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Chapter 1

Introduction

In this thesis, we construct the first examples of finitely presented groups with quadratic Dehn

function which contain a finitely generated infinite torsion subgroup, answering a problem of

Ol’shanskii. These examples are “optimal” in the sense that the Dehn function of any such finitely

presented group must be at least quadratic. Moreover, we show that for any n ≥ 248 such that

n is either odd or divisible by 29, any infinite free Burnside group with exponent n is a quasi-

isometrically embedded subgroup of a finitely presented group with quadratic Dehn function sat-

isfying the Congruence Extension Property.

1.1 Dehn Functions

Given a set A, a word over A ∪ A−1 is a finite sequence of elements of A ∪ A−1 called the

letters of the word. Given such a word w, the (combinatorial) length of w, denoted ‖w‖ or |w|A, is

the number of letters that comprise its defining sequence.

The free group with basis A is denoted F (A). The notation F (A) is also used to denote the

set of reduced words over A ∪ A−1, i.e the set of all words which contain no subsequence of the

form aa−1 or a−1a for some a ∈ A.

If G is a group generated by A, i.e G = 〈A〉, and w and v are two words over A ∪A−1, then

the notation w =G v is used to indicate that the words w and v represent the same element of G. If

further w and v are exactly the same word, then they are said to be visually equal, denoted w ≡ v.

Note that if w and v are both reduced, then w ≡ v if and only if w =F (A) v.

For any subset R ⊂ F (A), the normal closure of R in F (A), denoted 〈〈R〉〉, is the smallest

normal subgroup of F (A) containing R. Observe that a nontrivial element w ∈ F (A) satis-

fies w ∈ 〈〈R〉〉 if and only if there exist k ∈ N, f1, . . . , fk ∈ F (A), ε1, . . . , εk ∈ {±1}, and

1



R1, . . . , Rk ∈ R such that

w =F (A)

k∏
i=1

fiR
εi
i f
−1
i (1.1)

If a group G is isomorphic to the quotient group F (A)/〈〈R〉〉, then 〈A | R〉 is said to be a

presentation of G. In this case, it is convenient to view G as being generated by A. As such, A is

called the set of generators of the presentation, whileR is called the set of relators. IfA is a finite

set, then G is called finitely generated; if in addition R is finite, then G is called finitely presented

and 〈A | R〉 is called a finite presentation.

Note that it is a consequence of the universal property of free groups that every group admits

a presentation. Indeed, letting A be any generating set of G (one may take A = G, for example),

then there exists an epimorphism ϕ : F (A) → G; so, letting R = kerϕ, it follows that G has

presentation 〈A | R〉.

Given a nontrivial word w over A ∪ A−1, it is an immediate consequence of the above def-

initions that w =G 1 if and only if there exists a representation of w as in (1.1). The minimal

natural number k in such a representation is called the area of w with respect to the presentation

P = 〈A | R〉, denoted AreaP(w). This definition is extended to the case where w =F (A) 1, in

which case it is taken that AreaP(w) = 0.

If A is a finite set and P = 〈A | R〉 is a presentation of the group G, then the Dehn function

of P is the function δP : N→ N defined by

δP(n) = max{AreaP(w) : w =G 1, ‖w‖ ≤ n}

Dehn functions are taken up to the asymptotic equivalence relation∼ on functions N→ N induced

by the preorder 4 given by f 4 g if and only if there exists C > 0 such that for all n ∈ N,

f(n) ≤ Cg(Cn) + Cn+ C

2



Observe that n 4 f for any function f : N → N. What’s more, if f is a polynomial of degree d,

then f ∼ nd.

Dehn functions were first defined and investigated by Gromov in [8]. There, it was shown that

the Dehn function of a finite presentation tells one a good deal about the finitely presented group

to which it is associated. For one thing, it is shown that the function is invariant (up to ∼) with

respect to choice of finite presentation:

Theorem 1.1. (Gromov [8]) If P and S are finite presentations for the finitely presented group G,

then δP ∼ δS .

Therefore, it is well-founded to speak of ‘the’ Dehn function of a finitely presented group G,

denoted δG, in reference to the Dehn function of any of its finite presentations.

The Dehn function proves to be a useful invariant for the study of finitely presented groups.

For example, it is shown in [5] and [26] that the Dehn function is closely related to the solvability

of the Word Problem of the group, i.e the ability to create an algorithm to determine whether or not

a given word over the generators represents the trivial element in the group. Moreover, the Dehn

function gives a characterization of the geometric quality of the hyperbolicity of a group:

Theorem 1.2. (Gromov [8]) A finitely presented group G is word hyperbolic if and only if δG ∼ n

Theorem 1.3. (Gromov [8], Bowditch [4], Ol’shanskii [15]) A finitely presented group G is word

hyperbolic if and only if δG ≺ n2.

Theorems 1.2 and 1.3 imply the existence of an ‘isoperimetric gap’, i.e a jump in possible

Dehn functions between word hyperbolic groups (with linear Dehn function) and finitely presented

groups with quadratic Dehn functions. This begs a class of questions:

Question 1: While properties of hyperbolic groups abound, which such properties are satisfied

by all groups with quadratic Dehn function?

3



1.2 Infinite Torsion Groups

Given a group G, an element g is called torsion if there exists n ∈ N \ {0} such that gn = 1.

The minimal number n satisfying this equation is called the order of g and is denoted |g|. The

group G is called torsion if each of its elements is itself torsion. If in addition the orders of the

elements of G are bounded, then G is said to have bounded exponent.

The Burnside problem, perhaps the oldest problem in group theory dating back to 1902, asked

whether all finitely generated torsion groups are finite. A variant of the problem, the Bounded

Burnside problem, asked whether all finitely generated torsion groups of bounded exponent are

finite.

For any n > 1 and any set A, let F (A)n be the normal subgroup of F (A) generated by all

words of the form wn. Then the group F (A)/F (A)n is the free group relative the class of groups

of exponent n (this class is also known as the Burnside variety Bn). This terminology is justified by

the universal property of relatively free groups: IfG is a group such that gn = 1 for all g ∈ G andG

is generated by {gi}i∈I , then forA = {ai}i∈I , there exists an epimorphism φ : F (A)/F (A)n → G

such that φ(aiF (A)n) = gi for all i ∈ I . For convenience, the group F (A)/F (A)n is called a free

Burnside group and is denoted B(A, n), or simply B(m,n) if |A| = m.

Hence, the Bounded Burnside problem essentially asks whether there exists m,n ∈ N such

that B(m,n) is infinite (and, if so, for which choices of m,n).

The first solution to the Burnside problem was provided by Golod and Shafarevich in 1964

[7], when they constructed examples of infinite finitely generated torsion subgroups. However,

the groups constructed for this purpose were shown to have unbounded exponent, and so do not

provide a solution to the Bounded Burnside problem.

In 1968, Novikov and Adian [13] provided the first solutions to the Bounded Burnside problem

when they showed that B(m,n) is infinite for all m > 1 and n ≥ 4381 odd. Adian later improved

the bound placed on the odd integer n to n ≥ 665 in 1978 [1], and then n ≥ 101 in 2015 [2].

In 1982, Ol’shanskii provided a simpler geometric proof that B(m,n) is infinite for m > 1 and

sufficiently large odd n (say n > 1010), as well as proving the existence of the so-called Tarski

4



monster groups [14].

The seminal result for even values of n came in 1994 due to S.V. Ivanov [9], who proved that

B(m,n) is infinite form > 1 and n ≥ 248 that is either odd or divisible by 29. For simple reference

in what follows, the set of natural numbers n in Ivanov’s setting is denoted N∗. The bound was

later improved by Lysenok in 1996 [12], where the analogous statement was proved for n ≥ 8000

and divisible by 24.

Though the infinite torsion groups arising from these constructions were all shown to have

solvable Word Problem, it was also shown that they cannot be finitely presented. As such, one

cannot speak of the Dehn function of these free Burnside groups.

However, an infinite free Burnside group may be isomorphic to a proper subgroup of a finitely

presented group, begging the following question of Ol’shanskii:

Question 2: If G is a finitely presented group containing a finitely generated infinite torsion

subgroup H , then what can be said about δG? What about the specific case where H = B(m,n)

for some m,n?

1.3 Main Results

The first partial answer to Question 2 is due to Ghys and de la Harpe in 1991 [6], and shows

that Question 2 can be thought of as one belonging to the class of questions detailed in Question 1:

Theorem 1.4. (Ghys-de la Harpe [6])

If H is word hyperbolic and T is a torsion subgroup of H , then T is finite.

Conversely, in 2000 Ol’shanskii and Sapir [19] constructed a finitely presented group G sat-

isfying δG 4 n10 and containing a subgroup isomorphic to the finitely generated infinite torsion

subgroup B(m,n) for any m > 1 and n sufficiently large and odd.

The following provides an optimal such example:

Theorem A. For m > 1 and n ∈ N∗, there exists a finitely presented group Gm,n with quadratic

Dehn function into which the free Burnside group B(m,n) embeds. In particular, there exists a
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finitely presented group G with quadratic Dehn function containing a finitely generated infinite

torsion subgroup.

If A = {ai}∞i=1, then denote the free Burnside group B(A, n) simply by B(∞, n). For n

sufficiently large and odd, Shirvanyan exhibited an embedding of B(∞, n) in B(2, n) [29], while

Ivanov and Ol’shanskii exhibited such an embedding for n ≥ 248 and divisible by 29 [10].

Thus, taking Gn = G2,n, Theorem A immediately implies the following corollary:

Corollary A. For all n ∈ N∗, there exists a finitely presented group Gn with quadratic Dehn

function into which the free Burnside group B(∞, n) embeds. In particular, for all m ∈ N, Gn

contains a subgroup isomorphic to B(m,n).

Given metric spaces (X, dX) and (Y, dY ), a map f : X → Y is called a quasi-isometric

embedding if there exist C ≥ 1 and K ≥ 0 such that for all x1, x2 ∈ X ,

1

C
dX(x1, x2)−K ≤ dY (f(x1), f(x2)) ≤ CdX(x1, x2) +K

IfK = 0, then f is called a bi-Lipschitz embedding. Note that, unlike a quasi-isometric embedding,

a bi-Lipschitz embedding is necessarily an embedding (as quasi-isometric embeddings need not be

injective).

Let G be a finitely generated group with finite generating set X and define the function dX :

G×G→ N by dX(g1, g2) = |g−1
1 g2|X . Then dX is a metric induced by the norm | · |X .

Now, suppose G and H are two finitely generated groups with finite generating sets X and Y ,

respectively. Further, suppose there exists a monomorphism ϕ : G→ H . Then, it is clear that ϕ is

a bi-Lipschitz embedding if and only if there exists a C ≥ 1 such that for all g ∈ G,

1

C
|g|X ≤ |ϕ(g)|Y ≤ C|g|X

Letting C1 = max{|ϕ(x)|Y : x ∈ X}, note that |ϕ(g)|Y ≤ C1|g|X for all g ∈ G. Hence, ϕ is a bi-

Lipschitz embedding if and only if there exists C2 ≥ 1 such that for any g ∈ G, |g|X ≤ C2|ϕ(g)|Y .
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The concept of quasi-isometry, and so of bi-Lipschitz maps, is especially important and useful

in geometric group theory. For example, Theorem 1.1 is originally stated in the more general

setting of two finite presentations that are quasi-isometric with respect to the induced word metrics.

Theorem B. The embedding given in Theorem A is a bi-Lipschitz embedding (and so a quasi-

isometric embedding) of the free Burnside group B(m,n) into the finitely presented group Gm,n.

A subgroup G of a group H satisfies the Congruence Extension Property (CEP) if for any

epimorphism ε : G→ G1, there exists an epimorphism ε̄ : H → H1 for some groupH1 containing

G1 as a subgroup and such that the restriction of ε̄ to G is ε. In this case, we write G ≤CEP H and

say that G is a CEP-subgroup of H or that G is CEP-embedded in H .

There are two convenient reformulations of the definition of CEP:

(1) G is a CEP-subgroup of H if and only if for any normal subgroup N / G, there exists a

normal subgroup M /H such that M ∩G = N

(2) G is a CEP-subgroup ofH if and only if for any subset S ⊆ G, G∩〈〈S〉〉G = 〈〈S〉〉H (where

the normal closure of a subset T in a group K is denoted 〈〈T 〉〉K).

It is clear from (1) that any retract of a group is a CEP-subgroup and that ≤CEP is a tran-

sitive relation. However, some examples are less obvious. For example, Sonkin proved that for

sufficiently large odd n, there exists a CEP-embedding of B(∞, n) into the group B(2, n) [30].

Theorem C. The embedding given in Theorem A is a CEP-embedding of the free Burnside group

B(m,n) into the finitely presented group Gm,n.

As B(m,n) is a retract of B(∞, n), Theorem C immediately implies the following corollary:

Corollary C. For all odd n ∈ N∗, there exists a finitely presented group Gn with quadratic Dehn

function such that for any m ≥ 2, there is a CEP-embedding of B(m,n) into Gn. Moreover, Gn

contains a CEP-subgroup isomorphic to B(∞, n).
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1.4 Summary of Contents

Chapter 2 functions to introduce perhaps the most useful tool in the study of Dehn functions:

The van Kampen diagram. This leads naturally to the more advanced study of graded small-

cancellation theory in Chapter 3, culminating with the proof of Lemma 3.8 which proves vital to

the proofs of the main theorems.

As in [18] and [25], the construction of the groups of interest is through S-machines. S-

machines were first introduced by Sapir in [26]; for a formal definition, see Chapter 4. Similar to

the construction in those settings, we first create several auxiliary machines M1 −M4 satisfying

some desirable properties (see Chapter 5). The chief properties on which we base this construction

are the following:

(a) The language of accepted inputs is a set of relators for a presentation of the free Burnside

group B(m,n) (see Lemma 5.33);

(b) The length of any accepting computation of a word un is linearly bounded by ‖u‖ (see

Lemma 5.32);

(c) The majority of an accepting computation is spent on one particular step (see Lemma 5.34);

and

(d) The length of a computation in a specific class of bases is linearly bounded by the length of

the initial or terminal admissible words (see Lemma 5.37).

Many copies of the machine M4 are then ‘concatenated’ to form our main machine M, a process

that resembles the construction of the groups of interest in [18] and [25]. However, unlike in those

sources, one copy of M4 is deemed ‘special’ and is operated upon in a different manner as the other

copies, causing a distinct non-uniformity.

The purpose of this lack of symmetry is to allow our machine to accept two configurations

which differ only in the insertion/deletion of an accepted input. As all accepted configurations are
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trivial in the group G(M) associated to the machine, this implies the relation w = 1 for any word

w over A ∪A−1 of the input sector that represents the trivial element of B(A, n).

Conversely, this asymmetry is also the source of several new obstacles not faced in [18] or [25].

For example, many statements in Chapter 6 are devoted to understanding the relationship between

computations of one copy of M4 and computations of the standard base of M (for example, see

Lemmas 6.12 and 6.13), a relationship that would be trivial had the rules operated with symmetry.

In Chapters 7-12, we study diagrams over the groups associated to the S-machine M, culmi-

nating in the proof of Theorem A. The general method of study follows a similar path to those

followed in [18] and [25], but with one major change: The consideration of the groups MΩ(M)

and GΩ(M) constructed by the addition of extra relations, called a-relations, to the groups M(M)

and G(M), respectively. The set of relators Ω corresponding to the a-relations consist of words

over the alphabet of the input sector and contains the set S of all words that represent the trivial

element of B(A, n).

The cells of a diagram over MΩ(M) or GΩ(M) corresponding to elements of Ω, referred to

as a-cells, are invaluable to the proof that ϕ is an embedding (see Lemma 12.3) but cause a new

obstacle in virtually every diagrammatic consideration. For example, the consideration of rim θ-

bands of a diagram must be replaced with the consideration of quasi-rim θ-bands, i.e a band that

may have a-cells between it and the boundary (see Lemma 9.16).

The proof of Theorem B is presented Chapter 13. Its makeup is similar to the diagrammatic

arguments presented in Section 10, but is unique to this setting in that it has no analogue in [18] or

[25].

We conclude with the proof of Theorem C in Chapter 14. The proof is a consequence of the

arguments pertaining to minimal diagrams introduced in Chapters 7-10.

Finally, we mention here the importance of the groupB(m,n) to this construction and proof. In

the context of the proof of Theorem A, it is clear that the following two properties of the embedded

group were necessary for the proof to follow: The existence of a presentation of the group whose

relators satisfy some linear bound as in (b) above and the existence of another presentation of the
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group such that any van Kampen diagram over this presentation satisfies some quadratic bound as

in Lemma 3.8. However, there is a third, more subtle requirement: In the proof of Lemma 12.6, it

is essential that the relators are periodic. Due to this demand, that we are studying a group in the

Burnside variety is crucial to our construction.
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Chapter 2

van Kampen diagrams

A vital tool for many of the arguments to come is the concept of van Kampen diagrams over

group presentations, a notion introduced by its namesake in 1933 [31].

Let G be a group with presentation 〈A | R〉. Suppose ∆ is an oriented 2-complex homeomor-

phic to a disk equipped with a labelling function, i.e a function Lab : E(∆) → A ∪ A−1 ∪ {1}

which satisfies Lab(e−1) ≡ Lab(e)−1 for any edge e ∈ E(∆) (with, of course, 1−1 ≡ 1). The label

of a path in ∆ is defined in the obvious way, that is, Lab(e1 . . . en) ≡ Lab(e1) . . .Lab(en). For any

edge e in ∆, e is called a 0-edge if Lab(e) ≡ 1; otherwise, e is called an A-edge.

Suppose that for each cell Π of ∆, one of the following is true:

(1) omitting the label of any zero edges, Lab(∂Π) (defined by reading starting at some vertex)

is visually equal to a cyclic permutation of R±1 for some R ∈ R

(2) ∂Π consists of 0-edges and exactly two A-edges e and f , with Lab(e) ≡ Lab(f−1)

(3) ∂Π consists only of 0-edges.

(a) R-cell corresponding to the re-
lator R = aba−1b−1.

(b) 0-cell of type (2), a ∈ A. (c) 0-cell of type (3).

Figure 2.1: Cells in van Kampen diagrams
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Then ∆ is called a (disk) van Kampen diagram (or simply a disk diagram) over the presentation

〈A | R〉. The cells satisfying condition (1) above are called R-cells, while the others are called

0-cells.

Given a disk diagram ∆, note that Lab(∂∆) (or indeed the label of any closed path in ∆) is not

well-defined. However, it is convenient to understand that such labels are always considered up to

cyclic permutation.

The following statement, called van Kampen’s lemma, will serve as a fundamental tool for the

combinatorial study throughout the rest of this manuscript:

Lemma 2.1. (van Kampen, 1933 [31]) A word W over A ∪ A−1 satisfies W =G 1 if and only if

there exists a disk diagram ∆ over the presentation 〈A | R〉 such that Lab(∂∆) ≡ W .

Proof. Suppose ∆ is a disk diagram over the presentation 〈A | R〉 satisfying W ≡ Lab(∂∆). If

∆ consists of one cell, then either W =F (A) 1 (if the cell is a 0-cell) or W is a cyclic permutation

of R±1 for some R ∈ R (if the cell is an R-cell). In either case, W =G 1. Otherwise, supposing

∆ consists of more than one cell, let t be some path that cuts ∆ into two disk diagrams ∆1 and ∆2

with fewer cells. Letting ∂∆1 = p1t and ∂∆2 = t−1p2 such that p1 and p2 are subpaths of ∂∆, it

follows that Lab(p1p2) is a cyclic permutation of Lab(∂∆). Inducting on the number of cells in a

disk diagram, one can assume that Lab(∂∆j) =G 1 for j = 1, 2, so that

Lab(p1p2) =F (A) Lab(p1tt
−1p2) ≡ Lab(∂∆1)Lab(∂∆2) =G 1

Hence, W ≡ Lab(∂∆) =G 1.

Now suppose W =G 1 and let W =F (A)

k∏
i=1

fiR
εi
i f
−1
i be some representation of W as in (1.1).

Let si be the diagram obtained by taking a polygonal arc labelled by fi and attaching to its

end a polygon labelled by Rεi
i . Then, consider the ‘lollipop’ diagram ∆0 obtained by attaching

all si at a single vertex so that they are read consecutively (see Figure 2.2). However, this dia-

gram is not homeomorphic to a disk; in order to achieve this, one must add 0-cells to ‘thicken’

the arcs representing the sticks of the lollipop, yielding a disk diagram ∆0. By construction,
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Lab(∂∆0) =F (A)

k∏
i=1

fiR
εi
i f
−1
i .

Figure 2.2: Lollipop diagram

Suppose ∂∆0 contains a subpath of 0-edges. Then the addition of one 0-cell results in a disk

diagram with this segment removed (see Figure 2.3). Doing this for all such subpaths of ∂∆0 re-

sults in a disk diagram ∆1 such that Lab(∂∆1) is a word overA∪A−1 satisfying Lab(∂∆1) =F (A)

k∏
i=1

fiR
εi
i f
−1
i

Figure 2.3: The removal of 0-edges

Thus, it suffices to show that mutually inverse pairs of adjacent letters can be removed or

inserted into the label of the boundary. But this can also be done by the addition of 0-cells, as

evidenced by Figures 2.4 and 2.5:
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Figure 2.4: The cancellation of mutually inverse letters

Figure 2.5: The insertion of mutually inverse letters

The area of a disk diagram ∆, denoted Area(∆), is the number ofR-cells it contains. Further,

for any word W satisfying W = 1 in G, the area of W , Area(W ), is the minimal area of a diagram

∆ satisfying Lab(∂∆) ≡ W .

A 0-refinement of a disk diagram ∆ is a disk diagram ∆′ obtained from ∆ by the insertion of

0-edges or 0-cells. Note that a 0-refinement has the same area as the diagram from which it arises.

Note that each of the operations performed to the ‘lollipop’ diagram in the proof of van Kam-

pen’s Lemma is a 0-refinement. As a result, the following is an immediate consequence:

Lemma 2.2. Letting P = 〈A | R〉 be the presentation of G, for any word W over A ∪ A−1

satisfying W =G 1, Area(W ) = AreaP(W ).

Let ∆ be a disk diagram and Π1, Π2 be twoR-cells in ∆. Suppose there exists a simple path t

between the vertices O1, O2 of Π1,Π2, respectively, such that:

• Lab(t) = 1 in F (A), and

• Lab(∂Π1) read starting at O1 is mutually inverse to Lab(∂Π2) read starting at O2
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Then Π1 and Π2 are called cancellable in ∆.

Figure 2.6: Cancellable cells

This term is justified by the ability to ‘remove’ the cells Π1 and Π2 from ∆ without affect-

ing its contour label, yielding a disk diagram ∆′ satisfying Lab(∂∆′) ≡ Lab(∂∆) and such that

Area(∆′) < Area(∆).

Naturally, a disk diagram is called reduced if it has no pair of cancellable cells. By simply

removing pairs of cancellable cells, any disk diagram over a presentation can be made reduced.

This immediately implies a strengthened version of van Kampen’s lemma:

Lemma 2.3. A word W over A ∪A−1 satisfies W =G 1 if and only if there exists a reduced disk

diagram ∆ over the presentation 〈A | R〉 with Lab(∂∆) ≡ W .

An annular (Schupp) diagram over the presentation 〈A | R〉 is defined in the analogous way. It

is then an immediate consequence of van Kampen’s lemma that two words W and V are conjugate

in G if and only if there exists a reduced annular diagram ∆ with contour components p and q

satsifying Lab(p) ≡ W and Lab(q) ≡ V −1.

Figure 2.7: Annular diagram

15



Chapter 3

Graded small-cancellation

3.1 Graded maps on a disk or annulus

The definitions and statements presented in this chapter can be found in [16] and [9]. Those

relevant to the proof of Lemma 3.8 are restated here, with reference given in place of proofs.

A map ∆ is a finite oriented planar graph on a disk which subdivides the surface into polygonal

cells. In particular, by ‘forgetting’ the labelling, one can interpret a van Kampen diagram as a map.

A map ∆ is called graded if each cell Π in ∆ is assigned a nonnegative integer r(Π) called its

rank. The map ∆ is called a map of rank at most k if all its cells have rank ≤ k. The minimal k for

which ∆ is a map of rank at most k is called the rank of ∆ and denoted r(∆).

For r(∆) = k, the type of ∆, τ(∆), is the (k + 2)-vector (r(∆), τ0, . . . , τk), where τi is the

number of cells of rank k − i in ∆. The types of maps are ordered lexicographically, i.e for two

maps ∆ and Γ with τ(∆) = (r(∆), τ0, . . . , τk) and τ(Γ) = (r(Γ), σ0, . . . , σ`), τ(∆) ≤ τ(Γ) if the

following three conditions hold:

• r(∆) ≤ r(Γ);

• if r(∆) = r(Γ), then τ0 ≤ σ0;

• for 1 ≤ i ≤ r(∆), if r(∆) = r(Γ) and τj = σj for all j < i, then τi ≤ σi.

For simplicity, the cells of rank 0 in a graded map are called 0-cells. All other cells are called

R-cells (even though an alphabetR is not specified).

The edges of the graph are divided into two disjoint sets, called the 0-edges and the A-edges.

The length of a path p in a graded map ∆, denoted |p|, is the number of A-edges that comprise it.

In particular, for ∂Π the contour of a cell, |∂Π| is called the perimeter of Π.
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Motivated by the definition of van Kampen diagrams, the following three facts are assumed

about graded maps:

(1) the inverse edge of a 0-edge is also a 0-edge

(2) the contour of a 0-cell either consists entirely of 0-edges or of exactly two A-edges in addi-

tion to a number of 0-edges

(3) if Π is anR-cell, then |∂Π| > 0

If ∆ is a graded map and Γ is a subspace homeomorphic to a disk bounded by some edgepath

of ∆, then Γ is called a submap of ∆.

It is assumed that the contour of a graded map has a fixed decomposition into at most eight

distinct parts. In particular, if ∆ is a graded map, then there is a standard factorization p1 . . . pk of

∂∆, with k ≤ 8 and each pi called a section of the contour.

3.2 0-Bonds and 0-contiguity submaps

Let ∆ be a graded map and Π be a 0-cell whose contour contains exactly two A-edges, e1 and

e2. Then the pair of edges e1, e
−1
2 are called immediately adjacent (as is the pair e−1

1 , e2). Two edges

e and f of ∆ are then said to be adjacent if there exists a sequence of edges e = e1, e2, . . . , ek+1 =

f such that ei and ei+1 are immediately adjacent for i = 1, . . . , k.

Let ∆ be a graded map with adjacent edges e and f . Suppose e belongs to the contour of the

R-cell Π1 and f−1 to the contour of some R-cell Π2. Per the definition, set e = e1, . . . , ek+1 = f

with 0-cells π1, . . . , πk such that the only two A-edges of ∂πi are e−1
i and ei+1.

We can then write ∂πi = e−1
i piei+1si for i = 1, . . . , k such that |pi| = |si| = 0. With the aid of

0-refinement, we can assume that p = p1 . . . pk and s = sk . . . s1 are simple paths such that each

intersects Π1,Π2 only on its endpoints.

Then, the submap Γ with contour p−1es−1f−1 consisting of the cells π1, . . . , πk is called a 0-

bond between Π1 and Π2. The edges e and f−1 are called the contiguity arcs of the 0-bond Γ and

p and s the side arcs.
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Figure 3.1: A 0-bond between twoR-cells

Similarly, if e and f are adjacent edges with e belonging to the contour of some R-cell Π and

f−1 belonging to some section q of the contour, then a 0-bond between Π and q is defined. A

0-bond between two sections of the contour is defined analogously.

Figure 3.2: A 0-contiguity submap between twoR-cells

Now suppose e1, f1 and e2, f2 are two pairs of adjacent edges such that e1 and e2 belong to the

contour of someR-cell Π1 and f−1
1 , f−1

2 to someR-cell Π2. Then, construct two 0-bonds, Γ1 and

Γ2, between the two pairs, with ∂Γi = zieiwif
−1
i . If Γ1 = Γ2, set Γ = Γ1. Otherwise, there exist

subpaths y1 and y2 of ∂Π1 and ∂Π2, respectively, such that y1 = e1pe2 and y2 = f−1
2 uf−1

1 (or

y1 = e2pe1 and y2 = f−1
1 uf−1

2 ). Then let Γ be the submap with contour z1y1w2y2 (or z2y1w1y2).
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If Γ does not contain Π1 or Π2, then Γ is called a 0-contiguity submap of Π1 to Π2. In this case,

y1 and y2 are called the contiguity arcs of Γ, denoted yi = Γ∧Πi. The paths z1 and w2 (or z2 and

w1) are called the side arcs of Γ. Note that both side arcs have zero length. The ratio |y1|/|∂Π1| is

called the degree of contiguity of Π1 to Π2 with respect to Γ and is denoted (Π1,Γ,Π2). Similarly,

(Π2,Γ,Π1) = |y2|/|∂Π2| is the degree of contiguity of Π2 to Π1.

Note, however, that if Π1 = Π2, then Γ∧Π1 represents two distinct arcs of ∂Π1 and (Π1,Γ,Π1)

a pair of numbers.

As with 0-bonds, a 0-contiguity submap between an R-cell and a section of ∂∆ is similarly

defined, as is a 0-contiguity submap between two sections of ∂∆. The contiguity arcs, side arcs,

and degree of contiguity of such 0-contiguity submaps are defined in the same way as as above;

for example, if Γ is a 0-contiguity submap between an R-cell Π and a section q of the contour of

∂∆, then the degree of contiguity of q to Π is (q,Γ,Π) = |Γ∧q|/|q|.

Two 0-contiguity submaps Γ1 and Γ2 are disjoint if they have no common cells, their contiguity

arcs have no common points, and their side arcs have no common points.

3.3 Bonds and contiguity submaps

In this section, ε ∈ (0, 1) is taken to be a fixed constant. For the moment, one can think of this

number as ‘sufficiently small’, with this interpretation made precise in the Section 3.5.

Set k > 0 and suppose the terms j-bond and j-contiguity submap have been defined for all

0 ≤ j < k. Assume further that contiguity arcs, side arcs, and degrees of contiguity are defined

for j-contiguity submaps in a way similar to how they were defined for 0-contiguity submaps.

Two submaps Γ1,Γ2 such that Γi is a ji-contiguity submap for ji < k are called disjoint if they

have no common cells, their contiguity arcs have no common points, and their side arcs have no

common points. Note that this definition agrees with that given for the case j1 = j2 = 0.

Let π, Π1, and Π2 be cells of a graded map ∆, Π1 6= Π2, satisfying the following:

(1) r(π) = k, r(Πi) > k for i = 1, 2,
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(2) there are disjoint submaps Γ1,Γ2 such that Γi is a ji-contiguity submap of π to Πi for ji < k,

Π1 is not contained in Γ2, and Π2 is not contained in Γ1,

(3) (π,Γi,Πi) ≥ ε for i = 1, 2.

For i = 1, 2, let ∂Γi = visi for vi = Γi∧π and ∂π = u1v1u2v2. Letting Γ be the submap with

contour s1u
−1
1 s2u

−1
2 , Γ is the k-bond between Π1 and Π2 defined by the contiguity submaps Γ1 and

Γ2 with principal cell π. The contiguity arc of Γ to Πi is defined to be Γi∧Πi and denoted Γ∧Πi.

The side arcs of Γ are defined in the obvious way.

Figure 3.3: A k-bond between twoR-cells

A k-bond between an R-cell and a section of the contour or between two distinct sections of

the contour is defined similarly.

Suppose Γ1 is a k-bond between two cells Π1 and Π2 and Γ2 is a j-bond between Π1 and Π2 for

j ≤ k. If Γ1 = Γ2, then set Γ = Γ1. Otherwise, if Γ1 and Γ2 are disjoint, then set ∂Γi = ziviwisi

for vi = Γi∧Π1 and si = Γi∧Π2. Then set y1 as a subpath of ∂Π1 of the form v1vv2 (or v2vv1) and

y2 as a subpath of ∂Π2 of the form s2ss1 (or s1ss2). Setting Γ as the submap with contour z1y1w2y2

(or z2y1w1y2), if Γ does not contain Π1 or Π2, then it is called the k-contiguity submap of Π1 to Π2

defined by the bonds Γ1 and Γ2. As with previous definitions, yi = Γ∧Πi is called the contiguity

arc of Γ to Πi, z1 and w2 (or w1 and z2) are called the side arcs of Γ, (Π1,Γ,Π2) = |y1|/|Π1| is

called the degree of contiguity of Π1 to Π2 with respect to Γ.
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A k-contiguity submap between an R-cell and a section of the contour is defined similarly, as

is a k-contiguity submap between two sections of the contour.

The number k is often omitted when referring to k-contiguity submaps, so that there will be

reference merely to a contiguity submap. Further, if Γ is a contiguity submap between Π1 and

Π2 and ∂Γ = p1q1p2q2 with qi = Γ∧Πi, then ∂(Π1,Γ,Π2) denotes the standard decomposition

p1q1p2q2.

3.4 Graded Presentations

Given an alphabet A, let {Si}∞i=1 be a collection of subsets of F (A) such that if W ∈ Si and

V is a cyclic permutation of W or W−1, then V /∈ Sj for any j 6= i.

Set Rj = ∪ji=1Si for j ≥ 1, R0 = ∅, and R = ∪∞i=1Si. Further, define G(j) = 〈A | Rj〉 for

all j ≥ 0. Note that G(0) ∼= F (A).

Then 〈A | R〉 is called a graded presentation for the group G = G(∞).

The words in Si are called the relators of rank i. For words X, Y over A, if X = Y in G(i),

then X and Y are said to be equal in rank i, with this relation denoted X i
= Y .

Given a disk diagram ∆ over the presentation 〈A | R〉, let Π be an R-cell such that Lab(∂Π)

is a cyclic permutation of a relator of rank i (or the inverse of such a relator). Then Π is called

a cell of rank i, denoted by the representative notation r(Π) = i. Naturally, the 0-cells of ∆ are

called cells of rank 0.

Note that if one forgets the labelling function of a disk diagram ∆ over a graded presentation,

then ∆ is a graded map (with the ranks of cells assigned in the same way). A diagram satisfying

this property is called a graded disk diagram. It is then natural to define the rank and type of a

graded disk diagram as the rank and type of the underlying map.

Let ∆ be a graded disk diagram over 〈A | R〉 containingR-cells Π1,Π2 with r(Π1) = r(Π2) =

j. Suppose there exists a 0-refinement ∆′ of ∆ with copies Π′1,Π
′
2 of Π1,Π2, respectively, and a

simple path t in ∆′ between vertices O1, O2 of Π′1,Π
′
2, respectively, such that:

• Lab(t)
j−1
= 1 and
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• Lab(∂Π′1) read starting at O1 is mutually inverse to Lab(∂Π′2) read starting at O2.

Then Π1 and Π2 are called a j-pair in ∆.

This generalizes the concept of cancellable cells in a disk diagram over a presentation: If ∆ is

a graded disk diagram over a graded presentation with a j-pair Π1,Π2, then one can ‘remove’ Π1

and Π2 from ∆ at the cost of cells of rank ≤ j − 1, producing a graded disk diagram ∆′′ over the

same presentation with Lab(∂∆′′) ≡ Lab(∂∆) and τ(∆′′) < τ(∆).

A graded disk diagram ∆ over 〈A | R〉 is called reduced if for any graded disk diagram Γ

over 〈A | R〉 satisfying Lab(∂∆) ≡ Lab(∂Γ), the inequality τ(∆) ≤ τ(Γ) is satisfied. Similar to

reduced disk diagrams over general presentations, one can make any graded disk diagram reduced

simply by the removal of j-pairs (for varying j). As a result, van Kampen’s Lemma can again

be strengthened: Given a graded presentation G = 〈A | R〉, a word W over A represents the

identity in G if and only if there exists a reduced graded disk diagram ∆ over the presentation with

Lab(∂∆) ≡ W .

Graded annular diagrams are defined similarly.

3.5 Auxiliary parameters

The arguments presented through the rest of this section rely on the lowest parameter principle

introduced in [16]. For this, we introduce the relation >> on parameters defined as follows.

If α1, α2, . . . , αk are (positive) parameters with α1 >> α2 >> · · · >> αk, then for all indices

2 ≤ i ≤ k, it is understood that α1, . . . , αi−1 are assigned prior to the assignment of αi and that

the assignment of αi is dependent on the assignment of its predecessors. The resulting inequalities

are then understood as ‘αi ≤(any positive-valued expression involving α1, . . . , αi−1)’.

The principle makes the sequence of inequalities used throughout the rest of the section con-

sistent without muddling the matter with the arithmetic of particular infinitesimals.

Specifically, the assignment of parameters used in this section is:

β >> γ >> δ >> ε >> ζ >> ι
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Note that ε is the parameter used to define contiguity submaps in the previous section.

Further, one more restriction is imposed on the assignment of ι, specifically that its inverse

n = 1/ι is an integer that is either odd or divisible by 29 (and so, for small enough ι, n ∈ N∗).

In [9], these constants are labelled differently. Indeed, exact values are even given there, with

β = 0.05, γ = 0.01, δ = 0.005, ε = 2−14, ζ = 2−33, ι ≤ 2−48.

3.6 The graded presentation of B(A, n)

Letting A be a finite alphabet, fix a total order ≺ on the set of words over A such that if

|X| < |Y |, then X ≺ Y . Also, setR0 = ∅ and B(0) = F (A).

With this terminology, inductively define Ri = Ri−1 ∪ {Ani } where Ai is the first (relative to

≺) with infinite order in B(i− 1) = 〈A | Ri−1〉.

The following is a main result of [9]:

Lemma 3.1. (Theorem B of [9]). For each i,Ai exists, with |Ai| ≤ |Ai−1|+1. Moreover,R = ∪Ri

can be taken as an independent set of defining relations of the free Burnside group B(A, n) (and

so defines a graded presentation B(∞) of B(A, n)).

Let A be a freely cyclically reduced word over A. Then a word W over A is A-periodic if

W is a subword of a power Ak for k > 0, i.e Ak ≡ Z1WZ2 for some (perhaps empty) words Z1

and Z2. A decomposition W ≡ W1W2 is called phase if there exist positive integers k1, k2 with

k1 + k2 = k such that Ak1 ≡ Z1W1 and Ak2 ≡ W2Z2.

If ∆ is a graded diagram over B(i), a section q of ∂∆ is called A-periodic if Lab(q) is an A-

periodic word. In this case, a vertex of q is called phase if the natural decomposition of Lab(q) it

defines is phase. Similarly, if Π is an R-cell with r(Π) = j, then a vertex O of ∂Π is called phase

if Lab(∂Π) when read starting at O is visually A±nj .

Denote F (Ai) as a finite subgroup of B(i− 1) that is maximal with respect to the property that

Ai normalizes F (Ai). Clearly, such a subgroup must exist as Ai normalizes the trivial group. The

following statement establishes the well-defined nature of this construction:
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Lemma 3.2. (Lemma 18.5(a) of [9]). The subgroup F (Ai) is uniquely defined and is a 2-group.

A word J is called an F (Ai)-involution provided J normalizes F (Ai) in B(i−1), J2 ∈ F (Ai)

in rank i− 1, and J−1AiJ
i−1
= A−1

i F with a word F ∈ F (Ai).

Let ∆ be a diagram over B(i) and q1, q2 be sections of ∂∆ or the contours of a cell in ∆.

Suppose Lab(qk) is Aεkj -periodic for k ≤ i and εk ∈ {±1}. Then q1 and q2 are called j-compatible

in ∆ if either:

(A1) If ε1ε2 = −1, then there are phase vertices Ok ∈ qk and a simple path t between O1 and O2

such that |t| < (1 + δ)|Aj| and Lab(t)
j−1
= T for some T ∈ F (Aj).

(A2) If ε1ε2 = 1, then there are phase vertices Ok ∈ qk and a simple path t between O1 and O2

such that |t| < (1 + δ)|Aj| and Lab(t)
j−1
= T for some F (Aj)-involution T .

A disk diagram ∆ over B(i) is called strictly reduced if ∂Π1 and ∂Π2 are not j-compatible for

cells Π1 and Π2 of rank j (perhaps with Π1 = Π2). (Note that in [9], such a diagram is simply

called reduced).

This terminology is justified by Theorem C of [9], which essentially assures that cells whose

contours are j-compatible can be removed from ∆ and replaced with cells of rank≤ j−1, reducing

the type of ∆ (this is done in much the same way as it is done for j-pairs). As such, we may again

strengthen van Kampen’s Lemma, so that a word W over A ∪ A−1 satisfies W =B(A,n) 1 if and

only if there exists i ≥ 0 and a strictly reduced diagram ∆ over B(i) with Lab(∂∆) ≡ W .

3.7 Tame diagrams

A word X is cyclically reduced in rank i if for any word Y such that X i
= ZY Z−1 (i.e X

and Y are conjugate in rank i), then |X| ≤ |Y |. The word A is called simple in rank i if A is not

conjugate in rank i to A`kF for any k ≤ i, any integer `, and any F ∈ F (Ak).

For ∆ a diagram over B(i), an A-periodic section q of ∂∆ is called smooth if either:

(S1) A ≡ A±1
j and there is no cell Π in ∆ such that r(Π) = j and ∂Π is j-compatible with q
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(S2) A is simple in rank i.

If q satisfies (S1), then the rank of q is defined to be r(q) = j. Otherwise, we write r(q) =∞.

Note that if ∆ is a strictly reduced diagram containing an R-cell Π, Γ is a subdiagram of ∆

such that a section q of ∂Γ is a subpath of ∂Π in ∆, and Π is not contained in Γ, then Γ is strictly

reduced and q is a smooth section of ∂Γ with r(q) = r(Π).

Finally, a strictly reduced diagram ∆ over B(i) is called tame if it satisfies both:

(T1) Let p = ∂Π1 for some cell Π1 in ∆ and q be a smooth section of ∂∆ or q = ∂Π2 for some

cell Π2 in ∆. If Γ is a contiguity subdiagram between p and q, then r(Γ) < min(r(p), r(q)).

(T2) For anyR-cell Π in ∆, there is no 0-bond in ∆ from ∂Π to itself.

The following statements are proved in [9] and listed here for reference.

Lemma 3.3. (Lemma 9.2 of [9]). Every strictly reduced diagram ∆ over B(i) is tame.

Lemma 3.4. (Lemma 5.7 of [9]) Let ∆ be a tame disk diagram over B(i) whose contour is decom-

posed into the sections q1, . . . , qm with m ≤ 8. Then, in ∆, there exists an R-cell π and disjoint

contiguity submaps {Γj}kj=1 of π to these sections such that
k∑
j=1

|Γj∧π| > (1− γ)|∂π|.

The cell π guaranteed by Lemma 3.4 is called a γ-cell.

Lemma 3.5. (Lemma 6.1 of [9]) Let ∆ be a tame disk diagram over B(i) with contour qt. If q is a

smooth section, then (1− β)|q| ≤ |t|.

Lemma 3.6. (Lemma 6.2 of [9]) If ∆ is a tame disk diagram over B(i) satisfying the relation

|∂∆| ≤ (1− β)n|Ak| for some k ≤ i, then r(∆) < k.

Lemma 3.7. (Lemma 3.1 of [9]) Let ∆ be a strictly reduced disk diagram over B(i) and Γ be a

contiguity submap of a cell Π to a section q of ∂∆. If Γ is a tame diagram with ∂Γ = d1p1d2q1

where p1 = Γ∧∂Π and q1 = Γ∧q. Then for j = r(Π), max(|d1|, |d2|) < 2ε−1|Aj| ≤ ζn|Aj|.
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3.8 Mass of a diagram

We now introduce a weighting on diagrams over the presentation B(∞) = 〈A | R〉 ofB(A, n),

generalizing the concept of the area of such a diagram.

For Π an R-cell in a reduced graded disk diagram ∆ over the presentation B(∞), let An be

the relator associated to Lab(∂Π). Then, define the mass of Π as ρ(Π) = |A|2. This definition is

extended naturally to the mass of the entire diagram, taking ρ(∆) to be the sum of the masses of

itsR-cells.

Lemma 3.8. If ∆ is a strictly reduced graded disk diagram over the presentation B(∞) ofB(m,n),

then ρ(∆) ≤ |∂∆|2.

Proof. The proof inducts on |∂∆|, with the base case |∂∆| ≤ (1 − β)n. In this case, Lemma 3.6

implies that r(∆) = 0, i.e ∆ contains noR-cells. But then ρ(∆) = 0. Hence, we may assume that

|∂∆| > (1− β)n and ∆ is a ‘minimal counterexample’ to the lemma.

Partition ∂∆ into 8 sections, q1 . . . q8, any two of which differ in length by at most 1. By

Lemma 3.3, ∆ is a tame diagram. Applying Lemma 3.4, there exists a γ-cell π in ∆ together with

contiguity submaps Γj of π to q`(j) for j = 1, . . . , k.

As |∂∆| > (1− β)n and β < 1
2
, (1

8
− 2

n
)|∂∆| < |qj| < (1

8
+ 2

n
)|∂∆| for all 1 ≤ j ≤ 8.

We now proceed in two cases.

1. Suppose there exists 1 ≤ m ≤ 8 such that `(j) 6= m for all 1 ≤ j ≤ k. Without loss of

generality, say m = 1, i.e no Γj is a contiguity submap between π and q1.

For any 1 ≤ j ≤ k, write ∂(π,Γj, q`(j)) = dj1p
j
1d
j
2q
j
1. By Lemma 3.7, max(|dj1|, |d

j
2|) <

ζn|Ar| = ζ|∂π| for r = r(π).

Now, let Γ be the smallest subdiagram of ∆ containing each Γj . Then, there exists a decompo-

sition of the contour ∂Γ = s1t1s2t2 where t1 is a subpath of ∂π, t2 is a subpath of ∂∆, and each s`

is a side arc of some Γj . Note that each pj1 is a subpath of t1, so that |t1| ≥
∑
|pj1| > (1− γ)|∂π|.
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As Γ is a tame disk diagram and t1 is a smooth section of ∂Γ, Lemma 3.5 implies that

(1− β)|t1| ≤ |t2|+ |s1|+ |s2| ≤ |t2|+ 2ζ|∂π|

It follows that |t2| ≥ ((1− β)(1− γ)− 2ζ)|∂π|.

Let t′1 be the complement of t1 in ∂π so that ∂π = t1t
′
1. Further, let t′2 be the complement of t2

in ∂∆ so that ∂∆ = t2t
′
2. Letting u = s−1

2 t′1s
−1
1 , then |t′1| < γ|∂π| and |u| < (γ + 2ζ)|∂π|.

Cutting ∆ along u yields two tame subdiagrams ∆1 and ∆2 with contours u−1t2 and ut′2,

respectively.

Figure 3.4: Γ1 is absent, Γ2 and Γ10 are present

Then, by the parameter assignments, we have

|u| < (γ + 2ζ)|∂π| < 2γ((1− β)(1− γ)− 2ζ)−1|t2| < 3γ|t2| < 3γ|∂∆|

and |t2| < 7(1
8

+ 2
n
)|∂∆| < 9

10
|∂∆|.

Hence, by the parameter assignment for γ,

|∂∆1| = |t2|+ |u| < (1 + 3γ)|t2| <
9

10
(1 + 3γ)|∂∆| < |∂∆|

27



|∂∆2| = |u|+ |t′2| = |u|+ |∂∆| − |t2| < |∂∆| − (1− 3γ)|t2| < |∂∆|

Applying the inductive hypothesis on both diagrams then yields

ρ(∆1) < (1 + 3γ)2|t2|2

ρ(∆2) < (|∂∆| − (1− 3γ)|t2|)2

As γ is sufficiently small, note that 20
9

(1− 3γ) ≥ (1 + 3γ)2 + (1− 3γ)2. So,

|t2|((1 + 3γ)2 + (1− 3γ)2) ≤ 20

9
|t2|(1− 3γ) ≤ 2|∂∆|(1− 3γ)

Hence, |t2|2(1 + 3γ)2 + |t2|2(1− 3γ)2 − 2|∂∆||t2|(1− 3γ) ≤ 0, and so

(|∂∆| − (1− 3γ)|t2|)2 + (1 + 3γ)2|t2|2 ≤ |∂∆|2

This final inequality yields

ρ(∆) = ρ(∆1) + ρ(∆2) < |∂∆|2

2. Suppose that for every 1 ≤ m ≤ 8, there is a j such that Γj is a contiguity submap between

π and qm.

For any m ∈ {1, . . . , 8}, let Λm
1 , . . . ,Λ

m
k be the collection of Γj that are contiguity submaps

between π and qm. Then, let Λm be the smallest subdiagram of ∆ containing each Λm
j .

It follows that we may set ∂Λm = sm1 t
m
1 s

m
2 t

m
2 for all m, ∂π = t81v8t

7
1v7 . . . t

1
1v1, and ∂∆ =

t12w1t
2
2w2 . . . t

8
2w8. Further, for m = 1, . . . , 8, let ∆m be the subdiagram with contour

wm(sm+1
2 )−1vm+1(sm1 )−1

(with indices m counted mod 8).
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Figure 3.5: All Γi are present

As in the previous case, Lemma 3.7 implies that |smj | < ζ|∂π|. Also, as β < 1
2
, Lemma 3.6

implies |∂π| < 2|∂∆|.

As Λm is a tame subdiagram and tm1 is a smooth section of ∂Λm, Lemma 3.5 implies

(1− β)|tm1 | < |sm1 |+ |sm2 |+ |tm2 |

for all m. Further, since we also have |tm2 | ≤ |qm| < (1
8

+ 2
n
)|∂∆|, it follows from the parameter

choices that

|sm1 |+ |sm2 |+ |tm2 | < (
1

8
+

2

n
+ 4ζ)|∂∆| < 1

7
|∂∆|

for all m. Hence, for all m,

|∂Λm| = |tm1 |+ |sm1 |+ |sm2 |+ |tm2 | <
1

7

(
1 +

1

1− β

)
|∂∆| < 1

6
|∂∆|

So, applying the inductive hypothesis, ρ(Λm) < 1
36
|∂∆|2 for all m.

Further, |wm| < |qm| + |qm+1| < (1
4

+ 4
n
)|∂∆| and |vm| < γ|∂π| < 2γ|∂∆|, so that the

parameter assignments yield

|∂∆m| <
(1

4
+

4

n
+ 4ζ + 2γ

)
|∂∆| < 2

7
|∂∆|
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for all m. So, applying the inductive hypothesis yields ρ(∆m) < 4
49
|∂∆|2 for all m.

Finally, note that since π is anR-cell, ρ(π) = (ι|∂π|)2 < 4ι2|∂∆|2 < 1
9
|∂∆|2. Thus,

ρ(∆) =
8∑

m=1

ρ(Γm) +
8∑

m=1

ρ(∆m) + ρ(π) <
2

9
|∂∆|2 +

32

49
|∂∆|2 +

1

9
|∂∆|2 < |∂∆|2
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Chapter 4

S-Machines

4.1 Definition of S-machine as a Rewriting System

There are many equivalent interpretations of S-machines [27]. Following the conventions of

[3], [18], [20], [21], [23], [25], [26], and others, we approach them here as a rewriting system for

words over group alphabets.

Let (Y,Q) be a pair of sets with Q = tNi=0Qi and Y = tNi=1Yi for some positive integer N . For

convenience of notation, set Y0 = YN+1 = ∅ in this setting.

The elements of Q ∪ Q−1 are called state letters or q-letters, while those of Y ∪ Y −1 are tape

letters or a-letters. The sets Qi and Yi are called the parts of Q and Y , respectively. Note that

the parts of the state letters are typically represented by capital letters, while their elements are

represented by lowercase.

The language of admissible words for (Y,Q) is the collection of reduced words of the form

qε00 u1q
ε1
1 . . . ukq

εk
k where εi ∈ {±1} and each subword qεi−1

i−1 uiq
εi
i either:

(1) belongs to (Qj−1F (Yj)Qj)
±1;

(2) has the form quq−1 for q ∈ Qj and u ∈ F (Yj+1); or

(3) has the form q−1uq for q ∈ Qj and u ∈ F (Yj)

For a reduced word W ∈ F (Y ∪ Q), define its a-length |W |a as the number of a-letters that

comprise it. The q-length of W is defined similarly and is denoted |W |q.

Let W ≡ q1u1q2u2q3 . . . qs be an admissible word with qi ∈ Qεi
j(i) for εi ∈ {±1} and ui ∈

F (Y ). Then the base of W is base(W ) ≡ Qε1
j(1)Q

ε2
j(2) . . . Q

εs
j(s), where these letters are merely

representatives of their corresponding parts, and ui is called the Qεi
j(i)Q

εi+1

j(i+1)-sector of W . Note
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that the base of an admissible word W need not be a reduced word and that W is permitted to have

many sectors of the same name (for example, W may contain many Q0Q1-sectors).

The base Q0 . . . QN is called the standard base. An admissible word with the standard base is

called a configuration.

Now, set U0, . . . , Um and V0, . . . , Vm as a collection of reduced words over Y ∪Q satisfying:

(1) Ui and Vi have base Q`(i)Q`(i)+1 . . . Qr(i) with `(i) ≤ r(i) and such that both are subwords

of admissible words

(2) `(i+ 1) = r(i) + 1 for all i

(3) U0 and V0 start with letters from Q0, while Um and Vm end with letters from QN

Define Q(θ) as the set of state letters appearing in some Ui. Note that Q(θ) contains exactly

one state letter from each part.

Also, let Y (θ) = ∪Yj(θ) with Yj(θ) ⊆ Yj be some subset of the tape alphabet with the require-

ment that the set of tape letters appearing in Ui or Vi is a subset of Y (θ)±1. Each Yj(θ) is called

the domain of θ in the corresponding sector of the standard base.

If W is an admissible word with all its state letters contained in Q(θ) ∪ Q(θ)−1 and all

its tape letters contained in Y (θ) ∪ Y (θ)−1, then define W · θ as the result of simultaneously

replacing every subword U±1
i ≡ (u`(i)q`(i)u`(i)+1q`(i)+1 . . . qr(i)ur(i)+1)±1 of W by the subword

V ±1
i ≡ (v`(i)q

′
`(i)v`(i)+1 . . . q

′
r(i)vr(i)+1)±1, followed by the necessary reduction to make the result-

ing word again admissible.

In this case, θ is called an S-rule of (Y,Q) and is denoted θ = [U0 → V0, . . . , Um → Vm]. This

notation fully describes the rule θ except for the corresponding sets Yj(θ). Henceforth, Yj(θ) is

assumed to be either Yj or ∅ unless otherwise stated, with context making it clear which is chosen.

For any S-rule θ, if θ is applicable to an admissible word W , then W is called θ-admissible.

An important note to stress is that the application of an S-rule results in a reduced word, i.e

reduction is not a separate step in the application of the S-rule.
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If the i-th part of the S-rule θ is Ui → Vi, Ui and Vi have baseQ`(i) . . . Qr(i), and Yr(i)+1(θ) = ∅,

then this part of the rule is denoted Ui
`−→ Vi and θ is said to lock the Qr(i)Qr(i)+1-sector.

Note that every S-rule θ has a natural inverse, namely θ−1 = [V0 → U0, . . . , Vm → Um] with

Yj(θ
−1) = Yj(θ) for all j.

An S-machine S with hardware (Y,Q) is the defined to be the rewriting system whose software

is a symmetric set of S-rules Θ(S) = Θ, i.e θ ∈ Θ if and only if θ−1 ∈ Θ.

It is convenient to partition Θ into two disjoint sets, Θ+ and Θ−, such that θ ∈ Θ+ if and only

if θ−1 ∈ Θ−. The elements of Θ+ are called the positive rules and those of Θ− the negative rules.

For t ≥ 0, suppose W0, . . . ,Wt are admissible words with the same base such that there exist

θ1, . . . , θt ∈ Θ satisfying Wi−1 · θi ≡ Wi for all 1 ≤ i ≤ t. Then the sequence of applications

of rules C : W0 → · · · → Wt is called a computation of length or time t ≥ 0 of S. The word

H = θ1 . . . θt is called the history of C and the notation Wt ≡ W0 · H is used to represent the

computation.

A computation is called reduced if its history is a reduced word in F (Θ+). Every computation

can be made reduced without changing the initial and final admissible words of the computation

simply by removing consecutive mutually inverse rules.

Typically, it is assumed that each part of the state letters contains two (perhaps the same)

fixed elements, called the start and end state letters. A configuration is called a start (or end)

configuration if all of its state letters are start (or end) letters.

A recognizing S-machine is one with specified sectors called the input sectors. If a start con-

figuration has all sectors empty except for the input sectors, then it is called an input configuration

and its projection onto Y ∪ Y −1 is called its input. The end configuration with every sector empty

is called the accept configuration.

A configuration W is accepted by a recognizing S-machine if there is an accepting compu-

tation, i.e a computation whose initial configuration is W and whose final configuration is the

accept configuration. If W is an accepted input configuration with input u, then u is also said to be

accepted.
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If the configuration W is accepted by the S-machine S, then T (W ) is the minimal time of its

accepting computations. For a recognizing S-machine S, its time function is

TS(n) = max{T (W ) : W is an accepted input configuration of S, |W |a ≤ n}

If two recognizing S-machines have the same language of accepted words and Θ-equivalent

time functions, then they are said to be equivalent.

The following simplifies how one approaches the rules of a recognizing S-machine.

Lemma 4.1. (Lemma 2.1 of [18]) Every recognizing S-machine S is equivalent to a recognizing

S-machine that satisfies:

(1) Every part of every rule has a 1-letter base (i.e if Ui → Vi is a part of a rule θ, then

Ui ≡ uiqiui+1 and Vi ≡ viq
′
ivi+1 for qi, q′i state letters in Qi)

(2) In every part uiqiui+1 → viq
′
ivi+1 of every rule, ‖ui‖+ ‖vi‖ ≤ 1 and ‖ui+1‖+ ‖vi+1‖ ≤ 1.

(3) Moreover, with the terminology of (2), ‖ui‖+ ‖vi‖+ ‖ui+1‖+ ‖vi+1‖ ≤ 1.

As a result of Lemma 4.1, we may assume that each part of every rule of an S-machine is of

the form qi → aq′ib with ‖a‖ + ‖b‖ ≤ 1. However, it will be convenient to allow ‖a‖ = ‖b‖ = 1

in the defining rules of some of the S-machines we construct.

4.2 Some elementary properties of S-machines

The following is an immediate consequence of the definition of admissible words.

Lemma 4.2. If the rule θ locks the QiQi+1-sector, i.e it has a part qi
`−→ aq′i for some qi, q′i ∈ Qi,

then the base of any θ-admissible word has no subword of the form QiQ
−1
i or Q−1

i+1Qi+1.

Through the rest of our discussion of S-machines, we will often use copies of words over

disjoint alphabets. To be precise, let A and B be disjoint alphabets, W ≡ aε11 . . . aεkk with ai ∈ A

34



and εi ∈ {±1}, and ϕ : {a1, . . . , ak} → B be an injection. Then the copy of W over the alphabet

B formed by ϕ is the word W ′ ≡ ϕ(a1)ε1 . . . ϕ(ak)
εk . Typically, the injection defining the copy

will be contextually clear.

Alternatively, a copy of an alphabet A is a disjoint alphabet A′ which is in one-to-one corre-

spondence with A. For a word over A, its copy over A′ is defined by the correspondence between

the alphabets.

The following are properties of some simple computations in S-machines that are fundamen-

tal to the proofs presented in the next two chapters. They are stated here without proof, with a

reference provided for their proofs in previous literature.

Lemma 4.3. (Lemma 2.7 of [18]) Let C : W0 → · · · → Wt be a reduced computation, where

W0 is an admissible word with the two-letter base QiQi+1. Denote the tape word of Wj as uj for

each 0 ≤ j ≤ t. Suppose that each rule of C multiplies the QiQi+1-sector by a letter on the left

(respectively right). Suppose further that different rules multiply this sector by different letters.

Then:

(a) the history H of C is a copy of the reduced form of utu−1
0 read from right to left (respectively

u−1
0 ut read left to right). In particular, if u0 ≡ ut, then C is empty.

(b) ‖H‖ ≤ ‖u0‖+ ‖ut‖

(c) if ‖uj−1‖ < ‖uj‖ for some 1 ≤ j ≤ t− 1, then ‖uj‖ < ‖uj+1‖

(d) ‖uj‖ ≤ max(‖u0‖, ‖ut‖)

Lemma 4.4. (Lemma 3.6 of [24]) Suppose C : W0 → · · · → Wt is a reduced computation of an

S-machine with base QiQ
−1
i (respectively Q−1

i Qi). For 0 ≤ j ≤ t, let uj be the tape word of Wj .

Suppose each rule of C multiplies the QiQi+1-sector (respectively the Qi−1Qi-sector) by a letter

from the left (respectively from the right), with different rules corresponding to different letters.

Then ‖uj‖ ≤ max(‖u0‖, ‖ut‖) for all j and the history of C has the form H1H
`
2H3, where ` ≥ 0,

‖H2‖ ≤ min(‖u0‖, ‖ut‖), ‖H1‖ ≤ ‖u0‖/2, and ‖H3‖ ≤ ‖ut‖/2.
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4.3 Parameters

The arguments spanning the rest of this manuscript are reliant on the highest parameter princi-

ple, the obvious dual to the lowest parameter principle described in Chapter 3.5. In particular, we

introduce the relation << on parameters defined as follows.

If α1, α2, . . . , αn are parameters with α1 << α2 << · · · << αn, then for all 2 ≤ i ≤ n,

it is understood that α1, . . . , αi−1 are assigned prior to the assignment of αi and that the assign-

ment of αi is dependent on the assignment of its predecessors. The resulting inequalities are then

understood as ‘αi ≥(any expression involving α1, . . . , αi−1)’

Specifically, the assignment of parameters we use here is:

n << λ−1 << c0 << k << c1 << c2 << c3 << c4 << c5 << L0 << L << K0

<< K << J << δ−1 << C1 << C2 << C3 << N1 << N2 << N3 << N4 << N5
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Chapter 5

Auxiliary Machines

5.1 The machine M1

Let n be a positive integer and A be a finite set. Define the language of defining relations of

B(A, n) as the set L = {un : u ∈ F (A)}.

For 0 ≤ i ≤ 4, let Qi = {qi(j) : j = 1, . . . , 2n}. Further, for 1 ≤ i ≤ 4, let Yi = {ai : a ∈ A}

be a copy of A.

The recognizing S-machine M1 has hardware (t4
i=1Yi,t4

i=0Qi) and software the set of rules Φ

defined below. The input sector is taken to be the Q0Q1-sector, while the letters qi(1) (respectively

qi(2n)) are the start (respectively end) letters.

The idea of the function of M1 is the following. Consider an input configuration with input

un ∈ L. The machine removes one copy of u and replaces it in the Q2Q3-sector. Next, this copy

is moved to the Q1Q2-sector. It is then moved back to the Q2Q3-sector while another copy of u is

simultaneously erased from the input sector. The second and third steps are then repeated n − 2

more times until the input sector is empty. In the final step of this iteration, though, the natural

copy of u−1 is written in the Q3Q4-sector. Finally, the copies of u and u−1 are erased from the

Q2Q3- and Q3Q4-sectors, respectively.

The set of positive rules Φ+ is decomposed into 2n+1 subsets, which are denoted Φ+
1 , . . . ,Φ

+
2n,

and {σ(i, i+ 1) : i = 1, . . . , 2n− 1}.

For each i, the rules of Φ+
i are in correspondence withA, with the rule corresponding to a ∈ A

denoted τi(a).

For simplicity, if a rule θ of M1 does not lock the Qi−1Qi-sector, then we take Yi(θ) = Yi.

The definitions of the positive rules are detailed below, with a comment provided to detail the

purpose of each rule:
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• The rules of Φ+
1 are of the form

τ1(a) =

[
q0(1)→ q0(1), q1(1)

`−→ a−1
1 q1(1), q2(1)→ q2(1)a3, q3(1)

`−→ q3(1), q4(1)→ q4(1)

]
Comment: The state letter q1(1) moves left, removing the copy of a from the Q0Q1-sector and

replacing its copy in the Q2Q3-sector.

• σ(12) =

[
q0(1)→ q0(2), q1(1)

`−→ q1(2), q2(1)→ q2(2), q3(1)
`−→ q3(2), q4(1)→ q4(2)

]
Comment: The state letters are changed while the Q1Q2- and Q3Q4-sectors are locked.

• For 1 ≤ i ≤ n− 1, the rules of Φ+
2i are of the form

τ2i(a) =

 q0(2i)→ q0(2i), q1(2i)→ q1(2i), q2(2i)→ a2q2(2i)a−1
3 ,

q3(2i)
`−→ q3(2i), q4(2i)→ q4(2i)


Comment: The state letter q2(2i) moves right, removing the copy of a from the Q2Q3-sector

and replacing its copy in the Q1Q2-sector.

• For 1 ≤ i ≤ n− 1,

σ(2i, 2i+ 1) =

 q0(2i)→ q0(2i+ 1), q1(2i)→ q1(2i+ 1), q2(2i)
`−→ q2(2i+ 1),

q3(2i)
`−→ q3(2i+ 1), q4(2i)→ q4(2i+ 1)


Comment: When q2(2i) reaches q3(2i), the state letters are changed.

• For 1 ≤ i ≤ n− 2, the rules of Φ+
2i+1 are of the form

τ2i+1(a) =


q0(2i+ 1)→ q0(2i+ 1), q1(2i+ 1)→ a−1

1 q1(2i+ 1),

q2(2i+ 1)→ a−1
2 q2(2i+ 1)a3, q3(2i+ 1)

`−→ q3(2i+ 1),

q4(2i+ 1)→ q4(2i+ 1)


Comment: The state letter q2(2i+ 1) moves left, removing the copy of a from the Q1Q2-sector

and replacing its copy in the Q2Q3-sector. Simultaneously, the copy of a is removed from the right

of the Q0Q1-sector.

• For 1 ≤ i ≤ n− 2,

σ(2i+ 1, 2i+ 2) =


q0(2i+ 1)→ q0(2i+ 2), q1(2i+ 1)

`−→ q1(2i+ 2),

q2(2i+ 1)→ q2(2i+ 2), q3(2i+ 1)
`−→ q3(2i+ 2),

q4(2i+ 1)→ q4(2i+ 2)


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Comment: When q2(2i+ 1) reaches q1(2i+ 1), the state letters are changed.

• The rules of Φ+
2n−1 are of the form

τ2n−1(a) =


q0(2i+ 1)→ q0(2i+ 1), q1(2i+ 1)→ a−1

1 q1(2i+ 1),

q2(2i+ 1)→ a−1
2 q2(2i+ 1)a3, q3(2i+ 1)→ q3(2i+ 1),

q4(2i+ 1)→ a−1
4 q4(2i+ 1)


Comment: This rule functions similar to τ2i+1(a) for 1 ≤ i ≤ n− 2, but also inserts a copy of

a−1 in the Q3Q4-sector.

• σ(2n− 1, 2n) =


q0(2n− 1)

`−→ q0(2n), q1(2n− 1)
`−→ q1(2n),

q2(2n− 1)→ q2(2n), q3(2n− 1)→ q3(2n),

q4(2n− 1)→ q4(2n)


Comment: When both q2(2n − 1) reaches q1(2n − 1) and q1(2n − 1) reaches q0(2n − 1), the

state letters are changed.

• The rules of Φ+
2n are of the form

τ2n(a) =

 q0(2n)
`−→ q0(2n), q1(2n)

`−→ q1(2n), q2(2n)→ q2(2n)a−1
3 ,

q3(2n)→ q3(2n), q4(2n)→ a4q4(2n)


Comment: The letters in the Q2Q3- and Q3Q4-sectors are removed.

5.2 Standard computations of M1

The machine M1 can be viewed as the composition of 2n submachines, which are denoted

M1(1), . . . ,M1(2n), and which are concatenated by the rules σ(i, i + 1)±1. The set of positive

rules of the machine M1(i) is Φ+
i and each machine has a disjoint set of state letters. So, each

Qj = Qj,1t · · · tQj,2n where each Qj,i is the corresponding part of the hardware of M1(i) (in this

machine, each such subset is a singleton).

Accordingly, the rules of the form σ(i, i + 1)±1 are called transition rules, as their function is

to force the steps to be carried out in the correct order. For clarity in later chapters, these rules are

henceforth referred to as σ-rules.
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For simplicity of notation, denote the inverse of each σ-rule by switching the indices, so that

σ(i, i+ 1)−1 ≡ σ(i+ 1, i).

The history of a reduced computation of M1 can be factored so that each factor is either a σ-rule

or the history of a maximal subcomputation of M1(i) for some i. The step history of a reduced

computation is then defined so as to capture the order of the types of these factors. To do this, we

denote the σ-rule σ(i, j) by the pair (ij) and a factor that is an element of F (Φ+
i ) simply by (i).

For example, if H ≡ H ′H ′′H ′′′ where H ′ ∈ F (Φ+
2 ), H ′′ ≡ σ(23), and H ′′′ ∈ F (Φ+

3 ), then

the step history of a computation with history H is (2)(23)(3). So, the step history of a reduced

computation is some concatenation of the letters

{(1), (2), . . . , (2n), (12), (23), . . . , (2n− 1, 2n), (21), (32), . . . , (2n, 2n− 1)}

It is convenient to allow the omission of a letter representing a σ-rule in a step history when its

existence is clear from its necessity. For example, given a reduced computation with step history

(2)(23)(3), one can instead write the step history as (2)(3), as the rule σ(23) must occur for the

maximal subcomputation with step history (3) to be possible.

If the step history of a reduced computation is (i − 1, i)(i, i + 1), it is also permitted for the

step history to be written as (i− 1, i)(i)(i, i+ 1) even though the ‘maximal subcomputation’ with

step history (i) is empty.

A one-step computation is a reduced computation of M1 whose step history has exactly one

factor corresponding to a maximal subcomputation of a submachine M1(i).

Certain subwords cannot appear in the step history of a reduced computation of M1. For

example, it is clear that it is impossible for the step history of a reduced computation to contain

the subword (1)(3). The next statement displays the impossibility of some less obvious potential

subwords.

Lemma 5.1. Let C be a reduced computation with base B.

(a) If B contains a subword B′ of the form (Q2Q3)±1, then the step history of C cannot be
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(2i, 2i+ 1)(2i+ 1)(2i+ 1, 2i) or (2i+ 1, 2i)(2i)(2i, 2i+ 1) for 1 ≤ i ≤ n− 1.

(b) If B contains a subword B′ of the form (Q1Q2)±1, then the step history of C cannot be

(2i− 1, 2i)(2i)(2i, 2i− 1) or (2i+ 2, 2i+ 1)(2i+ 1)(2i+ 1, 2i+ 2) for 1 ≤ i ≤ n− 1.

(c) If B contains a subword B′ of the form (Q3Q4)±1, then the step history of C cannot be

(2n− 2, 2n− 1)(2n− 1)(2n− 1, 2n− 2).

Proof. Assuming to the contrary, let C ′ : W ′
0 → · · · → W ′

t be the restriction of C to the subword

B′. In each case, |W ′
0|a = |W ′

t |a = 0 and the subcomputation W ′
1 → · · · → W ′

t−1 satisfies

the hypotheses of Lemma 4.3. But then this subcomputation must be empty, contradicting the

assumption that C is reduced.

For an admissible word W , there is a natural projection of W onto F (A) given by sending

each tape letter to its natural copy and each state letter to the identity.

Note that any application of a rule of Φ1 preserves the projection of a configuration. Similarly,

for i = 2, . . . , 2n − 1, any application of a rule of Φi preserves the projection of an admissible

word with base Q1Q2Q3.

An application of these useful facts (or those similar in nature) is referred to as a projection

argument.

Lemma 5.2. For w ∈ F (A) and i ∈ {2 . . . , 2n − 1}, there exists a unique reduced computation

C : W0 → · · · → Wt with base Q1Q2Q3 such that

(a) the step history of C is (i− 1, i)(i)(i, i+ 1), and

(b) the projection of W0 onto F (A) is w.

Moreover, for Hi the history of the maximal subcomputation of C with step history (i), Hi is a

copy of w read left to right (resp read right to left) if i is even (resp odd) and |Wj|a = ‖w‖ for all

0 ≤ j ≤ t.
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Proof. Let C be such a computation and suppose i is even.

As W0 is σ(i − 1, i)-admissible, its Q1Q2-sector must be empty. So, since w is reduced, W0

must have the natural copy of w written in its Q2Q3-sector, i.e W0 ≡ q1(i− 1)q2(i− 1)w3q3(i− 1)

for w3 the natural copy of w in F (Y3).

Further, since Wt is σ(i+ 1, i)-admissible, its Q2Q3-sector must be empty.

But the restriction of the subcomputation W1 → · · · → Wt−1 to the Q2Q3-sector satisfies the

hypotheses of Lemma 4.3, so that its history must be the natural copy of w.

If i is odd, then an analogous argument applies.

Lemma 5.3. (a) Let C : W0 → · · · → Wt be a reduced computation of M1. Suppose W0 is a

start configuration and Wt is an end configuration. Then there exists u ∈ F (A) such that

the projection of W0 onto F (A) is un ∈ L.

(b) For all u ∈ F (A), there exists a unique reduced computation D1(u) : W0 → · · · → Wt

of M1 with step history (12)(2)(3) . . . (2n − 1)(2n − 1, 2n) and such that the projection of

W0 onto F (A) is un. This computation has length (2n− 2)‖u‖+ (2n− 1) and Wt has the

natural copy of u (respectively u−1) written in its Q2Q3-sector (respectively Q3Q4-sector).

Proof. (a) By a projection argument, it suffices to assume that the first letter of the step history is

(12). Lemma 5.1 then implies that the step history of C must have prefix

(12)(2)(3) . . . (2n− 1)(2n− 1, 2n)

LetD : W0 → · · · → Ws be the subcomputation with this step history. Further, let u, v ∈ F (A) be

the reduced words such that W0 has the natural copy of v written in its input sector and the natural

copy of u written in its Q2Q3-sector.

After restricting D to the subword Q1Q2Q3 of the standard base, Lemma 5.2 implies that the

history of D must be

σ(12)H2σ(23)H3 . . . H2n−1σ(2n− 1, 2n)
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where Hi ∈ F (Φ+
i ) is the natural copy of u read left to right (resp right to left) for i even (resp i

odd).

Then Ws−1 has the copy of vu−(n−1) written in its input sector. But Ws−1 is σ(2n − 1, 2n)-

admissible, so that vu−(n−1) is freely trivial.

Hence, the projection of W0 onto F (A) is vu = un ∈ L.

(b) Let u ∈ F (A) and D : W0 → · · · → Ws be the computation described in (a).

Let C ′ : W ′
0 → · · · → W ′

t be a computation with step history (12)(2)(3) . . . (2n−1)(2n−1, 2n)

such that the projection of W ′
0 onto F (A) is un.

Set x,w ∈ F (A) as the reduced words such that W ′
0 has the natural copy of x written in its

input sector and the natural copy of w written in its Q2Q3-sector.

As in (a), applications of Lemma 5.2 then imply that the history of C ′ must be

σ(12)H ′2σ(23)H ′3 . . . H
′
2n−1σ(2n− 1, 2n)

where H ′i ∈ F (Φ+
i ) is the natural copy of w read left to right (resp right to left) for i even (resp i

odd).

Then, W ′
t−1 has the natural copy of xw−(n−1) written in its input sector and is σ(2n − 1, 2n)-

admissible, so that x = wn−1. But the projection of W ′
0 onto F (A) is xw = wn, so that w ≡ u.

Hence, H ′i ≡ Hi for all i and W0 ≡ W ′
0, so that C ′ = D.

As Hi is a copy of u for each i, the length of D is (2n− 2)‖u‖+ (2n− 1).

Lemma 5.4. Let C : W0 → · · · → Wt be a reduced computation of M1 such that W0 is an end

configuration. If the history H of C contains a σ-rule, then Wt is not an end configuration.

Proof. Assuming to the contrary, Lemma 5.1 implies that H can be factored as H ′H ′′ such that

H ′ ≡ H ′2nσ(2n, 2n− 1)H ′2n−1 . . . σ(32)H ′2σ(21)
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where H ′i ∈ F (Φ+
i ) for each i.

Then, for W ′ ≡ W0 ·H ′, Lemma 5.3(a) implies there exists u ∈ F (A) such that the projection

of W ′ onto F (A) is un.

As we assume that Wt is an end configuration, H ′′ must contain a σ-rule. By Lemma 5.1, H ′′

must then have a prefix of the form

H ′′1σ(12)H ′′2σ(23) . . . H ′′2n−1σ(2n− 1, 2n)

where H ′′i ∈ F (Φ+
i ) for each i.

By a projection argument, W ′ and W ′ ·H ′′1 have the same projection onto F (A) so that Lemma

5.3(b) implies W ′ · H ′′1 ≡ W ′. But then H ′′1 must be empty by Lemma 4.3, contradicting the

assumption that C is reduced.

Lemma 5.5. The language of accepted inputs of M1 is L. Moreover, for any un ∈ L, there exists

a unique accepting computation C1(u).

Proof. Suppose C is an accepting computation of some input configuration W with input w.

Lemmas 5.1 and 5.4 then imply that the history H of C is of the form

H1σ(12)H2σ(23) . . . H2n−1σ(2n− 1, 2n)H2n

where Hi ∈ F (Φ+
i ) for all i.

As W ·H1 is σ(12)H2σ(23) . . . H2n−1σ(2n− 1, 2n)-admissible, Lemma 5.3(a) implies that its

projection onto F (A) is un for some u ∈ F (A). A projection argument then implies w ≡ un ∈ L.

Conversely, for any u ∈ F (A), let H0(u) be the history of D1(u) (see Lemma 5.3(b)). Further,

let H1(u) be the natural copy of u read right to left in F (Φ+
1 ) and H2n(u) be the natural copy of u

read left to right in F (Φ+
2n).

Then, for W the input configuration with input un and H(u) ≡ H1(u)H0(u)H2n(u), W is
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H(u)-admissible with W · H(u) the accept configuration. Let C1(u) be the reduced computation

with history H(u) accepting un.

Suppose C ′ is an arbitrary accepting computation of un. Again, Lemmas 5.1 and 5.4 imply that

the history H ′ of C ′ can be factored as

H ′ ≡ H ′1σ(12)H ′2σ(23) . . . H ′2n−1σ(2n− 1, 2n)H ′2n

where H ′i ∈ F (Φ+
i ) for all i.

Then the projection of W ·H ′1 onto F (A) is un, so that Lemma 5.3(b) yields

(i) W ·H ′1 ≡ W ·H1 = q0(1)un−1
1 q1(1)q2(1)u3q3(1)q4(1),

(ii) σ(12)H ′2σ(23) . . . H ′2n−1σ(2n− 1, 2n) ≡ H0(u), and

(iii) W · (H ′1H0(u)) ≡ q0(2n)q1(2n)q2(2n)u3q3(2n)u−1
4 q4(2n).

where ui is the natural copy of u in F (Yi).

Applications of Lemma 4.3 to the restriction of the subcomputations with history H ′1 and H ′2n

to the Q2Q3-sector then imply that H ′1 ≡ H1(u) and H ′2n ≡ H2n(u).

Thus, H ′ ≡ H(u), and so C ′ = C1(u).

As H1(u) and H2n(u) are copies of u (read in different directions), Lemma 5.3(b) implies that

the length of C1(u) is 2n‖u‖+ 2n− 1.

Lemma 5.6. Let C : W0 → · · · → Wt be a reduced computation with base Q1Q2Q3. Suppose

the step history of C does not contain the letter (1) or (2n). Then for m = max(|W0|a, |Wt|a),

t ≤ 2n(m+ 1).

Proof. By Lemma 5.1, the step history of C (or its inverse) is a subword of

(12)(2)(3) . . . (2n− 1)(2n− 1, 2n)
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Suppose the history of C contains no σ-rule. Then the restriction of C to the Q1Q2-sector satisfies

the hypotheses of Lemma 4.3, so that t ≤ |W0|a + |Wt|a ≤ 2m.

So, we may factor the history H of C as H1H2H3, where H1 and H3 contain no σ-rules and H2

starts and ends with a σ-rule. Note that we may have ‖H2‖ = 1 or ‖Hi‖ = 0 for i = 1, 3.

Let w be the projection of W0 onto F (A). Then a projection argument implies that the projec-

tion of Wi onto F (A) is w for all 0 ≤ i ≤ t. Hence, |Wi|a ≥ ‖w‖ for all i.

Lemma 5.2 applies to any subcomputation whose step history is of the form (j−1, j)(j)(j, j+

1). So, for the subcomputation Wr → · · · → Ws with history H2, we have s− r ≤ (2n− 2)‖w‖+

(2n− 1) and |Wi|a = ‖w‖ for all r ≤ i ≤ s.

Since Ws is σ-admissible for some σ-rule, one of its sectors must be empty. The restriction of

the subcomputation Ws → · · · → Wt to this sector then satisfies the hypotheses of Lemma 4.3, so

that t− s ≤ |Wt|a. An analogous argument implies r ≤ |W0|a.

Hence, t ≤ |W0|a + |Wt|a + (2n− 2)‖w‖+ (2n− 1) ≤ 2n(m+ 1).

Lemma 5.7. Let C : W0 → · · · → Wt be a reduced computation of M1 in the standard base.

Suppose the step history of C is (i) for some i ∈ {2, . . . , 2n− 1} and W0 is σ-admissible for some

σ-rule. Then |W0|a ≤ 3|Wt|a.

Proof. Let C ′ : W ′
0 → · · · → W ′

t be the restriction of C to the base Q1Q2Q3.

Let w be the projection of W ′
0 onto F (A). As W0 is σ-admissible, one sector of W ′

0 must

be empty. The restriction of C ′ to this sector then satisfies the hypotheses of Lemma 4.3, so that

t ≤ |W ′
t |a.

Further, a projection argument implies |W ′
t |a ≥ ‖w‖ = |W ′

0|a.

Now let C ′′ : W ′′
0 → · · · → W ′′

t be the restriction of C to the input sector. As the application of

any rule inserts/deletes at most one letter from the input sector, |W ′′
0 |a ≤ |W ′′

t |a + t.

Similarly, for C ′′′ : W ′′′
0 → · · · → W ′′′

t the restriction to the Q3Q4-sector, |W ′′′
0 |a ≤ |W ′′′

t |a + t.

Hence, |W0|a = |W ′
0|a + |W ′′

0 |a + |W ′′′
0 |a ≤ |W ′

t |a + |W ′′
t |a + |W ′′′

t |a + 2t ≤ 3|Wt|a.
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Lemma 5.8. Let C : W0 → · · · → Wt be a reduced computation of M1 in the standard base.

Suppose W0 is an input configuration and the step history of C does not contain the letter (2n).

Then |W0|a ≤ 9n|Wt|a.

Proof. Let W0 → · · · → Wr be the maximal subcomputation with step history (1). A projection

argument implies |W0|a ≤ |Wr|a. So, it suffices to assume that r < t and prove |Wr|a ≤ 6n|Wt|a.

By Lemma 5.1, the step history of the subcomputation C ′ : Wr → · · · → Wt must be a subword

of (12)(2)(3) . . . (2n− 1)(2n− 1, 2n).

Let j ≤ 2n − 1 be the maximal index for which C ′ has a nonempty maximal subcomputation

with step history (j). As σ-rules do not alter the a-length of an admissible word, we may then

assume that the step history of C ′ is (12)(2) . . . (j).

Let H ′ be the history of the subcomputation of C ′ with step history (12) . . . (j − 1, j).

Let u, v ∈ F (A) be the reduced words such that Wr has the natural copy of u written in its

Q2Q3-sector and the natural copy of v in its input sector.

By Lemma 5.2, Ws ≡ Wr ·H ′ has the natural copy of u written in either its Q1Q2-sector (if j

is odd) or its Q2Q3-sector (if j is even) and the natural copy of (the reduced form of) vu−` written

in its input sector for some ` ≤ n.

If 2n‖u‖ ≥ ‖v‖, then |Wr|a = ‖u‖+ ‖v‖ ≤ (2n+ 1)‖u‖ ≤ 3n|Ws|a.

Otherwise, ‖vu−`‖ ≥ ‖v‖ − `‖u‖ ≥ ‖v‖ − n‖u‖ ≥ 1
2
‖v‖. So,

|Wr|a = ‖u‖+ ‖v‖ ≤ 2(‖u‖+ ‖vu−`‖) ≤ 2|Ws|a

As Lemma 5.7 implies |Ws|a ≤ 3|Wt|a, wee have |Wr|a ≤ 9n|Wt|a.

Lemma 5.9. Let C : W0 → · · · → Wt be a reduced computation of M1 in the standard base.

Suppose the first letter of the step history of C is (2n, 2n − 1). Then t ≤ 15n2(|Wt|a + 1) and

|W0|a ≤ 12n|Wt|a.
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Proof. Let u ∈ F (A) be the reduced word such that W0 has the natural copy of u written in its

Q2Q3-sector.

Suppose the step history of C is (2n, 2n − 1)(2n − 1). Then for C ′ : W ′
0 → · · · → W ′

t the

restriction of C to the Q0Q1- or Q1Q2-sector, Lemma 4.3 implies |W ′
t |a = |W ′

0|a + t − 1 and

t ≤ |W ′
t |a + 1. As each of the rules of Φ2n−1 can decrease the length of an admissible word with

base Q2Q3 or Q3Q4 by at most one, it then follows that |W0|a ≤ |Wt|a.

So, Lemma 5.1 allows us to assume that (2n, 2n− 1)(2n− 1)(2n− 1, 2n− 2) is a prefix of the

step history of C. As a result, W0 has the natural copy of u−1 written in its Q3Q4-sector, so that

|W0|a = 2‖u‖.

Next, suppose the step history of C is a subword of (2n, 2n − 1)(2n − 1)(2n − 2) . . . (2)(21)

and let C ′ : W ′
0 → · · · → W ′

t be the restriction to the base Q1Q2Q3. Then the projection of

W ′
i onto F (A) is u for all i, so that ‖u‖ ≤ |W ′

t |a. Hence, |W0|a ≤ 2|W ′
t |a and, by Lemma 5.6,

t ≤ 2n(|W ′
t |a + 1).

So, by Lemma 5.1, we may assume that the step history of C has prefix

(2n, 2n− 1)(2n− 1)(2n− 2) . . . (2)(21)(1)

Let W0 → · · · → Ws be the maximal subcomputation with this step history and Wr → · · · → Ws

be the maximal subcomputation with step history (1).

By Lemma 5.3, the projection of Wr onto F (A) is un and r = (2n− 2)‖u‖+ (2n− 1).

Let v ∈ F (A) be the reduced word such that Ws has the natural copy of v written in its Q2Q3-

sector. The restriction of Wr → · · · → Ws to the Q2Q3-sector satisfies the hypotheses of Lemma

4.3, so that s− r ≤ ‖u‖+ ‖v‖.

By Lemmas 5.1 and 5.4, we may apply Lemma 5.6 to the restriction of the subcomputation

Ws → · · · → Wt to the subword Q1Q2Q3. So, t− s ≤ 2n(|Wt|a + 1) and ‖v‖ ≤ |Wt|a.

Hence, t ≤ 2n‖u‖+ 3n|Wt|a + 4n.

Suppose ‖u‖ ≤ 2n‖v‖. Then |W0|a ≤ 4n|Wt|a and t ≤ (4n2+3n)|Wt|a+4n ≤ 7n2(|Wt|a+1).
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Otherwise, let Wx → · · · → Wt be the maximal suffix whose history contains no σ-rule.

Lemma 5.2 implies that for some 0 ≤ ` ≤ n, Wx has the natural copy of (the reduced form of)

unv−` written in its input sector. Note that ‖unv−`‖ ≥ ‖un‖ − `‖v‖ ≥ ‖u‖ − n‖v‖, so that

|Wx|a ≥ 1
2
‖u‖.

Lemma 5.7 then implies that 1
2
|W0|a = ‖u‖ ≤ 6|Wt|a, so that t ≤ 15n|Wt|a + 4n ≤

15n(|Wt|a + 1).

Lemma 5.10. For any reduced computation C : W0 → · · · → Wt of M1 in the standard base,

t ≤ c0 max(‖W0‖, ‖Wt‖).

Proof. First, suppose the step history of C has no occurrence of (2n).

By the parameter choice c0 >> n and Lemma 5.6, we may assume that the step history has

an occurrence of (1). Lemma 5.1 then implies that there is exactly one occurrence of (1). Let

C1 : Wr → · · · → Ws be the maximal subcomputation with step history (1).

Further, let C ′1 : W ′
r → · · · → W ′

s be the restriction of C1 to the Q2Q3-sector and let u and v be

the projections ofW ′
r andW ′

s, respectively, onto F (A). Lemma 4.3 implies that s−r ≤ ‖u‖+‖v‖.

Next, let C ′′0 : W ′′
0 → · · · → W ′′

r and C ′′t : W ′′
s → · · · → W ′′

t be the restrictions of the

corresponding subcomputations to the base Q1Q2Q3.

If C ′′0 is nonempty, then W ′′
r must be σ(12)-admissible, so that |W ′′

r |a = ‖u‖. A projection

argument then implies |W ′′
0 |a ≥ ‖u‖ = |W ′′

r |a, so that Lemma 5.6 yields r ≤ 2n(|W ′′
0 |a + 1).

Similarly, if C ′′t is nonempty, then |W ′′
t |a ≥ ‖v‖ = |W ′′

s |a and t− s ≤ 2n(|W ′′
t |a + 1).

Hence, t ≤ (2n+1)(|W ′′
0 |a+|W ′′

t |a)+4n ≤ (4n+2) max(|W0|a, |Wt|a)+4n ≤ 6nmax(‖W0‖, ‖Wt‖).

Thus, we may assume that the step history of C has an occurrence of (2n). Then, Lemma 5.4

implies that there is exactly one occurrence of (2n). Let C2n : Wx → · · · → Wy be the maximal

subcomputation with step history (2n).

Similar to above, applying Lemma 4.3 to the restriction of C2n to the Q2Q3-sector implies

s−r ≤ |Wx|a+ |Wy|a. But then Lemma 5.9 implies that r ≤ 15n2(|W0|a+1), |Wr|a ≤ 12n|W0|a,

t− s ≤ 15n2(|Wt|a + 1), and |Ws|a ≤ 12n|Wt|a.
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Hence, t ≤ 15n2(|W0|a + |Wt|a + 2) + |Wr|a + |Ws|a ≤ (30n2 + 24n) max(‖W0‖, ‖Wt‖).

Lemma 5.11. For any reduced computation C : W0 → · · · → Wt of M1 in the standard base,

‖Wi‖ ≤ 3c0 max(‖W0‖, ‖Wt‖) for all i = 0, . . . , t.

Proof. Note that the application of any rule of M1 changes the length of a configuration by at most

four.

For i ≤ t/2, Lemma 5.10 implies that the subcomputation W0 → · · · → Wi has length at most

1
2
c0 max(‖W0‖, ‖Wt‖), so that ‖Wi‖ ≤ ‖W0‖+ 2c0 max(‖W0‖, ‖Wt‖).

For i ≥ t/2, the analogous argument applies to the subcomputation Wi → · · · → Wt, so that

‖Wi‖ ≤ ‖Wt‖+ 2c0 max(‖W0‖, ‖Wt‖).

Hence, for any i, ‖Wi‖ ≤ (2c0 + 1) max(‖W0‖, ‖Wt‖).

For 1 ≤ i ≤ 2n and 1 ≤ j ≤ 4, suppose there exists an admissible word W with base Qj−1Qj

and θ ∈ Φi such that the tape word of W · θ differs from that of W . Then the application of any

rule of M1(i) to any admissible word with base Qj−1Qj inserts/deletes one tape letter. Moreover,

this insertion/deletion occurs on the same side of the tape word for fixed i and j.

If the insertion/deletion occurs on the left (resp right) of the tape word, then the subword

Qj−1Qj of the standard base of M1 is called left-active (resp right-active) for M1(i).

Lemma 5.12. For i ∈ {1, . . . , 2n}, let C : W0 → · · · → Wt be a reduced computation of M1(i) in

the standard base. Assume that for some index j, |Wj|a > 4|W0|a. Then there are `, r ∈ {1, 2, 3, 4}

such that Q`−1Q` is left-active, Qr−1Qr is right-active, and for the restriction W ′
0 → · · · → W ′

t to

either sector, |W ′
j|a < |W ′

j+1|a < · · · < |W ′
t |a.

Proof. Let C ′ : W ′
0 → · · · → W ′

t be the restriction to any sector. Then by the definition of the

rules,
∣∣|W ′

k|a − |W ′
k−1|a

∣∣ = 1 for all 1 ≤ k ≤ t. Moreover, if |W ′
k|a − |W ′

k−1|a = 1, then Lemma

4.3 implies that |W ′
m|a − |W ′

m−1|a = 1 for all m ≥ k.
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Note that for each i, there exists some sector of the standard base that is left-active and another

that is right-active. So, assuming the statement is false, there must exist a sector for which the

restriction C ′ satisfies |W ′
j|a = |W ′

j+1|a + 1.

Then, we must have |W ′
k−1|a = |W ′

k|a + 1 for all k ≤ j, so that j ≤ |W ′
0|a.

For any other sector, the restriction C ′′ : W ′′
0 → · · · → W ′′

t satisfies the hypotheses of Lemma

4.3, so that |W ′′
j |a ≤ |W ′′

0 |a + j.

But as there are three such sectors, we have |Wj|a ≤ |W0|a + 3j ≤ 4|W0|a, yielding a contra-

diction.

5.3 Primitive Machines

As in the constructions of [18] and [25], we introduce two machines, LR(Y ) and RL(Y ) for

an alphabet Y , that will be used to alter M1. These machines are called primitive machines.

The standard base of LR(Y ) is Q(1)PQ(2) with Q(1) = {q(1)}, P = {p(1), p(2)}, and Q(2) =

{q(2)}. The letter p(1) is the start letter of P , while p(2) is the end letter.

The tape alphabets are two disjoint copies of Y , denoted Y (1) and Y (2) and assigned in the

natural way.

The positive rules of LR(Y ) come in the following three forms:

• ζ(1)(a) = [q(1) → q(1), p(1) → a−1
1 p(1)a2, q

(2) → q(2)] for all a ∈ Y , where ai is its copy in

Y (i).

Comment. The state letter p(1) moves left, replacing a letter from theQ(1)P -sector with its copy

in the PQ(2)-sector.

• ζ(12) = [q(1) `−→ q(1), p(1) → p(2), q(2) → q(2)]

Comment. When p(1) meets q(1), it switches to p(2). This is called the connecting rule of the

machine.

• ζ(2)(a) = [q(1) → q(1), p(2) → a1p
(2)a−1

2 , q(2) → q(2)] for all a ∈ Y , where ai is its copy in

Y (i).
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Comment. The state letter p(2) moves right towards q(2) and replaces a letter in the PQ(2)-sector

with its copy in the Q(1)P -sector.

The state letters of P are called running state letters. In practice, they ‘run’ left to the adjacent

state letter and then right to the other, as is indicated by the name of the machine.

Lemma 5.13. (Lemma 3.1 of [18]) Let C : W0 → · · · → Wt be a reduced computation of LR(Y )

in the standard base. Then:

(1) if |Wi−1|a < |Wi|a for some 1 ≤ i ≤ t− 1, then |Wi|a < |Wi+1|a

(2) |Wi|a ≤ max(|W0|a, |Wt|a) for each i

(3) if W0 ≡ q(1)up(1)q(2) and Wt ≡ q(1)vp(2)q(2) for some u, v ∈ F (Y (1)), then u ≡ v, |Wi|a =

‖u‖ := ` for each i, t = 2` + 1, and the Q(1)P -sector is locked in the rule W` → W`+1.

Moreover, letting ū be u read right to left, the history H of C is a copy of ūζ(12)u

(4) if W0 ≡ q(1)up(j)q(2) and Wt ≡ q(1)vp(j)q(2) for some u, v and j ∈ {1, 2}, then u ≡ v and

the computation is empty (i.e t = 0)

(5) if W0 is of the form q(1)up(1)q(2), q(1)p(1)uq(2), q(1)up(2)q(2), or q(1)p(2)uq(2) for some word u,

then |Wi|a ≥ |W0|a for every i.

Lemma 5.14. (Lemma 3.4 of [25]) Suppose W0 → · · · → Wt is a reduced computation of LR(Y )

with base Q(1)PP−1(Q(1))−1 (or (Q(2))−1P−1PQ(2)) such that W0 ≡ q(1)p(i)u(p(i))−1(q(1))−1 (or

W0 ≡ (q(2))−1(p(i))−1vp(i)q(2)) for i = 1, 2 and some word u (or v). Then |W0|a ≤ · · · ≤ |Wt|a.

Lemma 5.15. Let C : W0 → · · · → Wt be a reduced computuation of LR(Y ) in the standard base.

Then t ≤ |W0|a + |Wt|a + 1.

Proof. If the history H of C contains no connecting rule, then the restriction of C to the Q(1)P -

sector satisfies the hypotheses of Lemma 4.3. So, t ≤ |W0|a + |Wt|a.
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By Lemma 5.13(4), we then assume that H contains exactly one connecting rule. Let Wr →

Wr+1 be the transition corresponding to this connecting rule. Then both Wr and Wr+1 have empty

Q(1)P -sector, so that Lemma 4.3 yields r ≤ |W0|a and t− r − 1 ≤ |Wt|a.

The machine RL(Y ) is the right analogue of LR(Y ). To be precise, the standard base of

RL(Y ) is Q(1)RQ(2) with R = {r(1), r(2)}, the tape alphabets are again two copies of Y denoted

Y (1) and Y (2), and the positive rules are:

• ξ(1)(a) = [q(1) → q(1), r(1) → a1r
(1)a−1

2 , q(2) → q(2)] for all a ∈ Y , where ai is its copy in

Y (i)

• ξ(12) = [q(1) → q(1), r(1) `−→ r(2), q(2) → q(2)]

• ξ(2)(a) = [q(1) → q(1), r(2) → a−1
1 r(2)a2, q

(2) → q(2)] for all a ∈ Y , where ai is its copy in

Y (i).

There are obvious analogues of Lemmas 5.13-5.15 in the setting of RL(Y ), which can be

verified in much the same ways.

When the alphabet Y is contextually clear, it is convenient to omit it from the names of these

machines. So, there will be reference in subsequent constructions to the machines LR and RL.

5.4 The machine M2

The next machine in our construction, M2, is the composition of copies of the submachines

M1(i) with copies of the primitive machines LR and RL.

Four new parts are added to the standard base of M1, producing the standard base

Q0P1Q1R1Q2R2Q3P4Q4

However, the parts of the formQi have more letters than the corresponding parts of the hardware of

M1. The makeup of each part is contextually clear from the definition of the positive rules below.

The tape alphabets of:
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• the Q0P1- and P1Q1-sectors are copies of Y1,

• the Q1R1- and R1Q2-sectors are copies of Y2,

• the Q2R2- and R2Q3-sectors are copies of Y3, and

• the Q3P4- and P4Q4-sectors are copies of Y4.

The Q0P1-sector functions as the machine’s input sector.

The idea of the function of M2 is the following. The Q0P1-, R1Q2-, R2Q3-, and Q3P4-sectors

are identified with the sectors of the standard base of M1, so that a computation of M1 may be

carried out while all other sectors are locked. However, before a transition between two steps of

such a computation can take place, every unlocked sector must take part in at least one copy of a

standard computation of a primitive machine.

To be precise, M2 is the concatenation of 4n−1 submachines, which are denoted M2(2), . . . ,M2(4n).

Consequently, each part of the state letters is the disjoint union of 4n− 1 sets corresponding to the

hardware of these submachines.

The submachines are concatenated in the natural order. As such, the state letters of M2(2) and

M2(4n) function as the start and end letters, respectively.

To force the correct order of this concatenation, we introduce transition rules θ(i, i + 1)±1 for

2 ≤ i ≤ 4n − 1. The rule θ(i, i + 1) changes the state letters from the end letters of M2(i) to the

start letters of M2(i+ 1). Further, a sector of the standard base is locked by θ(i, i+ 1) if and only

if it is locked by every rule of M2(i) or every rule of M2(i + 1). The domain in a sector that is

unlocked is the entire corresponding tape alphabet.

For 1 ≤ i ≤ 2n, the submachine M2(2i) corresponds to the submachine M1(i), with each part

of the state letters consisting of a singleton. For any θ ∈ Φ+
i , the corresponding positive rule of

M2(2i) locks the P1Q1-, Q1R1-, Q2R2-, and P4Q4-sectors and operates in the remaining sectors as

θ, identifying these sectors with the standard base of M1 in the obvious way. As such, the positive

rules of M2(2i) are identified with Φ+
i .
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For 3 ≤ i ≤ 4n−3 odd, the submachine M2(i) is the concatenation of two submachines, which

are denoted M2(i−) and M2(i+) and concatenated in this order. To achieve this concatentation, we

introduce more transition rules, denoted χ±1
i . To differentiate these transition rules for clarity, we

henceforth refer to them as χ-rules rather than transition rules. The rule χi changes the state letters

from the end letters of M2(i−) to the start letters of M2(i+) and has the same domain as the rule

θ(i− 1, i).

The submachine M2(i−) operates as the machine LR = LR(Y1). The subword Q0P1Q1 is

identified with the standard base of LR, with each rule operating on this subword as its corre-

sponding rule. Each other part of the standard base consists of a singleton. Additionally, the

R2Q3-sector (respectively R1Q2-sector) remains unlocked by every rule if i is of the form 4` − 1

(respectively 4`+ 1). Every remaining sector of the standard base is locked by every rule.

If i is of the form 4` − 1 (with ` < n), then the submachine M2(i+) operates as the machine

RL = RL(Y3). The subword Q2R2Q3 is identified with the standard base of RL, with each rule

operating on this subword as its corresponding rule. Each other part of the standard base consists

of a singleton. Additionally, the Q0P1-sector is unlocked by every rule, while all remaining sectors

of the standard base are locked by every rule.

If i is of the form 4`+ 1, then the submachine M2(i+) operates as the machine RL = RL(Y2).

The subword Q1R1Q2 is identified with the standard base of RL, while each other part of the

standard base consists of a singleton. Again, the Q0P1-sector is unlocked by every rule, while all

remaining sectors of the standard base are locked by every rule.

Finally, the submachine M2(4n − 1) is the concatenation of k submachines, where k is the

parameter specified in Chapter 4.3. These submachines are denoted M2((4n−1)1), . . . ,M2((4n−

1)k) and are concatenated in the natural way. So, the start letters of M2((4n − 1)1) and the end

letters of M2((4n− 1)k) function as the start and end letters of M2(4n− 1), respectively.

To force the correct order of this concatenation, we introduce more transition rules, denoted

χ(j, j+1)±1. The rule χ(j, j+1) changes the state letters from the end letters of M2((4n−1)j) to

the start letters of M2((4n − 1)j+1), locking all sectors of the standard base except for the R2Q3-
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and Q3P4-sectors.

As with the transition rules within other submachines, the rules χ(j, j+1)±1 are called χ-rules.

As a result, forthcoming references to ‘transition rules’ of M2 are implicitly restricted to those of

the form θ(i, i+ 1)±1.

Each submachine M2((4n−1)j) operates in parallel as a copy of RL = RL(Y3) on the subword

Q2R2Q3 and a copy of LR = LR(Y −1
4 ) on the subword Q3P4Q4. As such, for every a ∈ A and

i ∈ {1, 2}, there exists a positive rule of this submachine that simultaneously acts as ξ(i)(a) on the

subword Q2R2Q3 and as ζ(i)(a−1) on the subword Q3P4Q4. The subsets of Q0, P1, Q1, and R1

corresponding to this submachine are singletons, while the remaining sectors are locked by every

rule.

Note that we may interpret M2 as the concatenation of 6n − 4 + k submachines, which are

concatenated in the following order:

M2(2), M2(3−), M2(3+), . . . , M2(4n− 4), M2((4n− 3)−), M2((4n− 3)+),

M2(4n− 2), M2((4n− 1)1), . . . , M2((4n− 1)k), M2(4n)

5.5 Standard computations of M2

The step history of a reduced computation of M2 is defined in much the same way as it is

defined for a reduced computation of M1. As such, we first factor the computation’s history so that

each factor is either the history of a maximal subcomputation of one of the defining submachines

M2(i) or a transition rule θ(i, i + 1)±1. Then, a factor corresponding to a computation of M2(i)

is represented by (i) and a factor corresponding to a transition rule θ(i, j) is represented by (ij),

where we take θ(i, i+ 1)−1 ≡ θ(i+ 1, i).

The notational conventions described in Chapter 5.2 are used for step histories of this machine.

For example, we may write the step history of a reduced computation of M2 as (2)(3), omitting

reference to the rule θ(23) as its presence is clear from its necessity.

Similarly, a one-step computation of M2 is a reduced computation whose step history has
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exactly one letter corresponding to a computation of M2(i).

The following statement is an immediate consequence of Lemma 5.1.

Lemma 5.16. Let C be a reduced computation of M2 with base B.

(a) If B contains a subword of the form (R2Q3)±1, then the step history of C cannot be of the

form (4i+ 1, 4i+ 2)(4i+ 2)(4i+ 2, 4i+ 1) or (4i+ 1, 4i)(4i)(4i, 4i+ 1) for 1 ≤ i ≤ n− 1.

(b) If B contains a subword of the form (R1Q2)±1, then the step history of C cannot be of the

form (4i− 1, 4i)(4i)(4i, 4i− 1) or (4i+ 3, 4i+ 2)(4i+ 2)(4i+ 2, 4i+ 3) for 1 ≤ i ≤ n− 1.

(c) If B contains a subword of the form (Q3P4)±1, then the step history of C cannot be of the

form (4n− 3, 4n− 2)(4n− 2)(4n− 2, 4n− 3).

Further, the following statement is an immediate consequence of Lemma 5.13(4).

Lemma 5.17. Let C be a reduced computation of M2 in the standard base. Then the step history

of C cannot be (2i, 2i + 1)(2i + 1)(2i + 1, 2i) or (2i + 2, 2i + 1)(2i + 1)(2i + 1, 2i + 2) for any

1 ≤ i ≤ 2n− 1.

Suppose C is a one-step computation of M2 with step (4n− 1). Then the history of C is called

controlled if it (or its inverse) is of the form

χ(j − 1, j)H ′χ(j, j + 1)

for 1 ≤ j ≤ k, whereH ′ contains no χ-rule, χ(0, 1) is taken to be θ(4n−2, 4n−1), and χ(k, k+1)

is taken to be θ(4n− 1, 4n).

Lemma 5.18. Let C : W0 → · · · → Wt be a reduced computation of M2 with controlled historyH .

Then the base B of the computation is reduced and all configurations are uniquely defined by H

and B. Moreover, if C is a computation in the standard base, then |Wi|a = |W0|a for all 0 ≤ i ≤ t,

‖H‖ = |W0|a + 3, and W0 is accepted by M2.
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Proof. Without loss of generality, suppose H ≡ χ(j − 1, j)H ′χ(j, j + 1). Then, any sector of the

standard base not locked by χ(j − 1, j) is locked by the connecting rule of M2((4n − 1)j). So,

Lemma 4.2 implies that the base must be reduced. Lemma 5.13(3) then implies that C is uniquely

defined by H and B.

If C is a computation in the standard base, then the parallel nature of the rules implies that there

exists w ∈ F (A) such that W0 has the natural copy of w written in its R2Q3-sector and the natural

copy of w−1 written in its Q3P4-sector. By Lemma 5.13(3), we then have |Wi|a = |W0|a for all i

and ‖H‖ = 2‖w‖+ 3 = |W0|a + 3.

Using Lemma 5.13(3), we may construct a reduced computation W0 → · · · → Wh of the

submachine M2(4n− 1) such that Wh is θ(4n− 1, 4n)-admissible. Then, W ≡ Wh · θ(4n− 1, 4n)

is the end configuration with the natural copy of w written in its R2Q3-sector and the natural copy

of w−1 written in its Q3P4-sector. Setting H ′′ as the natural copy of w in F (Φ+
2n), W · H ′′ is the

accept configuration. Hence, W0 is accepted.

The following statement is a similar consequence of Lemma 5.13(3).

Lemma 5.19. Let C : W0 → · · · → Wt be a reduced computation of M2 with history H . Suppose

the step history of C is (2i, 2i+ 1)(2i+ 1)(2i+ 1, 2i+ 2) for some 1 ≤ i ≤ 2n− 2. Then the base

B of the computation is reduced and all configurations are uniquely defined by H and B.

Moreover, if C is a computation in the standard base, then |Wi|a = |W0|a for all 0 ≤ i ≤ t and

‖H‖ = 2|W0|a + 5.

A configuration of M2 is called tame if its P1Q1-, Q1R1-, Q2R2-, and P4Q4-sectors are all

empty. Note that for i = 1, . . . , 2n, a tame configuration W of M2(2i) corresponds naturally

to a configuration W ′ of M1(i). Moreover, if W is admissible for a rule of M2(2i), then W ′

is admissible for the corresponding rule of M1(i). Similarly, if W is θ(2i, 2i + 1)-admissible

(respectively θ(2i, 2i− 1)-admissible), then W ′ is σ(i, i+ 1)-admissible (respectively σ(i, i− 1)-

admissible).
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Suppose C : W0 → · · · → Wt is a reduced computation of M2 in the standard base such that

neither the first nor last letter of its step history is of the form (2i+ 1). Then by Lemma 5.17, any

occurrence of (2i+ 1) in the step history of C must be part of a subword that is of the form

(a) (2i, 2i+ 1)(2i+ 1)(2i+ 1, 2i+ 2) or

(b) (2i+ 2, 2i+ 1)(2i+ 1)(2i+ 1, 2i).

Let Wr → · · · → Ws be a subcomputation of C with such a step history. Then Wr and Ws are

both tame configurations. Moreover, Lemma 5.13(3) implies that the configurations W ′
r and W ′

s of

M1 corresponding to Wr and Ws, respectively, satisfy W ′
r · σ(i, i + 1) ≡ W ′

s if the step history is

of the form (a) or W ′
r · σ(i+ 1, i) ≡ W ′

s if the step history is of the form (b).

So, we can associate to C a reduced computation C ′ of M1 by doing the following:

• replace each subcomputation Wr → · · · → Ws whose step history is of the form (a) with the

single transition W ′
r → W ′

r · σ(i, i+ 1),

• replace each subcomputation Wr → · · · → Ws whose step history is of the form (b) with the

single transition W ′
r → W ′

r · σ(i+ 1, i),

• if the first letter of the step history is of the form (2i+ 1, 2i) (respectively (2i− 1, 2i)), then

replace the transition W0 → W1 with the transition W ′
1 · σ(i, i + 1) → W ′

1 (respectively

W ′
1 · σ(i, i− 1)→ W ′

1),

• if the last letter of the step history is (2i, 2i + 1) (respectively (2i, 2i − 1)), then replace

the transition Wt−1 → Wt with the transition W ′
t−1 → W ′

t−1 · σ(i, i + 1) (respectively

W ′
t−1 → W ′

t−1 · σ(i, i− 1)), and

• replace all other transitions Wj−1 → Wj with the corresponding transition W ′
j−1 → W ′

j .

In this case, the reduced computation C ′ is called the M1 computation associated to C.
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Note that any subcomputation of C that is ‘removed’ to construct C ′ corresponds to an occur-

rence of a σ-rule in the history of C ′. Hence, Lemmas 5.1 and 5.4 imply that at most 8n distinct

subcomputations are removed.

Lemma 5.20. Let C : W0 → · · · → Wt be a reduced computation such that W0 is an end

configuration. If the history H of C contains a transition rule, then Wt is not an end configuration.

Proof. Assuming toward contradiction, neither the first nor the last letter of the step history of C

can be of the form (2i+ 1). So, we may construct C ′ the M1 computation associated to C.

Then C ′ is a reduced computation of M1 starting and ending with an end configuration. How-

ever, the existence of a transition rule in H necessitates the existence of a σ-rule in the history of

C ′, so that C ′ contradicts Lemma 5.4.

Lemma 5.21. Let C : W0 → · · · → Wt be a reduced computation of M2 in the standard base.

Suppose W0 is an input configuration and the step history of C does not contain the letter (4n).

Then |W0|a ≤ 9n|Wt|a.

Proof. Let D : W0 → · · · → Ws be the maximal subcomputation such that the last letter of the

step history of D is not of the form (2i + 1). Then, we may construct D′ : W ′
0 → · · · → W ′

s the

M1 computation associated to D.

Lemma 5.8 then implies that |W0|a = |W ′
0|a ≤ 9n|W ′

s|a = 9n|Ws|a.

If the subcomputationWs → · · · → Wt is nonempty, then its step history is of the form (2i+1).

But then Lemma 5.13 implies |Ws|a ≤ |Wt|a, so that |W0|a ≤ 9n|Wt|a.

The next statement follows from an analogous proof, using Lemma 5.9 in place of 5.8.

Lemma 5.22. Let C : W0 → · · · → Wt be a reduced computation of M2 in the standard base.

Suppose the first letter of the step history of C is (4n, 4n− 1). Then |W0|a ≤ 12n|Wt|a.

Lemma 5.23.
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(a) Let C : W0 → · · · → Wt be a reduced computation of M2. Suppose W0 is a start configura-

tion and Wt is an end configuration. Then there exists u ∈ F (A) such that the projection of

W0 onto F (A) is un ∈ L.

(b) For all u ∈ F (A), there exists a unique reduced computation D2(u) : W0 → · · · → Wt of

M2 in the standard base with step history (23)(3) . . . (4n− 1)(4n− 1, 4n) and such that the

projection of W0 onto F (A) is un.

(c) Let t be the length of D2(u) and ` be the length of the subcomputation with step history

(4n− 2, 4n− 1)(4n− 1)(4n− 1, 4n). Then ` = 2k‖u‖+ 2k + 1 and t− ` ≤ c0(‖u‖+ 1).

Proof. (a) Note that neither the first nor the last letter of the step history of C can be of the form

(2i+ 1). So, we may construct C ′ : W ′
0 → · · · → W ′

t the M1 computation associated to C.

Then W ′
0 is a start configuration and W ′

t is an end configuration, so that Lemma 5.3 implies

that there exists u ∈ F (A) such that the projection of W ′
0 onto F (A) is un. As W0 is tame, its

projection must also be un.

(b) For any reduced computation C satisfying the statement, the M1 computation associated to

C must be the computation D1(u) in Lemma 5.3(b).

The removed computations correspond to primitive computations at the σ-rules. As the tape

words of the terminal configuration of D1(u) are mutually inverse, the statement follows from

Lemma 5.13(3).

(c) By Lemma 5.3(b), the subcomputation with step history (4n−2, 4n−1)(4n−1)(4n−1, 4n)

operates on the base Q2R2Q3 as k copies of the standard computation of RL with tape word u. So,

Lemma 5.13(3) implies ` = 2k‖u‖+ 2k + 1.

Let E be the maximal subcomputation of D2(u) with step history (23)(3) . . . (4n− 2). So, the

length of E is t− `.

The M1 computation associated to E is the maximal subcomputation ofD1(u) with step history

(12)(2)(3) . . . (2n− 1). So, its length is (2n− 2)(‖u‖+ 1).

The subcomputations removed from E correspond to the subcomputations with step history of
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the form (2i, 2i + 1)(2i + 1)(2i + 1, 2i + 2). Let Wr → · · · → Ws be such a subcomputation.

Then Wr has the natural copy of u written in its R2Q3- or R1Q2-sector, depending on the parity of

i, and the natural copy of un−m written in its Q0P1-sector for some 1 ≤ m ≤ n− 1. Lemma 5.19

then implies that s− r = 2‖u‖+ 2‖un−m‖+ 5 ≤ 2(n+ 1)‖u‖+ 5.

As there are 2n− 2 such subcomputations of E , t− ` ≤ (2n− 2) ((2n+ 3)‖u‖+ 6). So, the

statement follows by a parameter choice of c0.

Lemma 5.24. The language of accepted inputs of M2 is L. Moreover, for any un ∈ L, there exists

a unique accepting computation C2(u).

Proof. By Lemma 5.23(a), any accepted input must be an element of L.

Conversely, for any un ∈ L, Lemma 5.5 provides a unique accepting computation C1(u).

Concatenating the steps of C1(u) with primitive computations corresponding to Lemma 5.13(3)

then yields an accepting computation C2(u).

Uniqueness of this computation follows from Lemmas 5.16, 5.17, 5.20, 5.23(b), and 4.3.

Lemma 5.25. For i odd, any reduced computation C : W0 → · · · → Wt of M2(i) in the standard

base satisfies t ≤ 2kmax(‖W0‖, ‖Wt‖).

Proof. If the history contains no χ-rules, then the statement follows from Lemma 5.15. So, we

may assume there exists a maximal subcomputation Wr → · · · → Ws starting and ending with

χ-rules.

Suppose i 6= 4n − 1. Then Lemma 5.13(4) implies that there is exactly one χ-rule in the

history H of C, so that s = r + 1. Lemmas 5.13(5) and 5.15 then imply that t − s ≤ 2|Wt|a + 1,

|Ws|a ≤ |Wt|a, r ≤ 2|W0|a + 1, and |Wr|a ≤ |W0|a. Hence, t ≤ 4 max(‖W0‖, ‖Wt‖).

If i = 4n− 1, then there are at most k copies of primitive computations in the subcomputation

Wr → · · · → Ws. Lemma 5.18 then implies that s − r ≤ k‖Wr‖ = k‖Ws‖. Again, Lemmas

5.13(5) and 5.15 imply that t − s ≤ 2‖Wt‖, ‖Ws‖ ≤ ‖Wt‖, r ≤ 2‖W0‖, and ‖Wr‖ ≤ ‖W0‖.
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Hence, t ≤ (k + 4) max(‖W0‖, ‖Wt‖), so that the statement is implied by the parameter choice

k ≥ 4.

Lemma 5.26. For any reduced computation C : W0 → · · · → Wt of M2 in the standard base,

t ≤ c1 max(‖W0‖, ‖Wt‖).

Proof. By Lemma 5.25 and the parameter choice c1 >> k, we may assume that C is not a one-step

computation with step (2i+ 1).

Let D : Wx → · · · → Wy be the maximal subcomputation of C such that neither the first nor

the last letter of the step history of D is of the form (2i+ 1).

Then, let D′ : W ′
x → · · · → W ′

y be the M1 computation associated to D and ` be the length of

D′ (note that ` may be less than y − x if subcomputations are removed).

By Lemma 5.10, ` ≤ c0 max(‖W ′
x‖, ‖W ′

y‖) ≤ c0 max(‖Wx‖, ‖Wy‖). Moreover, by Lemma

5.11, ‖W ′
i‖ ≤ 3c0 max(‖W ′

x‖, ‖W ′
y‖) ≤ 3c0 max(‖Wx‖, ‖Wy‖) for all x ≤ i ≤ y for which W ′

i is

part of the computation D′.

The difference between y − x and ` arises from removed subcomputations Wr → · · · →

Ws. By Lemma 5.25, the length of such a subcomputation is at most 2k‖Wr‖. So, this removed

subcomputation has length at most 6c0kmax(‖Wx‖, ‖Wy‖).

As there are at most 8n such removed subcomputations, we have y−x−` ≤ k2 max(‖Wx‖, ‖Wy‖)

as k >> c0.

Hence, y − x ≤ (k2 + c0) max(‖Wx‖, ‖Wy‖).

If the subcomputationWy → · · · → Wt is nonempty, then its step history is of the form (2i+1).

Lemma 5.25 then implies that t−y ≤ 2kmax(‖Wy‖, ‖Wt‖). But Wy is tame, so that Lemma 5.13

implies |Wy|a ≤ |Wt|a. Hence, t− y ≤ 2k‖Wt‖.

By the analogous arguments, |Wx|a ≤ |W0|a and x ≤ 2k‖W0‖.

Thus, t ≤ (k2 + 4k + c0) max(‖W0‖, ‖Wt‖), so that the statement is implied by the parameter

choices c1 >> k >> c0.
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For 2 ≤ i ≤ 4n, let UV be a two-letter subword of the standard base of M2. Suppose that

the application of any rule of M2(i) to an admissible word with base UV either leaves the tape

word fixed or inserts/deletes one letter on the left of the tape word. Then UV is called left-active

in M2(i). A right-active two-letter subword is defined analogously.

For example, the subword Q0P1 is right-active for the submachine M2(3) even though appli-

cations of the rules of M2(3+) do not alter an admissible word with base Q0P1.

Note that a two-letter subword of the standard base of M2 is left-active (resp right-active) in

M2(2i) if and only if it is operated upon as a sector of M1(i) and the corresponding two-letter

subword of the standard base of M1 is left-active (resp right-active) in M1(i).

Further, a two-letter subword that is neither left-active nor right-active in M2(i) is locked by

every rule of the submachine.

Lemma 5.27. Let C : W0 → · · · → Wt be a reduced computation in the standard base of M2(i)

for some i. Assume that for some index j, |Wj|a > 4|W0|a. Then there are subwords U`V` and

UrVr of the standard base such that U`V` is left-active in M2(i), UrVr is right-active in M2(i), and

for W ′
0 → · · · → W ′

t the restriction of C to either sector, |W ′
j|a < |W ′

j+1|a < · · · < |W ′
t |a.

Proof. If i is even, then the statement is an immediate consequence of Lemma 5.12. So, we may

assume i is odd.

Further, inducting on t, we may assume that |W1|a > |W0|a.

If i 6= 4n−1, then Lemma 5.13(1) implies that C is a computation of either M2(i−) or M2(i+),

i.e there exists a three-letter subword of the standard base on which C operates as a primitive

machine. As one of the corresponding sectors is left-active while the other is right-active, the

statement follows.

If i = 4n−1, then theR2Q3- and P4Q4-sectors are left-active, theQ2R2- andQ3P4-sectors are

right-active, and all other sectors are locked. As any rule changes the a-length of any of the four

sectors above by one, at least three must have their length increased at the first transition. Two of

these three must then be operated upon by C as a copy of a primitive machine.
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Hence, Lemma 5.13(1) implies that there exists 1 ≤ m ≤ k such that C is a computation of

M2((4n− 1)m). The statement then follows as above.

5.6 The machine M3

The recognizing S-machine M3 is the composition of M2 with one more simple machine.

The standard base of M3 is taken to be

P0Q0P1Q1R1Q2R2Q3P4Q4

As in the construction of M2, any part of this standard base given the same name as a part of the

standard base of M2 contains more letters than its predecessor. The makeup of these parts is clear

from the definition of the rules below.

The tape alphabet of the P0Q0- andQ0P1-sectors are copies of Y1, while all other tape alphabets

naturally correspond to those of M2. The P0Q0-sector is the input sector of the machine.

The idea of the function of M3 is the following. Given an input configuration, an accepting

computation first moves all the letters to the right into the Q0P1-sector while all other sectors are

locked. Then, the subword Q0P1Q1R1Q2R2Q3P4Q4 is operated upon as the standard base of M2

while the P0Q0-sector is locked.

To be precise, we view M3 as the concatenation of 4n submachines: The 4n− 1 submachines

M3(2), . . . ,M3(4n) corresponding to the submachines of M2 and the new machine M3(1).

The submachines corresponding to those of M2 differ only in that the newly introduced part of

the standard base consists of a single letter and the newly introduced sector remains locked.

For each part of the standard base, the subset corresponding to the submachine M3(1) is a

singleton. The positive rules of this submachine are in correspondence with A. For a ∈ A, the

corresponding rule has the part q0(1) → a−1
1 q0(1)a′1, where q0(1) ∈ Q0 and a1 (respectively a′1)

is the copy of a in the tape alphabet of the P0Q0-sector (respectively the Q0P1-sector). All other
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sectors of the standard base are locked by this rule.

We also introduce more transition rules, defined in the same way as for previous machines to

force the natural order of the concatenation of these submachines. The transition rules θ(i, i+1)±1

for 2 ≤ i ≤ 4n− 1 correspond to the rules of the same name in M2, operating on the natural copy

of the standard base of M2 in the same way and locking all other sectors. Meanwhile, the transition

rules θ(12)±1 connect M3(1) and M3(2), locking all sectors of the standard base of M3 except for

the Q0P1-sector.

5.7 Standard computations of M3

The step history of a reduced computation of M3 is defined in a manner similar to how it was

for reduced computations of M2. The only new letters corresponding to this machine are (1),

(12), and (21), which correspond to maximal subcomputations of M3(1) and transition rules in the

obvious way.

Further, for 3 ≤ i ≤ 4n − 3 odd, we define the submachines M3(i−) and M3(i+) as the

submachines of M3(i) in the same way as the corresponding submachines of M2(i). Similarly, for

1 ≤ j ≤ k, we define the submachines M3((4n− 1)j).

As a result, Lemmas 5.16 and 5.17 have obvious analogues in M3. The following statement

is similar in nature to those, dealing with the newly added steps. Its proof is identical to that of

Lemma 5.1.

Lemma 5.28. Let C be a reduced computation of M3 with base B.

(a) If B contains a subword B′ of the form (P0Q0)±1, then the step history of C cannot be

(21)(1)(12).

(b) If B contains a subword B′ of the form (R2Q3)±1, then the step history of C cannot be

(12)(2)(21).

Much of the same terminology regarding reduced computations is carried over from M2.
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For example, the history H of a reduced computation C of M3 is controlled if C is the natural

copy of a reduced computation of M2 whose history is controlled.

However, a configuration of M3 is tame if, in addition to its P1Q1-, Q1R1-, Q2R2-, and P4Q4-

sectors being empty, its P0Q0-sector is also empty.

Lemma 5.29. Let C : W0 → · · · → Wt be a reduced computation such that W0 is an end

configuration. If the history H of C contains a transition rule, then Wt is not an end configuration.

Proof. Assuming toward contradiction, Lemma 5.28(a) implies that the step history of C has no

occurrence of (1), (12), or (21).

But then C can be viewed as a reduced computation of M2, so that it contradicts Lemma 5.20.

Lemma 5.30. Let C : W0 → · · · → Wt be a reduced computation of M3 in the standard base.

Suppose W0 is an input configuration and the step history of C does not contain the letter (4n).

Then |W0|a ≤ 9n|Wt|a.

Proof. If C is a one-step computation with step (1), then |W0|a ≤ |Wt|a by a projection argument.

Otherwise, let W0 → · · · → Wr be the subcomputation with step history (1)(12). Then as

above |W0|a ≤ |Wr|a.

By Lemmas 5.16, 5.17, and 5.28, the subcomputation Wr → · · · → Wt can be identified with

a reduced computation of M2. But then Lemma 5.21 implies |Wr|a ≤ 9n|Wt|a.

An analogous proof immediately implies the following statement.

Lemma 5.31. Let C : W0 → · · · → Wt be a reduced computation of M3 in the standard base.

Suppose the first letter of the step history of C is (4n, 4n− 1). Then |W0|a ≤ 12n|Wt|a.

Lemma 5.32. (a) Let C : W0 → · · · → Wt be a reduced computation of M3. Suppose W0 is a

start configuration and Wt is an end configuration. Then there exists u ∈ F (A) such that

the projection of W0 onto F (A) is un ∈ L.
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(b) For all u ∈ F (A), there exists a unique reduced computation D3(u) : W0 → · · · → Wt of

M3 in the standard base with step history (12)(2)(3) . . . (4n− 1)(4n− 1, 4n) and such that

the projection of W0 onto F (A) is un.

(c) Let t be the length of D3(u) and ` be the length of the subcomputation with step history

(4n−2, 4n−1)(4n−1)(4n−1, 4n). Then ` = 2k‖u‖+2k+1 and t−` ≤ (c0 +1)(‖u‖+1).

Proof. (a) As an application of a rule of step history (1) does not change the projection of a

configuration onto F (A), the statement follows from a projection argument and Lemma 5.23(a).

Statement (b) follows immediately from Lemmas 5.23(b),(c) and 4.3(a).

(c) Let E be the maximal subcomputation of D3(u) with step history (12)(2)(3) . . . (4n − 2)

and E ′ be the maximal subcomputation with step history (12)(2). Then the length of E is t− ` and,

for `′ the length of E ′, Lemma 5.23(c) implies t− `− `′ ≤ c0(‖u‖+ 1).

But Lemma 4.3 implies that `′ = ‖u‖+ 1, so that the statement follows.

Lemma 5.33. The language of accepted inputs of M3 is L. Moreover, for any un ∈ L, there exists

a unique accepting computation C3(u).

Proof. Lemma 5.32(a) implies that any accepted input must be an element of L.

Conversely, for un ∈ L, let H1 be the natural copy of un read right to left in the rules of step

history (1) and H2 be the history of C2(u). Then, for H ≡ H1θ(12)H2, the input configuration

with input un is H-admissible with W ·H the accept configuration.

The uniqueness of this computation follows immediately from Lemmas 5.32(b) and 4.3(a).

Lemma 5.34. Let C : W0 → · · · → Wt be a reduced computation of M3. Suppose W0 is an input

configuration and Wt is either an input or the accept configuration. Then the sum of the lengths of

the subcomputations of C whose step histories are of the form (4n−2, 4n−1)(4n−1)(4n−1, 4n)

or (4n, 4n− 1)(4n− 1)(4n− 1, 4n− 2) is at least
(

1− 1
c0

)
t.
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Proof. By Lemmas 4.3 and 5.28, the step history of C has prefix (1)(2) . . . (4n − 1)(4n − 1, 4n).

Let W0 → · · · → Ws be the subcomputation with this step history. Lemma 5.32(a) then implies

that there exists u ∈ F (A) such that the input of W0 is un.

Let W0 → · · · → Wr be the maximal subcomputation with step history (1). Then Lemma 4.3

implies r = ‖un‖.

By Lemma 5.32(b), the subcomputation Wr → · · · → Ws must be D3(u). Letting `1 be the

length of the subcomputation with step history (4n − 2, 4n − 1)(4n − 1)(4n − 1, 4n), Lemma

5.32(c) then implies s− `1 ≤ ‖un‖+ (c0 + 1)(‖u‖+ 1) and `1 = 2k‖u‖+ 2k + 1.

If Wt is the accept configuration, then Lemma 4.3 implies t − s = ‖u‖, so that the parameter

choice c0 >> n yields

t− `1 ≤ ‖un‖+ (c0 + 2)(‖u‖+ 1) ≤ 2c0(‖u‖+ 1)

while `1 ≥ 2k(‖u‖ + 1). So, `1 ≥ k
c0

(t − `1), implying `1 ≥ k
k+c0

= 1 − c0
k+c0

. The parameter

choice k ≥ c2
0 then implies the statement.

Now suppose Wt is an input configuration. Then we may apply the same arguments to the

inverse subcomputation, so that:

• the input of Wt is vn for some v ∈ F (A),

• there exists a maximal subcomputation E : Wx → · · · → Wt of C whose step history is

(4n, 4n− 1)(4n− 1) . . . (2)(1)

• for `2 the length of the subcomputation with step history (4n, 4n−1)(4n−1)(4n−1, 4n−2),

t− x− `2 ≤ ‖vn‖+ (c0 + n)(‖v‖+ 1) and `2 = 2k‖v‖+ 2k + 1.

By Lemma 5.29, the subcomputation Ws → · · · → Wx has step history (4n). So, Lemma 4.3

implies x− s ≤ ‖u‖+ ‖v‖. Combining these inequalities and taking c0 >> n then yields

t− (`1 + `2) ≤ ‖un‖+ ‖vn‖+ (c0 + 1) (‖u‖+ ‖v‖+ 2) + ‖u‖+ ‖v‖ ≤ 2c0(‖u‖+ ‖v‖+ 2)
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while `1 + `2 ≥ 2k(‖u‖+ ‖v‖+ 2). So, ` ≥ k
c0

(t− `) for ` = `1 + `2, so that the statement follows

as above.

Lemma 5.35. For any reduced computation C : W0 → · · · → Wt of M3 in the standard base,

t ≤ 2c1 max(‖W0‖, ‖Wt‖).

Proof. If C is a one-step computation with step (1), then the statement follows from Lemma 4.3.

So, by Lemma 5.28, we may assume there exists a maximal subcomputation C2 : Wr → · · · →

Ws of C whose step history has no occurrence of the letters (1), (12), or (21).

Then, C2 can be viewed as a computation of M2, so that we have s− r ≤ c1 max(‖Wr‖, ‖Ws‖)

by Lemma 5.26.

If the subcomputation Ws → · · · → Wt is nonempty, then it must be a one-step computation

with step (1). But then this implies t− s ≤ |Wt|a + 1 and |Ws|a ≤ |Wt|a.

The symmetric argument implies r ≤ |W0|a + 1 and |Wr|a ≤ |W0|a.

Hence, t ≤ (c1 + 2) max(‖W0‖, ‖Wt‖), so that the statement follows by c1 ≥ 2.

A two-letter subword of the standard base of M3 is defined to be left-active (or right-active) in

M3(i) in the same way as subwords of the standard base of M2.

For example, the subwords P0Q0 and Q0P1 are right-active and left-active, respectively, in

M3(1).

Lemma 5.36. Let C : W0 → · · · → Wt be a reduced computation of M3(i) in the standard base

for some i. Assume that for some index j, |Wj|a > 4|W0|a. Then there are subwords U`V` and

UrVr of the standard base such that U`V` is left-active in M3(i), UrVr is right-active in M3(i), and

for W ′
0 → · · · → W ′

t the restriction of C to either sector, |W ′
j|a < |W ′

j+1|a < · · · < |W ′
t |a.

Proof. By Lemma 5.27, it suffices to assume that i = 1. But then the statement follows immedi-

ately from Lemma 4.3.
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5.8 The machine M4

The machine M4 is the ‘circular’ analogue of a simple tweak to the machine M3.

The standard base of M4 adds just one part to that of M3. In particular, setting B3 as the

standard base of M3, the standard base of M4 is {t}B3, where {t} consists of a single letter (which,

clearly, acts as both the start and end letter of its part). The tape alphabet of the new sector in the

standard base, i.e the {t}P0-sector, is empty. All other tape alphabets are carried over from M3.

A major difference between M4 and the machines constructed in previous sections is that a

tape alphabet is assigned to the space after the final letter Q4 of B3, which corresponds to the

Q4{t}-sector. As such, it is possible for an admissible word of M4 to have base

Q−1
0 P−1

0 {t}−1Q−1
4 P−1

4 P4Q4{t}P0Q0

i.e it essentially ‘wraps around’ the standard base. An S-machine with this property is called a

cyclic machine, as one can think of the standard base as being written on a circle.

In this machine, the tape alphabet assigned to the Q4{t}-sector is empty. The positive rules of

M4 correspond to those of M3, operating on the copy of the hardware of M3 in the same way and

locking the new sectors.

As such, we define the submachines M4(i) as in M3 and define the step history of a reduced

computation in the natural way.

The input sector of M4 is the same as that of M3, i.e the P0Q0-sector.

There are obvious analogues of the statements from previous sections. Instead of reformulating

them here, we reference the previous statements even when in reference to this machine.

The base of an admissible word of M4 (or any cyclic S-machine) is called revolving if:

(a) it starts and ends with the same base letter, and

(b) none of its proper subwords satisfy (a).

An unreduced revolving base is called faulty.
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Suppose W is an admissible word of a cyclic S-machine S whose base B ≡ xvx is revolving.

If v has the form v1yv2, for some letter y, then there exists a naturally formed admissible word W ′

with revolving base B′ ≡ yv2xv1y and satisfying |W ′|a = |W |a. In this case, B′ (respectively W ′)

is called a cyclic permutation of B (respectively of W ).

Note that for any reduced computation C : W0 → · · · → Wt of S with base B and history H ,

there exists a reduced computation C ′ : W ′
0 → · · · → W ′

t with base B′ and history H and so that

|Wj|a = |W ′
j|a for all 0 ≤ j ≤ t.

Lemma 5.37. For every reduced computation C : W0 → · · · → Wt of M4 with faulty base B,

|Wj|a ≤ c0 max(|W0|a, |Wt|a) for all 0 ≤ j ≤ t.

Proof. Note that we may assume that t > 1 and |Wj|a > max(|W0|a, |Wt|a) for all 0 < j < t,

as otherwise the statement follows from an obvious inductive argument. In particular, since a

transition rule (resp χ-rule, connecting rule) does not alter the a-length of an admissible word, we

may assume that neither the first nor the last letter of the history H of C is a transition rule (resp

χ-rule, connecting rule.).

1. Suppose C is a computation of M4(i) for some i ∈ {1, 2, 4, . . . , 4n}. Then the restriction C ′ :

W ′
0 → · · · → W ′

t of C to any two-letter subword ofB has fixed a-length, satisfies the hypotheses of

Lemma 4.3, or satisfies the hypotheses of Lemma 4.4. In each case, |W ′
j|a ≤ max(|W ′

0|a, |W ′
t |a).

So, |Wj|a =
∑
|W ′

j|a ≤
∑

max(|W ′
0|a, |W ′

t |a) ≤ 2 max(|W0|a, |Wt|a) for all 0 ≤ j ≤ t.

2. Suppose C is a computation of M4(i−) for some i ∈ {3, 5, . . . , 4n− 3}.

If H contains no connecting rule, then an identical argument to the one used in Step 1 applies.

So, assume that H contains such a connecting rule, locking the Q0P1-sector of the standard base.

If B has no occurrence of the letters P±1
1 , then no rule of H changes the a-length of an admis-

sible word with base B. So, assuming that B contains such a letter, Lemma 4.2 and the definition

of faulty imply that B has a subword UV of the form (Q0P1)±1.

If more than one connecting rule occurs in H , then H must have a subword ζH ′ζ−1, where ζ

is a connecting rule and H ′ contains no connecting rule. Letting C ′ be the subcomputation with
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history H ′, the restriction of C ′ to the UV -sector satisfies the hypotheses of Lemma 4.3. But then

H ′ must be empty, yielding a contradiction.

So, H contains exactly one connecting rule. Let Wr−1 → Wr be the subcomputation corre-

sponding to this connecting rule.

By the definition of faulty, any subword of B of the form (P1Q1)±1 is contained in a subword

of a cyclic permutation of B of the form (Q0P1Q1)±1. Letting C ′ : W ′
0 → · · · → W ′

t be the

restriction of (a cyclic permutation of) C to a subword of the form (Q0P1Q1)±1, Lemma 5.13

implies |W ′
r|a ≤ · · · ≤ |W ′

t |a.

Further, any subword ofB of the form P1P
−1
1 is contained in a subword of a cyclic permutation

of B of the form Q0P1P
−1
1 Q−1

0 . Letting C ′ : W ′
0 → · · · → W ′

t be the restriction of (a cyclic

permutation of) C to a subword of the form Q0P1P
−1
1 Q−1

0 , Lemma 5.14 implies the inequalities

|W ′
r|a ≤ · · · ≤ |W ′

t |a.

The tape word of any other sector is fixed throughout C, so that |Wr|a ≤ |Wt|a. By assumption,

we must then have r = t. But then the final letter of H is a connecting rule, contradicting our

assumption.

Analogous arguments yield the same inequalities if C is a computation of M4(i+) for some i.

3. Suppose C is a computation of M4(i) for some i ∈ {3, 5, . . . , 4n− 3}.

Suppose H has a suffix χH− where χ is a χ-rule and H− is the history of a maximal subcom-

putation of M4(i−). Let C− : Wr → · · · → Wt be the subcomputation with history H−.

Note that if i is of the form 4`− 1 (resp 4`+ 1), then the only sectors of the standard base that

χ does not lock are the Q0P1-sector and the R2Q3-sector (resp R1Q2-sector).

So, by the definition of faulty, any subword of B of the form (Q0P1)±1 is contained in a sub-

word of a cyclic permutation ofB of the form (Q0P1Q1)±1. The restriction of (a cyclic permutation

of) C− to this subword then satisfies the hypotheses of Lemma 5.13.

Further, any subword ofB of the form P−1
1 P1 is contained in a subword of a cyclic permutation

of B of the form Q−1
1 P−1

1 P1Q1. The restriction of (a cyclic permutation of) C− to this subword

then satisfies the hypotheses of Lemma 5.14.
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All other sectors have fixed a-length throughout C−, so that |Wr|a ≤ |Wt|a. But this contradicts

our assumption.

So, H has no suffix of the form χH−. By Step 2, H must contain a χ-rule, so that it must have

a suffix of the form χH+ where χ is a χ-rule and H+ is the history of a maximal subcomputation

of M4(i+).

But then an analogous argument yields a similar contradiction.

4. Suppose C is a computation of M4((4n− 1)j) for some 1 ≤ j ≤ k.

As in Step 2, H must contain a connecting rule, as otherwise we may apply the argument used

in Step 1.

If B has no occurrence of the letters R±1
2 or P±1

4 , then no rule of H changes the a-length of

an admissible word with base B. So, we assume that B has a subword of the form (R2Q3)±1 or

(Q3P4)±1.

As in Step 2, this implies that H contains exactly one connecting rule. Let Wr−1 → Wr be the

subcomputation corresponding to this connecting rule.

Note the following consequences of the definition of faulty and Lemma 4.2:

• any subword of B of the form (Q2R2)±1 is contained in a cyclic permutation of B of the

form (Q2R2Q3)±1

• any subword of B of the form (P4Q4)±1 is contained in a cyclic permutation of B of the

form (Q3P4Q4)±1

• any subword of B of the form R−1
2 R2 is contained in a cyclic permutation of B of the form

Q−1
3 R−1

2 R2Q3

• any subword of B of the form P4P
−1
4 is contained in a cyclic permutation of B of the form

Q3P4P
−1
4 Q−1

4

Then, the restriction of the subcomputation Wr → · · · → Wt to any of the subwords above

satisfies the hypotheses of Lemma 5.13(5) or Lemma 5.14. As any other sector has fixed tape
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word, this implies |Wr|a ≤ · · · ≤ |Wt|a. But this leads to a contradiction in the same way as in

Step 2.

5. Suppose C is a computation of M4(4n− 1).

By Step 4, H must then have suffix χHj where χ is a χ-rule and Hj is the history of a maximal

subcomputation of M4((4n− 1)j). Let Cj : Wr → · · · → Wt be the subcomputation with history

Hj .

Note that χ locks every sector of the standard base except for the R2Q3- and Q3P4-sectors,

while these sectors are locked by any connecting rule. So, Hj must contain no connecting rule.

Then, any unreduced two-letter subword of B must be of the form R2R
−1
2 , Q−1

3 Q3, Q3Q
−1
3 , or

P−1
4 P4. We then have the following consequences of the definition of faulty and Lemma 4.2:

• any subword of B of the form (R2Q3)±1 is contained in a cyclic permutation of B of the

form (Q2R2Q3)±1

• any subword of B of the form (Q3P4)±1 is contained in a cyclic permutation of B of the

form (Q3P4Q4)±1

• any subword of B of the form R2R
−1
2 is contained in a cyclic permutation of B of the form

Q2R2R
−1
2 Q−1

2

• any subword of B of the form P−1
4 P4 is contained in a cyclic permutation of B of the form

Q−1
4 P−1

4 P4Q4

As in Step 4, Lemmas 5.13(5) and 5.14 imply |Wr|a ≤ |Wt|a, yielding a contradiction.

Hence, it suffices to assume that H contains some transition rule.

6. Suppose H has a suffix of the form θ(i − 1, i)Hi where Hi is the history of a maximal

subcomputation with step history (i) for 3 ≤ i ≤ 4n− 3 of the form 4`− 1.

Let Ci : Wr → · · · → Wt be the subcomputation with history Hi.

Then Ci is a reduced computation of M4(i), so that there exists a maximal subcomputation

Wr → · · · → Ws of Ci which operates as M4(i−).
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As θ(i− 1, i) locks every sector of the standard base except for the Q0P1-sector and the R2Q3-

sector, any unreduced two-letter subword of B must be of the form Q0Q
−1
0 , P−1

1 P1, R2R
−1
2 , or

Q−1
3 Q3.

By the definition of faulty, any subword of B of the form (Q0P1)±1 is contained in a subword

of a cyclic permutation of B of the form (Q0P1Q1)±1. Similarly, any subword of B of the form

P1P
−1
1 is contained in a subword of a cyclic permutation of B of the form Q−1

1 P−1
1 P1Q1. As in

previous steps, Lemmas 5.13 and 5.14 then imply |Wr|a ≤ · · · ≤ |Ws|a.

As a result, we may assume that t > s, so that Hi contains the letter χi. As Hi must also

contain the connecting rule of M4(i−), every unreduced two-letter subword of B must be of the

form R2R
−1
2 or Q−1

3 Q3. In particular, B must be a cyclic permutation of

Q2R2R
−1
2 Q−1

2 R−1
1 Q−1

1 P−1
1 Q−1

0 P−1
0 {t}−1Q−1

4 P−1
4 Q−1

3 Q3P4Q4{t}P0Q0P1Q1R1Q2

Let C+
i : Ws+1 → · · · → Wx be the maximal subcomputation of Ci which operates as M4(i+).

As the connecting rule of M4(i+) locks the R2Q3-sector, the restriction of C+
i to the Q2R2-sector

satisfies the hypotheses of Lemma 4.3. So, since Ws+1 is χ−1
i -admissible, Wx cannot be. In

particular, x = t.

Then, the restriction of C+
i to the subword Q2R2R

−1
2 Q−1

2 satisfies the hypotheses of Lemma

5.14. Since the tape word of any other sector is fixed throughout C+
i , this implies |Ws|a ≤ |Wt|a,

yielding a contradiction.

7. Suppose H has a suffix of the form θ(i − 1, i)Hi where Hi is the history of a maximal

subcomputation with step history (i) for 3 ≤ i ≤ 4n− 3 of the form form 4`+ 1.

Let Ci : Wr → · · · → Wt be the subcomputation with history Hi.

As in Step 6, Ci must have a maximal subcomputation Wr → · · · → Ws which operates as

M4(i−) such that s < t. So, since Hi must contain the connecting rule of M4(i−), every unreduced

two-letter subword of B must be of the form R1R
−1
1 or Q−1

2 Q2. As a result, B must be a cyclic
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permutation of

Q1R1R
−1
1 Q−1

1 P−1
1 Q−1

0 P−1
0 {t}−1Q−1

4 P−1
4 Q−1

3 R−1
2 Q−1

2 Q2R2Q3P4Q4{t}P0Q0P1Q1

Let C+
i : Ws+1 → · · · → Wx be the maximal subcomputation of Ci which operates as M4(i+). As

the connecting rule of M4(i+) locks the R1Q2-sector, we again have x = t. Applying Lemma 5.14

to the restriction of C+
i to the subword Q1R1R

−1
1 Q−1

1 then implies |Ws|a ≤ |Wt|a.

8. Suppose H has a suffix of the form θ(i + 1, i)Hi where Hi is the history of a maximal

subcomputation with step history (i) for 3 ≤ i ≤ 4n− 3 odd.

Let Ci : Wr → · · · → Wt be the subcomputation with history Hi.

Letting Wr → · · · → Ws be the maximal subcomputation with step history (i+), as in Steps 4

and 5 we have |Wr|a ≤ · · · ≤ |Ws|a. As a result, it suffices to assume that s < t.

So, any unreduced two-letter subword ofB must be of the formQ0Q
−1
0 or P−1

1 P1. In particular,

B must be a cyclic permutation of

Q−1
1 P−1

1 P1Q1R1Q2R2Q3P4Q4{t}P0Q0Q
−1
0 P−1

0 {t}−1Q−1
4 P−1

4 Q−1
3 R−1

2 Q−1
2 R−1

1 Q−1
1

Let C−i : Ws+1 → · · · → Wx be the maximal subcomputation of Ci which operates as M4(i−).

As in Steps 6 and 7, the presence of the subword P0Q0 implies that we must have x = t. But

then an application of Lemma 5.14 to the restriction of C−i to the subword Q−1
1 P−1

1 P1Q1 implies

|Ws|a ≤ |Wt|a.

Hence, we may assume that the last letter of the step history of C is not of the form (i) for some

i ∈ {3, 5, . . . , 4n−3}. Moreover, the symmetric argument allows the same assumption to be made

about the first letter of the step history.

9. Suppose H has a subword θH4n−1 where θ is a transition rule and H4n−1 is the history of a

maximal subcomputation with step history (4n− 1).

Note that both θ(4n−2, 4n−1) and θ(4n, 4n−1) lock every sector of the standard base except

for theR2Q3- andQ3P4-sectors. Meanwhile, for any j, the connecting rule of M4((4n−1)j) locks
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these two sectors. So, by Lemma 4.2, no connecting rule can appear in H4n−1.

As a result, H4n−1 is the history of a computation of M4((4n − 1)1) if θ = θ(4n − 2, 4n − 1)

or M4((4n− 1)k) if θ = θ(4n, 4n− 1).

Note the following consequences of the definition of faulty and Lemma 4.2:

• any subword of B of the form (R2Q3)±1 is contained in a cyclic permutation of B of the

form (Q2R2Q3)±1

• any subword of B of the form (Q3P4)±1 is contained in a cyclic permutation of B of the

form (Q3P4Q4)±1

• any subword of B of the form R2R
−1
2 is contained in a cyclic permutation of B of the form

Q2R2R
−1
2 Q−1

2

• any subword of B of the form P−1
4 P4 is contained in a cyclic permutation of B of the form

Q−1
4 P−1

4 P4Q4

Let C ′ : Wr → · · · → Ws be the subcomputation with history H4n−1. Then, as in previous

steps, Lemmas 5.13 and 5.14 imply |Wr|a ≤ · · · ≤ |Ws|a. So, we must have s < t.

As no connecting rule can occur in H4n−1, the subsequent rule of H must be θ−1, i.e H has a

subword θH4n−1θ
−1.

If B contains a subword of the form (Q2R2)±1 or (P4Q4)±1, then the restriction of C ′ to this

sector satisfies the hypotheses of Lemma 4.3. But then H4n−1 must be empty, yielding a contra-

diction.

So, B cannot contain such a subword. By the definition of faulty, it follows that B cannot

contain the letters R±1
2 or P±1

4 . In particular, B must be a cyclic permutation of Q3Q
−1
3 Q3.

However, no rule alters the a-length of an admissible with such a base, so that |Wj|a = |W0|a

for all j.

Hence, H has no such subword. What’s more, by the symmetric argument, H has no subword

of the form H4n−1θ. So, we may assume that the step history of C has no occurrence of (4n− 1),

(4n), (4n− 1, 4n), (4n, 4n− 1), (4n− 2, 4n− 1), or (4n− 1, 4n− 2).
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10. Suppose the step history of C contains the letter (12).

ThenH has a subwordH1θ(12)H2 whereH1 andH2 are histories of maximal subcomputations

of step history (1) and (2), respectively.

As θ(12) locks all sectors of the standard base except for the Q0P1-sector, B must be a cyclic

permutation of

P0Q0Q
−1
0 P−1

0 {t}−1Q−1
4 P−1

4 Q−1
3 R−1

2 Q−1
2 R−1

1 Q−1
1 P−1

1 P1Q1R1Q2R2Q3P4Q4{t}P0

Let C1 : Wr → · · · → Ws be the subcomputation with history H1. Then the restriction of C1 to the

P0Q0-sector satisfies the hypotheses of Lemma 4.3. So, since Ws is θ(12)-admissible, Wr cannot

be. In particular, r = 0.

Let C ′1 : W ′
0 → · · · → W ′

s be the restriction of C1 to the subword P0Q0Q
−1
0 P−1

0 . Then we may

apply Lemma 5.14 to C ′1, so that |W ′
s|a ≤ |W ′

0|a.

But every other sector must have fixed a-length throughout C1, so that |Ws|a ≤ |W0|a.

Hence, we may assume that the step history of C has no occurrence of the letter (12) and, by

the symmetric argument, no occurrence of the letter (21). In particular, C has no subcomputation

with step history (1) and every rule of H locks the P0Q0-sector.

11. Suppose H contains a connecting rule ζ of M4(i−) for some 3 ≤ i ≤ 4n − 3 of the form

4`− 1.

Note that every sector of the standard base is locked by at least one of ζ , χi, or the connecting

rule of M4(i+). So, by Steps 6-8, H must contain a subword θ(i − 1, i)Hiθ(i, i − 1) where Hi

contains ζ and is the history of a subcomputation Ci of M4(i).

The only sector of the standard base not locked by at least one of θ(i− 1, i) or ζ is the R2Q3-

sector. So, B must be a cyclic permutation of

Q2R2R
−1
2 Q−1

2 R−1
1 Q−1

1 P−1
1 Q−1

0 P−1
0 {t}−1Q−1

4 P−1
4 Q−1

3 Q3P4Q4{t}P0Q0P1Q1R1Q2

Suppose Hi contains the letter χi. As the connecting rule of M4(i+) locks the R2Q3-sector, it can-
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not occur inHi. So,Hi must have a subword χiH ′iχ
−1
i , whereH ′i is the history of a subcomputation

C ′i of M4(i+) not containing a connecting rule. But then applying Lemma 4.3 to the restriction of

C ′i to the Q2R2-sector implies that H ′i is empty.

So, Ci must be a computation of M4(i−). But then applying Lemma 5.13(4) to the restriction

of Ci to the subword Q0P1Q1 implies that Hi is empty, yielding a contradiction.

12. Suppose H contains a connecting rule ζ of M4(i−) for some 3 ≤ i ≤ 4n − 3 of the form

4`+ 1.

As in Step 11, H must contain a subword θ(i − 1, i)Hiθ(i, i − 1) where Hi contains ζ and is

the history of a computation Ci of M4(i).

The only sector of the standard base not locked by at least one of θ(i− 1, i) or ζ is the R1Q2-

sector. So, B must be a cyclic permutation of

Q1R1R
−1
1 Q−1

1 P−1
1 Q−1

0 P−1
0 {t}−1Q−1

4 P−1
4 Q−1

3 R−1
2 Q−1

2 Q2R2Q3P4Q4{t}P0Q0P1Q1

Suppose Hi contains the letter χi. As in Step 11, Hi must then have a subword χiH ′iχ
−1
i , where

H ′i is the history of a subcomputation C ′i of M4(i+) not containing a connecting rule. But then

applying Lemma 4.3 to the restriction of C ′i to the Q1R1-sector implies that H ′i is empty.

So, Ci must be a computation of M4(i−). But then applying Lemma 5.13(4) to the restriction

of Ci to the subword Q0P1Q1 implies that Hi is empty, yielding a contradiction.

13. Suppose H contains a connecting rule ζ of M4(i+) for some 3 ≤ i ≤ 4n− 3 odd.

Similar to the arguments in Steps 11 and 12, H must contain a subword θ(i+ 1, i)Hiθ(i, i+ 1),

where Hi contains ζ and is the history of a computation Ci of M4(i).

The only sector of the standard base not locked by at least one of θ(i + 1, i) or ζ is the Q0P1-

sector. So, B must be a cyclic permutation of

{t}P0Q0Q
−1
0 P−1

0 {t}−1Q−1
4 P−1

4 Q−1
3 R−1

2 Q−1
2 R−1

1 Q−1
1 P−1

1 P1Q1R1Q2R2Q3P4Q4{t}

Suppose Hi contains the letter χ−1
i . As the connecting rule of M4(i−) locks the Q0P1-sector, it
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cannot occur in Hi. So, Hi must have a subword χ−1
i H ′iχi where H ′i is the history of a subcompu-

tation C ′i of M4(i−) not containing a connecting rule. Applying Lemma 4.3 to the restriction of C ′i
to the P1Q1-sector then implies that H ′i is empty, yielding a contradiction.

So, Ci must be a computation of M4(i+). But then we may apply Lemma 5.13(4) to the restric-

tion of Ci to the subword Q2R2Q3 (respectively Q1R1Q2) if i is of the from 4` − 1 (respectively

4`+ 1), so that that Hi must be empty.

Hence, by Steps 11-13, we may assume that H contains no connecting rule.

14. Suppose the step history of C contains the letter (4n− 3, 4n− 2).

ThenH has a subwordH4n−3θ(4n−3, 4n−2)H4n−2 where eachHi is the history of a maximal

subcomputation of step history (i).

Note that the rule θ(4n−3, 4n−2) locks every sector of the standard base except for theQ0P1-

and R1Q2-sectors. So, every unreduced two-letter subword of B must be of the form Q0Q
−1
0 ,

P−1
1 P1, R1R

−1
1 , or Q−1

2 Q2.

By Steps 6-8, H4n−3 cannot be a prefix of H . So, since H4n−3 contains no connecting rule,

θ(4n− 2, 4n− 3)H4n−3θ(4n− 3, 4n− 2) must be a subword of H .

Further, the subcomputation C4n−3 of history H4n−3 must be a computation of M4((4n− 3)+).

If B contains a subword of the form (Q1R1)±1, then the restriction of C4n−3 to this sector satisfies

the hypotheses of Lemma 4.3. But then H4n−3 must be empty, so that H is not reduced.

So, B cannot contain the letters R±1
1 . This implies that B must be a cyclic permutation of

P0Q0Q
−1
0 P−1

0 {t}−1Q−1
4 P−1

4 Q−1
3 R−1

2 Q−1
2 Q2R2Q3P4Q4{t}P0

Let C4n−2 : Wr → · · · → Ws be the subcomputation with history H4n−2. The restriction of C4n−2

to the R2Q3-sector satisfies the hypotheses of Lemma 4.3. So, since Wr is θ(4n − 2, 4n − 3)-

admissible, Ws cannot be. By Step 9, this implies that s = t and H4n−2 is a suffix of H .

Let C ′4n−2 : W ′
r → · · · → W ′

t be the restriction of C4n−2 to the subword Q−1
3 R−1

2 Q−1
2 Q2R2Q3.

As every rule with step history (4n − 2) locks the Q2R2-sector, we may view the subwords with
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base (Q2R2)±1 as a single state letter. With this view, C ′4n−2 satisfies the hypotheses of Lemma

5.14, so that |W ′
r|a ≤ · · · ≤ |W ′

t |a.

For C ′′4n−2 : W ′′
r → · · · → W ′′

t the restriction of C4n−2 to a subword (Q3P4)±1, Lemma 4.3

implies that |W ′′
r |a ≤ · · · ≤ |W ′′

t |a.

Any other sector must have fixed tape word throughout C4n−2. But then |Wr|a ≤ |Wt|a, con-

tradicting our assumption.

Hence, we may assume that the step history of C has no occurrence of (4n − 2), so that the

Q3P4-sector is locked by every rule of H .

15. Suppose the step history of C contains the letter (2i, 2i+ 1) for some 1 ≤ i ≤ 2n− 2 odd.

Note that θ(2i, 2i + 1) locks all sectors of the standard base except for the Q0P1-sector and

the R2Q3-sector. So, any unreduced two-letter subword of B must be of the form Q0Q
−1
0 , P−1

1 P1,

R2R
−1
2 , or Q−1

3 Q3.

By Steps 6-8, the step history of C must then have a subword (2i, 2i+1)(2i+1)(2i+1, 2i). Let

C2i+1 be the maximal subcomputation with step history (2i + 1) in this subword. By Steps 11-13,

the historyH2i+1 of C2i+1 contains no connecting rule. So, C2i+1 is a computation of M4((2i+1)−).

If B contains a subword of the form (P1Q1)±1, then the restriction of C2i+1 to this subword

satisfies the hypotheses of Lemma 4.3, so that H2i+1 must be empty. So, B cannot contain such a

subword and, by the definition of faulty, cannot contain the letters P±1
1 . In particular, B must be a

cyclic permutation of

P0Q0Q
−1
0 P−1

0 {t}−1Q−1
4 P−1

4 Q−1
3 Q3P4Q4{t}P0

But then Steps 9, 10, and 14 imply that the application of any rule of H does not alter the tape

word of an admissible word with such a base, so that |Wj|a = |W0|a for all j.

16. Suppose the step history of C contains the letter (2i, 2i+ 1) for some 1 ≤ i ≤ 2n− 2 even.

Then H has a subword H2iθ(2i, 2i + 1)H2i+1 where H2i and H2i+1 are histories of maximal

subcomputations of step history (2i) and (2i+ 1), respectively.
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Note that θ(2i, 2i + 1) locks all sectors of the standard base except for the Q0P1- and R1Q2-

sectors. So, any unreduced two-letter subword of B must be of the form Q0Q
−1
0 , P−1

1 P1, R1R
−1
1 ,

or Q−1
2 Q2.

As in Step 15, we then have that H also contains a subword θ(2i, 2i + 1)H2i+1θ(2i + 1, 2i).

Again, this implies that B cannot contain the letters P±1
1 . So, B must be a cyclic permutation of

P0Q0Q
−1
0 P−1

0 {t}−1Q−1
4 P−1

4 Q−1
3 R−1

2 Q−1
2 Q2R2Q3P4Q4{t}P0

Let C2i : Wr → · · · → Ws be the subcomputation with history H2i. The restriction of C2i to the

R2Q3-sector satisfies the hypotheses of Lemma 4.3, so that r = 0.

Let C ′2i : W ′
0 → · · · → W ′

s be the restriction of C2i to the subword Q−1
3 R−1

2 Q−1
2 Q2R2Q3. As in

Step 14, Lemma 5.14 then implies that |W ′
s|a ≤ |W ′

0|a.

But all other sectors have fixed tape word throughout C2i, so that |Ws|a ≤ |W0|a.

Hence, Steps 15 and 16 imply that the step history C contains no letter of the form (2i, 2i+ 1).

The symmetric argument further implies that it contains no letter of the form (2i+ 1, 2i).

17. Suppose the step history of C contains the letter (2i, 2i− 1) for some 2 ≤ i ≤ 2n− 2 even.

As θ(2i, 2i−1) locks every sector of the standard base except for the Q0P1- and R2Q3-sectors,

any unreduced two-letter subword of B must be of the form Q0Q
−1
0 , P−1

1 P1, R2R
−1
2 , or Q−1

3 Q3.

By Steps 6-8, the step history of C must contain the subword (2i, 2i−1)(2i−1)(2i−1, 2i). Let

C2i−1 be the maximal subcomputation with step history (2i− 1) in this subword. By Steps 11-13,

the historyH2i−1 of C2i−1 contains no connecting rule. So, C2i−1 is a computation of M4((2i−1)+).

If B contains a subword of the form (Q2R2)±1, then the restriction of C2i−1 to this subword

satisfies the hypotheses of Lemma 4.3, so that H2i−1 must be empty. So, B cannot contain the

letters R±1
2 . In particular, B must be a cyclic permutation of

P0Q0Q
−1
0 P−1

0 {t}−1Q−1
4 P−1

4 Q−1
3 Q3P4Q4{t}P0

As in Step 15, this implies |Wj|a = |W0|a for all j.

83



The same argument implies that the step history of C cannot contain a letter (2i − 1, 2i) for

1 ≤ i ≤ 2n− 2 even.

So, every transition rule of H must be of the form θ(2i− 1, 2i)±1 for 2 ≤ i ≤ 2n− 2 odd.

18. Finally, assume that C contains the letter (2i, 2i− 1) for some 2 ≤ i ≤ 2n− 2 odd.

Then H must contain a subword H2iθ(2i, 2i − 1)H2i−1 where H2i−1 and H2i are histories of

maximal subcomputations of step history (2i− 1) and (2i), respectively.

Since θ(2i, 2i − 1) locks every sector of the standard base except for the Q0P1- and R1Q2-

sectors, any unreduced two-letter subword of B must be of the form Q0Q
−1
0 , P−1

1 P1, R1R
−1
1 , or

Q−1
2 Q2.

As in Step 17, the step history of C must contain the subword (2i, 2i− 1)(2i− 1)(2i− 1, 2i).

Let C2i−1 be the maximal subcomputation with step history (2i − 1) in this subword. By Steps

11-13, the history H2i−1 of C2i−1 contains no connecting rule, so that C2i−1 is a computation of

M4((2i− 1)+).

If B contains a subword of the form (Q1R1)±1, then the restriction of C2i−1 to this subword

satisfies the hypotheses of Lemma 4.3, so that H2i−1 must be empty. So, B cannot contain R±1
1 ,

and so is a cyclic permutation of

P0Q0Q
−1
0 P−1

0 {t}−1Q−1
4 P−1

4 Q−1
3 R−1

2 Q−1
2 Q2R2Q3P4Q4{t}P0

As in Step 16, letting C2i : Wr → · · · → Ws be the subcomputation with history H2i, we must

then have r = 0 and |Ws|a ≤ |W0|a. Thus, as we can apply the symmetric argument, we reach a

final contradiction.

5.9 The machines M5,1 and M5,2

The cyclic machine M5,1 functions as the ‘parallel’ composition of the machine M4 with itself

a large number of times.
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Letting {t(i)}B3(i) be a copy of the standard base of M4 for i ∈ {1, . . . , L}, the standard base

of M5,1 is

{t(1)}B3(1){t(2)}B3(2) . . . {t(L)}B3(L)

For any letter of {t(i)}B3(i) (or its inverse), the index i is called its coordinate.

The tape alphabet of any sector formed by a one-letter part {t(i)} of the standard base (includ-

ing the Q4(L){t(1)}-sector) is defined to be empty. The tape alphabets of all other sectors arise

from M4 in the natural way.

The rules of M5,1 are in correspondence with those of M4, with each rule operating in parallel

on each of the copies of the standard base of M4 in the same way as its corresponding rule.

The copies of the input sector are taken as the input sectors of the machine.

Naturally, there arise submachines M5,1(i) corresponding to the submachines M4. As such, the

definition of step history and controlled history extend to reduced computations of M5,1.

The statements of Chapter 5.7 have natural analogues in M5,1. For example, letting I5(w) be

the input configuration with the natural copy of w in each P0(i)Q0(i)-sector, then the following is

the analogue of Lemma 5.33.

Lemma 5.38. An input configuration W is accepted by M5,1 if and only if W ≡ I5(un) for some

un ∈ L. Moreover, for any un ∈ L, there exists a unique accepting computation C5,1(u) of the

input configuration I5(un).

The cyclic machine M5,2 is constructed in much the same way as M5,1, but with one funda-

mental difference: Each rule locks the first input sector, i.e the P0(1)Q0(1)-sector.

The definitions of M5,1 extend in an obvious way to M5,2, and many of the statements of

Chapter 5.7 again have natural analogues. For example, letting J5(w) be the input configuration

that is obtained from emptying the P0(1)Q0(1)-sector of the natural copy of I5(w), the following

is the analogue of Lemma 5.33 (and Lemma 5.38).

Lemma 5.39. An input configuration W is accepted by M5,2 if and only if W ≡ J5(un) for some

un ∈ L. Moreover, for any un ∈ L, there exists a unique accepting computation C5,2(u) of the
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input configuration J5(un).
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Chapter 6

The machine M

6.1 Definition of the machine

The final step of our construction is to combinine the machines M5,1 and M5,2 to create the

cyclic machine M that is sufficient for the proof of Theorem A.

Similar to M5,1 and M5,2, the standard base of M is of the form {t(1)}B3(1) . . . {t(L)}B3(L),

with the sectors of the form P0(i)Q0(i) taken to be the input sectors. However, each of the parts

making up B3(i) consists of more state letters than its counterparts in M5,1 and M5,2.

To be precise, any part of the standard base that is not a one-letter part {t(i)} consists of a copy

of the corresponding part of the standard base of M5,1, a (disjoint) copy of the corresponding part

of the standard base of M5,2, and two new letters which function as the part’s start and end letters.

The accept configuration of M is denoted Wac.

The set of rules Θ of M is partitioned into two symmetric sets, Θ1 and Θ2. The positive

rules of each consist of a set of ‘working’ rules and two more transition rules. Unlike in previous

constructions, though, these two sets are not concatenated in order to force them to run sequentially,

rather in order to force them to operate ‘one or the other’.

The rules of Θ+
1 are defined as follows:

• The transition rule θ(s)1 locks all sectors other than the input sectors. It switches the state

letters from the start state of M to the copy of the start state of M5,1.

• The positive ‘working’ rules of Θ+
1 are copies of the positive rules of the machine M5,1.

• The transition rule θ(a)1 locks all sectors and switches the state letters from the copies of the

end letters of M5,1 to the end letters of M.

The rules of Θ+
2 are defined as follows:
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• The transition rule θ(s)2 locks each of the sectors locked by θ(s)1, but also locks the P0(1)Q0(1)-

sector. It switches the state letters from the start state of M to the copy of the start state of

M5,2.

• The positive ‘working’ rules of Θ+
2 are copies of the positive rules of the machine M5,2.

• The transition rule θ(a)2 locks all sectors and switches the state letters from the copies of the

end letters of M5,2 to the end letters of M.

By the definition of the rules, one might infer that the first input sector P0(1)Q0(1) is of partic-

ular significance. Hence, it is referred to as the ‘special’ input sector.

For w ∈ F (A), the natural copy of I5(w) (respectively J5(w)) in the hardware of this machine

is θ(s)−1
1 -admissible (respectively θ(s)−1

2 -admissible). We denote I(w) (respectively J(w)) as the

input configuration satisfying I(w) ≡ I5(w) · θ(s)−1
1 (respectively J(w) ≡ J5(w) · θ(s)−1

2 ). Note

that both I(w) and J(w) are θ(s)1-admissible, while I(w) is not θ(s)2-admissible if w 6= 1.

6.2 Standard computations of M

Next, we adapt the definition of step history to computations of M. To this end, let the letters

(s)±1
j and (a)±1

j represent the transition rules θ(s)±1
j and θ(a)±1

j of Θj , respectively, and add the

subscript j to each letter of the step history of a maximal subcomputation whose history consists

of working rules of Θj .

So, an example of a step history of a reduced computation of M is (s)1(1)1(12)1(2)1, while a

general step history is some concatenation of the letters

 (1)j, (2)j, . . . , (4n)j, (12)j, (23)j, . . . , (4n− 1, 4n)j,

(21)j, (32)j, . . . , (4n, 4n− 1)j, (s)±1
j , (a)±1

j ; j = 1, 2


A one-step computation of M is defined similar to how it was defined in previous machines. For

example, reduced computations with step history (s)−1
2 (s)1(1)1(12)1 or (4n)2(a)2(a)−1

1 are one-

step computations of M.
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A reduced computation is called a one-machine computation if every letter of its step history

has the same index. If this index is i, then the computation is called a one-machine computation of

the i-th machine.

For example, a reduced computation with step history (s)1(1)1(12)1(2)1 is a one-machine com-

putation of the first machine, while a reduced computation with step history (1)1(s)−1
1 (s)2(1)2 is

not a one-machine computation, i.e it is a multi-machine computation.

As with previous machines, some subwords clearly cannot appear in the step history of a re-

duced computation, while other impossibilities are less obvious. However, there are clear ana-

logues of Lemmas 5.16, 5.17, and 5.28(b) (after adding the same index to each letter of the step

histories), as M operates on the standard base as parallel copies of M4 in any one-machine com-

putation whose step history does not contain (s)±1
i , (a)±1

i , or (1)2.

The following is the analogue of Lemma 5.28(a) and is proved in exactly the same way.

Lemma 6.1. Suppose the base B of a reduced computation C of M contains a subword UV of the

form (P0(i)Q0(i))±1. Then the step history of C cannot be (21)1(1)1(12)1. Moreover, if i 6= 1, then

the step history of C cannot be (21)2(1)2(12)2.

Lemma 6.2. Let C be a reduced computation of M with base B.

(a) If B contains a subword UV of the form (Q0(i)P1(i))±1, then the step history of C cannot

be (s)j(1)j(s)
−1
j for j = 1, 2.

(b) If B contains a subword UV of the form (R2(i)Q3(i))±1 or (Q3(i)P4(i))±1, then the step

history of C cannot be (a)−1
j (4n)j(a)j for j = 1, 2.

Proof. Both statements follow from an application of Lemma 4.3(a) to the restriction of C to the

UV -sector.

Lemma 6.3. Let C be a reduced computation with base {t(i)}B4(i) for some i ∈ {2, . . . , L}. Sup-

pose C contains at least 8n distinct maximal one-step computations. Then C contains a subword

of the form (4n− 2, 4n− 1)j(4n− 1)j(4n− 1, 4n)j or (4n, 4n− 1)j(4n− 1)j(4n− 1, 4n− 2)j .
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Proof. Assuming the step history has no such subword, Lemmas 5.16, 5.17, 5.28, 6.1, and 6.2

imply that the step history is a subword of

• (4n− 1)1(4n− 2)1 . . . (1)1(s)−1
1 (s)2(1)2 . . . (4n− 2)2(4n− 1)2, or

• (4n− 1)1(4n)1(a)1(a)−1
2 (4n)2(4n− 1)2

But then C has at most 8n− 2 distinct maximal one-step computations.

Lemma 6.4. Let C : W0 → W1 → W2 be a reduced computation with step history ((s)−1
1 (s)2)±1

and base (P0(1)Q0(1))±1. Then |Wi|a = 0 for 0 ≤ i ≤ 2.

Lemma 6.5. Let C : W0 → · · · → Wt of M be a one-machine computation of the i-th machine

in the standard base. Suppose the step history of C is of the form (s)ihi(s)
−1
i . Then there exist

u, v ∈ F (A) with u 6= v such that

• W0 ≡ I(un) and Wt ≡ I(vn) if i = 1 or

• W0 ≡ J(un) and Wt ≡ J(vn) if i = 2.

Proof. Since W0 is θ(s)i-admissible, it is an input configuration.

Further, as hi cannot be empty, Lemmas 5.16, 5.17, 5.28(b), and 6.2(a) imply that it has prefix

(1)i(2)i . . . (4n− 1)i(4n− 1, 4n)i

Let W1 → · · · → Ws be the subcomputation with this step history and W1 → · · · → Wr be the

subcomputation with step history (1)i. Then Wr is θ(12)i-admissible, so that its input sectors are

empty.

If i = 1, then Lemma 4.3(a) implies that W0 must have a copy of the same word w ∈ F (A)

written in each input sector. So, W0 ≡ I(w).

If i = 2, then the only difference is that the ‘special’ input sector must be empty, i.e W0 ≡

J(w).
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The restriction of W1 → · · · → Ws to B3(2) can be identified with a reduced computation of

M3. Lemma 5.32(a) then implies that there exists u ∈ F (A) such that w = un.

The same argument applied to the inverse computation implies that there exists v ∈ F (A) such

that Wt ≡ I(vn) if i = 1 and Wt ≡ J(vn) if i = 2. Let Wx → · · · → Wt be the subcomputation

with step history (4n, 4n − 1)i(4n − 1)i . . . (2)i(1)i(s)
−1
i . Then applying Lemma 5.29 to the re-

striction ofWs → · · · → Wx toB3(2) implies that its step history is (4n)i. As this subcomputation

cannot be empty, Lemma 4.3 implies that Ws 6= Wx. Hence, by Lemma 5.32(b), u 6= v.

Lemma 6.6. An input configuration W is accepted by the machine M if and only if W ≡ I(un)

or W ≡ J(un) for some un ∈ L. Moreover, for any u ∈ F (A), there exists a unique one-machine

computation of the first (respectively second) machine accepting I(un) (respectively J(un)).

Proof. Let C be an accepting computation for W and C ′ be the maximal one-machine computation

serving as a prefix of C.

Then the step history of C ′ must either be of the form (s)ihi(s)
−1
i or (s)ihi(a)i. By Lemma 6.5,

it suffices to suppose the step history is of the form (s)ihi(a)i.

The maximal subcomputation with step history hi must then be an accepting computation of

the natural copy of W · θ(s)i in M5,i. So, Lemma 5.38 implies that W ≡ I(un) if i = 1, while

Lemma 5.39 implies W ≡ J(un) if i = 2.

The existence and uniqueness of an accepting one-machine computation similarly follow from

Lemmas 5.38 and 5.39.

6.3 Components of a configuration

For a configuration W and 1 ≤ i ≤ L, the i-th component of W, W (i), is defined to be the

admissible subword ofW with base {t(i)}B3(i). So, since the tape alphabet of theQ4(i){t(i+1)}-

sector is empty for each i, W ≡ W (1) . . .W (L) for any configurationW . It is useful to note that if
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a rule θ is applicable to some configuration W, then θ operates on each W (j) in parallel for j ≥ 2

(but may not operate on W (1) in the analogous way).

Particularly, for 1 ≤ i ≤ L, we denote the components A(i) ≡ Wac(i), I(w, i) ≡ (I(w))(i),

and J(w, i) ≡ (J(w))(i) for all w ∈ F (A).

The history H of a reduced computation C of M is called controlled if C is a one-machine

computation and H corresponds to a controlled computation of M4. As such, the next statement

follows immediately from Lemma 5.18.

Lemma 6.7. Let C : W0 → · · · → Wt be a reduced computation of M with controlled history H .

Then the base of the computation is a reduced word and all configurations are uniquely defined by

the history H and the base of C.

Moreover, if C is a computation in the standard base, then |Wj|a = |W0|a for all 0 ≤ j ≤ t,

‖H‖ = |W0(i)|a + 3 for all 1 ≤ i ≤ L, and W0 is accepted.

Let V be an admissible word with base B and suppose there exists i ∈ {1, . . . , L} such that

every letter of B has coordinate i. Then, a coordinate shift of V is an admissible word V ′ obtained

by changing each of the state letters’ coordinates from i to j for some j ∈ {1, . . . , L} and taking

the natural copies of the tape words. For example, if W is an accepted configuration, then W (i)

and W (j) are coordinate shifts of one another for i, j ≥ 2, while J(w, 1) is not a coordinate shift

of J(w, 2) if w 6= 1.

Lemma 6.8. For i ∈ {2, . . . , L}, let C : A(i)→ · · · → A(i) be a nonempty reduced computation

of M. Then C is not a one-machine computation.

Proof. Assume toward contradiction that C is a one-machine computation of the j-th machine.

Then H can be factored as H ≡ θ(a)−1
j H ′θ(a)j where H ′ has no letters of the form θ(s)±1

j or

θ(a)±1
j .

Let C ′ be the subcomputation with history H ′. Then, we can identify C ′ with a reduced compu-

tation of M4. This computation starts and ends with the accept configuration of M4, so that Lemma

5.29 implies that it cannot contain a transition rule.
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But then C has step history (a)−1
j (4n)j(a)j , so that it contradicts Lemma 6.2(b).

Lemma 6.9. Let V0 → · · · → Vt be a one-machine computation of the j-th machine with history

H and base {t(i)}B3(i) for some i ∈ {2, . . . , L}. Then there exists a one-machine computation

W0 → · · · → Wt in the standard base with history H such that W`(i) ≡ V` for all 0 ≤ ` ≤ t.

Proof. For each ` ∈ {0, . . . , t} and x ∈ {2, . . . , L}, define V`(x) as the coordinate shift of V` with

base {t(x)}B3(x).

If j = 1, then similarly define V`(1) as the coordinate shift of V` with base {t(1)}B3(1).

Conversely, if j = 2, then define V`(1) as the admissible word obtained from emptying the ‘special’

input sector of the coordinate shift of V`.

Now define W` ≡ V`(1) . . . V`(L) for each 0 ≤ ` ≤ t. Clearly, W`(i) ≡ V` for all `.

Letting H ≡ θ1 . . . θt, it follows from construction that W`−1 is θ`-admissible and W`−1 · θ` ≡

W` for all 1 ≤ ` ≤ t.

Using Lemma 6.9, the following statement is an immediate consequence of Lemma 6.5.

Lemma 6.10. Let C : V0 → · · · → Vt be a one-machine computation of the j-th machine with

base {t(i)}B3(i) for some i ∈ {2, . . . , L}. Suppose the step history of C is of the form (s)jhj(s)
−1
j .

Then there exist u, v ∈ F (A) with u 6= v such that V0 ≡ I(un, i) and Vt ≡ I(vn, i).

Moreover, for H the history of C, I(un) ·H ≡ I(vn) if j = 1 and J(un) ·H ≡ J(vn) if j = 2.

Similarly, the following is an immediate consequence of Lemmas 6.6 and 6.9.

Lemma 6.11. If W0 is an admissible subword of a start configuration with base {t(i)}B3(i) for

some i ∈ {2, . . . , L}, then there exists a one-machine computation W0 → · · · → A(i) of the first

machine (respectively of the second machine) if and only if W0 ≡ I(un, i) (respectively W0 ≡

J(un, i)) for some un ∈ L.

Finally, the next statement is an immediate consequence of Lemmas 6.8, 6.10, and 6.11.
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Lemma 6.12. For i ∈ {2, . . . , L}, suppose C : A(i) → · · · → A(i) is a reduced computation of

M with history H . Let H1 . . . H` be the factorization of H such that for all j ∈ {1, . . . , `}, Hj is

the history of a maximal one-machine subcomputation Cj : Uj → · · · → Vj of C. Then ` ≥ 2 and

for all j, either:

(a) Vj ≡ A(i), or

(b) Vj ≡ I(wj, i) or J(wj, i) for some wj ∈ L.

In case (a), set W (1)
j ≡ W

(2)
j ≡ Wac; in case (b), set W (1)

j ≡ I(wj) and W (2)
j ≡ J(wj).

Further, set W (1)
0 ≡ W

(2)
0 ≡ Wac.

If Cj is a one-machine computation of the zj-th machine, then for each 1 ≤ j ≤ ` there exists

a reduced computation in the standard base C ′j : W
(zj)
j−1 → · · · → W

(zj)
j with history Hj .

In other words, Lemma 6.12 says that except for the insertion/deletion of elements of L in

the ‘special’ input sector between its maximal one-machine subcomputations, the computation

C can be ‘almost-extended’ to a reduced computation C ′ : Wac → · · · → Wac (though such a

computation need not exist).

Lemma 6.13. Let W be an accepted configuration and θ ∈ Θ. For i ∈ {2, . . . , L}, suppose W (i)

is θ-admissible while W is not. Then either:

(1) θ = θ(s)2 and W ≡ I(un) for some un ∈ L \ {1}, or

(2) θ = θ(12)1 and W has un written in the ‘special’ input sector for some un ∈ L \ {1}.

In particular, the configuration obtained from W by emptying the ‘special’ input sector is θ-

admissible.

Proof. The symmetry of the rules implies that W (j) is θ-admissible for each j ≥ 2. So, W (1)

must not be θ-admissible. By the definition of the rules, θ must lock the ‘special’ input sector while

that sector is not empty in W .

1. Suppose θ ∈ Θ2.
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As W is accepted, it must be θ′-admissible for some θ′ ∈ Θ. But each rule of Θ2 locks the

‘special’ input sector, so that θ′ ∈ Θ1. As a result, W (i) is admissible for rules from both Θ1 and

Θ2, which implies that W must either be a start or an end configuration.

But the only accepted end configuration is Wac, which has empty ‘special’ input sector. So, W

must be an accepted start configuration, θ′ = θ(s)1, and θ = θ(s)2. Finally, since W has nonempty

‘special’ input sector, Lemma 6.6 yields W ≡ I(un) for u 6= 1.

2. Suppose θ ∈ Θ1.

Let C ′ : Wac ≡ V0 → · · · → Vt ≡ W be the inverse of an accepting computation of W .

As the rules of Θ1 operate in parallel as M4, W (1) cannot be a coordinate shift of W (i). So,

C ′ cannot be a one-machine computation of the first machine.

As a result, there exists a maximal one-machine subcomputation D′ : Vr → · · · → Vs of the

second machine such that the subsequent subcomputation E ′ : Vs → · · · → Vt ≡ W is a (perhaps

empty) one-machine computation of the first machine. The parallel nature of the rules of Θ1 imply

Vs(1) is not a coordinate shift of Vs(i).

Note that if E ′ is empty, then Vs ≡ W , so that Vs(i) is θ-admissible. Otherwise, Vs(i) is

θ′-admissible for θ′ ∈ Θ1 the first rule in the history of E ′.

So, since Vs(i) is (θ′′)−1-admissible for θ′′ ∈ Θ2 the final rule in the history of D′, it follows

that Vs is either an accepted start or end configuration. Lemma 6.6 then implies that Vs ≡ J(w)

for some w ∈ L \ {1}.

As no rule of a computation with step history (s)1(1)1 locks the special input sector, θ cannot

be such a rule. So, the step history of E ′ has prefix (s)1(1)1.

Lemma 6.2(a) then implies that any subsequent letter of the step history must be (12)1. But

since Vs has empty ‘special’ input sector while every other input sector is nonempty, Vt cannot be

θ(12)1-admissible. So, the entire step history of C ′1 is (s)1(1)1 and θ = θ(12)1.

Since W (i) is θ-admissible, Lemma 4.3 implies that the ‘special’ input sector of W contains

the natural copy of the word w−1 ∈ L \ {1}. Note that removing w−1 from the ‘special’ input

sector of W yields a configuration that is θ-admissible.
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For W an accepted configuration of M such that W 6= Wac, let A(W ) be the set of accept-

ing computations of W . For C ∈ A(W ), define `(C) as the number of maximal one-machine

subcomputations of C. Then, define `(W ) = min{`(C) | C ∈ A(W )}.

For simplicity, further define `(Wac) = 0.

Lemma 6.14. For any accepted configuration W of M, `(W ) ≤ 2.

Proof. Suppose ` = `(W ) ≥ 3 and set C ∈ A(W ) such that `(C) = `.

Let H be the history of the inverse computation of C. Then, factor H ≡ H1 . . . H` such that

each Hi is the history of a maximal one-machine subcomputation.

For j ∈ {1, . . . , `−1}, let Vj ≡ Wac·(H1 . . . Hj). If Vj ≡ Wac for some j, then (Hj+1 . . . H`)
−1

is the history of an accepting computation C ′ of W with `(C ′) < `, contradicting the definition of

`.

Lemma 6.6 then implies that for all 1 ≤ j ≤ ` − 1, there exists wj ∈ L such that Vj ≡ I(wj)

or J(wj). Lemma 6.6 then provides a one-machine computation D accepting V2.

Let H ′ be the history of D. Then (H3 . . . H`)
−1H ′ is the history of an accepting computation

of W whose number of maximal one-machine computations is less than `, again contradicting the

definition of `.

Lemma 6.15. Let W be an accepted configuration with `(W ) = 2 and set C ∈ A(W ) such that

`(C) = 2. Factor the history H of C as H ≡ H1H2, where each Hi is the history of a one-

machine computation. Then Hj is the history of a one-machine computation of the j-th machine

and W ·H1 ≡ Wac ·H−1
2 ≡ J(w) for some w ∈ L \ {1}.

Proof. As in the proof of Lemma 6.14, W ·H1 ≡ Wac ·H−1
2 must be an accepted input configura-

tion.
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Note that the final rule of H1 is θ(s)−1
i and the first rule of H2 is θ(s)j for i 6= j. Lemma 6.4

then implies that W · H1 has empty ‘special’ input sector, so that Wac · H−1
2 ≡ J(w) for some

w ∈ L by Lemma 6.6.

Suppose H2 is the history of a one-machine computation of the first machine. Then, since

every rule of the first machine operates in parallel on the input sectors, Wac · H−1
2 ≡ I(w). This

implies I(w) ≡ J(w), so that w = 1. Lemma 6.6 provides a one-machine computation D of the

second machine accepting J(1). Let H ′ be the history of D. Then, the reduced form of H1H
′ is

the history of a one-machine computation accepting W , contradicting the hypothesis.

Hence, Hj is the history of a one-machine computation of the j-th machine.

If w = 1, then there exists a one-machine computation E of the first machine accepting I(w)

by Lemma 6.6. But then for H ′′ the history of E , the reduced form of H1H
′′ is the history of a

one-machine computation accepting W . Thus, w ∈ L \ {1}.

Lemma 6.16. Let W be an accepted configuration. Then |W (1)|a ≤ 2|W (j)|a for all 2 ≤ j ≤ L.

Proof. The symmetry of the rules implies that |W (j)|a is constant for j ≥ 2.

Let C be an accepting computation of W with `(C) = `(W ). As the statement is obvious for

W ≡ Wac, we may assume that ` = `(C) ≥ 1.

If C is a one-machine computation of the first machine, then W (1) and W (j) are coordinate

shifts of one another, so that |W (1)|a = |W (j)|a.

If it is a one-machine computation of the second machine, then the ‘special’ input sector is

empty while any other sector of W (1) is a coordinate shift of the corresponding admissible sub-

word of W (j). So, in this case |W (1)|a ≤ |W (j)|a.

Hence, we may assume ` = 2. Let H ≡ H1H2 be the factorization of the history of C provided

by Lemma 6.15, so that W ·H1 ≡ J(w) for some w ∈ L \ {1}.

In particular, the ‘special’ input sector of W ·H1 is empty while each of its other input sectors

is not. So, since each rule of the first machine operates in parallel on the input sectors, H1 cannot

contain the letter θ(12)±1
1 .
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Let C1 be the subcomputation with history H1. As the application of a transition rule does not

alter the a-length of any sector, we may assume that the step history of C1 is (1)1(s)−1
1 .

Factor H1 ≡ H ′1θ(s)
−1
1 and let v be the natural copy of H ′1 read right to left in F (A). Letting

C ′1 be the subcomputation with history H ′1, we may apply Lemma 4.3 to the restriction of C ′1 to the

subwords P0(i)Q0(i) and Q0(i)P1(i). It then follows that W has (the natural copy of):

• v written in the ‘special’ input sector,

• wv written in every other input sector, and

• v−1 written in every Q0(i)P1(i)-sector.

As all other sectors of W are empty, |W (1)|a = ‖v‖ + ‖v−1‖ = 2‖v‖ ≤ 2(‖v−1‖ + ‖wv‖) =

2|W (j)|a.

Lemma 6.17. Let W be an accepted configuration of M and C : W ≡ W0 → · · · → Wt ≡ Wac

be an accepting computation with `(C) = `(W ). Then t ≤ c2‖W (i)‖ for all i ∈ {2, . . . , L}.

Proof. The statement is clear for W ≡ Wac, so we may assume `(W ) ≥ 1.

Suppose `(W ) = 1, so that C is a one-machine computation of the j-th machine. The history

of C can then be factored as H ′′H ′θ(a)j , where:

• H ′′ is either empty or θ(s)j , and

• H ′ does not contain the letters θ(a)±1
j or θ(s)±1

j .

Let C ′ : W ′
0 → · · · → W ′

s be the subcomputation with history H ′ and let C ′i be its restriction to

the base {t(i)}B3(i) for some i ≥ 2. We can then identify C ′i with a reduced computation of M4

in the standard base.

Lemma 5.35 implies that s ≤ 2c1 max(‖W ′
0(i)‖, ‖W ′

s(i)‖). AsW ′
s is θ(a)j-admissible, |W ′

s|a =

0, so that ‖W ′
0(i)‖ ≥ ‖W ′

s(i)‖. Further, since transition rules do not change the tape word of any

sector, ‖W ′
0(i)‖ = ‖W (i)‖.
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Hence, t ≤ 2c1‖W (i)‖ + 2 ≤ 3c1‖W (i)‖. The statement then follows from the parameter

choice c2 >> c1.

So, we may assume that `(W ) = 2. Then, factor the history H ≡ H1H2 of C as in Lemma

6.15. Let C1 : W0 → · · · → Wr be the subcomputation with history H1. Then, Wr ≡ J(w) for

w ∈ L \ {1}.

As w 6= 1 and the rules with step history (1)1 operate in parallel on all input sectors, the step

history of C1 must be (1)1(s)−1
1 (with perhaps empty maximal subcomputation with step history

(1)1). For i ≥ 2, applying Lemma 4.3 to the restriction of C1 to the Q0(i)P1(i)-sector then implies

that r − 1 ≤ |W (i)|a. Further, a projection argument yields |W (i)|a ≥ |Wr(i)|a.

The subcomputation Wr → · · · → Wt is a one-machine computation accepting Wr, so that as

above t− r ≤ 3c1‖Wr(i)‖ for all i ≥ 2.

Thus, t ≤ 3c1‖W (i)‖ + ‖W (i)‖ ≤ 4c1‖W (i)‖, so that the statement again follows from the

parameter choice c2 >> c1.

Lemma 6.18. For any reduced computation C : W0 → · · · → Wt of M in the standard base,

‖Wi‖ ≤ c2 max(‖W0‖, ‖Wt‖) for all 0 ≤ i ≤ t.

Proof. As the application of a transition rule does not change the length of a configuration, we

may assume without loss of generality that neither the first nor the last rule of the history H of C

is a transition rule.

1. Suppose C is a one-machine computation of the first machine. Then H cannot contain the

letters θ(s)±1
j or θ(a)±1

j .

So, for each 1 ≤ j ≤ L, the restriction C(j) : W0(j) → · · · → Wt(j) to {t(j)}B3(j) can

be identified with a reduced computation of M4 in the standard base. Lemma 5.35 then implies

t ≤ 2c1 max(‖W0(j)‖, ‖Wt(j)‖).

Note that the application of any rule alters the a-length of any component by at most four. So,
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applying the same argument as used in the proof of Lemma 5.11, we get

‖Wi(j)‖ ≤ 5c1 max(‖W0(j)‖, ‖Wt(j)‖)

for all 0 ≤ i ≤ t. So, for all i,

‖Wi‖ =
L∑
j=1

‖Wi(j)‖ ≤ 5c1

L∑
j=1

max(‖W0(j)‖, ‖Wt(j)‖) ≤ 5c1

(
L∑
j=1

‖W0(j)‖+
L∑
j=1

‖Wt(j)‖

)

= 5c1(‖W0‖+ ‖Wt‖) ≤ 10c1 max(‖W0‖, ‖Wt‖)

2. Suppose C is a one-machine computation of the second machine. If the step history of C does

not contain the letter (1)2, then the same argument as above implies ‖Wi‖ ≤ 10c1 max(‖W0‖, ‖Wt‖)

for all i.

If the step history of C is (1)2, then the restriction of C to any unlocked sector satisfies the

hypotheses of Lemma 4.3. As a result, it follows that |Wi|a ≤ 2 max(|W0|a, |Wt|a) for all i.

So, we assume that the step history contains (1)2 as a proper subword. Lemma 6.1 then implies

that any occurrence of (1)2 is as the first or last letter of the step history. Let Wr → · · · → Ws

be the maximal subcomputation of C such that its step history has no occurrence of (1)2. Then

‖Wi‖ ≤ 10c1 max(‖Wr‖, ‖Ws‖) for all r ≤ i ≤ s.

If C1 : Ws → · · · → Wt is nonempty, then it has step history (1)2 and Ws is θ(12)2-admissible.

Lemma 5.13 then implies that |Ws(j)|a ≤ · · · ≤ |Wt(j)|a for j ≥ 2. Further, Lemma 4.3 applies

to the restriction of C1 to the P0(j)Q0(j)-sector for any j ≥ 2, implying t − s ≤ |Wt(j)|a. Then,

for all s ≤ i ≤ t, Lemma 4.3 implies that |Wi(1)|a ≤ |Wt(1)|a + t− i ≤ |Wt(1)|a + |Wt(j)|a for

any j ≥ 2. So, |Wi|a ≤ 2|Wt|a for all s ≤ i ≤ t.

Similarly, if W0 → · · · → Wr is nonempty, then |Wi|a ≤ 2|W0|a for all 0 ≤ i ≤ r. Combining

these inequalities yields ‖Wi‖ ≤ 20c1 max(‖W0‖, ‖Wt‖) for all 0 ≤ i ≤ t.

Hence, by the parameter choice c2 >> c1, we may assume that C is a multi-machine computa-

tion.
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Moreover, we may induct on the number of maximal one-machine subcomputations of C.

3. Suppose W0 is not an accepted configuration.

As C is multi-machine, there exists 0 < s < t such that Ws is either a start or an end configu-

ration.

If Ws is an end configuration, then it must be θ(a)−1
j -admissible, so that Ws ≡ Wac. But then

W0 must be an accepted configuration, contradicting our assumption.

So,Ws must be an input configuration. Lemma 6.4 then implies that it has empty ‘special’ input

sector. If all input sectors are empty, then Ws ≡ I(1), so that W0 is an accepted configuration. As

a result, Ws must have a nonempty input sector.

Perhaps taking the inverse computation, we may assume without loss of generality that there

exists a maximal one-machine computation C1 : Wr → · · · → Ws of the first machine. Since

Ws has empty ‘special’ input sector, Lemmas 4.3 and 6.2(a) imply that the step history of C1 is

(1)1(s)−1
1 , so that r = 0. Lemmas 4.3 and 5.13 then imply that |Wi|a ≤ |W0|a for all i ≤ s.

As Ws → · · · → Wt consists of one less maximal one-machine subcomputation than C, the

inductive hypothesis implies ‖Wi‖ ≤ c2 max(‖Ws‖, ‖Wt‖) for all s ≤ i ≤ t. This yields ‖Wi‖ ≤

c2 max(‖W0‖, ‖Wt‖) for all i.

Hence, we may assume that W0 is an accepted configuration.

4. Suppose there exists w ∈ L \ {1} such that Ws ≡ I(w) or J(w) for some s ∈ {0, . . . , t}.

If s = 0 (resp s = t), then the first (resp last) rule of H must be a transition rule of the form

θ(s)±1
j . But this contradicts our assumption. Lemma 6.4 then implies that the ‘special’ input sector

of Ws must be empty, so that Ws ≡ J(w).

As a result, we may assume without loss of generality that there exists a maximal one-machine

subcomputation C1 : Wr → · · · → Ws of the first machine. As in Step 3, Lemmas 4.3 and 6.2(a)

then imply that r = 0 and |Wi|a ≤ |W0|a for all 0 ≤ i ≤ s.

But then the inductive hypothesis again yields ‖Wi‖ ≤ c2 max(‖W0‖, ‖Wt‖) for all i.

5. Finally, suppose that for any s ∈ {0, . . . , t} such that Ws is a start (resp end) configuration,

Ws ≡ I(1) (resp Ws ≡ Wac).
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As C is not a one-machine computation, there exists such an s. Further, by the same reasoning

as used in Step 4, we may assume that s ∈ {1, . . . , t− 1}.

Then, W0 → · · · → Ws and Ws → · · · → Wt each consist of less maximal one-machine sub-

computations than does C, so that the inductive hypothesis implies ‖Wi‖ ≤ c2 max(‖W0‖, ‖Ws‖)

for all 0 ≤ i ≤ s and ‖Wi‖ ≤ c2 max(‖Ws‖, ‖Wt‖) for all s ≤ i ≤ t.

But |Ws|a = 0, so that max(‖W0‖, ‖Ws‖) = ‖W0‖ and max(‖Ws‖, ‖Wt‖) = ‖Wt‖. Thus, the

statement is proved.

6.4 Computations of M with long history

Lemma 6.19. Let C : V0 → · · · → Vt be a reduced computation of M with base {t(i)}B3(i) for

some i ∈ {2, . . . , L}. Suppose t > c3 max(‖V0‖, ‖Vt‖). Then:

(a) There exist accepted configurations W0 and Wt such that W0(i) ≡ V0 and Wt(i) ≡ Vt,

(b) Let C0 and Ct be accepting computations of W0 and Wt, respectively, with `(Cj) = `(Wj).

For Hj the history Cj , ‖H0‖+ ‖Ht‖ ≤ t/500

(c) The sum of the lengths of all subcomputations of C whose step histories are of the form

(4n − 2, 4n − 1)j(4n − 1)j(4n − 1, 4n)j or (4n, 4n − 1)j(4n − 1)j(4n − 1, 4n − 2)j is at

least 0.98t.

Proof. For H ′ the history of C, factor H ′ ≡ H ′1 . . . H
′
m for m ≥ 1 so that each H ′j is the history of

a maximal one-machine subcomputation of C.

Suppose m = 1, i.e C is a one-machine computation. Then the letters θ(s)±1
j or θ(a)±1

j can

only occur in H ′ as the first or last letter. So, other than perhaps these two rules, C can be viewed

as a reduced computation of M4 in the standard base. But then Lemma 5.35 implies that t − 2 ≤

2c1 max(‖V0‖, ‖Vt‖), so that the parameter choice c3 >> c1 provides a contradiction. So, we may

assume that m ≥ 2, i.e C is a multi-machine computation.
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For each 1 ≤ j ≤ m, let Cj : Vy(j) → · · · → Vz(j) be the subcomputation with history

H ′j . By Lemma 6.9, there exists a one-machine computation C ′j : W ′
y(j) → · · · → W ′

z(j) in the

standard base with history H ′j and such that W ′
x(i) ≡ Vx for y(j) ≤ x ≤ z(j). Note that for

1 ≤ j ≤ m − 1, W ′
z(j) and W ′

y(j+1) are not necessarily the same configuration; to differentiate

them, they are represented with these indices.

Suppose W ′
z(1) is not an accepted configuration. Since Vz(1) ≡ Vy(2) is admissible for the last

rule of H ′1 and the first rule of H ′2, W ′
z(1) must be a start or an end configuration.

Note that the only end configuration that is admissible for any rule is Wac, which is accepted.

So, since W ′
z(1) is admissible for the last rule of H ′1, it must be a start configuration which is

admissible for θ(s)j for some j.

By construction, there exists w ∈ F (A) such that W ′
z(1) ≡ I(w) (or W ′

z(1) ≡ J(w)) if C1 is

a one-machine computation of the first (or second) machine. By Lemma 6.6, we must then have

w /∈ L. Lemmas 6.10 and 6.11 then imply that m = 2.

Suppose C2 is a one-machine computation of the j-th machine. Then as above, we can view

this as a reduced computation of M4 after disregarding the first rule. Lemmas 5.32 and 5.28 then

imply that the step history is a subword of (s)j(1)j . . . (4n − 1)j . So, the length of C2 must be at

most c2‖Vt‖ by Lemmas 5.35 and 5.30.

Similarly, the length of C1 must be at most c2‖V0‖.

So, t ≤ c2(‖V0‖+ ‖Vt‖), so that the parameter choice c3 >> c2 yields a contradiction.

Hence, W ′
z(1) must be an accepted configuration. Consequently, W0 ≡ W ′

y(1) is an accepted

configuration with W0(i) ≡ V0.

By the construction of the one-machine computations in the standard base outlined in the proof

of Lemma 6.9, that W ′
z(1) is accepted implies that W ′

y(2) is accepted. As a result, W ′
z(2) is accepted.

Continuing, we have that Wt ≡ W ′
z(m) is an accepted configuration with Wt(i) ≡ Vt.

Thus, (a) is satisfied.

By Lemma 6.17, we then have ‖H0‖+ ‖Ht‖ ≤ 2c2 max(‖V0‖, ‖Vt‖) ≤ t/500 as c3 >> c2.

For 2 ≤ j ≤ m − 1, let `j be the sum of the lengths of the subcomputations of Cj whose step
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histories are of the form given in (c).

As above, for such j, by neglecting the first and last rules, we may view Cj as a reduced

computation of M4 in the standard base. So, Lemma 5.34 implies that `j ≥
(

1− 1
c0

)
(‖H ′j‖ − 2).

As ‖H ′j‖ ≥ k by Lemma 5.32(c), taking c0 sufficiently large then yields `j ≥ 0.99‖H ′j‖.

Let y(m) = y, so that Cm : Vy → · · · → Vt is the subcomputation of C with history H ′m. Then,

as Cm is a one-machine computation, Lemma 5.35 implies ‖H ′m‖ = t− y ≤ c2 max(‖Vy‖, ‖Vt‖).

If ‖Vy‖ ≤ c2‖Vt‖, then ‖H ′m‖ ≤ c2
2‖Vt‖ ≤ t/200 by the parameter choice c3 >> c2.

Otherwise, ‖Vy‖ > c2‖Vt‖. If Vy is the i-th component of an end configuration, then it must be

θ(a)−1
j -admissible. But then Vy ≡ A(i), so that ‖Vy‖ ≤ ‖Vt‖.

So, Vy must be the i-th component of a start configuration. As above, we may choose this start

configuration to be accepted, so that Vy ≡ I(un, i) for some un ∈ L.

Identifying Cm with a reduced computation of M4, Lemma 5.30 then implies that its step history

must contain the letter (4n)j . Let C ′′m : Vy → · · · → Vz be the maximal subcomputation whose

step history is (s)j(1)j . . . (4n)j and Vx → · · · → Vz be the maximal subcomputation with step

history (4n)j . So, by Lemmas 5.30 and 5.32, |Vy|a ≤ 9n|Vx|a and |Vx|a = 2‖u‖.

If z 6= t, then the first letter of the step history of Vz → · · · → Vt is either (a)j or (4n, 4n− 1)j .

Lemma 5.31 then implies that |Vz|a ≤ 12n|Vt|a, so that |Vy|a > c1|Vz|a and t − z ≤ t/200. So,

taking c1 sufficiently large, |Vz|a ≤ |Vx|a. Hence, Lemma 4.3 implies z − x ≤ |Vx|a = 2‖u‖.

Let `m be the sum of the lengths of the subcomputations of C ′′m whose step histories are of the

form described in the statement. By Lemmas 5.32(c) and 4.3, we then have

z − y − `m ≤ (c0 + 1)(‖u‖+ 1) + 2‖u‖+ ‖un‖+ 1 ≤ 2c0(‖u‖+ 1)

and `m = 2k‖u‖ + 2k + 1 ≥ 2k(‖u‖ + 1). As in the proof of Lemma 5.34, this then implies

`m ≥
(

1− 1
c0

)
(z − y) ≥ 0.99(z − y).

We can then do the same for the subcomputation C1 : V0 → · · · → Vs with history H ′1, finding

r ∈ {0, . . . , s} with r ≤ t/200 such that for `1 the sum of the lengths of the subcomputations of
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Vr → · · · → Vs whose step histories are of the form described in (c), `1 ≥ 0.99(s− r).

Let ` be the sum of the lengths of the subcomputations of Vr → · · · → Vz whose step histories

are of the form given in (c). Then ` =
∑m

i=1 `i ≥ 0.99(z−r) while z−r ≥ 0.99t. Thus, ` ≥ 0.98t.

Lemma 6.20. Let C : V0 → · · · → Vt be a reduced computation of M with base {t(i)}B3(i)

for some i ∈ {2, . . . , L}. If t > c3 max(‖V0‖, ‖Vt‖), then the history of any subcomputation

D : Vr → · · · → Vs of C (or the inverse of D) of length at least 0.4t contains a controlled

subword.

Proof. By Lemma 6.19(c), the sum of the lengths of all subcomputations of C with step histories

of the form (4n− 2, 4n− 1)j(4n− 1)j(4n− 1, 4n)j or (4n, 4n− 1)j(4n− 1)j(4n− 1, 4n− 2)j

is at least 0.98t. So, there exists such a subcomputation C ′ such that D contains a subcomputation

D′ which is also a subcomputation of C ′. Moreover, for H ′ and K ′ the histories of C ′ and D′, we

may assume ‖K ′‖ ≥ 0.3‖H ′‖.

But C ′ repeats k copies of a controlled history (with an overlap of one rule), so that taking k

sufficiently large implies that K ′ must contain a controlled subword.

A two-letter subword UV of the standard base of M is defined to be left-active (resp right-

active) with respect to the step (i)j if any rule of step history (i)j that alters the tape word of an

admissible word with base UV inserts/deletes one letter on the left (resp right) of the tape word.

Note that if (i)j is not (1)2 or the subword does not correspond to the ‘special’ input sector, then

UV is left-active (resp right-active) with respect to (i)j if and only if the corresponding subword

of the standard base of M4 is left-active (resp right-active) for M4(i). Hence, the following is an

immediate consequence of Lemma 5.36.

Lemma 6.21. Let C : W0 → · · · → Wt be a reduced computation of M with step history (i)m and

base B ≡ {t(x)}B3(x) for some 2 ≤ x ≤ L. Assume that for some index j, |Wj|a > 4|W0|a. Then

there are subwords U`V` and UrVr of B such that U`V` is left-active with respect to (i)m, UrVr is
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right-active with respect to the step (i)m, and for W ′
0 → · · · → W ′

t the restriction of C to either

sector, |W ′
j|a < |W ′

j+1|a < · · · < |W ′
t |a.

6.5 Reverted Bases

Let B be the base of an admissible word W of M. Then the reversion of B, denoted π(B), is

the word obtained from B by ‘forgetting’ the coordinates of its letters. In this case, π(B) is called

the reverted base of W .

For example, the reverted base of any configuration is the concatenation of L copies of the

standard base of M4. Similarly, if B = Q4(1){t(2)}P0(2)Q0(2)P1(2)Q1(2)Q1(2)−1P1(2)−1, then

π(B) = Q4{t}P0Q0P1Q1Q
−1
1 P−1

1

Lemma 6.22. Let B be the base of an admissible word W of M. Then there exists an admissible

word W ′ of M4 with base π(B) and such that |W ′|a = |W |a. Moreover, if none of the state letters

of W are start or end letters (or their inverses), then W ′ can be chosen to be the natural copy of

W in the hardware of M4.

Proof. Let W ≡ q0w1q1 . . . wrqr, B ≡ V0 . . . Vr, and π(B) ≡ U0 . . . Ur.

Suppose V0 ≡ V −1
1 , so that U0 ≡ U−1

1 . Then the tape alphabet corresponding to the V0V1-sector

is a copy of that corresponding to the U0U1-sector, so that there exists a natural copy w′1 of w1 in

this alphabet.

Further, if neither q0 nor q1 corresponds to a start or end letter in V0 or V1, then we can choose

q′0 and q′1 as the natural copies of q0 and q1 in U0 and U1, respectively. Otherwsise, either q0 and q1

both correspond to start letters or both correspond to end letters. In this case, we can choose q′0 as

any state letter of U0 and q′1 as its inverse.

Now suppose V0 6= V −1
1 . Then since the tape alphabet of the Qs{t}-sector of M4 is empty, we

again have that the tape alphabet corresponding to the V0V1-sector is a copy of that corresponding

to the U0U1-sector. This allows us to construct w′1 as a copy of w1 as above.
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Further, if neither q0 nor q1 corresponds to a start or end letter in V0 or V1, then we can again

choose q′0 and q′1 as their natural copies in U0 and U1. Meanwhile, if q0 (or q1) corresponds to a

start or end letter, then we can choose q′0 (or q′1) as any letter from U0 (respectively U1).

With q′1 now chosen, we can apply the same construction to obtain q′2 and w′2.

Iterating, we construct the admissible word W ′ ≡ q′0w
′
1q
′
1 . . . w

′
rq
′
r satisfying the statement.

Lemma 6.23. Suppose C : W0 → W1 is a one-rule computation of M with history θ ∈ Θ, where

θ /∈ {θ(s)i, θ(a)i : i = 1, 2}±1. Further, suppose that either:

(a) the step history of C is not (1)2, or

(b) the base of C does not contain a subword of the form (P0(1)Q0(1))±1.

Then there exists a one-rule computation of M4 C ′ : W ′
0 → W ′

1 with history θ′, where θ′ is the

natural copy of θ in Θ(M4) and W ′
0 and W ′

1 are the natural copies of W0 and W1, respectively, in

the hardware of M4.

Proof. As θ /∈ {θ(s)i, θ(a)i : i = 1, 2}±1, none of the state letters of W0 or W1 are start or end

letters (or their inverses). So, applying Lemma 6.22, we can find admissible words W ′
0 and W ′

1

which are the natural copies of W0 and W1, respectively, in the hardware of M4.

Let θ′ be the natural copy of θ in Θ(M4). If (a) holds, then θ operates on each sector of the

standard base of M in the same way as θ′ operates on the copy of the corresponding sector of the

standard base of M4.

Conversely, if θ is a rule of step history (1)2, then all sectors of the standard base of M other

than the ‘special’ input sector are again operated on by θ in the same way as θ′ operates on their

copy. As θ locks the ‘special’ input sector, Lemma 4.2 implies that this sector is not present in W0

if the base of C satisfies (b).
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The base B of an admissible word of M is called hyperfaulty (or pararevolving) if its rever-

sion π(B) is faulty (or revolving) as the base of an admissible word of M4. Note that a base is

hyperfaulty if and only if it is pararevolving and unreduced.

A hyperfaulty base is necessarily faulty, while a faulty base need not be hyperfaulty. For

example, if B ≡ Q0(3)Q0(3)−1P0(3)−1{t(3)}−1 . . . Q4(1)−1Q4(1) . . . {t(3)}P0(3)Q0(3), where

gaps correspond to strings of letters that follow the order of the standard base of M or its inverse,

then B is faulty but not hyperfaulty.

Conversely, a pararevolving base that is not hyperfaulty (for example, {t(1)} . . . {t(2)}) is

not revolving, while a revolving base that is not faulty (for example, {t(1)} . . . {t(1)}) is not

pararevolving.

As the standard base of M4 has length 11, a pararevolving base has length at most 23 while a

revolving base of M has length at most 22L+ 1.

Lemma 6.24. Suppose C : W0 → · · · → Wt is a one-machine computation of M with hyperfaulty

base B. Then for all 0 ≤ j ≤ t, |Wj|a ≤ c0 max(|W0|a, |Wt|a).

Proof. As in the proof of Lemma 5.37, we may assume that |Wr|a > max(|W0|a, |Wt|a) for all

0 < r < t. In particular, we assume that neither the first nor the last letter of the history H of C is

a transition rule.

As C is a one-machine computation, any occurrence of a letter of the form θ(s)±1
i or θ(a)±1

i in

H would have to be either the first or the last letter. So, no such letter occurs in H .

Suppose the hypotheses of Lemma 6.23 are satisfied by each rule of C. Then, we obtain the

reduced computation C ′ : W ′
0 → · · · → W ′

t of M4 with base π(B) such that |W ′
j|a = |Wj|a for all

0 ≤ j ≤ t. But π(B) is faulty, so that Lemma 5.37 implies that |Wj|a ≤ c0 max(|W0|a, |Wt|a) for

all 0 ≤ j ≤ t.

So, it suffices to assume that C is a one-machine computation of the second machine, that the

step history of C contains the letter (1)2, and thatB contains a subword of the form (P0(1)Q0(1))±1.

Suppose that the step history of C is (1)2. Then the restriction of C to any two-letter subword

of B has fixed tape word, satisfies the hypotheses of Lemma 4.3, or satisfies the hypotheses of
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Lemma 4.4. As in Step 1 of the proof of Lemma 5.37, this implies the statement for c0 ≥ 2.

So, H (or its inverse) must contain a subword of the form H1θ(12)2H2, where Hi is the history

of a maximal subcomputation with step history (i)2. As θ(12)2 locks every sector of the standard

base other than those of the form (Q0(i)P1(i))±1, any unreduced two-letter subword of B must be

of the form Q0(i)Q0(i)−1 or P1(i)−1P1(i). As a result, B must be a cyclic permutation of

P0(1)Q0(1)Q0(1)−1P0(1)−1{t(1)}−1Q4(L)−1 . . . Q1(L)−1P1(L)−1P1(L)Q1(L) . . . {t(1)}P0(1)

As B contains the subword R2(L)Q3(L), Lemma 5.28(b) implies that the step history of C cannot

contain a subword of the form (12)2(2)2(21)2.

Let C2 : Wr → · · · → Ws be the subcomputation with history H2 and let C ′2 : W ′
r → · · · → W ′

s

be its restriction to the subword

Q3(L)−1R2(L)−1Q2(L)−1R1(L)−1Q1(L)−1P1(L)−1P1(L)Q1(L)R1(L)Q2(L)R2(L)Q3(L)

Note that every rule with step history (2)2 locks each sector of an admissible subword with base

(P1(L)Q1(L)R1(L)Q2(L)R2(L))±1. So, we may view these subwords as a single state letter. With

this view, we may apply Lemma 5.14 to C ′2, so that |W ′
r|a ≤ · · · ≤ |W ′

s|a.

As any other sector has fixed tape word throughout C2, this yields |Wr|a ≤ |Ws|a. So, H must

contain a subword H2θ(23)2H3, where H3 is the history of a maximal subcomputation with step

history (3)2.

Note that the connecting rule of M4(3−) locks the Q0P1-sector, so that it cannot occur in H3.

So, letting C3 : Ws+1 → · · · → Wx be the subcomputation with history H3, the restriction of

C3 to the P1(L)Q1(L)-sector satisfies the hypotheses of Lemma 4.3. As a result, Wx cannot be

θ(32)2-admissible. Hence, x = t and C3 is the copy of computation of M4(3−).

Letting C ′3 : W ′
s+1 → · · · → W ′

t be the restriction of C3 to Q1(L)−1P1(L)−1P1(L)Q1(L),

Lemma 5.14 implies |W ′
s+1|a ≤ · · · ≤ |W ′

t |a. But the tape word in each other sector remains

unchanged throughout C3, so that |Ws|a ≤ |Wt|a.
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Lemma 6.25. Let C : W0 → · · · → Wt be a reduced computation of M with hyperfaulty base B.

Then for all 0 ≤ j ≤ t, |Wj|a ≤ c0 max(|W0|a, |Wt|a).

Proof. As in the proofs of Lemmas 5.37 and 6.24, we assume that |Wr|a > max(|W0|a, |Wt|a) for

all 0 < r < t, so that neither the first nor the last letter of the history H of C is a transition rule.

By Lemma 6.24, it suffices to assume that C is a multi-machine computation. Further, as B

must be unreduced and the rules θ(a)±1
i lock each sector of the standard base, the step history of C

must contain a subword of the form ((s)−1
1 (s)2)±1 by Lemma 4.2.

The only sectors of the standard base not locked by θ(s)±1
1 or θ(s)±1

2 are those of the form

P0(i)Q0(i) for i ≥ 2. As a result, any unreduced two-letter subword of B must be of the form

P0(i)P0(i)−1 or Q0(i)−1Q0(i) for i ≥ 2.

As both θ(12)1 and θ(12)2 lock all P0(i)Q0(i)-sectors, the step history of C cannot contain the

letters (12)j and (21)j .

So, if B does not contain the letters Q0(i)±1, then no rule of C alters the a-length of an admis-

sible word with base B. As a result, we may assume that B contains such a letter.

By the definition of hyperfaulty,B must contain a subword of the form (Q0(i)P1(i))±1. Lemma

6.2(a) then implies that the step history of C cannot contain a subword of the form (s)j(1)j(s)
−1
j .

Hence, the step history of C (or its inverse) is (1)2(s)−1
2 (s)1(1)1. Let C1 : Ws → · · · → Wt be

the maximal subcomputation with step history (1)1.

Note that any subword of B of the form (P0(i)Q0(i))±1 is contained in a subword of a cyclic

permutation of B of the form (P0(i)Q0(i)P1(i))±1.

Further, any subword of B of the form Q0(i)−1Q0(i) is contained in a subword of a cyclic

permutation of B of the form P1(i)−1Q0(i)−1Q0(i)P1(i).

So, since Ws is θ(s)−1
1 -admissible, Lemmas 5.13 and 5.14 imply |Ws|a ≤ |Wt|s, contradicting

our assumption.
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Lemma 6.26. Let C : W0 → · · · → Wt be a reduced computation with revolving base B. Then

‖Wj‖ ≤ c4 max(‖W0‖, ‖Wt‖) for all 0 ≤ j ≤ t.

Proof. If B is reduced, then the statement follows from Lemma 6.18 and the parameter choice

c4 >> c2. Similarly, if B is hyperfaulty, then the statement follows from Lemma 6.25 and the

parameter choice c4 >> c0.

So, it suffices to assume that B is faulty but not hyperfaulty. As a result, B contains a reduced

pararevolving subword B′. Fix i such that B′ contains a subword (P0(i)Q0(i))±1. Since all non-

input sectors are operated on in parallel across coordinates, we may assume that B′ is of the form

{t(i)}B3(i){t(i+ 1)} (where we take L+ 1 to be 1).

Let C ′ : W ′
0 → · · · → W ′

t be the restriction to B′ and suppose i 6= 1. Since B is unreduced,

Lemma 6.7 implies that the history H of C cannot contain a controlled subword. So, Lemma 6.19

yields t ≤ c3 max(‖W ′
0‖, ‖W ′

t‖) ≤ c3 max(‖W0‖, ‖Wt‖). Hence, the statement follows from the

parameter choice c4 >> c3.

Further, if i = 1 and the step history of C does not contain the letter (1)2, then we may construct

a coordinate shift of C ′, implying the statement in the same way.

So, we may assume that the step history of C contains the letter (1)2 and that any reduced

pararevolving subword of B contains a subword (P0(1)Q0(1))±1.

If the step history of C is (1)2, then the restriction of C to any two-letter subword has fixed tape

word, satisfies the hypotheses of Lemma 4.3, or satisfies the hypotheses of Lemma 4.4. As in Step

1 of the proof of Lemma 5.37, this implies ‖Wj‖ ≤ 2 max(‖W0‖, ‖Wt‖).

So, H must contain a transition rule.

As in previous proofs, we may assume that ‖Wr‖ > max(‖W0‖, ‖Wt‖) for all 0 < r < t, so

that neither the first nor the last letter of H is a transition rule (or χ-rule or connecting rule).

Suppose the step history of C contains the letter (12)2. Then, H must have a subword of the

form H1θ(12)2H2, where each H1 (respectively H2) is the history of a maximal subcomputation

with step history (1)2 (respectively (2)2).

As θ(12)2 locks every sector of the standard base except for those of the form Q0(i)P1(i), any
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unreduced two-letter subword ofB must be of the formQ0(i)Q0(i)−1 or P1(i)−1P1(i). As a result,

B must be a cyclic permutation of

Q0(2)Q0(2)−1 . . . {t(1)}−1Q4(L)−1 . . . Q1(L)−1P1(L)−1P1(L)Q1(L) . . . Q4(L){t(1)} . . . Q0(2)

Let C2 : Wr → · · · → Ws be the subcomputation of C with history H2 and let C ′2 : W ′
r → · · · →

W ′
s be its restriction to the subword

Q3(L)−1R2(L)−1Q2(L)−1R1(L)−1Q1(L)−1P1(L)−1P1(L)Q1(L)R1(L)Q2(L)R2(L)Q3(L)

As in the proof of Lemma 6.24, we may view the admissible subwords whose bases are of the form

(P1(L)Q1(L)R1(L)Q2(L)R2(L))±1 as a single state letter. With this view, Lemma 5.14 implies

|W ′
r|a ≤ · · · ≤ |W ′

s|a.

Let C ′′2 : W ′′
r → · · · → W ′′

s be the restriction of C2 to a subword of the form ({t(1)}B3(1))±1.

Then a projection argument implies |W ′′
r |a ≤ · · · ≤ |W ′′

s |a.

As any other sector has fixed tape word throughout C2, this yields |Wr|a ≤ |Ws|a. So, we may

assume t > s.

Since B contains the subword R2(1)Q3(1), Lemma 5.28(b) implies that H must have a sub-

word H2θ(23)2H3, where H3 is the history of a maximal subcomputation with step history (3)2.

The connecting rule of M4(3−) locks the Q0P1-sector, so that H3 cannot contain an occurrence

of a copy of this rule. So, since B contains the subword P1(1)Q1(1), Lemma 4.3 implies that H3

must be a suffix of H .

Let C3 : Ws+1 → · · · → Wt be the subcomputation with history H3 and C ′3 : W ′
s+1 → · · · →

W ′
t be its restriction to a subword of the form (Q0(1)P1(1)Q1(1))±1. Then, Lemma 5.13 implies

|W ′
s+1|a ≤ · · · ≤ |W ′

t |a.

Letting C ′′3 : W ′′
s+1 → · · · → W ′′

t be the restriction of C3 to Q1(L)−1P1(L)−1P1(L)Q1(L),

Lemma 5.14 implies |W ′′
s+1|a ≤ · · · ≤ |W ′′

t |a.

As any other sector has fixed tape word throughout C3, it follows that |Ws|a ≤ |Wt|a, contra-
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dicting our assumption.

Hence, we may assume that the step history of C does not contain the letters (12)2 or (21)2.

So, since the step history contains the letter (1)2 and a letter corresponding to a transition rule, it

must contain a letter of the form (s)±1
2 .

As θ(s)2 locks every sector of the standard base except for those of the form P0(i)Q0(i) for

i ≥ 2, B must be a cyclic permutation of

P0(2)P0(2)−1 . . . {t(1)}−1Q4(L)−1 . . . P1(L)−1Q0(L)−1Q0(L)P1(L) . . . Q4(L){t(1)} . . . P0(2)

As B contains the subword Q0(L)P1(L), Lemma 6.2(a) implies that the step history of C cannot

contain a subword of the form (s)j(1)j(s)
−1
j . So, the step history of C (or its inverse) must be

(1)2(s)−1
2 (s)1(1)1.

Let C1 : Ws → · · · → Wt be the maximal subcomputation of C with step history (1)1 and

C ′1 : W ′
s → · · · → W ′

t be its restriction to the subword P1(L)−1Q0(L)−1Q0(L)P1(L). Then,

Lemma 5.14 implies |W ′
s|a ≤ · · · ≤ |W ′

t |a.

Letting C ′′1 : W ′′
s → · · · → W ′′

t be the restriciton of C1 to a subword (P0(1)Q0(1)P1(1))±1,

Lemma 5.13 (or a projection argument) implies |W ′′
s |a ≤ · · · ≤ |W ′′

t |a.

As any other sector has fixed tape word throughout C1, |Ws|a ≤ |Wt|a. Thus, we reach a final

contradiction.
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Chapter 7

Groups Associated to an S-machine and their Diagrams

7.1 The groups

As in previous literature (for example [18], [22], [25]), we now associate two finitely presented

groups to a cyclic S-machine S. These groups are denotedM(S) andG(S) and ‘simulate’ the work

of S in the precise sense described in Chapter 7.3.

Let S be a cyclic recognizing S-machine with hardware (Y,Q), where Q = tsi=0Qi and Y =

ts+1
i=1Yi, and software the set of rules Θ = Θ+ t Θ−. For notational purposes, set Q0 = Qs+1 and

denote the accept word of S by Wac.

For θ ∈ Θ+, Lemma 4.1 allows us to assume that θ takes the form

θ = [q0 → vs+1q
′
0u1, q1 → v1q

′
1u2, . . . , qs−1 → vs−1q

′
s−1us, qs → vsq

′
sus+1]

where qi, q′i ∈ Qi, ui and vi are either empty or single letters in Y ±1
i , and some of the arrows may

take the form `−→. Note that if θ locks the i-th sector, then both ui and vi are necessarily empty.

Define R = {θi : θ ∈ Θ+, 0 ≤ i ≤ s}. For notational convenience, set θs+1 = θ0 for all

θ ∈ Θ+.

The group M(S) is then defined by taking the (finite) generating set X = Q ∪ Y ∪ R and

subjecting it to the (finite number of) relations:

• qiθi+1 = θiviq
′
iui+1 for all θ ∈ Θ+ and 0 ≤ i ≤ s,

• θia = aθi for all 0 ≤ i ≤ s and a ∈ Yi(θ).

As in the language of computations of S-machines, letters from Q±1 are called q-letters and

those from Y ±1 are called a-letters. Additionally, those fromR±1 are called θ-letters. The relations

of the form qiθi+1 = θiviq
′
iui+1 are called (θ, q)-relations, while those of the form θia = aθi are
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called (θ, a)-relations.

Note that the number of a-letters in any part of θ, and so in any defining relation of M(S), is at

most two.

To simplify these relations, it is convenient to omit reference to the indices of the letters of

R. This notational quirk may make it appear as though θ commutes with the letters of Yi(θ) and

conjugates qi to viq′iui+1 for each i; it should be noted that these statements are not strictly true.

Further, it is useful to note that if θ locks the i-th sector, then Yi(θ) = ∅ so that θ has no relation

with the elements of Yi.

However, this group evidently lacks any reference to the accept configuration. To amend this,

the group G(S) is constructed by adding one more relation to the presentation of M(S), namely

the hub-relation Wac = 1. In other words, G(S) ∼= M(S)/〈〈Wac〉〉.

Moreover, it is useful for the purposes of our construction to consider extra relations, called

a-relations, within the language of tape letters. If Ω is the set of relators defining these a-relations,

then we denote the groups arising from the addition of a-relations by MΩ(S) and GΩ(S). Note that

MΩ(S) ∼= M(S)/〈〈Ω〉〉 and GΩ(S) ∼= G(S)/〈〈Ω〉〉.

It is henceforth taken as an assumption that any a-relation adjoined to the groups associated to

the machine M correspond to words over the alphabet of the ‘special’ input sector.

For the purposes of Chapter 12 and the proof of Theorem A, the set of a-relators S is taken

to be exactly the words that represent the trivial element in B(A, n), where the tape alphabet of

the sector is identified with A. However, in the proof of Theorem C presented in Chapter 14, the

a-relators are taken to be a larger set of words. So, for the sake of generality, until Section 11, the

set of a-relators Ω is taken to be some set of words over A containing S as a subset.

Note that though they remain finitely generated, MΩ(S) and GΩ(S) may no longer be finitely

presented. In fact, in all situations encountered in what follows,MΩ(M) andGΩ(M) are not finitely

presented.
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7.2 Bands and annuli

Many of the arguments presented in the forthcoming chapters rely on van Kampen diagrams

(see Chapter 2) over the presentations of the groups introduced in Section 7.1. To present these

arguments efficiently, we first differentiate between the types of edges and cells that arise in such

diagrams in a way similar to that employed in [18] and [25].

For simplicity, we will often disregard the presence of 0-cells in these diagrams. For example,

we do not differentiate between adjacent edges, so that any edge not on the boundary of a diagram

is on the boundary of two R-cells (for R the defining relators of the corresponding group). Addi-

tionally, we will adopt the convention that the contour of any diagram, subdiagram, or cell is traced

in the counterclockwise direction.

An edge labelled by a q-letter is called a q-edge. Similarly, an edge labelled by an a-letter is

called an a-edge and one labelled by a θ-letter is a θ-edge.

For a path p in ∆, the (combinatorial) length of p is denoted ‖p‖. Further, the path’s a-length

|p|a is the number of a-edges in the path. The path’s θ-length and q-length, denoted |p|θ and |p|q,

respectively, are defined similarly.

A cell whose contour label corresponds to a (θ, q)-relation is called a (θ, q)-cell. Similarly,

there are (θ, a)-cells, a-cells, and hubs.

In the general setting of a reduced diagram ∆ over a presentation 〈X | R〉, let Z ⊆ X . For

m ≥ 1, a sequence of (distinct) cells B = (Π1, . . . ,Πm) in ∆ is called a Z-band of length m if:

• every two consecutive cells Πi and Πi+1 have a common boundary edge ei labeled by a letter

from Z±1 and

• for every i, ∂Πi has exactly two edges labelled by a letter from Z±1, e−1
i−1 and ei, and

Lab(ei−1) and Lab(ei) are either both positive or both negative.

For convenience, we extend this definition by saying that any edge labelled by a letter of Z±1

is a Z-band of length zero.
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(a) Non-annular Z-band of length m (b) Annular Z-band of length m

Figure 7.1:

A Z-band is maximal if it is not contained in any other Z-band. Note that every edge labelled

by a letter of Z±1 is contained in a maximal Z-band.

In a Z-band B of length m ≥ 1 made up of the cells (Π1, . . . ,Πm), using only edges from

the contours of Π1, . . . ,Πm, there exists a closed path e−1
0 q1emq−1

2 such that q1 and q2 are simple

(perhaps closed) paths. In this case, q1 is called the bottom of B, denoted bot(B), while q2 is

called the top of B and denoted top(B). When q1 and q2 need not be distinguished, they are called

the sides of the band.

If e0 = em in a Z-band B of length m ≥ 1, then B is called a Z-annulus. If B is a non-annular

Z-band of length m ≥ 1, then e−1
0 q1emq−1

2 is called the standard factorization of the contour of

B. If either (e−1
0 q1em)±1 or (emq−1

2 e−1
0 )±1 is a subpath of ∂∆, then B is called a rim Z-band.

A Z1-band and a Z2-band cross if they have a common cell and Z1 ∩ Z2 = ∅.

In particular, in a reduced diagram over the canonical presentations of the groups of interest,

there exist q-bands corresponding to bands arising from Z = Q±1
i for some i, where every cell is a

(θ, q)-cell. Similarly, there exist θ-bands for θ ∈ Θ+ and a-bands for a ∈ Y . However, it is useful

to restrict the definition of an a-band so that they consist only of (θ, a)-cells.

Note that by definition, distinct maximal q-bands (θ-bands, a-bands) cannot intersect.

Given an a-band B, the makeup of the groups’ relations dictates that the defining a-edges

e0, . . . , em are labelled identically. Similarly, the θ-edges of a θ-band correspond to the same rule;
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however, the (suppressed) index of two such θ-edges may differ.

If a maximal a-band contains a cell with an a-edge that is also on the contour of a (θ, q)-cell,

then the a-band is said to end (or start) on that (θ, q)-cell and the corresponding a-edge is said to

be the end (or start) of the band. This definition extends similarly, so that:

• a maximal a-band can end on a (θ, q)-cell, on an a-cell, or on the diagram’s contour,

• a maximal θ-band can end only on the diagram’s contour, and

• a maximal q-band can end on a hub or on the diagram’s contour.

Note that if a maximal θ-band (a-band, q-band) ends as above in one part of the diagram, then

it must also end in another part of the diagram as it cannot be a θ-annulus (a-annulus, q-annulus).

Figure 7.2: (θ, q)-annulus with defining θ-band T and q-band Q

The natural projection of the label of the top (or bottom) of a q-band onto F (Θ+) is called the

history of the band; the step history of the band is then defined in the obvious way. The natural

projection (without reduction) of the top (or bottom) of a θ-band onto the alphabet {Q0, . . . , Qs}

is called the base of the band.

Let T be a maximal θ-band in a reduced diagram ∆ over GΩ(M) with two ends on ∂∆. Sup-

pose that any cell between one side of T and ∂∆ is an a-cell. Then T is called a quasi-rim θ-band.

Note that a rim θ-band is a quasi-rim θ-band.
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Suppose the sequence of cells (π0, π1, . . . , πm) comprises a θ-band and (γ0, γ1, . . . , γ`) a q-

band such that π0 = γ0, πm = γ`, and no other cells are shared. Suppose further that ∂π0 and

∂πm both contain edges on the outer countour of the annulus bounded by the two bands. Then the

union of these two bands is called a (θ, q)-annulus and π0 and πm are called its corner cells. A

(θ, a)-annulus is defined similarly.

The following statement is proved in a more general setting in [17]:

Lemma 7.1. (Lemma 6.1 of [17]) A reduced diagram over M(S) contains no:

(1) (θ, q)-annuli

(2) (θ, a)-annuli

(3) a-annuli

(4) q-annuli

(5) θ-annuli

As a result, in a reduced diagram ∆ over M(S), if a maximal θ-band and a maximal q-band

(respectively a-band) cross, then their intersection is exactly one (θ, q)-cell (respectively (θ, a)-

cell). Further, every maximal θ-band and maximal q-band ends on ∂∆ in two places.

7.3 Trapezia

Let ∆ be a reduced diagram over the canonical presentation of M(S) whose contour is of the

form p−1
1 q1p2q−1

2 , where p1 and p2 are sides of q-bands and q1 and q2 are maximal parts of the

sides of θ-bands whose labels start and end with q-letters. Then ∆ is called a trapezium.

In this case, q1 and q2 are called the bottom and top of the trapezium, respectively, while p1

and p2 are the left and right sides. Further, p−1
1 q1p2q−1

2 is called the standard factorization of the

contour.
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Figure 7.3: Trapezium with side q-bands Q1 and Q2

The (step) history of the trapezium is the (step) history of the rim q-band with p2 as one of its

sides and the length of this history is the trapezium’s height. The base of Lab(q1) is called the base

of the trapezium.

It’s easy to see from this definition that a θ-band T whose first and last cells are (θ, q)-cells

can be viewed as a trapezium of height 1 as long as its top and bottom start and end with q-edges.

We extend this to all such θ-bands by merely disregarding any a-edges of the top and bottom that

precede the first q-edge or follow the final q-edge. The paths formed by disregarding these edges

are called the trimmed top and bottom of the band and are denoted ttop(T ) and tbot(T ).

Figure 7.4: θ-band T with trimmed top

Lemma 7.2. Let T be a θ-band in a reduced diagram ∆ over the canonical presentation of M(S)

whose first and last cells are (θ, q)-cells. Then Lab(tbot(T )) and Lab(ttop(T )) are admissible

words. Moreover, for θ the rule corresponding to the band T , Lab(tbot(T )) is θ-admissible and

Lab(tbot(T )) · θ ≡ Lab(ttop(T )).

Proof. Suppose θ ∈ Θ+.

Further, suppose T consists of one (θ, q)-cell π. Then top(T ) and bot(T ) contain just one

q-edge, which is a part of ∂π (or its inverse). So, ttop(T ) and tbot(T ) each consist of this one

q-edge. It follows from the definition of (θ, q)-relations that Lab(tbot(T )) · θ ≡ Lab(ttop(T )).

120



Now suppose T contains at least two (θ, q)-cells and let e1, e2 be the first two q-edges of bot(T )

with q1 = Lab(e1) and q2 = Lab(e2). So, Lab(tbot(T )) has prefix q1wq2 for some w ∈ F (Y ). For

j = 1, 2, let πj be the (θ, q)-cell of T so that ej is an edge of ∂πj .

For 0 ≤ i ≤ s, suppose q1 ∈ Qi. Then the i-th part of θ must be q1 → uiq
′
1vi+1 for some

q′1 ∈ Qi, ui ∈ F (Yi(θ)), and vi+1 ∈ F (Yi+1(θ)) with ‖ui‖, ‖vi+1‖ ≤ 1. So, we have Lab(∂π1) ≡

θ−1
i q1θi+1v

−1
i+1(q′1)−1u−1

i . If there exists any cell of T between π1 and π2, it must be a (θ, a)-cell

with an edge labelled by θi+1 on its contour. Hence, w ∈ F (Yi+1(θ)).

What’s more, the label of ∂π2 must have a subword θ−1
i+1q2. By the definition of the (θ, q)-

relations, this means one of two things:

(a) q2 ∈ Qi+1 and the (i + 1)-th part of θ is q2 → ui+1q
′
2vi+2 for some q′2 ∈ Qi+1, ui+1 ∈

F (Yi+1(θ)), and vi+2 ∈ F (Yi+2(θ)) with ‖ui+1‖, ‖vi+2‖ ≤ 1; or

(b) q2 = q−1
1

In case (a), the subword q1wq2 of Lab(tbot(T )) satisfies condition (1) in the requirements for

subwords of admissible words (see Section 4.1).

In case (b), it satisfies condition (2) as long as there is some (θ, a)-cell between them; but this

is required in the band, as otherwise π1 and π2 would be a pair of cancellable cells.

Let T1 = (π1, . . . , π2) be the corresponding subband of T . Then Lab(tbot(T1)) ≡ q1wq2.

The above arguments make it clear that q1wq2 is θ-admissible. Further, it is easy to see that

Lab(ttop(T1)) ≡ (q1wq2) · θ.

If q1 ∈ Q−1
i , then an analogous argument yields the same conclusion.

If tbot(T ) has more than two q-edges, then the argument above can be iterated to apply to the

whole band, implying the statement.

Conversely, if θ ∈ Θ−, then the analogous arguments apply to ttop(T ) to show that Lab(ttop(T ))

is θ−1-admissible with Lab(ttop(T )) · θ−1 ≡ Lab(tbot(T )).

But then Lab(tbot(T )) is θ-admissible with Lab(tbot(T )) · θ ≡ Lab(ttop(T )).
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Lemma 7.3. Let U → V be a computation of S with history H of length 1, so that H = θ ∈ Θ.

Then there exists a θ-band T corresponding to the rule θ whose first and last cells are (θ, q)-cells

such that Lab(tbot(T )) ≡ U and Lab(ttop(T )) ≡ V .

Proof. Suppose θ ∈ Θ+ and set U ≡ qε00 w1q
ε1
1 . . . w`q

ε`
` so that for each 0 ≤ i ≤ `, qi ∈ Qj(i) for

some 0 ≤ j(i) ≤ s and εi ∈ {±1}.

Then qi ∈ Q(θ) for each 0 ≤ i ≤ `, so that the j(i)-th part of θ takes the form qi → uj(i)q
′
ivj(i)+1

for some q′i ∈ Qj(i), uj(i) ∈ F (Yj(i)(θ)), and vj(i)+1 ∈ F (Yj(i)+1(θ)). So, there are relations of

M(S) of the form Ri = θ−1
j(i)qiθj(i)+1(uj(i)q

′
ivj(i)+1)−1 for all i.

If εi = 1, then each letter of wi+1 is an element of Yj(i)+1(θ) since U is θ-admissible, so that

there are (θ, a)-relations of the form θ−1
j(i)+1aθj(i)+1a

−1 for each letter a of wi+1. Gluing along the

edges labelled by θ±1
j(i)+1, one can construct a θ-band Ti+1 with contour label θ−1

j(i)+1wi+1θj(i)+1w
−1
i+1.

If εi = −1, then each letter of of wi+1 is in Yj(i)(θ) since U is θ-admissible. So, there are

relations of M(S) of the form θ−1
j(i)aθj(i)a

−1 for each letter a of wi+1. Then, gluing along the edges

labelled by θ±1
j(i), one can construct a θ-band Ti+1 with contour label θ−1

j(i)wi+1θj(i)w
−1
i+1.

Now, let πi be a cell with boundary labelled by Rεi
i . For either possibility of εi, one can glue

Ti and Ti+1 to the left and right of πi, respectively.

After 0-refinement (or gluing) to cancel any adjacent edges with mutually inverse labels, this

process produces a θ-band T corresponding to the rule θ with Lab(tbot(T )) ≡ U . By the makeup

of the band, it is easy to see that Lab(ttop(T )) ≡ V .

If θ ∈ Θ−, then the same construction forms a θ-band T corresponding to the rule θ−1 with

Lab(tbot(T )) ≡ V and Lab(ttop(T )) ≡ U . Taking the ‘inverse’ of this band (i.e inverting the

label of each cell) produces a θ-band corresponding to θ as in the statement.

By Lemma 7.1, any trapezium ∆ of height h ≥ 1 can be decomposed into θ-bands T1, . . . , Th

connecting the left and right sides of the trapezium, with bot(T1) and top(Th) making up the

bottom and top of ∆, respectively. Moreover, the first and last cells of each Ti are (θ, q)-cells and

ttop(Ti) = tbot(Ti+1) for all 1 ≤ i ≤ h− 1.
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The following two statements are clear from the previous two and exemplify how the group

M(S) simulates the work of the S-machine:

Lemma 7.4. Let ∆ be a trapezium with history H ≡ θ1 . . . θh for h ≥ 1 and maximal θ-bands

T1, . . . , Th enumerated from bottom to top. If Uj ≡ Lab(tbot(Tj)) and Vj ≡ Lab(ttop(Tj)) for all

j, then H is a reduced word, Uj and Vj are admissible words, and Vj ≡ Uj · θj for all j.

Lemma 7.5. For any reduced computation U → · · · → U · H ≡ V of the S-machine S with

‖H‖ ≥ 1, there exists a trapezium ∆ with trimmed bottom label U , trimmed top label V , and

history H .
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Chapter 8

Modified length and area functions

8.1 Modified length function

To assist with the proofs to come, we now modify the length function on words over the groups

associated to an S-machine and paths in diagrams over their presentations. This is done in the

same way as in [18] and [25]. The standard length of a word/path will henceforth be referred to as

its combinatorial length and the modified length simply as its length.

Define a word consisting of no q-letters, one θ-letter, and one a-letter as a (θ, a)-syllable. Then,

define the length of:

• any q-letter as 1

• any θ-letter as 1

• any a-letter as the parameter δ (as indicated in Chapter 4.3, this should be thought of as a

very small positive number)

• any (θ, a)-syllable as 1

For a word w over the generators of the canonical presentation of GΩ(S) (or any group as-

sociated to S), define a decomposition of w as a factorization of w into a product of letters and

(θ, a)-syllables. The length of a decomposition of w is then defined to be the sum of the lengths of

the factors.

Finally, the length of w, denoted |w|, is defined to be the minimum of the lengths of its decom-

positions.

The length of a path in a diagram over the presentations of the groups associated to S is defined

to be the length of its label.
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The following gives some basic properties of the length function. Its proof is a consequence of

Lemma 4.1.

Lemma 8.1. (Lemma 6.2 of [25]) Let s be a path in a diagram ∆ over the canonical presentation

of GΩ(S) (or any of the groups associated to S) consisting of c θ-edges and d a-edges. Then:

(a) |s| ≥ max(c, c+ (d− c)δ)

(b) |s| = c if s is the top or a bottom of a q-band

(c) For any product s = s1s2 of two paths in a diagram, |s1|+ |s2| − δ ≤ |s| ≤ |s1|+ |s2|.

(d) Let T be a θ-band with base of length lb. If top(T ) (or bot(T )) has la a-edges, then the

number of cells in T is between la − lb and la + 3lb.

8.2 Disks and weights

Next, we add extra relations to the groups G(S) and GΩ(S) that will aid with later estimates.

This is done in the same way as in [18] and [25] (though no group GΩ(S) was present in those

sources).

These relations, called disk relations, are of the form W = 1 for any configuration W accepted

by the machine S.

Lemma 8.2. If the configuration W is accepted by the machine S and Ys+1 = ∅, then the word W

is trivial over the groups G(S) and GΩ(S).

Proof. Let C be an accepting computation of W and H be its history. By Lemma 7.5, there exists

a trapezium ∆ corresponding to C with trimmed bottom label W and trimmed top label Wac.

As this is a computation of the standard base and every rule locks the QsQ0-sector, one can

further assume that no trimming was necessary in ∆, i.e the labels of the bottom and top of ∆ are

W and Wac, respectively. Finally, it follows that the sides of the trapezium are labelled identically;

specifically, they are labelled by the copy of H obtained by adding the index 0 to each letter.
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So, W and Wac are conjugate in M(S). Taking into account the hub relation in both G(S) and

GΩ(S) then implies the relation W = 1.

As a result of Lemma 8.2, the presentation obtained by adding the disk relations to the group

G(S) (respectively GΩ(S)) defines a group isomorphic to G(S) (respectively GΩ(S)). The presen-

tation containing disk relations will be referred to in what follows as the disk presentation of the

group G(S) (respectively GΩ(S)). A cell of a diagram over the disk presentation corresponding to

a disk relation (or its inverse) is referred to simply as a disk.

One should note the following when considering diagrams over a disk presentation rather than

diagrams over a canonical presentation:

• The disk presentation of G(S) or of GΩ(S) need not be finite. In particular, there may be

infinitely many disk relations in this presentation. In particular, the disk presentations of

G(M) and of GΩ(M) are not finitely presented.

• For a word w ∈ F (X ) that represents the trivial element of G(S), the minimal area of

diagrams over the disk presentation with contour label w can be drastically different than

that of diagrams over the canonical presentation of G(S).

• As in Section 7.2, we insist that an a-band in a diagram over the disk presentation of GΩ(S)

consist only of (θ, a)-cells. As a consequence, a maximal a-band may end on a disk in

addition to the other possibilities outlined in Section 7.2.

Similar to how we modified the length function in Section 8.1, we now alter the definition of

the area of a diagram over the disk presentations of G(S) and GΩ(S).

We do this first by introducing a weight function on the cells of such diagrams, wt, defined by:

• wt(Π) = 1 if Π is a (θ, q)-cell or a (θ, a)-cell

• wt(Π) = C1|∂Π|2 if Π is a disk

• wt(Π) = C1‖∂Π‖2 if Π is an a-cell
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Naturally, we extend this to define the weight of a reduced diagram ∆, wt(∆), as the sum of

the weights of its cells.

8.3 Mixtures

We now recall an invariant of reduced diagrams over the relevant presentations, first introduced

in [24], that will prove useful in future numerical estimates.

Let O be a circle containing a finite two-colored set of points, with the two colors taken to be

black and white. The circle O is called a necklace while the corresponding points are called white

beads and black beads.

Let Pj be the set of ordered pairs of distinct white beads, (o1, o2), such that the counterclock-

wise simple arc on O from o1 to o2 contains at least j black beads.

Define µJ(O) =
J∑
j=1

#Pj as the J-mixture of O, where J is the parameter specified in Section

4.3. The following statement then gives some basic properties of the J-mixture. The proof is

straightforward.

Lemma 8.3. (Lemma 6.1 of [24]) Let O be a necklace with x white beads and y black beads.

(a) µJ(O) ≤ J(x2 − x)

(b) If O′ is a necklace obtained from O through the removal of one white bead, then for every j,

#Pj − 2x < #P ′j ≤ #Pj , and so µJ(O)− 2Jx < µJ(O′) ≤ µJ(O)

(c) If O′ is a necklace obtained from O through the removal of one black bead, then for every j,

#P ′j ≤ #Pj , and so µJ(O′) ≤ µJ(O)

(d) Suppose v1, v2, v3 are three black beads on O such that the counterclockwise arc from v1 to

v3, v1 − v3, has at most J black beads (excluding v1 and v3). Let y1 and y2 be the number

of white beads on the counterclockwise arcs v1 − v2 and v2 − v3, respectively. If O′ is the

necklace obtained from O through the removal of v2, then µJ(O′) ≤ µJ(O)− y1y2.

127



Let ∆ be a reduced diagram over a group associated to an S-machine S. Let O be a circle

partitioned by subarcs labeled by the edges of ∂∆. At the midpoint of a subarc labeled by a θ-edge

(respectively a q-edge), place a white bead (respectively a black bead). Then, define the mixture

on ∆ µ(∆) as the J-mixture of the corresponding necklace, i.e µ(∆) = µJ(O).
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Chapter 9

Diagrams without disks

In this chapter, we study diagrams over MΩ(M), with the ultimate goal of bounding the ‘size’

of such a diagram in terms of its perimeter. To do this, we first define a special class of diagrams

for which this bound will hold.

9.1 M -minimal diagrams

A reduced diagram ∆ over the canonical presentation of MΩ(M) is called M -minimal if:

(MM1) for any a-cell π and any θ-band T , at most half of the edges of ∂π mark the start of an a-band

that crosses T , and

(MM2) no maximal a-band ends on two different a-cells.

It follows immediately from this definition that a subdiagram of an M -minimal diagram is

M -minimal.

9.2 Annuli

Our first step is to rule out the possible existence of certain types of subdiagrams in an M -

minimal diagram.

Lemma 9.1. A reduced diagram ∆ over GΩ(M) contains no:

(1) (θ, q)-annuli

(2) (θ, a)-annuli

(3) a-annuli

(4) q-annuli
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Proof. (1) Suppose ∆ contains a (θ, q)-annulus S. Let ∆S be the subdiagram bounded by the outer

component of the contour of S and Q be the defining q-band (see Figure 9.1(a)).

By the definition of the annulus, the history H of Q must be of the form θwθ−1 for some rule

θ ∈ Θ and some word w ∈ F (Θ+). Since H must be reduced, w cannot be trivial, and so Q must

contain a (θ, q)-cell π with neither q-edge on ∂∆S .

Note that each cell of Q has a θ-edge on its boundary that is shared with ∂∆S . Indeed, all

θ-edges of ∂∆S arise in this way.

(a) ∆S for S a (θ, q)-annulus (b) ∆S for S an a-annulus

Figure 9.1:

Let T be the maximal θ-band in ∆S containing π, so that T starts at the θ-edge of ∂π shared

with ∂∆S . Then T must also end on a θ-edge of ∂∆S , and so defines a (θ, q)-annulus S ′ with some

subband of Q. Note that the history of the q-band defining S ′ is a proper subword of w.

Iterating, there exists a θ-band that starts and ends on the boundary of adjacent cells of Q. But

then these two cells are cancellable, contradicting the assumption that ∆ is reduced.

(2) is proved by an identical argument to (1).

(3) Suppose ∆ contains an a-annulus S and let ∆S be the subdiagram bounded by the outer

component of the contour of S (see Figure 9.1(b)).

Recall that each cell comprising S is a (θ, a)-cell. By the definition of (θ, a)-relations, each of

these cells must have two θ-edges on its boundary, one of which is shared with ∂∆S . The maximal
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θ-band T starting at such an edge must also end on ∂∆S , i.e at a θ-edge on the boundary of another

cell of S.

But then T and a subband of S form a (θ, a)-annulus, contradicting (2).

(4) As each cell comprising a q-annulus must be a (θ, q)-cell, an identical argument to (3)

produces a (θ, q)-annulus which contradicts (1).

Figure 9.2: a-band ending twice on an a-cell

Lemma 9.2. For any a-cell π in a reduced diagram ∆ over GΩ(M), no a-band can have two ends

on π.

Proof. Suppose B is an a-band ending twice on π. As Lab(∂π) is a reduced word, B must have

nonzero length.

Consider the subdiagram ∆0 of ∆ bounded by a side of B and the subpath of ∂π whose initial

and terminal edges correspond to the two ends of B (see Figure 9.2).

Since each cell of B is a (θ, a)-cell, the portion of ∂∆0 coinciding with a side of B is comprised

entirely of θ-edges. Moreover, as ∂π is comprised entirely of a-edges, any θ-edge of ∂∆0 must lie

on this side of B.

So, a maximal θ-band T of ∆0 starting on the side of B must also end on this side. But then T

and a subband of B form a (θ, a)-annulus in ∆, contradicting Lemma 9.1(2).

Lemma 9.3. Let ∆ be a reduced diagram over MΩ(M).
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(1) Suppose ∆ contains a θ-annulus S and let ∆S be the subdiagram of ∆ bounded by the outer

component of the contour of S. Then ∆S contains no (θ, q)-cells and Lab(∂∆S) is a word

over the tape alphabet of the ‘special’ input sector.

(2) If ∆ is M -minimal, then it contains no θ-annuli.

Proof. (1) Suppose ∆S contains a (θ, q)-cell and letQ be the maximal q-band containing this cell.

Lemma 9.1(4) then implies that Q must have two ends on ∂∆S . But then Q and a subband of S

define a (θ, q)-annulus in ∆, contradicting Lemma 9.1(1). Hence, every cell of S is a (θ, a)-cell,

so that ∂∆S consists entirely of a-edges.

Similarly, if a maximal a-band B of ∆S has both ends on ∂∆S , then B and a subband of S

define a (θ, a)-annulus in ∆, contradicting Lemma 9.1(2). So, every edge of ∂∆S is an a-edge

marking the start of a maximal a-band in ∆S which must end on an a-cell.

Thus, as the boundary of an a-cell is labelled by tape letters from the ‘special’ input sector and

the a-edges of an a-band are labelled identically, the proof is complete.

(2) Suppose ∆ contains a θ-annulus. As θ-bands cannot cross, the θ-annuli of ∆ are partially

ordered by the relation:

S ′ ≤ S if S ′ is contained in ∆S

where S and S ′ are θ-annuli in ∆ and ∆S is the subdiagram of ∆ bounded by the outer contour of

S. Since ∆ is finite, it is clear that there exists a minimal θ-annulus T with respect to this partial

order.

Let ∆T be the subdiagram of ∆ bounded by the outer contour of T . If ∆T \T is empty, then T

must contain a pair of cancellable cells, contradicting the assumption that ∆ is reduced.

Suppose ∆T \ T contains a (θ, a)-cell π. Then, letting T ′ be the maximal θ-band of ∆T con-

taining π, T ′ cannot cross T and so must be a θ-annulus. But then T ′ < T , contradicting the

minimality of T .

Hence, by (1), any cell π of ∆T \ T must be an a-cell. Then, (MM2) and Lemma 9.2 imply

that every maximal a-band starting at an edge of ∂π must either end on a cell of T or cross T . But
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since (1) implies that T consists entirely of (θ, a)-cells, π and T form a counterexample to (MM1),

contradicting the assumption that ∆ is M -minimal.

9.3 Transpositions of a θ-band with an a-cell

Let ∆ be a reduced diagram over GΩ(M) containing an a-cell π and a θ-band T subsequently

crossing some of the a-bands starting at π. As the cells shared by these bands and T are (θ, a)-

cells, the domain of the rule θ corresponding to T must be nonempty in the ‘special’ input sector.

So, by the definition of the rules of M, the domain of θ in this sector is the entire alphabet.

Suppose there are no other cells between π and the bottom of T , i.e there is a subdiagram

formed by π and T .

Let s1 be the maximal subpath of ∂π so that each edge is on the boundary of a (θ, a)-cell of T .

Further, let s2 be the complement of s1 in ∂π so that ∂π = s1s2 and let T ′ be the subband of T

satisfying bot(T ′) = s1.

(a) The subdiagram Γ (b) The resulting subdiagram Γ′

Figure 9.3: The transposition of a θ-band with an a-cell, γ a (θ, q)-cell

Let V1 ≡ Lab(s1) and V2 ≡ Lab(s2). Finally, let Γ be the subdiagram formed by π and T ′.

Then, we can construct the θ-band S corresponding to θ consisting only of (θ, a)-cells and with

top label V2. Let Γ′ be the subdiagram obtained by gluing a copy of π to top(S) in the clear way.

As Lab(top(T ′)) ≡ V −1
1 , Lab(∂Γ) ≡ Lab(∂Γ′). So, we may replace the Γ with Γ′, attaching

the first and last cells of S to the complement of T ′ in T and making any necessary cancellations
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in the resulting band.

This process is called the transposition of the θ-band with the a-cell.

Note that the diagram ∆̃ resulting from the transposition has the same contour label as ∆.

Further, if a maximal a-band of ∆ has one end on the a-cell π, then the other end is not changed

by the transposition.

Hence, if ∆ is M -minimal, then ∆̃ satisfies (MM2). However, ∆̃ may not be M -minimal,

as the transposed θ-band may cross the maximal a-bands emanating from more than half of the

a-edges on the boundary of the transposed a-cell.

Further, since the number of (θ, a)-cells is altered by the transposition, the weight of the dia-

grams ∆ and ∆̃ may differ considerably.

Despite these disadvantages, this process will prove valuable in forthcoming arguments.

9.4 a-trapezia

We now generalize the concept of trapezium defined in Section 7.3 to the setting ofM -minimal

diagrams, allowing the existence of a-cells within the diagram.

To be specific, an a-trapezium ∆ is anM -minimal diagram with contour of the form p−1
1 q1p2q−1

2 ,

where each pi is the side of a q-band and each qi is the maximal subpath of the side of a θ-band

that starts and ends with q-edges. As with trapezia, the factorization p−1
1 q1p2q−1

2 of the boundary

is called the standard factorization of ∂∆.

The history, step history, height, and base of an a-trapezium are defined in the same way they

are defined for a trapezium.

Note that the history of an a-trapezium must be reduced. Further, by Lemma 7.2, the base of

an a-trapezium must be the base of an admissible word. So, in an a-trapezium ∆, the subdiagram

Γ bounded by two consecutive q-bands is an a-trapezium with base UV corresponding to these

q-bands’ makeups. In this case, Γ is called a UV -sector in ∆. As with admissible words, an

a-trapezium may contain sectors of the same name.
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Lemma 9.4. Suppose ∆ is an a-trapezium containing an a-cell π. Then π is contained in a

(P0(1)Q0(1))±1-, P0(1)P0(1)−1-, or Q0(1)−1Q0(1)-sector. Moreover, the step history of ∆ must

contain the letter (1)1.

Proof. Let ∆′ be the sector of ∆ containing π. Enumerate the maximal θ-bands of ∆′ as T ′1 , . . . , T ′h .

Then, there exists j ∈ {1, . . . , h− 1} such that π sits between T ′j and T ′j+1.

By (MM2) and Lemma 9.2, each edge of ∂π marks the start of a maximal a-band that must end

on ∂∆ or on a (θ, q)-cell of one of the q-bands bounding ∆′. So, such a band must cross T ′j , cross

T ′j+1, or end on a (θ, q)-cell in one of these bands.

Suppose an a-band ends on a (θ, q)-cell of T ′j . Then by Lemma 7.2, the rule corresponding

to T ′j must be of step history (1)1 and the tape alphabet corresponding to ∆′ must be the same

as that of the ‘special’ input sector. So, the base of ∆′ must be of the form (P0(1)Q0(1))±1 or

Q0(1)−1Q0(1).

If an a-band ends on a (θ, q)-cell of T ′j+1, then the same conclusion may be reached.

So, we may assume that all maximal a-bands with one end on π must cross either T ′j or T ′j+1.

Taking n ≥ 3, property (MM1) implies that there must exist such a-bands crossing each of these

θ-bands.

Lemma 7.2 then implies that the base of ∆′ is of one of the forms in the statement. Moreover,

the rules corresponding to T ′j and T ′j+1 cannot lock the ‘special’ input sector, so that the step

history corresponding to each rule is either of the form (s)±1
1 or (1)1. As the rules cannot be

mutually inverse, at least one contributes to an occurrence of (1)1 in the step history of ∆′.

As a result of Lemmas 9.4, 7.2, and 4.2, if ∆ is an a-trapezium with base B containing at least

one a-cell, then every unreduced two-letter subword of B must be of the form:

(a) P0(i)P0(i)−1 or Q0(i)−1Q0(i), or

(b) Q0(i)Q0(i)−1 or P1(i)−1P1(i).

Note the following immediate consequences of Lemmas 7.2 and 4.2:
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(i) if B contains a subword of form (a), then H cannot contain θ(12)±1
j for j = 1, 2

(ii) if B contains a subword of form (b), then H cannot contain θ(s)±1
1 or a copy of the connect-

ing rule of M4(3−)

An a-trapezium is called standard if its base is pararevolving and its history contains a con-

trolled subword. Note that the subdiagram of a standard a-trapezium bounded by the θ-bands

corresponding to the controlled subword of the history is a trapezium.

Further, an a-trapezium is called big if its base is revolving, it contains a-cells, and it contains

a subdiagram that is a standard trapezium. Note that the base of a big a-trapezium is necessarily

reduced.

An a-trapezium is called exceptional if it contains a-cells and its base B is a cyclic shift of

either:

• Q0(1)Q0(1)−1Q0(1), or

• P0(1)Q0(1)Q0(1)−1P0(1)−1{t(1)}−1Q4(L)−1 . . . P1(L)−1P1(L) . . . Q4(L){t(1)}P0(1)

where gaps correspond to strings of letters that follow the order of the standard base (or its

inverse).

Note that the base of an exceptional a-trapezium is hyperfaulty.

A partition of an a-trapezium ∆ is a (finite) collection of subdiagrams {∆i}mi=1 such that each

∆i consists of a number of sectors of ∆, ∆i ∩∆j is either empty or a q-band for i 6= j, and each

sector is a subdiagram of some ∆i. Note that ‖tbot(∆)‖ =
∑

i ‖tbot(∆i)‖ − m and, similarly,

‖ttop(∆)‖ =
∑

i ‖ttop(∆i)‖ − m. Moreover, as tbot(∆) and ttop(∆) each have at least m q-

edges,
∑

i ‖tbot(∆i)‖ ≤ 2‖tbot(∆)‖ and
∑

i ‖ttop(∆i)‖ ≤ 2‖ttop(∆)‖.

Clearly, given a partition {∆i} of an a-trapezium ∆, wt(∆) ≤
∑

i wt(∆i).

Let ∆ be an a-trapezium with revolving base B and let B′ be a cyclic permutation of B. Then,

there exists an a-trapezium ∆′ with revolving base B′ such that wt(∆′) = wt(∆). This diagram is

constructed by cutting along a maximal q-bandQ of ∆, pasting together the left and right q-bands
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of ∆, and pasting a copy of Q onto the side of the diagram. As with reduced computations, ∆′ is

called a cyclic permutation of ∆.

Note that by Lemma 8.1(d), for any maximal θ-band T in an a-trapezium ∆, the length of T

is at most |tbot(T )|q + 3|tbot(T )|a ≤ 3‖tbot(T )‖.

Lemma 9.5. Let ∆ be a trapezium with history H and revolving base B. Then for h = ‖H‖,

wt(∆) ≤ 3c4hmax(‖tbot(∆)‖, ‖ttop(∆)‖)

Proof. Enumerate the maximal θ-bands of ∆ as T1, . . . , Th. Then, letting `i be the length of Ti,

the definition of weight implies wt(∆) =
∑

i `i ≤
∑

i 3‖tbot(Ti)‖.

By Lemmas 7.5 and 6.26, ‖tbot(Ti)‖ ≤ c4 max(‖tbot(∆)‖, ‖ttop(∆)‖) for all i.

Hence, the statement follows.

Lemma 9.6. Let ∆ be an a-trapezium with history H and hyperfaulty base B. Then either ∆ is

exceptional or for h = ‖H‖,

wt(∆) ≤ 3c0hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

Proof. We proceed by cases:

1. Suppose ∆ contains no a-cells.

Then ∆ is a trapezium, so that Lemma 7.4 yields a corresponding reduced computation with

a hyperfaulty base. For any maximal θ-band T of ∆, Lemma 6.25 then implies |tbot(T )|a ≤

c0 max(|ttop(∆)|a, |tbot(∆)|a). Hence,

wt(∆) ≤ 3c0hmax(‖tbot(∆)‖, ‖ttop(∆)‖)

So, it suffices to assume that ∆ contains at least one a-cell.

2. Suppose B contains a subword B′ ≡ P0(1)P0(1)−1.
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The definition of hyperfaulty and Lemma 9.4 then imply that theB′-sector ∆′ is the only sector

containing a-cells.

By (i), the step history of ∆ cannot contain (12)±1 . Further, Lemmas 7.2 and 4.2 imply that

the step history cannot contain the letter (s)±1
2 . Hence, the step history must be a subword of

(s)1(1)1(s)−1
1 .

Let ∆′′ be any sector of ∆ other than ∆′ and T ′′ be a maximal θ-band in ∆′′. Lemma 7.4 yields

a reduced computation C ′′ corresponding to ∆′′ with the same history as ∆. The maximal computa-

tion of C ′′ with step history (1)1 has fixed tape word, satisfies the hypotheses of Lemma 4.3 or sat-

isfies the hypotheses of Lemma 4.4. In each case, ‖tbot(T ′′)‖ ≤ max(‖tbot(∆′′)‖, ‖ttop(∆′′)‖),

so that wt(∆′′) ≤ 3hmax(‖tbot(∆′′)‖, ‖ttop(∆′′)‖).

By Lemma 9.2 and (MM2), every maximal a-band starting on the boundary of an a-cell must

have another end on tbot(∆′) or ttop(∆′). So, the sum of the combinatorial perimeters of all

a-cells in ∆′ is at most |tbot(∆′)|a + |ttop(∆′)|a ≤ |tbot(∆)|a + |ttop(∆)|a.

Further, for T ′ a maximal θ-band in ∆′, every a-edge of bot(T ′) must be part of a maximal

a-band which has at least one end on tbot(∆′) or ttop(∆′). So, ‖tbot(T ′)‖ ≤ ‖tbot(∆′)‖ +

‖ttop(∆′)‖.

Combining these gives wt(∆′) ≤ 3h(‖tbot(∆′)‖+‖ttop(∆′)‖)+C1(|tbot(∆)|a+|ttop(∆)|a)2.

The set of sectors {∆i} then form a partition of ∆, so that

wt(∆) ≤ 3h
∑

(‖tbot(∆i)‖+ ‖ttop(∆i)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ 6h(‖tbot(∆)‖+ ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ 12hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

The statement is then satisfied by the parameter choice c0 ≥ 4.

3. Suppose B contains a subword B′ ≡ Q0(1)−1Q0(1).

Again, the B′-sector ∆′ must be the only sector containing a-cells and the step history of ∆

must be a subword of (s)1(1)1(s)−1
1 .
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As ∆ is not exceptional, B must be a cyclic permutation of

P1(1)−1Q0(1)−1Q0(1)P1(1) . . . Q4(1){t(2)}P0(2)P0(2)−1{t(2)}−1Q4(1)−1 . . . P1(1)−1

As in Step 2, we then have that wt(∆′′) ≤ 3hmax(‖tbot(∆′′)‖, ‖ttop(∆′′)‖) for any sector ∆′′

other than ∆′.

However, a maximal a-band in ∆′ need not have one end on tbot(∆′) or ttop(∆′), as it may

end on a (θ, q)-cell of one of the bounding q-bands. Note that the rule corresponding to such a

(θ, q)-cell must be of step history (1)1. Let H1 be the maximal subword of H comprising all letters

with step history (1)1 and h1 = ‖H1‖.

Then, Lemma 9.2 and (MM2) imply that the sum of the combinatorial perimeters of all a-

cells in ∆′ is at most |tbot(∆′)|a + |ttop(∆′)|a + 2h1. Further, for T ′ a maximal θ-band in ∆′,

‖tbot(T ′)‖ ≤ ‖tbot(∆′)‖+ ‖ttop(∆′)‖+ 2h1.

Let ∆′′1 be the Q0(1)P1(1)-sector of ∆. By Lemma 7.4, there exists a reduced computation

C ′′1 corresponding to ∆′′1. The maximal subcomputation of C ′′1 with step history (1)1 satisfies the

hypotheses of Lemma 4.3, so that h1 ≤ |tbot(∆′′1)|a + |ttop(∆′′1)|a.

Similarly, letting ∆′′2 be the P1(1)−1Q0(1)−1-sector of ∆, h1 ≤ |tbot(∆′′2)|a + |ttop(∆′′2)|a

So, the sum of the combinatorial perimeters of the a-cells in ∆′ is at most

|tbot(∆′)|a + |ttop(∆′)|a +
∑
|tbot(∆′′i )|a + |ttop(∆′′i )|a ≤ |tbot(∆)|a + |ttop(∆)|a

This implies that wt(∆′) ≤ 3h(
∑
‖tbot(T ′)‖) +C1(|tbot(∆)|a + |ttop(∆)|a)2, where this sum is

taken over all maximal θ-bands T ′ in ∆′.

Meanwhile, for T ′ a maximal θ-band in ∆′,

‖tbot(T ′)‖ ≤ ‖tbot(∆′)‖+ ‖ttop(∆′)‖+
2∑
i=1

‖tbot(∆′′i )‖+ ‖ttop(∆′′i )‖
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So, taking the set of sectors {∆i} as a partition of ∆, we have

wt(∆) ≤ 6h
∑

(‖tbot(∆i)‖+ ‖ttop(∆i)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ 12h(‖tbot(∆)‖+ ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ 24hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

so that the statement follows for c0 ≥ 8.

4. By Steps 2 and 3, B must contain a subword of the form (P0(1)Q0(1))±1. So, B must be a

cyclic permutation of

P0(1)Q0(1)Q0(1)−1P0(1)−1{t(1)}−1Qs(L)−1 . . . P1(L)−1P1(L) . . . Qs(L){t(1)}P0(1)

But we may assume that ∆ contains an a-cell by Step 1, so that ∆ is exceptional.

Lemma 9.7. Let ∆ be an a-trapezium with history H and revolving base B. If ∆ is neither big

nor exceptional, then for h = ‖H‖,

wt(∆) ≤ 3C1hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + C2(‖tbot(∆)‖+ ‖ttop(∆)‖)2

Proof. By Lemma 9.6, we may assume that B is not hyperfaulty. As a result, B must contain a

reduced pararevolving subword.

Further, Lemma 9.5 allows us to assume that ∆ contains an a-cell.

1. Suppose B contains a reduced pararevolving subword B′ such that B′ has a subword of the

form (P0(i)Q0(i))±1 for some i ≥ 2.

Let ∆′ be the maximal subdiagram of ∆ which is an a-trapezium with base B′. By Lemma 9.4,

∆′ is a trapezium.

Then, Lemma 7.4 yields a reduced computation C ′ : V ′0 → · · · → V ′h with base B′ correspond-

ing to ∆′. By the parallel nature of the rules, we may assume that the base of this computation is
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{t(i)}B3(i){t(i+ 1)}.

If h > c3 max(‖V ′0‖, ‖V ′h‖), then we may apply Lemma 6.19 to C ′, so that its history must

contain a controlled subword. But then Lemma 6.7 implies that ∆ is a big a-trapezium.

So, h ≤ c3 max(‖V ′0‖, ‖V ′h‖) ≤ c3 max(‖tbot(∆)‖, ‖ttop(∆)‖).

Let T be a maximal θ-band in ∆. By Lemma 9.2 and (MM2), any a-edge of tbot(T ) is part

of a maximal a-band which must have at least one end on tbot(∆), on ttop(∆), or on a maximal

q-band of ∆.

By the definition of revolving, there are at most 22L+ 1 maximal q-bands in ∆, each of which

consists of h (θ, q)-cells. Further, each such (θ, q)-cell has at most two a-edges on its contour. So,

|tbot(T )|a ≤ |tbot(∆)|a + |ttop(∆)|a + (44L+ 2)h.

As C1 is chosen after L and c3, this implies ‖tbot(T )‖ ≤ C1 max(‖tbot(∆)‖, ‖ttop(∆)‖).

Similarly, any maximal a-band of ∆ with one end on an a-cell has its other end on tbot(∆), on

ttop(∆), or on a maximal q-band corresponding to a letter Q0(1)±1. As there are at most two such

q-bands bounding a ‘special’ input sector, the sum of the combinatorial perimeters of a-cells must

be at most |tbot(∆)|a + |ttop(∆)|a + 2h ≤ (2c3 + 1)(‖tbot(∆)‖+ ‖ttop(∆)‖).

Hence, wt(∆) ≤ 3C1hmax(‖tbot(∆)‖, ‖ttop(∆)‖)+C1(2c3 +1)2(‖tbot(∆)‖+‖ttop(∆)‖)2.

The parameter choices C2 >> C1 >> c3 then imply the statement.

Thus, we may assume that B is faulty but not hyperfaulty and that every reduced pararevolving

subword of B contains a subword of the form (P0(1)Q0(1))±1. As a result, B has exactly two

sectors corresponding to the ‘special’ input sector, each of which is of this form.

As ∆ must contain a-cells, Lemma 9.4 implies that its step history must contain the letter (1)1.

2. Suppose the step history of ∆ is (1)1.

For any sector ∆′′ not containing a-cells, the corresponding computation must have fixed tape

word, satisfy the hypotheses of Lemma 4.3, or satisfy the hypotheses of Lemma 4.4. So, for

any maximal θ-band T ′′ of ∆′′, ‖tbot(T ′′)‖ ≤ max(‖tbot(∆′′)‖, ‖ttop(∆′′)‖). Consequently,

wt(∆′′) ≤ 3hmax(‖tbot(∆′′)‖, ‖ttop(∆′′)‖).

Let ∆′ be a sector containing a-cells and T ′ be a maximal θ-band of ∆′.
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Then any a-edge of tbot(T ′) is part of a maximal a-band which must end on tbot(∆′), on

ttop(∆′), or on the maximal q-band corresponding toQ0(1)±1. This then implies that |tbot(T ′)|a ≤

|tbot(∆′)|a + |ttop(∆′)|a + h. Similarly, the sum of the combinatorial perimeters of the a-cells in

∆′ is at most |tbot(∆′)|a + |ttop(∆′)|a + h.

So, wt(∆′) ≤ 6hmax(‖tbot(∆′)‖, ‖ttop(∆′)‖) + 3h2 + C1(|tbot(∆′)|a + |ttop(∆′)|a + h)2.

As B must contain a reduced pararevolving subword, it must have a subword B′′0 of the form

(Q0(i)P1(i))±1. Let ∆′′0 be the B′′0 -sector of ∆. Then the corresponding computaton satisfies the

hypotheses of Lemma 4.3, so that h ≤ |tbot(∆′′0)|a + |ttop(∆′′0)|a.

Thus, letting {∆i} be the partition of ∆ given by its sectors, we have

wt(∆) ≤ 6h
∑

(‖tbot(∆i)‖+ ‖ttop(∆i)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ 12h(‖tbot(∆)‖+ ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ 24hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

3. Suppose the step history of ∆ contains a letter (12)j .

By (i), any unreduced two-letter subword of B must be of form (b).

Suppose B contains a subword of the form (Q0(1)P1(1))±1. Then, by the definition of faulty,

it must contain a reduced pararevolving subword of the form (Q0(1) . . . Q0(2))±1. But then B

satisfies the hypothesis of Step 1, so that the statement follows.

SupposeB contains a subword of the form (Q0(L)P1(L))±1. Then by the definition of faulty, it

must also contain a sector of the form (P0(L)Q0(L))±1, so that it contains a reduced pararevolving

subword of the form (P0(L) . . . P0(1))±1. Again, B then satisfies the hypothesis of Step 1.

But assuming these to be false, since B must contain a subword of the form (P0(1)Q0(1))±1,

B must be hyperfaulty and ∆ exceptional.

So, the step history of ∆ contains no letter of the form (12)j or, by symmetry, (21)j .

4. By Steps 2 and 3, we assume that the step history of ∆ contains a letter of the form (s)±1
j .

By (ii), every unreduced two-letter subword must be of form (a).
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So, B must be a cyclic permutation of

P0(2)P0(2)−1 . . . P1(L)−1Q0(L)−1Q0(L)P1(L) . . . P0(2)

where gaps correspond to strings of letters following the order of the standard base or its inverse

written on a circle.

As B contains a subword of the form (Q0(1)P1(1))±1, then applying Lemma 6.2(a) to the

corresponding reduced computation with such a base allows us to assume that the step history is a

subword of (1)1(s)−1
1 (s)2(1)2.

Let ∆′′ be the maximal subtrapezium of ∆ with base P1(L)−1Q0(L)−1Q0(L)P1(L). Further,

let W ′′
0 → · · · → W ′′

h be the corresponding reduced computation and W ′′
0 → · · · → W ′′

r be

the maximal subcomputation with step history (1)1. Then, Lemma 5.14 applies to the maximal

subcomputations with step history (1)j , so that |W ′′
r |a ≤ · · · ≤ |W ′′

0 |a and |W ′′
r |a ≤ · · · ≤ |W ′′

h |a.

So, for any maximal θ-band T ′′ of ∆′′, ‖tbot(T ′′)‖ ≤ max(‖tbot(∆′′)‖, ‖ttop(∆′′)‖), yielding

wt(∆′′) ≤ 3hmax(‖tbot(∆′′)‖, ‖ttop(∆′′)‖).

Let ∆′′′ be a sector of ∆ with base of the form (Q0(1)P1(1))±1. Then as above, Lemma 4.3

implies wt(∆′′′) ≤ 3hmax(‖tbot(∆′′′)‖, ‖ttop(∆′′′)‖) and r = |tbot(∆′′′)|a.

Let ∆′ be a sector of ∆ with base of the form (P0(1)Q0(1))±1. Then for any maximal θ-band

T ′, an a-edge of tbot(T ′) is part of a maximal a-band with one end on tbot(∆′), on ttop(∆′),

or on a (θ, q)-cell corresponding to the base letter Q0(1)±1 and a rule of step history (1)1. So,

‖tbot(T ′)‖ ≤ ‖tbot(∆′)‖ + ‖ttop(∆′)‖ + r. Similarly, the sum of the combinatorial perimeters

of the a-cells of ∆′ is at most |tbot(∆′)|a + |ttop(∆′)|a + r. Hence,

wt(∆′) ≤ 3h(‖tbot(∆′)‖+ ‖ttop(∆′)‖+ r) + C1(|tbot(∆′)|a + |ttop(∆′)|a + r)2

For ∆′0 any other sector of ∆ not already accounted for, its tape word is fixed, so that wt(∆′0) ≤

3hmax(‖tbot(∆′0)‖, ‖ttop(∆′0)‖).
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Let {∆i} be the partition of ∆ given by the subdiagrams detailed above. Then,

wt(∆) ≤ 6h
∑

(‖tbot(∆i)‖+ ‖ttop(∆i)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ 12h(‖tbot(∆)‖+ ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ 24hmax(‖tbot(∆)‖+ ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2

Thus, the statement follows from the parameter choices C2 >> C1 ≥ 8.

9.5 Combs and Subcombs

Let Γ be anM -minimal diagram containing a maximal q-bandQ such that bot(Q) is a subpath

of ∂∆ and every maximal θ-band of ∆ ends at an edge of bot(Q). Then Γ is called a comb and Q

its handle.

The number of cells in the handle of Q is the comb’s height and the maximal length of the

bases of the θ-bands its basic width.

Note that every a-trapezium (or trapezium) may be viewed as a comb with either maximal side

q-band its handle.

Figure 9.4: Comb with handle Q containing a-cells π and γ

Lemma 9.8. Let Γ be a comb with height h, basic width b, and |∂Γ|a = α. Let T1, . . . , Th be the

consecutive maximal θ-bands of Γ enumerated from bottom to top. Factor ∂Γ = yxz, where z is

the bottom of the handle of Γ and x is the maximal subpath below T1. Then:
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(1) wt(Γ) ≤ c0bh
2 + 2αh+ C1(bh+ α)2

(2) |bot(T1)|a ≤ |y|a + 4bh

Proof. (1) Let ni be the length of Ti.

By Lemma 9.2 and (MM2), every a-band starting on an a-cell must either end on a (θ, q)-cell

or on ∂Γ. Since every (θ, q)-relation contains at most one a-letter from the ‘special’ input sector,

the sum of the combinatorial perimeters of all a-cells in Γ is at most bh+ α.

So, wt(Γ) ≤ C1(bh+ α)2 +
h∑
i=1

ni.

Let αi (respectively α′i) be the number of (unoriented) a-edges of bot(Ti) (respectively top(Ti))

that are shared with ∂Γ. Similarly, let βi (respectively β′i) be the number of a-edges of bot(Ti)

(respectively top(Ti)) that are on the boundary of an a-cell. Note that
∑h

i=1(αi + α′i) ≤ α and∑h
i=1(βi + β′i) ≤ bh+ α.

By the definition of a comb, any cell of Γ below T1 must be an a-cell. So, any a-edge of bot(T1)

that is not shared with ∂Γ is on the boundary of an a-cell below T1. Hence, |bot(T1)|a = α1 + β1.

Similarly, |top(Th)|a = α′h + β′h.

Lemma 8.1(d) implies α1 +β1− b ≤ n1 ≤ α1 +β1 + 3b and α′h+β′h− b ≤ nh ≤ α′h+β′h+ 3b.

Suppose an a-edge of top(Ti) is not shared with bot(Ti+1). Then either this edge is counted in

α′i or is on the boundary of an a-cell between Ti and Ti+1, so that it is counted in β′i. Similarly, an

a-edge of bot(Ti+1) not shared with top(Ti) is either counted in αi+1 or in βi+1.

So, the difference in the number of a-edges of top(Ti) and bot(Ti+1) is at most α′i+αi+1 +β′i+

βi+1. Lemma 8.1(d) then implies that |ni+1− ni| ≤ 4b+α′i +αi+1 + β′i + βi+1 for 1 ≤ i ≤ h− 1.

Hence, for all 1 ≤ i ≤ h, we have:

ni ≤ 3b+ 4b(i− 1) + α1 + α′1 + · · ·+ αi−1 + α′i−1 + αi + β1 + β′1 + · · ·+ βi−1 + β′i−1 + βi

≤ 5bh+ 2α

Thus, wt(Γ) ≤ C1(bh+ α)2 + 5bh2 + 2αh.

(2) For i = 1, 2, 3, define Ai as the subset of the set of (unoriented) a-edges of y as follows:
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• A1 is the subset of edges that are on the boundary of an a-cell

• A2 is the subset of edges marking the start of a maximal a-band which ends on an edge of

∂Γ shared with bot(T1)

• A3 is the subset of edges that mark the start of a maximal a-band of nonzero length which

ends on an a-cell

Note that these three sets are disjoint, so that γ1 + γ2 + γ3 ≤ |y|a for γi = #Ai.

Let π be an a-cell in Γ such that some edge of ∂π contributes to β′i. Let β′π be the number of

edges of ∂π contributing to β′i and β′′π be the number of such edges on the contour of a (θ, q)-cell

of Ti. Property (MM1) implies β′π ≤ 1
2
‖∂π‖+ β′′π. So,

h∑
i=1

β′i ≤
∑
π

β′π ≤
∑
π

(
1

2
‖∂π‖+ β′′π

)

Note that any edge of ∂π not contributing to β′π is either part of ∂Γ or on bot(Ti+1), and so

contributes to γ1 or βi+1, respectively. So, since there are at least 1
2
‖∂π‖ − β′′π such edges,

γ1 +
h∑
i=2

βi ≥
∑
π

(
1

2
‖∂π‖ − β′′π

)

As the contour of any (θ, q)-cell contains at most one a-edge corresponding to the ‘special’ input

sector, we then have

h∑
i=1

β′i ≤ γ1 +
h∑
i=2

βi + 2
∑
π

β′′π ≤ γ1 +
h∑
i=2

βi + 2bh

Next, let e be an a-edge of bot(T1) contributing to α1. Then the maximal a-band starting at e ends

on y, ends on a (θ, q)-cell, or ends on an a-cell. Those that end on y correspond to edges of A2

while those that end on an a-cell correspond to a-edges contributing to β′i for some i. So,

α1 ≤ γ2 + bh+
h∑
i=1

β′i ≤ γ1 + γ2 +
h∑
i=2

βi + 3bh
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Finally, let e be an a-edge of bot(Ti) contributing to βi. By Lemma 9.2 and (MM2), the maximal

a-band starting on e must end on y or on a (θ, q)-cell. As those that end on y correspond to edges

of A3, we have
∑h

i=1 βi ≤ γ3 + bh. Thus,

|bot(T1)|a = α1 + β1 ≤ γ1 + γ2 +
h∑
i=1

βi + 3bh ≤ γ1 + γ2 + γ3 + 4bh ≤ |y|a + 4bh

A base word B is tight if it is of the form uxvx for some letter x and words u and v, where:

(1) xvx is revolving, and

(2) no letter from u occurs in xvx.

Note that any tight base has length at most K0 = 22L + 1, while any base with length at least

K0 must have a tight prefix.

A comb ∆ is called tight if:

(C1) one of its maximal θ-bands T has a tight base when read toward the handle, and

(C2) all maximal θ-bands have tight bases or bases without tight prefixes

If ∆ is an M -minimal diagram over MΩ(M), then a subdiagram Γ is a subcomb of ∆ if Γ is a

comb and its handle divides ∆ into two parts, one of which is Γ.

Let Γ be a comb with handle C and B be another maximal q-band in Γ. Then B cuts Γ into

two parts, where the part not containing C is a subcomb Γ′ with handle B. Note that each maximal

θ-band T of Γ crossing B has a subband T0 connecting B with C. If T0 has no (θ, q)-cells, then Γ′

is called a derivative subcomb of Γ.

Note that no maximal θ-band of a comb can cross the handles of more than one derivative

subcomb.
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Lemma 9.9. (Compare with Lemma 6.6 of [18] and Lemma 6.10 of [25]) Let ∆ be an M -minimal

diagram such that |∂∆|θ > 0 and every quasi-rim θ-band has base of length at least K. Then ∆

contains a tight subcomb.

Proof. As maximal θ-bands cannot cross, there exists a quasi-rim θ-band T0 in ∆. Taking K >

2K0, the base of T0 has disjoint prefix and suffix, B1 and B2, of lengths K0. As a result, B1 has a

prefix B′1 which is tight, while B2 has a suffix B′2 such that (B′2)−1 is tight.

Let π be the (θ, q)-cell of T0 corresponding to the last base letter of B′1 and Q′ be the maximal

q-band of ∆ containing π. Let Γ′ be the subdiagram of ∆ bounded by Q′ containing the subband

of T0 with base B′1.

Note that we may do the same with B′2 to construct a subdiagram Γ′′.

Hence, there exists a maximal q-band Q such that for one of the subdiagrams Γ of ∆ bounded

by Q, there exists a maximal θ-band T whose base is tight when read toward Q. Choose such a

Q and Γ such that wt(Γ) is minimal.

Figure 9.5: Lemma 9.9

Suppose there exists a θ-band in Γ which does not cross Q. Then, there exists a quasi-rim

θ-band T1 not crossing Q. As the base of T1 has length at least K, we may repeat the argument

above. This produces disjoint subdiagrams Γ′1 and Γ′′1 of Γ bounded by the maximal q-bands Q′1
and Q′′1, respectively, such that the subband of T1 which is a maximal θ-band of Γ′1 (resp Γ′′1) has
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tight base when read towardQ′1 (respQ′′1). One of these subdiagrams, say Γ′1, does not containQ,

and so is a subcomb of ∆. But then wt(Γ′1) < wt(Γ), so thatQ′1 and Γ′1 contradict the choice ofQ

and Γ.

Thus, Γ is a comb with handle Q satisfying condition (C1).

Now suppose there exists a maximal θ-band T ′ in Γ with a tight proper prefix B′. Let π′ be the

(θ, q)-cell of T ′ corresponding to the last letter ofB′ andQ′ be the maximal q-band in Γ containing

π′. Then for Γ′ the subcomb of Γ with handle Q′, Q′ and Γ′ contradict the choice of Q and Γ.

Hence, Γ must be a tight subcomb.

9.6 G-weight

The goal of this section is to bound the size of an M -minimal diagram over MΩ(M) in terms of

its perimeter. However, this bound will not be given in terms of the area or weight of the diagram.

Instead, we give the bound in terms of the artifical concept of G-weight (adapted from the concept

of G-area in [18] and [25]).

Let Γ be an a-trapezium with base B and history H . Suppose B is of the form (P0(1)Q0(1))±1

or Q0(1)−1Q0(1), the step history of Γ is (1)1, and H has a factorization H1H
`
2H3 for some ` ≥ 0.

Then Γ is called an impeding a-trapezium.

In this case, let η = ‖H1‖+ n‖H2‖+ ‖H3‖ and h = ‖H‖. Then we define the G-weight of Γ,

denoted wtG(Γ), to be the minimum of half its weight and:

3hmax(‖tbot(Γ)‖, ‖ttop(Γ)‖) + 3C1hη + C1(|tbot(Γ)|a + |ttop(Γ)|a + 2η)2

Similarly, if Γ is a big a-trapezium with height h then its G-weight is defined to be the minimum

of half its weight and:

c5 max(‖ttop(Γ)‖, ‖tbot(Γ)‖) + 4C1(‖tbot(Γ)‖+ ‖ttop(Γ)‖)2

149



Finally, any single cell in Γ is assigned G-weight equal to its weight.

For a reduced diagram ∆ over GΩ(M), consider a family of subdiagrams P such that:

• if P ∈ P, then P is a single cell, a big a-trapezium, or an impeding trapezium,

• every cell of ∆ belongs to an element of P, and

• if there exist P1, P2 ∈ P with nonempty intersection, then both P1 and P2 are a-trapezia and

this intersection is a q-band.

In this case, P is called a covering of ∆. The G-weight of P, wtG(P), is defined to be the sum

of the G-weights of its elements.

Note that any reduced diagram over GΩ(M) has a covering, namely the one given by its cells.

So, we may define the G-weight of ∆, wtG(∆), as the minimum of the G-weights of its coverings.

Further, since theG-weight of a big or impeding a-trapezium does not exceed half of its weight

and any cell belongs to at most two elements of a covering, the inequality wtG(∆) ≤ wt(∆) holds

for all ∆.

Lemma 9.10. Let ∆ be a reduced diagram over GΩ(M) and suppose every cell π of ∆ belongs in

one of the subdiagrams ∆1, . . . ,∆m, where any nonempty intersection ∆i ∩∆j is a q-band. Then

wtG(∆) ≤
∑m

i=1 wtG(∆i).

Proof. Let P1, . . . ,Pm be coverings of ∆1, . . . ,∆m, respectively, so that the G-weight of Pi is

equal to that of ∆i. Then P = P1 ∪ · · · ∪ Pm is a covering of ∆ with wtG(P) ≤
∑m

i=1 wtG(Pi),

implying the statement.

In particular, note that Lemma 9.10 implies that if {∆i} is a partition of the a-trapezium ∆,

then wtG(∆) ≤
∑

wtG(∆i).

Lemma 9.11. Suppose ∆ is an a-trapezium with revolving base B and history H . Then for h =

‖H‖,

wtG(∆) ≤ C2hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + C2(‖tbot(∆)‖+ ‖ttop(∆)‖)2
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Proof. By Lemma 9.7 and the assignment of G-weight to big trapezia, we may assume that ∆ is

exceptional.

1. Suppose the step history of ∆ is (1)1.

Let ∆′ be the Q0(1)Q0(1)−1-sector of ∆ and let C ′ : W ′
0 → · · · → W ′

h be the reduced compu-

tation corresponding to ∆′. Lemma 4.4 implies that |W ′
j|a ≤ max(|W ′

0|a, |W ′
h|a) for all 0 ≤ j ≤ h,

so that wtG(∆′) ≤ wt(∆′) ≤ 3hmax(‖tbot(∆′)‖, ‖ttop(∆′)‖).

What’s more, Lemma 4.4 implies that the history H of C ′ can be factored as H1H
`
2H3 for some

` ≥ 0 with ‖H1‖ ≤ 1
2
|W ′

0|a, ‖H3‖ ≤ 1
2
|W ′

h|a, and ‖H2‖ ≤ min(|W ′
0|a, |W ′

h|a).

So, for ∆′′ any sector of ∆ corresponding to the ‘special’ input sector, ∆′′ is an impeding

a-trapezium with η ≤ n+1
2

(|W ′
0|a + |W ′

h|a) ≤ c0(|tbot(∆)|a + |ttop(∆)|a).

Setting S = |tbot(∆)|a + |ttop(∆)|a, this implies:

wtG(∆′′) ≤ 3hmax(‖tbot(∆′′)‖, ‖ttop(∆′′)‖) + 3c0C1hS + C1(2c0 + 1)2S2

Every sector ∆′′′ not of these forms is a trapezium whose corresponding computation has fixed

a-length, so that wt(∆′′′) ≤ 3hmax(‖tbot(∆′′′)‖, ‖ttop(∆′′′)‖).

Let {∆i} be the partition of ∆ given by its sectors. Then wtG(∆) ≤
∑

wtG(∆i) by Lemma

9.10. Recall that
∑

max(‖tbot(∆i)‖, ‖ttop(∆i)‖) ≤ 4 max(‖tbot(∆)‖, ‖ttop(∆)‖).

Since at most two sectors correspond to the ‘special’ input sector, the parameter choicesC2 >>

C1 >> c0 yield:

wtG(∆) ≤ 12hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + 6c0C1hS + 2C1(3c0)2S2

≤ 12(c0C1 + 1)hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + 18c2
0C1(|tbot(∆)|a + |ttop(∆)|a)2

≤ C2hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + C2(|tbot(∆)|a + |ttop(∆)|a)2

2. Thus, we may assume that the step history of ∆ is not (1)1.
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By (i) and (ii), we may then assume that the base B of ∆ is a cyclic permutation of

P0(1)Q0(1)Q0(1)−1P0(1)−1{t(1)}−1Q4(L)−1 . . . P1(L)−1P1(L) . . . Q4(L){t(1)}P0(1)

As a result,H cannot contain a letter of the form θ(s)±1
j or the copy of a connecting rule of M4(3−).

So, the step history of ∆ must contain the letter (12)1 or (21)1.

Let ∆′ be the R2(L)Q3(L)-sector of ∆. Lemma 9.4 then implies that ∆′ is a trapezium, so that

Lemma 7.4 gives a corresponding reduced computation. As a result, Lemma 5.28(b) implies that

the step history of ∆ has no subword of the form (12)1(2)1(21)1.

Similarly, as B contains a subword P1(L)Q1(L), Lemma 4.3 implies that the step history of ∆

has no subword of the form (23)1(3)1(32)1.

Hence, the step history of ∆ is a subword of

(3)1(32)1(2)1(21)1(1)1(12)1(2)1(23)1(3)1

containing the letter (1)1.

Let ∆1 be the maximal subdiagram of ∆ which is an a-trapezium with step history (1)1.

Suppose top(∆1) does not coincide with top(∆).

Let T1 be the maximal θ-band of ∆1 such that top(T1) = top(∆1). Then, there exists a

maximal θ-band T ′1 of ∆ corresponding to the rule θ(12)1 and such that some edges of bot(T ′1 )

coincide with those of top(T1).

Suppose there is an a-cell π in ∆ between T1 and T ′1 . As θ(12)1 locks the ‘special’ input sector,

no a-band starting on ∂π can cross T ′1 or end on a (θ, q)-cell of T ′1 . Lemma 9.4 implies that π must

belong to a (P0(1)Q0(1))±1 sector of ∆, so that at most one a-band starting on ∂π can end on a

(θ, q)-cell of T1. Taking n ≥ 3, more than half of the a-bands starting on ∂π must cross T1. But

then π and T1 contradict property (MM1). So, bot(T ′1 ) = top(T1).

Let ∆′1 be the maximal subdiagram of ∆ which is an a-trapezium with bot(∆′1) = bot(T ′1 ).

Lemma 9.4 then implies that ∆′1 is a trapezium, so that Lemma 7.4 yields a corresponding reduced
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computation C : W0 → · · · → Wt with base B and step history a prefix of (12)1(2)1(23)1(3)1.

We now prove that |W0|a ≤ · · · ≤ |Wt|a. Assuming toward contradiction, the step history of

C cannot be (12)1. Let C2 : W0 → · · · → Wr be the maximal subcomputation with step history

(12)1(2)1 and C ′2 : W ′
0 → · · · → W ′

r be the restriction to the subword

Q3(L)−1R2(L)−1 . . . Q1(L)−1P1(L)−1P1(L)Q1(L) . . . R2(L)Q3(L)

of B. As every rule of C ′2 locks the Q1(L)R1(L)-, R1(L)Q2(L)-, and Q2(L)R2(L)-sectors, we

may view the subwords of the form (Q1(L)R1(L)Q2(L)R2(L))±1 as a single state letter. With this

view, we may apply Lemma 5.14 to C ′2, so that |W ′
0|a ≤ · · · ≤ |W ′

r|a. As all other sectors have

fixed tape word throughout C2, this implies |W0|a ≤ · · · ≤ |Wr|a.

So, we may assume that t > r. As a result, there exists a subcomputation C3 : Wr → · · · → Wt

with step history (23)1(3)1. Letting C ′3 : W ′
r → · · · → W ′

t be the restriction of C3 to the subword

Q1(L)−1P1(L)−1P1(L)Q1(L), Lemma 5.14 implies |W ′
r|a ≤ · · · ≤ |W ′

t |a. As above, all other

sectors have fixed tape word throughout C3, so that |Wr|a ≤ · · · ≤ |Wt|a.

As a result, for any maximal θ-band T of ∆′1, ‖tbot(T )‖ ≤ ‖Wt‖ = ‖ttop(∆′1)‖ = ‖ttop(∆)‖.

In particular, ‖ttop(∆1)‖ ≤ ‖ttop(∆)‖. Hence, for h′1 the height of ∆′1, wt(∆′1) ≤ 3h′1‖ttop(∆)‖.

Similarly, if bot(∆1) does not coincide with bot(∆), then there exists a subdiagram ∆′′1 of

∆ which is a trapezium satisfying top(∆′′1) = bot(∆1) and bot(∆′′1) = bot(∆). By analogous

arguments, ‖tbot(∆1)‖ ≤ ‖tbot(∆)‖ and wt(∆′′1) ≤ 3h′′1‖tbot(∆)‖ for h′′1 the height of ∆′′1.

By Step 1, letting h1 be the height of ∆1, we have

wtG(∆1) ≤ C2h1 max(‖tbot(∆1)‖, ‖ttop(∆1)‖) + C2(|tbot(∆1)|a + |ttop(∆1)|a)2

≤ C2h1 max(‖tbot(∆)‖, ‖ttop(∆)‖) + C2(|tbot(∆)|a + |ttop(∆)|a)2

Thus, Lemma 9.10 yields

wtG(∆) ≤ (C2h1 + 3h′1 + 3h′′1) max(‖tbot(∆)‖, ‖ttop(∆)‖) + C2(|tbot(∆)|a + |ttop(∆)|a)2
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≤ C2hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + C2(|tbot(∆)|a + |ttop(∆)|a)2

9.7 Quadratic upper bound

Our goal throughout the rest of this section is to prove that for any M -minimal diagram ∆,

wtG(∆) ≤ N2|∂∆|2 +N1µ(∆) (9.1)

for the parameters N1 and N2.

We do this by arguing toward contradiction, considering a ‘minimal counterexample’ diagram

∆. In other words, ∆ is an M -minimal diagram over MΩ(M) satisfying the inequality wtG(∆) >

N2|∂∆|2 + N1µ(∆), while (9.1) holds for all M -minimal diagrams Γ over MΩ(M) satisfying

|∂Γ| < |∂∆|.

Lemma 9.12. If Γ is an M -minimal diagram over MΩ(M), with no q-edges on its boundary, then

wtG(Γ) ≤ C2|∂Γ|2.

Proof. Since any q-edge in Γ would give rise to a maximal q-band which, by Lemma 9.1, can only

end on the boundary of the diagram, Γ cannot have any q-edges. So, Γ is comprised entirely of

(θ, a)-cells and a-cells.

In particular, Γ contains no a-trapezia (or trapezia), so that the only covering of Γ is by single

cells. Hence, wtG(Γ) = wt(Γ).

Lemma 9.2 and (MM2) then imply that any maximal a-band with one end on an a-cell must

have its other end on the boundary, so that the sum of the (combinatorial) perimeters of the a-cells

is at most ‖∂Γ‖. It follows that the sum of the weights of the a-cells is at most C1‖∂Γ‖2.

Further, Lemma 9.3 implies that any maximal θ-band must start and end on ∂Γ, so that there

are at most 1
2
‖∂Γ‖ maximal θ-bands in Γ. As Lemma 9.1 implies that each maximal a-band must

have at least one end on ∂Γ and each θ-band intersects each a-band in at most one cell, the length
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of each θ-band is at most ‖∂Γ‖. So, the sum of the lengths of all maximal θ-bands, and so the

number of (θ, a)-cells, is at most 1
2
‖∂Γ‖2.

Taking into account the modified definition of perimeter, the statement follows from an appro-

priate choice of C2 in terms of C1 and δ.

The parameter choice N2 >> C2 and Lemma 9.12 allow us to assume that ∂∆ consists of at

least two q-edges, i.e |∂∆| ≥ 2.

Lemma 9.13. Let π be an a-cell contained in ∆. Suppose ∂π has a subpath s shared with ∂∆.

Then ‖s‖ ≤ 2
3
‖∂π‖.

Proof. Let ∂π = st and ∂∆ = ss0.

Assuming toward contradiction that ‖s‖ > 2
3
‖∂π‖, we have ‖s‖ > 2‖t‖ and ‖s‖ > 2

3
n ≥ 8 by

a parameter choice.

Let ∆0 be the subdiagram of ∆ obtained by removing π. So, ∂∆0 = t−1s0.

By Lemma 8.1(c), |∂∆0| ≤ |s0|+|t| = |s0|+δ‖t‖ and |∂∆| ≥ |s|+|s0|−2δ ≥ |s0|+δ(‖s‖−2).

So, |∂∆| − |∂∆0| ≥ δ(‖s‖ − ‖t‖ − 2) ≥ 1
2
δ(‖s‖ − 4) ≥ 1

4
δ‖s‖ > 0.

The inductive hypothesis then applies to ∆0, yielding

wtG(∆0) ≤ N2|∂∆0|2 +N1µ(∆0) ≤ N2(|∂∆| − δ‖s‖/4)2 +N1µ(∆0)

As δ‖s‖/4 ≤ |∂∆|, (|∂∆| − δ‖s‖/4)2 ≤ |∂∆|2 − 1
4
δ‖s‖|∂∆|.

By Lemma 9.10, we have wtG(∆) ≤ wtG(∆0) + wt(π). Further, the necklaces corresponding

to ∂∆ and ∂∆0 are identical, so that µ(∆) = µ(∆0). So, since the combinatorial perimeter of π is

‖s‖+ ‖t‖, Lemma 9.10 then implies:

wtG(∆) ≤ N2|∂∆|2 − 1

4
N2δ‖s‖|∂∆|+N1µ(∆) + C1(‖s‖+ ‖t‖)2
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So, we reach the contradiction wtG(∆) ≤ N2|∂∆|2 +N1µ(∆) if

1

4
N2δ‖s‖|∂∆| ≥ C1(‖s‖+ ‖t‖)2

As ‖t‖ < 1
2
‖s‖, we have C1(‖s‖ + ‖t‖)2 ≤ 9

4
C1‖s‖2. So, since |∂∆| ≥ 1

4
δ‖s‖, it suffices to show

N2δ
2 ≥ 36C1. But this follows from the parameter choices N2 >> C1 >> δ−1.

The following is the direct analogue of Lemma 6.12 of [18] and Lemma 6.16 of [25]. The

method of proof is identical to the ones presented in those sources, though many of the estimates

differ.

Lemma 9.14. (1) ∆ has no two disjoint subcombs Γ1 and Γ2 of basic widths at most K with

handles B1 and B2 such that some ends of these handles are connected by a subpath x of ∂∆

with |x|q ≤ c0.

(2) If Γ is a subcomb of ∆ with basic width s ≤ K, |∂Γ|q = 2s.

(1) (2)

Figure 9.6: Lemma 9.14

Proof. We prove (1) and (2) simultaneously, inducting on W = wt(Γ1) + wt(Γ2) for (1) and

W = wt(Γ) for (2). In other words, we consider a counterexample to one of these two with

minimal value of W .

Suppose the minimal counterexample is of the form (1).
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As wt(Γi) < W for i = 1, 2, the inductive hypothesis implies that (2) holds for each. So, ∂Γi

has at most 2K q-edges.

Let hi be the height of Γi and assume without loss of generality that h1 ≤ h2. For i = 1, 2,

let ∂Γi = yizi where yi is a subpath of ∂∆ and zi = bot(Bi). Without loss of generality, assume

y1xy2 is a subpath of ∂∆.

Then each θ-edge of y1 is separated in ∂∆ from each θ-edge of y2 by at most 4K + c0 q-edges,

and so by at most J q-edges by the choice of parameters. Hence, each (correctly ordered) pair of

such edges (or the white beads corresponding to these edges) makes a contribution to µ(∆).

Let ∆′ be the diagram obtained by removing the subdiagram Γ1 from ∆. When passing from

∂∆ to ∂∆′, one replaces each θ-edge of y1 with the corresponding θ-edge of z1 belonging to the

same θ-band. But since B1 is removed, there is at least one less q-edge separating any of the h1h2

(correctly ordered) pairs of θ-edges described above. So, µ(∆)−µ(∆′) ≥ h1h2 by Lemma 8.3(d).

Letting |∂Γ1|a = α, Lemma 9.8 yields wtG(Γ1) ≤ wt(Γ1) ≤ c0Kh
2
1 + 2αh1 + C1(Kh1 + α)2.

By Lemma 8.1(b), we have |z1| = h1. Moreover, each of the h1 (θ, q)-cells of B1 contributes

at most one a-edge to z1.

So, y1 consists of h1 θ-edges, at least two q-edges, and at least max(0, α−h1) a-edges. Lemma

8.1(a) then implies |y1| ≥ max(h1 + 2, h1 + 2 + (α− 2h1)δ).

Letting s be the complement of y1 in ∂∆, s is also the complement of z−1
1 in ∂∆′. So, Lemma

8.1(c) implies that |∂∆′| ≤ |z1|+ |s| = h1 + |s| and

|∂∆| ≥ |y1|+ |s| − 2δ ≥ h1 + |s|+ 2− 2δ + max(0, (α− 2h1)δ)

Hence, taking δ−1 > 2, we have

|∂∆| − |∂∆′| ≥ γ = max(1, (α− 2h1)δ) (9.2)
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In particular, |∂∆′| < |∂∆|, so that the inductive hypothesis implies

wtG(∆′) ≤ N2|∂∆′|+N1µ(∆′) ≤ N2(|∂∆| − γ)2 +N1(µ(∆)− h1h2)

Noting that γ ≤ |∂∆|, we have (|∂∆| − γ)2 ≤ |∂∆|2 − γ|∂∆|, so that

wtG(∆′) ≤ N2|∂∆|2 −N2γ|∂∆|+N1µ(∆)−N1h1h2

Combining this with the G-weight of Γ1, Lemma 9.10 then implies:

wtG(∆) ≤ N2|∂∆|2 −N2γ|∂∆|+N1µ(∆)−N1h1h2 + c0Kh
2
1 + 2αh1 + C1(Kh1 + α)2

So, in order to reach the contradiction wtG(∆) ≤ N2|∂∆|2 +N1µ(∆), it suffices to show:

−N2γ|∂∆| −N1h1h2 + c0Kh
2
1 + 2αh1 + C1(Kh1 + α)2 ≤ 0

As h1 ≤ h2, this amounts to proving:

(c0K + C1K
2)h2

1 + 2(C1K + 1)αh1 + C1α
2 ≤ N2γ|∂∆|+N1h

2
1 (9.3)

If α ≤ 4h1, then the inequality (9.3) follows from the parameter choice of N1, as it is chosen after

c0, K, and C1.

Otherwise, we have α > 4h1. The parameter choice N1 ≥ c0K + C1K
2 means that it suffices

only to show that: (
C1K + 1

2
+ C1

)
α2 ≤ N2γ|∂∆| (9.4)

But then α − 2h1 ≥ α/2, so that γ ≥ 1
2
δα. Hence, N2γ|∂∆| ≥ 1

4
N2δ

2α2, so that (9.4) follows

from the parameter choices N2 >> C1 >> δ−1 >> K.

Now suppose we have a minimal counterexample of the form (2).
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As each derivative subcomb of Γ is connected with the handle B of Γ by θ-bands, they can be

ordered in a natural way.

Consider two neighbor derivative subcombs, Γ1 and Γ2. The handle of Γi is intersected by

two disjoint collections of θ-bands which connect them with B. If there is any θ-band between

these two collections, then it cannot intersect any q-bands except for B, as otherwise it intersects a

derivative subcomb between Γ1 and Γ2. So, the subpath x of ∂∆ between the handles of Γ1 and Γ2

satisfies |x|q = 0.

Hence, Γ1 and Γ2 form a contradiction to (1). However, wtG(Γ1) + wtG(Γ2) < wtG(Γ) = W

since they contain no cells of B, contradicting the minimality of the counterexample.

Thus, Γ contains at most one derivative subcomb Γ′. In turn, Γ′ contains at most one derivative

subcomb Γ′′, and so on. Thus, there are s maximal q-bands in Γ, so that Lemma 9.1 implies that

|∂Γ|q = 2s.

Similarly, the next statement is a direct analogue of Lemma 6.14 in [18] and Lemma 6.17 in

[25] with altered estimates.

Lemma 9.15. Suppose Γ is a subcomb of ∆ whose basic width is at most K0 and whose handle B

has length `. If Γ′ is a subcomb of Γ with handle B′ of length `′, then `′ > `/2.

Proof. Assume toward contradiction that Γ′ is a subcomb of Γ whose handle B′ has length `′ ≤

`/2. Then, we can choose Γ′ so that `′ is minimal for all subcombs in Γ and so that Γ′ has no proper

subcombs, i.e the basic width of Γ′ is 1. Then, letting α = |∂Γ′|a, Lemma 9.8 implies

wtG(Γ′) ≤ wt(Γ′) ≤ c0(`′)2 + 2α`′ + C1(`′ + α)2

Let ∆′ be the diagram obtained from ∆ by removing Γ′. Then the following inequality arises as

the analogue of (9.2):

|∂∆| − |∂∆′| ≥ γ = max(1, (α− 2`′)δ) (9.5)
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In particular, |∂∆′| < |∂∆|, so that

wtG(∆′) ≤ N2|∂∆′|2 +N1µ(∆′) ≤ N2(|∂∆| − γ)2 +N1µ(∆′) (9.6)

Every maximal θ-band of Γ passing through B′ connects it to B. The cells of B that such bands

end on form a subband C of B with length `′.

Then, the maximal θ-bands of Γ starting from C bound a comb with handle C. So, there exists

a maximal subdiagram Γ′′ of Γ which is a comb with handle C. Note that Γ′′ contains Γ′.

The components of B \ C are handles of combs E1 and E2, respectively, which comprise the

complement of Γ′′ in Γ. Letting `i be the height of Ei, we then have `1 + `2 = `− `′ ≥ `′.

Let ∂Γ = yz be the factorization such that z = bot(B) and y is a subpath of ∂∆. So, there are

`i θ-edges on the common subpath xi of y and ∂Ei and `′ θ-edges on the common subpath x of y

and ∂Γ′′. Further, as the basic width of Γ is at most K0, Lemma 9.14(2) implies that y contains at

most K q-edges.

So, for any edge from x and any edge from xi, there are at most K q-edges between the pair

in y, and so at most J such edges by the choice of parameters. Hence, each of these `′(`1 + `2)

(appropriately ordered) pairs of edges contributes to µ(∆).

When passing from ∆ to ∆′, the θ-edges of y are replaced with the corresponding edges of

bot(B′). However, the q-edges of B′ are removed, so that there is at least one less q-edge between

a θ-edge corresponding to an edge of x and one corresponding to an edge of xi. So, Lemma 8.3(d)

implies µ(∆)− µ(∆′) ≥ `′(`1 + `2). Substituting this into (9.6) then implies

wtG(∆′) ≤ N2(|∂∆| − γ)2 +N1µ(∆)−N1`
′(`1 + `2) (9.7)
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Figure 9.7: Lemma 9.15

Note that |∂∆| ≥ γ, so that (|∂∆| − γ)2 ≤ |∂∆|2 − γ|∂∆|. Factoring in Γ′ and applying

Lemma 9.10 then yields

wtG(∆) ≤ N2|∂∆|2 −N2γ|∂∆|+N1µ(∆)−N1`
′(`1 + `2) + c0(`′)2 + 2α`′ + C1(`′ + α)2

So, it suffices to show

−N2γ|∂∆| −N1`
′(`1 + `2) + c0(`′)2 + 2α`′ + C1(`′ + α)2 ≤ 0 (9.8)

Suppose α ≤ 4`′. Then c0(`′)2 + 2α`′ + C1(`′ + α)2 ≤ c0(`′)2 + 8(`′)2 + C1(5`′)2. As

`1 + `2 ≥ `′, (9.8) then follows from the parameter choices N1 >> C1 >> c0.

Otherwise, α > 4`′, so that γ ≥ 1
2
δα. Hence, |∂∆| ≥ γ and (9.8) imply that it suffices to show

c0(`′)2 + 2α`′ + C1(`′ + α)2 ≤ 1

4
N2δ

2α2 +N1(`′)2 (9.9)

Note that 2α`′ + C1(`′ + α)2 ≤
(

25C1+8
16

)
α2, so that (9.9) follows by the parameter choices
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N1 >> c0 and N2 >> C1 >> δ−1.

Lemma 9.16. If T is a quasi-rim θ-band in ∆, then the base of T has length s > K.

Proof. Suppose T is a quasi-rim θ-band in ∆ with base of length s ≤ K. Without loss of general-

ity, say that any cell between top(T ) and ∂∆ is an a-cell. Let P1 be the set of such a-cells.

Let u be the subpath of ∂∆ bounded by the two end θ-edges of T and v be its complement in

∂∆. For π ∈ P1, factor ∂π = pπp′π where pπ is a subpath of u and p′π is a subpath of top(T ).

Let bπ be the number of edges of p′π that are on the boundary of a (θ, q)-cell of T .

By Lemma 9.13, ‖p′π‖ ≥ 1
3
‖∂π‖. Further, by Lemma 3.6, ‖∂π‖ ≥ (1 − β)n ≥ n/2 by the

parameter choice for β (see Section 3.7). As a result, ‖p′π‖ ≥ 3 and bπ ≤ 2, so that p′π has a

maximal subpath p′′π consisting of edges on the boundary of (θ, a)-cells of T .

Consider the diagram ∆′ obtained from ∆ by cutting along bot(T ), removing T and the a-

cells of P1. For π ∈ P1, the subpath p′′π can be identified with a subpath of bot(T ), so that we may

paste π to ∆′ along this subpath.

Let ∆′′ be the diagram obtained by pasting all cells of P1 to ∆′. Note that v can be identified

with a subpath of ∂∆′′. Let u′′ be the complement of v in ∂∆′′.

(a) ∆, γ a (θ, q)-cell (b) ∆′′

Figure 9.8: Lemma 9.16

For any π ∈ P1, the edges of ∂π contributing to bπ belong to u′′ after this pasting. So, at least

‖pπ‖+ bπ ≥ 1
2
‖∂π‖ edges of ∂π are shared with ∂∆′′. It is thus clear from construction that ∆′′ is

M -minimal.

Meanwhile, by Lemma 4.1, each (θ, q)-cell of T contributes at most two a-edges to bot(T ).

Any other edge of u′′ corresponds to an edge of u.
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As each a-edge contributing to bπ for some π ∈ P is labelled by a letter from the alphabet of

the ‘special’ input sector and each (θ, q)-relation has at most one such letter,
∑
bπ ≤ s. So, since

two θ-edges are removed from u, Lemma 8.1 implies

|u| − |u′′| ≥ 2− (2s+ 2)δ − δ
∑

bπ ≥ 2− (3s+ 2)δ ≥ 2− (3K + 2)δ ≥ 1

The parameter choice δ−1 >> K and Lemma 8.1 then imply

|∂∆| − |∂∆′′| ≥ (|u|+ |v| − δ)− (|u′′|+ |v|) ≥ 2− (3K + 3)δ ≥ 1

Hence, the inductive hypothesis may be applied to ∆′′, so that

wtG(∆′′) ≤ N2|∂∆′′|2 +N1µ(∆′′) ≤ N2(|∂∆| − 1)2 +N1µ(∆′′)

Note that the necklace corresponding to ∆′′ is obtained from that corresponding to ∆ by the re-

moval of two white beads. Lemma 8.3(a) then yields µ(∆′′) ≤ µ(∆).

Let P′′ be a minimal covering of ∆′′. As each a-cell of P1 has a boundary edge shared with

∂∆′′, it cannot be contained in a trapezium in ∆′′. So, P1 ⊂ P′′.

Let P be the covering of ∆ given by P′′ and the cells of T . Then for ` the length of T ,

wtG(∆) ≤ wtG(P) = wtG(P′′) + ` ≤ N2|∂∆|2 −N2|∂∆|+N1µ(∆) + `

Hence, it suffices to show that N2|∂∆| ≥ `.

For π ∈ P1, (MM1) implies ‖p′π‖ ≤ ‖pπ‖+ 2bπ. So, since
∑
bπ ≤ s, |top(T )|a ≤ |u|a + 2s.

By Lemma 8.1(d), ` ≤ |top(T )|a + 3|top(T )|q ≤ |u|a + 5s. As each a-edge of u contributes

at least δ to |∆| and there are s q-edges of u, ` ≤ δ−1(|∂∆| − s) + 5s ≤ δ−1|∂∆|.

But then the statement follows from the parameter choice N2 >> δ−1.
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Thus, Lemmas 9.9 and 9.16 imply that there exists a tight subcomb Γ in ∆. By the definition

of tight combs, the basic width of Γ is at most K0 (see Figure 9.9).

Figure 9.9: Tight subcomb Γ

Let T be a maximal θ-band in Γ with tight base B. Then B has the form uxvx, where x does

not occur in u or v and the final letter corresponds to the handle Q of Γ. Let Q′ be the q-band

corresponding to the first occurrence of x in B.

Every maximal θ-band in Γ crossing Q′ has a subband connecting Q and Q′. The (θ, q)-cells

of Q on which these θ-bands end form a subband Q2 of Q with length `′.

Let Γ2 be the a-trapezium with side q-bandsQ′ andQ2 and bounded by the θ-bands connecting

these two. By the definition of tight, the base of Γ2 is revolving.

Cutting along bot(Q′) separates ∆ into two components, one of which and is a subcomb Γ1

with handle Q′. Further, Γ′ = Γ1 ∪ Γ2 is a comb contained in Γ with handle Q2.

Let Q3 and Q4 be the components of Q \Q2. Then there exist maximal subdiagrams Γ3 and

Γ4 of Γ that are combs with handles Q3 and Q4, respectively.

Let `, `′, `3, and `4 be the heights of Γ, Γ1, Γ3, and Γ4, respectively. By Lemma 9.15, `′ > `/2.
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Let ∂Γ = yz be the factorization given by z = bot(Q). Similarly, let ∂Γ1 = y1z1 be the

factorization given by z1 = bot(Q′).

Note that t := ttop(Γ2) can be factored as t = t′′t′ such that t′ is a maximal subpath shared

with ∂Γ3. Similarly, b := tbot(Γ2) has a factorization b = b′′b′ such that (b′)−1 is a maximal

subpath shared with ∂Γ4. Note that Γ \ (Γ′ t Γ3 t Γ4) consists of a-cells that are attached to t′′ or

b′′.

Factor y = y3y1y4. Then, y3 can be factored as y′3y′′3 where y′3 is a maximal subpath shared

with ∂Γ3. Note that every edge of y′′3 is either shared with (t′′)−1 or is on the boundary of an a-cell

attached to t′′. Similarly, we may factor y4 = y′′4y′4.

Finally, factor z = z4z2z3 where zi = bot(Qi).

Let T1 be the bottom θ-band of Γ3. Then, let Γ′3 be the comb contained in Γ3 obtained by

removing any a-cells below T1. So, bot(T1) is a subpath of ∂Γ′3.

Similarly, define Γ′4 by removing any a-cells above the top θ-band of Γ4.

Lemma 9.17. (1) |t′′|a ≤ |y′′3|a + 4 and |b′′|a ≤ |y′′4|a + 4

(2) |y3|a ≥ |t|a − 2`3K − 4 and |y4|a ≥ |b|a − 2`4K − 4.

Proof. Let E be the set of (unoriented) a-edges of t. Then E = t4
i=1Ei, where:

• E1 is the set of such edges shared with ∂∆,

• E2 is the set of such edges shared with the boundary of an a-cell not contained in Γ3,

• E3 is the set of such edges shared with the boundary of an a-cell contained in Γ3, and

• E4 is the set of such edges shared with bot(T1).

Further, let E′2 (resp E′3) be the subset of E2 (resp E3) consisting of the edges which are on the

boundary of a (θ, q)-cell in Γ2.

Let αi = #Ei for all 1 ≤ i ≤ 4. Similarly, let α′i = #E′i for i = 2, 3.

Note that α1 + α2 = |t′′|a and E1 is a subset of the a-edges of y′′3.
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Further, every edge of E′2 t E′3 is labelled by a letter from the ‘special’ input sector and is on

the boundary of a (θ, q)-cell of the same θ-band (the top θ-band of Γ2). Any (θ, q)-cell with such

an edge on its boundary must correspond to the base letter Q0(1)±1, in which case it has exactly

one such letter on its boundary. Hence, by the definition of revolving, α′2 + α′3 ≤ 2.

For any a-edge e of t′′, either e ∈ E1 or e is on the boundary of some a-cell π. In the latter

case, ∂π can be factored as s1s2, where s1 is a subpath of y′′3 and s2 is a subpath of t′′. Let b be the

number of edges of s2 that are on the boundary of a (θ, q)-cell contained in Γ2. Then by condition

(MM1), ‖s2‖ − b ≤ 1
2
‖∂π‖. So, ‖s1‖ ≥ ‖s2‖ − 2b.

Applying the same reasoning to all such a-cells, we have α1 + max(0, α2 − 2α′2) ≤ |y′′3|a.

Hence, |t′′|a = α1 + α2 ≤ |y′′3|a + 2α′2 ≤ |y′′3|a + 4.

Next, let F3 be the edges of y′3 on the boundary of an a-cell below bot(T1) and set β = #F3.

Let π be an a-cell with a boundary edge contributing to α3. Then as above, for b the number of

edges of ∂π on the boundary of a (θ, q)-cell of Γ2, at most 1
2
‖∂π‖+ b of the edges of ∂π are shared

with t′. Note that the other edges of ∂π are either part of bot(T1) or contribute to β.

So, α4 + max(0, α3 − 2α′3) ≤ β + |bot(T1)|a.

Hence, |t|a = α1+α2+α3+α4 ≤ |y′′3|a+β+|bot(T1)|a+2(α′2+α′3) ≤ |y′′3|a+β+|bot(T1)|a+4.

Let ∂Γ′3 = x′xz3 be the factorization given by x = bot(T1). Note that x′ is a subpath of y′3 not

containing any edges of F3, so that β + |x′|a ≤ |y′3|a.

Then, applying Lemma 9.8 to Γ′3, we have |x|a ≤ |x′|a + 4K0`3.

Thus, |t|a ≤ |y′′3|a + β + |x′|a + 4K0`3 + 4 ≤ |y3|a + 2`3K + 4.

Applying the analogous argument to Γ4 yields the inequalities |b′′|a ≤ |y′′3|a + 4 and |b|a ≤

|y4|a + 2`4K + 4.

Lemma 9.18. Set M = max(|b|a, |t|a). Then 2K` > M .

Proof. As |yi|a ≤ |y|a and `i ≤ `/2 for i = 3, 4, Lemma 9.17(2) implies

M ≤ |y|a +K`+ 4 ≤ |y|a + 3K`/2
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Assuming that 2K` ≤M , we then have |y|a ≥ 1
2
K` ≥ K0`.

By Lemma 9.8, we have

wt(Γ) ≤ c0K0`
2 + 2(|y|a + `)`+ C1(K0`+ |y|a + `)2

≤ (c0K0 + 2 + C1(K0 + 1)2)`2 + (2 + 2C1(K0 + 1))|y|a`+ C1|y|2a

So, as C2 is chosen after C1, K0, and c0, we have:

wt(Γ) ≤ C2|y|2a

Since |y|θ = ` and |y|q ≥ 2, Lemma 8.1(a) implies that |y| ≥ 2 + `+ (|y|a− `)δ ≥ `+ 2 + 1
2
δ|y|a.

Let ∆′ be the M -minimal diagram formed from ∆ by removing Γ. Then in ∂∆′, y is replaced

with z. Lemma 8.1(b) implies that |z| = `.

Letting s be the complement of z in ∂∆′, Lemma 8.1(c) implies |∂∆′| ≤ |s| + ` and |∂∆| ≥

|s|+ |y| − 2δ. So, |∂∆| − |∂∆′| ≥ γ = max(1, 1
2
δ|y|a).

Hence, we may apply the inductive hypothesis to ∆′, yielding

wtG(∆′) ≤ N2|∂∆′|2 +N1µ(∆′) ≤ N2(|∂∆| − γ)2 +N1µ(∆′)

As γ ≤ |∂∆|, (|∂∆| − γ)2 ≤ |∂∆|2 − γ|∂∆|. Lemma 8.3 further implies that µ(∆′) ≤ µ(∆). So,

adding in the weight of Γ, Lemma 9.10 implies:

wtG(∆) ≤ N2|∂∆|2 −N2γ|∂∆|+N1µ(∆) + C2|y|2a

So, it suffices to show that N2γ|∂∆| ≥ C2|y|2a.

But 1
2
δ|y|a ≤ γ ≤ |∂∆|, so that N2γ|∂∆| ≥ 1

4
N2δ

2|y|2a. So, the desired inequality follows

from the parameter choices N2 >> C2 >> δ−1.
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Lemma 9.19. The counterexample diagram ∆ does not exist.

Proof. Let ∆1 be the diagram obtained from ∆ by removing Γ \Q.

As the base of Γ2 is revolving, the bands Q′ and Q2 are labelled identically. So, we may

construct a diagram ∆0 by pasting Γ1 to ∆1 along Q′ and Q2 (see Figure 9.10, compare with

Figure 9.9).

Since an a-band cannot cross a q-band, any counterexample to (MM1) or (MM2) in ∆0 is

contained in one of ∆1 or Γ1. But ∆1 and Γ1 are M -minimal as subdiagrams of ∆. Hence, ∆0

must be M -minimal.

Figure 9.10: The construction of ∆0

Let P be a covering of ∆0. Suppose there exists P ∈ P that is not completely contained in Γ1

or ∆1. Then P is a big a-trapezium containing a maximal q-band B that is a subband of Q2 (and

Q′) and which is not a side q-band of P . Then, the history of P is a subword of the history of Γ2,

so that Γ2 is itself a big a-trapezium by Lemma 6.7.

Let Q′′ be the maximal q-band of Γ corresponding to the first letter of the base of P . Further,

let T be a θ-band in Γ connecting Q to Q′′. Then the base of T (read toward Q) is B1B2, where
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B1 is a prefix of the base of P and B2 is the base of Γ2. By Lemma 6.7, both the base of P and B2

are reduced. Moreover, since the first letter of B2 appears in the base of P , B1B2 must be reduced.

AsB2 is revolving, the first letter ofB1 appears inB2. But then the base of the maximal θ-band

of Γ containing T has a tight prefix, contradicting the assumption that Γ is a tight comb.

So, for any covering of ∆0, each element is either contained completely in Γ1 or completely

in ∆1. Hence, given a minimal covering P of ∆0, we may construct coverings P′ and P′′ of Γ1

and ∆1, respectively, by including only the elements belonging to these subdiagrams and perhaps

adding in the cells of Q′ or Q2. As at most the `′ cells of Q2 are counted twice in these coverings,

we have wtG(∆0) ≥ wtG(Γ1) + wtG(∆1)− `′.

Lemma 9.10 then implies:

wtG(∆) ≤ wtG(∆1) + wtG(Γ) ≤ wtG(∆0) + wtG(Γ2) + wtG(Γ3) + wtG(Γ4) + A+ `′ (9.10)

where A is the sum of the weights of the a-cells attached to t′′ or b′′.

For i = 3, 4, note that the subpath y′′i has no θ-edges, while y′i consists of `i θ-edges and at least

one q-edge. So, Lemma 8.1(a) implies |yi| ≥ 1 + `i + δmax(0, |yi|a − `i, |y′′i |a − 1).

Letting s be the complement of y in ∂∆, Lemma 8.1(c) then yields

|∂∆| ≥ |s|+ |y| − 2δ ≥ |s|+ |y3|+ |y1|+ |y4| − 4δ

Next, let y′1 be the subpath of y1 not containing the first or last edge. Note that both of these edges

are q-edges corresponding to Q′, so that |y1| = |y′1|+ 2.

Then, Lemma 8.1(c) implies |∂∆0| ≤ |s| + 1 + |top(Q3)| + |y′1| + |top(Q4)| + 1. Further,

Lemma 8.1(b) implies |top(Qi)| = `i for i = 3, 4. So, |∂∆0| ≤ |s|+ |y1|+ `3 + `4.

Hence,

|∂∆| − |∂∆0| ≥ γ = (|y3| − `3) + (|y4| − `4)− 4δ

≥ 2− 4δ + δmax(0, |y3|a − `3, |y′′3|a − 1) + δmax(0, |y4|a − `4, |y′′4|a − 1)
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So, taking δ−1 ≥ 4, |∂∆| − |∂∆0| ≥ γ ≥ 2− 4δ ≥ 1.

Hence, we may apply the inductive hypothesis to ∆0, so that

wtG(∆0) ≤ N2|∂∆0|2 +N1µ(∆0) ≤ N2(|∂∆| − γ)2 +N1µ(∆0)

In y, any θ-edge of y1 is separated from a θ-edge of y3 or y4 by a q-edge at the end ofQ′. Moreover,

since the basic width of Γ is at most K0, the parameter choice J >> K0 implies that each of these

(correctly ordered) pairs contribute to µ(∆). But the black beads corresponding toQ′ are removed

in the formation of the necklace for ∆0, so that Lemma 8.3(d) implies

µ(∆)− µ(∆0) ≥ `′(`3 + `4)

Noting that γ ≤ |∂∆|, we then have:

wtG(∆0) ≤ N2|∂∆|2 −N2γ|∂∆|+N1µ(∆)−N1`
′(`3 + `4)

Hence, by (9.10), it suffices to show that:

N2γ|∂∆|+N1`
′(`3 + `4) ≥ wtG(Γ2) + wtG(Γ3) + wtG(Γ4) + A+ `′ (9.11)

Setting νi = |∂Γi|a for i = 3, 4, Lemma 9.8 implies:

wtG(Γi) ≤ wt(Γi) ≤ c0K0`
2
i + 2νi`i + C1(K0`i + νi)

2 ≤ C2(`i + νi)
2

By Lemmas 9.11,

wtG(Γ2) ≤ C2`
′max(‖t‖, ‖b‖) + C2(‖t‖+ ‖b‖)2

≤ C2`
′(M +K0) + 4C2(M +K0)2
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For any a-cell π whose weight contributes to A, π is attached to either t′′ or b′′. Lemma 9.13 then

implies that at least a third of the edges of ∂π are shared with t′′ or b′′.

So, A ≤ C1(3|t′′|a + 3|b′′|a)2 ≤ C1(6M)2 ≤ 36C1M
2.

By Lemma 9.18 and 9.15, M ≤ 2K` ≤ 4K`′. So, since C2 >> C1 >> K, A ≤ C2`
′M .

Hence, the parameter choices C3 >> C2 >> K >> K0 imply

wtG(Γ2) + A+ `′ ≤ C2`
′M + C2K0`

′ + 4C2M
2 + 8C2K0M + 4C2K

2
0 + C2`

′M + `′

≤ 2C2`
′M + 16C2K`

′M + C2K0`
′ + 32C2K0K`

′ + `′ + 4C2K
2
0

≤ C3`
′M + C3`

′ + C3

So, by (9.11), it suffices to show that:

N2γ|∂∆|+N1`
′(`3 + `4) ≥ C3`

′M + C3`
′ + C3 + C2(`3 + ν3)2 + C2(`4 + ν4)2 (9.12)

Without loss of generality, assume ν4 ≤ ν3.

Note that

M = max(|t|a, |b|a) = max(|t′′|a + |t′|a, |b′′|a + |b′|a) ≤ max(|t′′|a, |b′′|a) + max(|t′|a, |b′|a)

Since t′ and b′ are subpaths of ∂Γ3 and ∂Γ4, respectively, we then haveM ≤ max(|t′′|a, |b′′|a)+ν3.

Lemma 9.17(1) then yields M ≤ max(|y′′3|a, |y′′4|a) + ν3 + 4.

So, C3`
′M ≤ C3`

′max(|y′′3|a, |y′′4|a) + C3`
′ν3 + 4C3`

′.

As γ ≥ 1, |∂∆| ≥ `′, and |∂∆| ≥ 2, the parameter choice N2 >> C3 allows us to assume that

1

3
N2γ|∂∆| ≥ 5C3`

′ + C3
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Hence, it suffices to show that:

2

3
N2γ|∂∆|+N1`

′(`3 +`4) ≥ C3`
′max(|y′′3|a, |y′′4|a)+C3`

′ν3 +C2(`3 +ν3)2 +C2(`4 +ν4)2 (9.13)

Suppose max(|y′′3|a, |y′′4|a) ≤ 1. Then since γ ≥ 1, |∂∆| ≥ `′, and N2 >> C3, we may take

1

3
N2γ|∂∆| ≥ C3`

′max(|y′′3|a, |y′′4|a) (9.14)

Otherwise, recall that

γ ≥ δ(|y′′3|a − 1) + δ(|y′′4|a − 1) ≥ δ(max(|y′′3|a, |y′′4|a)− 1) ≥ 1

2
δmax(|y′′3|a, |y′′4|a)

So, since |∂∆| ≥ `′, the parameter choices N2 >> C3 >> δ−1 allow us to again assume (9.14)

holds.

Thus, by (9.13), it suffices to show that

1

3
N2γ|∂∆|+N1`

′(`3 + `4) ≥ C3`
′ν3 + C2(`3 + ν3)2 + C2(`4 + ν4)2 (9.15)

1. Suppose ν3 ≤ 3J(`3 + `4).

Then, for i = 3, 4, `i + νi ≤ 4J(`3 + `4). As Lemma 9.15 implies `3 + `4 ≤ `′, this implies

(`i + νi)
2 ≤ 16J2`′(`3 + `4).

So, the parameter choices C3 >> C2 >> J imply C2(`3 +ν3)2 +C2(`4 +ν4)2 ≤ C3`
′(`3 +`4).

Hence, as N1 >> C3 >> J , we have

N1`
′(`3 + `4) ≥ C3`

′ν3 + C2(`3 + ν3)2 + C2(`4 + ν4)2

Thus, we may assume that ν3 > 3J(`3 + `4).

As a result, for i ∈ {3, 4}, `i + νi ≤ `3 + `4 + ν3 ≤ 2ν3. So, C2(`i + νi)
2 ≤ 4C2ν

2
3 .
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It then follows from (9.15) that it suffices to show that

1

3
N2γ|∂∆|+N1`

′(`3 + `4) ≥ C3`
′ν3 + 8C2ν

2
3 (9.16)

2. Suppose ν3 ≤ 16.

So, C3`
′ν3 + 8C2ν

2
3 ≤ 8C3`

′ + C3 by the parameter choice C3 >> C2.

As |∂∆| ≥ max(2, `′) and γ ≥ 1, the parameter choices N2 >> C3 >> C2 allow us to assume

that
1

3
N2γ|∂∆| ≥ C3`

′ν3 + 8C2ν
2
3

3. Thus, it suffices to assume that ν3 > max(3J(`3 + `4), 16) and show that (9.16) holds.

As any a-edge of ∂Γ3 is part of y′3, t′, or bot(Q3), we have ν3 ≤ |y3|a + |t|a + `3. By Lemma

9.17(2), this implies ν3 ≤ 2|y3|a + 2K`3 + `3 + 4 ≤ 2|y3|a + J`3 + 4.

Note that J`3 + 4 < 1
3
ν3 + 1

4
ν3 = 5

12
ν3, so that 7

12
ν3 ≤ 2|y3|a.

Recall that γ ≥ δ(|y3|a− `3). So, since `3 <
1

3J
ν3 ≤ 1

24
ν3 by taking J ≥ 8, we have γ ≥ 1

4
δν3.

As |∂∆| ≥ γ, we then have γ|∂∆| ≥ 1
16
δ2ν2

3 . So, the parameter choices N2 >> C2 >> δ−1

allow us to assume
1

6
N2γ|∂∆| ≥ 8C2ν

2
3

By (9.16), it then suffices to show:

1

6
N2γ|∂∆|+N1`

′(`3 + `4) ≥ C3`
′ν3 (9.17)

But |∂∆| ≥ `′, so that the parameter choices N2 >> C3 >> δ−1 give us:

1

6
N2γ|∂∆| ≥ 1

24
N2δ`

′ν3 ≥ C3`
′ν3

Thus, (9.17) is satisfied, and so the statement is proved.
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Chapter 10

Diagrams with disks

10.1 Diminished, Minimial, and D-minimal diagrams

A q-letter of the form t(i) for 2 ≤ i ≤ L is called a t-letter. Accordingly, a (θ, q)-relation

corresponding to a t-letter is called a (θ, t)-relation. Note that for each rule θ and each t-letter, the

corresponding (θ, t)-relation is of the simple form θjt(i) = t(i)θj+1.

Now, we modify the definition of a reduced diagram over the canonical presentation ofMΩ(M)

or over the disk presentation of GΩ(M). To this end, we introduce the signature of such a diagram

∆ as the four-tuple s(∆) = (α1, α2, α3, α4) where:

• α1 is the number of disks in ∆ (of course, this is zero if ∆ is a diagram over MΩ(M)),

• α2 is the number of (θ, t)-cells,

• α3 is the total number of (θ, q)-cells, and

• α4 is the number of a-cells.

The signatures of reduced diagrams over the disk presentation of GΩ(M) are ordered lexi-

cographically. In particular, if ∆ and Γ are such diagrams with s(∆) = (α1, α2, α3, α4) and

s(Γ) = (β1, β2, β3, β4), then s(∆) ≤ s(Γ) if:

• α1 ≤ β1

• for i ∈ {2, 3, 4}, if αj = βj for all j < i, then αi ≤ βi

A reduced diagram ∆ over the disk presentation of GΩ(M) is called diminished if for any

reduced diagram Γ with Lab(∂∆) ≡ Lab(∂Γ), we have s(∆) ≤ s(Γ).

Given a reduced diagram ∆ over the disk presentation ofGΩ(M) with s(∆) = (α1, α2, α3, α4),

the 2-signature of ∆ is the ordered pair s2(∆) = (α1, α2). The 1-signature s1(∆) is defined

similarly and can be interpreted simply as the number of disks in ∆ with the natural order on the

natural numbers.
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A reduced diagram ∆ over the disk presentation of GΩ(M) is called D-minimal if for any re-

duced diagram Γ with Lab(∂Γ) ≡ Lab(∂∆), s1(∆) ≤ s1(Γ). By the definition of the lexicographic

order, a diminished diagram is necessarily D-minimal.

Finally, reduced diagram ∆ over the disk presentation of GΩ(M) is called minimal if:

(M1) for any a-cell π and any θ-band T , at most half of the edges of ∂π mark the start of an a-band

that crosses T ,

(M2) no maximal a-band ends on two different a-cells, and

(M3) for any reduced diagram Γ with Lab(∂∆) ≡ Lab(∂Γ), s2(∆) ≤ s2(Γ).

Note that conditions (M1) and (M2) are equivalent to the conditions (MM1) and (MM2) in

the definition of M -minimal. As a result, a minimal diagram containing no disks is necessarily

M -minimal. Further, a diminished diagram necessarily satisfies (M3).

As with M -minimal diagrams, a subdiagram of a diminished (resp minimal, D-minimal) dia-

gram is necessarily diminished (resp minimal, D-minimal).

In what follows, it is taken implicitly that any diminished, minimal, or D-minimal diagram

over GΩ(M) is formed over its disk presentation (rather than its canonical presentation).

Lemma 10.1. A wordW over X represents the trivial element ofMΩ(M) if and only if there exists

a diminished diagram ∆ over MΩ(M) such that Lab(∂∆) ≡ W and ∆ contains no θ-annuli.

Proof. The reverse direction follows immediately from van Kampen’s Lemma (see Chapter 2).

Let S1 be the set of relators defining the (θ, a)-relations of MΩ(M), i.e the words [θi, a] for

θ ∈ Θ+ and a ∈ Yi(θ). Similarly, let S2 be the set of relators defining the a-relations, S3 be the

set of relators defining the (θ, q)-relations for the q-letters that are not t-letters, and S4 be the set

of relators defining the (θ, t)-relations. Note that any cyclic permutation of an element of S±1
i is

not an element of Sj for j 6= i. So, the partition of the relations given by S1 t · · · t S4 defines a

grading on the presentation of MΩ(M) (see Section 3.4).
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A reduced graded diagram with respect to this grading has minimal signature. Hence, for W a

word over X representing the trivial element ofGΩ(M), the strengthened version of van Kampen’s

Lemma (Section 3.4) yields a diminished diagram ∆ over MΩ(M) with Lab(∂∆) ≡ W .

Now suppose ∆ contains a θ-annulus. As θ-bands cannot cross, the θ-annuli of ∆ are partially

ordered as in the proof of Lemma 9.3(2). Since ∆ is finite, there exists a minimal θ-annulus S with

respect to this partial order.

Let ∆S be the subdiagram bounded by the outer contour of S and suppose ∆S \ S contains

a (θ, a)-cell π. Then, let S ′ be the maximal θ-band containing π. Since θ-bands cannot cross, S ′

must be a θ-annulus contained in ∆S \ S. But this contradicts the minimality of S.

So, since Lemma 9.3(1) implies that ∆S contains no (θ, q)-cells, ∆S \ S consists entirely of

a-cells. Hence, Lab(∂∆S) ≡ Lab(∂(∆S \ S)) is trivial in the group B(A, n).

As a result, we may form the reduced diagram Γ by excising ∆S from ∆, pasting a single

a-cell in its place, and making any necessary cancellations. Note that Lab(∂Γ) ≡ Lab(∂∆) and

s(Γ) ≤ s(∆), so that Γ must again be diminished. However, the number of θ-annuli in Γ is one

less than the number in ∆.

Iterating this process, we remove all θ-annuli in ∆, producing a diminished diagram satisfying

the statement.

Lemma 10.2. Every diminished diagram satisfies (M2).

Proof. Arguing toward a contradiction, let π1 and π2 be two a-cells in a diminished diagram ∆

connected by an a-band. Let ∆0 be the subdiagram consisting of π1, π2, and this a-band (see

Figure 10.1).

As an a-band consists only of (θ, a)-cells, the top and bottom of the a-band have equivalent

labels visually equal to a word H ∈ F (R).

So, Lab(∂∆0) ≡ uHvH−1 for some words u, v ∈ F (A). Note that for any rule θ correspond-

ing to a letter of H , the makeup of the a-band implies the existence of a (θ, a)-relation correspond-

ing to θ and an a-letter from the ‘special’ input sector. This then implies that the domain of θ in
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the ‘special’ input sector is nonempty, which in turn implies that the domain of θ in this sector is

the entire alphabet.

As a result, we can build a reduced annular diagram Γ′ over the canonical presentation of

M(M) with outer label uHvH−1, inner label uv, and made up entirely of (θ, a)-cells. Then, since

∆0 is a diagram over MΩ(M), we have uv = 1 in MΩ(M).

Figure 10.1: The subdiagram ∆0

Let Ψ be the diminished diagram over MΩ(M) with Lab(∂Ψ) ≡ uv given by Lemma 10.1.

Since ∂Ψ has no θ-edges and Ψ has no θ-annuli, Ψ must consist only of a-cells.

By van Kampen’s Lemma, we then have uv = 1 over B(A, n), so that Ψ must consist of

exactly one a-cell by the minimality of its signature. Pasting Ψ into the middle of Γ′ then yields a

reduced diagram Γ0 over MΩ(M) with contour label uHvH−1.

Let Γ be the reduced diagram obtained from ∆ by excising ∆0, pasting Γ0 in its place, and

making any necessary cancellations. Then Γ has the same contour label as ∆, one less a-cell, and

the same number of disks, (θ, t)-cells, and (θ, q)-cells. Hence, s(Γ) < s(∆), contradicting the

assumption that ∆ is diminished.

Note that Lemma 10.2 implies that a diminished diagram satisfying (M1) is minimal.

10.2 t-spokes

When considering diminished, minimal, or D-minimal diagrams in what follows, many argu-

ments rely on the q-bands corresponding to t-letters. To distinguish these from bands correspond-
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ing to other parts of the base, we adopt the convention of [18] and [25] and refer to them as t-bands.

Note that the top and the bottom of such a band are each labelled by a copy of the band’s history.

In a diminished, minimal, or D-minimal diagram, a maximal q-band with one end on a disk Π

is called a spoke of Π. A t-spoke is then defined in the natural way.

The pairs {t(2), t(3)}, . . . , {t(L − 1), t(L)}, {t(L), t(2)} are called adjacent t-letters. Two

t-spokes of the same disk are called consecutive if they correspond to adjacent t-letters.

Lemma 10.3. For i ∈ {2, . . . , L}, let C : A(i) → · · · → A(i) be a reduced computation

of M with history H . Then there exists a reduced diagram ∆ over MΩ(M) with contour label

H(0)−1WacH(0)W−1
ac , where H(0) is the copy of H in F (R) obtained by adding the subscript 0

to each letter.

Proof. Consider the factorization H ≡ H1 · · ·H` for ` ≥ 2 given by Lemma 6.12.

Define Hi(0) as the word in F (R) obtained from Hi by adding a subscript 0 to each letter. By

Lemma 7.5, for each 1 ≤ j ≤ `, there exists a trapezium ∆j with contour label

Hj(0)−1W
(zj)
j−1Hj(0)(W

(zj)
j )−1

where W (zj)
j is defined as in Lemma 6.12.

Recall that for 1 ≤ j ≤ ` − 1, W (zj)
j differs from W

(zj+1)
j only by the insertion/deletion of

words in L in the ‘special’ input sector, while W (z1)
0 ≡ W

(z`)
` ≡ Wac. Note that every word of L

represents the trivial element of B(A, n), so that L ⊂ Ω. For 1 ≤ j ≤ `− 1, let ∆̃j be the diagram

obtained from pasting the a-cell corresponding to this element of L to the top of ∆j , so that the

‘top’ label of ∆̃j is W (zj+1)
j .

Then, letting ∆̃` = ∆`, we may glue the top of ∆̃j to the bottom of ∆̃j+1. Letting ∆ be the

reduced diagram that results from these pastings, Lab(∂∆) ≡ H(0)−1WacH(0)W−1
ac .

Lemma 10.4. Let C : V0 → · · · → Vt be a reduced computation of M with history H and base

{t(i)}B3(i) for some i ∈ {2, . . . , L}. Suppose there exists an accepted configuration W0 such
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that W0(i) ≡ V0. Then there exists an accepted configuration Wt with Wt(i) ≡ Vt and a reduced

diagram ∆ over MΩ(M) with contour label H(0)−1W0H(0)W−1
t , where H(0) is the copy of H in

F (R) obtained by adding the subscript 0 to each letter.

Proof. Let H ≡ H1 . . . H` be the factorization such that each Hj is the history of a maximal

one-machine subcomputation.

For 1 ≤ j ≤ `, let Cj : Vy(j) → · · · → Vz(j) be the subcomputation with history Hj . Then, let

C ′j : W ′
y(j) → · · · → W ′

z(j) be the reduced computation in the standard base given by Lemma 6.9.

As in the proof of Lemma 6.19, note that W ′
z(j) may differ from W ′

y(j+1).

1. Suppose W0 is H1-admissible and ` = 1.

Then, there exists a reduced computation C ′ with initial configuration W0 and history H ≡ H1.

So, we may let Wt ≡ W0 ·H and ∆ be the trapezium corresponding to C ′ from Lemma 7.5.

2. Suppose W0 is H1-admissible and ` ≥ 2.

Without loss of generality, we may assume that W ′
y(1) ≡ W0, i.e C ′1 is a reduced computation

with initial configuration W0 and history H1.

Then W ′
z(1) is an accepted start or end configuration. By the construction of the computation

given in the proof of Lemma 6.9, W ′
y(2) is also an accepted configuration. Continuing in this way,

W ′
z(`) is an accepted configuration with W ′

z(`)(i) ≡ Vt, so that we may let Wt ≡ W ′
z(`).

For 1 ≤ j ≤ `, let ∆j be the trapezium corresponding to C ′j given by Lemma 7.5. Then, for

1 ≤ j ≤ `− 1, Lab(top(∆j)) ≡ W ′
z(j) and Lab(bot(∆j+1)) ≡ W ′

y(j+1) differ only by the insertion

of a word from L in the ‘special’ input sector. So, we may paste ∆j to ∆j+1 along an a-cell

corresponding to this difference.

The reduced diagram ∆ arising from these pastings then satisfies the statement.

3. Suppose W0 is not H1-admissible.

Let H ≡ H ′1H
′′
1 such that H ′1 is the maximal (perhaps empty) prefix for which W0 is H ′1-

admissible. Then for θ the first letter of H ′′1 , (W0 · H ′1)(i) is θ-admissible while W0 · H ′1 is not.

Lemma 6.13 then implies the following:
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(1) If C1 is a one-machine computation of the first machine, then there exists w ∈ L such that

W0 ·H ′1 ≡ J(w) ·H ′, where H ′ is the natural copy of w read right to left in the language of

positive rules with step history (1)1

(2) If C1 is a one-machine computation of the second machine, then there exists w ∈ L such

that W0 ·H ′1 ≡ I(w).

Let ‖H ′1‖ = r. Then by the construction given in Lemma 6.9, W ′
r ≡ I(w) · H ′ in case (1) or

W ′
r ≡ J(w) in case (2). Either way, Lemma 6.6 implies W ′

r is an accepted configuration. As a

result, every configuration of in C ′1 is accepted.

As in Step 2, as W ′
z(1) is accepted, W ′

y(2) (and so each configuration of C ′2) is accepted. Contin-

uing, this implies W ′
z(`) is accepted with W ′

z(`)(i) ≡ Vt, so that we may let Wt ≡ W ′
z(`).

Let ∆′1 be the trapezium corresponding to the reduced computation with initial configuration

W0 and history H ′1. Further, let ∆′′1 be the trapezium corresponding to the reduced computation

with initial configuration W ′
r and history H ′′1 .

Then, Lab(top(∆′1)) ≡ W0 · H ′1 and Lab(bot(∆′′1)) ≡ W ′
r differ by the insertion/deleetion of

an element of L in the ‘special’ input sector. Hence, we may construct a reduced diagram ∆1 by

pasting ∆′1 to ∆′′1 along an a-cell corresponding to this difference.

As in previous steps, we may then construct the reduced diagram ∆ satisfying the statement.

Lemma 10.5. Let ∆ be a D-minimal diagram over the disk presentation of GΩ(M). Suppose there

exist two disks Π1 and Π2 in ∆ so that Q1 and Q2 are consecutive t-spokes of both. Let Ψ be the

subdiagram bounded by the sides of Qi and the subpaths of ∂Πi such that Ψ does not contain Π1

or Π2. Then Ψ contains a disk.

Proof. Assume that Π1 and Π2 are hubs. Note that if either of these two bands has zero length,

then the two hubs are cancellable, contradicting the assumption that ∆ is reduced.

Arguing toward contradiction, suppose Ψ contains no disk.
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First, suppose the pair of adjacent t-letters corresponding to Q1 and Q2 is {t(i), t(i + 1)} for

some 2 ≤ i ≤ L− 1 (see Figure 10.2(a)).

By Lemma 10.1, there exists a diminished diagram Λ over MΩ(M) with Lab(∂Λ) ≡ Lab(∂Ψ).

Suppose there exists an a-cell π in Λ. Note that no edge of ∂Λ is labelled by an a-letter from

the ‘special’ input sector. So, by Lemmas 9.2 and 10.2, any a-band starting on ∂π must end on

a (θ, q)-cell in Λ. Further, by Lemma 9.1, the maximal q-band Q containing this (θ, q)-cell must

have two ends on ∂Λ. But the definition of the rules implies that Q corresponds to Q0(1)±1 while

no q-edge of ∂Λ corresponds to such a base letter.

Hence, Λ is a reduced diagram over M(M), so that Lemma 7.1 implies that Λ is a trapezium

with top and bottom labels A(i){t(i + 1)} (up to inversion). By Lemma 7.4, there exists a cor-

responding computation C : A(i) → · · · → A(i) with history H . Thus, Lemma 10.3 yields a

reduced diagram Γ1 over MΩ(M) with contour label H(0)−1WacH(0)W−1
ac .

(a) Adjacent t-letters are {t(i), t(i+ 1)} for 2 ≤ i ≤ L− 1

(b) Adjacent t-letters are {t(L), t(2)}

Figure 10.2: Lemma 10.5

The subdiagram Γ0 of Γ1 bounded by the two t-bands corresponding to t(i) and t(i + 1) has
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the same contour label as Λ, and so as Ψ. By cyclic permutation, we may assume that Γ0 can be

cut from Γ1 to produce a reduced diagram Γ over MΩ(M).

Let Ψ′ be the smallest subdiagram of ∆ containing Π1, Π2, Q1, and Q2. Then Lab(∂Ψ′) ≡

Lab(∂Γ). Hence, excising Ψ′ from ∆ and pasting Γ in its place reduces the number of hubs (and

so disks) by two, contradicting the assumption that ∆ is D-minimal.

Now suppose the adjacent t-letters corresponding toQ1 andQ2 are t(L) and t(2), respectively.

Then, the q-band Q3 starting on Π1 corresponding to the part {t(1)} must end on Π2. Let Ψ0 be

the subdiagram of Ψ bounded by Q1 and Q3 (see Figure 10.2(b)).

Let Λ0 be a reduced diagram over MΩ(M) given by Lemma 10.1, so that Λ0 satisfies (M2)

and Lab(∂Λ0) ≡ Lab(∂Ψ0). Then, as above, Λ0 must be a trapezium with top and bottom labels

A(L){t(1)}. Hence, Lemma 7.4 gives a corresponding computation C : A(L) → · · · → A(L), so

that we may repeat the argument above to reduce the number of hubs.

Finally, suppose Π1 and Π2 are not necessarily hubs. Then we can replace these disks with

reduced diagrams over G(M) consisting of a hub and a trapezium (as formed in Lemma 8.2). Let

∆̃ be the resulting reduced diagram, Π̃1 and Π̃2 be the two hubs, Q̃1 and Q̃2 be the consecutive

t-spokes at these hubs, and Ψ̃ be the subdiagram bounded by the sides of Q̃i and the contours of

Π̃i.

As ∆̃ and ∆ have the same number of disks and the same contour labels, ∆̃ is D-minimal.

Thus, the same arguments as outlined above can be applied to remove Π̃1 and Π̃2, yielding a

contradiction.

For each reduced diagram ∆ over the disk presentation of GΩ(M), there is a corresponding

planar graph Γ ≡ Γ(∆) defined by:

(1) V (Γ) = {v0, v1, . . . , v`} where each vi for i ≥ 1 corresponds to one of the ` disks of ∆ and

v0 is one exterior vertex

(2) For i, j ≥ 1, each shared t-spoke of the disks corresponding to vi and vj corresponds to an
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edge (vi, vj) ∈ E(Γ)

(3) For i ≥ 1, each t-spoke of the disk corresponding to vi which ends on ∂∆ corresponds to an

edge (v0, vi) ∈ E(Γ)

Note that the degree of each interior vertex of Γ is L− 1. The following statement is a conse-

quence of this fact and Lemma 10.5.

Lemma 10.6. (Lemma 3.2 of [17]) Suppose ∆ is a D-minimal diagram containing at least one

disk. Then ∆ contains a disk Π such that L − 4 consecutive t-spokes Q1, . . . ,QL−4 of Π end on

∂∆ and such that every subdiagram Γi bounded by Qi, Qi+1, ∂Π, and ∂∆ (i = 1, . . . , L − 5)

contains no disks.

Figure 10.3: Lemma 10.6

10.3 Transposition of a θ-band and a disk

We now describe a procedure, similar to the construction in Section 9.3, for moving a θ-band

about a disk.

Let ∆ be a D-minimal diagram containing a disk Π and a θ-band T subsequently crossing the

t-spokes Q1, . . . ,Q` of Π. Assume ` ≥ 2 is maximal for Π and T .
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First, suppose there are no other cells between Π and the bottom of T , i.e there is a subdiagram

formed by Π and T .

Let T ′ be the subband of T whose bottom path, s−1
1 , starts with the t-edge corresponding to

the start of Q1 and ends with that of Q`. Further, let s2 be the complement of s1 in ∂Π so that

∂Π = s1s2. Then as any sector of the standard base containing a t-letter has empty tape alphabet,

Lab(s2) is an admissible word.

Let W ≡ Lab(∂Π)±1, V ≡ Lab(s1), and θ be the rule corresponding to T . Further, let Γ be

the subdiagram formed by Π and T ′. Then, by Lemma 7.2, V −1 is θ-admissible with V −1 · θ ≡

Lab(ttop(T ′)) = Lab(top(T ′))

Suppose Lab(s2) is θ-admissible. Then W is θ-admissible, so that W · θ is a disk relator. Let Π̄

be a disk with contour labelled by W · θ. Let T ′′ be the auxiliary θ-band corresponding to θ whose

top is labelled by Lab(s2) · θ. Then, let Γ̄ be the diagram obtained from attaching T ′′ to Π̄. Finally,

let ∆̄ be the reduced diagram obtained from excising Γ from ∆ and pasting Γ̄ in its place, attaching

the first and last cells of T ′′ to the complement of T ′ in T and perhaps making cancellations in the

resulting θ-band. Note that ∆̄ has the same contour label as that of ∆.

(a) The subdiagram Γ (b) The resulting subdiagram Γ̄

Figure 10.4: The transposition of a θ-band with a disk

Conversely, suppose Lab(s2) is not θ-admissible. Then Lemma 6.13 applies to W , so that

Lab(s2) contains the ‘special’ input sector and would be θ-admissible with the insertion/deletion

of some un ∈ L. So, after attaching to Π an a-cell corresponding to un, we may construct the disk

Π̄ and the auxiliary θ-band T ′′ as above. Attaching the mirror a-cell on the other side of T ′′ then

produces a diagram ∆̄ with the same contour label as ∆.
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The procedure of excising Γ from ∆ to create ∆̄ is called the transposition of the disk Π and

the θ-band T in ∆.

Now, consider the situation where there are cells between the θ-band and the disk, each of

which is an a-cell.

Suppose the pair of adjacent t-letters corresponding to Q1 and Q2 is {t(i), t(i + 1)} for some

2 ≤ i ≤ L−1. Let T ′1 be the subband of T ′ betweenQ1 andQ2. Then, let Ψ be the subdiagram of

∆ bounded by T ′1 and ∂Π. By Lemma 10.1, there exists a diminished diagram Λ overMΩ(M) with

Lab(∂Ψ) ≡ Lab(∂Λ). Lemmas 9.2 and 10.2 then imply that Λ contains no a-cell, so that Lemma

7.1 implies that Λ consists of a single θ-band. Hence, by Lemma 7.2, W (i) is θ-admissible.

Otherwise, if the pair of adjacent t-letters is {t(L), t(2)}, then the same argument applies to the

subdiagram bounded by the t-band corresponding to t(L), the q-band corresponding to t(1), and

T ′. As a result, W (L) is θ-admissible.

As above, Lemma 6.13 then implies that, perhaps after attaching an a-cell, we may construct a

new disk and auxiliary band that, perhaps after attaching another a-cell, functions as the transpo-

sition of Π with T .

The reduced diagram ∆′ arising from the transposition has the number of disks and contour

label as ∆, and so is D-minimal.

However, the minimality of the 2-signature (and so the signature) need not be preserved by a

transposition. This is because many (θ, t)-cells may be added through transposition.

Note that the definition of transposition above differs from that in [18] and [25] only by the

presence of a-cells.

Lemma 10.7. (Compare with Lemma 7.5 of [18] and 7.7 of [25]) Let ∆ be a reduced diagram

over the disk presentation of GΩ(M) satisfying (M3).

(1) Suppose a θ-band T crosses ` t-spokes of a disk Π and there are no disks in the subdiagram

bounded by these spokes, T , and ∂Π. Then ` ≤ (L− 1)/2.

(2) Suppose T and T ′ are disjoint θ-bands crossing ` and `′ t-spokes, respectively, of a disk Π.
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Suppose further that every cell between the bottom of T (of T ′) and Π is an a-cell. Further,

suppose these bands correspond to the same rule θ if the history is read toward the disk.

Then `+ `′ ≤ (L− 1)/2.

(3) If S is a θ-annulus in ∆ and ∆S is the subdiagram bounded by the outer contour of S, then

∆S is a diagram over MΩ(M).

Figure 10.5: Lemma 10.7(2)

Proof. (1) Lemma 9.1 implies that there exists a θ-band T0 crossing all ` spokes such that the

only cells between it and Π are a-cells. If ` > (L − 1)/2, then the transposition of Π and T0 in

∆ then yields a diagram with the same contour label, the same number of disks, and strictly less

(θ, t)-cells. This contradicts the minimality of s2(∆).

(2) The transposition of T and Π removes ` (θ, t)-cells and adds (L− 1)− ` new (θ, t)-cells in

the resulting band. However, `′ of these cells form cancellable pairs with cells of T ′, so that it is

possible to cancel 2`′ cells. Hence, the change in the number of (θ, t)-cells is (L− 1)− 2`− 2`′,

so that the relation `+ `′ > (L− 1)/2 would contradict the minimality of s2(∆).

(3) Suppose ∆S contains a disk. Then, since ∆ is D-minimal, Lemma 10.6 gives a disk Π in

∆S with L−4 consecutive t-spokes that end on ∂∆S and such that the subdiagram of ∆S bounded

by these spokes contains no disks. But then taking L > 7, S and Π contradict (1).
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The following is an immediate consequence of Lemmas 9.3(2) and 10.7(3).

Lemma 10.8. A minimal diagram ∆ contains no θ-annuli.

The following statement gives a strengthened version of van Kampen’s Lemma for GΩ(M),

specifically for minimal diagrams.

Lemma 10.9. A word W over X represents the trivial element of GΩ(M) if and only if there exists

a minimal diagram ∆ such that Lab(∂∆) ≡ W .

Figure 10.6: Lemma 10.9

Proof. As in the proof of Lemma 10.1, the reverse direction is an immediate consequence of van

Kampen’s Lemma.

Let S5 be the set of words defining the disk relations of GΩ(M). Then, letting S1, . . . ,S4 be as

defined in the proof of Lemma 10.1, the partition of the relations S1 t · · · t S5 defines a grading

on the disk presentation of GΩ(M).

By the definition of the grading, a reduced graded diagram has minimal signature. So, the

strengthened version of van Kampen’s Lemma implies that for any wordW representing the trivial

element of GΩ(M), there exists a diminished diagram ∆ with Lab(∂∆) ≡ W .

Suppose ∆ is not minimal. As ∆ is diminished, Lemma 10.2 implies that it satisfies (M2). So,

∆ must not satisfy (M1), i.e it contains an a-cell π and a θ-band T such that for some s > 1
2
‖∂π‖,
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s maximal a-bands start on ∂π and cross T . Without loss of generality, we assume that π and T

are chosen so that s/‖∂π‖ is maximal amongst such pairs.

Enumerate these a-bands B1, . . . ,Bs based on where they cross T and let ∆0 be the subdiagram

containing each of these s bands which is bounded by a side of B1, a side of Bs, a subpath x of ∂π,

and the top of a subband T0 of T (see Figure 10.6).

As a-bands consist only of (θ, a)-cells, the sides of B1 and Bs consist only of θ-edges. So, any

q-edge of ∂∆0 must be part of the top of T0.

Suppose ∆0 contains a disk. By Lemma 10.6, there exists a disk Π in ∆0 with at least L− 4 t-

spokes ending on top(T0) such that there are no disks in the subdiagram bounded by these spokes.

But then the parameter choice L > 7 means that T0 and Π form a counterexample to Lemma

10.7(1).

So, as ∆0 contains no disks, any q-edge of ∂∆0 must mark the start of a maximal q-band which

has two ends on top(T1). But then this q-band bounds a (θ, q)-annulus with some subband of T0,

contradicting Lemma 9.1(1). So, Lemma 9.1(4) implies ∆0 contains no (θ, q)-cells.

As ∆0 satisfies (M2), each edge of x is the start of an a-band which ends on the top of T0, so

that this a-band crosses T . Hence, x consists entirely of the s edges of ∂π marking the start of

B1, . . . ,Bs.

By Lemmas 9.1 and 9.3, any maximal θ-band T ′0 of ∆0 connects the side of B1 to the side of

Bs, so that all s a-bands must cross this θ-band. Letting T ′ be the maximal θ-band of ∆ containing

T ′0 , the maximality of s/‖∂π‖ implies that B1, . . . ,Bs comprise all maximal a-bands starting on

∂π and crossing T ′. So, we may pass to T ′, assuming that T ′ = T is the θ-band chosen above.

As a result, T0 is the only maximal θ-band of ∆0.

So, any cell between bot(T0) and x must be an a-cell. Supposing such an a-cell exists, property

(M2) implies that each of the edges on its boundary marks the start of an a-band that must cross

T0, forming another counterexample to (M1). The maximality of s/‖∂π‖ then implies s = ‖∂π‖.

Since a-bands cannot cross, we may find a ‘minimal’ counterexample, i.e an a-cell with no cells

between it and bot(T0). Passing to this cell, we may assume without loss of generality that x−1 =
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bot(T0).

As a result, π may be transposed with T to produce a reduced diagram ∆̃ in which at most

‖∂π‖ − s < 1
2
‖∂π‖ maximal a-bands start on ∂π and cross the maximal θ-band arising from T .

Since the rest of the diagram remains unchanged throughout this process, ∆̃ is diminished and

contains one less counterexample to property (M1). Hence, iterating the process eliminates any

a-cell and θ-band violating property (M1), producing the desired minimal diagram.

Remark 10.1. The proof of Lemma 10.9 corresponds to the following sharper statement: A word

W over X represents the trivial element of GΩ(M) if and only if there exists a diminished dia-

gram ∆ satisfying (M1) such that Lab(∂∆) ≡ W . However, the statement above suffices for our

purposes.

Lemma 10.9 immedately implies the following strengthened version of van Kampen’s Lemma

for M -minimal diagrams.

Lemma 10.10. A word W over X represents the trivial element of MΩ(M) if and only if there

exists an M -minimal diagram ∆ such that Lab(∂∆) ≡ W .

10.4 Quasi-trapezia

Next, the concept of trapezium is generalized to the setting of minimal diagrams over GΩ(M).

A quasi-trapezium is a minimal diagram defined in much the same way as an a-trapezium (see

Section 9.4) except that it is permitted to contain disks. In other words, a quasi-trapezium is a

minimal diagram whose boundary can be factored as p−1
1 q1p2q−1

2 , where each pi is the side of a

q-band and each qi is the maximal subpath of the side of a θ-band where the subpath starts and

ends with a q-edge.

The (step) history of a quasi-trapezium is defined in the same way as for an a-trapezium, as are

the base, the height, and the standard factorization.
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Note that a quasi-trapezium containing no disks is an a-trapezium, while one without any disks

or a-cells is a trapezium.

Indeed, an a-trapezium is necessarily a quasi-trapezium. To see that an a-trapezium satisfies

(M3), note that Lemmas 9.1 and 9.3 imply that in any minimal diagram with the same contour

label, any maximal θ-band must cross each maximal q-band exactly once.

Lemma 10.11. Suppose Γ is a reduced diagram overMΩ(M) with contour p−1
1 q1p2q−1

2 where each

pj is the side of a q-band and each qj is the maximal subpath of the side of a θ-band that starts and

ends with a q-letter. Then there exists a minimal diagram Γ′ over MΩ(M) such that:

(1) ∂Γ′ = (p′1)−1q′1p′2(q′2)−1, where Lab(p′j) ≡ Lab(pj) and Lab(q′j) ≡ Lab(qj) for j = 1, 2

(2) there exists a simple path s1 (respectively s2) connecting the vertices (p′1)− and (p′2)− (re-

spectively the vertices (p′1)+ and (p′2)+) such that

(a) (p′1)−1s1p′2s−1
2 is the standard factorization of the boundary of an a-trapezium Γ2 and

(b) any cell above s2 or below s1 is an a-cell.

Proof. By Lemma 10.9, there exists a minimal diagram Γ′ with Lab(∂Γ′) ≡ Lab(∂Γ). Then ∂Γ′

can be factored as in (1).

Every q-edge of q′j gives rise to a maximal q-band of Γ′. Suppose such a band Q starts and

ends on q′j and consider the subdiagram ∆ bounded by a side of Q and q′j . Since q-bands are

comprised entirely of (θ, q)-cells, the side ofQ contains θ-edges that give rise to maximal θ-bands

in ∆. Lemma 9.1 then implies that no such θ-band can have both ends on the side of Q, so that it

must end on q′j . But q′j contains no θ-edge since Lab(q′j) ≡ Lab(qj).

Hence, by Lemma 9.1, every maximal q-band in Γ′ connects an edge of q′1 with an edge of q′2.

Now suppose a maximal θ-band of Γ′ has two ends on p′j . Then, as no two θ-bands can cross,

there exists a θ-band connecting adjacent θ-letters of p′j (with perhaps a-letters between them).

Then, the corresponding θ-edges of pj in Γ are mutually inverse adjacent θ-edges, so that the
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corresponding cells of the q-band with side pj are cancellable. But this contradicts the assumption

that Γ is reduced.

Hence, by Lemma 10.7(3), every maximal θ-band in Γ′ connects an edge of p′1 with an edge of

p′2, and so we can enumerate them from bottom to top T1, . . . , Th for h = |pj|.

LetQ1 be the maximal q-band of Γ such that p1 = top(Q1) and letQ′1 be the maximal q-band

of Γ′ starting at the first letter of q′1. Then Q1 and Q′1 must correspond to the same base letter.

Moreover, since every maximal θ-band must cross Q′1 exactly once, Q1 and Q′1 must have the

same history. So, Lab(top(Q′1)) ≡ Lab(p′1).

As Γ′ is minimal, any cell between top(Q′1) and p′1 must be a (θ, a)-cell. But removing any

such cell from Γ′ does not affect the minimality of Γ′. Hence, we may assume that top(Q′1) = p′1.

By an analogous argument, lettingQ′2 be the maximal q-band of Γ′ starting at the final letter of

q′1, we may assume that bot(Q′2) = p′2.

Now let s1 = bot(T1) and s2 = top(Th). By definition, (2a) is satisfied.

Further, as there is no maximal θ-band above Th or below T1, there can be no (θ, q)- or (θ, a)-

cells above s2 or below s1. Thus, (2b) is satisfied.

Lemma 10.12. Let Γ be a quasi-trapezium with standard factorization of its contour p−1
1 q1p2q−1

2 .

Then there exists a reduced diagram Γ′ such that:

(1) ∂Γ′ = (p′1)−1q′1p′2(q′2)−1, where Lab(p′j) ≡ Lab(pj) and Lab(q′j) ≡ Lab(qj) for j = 1, 2

(2) the number of disks in Γ′ is the same as the number of disks in Γ

(3) there exists a simple path s1 (respectively s2) connecting the vertices (p′1)− and (p′2)− (re-

spectively (p′1)+ and (p′2)+) such that

(a) (p′1)−1s1p′2s−1
2 is the standard factorization of the boundary of an a-trapezium Γ2 and

(b) any cell above s2 or below s1 is a disk or an a-cell
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(4) there exists m ∈ N such that any maximal θ-band of Γ contains m (θ, t)-cells and any

maximal θ-band of Γ2 contains m (θ, t)-cells.

Proof. By Lemmas 9.1 and 10.7(3), every maximal θ-band of Γ must connect an edge of p1 with an

edge of p2. So, we can enumerate these bands from bottom to top as T1, . . . , Th for h = |p1| = |p2|.

Choose i such that the number of (θ, t)-cells in Ti, m, is minimal. Note that Γ has at least hm

(θ, t)-cells.

If Γ contains a disk, then by Lemma 10.6 there exists a disk Π1 such that at least L − 4 of its

t-spokes end on q1 or on q2. By Lemma 10.7(1), at least L − 4 − (L − 1)/2 ≥ 2 of these spokes

must end on q1 (on q2). So, for any j ∈ {1, . . . , h}, the number of t-spokes of Π1 crossing Tj is at

least 2.

Fix j1 ∈ {1, . . . , h− 1} such that Π1 lies between Tj1 and Tj1+1.

If j1 ≥ i (i.e Π1 lies above Ti), then move Π1 upwards by transposing it with Tj1+1. Then

iterate this process, moving the resulting disk upward until it is transposed with Th.

If j1 < i, then move Π1 down in the same way until the corresponding disk is transposed with

T1.

Let Λ′1 be the reduced diagram resulting from this process and Π′1 be the disk arising from Π1.

As Λ′1 is formed by a sequence of transpositions, Λ′1 has the same contour label and number of disks

as does Γ, and so must be D-minimal. Factor ∂Λ′1 = u−1
1 b′1v1(t′1)−1, where Lab(u1) ≡ Lab(p1),

Lab(v1) ≡ Lab(p2), Lab(b′1) ≡ Lab(q1), and Lab(t′1) ≡ Lab(q2).

Enumerate the maximal θ-bands of Λ′1 as S ′1, . . . ,S ′h from bottom to top. Then, letting Λ1

be the subdiagram of Λ′1 given by removing Π′1, we may factor ∂Λ1 = u−1
1 b1v1t−1

1 such that

b1 = tbot(S ′1) and t1 = ttop(S ′h).

If Λ1 contains a disk, then Lemma 10.6 may be applied to yield a disk Π2 such that L− 4 of its

t-spokes end on b1 or on t1. Fix j2 ∈ {1, . . . , h− 1} such that Π2 lies between S ′j2 and S ′j2+1.

Suppose at least two t-spokes of Π2 end on each of b1 and t1. Then we repeat the argument

above, moving Π2 above S ′h if j2 ≥ i or below S ′1 if j2 < i.

Next, suppose that at most one t-spoke of Π2 in Λ1 ends on b1. Then, there is a set T ′2 of at least
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L− 5 t-spokes of Π2 in Λ1 such that each ends on t1. Note that there is a natural bijection between

T ′2 and a subset T2 of the t-spokes of Π2 in Γ. As each t-spoke of T ′2 ends on t1, each t-spoke in T2

either ends on q2 or on Π1. Since Γ satisfies (M3), at most (L − 1)/2 t-spokes of Π2 cross Tj2+1,

so that at least one of the t-spokes of T2 does not cross Tj2+1. This spoke must end on Π1, so that

Π1 must lie below Tj2+1. Hence, j2 ≥ j1 ≥ i. In this case, move Π2 up by transpositions until it is

above S ′h.

Finally, if at most one t-spoke of Π2 in Λ1 ends on t1, then the symmetric argument to the one

above yields j2 ≤ j1 < i. In this case, move Π2 down by transpositions until it is below S ′1.

In each case, let Λ′2 be the diagram resulting from applying the corresponding transposi-

tions to Λ′1. Further, let Π′2 be the disk arising from Π2. Then Λ′2 must be D-minimal. Factor

∂Λ′2 = u−1
2 b′2v2(t′2)−1 such that Lab(u2) ≡ Lab(u1), Lab(v2) ≡ Lab(v1), Lab(b′2) ≡ Lab(b′1),

and Lab(t′2) ≡ Lab(t′1). Let Λ2 be the subdiagram of Λ′2 given by removing Π′2 and enumerate

the maximal θ-bands in Λ′2 as S ′′1 , . . . ,S ′′h . Then, we may factor ∂Λ2 = u−1
2 b2v2t−1

2 such that

b2 ≡ tbot(S ′′1 ) and t2 = ttop(S ′′h).

This process can then be iterated moving every disk above the top θ-band or below the bottom

θ-band.

The resulting reduced diagram Γ′′ satisfies Lab(∂Γ′′) ≡ Lab(∂Γ). Enumerating the maximal

θ-bands of Γ′′ as T ′′1 , . . . , T ′′h , these θ-bands bound a subdiagram Γ′′2 of Γ′′ containing no disks and

such that every cell of Γ′′ \ Γ′′2 is a disk.

Note that the transpositions performed to obtain Γ′′ do not alter the side q-bands. So, identifying

these q-bands with those in Γ, ∂Γ′′2 = p−1
1 bot(T ′′1 )p2top(T ′′h )−1. Hence, we may apply Lemma

10.11 to Γ′′2, yielding a minimal diagram Γ′2.

Factor ∂Γ′2 as (p′1)−1q′1p′2(q′2)−1 such that Lab(pj) ≡ Lab(p′j). Further, let s1 and s2 be the sim-

ple paths such that the subdiagram Γ2 of Γ′2 with contour (p′1)−1s1p′2s−1
2 is a minimal a-trapezium.

Pasting Γ′2 in place of Γ′′2 in Γ′′ and making any necessary cancellations then produces a reduced

diagram Γ′ satisfying (1) and (3).

In passing from Γ to Γ′, no disks are added. So, since Γ is minimal, (2) must be satisfied.
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By Lemmas 9.1(1) and 10.8, Γ contains no (θ, q)-annuli or θ-annuli. As no such annulus can be

created through a transposition, it follows that every maximal q-band of Γ′′2 crosses every maximal

θ-band exactly once.

Since the θ-band Ti did not participate in any of the transpositions in the construction of Γ′′,

the resulting maximal θ-band T ′′i in Γ′′2 also contains m (θ, t)-cells. Hence, there are exactly hm

(θ, t)-cells in Γ′′2.

The minimality of Γ2 then implies that it contains at most hm (θ, t)-cells. But Γ is a minimal

diagram containing at least hm (θ, t)-cells, so that both Γ and Γ2 must contain exactly hm (θ, t)-

cells.

As Γ contains h maximal θ-bands and each contains at least m (θ, t)-cells, each of these θ-

bands must contain exactly m (θ, t)-cells. Conversely, by Lemmas 9.1 and 10.8, each maximal

θ-band of Γ2 must contain the same number of (θ, t)-cells, which again must be m.

Remark 10.2. The concept of D-minimal diagram is introduced in this paper specifically to aid in

the iterative step in the proof of Lemma 10.12. It is necessary for this goal as it is both sufficient

as a hypothesis for Lemma 10.6 and preserved under transposition (whereas, for example, (M3)

satisfies the first condition but not the second).

10.5 Shafts

We now introduce a concept that, as it was in [18] and [25], will be used to define a valuable

measure on minimal diagrams.

Let Π be a disk contained in a minimal diagram and B be a t-spoke of Π. Suppose there

is a subband C of B starting on Π whose history H contains a controlled subword. For W the

configuration corresponding to Lab(∂Π), suppose W (i) is H-admissible for i ≥ 2. Then the

t-band C is called a shaft of Π.

Note that this definition differs from that used in previous sources (for example, [18] and [25]),

where it was required that W be H-admissible. The change here is to allow for ‘flexibility’ in the
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‘special’ input sector, as W (1) need not be H-admissible.

For a disk Π, a shaft C of Π is called a λ-shaft of Π if for every factorization H ≡ H1H2H3

satisfying ‖H1‖+‖H3‖ ≤ λ‖H‖, H2 contains a controlled subword. Note that a shaft is a 0-shaft.

The following is an adaptation of Lemma 7.8 of [18] and Lemma 7.11 of [25] to this setting.

Lemma 10.13. Let Π be a disk in a minimal diagram ∆ and C be a λ-shaft at Π with history H .

Then C has no factorization C = C1C2C3 such that

(1) the sum of the lengths of C1 and C3 do not exceed λ‖H‖ and

(2) ∆ contains a quasi-trapezium Γ such that the bottom (or top) of Γ has L t-edges and C2

starts on the bottom and ends on the top of Γ.

Proof. Assuming toward contradiction, let Hi be the history of the subband Ci for i ∈ {1, 2, 3}.

Then, let ∆̃ be the reduced diagram obtained from ∆ by replacing Γ with the reduced diagram Γ′

given in Lemma 10.12 and let Γ2 be the minimal a-trapezium contained in Γ′.

Lemma 10.12(4) implies that the base of Γ2 also contains L t-letters. Moreover, as the side

labels of Γ2 and Γ are the same, Γ2 has history H2.

By the definition of λ-shaft, H2 must contain a controlled subword H ′. So, Lemmas 6.7 and

7.2 imply that the base of Γ2 must be reduced. Hence, assuming without loss of generality that the

bottom (or top) label of Γ2 starts and ends with one of its L t-letters, Γ2 is a big a-trapezium.

Let Λ be the minimal diagram obtained from Γ2 by removing one of the side t-bands. So, Λ is

an a-trapezium whose base B is a cyclic permutation of the standard base (or its inverse). Let Λ′

be the subdiagram of Λ that is an a-trapezium with base B and history H ′. Then, let Λ1 and Λ2 be

the two subdiagrams of Λ obtained by cutting along bot(Λ′).

Let W be the configuration corresponding to ∂Π. By the definition of shaft, W (i) is H-

admissible for i ≥ 2. So, by Lemma 10.4, there exists an accepted configuration V and a reduced

diagram Ψ over MΩ(M) with Lab(∂Ψ) ≡ H(0)−1WH(0)V −1, where H(0) ∈ F (R) is the word

obtained by adding the subscript 0 to every letter of H .
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Recall that Ψ is constructed by pasting together trapezia corresponding to one-machine compu-

tations in the standard base along a-cells in the ‘special’ input sector. So, any subdiagram bounded

by two consecutive maximal q-bands not corresponding to the ‘special’ input sector is a trapezium.

As such, we may view Ψ as an a-trapezium (though it may not be M -minimal), referring to its

base, history, etc.

Since every rule locks the Q4(L){t(1)}-sector, cutting Ψ along the appropriate q-band and

pasting the sides together produces such a diagram so that the base of any maximal θ-band is B±1.

Perhaps taking the mirror then produces a reduced diagram Ψ0 with base B.

Let Ψ′′ be the subdiagram of Ψ0 bounded by the maximal θ-bands corresponding to the history

H2. Similarly, let Ψ′ be the subdiagram of Ψ′′ corresponding to the history H ′.

As computations with controlled history are one-machine, Ψ′ is a trapezium. Let Ψ1, Ψ2 be the

two subdiagrams of Ψ′′ obtained by cutting along bot(Ψ′), with the ‘bottom’ of Ψ1 corresponding

to the ‘bottom’ of Ψ′′.

By Lemma 6.7, Lab(bot(Λ′)) ≡ Lab(bot(Ψ′)), so that Lab(top(Ψ1)) ≡ Lab(top(Λ1)) and

Lab(bot(Ψ2)) ≡ Lab(bot(Λ2)). Further, as the histories of the side q-bands of Ψj are the same as

those of the side q-bands of Λj , Ψj and Λj have the same side labels.

Lemma 9.4 then implies that Lab(bot(Λ)) and Lab(bot(Ψ′′)) (or Lab(top(Λ)) and Lab(top(Ψ′′)))

differ only by their projection to the ‘special’ input sector. Gluing together the common contours

of Ψj and Λj , it then follows that these differences correspond to a-relations.

1. Suppose ‖H1‖+ ‖H3‖ = 0.

Then Λ and Π have a common edge, so that they form a subdiagram ∆′ of ∆̃. Perhaps adding

two pairs of cancellable a-cells to ∆′, we obtain a (perhaps unreduced) diagram ∆′0 with the same

contour label as ∆′ and containing a subdiagram ∆′′0 such that Lab(∂∆′′0) = V ±1 in F (X ) and the

complement of ∆′′0 in ∆′0 consists of at most two a-cells (see Figure 10.7(a)).

Since V is accepted, there exists a disk relation corresponding to V . So, we can replace ∆′′0 in

∆′0 with one disk, producing the diagram ∆′1.

Let ∆̃1 be the reduced diagram obtained by excising ∆′ from ∆̃, pasting ∆′1 in its place, and
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making any necessary cancellations. Then the number of disks in ∆̃1 is at most the number in ∆̃,

while the number of (θ, t)-cells is strictly smaller.

By Lemma 10.12, ∆̃ and ∆ have the same number of disks and (θ, t)-cells. But then s2(∆̃1) <

s2(∆), contradicting the minimality of ∆.

(a) The subdiagram ∆′′0 if ‖H1‖+ ‖H3‖ = 0 (b) The construction of ∆̃′′

Figure 10.7: Lemma 10.13

2. Suppose ‖H1‖+ ‖H3‖ > 0.

Let Ψ′′1 be the subdiagram of Ψ0 with base B and history H1, so that top(Ψ′′1) = bot(Ψ1).

Let E be the diagram obtained by attaching the appropriate a-cell to the top of Ψ′′1 so that the

top label is the same as that of bot(Λ1). Further, let ∃ be the mirror image of E and ∃E be the

diagram fomed by gluing ∃ to E along the bottom of Ψ′′1. Note that there are at most λ‖H‖(L− 1)

(θ, t)-cells in ∃. Then let ∆̃′′ be the (unreduced) diagram obtained from ∆̃ by gluing the proper

components of ∃E to the bottom of Λ and along C1 (see Figure 10.7(b)).

Let ∆′ be the subdiagram of ∆̃′′ formed by Π, C1, Λ, and the components of E. As in the

previous case, we may replace ∆′ with a diagram made of one disk and perhaps some new a-cells.

After necessary cancellations, the resulting reduced diagram ∆̃1 at most as many disks as ∆̃′′,

and so the same number as ∆̃. In passing to this diagram, we added at most λ‖H‖(L − 1) (θ, t)-
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cells from ∃, while removing at least ‖H2‖(L− 1) ≥ (1− λ)‖H‖(L− 1) (θ, t)-cells of Λ.

Taking λ < 1/2, it follows that ∆̃1 has less (θ, t)-cells than ∆̃. Thus, as in the previous case,

Lemma 10.12 implies that s2(∆̃1) < s2(∆), contradicting the minimality of ∆.

10.6 Designs on a Disk

In this section, we recall the measure on minimal diagrams, first introduced in [18], that was

alluded to in Section 10.5.

Let D be a disk in the Euclidean plane, T be a finite set of disjoint chords, and Q be a finite set

of disjoint simple curves in D, called arcs (as to differentiate them from the chords).

Assume that arcs belong to the open disk D◦ and that each chord crosses any arc transversely

and at most one, with the intersection not coming at either of the arc’s endpoints.

With these assumptions, the pair (T,Q) is called a design on the disk.

The length of an arc C ∈ Q, denoted |C|, is the number of chords crossing it. Subarcs are

defined in the natural way, so that the inequality |D| ≤ |C| is clear for D a subarc of C.

An arc C1 is parallel to an arc C2, denoted C1 ‖ C2, if every chord crossing C1 also crosses C2.

Note that this relation is reflexive and transitive, but not symmetric.

For λ ∈ (0, 1/2) the parameter listed in Section 4.3 and m a positive integer, a design (T,Q) is

said to satisfy property P (λ,m) if for any collection of m distinct arcs C1, . . . , Cm ∈ Q, there are

no subarcsD1, . . . , Dm, respectively, such that |Di| > (1−λ)|Ci| for all i andD1 ‖D2 ‖ . . . ‖Dm.

For a design (T,Q), define the length of Q, `(Q), to be `(Q) =
∑
C∈Q
|C|.

Lemma 10.14. (Lemma 8.2 of [18]) There is a constant c dependant on λ and m such that for any

design (T,Q) satisfying property P (λ,m), `(Q) ≤ c(#T).

Let ∆ be a minimal diagram and Q be a t-spoke of a disk Π in ∆. Let QΠ be the subband of

Q which is a λ-shaft at Π of maximal length. Then, define σλ(∆) as the sum of the lengths of the

λ-shafts QΠ for all disks Π and t-spokes Q.
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If ∆ is a minimal diagram, then identify ∆ with a disk and construct the design (T,Q) as

follows: Let the middle lines of maximal θ-bands be the chords and the middle lines of maximal

λ-shafts be the arcs.

Note that there is a subtle hindrance to this construction: If a maximal t-spoke connects two

disks, then it may contain a λ-shaft at each disk, and these λ-shafts may overlap. However, this

issue can be remedied simply by ‘making room’ in the spoke for both arcs to fit and be disjoint.

Note that the length |C| of an arc with respect to this design is the number of cells in the λ-shaft

and #T = 1
2
|∂∆|θ ≤ 1

2
|∂∆| since every maximal θ-band ends twice on ∂∆.

Lemma 10.15. (Lemma 8.5 of [18]) If ∆ is a minimal diagram, then σλ(∆) ≤ C1|∂∆|θ ≤ C1|∂∆|.

Proof. By Lemma 10.14 and the parameter choices C1 >> L >> λ−1, it suffices to prove that the

design (T,Q) satisfies Property P (λ, 2L− 1).

Arguing toward contradiction, there are 2L − 1 maximal λ-shafts C1, . . . , C2L−1 such that for

some subband D of C1, |D| > (1−λ)|C1| and every maximal θ-band crossing D also crosses each

of C2, . . . , C2L−1. So, since at most two of these λ-shafts correspond to any particular t-spoke, each

of the θ-bands crossing D crosses at least L t-bands.

But then the λ-shaft C1 crosses a quasi-trapezium of height |D| > (1− λ)|C1| whose base has

at least L t-letters, contradicting Lemma 10.13.
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Chapter 11

Upper bound on the weight of minimal diagrams

11.1 Weakly minimal diagrams

The goal in this section is to bound the G-weight of all minimal diagrams ∆ in terms of |∂∆|2.

In light of Lemma 9.19, it suffices to restrict our attention to minimal diagrams containing disks.

However, it proves necessary to consider a larger class of diagrams over the disk presentation of

GΩ(M), called weakly minimal.

Let ∆ be a reduced diagram over the disk presentation of GΩ(M) which contains a disk. Then,

let C be a cutting q-band of ∆, i.e C ends twice on the boundary of ∆. Then C is called a stem band

if it is either a rim band of ∆ or both components of ∆ \ C contain disks. The unique maximal

subdiagram of ∆ satisfying the property that every cutting q-band is a stem band is called the stem

of ∆ and denoted ∆∗.

Figure 11.1: The stem of a reduced diagram ∆ containing disks

If C is a cutting q-band that is not a stem band, then exactly one component Γ of ∆\C contains

no disks. In this situation, the cells of Γ are called crown cells. Note that one can construct ∆∗

from ∆ simply by cutting off all of the crown cells.
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Finally, a reduced diagram ∆ over the disk presentation of GΩ(M) which contains a disk is

called weakly minimal if:

(WM1) for any a-cell π and any θ-band T , at most half of the edges of ∂π mark the start of an a-band

that crosses T ,

(WM2) no maximal a-band ends on two different a-cells, and

(WM3) its stem ∆∗ is a minimal diagram.

Note that conditions (WM1) and (WM2) are identical to conditions (MM1) and (MM2) in

the definition of M -minimal (see Section 9.1). As a result, any subdiagram of a weakly minimal

diagram which contains no disks is M -minimal.

Conversely, any minimal diagram containing a disk is weakly minimal.

Lemma 11.1. (Compare to Lemma 9.3 of [18] and Lemma 7.17 of [25])

(a) If ∆1 is a subdiagram of a weakly minimal diagram ∆ and contains a disk, then ∆1 is weakly

minimal, ∆∗1 ⊂ ∆∗, and σλ(∆∗1) ≤ σλ(∆
∗).

(b) For every weakly minimal diagram ∆, σλ(∆∗) ≤ C1|∂∆|.

(c) A weakly minimal diagram ∆ contains no θ-annuli.

(d) Let C be a cutting q-band of a reduced diagram ∆ over the disk presentation of GΩ(M) and

let ∆1, ∆2 be the components of ∆ \ C. Suppose ∆1 ∪ C is M -minimal (over MΩ(M)) and

∆2 ∪ C is weakly minimal. Then ∆ is weakly minimal.

Proof. (a) Let π be a crown cell of ∆ contained in ∆1. Then there exists a cutting q-band Q

separating π from all disks of ∆. The intersection of Q with ∆1 is a cutting q-band separating π

from all disks of ∆1, so that π is a crown cell of ∆1. Consequently, ∆∗1 ⊂ ∆∗, and hence ∆∗1 is

minimal being a subdiagram of a minimal diagram.
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By definition, every maximal λ-shaft C1 of ∆∗1 is contained in a maximal λ-shaft C of ∆∗. The

length of C1 is then at most as large as the length of C, so that σλ(∆∗1) ≤ σλ(∆
∗).

(b) Suppose C is a cutting q-band that is not a stem band and set ∆1, ∆2 as the components of

∆ \ C. Then, one of ∆1 or ∆2, say ∆1, is diskless.

Figure 11.2: Lemma 11.1(b)

Let s1 be the portion of ∂∆1 shared with ∂∆ and set ∂∆ = s1s2. By Lemma 9.1, every maximal

θ-band of ∆1∪C intersects C at most once. So, for every θ-edge on the side of C, there is a maximal

θ-band of ∆1 ∪ C with one end on this edge and one end on s1.

So, letting ` be the number of θ-edges of s1, Lemma 8.1(b) implies |s1| ≥ ` = |bot(C)| =

|top(C)|. Hence, for ∆′ = ∆2 ∪ C = ∆ \ ∆1, Lemma 8.1(c) implies |∂∆′| ≤ |s2| + |top(C)| ≤

|s2|+ |s1|.

But s2 starts and ends with q-letters, so that |s2|+ |s1| = |∂∆|.

Iterating this process, |∂∆∗| ≤ |∂∆|.

Thus. the statement is a consequence of Lemma 10.15.

(c) Lemma 9.3(2) implies that no θ-annulus can be contained in a crown of ∆. Since ∆∗ is

minimal, Lemma 10.8 implies that no θ-annulus can be contained in ∆∗.

Thus, the statement follows from Lemma 9.1, as no θ band can cross a rim q-band of ∆∗ twice.

(d) Suppose there exists a counterexample to (WM1) in ∆ and fix j ∈ {1, 2} such that the a-cell
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π is contained in ∆j . Let Tj be the maximal subband of T contained in ∆j . Then, since a-bands

cannot cross q-bands, π and Tj form a counterexample to (WM1) in ∆j . But this contradicts the

M -minimality of ∆1 or the weak minimality of ∆2.

Similarly, any counterexample to (WM2) in ∆ must be contained entirely in ∆1 or ∆2, leading

to a contradiction.

Finally, it is clear from the definition that ∆∗ = (∆2 ∪ C)∗, and so is minimal.

11.2 Definition of the minimal counterexample and cloves

The objective of the rest of this section is to exhibit an upper bound for the G-weight of a

weakly minimal diagram in terms of its perimeter. In particular, we will prove that for any weakly

minimal diagram Γ, the inequality

wtG(Γ) ≤ N4(|∂Γ|+ σλ(Γ
∗))2 +N3µ(Γ)

holds for large enough choices of the parameters N4 and N3. The proof of this follows a similar

path as that presented in Section 7 of [25] and Section 9 of [18] (taking F (x) = x2 and g(x) = x

in that setting).

Let ∆ be a ‘minimal counterexample’ diagram with respect to |∂∆| + σλ(∆
∗), i.e a weakly

minimal diagram satisfying

wtG(∆) > N4(|∂∆|+ σλ(∆
∗))2 +N3µ(∆)

while for any weakly minimal diagram Γ such that |∂Γ|+ σλ(Γ
∗) < |∂∆|+ σλ(∆

∗), we have

wtG(Γ) ≤ N4(|∂Γ|+ σλ(Γ
∗))2 +N3µ(Γ)

As with Lemma 9.13, the following statement is an immediate consequence of the inductive hy-
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pothesis.

Lemma 11.2. Let π be an a-cell contained in ∆. Suppose ∂π has a subpath s shared with ∂∆.

Then ‖s‖ ≤ 2
3
‖∂π‖.

Since ∆∗ contains every disk of ∆ and is minimal, ∆ is a D-minimal diagram. So, Lemma

10.6 guarantees that it contains a disk Π with L− 4 consecutive t-spokesQ1, . . . ,QL−4 ending on

∂∆ and bounding L− 5 diskless subdiagrams (see Figure 10.3).

For 1 ≤ i < j ≤ L− 4, the subdiagram of ∆ bounded by ∂Π, Qi, and Qj (and not containing

Π) is called a clove and is denoted Ψij . The maximal clove Ψ1,L−4 is simply denoted Ψ.

Lemma 11.3. (Compare to Lemma 9.5 of [18] and Lemma 7.19 of [25]) Let T be a quasi-rim

θ-band in ∆. Then the base of T has length s > K.

Proof. Assume toward contradiction that T is a quasi-rim θ-band with base of length s ≤ K.

Then, define ∆′ and ∆′′ as in the proof of Lemma 9.16. As in that setting, ∆′′ satisfies (WM1) and

(WM2) and |∂∆′′| ≤ |∂∆| − 1.

As ∆′ is a subdiagram of ∆, Lemma 11.1(a) implies that it is weakly minimal with σλ((∆′)∗) ≤

σλ(∆
∗).

Since the diagram ∆′′ is formed from ∆′ through the addition of a-cells, the 2-signatures of

(∆′)∗ and (∆′′)∗ are equal. Hence, ∆′′ is a weakly minimal diagram.

Further, every λ-shaft of (∆′′)∗ is at most as long as the corresponding λ-shaft of ∆∗, so that

σλ((∆
′′)∗) ≤ σλ(∆

∗). Consequently, |∂∆′′|+σλ((∆′′)∗) ≤ |∂∆|+σλ(∆∗)−1, and so the inductive

hypothesis may be applied to ∆′′.

Thus, the proof of Lemma 9.16 adapts naturally to this setting, providing a contradiction.

11.3 Properties of the cloves of ∆

The following statement is an adaptation of Lemma 9.14 to this setting and is proved in exactly

the same way.
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Lemma 11.4. (1) ∆ has no two disjoint subcombs Γ1 and Γ2 contained in Ψ with basic widths

at most K and handles B1 and B2 such that some ends of these handles are connected by a

subpath x of ∂∆ with |x|q ≤ c0.

(2) If Γ is a subcomb of ∆ contained in Ψ with basic width s ≤ K, |∂Γ|q = 2s.

Lemma 11.5. Any subcomb of ∆ contained in Ψ has basic width at most K0.

Proof. Assume toward contradiction that there exists a subcomb of ∆ contained in Ψ with basic

width s > K0. Then, using Lemma 11.3, an identical proof to the one presented in Lemma 9.9

implies that there exists a tight subcomb Γ of ∆ contained in Ψ.

Further, an analogous proof to that presented in Lemma 9.15 implies that any subcomb of Γ

has height greater than `′/2. Indeed, other than switching the parameters and using Lemma 11.4 in

place of Lemma 9.16, the only necessary alteration to the proof of Lemma 9.15 is in the application

of the inductive hypothesis, where we must use the inequality σλ((∆′)∗) ≤ σλ(∆
∗) arising from

Lemma 11.1(a).

But then similar analogues of Lemmas 9.17-9.19 yield a contradiction in the same way. Only

one major alteration is needed: In the adaptation of Lemma 9.19, the diagram ∆0 is weakly mini-

mal by Lemma 11.1(d) and satisfies σλ(∆∗0) = σλ(∆
∗) since the handle of the tight subcomb Γ is

a non-stem cutting q-band.

Remark 11.1. The reason for our consideration of weakly minimal diagrams in this section is

revealed in the proof of Lemma 11.5: The adaptation of Lemma 9.19 relies on Lemma 11.1(d),

whose statement fails if one replaces ‘weakly minimal’ with ‘minimal’.

Lemma 11.6. (Compare with Lemma 9.8 of [18] and Lemma 7.22 of [25])

(1) Every maximal θ-band of Ψ crosses either Q1 or QL−4

(2) There exists an r satisfying (L − 1)/2 − 3 ≤ r ≤ (L − 1)/2 such that the θ-bands of Ψ

crossing QL−4 do not cross Qr and the θ-bands of Ψ crossing Q1 do not cross Qr+1
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Proof. (1) Suppose there exists a maximal θ-band T of Ψ crossing neither Q1 nor QL−4. As θ-

bands cannot cross, we may assume that T is a quasi-rim θ-band. By Lemma 11.3, T must cross

more than K maximal q-bands of Ψ.

Taking K > 11L + 2K0, there exists a non-stem cutting q-band C ′ crossing T such that for

Γ′ the subdiagram of Ψ consisting of C ′ and the corresponding crown, Γ′ contains no cells of the

spokes of Π and at least K0 maximal q-bands crossing T (see Figure 11.3).

By Lemma 11.5, Γ′ cannot be a comb with handle C ′, and so must contain a maximal θ-band

T ′ not crossing C ′. As above, we may assume T ′ is a quasi-rim θ-band containing greater than

K (θ, q)-cells, yielding a non-stem cutting q-band C ′′ crossing T ′ such that the corresponding

subdiagram Γ′′ does not contain any cell of C ′ but contains at least K0 q-bands crossing T ′.

Figure 11.3: Lemma 11.6(1)

Iterating this process, we obtain a series of subdiagrams Γ′,Γ′′, . . . satisfying

wt(Γ′) > wt(Γ′′) > . . .
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Since these diagrams are finite, this process must terminate. But then the resulting subdiagram is

a subcomb of ∆ contained in Ψ with basic width at least K0, contradicting Lemma 11.5.

(2) Let T be the maximal θ-band of Ψ crossing the t-spokeQ1 closest to Π, i.e the intersection

of T and Q1 is the first cell of Q1.

Note that all spokes of a disk in ∆ must lie in the minimal diagram ∆∗. So, if Q1, . . . ,Q` are

the t-spokes crossed by T , then ` ≤ (L− 1)/2 by Lemma 10.7(1). Since T does not cross Q`+1,

no other maximal θ-band of Ψ crossing Q1 can either. Similarly, no maximal θ-band crossing

QL−4 can cross Q`.

By the symmetric argument, if Qs+1, . . . ,QL−4 are the spokes crossed by the maximal θ-band

crossingQL−4 closest to Π, then no θ-band crossingQ1 can crossQs+1 and (L−4)−s ≤ (L−1)/2,

i.e s ≥ (L− 1)/2− 3.

Thus, the statement follows for r = max(`, (L− 1)/2− 3).

11.4 Paths in the cloves

For 1 ≤ i < j ≤ L − 4, denote pij as the shared subpath of ∂Ψij and ∂∆. For simplicity,

denote the path p1,L−4 associated to the maximal clove simply as p.

Let ∆̄ be the subdiagram of ∆ consisting of Π and Ψ. Then, let p̄ = bot(Q1)−1u−1top(QL−4)

where u is a subpath of ∂Π and such that cutting along p̄ separates ∆ into two components, one of

which is ∆̄. Denote the other component Ψ′.

Similarly, for 1 ≤ i < j ≤ L − 4, define the the path p̄ij = bot(Qi)
−1u−1

ij top(Qj) and the

subdiagrams ∆̄ij and Ψ′ij (see Figure 11.4).

Let H1, . . . , HL−4 be the histories of the spokesQ1, . . . ,QL−4, respectively, read starting from

the disk Π. Further, let hi = ‖Hi‖ for all i. Lemma 11.6 then implies the inequalities

h1 ≥ h2 ≥ · · · ≥ hr; hr+1 ≤ · · · ≤ hL−4
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where (L−1)/2−3 ≤ r ≤ (L−1)/2. It then follows thatHi+1 is a prefix ofHi for i = 1, . . . , r−1

while Hj is a prefix of Hj+1 for j = r + 1, . . . , L− 5.

Figure 11.4: Subdiagrams and paths in ∆

Let W be the accepted configuration corresponding to Lab(∂Π). Then, using the notation

of Section 6.3, W ≡ W (1)W (2) . . .W (L), where W (2), . . . ,W (L) are all copies of the same

configuration V of M4. Further, by Lemma 6.16, |W (1)|a ≤ 2|V |a.

Lemma 11.7. (Compare with Lemma 9.9 of [18] and Lemma 7.23 of [25]) For 1 ≤ i ≤ L − 5,

|pi,i+1|q < 3K0.

Proof. Suppose there exists a maximal q-band B which is not a spoke of Π and has one end on

pi,i+1. Then, since q-bands cannot cross, B must have two ends on pi,i+1. So, B is a non-stem

cutting q-band. Let Γ be the subdiagram of Ψ consisting of B and the corresponding crown. By

Lemma 11.6(1), any maximal θ-band in Γ must cross B, so that Γ is a comb with handle B.

Note that any subcomb whose handle ends twice on pi,i+1 lies in a maximal subcomb with this

condition.

Suppose Ψi,i+1 contains two such maximal subcombs. Then, let Γ1 and Γ2 be two adjacent

such subcombs with handles B1 and B2, respectively. By Lemma 11.5(1), Γ1 and Γ2 are disjoint

subcombs of ∆ contained in Ψ with basic widths at most K0. Moreover, as we assume these
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subcombs are adjacent, there exists a subpath x of pi,i+1 connecting B1 and B2 such that any q-

edge of x is the end a spoke of Π. As at most 23 spokes of Π can end on pi,i+1, |x|q ≤ c0. But this

contradicts Lemma 11.4(1).

As a result, Ψi,i+1 contains at most one maximal subcomb whose handle ends twice on pi,i+1.

By Lemmas 11.4(2) and 11.5(1), such a subcomb contributes at most 2K0 q-edges to pi,i+1.

Thus, |pi,i+1|q ≤ 2K0 + 23 < 3K0 by a parameter choice for K0.

Lemma 11.8. (Compare with Lemma 9.10 of [18] and Lemma 7.24 of [25])

(1) If i ≤ r and j ≥ r + 1, then |pij| ≥ |pij|θ + |pij|q ≥ hi + hj + 11(j − i) + 1

(2) |p̄ij| ≤ hi + hj + 11(L− j + i) + (L− j + i+ 1)δ|V |a − 1

Proof. (1) Lemma 11.6(2) implies that pij contains hi + hj θ-edges. Further, as q-bands cannot

cross, every spoke starting on the complement ūij of uij in ∂Π must end on pij , so that pij contains

at least 11(j − i) + 1 q-edges. The inequality thus follows.

(2) By parts (b) and (c) of Lemma 8.1, it suffices to show that

|uij| ≤ 11(L− j + i) + (L− j + i+ 1)δ|V |a − 1

As ∂Π consists only of q-edges and a-edges, |uij| = |∂Π| − |ūij|.

By Lemma 6.16, |∂Π| = 11L + δ
∑L

i=1 |W (i)|a ≤ 11L + δ(L + 1)|V |a. Further, Lab(ūij)

consists of at least j − i copies of V ±1 and one more t-letter, so that |ūij| ≥ 11(j − i) + (j −

i)δ|V |a + 1. Thus, the inequality follows.

Lemma 11.9. (Compare with Lemma 9.11 of [18] and Lemma 7.25 of [25])

If 1 ≤ i < j ≤ L− 4 such that j − i ≥ L/2, then

µ(∆)− µ(Ψ′ij) > −2J |∂∆|(hi + hj) ≥ −2J |∂∆||pij|
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Proof. As j − i ≥ L/2, the path ūij contains at least 11L/2 + 1 q-edges. So, since every spoke of

Π starting on ūij must end on pij , we have |pij|q ≥ |p̄ij|q.

Let e1 and e2 be a pair of θ-edges of ∂∆ such that neither is part of pij . Further, let x be the

subarc of ∂∆ connecting e1 and e2 and containing pij . Then, replacing the subpath pij with p̄ij

produces a subarc x̄ of ∂Ψ′ij connecting e1 and e2. Note that there are at least as many q-edges in x

as in x̄. Hence, since the complement of x in ∂∆ is a subpath of ∂Ψ′ij , both ordered pairs of white

edges corresponding to e1 and e2 contributes at least as much to µ(∆) as it does to µ(Ψ′ij).

So, we need only consider the contribution to µ(Ψ′ij) from pairs of θ-edges where at least one

is part of p̄ij . As p̄ij consists of hi + hj θ-edges from the sides of Qi and Qj , there are at most

|∂∆|(hi + hj) such unordered pairs. By definition, each ordered such pair contributes at most J to

µ(Ψ′ij). Hence, µ(∆)− µ(Ψ′ij) ≥ −2J |∂∆|(hi + hj).

Since j−i ≥ L/2, Lemma 11.6(2) implies that i ≤ r < r+1 ≤ j and so every θ band crossing

Qi or Qj ends on pij . So, Lemma 8.1(a) yields |pij| ≥ hi + hj , implying the statement.

Lemma 11.10. (Compare with Lemma 9.12 of [18] and Lemma 7.26 of [25])

If 1 ≤ i < j ≤ L− 4 such that j − i ≥ L/2, then

|pij|+ σλ(∆̄
∗
ij) ≤ |pij|+ σλ(∆

∗)− σλ((Ψ′ij)∗) < (1 + ε)|p̄ij|

for ε = 1/
√
N4.

Proof. Set y = |pij|+ σλ(∆
∗)− σλ((Ψ′ij)∗) and d = y − |p̄ij|. Suppose d ≥ ε|p̄ij| > 0.

Then d ≥ y − ε−1d, so that d ≥ (1 + ε−1)−1y ≥ εy
2

as N4 ≥ 1.

As Ψ′ij and ∆̄ij are disjoint, the definition of the design on a minimal diagram implies

σλ(∆̄
∗
ij) + σλ((Ψ

′
ij)
∗) ≤ σλ(∆

∗)

Let s be the complement of pij in ∂∆. As pij starts and ends with q-edges, |∂∆| = |pij| + |s|.
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Further, by Lemma 8.1(c), |∂Ψ′ij| ≤ |p̄ij|+ |s|.

So, these relations imply

(|∂∆|+ σλ(∆
∗))− (|∂Ψ′ij|+ σλ((Ψ

′
ij)
∗)) ≥ |∂∆| − |∂Ψ′ij|+ σλ(∆

∗)− σλ((Ψ′ij)∗)

≥ |pij| − |p̄ij|+ σλ(∆
∗)− σλ((Ψ′ij)∗)

= d > 0

Hence, if Ψ′ij contains a disk, then we may apply the inductive hypothesis to it. Conversely, if Ψ′ij

contains no disks, then we may apply Lemma 9.19 to it. So, setting x = |∂∆|+ σλ(∆
∗), we have

wtG(Ψ′ij) ≤ N4(x− d)2 +N3µ(Ψ′ij)

Noting that d ≤ x, Lemma 11.9 then implies

wtG(Ψ′ij) ≤ N4x
2 −N4xd+N3µ(∆) + 2N3J |∂∆||pij| (11.1)

Note that |∂Π| ≤ (L+ 1)|p̄ij| ≤ (L+ 1)y, so that

wt(Π) ≤ C1(L+ 1)2y2 (11.2)

Further, as j − i ≥ L/2, we must have i ≤ r < r + 1 ≤ j by Lemma 11.6(2). So, Lemma 11.8

implies

|p̄ij| < |pij|+ 11L+ (L− 1)δ|V |a ≤ |pij|+ |∂Π|

and hence |∂Ψij| < 2|pij|+ |∂Π| ≤ (L+ 3)y by Lemma 8.1(c). Thus, by Lemma 9.19,

wtG(Ψij) ≤ N2(L+ 3)2y2 +N1µ(Ψij) (11.3)
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By (11.1), (11.2), and (11.3), Lemma 9.10 implies

wtG(∆) ≤ N4x
2 −N4xd+N3µ(∆) + 2N3Jy|∂∆|+N2(L+ 3)2y2 +N1µ(Ψij) + C1(L+ 1)2y2

Hence, in order to reach a contradiction, it suffices to show that

N4xd ≥ 2N3Jy|∂∆|+ (N2 + C1)(L+ 3)2y2 +N1µ(Ψij) (11.4)

Note that x = |∂∆|+ σλ(∆
∗) ≥ |pij|+ σλ(∆

∗), so that x ≥ max(|∂∆|, y). Hence,

N4xd ≥
ε

2
N4ymax(|∂∆|, y) =

1

2

√
N4 max(y|∂∆|, y2)

The parameter choices N4 >> N3 >> N2 >> C1 >> J >> L then allow us to assume

1

2
N4xd ≥ 2N3Jy|∂∆|+ (N2 + C1)(L+ 3)2y2

Hence, by (11.4), it suffices to show that

N4xd ≥ 2N1µ(Ψij) (11.5)

As each θ-edge of ∂Ψij must be in its own factor of any decomposition of Lab(Ψij), the number

of white beads on the necklace corresponding to ∂Ψij is at most |∂Ψij| ≤ (L + 3)y. So, Lemma

8.3(a) implies

µ(Ψij) ≤ J(L+ 3)2y2

But as above, N4xd ≥ 1
2

√
N4y

2, so that (11.5) follows from the parameter choices N4 >> J >>

L.

For i = 1, . . . , L − 5, if the pair of adjacent t-letters associated to Qi and to Qi+1 are t(L)
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and t(2) (or vice versa), then Ψi,i+1 is called the distinguished clove. As q-bands cannot cross,

the distinguished clove contains a cutting q-band Q′i formed by the q-spoke of Π corresponding

to the base letter t(1). Let Λ′i,i+1 (respectively Λ′′i,i+1) be the subdiagram bounded by Q′i and the

t-spoke corresponding to t(L) (respectively t(2)). Define p′i,i+1 (respectively p′′i,i+1) as the subpath

of ∂Λ′i,i+1 (respectively ∂Λ′′i,i+1) shared with ∂∆, so that pi,i+1 is the concatenation of these two

paths along a shared q-edge.

Suppose Ψi,i+1 is not the distinguished clove. Then, let qi,i+1 be the shortest path in Ψi,i+1

homotopic to pi,i+1 and having the same first and last edges.

If Ψi,i+1 is the distinguished clove, then define q′i,i+1 and q′′i,i+1 as the analgous shortest paths

in Λ′i,i+1 and Λ′′i,i+1. Then, let qi,i+1 be the concatenation of q′i,i+1 and q′′i,i+1 along their shared

q-edge.

For 1 ≤ i < j ≤ L − 4, let qij be the concatenation of the paths qi,i+1, . . . ,qj−1,j along their

shared q-edges.

Then, let Ψ0
ij be the diagram obtained from Ψij by replacing pij in the contour with qij , i.e by

removing any cells between qij and pij . Similarly define Ψ0, (Λ′i,i+1)0, and (Λ′′i,i+1)0.

The following is the direct analogue of Lemma 11.8(1) and is proved in exactly the same way.

Lemma 11.11. (Compare with Lemma 9.13 of [18] and Lemma 7.27 of [25])

If i ≤ r and j ≥ r + 1, then |qij| ≥ hi + hj + 11(j − i) + 1.

Lemma 11.12. (Compare with Lemma 9.14 of [18] and Lemma 7.28 of [25])

(1) Every maximal q-band of Ψ0 corresponds to a spoke of Π.

(2) No two θ-edges of qi,i+1 are part of the same θ-band of Ψi,i+1.

Proof. (1) Assuming there exists a maximal q-bandQ in Ψ0 not corresponding to a spoke of Π,Q

must end twice on q. In fact, as q-bands cannot cross, there exists 1 ≤ i ≤ L− 4 such thatQ ends

twice on qi,i+1.

Let x be the subpath of qi,i+1 starting and ending with the ends ofQ. By Lemmas 9.1 and 10.7,

any maximal θ-band crossing Q must have one end on x. So, for ` the length of Q, |x| ≥ `+ 2.
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By Lemma 8.1(b), |bot(Q)| = |top(Q)| = `. But then replacing x in qi,i+1 with a side of Q

produces a homotopic path with shorter length, contradicting the definition of qi,i+1.

(2) Assuming the statement is false, there exists a θ-band T in Ψi,i+1 connecting θ-edges e and

f of qi,i+1. Perhaps passing to a subband, we may assume that no other θ-edge comprising T is

part of qi,i+1.

Let y be the subpath of qi,i+1 bounded by e and f. As θ-bands cannot cross, we may assume

that e and f are the only θ-edges of y. So, every cell between a side of T , say top(T ), and y is an

a-cell.

Suppose one of the following holds:

(i) Ψi,i+1 is not the distinguished clove (see Figure 11.5(i)),

(ii) Ψi,i+1 is the distinguished clove and y is a subpath of q′i,i+1 (see Figure 11.5(ii)), or

(iii) Ψi,i+1 is the distinguished clove and y is a subpath of q′′i,i+1 (see Figure 11.5(iii)).

Note that every q-edge of top(T ) must be shared with y. So, by (1), every q-band crossing T

must be a spoke of Π in Ψi,i+1 (respectively Λ′i,i+1, Λ′′i,i+1) in case (i) (respectively (ii), (iii)). As a

result, the base of T is a subword of B3(j)±1 for some j.

If there exists an a-cell π between top(T ) and y, then let bπ be the number of edges of ∂π

which are on the boundary of a (θ, q)-cell of T . By (WM1), at most 1
2
‖∂π‖ + bπ of the edges of

∂π are shared with top(T ) while all other edges are shared with y.

By the definition of the rules of M, at most one edge on the boundary of a (θ, q)-cell of T is

labelled with a letter from the alphabet of the ‘special’ input sector (on a cell corresponding to the

base letterQ0(1)±1). As a result,
∑
bπ ≤ 1, so that Lemma 8.1(c) implies |y| ≥ 2+ |top(T )|−4δ.

As the base of T has length at most 11, Lemma 4.1 implies |bot(T )| − |top(T )| ≤ 22δ. So,

|y| − |bot(T )| ≥ 2− 26δ ≥ 1 by a parameter choice for δ−1.

But then replacing y in qi,i+1 with bot(T ) contradicts the definition of qi,i+1.

Hence, it suffices to assume that (i), (ii), and (iii) all do not hold.
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So, Ψi,i+1 is the distinguished clove, e is an edge of q′i,i+1, and f is an edge of q′′i,i+1. Further,

since qi,i+1 contains the q-edge of Q′ shared with ∂∆, T must be contained in Ψ0
i,i+1.

(i)

(ii) (iii)

Figure 11.5: Lemma 11.12(2)

By Lemma 11.6(1), the maximal θ-band containing T must cross Qi or Qi+1, so that it must

contain another θ-edge of q′i,i+1 or q′′i,i+1.

But then there exists a θ-band satisfying (ii) or (iii), so that a similar contradiction can be

reached.
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Lemma 11.13. (1) If Ψi,i+1 is not the distinguished clove, then Ψ0
i,i+1 contains no a-cells.

(2) If Ψi,i+1 is the distinguished clove, then (Λ′i,i+1)0 contains no a-cells.

Proof. (1) Suppose π is an a-cell contained in Ψ0
i,i+1.

By Lemma 11.12(1), no maximal q-band of Ψ0
i,i+1 corresponds to a base letter with coordinate

1. So, the contour of any (θ, a)- or (θ, q)-cell has no a-edge labelled by a letter from the alphabet

of the ‘special’ input sector.

As a result, any edge of ∂π must be shared with ∂Ψ0
i,i+1. In particular, ∂π must be a subpath of

qi,i+1.

But then removing this subpath produces a path homotopic to qi,i+1 that contradicts its defini-

tion.

(2) is proved analogously, as the only base letter with coordinate 1 present in (Λ′i,i+1)0 is {t(1)}.

11.5 Trapezia and combs in the cloves

For 1 ≤ i ≤ r − 1, suppose Ψi,i+1 is not the distinguished clove. Then Lemma 11.6 implies

that all maximal θ-bands of Ψi,i+1 crossing Qi+1 must also cross Qi. So, these θ-bands bound an

a-trapezium Γi in Ψ0
i,i+1 with height hi+1. The base of Γi (or its inverse) is {t(`)}B3(`){t(`+ 1)}

for some 2 ≤ ` ≤ L − 1. Lemma 9.4 then implies that Γi is a trapezium. Set yi = bot(Γi) and

zi = top(Γi). Note that y−1
i is shared with ∂Π.

For 2 ≤ i ≤ r−1, suppose neither Ψi−1,i nor Ψi,i+1 is the distinguished clove. Then Lab(yi−1)

and Lab(yi) are coordinate shifts of one another while Hi+1 is a prefix of Hi. So, hi+1 θ-bands

of Γi−1 form a copy of Γi, Γ′i, contained in Γi−1. Set y′i = bot(Γ′i) and z′i = top(Γ′i). Note that

y′i = yi−1.

For 1 ≤ i ≤ r − 1, if Ψi,i+1 is not the distinguished clove, then denote by Ei (respectively

E0
i ) the maximal comb in Ψi,i+1 (respectively Ψ0

i,i+1) containing the maximal θ-bands that cross

the t-spokeQi but not the t-spokeQi+1. The handle Ci of these combs has height hi− hi+1 and is
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contained inQi. Any cell of Ψi,i+1 (respectively Ψ0
i,i+1) not contained in Γi orEi (respectivelyE0

i )

must be an a-cell attached to either zi orQi+1. By the structure of the relations, such an a-cell must

share every boundary edge with ∂∆. But this contradicts Lemma 11.2. Hence, Ei (respectively

E0
i ) is the complement of Γi in Ψi,i+1 (respectively Ψ0

i,i+1).

Now suppose Ψi,i+1 is the distinguished clove for 1 ≤ i ≤ r − 1.

First, supposeQi corresponds to the base letter {t(L)}, so that the subdiagram Λ′i,i+1 is bounded

by Qi and Q′i (see Figure 11.7(a)). By Lemma 11.6, every maximal θ-band of Λ′i,i+1 cross-

ing Q′i must also cross Qi. So, these θ-bands bound an a-trapezia Γi contained in (Λ′i,i+1)0.

As above, Lemma 9.4 implies that Γi must be a trapezium. The base of Γi (or its inverse) is

{t(L)}B3(L){t(1)}, while the height is the length h′i of the band Q′i.

Figure 11.6: Trapezia and combs if neither Ψi−1,i and Ψi,i+1 are distinguished

Otherwise,Qi+1 corresponds to the base letter {t(L)}, so that the subdiagram Λ′i,i+1 is bounded

by Q′i and Qi+1 (see Figure 11.7(2)). Lemma 11.6 then implies that every maximal θ-band of

Λ′i,i+1 crossing Qi+1 must also cross Q′i, so that these θ-bands bound an a-trapezium Γi contained

in (Λ′i,i+1)0. Again, Γi must be a trapezium whose base (or its inverse) is {t(L)}B3(L){t(1)}. In

this case, the height of Γi is hi+1.

In either case, we define yi = bot(Γi) and zi = top(Γi). If i ≥ 2, then again Lab(yi) is a

coordinate shift of Lab(yi−1) and there exists a copy Γ′i of Γi in Γi−1 with bot(Γ′i) = y′i = yi−1.
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Similarly, if i ≤ r− 2, then Lab(yi) is a coordinate shift of Lab(yi+1) and there exists a copy Γ′i+1

of Γi+1 in Γi.

Suppose Λ′i,i+1 is bounded by Qi and Q′i. Then denote by Ei (respectively E0
i ) the maximal

comb in Λ′i,i+1 (respectively (Λ′i,i+1)0) containing the maximal θ-bands that cross the t-spoke Qi

but not the q-spoke Q′i. The handle Ci of these combs has height hi − h′i and is contained in Qi.

As above, Ei (respectively E0
i ) is the complement of Γi in Λ′i,i+1 (respectively (Λ′i,i+1)0).

Otherwise, Λ′i,i+1 is bounded by Q′i and Qi+1. In this case denote by Ei (respectively E0
i )

the maximal comb in Λ′i,i+1 (respectively (Λ′i,i+1)0) containing the maximal θ-bands that cross the

q-spoke Q′i but not the t-spoke Qi+1. The handle Ci of these combs has height h′i − hi+1 and

is contained in Q′i. Again, Ei (respectively E0
i ) is the complement of Γi in Λ′i,i+1 (respectively

(Λ′i,i+1)0).

Note that no a-trapezium or comb has been defined in the subdiagram Λ′′i,i+1. Though such

subdiagrams exist, their consideration is not necessary for the rest of the proof. As a result, one

may view the indexing as ‘skipping over’ the portion of the clove between the base letters {t(1)}

and {t(2)}.

For r + 1 ≤ i ≤ L − 5, the trapezium Γi, the combs Ei and E0
i , and the paths yi and zi are

defined symmetrically.

(a) Qi and Q′i bound Λ′i,i+1 (b) Qi and Q′i bound Λ′′i,i+1

Figure 11.7: Trapezia in the distinguished clove
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Lemma 11.14. (Compare with Lemma 9.15 of [18] and Lemma 7.29 of [25])

For i ∈ {2, . . . , r − 1}, suppose a maximal a-band B of E0
i starts on zi and ends on a side of

a maximal q-band C. Let ∇ be the comb bounded by B, a part of C, and a subpath x of zi. Then

there is a copy of the comb∇ in the trapezium Γ = Γi−1 \ Γ′i.

Proof. By Lemma 11.13,∇ contains no a-cells.

Let the a-edge e and the q-edge f be the first and last edge of x, respectively. Since z′i is a

copy of zi in the trapezium Γi−1, it contains a subpath x′ that is a copy of x and starts with an

a-edge e′ and ends with a q-edge f′. If π is the (θ, q)-cell attached to f in ∇, then the (θ, q)-cell π′

attached to f′ is a copy since it corresponds to the same letter of the history. Moving from f to e,

the whole maximal θ-band of ∇ containing π has a copy in Γi−1. Moving up, we find a copy of

every maximal θ-band of∇ in Γi−1, forming a copy of∇ in Γi−1.

Lemma 11.15. (Compare with Lemma 9.16 of [18] and Lemma 7.30 of [25])

At most 6 a-bands starting on the path yi (or zi) can end on (θ, q)-cells of the same θ-band.

Proof. Assume each of the a-bands A1, . . . ,Am starts from an edge of yi and ends on some (θ, q)-

cell of a θ-band T . Let T0 be the minimal subband of T such that the a-bands A2, . . . ,Am−1 end

on T0. Then, let ȳi the minimal subpath of yi where the a-bands A1, . . . ,Am start (see Figure 11.8).

Figure 11.8:

By Lemma 9.1, each q-band starting on ȳi has to cross T0 and vice versa. So, the base of T0 is

a subword of a reduced pararevolving base not containing the ‘special’ input sector.
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As a result, we can identify this base with a subword of the standard base of M4 (or its inverse).

By the structure of the rules of M4, an application of any rule inserts/deletes at most 4 a-letters in

a configuration. Thus, m− 2 ≤ 4, so that the statement follows.

An analogous argument applies for a-bands starting from zi.

By the parameter choice L >> L0 and Lemma 11.6, we may assume that L0 + 1 ≤ r and

L− L0 − 4 ≥ r + 1. Then, suppose without loss of generality that h := hL0+1 ≥ hL−L0−4.

Lemma 11.16. (Compare with Lemma 9.17 of [18] and Lemma 7.31 of [25])

Let I be the subset of the set of indices i ∈ [L0 + 1, r − 1] ∪ [r + 1, L − L0 − 5] such that

|zi|a ≥ |V |a/8c3. If h ≤ L2
0|V |a, then #I ≤ L/5.

Proof. For any i ∈ [L0 + 1, r− 1] ∪ [r + 1, L− L0 − 5], denote the set of maximal a-bands of E0
i

starting at zi by Ai. Then set A = ∪Ai.

As no base letter of Γi is of the form Q0(1)±1 or P0(1)±1, zi has no a-letters from the ‘special’

input sector. So, any a-band of A either ends on a (θ, q)-cell or on qi,i+1.

Letting gi be the length of the handle of E0
i , then

∑
gi ≤ 2h, where the sum is taken over the

integers in [L0 +1, r−1]∪ [r+1, L−L0−5]. So, by Lemma 11.15, at most 12h maximal a-bands

of A end on (θ, q)-cells.

Assuming the statement is false, A contains at least L|V |a/40c3 a-bands. As a result, at least

max(0, L|V |a/40c3− 12h) bands from A must end on the subpaths qi,i+1. Since qi,i+1 has at most

2h θ-edges by Lemma 11.12(2), at least max(0, L|V |a/40c3−14h) a-edges contribute δ to |qi,i+1|.

By assumption, 14h ≤ 14L2
0|V |a, so that the parameter choices L >> L0 >> c3 imply that

14h ≤ L|V |a/80c3.

It follows from Lemma 11.11 that

|pL0+1,L−L0−4| ≥ |qL0+1,L−L0−4| ≥ hL0+1 + hL−L0−4 + 11L/2 + δ(L|V |a/40c3 − 14h)

≥ hL0+1 + hL−L0−4 + 11L/2 + δL|V |a/80c3
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Also, by Lemma 11.8, we have

|p̄L0+1,L−L0−4| ≤ hL0+1 + hL−L0−4 + 11(3L0) + 3L0δ|V |a

≤ hL0+1 + hL−L0−4 + 11(3L0) + δL|V |a/160c3

as L >> L0 >> c3. These inequalities imply

|pL0+1,L−L0−4| − |p̄L0+1,L−L0−4| ≥ 11L/3 + δL|V |a/160c3 (11.6)

Since hL0+1 + hL−L0−4 ≤ 2h ≤ 2L2
0|V |a < 1

2
L|V |a, it follows that

|p̄L0+1,L−L0−4| <
1

2
L|V |a + 11(3L0) + δL|V |a/160c3 ≤ 11(3L0) + L|V |a

which implies that

|pL0+1,L−L0−4| − |p̄L0+1,L−L0−4|
|p̄L0+1,L−L0−4|

≥ min
( 11L/3

11(3L0)
,
δL|V |a/160c3

L|V |a

)
= δ/160c3

since we have L >> L0. Finally, δ/160c3 > ε = 1/
√
N4 for sufficiently large N4, and so

|pL0+1,L−L0−4|
|p̄L0+1,L−L0−4|

> 1 + ε

But L− L0 − 4− (L0 + 1) = L− 2L0 − 5 ≥ L− 3L0 > L/2 since L >> L0, so that the above

inequality contradicts Lemma 11.10.

Lemma 11.17. (Compare with Lemma 9.18 of [18] and Lemma 7.32 of [25])

If h ≤ L2
0|V |a, then the histories H1 and HL−4 have different first letters.

Proof. Let T and T ′ be the maximal θ-bands of Ψ crossing Q1 and QL−4, respectively, closest to

the disk Π.
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Set `, `′ as the maximal integers such that T crosses the t-spokes Q1, . . . ,Q` and T ′ crosses

the t-spokes QL−`′−3, . . . ,QL−4. Note that ` ≤ r ≤ L− `′ − 4.

For any ` + 1 ≤ i ≤ L − `′ − 5, zi is a subpath of ∂Π. As a result, |zi| = |V |a ≥ |V |a/8c3.

Hence, if also i ∈ [L0 + 1, r− 1]∪ [r+ 1, L−L0− 5], then i ∈ I (for I as defined in the statement

of Lemma 11.16).

If ` ≤ L0, then #I ≥ (r − 1)− (L0 + 1) ≥ (L− 1)/2− L0 − 5 ≥ L/3. Similarly, if `′ ≤ L0,

then #I ≥ L/3. But these inequalities contradict Lemma 11.16, so that `, `′ > L0.

This implies #I ≥ (L− `′− 5)− (`+ 1)− 2 ≥ L− (`+ `′)− 8, so that Lemma 11.16 yields

`+ `′ ≥ L− L/5− 8 ≥ 3L/4.

Thus, if the rules corresponding to T and T ′ are same, then the minimality of ∆∗ contradicts

Lemma 10.7(2).

Lemma 11.18. (Compare with Lemma 7.33 of [25]) If h ≤ L2
0|V |a, then |V |a >

11L

4δL0

.

Proof. Assume that |V |a ≤ 11L/4δL0. Then Lemma 11.8 implies the inequalities

|pL0+1,L−L0−4| ≥ hL0+1 + hL−L0−4 + 11(L− 3L0)

|p̄L0+1,L−L0−4| ≤ hL0+1 + hL−L0−4 + 3L0(11 + δ|V |a)

Hence, as L >> L0,

|pL0+1,L−L0−4| − |p̄L0+1,L−L0−4| ≥ 11(L− 6L0)− 3L0δ|V |a > 11(L− 6L0)− 33L/4 > 11L/5

The inequality hL0+1 + hL−L0−4 ≤ 2h then implies

|p̄L0+1,L−L0−4| ≤ 2h+ 3L0(11 + 11L/4L0) ≤ 2L2
0

11L

4δL0

+ 11L < 11L0L/δ
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So, since N4 >> δ−1 >> L0, we have

|pL0+1,L−L0−4| − |p̄L0+1,L−L0−4|
|p̄L0+1,L−L0−4|

>
δ

5L0

> ε

But L− L0 − 4− (L0 + 1) ≥ L/2, so that the above inequality contradicts Lemma 11.10.

Lemma 11.19. (Compare with Lemma 9.19 of [18] and Lemma 7.34 of [25])

The inequality h > L2
0|V |a must be true.

Proof. Assuming the statement is false, Lemma 11.16 implies that for at least L−5−L/5−2L0 >

3L/4 indices j ∈ {1, . . . , L − 5}, |zj|a < |V |a/8c3. So, we can choose two such indices, i and j,

such that L0 + 1 ≤ i ≤ r < r + 1 ≤ j ≤ L− L0 − 5, j − i ≥ 3L/5, and neither Ψi,i+1 nor Ψj,j+1

is the distinguished clove.

Since Hi+1 (respectively Hj) is a prefix of H1 (respectively HL−4), it follows from Lemma

11.17 that the first letters of Hi+1 and Hj are different.

Since Lab(yi) and Lab(yj) are coordinate shifts of one another (and are copies of V ), we can

construct an auxiliary trapezium E by pasting the mirror of a coordinate shift of Γj to Γi along

yi. The history of E is H−1
j Hi+1, which is a reduced word since the first letter of Hi+1 is different

from the first letter of Hj .

The top and the bottom of E are copies of zi and zj , respectively, and so have a-lengths less

than |V |a/8c3. Without loss of generality, assume hi+1 ≥ hj , and so hi+1 ≥ t/2 for t the height of

E.

Note that |V |a − |V |a/8c3 > |V |a/2, and so hi+1, hj > |V |a/8 since any rule of M4 alters the

a-length of a configuration by at most four.

By Lemma 11.18, |V |a/8 > 11L
32δL0

≥ 12c3 since δ−1 >> L >> L0 >> c3. Further, letting W0

and Wt be the bottom and top labels of E, |V |a/8 > c3 max(|W0|a, |Wt|a).
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As a result,

t = hi+1 + hj > |V |a/4 > c3 max(|W0|a, |Wt|a) + 12c3 ≥ c3 max(‖W0‖, ‖Wt‖)

Let C be the computation associated to E through Lemma 7.4. Then the restriction of C (or its

inverse) to {t(`)}B3(`) for the appropriate ` ≥ 2 satisfies the hypotheses of Lemma 6.20.

Setting λ < 1/10, every factorization H ′H ′′H ′′′ of Hi+1 with ‖H ′‖+ ‖H ′′′‖ ≤ λhi+1 satisfies

‖H ′′‖ > 0.4t. So, applying Lemma 6.20, H ′′ contains a controlled subword. Further, since all

θ-bands crossing Qi+1 must cross Qi, W (`) is Hi+1-admissible. Hence, Qi+1 is a λ-shaft.

Lemma 11.8(1) then implies that |pi+1,j|+ σλ(∆̄
∗
i+1,j) ≥ 2hi+1 + hj .

As hi+1 > |V |a/8, it follows that δ(L + 1)|V |a ≤ 8δ(L + 1)hi+1 <
1
4
hi+1 by the parameter

choice δ−1 >> L. Similarly, by Lemma 11.18 and δ−1 >> L0, 11L < 4δL0|V |a < 32δL0hi+1 ≤
1
4
hi+1.

So, Lemma 11.8(2) yields |p̄i+1,j| ≤ 3
2
hi+1 + hj .

Hence,
|pi+1,j|+ σλ(∆̄

∗
i+1,j)

|p̄i+1,j|
≥ 2hi+1 + hj

3
2
hi+1 + hj

≥ 6

5

since hj ≤ hi+1.

Taking N4 sufficiently large, ε = 1/
√
N4 < 0.2. However, as j − (i+ 1) ≥ 3L/5− 1 ≥ L/2,

the above inequality contradicts Lemma 11.10.

Lemma 11.20. (Compare with Lemma 9.20 of [18] and Lemma 7.35 of [25]) For i = 1, . . . , L0,

we have hi > δ−1.

Proof. For such i, note that hi ≥ h ≥ hL−L0−4. Assuming toward contradiction that hi ≤ δ−1,

Lemma 11.19 implies that δ−1 > L2
0|V |a, and so δ|V |a < 1/L2

0.

Note that L−L0− 4− i ≥ L−L0− 4−L0 ≥ L− (2L0 + 4). Taking L >> L0, Lemma 11.8
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then yields the inequalities

|p̄i,L−L0−4| ≤ hi + hL−L0−4 + 3L0(11 + δ|Va|) ≤ hi + hL−L0−4 + 11(4L0)

|pi,L−L0−4| ≥ hi + hL−L0−4 + 11(L− 2L0 − 4) ≥ hi + hL−L0−4 + 11L/2

But then hi + hL−L0−4 ≤ 2hi ≤ 2δ−1 and 4L0 < L/4, so that

|pi,L−L0−4|
|p̄i,L−L0−4|

≥ hi + hL−L0−4 + 11L/2

hi + hL−L0−4 + 11L/4
≥ 8δ−1 + 22L

8δ−1 + 11L
= 1 + δ

L

δL+ 8/11
> 1 + δ

As N4 >> δ−1, we may take 1 + δ > 1 + ε. But then noting that L−L0− 4− i ≥ L/2, the above

inequality contradicts Lemma 11.10.

Lemma 11.21. (Compare with Lemma 9.21 of [18] and Lemma 7.36 of [25])

For i = 1, . . . , L0, the spoke Qi does not contain a λ-shaft of Π of length at least δh.

Proof. Let j = L0 + 1 and ` = L− L0 − 4.

Since Π is removed when passing from ∆ to Ψ′j,`, Qi is a cutting q-band of Ψ′j,`. So, Qi

contains no λ-shaft in Ψ′j,`.

As Lemma 11.1(1) implies (Ψ′j,`)
∗ ⊂ ∆∗, we then have

σλ(∆
∗)− σλ((Ψ′j,`)∗) ≥ δh

Lemma 11.8 then yields the inequalities

|pj,`| ≥ hj + h` + 11(L− 3L0)

|p̄j,`| ≤ hj + h` + 3L0(11 + δ|V |a)
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By Lemma 11.19, δ|V |a < δh/L2
0, so that

|p̄j,`| < hj + h` + 11(3L0) + 3δh/L0

So, taking L >> L0 ≥ 6,

|pj,`|+ σλ(∆
∗)− σλ((Ψ′j,`)∗)− |p̄j,`| ≥ 11(L− 6L0) + δh(1− 3/L0) ≥ 11L+ δh

2

Hence, noting that hj ≤ h = h`, we have:

|pj,`|+ σλ(∆
∗)− σλ((Ψ′j,`)∗)− |p̄j,`|
|p̄j,`|

≥ 11L+ δh

2(2h+ 11(3L0) + 3δh/L0)

≥ 11L+ δh

11(6L0) + 5h

≥ min(L/6L0, δ/5) = δ/5

since L >> L0. Taking N4 >> δ−1 implies ε < δ/5. But ` − j ≥ L − 3L0 ≥ L/2, so that the

above inequality contradicts Lemma 11.10.

Lemma 11.22. (Compare with Lemma 9.22 of [18] and Lemma 7.37 of [25]) For i = 1, . . . , L0−1,

|zi|a > hi+1/2c3.

Proof. Suppose to the contrary that |zi|a ≤ hi+1/2c3.

Then ‖zi‖ = |zi|a + 12 ≤ (hi+1/2c3) + 12.

Taking δ−1 >> c3, Lemma 11.20 yields hi+1/2c3 > δ−1/2c3 > 12. So, ‖zi‖ < hi+1/c3.

Further, taking δ−1 >> L0 >> c3, Lemma 11.19 yields

‖yi‖ = 12 + |V |a < 12 + h/L2
0 ≤ hi+1/2c3 + hi+1/L

2
0 ≤ hi+1/c3

Recall that by Lemma 11.13, Γi contains no a-cells, and so is a trapezium. By Lemma 7.4, there
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exists a reduced computation C ′ corresponding to Γi with base ({t(`)}B3(`){t(`+1)})±1 for some

2 ≤ ` ≤ L, where L+ 1 is taken to be 1. Let C be the restriction of C±1 to the base {t(`)}B3(`).

Then, the history of C has length at least hi+1 > c3 max(‖yi‖, ‖zi‖). As a result, C satisfies the

hypotheses of Lemma 6.20. Further, since every θ-band crossing Qi+1 also crosses Qi, W (`) is

Hi+1-admissible for some ` ≥ 2. So, Qi contains a λ-shaft of length at least hi+1.

But then hi+1 ≥ h > δh, so that this contradicts Lemma 11.21.

Lemma 11.23. (Compare with Lemma 9.23 of [18] and Lemma 7.38 of [25]) For i = 1, . . . , L0−1,

hi+1 < (1− 1
30c3

)hi.

Proof. Assuming hi+1 ≥ (1 − 1
30c3

)hi, the handle of Ei has height at most hi − hi+1 ≤ hi/30c3.

So, by Lemma 11.15, at most hi/5c3 maximal a-bands of Ei starting on zi can end on (θ, q)-cells

of Ei. Hence, at least max(0, |zi|a − hi/5c3) of these bands end on pi,i+1.

Lemma 11.22 implies that |zi|a > hi+1/2c3, so that

|zi|a − hi/5c3 ≥ hi+1/2c3 − hi/5c3 ≥
(

1− 1

30c3

)
hi/2c3 − hi/5c3 > hi/15c3

By Lemma 11.6(2), pi,i+1 also has hi − hi+1 ≤ hi/30c3 θ-edges. So, Lemma 11.8(1) implies the

inequalities

|pi,i+1| ≥ hi − hi+1 + δhi/30c3

|pi+1,L−L0−4| ≥ hi+1 + hL−L0−4 + 22L/3

As these paths have an overlap of one q-edge, this implies

|pi,L−L0−4| = |pi,i+1|+ |pi+1,L−L0−4| − 1 > hi + hL−L0−4 + 11L/2 + δhi/30c3

Meanwhile, Lemma 11.8(2) gives us

|p̄i,L−L0−4| ≤ hi + hL−L0−4 + 11(3L0) + 3L0δ|V |a
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As Lemma 11.19 implies |V |a < h/L2
0 ≤ hi/L

2
0, we then have

|p̄i,L−L0−4| ≤ hi + hL−L0−4 + 11(3L0) + 3δhi/L0

Hence, since L >> L0 >> c3 and hL−L0−4 ≤ h ≤ hi,

|pi,L−L0−4| − |p̄i,L−L0−4|
|p̄i,L−L0−4|

≥ 11(L/2− 3L0) + δhi(1/30c3 − 3/L0)

hi + hL−L0−4 + 11(3L0) + 3δhi/L0

≥ 11L/3 + δhi/60c3

11(3L0) + 3hi

≥ min(L/9L0, δ/180c3) = δ/180c3

However, taking N4 >> δ−1 >> c3 yields ε < δ/180c3, so that the above inequality contradicts

Lemma 11.10.

Lemma 11.24. (Compare with Lemma 9.24 of [18] and Lemma 7.39 of [25]) For i = 1, . . . , L0−1,

|zi|a ≤ 8hi.

Proof. Assume |zi|a > 8hi. By Lemma 11.15, at most 6hi maximal a-bands of E0
i starting on zi

can end on the (θ, q)-cells of Ei. So, since a-bands cannot cross q-bands, Lemma 11.13 implies

that at least |zi|a − 6hi > 2hi maximal a-bands of E0
i starting on zi must end on the path qi,i+1.

Hence, |qi,i+1|a > 2hi.

By Lemma 11.6(2), qi,i+1 has at most hi θ-edges. As a result, Lemma 8.1 implies that at least

hi a-edges of qi,i+1 contribute δ to |qi,i+1|, and so also to |qi,L−L0−4|. So, Lemmas 11.8 and 11.11

give the inequalities

|pi,L−L0−4| ≥ |qi,L−L0−4| ≥ hi + hL−L0−4 + 11L/2 + δhi

|p̄i,L−L0−4| ≤ hi + hL−L0−4 + 11(3L0) + 3L0δ|V |a
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Taking |V |a < h/L2
0 ≤ hi/L

2
0 by Lemma 11.19 then gives

|p̄i,L−L0−4| ≤ hi + hL−L0−4 + 11(3L0) + 3δhi/L0

so that

|pi,L−L0−4| − |p̄i,L−L0−4| ≥ 11(L/2− 3L0) + δhi(1− 3/L0) ≥ 11L/3 + δhi/2

Then, since hL−L0−4 ≤ h ≤ hi,

|pi,L−L0−4| − |p̄i,L−L0−4|
|p̄i,L−L0−4|

≥ 11L/3 + δhi/2

11(3L0) + 3hi

≥ min(L/9L0, δ/6) = δ/6

However, again takingN4 >> δ−1, ε < δ/6 so that the above inequality contradicts Lemma 11.10.

Note that if Ψi,i+1 is the distinguished clove for i ≤ r− 1, then Hi+1 need not be the history of

Γi. To account for this, let H ′i+1 be the history of Γi. Note that Hi+1 is always a prefix of H ′i+1.

The following is the analogue of Lemma 9.25 of [18] and Lemma 7.40 of [25].

Lemma 11.25. For 2 ≤ i ≤ L0 − 2, let H ′i = H ′i+1H
′ = H ′i+2H

′′H ′ and C be the computation

corresponding to the trapezium Γi−1. Suppose the subcomputation D of C with history H ′′H ′ has

step history of length 1. Then there is no two-letter subword Q′Q of the base of Γi−1 such that

every rule of D inserts one letter to the left of Q.

Proof. Let Q be the maximal q-band of E0
i that is a subband of the q-spoke of Π corresponding

to a coordinate shift the state letter Q. Similarly, let Q′ be the maximal q-band corresponding to a

coordinate shift of Q′, so that Q′ and Q are neighbor q-bands. Let x be the subpath of zi between

Q′ and Q.

Since Γi contains a copy Γ′i+1 of the trapezium Γi+1, the bottom of the trapezium Γi \ Γ′i+1 is
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a copy z′i+1 of zi+1, while the top is zi. This trapezium has history H ′′, so that the corresponding

computation inserts one a-letter to the left of the state letter corresponding to Q at each transition.

As a result, |x|a ≥ ‖H ′′‖ ≥ hi+1 − hi+2.

By Lemma 11.23, hi+1 − hi+2 >
1

30c3
hi+1. As hi+1 ≥ h, Lemma 11.19 and the parameter

choice L0 >> c3 imply

|x|a ≥
h

30c3

>
L2

0|V |a
30c3

> 10L0|V |a

If an a-band starting on x ended on a (θ, q)-cell ofQ, then Lemma 11.10 implies that there is a copy

of this in the trapezium Γi−1 \ Γ′i. By Lemma 7.4, though, this would contradict the assumption

that rules of D only write letters in the sector.

Figure 11.9:

Now, consider the comb∇ contained in E0
i bounded by Q′, Q, x, and qi,i+1 (see Figure 11.9).

Set s and s′ as the lengths of Q and Q′, respectively. Lemmas 11.6(2) and 11.12(2) imply s′ ≤ s.

So, by Lemma 11.12(1), there are |x|a + s maximal a-bands starting on x or Q and ending on Q′

or on qi,i+1. Since only s′ a-bands can end onQ′, at least |x|a + s− s′ of them end on the segment

of qi,i+1 between Q and Q′. By Lemmas 11.6(2) and 11.12(2), the same segment contains s − s′

θ-edges, meaning at least |x|a of them contribute δ to its length. So, by Lemma 11.8(1),

|pi,L−L0−4| ≥ hi + hL−L0−4 + 11L/2 + δ
hi+1

30c3
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≥ hi + hL−L0−4 + 11L/2 + 10δL0|V |a

Also by Lemma 11.8(2) and 11.19,

|p̄i,L−L0−4| ≤ hi + hL−L0−4 + 11(3L0) + 3δL0|V |a ≤ hi + hL−L0−4 + 11(3L0) + 3δh/L0

So,

|pi,L−L0−4| − |p̄i,L−L0−4| ≥ 11(L/2− 3L0) + δ(hi+1/30c3 − 3h/L0)

> δhi+1(1/30c3 − 3/L0)

> δhi+1/50c3

by again taking L0 >> c3.

Let s be the complement of the pi,L−L0−4 in ∂∆. Then, since pi,L−L0−4 starts and ends with

q-edges, Lemma 8.1(c) implies

|∂Ψ′i,L−L0−4| ≤ |s|+ |p̄i,L−L0−4|

< |s|+ |pi,L−L0−4| − δhi+1/50c3

= |∂∆| − δhi+1/50c3 (11.7)

Lemma 11.1(1) implies that Ψ′i,L−L0−4 is weakly minimal with σλ((Ψ′i,L−L0−4)∗) ≤ σλ(∆
∗).

Hence, if Ψ′i,L−L0−4 contains a disk, then we may apply the inductive hypothesis to it. Other-

wise, we may apply Lemma 9.19 to Ψ′i,L−L0−4. In either case, this implies

wtG(Ψ′i,L−L0−4) ≤ N4(|Ψ′i,L−L0−4|+ σλ((Ψ
′
i,L−L0−4)∗))2 +N3µ(Ψ′i,L−L0−4)
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Taking x = |∂∆|+ σλ(∆
∗), we have

0 ≤ |Ψ′i,L−L0−4|+ σλ((Ψ
′
i,L−L0−4)∗) ≤ x− δhi+1/50c3

So, since δhi+1/50c3 ≤ x,

wtG(Ψ′i,L−L0−4) < N4x
2 −N4δxhi+1/50c3 +N3µ(Ψ′i,L−L0−4) (11.8)

Next, note that |V |a ≤ hi/L
2
0 by Lemma 11.19, hi > δ−1 > 11(100L0) by Lemma 11.20, and

hL−L0−4 ≤ h ≤ hi. So, for sufficiently large L0, we have

|p̄i,L−L0−4| ≤ 2hi + 3hi/100 + 3δhi/L0 ≤ 2.1hi

As Lemma 11.10 implies |pi,L−L0−4| ≤ (1 + ε)|p̄i,L−L0−4|, taking N4 sufficiently large yields

|∂Ψi,L−L0−4| ≤ |pi,L−L0−4|+ |p̄i,L−L0−4|+ |∂Π| ≤ 4.5hi + |∂Π|

Taking δ−1 >> L, note that

|∂Π| ≤ 11L+ (L+ 1)δ|V |a ≤ δ−1/4 + hi/L
2
0 ≤ hi/2

Since Ψi,L−L0−4 contains no disks, Lemma 9.19 implies

wtG(Ψi,L−L0−4) ≤ 25N2h
2
i +N1µ(Ψi,L−L0−4)

while the assignment of weight implies

wt(Π) = C1|∂Π|2 ≤ C1h
2
i
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Combining these two inequalities, Lemma 9.10 implies

wtG(∆̄i,L−L0−4) ≤ 25N2h
2
i +N1µ(Ψi,L−L0−4) + C1h

2
i < 26N2h

2
i +N1µ(Ψi,L−L0−4)

By Lemma 11.6, |∂Ψi,L−L0−4|θ = 2(hi + hL−L0−4) ≤ 4hi. So, by Lemma 8.3(1),

µ(Ψi,L−L0−4) ≤ 16Jh2
i

Hence, taking N2 >> N1 >> J ,

wtG(∆̄i,L−L0−4) ≤ 26N2h
2
i + 16N1Jh

2
i ≤ 30N2h

2
i (11.9)

Thus, combining (11.8) and (11.9), Lemma 9.10 implies

wtG(∆) ≤ N4x
2 −N4δxhi+1/50c3 +N3µ(Ψ′i,L−L0−4) + 30N2h

2
i

Hence, to reach a contradiction, it suffices to show that

N4δxhi+1/50c3 ≥ N3µ(Ψ′i,L−L0−4)−N3µ(∆) + 30N2h
2
i (11.10)

Now consider the diagram Ψ′i+1,L−L0−4. When passing from ∂Ψ′i+1,L−L0−4 to ∂Ψ′i,L−L0−4, a sub-

path t is replaced with bot(Qi)
−1 (see Figure 11.10). The subpath t consists of:

• the subpath p′i,i+1 of ∂∆ obtained from pi,i+1 by removing the end of Qi+1,

• bot(Qi+1)−1, and

• a subpath of the inverse of ∂Π
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Figure 11.10:

By Lemma 11.6, there is a correspondence between the θ-edges of t and those of bot(Qi). So,

since bot(Qi) contains no q-edges, the necklace corresponding to Ψ′i,L−L0−4 may be obtained from

that of Ψ′i+1,L−L0−4 by the removal of the black beads corresponding to the q-edges of t.

Consider the q-edge f on the end of Qi. In ∂Ψ′i+1,L−L0−4, f separates the hi−1 − hi θ-edges of

pi−1,i from the hi + hL−L0−4 θ-edges of the path p′i,i+1p̄i+1,L−L0−4.

By Lemma 11.7, |p′i,i+1|q < 3K0, while |p̄i+1,L−L0−4|q ≤ 11L. So, as J >> K >> L,

there are at most J q-edges of ∂Ψ′i+1,L−L0−4 between any pair of θ-edges separated by f mentioned

above. As such, Lemma 8.3(d) implies

µ(Ψ′i+1,L−L0−4)− µ(Ψ′i,L−L0−4) ≥ (hi−1 − hi)(hi + hL−L0−4)

Meanwhile, Lemma 11.9 implies

µ(∆)− µ(Ψ′i+1,L−L0−4) ≥ −2J |∂∆|(hi+1 + hL−L0−4)

Combining these and noting that hL−L0−4 ≤ h ≤ hi+1 ≤ hi, we have

µ(∆)− µ(Ψ′i,L−L0−4) ≥ 2hi(hi−1 − hi)− 4J |∂∆|hi+1
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Hence by (11.10), it suffices to show that

N4δxhi+1/50c3 + 2N3hi(hi−1 − hi) ≥ 4N3J |∂∆|hi+1 + 30N2h
2
i (11.11)

As x = |∂∆|+ σλ(∆
∗) ≥ |∂∆|, the parameter choices N4 >> N3 >> δ−1 >> J >> c3 imply

N4δxhi+1/50c3 ≥
N4δ

50c3

|∂∆|hi+1 ≥ 4N3J |∂∆|hi+1

Moreover, by Lemma 11.23, hi−1 − hi > hi−1/30c3 ≥ hi/30c3. Hence, the parameter choices

N3 >> N2 >> c3 imply

2N3hi(hi−1 − hi) >
N3

15c3

h2
i ≥ 30N2h

2
i

Thus, the statement is proved.

Remark 11.2. Recall that we have assumed without loss of generality that hL−L0−4 ≤ hL0+1. If

hL−L0−4 > hL0+1, then the symmetric statement to Lemma 11.25 will be needed for L− L0 − 2 ≤

i ≤ L− 1. This statement can be proved analogously.

Finally, we reach the final contradiction of this section, the analogue of Lemma 9.26 of [18]

and Lemma 7.41 of [25].

Lemma 11.26. The counterexample diagram ∆ cannot exist.

Proof. First, fix an integer η ≥ 2 dependant on c3 such that (1− 1
30c3

)η < 1
64c3

. Note that, although

η is not listed as one of the parameters of Section 4.3, we may take L0 >> η since L0 is chosen

after c3.

For i = 1, . . . , L0 − 1, Lemma 11.23 implies hi+1 < (1− 1
30c3

)hi. So, if 1 ≤ i < j ≤ L0 − 1

with j − i− 1 ≥ η, then hj < (1− 1
30c3

)ηhi+1 <
1

64c3
hi+1.
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For such i, j, Lemma 11.22 then implies that |zi|a ≥ hi+1/2c3 > 32hj . As Lemma 11.24

implies 8hj ≥ |zj|a, we then have |zi|a > 4|zj|a.

Now, as L0 >> η and L0 >> c0, there exist indices 2 ≤ j1 < j2 < · · · < jm ≤ L0 − 1 such

that m ≥ c0 and ji+1 − ji − 1 ≥ η. So, |zji |a > 4|zji+1
|a and hji+1 ≥ 64c3hji+1

.

Let C : W0 → · · · → Wt be the computation corresponding to the trapezium Γj2 by Lemma

7.4. As Γj2 contains a copy of Γj2+1, which in turn contains a copy of Γj2+2 and so on, there exist

words Vi in C for i = 1, . . . ,m that are coordinate shifts of the labels of zji . By the inequalities

above, |Vi+1|a > 4|Vi|a.

If for some i the subcomputation Vi+2 → · · · → Vi is a one-step computation, then by Lemma

6.21 there exists a right-active (or left-active if h = hL−L0−4) sector Q′Q such that the sector’s

length increases with each transition of the subcomputation. But since η ≥ 2, there must exist a

subcomputation contradicting Lemma 11.25.

Hence, the subcomputation C ′ : Vm → · · · → Wt of C must contain at least c0/2 ≥ 8n distinct

one-step computations. Lemma 6.3 then implies that the step history of C ′ contains a subword of

the form (4n− 2, 4n− 1)j(4n− 1)j(4n− 1, 4n)j or (4n, 4n− 1)j(4n− 1)j(4n− 1, 4n− 2)j . Let

C ′′ be the subcomputation of C ′ with this step history.

Then, we may factor H ′j2+1 ≡ H ′H ′′H ′′′ where H ′′ is a controlled history. Further, since the

subcomputation C ′′ repeats k copies of a controlled history, taking k ≥ 3 allows us to assume

‖H ′′‖ ≤ ‖H ′‖.

Since hj1+1 > 64c3hj2 , H ′j1+1 has prefix K ≡ H ′H ′′H ′′′1 where ‖H ′′′1 ‖ = ‖H ′‖ ≥ ‖H ′′‖. Set B

as the subband of the spoke Qj1 with history K. Then, for any factorization B1B2B3 such that the

sum of the lengths of B1 and B3 is at most 1
3
‖K‖, the history of B2 must contain H ′′. So, since all

θ-bands crossing Qj1 must cross Qj1−1, taking λ < 1/3 implies B is a λ-shaft with length ‖K‖.

However, note that the subcomputation W0 → · · · → Vm has length at least hL0−1 ≥ h, so that

‖K‖ ≥ ‖H ′‖ ≥ h > δh. Thus, the existence of B in Qj1 contradicts Lemma 11.21.
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Chapter 12

Proof of Theorem A

We now complete the proof of the main theorem.

The first step toward this is to justify the assignments made throughout the construction.

12.1 Assignment of a-relations and weights

As mentioned in the introduction to the groups of interest in Chapter 6, the set of a-relators

of interest in this chapter, S , is the set of words in the letters A ∪ A−1 whose value in the free

Burnside group B(A, n) is 1.

The following Lemma sheds some light on why these particular relations are adjoined to the

group presentation.

Lemma 12.1. For any word u ∈ F (A), the relation un = 1 holds in the group G(M).

Proof. Lemmas 6.6 and 8.2 imply that the words corresponding to the configurations I(un) and

J(un) are trivial over the group G(M). These two words differ only by the insertion of the word

un in the ‘special’ input sector, so that un = 1 in G(M).

Lemma 12.2. The groups G(M) and GS(M) are isomorphic.

Proof. Identify B(A, n) with the presentation 〈A | w = 1, w ∈ L〉.

Then let ϕ : A→ G(M) be the map sending each letter to its natural copy in the tape alphabet

of the ‘special’ input sector. By the theorem of von Dyck (Theorem 4.5 in [16]), Lemma 12.1

implies that ϕ extends to a homomorphism B(A, n)→ G(M). So, for any word w corresponding

to an a-relation w = 1, the relation w = 1 holds in G(M).
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The theorem of von Dyck then implies that the map sending each generator of the canonical

presentation of G(M) to the corresponding generator of the disk presentation of GS(M) extends to

an isomorphism between the two groups.

Lemma 12.3. The group B(A, n) embeds in the group G(M).

Proof. Consider the natural map ϕ : A→ GS(M) sending the elements ofA to their copies in the

tape alphabet of the ‘special’ input sector. The theorem of von Dyck implies that this extends to a

homomorphism ϕ : B(A, n)→ GS(M).

Now suppose the reduced word w over A satisfies ϕ(w) = 1. Then by Lemma 10.9, there

exists a minimal diagram ∆ over GS(M) satisfying Lab(∂∆) ≡ w. By Lemmas 10.6 and 10.7,

every cell of ∆ must be an a-cell. But then this is a diagram over B(A, n), so that w = 1 in

B(A, n).

So, ϕ : B(A, n)→ GS(M) is an embedding. Lemma 12.2 then implies the statement.

Now we wish to justify our assignment of weights to a-cells and disks over the disk presentation

of GS(M). To do so, we first study areas of a diagram over the canonical presentation of G(M)

with contour label corresponding to a disk relation.

Lemma 12.4. (1) For any configuration W accepted by M, there exists a reduced diagram ∆ over

the canonical presentation of G(M) such that Lab(∂∆) ≡ W and Area(∆) ≤ C1|W |2.

(2) For any un ∈ L, there exists a reduced diagram ∆ over the canonical presentation ofG(M)

with Lab(∂∆) ≡ un and Area(∆) ≤ C1‖u‖2.

Proof. (1) By Lemma 6.17, there exists a computation C : W ≡ W0 → · · · → Wt accepting W

such that t ≤ c2‖W (i)‖ for all i ≥ 2. Further, by Lemma 6.18, ‖Wj‖ ≤ c2‖W‖ for all j.

By Lemma 7.5, we can then build a trapezium Γ over M(M) corresponding to C, so that

Lab(tbot(Γ)) ≡ W and Lab(ttop(Γ)) ≡ Wac.
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Given a maximal θ-band T of Γ, ‖tbot(T )‖ ≤ c2‖W‖. So, Area(Γ) ≤ 3c2
2‖W‖2.

As the Qs(L){t(1)}-sector is locked by every rule, the sides of Γ are labelled identically and

no trimming was necessary. So, we may glue these sides together and paste a hub into the middle

of the diagram. This produces a reduced diagram ∆ over the canonical presentation of G(M) with

Lab(∂∆) ≡ W and satisfying Area(∆) ≤ 3c2
2‖W‖2 + 1.

The statement then follows as we choose the parameter C1 after c2 and δ.

(2) Clearly, we may assume that un is nontrivial in F (A).

As in the previous case, we can build diagrams ∆1 and ∆2 over the canonical presentations of

G(M) where ∆j is made of a hub and a trapezium satisfying:

• Lab(∆1) ≡ I(un) and Area(∆1) ≤ 3c2
2‖I(un)‖2 + 1

• Lab(∆2) ≡ J(un) and Area(∆2) ≤ 3c2
2‖J(un)‖2 + 1

Note that ‖I(un)‖, ‖J(un)‖ ≤ L(11 +n‖u‖). So, since C1 is chosen after c2, L, and n, we can

assume that Area(∆j) ≤ 1
2
C1‖u‖2 for j = 1, 2.

Gluing ∆1 and ∆2 along their common contours (and making any possible cancellations) then

yields a diagram ∆ satisfying the statement.

Lemma 12.5. If w is a reduced word over the alphabet A such that w = 1 in B(A, n), then there

exists a reduced diagram ∆ over the canonical presentation of G(M) with Lab(∂∆) ≡ w and

satisfying Area(∆) ≤ C1‖w‖2.

Proof. Let ∆0 be a van Kampen diagram over the presentation 〈A | R〉 of B(A, n) (see Section

3.7) with Lab(∂∆0) ≡ w. For each cell Π0 in ∆0, Lab(∂Π0) ∈ R ⊂ L. Setting Lab(∂Π0) ≡

(u(Π0))n, Lemma 12.4(2) then implies that there exists a diagram Π over the canonical presenta-

tion of G(M) satisfying Lab(∂Π) ≡ (u(Π0))n and Area(Π) ≤ C1‖u(Π0)‖2.

Pasting Π in place of Π0 for each cell of ∆0 then produces a diagram ∆ over the canonical
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presentation of G(M) satsifying Lab(∂∆) ≡ w and

Area(∆) =
∑

Area(Π) ≤
∑

Π0∈∆0

C1‖u(Π0)‖2

But defining ρ(Π0) = ‖u(Π0)‖2 as in the definition of mass in Section 3.8, Lemma 3.8 implies

∑
Π0∈∆0

‖u(Π0)‖2 =
∑

Π0∈∆0

ρ(Π0) := ρ(∆0) ≤ ‖∂∆0‖2

Hence, Area(∆) ≤ C1‖∂∆0‖2 = C1‖w‖2.

Note that the proof of Lemma 12.5 relies on the assumption that n ∈ N∗.

12.2 Assignment of G-weight

Lemma 12.6. Let ∆ be an impeding a-trapezium. Then there exists a reduced diagram ∆̃ over

G(M) such that Lab(∂∆̃) ≡ Lab(∂∆) and Area(∆̃) ≤ 2wtG(∆).

Proof. Suppose wtG(∆) = 1
2
wt(∆). Then, let ∆̃ be the diagram constructed from ∆ by replacing

each a-cell with the corresponding reduced diagram over G(M) constructed in Lemma 12.4. Then

Area(∆̃) ≤ wt(∆) = 2wtG(∆).

So, it suffices to assume that:

wtG(∆) = 3hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + 3C1hη + C1(|tbot(∆)|a + |ttop(∆)|a + 2η)2

for η = ‖H1‖+ n‖H2‖+ ‖H3‖.

Let T0 be the maximal θ-band of ∆ such that bot(T0) = bot(∆). Letting θ0 be the rule

corresponding to T0, Lemma 7.2 implies that the admissible word V0 ≡ Lab(tbot(∆)) is θ0-

admissible.

If the base of ∆ is (P0(1)Q0(1))±1, then V0 is H-admissible by the definition of the rules.
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Otherwise, the base of ∆ isQ0(1)−1Q0(1). As V0 is θ0-admissible, its tape word must be nonempty.

The application of each rule conjugates the tape word of this sector, so that V0 must again be H-

admissible.

Suppose ` ≤ n. Let C be the reduced computation starting with V0 and with history H . Then,

let Γ be the trapezium corresponding to C by Lemma 7.5. By Lemmas 4.3 and 4.4, for any maximal

θ-band T of Γ, ‖tbot(T )‖ ≤ max(‖tbot(Γ)‖, ‖ttop(Γ)‖), so that wt(Γ) ≤ 3hmax(‖tbot(Γ)‖, ‖ttop(Γ)‖).

Note that |ttop(Γ)|a ≤ |V0|a + 2h and h ≤ ‖H1‖+ n‖H2‖+ ‖H3‖ = η, so that

wt(Γ) ≤ 3h(‖tbot(∆)‖+ 2η)

Further, the bottom and side labels of Γ are the same as those of ∆, while the top labels differ only

by a word w from the ‘special’ input sector with ‖w‖ ≤ |ttop(Γ)|a + |ttop(∆)|a. Pasting Γ and

∆ along their shared contour then yields a diagram over Ma(M) with contour label w. By Lemma

12.3, w must be an a-relation. So, we may paste an a-cell corresponding to w to the top of Γ to

produce a diagram Γ̃ with the same contour label as ∆ and

wt(Γ̃) ≤ 3h(‖tbot(∆)‖+ 2η) + C1(|tbot(∆)|a + 2η + |ttop(∆)|a)2 ≤ wtG(∆)

Now suppose ` > n.

Let C1 be the reduced computation starting with V0 and having history H1 and Γ1 be the trapez-

ium corresponding to C1 by Lemma 7.5. Set V1 ≡ V0 ·H1 ≡ Lab(ttop(Γ1)).

As V0 is H-admissible, there exists a reduced computation C2 starting with V1 and having

history Hn
2 . For q ∈ N such that ` = qn + r with 0 ≤ r < n, let Γ2(1), . . . ,Γ2(q) be q copies of

the trapezium corresponding to C2 by Lemma 7.5.

Let v1 be the tape word of V1. If the base of ∆ is P0(1)Q0(1) (or Q0(1)−1P0(1)−1), then the

tape word written on ttop(Γ2(i)) is equal to v1u
−n (or unv1) in F (A), where u is the natural copy

ofH2 over the alphabetA. Otherwise, the base of ∆ isQ0(1)−1Q0(1), so that the tape word written

on ttop(Γ2(i)) is equal in F (A) to unv1u
−n.
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In each case, the projection of Lab(ttop(Γ2(i))) onto F (A) is equivalent to v1 in B(A, n). In

particular, for 1 ≤ i ≤ q we may attach a-cells corresponding to u±n to top(Γ2(i)) so that the

top of the resulting diagram Γ̃2(i) is equivalent to V1. By the assignment of weights, each of these

a-cells has weight at most C1n
2‖H2‖2.

Finally, let Γ̃2(q + 1) be the trapezium corresponding to the reduced computation starting with

V1 and having history Hr
2 .

Then, we paste the top of Γ̃2(i) to the bottom of Γ̃2(i + 1) for each 1 ≤ i ≤ q to form the

diagram Γ2.

Let V2 ≡ Lab(ttop(Γ̃2(q + 1))). Note that V2 is θ2-admissible, where θ2 is the first rule of H2.

So as above, V2 is H3-admissible, i.e there exists a reduced computation C3 starting with V2 and

having history H3. Let Γ3 be the corresponding trapezium.

Finally, we form the the diagram Γ by pasting together Γ1, Γ2, and Γ3.

Note that ‖V1‖ ≤ ‖V0‖+ 2‖H1‖, while ‖V2‖ ≤ ‖V1‖+ 2r‖H2‖ ≤ ‖V0‖+ 2‖H1‖+ 2r‖H2‖.

So, for any maximal θ-band T of Γ, |tbot(T )|a ≤ |V0|a + 2η.

In particular, |ttop(Γ)|a ≤ |V0|a + 2η and

wt(Γ) ≤ 3h(‖tbot(∆)‖+ 2η) + 2C1qn
2‖H2‖2

As above, there exists an a-relation w with ‖w‖ ≤ |ttop(Γ)|a + |ttop(∆)|a such that if we paste

the a-cell corresponding to w to the top of Γ, we obtain a diagram Γ̃ with Lab(∂Γ̃) ≡ Lab(∂∆)

and

wt(Γ̃) ≤ 3h(‖tbot(∆)‖+ 2η) + 2C1qn
2‖H2‖2 + C1(|tbot(∆)|a + 2η + |ttop(∆)|a)2

As qn‖H2‖ ≤ `‖H2‖ ≤ h, we also have 2C1qn
2‖H2‖2 ≤ 2C1hn‖H2‖ ≤ 2C1hη. Hence, taking

C1 ≥ 6,

wt(Γ̃) ≤ 3h‖tbot(∆)‖+ (2C1 + 6)hη + C1(|tbot(∆)|a + |ttop(∆)|a + 2η)2 ≤ wtG(∆)
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Thus, the reduced diagram ∆̃ obtained from Γ̃ by replacing any a-cell with the diagram constructed

in Lemma 12.4 (and making any necessary cancellations) satisfies the statement.

Lemma 12.7. For every big a-trapezium ∆, there is a reduced diagram ∆̃ over the finite presen-

tation of G(M) such that Lab(∂∆̃) ≡ Lab(∂∆) and Area(∆̃) ≤ 2wtG(∆).

Proof. As in the proof of Lemma 12.6, if wtG(∆) = 1
2
wt(∆), then we may construct ∆̃ simply by

replacing all a-cells with the corresponding diagram constructed in Lemma 12.4. Hence, it suffices

to assume that

wtG(∆) = c5hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + 4C1(|tbot(∆)|a + |ttop(∆)|a)2

Without loss of generality, suppose the base of ∆ begins and ends with {t(1)}. Then, let

∆1, . . . ,∆L be the maximal subdiagrams of ∆ bounded by the maximal t-bands, so that each is an

a-trapezium with pararevolving base.

By Lemma 9.4, only ∆1 may contain a-cells, so that ∆2, . . . ,∆L are trapezia.

For T a maximal θ-band of ∆, let Ti be the subband which is a maximal θ-band of ∆i.

Suppose h ≤ c3 max(‖tbot(∆2)‖, ‖ttop(∆2)‖). Then, the parameter choice c4 >> c3 implies

‖tbot(T2)‖ ≤ c4 max(‖tbot(∆2)‖, ‖ttop(∆2)‖).

Since ∆ is big, its history contains a controlled subword. So, by Lemma 6.7, each ∆i must be

a coordinate shift of ∆2 for i ≥ 2, so that h ≤ c3 max(‖tbot(∆i)‖, ‖ttop(∆i)‖) and ‖tbot(Ti)‖ ≤

c4 max(‖tbot(∆i)‖, ‖ttop(∆i)‖). As L >> c3, this implies h ≤ max(‖tbot(∆)‖, ‖ttop(∆)‖).

Moreover, the only sector of ∆1 that may not be a coordinate shift of the corresponding sector

of ∆2 is the ‘special’ input sector.

For any a-edge e of tbot(T1) in the ‘special’ input sector, let B be the maximal a-band contain-

ing e. Then Lemma 9.2 and (MM3) imply that B must have one end on ttop(∆1), on tbot(∆1), or

on the q-band corresponding to Q0(1).
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So, ‖tbot(T1)‖ ≤ ‖tbot(T2)‖+ ‖tbot(∆1)‖+ ‖ttop(∆1)‖+ h. It then follows that:

‖tbot(T )‖ ≤
L∑
i=1

‖tbot(Ti)‖ ≤
(

L∑
i=2

2‖tbot(Ti)‖
)

+ ‖tbot(∆1)‖+ ‖ttop(∆1)‖+ h

≤

(
L∑
i=2

2c4 max(‖tbot(∆i)‖, ‖ttop(∆i)‖)

)
+ ‖tbot(∆1)‖+ ‖ttop(∆1)‖+ h

≤ 2c4

(
L∑
i=1

‖tbot(∆i)‖+ ‖ttop(∆i)‖

)
+ h

≤ 4c4(‖tbot(∆)‖+ ‖ttop(∆)‖) + h ≤ (8c4 + 1) max(‖tbot(∆)‖, ‖ttop(∆)‖)

So, by the parameter choice c5 >> c3, the sum of the lengths, and so the weights, of the maximal

θ-bands of ∆ is at most c5hmax(‖tbot(∆)‖, ‖ttop(∆)‖).

Any other cell of ∆ is an a-cell. As above, Lemma 9.2 and (MM2) then imply that each

maximal a-band starting from an a-cell must end on the q-band corresponding to Q0(1), on

ttop(∆), or on tbot(∆). So, the sum of the combinatorial perimeters of the a-cells of ∆ is at

most h+ |ttop(∆)|a + |tbot(∆)|a, i.e at most 2(‖tbot(∆)‖+ ‖ttop(∆)‖). As a result,

wt(∆) ≤ c5hmax(‖tbot(∆)‖, ‖ttop(∆)‖) + 4C1(‖tbot(∆)‖+ ‖ttop(∆)‖)2 = wtG(∆)

The reduced diagram ∆̃ constructed from ∆ by replacing any a-cell with the corresponding re-

duced diagram from Lemma 12.4 then satisfies the statement.

Hence, we may assume that h > c3 max(‖tbot(∆2)‖, ‖ttop(∆2)‖).

As ∆ is big, its history must contain a controlled subword H ′. Let ∆′ be the subtrapezium

whose history is H ′.

Let ∆− be the subdiagram of ∆ obtained by removing the maximal q-band Q corresponding

to the final letter of the base of ∆. So, ∆− is an a-trapezium with the standard base. Similarly

define ∆′− as the corresponding subdiagram of ∆′. Lemma 6.7 then implies that Lab(tbot(∆′−)) =

Lab(bot(∆′−)) is an accepted configuration.

As ∆2 is a trapezium, Lemma 7.4 yields a corresponding computation C2 : V0 → · · · → Vh
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with base {t(2)}B3(2) satisfying h > c3 max(‖V0‖, ‖Vh‖). Hence, C2 satisfies the hypotheses

of Lemma 6.19, so that there exist accepted configurations W ′
0 and W ′

h with W ′
0(2) ≡ V0 and

W ′
h(2) ≡ Vh.

Let ∆0 be the subdiagram of ∆− which is an a-trapezium with bot(∆0) = bot(∆−) and

top(∆0) = bot(∆′−). Then ∆0 is an a-trapezium with sides labelled identically and top labelled

by an accepted configuration. So, W0 ≡ Lab(bot(∆−)) must be a configuration which is trivial in

GS(M).

Similarly, Wh ≡ Lab(top(∆−)) is a configuration which is trivial in GS(M).

By Lemma 9.4, any sector of ∆0 other than the ‘special’ input sector is a trapezium. So, since

Lab(top(∆0)) is an accepted configuration, the parallel nature of the rules implies that W0(i) and

W0(j) are coordinate shifts of one another for i, j ≥ 2 while the corresponding coordinate shift

of W0(i) differs from W0(1) only in the ‘special’ input sector. Hence, since W ′
0 is an accepted

configuration with W0(2) ≡ W ′
0(2), W0 and W ′

0 can differ only in the ‘special’ input sector.

Let w0 and w′0 be the tape words of W0 and W ′
0, respectively, in this sector. Then, since W0 and

W ′
0 are each trivial over GS(M), it follows that w−1

0 w′0 is trivial over GS(M). Lemma 12.3 then

implies that w−1
0 w′0 is trivial over B(A, n), so that it corresponds to an a-relation.

Let H0 be the history of an accepting computation C0 of W ′
0 with `(C0) = `(W ′

0). Then using

Lemmas 6.17 and 7.5, we may construct a reduced diagram Ψ′0 over G(M) with Lab(∂Ψ′0) ≡ W ′
0

consisting of one hub and a trapezium with Area(Ψ′0) ≤ c3‖H0‖‖W ′
0‖ (c3 >> c2).

By Lemma 12.5, we also construct a reduced diagram Ψ′′0 overG(M) with Lab(∂Ψ′′0) ≡ w−1
0 w′0

with Area(Ψ′′0) ≤ C1(‖w0‖+ ‖w′0‖)2.

Lemma 6.16 implies that ‖w′0‖ ≤ |W ′
0(1)|a ≤ 2|W ′

0(2)|a = 2|W0(2)|a. So,

‖W ′
0‖ ≤ ‖W0‖+ ‖w′0‖ ≤ ‖W0‖+ |W0(2)|a + |W0(3)|a ≤ 2‖W0‖

Further, ‖w0‖ ≤ |tbot(∆1)|a and, since L ≥ 3, ‖w′0‖ ≤ |tbot(∆2)|a + |tbot(∆3)|a.

Let Ψ0 be the diagram obtained from pasting Ψ′0 and Ψ′′0 along their common boundary labels.

245



Then, Lab(∂Ψ0) ≡ W0 and Area(Ψ0) ≤ 2c3‖H0‖‖W0‖+ C1(|W0|a)2.

Similarly, we may construct a reduced diagram Ψh over the finite presentation of G(M) satis-

fying Lab(∂Ψh) ≡ Wh and Area(Ψh) ≤ 2c3‖Hh‖‖Wh‖+ C1(|Wh|a)2, where Hh is the history of

an accepting computation Ch of W ′
h with `(Ch) = `(W ′

h).

Attaching the corresponding ends of Q to Ψ0 and Ψh, we then obtain a reduced diagram ∆̃

with Lab(∂∆̃) ≡ Lab(∂∆) and

Area(∆̃) ≤ 2c3(‖H0‖‖W0‖+ ‖Hh‖‖Wh‖) + C1(|W0|a + |Wh|a)2 + h

≤ 2c3(‖H0‖+ ‖Hh‖)(‖tbot(∆)‖+ ‖ttop(∆)‖) + C1(|tbot(∆)|a + |ttop(∆)|a)2 + h

By Lemma 6.19, ‖H0‖+ ‖Hh‖ ≤ h.

Thus, the parameter choice c5 >> c3 implies Area(∆̃) ≤ wtG(∆).

12.3 Quadratic upper bound

Finally, we complete the proof of Theorem A.

As Lemma 12.3 implies that G(M) contains an infinite torsion subgroup, the Dehn function of

G(M) is at least quadratic. Thus, it suffices to prove a quadratic upper bound bound.

Let w ∈ F (X ) such that w = 1 in G(M). By Lemma 12.2, w is also trivial over the group

GS(M), so that Lemma 10.9 yields a minimal diagram ∆a over GS(M) with Lab(∂∆a) ≡ w. By

Lemma 11.26, we have

wtG(∆a) ≤ N4(|w|+ σλ(∆
∗
a))

2 +N3µ(∆a)

Lemma 10.15 implies that σλ(∆∗a) ≤ C1|w|, while Lemma 8.3(a) implies µ(∆a) ≤ J |w|2. So, as
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|w| ≤ ‖w‖, we can choose N5 large enough so that

wtG(∆a) ≤
1

2
N5‖w‖2

Now, let P be a minimal covering of ∆a and construct the reduced diagram ∆ over the canonical

presentation of G(M) by:

• excising any impeding a-trapezium P ∈ P and pasting in its place the reduced diagram given

in Lemma 12.6 with the same contour label and area at most 2wtG(P )

• excising any big a-trapezium P ∈ P and pasting in its place the reduced diagram given in

Lemma 12.7 with the same contour label and area at most 2wtG(P )

• excising any disk Π ∈ P and pasting in its place the reduced diagram given in Lemma 12.4

with the same contour label and area at most C1|∂Π|2

• excising any a-cell π ∈ P and pasting in its place the reduced diagram given in Lemma 12.5

with the same contour label and area at most C1‖∂π‖2

By the definition of G-weight, it follows that Area(∆) ≤ 2wtG(∆a) ≤ N5‖w‖2.

Therefore, the Dehn function of G(M) is at most quadratic, and so the proof of Theorem A is

complete.
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Chapter 13

Proof of Theorem B

13.1 g-diagrams and g-minimal diagrams

By Lemma 12.3, every g ∈ B(A, n) can be identified with an element ofGS(M), namely ϕ(g).

For g ∈ B(A, n), define |g|A as the smallest number of letters comprising a word over A whose

value in B(A, n) is g.

For g ∈ B(A, n), a minimal diagram ∆ is called a g-diagram if ∂∆ = st, Lab(t) is a word

over A whose value in B(A, n) is g−1, and ‖t‖ = |g|A.

A g-diagram ∆ is called g-minimal if |∂∆|+ σλ(∆) is minimal amongst all g-diagrams.

Lemma 13.1. For g ∈ B(A, n), if ∆ is a g-minimal diagram, then |∂∆|+ σλ(∆) ≤ 2δ|g|A.

Proof. Let v be a word over A whose value in B(A, n) is g and such that ‖v‖ = |g|A.

By van Kampen’s Lemma, there exists a diagram Φ over F (A) (in which every cell is a 0-cell)

with Lab(∂Φ) ≡ vv−1. Viewing Φ as a diagram over GS(M), it is clear that Φ is a g-diagram

containing no disks, so that σλ(Φ) = 0.

Hence, for any g-minimal diagram ∆,

|∂∆|+ σλ(∆) ≤ |∂Φ| = 2δ‖v‖ = 2δ|g|A

Lemma 13.2. If ∆ is a g-minimal diagram for some g ∈ B(A, n), then no q-band of ∆ has two

ends on ∂∆.

Proof. Decompose ∂∆ = st as in the definition of g-diagram.

Suppose Q is a q-band with two ends on ∂∆. Then, since t consists entirely of a-edges, both

ends of Q must be edges of s.
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Let s0 be the subpath of s bounded by the two ends of Q. So, s0 and a side of Q, say top(Q),

bound a subdiagram ∆0 of ∆ containing Q.

By Lemma 8.1(b), |top(Q)| = `, where ` is the length of Q.

Further, by Lemma 10.8, every maximal θ-band of ∆0 must have two ends on ∂∆0. Lemma

9.1 implies that no θ-band can end twice on top(Q). As a result, each of the ` θ-edges of top(Q)

correspond to a θ-edge of s0, so that Lemma 8.1(a) implies |s0| ≥ `+ 2.

Consider the diagram ∆′ obtained from ∆ by cutting off ∆0. As ∆′ is a subdiagram of ∆, it is

minimal. Moreover, ∂∆′ can be decomposed as s1(top(Q))s2t, where s = s1s0s2. As a result, ∆′

is a g-diagram.

By Lemma 8.1(c),

|∂∆′| ≤ |s1|+ |top(Q)|+ |s2|+ |t| = |s1|+ `+ |s2|+ |t|

≤ |s1|+ |s0| − 2 + |s2|+ |t| ≤ |∂∆| − (2− 4δ)

A parameter choice for δ then implies |∂∆′| ≤ |∂∆| − 1.

Finally, as ∆0 and ∆′ are disjoint, σλ(∆) ≥ σλ(∆0) + σλ(∆
′). In particular, this implies

|∂∆′|+ σλ(∆
′) ≤ |∂∆|+ σλ(∆)− 1

But this contradicts the assumption that ∆ is a g-minimal diagram.

Let ∆ be a g-minimal diagram for some g ∈ B(A, n) and decompose ∂∆ = st as in the

definition of g-diagram. Suppose ∆ contains a quasi-rim θ-band T . Since t is comprised entirely

of a-edges, T must end twice on s. Let s0 be the subpath of ∂∆ bounded by the two ends of T

such that, per the definition of quasi-rim θ-band, any cell between bot(T ) (or top(T )) and s0 is an

a-cell. If s0 is a subpath of s, then T is called a g-rim θ-band.

Lemma 13.3. Let ∆ be a g-minimal diagram for some g ∈ B(A, n). If T is an g-rim θ-band in
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∆, then the base of T has length s > K.

Proof. Suppose to the contrary that the base of T has length s ≤ K.

Decompose ∂∆ = st as in the definition of g-diagram and let s0 be the subpath of s as in the

definition of g-rim θ-band.

Suppose every cell between bot(T ) and s0 is an a-cell. As in the proof of Lemma 13.2, let

∆0 be the subdiagram bounded by top(T ) and s0 and let ∆′ be the diagram obtained from ∆ by

cutting off ∆0.

Then, any cell of ∆0 not comprising T is an a-cell. Letting π be such an a-cell, for any edge

e of ∂π, either e is shared with s0 or e−1 is shared with bot(T ). Similarly, any edge of bot(T ) is

either shared with s0 or its inverse is on the boundary of an a-cell in ∆0.

For an a-cell π in ∆0, let ∂π = pπqπ, where pπ is a maximal subpath shared with ∂∆. By

(M1), at most 1
2
‖∂π‖ edges of ∂π are shared with the boundary of a (θ, a)-cell of T . So, ‖qπ‖ ≤

1
2
‖∂π‖+ bπ, where bπ is the number of edges of ∂π shared with the boundary of a (θ, q)-cell of T .

As a result, ‖pπ‖ ≥ 1
2
‖∂π‖ − bπ ≥ ‖qπ‖ − 2bπ.

Since T contains s (θ, q)-cells, the boundary of any of which contains at most one a-edge

labelled by a letter from the ‘special’ input sector,
∑
bπ ≤ s. Hence, |s0|a ≥ |bot(T )|a − 2s ≥

|bot(T )|a − 2K.

As every q-edge of bot(T ) is shared with s0, it then follows from Lemma 8.1 that

|s0| ≥ 2 + |s0|q + δ(|s0|a − 2) ≥ 2− 2δ + |bot(T )|q + δ(|bot(T )|a − 2K)

≥ 2 + |bot(T )| − (2K + 2)δ

Further, by Lemma 4.1, |top(T )|a ≤ |bot(T )|a + 2s ≤ |bot(T )|a + 2K.

Thus, |s0| ≥ 2− (2K + 2)δ + |top(T )| − 2Kδ ≥ |top(T )|+ 2− (4K + 2)δ ≥ |top(T )|+ 1

by the parameter choice δ−1 >> K.

But then Lemma 8.1 and a parameter choice for δ implies that ∆′ is a g-diagram satisfying

|∂∆′|+ σλ(∆
′) < |∂∆|+ σλ(∆), contradicting the assumption that ∆ is g-minimal.
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Lemma 13.4. Let ∆ be a g-minimal diagram for some g ∈ B(A, n) and decompose ∂∆ = st as

in the definition of g-diagram. If ∆ contains no disks, then |s| = |t| = δ|g|A.

Proof. By the definition of the design, σλ(∆) = 0. Further, Lemma 13.2 implies that ∆ contains

no q-bands, so that Lemma 9.1 implies that ∂∆ contains no q-edges.

If ∆ contains a θ-band, then Lemma 9.3 implies that ∆ contains a g-rim θ-band T . But then

T has base of length zero, contradicting Lemma 13.3.

Hence, any cell of ∆ is an a-cell and every edge of ∂∆ is an a-edge.

Suppose e is an edge of s that is not on the boundary of an a-cell. Then the maximal a-band of

∆ starting at e must be of length zero, i.e e−1 is an edge of ∂∆. If e−1 is part of s, then deleting the

subpath of s bounded by e and e−1 results in a g-diagram with smaller perimeter, contradicting the

assumption that ∆ is g-minimal. So, e−1 must be an edge of t.

As a result, Lab(∂∆) must be a word over A.

Now, as in the proof of Lemma 12.5, excise any a-cell of ∆ and paste in its place an appropriate

reduced diagram over the presentation 〈A | R〉 of B(A, n). This produces a reduced diagram Ψ

over B(A, n) with Lab(∂Ψ) ≡ Lab(∂∆). Hence, Lab(s) = g in B(A, n).

By the definition of the word norm, this implies that |s| = δ‖s‖ ≥ δ|g|A.

Hence, |∂∆| = |s|+ |t| ≥ 2δ|g|A.

But then Lemma 13.1 implies |∂∆| = 2δ|g|A, so that |s| = δ|g|A.

13.2 g-minimal diagrams containing disks

Lemma 13.5. Let ∆ be a g-minimal diagram for some g ∈ B(A, n) containing at least one disk.

Decompose ∂∆ = st as in the definition of g-diagram. Then ∆ contains a disk Π such that:

(a) L− 6 consecutive t-spokes Q1, . . . ,QL−6 of Π end on ∂∆
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(b) for i = 1, . . . , L−7, the subdiagram Ψi,i+1 of ∆ bounded byQi,Qi+1, ∂Π, and ∂∆ contains

no disks, and

(c) t is not a subpath of ∂Ψi,i+1 for any i = 1, . . . , L− 7.

Proof. Let Π1 be a disk in ∆ guaranteed by Lemma 10.6. As t consists entirely of a-edges, every

t-spoke of Π ending on ∂∆ must end on s.

Let Ψ1 be the subdiagram of ∆ bounded by ∂Π1, ∂∆, and the L − 4 consecutive t-spokes of

Π1 ending on ∂∆. Then, one may assume that ∂Ψ1 contains t as a subpath, as otherwise choosing

Π = Π1 satisfies the statement. Similarly, one may assume that the complement of Ψ1 ∪ Π1 in ∆,

Ψ′1, contains a disk, as otherwise Π1 is the only disk in ∆.

Then, decompose ∂Ψ′1 = s1t1 where s1 is the maximal subpath of s.

Next, apply Lemma 10.6 to Ψ′1, yielding a disk Π2. Let Ψ2 be the subdiagram of ∆ bounded

by ∂Π2, ∂Ψ2, and the L− 4 consecutive t-spokes of Π2 ending on ∂Ψ′1.

Suppose ∂Ψ2 does not contain t1. Then, by Lemma 10.5, at most two of the L − 4 t-spokes

of Π2 ending on ∂Ψ′1 end on t1, in which case such a spoke is the first or last in the sequence. As

such, choosing Π = Π2 satisfies the statement. So, one may assume that ∂Ψ2 contains t1.

Similarly, one may assume that the complement of Ψ2 ∪ Π2 in Ψ′1, Ψ′2, contains a disk, as

otherwise Π2 is the only disk in Ψ′1.

Now decompose ∂Ψ′2 = s2t2 where s2 is a maximal subpath of s and apply Lemma 10.6 to Ψ′2,

yielding a disk Π3.

Continuing in this way, the finiteness of ∆ implies that the process must terminate. Hence,

there exists ` such that Π` satisfies the statement.

The goal throughout the rest of this section is to prove that for any g ∈ B(A, n), a g-minimal

diagram must be diskless. This is done by arguing toward contradiction in much the same way as

proof presented in Chapter 11.
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As such, we adopt much of the same notation of Chapter 11 for a g-minimal diagram ∆ con-

taining a disk Π satisfying Lemma 13.5. So, for 1 ≤ i < j ≤ L−6, we define the the subdiagrams

Ψij , Ψ′ij , and ∆̄ij as well as the paths pij and p̄ij . As in Chapter 11, the subscripts are suppressed

in the case that j − i is maximal; in other words, Ψ = Ψ1,L−6, p = p1,L−6, etc.

Further, for each i ∈ {1, . . . , L − 6}, define Hi as the history of the t-spoke Qi and define

hi = ‖Hi‖.

Finally, let W be the accepted configuration of M corresponding to Lab(∂Π) and let V be the

accepted configuration of M4 such that W (i) is a copy of V for each i ≥ 2.

Note that Lemma 13.2 can function as an analogue of Lemma 11.5 in this setting. The follow-

ing statement can similarly be viewed as an analogue of Lemma 11.6.

Lemma 13.6.

(1) Every maximal θ-band of Ψ crosses either Q1 or QL−6.

(2) There exists an r satisfying (L − 1)/2 − 5 ≤ r ≤ (L − 1)/2 such that the θ-bands of Ψ

crossing QL−6 do not cross Qr and the θ-bands of Ψ crossing Q1 do not cross Qr+1.

Proof. (1) Suppose there exists a θ-band T of Ψ not crossing either Q1 or QL−6. Then T must

have both ends on p which is a subpath of s. So, T is a maximal θ-band of ∆.

As Ψ is diskless, perhaps passing to θ-bands contained in the subdiagram bounded by T and

p, it is no loss of generality to assume that T is a quasi-rim θ-band. By definition, this means that

T is a g-rim θ-band.

By Lemma 13.2, every q-band crossing T must be a spoke of Π. But then the base of T has

length at most 11(L− 7) + 1 < K by the parameter choice K >> L, contradicting Lemma 13.3.

(2) This is proved in much the same way as Lemma 11.6(2). Note that the difference in the

bounds is due to the difference in the number of relevant t-spokes.
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By Lemma 13.6(2), it follows that, as in Chapter 11,

h1 ≥ h2 ≥ · · · ≥ hr−1 ≥ hr ;

hr+1 ≤ hr+2 ≤ · · · ≤ hL−7 ≤ hL−6

The next statement is the analogue of Lemma 11.8 in this setting. Its proof is an exact copy of

the one provided in Chapter 11.

Lemma 13.7.

(1) If i ≤ r and j ≥ r + 1, then

|pij| ≥ |pij|θ + |pij|q + δ(|pij|a − |pij|θ)

≥ hi + hj + 11(j − i) + δ(|pij|a − hi − hj) + 1

(2) |p̄ij| ≤ hi + hj + 11(L− j + i) + (L− j + i+ 1)δ|V |a − 1.

The following statement is the analogue of Lemma 11.10 in this setting.

Lemma 13.8. For any 1 ≤ i < j ≤ L− 6, |pij|+ σλ(∆̄ij) ≤ |pij|+ σλ(∆)− σλ(Ψ′ij) ≤ |p̄ij|.

Proof. As ∆̄ij is the complement of Ψ′ij in ∆, σλ(Ψ′ij) + σλ(∆̄ij) ≤ σλ(∆). Hence, it suffices to

show that |pij|+ σλ(∆) ≤ |p̄ij|+ σλ(Ψ
′
ij).

Let p′ij be the complement of pij in ∂∆. As pij starts and ends with t-edges, |∂∆| = |pij|+|p′ij|.

Further, since ∂Ψ′ij = p̄ijp′ij , Lemma 8.1(c) implies |∂Ψ′ij| ≤ |p̄ij|+ |p′ij|.

Since ∂Ψ′ij contains t as a subpath, Ψ′ij is a g-diagram. But then ∆ is g-minimal, so that

|∂∆|+ σλ(∆) ≤ |∂Ψ′ij|+ σλ(Ψ
′
ij). Combining these inequalities then yields

|pij|+ |p′ij|+ σλ(∆) ≤ |p̄ij|+ |p′ij|+ σλ(Ψ
′
ij)

yielding the desired inequality.
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Lemma 13.9. The inequality |V |a >
11L

16δ
must be true.

Proof. As σλ(∆̄) ≥ 0, Lemma 13.8 implies that |p| ≤ |p̄|.

So, by Lemma 13.7,

h1 + hL−6 + 11(L− 7) ≤ h1 + hL−6 + 11(7) + 8δ|V |a

As a result, |V |a ≥
11(L− 14)

8δ
>

11L

16δ
by a parameter choice for L.

Note that the previous statement serves as an analogue (though a strengthened version) of

Lemma 11.18.

Lemma 13.10. Let T (resp T ′) be the maximal θ-band of Ψ crossing Q1 (resp QL−6) closest

to Π. Let ` and `′ be the maximal integers for which T crosses Q1, . . . ,Q` and T ′ crosses

QL−5−`′ , . . . ,QL−6. Then:

(1) `+ `′ > L− L0

(2) H1 and HL−6 have different first letters.

Proof. (1) By Lemma 13.3, for ` ≤ i ≤ L− 6− `′, Ψi,i+1 contains no cells. In particular, pi,i+1 is

shared with ∂Π, and so contains |V |a a-edges and no θ-edges. Applying Lemma 8.1, this implies

|p| ≥ h1 + hL−6 + 11(L− 7) + (L− 6− `− `′)δ|V |a

By Lemma 13.7(2), |p̄| ≤ h1 + hL−6 + 11(7) + 8δ|V |a.

By Lemma 13.8, these inequalities yield

11(L− 14) + (L− 14)δ|V |a ≤ (`+ `′)δ|V |a
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As L > 0, this necessitates |V |a > 0. But then ` + `′ > L− 14, so that a parameter choice for L0

implies the statement.

(2) The parameter choice L >> L0 allows one to assume that L − L0 > (L − 1)/2. But then

if the statement were false, then (1) would contradict Lemma 10.7(2).

Note that Lemma 13.10(2) is the natural analogue of Lemma 11.17 in this setting.

Since Lemma 10.7(1) implies that `, `′ ≤ (L− 1)/2, it follows from Lemma 13.10(1) and the

parameter choice L >> L0 that `, `′ > L0.

The distinguished clove Ψi,i+1 is defined here in the analogous way as it is in Chapter 11, as

are its subdiagrams Λ′i,i+1 and Λ′′i,i+1.

Further, for i ∈ [1, r − 1] ∪ [r + 1, L− 7], define the trapezium Γi, the comb Ei, and the paths

yi and zi in the same way they were defined in Section 11.5.

Lemma 13.11. For each i, the comb Ei contains no a-cell.

Proof. Suppose Ψi,i+1 is not the distinguished clove.

By Lemma 13.2, every q-band of Ei corresponds to a spoke of Π contained in Ψi,i+1. So, by

the structure of the relations, every edge of any a-cell of Ei must be shared with pi,i+1. But then

cutting this a-cell off of ∆ produces a g-diagram with smaller inductive parameter, contradicting

the assumption that ∆ is g-minimal.

If Ψi,i+1 is the distinguished clove, then the same argument applies, as the spokes of Π con-

tained in Λ′i,i+1 cannot correspond to the ‘special’ input sector.

The following two statements are the analogues of Lemmas 11.14 and 11.15 and are proved in

exactly the same way.

Lemma 13.12. For i ∈ {2, . . . , r − 1}, suppose a maximal a-band B of Ei starts on zi and ends

on a side of a maximal q-band C. Let ∇ be the comb bounded by B, a part of C, and a subpath x
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of zi. Then there is a copy of the comb ∇ in the trapezium Γ = Γi−1 \ Γ′i, where Γ′i is the natural

copy of Γi in Γi−1.

Lemma 13.13. At most 6 a-bands starting on the path yi (or zi) can end on (θ, q)-cells of the same

θ-band.

Lemma 13.14. There exist no two indices i ∈ {1, . . . , r− 1} and j ∈ {r+ 1, . . . , L− 7} such that

|zi|a, |zj|a < |V |a/8c3.

Proof. Suppose neither Ψi,i+1 nor Ψj,j+1 is the distinguished clove.

As in the proof of Lemma 11.19, we may use Lemma 13.10(2) to construct a trapezium E with

history H−1
j Hi+1 by pasting the mirror of a coordinate shift of Γj to Γi. Without loss of generality,

suppose hi+1 ≥ hj .

Note that |V |a − |V |a/8c3 > |V |a/2, so that hi+1, hj > |V |a/8 since any rule of M4 alters

the a-length of a configuration by at most four. By Lemma 13.9, |V |a/8 > 11L
128δ
≥ 12c3 since

δ−1 >> L >> c3. Further, for t the height of E, W0 ≡ tbot(E), and Wt ≡ ttop(E), |V |a/8 >

c3 max(|W0|a, |Wt|a). So, t > c3 max(‖W0‖, ‖Wt‖).

Taking λ < 1/10, Lemmas 7.4 and 6.20 imply thatQi contains a λ-shaft of Π of length at least

hi+1. So, Lemma 13.7(1) yields the inequality |pi,j|+ σλ(∆̄i,j) ≥ hi + hj + hi+1.

By Lemma 13.9 and a parameter choice for δ, 11L < 16δ|V |a < 128δhi+1 ≤ 1
4
hi+1. Similarly,

(L+ 1)δ|V |a ≤ 8δhi+1 <
1
4
hi+1. Hence, |p̄i,j| < hi + hj + 1

2
hi+1.

But then |p̄i,j| < |pi,j|+ σλ(∆̄i,j), contradicting Lemma 13.8.

Now suppose either Ψi,i+1 or Ψj,j+1 is the distinguished clove. Then letting h′i+1 and h′j be

the heights of Γi and Γj , respectively, we may construct the trapezium E as above. Assuming

h′i+1 ≥ h′j , then the same arguments as above imply that Qi contains a λ-shaft of Π of length at

least h′i+1 ≥ hi+1. But then a contradiction is reached as above.

As a result of Lemma 13.14, we may assume without loss of generality that for all i =

1, . . . , r − 1, |zi|a ≥ |V |a/8c3.
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Lemma 13.15. Let I be the subset of the indices {1, . . . , r − 1} defined by the property that for

any i ∈ I , hi − hi+1 ≤ |zi|a/8. Then #I ≤ c4.

Proof. Note that the length of the handle Ei is at most hi − hi+1. So, by Lemma 13.13, at most

6(hi − hi+1) a-bands beginning on zi can end on a (θ, q)-cell of Ei.

Since pi,i+1 consists of exactly hi − hi+1 θ-edges, for any i ∈ I , at least |zi|a− 7(hi− hi+1) ≥

|zi|a/8 a-edges contribute δ to |pi,i+1|, and so to |p|.

As |zi|a ≥ |V |a/8c3 for all i ∈ I , it follows that at least |V |a/64c3 a-edges contribute δ to |p|.

Suppose #I > c4. Then, by Lemma 13.7 and the parameter choice c4 >> c3,

|p| ≥ h1 + hL−6 + 11(L− 7) + 8δ|V |a

|p̄| ≤ h1 + hL−6 + 11(7) + 8δ|V |a

But then |p̄| < |p|, contradicting Lemma 13.8.

Lemma 13.16. For i = 1, . . . , L0, hi > L2
0|V |a.

Proof. As hi ≥ hi+1 ≥ · · · ≥ hr−1 ≥ hr, we have hi ≥ hi − hr =
r−1∑
j=i

(hj − hj+1).

By Lemma 13.15, the number of j ∈ {i, . . . , r − 1} such that j /∈ I is at least r − 1 + i − c4.

Since r ≥ (L − 1)/2 − 5 by Lemma 13.6, the parameter choices L >> L0 >> c4 imply that

r − 1 + i− c4 > L3
0.

As a result, hi > L3
0|zi|a/8c3 > L2

0|V |a by the parameter choice L0 >> c3.

Lemma 13.17. For i = 1, . . . , L0, Qi contains no λ-shaft of length at least hL0 .

Proof. Assuming to the contrary that Qi contains such a λ-shaft, Lemma 13.16 implies

σλ(∆)− σλ(Ψ′i,L−6) ≥ hL0 ≥ L0|V |a
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Then, Lemma 13.7 and the parameter choices L >> L0 yield the inequalities

|pi,L−6|+ σλ(∆)− σλ(Ψ′i,L−6) > hi + hL−6 + 11(L− i− 6) + L0|V |a

> hi + hL−6 + 11L/2 + L0|V |a

|p̄i,L−6| ≤ hi + hL−6 + 11(i+ 6) + (i+ 7)δ|V |a

< hi + hL−6 + 11(2L0) + 2L0δ|V |a

But then a parameter choice for δ implies that |pi+1,L−6| + σλ(∆) − σλ(Ψ′i+1,L−6) > |p̄i+1,L−6|,

contradicting Lemma 13.8.

Lemma 13.18. For all i = 1, . . . , L0 − 1, hi+1 ≤ 2c3|zi|a.

Proof. Assume toward contradiction that hi+1 > 2c3|zi|a.

Then, for the computation C : W0 → · · · → Wt corresponding to the trapezium Γi through

Lemma 7.4, t > 2c3|Wt|a. Further, Lemma 13.16 implies t > L0|V |a. The parameter choice

L0 >> c3 then implies t > 2c3 max(|W0|a, |Wt|a).

Lemma 13.9 then implies that t ≥ |V |a ≥ 11L/16δ, so that the parameter choices δ−1 >>

L >> c3 implies t > c3 max(‖W0‖, ‖Wt‖).

As in the proof of Lemma 13.14, this implies that Qi contains a λ-shaft of length at least hi+1.

But this contradicts Lemma 13.17.

Lemma 13.19. For i = 1, . . . , L0 − 1, hi+1 <
(

1− 1
30c3

)
hi.

Proof. Assuming the statement is false, hi − hi+1 ≤ hi/30c3. By Lemma 13.13, at most hi/5c3

maximal a-bands of Ei starting on zi can end on (θ, q)-cells. So, at least max(0, |zi|a − hi/5c3) of

these bands end on pi,i+1.
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Lemma 13.18 implies |zi|a ≥ hi+1/2c3, so that |zi|a − hi/5c3 ≥ hi/15c3.

By Lemma 13.6, pi,i+1 has hi − hi+1 ≤ hi/30c3 θ-edges. So, Lemma 13.7(1) implies

|pi,i+1| ≥ hi − hi+1 + 12 + δhi/30c3

|pi+1,L−6| ≥ hi+1 + hL−6 + 11(L− i− 7)

As in the proof of Lemma 11.23, this implies

|pi,L−6| = |pi,i+1|+ |pi+1,L−6| − 1

≥ hi + hL−6 + 11(L− i− 6) + δhi/30c3

Meanwhile, Lemma 13.7 implies

|p̄i,L−6| ≤ hi + hL−6 + 11(i+ 6) + (i+ 7)δ|V |a

Lemma 13.16 yields |V |a < hi/L
2
0, so that

|p̄i,L−6| ≤ hi + hL−6 + 11(2L0) + 2δhi/L0

But then the parameter choices L >> L0 >> c3 imply |p̄i,L−L0−6| < |pi,L−L0−6|, contradicting

Lemma 13.8.

Recall that if Ψi,i+1 is the distinguished clove for i ≤ r − 1, then the history of Γi need not be

Hi+1, but rather could be a proper prefix. As in Chapter 11, set H ′i+1 as the history of Γi.

Lemma 13.20. For 2 ≤ i ≤ L0 − 2, let H ′i = H ′i+1H
′ = H ′i+2H

′′H ′ and C be the computation

corresponding to the trapezium Γi−1. Suppose the subcomputation D of C with history H ′′H ′ has

step history of length 1. Then there is no two-letter subword Q′Q of the base of Γi−1 such that
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every rule of D inserts one letter to the left of Q.

Proof. LetQ be the maximal q-band ofEi that is a subband of the q-spoke of Π corresponding to a

coordinate shift of the state letter Q. Similarly, let Q′ be the q-band corresponding to a coordinate

shift of Q′, so that Q′ and Q are neighbor q-bands. Let x be the subpath of zi between Q′ and Q.

As in the proof of Lemma 11.25, |x|a ≥ ‖H ′′‖ ≥ hi+1 − hi+2.

Further, Lemma 13.19 implies that hi+1 − hi+2 > 1
30c3

hi+1, so that Lemma 13.16 and the

parameter choice L0 >> c3 yield |x|a ≥ 10L0|V |a.

Consider the comb ∇ contained in Ei bounded by Q′, Q, x, and pi,i+1. By Lemma 13.11, at

least |x|a a-edges contribute δ to pi,i+1.

Lemma 13.7 then gives the inequalities:

|pi,L−6| ≥ hi + hL−6 + 11L/2 + 10δL0|V |a

|p̄i,L−6| ≤ hi + hL−6 + 11(2L0) + 2δL0|V |a

But then the parameter choice L >> L0 implies |p̄i,L−6| < |pi,L−6|, contradicting Lemma 13.8.

Finally, the following statement yields the desired contradiction.

Lemma 13.21. For any g ∈ B(A, n), a g-minimal diagram contains no disks.

Proof. The proof follows the same outline as that of Lemma 11.26.

For η ≥ 2 an integer such that
(

1− 1
30c3

)η
< 1

64c3
, Lemma 13.19 implies that if 1 ≤ i < j ≤

L0 − 1 with j − i− 1 ≥ η, then hj < 1
64c3

hi+1.

For such i, j, Lemma 13.18 implies that |zi|a > 32hj , while Lemma 13.15 implies 8hj ≥ |zj|a.

As a result, |zi|a > 4|zj|a.

Taking L0 >> η and L0 >> c0, there exist indices 2 ≤ j1 < j2 < · · · < jm ≤ L0 − 1 such

that m ≥ c0 and ji+1 − ji − 1 ≥ η. So, |zji |a > 4|zji+1
|a and hji+1 ≥ 64c3hji+1.
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Let C : W0 → · · · → Wt be the computation corresponding to the trapezium Γj2 . As Γj2

contains a copy of Γj2+1, which in turn contains a copy of Γj2+2 and so on, there exist words Vi in

C for i = 1, . . . ,m that are coordinate shifts of Lab(zji). Note that |Vi+1|a > 4|Vi|a.

As in the proof of Lemma 11.26, the subcomputations Vi+2 → · · · → Vi cannot be one-step, as

an application of Lemma 6.21 would lead to a contradiction of Lemma 13.20.

But then this implies that Qj1 contains a λ-shaft of length at least hL0 , contradicting Lemma

13.17.

13.3 Upper bound

As referenced in the Introduction, to prove Theorem B, it suffices to find a constant M > 0

such that for any g ∈ B(A, n), |g|A ≤M |g|X .

For g ∈ B(A, n), let ∆ be an g-minimal diagram.

Fix w ∈ F (X ) so that the value of w in GS(M) is g and |w| is minimal for all such words.

Further, let Γ be a minimal diagram over GS(M) such that Lab(∂Γ) ≡ wv−1 for v ∈ F (A) such

that the value of v in B(A, n) is g and ‖v‖ = |g|A.

Then, Γ is a g-diagram, so that |∂Γ|+ σλ(Γ) ≥ |∂∆|+ σλ(∆).

By Lemmas 13.21 and 13.4, |∂∆| + σλ(∆) = |∂∆| = 2δ|g|A. Further, Lemma 8.1(c) implies

|∂Γ| ≤ |w|+ δ|g|A. Hence, |w|+ σλ(Γ) ≥ δ|g|A.

Further, by Lemma 10.15, σλ(Γ) ≤ C1|∂Γ|θ. Noting that v consists entirely of a-letters, it

follows that |∂Γ|θ ≤ |w|θ ≤ |w|.

As a result, |w| ≥ δ(C1 + 1)−1|g|A.

But for any word u in the alphabet X ∪ X−1, |u|X = ‖u‖ ≥ δ−1|u|. So, since |w| is minimal

for all words over X whose value in GS(M) is g, |g|X ≥ (C1 + 1)−1|g|A.

Thus, taking M = C1 + 1 completes the proof of Theorem B.
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Chapter 14

Proof of Theorem C

Let T be some subset of B(A, n). Clearly, 〈〈T 〉〉B(A,n) ⊆ B(A, n) ∩ 〈〈T 〉〉GS (M), so that it

suffices just to show the opposite inclusion.

Let Σ1 be a set of words over A so that for each g ∈ T , there exists a word w ∈ Σ1 such that

the value of w in B(A, n) is g. Then, set Σ = Σ1 ∪ S .

Then, GΣ(M) = GS(M)/〈〈Σ1〉〉GS (M) ∼= GS(M)/〈〈T 〉〉GS (M).

Fix g ∈ B(A, n) ∩ 〈〈T 〉〉GS (M) and let w be a word over A whose value in GS(M) is g. Then

w represents the trivial element of GΣ(M), so that Lemma 10.9 implies that there exists a minimal

diagram ∆ over GΣ(M) such that Lab(∂∆) ≡ w.

If ∆ were to contain a disk, then Lemma 10.6 implies that at least L− 4 t-spokes end on ∂∆.

But ∂∆ contains no t-edges, so that this is impossible. Hence, ∆ must be an M -minimal diagram.

By Lemmas 9.1 and 9.3, each maximal q-band and each maximal θ-band of ∆ end twice on

∂∆. But again, ∂∆ contains no q-edge or θ-edge, so that ∆ can contain no q-band or θ-band.

As a result, each cell of ∆ must be an a-cell, i.e ∆ is a reduced diagram over the group with

presentation 〈A | Σ〉 ∼= B(A, n)/〈〈T 〉〉B(A,n). So, the value of w in B(A, n) is an element of

〈〈T 〉〉B(A,n). But by Lemma 12.3, the value of w in B(A, n) is g, so that g ∈ 〈〈T 〉〉B(A,n).

Thus, B(A, n) ∩ 〈〈T 〉〉GS (M) ⊆ 〈〈T 〉〉B(A,n), and so B(A, n) ≤CEP GS(M).
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