of recovery following the array surgery. All experiments were

conducted in a radio frequency-shielded recording enclosure.

1.4.3 Materials and Apparatus

Three different types of sensory stimulation were given: audio-alone, tactile-alone, and

a combined audio-tactile multisensory conditions. The tactile stimuli were air puffs of

250ms duration delivered at 12 psi to the lower part of the face contralateral to the recording

hemisphere. This tactile stimulus was delivered via a computer-controlled regulator with

a solenoid valve (AirStim; San Diego Instruments). The eye area was avoided from the

puff stimulation. Auditory stimuli were pure tones (4000 Hz at 80 dB SPL) lasting 250ms.

These tones were generated by a computer and delivered using two speakers 40 cm from

the animal. White noise (50 dB SPL) was applied throughout the trial to mask the air puff

and mechanical noises. Audio-tactile stimulation was the synchronous administration of

the auditory and tactile stimuli described above. All of the stimulus sets were presented

randomly to the animal throughout the recording session.

1.4.4 Experimental Procedure

After a start tone (1000 Hz, 100 ms), the animals were required to initiate each trial

by holding the button located in front of the primate chair using the hand ipsilateral to

the recording hemisphere. Animals were required to hold the button until the end of a

trial, which was indicated by a liquid reward 3 seconds after stimuli onset (Fig 1B). The

monkeys were trained to perform a correct response in >90% of the trials consistently for

longer than 1.5 h. One of the three sensory stimulus sets (audio, tactile, or audio-tactile),

or a catch trial with no sensory stimulation, was delivered to the animal during the trial at

a random delay. Each condition was equally likely to be presented.
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1.4.5 Single-Unit Activity, Recording and Preprocessing

Neural activity was recorded continuously and simultaneously from S1 and PMv. Ana-

log data was amplified, band-pass filtered between 0.5 and 8 kHz, and sampled at 40 kHz

(OmniPlex; Plexon). Spiking activity was obtained by high-pass filtering at 300kHz and

applying a minimum threshold of 3 standard deviations in order to exclude background

noise from the raw voltage traces on each channel. Subsequently, action potentials were

sorted using waveform principal component analysis (Offline Sorter; Plexon) and binned

into 1 ms bins, effectively rendering the sampling rate of 1 kHz. Spike time-stamps were

convolved with a 100ms long box-car window and moved in 1 ms steps (Fig 1C). Time-

courses were then baseline-corrected by subtracting their pre-stimulus activity (-200 ms to

0 ms post-stimulus onset). This dataset has been previously reported in Ishizawa et al.,

2016, and Noel et al., 2019.

1.4.6 Multivariate Pattern Analysis

Our aim here was to track message passing and information transformation within the

cortex and hence focus on multivariate decoding techniques. Following data preprocessing,

we used CoSMoMVPA (Oosterhof, et al., 2016) to decode stimulus presence vs. absence,

as well as the sensory modality of the stimuli presented. Linear discriminant analysis

(LDA; Duda et al., 2001) classifiers were trained and tested in 1ms increments using 4-

fold cross validation. In this procedure, trials are randomly assigned to one of four subsets.

Three of the four subsets (75% of the data) are pooled together to train the classifier and

then decoding accuracy is tested on the remaining subset (25% of the data). This procedure

is repeated a total of four times, such that each of the subsets is tested once. Decoding

results are reported in percent correct of classifications at each time point in the time series

ranging from -100ms to 1000ms relative to stimulus onset. This analysis was conducted

independently for each recording session (n=18), distinction of interest (stimulus presence

and stimulus modality), as well as within and across brain areas (S1 and PMv). Mean and
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standard error were then calculated across recording sessions at each time point (Fig 1D).

Regarding statistical analyses, each time point was tested for the null and alternative

hypotheses using Bayes’ factors. The null hypothesis indicates that there is no information

regarding the presence or absence of stimuli for stimulus detection and no information re-

garding the type of modality for modality discrimination. Thus, the null hypothesis would

be the decoder guessing at chance, which would be 50.0% decoding accuracy for stimulus

presence, and 33.3% decoding accuracy for modality discrimination. We then calculated

the probability of the alternative hypothesis in relation to the null hypothesis. A Bayes’

factor greater than 3 indicates substantial evidence for the alternative hypothesis, anything

between 3 and 1/3 indicates insufficient evidence, and values less than 1/3 indicate evi-

dence for the null hypothesis (Jeffreys, 1961; Wetzels et al., 2010). Substantial evidence

for the alternative hypothesis indicates that the brain state contains meaningful information

that the classifier can utilize to identify the correct trial condition for stimulus presence

(stimulus present or absent) or stimulus identity (audio, tactile, or audio-tactile). Further-

more, Bayes’ factors provide an added advantage over Frequentist inference: in addition

to rejecting the null hypothesis, this framework can also provide support for either the null

hypothesis or to determine that the data is insensitive. For both stimulus presence and

modality discrimination, trials were balanced across conditions, as imbalance among class

types can have the unwanted effect of biasing the classifier toward the class with more trials

(Grootswagers et al, 2017).

1.4.7 Time Generalization Within Areas and Across Areas

To probe the dynamics of the available information used by the classifier to decode

presence or absence of stimuli regardless of modality, as well as the modality of the stimuli

presented, we used a time generalization decoding technique (Carlson et al., 2011; King

Dehaene, 2014; Fig 1D). In this analysis, the classifier was trained on the same decoding

distinctions as before (presence and identity of sensory stimuli). However, to investigate
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how well neural data from one timepoint generalizes to all others, the classifier is trained

on a particular timepoint within the time series (i.e., -100 to 1000 ms post-stimuli onset)

and then tested with data from every timepoint in the time series. This procedure was re-

peated for every timepoint and concatenated to create 1100 x 1100 matrix containing every

possible combination of training and testing timepoints. The diagonal along the matrix

represents times in which training and testing were performed within the same timepoint.

Lastly, we performed a similar time generalization analysis across areas in order to inves-

tigate how well different timepoints in one area can decode information at different time-

points in the other area – putatively indicating the flow of information from one area at one

time-point, to another area at a different time-point. We trained across all timepoints in S1

and tested on PMv and then performed training on PMv and tested on S1. Since PMv and

S1 had an unequal number of single units captured (S1 = 9.6 +/- 4.5, PMv = 5.7 +/- 2.3)

we randomly subsampled from the area with more single units isolated. To eliminate po-

tential sampling bias, we performed the cross-area time generalization analyses ten times,

with different randomly subsample single units. The mean decoding results across the ten

iterations was then computed for each recording session.
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Figure 1.1: Experiment Schematic. (A) Neural recordings were effectuated via 16-
electrodes platinum–iridium arrays implanted in S1 and PMv. (B) Animals were trained to
initiate trials via button press, which following a delay would evoke one of three sensory
stimulus sets (audio, tactile, or audio-tactile), or a catch trial with no sensory stimulation
delivered. (C) Raster plots of an example session in S1 and the average S1 response to
tactile stimulation after convolving spike trains with a box-car 100ms in length and mov-
ing in 1ms steps. (D) Multivariate classifiers (Linear Discriminant Analysis, LDA) were
trained on each time-point to differentiate either between the absence and presence of sen-
sory stimuli (regardless of the nature of the stimuli; detection), or to discriminate between
sensory modalities (audio, tactile, or audio-tactile; discrimination).
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1.5 Results

1.5.1 Multivariate Decoding Allows Tracking Stimuli Presence and Identity Over

Long Periods

Both S1 and PMv showed evoked responses during the presentation of sensory stimuli.

We used Bayes factors at each timepoint to assess whether the evoked responses diverged

significantly from baseline activity. For the univariate analysis, when averaging responses

over modalities, S1 showed a strong evoked response, showing substantial evidence for the

alternative hypothesis (defined as Bayes factor [BF] >3) at two-time periods, from 19-184

ms and from 309-388 ms post-stimulus onset. PMv showed a later response, from 141-

422 ms post-stimulus onset. When looking at evoked responses to specific modalities, S1

responds to tactile stimulation for the period between 36-184 ms post stimulus onset, to

auditory stimuli from 21-102 ms post-stimulus onset, and to audiotactile stimulation from

19-197 ms and 328-414 ms post-stimulus onset. Responses of PMv to sensory stimuli are

not as robust, but there is clear evidence for evoked responses to tactile stimuli from 131-

157 ms and from 212m-448 ms post-stimulus onset, to auditory stimuli from 182-405 ms

post-stimulus onset, and to combined audiotactile stimuli from 166-381 ms post-stimulus

onset.

Using time-resolved LDA, we were able to decode the presence (vs. absence) of stimuli

in S1 and PMv (Fig 2C). Onset decoding latencies, defined as the first timepoint of at least

20 ms of sustained significant decoding above chance (see Carlson et al., 2013) were found

for S1 beginning 36 ms post-stimulus onset (Fig 2C, purple) and for PMv beginning at 58ms

post-stimulus onset (Fig 2C, green). Maximum decoding performance was reached at 183

ms post-stimulus onset for S1 and at 222 ms post-stimulus onset for PMv. For both S1 and

PMv, decoding remains significantly above chance for periods extending beyond 1000 ms

post stimulus onset. This observation highlights the utility of indexing not only the activity

of single neurons via traditional univariate approaches, but also in examining the responses

of neuronal populations via multivariate decoding. For example, the average firing rate
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produces a strong transient response to tactile stimulation followed by a sustained response

in S1, which return to baseline within approximately 500ms. In contrast, it was possible to

decode the presence of a stimulus in S1 for a period at least twice as long ( 1000ms) using

multivariate approaches.

We next used Bayes’ factors to look at the time-resolved differences in the decoding of

stimulus presence between S1 and PMv. Results demonstrate significant evidence support-

ing the alternative hypothesis (BF>3), suggesting a differential time-course during which

stimulus presence information is available in S1 and PMv (Fig 2C, black curve). Beginning

at 40 ms and extending up until 186 ms, decoding was better in S1 than PMv, consistent

with the earlier decoding onset found in the primary sensory area. Following 186 ms, ev-

idence is stronger for the null hypothesis (BF<1/3) up until 651 ms post-stimulus onset.

Following 651 ms, evidence for the alternative hypothesis is once again supported, but this

time in PMv. These findings suggest that information regarding stimulus presence may be

transferred between S1 (first) and PMv (later).

We then applied the same approach to determining when the modality (i.e., A, T, AT)

of the stimulus could be decoded from the neural signals in S1 and PMv. Results suggested

above chance decoding (i.e., >33.3%) starting 37 ms post-stimulus onset for S1 (Fig 2D,

purple), and starting 70 ms post-stimulus onset for PMv (Fig. 2D, green). A maximum

modality decoding performance of 50.0% was reached at 125 ms post-stimulus onset for

S1 and a maximum modality decoding performance of 41.0% was reached at 213 ms post-

stimulus onset for PMv. As shown by the difference in decoding performance within S1

and PMv (Fig 2D, black curve), decoding accuracy was significantly higher for S1 rela-

tive to PMv for two sustained periods - between 40-74ms post-stimulus onset, as well as

between 348-470ms post-stimulus onset. Collectively, these results suggest that the com-

putations underlying the detection of a stimulus and the identification of stimulus modality

evolve over differing temporal epochs in S1 and PMv. More specifically, while information

regarding detection appears later in PMv as compared to S1, and thus leading to a single
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time-period where stimulus presence is more readily decoded in S1 than PMv, information

regarding stimulus modality is more readily decoded in S1 over PMv over both an early

and late temporal epoch.
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Figure 1.2: Univariate and Multivariate Responses to Sensory Stimulation. (A) Both S1
and PMv show evoked responses during the presentation of sensory stimuli. (B) S1 re-
sponds to tactile stimulation, while also responding to audio-tactile stimulation, but less to
auditory stimuli alone. PMv does not show as clear evoked responses to sensory stimuli
as primary somatosensory area does but shows less disparity in evoked responses across
stimuli types. (C) LDA classified above chance either the presence or absence of sensory
stimulation starting 36ms and 58ms for S1 and PMv respectively post-stimuli onset, and
lasting 1s, well beyond the time-period where univariate responses are apparent. As illus-
trated by the difference in correct decoding between S1 and PMv, information regarding
stimulus detection was present first in S1, then was present in both S1 and PMv, and finally
was stronger in PMv than S1. (D) Discrimination of sensory modalities was also correctly
decoded by LDA, with modal identity being clearer in S1 than PMv, particularly at early
latency post-stimulus onset, and between approximately 200 and 400ms post-stimulus on-
set. Asterisks indicate significant decoding above chance, using Bayes’ factors (Bayes’
Threshold >3).
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1.5.2 Information Regarding the Presence and Modal identity of Stimuli Follow Dif-

ferent Dynamics in S1 and PMv

To further explore how information dynamics regarding the encoding of the presence

or modal identity of a stimulus varies across S1 and PMv, we used a time generalization

approach (Carlson et al., 2011; King Dehaene, 2014) where a classifier is trained at one

timepoint and then tested across the remaining timepoints. Specifically, it probes how

information at a given timepoint generalizes to information throughout the time series to

understand whether the information is increasing, decreasing, or re-emerging at later times.

In the present study we leveraged the fact that decoding performance is better when training

on a low signal-to-noise ratio (SNR) and testing on a high SNR (Fig 3A, van den Hurk Op

de Beeck, 2019) to quantify the degree to which information at a particular time is changing

(Fig 3B). Given that training timepoints are plotted along the y-dimension and testing times

are plotted along the x-dimension in a time generalization matrix, if information at a par-

ticular timepoint increases during the time-course, this will appear as an off-diagonal shift

in the horizontal (rightward) direction. Conversely if information at a timepoint decreases

during the time course, this will appear as an off-diagonal shift in the vertical (upward)

direction. To calculate the overall direction of information change (horizontal or vertical

off-diagonal) we subtracted the vertical off-diagonal from the horizontal off-diagonal.

Regarding the decoding of stimulus presence, we calculated all of the times where there

was very strong evidence (BF>30) for the alternative hypothesis to capture the most promi-

nent information states (Fig 3C). The plots showed that decoding onset and off-diagonal

spread across training-testing time periods varied between S1 and PMv for information re-

garding stimulus presence (see Fig 3C, first and third columns). This difference becomes

apparent in the horizontal-vertical off diagonal difference histograms (see Fig 3C, second

and fourth columns). In S1, the information states strengthen from 39-207ms and then

again from 239-555 ms, after which information weakens until 638 ms and then ends with

a final wave of strengthening. On the other hand, PMv shows the opposite pattern, with
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information initially weakening beginning at 93 ms, then briefly strengthening at 261 ms,

weakening again at 351 ms, and showing a final wave of strengthening beginning at 497

ms. Overall, these results highlight a general pattern in which these are opposing temporal

dynamics to information strengthening and weakening for S1 and PMv (see Supplemen-

tal Fig 1), potentially implying that information is flowing back and forth between these

two areas. Furthermore, whereas information regarding stimulus presence demonstrated

a greater strengthening pattern in the initial response epoch for S1, PMv demonstrated a

greater strengthening pattern in the late time period (after 500ms).

In contrast to the patterns seen for information regarding stimulus presence, the dynam-

ics for information about modal identity in S1 and PMv show consistent strengthening and

weakening, respectively. In S1, information regarding modal identity begins to increase at

65 ms and continues to increases until 387 ms. In contrast, in PMv information regarding

modal identity shows a weakening pattern beginning at 90 ms and continues to weaken

until 299 ms. In sum, the difference in dynamics regarding information pertaining to stim-

ulus presence and modal identity strongly suggest differences in how this information is

processed and shared between S1 and PMv. An additional finding that is illustrated by the

on-diagonal analyses is that overall information regarding modal identity is short-lived as

compared to information regarding stimulus presence.
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Figure 1.3: Time generalization results. (A) Decoding accuracy is better when training on
low signal-to-noise (SNR) and testing on higher SNR, than when training on high SNR
and testing on low SNR. (B) In conjunction with the time-generalization technique, this
observation can be leveraged to estimate whether a particular information state is strength-
ening (i.e., becoming more discriminant with time) or weakening within a cortical area.
(C) Time generalization plots for decoding stimulus presence in S1 (left) and PMv (right).
Second and fourth columns show the difference in significant time-points over which de-
coding generalizes along the training and testing axis – positive counts indicate informa-
tion strengthening, while negative counts indicate information weakening. (D) Follows the
same convention as (C), for modal identity as opposed to stimulus presence.
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1.5.3 Cross-Region Decoding Reveals Feedforward Presence Information and Feed-

back Identity Information

To more directly track shared information between S1 and PMv, we trained classifiers

on neural data collected from one region and tested on another, while also performing time-

generalization (Carlson et al., 2011; King Dehaene, 2014). For example, and as illustrated

in Fig 4A, we can use this analysis to train on S1 and test on PMv to examine for potential

significant horizontal off-diagonals (i.e., in the future along the testing dimension). Such a

result would suggest that S1 shares common information that is present at a later time in

PMv (see Fig 4A for other examples).

In decoding stimulus presence we found that training and testing across S1 and PMv

along the same time points did not yield any periods of time with sustained significant

decoding accuracy using a criterion of substantial evidence (BF>3) (Fig 4B on-diagonal).

Such a result suggests that S1 and PMv do not contain common information regarding the

presence of a stimulus during the same time period, although both do contain information

regarding stimulus presence (Fig 2C). The fact that the within-area decoding is successful,

but across area decoding is not, suggests that the codes for stimulus presence within S1 and

PMv are likely of different format.

To better explore whether the lack of simultaneous shared information was due to a

transformation of information from one area to another, we inspected the off-diagonals in

the time generalization matrices. As shown in Fig 4B off-diagonal, results indicate that

beginning at approximately 38ms and extending to 100ms post-stimulus onset, informa-

tion regarding stimulus presence in S1 significantly generalizes to PMv for the time period

spanning between 100-442 ms post-stimulus onset This result shows that information per-

taining to stimulus presence in PMv at this later interval is similar to that seen earlier (38ms

to 100ms) in S1. Training on PMv and attempting to decode within S1 across different time

periods also yielded significant vertical off-diagonals (i.e., along the training dimension),

beginning at 15 ms post-stimulus onset and extending forward to 97-287 ms. (Fig 4B).
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Thus, whether training in S1 or PMv, information regarding stimulus presence generalized

in the direction from S1 to PMv. The fact that training in PMv and decoding in S1 yielded

a more restricted time-period of generalization than within area decoding in S1 and PMv

(Fig 2C) could imply that while information regarding stimulus presence in PMv was ini-

tially of the same format as that in S1, it is subsequently transformed in such a way that the

new format could not be generalized back to S1.

Regarding the discrimination of modal identity, just as for the decoding of stimulus

presence, we found that training and testing along the same time points did not yield any

time periods with significant and sustained decoding accuracy (Fig 4C). Extending sensory

modality classifiers trained in S1 to PMv along the time generalization matrices did not

demonstrate any time periods of successful classification (Fig 4C). On the other hand, when

we trained in PMv and tested on S1, at 10 ms post-stimulus onset there was a higher than

chance decoding accuracy in S1 along an array of time-points in the future. Thus, very

early patterns of activity supporting the classification of modal identity in PMv are later

found in S1. Thus, unlike stimulus presence, it appears that modal identity information

generalizes in the direction of PMv to S1.

236



Figure 1.4: Cross-area time series decoding and time generalization. (A) Schematic show-
ing two possible direction in which information can generalize. For training on S1 and
testing on PMv. If information generalizes from S1 to PMv, a horizontal off-diagonal will
be seen when training. On the other hand, an off-diagonal is vertical (i.e., later training pe-
riods can decode earlier ones), information is generalized in the direction of PMv to S1. (B)
Cross-area off-diagonal examination for stimuli presence decoding in S1 and PMv. Results
show a clear horizontal off diagonal when training in S1 and decoding in PMv. Training
on PMv and decoding in S1 demonstrates a vertical off-diagonal (C) Cross area decoding
of the identity of sensory stimuli. Training LDA in S1 does not afford the possibility of de-
coding sensory modality in PMv. Contrarily, training on PMv shows off-diagonal decoding
along the testing dimension, suggesting information generalizes from PMv to S1.
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1.6 Discussion

Simultaneous recordings of spiking activity across distinct nodes of a canonical sen-

sorimotor circuit allowed us to study how information is shared and transformed between

these areas. We recorded from arrays of electrodes placed in S1 and PMv – two areas

known to be instrumental in transforming sensory information from different modalities

(tactile, as well as auditory) into motor commands for action (Romo et al., 2004; de La-

fuente Romo, 2005, 2006; Graziano et al., 1997; Noel et al., 2019). Specifically, we were

interested in how information regarding stimulus presence and modal identity flowed and

was altered between S1 and PMv and used different multivariate analyses to examine this

question. The principal findings of the study are: 1) for decoding the presence of a stim-

ulus, decoder performance fluctuated in a reciprocal manner between S1 and PMv for the

interval up to 1 second after stimulus presentation, while decoding of modal identity was

consistently higher in S1 than in PMv, 2) using time generalization, information regard-

ing stimulus presence showed oscillatory strengthening and weakening dynamics in both

S1 and PMv, while information regarding modal identity exhibited steady strengthening in

S1 and weakening in PMv, 3) using cross-area time generalization, information regarding

stimulus presence generalized between S1 and PMv, offset in time in the direction of S1

to PMv, while modal identity information only generalized weakly from PMv to S1. To-

gether, these results highlight the different dynamics for the flow of information regarding

stimulus presence and modal identity in two nodes of an important cortical sensorimotor

circuit.

The findings fit within a larger and longstanding debate in neuroscience regarding

whether sensory modality information is preserved as it ascends the processing hierarchy,

or if that information ultimately transitions into an amodal format (Machery, 2016). Ev-

idence for modality-specific information being preserved at high levels of representation

comes from mental imagery, priming, and dreaming studies which show recruitment of

sensory specific areas in the brain that are similar to their respective perceptual counter-
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parts (Caramazza Mahon, 2003; Horikawa, Tamaki, Miyawaki, Kamitani, 2013; Ishai,

Haxby, Ungerleider, 2002). On the other hand, evidence for amodal representations in-

clude task-specific recruitment of common brain areas for representations such as magni-

tude and numerosity regardless of sensory modality (Piazza, Mechelli, Price, Butterworth,

2006). Additionally, blind patients who hear sounds corresponding to objects viewed by

sighted individuals shows similar brain activations (van den Hurk, Van Baelen, Op de

Beeck, 2017). Our cross-area time generalization results provide evidence, that at least in

the context of the passive delivery of stimuli studied here, as this perceptual information is

hierarchically processed in the brain and transferred from sensory regions (S1) to regions

closer to the motor circuitry (PMv), the representations become more amodal. Specifically,

we found that information regarding stimulus presence in S1 generalized to PMv, but that

information regarding modal identity only weakly generalized in the opposite direction

from PMv to S1. However, it is important to note that our recordings were limited to S1

and PMv, and thus we cannot claim that modal identity is not preserved in other parts of

the sensorimotor (or beyond sensorimotor) hierarchy. Ostensibly, the modal identity infor-

mation transfer from PMv to S1 may represent the contribution of other nodes to modal

identity that PMv is propagating backwards to S1.

In addition to what sensory information is transferred between brain areas, an equally

important question is how sensory information is transformed as it ascends the sensory

hierarchy. One important manner in which information can be transformed is through re-

current feedback (O’Connell, Dockree, Kelly, 2012). Notably, visual studies have found

feedforward responses predominate during the first 200 ms of visual processing (Dehaene

Changeux, 2011; Thorpe, Fize, Marlot, 1996) and thereafter recurrent process derived

from temporal, parietal, and prefrontal cortices shape and ultimately transform the nature of

these visual signals (Gold Shadlen, 2007; Gwilliams King, 2019; Kar, Kubilius, Schmidt,

Issa, DiCarlo, 2019; Lamme Roelfsema, 2000). In our study, we found evidence of a

recurrent process for encoding information regarding the presence of a stimulus in S1 and
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PMv. Notably, when we compared results from the univariate and multivariate analyses,

we found the decoding results to reveal that information pertaining to the presence of a

stimulus was sustained for up to 1000 ms in both S1 and PMv, well beyond what averaged

univariate responses revealed. This difference potentially reflects a change in information

format from a standard rate code visible to univariate analyses to a code more reliant on

sparse spatio-temporal patterns across the population that is only revealed through the ap-

plication of multivariate methods. Further, information regarding stimulus presence was

found to oscillate between strengthening and weakening in S1 and PMv up until 500 ms,

after which it shows a steady strengthening (Fig. 3C). This oscillation coincides with an

initial information transfer in the first 500 ms between S1 and PMv noted in the cross-area

time-generalization results (Fig 4B). Thus, our results suggest that initial information re-

garding stimulus presence for auditory, tactile, and audiotactile stimuli is first transferred

between S1 and PMv and finally transformed for subsequent decision making.

One caveat of the current results lies in the passive nature of the task, in which the mon-

key was not required to detect or discriminate between stimuli, but rather was only required

to acquire the button after a start tone and release once it received a reward (thus maintain-

ing vigilance). In many respects, this makes the results both surprising and compelling, in

that there was no behavioral need to make use of the presented sensory information. Prior

work in S1 has shown that responses to passive stimuli are depressed and have much more

variability than when the animal is participating in an active process (Crochet Petersen,

2006; Schroeder, Wilson, Radman, Scharfman, Lakatos, 2010), and work in the visual

system has shown that active tasks have longer sustained decoding than passive tasks when

viewing identical stimuli (Ritchie, Tovar, Carlson, 2015). Collectively, this points to the

current work representing an important foundation for future studies, as it illustrates the

ability of decoding approaches to reveal differences in the dynamics of information flow in

a classic sensorimotor cortical circuit – even when the stimuli are not used in the execution

of an action. Future work should require animals to detect and/or discriminate between
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sensory stimuli, in order to examine whether task demands potentially lead to longer peri-

ods of information transfer, and if information regarding modal identity is transferred in a

discrimination task dependent upon stimulus identity. Moreover, an active task would al-

low the establishment of direct links between decoding performance and behavior through

the use of distance from the decoding boundary in order to predict metrics such as accuracy

and reaction time (Carlson, Ritchie, Kriegeskorte, Durvasula, Ma, 2014; Ritchie Carlson,

2016; Ritchie et al., 2015).

In conclusion, we have leveraged the ability to generalize neural activity across both

space and time using multivariate techniques in order to garner insights into how informa-

tion flows and is transformed from low level sensory areas to premotor areas in the brain,

where it can be utilized for action. Specifically, we are able to provide empirical support

that sensory information from S1 to PMv transitions to an amodal representation in the

passive task that was employed. Importantly, our work provides a framework for which fu-

ture work can explore how sensory information is transferred and transformed beyond just

the two brain areas explored in this study and will allow examination of how task demands

affect information flow.
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