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1. General introduction 
 

1.1 Computational models of visual object recognition  
 
In everyday life, people recognize visual objects quickly and accurately, often without even 
realizing that they are doing it. It is remarkable that, despite the continuous flux of visual 
information, our visual system is able to maintain reliable recognition virtually all of the time. For 
decades, vision scientists have sought to discover the mechanisms underlying object 
recognition using a wide range of methodologies including psychophysics, neurophysiology, and 
neuroimaging. Among them, computational models offer a unique advantage in that a theory 
can be tested in explicit terms, providing a detailed algorithmic level of understanding and a 
causal account of how an object might be processed in the brain. Particularly because 
behavioral and neural data are often hard to analyze by themselves due to the complex nature 
of the brain, the modeling approach can be complementary by providing a conceivable 
explanation for them.  
 
That said, developing a computational model of visual object recognition is a hard problem, 
because a model needs to satisfy both sensitivity and invariance in the representations of 
objects, which are often trapped in a trade-off relationship (Palmeri and Gauthier, 2004; Peissig 
and Tarr, 2007; Tsao and Livingstone, 2008; DiCarlo et al., 2012; Tong, 2018). To be specific, 
the recognition model needs to be sensitive enough to distinguish an object from another when 
they are visually similar (e.g., face recognition). At the same time, the recognition model needs 
to be robust enough to reliably identify a single object across variations in viewing angles, 
positions, or lighting conditions.  
 
Early models of object recognition focused heavily on tackling the viewpoint invariance problem, 
namely, an object needs to be recognized as identical regardless of how it is viewed from 
multiple angles. Seminal theoretical work by Marr and Nishihara (1978) suggested a structural 
description model in which an object can be decomposed into volumetric primitive components, 
which are recognized in a hierarchically organized manner within an object-centered coordinate 
system. Because the primitive components are defined in 3D as volumetric representations, 
they are inherently viewpoint invariant. In addition, the model assumed a transformation from 
viewer-centered coordinates to object-centered ones, allowing an object to be recognized 
regardless of its viewpoint. Soon thereafter, Biederman (1985) proposed a recognition-by-
components theory based upon similar ideas but his theory assumed a finite set of primitive 
component parts (i.e., so-called “geons”) inspired by a limited number of lexical elements in 
speech recognition such as phonetic alphabets. Biederman also provided empirical data to 
support the theory. These early computational models offered a conceptual basis for the 
understanding of object recognition. However, they were insufficient and often inadequate to 
explain real-world recognition behavior. For instance, they were mostly focused on the 
representational aspect of objects, while they did not provide much consideration for how 
objects are perceptually categorized (Palmeri and Gauthier, 2004). 
 
More importantly, the notion that an object is recognized in a viewpoint invariant manner has 
been challenged by empirical findings. For example, Jolicoeur (1985) found that observers were 
slower to recognize a line drawing of an object if it was rotated away from a canonical upright 
orientation. However, this response time cost for misoriented objects diminished considerably 
after observers had the opportunity to view the object at other orientations for dozens of trials. 
Such findings contradict the idea that object recognition relies on viewpoint-independent 
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representations, otherwise initial response times should have been equally fast across 
variations in orientation. The fact that practice mitigated the orientation effect further suggests 
that viewpoint-independent object recognition performance arises from perceptual learning of 
specific views of that object. In a later study, Tarr et al. (1998) tested whether or not line 
drawings of 10 geons were recognized equally well across 3 rotations (0°, 45°, 90°) in 3d space 
and similarly observed that the geon rotated further from the target needed more response time, 
indicating that object recognition performance varied in a viewpoint-dependent manner. In 
another study, Tarr and Pinker (1989) trained observers to name letter-like stimuli that were 
oriented in particular directions. Observers initially showed a linear increase in response times 
as a function of angular disparity from canonical orientation, but this response time function 
gradually flattened over time with practice. More interestingly, following extensive training, when 
the stimuli were presented with novel orientations, the response time increased proportionally 
with the difference from the nearest trained orientation. The authors conjectured that the initial 
orientation-specific representations were stored over training, obviating the need for mental 
rotation, and that those stored representations were used to identify the novel orientations. 
These results offer a potential solution to the problem faced by view-based models, that is, the 
notion that they might require storing an infinite number of object representations across 
variations in appearance. Instead, by storing a small number of canonical views of an object, 
novel views can be simply interpolated with respect to the previously stored representations 
(Bülthoff and Edelman, 1992). Accordingly, Poggio and Edelman (1990) proposed a viewpoint-
dependent model in which a novel view of an object was recognized by reference to its 
previously trained viewpoints. To do so, they created a model by which positional coordinates 
as inputs were mapped to a latent space using radial basis functions whose centers and 
weights were optimized from given training samples. Those view-tuned radial basis functions 
were then used to predict a novel view. This model was able to capture human performance 
where an object was presented with a range of orientations away from the trained one.  
 

 
 
Figure 1. a Examples of stimuli used in Gross et al. (1972). The stimuli from left to right triggered stronger 
responses in IT neurons. b The ventral stream of the visual pathway, borrowed from Tong (2018). c 
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Hierarchical organization of the visual system on monkeys (Felleman and Van Essen, 1991). IT, 
inferotemporal.  

 
Along with the behavioral and psychophysical methods that have provided insights into how 
visual objects may be perceived and recognized, the advent of non-invasive neuroimaging 
techniques has allowed researchers to examine the representations of objects at the neuronal 
population level. In particular, early neuroimaging studies have revealed evidence of modular 
representations of objects, showing how different categories of objects are mapped onto the 
brain. One of the most often studied and cited category-selective visual areas is the fusiform 
face area (FFA; Kanwisher et al., 1997), which strongly responds to faces over other objects. 
The response of the FFA has been shown to be consistent across human, animal, and even 
cartoon faces, and to be dependent on multiple viewpoints (Tong et al., 2000; Kietzmann et al., 
2012). Subsequent neurophysiological research with macaque monkeys has revealed that 97% 
of the neurons in a face-selective area in the middle temporal lobe, separately defined by fMRI, 
exhibited strong face-selective responses (Tsao et al., 2006). Moreover, the pooled information 
conveyed by these neurons allowed for accurate discrimination of different human faces, 
implying that face-selective brain regions can support the identification of individual faces, going 
beyond simple face detection. This study provided a direct link between neurophysiology and 
neuroimaging to support the selective processing of visual objects. In addition to the FFA, other 
category-selective areas have been proposed, including the parahippocampal place area (PPA) 
which strongly responds places over other objects (Epstein & Kanwisher, 1998), the extrastriate 
body area (EBA) which responds strongly to body parts (Downing et al., 2001), and the lateral 
occipital complex (LOC) which responds more to intact objects than to scrambled ones (Grill-
Spector et al., 2001). This body of research has contributed to a better understanding of how 
objects are processed in the brain and has allowed for a more detailed examination of the 
representation of specific categories of objects.  
 
Further insights info the computational mechanisms underlying object recognition have emerged 
from neurophysiological studies. A landmark study by Gross et al. (1972) found that 
inferotemporal (IT) neurons in monkeys responded strongly to specific complex patterns such 
as hands or faces (Figure 1a). By contrast, these neurons showed poor responses to simple 
stimuli such as slits or rectangles. In conjunction with the earlier observation that V1 neurons 
had smaller receptive fields and greater sensitivity to simple visual stimuli such as oriented bars 
(Hubel and Wiesel, 1959; Hubel and Wiesel, 1962; Hubel and Wiesel, 1968), the authors 
conjectured that the IT cortex likely constituted a much later stage of hierarchical visual 
processing and may serve as a central locus for visual object recognition (Gross et al., 1972). 
Subsequent studies revealed that a subpopulation of neurons in the superior temporal sulcus 
selectively responded to faces over simple gratings or other objects (Perrett et al., 1982; 
Desimone et al., 1984), providing some support for the notion of modular organization of object 
representations. Furthermore, many of these neurons showed invariant responses to changes 
in the size or position of objects. However, the vast majority of these neurons appeared to be 
tuned in a viewpoint-selective manner, as they would respond maximally to a specific 3D view 
and their responses diminished as the object was rotated away in depth from that view (Perrett 
et al., 1987; Logothetis et al., 1995). These findings aligned with the notion of view-based 
models and with contemporary behavioral observations (Tarr and Pinker, 1989; Tarr et al., 
1998).  
 
Another important question concerns how complex objects are encoded in the IT cortex. One 
possibility is that an individual neuron represents a specific entity, such as a grandmother cell, a 
hypothetical neuron presumed to store the visual representation of one’s grandmother. An 
alternative view is that the representations of complex objects are encoded by populations of 
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multiple neurons. A number of studies have supported the latter possibility (Pouget et al., 2000; 
Tsunoda et al., 2001; Hung et al., 2005). For instance, Hung et al. (2005) randomly sampled 
multiple IT neural sites and attempted to decode the object category and identity information 
using a regularization classifier. The authors found that categorization and identification 
performance increased as a function of the number of neural sites used for decoding, 
suggesting that the object information is distributed across multiple sites rather than specifically 
localized to single neurons. The authors further demonstrated that the same population of IT 
neurons was used for both categorization and identification and that decoding performance 
remained consistent across changes in the scale and position of the objects. This notion of 
population coding has also been supported by the studies of shape processing (Pasupathy and 
Connor, 2002; Brincat and Connor, 2004). The researchers measured neural responses in 
areas V4 and IT to parametric sets of 2D silhouette shapes and showed that the shape tuning 
function of a stimulus was successfully predicted by the population representation of neurons. 
These findings provide further support for the hierarchical organization of the visual system, with 
higher cortical visual areas serving to encode more complex features and object properties 
while exhibiting greater generalization capacity across changes in position and size. At the 
same time, such research has suggested that objects are processed in a parallel and are 
represented in a somewhat distributed manner.  
 
This body of literature has offered important insights into how objects are processed in the 
brain, particularly underlining the fact that the visual system is composed of multiple areas 
connected in a hierarchical manner and that objects are processed along the ventral stream, 
which projects from the primary visual cortex (V1) to the temporal cortex (Figures 1b-c; 
Felleman and Van Essen, 1991; Desimone and Duncan, 1995). That is, the low-level features of 
objects are processed earlier in the hierarchy and those features are combined to process more 
complex representations of objects and their semantic information at later stages of visual 
processing. In later studies, this strategy has been suggested to be efficient in reducing the 
complexities of real-scene objects by disentangling or flattening object manifolds (DiCarlo and 
Cox, 2007; DiCarlo et al., 2012). An early model of invariant object processing was proposed by 
Wallis and Rolls (1997). This model consisted of a five-layer hierarchical structure, each layer 
optimized for achieving translation invariant representations, with the exception of the first layer 
which had a fixed set of parameters based on difference-of-Gaussians.  
 

1.2 Robust object recognition under degraded viewing conditions 
 
The main stream of research in object recognition has focused on how the visual system 
achieves invariance to changes in position, size, and viewpoint. However, another important 
problem in object recognition that has received comparatively less attention concerns how 
humans recognize objects under degraded viewing conditions, as can result from occlusion, 
clutter, blur, or noise. In an early study by Biederman (1985), when an object was decomposed 
into its components, the first few components were sufficient for human observers to achieve 
almost 90% of accuracy performance. Even when line drawings of objects were degraded by 
partial deletion of their contours up to 65%, human observers were still good at identifying 
objects. This suggests that the human object recognition system is fairly stable when only 
limited information is available. In addition, performance was affected by which parts of contours 
were deleted and how much time observers had to view the stimuli, suggesting that multiple 
factors may play a role in robust processing. The question of how we can achieve robust 
recognition performance with varying degrees of limited object features has not been fully 
answered until now. 
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Figure 2. a Face stimuli used in Harmon and Julesz (1973). A face image was degraded by quantization 
(left) and low-pass filtering (right). b Orientation stimuli used in Dosher and Lu (1998) in the presence of 
random Gaussian noise. c Example of a rainy image through window. "Southern California Downpour" by 
NancyFry is licensed with CC BY 2.0. https://creativecommons.org/licenses/by/2.0/. d Anatomical (black 
and white) and functional (yellow and red) MRI images acquired by the author.  

 
Studying object recognition under degraded viewing conditions is also useful because it could 
offer insights into different underlying mechanisms of visual processing, which can be revealed 
by different types of degradation. For example, Gosselin and Schyns (2001) devised a 
technique, so-called Bubbles, that uses multiple Gaussian windows placed at random locations 
on a face image to selectively reveal certain parts of the image. Given individual maps of 
Bubbles, observers’ performance on resolving face gender, expression, and identity was 
measured. Based on their correct/wrong responses to the individual maps, it allowed a way to 
reveal task-specific diagnostic features for face processing. In a similar vein, blur has long been 
used in vision science with its unique characteristic of spectral selectivity (Figure 2a; Harmon 
and Julesz, 1973; Morrone et al., 1983), where the high spatial frequency components of 
images representing fine features are effectively removed. As such, blur has been applied to 
many aspects of vision research to reveal different aspects of recognition processes such as 
holistic processing in face perception (Farah et al., 1998; Goffaux and Rossion, 2006) or 
contextual scene understanding (Torralba, 2003; Oliva and Torralba, 2007). In some studies, 
multiple frequency bands were manipulated to create visual noise and various aspects of 
recognition were examined using the noise (Solomon and Pelli, 1994; Wichmann et al., 2006). 
On the other hand, random white noise containing equal intensity at different frequencies has 
been also extensively used, for example, by Dosher and Lu for studying the effect of perceptual 
learning on orientation discrimination tasks within the context of external and internal noise 
(Figure 2b; Dosher and Lu, 1998; Dosher and Lu, 2005; Dosher et al., 2013). In sum, 
understanding how we deal with various types of image degradation can help us better 
elucidate the robust nature of our visual object recognition system.  
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Attaining a better understanding of the mechanisms underlying the robust nature of human 
object recognition is of considerable importance, especially nowadays when a variety of 
computational recognition models are widely used in many applications. These computational 
models often have to resolve recognition problems under challenging viewing conditions due to 
environmental factors such as autonomous driving on rainy days (Figure 2c) or deep-sea 
exploration by robots/submarines. In other situations, the models may need to cope with the 
low-quality image data that is inherently noisy or images that contain artifacts. For example, 
medical images such as MRI or fMRI contain many artifacts possibly due to motion, magnetic 
field inhomogeneity, and so forth, which could adversely affect diagnostic decisions (Figure 2d). 
 

1.3 Emergence of convolutional neural networks (CNNs)  
 
A major branch of hierarchical recognition models has been primarily motivated by an early 
influential study by Hubel and Wiesel (1962). In the study, two types of cells in V1 were 
proposed, so-called simple and complex cells. Although both types of neurons showed 
orientation-specific preferences for bars of light, simple cells showed distinct excitatory and 
inhibitory zones within their receptive fields, whereas complex cells did not show such a division 
and responded quite well across positions within the receptive field. These findings suggested 
that complex cells achieved position invariance to some degree and were likely higher-order 
cells receiving afferents from simple cells. Expanding upon these ideas, Fukushima (1980) 
proposed Neocognitron, a neural network model that consisted of alternating layers of “S-cells” 
and “C-cells”, resembling the simple and complex cells in V1. Given an input pattern, S-cells 
extracted local features within their receptive fields, and C-cells received signals from a group of 
S-cells that shared the same feature but had slightly different receptive field locations and 
yielded consistent responses as long as at least one of the S-cells was activated. This 
hierarchical sequence of S-cells and C-cells was repeatedly stacked to form multiple layers and 
the network was trained to produce the latent representation of input patterns in an 
unsupervised learning manner. Through the hierarchy, the early set of cells (S1 and C1) 
responded to simple features, while the later cells (S3 and C3) responded to more complex 
patterns. Thereby, this architecture enabled the model to achieve more robust pattern 
recognition performance tolerant to slight positional shifts. The basis of the network later greatly 
inspired the initial conception of convolutional neural networks (LeCun et al., 1989; LeCun et al., 
1990), as will be described below. This idea has continued to influence the later computational 
models for object recognition (Riesenhuber and Poggio, 1999; Zhu and Mumford, 2007). 
 
In parallel with advances in perception and neuroscience, continuous efforts have been made in 
artificial intelligence to develop computational algorithms to emulate human cognitive abilities. In 
the 1950s, the “perceptron” was introduced as the first connectionist model that could learn the 
weights from inputs to elicit desired outputs (Rosenblatt, 1958). The weights of the model were 
adaptively updated based on the difference between the desired and actual outputs, similar to 
the delta learning rule (Widrow and Hoff, 1960), but the actual output response was thresholded 
in an all-or-none fashion. While the perceptron was successful in simple cognitive settings, it 
was challenged by the fact that a simple perceptron is not able to solve more complex or non-
linear problems such as the exclusive-OR (XOR) problem. This led to a gradual decline in 
interest in neural networks over the following decades as artificial intelligence (AI) researchers 
shifted their focus to other approaches such as rule-based expert systems (Liao, 2005). After 
this so-called “AI winter” period, it was demonstrated that the limitations of the early perceptron 
model could be overcome by stacking up perceptrons into layers (i.e., multi-layer perceptrons) 
and training multi-layer networks via a back-propagation algorithm (Rumelhart et al., 1985; 
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Rumelhart et al., 1986). Soon after, LeCun and his colleagues demonstrated that the 
backpropagation algorithm could be successfully applied to a neural network model that 
leveraged a convolution operation to perform a handwritten digit recognition task, sometimes 
called MNIST (LeCun et al., 1989; LeCun et al., 1990). This study was subsequently extended 
to construct a more advanced neural network (called LeNet-5), which introduced the basic 
components of modern convolutional neural network architectures (LeCun et al., 1998). 
However, the training and implementation of these models still posed major technical 
challenges, including the vanishing gradient problem, overfitting, and slow training speed. 
 
Over the past decade, these technical issues have been successfully resolved by advances in 
software and hardware technologies. For example, introducing rectified linear units as activation 
functions has turned out to be effective in mitigating the gradient vanishing problem (Glorot et 
al., 2011). Moreover, the powerful parallel computations performed by graphic processing units 
(GPUs) have enabled a huge speed boost in training these deep network models. With these 
technical advances, AlexNet, a deep CNN model was successfully trained on a massive natural 
image dataset (Russakovsky et al., 2015), and ultimately won the 2012 ImageNet challenge, 
defeating other computer vision algorithms that did not rely on deep neural networks by a large 
margin (Krizhevsky et al., 2012).  
 
Since then, a series of newer CNN models have been proposed with major gains in recognition 
performance on a yearly basis (Chatfield et al., 2014; Simonyan and Zisserman, 2014; Szegedy 
et al., 2015; He et al., 2016). In 2015, CNNs have been suggested to even exceed human-level 
performance on the ImageNet classification task (He et al., 2015). The enormous success of 
CNNs has motivated many researchers to apply them to other vision tasks, such as object 
detection (Girshick et al., 2014; Girshick, 2015; Ren et al., 2015; Redmon et al., 2016), object 
localization (Long et al., 2015; Noh et al., 2015; Ronneberger et al., 2015), and medical image 
perception (Shen et al., 2017; Litjens et al., 2017; Esteva et al., 2017). 
 

1.4 CNNs as a model of biological visual systems 
 
With the outstanding performance of CNNs in vision tasks, many neuroscientists have 
questioned whether CNNs process objects in a similar manner as do biological visual systems. 
Research by Yamins and DiCarlo examined how well V4 and IT neural responses could be 
predicted by a 3-layer CNN model trained on a categorization task, each layer of which 
consisted of convolutional filters, thresholding, local pooling, and normalization (Yamins et al., 
2014; Yamins and DiCarlo, 2016). Their hierarchical CNN model not only outperformed shallow 
control models with respect to the explained variance of neural responses but also exhibited an 
interesting correspondence between individual layers of the CNN and neural sites. Specifically, 
the top layer of the CNN best predicted IT neural responses, whereas the intermediate layer 
best predicted V4 responses. Another neurophysiological study demonstrated that spiking 
activity in V1 of awake monkeys was also better predicted by CNNs than classical linear-
nonlinear models or Gabor wavelet models (Cadena et al., 2019). A neuroimaging study used 
representation similarity analysis (RSA) to show that CNNs trained with millions of labeled 
images explained IT representations better than traditional computer vision models, with higher 
layers exhibiting higher correlations (Khaligh-Razavi and Kriegeskorte, 2014). A subsequent 
study nicely demonstrated that early visual areas and the lower layers of CNNs preferred low-
level features, including edges and local contrast, while higher visual areas and higher layers of 
CNNs were more sensitive to high-level features such as object parts or entire objects (Güçlü 
and Gerven, 2015). These studies collectively suggest that CNNs resemble biological vision in 
processing visual objects across multiple stages of hierarchical processing. 
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Moreover, it has been suggested that CNNs appear to capture some of the key features of 
object recognition that are observed in biological systems. For example, the first-layer receptive 
field structures of the CNN appear to resemble those of V1 simple cells, exhibiting a broad 
range of orientation-selective preferences (Krizhevsky et al., 2012). Another study has 
demonstrated that even though CNNs were trained to be optimized for semantic categorization 
tasks, CNNs maintained above-chance performance when only silhouette images were 
displayed with color and texture cues removed, indicating that they had acquired a certain 
degree of shape sensitivity (Kubilius et al., 2016). Moreover, CNNs exhibit selectivity for 
boundary curvature in a manner that resembles mid-level stages of visual processing, such as 
curvature tuning as has been found in area V4 of the macaque monkey (Pospisil et al., 2018). A 
recent study used a reverse engineering technique to visualize the characteristics of V4 
neurons, by showing monkeys synthetic images that were generated to maximally elicit the 
firing rates of V4 neural sites via a gradient descent algorithm, and indeed observed complex 
curvature patterns (Bashivan et al., 2019). Taken together, there is a sizeable and growing body 
of research to suggest that CNNs provide a promising and highly effective model for 
characterizing the mechanisms of object recognition in humans. 
 

1.5 Discrepancies between CNNs and biological vision: Poor robustness of 
CNNs when faced with challenging viewing conditions  
 
Although CNNs provide the best current computational model of biological vision thus far, they 
are still far from perfect. More important, recent studies have begun to reveal significant 
differences between CNNs and primate visual systems in various aspects. For instance, several 
studies have reported that CNNs can account for a sizeable percentage but not all of the 
variance of neural response data with respect to object recognition. In Bashivan et al.’s study 
(2019), the CNN model accounted for most of the explained variance for natural images (~89%) 
but was only able to predict 54% of the brain response to the synthetic images. A recent 
neuroimaging study has carefully examined a brain-CNN correspondence using an RSA 
approach compared with the noise ceiling of human-to-human performance (Xu and Vaziri-
Pashkam, 2021), finding that the low-level representations of real-world objects from early visual 
areas were able to be fully accounted for by some CNNs but none of them reached the lower 
bound of the noise ceiling with respect to high-level visual areas. Another study has reported 
that although CNNs successfully accounted for human recognition performance at the object 
category level, they failed to predict individual image level behavioral patterns such as individual 
image difficulty and image-level confusions (Rajalingham et al., 2018), whereas monkeys were 
highly consistent with humans at both object and image levels. 
 
Also, differences between CNNs and biological vision become more pronounced under certain 
experimental settings. In a visual search task, human observers tended to miss a target object 
when it appeared atypical in its size relative to the rest of the scene, while CNNs did show 
consistent performance regardless of the size of target objects (Eckstein et al., 2017). Another 
study reported that CNNs fail at simple visual reasoning problems such as the “same-different” 
task (Ricci et al., 2018), in which the models needed to determine whether two items appearing 
at different positions were identical or not. Also, despite the early suggestion that CNNs 
exhibited some degree of shape sensitivity in recognition (Kubilius et al., 2016), recent studies 
have shown that CNNs tend to strongly rely on texture rather than shape cues to classify 
objects (Geirhos et al., 2019; Baker et al., 2019). To be specific, Geirhos et al. (2019) created 
an artificial stimulus that contained the shape of an object covered with the texture pattern of 
another object (e.g., cat shape with elephant texture) and measured the recognition bias of 
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human observers and CNNs. Strikingly, human observers demonstrated a strong bias to favor 
shape cues, whereas CNNs were largely biased by texture cues.  
 
More crucially, CNNs are highly vulnerable to challenging viewing conditions. Several studies 
have shown that CNNs exhibit substantially degraded performance by a small amount of visual 
distortion (Vasiljevic et al., 2017; Dodge and Karam, 2017; Geirhos et al., 2018; Jang and Tong, 
2018). For instance, Dodge and Karam (2017) compared the performance of humans and 
CNNs on a dog breed classification task in the presence of additive Gaussian noise and 
Gaussian blur. The authors found that the degraded but still fairly recognizable images to 
humans were severely detrimental to CNNs. Geirhos et al. (2018) evaluated the impact of 
various types of visual noise in humans and CNNs and similarly observed that humans 
outperformed CNNs in every condition. More strikingly, the authors claimed that directly training 
CNNs on one type of noise barely generalized to the other types, suggesting the poor 
generalization ability of CNNs. Concurrently, we also found that humans greatly outperform 
CNNs at recognition objects in visual noise, though they could be made more robust by training 
them to recognize objects in noise, as will be discussed in chapter 2 (Jang & Tong, 2018). 
These findings reveal that CNNs, especially those that are trained using standard image data 
sets, do not provide robust recognition under challenging viewing conditions, which makes them 
unsuitable for real-life applications that include dynamic and diverse environments. The poor 
robustness of CNNs is further accentuated by adversarial noise that is imperceptible to humans 
but causes devastating accuracy losses in deep learning models (Goodfellow et al., 2014; 
Szegedy et al., 2014). For example, Goodfellow et al. (2014) demonstrated that by adding an 
imperceptibly small amount of noise to a panda image that was driven by a gradient ascent 
algorithm, a CNN model was confused to classify it as a gibbon with 99.3% confidence. Brown 
et al. (2017) showed that a print-out of an image into which a small adversarial patch was 
embedded could even attack real-world applications of CNN classifiers. This series of 
observations suggests that CNNs are fragile and do not process objects in the same way that 
humans do.  
 

1.6 Overall goal of this thesis 
 
It is striking that CNNs can be fooled by fairly modest or subtle image manipulations. Such 
vulnerability is by no means acceptable for real-world vision problems. By contrast, the 
recognition ability of humans is highly robust and reliable across a variety of viewing conditions. 
The main goal of this thesis was to explore the robust nature of the human object recognition 
system under degraded viewing conditions by comparing human behavioral and neural data to 
those obtained from CNNs under the same conditions. This comparative approach could prove 
very useful for identifying the distinct features of the human visual system that mediate robust 
object recognition, when contrasted with the fragility of current CNNs. Furthermore, the 
discrepancies could provide insights into the design of future CNN models if the goal is to make 
CNNs more human-like.  
 
Another goal of this thesis was to determine whether experiencing degraded viewing conditions 
may be beneficial or even necessary for achieving an acceptable level of robustness. Visual 
scenes in daily life are not always presented in optimal conditions; regardless, we need to solve 
these everyday vision tasks. We sought to examine whether suboptimal viewing conditions, 
even though they might occur quite rarely, might actually lead the visual system to be more 
robust. To this end, we leveraged CNNs to evaluate whether degraded visual conditions would 
improve their robustness and, furthermore, allow them to achieve a better match with human 
behavioral and neural performance. 
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1.7 Overview of projects 
 
In Chapter 2, we examined how CNNs and human observers recognize objects in highly noisy 
viewing conditions. Their performance was compared across signal-to-noise ratios for objects 
shown in two types of visual noise, pixelated Gaussian noise and Fourier phase-scrambled 
noise. We found that CNNs demonstrated overall poorer robustness to noise than human 
observers, but more interestingly, that CNNs were more susceptible to pixelated Gaussian 
noise, whereas human observers showed worse performance when objects were presented 
with Fourier phase-scrambled noise. These findings provided initial evidence that CNNs process 
noisy objects in a different manner than humans do. We further examined whether training 
CNNs with noisy objects might provide a suitable way to mimic the robust recognition behavior 
of humans under noisy viewing conditions. We found that the noise-trained CNNs showed better 
correspondence to human observers than the control CNNs trained without noise, including 
better predictions of individual image difficulty levels, greater similarity in visual saliency maps, 
and better alignment of visual representations for noisy objects. This study suggests that 
standard CNNs do not have an adequate mechanism to deal with visual noise but training with 
noisy examples can allow CNNs to better mimic the human recognition system under noisy 
conditions. 
 
We further explored perceptual learning with objects in noise in Chapter 3. We first asked 
whether human observers could further improve in their robustness via training even though 
they already seemed to be highly robust to noise. We observed that after extensive training with 
noisy objects, both human observers and CNNs showed significant improvements in 
robustness. Next, we investigated whether the effect of noise training would generalize to 
untrained categories by training humans and CNNs on either animate or inanimate objects in 
visual noise. Interestingly, human observers only showed improvement when tested on trained 
categories (i.e., category-specific effect). By comparison, CNNs showed a significant degree of 
improvement when tested on untrained categories but showed even greater benefit for trained 
categories (i.e., both category-specific and category-general effects). We further found that the 
category-general effect primarily involved changes to the early and middle layers of the CNNs, 
whereas the category-specific effect was more evident in the middle and higher layers. These 
findings provide an interesting implication that the robust nature of object recognition may 
involve multiple stages of a hierarchical visual system.  
 
The study in Chapter 4 was inspired by the developmental literature that infant vision is initially 
very poor and coarse but gradually improves over the first year of life. We wondered if this 
developmental sequence of blurry to clear visual inputs would confer some ecological benefit, 
especially with respect to robust object recognition. We compared two versions of CNNs, one 
that was trained using clear images only and the other initially trained with blurry images 
followed by progressively clearer ones. Those two versions of CNNs were trained on either a 
face recognition task or an object recognition task. We observed a critical difference between 
the face- and object-trained networks: The face-trained CNNs successfully gained benefits from 
the sequence of blurry to clear training by achieving better robust performance to variations in 
spatial blur, whereas the object-trained CNNs did not show any noticeable improvement. A unit-
level spatial frequency preference analysis revealed that the initial low spatial frequency 
components of faces were sufficient to achieve nearly perfect performance on face recognition. 
By contrast, the object-trained CNNs continued to require higher spatial frequency information 
for optimal performance on object recognition. This study accentuates the central role of low 
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spatial frequencies in face processing, providing novel computational evidence that faces are 
processed in a more holistic manner than objects.  
 
Lastly, the fact that CNNs process visual inputs differently from how we perceive the visual 
world motivated us to explore whether this may explain some of the previously reported 
discrepancies between CNNs and human vision. In particular, it is well known that a large 
proportion of the visual field is perceived as blurry and that the human visual system might have 
to deal with blurry objects in real-world situations, for example, searching for a target object that 
is out-of-focus and appears blurry. To illuminate this in Chapter 5, we evaluated whether CNNs 
trained with a mixture of clear and blurry images might provide a better model of human 
recognition under various viewing conditions. We first found that the CNNs trained on both clear 
and blurry images better predicted the behavioral and neural patterns of human observers than 
the control CNNs trained on clear images only. The effect of blur training appeared to be mainly 
on the earlier layers of the CNNs. More intriguingly, the CNNs trained on both clear and blurry 
images showed better correspondence to humans in non-blurry conditions, including greater 
shape bias, greater robustness to Gaussian noise, and more similar visual representations to 
those of humans across both noisy and clear viewing conditions. These observations suggest 
the possibility that modern CNN models typically trained on a predominant percentage of clear 
images may be biased to learn fine-scale representations of object features and thereby deviate 
from the biological visual system, which presumably relies on a wider range of spatial 
frequencies to attain robust object recognition. 
 
  



12 
 

2. Comparison of humans and convolutional neural networks in noise 
robustness 

 

2.1 Introduction  
 
Imagine driving in a downpour or searching for a friend’s face in a crowd. Because our visual 
world is intrinsically noisy and cluttered, sophisticated mechanisms are essential to enable us to 
accomplish stable and robust visual recognition. The robust nature of human vision is rather the 
consequence of multiple mechanisms, not one single process. For example, the simple principle 
of averaging can be useful in such a manner that the impact of random noise from independent 
sources will be mitigated by averaging (Faisal et al., 2008). Selective visual attention is another 
critical cognitive process that has been considered to enhance the signal-to-noise ratio via gain 
modulation and sharpening (e.g., Treue and Trujillo, 1999; Carrasco et al., 2004; Kamitani and 
Tong; 2005; Reynolds and Heeger, 2009).  
 
The robust characteristics of human object recognition have been accentuated by the 
vulnerability of CNNs to image degradation. Although growing evidence has demonstrated that 
CNNs are currently the best computational model for nonhuman primate and human visual 
systems (Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven, 
2015; Yamins and DiCarlo, 2016; Cadena et al., 2019), however, at the same time, recent 
studies have shown a critical limitation of CNNs that they are unacceptably poor at recognizing 
objects under challenging viewing conditions. Dodge and Karam (2017) evaluated the 
recognition performance of both humans and CNNs using stimuli from 10 different dog breeds 
degraded by Gaussian noise and blur. While the recognition performance of CNNs on clean 
stimuli was comparable to that of humans, their performance deviated progressively as more 
noise was added. Geirhos et al. (2018) reported a similar finding tested with more various types 
of visual noise. In early versions of my work, we have also observed that CNNs showed poor 
recognition performance with noise but also showed the opposite pattern of performance to that 
of humans while responding to different types of visual noise (Jang and Tong, 2018). More 
recently, a public benchmark providing nineteen different types of image corruptions has been 
proposed (Hendrycks and Dietterich, 2019), which has attracted further attention to this 
research problem.    
 
This observation naturally leads to the following question: how can we improve the robustness 
of CNNs so they better generalize to noisy conditions? A simple but effective method that has 
also long been studied in the machine learning literature is directly adding noise into inputs. 
Injecting addictive noise into inputs has been formulated as a regularization term (Bishop, 
1995). An (1996) has demonstrated that this regularization term constrained networks to be less 
sensitive to input variations, enabling better generalization. More recently, Vincent et al. (2010) 
proposed adding noise into the input of the autoencoder to construct a so-called denoising 
autoencoder, which is known to better capture robust implicit representations. Nowadays, 
adding noise into inputs has been widely used for the purpose of data augmentation, noise 
robustness, and overfitting control (Audhkhasi et al., 2016; Zheng et al., 2016; Geirhos et al., 
2018; Jang and Tong, 2018; Rusak et al., 2020; Tong and Jang, 2021).  
 
Despite the effectiveness of the method, there is a fundamental question that remains to be 
answered, whether the CNN trained with noise would process noisy objects in a similar manner 
as do humans. No single study has yet examined this question perhaps because that is merely 
presumed based on the improved accuracy performance. However, it should be noted that the 
increased accuracy does not indicate that they will necessarily use the same strategy to deal 
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with noise as humans. It has been suggested that CNNs often adopt idiosyncratic strategies 
when solving vision problems (Geirhos et al., 2019; reviewed by Geirhos et al., 2020). Many 
previous studies reporting high human-CNN correspondence in their internal representations of 
objects were primarily based on clear and non-degraded images (Yamins et al., 2014; Yamins 
and DiCarlo, 2016; Güçlü and Gerven, 2015). Therefore, the systematic comparison of noise-
trained CNNs and humans under noisy viewing conditions is still completely missing. In this 
study, we sought to carefully examine the recognition pattern of humans, standard CNNs, and 
noise-trained CNNs to gain a comprehensive understanding of the robust nature of object 
recognition systems. 
 
We first determined two types of visual noise. The first noise was pixelated Gaussian noise 
which was randomly generated from a normal distribution. The second noise type was Fourier 
phase-scrambled noise by which the original power spectrum was maintained, while geometric 
features such as edge or contours were distorted by scrambling the phase contents (Wichmann 
et al., 2006). The advantage of using the two types of noise is that pixelated Gaussian noise 
represents unstructured and spatially independent noise, whereas Fourier phase-scrambled 
noise represents structured and spatially correlated noise.  
 
Using the two types of noise, we measured both human and CNN recognition performance by 
parametrically manipulating the signal-to-noise ratio. As expected, CNNs showed worse 
performance than humans in both types of noise. More interestingly, we found the opposite 
pattern between them: CNNs were easily impaired by pixelated Gaussian noise, but humans 
were poorer at recognizing objects with Fourier phase-scrambled noise. This finding suggests 
that CNNs may process noisy objects in a qualitatively different manner than humans.  
 
We next evaluated whether the CNNs trained with noisy examples might be better at predicting 
the response patterns of humans in noisy conditions. We expected higher recognition 
performance for the noise-trained CNNs when tested on noisy examples; however, again, it was 
not necessarily guaranteed if the noise-trained CNNs would internally process noisy objects 
similar to humans. We observed that, besides their improved robustness, the noise-trained 
CNNs yielded better predictions of human recognition thresholds on an image-by-image basis 
and more human-like diagnostic features under noisy conditions. A layer-specific analysis 
indicated that the effect of noise training emerged in the middle layers and was amplified as it 
ascended to higher layers. Moreover, the noised-trained CNNs showed a closer 
correspondence in their representations of noisy objects to human fMRI data in both early and 
higher visual areas. Finally, we showed that training with a certain type of noise could 
generalize to some of the untrained noise types, suggesting the possibility of designing a 
universal model robust to multiple noise types.  
 

2.2 Material and methods 
 
Participants 
We recruited 23 participants in behavioral experiment 1 (18 females, 5 males), with 20 
participants successfully completing both sessions of the study. A separate group of 23 
participants were recruited in behavioral experiment 2 (14 females, 9 males), with 20 
participants completing all 4 sessions of the study. Ages ranged from 19 to 33 years old.  
An fMRI experiment was also carried out with a total of 11 participants (5 females), ages 21-49; 
data from 3 participants were excluded due to poor MR data quality. All participants reported 
having normal or corrected-to-normal visual acuity, and provided informed written consent using 
electronic consent forms (REDCap). The study was approved by the Institutional Review Board 
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of Vanderbilt University (IRB #040945). Participants were compensated monetarily or through a 
combination of course credit and monetary payment.  
 
Visual stimuli 
Object images were obtained from the ImageNet database (Russakovsky et al., 2015), which is 
commonly used to train and test convolutional neural networks on object classification. We 
selected images from 16 categories for our experiments, which included a mixture of animate 
and inanimate object categories that would be recognizable to participants (Figure 3b). The 16 
categories were explained to participants before experiments. Both humans and CNNs were 
tested using images from the validation data set of ImageNet, with 50 images per category or 
800 images in total. The test images were converted to grayscale to remove color cues that 
otherwise might boost the ability to recognize certain object categories in severe noise. CNNs 
were trained using images from the training set (1300 images per category), so the images used 
for testing were novel to both humans and CNNs.  
 
In Experiment 1, objects were presented using two different types of visual noise: pixelated 
Gaussian noise and Fourier phase-scrambled noise (Figure 3a). To create each Gaussian 
noise image, the intensity of every pixel was randomly and independently drawn from a 
Gaussian distribution centered at 127.5, assuming that the range of possible pixel intensities (0 

to 255) spanned 3 standard deviations. For Fourier phase-scrambled noise, we calculated the 
average amplitude spectrum of the 800 images, generated a set of randomized phase values 
and performed the inverse Fourier transform to create each noise image. Such spatially 
correlated noise has some coherent structure that preserves the original power spectrum (close 
to a 1/F amplitude spectrum) but lacks strong co-aligned edges, due to the phase 
randomization, and can be described as having a cloud-like appearance. We avoided using the 
Fourier power spectrum of individual images to generate noise patterns, as residual category 
information could persist in this case, assuming that the categories differ to some extent in their 
overall power spectra.   
 
To investigate the effect of noise on object visibility, we manipulated the proportion of object 
signal (w) contained in the object-plus-noise images. We describe the proportional weighting of 
this object information as the signal-to-signal-plus-noise ratio (SSNR), which has a lower bound 
of 0 when no object information is present (i.e., noise only) and an upper bound of 1 when the 
image consists of the source object only. SSNR differs from the more conventional measure of 
signal-to-noise ratio (SNR), which has no upper bound. Given a source object image defined by 
matrix S and a noise image N, we can create a target image T with SSNR level of w as follows: 
 

T = w  S + (1 – w)  N 
 
After the contrast-adjusted original image and the noise pattern were summed, any intensity 
values that fell beyond the 0-255 range were clipped. Clipping was modest as the standard 
deviation of the Gaussian noise distribution was 255/6.  
 
Behavioral experiment 1 
Participants were tested with either pixelated Gaussian noise or Fourier phase-scrambled noise, 
in two separate behavioral sessions. To control for order effects, half of the participants were 
presented with pixelated Gaussian noise in the first session and while the other half were first 
presented with Fourier phase-scrambled noise.  
 
In each session, participants were briefly presented with each of 800 object images for 200ms 
at a specified SSNR level, and had to make a 16-alternative categorization response thereafter 
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using a keyboard. Noisy object images were presented at 10 possible SSNR levels (0.05, 0.1, 
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, and 0.75). The highest SSNR level was informed by a pilot 
study that indicated that human accuracy reached ceiling levels of performance by an SSNR 
level of 0.75. Five images per category were assigned to each SSNR level, and image 
assignment across SSNR levels was counterbalanced across participants. The order of image 
presentation was randomized. The experiment was implemented using MATLAB and the 
Psychophysics Toolbox (http://psychtoolbox.org/).  
 
Behavioral experiment 2 
This study measured participants’ SSNR thresholds for each of 800 object images over a series 
of 4 behavioral sessions. For this experiment, only pixelated Gaussian noise was evaluated. On 
each trial, a single noise image was generated and combined with a source object image, and 
the target image gradually increased in SSNR level by 0.025 every 400ms, until the participant 
felt confident enough to press a key on a number pad to halt the image sequence and then 
make a 16-alternative categorization response. Next, participants used a mouse pointer to 
“paint” the portions of the image that they found to be most informative for their recognition 
response.  
 
After each trial, participants received visual feedback, based on a point scheme designed to 
encourage both fast and accurate responses. For correct responses, up to 200 points could be 
earned at the beginning of the image sequence (SSNR = 0), and this amount decreased with 
increasing SSNR, dropping to just 6 points at an SSNR level of 1. Incorrect responses were 
assigned 0 points. The participants received monetary payment scaled according to the total 
number of points earned across the 4 sessions.  
 
MRI scanning parameters 
MRI data were collected using a 7-Tesla Philips Achieva scanner with a 32-channel head coil at 
the Vanderbilt University Institute for Imaging Science. We collected fMRI data using single-shot 
T2*-weighted gradient echo echo-planar imaging at a 2mm isotropic voxel resolution (TR 2s; TE 

25ms; flip angle 63°; SENSE acceleration factor 2.9, FOV 224×224 mm; 46 slices with no gap; 

phase-encoding in AP direction). To mitigate image distortions caused by inhomogeneity, an 
image‐based shimming technique was used. A T1-weighted 3D-MPRAGE anatomical scan was 
collected in the same session at 1mm isotropic resolution. Separately, retinotopic data were 
acquired using a 3-Telsa Philips Intera Achieva MRI scanner equipped with a 32-channel head 
coil, with fMRI data acquired at 3mm isotropic resolution (TR 2s; TE 35ms; flip angle 80°; FOV 
240×240 mm; 36 slices).  
 
fMRI experiment 
For the fMRI experiment, we selected 16 object images to characterize neural response 
patterns to objects in visual noise. The images included 2 examples drawn from 8 categories 
(bear, bison, elephant, hare, jeep, sports car, table lamp, teapot) whose difficulty levels were 
closely matched based on the reported SSNR levels from Experiment 2. Each object image was 
presented noise-free, embedded in pixelated Gaussian noise, and embedded in Fourier phase-
scrambled noise. For the noise conditions, we chose an SSNR level of 0.4 as human 
performance dropped significantly by this noise level but was still accurate enough to be 
expected to lead to reliable neural responses. To control for potential order effects, the images 
were divided into two sets. In the first half of the experiment, one set was presented noise-free 
while the other set of object images appeared in each of the two types of noise. In the second 
half of the experiment, the assignment to noisy and noise-free conditions was reversed. Across 
participants, we counterbalanced how the objects were assigned to noisy and noise-free 
conditions across the two halves of the experiment. Each fMRI run consisted of 8 clean images, 
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8 Gaussian noise images, and 8 images of objects in Fourier phase-scrambled noise, presented 
in randomized order. On average, participants performed a total of 10 experimental runs with 
each image shown 5 times for a given condition.  
 
Participants were instructed to maintain fixation on a central fixation point throughout each 
experimental run and to report whether each presented image was animate or inanimate using 
an MRI-compatible button box in the scanner. Each image from a stimulus set was centrally 
presented in a 9 × 9° window for 4 seconds, flashing on and off every 250ms, and followed by a 
6-second fixation rest period. The order of the 24 images was randomized every run, and each 
run lasted approximately 4.4 minutes. We additionally ran 2 runs of a functional localizer, in 
which participants viewed blocked presentations of grayscale images of faces, objects, houses, 
and scrambled objects. A subset of the participants were scanned on a separate day for 
retinotopic mapping which used a standard phase-encoded measurement with rotating wedges 
and expanding rings (Engel et al., 1997). 
 
fMRI data preprocessing and analysis 
Data were preprocessed and analyzed using FSL, Freesurfer, and custom MATLAB scripts. The 
following standard preprocessing was applied: motion correction using MCFLIRT (Jenkinson et 
al., 2002), slice-time correction, and high-pass temporal filtering with a cutoff frequency of 0.01 
Hz. No spatial smoothing was applied. Functional images were then registered to each 
participant’s 3D-MPRAGE anatomical scan using Freesurfer’s bbregister (Greve et al., 2009).  
 
Boundaries between early visual areas V1-V4 were manually delineated from a separate 
retinotopic mapping session, using FSL and Freesurfer software. For those who did not perform 
retinotopic scanning, areas V1-V4 were predicted from the anatomically defined retinotopy 
template (Benson and Winawer, 2018). A general linear model analysis was used to identify 
visually responsive voxels corresponding to the stimulus location, as well as category-selective 
voxels. In conjunction with the retinotopic maps, a statistical map of the stimulus versus rest 
contrast of our functional localizer was used to define functionally active voxels in V1-V4 using a 
threshold of t > 7 uncorrected. The fusiform face area (FFA) was identified by contrasting faces 
versus all other stimulus conditions (objects, houses, scrambled stimuli) and identifying voxels 
in the fusiform gyrus that exceeded a threshold of t > 3 uncorrected. Similarly, the 
parahippocampal place area (PPA) consisted of voxels in the parahippocampal gyrus that 
responded more strongly to houses than to all other stimulus conditions (t > 3 uncorrected). 
Finally, the lateral occipital cortex (LOC) was defined by contrasting objects versus scrambled 
objects (t > 3 uncorrected). 
 
Each voxel’s time series was first converted to percent signal change, relative to the mean 
intensity across the run, and the averaged response of TRs 3 to 5 post-stimulus onset was used 
to estimate stimulus responses. Response amplitudes to each stimulus were then normalized 
by run to obtain an overall mean of 0 and standard deviation of 1. For each visual area, the 
multivariate response pattern to a given stimulus was converted into a data vector with 
associated category label, to be used for training or testing a classifier. We trained a multi-class 
linear SVM classifier to predict the object category of each stimulus, separately for each region 
of interest and viewing condition, using the LIBSVM MATLAB toolbox with the default parameter 
settings (Chang and Lin, 2011). The trained SVM was then tested on independent test runs, 
using a leave-one-run-out cross-validation procedure (Kamitani and Tong, 2005). (Note that the 
object category decoding analysis is sensitive to consistency of fMRI responses at both the 
image level and category level, and we confirmed that essentially the same pattern of 
classification results was found in early visual areas when decoding was performed to predict 
the specific image.) We required that classification accuracy for V1, the most reliable visual area 
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for decoding, exceed a minimum of 20% (chance level 12.5%) when averaged across all 3 
viewing conditions; otherwise, the data from that participant were excluded due to poor 
reliability. Data from three participants were excluded based on these criteria, and reported 
results are based on the data of 8 participants.  
 
To compare the representations of CNNs to those in the human visual cortex, we analyzed the 
responses of all units within each layer of the CNN to each object image. The responses of a 
given unit to the set of object images were normalized and converted to z-scores. Next, we 
calculated the correlational similarity of the responses to all possible pairs of images by 
computing a 48 × 48 correlation matrix. After setting the main diagonal values to 0, the 
remaining values solely reflected the correlational similarity of responses to different object 
images for that layer. The representational structure of these object responses of the CNN could 
then be compared to the representational structure of object responses obtained from human 
visual areas by calculating the Pearson correlation coefficient between the correlation matrices. 
For statistical testing, the Fisher z-transform was applied to these correlation values obtained 
from each participant when comparing a visual area to a specific layer of a CNN, and t-tests 
were used to test for significant differences between Pearson correlation values. 
 
Deep neural networks 
We evaluated the performance of 8 pre-trained convolutional neural networks (CNNs) using the 
MatConvNet toolbox (Vedaldi and Lenc, 2015): AlexNet, VGG-F, VGG-M, VGG-S, VGG-16, 
VGG-19, GoogLeNet, and ResNet-152 (Krizhevsky et al., 2012; Simonyan et al., 2014; Szegedy 
et al., 2015; He et al., 2016). All networks were pre-trained on the ImageNet 1000-category 
classification task. Performance on the 16-category classification task was evaluated by 
determining which of the 16 categories had the highest softmax response to a given image. The 
training of CNNs with noisy object images was primarily performed using MatConvNet (version 
1.0-beta25), with ancillary analyses performed using PyTorch (version 1.6.0). The majority of 
noise training experiments were performed using VGG-19, although we also confirmed that 
similar benefits of noise training were observed for AlexNet and ResNet-152.  
 
For 16-category training, all CNNs were trained using stochastic gradient descent over a period 
of 20 epochs with a fixed learning rate of 0.001, batch size of 24, weight decay of 0.0005, and 
momentum of 0.9. All weights in all layers of the network were initialized from pre-trained 
models and were allowed to vary during the training, using backpropagation of the multinomial 
logistic loss across all 1000 classes. For our first set of analyses, pre-trained VGG-19 was 
trained with noisy object images presented at a single SSNR level (Figure 5a), using images 
from the 16 categories in the ImageNet training set (20,800 images in total). Separate networks 
were trained with either pixelated Gaussian noise or Fourier phase-scrambled noise. Training at 
a single SSNR level led to better performance for noisy object images but poorer performance 
for noise-free objects. Subsequently, we trained VGG-19 using a combination of noise-free and 
noisy images, typically using an SSNR level of 0.2 for most experiments. The VGG-19 model 
used to approximate human SSNR thresholds in Experiment 2 was trained with objects in 
pixelated Gaussian noise across a full range of SSNR levels from 0.2 to 1. The standard CNN 
used to fit human SSNR thresholds consisted of pre-trained VGG-19 that received the same 
number of training examples from the 16 categories using noise-free images only. 
 
For training examples, we used the standard data augmentation pipeline provided by 
MatConvNet. Training images were derived from the original images by randomly cropping a 
rectangular region (with width-to-height aspect ratios that randomly varied from 66.67% to 
150%) that subtended 87.5% of the length of the original image. The cropped image was 
resized to 224 × 224 pixels to fit most of the CNN models (except for AlexNet, which used 227 × 
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227 pixels). Additionally, the intensity of each of the RGB channels was shifted by a small offset, 
randomly sampled from a Gaussian distribution with a standard deviation of about 3. The 
images were then converted to grayscale. Finally, after the SSNR manipulation was applied (as 
described in Visual stimuli), the average pixel intensity across training samples was calculated 
and subtracted from each training image.  
 
We trained a 1000-category version of VGG-19 with the full set of training images from 
ImageNet; these were presented either noise-free, with pixelated Gaussian noise (SSNR 0.2) or 
with Fourier phase-scrambled noise (SSNR 0.2). Color information from these images was 
preserved but the same achromatic noise pattern was added to all 3 RGB channels for noise 
training. The network was trained over 10 epochs using a batch size of 64. All other training 
parameters were the same as those used in training the 16-category-trained VGG-19.  
 
We quantified the accuracy of standard and noise-trained CNNs at each of 20 SSNR levels 
(0.05, 0.1, 0.15, … 1). Unlike the human behavioral experiments, CNN performance could be 
repeatedly evaluated tested without concerns about potential effects of learning, as network 
weights were frozen during the test phase. The CNN was presented with all 800 object test 
images at every SSNR level to calculate the accuracy by SSNR performance curve. A 4-
parameter logistic function was fitted to the accuracy by SSNR curve and the SSNR level at 
which accuracy reached 50% was identified as the SSNR threshold for Experiment 1.  
 
For the layer-specific noise susceptibility analysis, we evaluated the stability of the activity 
patterns evoked by objects presented in progressively greater levels of noise, by calculating the 
Pearson correlation coefficient between responses to each noise-free test image and to that 
same image presented at varying SSNR levels. Analyses were performed on each convolutional 
layer after rectification, the fully connected layers and the softmax layer of VGG-19. A logistic 
function was fitted to the correlation by SSNR data for each layer, and the SSNR level at which 
the correlation strength reached 0.5 was identified as the SSNR threshold. If some positive 
correlation was still observed when SSNR level was 0, then the range of correlation values were 
linearly rescaled to span a range of 0 to 1, prior to calculating the SSNR threshold.  
 
For the layer-specific classification analysis, multi-class support vector machines (SVM) were 
trained on the activity patterns evoked by noise-free objects from each of the 16 categories, 
using data obtained from individual layers of the CNN. After training, the SVMs were tested 
using the 800 novel test images presented at varying SSNR levels. The SSNR level at which 
classification accuracy reached 50% (chance level performance, 1/16 or 6.25%) was identified 
by fitting a logistic function, and served as the classification-based SSNR threshold.  
 
Layer-wise relevance propagation 
Layer-wise relevance propagation is a method that identifies diagnostic features that contribute 
to the prediction of a network (Bach et al., 2015). To do so, the method decomposes the 
network’s output with respect to contributions of individual units, termed relevance scores R as 
defined below, and back-propagated the scores to the input layer: 
 

𝑅𝑖
(𝑙)

= ∑
𝑥𝑖𝑤𝑖𝑗

∑ 𝑥𝑖𝑤𝑖𝑗𝑖
𝑗

𝑅𝑗
(𝑙+1)

, 

 

where 𝑅𝑖
(𝑙)

 is the relevance score of the unit 𝑖 at layer 𝑙, 𝑥𝑖 is the response of the unit 𝑖 at 

layer 𝑙, and 𝑤𝑖𝑗 is the weight connecting the unit 𝑖 at layer 𝑙 to unit 𝑗 at layer 𝑙+1. Layer-

wise relevance propagation differs from other gradient-based methods in that it takes into 
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account both gradients and unit activations, and may thereby better capture the set of features 
that are responsible for the network’s classification response. In addition to the original 
implementation (i.e., LRP-0), several variants have been suggested including LRP-ε, LRP-γ, 
and LRP-zβ (Montavon et al., 2019). Following the guidance of Montavon et al. (2019), we 
implemented a VGG19-based custom PyTorch script as follows: LRP-0 from the 15th to 19th 
layers, LRP-ε (ε = 0.25) from the 9th to 14th layers, LRP-γ (γ = 0.05) from the 2nd and 8th 
layers, and LRP-zβ (lower bound = -1.99 and upper bound = 2.44) for the 1st layer. To create 
pixel-wise heatmaps, the relevance scores in the pixel space were summed over the rgb 
channels. Only positive values were taken into account in order to focus on the category-
relevant features of a selected object. 
 

2.3 Results  
 
We first compared the recognition performance of 20 human participants and 8 ImageNet 
pretrained CNNs, including AlexNet, VGG-F, VGG-M, VGG-S, VGG-16, VGG-19, GoogLeNet, 
and ResNet-152, tested with pixelated Gaussian noise and Fourier phase-scrambled noise. 
Visual stimuli were obtained from a subset of ImageNet categories (8 animate and 8 inanimate 
objects; Figure 3b) and presented with varying levels of signal-to-signal-plus-noise ratio (SSNR; 
Figure 3a). The average recognition performance of 8 pretrained CNNs and 20 human 
observers are shown in Figure 3c. Although the CNNs achieved comparable performance to 
humans with noise-free images, their performance started to deviate as noise levels increased, 
showing poor stability of CNNs under noisy conditions. More interestingly, CNNs and humans 
showed opposite patterns of performance, that is, CNNs were more impaired by pixelated 
Gaussian noise, whereas humans were more disrupted by Fourier phase-scrambled noise. This 
pattern was highly consistent across different CNN architectures except for ResNet-152 (Figure 
3d). To further analyze these performance differences, we measured the SSNR threshold that 
corresponded to 50% accuracy using a logistic function fitted to the performance data of 
individual human observers and CNNs. Human observers exhibited lower SSNR thresholds 
than CNNs for both types of noise (pixelated Gaussian noise, t(26) = 15.94, p < 10-14; Fourier 
phase-scrambled noise, t(26) = 12.29, p < 10-11). Moreover, humans showed lower SSNR 
thresholds with pixelated Gaussian noise than Fourier phase-scrambled noise (0.255 vs. 0.315; 
t(19) = 13.41, p < 10-10), while CNNs showed higher SSNR thresholds with pixelated Gaussian 
noise than Fourier phase-scrambled noise (0.535 vs. 0.446; t(7) = 3.81, p = 0.0066). This 
finding suggests that CNNs may process noisy objects in a qualitatively different manner than 
humans. 
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Figure 3. a Examples of an object image in pixelated Gaussian noise or Fourier phase-scrambled noise, 
shown at varying SSNR levels. b Example images from the 16 object categories used in this study. c 
Mean performance accuracy in a 16-alternative object classification task plotted as a function of SSNR 
level for human observers (black curves) and 8 standard pre-trained DNNs (red curves) with ± 1 standard 
deviation in performance indicated by the shaded area around each curve. Separate curves are plotted 
for pixelated Gaussian noise (solid lines with closed circles) and Fourier phase-scrambled noise (dashed 
lines with open circles). d Classification accuracy plotted as a function of SSNR level for individual pre-
trained DNN models.  
 
In addition to performance accuracy, we noticed that humans and CNNs exhibited different 
patterns of responses in their confusion matrices. Examples of their confusion matrices for both 
types of noise are shown in Figure 4. When SSNR levels were 0.75, both humans and CNNs 
performed nearly perfectly, showing a high frequency of responses along the diagonal. 
However, when SSNR declined to 0.2, CNN predictions were highly biased to a few categories 
such as “hare”, “cat”, and “owl”, whereas humans showed a moderate bias to “lion”.  
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Figure 4. Confusion matrices of human observers and 8 standard pre-trained DNNs. Plots show the 
relative frequency of predicted category responses (columns) with true categories organized by rows. 
Confusion matrices are provided for 4 SSNR levels, separately for objects in pixelated Gaussian noise (a) 
and Fourier phase-scrambled noise (b). 

 
We further investigated whether training with noisy examples might improve the robustness of 
pretrained CNNs (primarily using VGG-19) to better match human performance. Unexpectedly, 
however, we observed that when the CNNs were exclusively trained with noisy examples, their 
robustness was enhanced but this was accompanied by a loss of accuracy for clear object 
images (Figure 5a). This loss of accuracy for clear images became more prevalent when the 
training examples contained lower SSNR levels. Note that the CNNs were already pretrained by 
millions of clear images prior to training with noisy examples, which makes this observation 
somewhat surprising and provides evidence of their poor stability. Accordingly, we instead 
trained networks with a combination of noisy and noise-free images and found that this noise 
training procedure was highly successful, leading to enhanced robustness across a broad range 
of SSNRs (Figure 5b). We chose the network trained with a combination of 0.2 and 1.0 SSNRs 
for further analysis, as when the training SSNR was reduced to 0.1, the task seemed too 
challenging to promote stable learning.  
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Figure 5. a Impact of training VGG-19 with object images presented at a single SSNR level (1.0, 0.7, 0.5, 
0.3, 0.2, or 0.1) when evaluated with novel test images presented at multiple SSNR levels. Accuracy of 
pre-trained VGG-19 (red curve) serves as a reference in each plot. b Impact of training VGG-19 with a 
combination of noise-free images (SSNR 1.0) and noisy images at a specified SSNR level.   

 
To compare directly the noise-trained and pretrained CNNs, Figure 3c is replotted with the 
performance of the noise-trained CNNs added (i.e., blue curves in Figure 6a). Noise training 
indeed improved robustness up to the human level. Moreover, noise training was more effective 
for pixelated Gaussian noise than for Fourier phase-scrambled noise, such that the pattern of 
performance of noise-trained CNNs now better matched that of human observers. We again 
fitted a logistic function to the performance accuracy of individual CNNs and human observers, 
and estimated their SSNR thresholds (Figure 6b). The histogram of SSNR thresholds 
demonstrated that the noise-trained CNNs even outperformed the best human observer in both 
pixelated Gaussian noise and Fourier phase-scrambled noise.  
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Figure 6. a Mean classification accuracy of noise-trained VGG-19 (blue), human observers (gray), and 
pre-trained DNNs (red) for objects in pixelated Gaussian noise (solid lines, closed circles) and Fourier 
phase-scrambled noise (dashed lines, open circles). b Frequency histograms comparing the SSNR 
thresholds of noise-trained VGG-19 (blue), individual human observers (gray), and 8 standard pre-trained 
DNNs (red).   

 
To analyze the effect of noise training in more detail, we devised a layer-specific noise 
susceptibility analysis in which the correlation strength between the layer-specific activation 
patterns of a noise-free image and the noised versions of the same image was measured 
across a full range of SSNRs (Figure 7a). For each layer, the SSNR level required to reach 0.5 
correlation was estimated, with a higher SSNR threshold signifying greater susceptibility to 
noise. The SSNR thresholds of the noise-trained and pretrained CNNs are illustrated in Figure 
7b. For both pixelated Gaussian and Fourier phase-scrambled noise, the noise-trained CNNs 
exhibited lower SSNR thresholds overall than the pretrained CNNs, with the impact of noise 
training emerging at the fourth layer and becoming amplified across successive layers. 
Moreover, the SSNR thresholds of the noise-trained CNNs gradually decreased across layers, 
suggesting that the networks effectively enhanced object-related signals while mitigating noise 
across successive stages of visual processing. However, one could argue that this correlational 
analysis may not suffice to reveal the impact of training on recognition performance. We also 
measured classification-based SSNR thresholds using a support vector machine classifier 
applied to what, explain (see Materials and Methods for more details). We observed a similar 
trend as the impact of noise training became greater in higher layers for both types of noise 
(Figure 7c). This was also shown in the degree of change in the convolutional weights of the 
noise-trained CNNs. We calculated the average canonical correlation coefficient between the 
weights of the pretrained CNN and subsequent noise-trained CNN, and found greater changes 
in the higher layers except the last two fully connected layers (Figure 7d). Taken together, the 
results indicate that noise training alters the representations of the middle and higher layers of 
CNNs to achieve enhanced robustness to noise. 
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Figure 7. a Depiction of method used for layer-specific noise susceptibility analysis. b Correlation-based 
SSNR thresholds for pre-trained (red) and noise-trained (blue) versions of VGG-19 plotted by layer for 
objects shown in pixelated Gaussian noise or Fourier phase-scrambled noise. Higher SSNR thresholds 
indicate greater susceptibility to noise. c Classification-based SSNR thresholds plotted by layer for pre-
trained and noise-trained networks. Multi-class support vector machines were used to predict object 
category from layer-specific activity patterns. d Similarity of feature representations for pre-trained and 
noise-trained versions of VGG-19, calculated using canonical correlation analysis (CCA). 

 
So far, we have shown that noise-trained CNNs successfully acquired increased robustness 
and performed as well as human observers. That said, this does not inform us as to whether or 
not noise-trained CNNs process noisy objects in the same manner as humans do. They might 
have utilized a different strategy to handle noise, and if so, the claim that CNNs provide a viable 
model for human object recognition (Yamins et al., 2014; Yamins and DiCarlo, 2016) should 
then be only limited to undegraded conditions. 
 
To examine this issue, we ran a second behavioral experiment in which, for each experimental 
trial a visual stimulus was displayed whose SSNR level gradually increased from 0 (noise only) 
to 1 (signal only). As soon as participants judged that a target object was recognizable, they 
pressed a spacebar to stop the process of increasing SSNRs and reported a category. Both 
accuracy and the SSNR level at which they stopped to report the category were recorded every 
trial. After they reported the category, participants viewed the stimulus image again with the 
SSNR level they stopped at and additionally performed a painting task to indicate the object 
features that appeared most informative by using a mouse pointer. This experiment allowed us 
to compare the similarity of humans and CNNs in their SSNR thresholds on an image-by-image 
basis and also the similarity in their diagnostic features for object recognition. 
 
We found that not only did the noise-trained CNN show overall lower SSNR thresholds than the 
standard CNN, but also exhibited a better correlation with the human behavioral data on an 
image-by-image basis (Figure 8a; r = 0.55 vs. 0.27, z = 6.50, p < 10-10). We should note that 
this was not necessarily guaranteed because it was also possible for the noise-trained CNN to 
enhance noise sensitivity to the same degree on every image with little change in the 
correlation. Despite its better correspondence to humans, the similarity among human 
observers (r = 0.94) was greater still, indicating that noise training alone cannot fully account for 
human behavioral performance at recognizing noisy objects. Next, we compared the diagnostic 
regions reported by human observers to the heatmaps obtained from CNNs using layer-wise 
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relevance propagation (Bach et al., 2015; examples are shown in Figure 8b), by calculating 
their spatial correlation and overlap ratio. As shown in Figure 8c, the noise-trained CNN better 
captured the diagnostic regions by humans than the standard CNN, particularly under strong 
noisy conditions. These results support the notion that noise-trained CNNs do recognize noisy 
objects, similarly as do humans.  
 

 
Figure 8. a Scatter plot comparing SSNR thresholds of human observers with the thresholds of standard 
VGG-19 (red) and noise-trained VGG-19 (blue). Each data point depicts the SSNR threshold for an 
individual object image. Examples of two object images, shown at the SSNR threshold obtained from 
standard or noise-trained networks. b Examples of diagnostic object features from human observers, 
standard VGG-19, and noise-trained VGG-19. The mean SSNR level at which human observers correctly 
recognized the objects is indicated. c Correlational similarity and overlap ratio of the spatial profile of 
diagnostic features reported by human observers and those measured in DNNs across a range of SSNR 
levels. Gray dashed lines indicate ceiling-level performance based on human-to-human correspondence. 

 
Another way to assess whether noise-trained CNNs process noisy objects in a manner similar 
to humans is to compare the internal representations of CNNs and humans under noisy viewing 
conditions. To this end, we collected functional MRI (fMRI) data from 8 participants while they 
viewed 16 object images in each of 3 viewing conditions: noisy objects with 0.4 SSNR of 
pixelated Gaussian noise, noisy objects with 0.4 SSNR of Fourier phase-scrambled noise, and 
noise-free objects. We first assessed whether object processing in visual cortical areas was 
more disrupted by Fourier phase-scrambled noise than pixelated Gaussian noise, as was 
observed in our behavioral study. Indeed, decoding of fMRI activity in early visual areas V1-V4 
revealed that classification performance for noise-free objects was significantly higher than that 
of noisy objects in pixelated Gaussian noise, followed by the most degraded performance with 
Fourier phase-scrambled noise (t(7) > 4.7 in all cases, p < 0.0025; Figure 9a). Interestingly, 
decoding accuracy for noisy objects in pixelated Gaussian noise did not significantly differ from 
that of noise-free objects in higher visual areas, suggesting that the impact of pixelated 
Gaussian noise was somehow lessened in higher visual areas. This may resemble the 
decreasing pattern of SSNR thresholds across the layers of the noise-trained CNN with 
pixelated Gaussian noise (Figure 7b). By comparison, classification accuracy for objects in 
pixelated Gaussian noise was significantly higher than Fourier phase-scrambled noise in the 
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lateral occipital complex (LOC; (t(7) = 3.38, p < 0.025) and the parahippocampal place area 
(PPA; t(7) = 2.54, p < 0.05), but not in the fusiform face area (FFA; t(7) = 1.09, p = 0.31). 
 

 
Figure 9. a Classification accuracy for fMRI responses in individual visual areas for clean objects (black 
filled circles), objects in pixelated Gaussian noise (gray filled circles) and Fourier phase-scrambled noise 
(gray open circles). Error bars indicate ± 1 standard error of the mean (n = 8). Chance-level performance 
is 12.5%. b Correlational similarity of object representations obtained from human visual areas and 
individual layers of DNNs when comparing standard versus noise-trained networks (red vs. blue, 
respectively). Color-coded horizontal lines at the top of each plot indicate a statistically significant 
advantage (p < .01 uncorrected) for a given DNN at predicting human neural representations of the object 
images. 

 
Next, we performed representational similarity analysis using both cortical responses and CNN 
representations and compared these response patterns using the Pearson correlation 
coefficient (Figure 9b). We found that although standard CNNs showed slightly higher 
correlations than noise-trained CNNs in early layers, noise-trained CNNs exhibited a significant 
advantage in layers 4 and above. We also observed different patterns between early and high 
visual areas, such that the correlations at fully connected layers (layers 17-19) markedly 
dropped in V1-V4, while increased in LOC/FFA/PPA. Taken together, these findings provide 
neural evidence that noise-trained CNNs reliably account for human recognition behavior under 
noisy conditions. 
 

Finally, we wondered whether the effect of noise training could generalize to untrained noise 
types, and if so, to what extent. A previous study claimed that CNNs showed extremely poor 
generalization capabilities by demonstrating that networks trained with uniform noise failed to 
show any advantage when tested with salt-and-pepper noise (Geirhos et al., 2018). This may be 
true as we found similar results in our noise types, namely, that training with pixelated Gaussian 
noise showed negligible benefits when tested with Fourier phase-scrambled noise and vice 
versa (Figure 10a). However, when we evaluated our noise-trained CNNs on the types of 
image distortions tested by Geirhos et al. (i.e., salt-and-pepper noise and low- and high-pass 
filtered images; examples are shown in Figure 10b), we observed some degree of successful 
generalization. The network trained with pixelated Gaussian noise generalized well to salt-and-
pepper noise, while the network trained with Fourier phase-scrambled noise showed better 
performance at high-pass filtered images compared to the standard network (Figure 10c). Our 
findings are also consistent with a recent study that reported that additive Gaussian noise 
generalized well to unseen image corruption types (Rusak et al., 2020). We also observed that 
the network trained with both pixelated Gaussian noise and Fourier phase-scrambled noise 
consistently showed greater robustness across all noise types (Figure 10c). These results 
motivated us to ask whether this network could generalize to real-life noise that would appear 
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different from the noise employed in the experiments. 
 

 
 
Figure 10. a Mean classification accuracy of noise-trained VGG-19 (blue) when trained with objects in 
either pixelated or Fourier phase-scrambled noise, and subsequently tested on either type of noise. 
Performance of standard VGG-19 (red), which lacked noisy image training, is provided for comparison. b 
Examples of images used to test the impact of salt-and-pepper noise, low-pass filtering and high-pass 
filtering on DNN performance. Image manipulations followed the methods described in Geirhos et al. 
(2018). c Performance accuracy of pre-trained and noise-trained versions of VGG-19 at recognizing 
images with different types and levels of image distortion. 

 
We collected a dataset of vehicle images under either clear or bad weather conditions (e.g., 
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snow, rain, or fog) and conducted a pilot experiment by asking three observers to rate the 
degree of noise present in the individual vehicle images. The image set ended up consisting of 
102 noise-free and 102 noisy images, with examples shown in Figure 11a. These images were 
then tested by two versions of CNNs, pretrained and noise-trained CNNs with both pixelated 
Gaussian noise and Fourier phase-scrambled noise on 1000 ImageNet categories. We found 
that the noise-trained CNN significantly outperformed the standard CNN in noisy weather 
conditions (Figure 11b). Especially when the noise level was stronger, the performance of the 
noise-trained CNN was significantly higher than that of the standard CNN (Figure 11c). 
Altogether, contrary to the claims of Geirhos et al. (2018), our results demonstrate that CNNs 
can show some degree of generalization capability depending on which noise types are used for 
training. Our findings further suggest that it could be possible to build a universal CNN model 
that is robust to various types of image corruptions by training with a few selected noise types. 
 

 
Figure 11. a Examples of real-world images of vehicles in noise-free and noisy conditions. Convertible, 
jeep, minivan, motor scooter, pick-up truck, sports car, station wagon, and trailer truck, from top-left to 
bottom-right. b Top1 and top5 accuracies of pre-trained VGG-19 (red) and noise-trained VGG-19 (blue) at 
classifying vehicles in noise-free or noisy weather conditions. Noise-trained VGG-19 outperformed pre-
trained VGG-19 at recognizing noisy vehicle images (top1 accuracy, χ2 = 10.29, p = .0013; χ2 = 10.26, p 
= .0014). c Top1 and top5 accuracies sorted by noise-level rating. A statistical difference in performance 
was observed between models when the noise level was moderate or strong (χ2 > 4.5, p < .05 in all 
cases). Top5 accuracy means that the correct answer must come from one of the 5 categories with the 5 
highest probabilities from a DNN model. Asterisks indicate * p < .05, ** p < .01. 

 

2.4 Discussion 
 
Visual noise is particularly detrimental to the recognition process of many CNN models (Dodge 
and Karam, 2017; Geirhos et al., 2018; Jang and Tong, 2018; Tong and Jang, 2021). In the 
present study, we show that CNNs not only fail to recognize noisy objects but also exhibit a 
pattern of responses to noise that qualitatively differs from that of human observers. Pixelated 
Gaussian noise which does not have a geometric structure itself tends to severely degrade CNN 
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performance. By contrast, humans are poorer at recognizing objects corrupted by Fourier 
phase-scrambled noise. This disparity suggests that CNNs do not process objects in the same 
manner as humans do under noisy conditions. 
 
We further evaluated whether noise-trained CNNs could provide a viable model to predict 
human behavior in noisy viewing conditions. We observed that those CNNs showed not only 
better performance at recognizing noisy objects than standard CNNs but also higher 
correspondence to human behavior in multiple aspects. For example, a previous study reported 
that CNNs failed to predict the patterns of human behavioral performance for individual image 
difficulty levels (Rajalingham et al., 2018), but we found that noise-trained CNNs fairly well 
predicted the recognition thresholds of humans on an image-by-image basis, significantly better 
than standard CNNs. Moreover, the noise-trained CNNs reliably captured the diagnostic 
features of objects obtained from human observers. Furthermore, we found that the brain 
responses to noisy objects in the lower and higher visual areas were better accounted for by 
noise-trained CNNs. This finding provides supportive evidence that CNNs still can provide a 
viable model for human vision in line with the previous studies (Yamins et al., 2014; Yamins and 
DiCarlo, 2016), even under degraded viewing conditions, but only if they are trained on noisy 
objects. Collectively, our findings provide multi-faceted evidence that noise training allows CNNs 
to learn noise-robust features that are presumably employed by humans. 
 
While the present study focused on the capabilities of the standard and noise-trained CNNs in 
predicting human behavior with noisy objects, fundamental questions still remain open: what do 
the noise-robust features represent and how are they achieved via noise training? From a 
manifold learning perspective, the network seems to learn intrinsic mapping functions to project 
corrupted examples back onto the manifold (Vincent et al., 2008). A study with a single-layer 
denoising autoencoder has demonstrated that more distinctive and less local features were 
achieved as the amount of noise added into inputs was increased (Vincent et al., 2010). 
However, if noise levels become too severe, they can become harmful to learning as was found 
in Figure 5, suggesting that there may be an upper bound of noise training in the achievement 
of noise-robust features. More interestingly, our layer-specific noise susceptibility analysis 
reveals that noise training has a larger impact on the middle and higher layers of the network, 
while the low-level features remain mostly unchanged (Figure 7). This finding is of particular 
interest, because it tells us that the mitigated noise effect was not attributed to the low-level 
features simply better filtering out the noise, but involved with hierarchical processing of 
denoising. We will further explore the nature of the denoising process across layers in the 
following chapter. 
 
Another natural question that could arise is whether the robust nature of object recognition in 
humans is achieved by, at least in part, real-life visual experience with noise. In the auditory 
system, humans may naturally learn to develop a robust system to auditory noise because the 
noise is highly prevalent in the real world (Kell et al., 2018; Kell et al., 2019). However, by 
comparison, visual noise in the real world (e.g., seeing through a glass window on a rainy day or 
seeing scenes through flakes of snow) is relatively rare. One possibility is that, though they 
rarely occur, they may impact significantly on the visual recognition system. Another possibility 
is that noise training may act as internal noise in biological visual systems (Faisal et al., 2008). 
For instance, the detection of individual photons by photoreceptors is known to follow a Poisson 
process, which creates some degree of uncertainty to visual systems (Pouget et al., 2000). 
Whether or how much visual noise contributes to developing robust biological systems is an 
unexplored question, probably because it is not readily feasible to design a control biological 
model that only transmits clean signals. 
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Finally, we have demonstrated that the effect of noise training could generalize to unseen noise 
types, depending on which types of noise are trained and tested (Figure 10). This is somewhat 
contradictory to the recent claim by Geirhos et al. (2018), who reported extremely poor 
generalization abilities of CNNs to untrained noise types. Even when CNNs were trained with 
salt-and-pepper noise and tested with uniform noise, they showed almost zero generalization 
performance, while they seemed visually relevant. The main difference we could identify is that 
we performed noise training based on pretrained models, while Geirhos et al. (2018) did not use 
any pretrained models for noise training, which possibly led to over-fitting due to the small 
number of training samples. We also found that a network trained with both pixelated Gaussian 
noise and Fourier phase-scrambled noise showed a meaningful benefit at recognizing vehicles 
in real-life noisy conditions (Figure 11). These findings suggest that it may be not necessary to 
train all types of noise but rather a well-chosen subset to build a universal noise-robust model, 
potentially useful for certain applications such as autonomous driving. It will be of future interest 
to identify what are the representative noise categories needed to be trained for the general 
purpose of designing a universal robust model.   
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3. Exploring the hierarchical nature of the noise-robust object 
recognition system 
 

3.1 Introduction  
 
Object recognition in real-world environments involves varying degrees of uncertainty, for 
example, detecting an object occluded by clutter or recognizing a friend’s face wearing a mask. 
As complete information is not always available, inferring hidden patterns given limited visibility 
is often needed to perform daily visual tasks. Despite its inherent challenge, human object 
recognition is surprisingly stable across variations in the amount of information provided. To 
understand the robust nature of the human object recognition system, vision scientists have 
traditionally employed visual noise (Harmon and Julesz, 1973; Morrone et al., 1983), as it 
enables a systematic evaluation of performance as a function of the ratio of signal to noise.   
 
Research has demonstrated that human observers can further improve in their robustness to 
noise via extensive training procedures (Dosher and Lu, 1998; Gold et al., 1999; Gold et al., 
2004; Dosher and Lu, 2005; Dosher et al., 2013). The underlying mechanisms of this learning-
induced robustness enhancement have been characterized by an observer model in which 
external noise and addictive or multiplicative internal noise are defined. Based upon signal 
detection theory (Tanner and Swets, 1954), d-prime can be experimentally quantified by 
measuring contrast thresholds with varying degrees of external noise across training sessions. 
Previous studies have concluded that learning increases the efficiency of perceptual templates 
in extracting useful signal from noise (Gold et al., 1999; Gold et al., 2004) and may possibly 
reduce internal additive noise (Dosher and Lu, 1998). Neurophysiological studies have provided 
additional insights into the underlying mechanisms of enhanced robustness. Rainer and his 
colleagues trained monkeys to recognize objects with varying degrees of noise and examined 
learning-related changes in area V4 and prefrontal cortex (Rainer and Miller, 2000; Rainer et al., 
2004). They found that V4 neurons exhibited selective enhancement of neural activity at 
intermediate levels of noise (i.e., an inverted U-shape profile as a function of noise degradation; 
Rainer et al., 2004), whereas prefrontal neurons demonstrated a leftward shift in the neural 
response curve of signal intensity (Rainer and Miller, 2000).  
 
The results above may seem surprising given that humans already appear to have a highly 
robust recognition system against noise even without training (Jang and Tong, 2018). According 
to the literature (Gold et al., 1999; Gold et al., 2004; Dosher and Lu, 1998), this improvement 
can be accounted for by at least two mechanisms; one, that humans rarely experience visual 
noise in real life and thus extensive training with noise effectively alters hard-wired visual 
channels better filtering out noise, or, two, that training with noise leads humans to be better 
sensitive to a particular set of stimuli by selectively transmitting the relevant signals from noise. 
These two effects do not necessarily coincide, because the first implies that the effect of training 
would be specific to noise, whereas the second implies that the effect of training would be 
specific to the stimulus. Over the rest of the project, we aimed to assess these two effects and 
examine the nature of noise training.  
 
As we have shown that CNNs can successfully improve their robustness via noise training in 
Chapter 2, another important question is whether humans and CNNs would benefit from noise 
training in a similar manner. Given that CNNs have been suggested to share commonalities with 
biological visual systems (Yamins et al., 2014; Yamins and DiCarlo, 2016; Güçlü and Gerven, 
2015), they may benefit similarly. On the other hand, Chapter 2 has revealed that CNNs appear 
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to lack a basic mechanism for noise robustness, so they may benefit differently to achieve 
robustness.  
 
To address these questions, we developed a learning paradigm where human observers were 
trained on an object recognition task with natural images in the presence of random Gaussian 
noise. We adopted a pretest-posttest experimental design, where individual observers were 
evaluated on their robustness to noise before and after training. This was quantified as the 
threshold of noise level at which recognition performance reached 57% of accuracy and was 
estimated by a QUEST staircase procedure. In each trial of the training procedure, human 
observers were displayed by a noised image where its signal-to-noise ratio became gradually 
higher. The observers reported an object category out of 16 choices (8 animate and 8 
inanimate) when it was recognizable and received accuracy feedback that incentivized them to 
respond faster and more accurately. To actively engage them in learning, they were asked to 
identify the most informative features in noise by annotating with a mouse pointer. 
 
It should be noted that although previous studies have shown that human observers could 
improve in their robustness to noise via training, the studies either tested on a simple 
recognition task such as orientation discrimination (Dosher and Lu, 1998; Dosher and Lu, 2005; 
Dosher et al., 2013) or used identical stimuli for training and testing (Gold et al., 1999; Gold et 
al., 2004; Rainer and Miller, 2000; Rainer et al., 2004). Therefore, it was not determined 
whether those findings would generalize to our task which used complex object stimuli in natural 
backgrounds and tested on a novel image set. Moreover, we have seen in Chapter 2 that noise 
training greatly enhanced the robustness of CNNs, but this may not be necessarily the case for 
human observers.  
 
Next, we sought to disentangle the two potential effects of noise training in a second 
experiment. We used the same learning paradigm as the first experiment but divided observers 
into two separate groups: One group was trained by animate categories and the other group 
was trained by inanimate categories. Both groups were evaluated on their robustness to noise 
before and after training using all animate and inanimate categories. There are two possible 
outcomes from the experiment. If their noise robustness increased even when they were tested 
on untrained categories, this would indicate that noise training has a category-general effect. If 
their noise robustness increased only when they were tested on trained categories, this would 
mean that noise training has a category-specific effect. Similarly, two separate CNNs were 
trained, one on noisy objects from animate categories and the other on noisy objects from 
inanimate categories. 
 
We first found that both human observers and CNNs successfully improved their robustness 
and generalized well across objects within the category. However, when the categories that 
were not trained with noise were tested, human observers failed to demonstrate a significant 
benefit of training. By contrast, CNNs showed a modest level of generalization to the categories 
that were not trained with noise (i.e., category-general effects), though not as much as when 
tested on the categories trained with noise (i.e., category-specific effects). Furthermore, we 
applied the layerwise noise susceptibility analysis, similarly as in Chapter 2, to elucidate the 
effects of noise training across the layers of CNNs. It revealed that the category-general effect 
was most pronounced at the early and middle layers of the CNN, whereas the category-specific 
effect was mainly observed at the middle and higher layers. These findings suggest that the 
robust nature of our object recognition may be accomplished by a multi-stage process along the 
visual hierarchy.  
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3.2 Materials and methods 
 
Participants 
We recruited 20 participants in behavioral experiment 1 and another group of 32 participants in 
behavioral experiment 2. None of them participated in both experiments. All participants 
reported having normal or corrected-to-normal visual acuity, and provided informed written 
consent using electronic consent forms (REDCap). Participants received monetary 
compensation or credits for a course. All aspects of this study followed the guidelines of and 
were approved by the Vanderbilt University Institutional Review Board. 
 
Visual stimuli 
Visual stimuli were collected from the ILSVRC-2012 dataset (Russakovsky et al., 2015). We 
selected 16 categories out of 1,000 which consisted of 8 animate and 8 inanimate objects 
including bear, bison, elephant, hamster, hare, lion, owl, tabby cat, airliner, couch, jeep, 
schooner, speedboat, sports car, table lamp, teapot. All test images were grayscaled to remove 
strong color cues but only preserving local spatial information. 
 
The level of presented noise was manipulated by varying the signal-to-noise ratio of images, 
which followed the method in Chapter 2. To briefly recap, we introduced a signal-to-signal-plus-
noise ratio (SSNR) as w in T = w∙S + (1–w)∙N, where S is a source image, N is noise, and T is a 
target image where noise is added to the original source image. The full range of SSNR levels 
can vary from noise only (SSNR = 0) to signal only (SSNR = 1). The range of pixel intensities for 
S and N were all set to 0-1. For visual noise N, we generated random noise sampled from a 
Gaussian distribution centered at 0.5 with a standard deviation of 1/3 so 99.97% of pixel 
intensities were in the range of 0-1. Pixels exceeding this range were clipped to fall within the 0-
1 range.  
 
Behavioral experiment 1 
In the first experiment, we sought to test whether human observers could improve on their 
robustness to noise after extensive training of a recognition task with noisy objects. To do so, 
we developed a learning paradigm based on a pretest-posttest experimental design. For the 
training procedure, 800 images from the ImageNet validation set were displayed throughout 4 
sessions. On each trial, participants viewed an image where a target object gradually emerged 
from noise as the SSNR level increased from 0 to 1 by 0.025 every 400ms. Participants paused 
at the SSNR level where the target was recognizable and performed a sixteen-alternative 
forced-choice categorization task. They were rewarded for responding faster and more 
accurately by monetary incentives and received accuracy feedback every trial. In addition, 
participants were asked to identify the most informative features in noise by annotating region(s) 
using a mouse pointer, which potentially helped them better engage in learning. This annotation 
task occurred in-between after the category response and before feedback. Participants 
performed practice trials prior to the main experiment to get familiar with the whole procedure 
using another novel image set. 
 
Before and after the training procedure, all participants were evaluated on their robustness to 
noise using a QUEST staircase procedure (Watson and Pelli, 1983). In QUEST, the accuracy-
SSNR curve of an observer was assumed to follow a Weibull psychometric function, and prior 
knowledge was continuously updated on a trial-by-trial basis based upon the observer’s 
response and used to determine the SSNR level of the next stimulus. The parameters of the 
Weibull function were pre-estimated based on the average recognition accuracy by SSNR curve 
acquired in Chapter 2: beta (4.07), delta (0.15), and gamma (0.0625). The noise robustness 
was determined by an SSNR threshold level with a 57% performance criterion (inflection point) 
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in a 48-trial run, where the prior threshold estimate and standard deviation were initially set to 
0.5 and 0.4, respectively.  
 
The 96 test images (6 examples per category) used in the pretest and posttest sessions were 
collected from the ImageNet training dataset. We recruited 4 independent raters (including one 
of the authors) to determine the noise thresholds of all 96 images by using the same procedure 
as in the main experiment but without the annotation task. Based on the reported noise 
thresholds, two separate image sets (48 for each) whose difficulty levels were closely matched 
were assigned to the pretest and posttest, with the assignment mapping counterbalanced 
across participants. To minimize potential demand characteristics, experimenters did not 
mention to participants that the purpose of the study was related to learning. 
 
Behavioral experiment 2 
The follow-up experiment was designed to answer the question: Is training with noise category-
specific or category-general? A total of 32 participants were assigned to one of two groups. Half 
of the participants (odd numbers) underwent training with animate categories and the other half 
(even numbers) underwent training with inanimate categories. For each group, 400 images 
were shown over 3 sessions. Most participants completed all sessions within a week. The 
training procedure was identical to Experiment 1.  
 
Similarly, the QUEST procedure was used to measure the noise robustness of individual 
observers before and after training. Regardless of the category types on which they were 
trained, all participants were tested with both animate and inanimate categories. Three raters 
were recruited to report the noise thresholds of 192 images obtained from the ImageNet training 
set in the same manner as Experiment 1. Based on the reported noise thresholds, 4 sets of 
images (48 for each) were created with their average difficulty levels closely matched. Two of 
them were used for pretest and the other two were used for posttest. The assignment order was 
counterbalanced across participants. Two QUEST runs were carried out at the pretest or 
posttest to measure the noise robustness with animate and inanimate categories, separately. 
Whether animate or inanimate categories were tested first was also counterbalanced across 
participants within an animate/inanimate training group. All other parameters and settings for 
QUEST were identical to Experiment 1. 
 
Training of convolutional neural networks 
In this study, we evaluated 6 CNNs including AlexNet, VGG16, VGG19, GoogLeNet, ResNet50, 
and Inception-v3 (Krizhevsky et al., 2012; Simonyan et al., 2014; Szegedy et al., 2015; He et al., 
2016; Szegedy et al., 2016), and primarily relied on AlexNet and VGG19 for layerwise analyses. 
All networks were initialized with ImageNet pretrained weights and further trained on noisy 
objects from 16 categories. Noisy training images were generated by randomly sampling object 
images for each training batch and determining the SSNR level for each object by randomly 
sampling from a uniform distribution ranging from 0.2 to 1. We adopted the standard data 
augmentation methods of PyTorch that are commonly used in image classification, i.e., 
RandomResizedCrop and RandomHorizontalFlip. Images were resized to 224 × 224 grayscale 
images, and then converted to RGB by concatenation to fit them to the pretrained models. 
Individual images were normalized by the mean (0.449) and standard deviation (0.226) of the 
ImageNet training samples. The networks were trained using a stochastic gradient descent 
optimizer with a fixed learning rate of 0.01 and a weight decay of 0.0001 for 100 epochs. For our 
control CNNs, the same pretrained models were trained on noise-free images from 16 
categories using the same procedures described above. All training experiments were 
conducted using PyTorch.  
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Layerwise noise susceptibility analysis 
For the layerwise noise susceptibility analysis, we first evaluated the consistency of the activity 
patterns evoked by objects presented in progressively greater levels of noise via correlation. To 
be specific, we calculated the Pearson correlation coefficient between the responses to an 
individual noise-free image and to the same image presented at varying SSNR levels. We 
assumed that, if the network maintained high robustness to noise, the responses to noisy 
images would be quite similar to those evoked by noise-free images, and indeed we observed a 
monotonic increase in correlation strength with increasing SSNR levels (data not shown). The 
analysis was performed on all layers of VGG19 including 16 convolutional layers and 3 fully 
connected layers. The correlation by SSNR curve was rescaled to 0-1 to get rid of any 
remaining offsets at 0 SSNR. A logistic function was fitted to the correlation by SSNR curve for 
each layer, and the SSNR level at which the correlation strength reached 0.5 was identified as 
the SSNR threshold.  
 
In addition to the correlation-based SSNR threshold, we trained 16-way support vector 
machines on the layerwise activity patterns evoked by noise-free objects obtained from the 
ImageNet training set (1300 images per category). The trained classifiers were then tested on 
the 800 ImageNet validation images presented at varying SSNR levels. The SSNR level at 
which classification accuracy reached 50% was identified by fitting a logistic function and served 
as the classification-based SSNR threshold.  
 

3.3 Results 
 
We first sought to determine whether human observers would achieve better robustness to 
noise via noise training. This was previously observed for CNNs in Chapter 2 (Figure 6) but was 
not evaluated in humans. To this end, 20 human observers participated in training sessions 
where they performed a 16-way classification task under stress-test visual noisy conditions with 
trial-by-trial feedback. Their SSNR thresholds which corresponded to 57% of accuracy 
performance were estimated by a novel image set from the same 16 categories using a QUEST 
procedure before and after noise training. Correspondingly, six ImageNet pretrained CNN 
models (Krizhevsky et al., 2012; Simonyan et al., 2014; Szegedy et al., 2015; He et al., 2016; 
Szegedy et al., 2016), including AlexNet, VGG16, VGG19, GoogLeNet, ResNet50, and 
Inception3, were further trained on the same 16 categories with a wide range of noise levels 
included (i.e., from 0.2 to 1.0 SSNR). The SSNR thresholds of the 6 CNNs were similarly 
estimated by a novel image set before and after noise training. Figure 12a shows the SSNR 
thresholds of human observers and CNNs before and after noise training. Both significantly 
improved in their robustness to noise. In particular, CNNs initially showed poor robustness with 
approximately an SSNR threshold of 0.6 but achieved near human-level performance after 
training. This result suggests that the effect of noise training can successfully generalize at least 
across different objects within the same category. 
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Figure 12. a SSNR thresholds of human observers and CNNs before (gray) and after (blue) noise 
training. b Correlation-based SSNR thresholds of VGG19 before (gray) and after (blue) noise training. 
Higher SSNR thresholds indicate greater susceptibility to noise. c Classification-based SSNR thresholds 
of VGG19 before (gray) and after (blue) noise training.  

 
A layerwise noise susceptibility analysis was performed based on either Pearson correlation 
(Figure 12b) or an SVM classifier (Figure 12b) in order to assess the effect of training across 
layers of the CNN. VGG19 was selected for analysis. The results were identical to those in 
Chapter 2 (Figures 7b-c), as they only differed in which deep learning package was used for 
training. Both demonstrated that noise training successfully decreased the SSNR thresholds 
across all layers and the effect of training appeared to be amplified as the layer increased. 
 
Next, we tested whether observers would still benefit from noise training if the categories we 
tested were different from the ones we trained with noise. If an observer showed improvement 
in robustness even when novel categories that were never trained with noise were tested, it 
would indicate that noise training has a category-general effect; otherwise, noise training has 
only a category-specific effect. We divided a total of 32 human observers into 2 groups, one 
trained with animate objects presented in noise and the other trained with inanimate objects 
presented in noise. All participants were tested on their SSNR thresholds for both animate and 
inanimate objects before and after training. Correspondingly, two separate CNNs trained on 
either noisy animate or noisy inanimate objects were tested on their SSNR thresholds for both 
object categories before and after noise training. Interestingly, human observers and CNNs 
demonstrated different patterns of improvement in noise robustness (Figure 13a). The 
recognition performance of human observers significantly improved when the trained and tested 
categories were identical, as consistent with Figure 12a, whereas little improvement was seen 
when the trained and tested categories were different. By contrast, CNNs showed significant 
improvement regardless of the type of categories, though they exhibited greater benefit when 
the trained and tested categories were identical. 
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Figure 13. a SSNR thresholds of human observers and CNNs before (gray) and after (blue, trained on 
animate categories; red, trained on inanimate categories) noise training. b Correlation-based SSNR 
thresholds of VGG19 before and after noise training. Higher SSNR thresholds indicate greater 
susceptibility to noise. c Classification-based SSNR thresholds of VGG19 before and after noise training.  

 
In the same manner, the layerwise noise susceptibility analysis was performed in two scenarios: 
one under the condition where the network trained on animate categories with noise were tested 
on animate categories and the other under the condition where the network trained on animate 
categories with noise were tested on inanimate categories, or vice versa. Strikingly, the effect of 
noise training appeared to differ at different levels of the CNN. The correlation-based SSNR 
thresholds substantially decreased in early layers, compared to the control network, regardless 
of whether that category was trained with noise or not (Figure 13b), indicating the category-
general effect. However, the difference between the two conditions (i.e., trained and tested on 
the same categories vs. trained and tested on different categories) became pronounced at the 
middle layers and larger in the higher layers. When the network was tested on trained 
categories, the SSNR thresholds continued to decrease, whereas the network was tested on 
untrained categories, the SSNR thresholds rather increased again. This suggests that the 
higher layers of the CNN mainly benefit from noise training only when the objects from trained 
categories were processed, indicating the category-specific effect. The same pattern was 
observed by the classification-based SSNR thresholds (Figure 13c).  
 
The observation that human observers did not show category-general effects led us to think that 
humans may already possess general noise-robust mechanisms allowed to handle certain 
levels of noise. If so, would the CNN pretrained on weak noise levels better capture the 
robustness pattern of human observers? In other words, what if the network is initially trained on 
both animate and inanimate categories by weak noise levels (i.e., category-general training by 
0.5 to 1.0 SSNRs) and further trained on either one of the two categories by strong noise levels 
(i.e., category-specific training by 0.2 to 1.0 SSNRs)? We found that the category-specific effect 
was still observed, while the category-general effect in CNNs disappeared (Figure 14a). 
Accordingly, the robustness pattern by human observers was now better captured by those 
CNNs; however, interestingly, training with inanimate categories presented in strong noise 
rather harmed the performance when tested on animate categories compared to initial training 
with both categories by weak noise. This pattern was not observed in humans. This was further 
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elucidated by the layerwise noise susceptibility analysis (Figures 14b-c). The category-general 
effect marginally existed in the early layers, whereas the category-specific effect rather 
detrimentally influenced the middle and higher layers of the network.  
 

 
Figure 14. a SSNR thresholds of human observers (identical to Figure 13a, but displayed for 
comparison) and CNNs after category-general training by weak noise levels (gray) and after category-
specific training by strong noise levels (blue, trained on animate categories; red, trained on inanimate 
categories). b Correlation-based SSNR thresholds of VGG19 after category-general training by weak 
noise levels and after category-specific training by strong noise levels. c Classification-based SSNR 
thresholds of VGG19 after category-general training by weak noise levels and after category-specific 
training by strong noise levels.  

 

3.4 Discussion 
 
In the present work, we examined the robust nature of object recognition by comparing human 
observers and CNNs in their learning capabilities of noise robustness. Though the effect of 
noise training was well generalized to novel images within the same categories in both human 
observers and CNNs, they exhibited a marked difference when tested on noisy examples from 
the categories that were never trained with noise. Human observers were only able to improve 
their robustness when tested on the categories they were trained on with noise, whereas CNNs 
demonstrated some degree of generalization to untrained categories. This result again supports 
the idea that CNNs would have a fundamentally different system in a way of coping with noise 
compared to humans. That is, CNNs do not seem to possess any basic mechanisms for robust 
object processing, as contrasted to humans exhibiting only category-specific learning effects. 
 
We also found that different hierarchical levels of CNNs appeared to involve robust object 
processing in different manners. Our layerwise susceptibility analysis showed that the category-
general noise training effect emerged as early as the second or third layer of the CNN, 
suggesting that the early level of the visual system needs to be changed to acquire category-
independent robustness against noise. By comparison, the category-specific effect was more 
prominent at the middle and higher layers. Although the principles of learning and attention 
would differ from each other, our findings remind the previous neuroimaging study by Pratte et 
al. (2013), demonstrating that top-down attention would act as an external noise filter in the 
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early stage of visual processing (as it may correspond to the category-general and noise-
specific effect of noise training) and act as a target-relevant signal amplifier in the later stage (as 
it may correspond to the category-specific effect of noise training).  
 
A few fundamental questions still remain to be clarified. How do the models achieve stronger 
robustness to noise? In other words, what are the mechanisms underlying the category-general 
and category-specific effects of noise training? One possible strategy is the principle of 
averaging to mitigate the detrimental impact of noise such that different neurons transmit the 
same signal so it can increase signal power while mitigating noise. This would unavoidably lead 
to an increased redundancy in signal processing, but would lead a model to be better robust to 
noise. Stringer et al. (2019) has demonstrated that biological neural networks may be optimized 
on the verge of satisfying both efficiency and robustness, which is possibly lacked in CNN 
models. 
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4. Fundamental differences in face and object processing with a 
developmental sequence of blurry to clear image training 
 
 

4.1 Introduction  

 
The symptom of blurry vision is one of the most common problems in optometry and 
ophthalmology. It can be caused by refractive errors such as myopia, hyperopia, and 
astigmatism, or by retinal deficits such as glaucoma and cataract. Often neglected, however, is 
the fact that a person who has normal or corrected-to-normal visual acuity also experiences 
blurry vision in daily life. For instance, objects that appear farther away from the central field of 
vision look less distinct because of the larger receptive fields of ganglion cells in the periphery of 
the retina (Strasburger et al., 2011). In addition, when a person fixates a particular object is 
focused, objects which are either nearer or further than the current focus can appear blurred on 
the retina (Sprague et al., 2016). The ability to recognize such blurry objects is often important 
for our daily visual tasks such as navigating through dense crowds or crossing streets where the 
traffic is heavy. From an evolutionary perspective, rapid predator detection in the periphery is a 
life-and-death necessity.  
 
Behavioral studies have demonstrated that humans are surprisingly good at recognizing blurry 
objects. Thorpe et al. (2001) examined if human observers were able to determine whether a 
stimulus contains an animate or inanimate object by varying the location of the stimulus across 
the horizontal visual field and observed well-above chance performance at the extreme 
eccentricity of 70.5⁰. Dodge and Karam (2017) have shown that human observers exceeded 
chance-level performance in a 10-alternative forced-choice dog breed categorization task when 
the stimulus was highly blurred. Given that blurry objects inevitably entail the loss of fine-
detailed information, it is surprising how humans well can recognize objects across a range of 
blur levels. Would this robust nature of the human recognition system be attributed to a 
particular mechanism in the visual system or learned via experience? 
 
Though many possible explanations could exist, the observation that visual acuity in infants is 
very poor at birth but rapidly improves over the first year of life (Dobson and Teller, 1978) 
particularly motivated us to explore whether early experiences with blurry vision during infancy 
may confer some ecological benefit in developing robust recognition systems. This hypothesis 
has been originally suggested by clinical studies of patients born with congenital cataracts. The 
patients who lost the opportunity of experiencing a developmental period of blurry to clear vision 
later exhibited severe deficits in configural face processing even though they received treatment 
(e.g., days of deprivations were 53 to 586 in Geldart et al., 2002) and had at least 9 years of 
experience with clear vision (Le Grand et al., 2001; Geldart et al., 2002). Other studies have 
also found that these patients demonstrate poor performance at illusory contour perception 
(Putzar et al., 2007) and at using pictorial depth cues (McKyton et al., 2015). These findings 
suggest that the early developmental sequence of blurry to clear visual inputs may be critical for 
developing integrative feature-binding processes, which may contribute to the robustness of 
human object recognition.   
 
If this hypothesis is true, can this idea be applied to CNNs as a means to improve their object 
recognition skills to be more robust? Recent studies have shown that CNNs are exceptionally 
poor at recognizing blurry objects as compared to human observers (Dodge and Karam, 2017; 
Geirhos et al., 2018). The poor robustness of CNNs might be a consequence of the lack of early 
training period with blurry inputs, as suggested by the findings with congenital cataract patients. 
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That is, it is conceivable to think that a developmental sequence of blurry to clear image training 
may allow CNNs to develop object recognition skills based on more human-like and blur-robust 
features. A recent study has directly addressed this hypothesis and has offered some support 
for this view (Vogelsang et al., 2018). The authors initially trained a CNN with blurry face 
images, followed by clearer ones, and observed that the CNN showed greater robustness to a 
wide range of blur levels than a control CNN trained exclusively with clear face images. 
Furthermore, the CNN progressively trained with blurry to clear faces were shown to have larger 
receptive fields at the earliest layer than the control CNN, which supported the view that a 
sequence of blurry to clear image training promotes integrative feature processing of faces. 
 
On the other hand, it is conceivable that these reported findings with faces may not be directly 
applicable to general object recognition. A long-standing view is that faces are a special 
category of objects; humans are experts at identifying different faces, despite the considerable 
challenges due to the highly similar and shared configuration across faces (Tong and 
Nakayama, 1999; Sinha, 2002). The high proficiency of face processing may naturally arise 
from its social significance as a developmental necessity to interact with caregivers and others. 
Many neurophysiological and neuroimaging studies have indicated that the face recognition 
system is supported by distinct neural regions that are separate from those that represent other 
object categories (Kanwisher et al., 1997; Farah et al., 2000; Grill-Spector et al., 2001; Tsao et 
al., 2006; Moeller et al., 2008). In particular, faces are known to engage holistic processing by 
which a face is perceived as a whole rather than a combination of its parts (Farah et al., 1998). 
Previous studies have suggested that the low spatial frequency component of faces plays an 
important role in characterizing face holistic processing (Goffaux et al., 2003; Goffaux and 
Rossion, 2006; Harel and Bentin, 2009). This collective body of literature raises the possibility 
that CNN training with a sequence of blurry to clear faces was successful because face 
recognition favors low spatial frequencies; as a consequence, this might not necessarily be the 
case for general object categories.  
 
To evaluate these issues, we trained AlexNet on 1,000 ImageNet object categories using a 
sequence of blurry to clear images and evaluated its performance by comparing it to a control 
version of AlexNet trained with only clear images. Contrary to the findings reported by 
Vogelsang et al. (2018), we failed to observe any beneficial effect of training with blurry to clear 
object images. By probing each sequence of training, we observed that initial training with blurry 
objects led to good performance on blurry test objects, but this improvement quickly diminished 
after training with progressively clearer images. Furthermore, the distribution of spatial 
frequency preferences of the object-trained CNN rapidly shifted from low to high spatial 
frequencies, whereas the face-trained CNN maintained a preference for lower spatial 
frequencies across subsequent stages of training. We conducted two control analyses by 
matching the power spectrum of face and object training images and by training and testing 
CNNs on object categorization at subordinate as well as superordinate levels. Nevertheless, we 
still failed to find any significant benefit of sequential training with blurry to clear objects. We 
should note that our results do not necessarily contradict the idea that a developmental 
sequence of blurry to clear visual experience may be beneficial, since we observed a clear 
benefit in face processing. Rather, our findings suggest that object recognition favors the 
processing of fine-detailed information of object features, while faces are more processed in a 
holistic manner by which low spatial frequencies are sufficient for recognition.  
 

4.2 Materials and methods 
 
Visual stimuli 
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Face images were collected from the FaceScrub database (Ng & Winkler, 2014), which 
consisted of 100,000 face images sampled from 530 celebrities. The dataset only provided the 
URLs to the images, and if image URLs were invalid (as of October 13, 2019), those images 
were excluded. We also excluded any face identities with fewer than 100 examples. This 
resulted in a final face image dataset with 395 face identities to train CNNs on face recognition. 
Object images were obtained from the ILSVRC-2012 or ImageNet database (Russakovsky et 
al., 2015), which has 1,000 object categories with roughly 1.25 million training and validation 
images. All 1,000 object categories were used to train the object-trained CNNs. All stimuli were 
converted to grayscale and resized to 224 x 224 pixels to meet the image processing 
requirements for CNNs.  
 
For our behavioral face recognition task, we chose 10 celebrities (5 females and 5 males) who 
we considered likely to be well known to the general public: Jennifer Aniston, Mila Kunis, Ellen 
Degeneres, Selena Gomez, Anne Hathaway, Jim Carrey, Matt Damon, Robert Downey Jr., 
Ryan Gosling, and Samuel L. Jackson. One of the authors reviewed and sorted out mislabeled 
or idiosyncratic photographs of faces. Furthermore, we excluded any images that shared a 
pixel-wise correlation exceeding 0.9 with any other image. The final face image set consisted of 
80 images per celebrity or 800 images in total. Regarding image variability, the face images of a 
given celebrity could vary to a considerable degree due to variations in lighting, viewpoint 
(ranging from front to three-quarter view), facial expression, hairstyle, make-up, facial hair, age 
and/or accessories worn (e.g., glasses, hat). We applied a Gabor wavelet pyramid model with 5 
spatial scales and 8 orientations to calculate the Pearson correlational similarity of simulated 
complex cell responses to the images. Normalization was first applied to the all responses at a 
given spatial scale to control for greater power at lower spatial frequencies. The pairwise 
correlational similarity of face images was somewhat greater for within-celebrity comparisons 
(mean r = 0.464, sd = 0.141) than between celebrities (mean r = 0.405, sd = 0.122).  
 
For the behavioral object recognition task, 16 object categories were selected to compare 
human and CNN performance: bear, bison, elephant, hamster, hare, lion, owl, tabby cat, 
airliner, couch, jeep, schooner, speedboat, sports car, table lamp, and teapot. Half of the object 
stimuli were animate and the other half were inanimate. Fifty images per category from the 
ImageNet validation dataset were used, and thus we had 800 images in total. We performed the 
same Gabor wavelet pyramid model analysis to the object images. The correlational similarity of 
the object images was somewhat greater for within-category comparisons (mean r = 0.292, sd = 
0.159) than between category (mean r = 0.255, sd = 0.148). As expected, the object images 
were more heterogeneous than the face images, and within-category (or within-identity) images 
shared somewhat greater low-level similarity than between-category images. 
 
To generate the blurred images, we applied a Gaussian kernel to each image, adjusting the 
standard deviation (σ) of the Gaussian function to attain different levels of blur. All image 
processing was performed using MATLAB. For both behavioral experiments, all images were 
upsampled by a factor of 2 for presentation on a CRT monitor at a size of 19 × 19 degrees of 
visual angle.  
 
Participants 
We recruited 20 participants to take part in the behavioral object recognition study. A separate 
group of 20 participants were recruited to take part in the face recognition study. Each of the two 
studies required approximately 1 hour to complete. All participants reported having normal or 
corrected-to-normal visual acuity and provided informed written consent. The study was 
approved by the Institutional Review Board of Vanderbilt University. Participants were 
compensated monetarily or through course credit.  
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Behavioral experiments 
We measured the abilities of human observers at recognizing faces and objects presented with 
varying degrees of blur (σ = 0, 1, 2, 4, 8, 12, 16, 20, 24, and 32). Here, σ = 0 indicated clear 
images without any blurring. Eight face images per celebrity were assigned to each blur level for 
the face recognition task, while five images per object category were assigned to each blur level 
for the object recognition task. Both experiments consisted of a total of 800 images, with 80 
images presented at each blur level. Image assignment across blur levels was counterbalanced 
across participants and the order of image presentation was randomized.  
 
Each visual stimulus was briefly presented for 200 ms on a gray background, subtending a 
visual angle of 19°. After stimulus presentation, participants were asked to report the face 
identity or object category by entering in a corresponding number code on a numerical pad. The 
correspondence between the number code and the stimulus identity remained on the screen 
throughout the study. The mapping between number codes and stimulus identity was 
counterbalanced across participants. The experiment required approximately 1 hour to 
complete, including informed consent, instructions, and debriefing. The experiment was 
implemented using MATLAB and the Psychophysics Toolbox (http://psychtoolbox.org/). 
 
Training of convolutional neural networks 
The majority of all CNN experiments and analyses were performed using AlexNet, which can 
achieve a high level of classification performance while still being quite fast to train from scratch  
(Krizhevsky et al., 2012). We performed supplementary analyses using VGG-19, which is a 
deeper CNN with greater learning capacity (Simonyan & Zisserman, 2014).  
 
With the face dataset of 395 celebrities, we divided the images into separate training and 
validation sets using an approximately 90/10 split. On average, this led to 117 examples per 
identity for training and 13 examples per identity for validation. For object images obtained from 
ImageNet, we used their training images (~1.2 million) for training and their validation dataset 
(50k images) for testing the CNNs. For data augmentation, the training images were randomly 
rotated from -10⁰ to +10⁰ and about half were flipped about the vertical axis. Across all images 
within a training set, we calculated the mean and standard deviation of the pixel intensity values 
and used these values to normalize the pixel intensities of the images.  
 
The models were trained using stochastic gradient descent with a fixed learning rate of 0.01, 
momentum of 0.9, and weight decay of 0.0001. To train the network initially with blurred images, 
we applied a Gaussian kernel with the standard deviation of σ = 8, and subsequently reduced 
the blur level to 4, 2, 1, and 0. The blur level was changed every 100 training epochs for the 
face recognition task and every 10 training epochs for the object recognition task. Given that the 
number of training examples per category of ILSVRC-2012 was approximately 10 times larger 
than that of FaceScrub, the networks in both tasks processed similar numbers of training 
images per category for each blur level. For comparison, a control CNN was trained with only 
clear images using the same number of training epochs. All training procedures were 
implemented in PyTorch on a workstation equipped with multiple GPUs.  
 
Receptive field analysis 
We fitted a 2D elliptical Gabor model to the first-layer receptive fields (11 × 11 pixels) of the 
trained CNNs. The function we used obtained the best fitting model after sampling from 100 
different starting points using a gradient descent method. The filters whose R-squared value 
was less than 0.4 were excluded from analysis. After fitting, the average of standard deviation 
values of the 2D Gaussian envelope was determined as the size of the receptive field.  
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Peak spatial frequency in tuning curves 
To estimate the peak spatial frequencies of the network across layers, we devised a method in 
which we presented grating patterns to CNNs and examined the responses of feature maps 
across layers. Specifically, the gratings were created by sinusoidal patterns using 15 
orientations (0, 12, …, 168 in degree), 25 spatial frequencies (4.48, 8.96, ..., 112 
cycles/stimulus), and 4 phases (0, 45, 90, 135 in degree). We measured the average responses 
to the gratings from individual feature maps across convolutional layers and plotted the tuning 
curves for spatial frequency by averaging across orientations and phases. Each tuning curve 
was normalized to a range from 0 to 1. The peak spatial frequency was determined from each 
tuning curve as it yielded the maximum. This peak spatial frequency indicated which spatial 
frequency was mostly preferred by each feature map of the network.  
 
Spatial frequency control images 
As a supplementary analysis, we manipulated the spatial frequency content of the training 
object images in two ways. First, we calculated the average amplitude spectrum of all training 
face images and replaced the amplitude spectrum of individual training object images with the 
average amplitude spectrum from the faces. This was done by performing the fast Fourier 
transform on each object image in MATLAB, adjusting the amplitude spectrum accordingly, and 
then performing the inverse fast Fourier transform to reconstruct the amplitude-matched object 
image. Our second approach relied on low-pass filtering applied to training object images using 
a cutoff frequency of either 32 or 16 cycles per image. This was done by zeroing out all 
amplitude values below the cutoff frequency in the Fourier domain, and then performing the 
inverse fast Fourier transform to reconstruct the image. 
 
 

4.3 Results 
 

We first compared the performance of human observers and CNNs in face and object 
recognition tasks across a range of blur. Faces were collected from 10 celebrities of the 
FaceScrub database (Ng & Winkler, 2014) and objects were collected from 16 categories of the 
ImageNet database (Russakovsky et al., 2015). To measure CNN performance, a separate 
AlexNet model was trained on either faces or objects with clear grayscale images and tested on 
a novel image set. Visual stimuli were blurred by a Gaussian kernel with its standard deviation 
varied across σ = 0 to 32. Consistent with the previous reports (Dodge and Karam, 2017; 
Geirhos et al., 2018), we found that human observers outperformed CNNs when images were 
blurred in both tasks (i.e., gray curves in Figures 15a-b). At modest levels of blur, CNN 
performance quickly dropped to almost chance level, whereas human observers showed more 
reliable performance across variations in blur. We also observed that both human observers and 
CNNs were better at recognizing blurry faces than blurry objects.  
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Figure 15. a Face recognition accuracy of human observers (blue triangles), AlexNet trained on clear 
face images (gray open circles), and AlexNet trained on a sequence of blurry to clear faces (black filled 
circles) when tested with a wide range of blur levels (chance level performance with a dashed line, 1/10 
or 10%). The solid lines represent a logistic function fitted to the data. Images of one of the authors are 
shown (with permission) for illustrative purposes. b Object recognition accuracy of human observers (red 
triangles), AlexNet trained on clear objects (gray open circles), and AlexNet trained on a sequence of 
blurry to clear objects (black filled circles) when tested with a wide range of blur levels (chance level 
performance, 1/16 or 6.25%). Error bars indicate ±1 standard error of the mean. 
 
Our primary interest was whether a sequence of blurry to clear image training would lead to 
improvement in robustness to blur in both face and object recognition tasks. To this end, two 
separate AlexNet models were trained on faces and objects initially with blurry images followed 
by progressively clearer ones across successive training stages (σ = 8, 4, 2, 1, and 0). We 
found a striking difference in the achievement of robustness between the face- and object-
trained CNNs. Similar to the previous finding by Vogelsang et al. (2018), the face-trained CNN 
showed significant enhancement in robustness and achieved human-level performance in the 
accuracy by blur curve (Figure 15a). In stark contrast, the effect of training in the object-trained 
CNN was barely noticeable (Figure 15b).  
 
We sought to determine the cause of the difference between face and object recognition tasks 
by probing the performance of these CNNs after each stage of training. Figure 16a shows the 
performance changes of the clear face-trained (gray curve) and blurry to clear face-trained (blue 
curve) CNNs across successive stages of training. Training with a blur level of 8 (leftmost plot) 
allowed the CNN to achieve highly robust performance at blurry conditions. This robustness was 
well preserved after successive clearer images were trained, and at the end of all training 
stages, the CNN showed stable performance across the full tested range of blur levels. By 
comparison, the CNN trained on a sequence of blurry to clear objects (red curve) exhibited a 
different pattern in performance changes across training stages (Figure 16b). Similar to the 
face-trained CNN, training with a blur level of 8 initially improved the performance at σ = 8; 
however, this enhanced performance soon disappeared with following clearer training images. 
Strikingly, one epoch was enough to lose the robustness to the previously trained blur level 
between the transition of two training stages. In the end, the blurry to clear object-trained CNN 
showed a negligible difference in performance from the clear object-trained CNN. We also 
observed the same pattern of results in top5 accuracy (bottom in Figure 16b), indicating that 
the failure of observing any training effects in the object-trained CNN was not due to the low 
sensitivity of top1 accuracy.  
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Figure 16. Performance accuracy of AlexNet after training with faces (a) or objects (b) presented at 
different blur levels (σ = 8, 4, 2, 1 or 0) over a series of training stages. Gray curves indicate the 
performance of control CNNs trained on clear images only. To illustrate the amount of blur applied at 
each training stage, images of one of the authors are shown (with permission) at each blur level. 

 
By monitoring the performance accuracy of training images, the difference between face and 
object recognition tasks became further clear (Figure 17). The face-trained network reached 
nearly ceiling performance at the first stage of training (σ = 8) and was fine-tuned thereafter by a 
small margin with clearer face images. In contrast, the training accuracy of the object-trained 
network did not show early convergence and kept increasing as clearer object images were 
followed. These results imply that face recognition can be readily resolved by the low spatial 
frequency content of faces, while object recognition can not. 
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Figure 17. Performance accuracy on training images for CNNs trained on a progression of blurry to clear 
faces (blue) or objects (red). Vertical dashed lines indicate the transitions between blur levels. 

 
Besides the performance accuracy, we examined how the internal representations of the blurry 
to clear face- and object-trained CNNs differed by visualizing the first layer receptive fields of 
the networks (Figure 18a). The face-trained CNN exhibited larger receptive fields than the 
object-trained CNN and they maintained stable sizes across successive stages of training. By 
comparison, while the object-trained CNN appeared to have large receptive fields at the first 
stage of training, their sizes became shrinking across training stages, indicating the progressive 
shift towards preferring sharper and more fine-grained features. This was further quantified by 
fitting a 2d Gabor model to each of the first layer receptive fields and estimating the average of 
the standard deviations in the 2d Gaussian profile (Figure 18b). The receptive field size of the 
blurry to clear face-trained CNNs was consistently larger than that of the clear face-trained 
CNNs across all training stages. In object training, the differences between the receptive field 
sizes of the clear object-trained and the blurry to clear object-trained CNNs decreased over 
training and eventually fell to nearly zero, consistent with the pattern of performance accuracy. 
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Figure 18. a Examples of the learned receptive fields obtained from a CNN trained on a sequence of 
blurry to clear faces (left) or blurry to clear objects (right). b Receptive field sizes were measured after 
each training period for both blurry to clear trained CNNs and CNNs trained on clear images only. c Peak 
spatial frequency preferences of face-trained CNNs across successive stages of training, with separate 
plots shown for each convolutional layer. For visualization purposes, the feature maps are sorted by their 
peak spatial frequency preference. The gray lines indicate the peak spatial frequency preferences of the 
clear face-trained network to serve as a reference. d Peak spatial frequency preferences of CNNs trained 
on object recognition, following the conventions of c. 

 
To examine the effect of blurry to clear image training beyond the first layer of the networks, we 
estimated the spatial frequency tuning curves of individual convolutional units that responded to 
grating patterns across the first 5 layers, and then sorted the peaks of the tuning curves from 
low to high (Figure 18c-d). The distributions of the peak spatial frequencies at different training 
stages were depicted by different colors in each plot. As shown in Figure 18c, while the peak 
spatial frequencies of the blurry to clear face-trained CNN significantly changed between the 
first and second stages of training (σ = 8 to 4, p < 0.01 in all layers; Mann-Whitney U test), they 
remained stable thereafter. In particular, a marked difference between the clear face-trained and 
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blurry to clear face-trained CNNs was observed in the range of 1-30 cycles/image, probably 
accounting for the robust performance of the blurry to clear face-trained CNNs to highly blurred 
faces. By contrast, the peak spatial frequencies of the blurry to clear object-trained CNN 
underwent dramatic changes across training stages, particularly in layer 2 (p < 0.001 in all 
stages; Mann-Whitney U test), demonstrating an upward trend in the curve that signified a shift 
in preference toward higher spatial frequencies (Figure 18d). Collectively, these findings clearly 
reveal the difference between face and object recognition in spatial frequency and are 
reminiscent of the hallmark feature of face processing that faces are processed in a holistic 
manner.   
 
One could ask whether the difference in spatial frequency between face and object recognition 
tasks might be due to the fact that object images likely contain more high spatial frequencies 
than face images. This is not necessarily equivalent to the notion that object recognition needs 
more high spatial frequency than face recognition. That is, it is possible that the failure of a 
sequence of blurry to clear training in objects was simply attributed to the different image 
statistics in faces and objects. Indeed, we observed greater power at higher spatial frequencies 
in the training images of objects than faces (Figure 19a). To further differentiate between those 
two effects, we conducted a control analysis by adjusting the power spectrum of the training 
object images to match the average power spectrum of the training face images (examples are 
shown in Figure 19b; second column). Then, we trained those object images with a sequence 
of blurry to clear training. We found that the pattern of results was almost identical to those 
observed previously (Figure 19c), except that it caused a small loss of accuracy at clear test 
images after all training was completed. We further constructed two training image sets where 
object images were low-pass filtered by either a threshold of 32 or 16 cycles per image (third 
and fourth columns in Figure 19b). As the network trained with the more severe threshold of 16 
cycles per image, it showed somewhat greater accuracies at modest levels of blur (σ = 4 or 8 in 
Figure 19d). However, this improvement was accompanied by a greater loss of accuracy at 
clear test objects. Taken together, these control analyses indicate that the different patterns in 
performance to acquire robustness from a sequence of blurry to clear training between face and 
object recognition cannot be explained simply by their image statistics. 
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Figure 19. a Average power spectrum of face and object training images plotted on a log scale (ordinate) 
as a linear function of spatial frequency. b Examples of original object images (first column), object 
images with Fourier power spectrum matched to the average power spectrum of the face training dataset 
(second column), and low-pass filtered images with a cut-off frequency of either 32 cycle/images (third 
column) or 16 cycle/images (fourth column). c Recognition accuracy for a CNN trained on blurry to clear 
objects, after objects were first matched to the Fourier power spectrum of faces (orange curve). For 
comparison, performance of the CNN exclusively trained on the original clear objects is also shown 
(gray). d Object recognition accuracy of CNNs trained on blurry to clear objects, after the objects were 
low-pass filtered with a cut-off frequency of 32 cycles per stimulus (light green) or 16 cycles per stimulus 
(dark green). Again, the CNN originally trained on clear objects is shown in gray. 
 
Additionally, one may wonder whether different categorization levels of objects would have 
different impacts on the degree of robustness achieved from blurry to clear training. For 
example, compared to faces that share the same configuration across different identities, 
ImageNet object categories greatly vary in their shapes and textures. This raises the possibility 
that the greater variation in objects might obscure the effect of blurry to clear image training. On 
the other hand, the developmental literature has demonstrated that infants formulate 
categorization abilities in a progressive manner, initially with superordinate-level categories 
followed by basic and subordinate levels (Mandler and McDonough, 1993; Quinn, 2004). 
Accordingly, it is also plausible to think that infants may rather benefit from the developmental 
sequence of blurry to clear inputs at the superordinate level of categorization.  
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To address these concerns, we first created two subsets of ImageNet categories including 116 
dogs and 52 birds, and trained a separate AlexNet model for either dog breed or bird species 
categorization task with the sequence of blurry to clear training. Similar to the previous 
procedure, we compared these networks to the control networks trained by clear images only. 
As shown in Figure 20a, we still failed to observe a significant improvement in robustness in 
both tasks. There was a marginal improvement at σ of 2 in the dog breed categorization task, 
though this became almost invisible at higher blur levels. We also created another image set 
where most of ImageNet categories were sorted into two superordinate-level categories, i.e., 
407 animate and 522 inanimate, by leveraging the WordNet hierarchy. Likewise, we compared 
two versions of the network trained for an animate/inanimate discrimination task, one trained 
with clear images and the other trained with blurry to clear images. Again, the performance of 
the blurry to clear object-trained network did not significantly differ from that of the clear object-
trained network (Figure 20b). Therefore, we concluded that, regardless of the categorization 
levels of objects, fine-detailed features are necessary to achieve optimal performance for object 
recognition. 
 

 
 
Figure 20. a Comparison of CNNs trained on blurry-to-clear (solid) or clear (dashed) images of different 
dog breeds (red) or bird species (orange). b Comparison of CNNs trained on blurry-to-clear (red) or clear 
(gray) images of ImageNet objects to perform an animate/inanimate discrimination task. 
 

4.4 Discussion 
 
CNNs are known to have difficulty recognizing blurred images of objects (Dodge and Karam, 
2017; Geirhos et al., 2018). In the present study, we evaluated the hypothesis that a 
developmental sequence of blurry to clear image training might lead to more robust object 
recognition, inspired by clinical literature suggesting that such a sequence of training may be 
beneficial for developing integrative feature-binding processes (Le Grand et al., 2001; Geldart et 
al., 2002). We found that a CNN trained with a developmental sequence of blurry to clear faces 
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showed stronger robustness to blur than a CNN trained with only clear faces, consistent with a 
previous report by Vogelsang et al. (2018). However, this benefit was not observed in object-
trained CNNs. This result does not necessarily contradict the notion that initial experience with 
blurry vision may be critical for developing reliable face recognition systems in adults. Rather, 
our findings question the idea that initial blurry vision is ecologically important for developing 
blur-robust object recognition systems. 
 
Although we failed to find evidence that early experiences with blur can lead to robust object 
recognition, the current findings illuminate fundamental differences between face and object 
processing with respect to their underlying preferences for spatial frequency. We observed that 
CNNs trained with blurry to clear objects demonstrated progressive changes in their spatial 
frequency preferences to favor higher spatial frequencies, whereas CNNs trained with blurry to 
clear faces showed stable preferences for lower spatial frequencies. Particularly interesting was 
the finding that the low spatial frequency content of faces was sufficient to achieve very high 
and stable performance for training stimuli across a range of blur levels (Figure 17). Such 
robustness was observed despite the inherent challenge of the face recognition task, which 
entailed far less between-identity variability than the object recognition task. Our findings 
provide a novel line of support for the notion that faces are processed in a holistic manner, as it 
has been suggested by many behavioral and neuroimaging studies (Farah et al., 1998; Goffaux 
and Rossion, 2006; Liu et al., 2010). In addition, our findings are concordant with other 
computational studies on face holistic processing. For example, Tan and Poggio (2016) 
proposed that three characteristic markers of face holistic processing, including the composite 
face effect, face inversion effect, and whole-part effect, can be accounted for by larger receptive 
field size in an HMAX model, consistent with our own findings (see Figure 18a-b). A recent 
study has also suggested that both humans and CNNs tend to rely on lower spatial frequencies 
for face recognition tasks (Song et al., 2021). These studies including ours indicate the potential 
of CNNs to study face processing; that said, it is not yet clear whether CNNs trained on a face 
dataset process faces in a manner similar to human observers. Only in recent years has face 
recognition become tractable alongside the rise of CNNs (e.g., Taigman et al., 2015; Parkhi et 
al., 2015; Schroff et al., 2015; O’Toole et al., 2018), this should be further explored in future 
studies. 
 
Our results suggest that initial visual experience with blurry inputs is not sufficient to account for 
the blur-robust nature of object recognition in humans. An alternative possibility is that repeated 
experiences with blurry visual inputs throughout life may be necessary to maintain robustness to 
blur. This may well be true if we consider that blurry objects are repeatedly encountered in 
peripheral vision, moreover, vision in the fovea can also be blurry if it is out of focus prior to 
accommodative compensation (Strasburger et al., 2011; Sprague et al., 2016). This repeated 
experience of blurry vision may explain some of the discrepancies between humans and CNNs 
that have been reported in recent years. This will be discussed later in detail in Chapter 5.  
 
Finally, our computational approach could provide a promising opportunity to study the 
developmental trajectory of visual learning. This approach enables us to avoid a fundamental 
limitation of infant studies, as one cannot interfere with the developmental visual experiences of 
infants in an appropriate or ethical manner, whereas the training experiences of CNNs are 
readily manipulatable. Indeed, there are a few recent studies that have leveraged CNNs to 
examine issues of visual development, similar to the work done here (Voglesang et al., 2018; 
Bambach et al., 2018). However, a critical issue that remains to be established is that CNNs 
may use a different learning algorithm from humans and thereby do not follow the 
developmental trajectory of humans. For example, CNNs are known to suffer greatly from 
catastrophic forgetting that refers to the phenomenon that machine learning models abruptly 
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forget what has been previously learned as new information comes in (Goodfellow et al., 2013; 
Li and Hoiem, 2017; Kirkpatrick et al., 2017). By comparison, humans do not simply forget what 
they have learned before, but instead, they effectively utilize prior information when learning 
new skills or knowledge. Such findings may potentially suggest that humans and CNNs rely on 
different principles for learning (e.g., supervised vs. unsupervised). On the other hand, it has 
been also suggested that deep learning models may capture some characteristics of critical 
period learning that are observed in humans and animals (Achille et al., 2018). In future studies, 
it will be important to be mindful of potential differences between humans and CNNs in their 
developmental trajectories and to clarify the validity of CNNs for developmental research. 
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5. Repeated visual experiences of blurry objects may be beneficial to 
the development of robust object recognition systems 
 

5.1 Introduction  
 
People often think that blurry vision should be corrected. The main causes of blurry vision are 
refractive errors such as myopia, hyperopia, and astigmatism. They occur when the eye does 
not correctly focus light onto the retina and are often corrected with eyeglasses, contact lenses, 
or laser surgery. However, in addition to the refractive errors, we also experience blurry vision 
quite often more than we sense in our daily life. When we pay attention to a portion of the visual 
field, out-of-focus objects become blurry due to defocus aberration (Sprague et al., 2016). If 
they are somewhere at the far periphery, they will look even blurrier (Anstis, 1974; Strasburger 
et al., 2011). Despite the fact that many objects present in our visual field appear blurry, we do 
not have any problem recognizing them in our daily vision tasks. 
 
Though high visual acuity is critical to performing our daily vision tasks, the notion that blurry 
vision needs to be corrected sometimes led us to overlook the remarkable ability of individuals 
to recognize blurry objects and the potential significance of blurry vision in object recognition. 
What if blurry vision is actually advantageous to our daily vision? What if blurry vision is 
ecologically important for maintaining our recognition system to be stable and robust? 
 
Previous research has suggested that humans may leverage blurry vision to assist in our object 
recognition processes. For example, binocular disparity is useful for depth perception, but may 
not solely explain it. Instead, blur could provide a complimentary cue for more precise depth 
perception (Marshall et al., 1996; Held et al., 2012). Real-world objects usually occur within 
particular background scenes. The contextual scene information that often looks blurry in the 
visual field can assist our object recognition behavior (Torralba, 2003; Oliva and Torralba, 
2007). A recent neurophysiological study has reported blur-selective neurons in V4, the 
responses of which were modulated by the degree of blur besides stimulus shape, size, 
contrast, and curvature (Oleskiw et al., 2018), suggesting that blur may be a fundamental 
feature in vision.  
 
This may bring about a critical change in our view of convolutional neural networks (CNNs). The 
visual world that CNNs experience may be more different from ours than we ever thought. 
Typically, a dataset on which CNNs are trained primarily consists of high resolution and clear 
images, e.g., ImageNet (Russakovsky et al., 2015). Unless strong data augmentation is 
specified, CNNs may view the world as we do only using foveal vision. Thus, CNNs may lack 
the opportunity to experience multiple representations of objects from clear to blurry ones. This 
may create an unexpected bias in CNNs while developing their recognition system, for example, 
leading to an over-reliance on high spatial frequency components of objects for recognition. If 
this is truly an issue, would training CNNs with a mixture of clear and blurry images lead to 
provide a more predictable model for human object recognition behavior? 
 
By training CNNs on both clear and blurry images, we made the following specific predictions. 
The CNNs would show a stronger shape bias in recognition than other CNNs typically trained 
on clear images only. Previous studies have reported that CNNs tend to make a shape-agnostic 
but strong texture-dependent decision when recognizing objects (Ballester and Araujo, 2016; 
Baker et al., 2019; Geirhos et al., 2019). This was demonstrated by artificially generated stimuli 
that were synthesized from the texture of an object and the shape of the other object (e.g., cat 
shape with elephant texture; Geirhos et al., 2019). We expected that blur training would mitigate 
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this texture bias of CNNs by making them less resort to fine-grained features of objects in 
recognition.  
 
In addition, blur training would make CNNs more robust to various types of degraded conditions. 
Recent evidence has indicated that CNNs struggle to identify objects when visual inputs are 
perturbed even minimally, whereas humans are generally robust to a variety of visual noise 
(Dodge and Karam, 2017; Geirhos et al., 2018; Jang and Tong, 2018). We have previously 
shown the opposite accuracy pattern of human observers and CNNs, that is, CNNs were easily 
impaired by pixelated Gaussian noise, but human observers were more disrupted by Fourier 
phase-scrambled noise. Specifically, we expected that blur training would improve the 
robustness of CNNs in favor of the response patterns of human observers, which means, there 
would be a greater improvement in pixelated Gaussian noise than Fourier phase-scrambled 
noise.  
 
Finally, we expected that the internal representations of the CNNs trained with both clear and 
blurry objects would be better aligned to those obtained from humans or primates. Many studies 
have argued that CNNs do not fully account for neural representations of objects in humans and 
non-human primates (Kar et al., 2019; Bashivan et al., 2019; Xu and Vaziri-Pashkam, 2021), 
nor do CNNs predict image-by-image behavioral patterns of those (Rajalingham et al., 2018). If 
humans (or primates) develop their visual systems relying on blurry vision to some extent, this 
might be revealed by the measurements of brain-CNN correspondences.  
 
In the present study, we hypothesized that CNNs experiencing both clear and blurry objects 
would provide a better predictive model for human vision. To evaluate this hypothesis, we 
compared two versions of CNNs, one trained on clear ImageNet objects and the other trained 
on a mixture of clear and blurry ImageNet objects. We found that the CNNs trained with a 
mixture of clear and blurry images showed not only enhanced robustness to blur but also higher 
correlations with cortical representations in humans under blurry viewing conditions, as 
compared to the control CNNs that were only trained with clear images. A unit-level analysis of 
spatial frequency tuning curves suggested that the early layers of the CNNs may be critical to 
conferring greater robustness to blur. These CNNs also demonstrated a stronger shape bias 
and stronger robustness to noise than the control CNNs. Finally, the cortical representations of 
the early visual areas were better predicted by the CNNs trained with blurry objects. Altogether, 
our findings may suggest that CNNs typically trained on ImageNet are likely biased toward 
overrepresenting high spatial frequency representations of objects and that, by comparison, 
humans may benefit from blurry vision for their robust object recognition.  
 

5.2 Materials and methods 
 
Training of convolutional neural networks 
In this study, we sought to compare two versions of CNNs, one exclusively trained with clear 
images (referred to as clear-trained CNNs) and the other trained with a mixture of clear and 
blurry images (referred to as blur-trained CNNs). Six CNN models including AlexNet, VGG16, 
VGG19, GoogLeNet, ResNet50, and Inception-v3 (Krizhevsky et al., 2012; Simonyan et al., 
2014; Szegedy et al., 2015; He et al., 2016; Szegedy et al., 2016), were first trained on clear 
images from the ImageNet 1,000 categories. All input images were resized to 224 × 224 pixels 
and grayscaled. Images were randomly flipped horizontally and rotated within ±10 degrees. 
Images were then normalized using the mean and standard deviation of the ImageNet training 
samples. The networks were trained for 70 epochs using a stochastic gradient descent 
optimizer with a fixed learning rate of 0.001, momentum of 0.9, and weight decay of 0.0001. 
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Correspondingly, the same networks were trained on a mixture of clear and blurry images using 
the same training protocol. Two methods to generate blurry images are described below. 
 
First, we assumed that clear vision at the fovea and blurry vision in the periphery were evenly 
contributing to shaping the object recognition system. To obtain a realizable approximation, it 
was assumed that ImageNet examples (224 × 224 pixels) were photographed by a 35 mm 
camera with a 54⁰ field of view and foveal vision had a normal visual acuity of 20/20 which 
corresponds to approximately 30 cycles per degree. Then, an observer would resolve 30 cycles 
per degree / 224 pixels × 54 degrees on the stimulus for foveal vision. According to the Anstis’ 
measurement at retinal eccentricities of up to around 60⁰, the decline in visual acuity follows 
𝐸2/(𝐸2 + 𝐸) where 𝐸 is eccentricity and 𝐸2 is set to a constant value of 2 (Anstis, 1974; 
Strasburger et al., 2011). With the formula, an observer would resolve (30 × 2/62) cycles per 
degree / 224 pixels × 54 degrees on the stimulus at 60⁰ eccentricity. By setting the spatial 
frequency at the fovea to be the Nyquist frequency, we could compute the cut-off frequency 𝑓𝑐 
at 60⁰ eccentricity. The standard deviation of a Gaussian blur filter (𝜎) in the pixel domain was 
then determined as approximately 9.8676 by: 
 

𝑓𝑐 =
1

2𝜋𝜎
. 

 
Based on this, we ended up choosing 5 blur levels, 𝜎 = 0, 1, 2, 4, and 8. During the training 

procedure, an individual image was randomly blurred by one of the 5 levels (𝜎 = 0 corresponds 
to original images without blur), with each of the levels having the same probability of being 
selected.  
 
In addition to the method above, we also considered a more conservative approach to 
approximate the real-life blurry visual experiences of humans. Here, we assumed that an object 
that is placed at the center of the visual field would greatly contribute to the recognition process, 
where the object could appear either clear or blurry depending on an observer’s point of focus. 
The degree of out-of-focus blur could then provide the amount of blur needed to be presented in 
the training samples of CNNs.  
 
Out of focus blur can be quantified by the diameter of a blur disk computed by: 
 

𝑏 = 𝑝 ∙ 𝐷, 
 
where 𝑝 is pupil diameter in mm and 𝐷 is the absolute difference in diopters between the focal 
distance and the distance at which an object appears. We relied on the data by Sprague et al. 
(2016) to estimate the degree of out-of-focus blur in the visual field (𝑏). In the study, an observer 
performed four daily living tasks, i.e., walking outside, walking inside a building, ordering coffee, 
and making a sandwich, while wearing a head-mounted camera with an eye-tracking device. 
These measures allowed the authors to estimate the distances from the observer to fixation and 
to a scene point and obtain the relative distance, 𝐷, on every video frame. The average 
measurement of pupil diameter in the experiment, 5.8 mm, was used for the calculation of blur. 
The estimated blur disk diameter was converted to radius for convenience. To convert the 
measuring unit of blur disk radii in degrees of visual angle to pixels, we again assumed that 
ImageNet examples were viewed with a 54⁰ field of visual angle. After the conversion, the 
frequencies of all adjacent bins (0-0.5, 0.5-1, …, 4.5-5; the maximum was 4.86 pixels) were 
counted for each task. Finally, to better account for daily visual experiences, a different weight 
was multiplied by the frequencies of each task when the four tasks were combined, i.e., 0.16 for 
outside walk, 0.10 for inside walk, 0.53 for order coffee, and 0.21 for make sandwich, following 
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the method by Sprague et al. (2016). The final distribution of blur disk radius was fitted to an 
exponential decay function. The frequencies of radii from 0 to 5 were converted to the 
probabilities of blur levels in training samples: 69.39% for the radius of 0, 21.28% for the radius 
of 1, 6.53% for the radius of 2, 2% for the radius of 3, 0.61% for the radius of 4, and 0.19% for 
the radius of 5. The radius of 0 indicated a clear image without any blur. One thing to note is that 
we ended up using a Gaussian blur kernel rather than a circular blur disk, partly because a 
circular blur disk cannot account for longitudinal chromatic aberration (Cholewiak et al., 2018) 
and also because a Gaussian blur kernel is more commonly used in the machine learning 
literature and thereby more convenient for evaluation.  
 
To further differentiate the two types of blur-trained CNNs, the CNN models trained by the first 
and second methods were referred to as strong-blur-trained CNNs and weak-blur-trained CNNs, 
respectively.  
 
Evaluation of CNNs on blurry scenes 
To evaluate whether blur-trained CNNs better accounted for human recognition of blurry objects 
than clear-trained CNNs, we leveraged the behavioral and neuroimaging data that were 
previously acquired. The behavioral data were collected by 20 human observers where their 
recognizing abilities were measured using a total of 800 images from 16 ImageNet categories 
across 10 different blur levels (𝜎 = 0, 1, 2, 4, 8, 12, 16, 20, 24, and 32, as 𝜎 of the standard 
deviation in a Gaussian blur kernel; refer to Chapter 4 for details). Both clear- and blur-trained 
CNNs were tested on the same images using the same blur levels. Note that these images were 
never used during training. To measure 16-way classification performance, the softmax outputs 
of the 16 categories of the networks were compared. In addition to recognition performance, the 
confusion matrices of the CNNs across 16 categories were obtained and compared to those of 
human observers.  
 
Neuroimaging data collected by Abdelhack and Kamitani (2018) were obtained for 5 human 
observers who viewed both clear and blurred stimuli in a 3T fMRI scanner. We only analyzed 
test image runs that contained stimuli degraded by different blur levels (0%, 6%, 12%, and 
25%). A total of 40 unique images were presented with those 4 blur levels. The test image runs 
consisted of two conditions, prior and no-prior. In the prior condition, observers were provided 
with semantic information about the categories of test images (airplane, bird, car, cat, and dog) 
before the experiment. Each category contained 4 different examples. In the no-prior condition, 
observers did not receive any prior and viewed 20 object images (one example per category). 
Seven regions of interest (ROIs) were created from a separate retinotopy experiment, including 
V1-V4 and LOC/FFA/PPA.  
 
To compare the representations of clear- and blur-trained CNNs to the brain responses, we 
performed the representation similarity analysis (RSA) across four conditions: 1) blur levels of 
0% and 6%, 2) blur levels of 0% and 12%, 3) blur levels of 0% and 25%, and 4) all blur levels of 
0%, 6%, 12%, and 25%. This RSA matrix was obtained from each layer of the CNNs and each 
brain region of the human participants. The similarity of the RSA matrices between humans and 
CNNs was measured by Pearson correlation. For each brain region, the highest correlation was 
chosen across all layers of individual CNNs, as done by other studies (Schrimpf et al., 2018; 
Zhuang et al., 2021). The brain and CNN responses were z-normalized before calculating RSA 
matrices. The diagonals of the RSA matrix were excluded for analysis.  
 
Orientation and spatial frequency tuning curves of convolutional units 
To better understand the effect of training with blurry visual inputs, we estimated the responses 
of individual convolutional units to sinusoidal grating patterns generated by 15 orientations (0, 
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12, …, 168 in degree), 25 spatial frequencies (4.48, 8.96, ..., 112 cycles/stimulus), and 4 phases 
(0, 45, 90, 135 in degree), across layers. The responses of convolutional units were averaged 
across spatial positions. Both orientation and spatial frequency tuning curves were normalized 
to have a range of 0 to 1. To estimate the peak and bandwidth of the orientation tuning curve, 
we fitted a von Mises distribution to individual curves as follows (Swindale, 1998): 
 

𝑓(𝜃) = 𝐴 exp{𝜅[cos2(𝜃 − 𝜇) − 1]}, 
 
where 𝐴 is the value of the function at 𝜃 = 𝜇, 𝜇 is the preferred orientation, and 𝜅 is the 
precision parameter determining the width of the distribution. The bandwidth of the tuning curve 
was defined as the full width at half maximum calculated below: 
 

FWHM = cos−1[(ln0.5 + 𝜅)/𝜅], where 𝜅 > −0.5 ln 0.5. 
 
To obtain the peak and bandwidth of the spatial frequency tuning curve, a Gaussian function 
was fitted to the curve on a logarithmic scale. Similarly, the full width at half maximum of a 
Gaussian distribution served as the bandwidth of the spatial frequency tuning curve.  
 
Texture and shape biases 
Geirhos et al. (2019) have suggested that ImageNet-trained CNNs tend to recognize objects 
relying on texture cues, whereas, in stark contrast, humans show a strong bias to shape cues. 
This was demonstrated by texture-shape cue conflict stimuli generated by style transfer (Gatys 
et al., 2016), such as the shape of a cat rendered using the texture of elephant skin. The 
texture-shape cue conflict stimuli consisted of 1,280 images from 16 ImageNet categories that 
included airplane, bear, bicycle, bird, boat, bottle, car, cat, chair, clock, dog, elephant, keyboard, 
knife, oven, and truck (available at https://github.com/rgeirhos/texture-vs-shape). The degree of 
shape bias was determined by calculating the proportion of shape decisions within a total 
number of texture and shape decisions. Using the texture-shape cue conflict stimuli, the shape 
biases of clear- and blur-trained CNNs were estimated. Additionally, the degree of shape bias 
obtained from 10 participants in the original study was also reported as a reference.  
 
Evaluation of CNNs on noisy scenes 
The recognition abilities of clear- and blur-trained CNNs under noisy viewing conditions were 
also evaluated. We first leveraged a benchmark dataset that has garnered increasing interest 
with respect to the robustness of CNNs, ImageNet-C (Hendrycks and Dietterich, 2019; available 
at https://github.com/hendrycks/robustness). The dataset contains ImageNet 50,000 validation 
images, each of which is degraded by 19 types of corruptions, including 4 cases of blur (defocus 
blur, glass blur, motion blur, and zoom blur), 4 digital (contrast, elastic transform, JPEG 
compression, and pixelate), 3 noise (Gaussian noise, impulse noise, shot noise), 4 weather 
(brightness, fog, frost, and snow), and 4 extra categories (Gaussian blur, saturate, spatter, and 
speckle noise). Each type of corruption has 5 levels of severity. The details of the image 
corruption methods are described in their paper (Hendrycks and Dietterich, 2019).  
 
We also evaluated the clear- and blur-trained CNNs on noisy images by comparing their 
performance with human behavioral and fMRI data previously collected in Chapter 2. For the 
behavioral data, we measured the recognition performance of 20 participants under degraded 
conditions with pixelated Gaussian noise and Fourier phase-scrambled noise. We also recorded 
the brain activity of 8 participants while they viewed the two noise types as well as clear images. 
Following the method by Chapter 2, we compared the internal representations of the clear- and 
blur-trained CNNs to those of the ventral visual stream using an RSA approach.   
 

https://github.com/rgeirhos/texture-vs-shape
https://github.com/hendrycks/robustness
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Evaluation of CNNs on semantic representations and neural predictivity 
To further determine whether blur-trained CNNs provide a more suitable model for object 
recognition in humans than clear-trained CNNs, two additional datasets were tested. The first is 
a large-scale fMRI dataset that collected the brain responses to 1870 natural images from 2 
observers (Kay et al., 2008). The original goal of the study was to investigate whether complex 
natural stimuli could be decoded by brain activity. To do so, a Gabor wavelet pyramid model 
was estimated using 1750 images and tested by 120 images for image identification. For our 
purposes, we combined the two image sets to one and calculated the 1870 × 1870 RSA matrix. 
Due to its large scale, the matrix could provide insights into the neural representations of 
semantic relations across object categories. Using the same stimuli, we obtained the RSA 
matrices from clear- and blur-trained CNNs and measured their correspondences to those by 
the 2 human observers.  
 
The other dataset, brainscore, is a public benchmark that has been designed to assess the 
neural predictivity of computational vision models (Schrimpf et al., 2018). The responses of 
single neurons are predicted by the internal representations of computational models using a 
partial least square regression and the quality of prediction is estimated by a median correlation 
between the actual and predicted responses across multiple cross-validation runs. In our study, 
we compared the brainscores of clear- and blur-trained CNNs across 4 brain regions including 
V1, V2, V4, and IT (Freeman et al., 2013; Majaj et al., 2015).  
 

5.3 Results 
 
Six standard CNN models were employed in the study: AlexNet, VGG-16, VGG-19, GoogLeNet, 
ResNet-50, and Inception-v3 (Krizhevsky et al., 2012; Simonyan et al., 2014; Szegedy et al., 
2015; He et al., 2016; Szegedy et al., 2016). All inputs were converted to grayscale and resized 
to 224 × 224 pixels. Each CNN model was trained on ImageNet from scratch in two different 
versions, one trained by clear original images and the other trained by a combination of clear 
and blurry images. Blur was generated by applying a 2D Gaussian filter. In order to mimic the 
nature of blurry visual inputs in humans, two different methods were evaluated, one trained with 
higher blur levels than the other (see Materials and methods). 
 
We first assessed the recognition abilities of 20 human observers, clear-trained CNNs, and two 
versions of blur-trained CNNs under blurry viewing conditions. As previously reported in Chapter 
4, clear-trained CNNs displayed poorer performance than human observers when inputs were 
degraded by blur (red versus yellow curves in Figure 21a). At a blur level of 8, those CNNs 
showed almost chance level performance, whereas the recognition performance of human 
observers was still fairly high. By comparison, both versions of blur-trained CNNs showed 
enhanced robustness to blur. To be specific, weak-blur-trained CNNs closely matched the 
humans’ performance, while strong-blur-trained CNNs exceeded human-level performance at 
blur levels of 8 and 12. Interesting is the fact that including a small number of blurry images in 
training, e.g., σ = 4 and 5 only accounting for 0.8% of the total training images in the weak-blur-
trained CNNs, allowed them to achieve approximately 90% of accuracy performance tested at σ 
= 4 and 40% at σ = 8. The efficacy of weak blur training implies that rare events of blurry visual 
experiences could have a significant impact on recognition systems. We also examined the 
similarity of confusion matrices between human observers and each of the CNNs. Both versions 
of blur-trained CNNs showed greater similarity than clear-trained CNNs at blur levels of 4 and 8 
with a rightward shift of the correlation by blur level curve (Figure 21b). This was primarily 
because clear-trained CNNs were easily biased towards certain categories even with minimal 
blur levels, though both versions of blur-trained CNNs also demonstrated such bias above σ = 
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8. At σ = 32, strong-blur-trained CNNs showed higher correlation than clear-trained CNNs, 
likely better capturing the pattern of bias made by human observers (Figure 21c). 
 

  
Figure 21. a Accuracy performance on 16 categories tested across a range of blur from σ of 0 to 32 by 
human observers (yellow), clear-trained CNNs (red), weak-blur-trained CNNs (blue), and strong-blur-
trained CNNs (purple). b Similarity of confusion matrices between human observers and CNNs. c 
Examples of confusion matrices at σ of 32 from human observers, clear-trained CNNs, weak-blur-trained 
CNNs, and strong-blur-trained CNNs.  

 
We also examined whether blur-trained CNNs provided more similar response patterns of blurry 
objects than clear-trained CNNs when compared to the cortical responses of humans. This was 
evaluated by using previously collected neuroimaging data (Abdelhack and Kamitani, 2018). 
Five participants were scanned using fMRI while viewing 40 clear images as well as degraded 
ones by different blur levels (6%, 12%, and 25%). We computed RSA matrices from each brain 
region of the ventral stream and from each layer of the CNNs using a total of 80 images (i.e., 40 
clear images plus 40 blurry ones from a selected blur level). Figure 22 shows the similarity of 
the RSA matrices between human observers and CNNs determined by the maximum correlation 
across the layers of the CNNs for each brain region. When the degree of blur was weak 
(leftmost plot in Figure 22), both versions of blur-trained CNNs exhibited significantly higher 
correlations with humans than the clear-trained CNNs across all brain regions. The difference 
between the clear- and blur-trained CNNs became reduced when the degree of blur was strong 
(i.e., a blur level of 25%), although the blur-trained CNNs still showed higher correlations in the 
early visual areas, V1-V4. The strong-blur-trained CNNs always showed higher correlations 
than the weak-blur-trained CNNs, suggesting that training with stronger blur levels led to a 
closer correspondence to the cortical representations of humans in blurry viewing conditions.  
 
 



61 
 

 
Figure 22. Correlation of RSAs between human observers and CNNs across brain regions. Clear-trained 
CNNs (red), weak-blur-trained CNNs (blue), and strong-blur-trained CNNs (purple) were evaluated. The 
diagonals of RSA matrices were excluded for analysis.  

 
We further sought to determine how blur-trained CNNs achieved more robust performance to 
blurry objects than clear-trained CNNs by probing the orientation and spatial frequency tuning 
curves of individual convolutional units across the layers of AlexNet. Figure 23 shows the 
histograms of the peak and bandwidth of orientation tuning curves and the peak and bandwidth 
of spatial frequency tuning curves for all CNNs. A significant difference between the clear-
trained CNN and weak-blur-trained CNN was observed in their spatial frequencies peaks in 
layers 1 and 2 (Figure 23a). The weak-blur-trained CNN had more convolutional units preferring 
low spatial frequencies than the clear-trained CNN in the early layers, possibly accounting for its 
greater robustness to blur, as revealed in the accuracy patterns. In addition, the weak-blur-
trained CNN demonstrated broader orientation tuning and spatial frequency tuning curves in 
layer 1. Interestingly, these patterns recurred in layer 5, the last convolutional layer. Differences 
between the clear-trained and blurred-trained CNNs were even more pronounced with strong 
blur training (Figure 23b). Across all 5 layers, the strong-blur-trained CNN showed greater 
preferences for lower spatial frequencies than the clear-trained CNN. The wider orientation and 
spatial frequency tuning curves were also observed in the strong-blur-trained CNN across most 
of the layers.  
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Figure 23. Histograms of the peak and bandwidth of orientation tuning curve and the peak and bandwidth 
of spatial frequency tuning curve (from left to right) examined by layerwise individual convolutional units of 
clear-trained CNNs, weak-blur-trained CNNs (a), and strong-blur-trained CNNs (b). The horizontal line 
indicates the median of the histogram. 
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If humans truly benefit from blurry visual experiences, we speculated that blur-trained CNNs 
would better match other human recognition behaviors than clear-trained CNNs. Previously, 
Geirhos et al. (2019) have reported a striking difference between humans and CNNs that 
humans tend to recognize objects based on their shape information while CNNs do so based on 
texture cues. We found that the weak-blur-trained CNNs exhibited a stronger shape bias across 
categories in general (Figure 24a), though only 3 categories revealed statistical significance. By 
comparison, the strong-blur-trained CNNs clearly showed higher shape bias for most 
categories, demonstrating that blur training can significantly mitigate the high texture bias of 
CNNs. In Figure 24b, the layerwise relevance propagation visualization technique 
demonstrates how the clear-trained CNN was biased to texture cues (e.g., dog textures over 
keyboard shape) and the blur-trained CNN was not (e.g., keyboard shape over dog textures). 
 

  
Figure 24. a Shape bias of clear-trained CNNs (red), weak-blur-trained CNNs (blue), and strong-blur-
trained CNNs (purple) on shape-texture cue conflict stimuli by Geirhos et al. (2019). Human performance 
is displayed as yellow diamonds. b Heatmap examples of shape-texture cue conflict stimuli obtained by 
each of the CNNs using layerwise relevance propagation.  

 
Many recent studies have demonstrated that CNNs show extremely poor performance at 
recognizing objects when inputs are corrupted by noise (Dodge and Karam, 2017; Geirhos et 
al., 2018; Jang and Tong, 2018). A recent benchmark dataset, ImageNet-C, introduced 19 
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different noise types under 5 categories to evaluate the robustness of CNN models (Hendrycks 
and Dietterich, 2019; Figure 25b). We observed that both versions of blur-trained CNNs 
outperformed the clear-trained CNNs on every noise type (Figures 25a). In particular, by 
comparing the two versions of blur-trained CNNs, the strong-blur-trained CNNs usually provided 
better performance than the weak-blur-trained CNNs, suggesting that blurry visual experiences 
would help increase the robustness to various types of visual noise in general.  
 

  
Figure 25. a Accuracy performance of clear-trained CNNs (red), weak-blur-trained CNNs (blue), and 
strong-blur-trained CNNs (purple) on ImageNet-C. b Examples of a dog image in ImageNet-C.   

 
We further tested whether blur training allowed CNNs to better capture the response patterns of 
human behavioral and neural data to pixelated Gaussian noise and Fourier phase-scrambled 
noise, previously collected in Chapter 2. We found that both versions of blur-trained CNNs 
increased the robustness to pixelated Gaussian noise, while they did not show any 
improvement in their performance with respect to Fourier phase-scrambled noise (Figure 26a). 
When the neural representation similarities between humans and each of the CNNs were 
compared, the weak-blur-trained CNNs showed higher correlations than the clear-trained CNNs 
in higher visual cortical regions including V4, LOC, and PPA with pixelated Gaussian noise and 
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in early visual areas from V1-V4 with Fourier phase-scrambled noise (Figure 26b). We would 
like to note that it was previously reported in Chapter 2 that Fourier phase-scrambled noise was 
particularly detrimental to humans, and this might explain why training with blurry objects did not 
improve the robustness to Fourier phase-scrambled noise. However, blur training helped 
decrease the gap of neural representations between humans and CNNs in Fourier phase-
scrambled noise. The strong-blur-trained CNNs showed even higher correlations with humans. 
The correlations of the RSAs where all conditions were combined between humans and the 
strong-blur-trained CNNs were significantly higher than those between humans and the clear-
trained CNNs across all brain regions. Interestingly, the strong-blur-trained CNNs were better 
correlated with humans than the clear-trained CNNs even at clear viewing conditions in the 
earliest visual area, V1. 
 

  
Figure 26. a Behavioral accuracy performance of human observers (yellow), clear-trained CNNs (red), 
weak-blur-trained CNNs (blue), and strong-blur-trained CNNs (purple) on pixelated Gaussian noise and 
Fourier phase-scrambled noise. b Correlation of RSAs between human observers and CNNs across brain 
regions under clean and noisy conditions. Clear-trained CNNs (red), weak-blur-trained CNNs (blue), and 
strong-blur-trained CNNs (purple) were evaluated. The diagonals of RSA matrices were excluded for 
analysis.  

 
We further speculated that blur-trained CNNs might not just show an advantage at accounting 
for human cortical responses under challenging viewing conditions but might also perform better 
for clear viewing conditions. We evaluated this question by leveraging a large fMRI dataset 
previously collected by Kay et al. (2008) in which the brain responses of 2 observers were 
collected from 1870 natural images. In a similar manner, the RSA matrices between each brain 
region of the two human observers and each layer of the clear- and blur-trained CNNs were 
compared via Pearson correlation. As a result, however, we failed to find a significant difference 
between the clear-trained CNNs and both versions of blur-trained CNNs (Figure 27a). The blur-
trained CNNs might show higher correlations than the clear-trained CNNs in the early visual 
areas, V1-V2, but those did not reach a significant level.  
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Figure 27. a Correlation of RSAs between human observers and CNNs across brain regions, evaluated 
by the fMRI dataset from Kay et al. (2008). Clear-trained CNNs (red), weak-blur-trained CNNs (blue), and 
strong-blur-trained CNNs (purple) were tested. b Brainscore of Clear-trained CNNs (red), weak-blur-
trained CNNs (blue), and strong-blur-trained CNNs (purple).  

 
Perhaps, the difference between the clear- and blur-trained CNNs at clear viewing conditions 
may not be sufficiently large to be detected at the macroscopical level by fMRI, but could be 
detected at the neural level. We further compared the clear- and blur-trained CNNs using 
another benchmark dataset, brainscore, in their neural predictivities of V1, V2, V4, and IT 
(Schrimpf et al., 2018). We observed that the weak-blur-trained CNNs better predicted the 
neural responses of V2 than the clear-trained CNNs (Figure 27b). Similarly, the strong-blur-
trained CNNs better predicted the neural responses of V1 and V2 than the clear-trained CNNs. 
Based on these results, we conclude that modern CNNs typically trained on ImageNet are likely 
optimized in a biased manner; that is, the networks tend to hone in on fine-detailed features of 
objects. Blur training can help mitigate this bias and thereby better explain human recognition 
behavior.  
 

5.4 Discussion 
 
In the present study, we investigated the possibility that blurry vision may benefit humans 
performing robust object recognition under various viewing conditions, as demonstrated by the 
comparison of two CNNs, one trained by a mixture of blurry to clear images and the other 
trained by clear images only. Previous studies have reported several discrepancies between 
humans and CNNs (Geirhos et al., 2018; Jang and Tong, 2018; Geirhos et al., 2019). Here, we 
showed that simply adding a small fraction of blurry images to training not only mitigated 
previously reported issues with CNNs, such as the strong texture bias and poor robustness to 
noise, but also increased their neural correspondence to biological vision. 
 
The fact that ImageNet-trained CNNs are biased to emphasize fine-grained features while 
recognizing objects has been observed by other studies as well. Geirhos et al. (2019) have 
nicely demonstrated the texture bias of ImageNe-trained CNNs by utilizing artificial stimuli 
conflicting shape and texture cue information. To mitigate the strong texture bias, the authors 
proposed training CNNs with so-called stylized images, in which ImageNet images were 
transformed by a style transfer algorithm (Huang & Belongie, 2017), thereby reducing the 
dependence on texture cues. However, this approach seems rather technical and like an 
engineering perspective but lacks biological plausibility as natural images do not appear to be 
“stylized” in the wild. More importantly, the authors observed that stylized-ImageNet-trained 
CNNs performed worse than ImageNet-trained CNNs on low-pass filtered or blurred images 
(Geirhos et al., 2019), which implies that our blur training approach fundamentally differs from 
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theirs. A recent study has incorporated multiple Gabor filters at the front end of ResNet50 and 
observed enhanced robustness as well as increased neural predictivity (Dapello et al., 2020). 
Particularly, the low spatial frequency filters were critical for the increase in robustness to noise 
and blur. Another study by Kong et al. (2021) has examined the eigenspectrum of CNNs and 
demonstrated that ImageNet-trained CNNs exhibited a stronger preference towards high spatial 
frequencies than macaque V1. These results are concordant with our neural predictivity analysis 
that blur-trained CNNs better account for V1 and V2 responses than clear-trained CNNs. 
 
Although several recent CNN studies suggest that blurry vision may be beneficial for acquiring 
robust object recognition, it remains difficult to confirm whether humans truly benefit from blurry 
vision. According to the coarse-to-fine hypothesis (Watt, 1987; Schyns and Oliva, 1994; Bullier, 
2001), low spatial frequency information is first processed by the visual system and 
subsequently guides visual object processing of fine-detailed features. Bar et al. (2006) claimed 
that low spatial frequency components of images reached earlier the prefrontal cortex and are 
projected back to the ventral stream via top-down feedback processing. Low spatial frequency 
information in the periphery, such as contextual cues from scenes, may also influence object 
recognition (Oliva and Torralba, 2007; Roux-Sibilon et al., 2019). Altogether, it will be of future 
interest to determine the role of blurry vision in object recognition made by a direct link between 
machine and human vision. 
 
Finally, although our approach was rather computationally straightforward and simply required 
including both clear and blurry images in CNN training, it should be noted that this may not be 
the best approach for approximating the nature of blurry vision in humans. For example, Deza 
and Konkle (2020) implemented a foveated vision model by applying different standard 
deviations of a Gaussian blur kernel at different eccentricities, as more similar to the approach 
by Freeman and Simoncelli (2011). Han et al. (2020) instead implemented an eccentricity-
dependent CNN where multi-scaled versions of center cropped images were provided as an 
input of the CNN. Future studies may need to further clarify the nature of blur in our perception 
(Sprague et al., 2016; Cholewiak et al., 2018) and how this can be implemented in machine 
vision.  



68 
 

6. General discussion 
 
In this thesis, I sought to examine the robust nature of human object recognition under a variety 
of challenging viewing conditions by directly comparing human performance to CNNs. It has 
been claimed that CNNs have achieved human-level recognition performance (He et al., 2015) 
and that they share strong similarities with the neural representations of objects in the ventral 
visual pathway of both humans and non-human primates (Khaligh-Razavi and Kriegeskorte, 
2014; Yamins et al., 2014; Güçlü and van Gerven, 2015; Yamins and DiCarlo, 2016; Kubilius et 
al., 2016; Cadena et al., 2019). However, these studies have mostly focused on clear and 
typical viewing conditions, whereas very little attention has been paid to whether CNNs perform 
similarly to humans under challenging viewing conditions. More importantly, it was not known 
whether the CNN representations of degraded objects resemble those of the human visual 
system. Through this thesis research, I sought to address this gap in knowledge. 
 
Summary of findings 
We have shown that CNNs are generally unstable when a modest amount of perturbation is 
applied to the visual inputs, leading to substantial impairment in their recognition ability. This has 
been observed across studies (Dodge and Karam, 2017; Geirhos et al., 2018; Jang and Tong, 
2018), implying that CNNs do not have a built-in mechanism for dealing with visual noise. In 
particular, the observation that humans and CNNs differ in their susceptibility to the different 
types of noise (Jang and Tong, 2018), together with other previous reports (Eckstein et al., 
2017; Geirhos et al., 2019), suggests that CNNs process objects in a fundamentally different 
manner than humans do. As a means to stabilize the recognition performance of CNNs to visual 
noise, we showed that training CNNs with noisy examples is highly effective in enhancing 
robustness to noise. More importantly, we found that noise-trained CNNs were better at 
predicting the patterns of human behavioral and neural performance under degraded viewing 
conditions. These findings provide empirical support that noise-trained CNNs can be used for 
modeling the noise-robust human visual system. Further analyses revealed that the effect of 
noise training operates differently across layers of CNNs. Specifically, the early to middle layers 
of the CNNs appeared to benefit from noise training by dampening the effect of external noise, 
whereas the middle to higher layers of the CNNs appeared to act as a signal amplifier 
specifically for relevant trained categories. This implies that the robust nature of the human 
recognition system may involve multi-stage processing (Pratte et al., 2013).  
 
We further sought to investigate whether initial blurry visual experiences would be of importance 
for developing a robust recognition system. While this question is difficult to address in humans, 
as one cannot ethically manipulate the prolonged visual experience of infants, it can readily be 
addressed by modifying the experiences of CNNs. We found that a developmental sequence of 
training from blurry to clear images was effective in a face recognition task, leading to human-
level robustness to variations in image blur. By contrast, blurry to clear training with object 
images led to negligible improvement in dealing with blur, with performance far below human 
levels. Our findings are consistent with the notion that face recognition may be special in certain 
ways; specifically, it may favor low spatial frequencies to process the configural information of 
faces (Farah et al., 1998; Goffaux and Rossion, 2006). In contrast to face recognition, repeated 
experiences of blurry visual inputs in everyday life may be necessary for acquiring and 
maintaining human-level robustness in object recognition. We found that CNNs trained on a 
mixture of clear and blurry objects were better at capturing the patterns of human behavioral 
and neural performance under blurry conditions. Furthermore, this improved robustness even 
generalized to other degraded viewing conditions such as visual noise. Our findings suggest 
that the human object recognition system may naturally learn to utilize a wide range of spatial 
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frequencies to recognize objects, resulting in a more stable recognition system that is robust to 
multiple visual challenges. 
 
Taken all together, the findings above demonstrate that, despite many studies suggesting that 
CNNs may be the best computational model for human vision when evaluated on clear 
conditions, they do not reliably predict human behavioral patterns under challenging viewing 
conditions, nor do they share similar representations of degraded objects when compared to 
humans. That said, training CNNs with degraded viewing conditions appears to be effective in 
making them more robust, by shifting their internal representations to become more aligned with 
those of humans. These findings raise some important questions. Can training CNNs with 
degraded conditions, particularly noise and blur, prove sufficient to make them human-like? Are 
there other types of image degradation that occur in the natural world that humans benefit from? 
Are there any other factors that might contribute to the robust object recognition of humans 
besides their diversity of visual experiences? 
 
Despite the effectiveness of training CNNs under degraded conditions, this approach may not 
be the only solution, nor does it lead to perfect alignment with human performance. For 
example, when human noise thresholds for individual images were predicted by CNNs in 
Chapter 2, the noise-trained CNN showed a significantly higher correlation with the human data 
(r = 0.55) than the control CNN trained without noise (r = 0.27). However, this correlation value 
was still far below our estimates of human-to-human similarity (r = 0.94 based on split-half 
analysis). In addition, the blur-trained CNN was able to mitigate its texture bias but still failed to 
reach human-level shape bias. These results raise the possibility that humans may benefit from 
other types of image degradation, that humans may rely on different learning principles, or that 
the human visual system may take advantage of other built-in mechanisms that CNNs lack. 
These issues are further discussed below. 
 
Ecological relevance of training objects with degraded viewing conditions 
Before discussing other types of degradation, it would be worthwhile to consider whether the 
degraded conditions used in our studies, namely visual noise and blur, are ecologically suitable 
for capturing aspects of natural vision. For instance, one might ask whether the benefit of noise 
training found in Chapters 2-3 is directly relevant to understanding human vision, given that our 
visual world does not usually appear noisy. Admittedly, real-world objects typically obscure each 
other via occlusion. However, there are some cases where visual noise does not perfectly 
obscure but impacts a background object in an additive manner, for example, raindrops or 
flakes of snow that are partially transparent. Pixelated Gaussian noise may resemble to some 
extent this type of visual noise. On the other hand, we sometimes experience foggy vision due 
to fog or low clouds; such clouds can obscure entire scenes while having their own visual 
structure. Fourier phase-scrambled noise may somewhat resemble this type of visual noise. 
Also, we considered that applying noise in an additive manner could be beneficial because it 
offers a direct method for systematic control of signal-to-noise ratios as we introduced SSNRs in 
the thesis.  
 
Training CNNs with a mixture of clear and blurry images may sound more appropriate in terms 
of ecological relevance, given the fact that a large portion of the retinal image appears blurry. 
However, it is possible that our approach in Chapters 3-4 did not provide a sufficiently realistic 
model of the blurry visual experiences of humans. Although the CNNs were trained across 
samples on varying spatial blur, an individual training image was blurred by a single blur kernel. 
In human vision, however, the degree of blur in the visual field is not homogeneous, but rather 
increases systematically with eccentricity (Strasburger et al., 2011). The lack of heterogeneity in 
the degree of blur across the input spatial map of the CNNs would potentially lead them to lose 
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the opportunity to learn higher-order relationships across a range of spatial frequencies. For 
instance, humans may take advantage of contextual scene cues in the periphery for object 
recognition where one has to rely on lower spatial frequency information (Torralba, 2003).  
 
What other types of challenging viewing conditions are there that humans might benefit from? 
The visual world is inherently cluttered and objects are often occluded by other objects. 
Because of that, humans may have to develop a robust mechanism to recognize objects where 
only limited features are visible due to partial occlusion. In future studies, it will be of interest to 
investigate whether training on this occlusion type of degradation can help CNNs achieve more 
robust object recognition and thereby better mimic the human visual system. In addition, 
regarding the problem of viewpoint invariance, humans may achieve a substantial degree of 
viewpoint invariance by encountering a subset of discrete viewpoints on multiple occasions 
(Jolicoeur, 1985; Tarr and Pinker, 1989). With respect to these learning effects found in 
humans, CNNs could provide a useful model to investigate how familiarity impacts the 
attainment of viewpoint invariance by carefully manipulating the number of training examples for 
individual viewpoints and assessing recognition performance across a full range of viewpoints.  
 
Another important consideration is whether training CNNs with artificially designed noise might 
allow them to generalize to real-world degraded conditions. Our findings have provided 
preliminary evidence of successful generalization, as we saw that training CNNs on both 
pixelated Gaussian noise and Fourier phase-scrambled noise led to improve performance at 
recognizing vehicles in noisy weather conditions. Moreover, we have observed that training on 
one type of noise can improve the robustness to other types of untrained noise, although the 
extent to which such generalization occurs is still subject to some debate (Geirhos et al., 2019; 
Rusak et al., 2020), Therefore, such findings should be further validated in future studies. 
 
Adversarial noise 
Although this thesis has primarily focused on degraded viewing conditions such as those 
involving the addition of random noise patterns, it would be remiss to avoid discussion of 
adversarial noise. Adversarial noise is a purposefully designed perturbation that can be 
imperceptible to humans but exceedingly harmful to deep learning models (Goodfellow et al., 
2014; Szegedy et al., 2014). Adversarial noise can be added to real-world objects (e.g., a 
printout of a small adversarial patch added to a traffic sign) and even effectively attack real-life 
applications (Brown et al., 2017). Adversarial noise can also generalize fairly well across CNN 
architectures trained on ImageNet (Moosavi-Dezfooli et al., 2017). As it can be critical for many 
deep learning applications, multiple defense strategies against adversarial noise have been 
proposed. For instance, Madry et al. (2017) addressed this problem by directly training models 
on a particular set of adversarial examples that was purposefully designed to fool the models. 
This approach has been successful but it demands significant training time. In a subsequent 
study, Shafahi et al. (2019) proposed a method to reduce training time by simultaneously 
updating network parameters and adversarial noise in a single backward pass. Despite many 
efforts and much progress, the relationship between adversarial noise and various types of 
image corruptions such as random Gaussian noise is still not clear. However, a few recent 
studies have provided some empirical evidence that the two are perhaps related; for example, 
training models with adversarial noise led to improve robustness to Gaussian noise and vice 
versa (Ford et al., 2019; Rusak et al., 2020). Similarly, another study has reported that 
introducing stochasticity into each unit of the first layer of a CNN led to an increase in 
robustness to adversarial attacks (Dapello et al., 2020). 
 
On the other hand, some research groups have focused more on how humans perceive 
adversarial images, asking whether humans might be affected by adversarial noise and why 
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humans are much more robust than CNNs. Elsayed et al. (2018) demonstrated that human 
observers were negatively influenced by adversarial noise when the exposure time was limited 
to a fraction of a second (~70ms). Zhou and Firestone (2019) performed a series of experiments 
in unlimited exposure duration that was particularly designed to accentuate the subtle effect of 
adversarial examples on humans. To be specific, in one of the experiments, the authors added 
a small amount of adversarial noise to random Gaussian noise patterns to mislead CNNs to 
choose a particular target category and found that most of the human observers well predicted 
the category even though the noise was hardly recognizable. The two studies above suggest 
that adversarial noise may impact human recognition behavior in a similar manner as it does 
CNNs (reviewed by Buckner, 2020). That said, the question of why the human visual system is 
more robust to adversarial noise than CNNs is not yet answered. Humans are not trained by 
adversarial examples, unlike the typical defense method used for training deep learning models. 
Instead, humans may benefit from real-life experiences under degraded conditions. Although 
Ford et al. (2019) primarily focused on the relationship between additive Gaussian noise and 
adversarial noise, visual experiences with various types of suboptimal viewing conditions may 
be advantageous for enhancing the robustness of a visual system. In addition, the observation 
by Elsayed et al. (2018) that limited exposure time can increase people’s susceptibility to 
adversarial noise raises the possibility that recurrent processing may be critical for the 
robustness of the human visual system to adversarial noise. Future studies will have to address 
adversarial noise comprehensively by linking it to both human vision and different types of 
image degradation.  
 
Potential differences between CNNs and the human visual system in training samples or 
algorithms 
As we have discussed, simply training CNNs with degraded viewing conditions may not be 
sufficient for attaining the robustness of the human visual system. Instead, CNNs may need 
more ecological training samples or it could be the case that the learning principles of CNNs 
fundamentally differ from those of humans. Although ImageNet provides the opportunity of 
training with a large set of natural images (Russakovsky et al., 2015), the dataset may not 
adequately reflect how we view and perceive the world. A recent study developed a new 
dataset, which the authors argue to be more ecologically relevant as it consists of 565 basic-
level categories, including human categories, selected based on their frequencies in spoken 
language (“Ecoset”; Mehrer et al., 2021). The authors demonstrated that the Ecoset-trained 
CNNs exhibited more similar representations to visual representations in human ventral 
temporal cortex when compared to ImageNet-trained CNNs, particularly for animate objects. 
Nevertheless, it would be still expected that the Ecoset-trained CNNs would not differ from 
ImageNet-trained CNNs in terms of robustness, because the Ecoset dataset consists primarily 
of clear images of objects.  
 
In addition, as posed in Chapter 4, our visual experience changes dramatically over the early 
stages of infancy but CNNs do not usually address this specific aspect. Early visual experience 
may have a critical role in shaping the visual system. For instance, about 100 days of postnatal 
experience is sufficient to induce a visual preference toward own-race faces and toward a 
caregiver’s gender (Quinn et al., 2019). One of the characteristics of early visual experience is 
that faces largely dominate the infant visual experience; however, the frequency of face viewing 
declines with age, whereas the frequency of object viewing increases (Jayaraman et al., 2015; 
Fausey et al., 2016; Jayaraman et al., 2017). This notion of “early faces, later objects” suggests 
that the human visual system may be shaped primarily by faces first and it is later fine-tuned by 
non-face objects based upon the early face-tuned representations (Smith and Slone, 2017). 
Because CNNs are typically trained on object images from scratch, this may make CNNs lose 
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opportunities to start from face-tuned representations, which may be potentially more robust 
under degraded viewing conditions. 
 
Another potential limitation of CNNs is that they are typically optimized for object classification 
through supervised learning. However, supervised learning with gradient descent may not 
coincide with how our visual system naturally develops. An alternative is the Hebbian learning 
rule (Hebb, 1949), as often stated “cells that fire together wire together”. According to the rule, 
neurons do not need any supervision but will learn statistical patterns of inputs by themselves. 
In parallel to advances in supervised learning, many unsupervised learning methods have been 
developed and used in many research problems (Hinton and Salakhutdinov, 2006; Hinton et al., 
2006; Vincent et al., 2008; Lee et al., 2009; Vincent et al., 2010). One form of unsupervised 
learning that has proven successful for training CNNs to learn useful visual representations is 
contrastive learning, by which a model learns visual representations of input data by clustering 
example images into similar and dissimilar pairs (He et al., 2019; Chen et al., 2020). These 
models are more often referred to as self-supervised models but here we consider them as 
unsupervised for simplicity, technically because they do not require any labeled data. Zhuang et 
al. (2021) recently showed that such unsupervised models can achieve comparable 
performance in predicting the response patterns of neurons in V1, V4, and IT, as standard 
CNNs trained in a supervised manner. Similarly, Konkle and Alvarez (2020) have observed that 
contrastive unsupervised models showed comparable or even higher correspondences than the 
counterpart supervised models to brain representations obtained by fMRI. However, another 
recent study has shown that there is little difference between supervised and unsupervised 
models when evaluated by psychophysical measures including noise robustness, texture/shape 
biases, and error patterns (Geirhos et al., 2020), suggesting that more work will be needed to 
clarify the importance or validity of unsupervised learning in terms of its biological plausibility 
and how well it can account for human behavioral and neural data.  
 
Another piece of evidence implying that CNNs may leverage a biologically implausible learning 
rule may be catastrophic forgetting, which refers to the fact that neural networks are prone to 
forget old representations after new information is learned. Many engineering methods have 
been proposed to mitigate this issue, often, by using regularization-based approaches 
(Goodfellow et al., 2013; Li and Hoiem, 2017; Kirkpatrick et al., 2017; Lee et al., 2017; Zenke et 
al., 2017). Other approaches based on biological insights, such as functional modularity or 
hippocampal replay, have been also suggested (Ellefsen et al., 2015; van de Ven et al., 2020). 
This catastrophic forgetting problem could be particularly critical if one considers CNNs as a 
model to examine the developmental trajectory of visual learning, because the effect of early 
training periods will be obscured by catastrophic forgetting. Thus, this should be taken into 
consideration for future studies that attempt to make connections between CNNs and the 
developmental literature.  
 
Importance of recurrent visual processing 
Multiple visual areas in the brain are densely interconnected by feedforward and feedback 
pathways (Felleman and Van Essen, 1991). The human visual system does not simply rely on 
the feedforward pathway, but instead, neurons in the higher areas also project back to lower 
areas, thereby modulating activity in the lower areas in a top-down or recurrent manner (Lamme 
and Roelfsema, 2000). Although a feedforward computational model performs sufficiently well 
on simple object recognition tasks (Serre et al., 2007), it may not be enough to capture the 
complexity of many real-life object recognition tasks (Wyatte et al., 2012; O’Reilly et al., 2013). 
For instance, Wyatte et al. (2012) showed that human observers performed worse in a 
categorization task when an occluded stimulus was followed by a patterned mask. The authors 
additionally showed that this masking effect was also observed in a hierarchical recurrent model 
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but not a feedforward model, demonstrating that a computational model with recurrent 
processing better captured the patterns of behavioral responses. Spoerer et al. (2017) 
demonstrated that CNN-based recurrent models showed superior performance on a digit 
classification task where digits were largely occluded, as compared to pure feedforward CNN 
models, suggesting that recurrent processing would be particularly important for robust 
processing. In recent years, several recurrent CNN models have been proposed (Wen et al., 
2018; Tang et al., 2018; Nayebi et al., 2018; Kietzmann et al., 2019; Spoerer et al., 2019; Kar et 
al., 2019; Huang et al., 2020), and some of the models have been suggested to better account 
for brain responses (Spoerer et al., 2019; Kar et al., 2019; Huang et al., 2020). It will be of great 
interest to investigate how these models perform object recognition under various degraded 
viewing conditions, as compared to feedforward recognition models. Although recurrent CNN 
models have increased in popularity in recent years, their detailed implementations have varied 
across studies. For instance, a neural network called CORnet implemented locally recurrent 
computations within individual layers (Kar et al., 2019), while deep predictive coding networks 
incorporate the dynamics of both bottom-up and top-down processing (Wen et al., 2018). Future 
studies will need to address how different implementations of recurrent processing may 
contribute to robust object recognition.  
 
Conclusions 
The current thesis has provided an exciting glimpse into the intersection of human and 
computer vision, focusing on the robust nature of object recognition. Many findings of this thesis 
have highlighted that human object recognition is remarkably efficient and simultaneously 
robust, which leads to a fundamental question as to how humans achieve both in a balanced 
manner. By contrast, most CNNs have been found to lack robustness; they may be highly 
efficient in recognizing objects remain extremely vulnerable to variations in viewing conditions. 
Future studies will have to comprehensively consider various factors as discussed above to 
determine what accounts for robust object recognition. The current thesis has also 
demonstrated how an interdisciplinary approach can benefit both research fields, neuroscience 
and artificial intelligence, to better understand the nature of object recognition. Computer 
science and neuroscience often have very different views, since the former focuses more on 
practical applications and the latter on more fundamental research questions. Instead of 
focusing on one aspect, interdisciplinary research can bring unique insights that would not be 
offered by traditional views and help provide a broader perspective. Through this thesis 
research, my aim was to contribute to and enrich the intersection of these two fields.   
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