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CHAPTER 1

Introduction

Throughout human history, natural disasters have been synonymous with catastrophes (Fjord and Manderson,

2009). However, the term “natural” disaster is a misnomer because “every natural disaster involves a unique

pattern of physical energy expenditure and human reaction” (Alexander, 2002, p. 289). People play a signif-

icant role in determining the outcomes of these events, thus illustrating the concept of community resilience

(Fjord and Manderson, 2009; Johnson et al., 2020). Resilience is an important concept in the context of nat-

ural disasters because it helps reconcile why hazards of similar type and magnitude can have such disparate

outcomes on different communities (Birkmann et al., 2014). In general, communities with greater resilience

have a better chance of withstanding these events (Seaberg et al., 2017). While this sentiment also applies

to man-made disasters, the focus of this dissertation is on how aspects of community resilience affect risks

associated with natural hazards.

1.1 Disaster Risk and Community Resilience

The risk management literature defines risk as the interaction of hazard and resilience (or vulnerability)

(Alexander, 2002; Birkmann, 2007). Figure 1.1 illustrates this concept. The term hazard pertains to charac-

teristics of a threat itself (e.g. type, severity, and likelihood), and in the context of natural disasters, hazard

can be viewed as the “natural” part of this coupled human-natural system (Birkmann, 2007). The other part

of the risk equation, which is the focus of this dissertation, includes resilience and vulnerability.

Figure 1.1: The Risk Equation

Although definitions for resilience and vulnerability can vary across disciplines, in general, resilience de-

scribes a system’s ability to mitigate, resist, and/or recover from harm, and vulnerability refers to a system’s
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susceptibility to harm (Birkmann et al., 2014; Cutter et al., 2014; UNDP, 2011; UN/ISDR, 2005). There is

still debate regarding the exact relationship between resilience and vulnerability. Some view resilience as

simply the antithesis to vulnerability, but most recognize differences in the active vs. passive connotations

embedded in the former and latter terms respectively (Cutter et al., 2008, 2014; Mohammad and El-adaway,

2017; Norris et al., 2008; Pendall et al., 2010). However, as Bakkensen et al. (2017) stated, from a practi-

cal standpoint, both aim to achieve the same goal in helping communities reduce the impacts of disasters.

We adopt a similar mindset throughout this dissertation, recognizing that the two concepts may differ subtly

in theory but are fundamentally the same in their practical application of risk management. As such, unless

explicitly stated otherwise, readers can infer that the term “community resilience” also incorporates “commu-

nity vulnerability” (i.e., aspects of a community that characterize an increased resilience to natural disasters

also imply a decreased vulnerability to these events).

1.2 Motivation of Study

Thanks to modern technology, society’s ability to understand and anticipate natural hazards has greatly im-

proved over the last several decades, albeit to degrees of aleatory and epistemic uncertainty. However, in

2005 at the World Conference on Disaster Reduction, it became clear that research on community resilience

was lacking comparatively, thus spurring efforts to better investigate this part of the risk equation (UN/ISDR,

2005). Here, use data-driven approaches to improve assessments of community resilience.

In particular, much work has gone into trying to empirically define community resilience with little proven

success. Community resilience is multidimensional and can be contextually dependent on the type of disaster

(Sharifi, 2016; Sorg et al., 2018). Furthermore, it is spatially dependent with respect to both location and

scale and varies temporally, even within the time-frame of a single disaster (Adger, 2006; Nelson et al.,

2015; Ritchie and Gill, 2007). Consequently, there has been a proliferation of frameworks on how to best

measure community resilience, but the vast majority lack any construct validity (i.e., demarcations of the

degree to which a model actually measures what it claims to be measuring) (Bakkensen et al., 2017). As

such, functionally comparing approaches is impractical because there is a lack of objective justification for

the use of one framework over another.

Similarly, models that attempt to simulate the impacts of natural disasters on communities rarely have

practical use because they fail to incorporate how human decision-making in preparation and/or response to

such events affects community resilience or lack empirical justification for assumptions thereof (Fiedrich and

Burghardt, 2007; Janssen and Ostrom, 2006; Taylor et al., 2014). In general, calibrating and validating models

pertaining to disaster risk management is difficult because observational data is lacking for extreme weather

events (He and Liu, 2012; Jackson et al., 2016). Cognitive and behavioral models informed by decision
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theory or psychology can provide solid rationale for decision-making paradigms in simulations, but it can be

difficult to ensure that the simulated behavior accurately reflects those represented by the various theories and

that the decision models are appropriate for the given application (Abdulkareem et al., 2018; Jumadi et al.,

2018; Stefanelli and Seidl, 2017; Ahlqvist et al., 2018; Massey et al., 2018). This problem extends beyond the

field of risk management, and in recent years, there as been an increasing drive among researchers to devise

better approaches for empirically grounding realistic decision-making processes in simulations (Janssen and

Ostrom, 2006; Abdulkareem et al., 2018; Choi and Lee, 2018).

1.3 Overview of Study

The work presented in this dissertation helps address both of these knowledge gaps. First, we develop a data-

driven approach for reconciling a popular class of frameworks aimed at measuring community resilience

known as resilience indices. Our methodology establishes an objective and intuitive schema for relating the

constituent elements of well-known resilience indices, which in turn helps researchers establish construct

validity in the field. Second, we use advanced machine techniques to develop empirically-based decision

models that can be encoded in simulations to better represent how decision-makers respond to the threat of

natural hazards and to more accurately quantify how their behaviors affect community outcomes. We present

insights drawn from our decision model in the context of previous findings from psychometrics and decision

theory. Additionally, we develop a use case by applying our decision model to an agent-based model (ABM)

that simulates economic production losses suffered as a consequence of decisions made in response to inland

waterway disruptions due to floods.

This dissertation is organized as follows. Chapter 2 describes our data-driven approach for reconciling

community resilience indices. Chapter 3 presents a behavioral study we conducted where community re-

silience is conceptualized as a common-pool resource (CPR) game and discusses how we trained Bayesian

Additive Regression Tree (BART) models on results to predict participants’ responses. Chapter 4 describes an

empirically-based ABM we developed that simulates how businesses along the Mississippi River may reason-

ably reroute inland waterway shipments in response to various flood scenarios and calculates the subsequent

economic impacts of such decisions. Chapter 5 discusses an ABM we developed that combines findings from

Chapters 3 and 4 to simulate outcomes of a CPR dilemma that arises when state decision-makers choose to

invest in the development of a publicly operated, flood-resilient port that can lead to savings in economic

production losses suffered during inland waterway disruptions due to floods. Chapter 6 contains our conclud-

ing remarks and directions for future research. It should be noted that Chapters 2-5 consist of published or

soon to be published journal articles that are intended to be read as separate documents, so they contain slight

overlaps in material.
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CHAPTER 2

A factor analysis approach toward reconciling community resilience indices for natural hazards

The concept of resilience helps explain why natural hazards of similar type and magnitude can have disparate

impacts on varying communities. Numerous frameworks have been developed to measure community re-

silience, but a clear and consistent method of comparing them is lacking. Here, we develop a data-driven

approach for reconciling a popular class of frameworks known as resilience indices. In particular, we con-

duct an exploratory factor analysis on a comprehensive set of variables from established indices measuring

community resilience at the US county level. The resulting factor model suggests that 50 of the 130 analyzed

variables effectively load onto five dimensions: wealth, poverty, agencies per capita, elderly populations,

and non-English speaking populations. These factors establish an objective and intuitive schema for relating

the constituent elements of resilience indices, thus providing researchers a flexible yet robust framework for

validating and expanding upon current approaches.

2.1 Introduction

While efforts to thematically define community resilience have been fairly successful, attempts to measure

this concept are still nascent. Some researchers surmise that community resilience does not lend itself to

being measured (Ayyub, 2015; Park et al., 2013). Others suggest otherwise, and a popular approach they use

to quantify community resilience entails the creation of an index. An index is a geographical composition of

indicators, delineations of what should theoretically constitute community resilience. Examples of indicators

include constructs such as transportation capacity, medical care capacity, and gender income equality. In

turn, these indicators are measured with corresponding data, such as percent households with at least one

vehicle, hospital beds per 10,000 people, and difference between male and female median incomes (Cutter

et al., 2014).

The authority of indicators is largely predicated on the notion of capital systems, which are theory-driven

categorizations of community resources such as social, institutional, economic, and environmental assets

(Norris et al., 2008; Rowcliffe et al., 1999; Twigg, 2007). Stemming from the postulate that those with fewer

resources are disproportionately afflicted by catastrophic events, indicators are constructed to help inform

what aspects of capital systems a community might be lacking, thereby decreasing respective aspects of

community resilience (Birkmann et al., 2014).

Although resilience indices are prominently featured in the literature, there are several documented issues.

First, despite much overlap in their formulations and end goals, there isn’t a clear way to compare what
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indices are comprised of or are actually measuring (Gillespie-Marthaler et al., 2019). Second and related,

there is a lack of objective justification for the use of one indicator over another, which has reasonably led

to a proliferation unproven indicators in the field (Fekete, 2019; Gillespie-Marthaler et al., 2019). Lastly,

indices themselves are also questionable in their abilities to predict disaster outcomes that would intuitively

align with notions of community resilience; Bakkensen et al. (2017) found that indices have mixed results

when compared to expected outcomes of property damage, fatalities, and disaster declarations. In general,

these issues reveal that the field is lacking construct validity, demarcations of the degree to which a model

measures what it claims to be measuring. Until data-driven rigor is applied to investigating indices and their

underlying components (i.e., indicators), researchers and practitioners will be unable to determine the extent

to which elements of an index predict and/or causally explain disaster outcomes, thereby failing to holistically

quantify community resilience.

Currently, objective comparisons are difficult to establish because of the sheer multitude of existing in-

dicators, which often differ only trivially in what they’re measuring, and the semantic ambiguity introduced

throughout the indicator creation process that obfuscates underlying data. In other words, researchers do not

have a clear and comprehensive set of independent variables from which to investigate construct validity.

We believe this problem stems from the fact that the index creation process is predominantly informed by

a top-down, theory-driven philosophy, as opposed to a bottom-up, data-driven mindset. The stipulation of

capital systems, designation of indicators, and eventual selection of data, although reasonably constructed on

an individual basis, are ultimately subjective in nature.

As such, to help pave the way for such empirical analyses and objective comparisons to take place, we

deconstruct leading indices in the field into their underlying variables. We use the term variables to simply

denote the measured set of features included an index, much like in a typical data analysis. For example,

instead of stating there is an “infrastructure” capital system, comprised of a “medical care capacity” indicator,

measured by “number of hospital beds per 1000” (Cutter et al., 2014), we simply say there is one variable,

“hospital beds per capita”. By starting at the data-level, we obviate the semantic ambiguity introduced by the

indicators and capital systems.

Then, via factor analysis (FA), we establish an intuitive way to group the variables based on their statistical

correlations measured at the US county level. Essentially, the analysis can be thought as an extensive data

cleaning and dimension reduction problem to help clear up ambiguity in the indicator space. The resulting

factor model comprises a data structure that researchers can effectively use as a baseline from which to

conduct further empirical analyses, thereby helping to build construct validity in the field. Several indices

have employed various correlation analyses similar to FA in their formations, but their focus has been on

using these techniques as a means for determining how well indicators fit into capital system categories or
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aggregating indicators into an overall index (Cutter et al., 2014; Peacock et al., 2010; Sherrieb et al., 2010;

Tapia et al., 2017). Instead, we borrow lessons learned from the psychometrics literature and suggest that the

factor analysis itself should serve as an empirical baseline from which to measure community resilience.

It is important to note that with this analysis we are not dismissing the importance of theory-driven exer-

cises in quantifying community resilience. On the contrary, we place great value in theory-driven exercises

of how various capital systems and indicators can plausibly inform disaster resilience, which is exactly why

we base this analysis on a comprehensive set of data derived from leading indices in the field. We are sim-

ply reorganizing the wisdom and expert knowledge embedded in the current literature in a manner that is

more conducive to empirical validation. Like with many scientific endeavors, both theory- and data-driven

philosophies are necessary for progress; currently, the community resilience literature is lacking the latter.

2.2 Background

At the 2005 World Conference on Disaster Resilience, it became clear that research on community resilience

was lacking compared to society’s ability to understand and predict natural hazards (UN/ISDR, 2005). Thus,

efforts were made to better define and measure community resilience, and there have since been a proliferation

of frameworks that purport to do so. Together, Cutter (2016); Sharifi (2016) have identified over 40 such

approaches in the literature. In general, these frameworks entail either a localized case study application or

a generalized geographic index (Cutter, 2016). Local case studies entail site visits and interviews for data

collection and lend themselves to community engagement. Indices tends to rely on statistical analysis of

widely accessible demographic and infrastructure data and cater more to policy development (Flanagan et al.,

2011). Some studies incorporate a blend of both designs, such as Frankenberger et al. (2013) employing

multi-level modeling techniques to merge household survey data within an index composition.

Another emerging phenomenon is the use of social media data for disaster preparedness. Social media

allows for localized spatiotemporal data to be collected on a wide scale (Keim and Noji, 2011). Its potential

for mitigation response has been well documented, and due to its ability to reflect direct human experience,

has become another source of information to quantify community resilience (Chan, 2013; Niles et al., 2019;

Wang and Zhuang, 2017). Recently, Rachunok et al. (2019) used Twitter data to populate resilience categories

outlined in existing frameworks to examine patterns in messaging during events (Cimellaro et al., 2016;

Cutter et al., 2008). Although we do not deal with social media directly in this analysis, nor are we aware of a

geographic index that utilizes such data at this point in time, social media will clearly play a prominent role in

the future of quantifying community resilience and offers another reason to lay a solid empirical foundation

from which new sources of data can be assembled.

To the best of our knowledge, regardless of the approach, community resilience frameworks begin with
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a theory-driven stipulation of capital systems deemed pertinent to the analysis (Norris et al., 2008; Rowcliffe

et al., 1999; Twigg, 2007). Then, various indicators, as defined in the previous section, are selected from the

literature and/or crafted to fit into these categories. Next, the indicators are populated with corresponding

data, either through on-site data acquisition in the case of localized frameworks or via demographic or other

geographic information system (GIS) data in the case of indices. For local frameworks, some type of checklist

and/or scorecard criteria are typically constructed. For indices, the data are generally standardized, subjected

to dimension reduction techniques, and then aggregated into an overall index score (Cutter et al., 2003, 2014;

Cutter, 2016; HVRI, 2016; Peacock et al., 2010; Sherrieb et al., 2010).

As mentioned, there are several issues with this process, and while the focus of this paper is on geographic

indices, these problems also extend to localized approaches. There are over 40 community resilience frame-

works and over 550 indicators identified in the literature (Cutter, 2016; Sharifi, 2016; Gillespie-Marthaler

et al., 2019). However, there is no clear way to compare approaches, both in terms of what they are try-

ing to measure and in terms of how well their indicators predict disaster outcomes. We surmise that these

ambiguities are a shortcoming of the theory-driven philosophy that has predominated this space.

First, there is no consensus on how to define capital systems in the literature. For example, Renschler

et al. (2010) proposed seven categories of capital systems for measuring resilience: people, environment,

government, infrastructure, lifestyle, economic, and social, while Sherrieb et al. (2010) suggested four sys-

tems: economic, social, communication, and competence. There are a multitude of variations, differing in

numbers and names of capital systems (Cohen et al., 2013; Cutter, 2016; Ebisudani and Tokai, 2017; Joerin

and Shaw, 2011; Norris et al., 2008; Orencio and Fujii, 2013; Perfrement and Lloyd, 2015; Pendall et al.,

2010; Shaw et al., 2010; Tapia et al., 2017; THRIVE, 2004; Yoon et al., 2016).

Furthermore, between indices, capital systems can be nominally the same but contain different indicators,

or vice-versa, the same indicator can be included in different capital systems. For example, Peacock et al.

(2010) include indicators of income, employment, property value, business, and health insurance in their

economic capital system. Cutter et al. (2014) also designate an economic capital system but construct it

with indicators of home ownership, employment rate, race and ethnicity income equality, non-dependence on

primary and tourism sectors, gender income equality, business size, large retail store distribution, and federal

employment. Conversely, Peacock et al. (2010) includes an indicator pertaining to households with access to

vehicles within a physical capital system, while Cutter et al. (2014) include the same indicator as part of a

social capital system.

This obscurity is exacerbated by the fact that there is no established method for populating indicators

with data. Across indices, a similarly named indicator can be measured with different data, or vice-versa,

indicators can differ in name but measure the same thing. For example, Peacock et al. (2010) measure an
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indicator for populations without health insurance based on all age groups, but Cutter et al. (2014) restrict this

same nominal indicator to include only age groups under 65 years old. Conversely, the linguistic connection

indicator named by Foster (2012) and language competency indicator named by Cutter et al. (2014) both use

the same data. There are also numerous occurrences of similarly or differently named indicators that utilize

only trivially different data. For example, Cutter et al. (2014); Foster (2012) have an indicator for the number

of disabled people per total population, and Flanagan et al. (2011) have a similar one measured as the number

of disabled people over five years old per total population.

While frameworks may be reasonably justified on an individual and theoretical basis, collectively, the lack

of objective justification in defining capital systems, forming indicators, and selecting data makes comparing

approaches difficult. Without communicating precisely what these indices are actually measuring and relating

them to disaster outcomes, it is difficult to justify why one set of indicators is more appropriate than another

for the task of quantifying community resilience. A natural consequence of this ambiguity and subjectivity is

a proliferation of redundant, inconsistent, and unproven indicators that we find in the current literature.

At the overall index level, there have only been a few attempts at measuring performance against disaster

outcomes. Most notably, Bakkensen et al. (2017) used several regression techniques to validate major indices

against property damage, fatalities, and number of disaster declarations in the Southern US and found that

indices have mixed results when compared to reasonable expectations of what should constitute as resilient

communities. Peacock et al. (2010) regressed property damage and fatalities against their resilience index

across counties along the Gulf Coast and found results aligned with expected outcomes, which helped give

credence to their framework. Burton (2015) evaluated their resilience index based on a qualitative assess-

ment of photographs taken during post-Hurricane Katrina recovery efforts, which was insufficient for precise

insights but at least gave some directional assessment of their framework. These efforts are steps in the right

direction, but until similar exercises are conducted for the comprising elements of the indices, construct va-

lidity in the field will ultimately remain absent; researchers will not be able to explain why one model is

better than another or which features of the model are most important for predicting outcomes.

Our study attempts to use the results of a factor analysis conducted on a comprehensive set of variables

derived from major resilience indices in the field to form an empirical foundation that will aid researchers

in attempts to compare and validate indices and their elements. We argue that using a data-driven set of

factors and variables offers researchers more transparency than the capital system and indicator designations,

which in turn will aid efforts in conducting and communicating empirical validations. Additionally, Kotzee

and Reyers (2016) have noted that community decision-makers found value in discussing the concept of

resilience with respect to empirically determined components of their flood index, so it is reasonable that our

approach will also make engagement with stakeholders more straightforward.
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2.3 Methodology

This paper proposes a data-driven solution for comparing index-based frameworks attempting to quantify

community resilience to natural hazards, thus providing a foundation from which researchers can quantify

the extent to which measurable features in a community can predict disaster outcomes. In particular, we

conduct an exploratory factor analysis on a GIS repository of US county level data based on a comprehensive

set of variables from established resilience indices in the field. The resulting model forms a clear schema

for comparing the constituent elements of these indices. A key benefit of the factor model is that it has

the flexibility to incorporate new data and variables as needed while still providing a stable baseline for

comparison and validation efforts.

2.3.1 Approach

The current state of the literature on quantifying community resilience resembles that of psychometrics during

the mid-20th century when psychologists were attempting to quantify personality. Similar to the concept of

resilience, personality is multifaceted and varies extensively between applications (i.e., individuals), and

numerous theory-driven models were developed in an attempt to measure it (John and Srivastava, 1999).

Despite much overlap in frameworks, they were largely incompatible, and the few attempts at reconciliation

resulted in more contention than clarification (McCrae and John, 1987).

Eventually, a data-driven approach using FA applied to surveys based on comprehensive sets of person-

ality trait adjectives led to the development of a consensus model (Goldberg, 1992; John and Srivastava,

1999; McCrae and John, 1987). Linguistic relativity, the presupposition to this approach, hypothesized that

because human interactions are intrinsic to societies across space and time, it is reasonable to assume that

current language already comprises the words necessary to describe all facets of personality (McCrae and

John, 1987). Thus, the dictionary provided an exhaustive yet finite list of features, from which inventories

of trait adjectives were established and analyzed for common factors across subjects (Allport and Odbert,

1936; John and Srivastava, 1999). Here, we borrow insights from the psychometrics literature to drive an

empirically-based schema for reconciling resilience indices. Analogous to the inventory of adjectives, we

establish a representative set of variables for community resilience on which FA is conducted.

Using reviews performed by Cutter (2016); Sharifi (2016) as an initial reference point, we identified

frameworks that met the following criteria: (1) they measure community resilience (and/or vulnerability)

with respect to natural hazards in general, as opposed to type-specific disasters, (2) they are index-based

approaches, allowing for intuitive statistical comparison across geographies, and (3) data used to construct

them are publicly attainable and applicable at the US county level. These criteria were chosen because they

encompass attempts to measure the general concepts of community resilience, as opposed to case specific
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applications, and help ensure the availability of quality data. Both requirements align with the stated goals

of this paper, and for comparable reasons, Bakkensen et al. (2017) used a similar set of conditions when

selecting indices to correlate against disaster outcomes. Additionally, Cutter et al. (2014) advocated the

county level scale is most appropriate for spatial analysis because it is the most granular level at which

demographic and physical data is consistently available, county governments are heavily involved in disaster

mitigation activities, and county boundaries are fairly stable over time. Ultimately, our selection criteria led

to the following six indices:

1. Baseline Resilience Index for Communities (BRIC) (Cutter et al., 2010)

2. Community Disaster Resilience Index (CDRI) (Peacock et al., 2010)

3. Community Resilience Index (CRI) (Sherrieb et al., 2010)

4. Resilience Capacity Index (RCI) (Foster, 2012)

5. Social Vulnerability Index (SoVI) (Cutter et al., 2003)

6. Social Vulnerability Index (SVI) (Flanagan et al., 2011)

BRIC is one of the most widely cited indices that attempt to quantify community resilience (Bakkensen

et al., 2017; Cutter et al., 2010). Its stated goal was to establish a baseline set of criteria from which compar-

isons of resilience at the US county level can be made across time (Cutter et al., 2010). The 2014 version of

BRIC, the one we utilized for this analysis, includes 49 variables (Cutter et al., 2014). Similar to the other five

indices, BRIC’s variables are informed by the general process discussed in the Background section: identify

a wish-list of indicators to include based on theories of capital systems and their relationship to resilience, de-

termine which of these indicators can be measured with corresponding data, and employ correlation analyses

to winnow down the set of measured features (variables) (Cutter et al., 2014; Peacock et al., 2010; Sherrieb

et al., 2010).

CDRI is another index attempting to measure resilience at the county level and includes 89 variables.

However, in its original application, it only incorporated US counties along the Gulf Coast (Peacock et al.,

2010). It should be noted that CDRI is one of the few frameworks to be validated against disaster outcomes

upon its inception (Bakkensen et al., 2017; Peacock et al., 2010).

CRI attempts to “measure the sets of adaptive capacities for Economic Development and Social Capital

in the Norris et al. (2008) community resilience model with publicly accessible population indicators” at the

US county level (Sherrieb et al., 2010, p. 227). CRI includes 17 variables.

RCI is an index that measures resilience from economic and population stressors in addition to natural

hazards (Bakkensen et al., 2017; Foster, 2012). It features 10 variables measured at the US county level.
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SoVI is the prototypical framework for quantifying community resilience and/or vulnerability via an

index (Cutter et al., 2003). SoVI attempts to determine the social capital of US counties, with the aim of

revealing areas that might be lacking in related disaster mitigation capacities. The 2016 version, the one we

utilized for this analysis, includes 29 variables (HVRI, 2016).

Lastly, SVI also attempts to quantify the social capital of communities (Flanagan et al., 2011). Unlike the

other indices, SVI was developed using the US census tract as the spatial unit of analysis. However, all the

underlying metrics are available and pertinent to the county-level, so we could reasonably include this index

in our analysis. SVI consists of 15 variables.

Using the set of variables that span the six indices, we compiled a GIS repository of measurements at

the US county level. This repository serves as the analogy to the set of trait adjectives established in the

psychometrics literature. The comparable presupposition to linguistic relativity is not as strong here, as there

are likely variables not included in these indices that can help quantify community resilience. Nonetheless,

the dataset serves as an extensive set of currently measurable features at the county (or similar) level. Addi-

tionally, the dataset forms a clear baseline from which communities and decision-makers can be engaged to

solicit new and potentially valuable variables for analysis. Similarly, others have mentioned that many of the

indicators identified in the literature cannot yet be populated with data at this time (Cutter et al., 2003, 2010;

Peacock et al., 2010; Sherrieb et al., 2010). This predicament may change in the future, and a key benefit of

the FA approach, discussed in more detail later, is that it allows for a flexible incorporation of new variables.

2.3.2 Data

The six selected indices delineate data sources, fields, and transformations used to construct their correspond-

ing variables, and we attempted to recreate these efforts with as much fidelity as possible with contemporary

data. Because much of the underlying data stem from widely accessible and maintained sources, this task

largely entailed us using the original variable definitions simply updated with more recent data. For example,

SoVI relies exclusively on US Census Data, namely the American Community Survey and County Business

Patterns tables, so we were able to completely recreate this index with current data (HVRI, 2016). Across

indices, we were able to recreate the vast majority of variables. When we were not able to exactly repro-

duce a variable’s definition, generally due to original data sources no longer being available, we attempted

to find a suitable replacement metric. For example, CDRI includes a variable for the number of ambulances

per population. The County Business Patterns no longer contains this information at the county level, so we

used the number of ambulance service employees per population as a proxy. If finding a reasonable proxy

was not feasible, we simply omitted the variable from the analysis. Overall, we were able to reproduce 180

of the original 204 (88%) variables specified across the six frameworks with recent data, including proxied
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variables. The missing 24 (12%) stemmed almost entirely from data sources no longer being available, with

a small portion attributable to data that now costs money to obtain. Table 1 gives an overview of the variable

coverage, and the Supplementary Materials contain a data dictionary that documents all details necessary to

recreate this dataset, including notes on proxied variables when applicable.

Table 2.1: Index Coverage

Original Reproduced

BRIC 49 41
CDRI 84 72
CRI 17 14
RCI 10 9
SoVI 29 29
SVI 15 15

The 180 variables completely span 3,067 of the 3,142 (98%) US counties as defined by 2017 Census

borders. Overall, the spatial coverage is expansive, and the vast majority of missing entries pertain to Alaska

where recent changes in county borders have made them incompatible with some of the older data sources.

With FA, it is necessary to account for these missing county entries. For the sake of transparency, we omitted

the 75 (2%) counties that did not have complete coverage for the 180 variables. It should be noted that we

also repeated the analysis by mean-imputing the missing entries, and the difference in results was negligible.

Additionally, we identified 83 variables that were redundant between indices. We define a variable to

be redundant if it is constructed with identical or near-equivalent data. The vast majority of these redundant

variables were exact duplicates, and the remaining were the near-equivalent cases, which we define to be

variables that include trivially different data. For example, BRIC, SoVI, and SVI specify a variable that

corresponds to age-dependent populations, but BRIC and SVI define this variable with an age range of over

65 years old while SoVI also includes populations under five years old. Ultimately, the redundant variables

would provide no additional insights to the model and only bias the apportionment of variance contributed to

the resulting factors. As such, we elected to remove exact duplicates and reduced the sets of near-equivalent

cases into single features, the latter done by averaging derivations of the near-equivalent variables while

maintaining compatible units. Ultimately, this data cleaning process yielded 130 unique variables on which

we conducted FA. The Supplementary Materials include details and mappings of the redundant variables as

well as an R programming script with all the data processing steps.

Lastly, prior to FA, we standardized the 130 variables using Z-score transformations. This standardiza-

tion allows the FA model to be based on correlations between variables, not covariances which are unit-

dependent. The Z-score transformation is common among multivariate analysis, including the creation of

several resilience indices (Cutter et al., 2003, 2014; HVRI, 2016; Peacock et al., 2010; Sherrieb et al., 2010).
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2.3.3 Factor Analysis

FA is a statistical dimension reduction technique that identifies latent factors accounting for variance common

to observed variables (Revelle, 2018; Spearman, 1904; Thurstone, 1947). Here, we apply FA to the dataset

of 130 standardized variables spanning 3,067 counties to find patterns of correlation among measures of

community resilience at the US county level. The resulting model provides an effective means for comparing

the six indices and lays a solid foundation for future validation attempts.

FA is often compared to a similar dimension reduction technique, principal components analysis (PCA).

Both attempt to parsimoniously reconstruct the covariance or correlation matrix of the respective dataset by

finding patterns that emphasize similarities between variables. However, PCA assumes that components (fac-

tors) are linear combinations of observed variables and finds an orthogonal basis onto which the variance of

the projections of these variables is maximized across all the data (Revelle, 2018). The solution is determin-

istic, found via eigendecomposition or singular-value decomposition of the covariance or correlation matrix.

FA, on the other hand, presumes that factors (components) are latent constructs whose linear combinations

give rise to common aspects of observed variables (Revelle, 2018; Thurstone, 1947). Mathematically, this

notion equates to FA solving for error terms on the diagonal of the covariance or correlation matrix that es-

timate variables’ unique contributions to the variance (Revelle, 2018). Consequently, the total variance of

the dataset becomes partitioned into unique and common portions, the latter of which is accounted for by the

factors. FA is a generative model and cannot be analytically solved like PCA, instead requiring best-fitting

algorithms to estimate a solution (Revelle, 2018).

Accordingly, for FA, the mapping of latent factors onto variables is not sensitive to the incorporation of

new variables (Revelle, 2018). This notion does not hold true for PCA. Thus, by using FA as opposed to PCA,

we can find a data-driven model that produces a stable foundation for comparing the constituent elements of

the indices while also being flexible in the incorporation of new variables in the future. Granted, if many new

and disparate variables are investigated, the factor model should be revisited to ensure that the number and

interpretation of factors remain consistent.

Lastly, it should be noted that we applied varimax rotation to the loadings matrix of the factor solution

in order to simplify its structure and make its interpretation more intuitive (Kaiser, 1958; Revelle, 2018;

Thurstone, 1947). Loadings consist of the correlations between variables and components (factors), scaled by

the square-root of the variance attributable to respective components (factors). Varimax rotation maximizes

the variance of the squared loadings of all variables while still preserving orthogonality in latent space (Kaiser,

1958; Revelle, 2018). Varimax rotation does not affect the total variance explained by the model but simply

partitions this amount differently between the factors (Revelle, 2018).
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Several community resilience frameworks employ dimension reduction techniques. Cutter et al. (2003)

used PCA combined with varimax rotation to address multicollinearity and remedy potential double-counting

of variables in the creation of SoVI. Cutter et al. (2014) do similarly for BRIC. Pfefferbaum et al. (2015)

employed confirmatory FA on survey results to help verify their model aligned with stakeholder intuitions of

resilience. Similarly, Tapia et al. (2017) and Cutter et al. (2014) respectively used a Cronbach’s alpha test and

Principal Components Analysis (PCA) to compare empirical clusters of indicators with their predetermined

capital systems; the former found empirical redundancies between capital systems, and the latter noted that

resulting PCA clusters did not align with the capital system definitions. Clearly, the risk analysis literature has

recognized the utility of these statistical techniques in helping to organize the vast and varied data available

for quantifying community resilience. However, the focus has been on using these techniques to help create

singular frameworks, as opposed to comprehensively reconciling frameworks as we advocate for here.

2.4 Results

2.4.1 Number of Factors

FA requires the modeler to determine the number of factors to be extracted from the variables in the dataset.

There are several approaches for doing so. They can be driven by theory (see, Pfefferbaum et al., 2015),

simply entail retaining factors until they become uninterpretable (Revelle, 2018), or be based on empirical

methods such as a scree plot analysis, parallel analysis, and/or Kaiser Criterion. For our purposes, we wanted

to reduce the dimensionality of the data as much as possible while still maintaining interpretable factors,

in order to make validation efforts and engagement between and among researchers and practitioners more

straightforward.

Figure 2.1 depicts a scree plot and parallel analysis. Here, eigenvalues, representing the total amount

of variance explained by their respective factors, are charted in successive order. Characteristic of a scree

plot test, factors beyond the “elbow”, or leveling-off period of the curve, offer negligible contributions to

the explained variance of the model (Cattell, 1966). In Figure 2.1, a reasonable case can be made for the

retention of 5-8 factors using this criterion. When exploring the number of factors to retain in the model, we

found those beyond the fifth one to be uninterpretable even with varimax rotation. Corresponding variable

clusters and scores did not yield meaningful relationships, and as such, their inclusion would reasonably be

counterproductive in helping to establish a consistent and practical baseline for comparing indices. Thus, we

elected to retain five factors in the model.

As mentioned, it should be noted that other criteria can be used to determine the appropriate number of

retained factors depending on the purpose of the analysis. A parallel analysis retains eigenvalues that are

greater than those corresponding to a random sampling of the data, red-dashed line in Figure 2.1, in this case
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Figure 2.1: Scree Plot and Parallel Analysis

recommending 23 factors (Horn, 1965; Revelle, 2018). The parallel analysis criterion would be more appro-

priate if we were attempting to completely reconstruct the correlation matrix of the included variables. The

Kaiser Criterion is a rule-of-thumb that retains all factors with an eigenvalue≥ 1, keeping factors that explain

at least as much variance as a single variable does (Kaiser, 1960). Here, the Kaiser Criterion would suggest

10 factors should be retained, but as mentioned, factors beyond the fifth were uninterpretable. Ultimately,

the question of how many factors to be retained is dependent on the scope of the analysis (Revelle, 2018).

Although we found five factors most appropriate for our current task and dataset, if many new variables at-

tempting to measure community resilience are investigated in the future, the model should be revisited and

this number could change.

It should also be emphasized that an underlying assumption of FA is that factors are linear combinations

of variables. If there are non-linear relationships between the variables attempting to measure aspects of

community resilience, such as tipping points or interactions, FA would not account for them. However,

the goal of our model was to simply reduce multicollinearity in the data, which in turn makes more complex

investigations into variable interactions more straightforward in the future, as discussed in the Results section.

An overview of the current five-factor model with varimax rotation is shown in Table 2.2, and the full

model output is available in the Supplementary Materials. The data and R scripts necessary to reproduce the
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FA can also be found in the Supplementary Materials, should readers wish to explore different models.

Table 2.2: Factor Loadings

Variable Description Factor (Explained Variance)

1 2 3 4 5
(10.5%) (7.1%) (6.6%) (5.1%) (4.7%)

Median housing value .854
Median gross rent .831
%Households earning over $200,000 annually .817
%Population employed in creative class jobs .815
Per capita income .791
%Multi-unit housing .741
Median household income .672 -.640
%Asian population .625
%Population employed in legal services .590
%Landcover of pervious surfaces -.566
%Pop. employed as architects or engineers .535
#Architecture and engineering businesses .524

%Population living below poverty line .762
Food security rate -.736
%Children living in married couple families -.739
%Renters .675
%Owner-occupied housing units -.672
%Households with a vehicle -.653
Gender equality of median income .640
Inverse GINI coefficent -.598
%Single parents .596
%Black population .574
Inverse crime rate -.530
SoVI score .524

Businesses per capita .750
Retail stores per capita .731
Governments and special districts per capita .621
Urban influence score (rural higher) .605
Distance to metropolitan area .603
Religious organizations per capita .531
Road connectivity per capita .527
Hospitals per capita .526
Distance to nuclear power plant .517
Newspaper publishers per capita .516
Hotels per capita .503

%Population receiving social security .790
Median age .754
%Population ≥ 65 .753
%Unoccupied housing units .681
%Population under 65 and health insurance -.642
Housing density -.503 -.636
%Population under 18 -.526
%Population with a disability .509

%Population Spanish speaking .749
%Population ESL .723
Crowded housing .698
%Minority .624
%Population with health insurance -.614
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Table 2.2 (continued)

1 2 3 4 5

%Female householders -.542
%Voted in last presidential election .507

... 80 other variables
* Factor loadings are not shown if they are < 0.5 (in absolute value)

As seen in both Figure 2.1 and Table 2, five factors cumulatively account for 34% of the variation across

the 3,067 counties as measured by the 130 variables. 34% variance would certainly not be sufficient to con-

stitute a factor model attempting to fully explain the correlations between all observed variables. However,

we are simply using FA as a data reduction tool that is flexible in its ability to analyze new variables without

having to redo the entire model. The five-factor model does indeed aid in this effort by greatly reducing

the parameter space, with 50 variables notably loading (i.e., |loading| ≥ 0.5) onto five factors. Ultimately,

we have simplified the wisdom and knowledge embedded in leading indices attempting to quantify commu-

nity resilience into an intuitive list of five factors, which account for 34% of variation between county-level

measurements across the US, and 80 remaining variables. The results of this effort redress much of the re-

dundancy and ambiguity in the current indicator selection process, helping to pave the way for validation

efforts.

2.4.2 Factor Interpretations

Factor scores are displayed in Figure 2.2. These scores, in conjunction with the factor loadings shown in

Table 2.2, are used to interpret the factors. It should be noted that we reversed the signs of Factors 2, 4, and

5 as displayed in Figure 2.2 and Table 2.2 compared to the full model output to more intuitively align with

interpretations; with FA, the sign of the loadings is arbitrarily determined and only matters in context with

respect to corresponding scores.

The first factor corresponds to wealth and accounts for 10.5% of the variation between counties. Variables

that load highly onto this factor consist of predictors of wealth, namely high housing values, per capita

incomes, and percentages of households earning more than $200,000 annually. Additionally, counties with

the highest scores on the first factor, New York County (NY), San Francisco County (CA), and Fairfax County

(VA), correspond to the wealthiest parts of the US. Via PCA, Cutter et al. (2003) also identified wealth as the

primary component of inter-county variation among variables included in SoVI.

The second factor relates to poverty and explains 7.1% of the inter-county variance in the data. Scores

largely feature historically impoverished counties in the Southeastern US. Variables with the notable loadings

entail people living below the poverty line, lack of food security, unmarried parents, and Black populations.
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Gender equality in median income is also correlated with poverty, as wage disparities on an absolute basis are

minimized for lower overall incomes. It should be emphasized that poverty and wealth are related constructs

but not simply opposites (i.e., the absence of poverty does not signify wealth), and this distinction is important

to consider when discussing disaster preparedness. SoVI also featured a similar cluster of variables pertaining

to poverty as its second largest component (Cutter et al., 2003).

The third factor accounts for 6.6% of the variance in the data and correlates with metrics that reveal

the presence of a large number of business establishments, government institutions, religious organizations,

and/or infrastructure developments relative to small populations. Scores highlight the agrarian Midwest US

and unpopulated counties of Colorado rich in mining developments. In a sense, this factor appear to reflect

a rural community’s connectedness to the rest of world, both with respect to outside organizations (inter-

connectivity) and internal developments (intra-connectivity). We term this factor as ”agencies per capita”,

but its label is less important than attempting to understand its relationship to community resilience. Unique

to the other factors, this one can reasonably be actively managed by community stakeholders, potentially

providing a direct path to bolstering disaster mitigation. Additionally, most of the six indices do not include

variables that load highly onto this factor, discussed in more detail in the following section, and may accord-

ingly be lacking a valuable aspect of community resilience. The literature has already noted that measures

of resilience differ between rural and urbanized areas, and a closer investigation of this factor via data anal-

ysis and community engagement would be a prudent exercise (Cox and Hamlen, 2015; Cutter et al., 2010;

Rowcliffe et al., 1999; Tapia et al., 2017; Wilhelmi and Hayden, 2010).

The fourth factor relates to elderly populations. Variables loading strongly onto this factor pertain to

older age groups, such as populations receiving social security benefits, populations with disabilities, and

populations with higher ages. Additionally, featured areas include Florida, New Mexico, and Arizona, all

among the most popular states for retirement in recent years (Folger, 2018). SoVI also found a component

that pertained to elderly populations (Cutter et al., 2003; HVRI, 2016).

Lastly, the fifth factor involves non-English speaking populations. Variables with high loadings include

predictors of English as a second language, Spanish speaking populations, and crowded populations. Scores

highlight the Hispanic and Latino populations in Florida and states along the Mexican border. They also

feature counties with high Native American populations in Montana and the Dakotas. Additionally, when we

conducted the FA on the mean-imputed version of the dataset, this factor also included Alaska’s indigenous

population. SoVI also featured a similar component (HVRI, 2016).

It should be noted that median household income loads onto both the first and second factor, and housing

density does similarly for the third and fourth factor. Results like these are expected and simply entail a

variable being correlated with different clusters of variables. Varimax rotation attempts to minimize the oc-
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currence of variables loading onto multiple factors, but it is rarely possible to avoid completely. Additionally,

because loadings fundamentally measure statistical associations between variables, they do not necessarily

have to be thematically related even though they often are. One example of a variable being correlated with

others but not necessarily thematically related may entail the percentage of people who voted in the last pres-

idential election loading onto the fifth factor; although, further investigation would be required to determine

either way. Thematic explanations of factors aid in their interpretability and are based on the interpretable

relationships of corresponding variables, but these relationships become less evident as factors account for

progressively less variance and noise in the data begins to cloud underlying signals. This notion is precisely

why we limited the model to five factors, as subsequent factors did not exhibit meaningful relationships

between their corresponding variables.

2.5 Discussion

The main benefit of the factor model is that it transforms the expert knowledge embedded within a com-

prehensive set of resilience indicators into a simple, intuitive data structure that researchers can use to more

easily conduct empirical inquiries. This notion applies to examining the coverage of existing indices as well

as aiding in the investigation of a factor’s or variable’s ability to predict disaster outcomes.

Table 2.3 illustrates the former. For example, it is obvious that CRI lacks data pertaining to elderly

populations, thereby revealing a potential gap in its data coverage. Additionally, CDRI is the only index that

includes a variable covering ambulance services, and similarly, BRIC is the only approach that considers

internet access with respect to disaster resilience. These types of data-driven comparisons are more precise

and straightforward than discussions of capital systems and indicators. As such, researchers can more clearly

communicate what features are already incorporated in the literature and curtail the spread of redundant

and/or trivially differing indicators.

Additionally, because the factor analysis removes much of the collinearity in the data, the resulting model

serves as natural set of independent features that researchers can use to empirically relate to disaster outcome

data, thereby helping to build construct validity in the field. It is important to emphasize that just because the

five factors capture the most variance between US counties for data that current literature deems is important

for quantifying community resilience does not mean they are the best predictors of the such. In the spirit of

Bakkensen et al. (2017); Peacock et al. (2010), we have begun the process of evaluating the five factors and

80 additional variables against disaster property damage and fatalities across the US using regressions and

decision trees. These types of exercises will go a long way in helping to build construct validity in the field.

In a related sense, factor scores could also be investigated as random effects in mixed-effect models;

for instance, using quintiles of Factor 4 scores as clusters could help reveal how main effects vary based
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Table 2.3: Schematic for Comparing Indices

#Variables Loading onto Factors
BRIC CDRI CRI RCI SoVI SVI

Fact1 (Wealth) 1 6 2 1 5 2
Fact2 (Poverty) 5 4 3 2 6 3
Fact3 (Agencies Per Capita) 7 6 1 2
Fact4 (Elderly) 3 2 1 5 2
Fact5 (Non-English Speaking) 2 3 1 1 4 3

Var1 (Ambulance Service Employees per Capita) 1
Var2 (%Population w/ Internet Access) 1
Var3 (Building Construction Services per Capita) 1
...
Var80 (%Acres Wetland Buffers) 1
* We denote variables loading onto factors as those ≥ 0.5 (in absolute value)
† Median housing value (SoVI and CDRI) loads onto both Factors 1 and 2
‡ Housing density (SoVI and CDRI) loads onto both Factors 3 and 4

on the percentage of elderly population in a community. Similarly, the emergence of social media data

can be spatiotemporally nested within the broader demographic data. For example, Zou et al. (2019) found

that social-geographical disparities of Twitter usage exist throughout emergency management phases, and

these types of insights and exercises could help predict outcomes when contextualized appropriately. The

possibility of these types of empirical inquiries are immense and much needed in the current literature.

A natural extension to predictive inferences would be a researcher’s desire to examine a factor’s or vari-

able’s ability to mitigate disaster outcomes. These efforts involve examining causal relationships, which

would require meticulous econometric approaches such as but not limited to difference-in-differences analy-

ses or Bayesian structural time-series modeling. Having a clear and comprehensive set of empirical features

makes these efforts much more straightforward. However, we want to emphasize that any attempts to estab-

lish causal relations between the five factors and disaster outcomes would require a more careful examination

of the variables that are contained within these clusters, since they are only statistically associated and not

necessarily causally linked. For example, even if Factor 4: Elderly Populations predicts increased disaster

fatalities, perhaps only the disability rate variables causally explain these outcomes.

As such efforts to investigate predictive and causal relationships extend well beyond the means and find-

ings of a single research group, the data-driven framework of the factor model allows for an orderly, organic

backdrop from which to empirically validate notions of community resilience and communicate results. One

researcher can determine how factors or variables predict a certain outcomes of interest, and his or her results

can clearly be interpreted by the rest of the community without having to navigate through the semantic am-

biguities introduced when defining capital systems and indicators. As described in Table 2.3, this approach

provides a clear interpretation of what the scope of a study entails, helping to reveal potential information
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gaps and reduce trivial derivations between approaches. Additionally, because the factor model is flexible in

its inclusion of new variables, researchers can also easily incorporate new data and variables without funda-

mentally altering the baseline structure. Granted, if many new variables are investigated, the model should

be reexamined and updated accordingly as discussed in the methodology section. One could even blend the

theory-driven mindset of designating capital systems and formulating indicators with this empirical baseline.

For example, the theory-driven mindset could and should be used to inform additional variables, which in turn

should be systematically validated against outcomes. Adopting this mindset would help curtail the spread of

unproven and often trivially different indicators found in the literature.

Results of previous studies corroborate the viability of using the proposed factor model as a starting

point for empirical investigations. SoVI found almost identical clusters of variables when addressing double-

counting of measurements in its composite index (HVRI, 2016). Additionally, as mentioned, Kotzee and

Reyers (2016) have already found that decision-makers placed value in discussing community resilience with

respect to principal components. Additionally, Cutter et al. (2014) noted how PCA components derived

in BRIC did not align with its theory-driven classification structure, calling into question the theory’s a-

priori authority and perhaps suggesting more flexibility in the creation process is needed. Overall, we find

it reasonable that an intuitive and reduced set of factors and variables derived from an inclusive list of data

from leading studies can provide a practical baseline for quantifying elements of community resilience and

helping to establish construct validity in the field.

2.6 Consclusion

The concept of resilience explain why natural hazards of similar type and magnitude can have disparate

impacts on varying communities. Numerous indices have been developed in attempt to measure community

resilience. However, despite obvious overlaps in their formulations, there is currently a lack of continuity

between approaches and a general lack of construct validity in the field.

To help address the former and pave the way for efforts to remedy the latter, we have developed a data-

driven schema for comparing and validating index-based frameworks. Specifically, we conducted factor

analysis (FA) on a comprehensive set of variables measuring aspects of community resilience at the US

county level. The data entail 130 variables that span 3,067 of 3,142 US counties and are derived from six

established indices that attempt to quantify community resilience and/or vulnerability: BRIC, CDRI, CRI,

RCI, SoVI, and SVI. The FA suggests that 50 of the 130 variables effectively load onto five factors: wealth,

poverty, agencies per capita, elderly populations, and non-English speaking populations.

The factor model reduces multicollinearity among the variables and provides an effective backdrop for

comparing the constituent elements of indices, reasonably facilitating dialogue among and between re-
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searchers and practitioners and enabling validation efforts with disaster outcome data. Additionally, because

the factors are insensitive to the inclusion of additional variables, the model serves as a stable yet flexible

mechanism to determine whether newly proposed variables add value to the literature. As such, the risk

analysis community can avoid a proliferation of redundant information as it investigates new measures for

quantifying community resilience.

The five factors and other 80 variables need to be evaluated with respect to their ability to predict and

possibly explain disaster outcomes. More specifically, although the five factors account for the most county-

level variation with respect to the 130 variables, they may not be the best predictors of community resilience,

much less offer policy makers a means of mitigating unfavorable disaster outcomes. However, until such

empirical investigations are conducted in this field, efforts to quantify community resilience will ultimately

remain incomplete.

2.7 Supplementary Materials

The data dictionary, dataset, and R scripts necessary to recreate the analysis are available on Open Science

Framework: https://osf.io/vezns/?view only=d8bdbceaa35e4acc9d14ada18f61fea4
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CHAPTER 3

Applying Big Five personality traits and statistical learning to predict resource investment in

community resilience

Community resilience plays a vital role in mitigating the risks associated with natural disasters. Public infras-

tructure that bolsters community resilience can often be conceptualized as a public good or common-pool re-

source. Here, we develop a common-pool resource game to investigate patterns in participants’ contributions

toward the development of public infrastructure that helps protect their community from various, hypothetical

disaster scenarios. We train Bayesian additive regression tree (BART) models and multiple linear regressions

(MLRs) on game results, given participants’ Big Five personality traits and in-game circumstances as input

variables, to predict deviations from strategies that would reasonably lead to Pareto efficient outcomes for the

community. We find that in general, participants over-contribute relative to the Pareto efficient strategies, but

the BART models are able to accurately predict these deviations and perform much better than their MLR

counterparts. Additionally, we find several of the Big Five traits, Openness in particular, to have significant

effects in predicting responses for both classes of models.

3.1 Introduction

Community resilience is a function of and often strengthened by public infrastructure and other related de-

velopments (e.g., sea walls, public hospitals, early storm warning systems). These resources are generally

viewed as common-pool resources or public goods, depending if their utilization is considered to be rivalrous

or non-rivalrous (Ayyub et al., 2016). For example, a community hospital benefits residents who are in-

jured during a disaster but has limited capacity and as such is rivalrous in consumption (i.e., a common-pool

resource). On the other hand, an early warning system for storms is non-rivalrous because its benefits are

simultaneously shared by all residents. In either case, problems of collective coordination arise because al-

though these developments bolster community resilience, their costs to individuals often exist as externalities

(Ayyub et al., 2016). In other words, some community members may enjoy the benefits of these amenities

without contributing individual resources to their development (i.e., free-ride).

The free-rider problem is not a new one. Hardin (1968) famously dubbed the term “Tragedy of the Com-

mons” to describe the logical outcome of herdsmen overgrazing a pasture in pursuit of their own interests,

but the nature of this problem dates back much earlier, likely to the dawn of life itself (Axelrod and Hamilton,

1981). Although the economically rational incentive for people is to free-ride in cooperative dilemmas, re-

searchers find ample cases of successful, sustainable, and non-coercive management of communal resources
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in real life (Ostrom, 1999, 2000; Schindler, 2012). In fact, behavioral experiments in the form of economic

games find that pro-social tendencies in cooperative dilemmas appear to be the norm, provided others do not

defect from this pattern of behavior (Dong et al., 2016; Diekert, 2012; Schindler, 2012; Gunnthorsdottir et al.,

2007; Capraro, 2013; Johnson, 2015).

There is a growing body of game-theoretic applications to disaster resilience (Seaberg et al., 2017). How-

ever, the majority of these studies assume decision-makers operate according to a rational or bounded-rational

strategy and/or lack empirical justification for the use of employed decision models (Taylor et al., 2014;

Bouzat and Kuperman, 2014). Here, we design a behavioral study in the form of a web-based common-pool

resource game (CPR game) to empirically examine patterns in participants’ contributions to the development

of public infrastructure that helps protect their community from various disaster scenarios. We then analyze

the results of the CPR game using statistical learning methods to predict participants’ decisions given their

in-game circumstances and personality traits.

3.1.1 Background

Economic games are a well-established approach to investigating decision-making patterns in social interac-

tions. These games feature two or more individuals making decisions given specified conditions and informa-

tion. Individuals’ decisions not only affect their own outcomes but those of other participants. One class of

games, called social or cooperative dilemmas, is characterized by a trade-off between short-term self-interests

and long-term, collective interests (Zhao and Smillie, 2015). The Prisoner’s Dilemma is a prominent example

of such a game, where two participants decide whether or not to confess to a crime based on a given payoff

matrix.

A public goods game (PGG) is essentially a multiplayer extension of the Prisoner’s Dilemma. Players

decide on a portion of their personal endowment to invest into a the public good, and the combined amount

is multiplied by some return on investment factor, generally between 1 and the number of players, and then

redistributed to all group members (Gunnthorsdottir et al., 2007). Collectively, the return on investment is

maximized when all participants contribute, but individuals can improve their own returns if they withhold

investments (i.e., free-ride). The dynamics of CPR games are similar to that of PGGs, but the communal

resource is rivalrous in consumption and becomes depleted with non-cooperative behavior (e.g., The Tragedy

of the Commons) (Hardin, 1968).

In general, the economically rational decision for individuals in the management of common resources

is to pursue their own interests at the expense of others’ (i.e., the Nash equilibrium is for individuals to free-

ride) (Dong et al., 2016; Johnson, 2015; Capraro, 2013). However, researchers find that pro-social behaviors,

defined as actions that deviate from the prescribed Nash equilibrium strategy to defect, are pervasive in both
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natural and laboratory settings (Ostrom, 2000; Dong et al., 2016; Schindler, 2012; Gunnthorsdottir et al.,

2007; Kline et al., 2019; Diekert, 2012). This finding belies the assumption that people fundamentally act

rationally in pursuit of their own interests (Dong et al., 2016). Much theoretical and empirical work has been

dedicated to understanding the dynamics of this behavior (Johnson, 2015; Kline et al., 2019).

Because cooperation is often observed to decline as a game progresses, early investigations presumed

that self-interests still lay at the heart of individuals’ decisions and that individuals were simply trying to

maximize long-term payoffs by initially cooperating (Dong et al., 2016). However, even in games lasting

only one turn, many participants exhibit pro-social tendencies (Capraro, 2013). Subsequent studies indicate

that various socio-psychological factors determine the success or failure of the management of a collective

commons (Schindler, 2012; Ostrom, 2000). Individuals’ attitudes towards concepts of reciprocity, trust, fair-

ness, risk aversion, conformity, and/or inequity aversion can all affect outcomes (Schindler, 2012; Johnson,

2015). Furthermore, the relationships between socio-psychological factors and cooperative decision-making

is complex, nonlinear, and often interdependent (Schindler, 2012; Poteete et al., 2010). For example, most

subjects in incentivized PGGs tend to increase (or decrease) their contributions if they find they contributed

less (or more) than others in the previous round (Dong et al., 2016). As such, by measuring individuals’ dif-

ferences in disposition, researchers may able to analyze characteristics that are predictive of certain response

patterns in social dilemmas (Hirsh and Peterson, 2009).

A prominent method for quantifying socio-psychological dispositions of individuals is the Big Five model

of personality (McCrae and John, 1987). Derived from the lexical approach in psychology in conjunction with

factor analysis, the Big Five model is the most widely used and accepted method for measuring dimensions

of personality in the field of psychometrics and has been shown to predict various patterns of behavior across

a wide range of economic games (John and Srivastava, 1999; Zhao and Smillie, 2015; Kline et al., 2019).

The model specifies five different dimensions (a.k.a., traits, factors, or domains) of personality, which are

Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism.

Openness reflects a disposition toward learning new things, trying new experiences, a lack of prejudice,

and a willingness to trust others (Kline et al., 2019). As such, many researchers presume that higher Openness

scores are predictive of pro-social tendencies in social dilemmas. In fact, several studies find a strong, positive

relationship between Openness and cooperation in social dilemmas (Kline et al., 2019; Zhao and Smillie,

2015; Lönnqvist et al., 2011; Hilbig et al., 2013; Volk et al., 2011). The opposite trend has been found in only

one cohort of one study Volk et al. (2012).

Conscientiousness characterizes individuals who are detail-oriented, organized, efficient, and industrious

(John and Srivastava, 1999). This trait tends to be associated with fiscal conservatism and risk aversion

(Zhao and Smillie, 2015). One might reasonably expect individuals who score higher on the Conscientious
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dimension of the Big Five to be able to more effectively follow a given strategy for the management of the

commons, but the nature of this strategy is most likely determined by other traits and factors (Zhao and

Smillie, 2015). Empirical evidence suggests as much, with only one study finding a significant relationship

between this trait and pro-social behavior; in this case, it also happened to be a negative relationship (Ben-Ner

and Kramer, 2011).

Extraversion reflects strong interpersonal tendencies and an enthusiasm for engaging in social activities

(Kline et al., 2019; John and Srivastava, 1999). However, it can also be linked to more assertive qualities

(Hirsh and Peterson, 2009). Therefore, it is reasonable to surmise that the more enthusiastic/affiliating aspect

of Extraversion can positively predict cooperation in dilemmas, but perhaps, the more domineering side could

do the opposite. The literature features contradictory effects, likely moderated by other factors in the game

(Ben-Ner and Kramer, 2011; Brocklebank et al., 2011; Zhao and Smillie, 2015; Kline et al., 2019). For ex-

ample, when participants are able to punish free-riders, Schroeder et al. (2015) find that Extraversion predicts

cooperative behavior in PGGs, but Koole et al. (2001) find the opposite effect when this game dynamic is not

present.

Agreeableness is characterized by an orientation to the needs of others, of being empathetic, considerate,

and “nice”, and is thought to be the predominant trait underlying cooperation, fair play, and benevolence

(John and Srivastava, 1999; Kline et al., 2019). Not surprisingly, studies find it to be the trait most predictive

of pro-social behaviors across a wide range of economic games (Kline et al., 2019; Zhao and Smillie, 2015;

Kagel and McGee, 2014; Pothos et al., 2011; Hilbig et al., 2013; Koole et al., 2001; Volk et al., 2011, 2012).

Finally, Neuroticism indicates a tendency to experience negative emotions such as stress, anxiety, and

depression, especially when confronted by perceived threats, and to exhibit volatile or hostile behaviors

(John and Srivastava, 1999; Kline et al., 2019). It is unclear how this dimension might influence behaviors

in the social dilemmas, and again, the literature contains mixed results (Kline et al., 2019). Lönnqvist et al.

(2011) find a strong, negative relationship in Neuroticism predicting cooperation in an incentivized Prisoner’s

Dilemma, (i.e., participants get monetary bonuses based on performance in the game), but Hirsh and Peterson

(2009) find the opposite is true for the withdrawal aspect of Neuroticism in a non-incentivized game where

fear of being ostracized might play a larger role.

There is an emerging body of literature that uses personality traits to predict decision-making in coop-

erative dilemmas (Zhao and Smillie, 2015). One major challenge has been in assimilating and comparing

results across studies, as each study can be geared towards specific applications and/or include numerous

moderating effects (Zhao and Smillie, 2015). Some of these factors may include but are not limited to partic-

ipants being able to punish free-riders, participants having access to the history of player actions, the degree

of in-game communication allowed, in-game performance being monetarily incentivized, the framing of the
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dilemma, and the observed behaviors of others (Anderson, 2010). Recently, Kline et al. (2019) conducted a

multi-level meta-analysis of 15 different studies in an attempt to hierarchically model these various factors

and their interactions with Big Five traits. They find that Agreeableness and Openness are strong, positive

predictors of pro-social behavior across these cooperative dilemmas (Kline et al., 2019). Although, to the best

of our knowledge, the Big Five traits have not been used to model decision-making patterns in game-theoretic

applications pertaining to community resilience.

There is a growing body of research that incorporates aspects of game theory and formal decision theory

in research on disaster resilience (Seaberg et al., 2017; Rubas et al., 2006). However, the focus of these

studies has traditionally been on modeling outcomes of disaster scenarios while assuming decision-makers

operate according to some preset paradigm, instead of analyzing what might be the most appropriate decision

models for the given application (Reilly et al., 2015). Additionally, most studies simply assume decision-

makers act according to a rational or bounded-rational strategy and/or lack empirical justification for the use

of the incorporated decision models (Zhuang and Bier, 2007; Adida et al., 2011; Bouzat and Kuperman, 2014;

Zheng and Cheng, 2011; Taylor et al., 2014). Kunreuther and Michel-Kerjan (2015) are among the few who

deviate from this trend and gather experimental evidence from a web-based game to model the likelihood of

U.S. adults acquiring property insurance to mitigate flood risks.

3.1.2 Contributions

Here, we follow a similar approach to Kunreuther and Michel-Kerjan (2015) and design a web-based CPR

game to examine interrelations among Big Five traits and decision-makers’ behavior around opportunities to

build public infrastructure that bolsters community resilience to disasters. While much work has gone into

examining the effects of Big Five factors in game-theoretic applications, to the best our knowledge, no study

has done so in the context of community resilience. Additionally, previous studies that utilize Big Five fac-

tors to predict behavior in cooperative dilemmas implicitly assume a linear relationship between these traits

and response variables, despite researchers acknowledging that relationships between socio-psychological

factors and decision-making are complex and nonlinear (Schindler, 2012; Poteete et al., 2010). Furthermore,

decision-models that are used in game-theoretic disaster resilience applications generally lack empirical jus-

tification for their use and/or make simplifying assumptions thereof. Our work aims to help address these

gaps in the following ways:

• We develop empirically-based decision models that can be used to predict or generate responses in CPR

settings pertaining to public infrastructure investments that bolster community resilience to disasters

• We examine how the Big Five traits predict decision-making patterns in the above context and relate

28



findings to those established in other cooperative dilemmas

• We use Bayesian additive regression tree (BART) models to explore nonlinear relationships between

Big Five traits and responses and compare results to those from multiple linear regressions (MLRs)

The remainder of this chapter is organized as follows. Section 3.2 describes our CPR game and the

statistical learning approaches we used to model the results of the game. Section 3.3 details the results of

the statistical learning procedures and relates findings to other studies that have used the Big Five factors to

analyze behavior in cooperative dilemmas. Section 3.4 discusses possible extensions to our work, and Section

3.5 contains our concluding remarks.

3.2 Methods

Our methodology consists of two main components. First, we design a web-based CPR game where each

turn, participants decide how much of their available funds they want to contribute toward developing public

infrastructure that helps protect their community from an impending disaster. Second, we train BART and

MLR models on the results of the game to predict decision-making patterns of participants, given their Big

Five personality traits and in-game circumstances.

3.2.1 Community resilience CPR game

3.2.1.1 Study overview

We implement our study using oTree in conjunction with Amazon Mechanical Turk (MTurk). oTree is an

open-sourced, Python-based platform for designing and implementing web-based tasks, such as single- and

multi-player economic games and dynamic questionnaires, and has been referenced in over 600 academic

publications (Chen et al., 2016). Amazon MTurk is an online crowd-sourcing platform that connects workers

to small web-based tasks called Human Information Tasks or “HITs” (Sheehan and Pittman, 2016). MTurk

offers academic researchers efficient and cost-effective access to a large, diverse subject pool, and as such, has

been prominently featured in the machine learning, economics, and social sciences literature (Lee et al., 2018;

Paolacci, 2010; Sheehan and Pittman, 2016). Studies find that compared to more conventional, in-person

samples, MTurk participants are more demographically diverse and representative of the US population as a

whole in terms of age, gender, race, education, and geography (Sheehan and Pittman, 2016). One of the main

benefits of oTree is that it allows researchers to seamlessly publish tasks on MTurk, monitor the progress of

participants, and provide worker compensation through its admin interface.

Overall, 100 participants successfully completed our study. To help ensure quality responses as recom-

mended in Amazon’s Mechanical Turk for Academic Research, we limited participation to workers who had
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at least 500 previously completed HITs with an acceptance rate of at least 95% (i.e., percentage of previously

submitted work that was rated to be of quality submission) (Sheehan and Pittman, 2016). To avoid duplicate

entries, we restricted the study to Amazon worker IDs that had not already participated in our study. Ad-

ditionally, to avoid potential cultural barriers, we limited access to workers currently residing in the United

States. However, we will likely relax the latter constraint in future studies. Participants were compensated $5

for completing the entire study, which takes approximately 20 minutes to finish. It should be noted that we

did not award monetary bonuses based on the in-game performance of participants; this is an experimental

design choice that we plan to vary in future work.

Our study consists of five main components: a consent form, a demographic survey, a Big Five per-

sonality assessment, a game tutorial, and the CPR game itself. The consent form is self-explanatory. The

demographic survey consists of a standard questionnaire regarding a participant’s race, gender, education

level, employment status, age, and country of residence. Both can be found in the Supplementary Materials.

The Big Five assessment consists of the BFI-2-S inventory, a 30-item response that retains much of

the reliability and validity as the 60-item BFI-2 inventory (Soto and John, 2017b). The BFI-2 inventory is a

proven measure of Big Five personality traits that reduces acquiescence bias and improves accuracy compared

to the established BFI inventory (Goldberg, 1993; Soto and John, 2017a). We elected to use the condensed

version, the BFI-2-S, to help reduce the overall completion time of the study.

The tutorial explains the dynamics of our CPR game to participants by walking them through an ex-

ample turn. Brief questions are interspersed throughout the tutorial to help ensure participants develop an

understanding of the game prior to playing it, so we can improve our chances of receiving quality responses

(Crump et al., 2013; Sheehan and Pittman, 2016). The entirety of the tutorial is included in the Supplemen-

tary Materials, but parts of it are highlighted in the body of the paper to explain the game’s dynamics, detailed

below.

3.2.1.2 CPR game overview

In essence, our community resilience CPR game is a variation of the typical PGG. Participants act as members

of a community that are going to be impacted by a sequence of disasters. Each turn, they must decide how

much of their individual resources, measured in points, they want to contribute toward the development of

public infrastructure that helps protect their community from an impending disaster (i.e., a “shield”). The

combined investments are multiplied by a factor of two to determine the total size of the community shield.

The standard PGG multiplier is between one and the number of players, and our game features three members

per community (Johnson, 2015); however, both the multiplier and size of the community are factors we plan

to vary in future studies. Since the shield has a finite capacity shared by the community, we technically
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categorize our game as a CPR game.

Each turn, players are presented with a disaster scenario; an example is shown in Figure 3.1. The scenario

consists of four main parts: (1) the value of the community shield at the start of the turn, measured in points

(e.g., 9 points), (2) the severity of the impending disaster, randomly generated on a scale from 1 to 50 (e.g.,

10), (3) a chart showing each community member’s available resources, represented as points (e.g., “You”in

blue have 50 points remaining), and (4) a chart showing each community member’s chance of being harmed

by the disaster this turn, randomly generated from 0% to 100% (e.g., “You” in green have a 60% chance of

being harmed). Note, although not displayed in Figure 3.1, the exact, numerical percentages of (3) and (4)

are specified to players during the game. Also, in this version of the game, all players start with the same

amount of resources, 100 points, and there are only three members in a community. In future studies, we

plan to systematically explore the effects of varying these game parameters as well as what information is

displayed to participants, such as making community member contributions known to participants.

Figure 3.1: Game Tutorial (Page 2 of 16)

Without a shield, the amount of damage a player can expect to receive from a disaster is the severity

multiplied by his or her respective chance of being harmed (e.g., without a shield, “You” would expect to

receive 10 x 0.60 = 6 points of damage). The total expected damage to the community is just the sum of the

expected damage to all its members (e.g., 6 + 2 + 9 points). The tutorial walks participants through these

31



calculations with tangible counts, since people tend to more easily grasp the concept of expected value when

it is presented in terms of frequency rather than probability (Gigerenzer, 1996).

Before the disaster causes any damage, participants can contribute some of their individual points to in-

crease the value of the shield; participants cannot contribute more points than they have and cannot contribute

fewer than zero points. In the example in Figure 3.1, the value of the shield at the start of the turn is 9 points.

Assume that, when presented with the scenario in Figure 3.1, “You” contribute 2 points to the shield, “Player

2” contributes 0 points, and “Player 3” contributes 1 point. Therefore, the new value of the shield would

be 9+ 2× (2+ 0+ 1) = 15 points. From previous calculations, the and then the next turn ensues in similar

fashion. In our game, there are 5 total turns. Again, turn length is a factor we plan to vary in future work. If

at any point a player runs out of resources, he or she will not be able to contribute any points to the shield for

the remainder of the game. Currently, there is no option to punish others for not contributing, but we plan to

implement this feature in future work.

Lastly, participants are given the option to contribute some of their resources before the game begins in

order to increase the value of the shield before the start of the first turn. Participants are informed that the

value of the shield at the beginning of the game is zero points. This game dynamic is meant to mirror real-life

instances of people donating resources to relief efforts before they are needed, but this is another factor we

plan to explore the effects of altering in future studies.

3.2.1.3 Computer algorithms

In this version of the game, participants play with two different computer algorithms acting as the other

members of the community. Participants are not given any information as to whether they are playing with

other people or computers. The two algorithms are programmed to contribute amounts based on different

strategies that would reasonably lead to a Pareto efficient outcome for the given turn.

The first strategy, which we call the “Pareto Efficient: Fair Share” strategy, instructs the computer to

contribute an amount such that if all community members acted similarly, they would simultaneously reach a

Pareto efficient for the group and individually efficient outcomes for themselves (i.e., they would contribute

an amount that is proportional to how much they would benefit from the shield where the expected net loss

to themselves and the community is both zero). For example, if there was no starting shield in Figure 3.1,

the “Fair Share” strategy would entail “You” contributing 3 points, Player 2 contributing 1 point, and Player

3 contributing 4.5 points (i.e., each player’s expected net damage divided by the 2x multiplier).

The second strategy, which we call the “Pareto Efficient: Equal Share” strategy, instructs the computer

to contribute an amount such that if every community member contributed the same amount, irrespective of

available resources and/or potential benefit from the shield, the group would arrive at a Pareto efficient out-
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come. In the same example without a starting shield, the “Equal Share” strategy would be for all community

members to contribute 17÷ 3÷ 2 points (i.e., total net damage to the community divided by the number of

members divided by the shield multiplier).

One computer-controlled community member operates according to the first strategy, and the other, the

second. The computers maintain the same strategy throughout the simulation, regardless of the decisions

made by participants. However, we introduce some slight, random variation to the actual contributions made

by the algorithms, so participants can’t detect exactly how the computers are playing. On a related note,

contributions are limited to whole numbers, so in general, the strategies would be close to but not exactly

Pareto efficient solutions even without the random variation.

We employ these two algorithms for several reasons. Primarily, we wanted the default decision-making

tendencies exhibited by other community members and observed by participants to be some form of pro-

social behavior. The literature shows that people tend to cooperate in social dilemma games as long as they

perceive other players to be doing similarly, and we wanted to explicitly control this dynamic in this version

of our game (Ostrom, 1999; Johnson, 2015; Dong et al., 2016). Both the “Fair Share” and the “Equal Share”

strategies are forms of cooperative behavior. Moreover, these strategies are intuitive to everyday notions of

what constitutes pro-social behavior (e.g., when splitting the dinner check with friends, both “Fair Share”

and “Equal Share” strategy are generally deemed to be socially acceptable). Additionally, we calibrated the

game such that when the computers acted according to these strategies, the game would be balanced in terms

of difficulty for the participants. For example, if the computers didn’t contribute any resources to the shield,

the disasters would regularly wipe out at least one community member by the time the game ends. Similarly,

if the computers massively over-contributed to the shield, players would almost never have to worry about

receiving any damage from the disaster. We plan to feature different algorithms in future studies. Similarly,

we aim to run variations of the game where participants play with other people, instead of with computers,

or even with “themselves” (i.e., have computers mirror participants or play according to a similar Big Five

personality profile).

3.2.2 Statistical Learning

3.2.2.1 Data

The results from the behavioral study comprise the data on which we train statistical models to predict

decision-making patterns of participants, given participants’ Big Five personality traits and in-game circum-

stances. Overall, 100 participants completed the study, and with a game lasting 5 turns, this amounts to a 500

total decisions. We reviewed the length of time participants spent on each part of the study to help determine

if they took the study seriously or if responses should potentially be discarded. Similarly, for any outlying
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data points (i.e., contributions that were abnormally high), we reviewed how the corresponding participant

played the rest of the game and/or if he or she left optional feedback at the end to gauge whether his or her

decisions were genuine. Ultimately, we retained responses from all 100 participants. The Supplementary

Details section contains the data from the game.

Additionally, we examined the hierarchical nature of the data (i.e., decisions nested within participants)

when considering what statistical methods were appropriate to use. Specifically, we calculated the Intraclass

Correlation Coefficient (ICC) to determine if multilevel modeling was warranted (Koo and Li, 2016). Overall,

the ICC was very small ( 2.2%), informing us that variation explained at the subject-level was much smaller

than that at turn-level. As such, a nested modeling approach was not necessary.

Dependent variables consist of two measures: deviations (i.e., differences in point values) between par-

ticipants’ contributions each turn and their theoretical contributions if they were operating according to the

previously discussed “Fair Share” and “Equal Share” strategies. The range for both of these measures is

approximately between -20 and 95 points. We elected to use deviations from these strategies as dependent

variables because we found greater utility in discussing results in terms of over- or under-contributions rel-

ative to Pareto efficient strategies rather raw contribution amounts. Additionally, we repeated our analysis

using raw contributions and contributions expressed as percentages of participants’ resources, and these mod-

els resulted in slightly worse fits but fundamentally the same takeaways (see, Supplementary Materials).

Independent variables consist of fifteen inputs, of which six are modeled at the participant-level and nine

are modeled at the turn-level:

• Participant-level: Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism, and pregame

contribution

• Turn-level: player resources, other member #1’s resources, other member #2’s resources, shield value,

expected damage (player), expected damage (group), potential savings (player), potential savings

(group), and turn number

Participant-level variables entail BFI-2-S scores for each Big Five trait and any pregame contributions

made to the community shield. We examined the potential role of having pregame contributions be a response

or input variable, and ultimately decided on the latter. We found that the Big Five traits, in of themselves,

were not sufficient to predict pregame contributions, and furthermore, studies show that initial contributions

in social dilemmas can be good predictors of subsequent actions (Wunder et al., 2013; Nay and Vorobeychik,

2016).

Turn-level variables consist of several items, including each community member’s available resources.

Practically, these inputs directly relate to one’s ability to contribute in the game, and studies have also shown
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that both an individual’s resources and others’ resources affect decision-making (e.g., some people are mo-

tivated by aversion to inequity) (Zhao and Smillie, 2015). Other inputs are the starting value of the shield,

expected raw damage to the participant and community (i.e., the magnitude of the disaster), and the potential

savings of the participant and community by investing in the shield (i.e., the net reduction in damage). Lastly,

turn number is also included as an input variable because previous work has shown that cooperation tends to

decline as the cooperative dilemma progresses (Dong et al., 2016).

It should be noted that we repeated our analysis using responses from the demographic survey as addi-

tional participant-level input variables. However, we found that these demographic variables were consis-

tently among the least most important variables and added negligible explanatory power to the BART models

(see, Supplementary Details). As such, we elected not to use these variables for simplicity’s sake.

It should also be noted that several experimental design choices are implicit, game-level treatment fac-

tors in our models. These factors include but not limited to the following items: the size of the community,

whether a participant is playing with humans or computers, what type of strategies or behaviors other commu-

nity members exhibit, the value of the shield multiplier, the game length, the distribution of starting resources,

the method of redistributing shield benefits, and the information presented and available to participants. We

plan to systematically vary and explore the impacts of these treatments as game-level predictors in future

studies.

3.2.2.2 Bayesian additive regression tree (BART) models

We use BART models to predict player deviations from the two Pareto efficient strategies. Unlike para-

metric regression which imposes stringent assumptions on relationships between variables, BART instead

non-parametrically learns these dynamics directly from the data (Chipman et al., 2010; Prüser, 2019; Hill

et al., 2020). BART is a fully Bayesian implementation of a sum-of-trees regression model that has achieved

critical acclaim in a wide variety of applications spanning multiple disciplines (Chipman et al., 2010; Kapel-

ner and Bleich, 2016; Hill et al., 2020). Given an N×1 vector of response variables Y and an N× p matrix

of of predictor variables X , BART can formally be expressed by the following equation:

Yn =
m

∑
j=1

g(xn;Tj,M j)+ εn, εn ∼N (0,ε2) (3.1)

Here, we have m decision trees, each composed of a tree structure T that consists of interior node decision

rules and terminal nodes, and a set of values associated with each of the terminal nodes M (i.e., leaf values)

(Prüser, 2019; Hill et al., 2020). The interior node decision rules are binary partitions of the predictor space,

{xi <= c} vs. {xi > c} (Chipman et al., 2010). Within a tree T , each observation is assigned to a terminal
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node based on the sequence of interior node decision rules from top to bottom of the tree (Chipman et al.,

2010; Hill et al., 2020). In this manner, the tree structure captures complex, nonlinear interactions between

variables (Prüser, 2019). However, decision trees in general can be prone to over-fitting, so BART places

regularization priors on the size and fit of each tree-parameter pair (Tj,M j) so that a given tree contributes

only a small portion to the ensemble’s overall fit. In turn, the final prediction for each observation Yn is the

sum of its corresponding leaf values across the tree ensemble.

BART priors consist of three main components: (1) the tree structure T , (2) the terminal node values M,

given the tree structure, and (3) the error variance ε2 (Kapelner and Bleich, 2016). BART models encourage

small trees (i.e., low depth) that explore a range of input variables and splitting criteria. However, they also

incentivize the terminal node values to be materially zero, in turn contributing little to the overall fit unless

the tree-parameter pair (Tj,M j) results in a meaningful partition. As a consequence, BART features built-in

variable selection, making it well suited for exploring a high-dimensional predictor space (Prüser, 2019).

Chipman et al. (2010) discuss exact details on the specification of these priors. Moreover, because the tree

ensemble includes a variety of tree structures, the final prediction inherently includes the main effects of the

relevant predictors as well as any meaningful interactions between them, which are often unknown or too

complex to specify parametrically (Chipman et al., 2010).

Although BART’s default hyper-parameters for the priors are generally robust to different data sets and

applications, we still perform 5-fold cross-validation to select the models with the lowest out-of-sample

Root-mean-square error (RMSE) (Kapelner and Bleich, 2016). Given the observed data and specification

for the aforementioned hyper-parameters and number of trees, BART then uses Monte Carlo Markov Chain

(MCMC) techniques to perform iterative back-fitting of the tree ensemble to generate a posterior distribution

of predictions (Chipman et al., 2010).

From this posterior distribution, it is straightforward to estimate the partial dependence function of input

variables. Partial dependence functions, also known as partial dependency plots (PDPs) when in pictorial

form, summarize the marginal effects that a specified set of input variables has on the response variable,

while properly controlling for the effects of other inputs (Friedman, 2001). PDPs are analogous to param-

eter coefficients in linear regression, except they can be construed for any statistical model and make no

a-priori assumptions regarding their relationship to the response variable. When working with complex,

non-parametric models such as BART, PDPs provide researchers an intuitive means of examining the effects

various input variables have on predictions. The formal expression for the partial dependence function is

36



given in equation (3.2).

f̂xS(xS) = ExC

[
f̂ (xS,xC)

]
=
∫

f̂ (xS,xC)p(xS)d(xC) (3.2)

Here, xS is the set of input variables of interest, and xC is the complement set. By integrating, or marginalizing,

over the complement set of inputs, one obtains a function that depends only on the variables of interest while

still accounting for their interactions among all input variables (Friedman, 2001). The partial dependency

function is estimated via Monte Carlo approximation, as shown in equation (3.3).

f̂xS(xS)≈
1
n

n

∑
i=1

f̂ (xS,xi
C) (3.3)

In essence, the PDP is calculated by taking the average prediction across the various values for xi
C in the data

while holding xS constant. Values for xS can also come from the data or be specified as a grid of points.

Lastly, we compare results from the BART models to those from MLR counterparts. The MLR models

feature the same input and response variables as the BART models, and we do not specify any interaction

effects. As mentioned, previous studies that have related Big Five factors to decisions in cooperative dilem-

mas employed some form of linear regression to do so. By comparing insights drawn from the BART models

to those from the MLRs, we can assess if previous findings should be revisited with more advanced, non-

parametric statistical approaches.

3.3 Results

Cronbach’s alpha coefficients in Table 3.1 confirm that the BFI-2-S inventory serves as an acceptable measure

for the Big Five traits in our study, with each coefficient measuring at least 0.70 (Cronbach, 1951; Shabrina

et al., 2018). Given these BFI-2-S scores and the 10 other input variables, the BART models are able to

accurately predict deviations from the “Pareto Efficient: Fair Share” and “Pareto Efficient: Equal Share”

strategies, as seen in Figure 3.2.

Table 3.1: Cronbach’s Alpha for BFI-2-S

Openness Conscientiousness Extraversion Agreeableness Neuroticism
0.75 0.77 0.72 0.70 0.81

The BART models perform much better than their MLR counterparts. Both classes of models tend to

under-estimate the magnitude of large under- and over-contributions relative to each strategy, but this bias is

much less pronounced in the BART models. As seen, the 95% posterior credible intervals for both BART
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Figure 3.2: BART Model Predictions

models span the majority of responses. RMSEs for the mean BART predictions are approximately 5.94 and

6.00 for the “Fair Share” and “Equal Share” strategies respectively, compared to 14.24 and 14.25 for the

corresponding MLRs. Also noteworthy is the fact that participant deviations from either strategy are signif-

icantly greater than differences in contributions between the two strategies, meaning that many participants’

decisions do not follow either of the Pareto efficient strategies.

Variable importance for BART model predictors is shown in Figure 3.3. Variable importance is the

proportion of times a predictor is chosen as a decision rule out of all the decision rules in the post-burn-in

posterior samples of the given BART ensemble (Kapelner and Bleich, 2016). This metric does not measure

the effect a given predictor has on the response variable but is a measure of how often each predictor is used

in each model’s formulation. For both BART models, a participant’s starting resources and scores for traits

Openness, Extraversion, and Neuroticism and the game’s turn are featured in many of the decision rules.

Interestingly, a participant’s potential savings from the shield is used more frequently in the “Fair Share”

model compared to the “Equal Share” model, and vice-versa for the group’s potential savings (i.e., the model

that attempts to learn a more individual-based strategy uses the more individual-based predictor for savings,

and the opposite holds true for the more communal-based strategy). Note, we examined the correlation

matrix of input variables to make sure multicollinearity was not a potential issue with variable selection in

these algorithms (see Supplementary Materials).

Next, we perform a statistical test to determine which predictors in the BART models have significant
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Figure 3.3: BART Variable Importance

effects on responses while controlling for the effects of other variables. We first permute the x jth predictor

of the dataset, which removes any relationship between x j and the response, and then compare samples of

a pseudo-R2 resulting from this model to that of the original BART model. Here, pseudo-R2 is defined

as 1−∑
ntrain
i=1 ε2

i /∑
ntrain
i=1 (yi− ȳ)2 (Kapelner and Bleich, 2016). In turn, a quasi p-value is calculated as the

average proportion of pseudo-R2s across multiple permutations that are greater than that of the original model

(Kapelner and Bleich, 2016). The null hypothesis is similar to that of a one-sided p-test for regression models,

but the constraints for linearity are removed. Table 3.2 shows the results of these statistical tests and compares

them to traditional, two-sided t-tests for the MLR counterparts. Note, Table 3.2 does not include intercept

terms for the MLRs, but they can be found in the Supplementary Materials and are found to not significantly

differ from zero.

Table 3.2: Predictor Significance

BART (Pr > p) MLR (Pr > |t|)
“Fair Share” “Equal Share” “Fair Share” “Equal Share”

openness < 0.001 < 0.001 †< 0.001 †< 0.001
conscientiousness 0.225 0.297 †0.009 †0.009
extraversion 0.019 0.059 < 0.001 < 0.001
agreeableness 0.103 0.059 †0.009 †0.009
neuroticism 0.069 0.050 0.195 0.195

resources you < 0.001 < 0.001 0.001 0.001
turn 0.376 0.307 †0.116 †0.116
savings you 0.189 0.356 †< 0.001 †0.074
resources other2 0.050 0.050 †0.131 †0.131
shield 0.245 0.267 0.986 0.986
pre contribute 0.236 0.228 0.268 0.268
resources other1 0.256 0.248 0.107 0.107
savings others 0.584 0.327 0.768 †0.145
damage you 0.374 0.396 0.017 0.017
damage others 0.404 0.347 †0.754 †0.754

† negative effect
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The effects predictors have on responses are fairly similar, both within and between model classes. In

general, the effects of the Big Five traits are prominently featured, and trait Openness has the lowest p-values

(t-values) out of all the input variables. Additionally, a participants’ available resources is also a significant

predictor of responses in all models. However, one key distinction to make between model classes is that the

BART models do not have negative or positive effect designations; this is due to the fact that unlike in MLR,

predictors in the BART models are not assumed to be linearly related to response variables. Instead, their

corresponding effects on responses are best viewed through PDPs, depicted below in Figure 3.4.

Figure 3.4 shows the posterior mean and 95% credible intervals of the partial dependency functions of

all 15 input variables pertaining to the “Fair Share” BART model, displayed in order of this model’s variable

importance (see, Figure 3.3). PDPs for the “Equal Share” BART model can be found in the Supplementary

Materials but are similar to those shown in Figure 3.4; additionally, we discuss any notable differences in the

ensuing paragraphs. The PDPs are calculated at the deciles of the given variable of interest. The y-axes in

the charts in Figure 3.4 measure deviations, in points, from the “Fair Share” strategy. Thus, values at y = 0

represent decisions that follow this strategy exactly.

Figure 3.4a shows that the lowest decile of participants’ available resources predicts an under-contribution

relative to the “Fair Share” strategy. However, for the remaining deciles, there is a consistent over-contribution.

When players have little to no resources available, they are likely unable to contribute what is necessary to

reach the given Pareto efficient decision, so the marginal effect is below y = 0. However, in general, we see

the majority of responses are well above the Pareto efficient outcome, which may have ties to the concept of

risk-aversion in decision theory (discussed later).

In Figure 3.4b, we see trait Openness predicts little to no deviation from the “Fair Share” strategy at low

and high scores but positive deviations at middle deciles. Openness reflects an orientation toward trusting

others and has been positively associated with pro-social behavior in social dilemmas (Kline et al., 2019;

Lönnqvist et al., 2011; Hilbig et al., 2013). As such, the first half of the Figure 3.4b is intuitive in that we

could reasonably expect to see a greater propensity for over-contributions relative to the “Fair Share” strategy

in participants with higher Openness scores. However, trait Openness also pertains to intellect, associated

with general intelligence and/or an ability to solve complex problems. Therefore, it is also reasonable that the

highest Openness scores are predictive of participants who play the game closer to a Pareto efficient strategy

(i.e., they’re still engaging in pro-social behavior, just in an efficient manner). The Big Five Aspect Scale

(BFAS) inventory, created by DeYoung et al. (2007), measures these two distinct but correlated aspects of

Openness and could be used here to help confirm this notion.
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Figure 3.4: BART “Fair Share” PDPs (point deviations vs. deciles)
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Figure 3.4c shows that the game’s turn predicts large over-contributions relative to the “Fair Share” strat-

egy for the first turn and less pronounced but still consistent over-contributions for the remainder of the game.

The literature has shown that pro-social behavior tends to decline as cooperative dilemmas progress, so the

PDP could partly be reflecting this dynamic (Dong et al., 2016). However, much of the rationale for this

decline in social behavior is the result of defectors causing others to become uncooperative. In our game,

some form of cooperative behavior is always exhibited by the computers, so unless participants feel disen-

franchised when the algorithms contribute zero points to a community shield that is already able to withstand

the impending disaster, there is likely some other motivation behind this behavior. This notion is corrobo-

rated by the fact that the PDP is still positive throughout the duration of the game (i.e., participants are still

over-contributing in later turns, just to a lesser degree). More likely, participants either do not fully compre-

hend game at first and contribute much more than what is necessary, or they are knowingly sacrificing their

own resources to ensure the rest of the community is protected. The pregame tutorial helps mitigate the risk

that participants do not understand the game, albeit to an imperfect degree, and optional, post-game feedback

indicates that most of the participants understood the game. However, in future studies, we plan to include an-

other post-game question that asks participants to summarize their general decision-making approach, which

would help uncover the characteristics depicted in this PDP.

The marginal effects of Extraversion and Neuroticism, Figure 3.4d and Figure 3.4f respectively, are fairly

straightforward. Both increase in fairly linear fashions as their respective scores increase. Extraversion is

largely related to engagement with others and has been found to be a positive predictor of cooperation in social

dilemmas, so the results in Figure 3.4d are intuitive (Hirsh and Peterson, 2009; Lönnqvist et al., 2011; Ben-

Ner and Kramer, 2011). Higher Neuroticism scores characterize participants who exhibit a greater degree

of emotional instability or anxiety, especially when confronted with stressful situations (Kline et al., 2019).

Therefore, it is also reasonable that higher Neuroticism scores are associated with a propensity to contribute

more resources to ensure the disaster causes as little damage as possible.

The PDP for the potential savings of the participant, Figure 3.4e, predicts contributions that are closer

to the “Fair Share” strategy at higher deciles, while that of the potential savings of the group, Figure 3.4m,

reflects little to no effect and greater uncertainty. These trends are reversed in PDPs corresponding to the

“Equal Share” model. In other words, the model that focuses on predicting the more individual-based strategy

is affected more by an individual-based predictor for savings, and vice-versa for the more communal-based

strategy.

Figures 3.4g and 3.4l show that higher values for other community members’ resources predict larger,

positive deviations from the “Fair Share” strategy. This dynamic stems from the fact that the other community

members (i.e., the computer players) contribute fewer resources to reach the given Pareto efficient strategy
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when participants are over-contributing to a large degree and preemptively building up the shield.

The PDP for Agreeableness, Figure 3.4h, is counter-intuitive to expectations, with contributions trending

lower and closer toward the Pareto efficient strategy at higher deciles. It should be noted that Agreeableness

also has a negative effect in the MLRs (Table 2), and the PDPs corresponding to BART models that predict

raw contributions follow similar trends as those depicted here (i.e., higher agreeableness predicts fewer con-

tributions in general). Agreeableness is characterized as an orientation to the needs of others and is thought

to be the predominant trait that underlies pro-social motivations (Zhao and Smillie, 2015). In fact, economic

studies find it to be the trait most predictive of pro-social behaviors in cooperative dilemmas (Kline et al.,

2019; Zhao and Smillie, 2015; Kagel and McGee, 2014; Pothos et al., 2011; Hilbig et al., 2013; Koole et al.,

2001; Volk et al., 2011, 2012). Therefore, one would assume that higher Agreeableness scores, controlling

for the effects of other variables, would predict increases in contribution amounts in our game. However, to

the best of our knowledge, no other study that uses Big Five traits as predictors for economic dilemmas frame

their game in a threat-avoidance setting. This distinction could be crucial here because the biological basis

for Agreeableness can be mapped to the CARE circuit in humans, a primary emotional system identified by

Jaak Panksepp that is aroused when animals feel the need to nurture or protect their familial unit (Montag and

Panksepp, 2017; Montag and Davis, 2018; Marengo et al., 2021). Perhaps, then, the higher Agreeableness

scores are predicting a heightened sense of urgency among participants to not squander resources when faced

with the threat of an impending disaster in order to help ensure the survival of their familial unit (i.e., mamma

bear is being protective of her cubs when threatened). This hypothesis is somewhat substantiated by the fact

that Anderson (2010) found Agreeableness to be the only Big Five trait that predicts changes in preferences

between Prospect Theory’s loss and gain framing. However, more research needs to be done to properly

investigate the role this trait has on predicting decisions in this type of CPR setting.

The PDPs for the community’s starting shield, Figure 3.4i, and that of a participant’s pre-game contribu-

tions, Figure 3.4j, have similar characteristics and underlying dynamics. Initial contributions in repeat social

dilemmas often reflect the degree of cooperation exhibited by participants throughout the remainder of the

game (Wunder et al., 2013; Nay and Vorobeychik, 2016). As such, higher pre-game contributions and starting

shield values reflect a general propensity for participants to contribute more to the shield relative to the given

Pareto efficient strategy.

The PDP for Conscientiousness, Figure 3.4k, is fairly intuitive. Conscientiousness reflects an attention to

detail or ability to follow instructions (Kline et al., 2019; Zhao and Smillie, 2015). Thus, participants with

higher scores for Conscientiousness are more likely to pay attention to the details of the game’s dynamics

and in turn make a Pareto efficient decision.

Lastly, the PDP for expected damage to the participant, Figure 3.4n slopes slightly upward at higher
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deciles, likely as a consequence of participants over-contributing to a greater extent when they feel more

acutely threatened by the disaster. The opposite trend appears in the PDP for the expected damage to the

group, Figure 3.4o, likely as a result of participants’ general tendencies to over-contribute being magnified

when overall damage is small. Unlike the PDPs for individual and group savings, these two remain the same

across BART models.

3.4 Discussion

The BART models are able to predict participant deviations from the “Pareto Efficient: Fair Share” and

“Pareto Efficient: Equal Share” strategies in our game much more effectively than the MLR counterparts.

This fact is unsurprising as BART models belong to a class of powerful, non-parametric machine learning

methods (tree-ensembles) that are better equipped to model complex and nonlinear relationships between

variables than parametric regression (Chipman et al., 2010; Kapelner and Bleich, 2016). Additionally, these

non-parametric procedures, often thought to be “black-boxes,” become much more interpretable when com-

bined with PDPs.

The PDPs are able to depict the marginal effect variables have on responses while properly controlling for

other factors and without a-priori assuming the type of relationship that exists between inputs and responses.

As illustrated in Figure 3.4b, the PDP for trait Openness depicts a nonlinear relationship and reveals that

differentiating this trait into its two distinct but correlated aspects (i.e., intellect and openness proper) may be

warranted in this setting (DeYoung et al., 2007). This finding could easily be overlooked in a typical linear

regression analysis. As such, it might be prudent to utilize more advanced statistical learning techniques to

reexamine assumptions of linearity in previous studies attempting to relate individuals’ differences in attitudes

and dispositions to decision-making in cooperative dilemmas.

Responses in our community resilience CPR game show that participants tend to over-contribute rela-

tive to the two aforementioned Pareto efficient strategies, and this finding may have ties to decision theory.

Generally, individuals are risk-averse with respect to gains, and risk-aversion has been found to negatively

correlate with contributions in traditional PGGs, which are framed in terms of gaining value via collective

efforts (Levati et al., 2009; Teyssier, 2012; Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).

Perhaps, the opposite occurs in cooperative dilemmas such as ours where the collective effort is framed in

terms of avoiding detrimental outcomes. Related, our game also conveys to participants that they can effec-

tively mitigate the consequences of the simulated disasters, so Protection Motivation Theory suggests that

decision-makers will be more inclined to try to do so (Maddux and Rogers, 1983). More research is needed

to test these ideas and similarly aid in recent efforts to unite aspects of psychometrics with formal decision

theory (Bortoli et al., 2019; Boyce et al., 2016; Rustichini et al., 2016; Schröder and Gilboa Freedman, 2020).
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Related, to help develop a better empirical understanding of how decision-makers respond in CPR set-

tings where contributions are framed in terms of investments that bolster community resilience, we plan to

systematically vary and study the effects of several game-level treatments in our study, including but not lim-

ited to the following factors: community size, multiplication factor, game length, and distribution of starting

resources. Additionally, we plan to examine the effects of varying computer algorithms and/or comparing re-

sponses to different strategies. These strategies do not necessarily have to result in Pareto efficient outcomes

either; they could be informed by participants goals stated before the game and/or even inferred by their Big

Five profile. A cooperative dilemma can be thought of as a problem of individuals attempting to communicate

different utility functions to one another. As such, by comparing responses to predefined strategies, we can

assess how “well” participants played the game based on different criteria and/or identify which factors may

contribute to deviations from their specified goals.

3.5 Conclusion

Community resilience plays a significant role in mitigating the risks associated with natural disasters. Public

infrastructure that increases community resilience can often be conceptualized as a public good or common-

pool resource. However, despite a growing body of game-theoretic research pertaining to disaster resilience,

most studies in this context rely on simplifying behavioral assumptions and/or lack empirical justification for

their employed decision models. Here, we design a web-based CPR game to examine patterns in participants’

decisions to invest in public infrastructure that helps protect their communities from various disaster scenarios

and use statistical learning techniques to construct empirically-based decision models from their responses.

In particular, we use BART models and MLRs to predict participant deviations from two different Pareto

efficient strategies that constitute everyday notions of pro-social behavior. Participants’ Big Five traits and

in-game circumstances serve as input variables. We find that the BART models are able to accurately predict

deviations from these strategies and perform much better than their MLR counterparts. Additionally, we find

that trait Openness is a significant predictor across all models. However, PDPs derived from the BART models

reveal that the relationship between Openness and participants’ decisions is nonlinear. This finding suggests

further differentiating this trait into its two distinct but correlated aspects (i.e., intellect and openness proper)

may be warranted in this application and that in general, it might be prudent to utilize more advanced statis-

tical learning approaches to reexamine assumptions of linearity in other studies that have related individuals’

differences in temperaments to responses in cooperative dilemmas.
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3.6 Supplementary Materials

All data and source code required to reproduce this analysis can be found on Open Science Framework:

https://osf.io/6qruj/?view only=bb30fb4f582d4a69baafc1ad242877e5
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CHAPTER 4

An agent-based model for simulating economic disruptions due to floods along the inland waterways:

A case study on the Port of Cates Landing

The U.S. inland waterways play a vital role in the domestic economy, but extreme weather events, especially

floods, threaten to disrupt their operations. Here, we develop an agent-based model to simulate how busi-

nesses along the Upper Mississippi River may reasonably reroute shipments in response to empirically-based

flood scenarios and calculate the subsequent economic impacts of such decisions using a multiregional in-

operablility input-output model. We calibrate our simulation using approximate Bayesian computation with

sequential Monte Carlo sampling, which in turn allows us highlight scenarios where a flood-resilient port,

the Port of Cates Landing, is able to handle some of the rerouted shipments. We find that Illinois, Louisiana,

Minnesota, and Missouri are the states that suffer the most production losses from waterway disruptions along

the Upper Mississippi River and that agriculture and chemical manufacturing are the most impacted sectors.

However, the Port of Cates landing is able to mitigate production losses, and its development costs, $53M,

are equivalent to the amount of savings realized during a “30-year” flood.

4.1 Introduction

The U.S. inland waterway system is an extensive collection of navigable channels, ports, and locks and dams

that are crucial for maintaining the success of the domestic economy (MacKenzie et al., 2012; Camp et al.,

2013). Every year, more than $100 billion (2.2. billion tons) of commodities are transported along the inland

waterways, which amounts to roughly 15% of total U.S. freight (Folga et al., 2009). These shipments have

exemplary safety records, low carbon emissions, and low costs compared to other modes of transport (Philip

and Johnson, 2018; Schweighofer, 2014). Perhaps most important though, ports along the inland waterways

serve as vital hubs connecting a broader, multimodal network of barge, rail, and truck transport (MacKenzie

et al., 2012).

Extreme weather events, especially floods, are among the primary risks that threaten to disrupt operations

along the inland waterway system (Pregnolato et al., 2017). Extensive disruptions from such events can be

devastating to the economic wellbeing of the affected region and nation (Folga et al., 2009). For example,

in 2019, sections of the Upper Mississippi River (UMR) were closed for more than a month due to major

flooding, which resulted in approximately $1.2 billion of grain not being shipped (Fahie, 2019).

However, despite these known risks, researchers have devoted little attention to analyzing the effects of

disruptions along the inland waterways, especially when compared to the amount of related work done on
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other modes of transport (Folga et al., 2009; MacKenzie et al., 2012). Among the few who have are Folga

et al. (2009), who prescribed a systems-level approach to analyzing inland waterway disruptions where in-

frastructure capabilities, rerouting decisions, and economic impacts are all considered. In turn, MacKenzie

et al. (2012) constructed an agent-based model (ABM) to investigate rerouting decisions of various industries

in response to extended closures of the Port of Catoosa and linked their simulation to a multiregional eco-

nomic model in order to quantify the impacts of these decisions. Similarly, Darayi et al. (2019) integrated

commodity network flows with an economic interdependency model to analyze vulnerabilities to disruptions

in Oklahoma’s multimodal transportation network, which includes the inland waterways.

When a disruption occurs, freight scheduled to ship through an inland waterway port may be rerouted.

In the case of a localized disruption (i.e., a single port is closed), shipments could theoretically be redirected

through another nearby port if circumstances permit (MacKenzie et al., 2012). However, if the disruption is

more widespread and an entire section of a river is closed, as is often the case with extreme weather events,

alternative waterway routes are generally limited (Folga et al., 2009). As such, affected businesses may elect

to seek out different modes of transport, namely truck or rail, or decide to leave their product on a barge or at

port for the duration of the disruption (MacKenzie et al., 2012). These rerouting decisions are case-specific

with regards to the costs, preferences, and constraints of each business making them, but they also have

far-reaching consequences for the rest of the economy (MacKenzie et al., 2012).

Even though businesses may not consider the downstream impacts of their decisions of whether or not

to reroute shipments, the macroeconomic inoperability input-output model (IIM) can evaluate how demand-

side perturbations in given industry sectors ripple through the rest of an economy (Santos and Haimes, 2004;

Haimes et al., 2005; Santos, 2006; MacKenzie et al., 2012). The IIM is a risk-based extension to the input-

output (I-O) model, which is an established approach for estimating interdependencies between difference

sectors of an economy (Leontief, 1936). Furthermore, the IIM can be extended via the multiregional inopera-

blility input-output model (MRIIM) to better capture differences in impacts among geographical sub-regions

of an economy (Crowther and Haimes, 2009). Darayi et al. (2019) utilized the IIM to calculate economic

impacts of disruptions along Oklahoma’s multimodal transportation network, and MacKenzie et al. (2012)

used a dynamic extension of the MRIIM in their ABM when estimating impacts of extended closures to the

Port of Catoosa.

However, to the best of our knowledge, no systems-level risk assessment of inland waterway disruptions

includes empirically grounded assumptions for the likelihood of disruptions occurring. Understanding the

likelihood of events is a critical component in characterizing the risks of those events (Woodruff, 2005; Aven,

2016). Here, we extend existing approaches to analyzing disruption risks along the inland waterways by

including a data-driven framework for modeling the likelihood of river closures occurring due to floods.
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In particular, we build off the ABM developed by MacKenzie et al. (2012) that models how businesses

may reasonably reroute shipments in response to port closures along the inland waterways and calculates

the subsequent economic impacts of these decisions. By extending MacKenzie et al. (2012)’s model to

factor in the likelihood of various flood scenarios, we can better quantify the economic risks associated with

disruptions from floods.

Additionally, there is currently no guidance on how to parameterize existing waterway disruption models

with data from extreme weather events. In general, calibrating models pertaining to disaster management is

difficult because observational data is lacking for extreme weather events (Mahmassani, 1990; He and Liu,

2012; Jackson et al., 2016). Furthermore, typical statistical procedures for estimating model parameters, such

as maximum likelihood estimation and general Bayesian inference, are often incompatible with simulations

featuring complex and non-linear systems (Thiele et al., 2014; Fasiolo et al., 2016). Here, we show how

to parametrize our ABM with inland waterway commodity flow data using a technique called approximate

Bayesian computation with sequential Monte Carlo (ABC SMC). This analysis serves an example from which

other researchers can draw insights regarding how to parameterize transportation disruption models.

We demonstrate our approaches with a case study along the UMR. The UMR is a key segment of the

U.S. inland waterways, and every year more than 85 different commodities totalling 119 million tons are

transported through this section of the Mississippi River (Fahie, 2019). However, the UMR region is also

prone to flooding, recently exemplified by the historic floods in 2019 where water levels breached the “100-

year” floodplains along several sections of the river (Associated Press, 2019; Gasparini and Yuill, 2020).

Although we focus on the UMR in our analysis, our approach can be readily applied to other segments of the

inland waterways.

With the empirically-based and calibrated model, we can reliably simulate regional production losses

resulting from various flood disruption scenarios along the UMR. Moreover, we can analyze cases where

the Port of Cates Landing, a public port located whose operations lie above the “500-year” flood plain near

the mouth of the UMR, can handle some of the rerouted shipments and mitigate production losses for the

region (Swaggart, 2021). This type of analysis serves as an example for how policy-makers can better as-

sess when/where the development of public waterborne infrastructure may be warranted from an economic

resilience standpoint.

4.2 Methods

Our methodology consists of three main tasks. First, we construct empirical distributions of the expected port

closures along the UMR due to “XX-year” flood events; here, “XX-year” refers to the return period a flood

(e.g., a “100-year” flood, or a flood expected to occur once every 100 years). These distributions are based on
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historical river gauge data and high-water operating procedures outlined in the Waterways Action Plan (WAP)

(USCG, 2020; USACE, 2021). Second, we develop an ABM that simulates business’ rerouting decisions in

response to the flood scenarios and calculates the subsequent economic impacts of these decisions. Third, we

calibrate model parameters with commodity flow data using a statistical technique called ABC SMC.

4.2.1 Flood Scenarios

In this section, we discuss how we model the expected port closures along the UMR per flood event return

period. This task involves fitting Gumbel distributions to historical river gauge counts that exceed high-water

operating thresholds as outlined in the WAP. We then combine these gauge-level forecasts into segment-level

flood scenarios for the UMR.

The USACE (2021) maintains a database of readings from river gauges all across the U.S. Part of this data

includes historical river stage levels for 25 gauges along the UMR, shown in Figure 4.1. For most of these

gauges, daily stage level data are available dating back to 2014. As such, we use all available records from

January 1, 2014 to December 31, 2020 in our analysis. It should be noted that this time frame is somewhat

limited, especially when considering low-probability, high-consequence events, so we try our best to mention

any related limitations of our analysis when appropriate throughout this paper.

There are several data processing steps required for our analysis. First, the ten northernmost gauges have

a number of missing values and/or changes in the way stage level is measured during the first two years

(see, Supplementary Materials). As such, we remove these records from our dataset and impute plausible

replacement values via Multivariate Imputation by Chained Equations, using the mice package in R. These

northernmost gauges rarely exceed flood thresholds (e.g., they were still well below closure levels during the

2019 floods), so the imputed values have little effect on the overall flood scenarios (USCG, 2020). Addition-

ally, there are intermittent, missing daily entries throughout the rest of the records (< 1% of the remaining

data). Since the daily river gauge data exhibit a high degree of temporal autocorrelation, we use time series

interpolation to fill in these missing values.

The WAP delineates stage levels at which sections of the UMR should be closed due to high-water con-

ditions (USCG, 2020). The WAP is a living document maintained by private stakeholders, the U.S. Coast

Guard (USCG), and the U.S. Army Core of Engineers (USACE) that comprehensively describes inland wa-

terway operating procedures in response to adverse weather conditions and is a key reason why the inland

waterways have such an impeccable safety record (Philip and Johnson, 2018). Thus, using the historical river

gauge data in conjunction with WAP operating procedures, we tabulate the number of days per year that each

river gauge exceeds its corresponding high-water threshold. In other words, we create a dataset consisting of

25 rows (river gauges) and seven columns (years 2014 to 2020) of the number of days each gauge exceeded
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Figure 4.1: UMR Inland Waterway System

its flood threshold as defined by WAP protocols.

We then fit Gumbel distributions to each gauge in the dataset to forecast the return periods (measured

in years) of the expected number of closures due to flood conditions. The Gumbel distribution is a special

case of the generalized extreme value distribution, which models the asymptotic behavior of extreme values

expressed as a Poisson process over a given number of samples (Gilleland and Katz, 2016). Researchers often

use the Gumbel distribution to analyze flood data and in particular to model the return period of high-water

levels (Bhagat, 2017; Solomon et al., 2013; Onen and Bagatur, 2017). The Gumbel distribution’s density
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function is given below in Equation 4.1

G(z) = exp
[
−exp

{
−
(

z−u
σ

)}]
,−∞ < z < ∞ (4.1)

Quantiles of this density function are of particular interest because they can be interpreted as return

periods (Gilleland and Katz, 2016). In other words, we can expect a value corresponding to the qth quantile

to be exceeded every 1/(1− q) periods (e.g., the 95% quantile will be exceeded every 1/(1− 0.95) = 20

periods). Thus, by fitting Gumbel distributions to number of days river gauges exceed high-water thresholds

per year, we are able to generate forecasts for the expected number of days sections of the river are closed

due to a “XX-year” flood event.

Note, flood return periods are typically described in terms of maximum flood levels. However, maxi-

mum water levels and counts of days exceeding high-water thresholds are highly correlated and can both be

characterized as Poisson processes (Gilleland and Katz, 2016). As such, from a conceptual standpoint, we

do not see describing return periods in terms of counts of flood closures, instead of return levels, as a major

issue. Additionally, from a practical standpoint, we validate our forecasts against river closures resulting from

a “100-year” flood and found that other distributions commonly used to fit extreme value data, namely the

Log-Normal, Weibull, and General Pareto distributions, did not perform as well as the Gumbel distribution

and/or had a harder time estimating model parameters. Onen and Bagatur (2017) also noted that Gumbel

distributions tend to be more effective than other extreme value distributions when dealing with fairly small

sample sizes, which we have in our case with only seven annual data points per gauge.

Next, we combine each gauge’s distribution into two river segment forecasts, as shown in Figure 4.1 and

Table 4.1. The first forecast consists of average predictions from river gauges that span the upper portion of

the UMR (i.e., Hastings Lock and Dam to Saverton Lock and Dam). The second forecast consists of average

predictions from gauges of the lower portion of the UMR (i.e., Melvin Price Lock and Dam to Cairo Point).

Table 4.1 shows predictions for the expected number of days each segment of the UMR is closed due to

“10-year”, “20-year”, “50-year”, “100-year”, and “500-year” floods.

Table 4.1: UMR Expected Days Closed per Flood Return Period

10yr 20yr 50yr 100yr 500yr

upper-UMR 12.1 15.4 19.7 22.9 30.3
lower-UMR 23.6 30.0 38.3 44.6 59.1

We aggregated predictions from each river gauge into these two segment-level forecasts for several rea-

sons. First, averaging predictions helps diminish the effects from noise in individual gauge forecasts, which

is more of an issue when we only have seven data points (years) from which to fit distributions. Second,
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data from gauges within each of these segments exhibit similar characteristics, likely due to geographical

factors: the upper-UMR does not have any major tributaries, whereas both the Illinois River and Missouri

River flow into the lower-UMR, thereby compounding impacts from floods (see, Figure 4.1). As such, this

natural geographical distinction serves as an intuitive divide in the UMR. Lastly, segment-level forecasts tie

much more closely to the logic embedded in our ABM (discussed later).

We use documented river closures during the UMR floods of 2019, which breached “100-year” flood

plains along several parts of the UMR, as reference points to validate our forecasts. During the 2019 UMR

floods, several sections of the upper-UMR were closed for eighteen days, and the St. Louis Harbour, the

major port along the lower-UMR, was closed for 51 days (Fahie, 2019). These data points are close to

corresponding predictions in Table 4.1, confirming that our forecasted river closures for a “100-year” flood

scenario are reasonable. As more river gauge data become available in the future, these forecasts will improve,

and ideally, we’ll also be able to validate different return periods. Additionally, we found that business

decisions and resulting economic impacts in our ABM are insensitive to small deviations in the number of

days each segment of the river is closed for floods whose return periods exceed five years (see, Supplementary

Materials).

4.2.2 Agent-based Model

Our ABM features a decision model where various companies determine how to reroute their shipments in

response to disruptions from flooding along the inland waterways. The span of the disruption is based on the

return periods of the previously described flood scenarios. Company decisions are then linked to a MRIIM

to determine overall economic impacts for the region. Our simulation methodology is largely based on the

work done by MacKenzie et al. (2012). Below, we use ODD + D protocol, an extension to the standard ODD

protocol, to describe our ABM (Grimm et al., 2006; Müller et al., 2013).

4.2.2.1 Overview

Purpose

The purpose of the simulation is to better understand how inland waterway disruptions due to flooding along

the UMR affect the regional economy. Once calibrated, the model is also used to highlight cases in which the

Port of Cates Landing, a public port whose operations lie above the “500-year” flood plain, can handle some

of the rerouted shipments and help mitigate production losses. Our model is primarily designed for academic

researchers interested in analyzing risks of disruptions along the inland waterways, but policy-makers may

also find utility in its applications and insights.
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Entities, state variables and scales

The simulation consists of two entity types. The first is a flood, which has two attributes: affected river

segment (i.e., upper-UMR or lower-UMR, as depicted in Figure 4.1) and return period, as described in the

previous section. From these two attributes, we forecast the number of days each segment of the river is

expected to be closed. The second type of entity is a company/business that had planned to ship its product

through the UMR (MacKenzie et al., 2012). Each company is characterized by its state of operation, industry

sector, and shipment destination. The featured region includes the twelve states that have significant amounts

of inbound/outbound shipments through the UMR, as revealed by USACE’s Waterborne Commerce Statistics

Center (WCSC) (USACE, 2017). These states are Minnesota, Wisconsin, Iowa, Missouri, Illinois, Indiana,

Ohio, Kentucky, Tennessee, Arkansas, Mississippi, and Louisiana (dark green in Figure 4.1). Industry sec-

tor is defined by the 2017 North American Industry Classification System (NAICS), which consists of 71

different industry codes (US BEA, 2017).

Similar to MacKenzie et al. (2012), we assume there is one-to-one correspondence between a given

company and the unique combination of a state’s industrial sector and its shipment destination (i.e., 12 ori-

gin states × 71 NAICS sectors × 12 destination states = 10,224 possible company agents). However, as

MacKenzie et al. (2012) also noted in their case, most of these companies do not have commodity flows

associated with them; inland waterway transports predominantly consist of a few types of products/sectors,

some of the main ones being agriculture, coal, petroleum, chemicals, and mining. As such, only 88 of the

company agents in our simulation have non-zero commodity flows, and thus, these 88 companies comprise

the set of active agents in our simulation (see, Supplementary Materials for details). MacKenzie et al. (2012)

found that increasing the number of companies per origin-sector-destination combination did not affect out-

comes because the rerouting logic is applied in the same manner across companies. Furthermore, we only

have state-level commodity flow data available, so constructing more granular company agents is not possible

without making tenuous assumptions.

Spatial aspects of the simulation are modeled explicitly via the location of the flood disruptions (i.e.,

affected river segments) and by companies’ shipping routes. Flood disruptions occur along the upper-UMR

and lower-UMR as shown in Figure 4.1 and Table 4.1. The spatial elements associated with shipping routes

is explained in more detail in the following paragraphs.

Process overview and scheduling

Each simulation run is modeled as one year. Prior to each run, the model user specifies a list of flood return

periods he or she wishes to analyze. The simulation then determines the expected number of days each

segment of the UMR is expected to be closed based on the flood return period(s). Then, for each day the river
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is closed, the companies decide whether or not to reroute their product via an alternative shipping method or

leave their product at port based on several factors, discussed in detail in the following paragraphs. In turn, a

MRIIM calculates the cascading economic impacts of the companies’ decisions.

4.2.2.2 Design Concepts

Theoretical and empirical background

Our model is fundamentally based on the ABM developed by MacKenzie et al. (2012) that simulates how

businesses may reasonably reroute shipments in response to port closures along the inland waterways and

calculates the subsequent economic impacts of such decisions. Companies shipping products have two main

objectives: minimize total shipping costs and satisfy on-time shipping requirements (MacKenzie et al., 2012).

As such, their decisions in response to disruptions are determined by balancing a trade-off between the cost of

shipping products via alternative routes for an on-time delivery (Calt ) versus the cost of keeping their product

at port and failing to meet delivery requirements (Cport ). If Calt < Cport , the company will ship its products

via an alternative method.

In the baseline version of our simulation, similar to MacKenzie et al. (2012), we assume that the only

alternative shipping method considered by the companies is rail. Rail is cheaper than truck, and the UMR

has no alternative inland waterway routes (MacKenzie et al., 2012). However, once we calibrate the baseline

version of the model, we develop a second version of the model where a “500-year” flood resilient port, the

Port of Cates Landing, is able to handle some of the rerouted shipments. Because the port operates above

a “500-year” flood plain near the mouth of the UMR (start of the Lower Mississippi River, Figure 4.1), we

reasonably assume that shipments originating along the UMR and traveling southward below the port will be

able to reroute via rail past the flooded UMR to the port where they can make the rest of the journey along

the waterways. Historical river gauge data and WAP protocols reveal that the Lower Mississippi River has a

much lower risk of being closed due to high-water conditions than the UMR (USCG, 2020; USACE, 2021).

Companies’ routing decisions are propagated through a MRIIM, so we can estimate the impact these

decisions have on regional economic production. If companies ship their product via an alternative route

when a disruption occurs, we assume their product reaches customers in a timely manner (i.e., demand

from intermediate industries is satisfied) (MacKenzie et al., 2012). However, if companies decide to keep

their product at port until the UMR opens, this delay leads to other, interdependent industries experiencing

disruptions in production (MacKenzie et al., 2012). We measure these disruptions with the MRIIM.

The MRIIM framework is based on Leontief’s input-output (I-O) model that describes the interdependent

nature of sectors of an economy (Leontief, 1936). The inoperability input-ouput model (IIM) conceptualizes

the I-O framework in terms of degraded production levels relative to baseline conditions and can be used to
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estimate how demand-side perturbations in given sectors affect the rest of an economy (Santos and Haimes,

2004; Haimes et al., 2005; Santos, 2006). The MRIIM, or multi-regional IIM, extends the IIM to calibrate

impacts to multiple, often more granular locales and is specified by Equation 4.2 (Santos and Haimes, 2004;

Crowther and Haimes, 2009):



q̃1

q̃2

...

q̃p


= T∗



A∗1 0 . . . 0

0 A∗2 . . . 0
...

...
. . .

...

0 0 . . . A∗p





q̃1

q̃2

...

q̃p


+T∗



c̃∗1

c̃∗2

...

c̃∗p


(4.2)

where

q̃r = an inoperability vector of length n consisting of the difference between normal production levels

and disrupted production levels, expressed as a percentage of normal production levels, of the nth

industry sector in region r of p total regions;

T∗ = [diag(x̃1, x̃2, . . . , x̃p)]-1T[diag(x̃1, x̃2, . . . , x̃p)];

x̃r = a vector of length n consisting of industry sector production in region r;

T =



T11 T12 . . . T1p

T21 T22 . . . T2p

...
...

. . .
...

Tp1 Tp2 . . . Tpp


;

Trs = an n×n trade interdependency matrix consisting of the proportion of a commodity consumed in

region s that is produced in region r;

A∗r = the inoperability matrix for region r, [diag(x̃r)]-1Ar[diag(x̃r)];

Ar = an n×n industry interdependency matrix of region r composed of elements ar
i j;

ar
i j =


lr
i ai j , lr

i < 1

ai j , lr
i ≥ 1

;

ai j = the input of industry sector i to j, expressed as a proportion of the total production inputs to

industry sector j;

lr
i = the location quotient, xr

i /xr

xi/x ;

xr
i = industry sector i’s production in region r;

xr = total economic production in region r;
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xi = industry sector i’s production across the nation;

x = total national economic production;

c̃∗r = a demand-side perturbation vector of length n consisting of the difference between normal demand

and disrupted demand, expressed as a percentage of normal production levels, of the nth industry

sector in region r of p total regions

In our simulation, there are 71 NAICS sectors (i.e., n = 71). Additionally, the aforementioned twelve

states that have significant amounts of inbound/outbound shipments through the UMR comprise the twelve

regions (i.e., p = 12 states, and r represents a given state). Company shipments that do not reach their desti-

nation in a timely manner are modeled as perturbations in demand (Horowitz and Planting, 2009; MacKenzie

et al., 2012). In other words, if companies in state r decide to keep their products at port, the value of these

products, expressed as a proportion of that state-sector’s normal shipments, forms the corresponding entry in

c̃∗r. Given c̃∗r for all twelve states, we then solve for~q (vector of length n× p) in Equation 4.2 to estimate

the disruptions to each industry sector in each state.

Individual decision-making

Decision-making is modelled at the company level. As mentioned, when faced with a disruption, businesses

that ship their products along the UMR must make a trade-off between paying extra transportation costs to

ship via alternative methods for an on-time delivery (Calt ) or keeping their product at port and failing to meet

delivery requirements (Cport ).

Calt includes the base cost of companies shipping via an alternative method multiplied by a discount

rate (1−β ), representing a company’s desire to make an on-time delivery, and is specified by Equation 4.3

(MacKenzie et al., 2012). For equivalent distances and weights, the base cost of shipping via waterways

is less than that of rail, approximately 0.97 cents per ton-mile versus 2.53 cents per ton-mile respectively

(MacKenzie et al., 2012; AOPOA, 2010). In the baseline version of the model, companies only consider rail

as an alternative shipping method, so the ton-miles of waterway shipments would be zero in Equation 4.3.

Similar to MacKenzie et al. (2012), we assume there are no capacity or availability constraints on the rail

shipments.

Calt = (RailTonMilesdaily×2.53+WaterTonMilesdaily×0.97)× (1−β ) (4.3)

However, in the second version of the model, we assume that some of the shipments originating along

the UMR and traveling southward would be able to reroute via rail past the flooded river to the Port of Cates

Landing, where they would then be transported via the waterways to their final destination. As such, in this

version of the simulation, Equation 4.3 may include both rail and water transportation costs. We assume the
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Port of Cates Landing has a throughput capacity of 1.6 million tons per year, approximately 4,384 tons per

day, based on economic reports and industry insights (Arik and Penn, 2009). The port’s capacity is allocated

in proportion to demand for using the port (i.e., if a company finds the cost of rerouting their shipments

through Cates Landing to be less than that of using rail exclusively or keeping their products at port, that

company will have demand for using the port). Once the throughput capacity is reached, any additional

shipments will have to be transported via rail exclusively or remain at their original port.

Cport is calculated as a penalty cost, representing a late delivery fee imposed by the customer and/or

the perishability of a product, plus the base cost of shipping products via the inland waterways, as seen in

Equation 4.4 (MacKenzie et al., 2012). In our simulation, the penalty cost is modeled as a percentage (α) of

the daily value of the products at port scaled linearly by the number of days the product will remain at port

(i.e., the length of the river closure) (MacKenzie et al., 2012).

Cport = (Valuedaily×α×Daysclosed)+(WaterTonMilesdaily×0.97) (4.4)

As mentioned, the number of days each segment of the UMR is closed is determined by the return period

of the forecasted flood event. Any waterway shipment that would pass through closed segments of the UMR

will be delayed for the maximum closure length of the segments it must traverse. For example, a “10-year

flood” is expected to result in approximately twelve days of flood closures for the upper-UMR and 24 days

for the lower-UMR (see, Table 4.1). As such, any waterway shipments from Minnesota to Iowa or Wisconsin

would be blocked for twelve days, but any shipments from Minnesota to Illinois, Missouri, Louisiana, etc.

would be blocked for 24 days.

Route distances are estimated as the geographical distances between centroids of origin and destination

states; we use the centroid of states to approximate distances because we do not have port-level commodity

flow data. However, when the Port of Cates Landing is used to reroute shipments in the second version of the

model, this route distance is calculated as the geographical distance from the centroid of the origin state to

the Port of Cates Landing to the centroid of the destination state. Metrics for daily ton-mile commodity flows

are based on the 2017 state-level shipments from the Waterborne Commerce Statistics (USACE, 2017).

Our analysis implies that disruptions occur during the late spring, as that is often when flooding along

the UMR occurs. However, we uniformly parse the annualized commodity flows into daily flows in our

simulation because we do not have temporally detailed data to model differences in seasonal shipments.

Similarly, we do not place any constraints on the availability barge transport (i.e., waterway shipments can

be transported as long as the river is not closed and do not have to wait for available barges). Both of these

assumptions can be expanded upon in the future should more detailed spatio-temporal waterborne commodity

data become available.
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Learning

The decision rules explained above remain constant across the duration of the simulation (i.e., companies do

not learn and/or change their behavior based on the decisions of others).

Individual sensing

Companies are assumed to have perfect knowledge of the number of days the river segments will remain

closed and of the remaining capacity of the Port of Cates Landing. These assumptions are simplifying ones

that allow us demonstrate our overall methodological framework. However, in future works, we plan to im-

plement a more sophisticated and ideally empirically grounded behavioral models that capture uncertainties

of river closure forecasts and how these uncertainties may affect company responses.

Individual prediction

Companies are assumed to have perfect knowledge of the factors that influence their decisions, so there is no

prediction involved with their decisions.

Interaction

Companies interact only indirectly with one another. The routing decisions companies make in response to

the disruptions propagate through the regional economy, as determined by a MRIIM, which indirectly affect

each other’s losses in economic production. Additionally, in the second version of the simulation, companies

indirectly compete for the availability of the Port of Cates Landing.

Collectives

Companies do not belong to or form any collectives in this simulation.

Heterogeneity

Companies are heterogeneous with respect to their individual attributes (i.e., location, sector, destination) but

are homogeneous with respect to how they make decisions.

Stochasticity

We use ABC SMC to obtain a posterior distribution for α and β (discussed later). This distribution serves as

a stochastic input to our simulation.
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Observation

Company-level data collected from our ABM include companies’ routing decisions and the corresponding

weights, values, and costs of their shipments. We use company-level metrics to make sure our model is

operating as expected. However, the key outputs we use for calibration, reporting, and inference are the

posterior distributions of the emergent state-level and sector-level production losses.

4.2.2.3 Details

Implementation details

Our model is implemented in R programming language. The annotated source code and accompanying data

files can be found in the Supplementary Materials.

Initialization

The model is initialized by the user specifying a list of flood return period(s) of interest and values for β and

α . We initialize the model with “10-year”, “20-year”, “50-year”, “100-year”, and “500-year” return periods

listed as flood scenarios and an approximated posterior distribution for β and α that is derived from ABC

SMC.

Input data

Data for company shipments are derived from the 2017 state-to-state inland waterway commodity flows in-

cluded in the WCSC (USACE, 2017). Commodity flows in the WCSC data are categorized slightly differently

from those in the NAICS, so we re-categorize the former into the latter.

Data for the MRIIM primarily come from the U.S. Bureau of Economic Analysis (BEA) (US BEA,

2017). The BEA “Make” and “Use” matrices delineate the amounts of different commodities produced

and consumed by various industries respectively and are used to derive the Leontiff coeffecients, ai j, in

Equation 4.2 (Santos and Haimes, 2004). Similarly, BEA data for gross domestic products (GDP) are used to

calculate state-industry production vectors and location quotients. Lastly, the interdependency trade matrix,

T, is based on data from U.S. Census Bureau’s Commodity Flow Surveys (US Census Bureau, 2017; Isard,

1998).

Submodels

The simulation includes three submodels: 1) the flood scenario forecast, 2) the company decision model,

and 3) the MRIIM. We continuously tested all of these submodels for congruence between model logic and

outcomes as we developed the simulation. Additionally, we calibrate the baseline version of the simulation

(i.e., where only rail is used as an alternative shipping method) with commodity flow data from the 2019
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UMR floods via ABC SMC. All model parameters and submodel routines are documented in the annotated

source code provided in the Supplementary Materials.

4.2.3 ABC SMC Model Calibration

We use a statistical technique called approximate Bayesian computation with sequential Monte Carlo (ABC

SMC) to calibrate our baseline simulation and construct posterior estimates of β (the company discount

rate applied to on-time deliveries in Equation 4.3) and α (the company late penalty rate applied to delayed

shipments in Equation 4.4). ABC SMC is a particular case of a broader statistical technique known as

approximate Bayesian computation (ABC) (Tavaré et al., 1997; Pritchard et al., 1999).

Parameterizing ABMs is often difficult because complex simulations are generally incompatible with

traditional Bayesian inference and/or maximum likelihood estimation because their likelihood functions are

often unknown or intractable (Thiele et al., 2014; Fasiolo et al., 2016). As such, the premise of ABC is to

approximate the evaluation of these intractable or unknown likelihood functions by sampling from various

parameter values and comparing corresponding simulation outcomes to observed data; parameter values as-

sociated with model runs that are within a given threshold of the observed data are retained for analysis and

form the approximations of the posterior distributions of those parameters (Thiele et al., 2014; Grazzini et al.,

2017).

ABC SMC aims to achieve efficient sampling of parameter values while simultaneously allowing for

small error thresholds when comparing simulation outcomes to observed data, which leads to more effective

and accurate approximations of posterior distributions (Beaumont, 2019). The particular implementation of

ABC SMC we use is based on sequential importance sampling and can be regarded as a version of population

Monte Carlo (PMC) (Sisson et al., 2007; Beaumont et al., 2009; Toni et al., 2009). The overall function of

ABC PMC is to successively fit proposal distributions that progressively do a better job of sampling from the

approximated posterior distributions.

The exact algorithm we use is taken from Beaumont et al. (2009) and is specified in Algorithm 1 (Cisewski,

2014). The initial proposal density, or target distribution, is set to the prior distributions of the parameters of

interest, π(θ). Draws from π(θ) are propagated through the simulation, f (y | θ (1)
i ), until the specified kernel

function, ρ(y,x), describing distances between the simulated outcome(s), y, and observed value(s), x, is less

than the initial error threshold, ε1. This process repeats until N particles (draws) meet this criteria, which are

then given equal sampling weights, w(1)
i . Both ρ(y,x) and ε1 are chosen by the user.

After the initial timestep, the error threshold decreases such that εt ≤ εt−1, which is how the ABC PMC

algorithm progressively samples better proposal distributions, and τ2
t is set to twice the variance of the previ-

ous timestep’s proposal distribution (Beaumont et al., 2009). Draws from the improved proposal distribution,
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θ ∗i , are made based on the particle weights from the previous timestep. However, before they are propagated

through the forward model, they are first resampled from N (θ ∗i ,τ
2
t ) to avoid particle degeneracy. This pro-

cess repeats until N particles (draws) meet this criteria, which are then re-weighted in proportion to their

respective probabilities of ending up at their current values, w(t)
i . The algorithm repeats for a number of

timesteps specified by the user.

Algorithm 1: ABC PMC

if t = 1 (timesteps) then
for i = 1, . . . ,N (particles) do

Generate θ
(1)
i ∼ π(θ) and x∼ f

(
y | θ (1)

i

)
until ρ(y,x)≤ ε1 ;

Set w(1)
i = N−1 ;

end
else if t = 2, . . . ,T then

Set εt ≤ εt−1 ;

Set τ2
t = 2 · var

(
θ
(t−1)
1:N

)
;

for i = 1, . . . ,N do
Draw θ ∗i ∼ multinomial

(
θ
(t−1)
1:N ,w(t−1)

1:N

)
;

Generate
(

θ
(t)
i | θ ∗i

)
∼N

(
θ ∗i ,τ

2
t
)

and x∼ f
(

y | θ (t)
i

)
until ρ(y,x)< εt ;

Set w(t)
i ∝ π

(
θ
(t)
i

)
/

N
∑
j=1

wt−1
j φ

(
τ
−1
t

(
θ
(t)
i −θ

(t−1)
j

))
where φ(·) is the density function

N (0,1) ;
end

We initialize the ABC PMC algorithm with N = 100 particles and T = 15 timesteps based on exist-

ing guidance and by exploring trade-offs between reductions in ρ(y,x) and increases in computation time

(Cisewski, 2014). For similar reasons, we set εt to be less than or equal to the 75th quantile of the error values

in the previous timestep. We define ρ(y,x) as the absolute difference between simulated and observed losses

in agricultural shipments through the UMR. Fahie (2019) found that relative to 2017 commodity flows, ap-

proximately 7.4 million tons ($1.2B) of agriculture were not shipped through the UMR due to the “100-year”

flooding in 2019. Related, the Special Hazard Events and Losses Database for the United States (SHELDUS)

determined that there was $112M worth of crop damage in the UMR region due to the 2019 flooding (Center

for Emergency Management and Homeland Security, 2018). Thus, the amount of agriculture not shipped net

crop damages, $1.1B, constitutes the observed value, x, on which we calibrate our company decision model

(i.e., the presumed amount of agriculture that companies decided not to reroute). In turn, y is the total value

of agricultural products that companies do not ship in our simulation due to a “100-year” flood event. We use

the baseline version of our simulation (i.e., the version where rail is the only alternative shipping method)

62



for calibration because the Port of Cates Landing was not operational in 2019. Lastly, we initialize ε1 to be

$500M in agricultural shipments (i.e., roughly a 50% error), but by the end of the ABC PMC algorithm, ε15

is only $50M (i.e., approximately a 5% error).

We place Beta distribution priors on both β and α to help constrain the estimation of these rate parameters

to an intuitive range of 0 to 1. Since there is no empirical justification for what π(β ) should be, we set a weak

prior over the entire range (i.e., π(β ) ∼ Beta(1.25,1.25)). Similarly, we only have anecdotal evidence for

what π(α) might entail. In 2010, Wal-Mart imposed a flat 3% penalty on the cost of goods of shipments that

were more than four days late, and Anjoran (2009) suggest a 3% late-fee for the first week and 10% for each

additional week (Whalen and Painter, 2010; MacKenzie et al., 2012). MacKenzie et al. (2012) used Monte

Carlo simulation to observe the effects of varying α in their simulation and found that changes in regional

production were sensitive at lower values of α (i.e., from around 0 to 20%) but less pronounced at higher

values. As such, we wanted π(α) to be fairly weak but also for it to skew slightly toward these lower values

(i.e., π(α)∼ Beta(1.5,3)).

4.3 Results

Results of the ABC PMC algorithm are shown in Figure 4.2. As seen in Figure 4.2a, the ABC PMC algorithm

quickly converges to a stable error. It is customary for ABC PMC algorithms to have exponential decreases

in εt in early timesteps and diminishing improvements over subsequent timesteps; the opposite tends to occur

for computation time (Cisewski, 2014).

Figure 4.2b shows the joint and marginal posterior distributions for α and β approximated by the ABC

PMC algorithm at t = 15. As seen, estimates for α are contained to a fairly narrow band of values, from

around 5% to 10%. Those for β are much broader, ranging from 0% to 50%. Additionally, there is a strong,

negative correlation between the two, which makes sense given they have interdependent and competing

roles in Equations 3.2 and 3.3. It should be that we sample from the joint distribution α and β in the ABC

PMC algorithm and in our ABM precisely because of their interdependent nature. The posterior approxima-

tion depicted in Figure 4.2b is largely unchanged from approximations beginning around timestep four (see,

Supplementary Materials), which is expected based on Figure 4.2a.

Figure 4.2c depicts a sensitivity analysis of α and β with respect to the amount of agriculture not shipped

in the baseline version of the simulation due to “100-year” flood (i.e., the circumstances and scenario on

which we calibrate our model). As seen, there is monotonic relationship between these parameters and the

amount of agriculture that does not ship, which is likely why the ABC PMC algorithm was able to converge so

quickly to a stable approximation. As such, we have a high degree of confidence that the ABC PMC algorithm

was able to sufficiently explore the parameter space and that our approximation is about as accurate as it can
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Figure 4.2: ABC PMC (a) εt vs. t; (b) approximation of posterior at t = 15; (c) agriculture not shipped ($M)
due to a “100-year” flood event for various α and β

feasibly be using this approach. Also noteworthy, α exhibits the same trend in being sensitive at lower values

but less so at higher values that MacKenzie et al. (2012) observed.

Given that we now have a sufficient approximation of the posterior of α and β (i.e., a calibrated model),

we can properly simulate economic outcomes of various flood return periods. More specifically, we sample

from the posterior of α and β to obtain a posterior distribution of regional production losses, defined as

Q =~qT~x, as shown in Figure 4.3.
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Figure 4.3: Posterior Regional Production Losses (baseline simulation)
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As seen, more severe floods result in greater production losses, but there is a diminishing effect (e.g., a

“10-year” flood leads to roughly 25% greater losses in production than a “5-year” flood, but a “500-year”

flood results in only around 15% more than a “100-year” flood). This is due to the increase in the number of

days the river is closed becoming too costly for companies to keep their products at port, so many of them

end up shipping their products via rail, which in turn satisfies intermediate demand (i.e., no lost production).

The posterior production losses can also be broken down by state, Qr = [q̃r]T x̃r, as shown in Figure 4.4.

The most impacted states are Illinois, Missouri, and Minnesota, all of which are located along the UMR and

have significant amounts of outbound waterway shipments. Additionally, Louisiana suffers a lot of production

losses because it is located at the mouth of the Mississippi River and receives much of the southbound

shipments originating from the UMR (see, Figure 4.1).
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Figure 4.4: Posterior Production Losses by State (baseline simulation)

The posterior production losses can also be grouped by industry sector, Qi = q̃T
i x̃i, and the five most

impacted sectors are shown in Figure 4.5. The agricultural sector suffers the most production losses, which

is not surprising given the large amount of grain that is shipped through the UMR. Additionally, agricultural

shipments have a lower value per ton than many of the other waterway shipments, so Cport tends to be less than

Calt in many cases (i.e., companies elect to not pay the added costs of shipping via rail). In turn, production

losses from the agriculture industry affect the food processing industry, which is the sixth most impacted

sector (see, Supplementary Details). Chemical processing, metals manufacturing, and petroleum (including

coal) are also highly affected sectors, as they comprise much of the shipments that pass through the UMR.

Lastly, wholesale retail also suffers significant production losses due to delayed shipments and indirect losses
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from other, interdependent sectors.
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Figure 4.5: Posterior Production Losses by Sector (baseline simulation)

We then simulate production losses from the second version of the model where the Port of Cates Landing

is able to handle some of the rerouted shipments, shown in Figure 4.6. As seen, the Port of Cates Landing

is able to mitigate regional production losses across all flood scenarios, but its savings exhibit diminishing

returns as floods become more severe. This is due to the port’s daily throughput reaching max capacity more

frequently during the more severe floods.

The cost of developing the port is $53M: $41M to build the port and $12M to connect it to nearby railroads

(Byrne, 2020; Davis, 2018). This amount is equivalent to the regional savings in production losses from the

port that are realized during a “30-year” flood (see, Supplementary Materials for exact details). We estimate

the port’s break-even point in terms of a flood’s return period, as opposed to years, because we do not place

as much trust in the impacts simulated from more-frequent, less-severe floods that would readily be included

in estimations of annual savings realized by the port (e.g., the savings from a “2-year” flood the first year,

plus the savings from a “1.5-year flood” the second year, etc.). Much of our sentiment stems from the fact

that our flood scenarios are not validated for shorter return periods and that a “100-year” event is included

in the seven years’ worth data from which we develop flood scenarios, likely skewing the left side of the

Gumbel distributions toward more extreme outcomes. Additionally, outcomes in our ABM are sensitive at

return periods of less than five years (see, Supplementary Details).

Savings in production can be broken down by state and industry sector, Figures 4.7 and 4.8 respectively.

As seen, Illinois is the main benefactor of the port. Illinois is the state that has the most outbound shipments
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Figure 4.6: Posterior Production Savings from the Port of Cates Landing

through the UMR and is in close proximity to the port, so companies find it cost-effective to reroute their

products via rail to the Port of Cates Landing where they can continue via waterway the rest of route. As for

industries, chemical manufacturing, petroleum and coal, and agriculture are the main benefactors.
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Figure 4.7: Posterior Production Savings by State (Port of Cates Landing)

4.4 Discussion

Current risk assessments of disruptions to the inland waterways do not provide guidance on how to empiri-

cally specify the likelihood of disruptions occurring, so researchers can use our analysis of an example for

how do to so with regards to floods. Using river gauge data in conjunction with WAP procedures serves
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Figure 4.8: Posterior Production Savings by Sector (Port of Cates Landing)

as an intuitive means for modeling the likelihood of river closures, and this approach can be applied to any

section of the U.S. inland waterways. Currently, our flood scenarios likely over-estimate the impacts of

more-frequent, lower-severity floods because we only have seven years worth of data on which to ground our

models, and one of those years includes a “100-year” event. However, the USACE will continue to collect

and provide river gauge data, so the accuracy of our forecasts will improve with time. Additionally, it is worth

noting that with climate change expected to increase the frequency and severity of extreme weather events,

so return periods of floods may be vastly different going forward (e.g. a previously deemed “100-year” flood

may now occur every 20 years) (Camp et al., 2013; Pregnolato et al., 2017).

ABC SMC also appears to be well suited for calibrating ABMs involving transportation disruption anal-

yses. These models typically feature complex simulation logic that is difficult to parameterize via traditional

methods, and observational data pertaining to impacts from extreme weather events is generally hard to come

by (Mahmassani, 1990; He and Liu, 2012; Jackson et al., 2016). The ABC SMC approach is useful under

both of these conditions, as we demonstrated here by using the ABC PMC algorithm to calibrate a complex

model with only one observed value for reference.

There are several additions to our ABM we would like to include in future iterations. Ideally, we would

like to have port-level commodity flow data to make better assumptions about barge availability and to more

accurately estimate shipping routes. Similarly, the effects of other economic factors can be explored, includ-

ing but not limited to port revenue streams, the role of government subsidies, variations in commodity prices

due to supply and demand shocks, and contractual agreements between businesses and shipping companies.
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However, in its current form, our ABM can help inform the private sector about how their business decisions

effect the rest of the economy and give policy makers a better idea of how public waterborne infrastruc-

ture (e.g., the Port of Cates Landing) may be a cost effective means of mitigating regional production losses

resulting from waterway flood closures.

Regarding this savings in regional production losses, our case study with the Port of Cates Landing

highlights a potential cooperative dilemma between the involved states. The production savings from the

port are not distributed evenly between states, and depending how the port is funded, these benefits could

exist as positive externalities to some states (i.e., states may benefit from the port without contributing to its

development). Currently, Tennessee and Kentucky are the only two states that have contributed funding to

the port (Byrne, 2020; Arik and Penn, 2009).

4.5 Conclusion

The U.S. inland waterways play a vital role in the domestic economy, and extreme weather events, floods

in particular, threaten to disrupt operations along the inland waterways. We were able to extend an existing

ABM that simulates impacts of disruptions to the inland waterway system by using a data-driven approach to

incorporate the likelihood of flood disruptions along the UMR and by calibrating model parameters via ABC

SMC (MacKenzie et al., 2012). In turn, we were able to assess corresponding economic risks to the UMR

region and explore potential opportunities for mitigation that involve a publicly operated, flood-resilient port

(i.e., the Port of Cates Landing) being able to handle rerouted shipments during the disruptions.

We find that Illinois, Louisiana, Minnesota, and Missouri are the states that suffer the most production

losses from waterway disruptions along the UMR and that agriculture and chemical manufacturing are the

most impacted sectors. Additionally, we find that the cost of developing the port is equivalent to the amount

of regional production savings realized from the port during a “30-year” flood event.

4.6 Supplementary Materials

The annotated source code for our ABM and all accompanying data can be found on Open Science Frame-

work: https://osf.io/g7xeq/?view only=51724c6861c44584b34eb1fac5659d01
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CHAPTER 5

Predicting interstate cooperation in the development of flood-resilient waterborne infrastructure: a

common-pool resource dilemma

Community resilience plays a significant role in determining the risks associated with natural disasters, and

investments in public infrastructure that bolster community resilience often engender problems of collective

coordination typical of cooperative dilemmas. We develop an agent-based model in the form of a common-

pool resource dilemma that simulates how decision-makers from states along the Mississippi River may

reasonably decide to invest in the development of a publicly operated flood-resilient port that can lead to

savings in economic production losses suffered during inland waterway disruptions due to floods. Decisions

are informed by an empirically-based decision model trained on the results of a similarly themed behavioral

study and suggest that state decision-makers will tend to overvalue the monetary returns from the port. As

such, these decisions lead to inefficient and what could be construed as unfair monetary outcomes for many

of the involved states, thereby reducing the chances for interstate cooperation in the future. However, when

the decision model is viewed as a utility function, outcomes can be presented in terms of subjective values

realized by each state, and paths toward resolving the dilemma are revealed.

5.1 Introduction

Community resilience to natural disasters is a function of and often strengthened by investments in public

infrastructure and related projects (e.g., public hospitals, sea walls, and levees). These projects are generally

viewed as common-pool resources (CPRs) or public goods (PGs), depending on the rivalrous nature of their

consumption (Ayyub et al., 2016). In either case, problems of collective coordination arise because some

individuals may benefit from these developments without investing in them (i.e., free-ride).

There is a rich history of research on social dilemmas and the sustainable management of common re-

sources (Hardin, 1968; Ostrom, 1999; Wunder et al., 2013; Brick et al., 2016). Additionally, there is a growing

body of literature on game-theoretic applications to disaster management (Seaberg et al., 2017; Adida et al.,

2011; Kunreuther and Michel-Kerjan, 2015; Bouzat and Kuperman, 2014). However, comparatively little

work has been done for investigating decision-makers’ tendencies to invest in projects that bolster commu-

nity resilience through the lens of a PG or CPR game.

We construct an agent-based model (ABM) that simulates the dynamics of a one-shot CPR dilemma

pertaining to the development of a publicly operated, flood-resilient port along the US inland waterways,

namely the Port of Cates Landing. In Chapter 4, we demonstrated that this port has the potential to reduce
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economic production losses due to floods for states that have significant amounts of inbound/outbound ship-

ments through the Upper Mississippi River (UMR). However, these savings exist as externalities depending

how the port is funded. Our ABM simulates how decision-makers from states that benefit from this port may

reasonably decide to invest its development and how these decisions affect collective economic outcomes.

Decisions are based on two different strategies: 1) one that leads to a Pareto efficient outcome for the region

and an individually efficient outcome for each state, and 2) one that stems from an empirically-based behav-

ioral model that predicts deviations from the aforementioned Pareto efficient strategy (i.e., the BART decision

model from Chapter 3). Results highlight conditions that would likely engender failed cooperation between

states but also reveal potential paths toward resolving the dilemma. This exercise serves as a proof of con-

cept of how researches can use empirically-based decision models to analyze and interpret decision-makers’

tendencies and biases in CPR or PG settings and quantify the emergent impacts of their decisions.

5.2 Background

The U.S. inland waterway system comprises an extensive collection of ports, channels, and locks and dams,

and disruptions to its operations can have devastating impacts on the domestic economy (MacKenzie et al.,

2012; Camp et al., 2013; Pregnolato et al., 2017). Despite these known risks, little research has been devoted

to analyzing effects of disruptions along the inland waterways (Folga et al., 2009; MacKenzie et al., 2012;

Darayi et al., 2019). Recently, MacKenzie et al. (2012) developed an ABM that simulates how companies

affected by inland waterway port closures may decide to reroute their shipments and calculates the subsequent

economic impacts of these decisions via a multiregional inoperability input-output model (MRIIM) (Crowther

and Haimes, 2009; Santos, 2006; Santos and Haimes, 2004; Leontief, 1936).

In Chapter 4, we extended MacKenzie et al. (2012)’s framework to simulate impacts of disruptions due to

floods along the UMR. The UMR is a key segment of the U.S. inland waterways, and every year, more than

85 different commodities totalling 119 million tons are transported through this section of the Mississippi

River (Fahie, 2019). We were able to simulate regional production losses resulting from various flood events

along the UMR and estimate savings in cases where a public port that operates above the 500-year floodplain,

the Port of Cates Landing, could have feasibly rerouted some of the disrupted shipments.

However, we also found that the production savings from the port are not distributed evenly between

states, and depending how the port is funded, these benefits could exist as positive externalities to some states

(see, Figure 4.7). Putting aside potential revenue streams and/or jobs created by the port, this dynamic de-

scribes a CPR dilemma. States contribute varying amounts to develop the infrastructure, but the entire region

benefits from savings in economic production losses. Repeated over time, interactions such as this one could

lead to failed cooperation between states for similar projects in the future (Ostrom, 1999; Schindler, 2012). As
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such, we simulate how decision-makers from these states that have significant amounts of inbound/outbound

shipments through the UMR may hypothetically respond in this particular cooperative dilemma.

There have been other studies that modeled aspects of disaster resilience in a PG or CPR setting. Bednarik

et al. (2019) developed a dynamic public goods game (PGG) where forest resources that are exploited for

profit also used to protect individuals from flood damages; however, they did not explore the extent to which

this added feature causes participants to deviate from behavioral norms in cooperative settings. Additionally,

several studies have conceptualized climate change mitigation as a PGG (Hasson et al., 2010; Brick et al.,

2016; Kumar and Dutt, 2015); similar to other cooperative dilemmas, results suggest that communication

between decision-makers helps promote pro-social behaviors and that the heterogeneity of decision-makers

significantly affects outcomes.

Since it was found that individuals in laboratory and real-life settings often do not follow the rational,

selfish path toward the destruction of common resources as presumed by Hardin (1968) (i.e., the “Tragedy

of the Commons”), much work has been devoted to better understanding how and why individuals behave

the way they do in cooperative dilemmas. Individuals’ attitudes toward concepts including but not limited to

reciprocity, trust, fairness, risk, conformity, and inequity can affect their decisions and collective outcomes

(Schindler, 2012; Johnson, 2015; Dong et al., 2016). As such, by measuring differences in individuals’

dispositions, it is presumed that researchers can identify characteristics that predict decision-making patterns

in these settings (Hirsh and Peterson, 2009). In the field of psychometrics, the Big Five model of personality

is the consensus framework for quantifying individuals’ differences in temperament and proposes that these

differences can be measured along five dimensions (i.e., traits): Openness, Conscientiousness, Extraversion,

Agreeableness, and Neuroticism (John and Srivastava, 1999). Previous research confirms that the Big Five

traits are predictive of various response patterns in cooperative dilemmas (Zhao and Smillie, 2015; Kline

et al., 2019).

In Chapter 3, using participants’ Big Five traits and in-game circumstances as input variables, we con-

structed Bayesian additive regression tree (BART) decision models to accurately predict deviations from

Pareto efficient strategies in a CPR-game that framed player contributions as investments toward public infras-

tructure that bolstered community resilience. We utilize this BART model to simulate how decision-makers

may reasonably respond to different flood scenarios in our ABM. Recently, there has been an increasing drive

among researchers to incorporate more realistic, empirically-based decision models in ABMs (Janssen and

Ostrom, 2006; Abdulkareem et al., 2018; Choi and Lee, 2018; Nay and Gilligan, 2015). Our study serves as

a proof of concept of how researchers can do so for applied CPR or PG dilemmas.
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5.3 Methods: Agent-based Model

We develop an ABM that simulates how decision-makers from states along the Mississippi River may hypo-

thetically respond in a cooperative dilemma involving the development of a publicly operated, flood-resilient

port. Below, we use the ODD + D protocol to describe our model (Müller et al., 2013).

5.3.1 Overview

Purpose

The purpose of this ABM is to demonstrate a proof of concept of how researchers can use empirically-based

decision models to better analyze decisions and resulting outcomes in cooperative dilemmas, in particu-

lar those pertaining to aspects of community resilience. We illustrate this notion with a hypothetical CPR

dilemma involving the Port of Cates Landing, a public port whose operations are unique in that they lie

above the “500-year” floodplain and can conceivably reroute some of the southbound waterway shipments

from the UMR during severe flood disruptions (see, Figure 4.1). Our ABM is primarily designed for aca-

demic researchers who are interested in game theoretic applications for public infrastructure investments, but

policy-makers may also find utility in its insights.

Entities, state variables and scales

Our model features one entity type, a state (i.e., the decision-maker representing a state). There are 12 states

that have significant amounts of outbound and/or inbound shipments through the UMR, as revealed by US-

ACE’s Waterborne Commerce Statistics Center (WCSC) (USACE, 2017). These states are Minnesota, Wis-

consin, Iowa, Missouri, Illinois, Indiana, Ohio, Kentucky, Tennessee, Arkansas, Mississippi, and Louisiana

(see, Figure 4.1). Each state has the following attributes, as shown in Table 5.1: available funding (estimated

as the portion of state tax revenues that are expected to be allocated to transportation related expenditures over

a five-year planning period), and average state-wide assessments of Big Five personality inventories (FTA,

2019; Chantrill, 2021; Rentfrow et al., 2008). Given these attributes, decision-makers representing each state

decide how much funding they want to allocate to the development of the flood-resilient port in response to

various flood scenarios.

There are three exogenous factors in our model. The first is the flood scenario, which consists of the

number of days per year that segments of the UMR are expected to be closed due to high-water conditions.

The second exogenous factor is the planning period over which the value the flood-resilient port are tabulated.

Here, we set the planning period to be five years; this choice is arbitrary and simply used to demonstrate our

approach as a proof-of-concept. The last exogenous factor is the cost of developing the flood-resilient port.

Here, the estimated cost for developing the Port of Cates Landing is $53M (Byrne, 2020; Davis, 2018). If
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Table 5.1: State Input Variables: Available Funds and Big Five Traits

Funds ($M) O (z-score) C (z-score) E (z-score) A (z-score) N (z-score)

Arkansas 2.8 0.06 -0.54 -0.21 -0.53 1.01
Illinois 13.7 0.17 0.90 0.80 0.07 0.21
Indiana 6.7 -0.18 0.71 -0.36 0.38 0.88
Iowa 3.1 -0.97 -0.44 0.45 0.54 0.15
Kentucky 4.5 -1.10 0.37 -0.41 0.22 1.17
Louisiana 4.0 -0.01 -0.24 -0.20 0.55 1.14
Minnesota 8.3 -0.67 0.14 1.29 1.41 -0.80
Mississippi 2.4 -0.80 0.79 0.34 1.39 1.50
Missouri 2.4 -0.04 0.97 0.35 0.51 -0.09
Ohio 6.7 0.12 -0.56 -0.05 0.04 1.10
Tennessee 5.9 0.19 0.72 -0.19 1.08 0.11
Wisconsin 6.9 -1.31 0.29 2.14 1.32 -0.45

users wish to apply our methodology to the development of other ports or infrastructure projects, they would

need to change this metric as it influences the states’ investment decisions.

Process overview and scheduling

Each simulation run consists of three main processes: 1) an initial flood scenario, 2) states’ investment

decisions in response to this scenario, and 3) the resulting impacts of these decisions simulated over the

planning period.

First, a UMR flood scenario is sampled from the empirical flood distributions we developed in Chapter 4

using historical river gauge data and high-water operating procedures outlined in the Waterways Action Plan

(WAP) (USACE, 2021; USCG, 2020). The empirical flood distributions predict the number of days per

year each segment of the UMR is expected to be closed based on the return period of a flood (e.g., a “100-

year” flood, or a flood expected to occur once every 100 years). A scenario is randomly sampled from this

distribution and then propagated through the ABM that we also developed in Chapter 4 to determine the

subsequent production losses suffered by each state and to estimate the savings that could have been realized

had the Port of Cates Landing been operational and able to reroute some of the disrupted shipments.

Given these outcomes, state decision-makers respond to the flood scenario by deciding how much they

want to invest in the development of the flood-resilient port. In other words, the flood scenario serves as the

impetus for the residents of a state and/or their elected decision-makers to invest in infrastructure that helps

protect their communities from future floods. We model decisions in this manner because policy-making

tends to be reactionary as opposed to forward-looking. When the impacts from a flood are more severe

and the potential savings from the flood-resilient port are greater, residents and/or their representatives are

presumed to be more inclined to invest in the infrastructure.

Lastly, impacts resulting from the states’ investment decisions are simulated over a predetermined plan-

ning period. For each period (i.e., year), a flood scenario is randomly sampled from the empirical flood
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distribution. If states funded the development of the Port of Cates Landing, outbound shipments from the

UMR are able to reroute through it during the disruptions. If not, the full impact of the flood is realized.

Costs and benefits are tabulated over the planning period in terms of monetary value and subjective utility for

each state, discussed later.

5.3.2 Design Concepts

Theoretical and empirical background

Our model is predominantly based on two prior studies. First, MacKenzie et al. (2012) developed an ABM

that simulates how businesses may reasonably reroute shipments in response to inland waterway port closures

and calculates the subsequent economic impacts of such decisions using a multiregional inoperablility input-

output model (MRIIM) (Crowther and Haimes, 2009; Santos, 2006; Santos and Haimes, 2004; Leontief,

1936). In the event of a disruption, affected businesses decide whether or not to reroute their product via an

alternative shipping method or to leave their products at port, based on a variety of factors which include the

duration of the disruption, corresponding shipping costs, and desire of of a business to satisfying customer

demand (MacKenzie et al., 2012). If companies ship their product via an alternative method, it is assumed

demand is satisfied (MacKenzie et al., 2012). However, if companies decide to keep their product at port, this

delay leads to intermediate industries experiencing losses in production (MacKenzie et al., 2012; Horowitz

and Planting, 2009).

Second, in Chapter 4, we extended MacKenzie et al. (2012)’s model to incorporate empirically grounded

forecasts for the expected number of days sections of the UMR would be closed due to high-water conditions

given a flood’s return period and high-water operating procedures as documented in the WAP. Additionally,

we used approximate Bayesian computation with sequential Monte Carlo sampling (ABC SMC) to calibrate

model parameters, which allowed us to simulate valid estimates for regional production losses resulting from

various flood scenarios and the savings that could have been realized if the Port of Cates Landing had been

available to reroute some of the affected shipments.

Individual decision-making

Decision-making is modeled at the state level and is based on one of two different strategies (i.e., two different

versions of the simulation). Within each version, all state decision-makers follow the same strategy.

The first strategy leads to a simultaneously Pareto efficient outcome for the region and an individually

efficient outcome for each state (i.e., states invest an amount that is proportional to the amount of savings in

production losses they would have realized from the Port of Cates Landing being able to reroute shipments

during the flood disruption). However, states only invest if the total region’s savings meets or exceeds the
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development costs of the port, which in our case is $53 million. We use this threshold to determine whether

there is enough public sentiment in response to flood scenarios to warrant such an expenditure. If there is not

enough interest, no investment occurs, and available funds are assumed to be directed elsewhere.

For the second strategy, states invest according to a Bayesian Additive Regression Tree (BART) decision

model. This model was trained on the results of a web-based CPR game that framed participant contributions

as investments toward the development of infrastructure that bolstered community resilience (see, Chapter 3).

The BART model predicts deviations from various Pareto efficient strategies, including the aforementioned

one, given the following input variables: the economic circumstances of an individual, the economic circum-

stances of his or her community, the expected impact of a disaster, the expected benefits that the individual

and his or her community realize from the proposed infrastructure, and the individual’s temperament as mea-

sured by the Big Five personality traits.

We use a corresponding set of variables as inputs to our ABM, as previously shown in Table 5.1. We

assume that tax revenues characterize the economic circumstances of the states (FTA, 2019; Chantrill, 2021).

We also assume that the state-wide Big Five inventory surveys conducted by Rentfrow et al. (2008) reflect the

average disposition of individuals residing in these states, which in turn reflects the disposition of the states’

decision-makers. The expected impacts of the disaster (i.e., flood disruption) and expected benefits from the

proposed infrastructure (i.e., flood-resilient port) are simulated from the ABM discussed in Chapter 4.

Like with the Pareto efficient strategy, states only invest via this second strategy if the collective interest

as predicted by the BART model meets or exceeds the cost of developing the port. In this manner, predictions

from the BART model can be conceptualized as each state’s perceived utility of the investment (Rustichini

et al., 2016).

Learning

No individual or collective learning is included in the decision process.

Individual sensing

State decision-makers are assumed to know how much funding is available to each state and how much each

state benefits from the flood-resilient port. Decision-makers are also aware of all exogenous factors: the

initial flood scenario, the cost of developing the port, and the length of time over which benefits of the port

will be simulated.

Individual prediction

No individual or collective prediction occurs in this simulation.
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Interaction

Interactions between states are indirect through their investment decisions. If there is enough collective

investment in the port, it will be developed and affect all states via savings in production losses.

Collectives

States do not belong to or form any collectives.

Heterogeneity

States are heterogeneous with respect to their attributes (see, Table 5.1) but homogeneous with respect to

their decision-making strategies.

Stochasticity

Stochasticity is introduced in the generation of flood scenarios. Percentiles pertaining to the return period of

the flood scenarios are randomly generated from a uniform distribution with a range of zero to one. Because

we used Gumbel distributions to model the flood scenarios in Chapter 4, percentiles can be translated to

return periods via the following equation: returnperiod = 1/(1− returnpercentile) (Gilleland and Katz, 2016).

Observation

After each simulation run, we record the amount that states decided to invest in the port using each strategy.

We also record the emergent savings in production losses realized over the planning period, both in terms of

monetary value and subjective utility.

5.3.3 Details

Implementation details

Our ABM is implemented in R programming language. The source code and accompanying data files can be

found in the Supplementary Materials.

Initialization

Our model is initialized with a planning period of five years and a total number of 1000 simulation runs.

Input data

State input attributes are presented in Table 5.1. The Supplementary Materials contain all other data necessary

to recreate our analysis.
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Submodels

Our simulation includes three submodels: 1) flood scenarios, 2) state investment decisions in response to

(1), and 3) simulated economic outcomes of (2) over the planning period. We continuously tested these

submodels for congruence between model logic and outcomes as we developed the ABM.

5.4 Results

When responding to the majority of flood scenarios, states do not to invest in the port. According to the Pareto

efficient strategy, states develop the port in 45 of the 1000 simulation runs (4.5%). According to the BART

decision model, which better reflects how individuals behave in a similarly framed CPR game, states develop

the port in 304 of the 1000 runs (30.4%). Below, we discuss the results of these decisions in terms of three

different outcomes: 1) monetary valuations of the port based on the Pareto efficient strategy, 2) monetary

valuations based on how states act according the BART decision model, and 3) valuations measured in terms

of subjective utility, based on the same BART model.

Table 5.2 shows the expected monetary valuations of the port when states act according to the Pareto

efficient strategy. Cash flows (Y1:Y5) are the average annual savings in production losses across the 1000

simulation runs. The cost of developing the port (C0) reflects the average amount each state contributes to

the port in the 45 runs that resulted in the port being developed based on the Pareto efficient strategy. As this

Pareto efficient strategy optimizes both the individual and collective return on investment, it is not surprising

that return on investment (ROI) and internal rate of return (IRR) for each state and the overall project are all

positive. Additionally, these returns are distributed fairly evenly between the states on a percentage basis.

Both of these conditions are favorable for sustained interstate cooperation (Dong et al., 2016; Johnson, 2015;

Ostrom, 1999).

Table 5.2: Monetary Valuation of Pareto Efficient Strategy ($M)

C0 Y1 Y2 Y3 Y4 Y5 ROI IRR

Arkansas (0.24) 0.07 0.08 0.08 0.08 0.07 55% 17%
Illinois (29.7) 7.37 8.02 7.68 7.51 6.81 26% 8%
Indiana (6.28) 2.41 2.61 2.51 2.48 2.23 95% 28%
Iowa (2.29) 0.70 0.76 0.73 0.72 0.66 56% 17%
Kentucky (0.70) 0.21 0.23 0.22 0.22 0.20 55% 17%
Louisiana (4.06) 1.37 1.49 1.43 1.41 1.28 72% 22%
Minnesota (0.85) 0.23 0.25 0.24 0.23 0.21 37% 12%
Mississippi (0.24) 0.08 0.08 0.08 0.08 0.07 62% 19%
Missouri (2.27) 0.70 0.76 0.73 0.72 0.65 56% 17%
Ohio (3.42) 1.09 1.19 1.14 1.13 1.02 63% 19%
Tennessee (0.88) 0.27 0.29 0.28 0.28 0.25 55% 17%
Wisconsin (2.02) 0.56 0.61 0.59 0.58 0.53 42% 13%

(53.0) 15.06 16.37 15.70 15.40 13.97 44% 14%

Table 5.3 displays monetary valuations of the port given that the states act according to the BART decision
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model. Y1:Y5 consist of the same expected savings in production losses that are in Table 5.2. However, C0

reflects the average amount each state contributes in the 304 runs that resulted in the port being developed

based on the BART decision model. As seen, most of the states overestimate monetary returns from the port

(i.e., they contribute more than what the did in the Pareto efficient strategy). These decisions lead to inefficient

and uneven outcomes, with several of the states realizing negative returns. Neither of these conditions is

conducive for sustained cooperation (Dong et al., 2016; Johnson, 2015; Ostrom, 1999). Furthermore, these

outcomes are more likely to occur than the Pareto efficient outcomes for two reasons: 1) conceptually, the

BART decision model better reflects how individuals act in a similarly framed CPR game and 2) empirically,

more simulation runs resulted in the port being developed using this strategy than the Pareto efficient one

(304 vs. 45). As such, we can likely expect sustained cooperation to fail in this dilemma.

Table 5.3: Monetary Valuation of BART Decision Model ($M)

C0 Y1 Y2 Y3 Y4 Y5 ROI IRR

Arkansas (1.06) 0.07 0.08 0.08 0.08 0.07 -65% -27%
Illinois (17.3) 7.37 8.02 7.68 7.51 6.81 116% 33%
Indiana (5.67) 2.41 2.61 2.51 2.48 2.23 116% 33%
Iowa (4.32) 0.70 0.76 0.73 0.72 0.66 -17% -6%
Kentucky (2.23) 0.21 0.23 0.22 0.22 0.20 -51% -20%
Louisiana (4.10) 1.37 1.49 1.43 1.41 1.28 70% 20%
Minnesota (2.38) 0.23 0.25 0.24 0.23 0.21 -51% -20%
Mississippi (0.65) 0.08 0.08 0.08 0.08 0.07 -39% -15%
Missouri (2.41) 0.70 0.76 0.73 0.72 0.65 47% 15%
Ohio (5.47) 1.09 1.19 1.14 1.13 1.02 2% 0%
Tennessee (3.08) 0.27 0.29 0.28 0.28 0.25 -56% -22%
Wisconsin (4.32) 0.56 0.61 0.59 0.58 0.53 -34% -12%

(53.0) 15.06 16.37 15.70 15.40 13.97 44% 14%

However, failures of cooperative dilemmas can often be viewed as individuals failing to communicate

different utility functions to one another (Ostrom, 1999; Johnson, 2015). As such, when valuations of the

port are measured in terms of subjective utility defined by the same BART decision model, potential paths

toward reconciling this dilemma are revealed. Table 5.4 contains the same values for C0 that are in Table 5.3.

However, Y1:Y5 are expressed as the average annual investments that states would have hypothetically made

in response to the flood scenarios simulated across all runs based on the strategy informed by the BART

model. In other words, Y1:Y5 express the average subjective value that each state derives from the port each

year. When valuations are viewed in this manner, the perceived return on investments for most states is again

positive, with only Mississippi and Missouri deriving negative utility from the investment.

By considering the subjective utility of the investment, states can better understand the motivation behind

one another’s decision-making tendencies. In turn, this understanding can help facilitate dialogue between

state decision-makers and improve the chances for cooperation (Dong et al., 2016; Johnson, 2015). For

example, most states ostensibly overvalue the monetary returns from the port (see, Table 5.3), but they may
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Table 5.4: Subjective Valuation of BART Decision Model ($M)

C0 Y1 Y2 Y3 Y4 Y5 ROI IRR

Arkansas (1.06) 0.45 0.25 0.26 0.20 0.19 27% 10%
Illinois (17.3) 7.33 7.84 7.58 7.42 6.87 114% 33%
Indiana (5.67) 2.39 2.31 2.25 2.19 2.01 96% 29%
Iowa (4.32) 1.29 1.15 1.14 1.09 1.04 32% 10%
Kentucky (2.23) 1.50 1.33 1.33 1.27 1.26 200% 55%
Louisiana (4.10) 1.88 1.73 1.71 1.65 1.57 109% 32%
Minnesota (2.38) 1.47 1.30 1.39 1.33 1.32 186% 51%
Mississippi (0.65) (0.11) (0.24) (0.24) (0.30) (0.30) -283% -
Missouri (2.41) (0.01) (0.17) (0.18) (0.23) (0.27) -136% -
Ohio (5.47) 3.29 3.14 3.12 3.06 2.98 185% 51%
Tennessee (3.08) 1.56 1.38 1.38 1.33 1.31 126% 37%
Wisconsin (4.32) 2.72 2.59 2.67 2.62 2.58 205% 55%

(53.0) 23.77 22.60 22.39 21.64 20.57 109% 32%

actually just be deriving greater utility from the guaranteed savings of the port over risking impacts without

it (see, Table 5.4). In other words, states are risk-averse. Similarly, the negative utility experienced by

Mississippi and Missouri stems from the fact that after controlling for differences in temperament, they are

among the states with the least amount of funding available to contribute. With this knowledge and due to

the fact that many individuals are also averse to inequities, other states may be more inclined to absolve

Mississippi’s and Missouri’s negative sentiments toward the project and/or any decisions to free-ride in the

future (Zhao and Smillie, 2015).

It is often difficult to distinguish subjective utility from errors in human judgment when characterizing

deviations from choices that do not satisfy rational value maximization (Amador-Hidalgo et al., 2021). How-

ever, even if predictions from the BART model are interpreted more as errors in human judgment, as opposed

to subjective utility, they can still facilitate communication by informing state decision-makers of their po-

tential biases. For example, as mentioned, many states overvalue the monetary returns from the port and

consequently realize negative outcomes (see, Table 5.3). If state decision-makers are aware of their propen-

sity to over-contribute, they can adjust their actions accordingly if needed and arrive at a more effective

solution (e.g., the Pareto efficient outcome in Table 5.2).

5.5 Discussion

Our ABM demonstrates a proof of concept for how researchers can use empirically grounded decision models

to better understand and interpret decisions in an applied CPR or PG setting. Predictions from the decision

models can be interpreted as subjective valuations or as errors in human judgment. In either case, these

models reveal the tendencies and biases of decision-makers and also help quantify how decisions lead to

various outcomes. As such, this type of exercise can help facilitate dialogue between decision-makers, which

in turn improves the chances for sustained cooperation in the management of common resources (Dong et al.,
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2016; Johnson, 2015).

This type of approach assumes that decision models based on the results of laboratory studies can ef-

fectively be applied to real-life settings. For example, in Chapter 3, we were able to develop a decision

model that accurately predicted individuals’ responses in a similarly-themed CPR game. However, there is

no guarantee that this model can accurately predict realistic investment decisions in our applied ABM. In par-

ticular, we assume that differences in individuals’ dispositions as measured by Big Five traits can be applied

to decision-making at the state level. This assumption may be reasonable in a democratic republic like the

U.S. where individuals elect state officials and given the fact that politicians have analyzed their constituents’

Big Five traits to tailor campaign messages (Kosinski et al., 2013; Isaak and Hanna, 2018). However, it is

nonetheless an assumption and potential limitation of our analysis.

Lastly, our work further demonstrates the potential benefits of incorporating aspects of psychometrics

with formal decision theory, and in recent years, scientists have recognized the intuitive overlap between

these fields (Bortoli et al., 2019; Boyce et al., 2016; Rustichini et al., 2016; Schröder and Gilboa Freedman,

2020). For example, Boyce et al. (2019) found success in using Big Five inventories to predict public senti-

ment among Estonian and Latvian residents toward investing in various public environmental goods. In this

manner, similar types of inquiries could be conducted in CPR or PG settings to help construct multi-utility

decision models that better interpret stakeholders’ valuations of projects in terms of monetary, environmental,

and social impacts.

5.6 Conclusion

Community resilience plays a significant role in determining the risks associated with natural disasters, and

investments in public infrastructure that increase community resilience often engender cooperative dilemmas

associated with CPRs or PGs. We develop an ABM in the form of a one-shot CPR dilemma that simulates

how states along the Mississippi River may decide to invest in a flood-resilient port that can lead to savings

in production losses suffered during inland waterway disruptions due to floods. We compare these decisions

and resulting outcomes based on the states operating according to two different strategies: 1) one that leads

to a simultaneous Pareto efficient outcome for the region and an individually efficient outcome for each state,

and 2) one informed by an empirically grounded decision model trained on the results of a similarly themed

behavioral study.

When operating according to the Pareto efficient strategy, states only invest in the port in 45 of the 1000

simulation rums, but the expected returns on investment are positive for each state and distributed fairly evenly

on a percentage basis. When states act as predicted by the empirically-based decision model, they invest in the

port more frequently (304 of the 1000 runs), but their decisions often lead to inefficient monetary outcomes
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that are not conducive to sustained cooperation. However, when these outcomes are instead viewed as the

states’ subjective valuations of the port, as determined by the same decision model, state decision-makers

can better understand the motivation behind one another’s decision-making tendencies and biases, and paths

toward resolving the dilemma are revealed.

5.7 Supplementary Materials

The annotated source code for our ABM and all accompanying data can be found on Open Science Frame-

work: https://osf.io/tzckg/?view only=75cedd91d4aa49929544721dd5897e19
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CHAPTER 6

Conclusion

As mentioned throughout this dissertation, resilience is an important concept in the context of natural disas-

ters because it helps reconcile why similar events can have such disparate impacts on various communities

(Fjord and Manderson, 2009; Johnson et al., 2020). Although research on natural hazards has advanced

substantially over the last several decades, comparatively less progress has been made on quantifying com-

munity resilience and behavioral uncertainty in the context of these events (UN/ISDR, 2005). In particular,

there have been a proliferation of unproven frameworks that purport to measure community resilience with-

out an objective means of comparing and evaluating them (Bakkensen et al., 2017; Johnson et al., 2020).

Similarly, agent-based models that attempt to simulate impacts of natural disasters on communities rarely

have practical use because they fail to incorporate or justify how human decision-making affects community

resilience (Fiedrich and Burghardt, 2007; Janssen and Ostrom, 2006; Taylor et al., 2014). Here, we have

made significant contributions to advance the knowledge in both of these areas.

In Chapter 2, we used factor analysis to establish an intuitive and data-driven schema for comparing

a popular class of frameworks aimed at measuring community resilience, called resilience indices. Our

findings suggest that 50 of the 130 variables that comprise six of the most established indices in the field

effectively load onto five main dimensions of community resilience: wealth, poverty, agencies per capita,

elderly populations, and non-English speaking populations. This factor model greatly reduces the ambiguity

that arises when comparing existing indices and provides a robust framework for evaluating these factors and

other variables with respect to their abilities to predict disaster outcomes. As such, these efforts pave the way

for researchers to establish construct validity in this field.

In Chapter 3, we developed empirically-based decision models that can be used to predict or generate

responses in CPR settings pertaining to public infrastructure investments that bolster community resilience

to disasters. Public infrastructure that bolsters community resilience can often be conceptualized as a PG

or CPR, so it is important to understand individuals’ decision-making patterns in these settings in order to

quantify how they can affect collective outcomes. As such, we conducted a behavioral study in the form of a

web-based CPR game to elicit individuals’ tendencies to contribute to the development of infrastructure that

bolsters their communities’ resilience to various disaster scenarios. We then trained BART models and MLRs

on results of this study to predict deviations from participants’ decisions that would lead to Pareto efficient

outcomes for their communities and to examine how the Big Five dimensions of personality can predict

these decision-making patterns. We find that individuals tend to over-contribute compared to Pareto efficient

83



strategies, indicating a potential link to the concept of risk-aversion from decision theory. However, the BART

models are able to accurately predict these deviations and perform much better than their MLR counterparts.

In particular, the Big Five trait Openness is a key predictor, and PDPs derived from the BART models reveal

that the relationship between Openness and participants’ decisions is nonlinear. This finding suggests that

it might be prudent to utilize more advanced statistical learning approaches to reexamine assumptions of

linearity in other studies that have related individuals’ differences in temperaments to responses in cooperative

dilemmas.

In Chapter 4, we developed an empirically-based ABM that simulates how businesses along the Missis-

sippi River may reasonably reroute inland waterway shipments in response to various flood scenarios and

calculates the subsequent economic impacts of such decisions. In doing so, we extended an existing ABM

that analyzes impacts of disruptions to the inland waterway system by empirically modeling the likelihood of

flood disruptions and by calibrating model parameters via ABC SMC. To the best of our knowledge, no prior

systems-level risk assessment of inland waterway disruptions included empirically grounded assumptions

for the likelihood of disruptions occurring or provided guidance on how to empirically calibrate associated

models. By addressing these gaps, we were able to assess economic risks to the UMR supply chain and

explore potential opportunities for mitigation that involves a publicly operated, flood-resilient port (i.e., the

Port of Cates Landing) being able to handle rerouted shipments during flood disruptions. We find that Illi-

nois, Louisiana, Minnesota, and Missouri are the states that suffer the most production losses from waterway

closures along the UMR, and agriculture and chemical manufacturing are the most impacted industry sectors.

Although the Port of Cates Landing is able to provide relief in the form of savings in production losses, these

savings are not distributed evenly between states and exist as externalities depending how the port is funded,

thus engendering coordination problems typical of cooperative dilemmas.

In Chapter 5, we combined insights from Chapters 3 and 4 to simulate how state decision-makers may

hypothetically contribute funds to the development of the Port of Cates Landing in the aforementioned coop-

erative dilemma. Based on the BART decision model developed in Chapter 3, state investments often lead to

inefficient monetary outcomes that are not favorable for sustained cooperation. However, when decisions are

viewed as subjective valuations of the port, decision-makers can better understand the motivation behind one

another’s tendencies and biases, and paths toward resolving the dilemma are revealed. This exercise serves

as a proof of concept of how researchers can use empirically-based decision models to analyze and interpret

decision-making patterns in applied CPR or PG settings and quantify the emergent impacts of these decisions.

The work presented in this dissertation reveals several avenues for future research. First, we plan to use

statistical learning to relate the factor model established in Chapter 2 to various disaster outcomes. In doing

so, we can begin to holistically establish construct validity for resilience indices. Additionally, we plan to
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systematically vary and study the effects of game-level treatment factors in our web-based CPR study. In

turn, we can develop a better empirical understanding of how individuals respond in cooperative dilemmas

framed in terms of collective efforts to bolster community resilience. Related, we also plan to use advanced

machine learning procedures to reexamine findings from other studies that have assumed linear relationship

between individuals’ differences in temperaments and responses in cooperative dilemmas. Lastly, we aim

to use insights drawn from these aforementioned analyses to develop data-driven, multi-attribute decision

models that can be used to better evaluate returns from infrastructure developments in terms of economic,

social, and environmental benefits to communities.
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