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CHAPTER 1 
 

 Introduction 
 

1.1 Chronic Obstructive Pulmonary Disease 

1.1.1 Epidemiology and Risk Factors 

Chronic obstructive lung disease (COPD) is a major cause of morbidity and mortality worldwide. 

The global prevalence of COPD is approximately 11.4%, affecting an estimated 328 million people.1,2 In 

the United States, approximately 15 million adults report being diagnosed with COPD, for an overall 

prevalence of 6.3%.3 Based on the most recently available estimates from the Centers for Disease Control 

(CDC), COPD is the fourth leading cause of death in the United States, accounting for 5.6% of all deaths 

in 2016.4,5 It is also responsible for approximately 2.9 million deaths worldwide per year, making it the 

fourth leading cause of death worldwide.1,6 The mortality rate from COPD is expected to rise worldwide, 

and it is estimated that COPD will be the third leading cause of death by 2030.6–10 True estimates of 

COPD prevalence are likely higher, as many individuals with COPD are unaware of their disease. In 

studies comparing self-reported diagnoses and clinical data, patient self-report has consistently low 

sensitivity rates of 26-32%, indicating that the majority of individuals are unaware of their disease 

status.11–13 Underdiagnosis of COPD, particularly in asymptomatic patients, is also a major challenge. 

Pulmonary function tests performed in individuals with other chronic medical conditions have found that 

60-90% of patients who meet diagnostic criteria for COPD were never diagnosed.14–23 The death rates 

from COPD are also likely underestimated.24–27 Analyses of death certificates of individuals with 

confirmed COPD found that the diagnosis is often not included on the certificate, even when COPD is the 

primary cause of death. Among deaths directly caused by COPD exacerbations, 34% did not list COPD as 

the primary cause of death, and 21% had no mention of COPD on the death certificate.25 Given its 

prevalence, mortality, and underdiagnosis, COPD represents a major public health challenge, and 
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additional research on COPD is needed to address one of the leading causes of mortality both in the 

United States and worldwide.  

COPD prevalence varies by age, sex, and race/ethnicity. Prevalence of COPD increases with age. 

Based on self-reported data from the 2019 Behavioral Risk Factor Surveillance System survey, only 2.3% 

of adults 18-44 have been diagnosed with COPD, compared to 11.9-12.1% of individuals over age 65.28 

This trend also holds when using pulmonary function to diagnose COPD, with between 9.2-15.6% of 

adults age 40-59 years meeting criteria for COPD versus 13.3-31.2% of adults aged 60-79.29 Based on 

self-reported data, women have a slightly higher prevalence than men, with 7.2% of women in the United 

States reporting a COPD diagnosis compared to 5.6% of men.28 However, men have a higher prevalence 

when using lung function measures, with 11.4-24.8% of men and 5.4-17.3% of women in the United 

States meeting diagnostic criteria for COPD.29,30 A comprehensive meta-analysis examined gender-

specific prevalence and found a slightly higher prevalence in men, with an estimated prevalence of 8.07% 

in men and 7.30% in women in North America.31 In terms of race, non-Hispanic White and Black 

individuals in the United States both report a prevalence of 7.0%. Hispanic individuals have a lower 

prevalence of 3.5% in self-reported data.28 Similar trends are found using pulmonary function measures to 

estimate COPD prevalence. In the United States, 9.5-22.9% of non-Hispanic Whites, 6.9-18.0% of non-

Hispanic Blacks, and 2.7-10.4% of Mexican Americans meet pulmonary function definitions for 

COPD.29,30  

 The major risk factor for developing COPD is cigarette smoking. Approximately 80% of 

individuals with COPD in the developed world are current or former smokers.32 Ever-smokers have a 2.89 

increased odds of developing COPD compared to non-smokers.33 These odds increase for individuals 

with longer smoking durations.34 Current smokers are at increased risk of developing disease compared to 

former smokers, especially compared to former smokers who have abstained for ten or more years.44,45 

Exposure to second-hand smoke has also been associated with increased odds of developing COPD.32,35 

However, the extent to which COPD is attributable to cigarette smoking varies greatly based on 

geographic location. In the developed world, 77-84% of COPD mortality in men and 61-62% in women 
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can be attributed to smoking, whereas in developing countries, only 45-49% of COPD mortality in men 

and 12-20% in women is attributed to smoking.32 While smoking is the leading risk factor for COPD, it is 

clearly not the only risk factor. 

Other environmental exposures are also associated with COPD, including air pollution and 

airborne particulates.32 Occupational exposure to vapor dust, gas, or fumes has been associated with 

airflow limitation, with longer and more severe exposure conferring higher odds of developing the 

disease.32,36,37 Worldwide, exposure to smoke from indoor cooking fires is a common risk factor for 

COPD.32,38 Burning of biomass fuel as a risk factor for COPD is more prevalent in women, as they 

typically spend more time indoors.32 Respiratory infections such as tuberculosis and viral infections in 

childhood have also been implicated in COPD risk.35,39,40 In a study of incident cases of COPD in young 

adults, 8% were estimated to be due to a history of childhood respiratory infections.40 Asthma has also 

been identified as a risk factor for developing COPD, and there is overlap between the two disease 

phenotypes, with some patients having dual diagnoses.32,40,41 As smoking rates decrease, these additional 

factors are likely to play an increasingly large role in the risk of developing COPD. 

 

1.1.2 Definition Using Pulmonary Function Tests 

 COPD is defined by reduced pulmonary function, which is measured using spirometry. To 

perform a pulmonary function test, an individual is connected to a machine that measures airflow in the 

lungs. The individual is then asked to take a deep breath and blow out as hard as they can until they can 

no longer exhale into the connected tube. The spirometer then calculates a number of lung function 

measurements. This process is typically repeated three times, and the “best” performing measure is 

recorded. If there is concern about airway obstruction, the test may be repeated after administration of an 

inhaled bronchodilator to determine if the obstruction is reversible.42,43 Spirometry is only ordered when 

there is clinical suspicion of a respiratory issue. Routine screening with spirometry is not currently 

recommended.42 
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 A number of measures are calculated during pulmonary function testing to capture information 

about an individual’s lung capacity and respiratory performance. During the expiration phase of the 

spirometry test, both the rate of flow over time and the amount of air being exhaled are recorded in a 

flow-volume loop (Figure 1-1). In healthy lungs, the expiration phase of the flow-volume loop shows an 

initial rapid increase in flow followed by a linear decrease until no further air can be expired. In 

individuals with COPD, the initial increase in flow is followed by a non-linear decrease due to reduced 

elasticity of lung tissue and increased airflow resistance. This decreased elasticity and increased airflow 

resistance also reduce the amount of volume that can be exhaled, leading to a smaller loop overall (Figure 

1-1).42,44  The forced expiratory volume in one second (FEV1) captures the amount of air that an 

individual is able to exhale in the first second after beginning to exhale. The peak expiratory flow (PEF) 

records the maximum rate of air movement during the expiratory phase. The overall amount of air expired 

is called the forced vital capacity (FVC). Individuals can never fully empty their lungs, so calculations are 

performed using the measured variables to estimate an individual’s total lung capacity (TLC). The ratio of 

FEV1/FVC is calculated as a way to determine the degree of airflow obstruction.42,43 The clinical 

definition for COPD is set by the Global Obstructive Lung Disease (GOLD) consortium. Per GOLD 

guidelines, COPD is defined as a post-bronchodilator FEV1/FVC ratio < 0.7. The requirement for a post-

bronchodilator measurement is to ensure that the airflow obstruction is irreversible, which is a key 

biologic difference between COPD and asthma.45 

 Historically, COPD was thought to result from rapid decline in lung function in individuals 

susceptible to smoking-related damage.46 However, a seminal study by Lange et al. in 2015 found that 

52% of individuals with COPD did not experience a rapid decline in FEV1.47 Instead, these individuals 

started from a lower baseline FEV1 and then experienced a normal rate of decline with aging.47 This 

suggested that lung development and early childhood factors play a role in the development of COPD 

later in life. Childhood conditions such as asthma, lower respiratory infections, and exposure to air 

pollution have all been associated with decreased maximum lung function in adulthood.48–50 Early 

smoking behavior in adolescence may also reduce peak lung function in adulthood.51 Longitudinal studies 
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of lung function have found that 4-13% of young adults have an FEV1 less than 80% of predicted, and 

that the increased risk of comorbidities and early mortality is further compounded by smoking.52 

COPD severity is defined by post-bronchodilator FEV1 percent predicted. Severity is ranked from 

GOLD stage I to GOLD stage IV, with stage I representing mild disease and stage IV indicating very 

severe disease. However, FEV1 is only weakly correlated with levels of lung impairment, so the GOLD 

guidelines recommend these severity categories only be used for overall patient prognosis rather than to 

guide clinical treatment. Treatment recommendations are based on symptoms rather than pulmonary 

function test measurements.45 Since COPD is defined using pulmonary function tests, lung function 

measurements are highly related to COPD, and research on the biology and genetics of lung function can 

provide insight into COPD biology as well. 

 

1.1.3 Genetics of COPD 

 The first gene to be associated with COPD was SERPINA1, which encodes alpha-1-antitrypsin 

(AAT).53,54 The AAT protein has an essential role in maintaining the balance between protease and anti-

Figure 1-1. Flow-volume loops for healthy lungs (left) and COPD (right). Corresponding pulmonary 

function measurements are annotated on the flow-volume loops. FEV1: forced expiratory volume in one 

second; FVC: forced vital capacity; PEF: peak expiratory flow. Adapted from Niewoehner.44  
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protease activity in the lung, particularly by inhibiting the activity of neutrophil elastase.53–55 While many 

mutations have been identified in the SERPINA1 gene, only a few have been associated with reduced 

AAT function. To develop AAT deficiency, individuals must be homozygous for deleterious variants, the 

most common of which are the Z and S alleles. Both the Z and S alleles are associated with decreased 

levels of AAT. The Z allele leads to the most severe decline in AAT levels, with a reduction in AAT 

levels of approximately 85% compared to the most common AAT allele (the M allele). The S allele is 

associated with a milder 40-50% reduction in AAT levels.56 This leads to increased protease activity, 

causing destruction of alveolar walls and development of emphysema. The prevalence of these deleterious 

variants varies across the world, with the highest frequencies found in individuals of European descent.53–

57 The estimated percentage of individuals in the United States homozygous for the Z allele, which is 

associated with a more severe clinical phenotype, is 0.036% in Whites but only 0.002% in African 

Americans. A similar trend is seen with individuals homozygous for the S allele or individuals 

heterozygous for the Z and S alleles, with SZ frequencies of 0.022% in Whites and 0.006% in African 

Americans and SS frequencies of 0.052% in whites and 0.022% in African Americans.54 Individuals with 

COPD due to AAT deficiency, estimated to be approximately 1% of all individuals with COPD, often 

present before 45 years of age and with more severe emphysema than individuals without AAT 

deficiency.53–55,58 

 Even in the absence of AAT deficiency, individuals with a family history of COPD are at 

increased risk of developing the disease themselves. The odds of developing COPD are approximately 

1.7-5.4 times higher in individuals with a first-degree relative with COPD, even when accounting for 

smoking history.59–62 The SNP-based genetic heritability of COPD is estimated to be between 30-40%, 

though twin studies have calculated heritability as high as 60%.53,63–65 To identify additional genetic risk 

factors for COPD, several observational cohorts have been developed. The largest, COPDGene, recruited 

over 10,000 smokers, with approximately one-third of those enrolled identifying as African American.66 

The Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) and the 

Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) studies both 
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enrolled close to 3,000 individuals, largely of European descent.67,68 To increase the diversity of research 

participants, researchers have also leveraged pulmonary function data from other large epidemiologic 

cohorts developed to study atherosclerosis and heart disease such as the Atherosclerosis Risk in 

Communities Study (ARIC),69 the Multi-Ethnic Study of Atherosclerosis (MESA),70 and Coronary Artery 

Risk Development in Young Adults (CARDIA).71 

Multiple genome-wide association studies (GWAS) have been performed to identify potential 

genetic risk factors for COPD.53 In the largest GWAS published to date in a largely European population, 

Sakornsakolpat et al. identified 82 loci associated with COPD, 35 of which were novel.72 Several loci and 

genes have been consistently implicated across GWAS, including the CHRNA3/CHRNA5/IREB2 locus on 

chromosome 15q25, HHIP on chromosome 4q31, and FAM13A on chromosome 4q22.53,72–81 

Unsurprisingly, many of the loci associated with COPD have also been identified as significant 

associations in GWAS of pulmonary function, including the CHRNA3/CHRNA5/IREB, HHIP, and 

FAM13A loci.53,82–87 GWAS have also been conducted to look at response to COPD treatment, though 

these have had small sample sizes and have detected few genome-wide significant signals.88–92 GWAS 

have also examined specific phenotypes in COPD, such as airway responsiveness,93 pulmonary artery 

enlargement,94 and percent emphysema on imaging.95,96 These genetic signals can provide insight into the 

biology of COPD. 

The majority of the GWAS conducted to date have been in European populations, providing 

limited information on genetic risk factors in individuals of African descent.97 GWAS conducted in 

individuals with African ancestry have primarily focused on pulmonary function measures.86,98 Signals 

have been detected in the region of CHRNA3/CHRNA5/IREB in African ancestry GWAS of lung 

function, but they did not reach genome-wide significance, likely due to lack of statistical power resulting 

from smaller sample sizes.98 Novel signals identified in African ancestry GWAS have also failed to 

replicate in other cohorts, though this may also be a result of small sample sizes.86 Cross-ancestry meta-

analyses including African ancestry GWAS data identified 47 novel variants, some of which replicated in 

European populations.86 Polygenic risk scores (PRS), developed from European descent GWAS, applied 
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to African ancestry populations have shown weaker associations than observed in European ancestry 

populations, though the effect sizes have been in the same direction in both populations.87,99 This suggests 

that there may be some overlap in the genetic risk factors for COPD development across diverse ancestry 

populations, but population-specific SNPs or differences in effect sizes may remain. Research studies 

including larger numbers of African American participants are needed to address these questions.    

 

1.1.4 COPD Comorbidities 

Comorbidities are common in COPD, with 86-98% of individuals with COPD reporting at least 

one comorbid condition.100–102 These comorbidities include cardiovascular, cerebrovascular, neurological, 

psychiatric, gastrointestinal, renal, musculoskeletal, or respiratory diseases and disorders.102–104 

Individuals with COPD develop more comorbidities than other adults, often at a younger age.30,100,105–108 

Comorbidity profiles for individuals aged 56-65 with COPD have been found to be similar to those of 

individuals without COPD who are 15 to 20 years older.105 Individuals with comorbid conditions report 

decreased quality of life and increased symptom severity and exacerbation frequency,109–114 and the 

presence of multiple comorbidities can increase mortality rates by as much as 400%.115 COPD has been 

associated with increased mortality from cardiovascular disease, pneumonia, obstructive sleep apnea, 

chronic kidney disease, and lung cancer.115–123 COPD is also an independent risk factor for lung cancer, 

and patients having concomitant COPD and lung cancer have worse outcomes than those with lung 

cancer alone.124–133   

 The mechanisms underlying the increased risk of comorbidities for COPD patients are not well 

understood. Systemic inflammation has been hypothesized as a potential link, though whether the 

systemic inflammation is the cause of COPD or is caused by COPD remains controversial.103,104,134–136 In 

support of this explanation, individuals with COPD and heart disease had significantly increased levels of 

several inflammatory markers compared to individuals with COPD without heart disease, even after 

adjusting for age, gender, and smoking history.115 Furthermore, individuals with COPD and elevated 

inflammatory markers were at increased risk of heart disease, diabetes, lung cancer, and pneumonia 
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compared to individuals with COPD whose inflammatory markers were within normal limits.137 The 

increased presence of comorbidities in COPD could also be explained by shared environmental risk 

factors, such as smoking and age.103,104,134 However, studies of COPD and common comorbid conditions 

have found that the increased risk of comorbidities with COPD persists even when smoking history is 

accounted for, suggesting that shared environmental factors alone may not fully explain the 

relationship.138 On the other hand, compared to individuals who develop COPD due to biomass smoke 

exposure, individuals with smoking-related COPD have increased risk of developing ischemic heart 

disease, suggesting that smoking tobacco may play a role in the development of certain comorbidities.139 

Another explanation for the relationship between COPD and its comorbidities is shared underlying 

genetic risk factors.103,140 Recent studies of the relationship between COPD and several cardiovascular 

comorbidities have identified genetic correlations between these traits.141 The finding that individuals 

with poor lung development also have higher rates of other cardiovascular and metabolic disorders 

suggests that genetic risk factors and gene-environment interactions even in early life may contribute to 

the development of both COPD and comorbid conditions.140 Lung cancer and COPD are also known to 

share genetic risk factors. Loci such as CHRNA3/CHRNA5, HHIP, and FAM13A have been identified in 

GWAS for both disorders.142 Estimates of genetic correlation between COPD and lung cancer are high, 

even when excluding genomic regions associated with smoking behaviors, suggesting a genetic link 

beyond smoking.143 These studies have provided valuable insight into the relationship between COPD, 

cardiovascular disease, and lung cancer. However, the relationship between COPD and other common 

comorbidities is still unknown.   

 

1.2 Lung Cancer 

1.2.1 Epidemiology 

Lung cancer is the leading cause of cancer death worldwide, accounting for approximately 18% 

of all cancer deaths in 2020. It is also the second most commonly diagnosed cancer, with an estimated 2.2 
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million new cases of lung cancer diagnosed worldwide in 2020.144 In the United States, lung cancer 

represents 12.7% of all new cancer diagnoses and accounted for an estimated 135,720 deaths in 2020.145 

The highest lung cancer incidence rates are in the Southeastern United States, with incidence rates as high 

as 87.0 per 100,000 individuals in Kentucky compared to the overall incidence rate of 55.2 per 100,000 in 

the United States.146 Since smoking is a major risk factor for lung cancer, it is unsurprising that the 

highest incidence rates are located in states with high smoking rates.147 

Lung cancer occurs in both men and women, though the incidence rate in men is higher at 62.8 

per 100,000 compared to 49.4 per 100,000 for women.146,148,149 While lung cancer incidence rates 

continue to decline, the rate of decrease is twice as fast in men than in women.148,149 This is likely due to 

differences in smoking uptake over time, as smoking rates in men peaked approximately two decades 

earlier than in women.150 Death rates have also declined at different rates in men and women, with men 

experiencing a 40% reduction in death rate from lung cancer between 1990 and 2016 compared to a 23% 

reduction in women.148,149 However, the overall death rate per 100,000 people remains higher in men 

(44.5) than in women (30.6).146,149 

While overall lung cancer incidence rates are similar in non-Hispanic White and Black 

populations, disparities can be observed when stratifying by sex. Black men have the highest incidence 

rates of lung cancer at 71.7 per 100,000, and mortality rates for Black men are higher than for any other 

group.146,148,149 Part of this race-sex disparity may be attributable to differences in socioeconomic status, 

as lung cancer mortality rates are much higher in poor counties, especially for men.148 Several studies 

examining lung cancer survival rates in populations with similar socioeconomic status and access to 

health care have found no difference in lung cancer survival rates among Blacks and Whites.151–154  

 

1.2.2 Histologic Subtypes of Lung Cancer 

 Lung cancer is broadly classified into either small cell cancer or non-small cell lung cancer 

(NSCLC) due to differences in pathology, prognosis, and treatment. NSCLC accounts for 80-85% of all 

lung cancers and can be further classified based on tumor histology.155–158 The most common histologic 
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subtype is adenocarcinoma, accounting for approximately 60% of NSCLC cases, followed by squamous 

cell carcinoma.149,157 Large cell carcinoma is a relatively rare subtype of NSCLC, accounting for less than 

3% of all lung cancer diagnoses.156,157,159 Distinguishing between NSCLC subtypes can help guide 

molecular testing and treatment options, as the frequency of genetic mutations with targeted therapeutic 

options varies between histologic subtypes.158 

 

 

1.2.3 Immunotherapy in Lung Cancer 

 While the 5-year survival rate for NSCLC remains low, the development of novel targeted 

therapy options has prolonged survival, particularly for advanced stage disease.149,160 Immunotherapy has 

become a promising treatment strategy for metastatic NSCLC. Typically, the immune system detects and 

eliminates cancerous cells through the detection of cancer antigens and activation of T cells to destroy the 

abnormal cells. However, some cancer cells develop mutations that allow them to evade detection or 

promote immunosuppression. The immune system has built-in checkpoint mechanisms, which can be 

upregulated by tumor cells to prevent an appropriate immune response. The programmed cell-death 

protein 1 (PD-1) receptor, which is expressed on activated T cells, serves as a modulator of immune 

response. In response to inflammatory signals induced by immune system activation, tissue cells express 

programmed cell-death protein ligand 1 (PD-L1), which binds to PD-1 and downregulates T cell activity, 

preventing excessive tissue damage. Mutations allowing overexpression of PD-L1 in tumor cells can 

therefore limit the immune response to the tumor. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) is another 

receptor expressed on T cells that plays an important role in immune response regulation. In addition to 

recognizing a foreign antigen, T cells also require a costimulatory signal from a second protein, B7, 

expressed on the antigen-presenting cell in order to become active. CTLA-4 binds to B7, blocking its 

interaction with the stimulatory CD28 receptor and preventing T cell activation (Figure 1-2).161–163 Both 

PD-1/PD-L1 and CTLA-4 play important roles in modulating the immune response to cancer, which has 

made them attractive candidates for targeted therapy. 
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 Antibodies targeting PD-1/PD-L1 and CTLA-4 have demonstrated efficacy in treating several 

cancer types, including NSCLC. Multiple clinical trials have shown that these immune checkpoint 

inhibitors (CPI) can increase progression-free survival and overall survival in patients with metastatic 

NSCLC compared to traditional cytotoxic chemotherapy.158,161,162 In studies comparing nivolumab, a PD-

1 CPI, to docetaxel, a cytotoxic chemotherapy, for the treatment of non-squamous and squamous NSCLC, 

the overall survival in the nivolumab group was 12.2 months compared to 9.4 months in the docetaxel 

group for non-squamous NSCLC and 9.2 months compared to 6.0 months for squamous NSCLC.164,165 

Nivolumab has also been tested in combination with a CTLA-4 antibody, ipilimumab. Individuals treated 

with combination nivolumab and ipilimumab had a median overall survival of 17.1 months compared to 

individuals receiving chemotherapy (median overall survival 13.9 months).166 In comparison to 

nivolumab monotherapy, individuals treated with nivolumab and ipilimumab had higher rates of objective 

response, particularly if their tumor had high levels of PD-L1 expression. In individuals whose PD-L1 

expression was at least 50%, 92% of individuals treated with combination nivolumab and ipilimumab 

experienced a partial or complete response compared to 50% of individuals treated with nivolumab 

alone.167 However, overall survival was fairly similar between nivolumab monotherapy and nivolumab 

and ipilimumab combination therapy (median 5.7 months vs. 4.7 months).168 Another PD-1 CPI, 

Figure 1-2. Mechanisms of anti-PD-1/PD-L1 and anti-CTLA-4 immunotherapy. Adapted from Ramos-

Casals et al.174 Created with BioRender.com. 



 13 

pembrolizumab, demonstrated improved progression-free survival, with a median progression-free 

survival of 10.3 months in the pembrolizumab group compared to 6.0 months in individuals treated with 

platinum-based chemotherapy.169 Studies comparing combination pembrolizumab and chemotherapy to 

chemotherapy alone have demonstrated similar survival benefits with the addition of 

pembrolizumab.170,171 The PD-L1 CPI atezolizumab also led to improved overall survival compared to 

docetaxel, with median overall survival of 13.8 months and 9.6 months, respectively.172 When combined 

with chemotherapy, atezolizumab improved progression-free survival to a median 8.3 months compared 

to 6.8 months for chemotherapy alone.173 Based on the results of these clinical trials, several CPI have 

been approved for use as first- or second-line therapy in the treatment of NSCLC. Additional clinical 

trials are ongoing to determine whether combining CPI with cytotoxic chemotherapy, targeted therapy, or 

other CPI confers additional survival benefits compared to single agent CPI therapy.155,161  

 While CPI represent a promising treatment option, they can also trigger immune-related adverse 

events (irAEs). The severity of irAEs can vary from mild, transient conditions to severe, permanent 

disorders.174 They can affect any organ system and occur at any point in treatment, though the median 

onset is typically 2-16 weeks after the initial CPI dose.174 The frequency of particular irAEs varies based 

on CPI mechanism, with colitis, hypophysitis, and rash more frequently seen with CTLA-4 inhibitors 

while pneumonitis, hypothyroidism, arthralgia, and vitiligo are more common with PD-1/PD-L1 

inhibitors. The mechanisms underlying these differences are not well understood.174,175 The frequency of 

severe irAEs is higher in individuals treated with CTLA-4 antibodies than in those treated with PD-1/PD-

L1 antibodies, and the overall rate of irAEs is higher in individuals who receive combination CTLA-4 and 

PD-1/PD-L1 therapy.174,175 Risk factors for the development of irAEs are still being elucidated, but a 

personal or family history of autoimmune disease has been associated with increased irAE rates, 

suggesting a potential genetic mechanism.174 

 Although irAEs can lead to lifelong conditions, they may be a positive prognostic marker. The 

development of irAEs has been associated with increased progression-free survival, overall survival, and 

overall response rate.174,176–178 This finding has been more consistently demonstrated in individuals treated 
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with PD-1/PD-L1 antibodies.176–178 Research is ongoing to determine whether the timing, severity, or type 

of irAE are associated with differences in survival.174,176 Recent meta-analyses have found that skin, 

endocrine, and gastrointestinal irAEs are associated with increased OS compared to liver and lung irAEs, 

though gastrointestinal irAEs did not appear to increase PFS.177,178 Given both the prognostic and long-

term health consequences of irAEs, there is a great deal of interest in identifying predictors of irAEs. 

Small biomarker studies have identified laboratory values and pre-existing antibodies that may be 

predictors of increased irAEs, but these findings have not been replicated in larger populations and their 

predictive utility is unclear.179,180 

 

1.3 Statistical Techniques to Assess Shared Genetic Architecture 

1.3.1 Polygenic Risk Scores 

 Polygenic risk scores (PRS) are a valuable tool in genetics, with applications in both clinical and 

research settings. PRS aggregate multiple genetic variants from genome-wide association studies 

(GWAS) to summarize the genetic risk for a particular trait. Multiple techniques have been developed to 

build PRS, which rely on clumping and thresholding or beta shrinkage approaches (Figure 1-3). 

Clumping and thresholding approaches first use a clumping algorithm to identify a relatively independent 

set of single nucleotide polymorphisms (SNPs) by removing SNPs in linkage disequilibrium (LD). The 

thresholds used for clumping vary, but one of the most popular methods, PRSice, uses a default clumping 

r2 of 0.1.181,182 Various p-value thresholds are used to select SNPs from the base GWAS for inclusion in 

the PRS, and the association between the PRS and the trait of interest can then be ascertained in an 

independent target dataset. Shrinkage approaches use LD reference panels and statistical methods to 

estimate the true effect sizes of SNPs in the original GWAS, and the estimated effect sizes are then used 

as weights for the PRS.182–185  

 While PRS are being developed to predict disease risk or prognosis in clinical settings, PRS are 

also a useful research tool for identifying shared genetic architecture between traits. PRS have been 

successfully employed to understand relationships between related and comorbid conditions.185,186 PRS 
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for a number of psychiatric conditions have been used to identify genetic relationships between conditions 

such as schizophrenia, bipolar disorder, attention deficit-hyperactivity disorder, and major depressive 

disorder.187–193 Similar analyses have identified shared genetic risk factors across cancer types and 

between a variety of cardiovascular, neurological, psychiatric, and inflammatory conditions.194–199 Broad 

scale analyses of PRS using electronic health record (EHR) data have also been used to identify 

associations between conditions across a variety of phenotypes through the use of phenome-wide 

association studies (see 1.3.2).  

 

Figure 1-3. Overview of polygenic risk score development. Adapted from 

Choi et al.182 
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1.3.2. Phenome-wide Association Studies 

 Phenome-wide association studies (PheWAS) are tools that leverage the density of information 

available in EHRs. PheWAS test for associations with multiple clinical phenotypes documented within 

the EHR, defined by International Classification Disease (ICD) codes. However, ICD codes are designed 

to be granular for billing purposes, so a particular phenotype may be captured through a variety of related 

codes. To account for this relatedness and decrease multiple testing burden, a classification scheme that 

collapses similar ICD codes into a single phecode has been developed. Phecodes have the added benefit 

of allowing for a specification of a minimum number of ICD codes before an individual can be classified 

as a case (by default, two or more codes) and incorporate exclusion codes to ensure the control population 

for each phecode is not contaminated by individuals with similar phenotypes. Phecodes have been shown 

to be an accurate tool for classifying disease phenotypes, performing better than ICD codes alone.200,201 

 PheWAS are particularly valuable tools in settings with EHR data linked to a DNA biobank, as 

they allow the investigation of genetic relationships across the medical phenome.202–205 Initial PheWAS 

used single SNPs as predictors, proving the utility of the technique and confirming previously identified 

associations found in prior GWAS studies.206,207 These studies were also able to highlight novel 

associations between genetic markers for one trait and other phenotypes in the EHR, suggesting shared 

biology.202–207 More recently, PheWAS using PRS have expanded upon the early studies and broadened 

our understanding of the genetic relationship between a variety of medical conditions.208–217 PheWAS are 

a discovery tool able to systematically investigate relationships between PRS for one disorder and other 

traits that may otherwise have been overlooked in studies using only traits of interest selected a priori.  

 

1.4 Motivation for the Research 

1.4.1 Lack of COPD Research in EHR Biobanks 

 COPD is a major public health concern due to the high prevalence, mortality, and economic 

burden of the disease.218–220 EHRs represent a valuable research resource for COPD, as highlighted by 
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national strategic plans released by the Centers for Disease Control and Prevention and the National 

Institutes of Health.219,220 Research studies using EHR data can evaluate diagnoses, treatments, and 

clinical outcomes of COPD, as well as the relationship between COPD and common comorbidities. 

Furthermore, the depth of information available in EHRs can be leveraged to identify sub-phenotypes of 

COPD, a disease that is otherwise quite heterogeneous and therefore difficult to treat or predict prognoses 

and outcomes.221,222 

 Another major issue in research is the lack of racial diversity in most biomedical research 

studies.223,224 This is true for COPD research as well, where Black and African American populations 

have been poorly represented in COPD studies.97 Black and African American individuals have been 

shown to develop COPD with lower smoking amounts than other racial/ethnic populations, which may 

result from differences in smoking behaviors or nicotine metabolism.97,225–227 Furthermore, Black 

individuals have been found to have lower baseline lung function levels than non-Hispanic Whites, which 

may also contribute to increased COPD susceptibility at lower smoking levels.97,228–231 Black individuals 

are more likely to be undiagnosed and less likely to have access to appropriate COPD care than non-

Hispanic Whites, meaning that the true burden of disease in Black populations may not be fully 

understood.18,97,232,233 Studies also suggest that Black individuals with COPD experience more severe 

exacerbations, decreased quality of life, and poorer outcomes from comorbid conditions compared to their 

non-Hispanic White counterparts.97,233–235 Research studies inclusive of underrepresented populations 

would help address these important research gaps and disparities. 

 

1.4.2 Unknown Mechanism for Relationship Between COPD and Major Depressive Disorder 

 Psychiatric comorbidities are a common occurrence in individuals with COPD.100,101,236–241 In 

particular, individuals with COPD have an increased prevalence of major depressive disorder (MDD), 

with estimated prevalence rates ranging from 8-80%.236–241 This wide range of prevalence estimates is 

largely due to differences in how depression was defined and assessed between studies and the population 

being studied.239 A large multi-national meta-analysis restricting to studies using a clinically validated 
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depression screening instrument demonstrated an overall depression prevalence of 27.1% in individuals 

with COPD compared to 10.0% in individuals without COPD.239 Individuals with COPD and MDD have 

higher rates of exacerbations and hospital re-admissions, decreased medication adherence, poorer quality 

of life, and increased mortality.236–238,242–247 While the frequent co-occurrence of COPD and MDD is well-

established, the mechanisms underlying this relationship are unknown. Several mechanisms have been 

proposed, including systemic inflammation, hypoxemia and oxidative stress, or shared risk factors.238,248–

250 Smoking plays an important role in both COPD and MDD, though the direction of the relationship 

between smoking and MDD remains controversial.250–252 COPD and MDD may also be linked through 

shared genetic risk factors.87,253–255 Previous genetic studies of COPD and lung function have identified 

SNPs that are also associated with MDD,87,253 but a GWAS of depressive symptoms in smokers with 

COPD failed to identify any significant loci.254 Further studies are therefore needed to investigate the 

relationship between COPD and MDD. 

 

1.4.3 Limited Study of the Role of Genetics in irAEs 

  While immune-related adverse events (irAEs) have been largely associated with improved 

outcomes in lung cancer patients treated with immunotherapy,174,176–178 the biological mechanisms of 

irAEs are still under investigation. Previous research on irAE mechanisms have suggested a potential role 

for increased proliferation and activation of immune cells, leading to the production of auto-reactive cells 

and antibodies.256,257 However, it is currently unknown whether irAEs result from a pre-existing 

underlying susceptibility to autoimmune disease. In small studies of individuals with pre-existing 

autoimmune conditions who received immunotherapy, up to 75% experienced a disease flare and/or 

developed an irAE.258,259 These findings suggest that irAEs are more common in individuals predisposed 

to autoimmune conditions, but it is unknown whether genetic factors associated with autoimmunity are 

involved in the development of irAEs.260 Furthermore, prior studies have largely focused on all irAEs 

collectively rather than looking at specific irAEs. Investigation of genetic risk factors for specific irAEs 
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could elucidate not only biologic mechanisms but also predict individuals more likely to respond to 

immunotherapy.   

 

1.5 Research Aims to Be Addressed 

 This dissertation will leverage genetic techniques to understand the relationship between lung 

cancer, COPD, and comorbid conditions via the following aims: 

1. Develop a phenotyping algorithm to identify COPD cases in EHRs (Chapter 2) 

2. Examine the genetic relationship between COPD and MDD within an EHR (Chapter 3) 

3. Investigate genetic predictors of thyroid irAEs in lung cancer patients treated with 

immunotherapy in an EHR (Chapter 4) 

Through these research aims, we will be able to improve our understanding of the biology underlying 

COPD and lung cancer and related conditions. By building a phenotyping algorithm to identify 

individuals with COPD in electronic health records, we will open numerous opportunities for biomedical 

research using large-scale digitized health records. Our investigations of the genetic relationship between 

COPD and MDD will elucidate the potential shared biology of these disorders which may allow for better 

identification and future treatment of individuals suffering from both conditions. Finally, our study of 

thyroid irAEs in lung cancer patients will provide needed information on the potential mechanisms of 

irAEs among patients receiving immunotherapy. Overall, this research will address important gaps in our 

current understanding of COPD and lung cancer, two leading causes of morbidity and mortality 

worldwide. 
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CHAPTER 2 

 

 Clinical Features of COPD Patients in Electronic Health Records  
 

2.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a leading cause of death globally.261 The 

clinical gold standard for COPD diagnosis is demonstration of irreversible airflow limitation assessed via 

pulmonary function testing (PFT).45 However, routine screening for COPD is not recommended, 

particularly among asymptomatic patients,262 and PFTs are underutilized in clinical settings.263 

Discovering a reliable means to identify COPD cases in electronic health records (EHRs) in the absence 

of PFTs would enable a wide variety of research applications.  

EHRs provide a valuable tool to expand and accelerate COPD research.220 To date, most research 

studies have relied on well-curated cohorts to further our understanding of COPD risks and 

outcomes.66,68,264–266 These observational cohorts are costly and time-consuming to develop, hampering 

rapid advances in research. Furthermore, these cohorts often lack representation from diverse populations, 

recruiting primarily individuals of European descent. Limited research has been conducted on COPD in 

Black individuals, despite evidence suggesting differences in disease presentation, progression, and 

outcomes compared to Whites.97 EHRs also allow opportunities for pragmatic clinical trials, with an 

unprecedented depth of digitized information that can be used to rapidly and cost-effectively identify 

study participants from diverse populations, investigate medical interventions and outcomes in real-world 

settings, and conduct personalized medicine research.267–271 EHRs have been identified as a valuable 

research tool to address research gaps in patient-centered outcomes, COPD sub-phenotypes, and 

comorbidities.220,271,272 Linking EHR data with genetic information provides additional opportunities to 

investigate genetic factors involved in COPD development, sub-phenotypes, responses to treatment, and 

clinical outcomes. EHRs contain the necessary information to evaluate potential laboratory and imaging 

biomarkers for COPD diagnosis and prognosis.271 EHR data can also be used to identify system-wide 
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gaps in COPD management and initiate targeted quality improvement projects to increase compliance 

with recommended guidelines.273–275 While several algorithms have been developed for COPD,276–290 to 

our knowledge only one was developed in a large-scale EHR system, and its performance metrics were 

not reported.85 

Vanderbilt University Medical Center (VUMC) has a well-characterized EHR of clinical data 

captured over several decades through routine care. We used de-identified data from the VUMC clinical 

population to develop and evaluate EHR-based COPD phenotyping algorithms.   

 

2.2 Methods 

2.2.1 Vanderbilt University Medical Center Synthetic Derivative  

We used clinical data from the Synthetic Derivative, a de-identified version of the VUMC EHR 

data warehouse, containing data on over 2.1 million adult patients and over 1 billion unique observations 

dating back to the 1980s.291 Details regarding Synthetic Derivative development have been previously 

published.291 Extractable PFT data have been available in the EHR since 2011. The Vanderbilt University 

Institutional Review Board approved this study.  

The study population consisted of adult patients over 45 years of age at last clinic visit who 

visited VUMC prior to March 8, 2019. We then filtered to identify a medical home population, defined as 

patients having a minimum record length of 180 days (6 months). Demographic data, International 

Classification of Disease (ICD)-9 and ICD-10 codes, laboratory data, and PFTs were obtained from 

structured fields in the Synthetic Derivative. Quality control was implemented to remove individuals 

having ages inconsistent with their record length (defined as the number of days between the first clinical 

encounter and last clinical encounter, n = 109). Smoking information (ever/never) was collected from 

unstructured clinical notes. 

 

2.2.2 Algorithm Development 
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PFTs were used as the clinical gold standard, with COPD defined as the ratio of forced expiratory 

volume in one second (FEV1) to forced vital capacity (FVC) < 0.7 after bronchodilator administration. 

We chose to focus on patients with PFTs during the algorithm development since PFTs are an objective 

measurement required for definitive COPD diagnosis in clinical settings.292  

We developed computable phenotyping algorithms for COPD case status combining ICD codes 

and additional clinical information extracted from “problem lists”, “radiology reports”, and “medication 

lists”. To evaluate the performance of the phenotyping algorithms, comparisons were made with PFT 

defined COPD case status (post-bronchodilator FEV1/FVC < 0.7). Cases were required to have at least 

one ICD-9 (i.e. 491.x, 492.x, 496.x) or ICD-10 code (i.e. J41.x, J42.x, J43.x, or J44.x) alone or in 

combination with “oxygen” or “O2” on the “problem list”. This resulted in two algorithms: a code 

algorithm and a code+keyword algorithm. Controls were required to have no ICD codes for COPD, 

asthma, sarcoidosis, and idiopathic pulmonary fibrosis (IPF). We calculated performance metrics, 

including sensitivity, specificity, PPV, negative predictive value (NPV), and F measure for each 

algorithm. 

 

2.2.3 Algorithm Validation 

To internally validate our phenotyping algorithms, we tested them in an independent random 

sample of 200 clinical charts. Stratified random sampling was used to select 100 individuals with two or 

more COPD ICD-9 or ICD-10 codes and 100 individuals with fewer than two COPD ICD codes to ensure 

potential COPD cases were well-represented in the chart review set. Gold standard chart review was 

performed by two independent reviewers with clinical training. Discrepancies were adjudicated by a 

pulmonary physician. We calculated sensitivity, specificity, PPV, NPV, and F measure, as above. Kappa 

statistics between reviewers and percent agreement were calculated using the R package irr.293 

 

2.2.4 Genetic Data and Polygenic Risk Score Development 
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Our study population included European and African ancestry participants with available 

Illumina MEGA-Ex array genotyping data.291 Data from the Illumina MEGA-Ex array were subjected to 

quality control to remove individuals and single nucleotide polymorphisms (SNPs) with <98% call rates, 

SNPs with minor allele frequency <1%, and SNPs not in Hardy-Weinberg equilibrium (p-value < 1x10-6). 

Imputation was performed using the Michigan Imputation Server with the Haplotype Reference 

Consortium reference panel.294 Principal component analysis was performed using EIGENSTRAT and a 

set of SNPs pruned for linkage disequilibrium using a window size of 50 kb, a step size of 5 kb, and a r2 

threshold of 0.2.295 Ancestry was defined by proximity to European and African ancestry reference 

populations on principal component plots. After quality control, genotyping data were available on 48,147 

European ancestry and 5,852 African ancestry adults over 45 years of age. 

We tested a polygenic risk score (PRS) for COPD previously developed in a genome-wide 

association study of lung function traits in 400,102 individuals of European ancestry.87 Risk scores were 

calculated for each individual in our dataset using reference alleles and weights from the original study 

and the score function in Plink v1.9.296 Of the 279 SNPs included in the original PRS, 188 were directly 

genotyped and passed quality control in the European ancestry dataset and 172 were directly genotyped 

and passed quality control in the African ancestry dataset. We used LDproxy297 to identify proxy variants 

for the missing SNPs, using 1000 Genomes reference populations298 CEU for the European ancestry and 

YRI and ASW for the African ancestry study populations. Using an r2 threshold of 0.8 to identify proxy 

SNPs resulted in a lung function PRS comprised of 247 SNPs in our European ancestry dataset and 225 

SNPs in our African ancestry dataset. We tested for associations between this lung function PRS and 

COPD case status in both the African ancestry and European ancestry study populations using a logistic 

regression model, adjusted for age at last clinic visit, sex, ever/never smoking status, and the first 3 

principal components. 

 

2.2.5 Alpha-1-antitrypsin Laboratory Data 
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Since alpha-1-antitrypsin testing is recommended for all individuals undergoing diagnostic 

evaluation for COPD,299,300 we explored how frequently this lab test was ordered for individuals in our 

COPD case and control sets. Laboratory data was extracted from structured fields in the Synthetic 

Derivative. We identified all individuals with a reported laboratory value alpha-1-antitrypsin, regardless 

of the actual value.  

 

2.3 Results 

2.3.1 Study Population 

We identified 1,008,661 individuals age 45 or older at last clinic visit. Quality control removed 

109 individuals, leaving 1,008,552 eligible individuals. The median age at last clinic visit was 61 years 

(interquartile range 53-71), with a median record length of 1.9 years (interquartile range 0.1-8.2 years). 

The study population included a greater percentage of females than males (54.1% vs 45.9%) and was 

primarily observer-reported European descent (69.7%). Prevalence of ever smoking in the population was 

18.9%.  

 

2.3.2 Algorithm Development and Validation 

We selected a computable phenotyping algorithm that met at least an 80% positive predictive 

value based on the clinical gold standard of PFT-defined COPD. The algorithm required cases to be at 

least 45 years of age. The code+keyword algorithm required COPD cases to have ten or more COPD ICD 

codes (491.x, 492.x, 496.x, J41.x, J42.x, J43.x, or J44.x) OR three to nine COPD ICD codes AND a 

mention of oxygen on the problem list (Figure 2-1). The optimal numbers of ICD codes for the code-only 

and code+keyword algorithms was determined based on the performance of code-only algorithms 

consisting of one to fifteen ICD codes for COPD (Figure 2-2). Controls were required to have no ICD 

codes for COPD, asthma, sarcoidosis, or IPF (Figure 2-1).  
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We evaluated the internal validity of our electronic phenotyping algorithms in a comprehensive 

chart review set of 200 charts. The kappa statistic between the two clinical reviewers was 0.75 and the 

percent agreement was 91%. Eighteen discrepancies were adjudicated by the third reviewer. Both 

phenotyping algorithms had comparable sensitivity and NPV in the development and validation sets, but 

the specificity and PPV were higher for the code+keyword algorithm ( 

 

Table 2-1).  

 

Figure 2-1. Phenotyping algorithm schematic for chronic obstructive pulmonary disease (COPD). 
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Table 2-1. Clinical validity test properties for each phenotyping algorithm and prevalence within the 

electronic health record among participants in the Vanderbilt University Medical Center Synthetic 

Derivative, November 2020. 

Metric 

Code-only Code+Keyword 

Development Validation Development Validation 

Sensitivity (%) 90.3 100 88.9 100 

Specificity (%) 68.7 71.9 76.7 94.1 

PPV (%) 43.8 60.9 50.0 88.6 

NPV (%) 96.3 100 96.3 100 

F measure 0.59 0.76 0.64 0.94 

COPD prevalence 

based on algorithm (%) 

32.0 32.0 24.0 17.5 

PFT = pulmonary function test, PPV = positive predictive value, NPV = negative predictive value 

 

 

 

Figure 2-2. Performance of code-only algorithms in the development (left) and validation (right) sets. 

Sens = sensitivity, spec = specificity, PPV = positive predictive value, NPV = negative predictive value. 
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2.3.3 Application of Phenotyping Algorithms to Electronic Health Records 

To demonstrate the utility of our algorithms to identify COPD cases within a large-scale EHR 

database, we applied them to an independent adult population over 45 years of age at last visit with a 

record length floor of 6 months (≥180 days, N = 623,986). The code-only algorithm identified 28,544 

COPD cases (4.6% COPD prevalence), while the code+keyword algorithm identified 12,638 COPD cases 

(2.0% COPD prevalence). Both COPD case sets had similar median ages at last clinic visit and 

distributions of sex and race. The prevalence of COPD by race was similar in both algorithm definitions, 

with a 3.5% prevalence in Whites and 3.6% prevalence in Blacks for the code-only algorithm and a 1.6% 

prevalence in Whites and a 1.7% prevalence in Blacks for the code+keyword algorithm. Code+keyword 

COPD cases had a longer median record length (8.3 years) than code-only cases (7.3 years), and the 

percentage of ever smokers was higher among code+keyword cases (60.8%) than code-only cases 

(55.8%). Controls were younger than COPD cases, less likely to be smokers (23.0%), and more likely to 

be female (55.2%) and non-White than cases (21.3%) (Table 2-2). Among individuals with available PFT 

data (N=14,281), code+keyword cases had lower median FEV1 and FVC percent predicted values in both 

pre- and post-bronchodilator measures than code-only cases, while controls had higher PFT values versus 

both case groups (Figure 2-3). Using the GOLD definition of COPD, i.e. fixed ratio of post-

bronchodilator FEV1/FVC < 0.7, we identified 2,226 PFT-defined COPD cases (44.8% COPD prevalence 

among individuals with available PFT data).292 
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Table 2-2. Demographic characteristics of adults over age 45 years, Vanderbilt University Medical Center 

Synthetic Derivative, November 2020. 

Characteristic 

Code-only 

cases 

N = 28,554 

Code+keyword 

cases 

N = 12,638 

Controls 

N = 544,418 

PFT cases 

N = 2,226 

PFT 

controls 

N = 11,553 

Median age at last 

clinic visit, years 

(IQR) 

69 (60-76) 70 (62-77) 62 (53-71) 69 (61-75) 64 (55-71) 

Sex, N (%)      

     Female 13,369 (46.8) 6,167 (48.8) 300,575 (55.2) 1,068 (48.0) 6,347 (54.9) 

     Male 15,185 (53.2) 6,471 (51.2) 243,775 (44.8) 1,158 (52.0) 5,206 (45.1) 

     Unknown 0 0 68 0 0 

Race, N (%)      

     White 24,821 (86.9) 11,025 (87.2) 428,615 (78.7) 1,991 (91.9) 9,861 (85.4) 

     Black 2,689 (9.4) 1,251 (9.9) 46,021 (8.5) 158 (7.3) 1,240 (10.7) 

     Other 120 (0.4) 47 (0.4) 6,350 (1.2) 18 (0.8) 169 (1.5) 

     Unknown 924 (3.2) 315 (2.5) 63,432 (11.7) 59 (2.7) 283 (2.4) 

Median record 

length, years (IQR) 

7.3 (3.2-13.0) 8.3 (4.0-13.9) 6.2 (2.4-11.5) 8.8 (3.1-

15.1) 

7.5 (2.7-

14.3) 

Smoking status, N 

(%) 

     

     Ever smoker 15,929 (55.8) 7,683 (60.8) 125,325 (23.0) 1,747 (78.5) 5,642 (48.8) 

     Never smoker 2,846 (10.0) 1,000 (7.9) 214,314 (39.4) 462 (20.8) 5,819 (50.4) 

     Unknown 9,779 (34.2) 3,955 (31.3) 204,779 (37.6) 17 (0.8) 92 (0.8) 
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Figure 2-3. Pulmonary function test values by algorithm set among Vanderbilt University Medical Center 

Synthetic Derivative participants with pulmonary function test data (2011-2020) (N = 14,281). 

Abbreviations: FEV1: forced expiratory volume in one second; FVC: forced vital capacity; ICD: 

International Classification of Disease, pre-bronch: pre-bronchodilator, post-bronch: post-bronchodilator. 
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2.3.4 Alpha-1-Antitrypsin Tests 

We characterized the frequency of alpha-1-antitrypsin tests among our COPD race-sex groups. 

Only 3.6% of COPD cases identified by the code-only algorithm and 5.1% of cases identified by the 

code+keyword algorithm had an available alpha-1-antitrypsin measurement (Table 2-3). Among PFT-

defined cases, the percentage of individuals with alpha-1-antitrypsin tests was higher at 7.6%. The 

percentage of individuals with alpha-1-antitrypsin labs varied by sex and race (Table 2-3). 

 

Table 2-3. Percentage of individuals with alpha-1-antitrypsin labs by case status and demographic 

characteristics, Vanderbilt University Medical Center Synthetic Derivative, November 2020. 

Group 

Code-only 

Cases 

(N, %) 

Code+keyword 

Cases 

(N, %) 

Algorithm 

Controls (N, %) 

PFT Cases 

(N, %) 

PFT Controls  

(N, %) 

Overall 1,027 (3.6) 640 (5.1) 6,595 (1.2) 169 (7.6) 756 (6.5) 

White women 466 (4.1) 292 (5.5) 2,851 (1.2) 91 (9.7) 341 (6.5) 

White men 466 (3.5) 289 (5.0) 2,861 (1.5) 62 (5.9) 354 (7.7) 

Black women 36 (2.6) 29 (4.2) 138 (0.5) 9 (9.6) 27 (3.3) 

Black men 26 (2.1) 20 (3.7) 141 (0.7) 2 (3.1) 13 (3.1) 

PFT: pulmonary function test; PFT case/control definition: post-bronchodilator forced expiratory 

volume/forced vital capacity < 0.7 

 

2.3.5 Polygenic Risk Score Performance Across Ancestry Groups 

We replicated a previously developed lung function PRS87 and tested for associations with 

algorithm-defined COPD status in European and African ancestry adults. The lung function PRS was 

significantly associated with code-only case status (odds ratio (OR) = 1.11, 95% confidence interval (CI): 

1.07-1.15), code+keyword case status (OR = 1.15, 95% CI: 1.10-1.20), and PFT case status (OR = 1.32, 

95% CI: 1.19-1.46) (Figure 2-4). None of the three COPD case definitions were significantly associated 

with the lung function PRS in individuals of African descent (Figure 2-4). 
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2.4 Discussion 

We sought to develop automated COPD phenotyping algorithms to facilitate biomedical research 

and quality improvement within EHR systems. We developed a code-only ICD code-based algorithm and 

a code+keyword algorithm combining ICD code information with details from the clinical record. 

Consistent with known COPD epidemiology,261 the prevalence of COPD in both the code-only and 

code+keyword algorithms was the same across racial groups. However, the overall prevalence of COPD 

in both case sets (4.6% in the code-only group and 2.0% in the code+keyword group) was lower than the 

national average of 6.3%, suggesting additional unrecognized COPD cases may remain in our dataset. 

While we identified more cases with the code-only definition than the code+keyword definition, the PPV 

(89%) was high for the code+keyword algorithm, suggesting that the code+keyword algorithm has high 

accuracy for identifying individuals with COPD in EHR. Only two previous studies of COPD algorithms 

Figure 2-4. Validation of COPD algorithm demonstrated by logistic regression of the association between 

FEV1/FVC polygenic risk score and COPD case-control status among Vanderbilt University Medical 

Center Synthetic Derivative participants (2007-2020). 

FEV1/FVC: forced expiratory volume in one second/forced vital capacity; PFT: pulmonary function test 
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achieved similar or higher PPV (89.4%282 and 99.5%283), and both were developed in primary care 

systems and required access to medication information, which may not be reliably available in US-based 

EHR. Thus, adding keywords improved identification of COPD cases.  

For clinical EHR systems without available clinical notes, COPD cases can still be identified, 

although with less accuracy. Despite this reduced accuracy, the lung function PRS, which summarizes 

genetic information in a potentially clinically meaningful way, provided a unique opportunity to validate 

our phenotyping algorithms. The lung function PRS was associated with our algorithm case definitions 

and PFT-defined COPD. Our genetic analyses were limited to a European ancestry-derived PRS due to 

the lack of an available lung function PRS developed in an African ancestry population. The Eurocentric 

bias in available PRS can result in poor transferability of PRS across ancestrally diverse populations.301  

We also used our algorithm to identify compliance with recommended alpha-1-antitrypsin testing 

guidelines299,300 and found that the lab was performed in less than 10% of COPD cases regardless of case 

definition. Black men had particularly low rates of testing. Racial disparities have been previously 

described in lab ordering,302–304 but further confirmation of our findings is needed. Overall, the low rates 

of alpha-1-antitrypsin testing represent an opportunity for quality improvement. The World Health 

Organization, American Thoracic Society, and European Respiratory Society have all recommended that 

individuals with COPD undergo this test to screen for alpha-1-antitrypsin deficiency.299,300 As a tertiary 

referral center, it is possible that some individuals with COPD at VUMC received the test at outside 

institutions, but our findings raise concern that this lab is being overlooked by most providers. A similar 

approach could be used to identify other potential gaps in COPD clinical evaluation and treatment that 

should be addressed at a system level. 

This study has some limitations. The use of EHR in biomedical research has inherent challenges 

due to inconsistent documentation, missing data, and inaccuracies.305–313 One important factor to consider 

when evaluating our algorithm performance is the impact of disease prevalence. In particular, PPV and 

NPV are dependent on prevalence of the disease of interest.314,315 Thus, these measures of clinical validity 

are likely influenced by the prevalence of COPD in our population. In the validation chart review set, the 
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prevalence of COPD was 22.5%, yet the U.S. prevalence of COPD among adults is 6.3%, much lower 

than our development or validation sets ascertained from our tertiary care hospital. In populations with 

COPD prevalence closer to the national average, we expect that the PPV of the algorithm will decrease, 

though we cannot predict the magnitude of that decrease. Another consideration is that tertiary care 

centers often have sicker patients with denser clinical documentation and more complete data than other 

hospital settings, potentially impacting generalizability to non-tertiary settings.313 COPD cases identified 

by our code+keyword algorithm have more severe disease compared to code-only cases based on FEV1 

and FEV1/FVC measurements. Our algorithm used ICD code information, which can be inaccurate, 

particularly for secondary research use; however, this is balanced by efficiency and reduced costs within 

an established EHR.316–318 Information on whether ICD codes were assigned in outpatient or inpatient 

settings could also increase algorithm performance. This strategy has been used to identify disease status 

for several conditions, including COPD, though performance metrics were not reported.319 Future studies 

that incorporate this information could improve algorithm performance. However, our analyses of known 

COPD risk factors and previous genetic associations suggest that the population identified by our 

algorithm was similar to previously studied COPD populations.33,87  

The primary motivation for this study was to develop a phenotyping algorithm for COPD that 

could be implemented to conduct biomedical research and pragmatic trials. It was therefore of utmost 

importance to identify algorithms that were easily implemented in EHR across multiple settings. ICD 

codes are widely available as a structured data field, which makes them easy to obtain even in institutions 

without advanced informatics infrastructure. One concern is the possibility for COPD phenotype 

misclassification. However, since COPD is both over- and under-diagnosed, we anticipate any 

misclassification to be non-differential and effect estimates to be biased towards the null.320 In pragmatic 

clinical trials, it is important to identify a broadly representative patient population to determine real-

world generalizability. Sensitivity is therefore more important than PPV in this setting.321,322 Our 

algorithm has a high sensitivity, which makes it advantageous over using PFTs alone to identify 

individuals with COPD. Underutilization of PFTs in clinical settings is well-documented,263,323–332 and as 
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few as one third of individuals with a clinical definition of COPD actually receive PFTs.263,325–327 

Furthermore, due to patient transfer between health care systems, individuals may have received PFTs at 

an outside institution. By using widely available ICD codes, we allow individuals without PFTs yet 

having COPD to be included in potential pragmatic trials within EHR.  

In conclusion, we identified and characterized COPD cases using digitized EHR data and 

computable phenotyping algorithms. As methods evolve for computational phenotyping, our algorithm is 

a step towards efficient identification of large-scale populations for clinical and genetic research studies 

within EHR that may facilitate accelerated scientific discoveries and personalized medicine opportunities 

for this devastating disease.  
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CHAPTER 3 
 

 Fate or Coincidence: Do COPD and Major Depression Share Genetic Risk Factors?1  
 

3.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality 

globally, affecting 328 million people and causing 3 million deaths per year.333 Comorbidities are 

common among COPD patients.100,101 Individuals with comorbid conditions report decreased quality of 

life,109–112 and the presence of multiple comorbidities can increase mortality rates by as much as 400%.115 

Therefore, understanding the relationship between COPD and its comorbidities is a research priority.220  

Psychiatric comorbidities are commonly reported in COPD patients. Individuals with COPD have 

an increased prevalence of major depression, with estimates ranging from 8-80%.236–241 The prevalence of 

depression is higher in individuals with more severe disease.236,237,240 Among individuals with COPD, 

depression is associated with greater exacerbation, higher rates of hospital re-admission, decreased 

medication adherence, poorer quality of life, and increased mortality.236–238,242–247  

The biologic mechanism underlying the relationship between COPD and depression is unknown. 

Both disorders are highly heritable, with an estimated genetic heritability of 25-37% for COPD65 and 28-

51% for major depressive disorder (MDD).334–336 Heritability of lung function traits such as forced 

expiratory volume in one second (FEV1) and forced vital capacity (FVC), which are the basis for COPD 

diagnosis, are also high, with estimated heritability ranging from 18-50%.337–339 Systemic inflammation, 

hypoxemia and oxidative stress, and shared environmental risk factors, such as smoking, have been 

proposed as possible mechanisms linking these two conditions.238,248–250 Smoking is a major risk factor for 

 

 

 
1 This chapter is adapted from “Fate or Coincidence: Do COPD and Major Depression Share Genetic Risk Factors?” 

published in Human Mol. Gen. and has been reproduced with the permission of the publisher and my co-authors 

Bradley Richmond, Lea K. Davis, Timothy S. Blackwell, Nancy J. Cox, David Samuels, Digna Velez Edwards, and 

Melinda C. Aldrich. 
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COPD, and it may also be an independent risk factor for depression, though the direction of this 

relationship is still debated.250–252 Shared genetic risk factors have been investigated in a small number of 

studies.87,253–255 A candidate gene study for depression identified a small number of single nucleotide 

polymorphisms (SNPs) associated with increased COPD risk.253 A large-scale phenome-wide association 

study (PheWAS) conducted in the UK Biobank detected associations between lung function genomic loci 

and depressive symptoms.87 These studies suggest that the relationship between COPD and MDD may be 

due to pleiotropy, where a single SNP affects two or more distinct traits.186 However, a genome-wide 

association study (GWAS) of depressive symptoms in smokers with COPD did not identify any 

significant loci.254 A polygenic score (PRS) built from a genome-wide gene-by-environment interaction 

study of depressive symptoms identified a significant association with COPD, but the underlying model 

assumed an interaction between SNPs and stressful life events and therefore did not examine purely 

genetic effects.255 Further complicating the relationship between COPD and MDD is the presence of sex 

differences in both disorders. MDD is more prevalent in women, and women typically experience more 

severe depressive symptoms than men.340 Genetic studies of MDD have identified evidence of sex-

specific risk variants and transcriptional signatures.341,342 Women develop COPD at lower smoke 

exposure than men and may experience more severe disease and rapid respiratory decline compared to 

men with similar smoking exposure.343–345 We investigated the genetic relationship between COPD and 

MDD, using existing GWAS summary statistics to test for genetic correlation and pleiotropy between the 

traits. We leveraged electronic health records (EHR) linked to genotyping data to explore shared genetic 

associations between COPD and MDD using a PheWAS, an approach often used to examine relationships 

between comorbid conditions.346–348  We also performed sex-stratified analyses to investigate possible sex 

differences in the relationship between MDD and COPD. An overall schematic of our study design and 

methods is provided in Appendix 1, Figure 6-1. 
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3.2 Methods 

3.2.1 Study Population 

Our study population included participants in the Vanderbilt University Medical Center BioVU 

clinical repository (2007-2019). BioVU is a DNA biobank linked to de-identified EHR clinical data, 

dating back to the 1980s.291 We limited our study population to BioVU individuals of European ancestry 

defined by principal component analysis previously genotyped on the Illumina Infinium Multi-Ethnic 

Genotyping Array. Demographic data (sex, age at last record), smoking, International Classification of 

Disease (ICD)-9 and ICD-10 codes, and pulmonary function data (2011-2019) were extracted from 

structured fields in the EHR using natural language processing.  

We selected individuals of European ancestry using principal component analysis implemented in 

EIGENSTRAT.295,349 We performed standard quality control and imputed genotypes to the Haplotype 

Reference Consortium with the Michigan Imputation Server294. Genotypes were hard-called using default 

settings (probability greater than 0.1) in PLINK 1.9.296,350 

 

3.2.2 GWAS Summary Statistics 

To investigate potential pleiotropy between lung function and MDD, we used publicly available 

summary statistics from previously performed GWAS in individuals of European ancestry. Summary 

statistics were obtained from a large-scale GWAS of lung function (forced expiratory volume in one 

second [FEV1], forced vital capacity [FVC], FEV1/FVC, and peak expiratory flow [PEF])87 and from a 

meta-analysis of two genome-wide studies of MDD.351,352 

 

3.2.3 Genetic Correlation 

We calculated the overall genetic correlations (Rg) between traits using Linkage Disequilibrium 

Score Regression (LDSC) software and a reference linkage disequilibrium (LD) score panel derived from 

European 1000 Genomes populations.353,354 To calculate local genetic correlation, we used ρ-HESS with a 

European LD reference panel provided by the software authors.355 
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3.2.4 Polygenic Risk Scores 

To build PRS, we used PRS-CS  (polygenic risk score-continuous shrinkage) to estimate 

posterior effect sizes of SNPs with continuous shrinkage priors in each GWAS.356 We then applied the 

score function in PLINK 1.9296,350 to calculate a PRS for each individual in BioVU. PRS were normalized 

by subtracting the mean and dividing by the standard deviation. 

 

3.2.5 PheWAS 

We explored the relationship between each PRS and EHR phenotypes in a PheWAS.205 We 

performed logistic regression analysis to examine associations between PRS and 1,857 phecodes. 

Phecodes are defined by aggregating similar ICD-9 and ICD-10 billing codes200,201 and have been used 

extensively in prior studies.202,203,207,211,213–217,357–361 We mapped extracted ICD-9 and ICD-10 billing codes 

from BioVU to phecodes using the PheWAS R package.362 Phecodes with fewer than 20 cases were 

excluded from analyses. Models were adjusted for age at last visit, sex, smoking (ever/never), and 3 PCs 

estimated using EIGENSTRAT295,349 to adjust for potential confounding by genetic ancestry. We also 

performed sex-stratified PheWAS using the same parameters and covariates as in the main analysis, with 

the exception of sex as a covariate. A type 1 error rate of alpha = 0.05/1,857 phecodes = 2.69x10-5 was set 

for inference of statistical significance. 

 

3.2.6 Multi-trait Conditional Analysis 

We performed multi-trait-based conditional and joint analysis (mtCOJO) to investigate cross-

phenotype effects.363 We evaluated the change in effect size for SNPs in the FEV1/FVC GWAS before 

and after conditioning on MDD. We also implemented heterogeneity in dependent instrument outlier 

approach (HEIDI-outlier), incorporated into mtCOJO methods, to detect potentially pleiotropic SNPs.363 

We used the NHGRI-EBI GWAS Catalog364 and the NHLBI Genome-Wide Repository of Associations 

Between SNPs and Phenotypes365 to look up prior associations for identified SNPs.  
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3.3 Results 

3.3.1 Study Population 

Our BioVU study population consisted of 72,447 European ancestry individuals with 9,386,383 

SNPs. Approximately 5% of the BioVU population had a COPD phecode. COPD individuals were older 

(median age 68 years) and more male (53.5%) than the overall study population (median age 56 years and 

44.0% male). COPD patients had a higher prevalence of ever smoking (87.6%) than the overall BioVU 

population (49.8%). The prevalence of major depression (one or more depression phecodes) was higher in 

COPD patients (8.8%) than among patients without a diagnosis of COPD (3.5%) (Table 3-1). 

 

Table 3-1. Demographics of European ancestry BioVU population (2007 – 2019). 

Characteristic COPD Phecode 

(N = 3,466) 

No COPD Phecode 

(N = 68,981) 

Total 

(N = 72,447) 

Median age (IQR) 68 (60-76) 55 (35-68) 56 (36-68) 

Gender (N, %)    

    Female 1,615 (46.6) 38,969 (56.5) 40,584 (56.0) 

    Male 1,851 (53.4) 30,010 (43.5) 31,861 (44.0) 

    Missing 0 2 2 

Smoking status (N, %)    

    Ever 2,435 (83.9) 20,861 (41.2) 23,296 (43.5) 

    Never 455 (16.1) 29,741 (58.8) 30,207 (56.5) 

    Missing 565 18,379 18,944 

Major depressive disorder (N, %) 305 (8.8) 2,385 (3.5) 2,690 (3.7) 

COPD: chronic obstructive pulmonary disease 

 

3.3.2 Genetic Correlation Between MDD and Lung Function 

 We found low genetic correlations between MDD and lung function traits using LDSC. None of 

the genetic correlations between MDD and lung function were statistically significant. The strongest 

correlation between MDD and lung function was with PEF (Rg = -0.035, p=0.07). In contrast, we 

observed strong and statistically significant correlation between lung function traits (Table 3-2). Local 

genetic correlation showed statistically significant peaks in Rg on chromosome 6 for both FEV1/FVC 

(Bonferroni-corrected p-value = 8.62x10-3) and FEV1 and MDD (Bonferroni-corrected p-value = 4.38x10-
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6). However, the maximum correlation values were still small (maximum Rg for FEV1/FVC and MDD: 

3.86 x 10-4, maximum Rg for FEV1 and MDD: 3.36 x 10-4). 

Table 3-2. Genetic correlation between major depressive disorder and lung function traits. 

Phenotype 1 Phenotype 2 Rg P value 

MDD FEV1/FVC -0.0011 0.95 

MDD FEV1 -0.0325 0.07 

MDD FVC -0.0307 0.10 

MDD PEF -0.0351 0.07 

    

FEV1/FVC FEV1 0.4046 2.66 x 10-89 

FEV1/FVC FVC -0.0841 3.20 x 10-5 

FEV1/FVC PEF 0.6273 0 

    

FEV1 FVC 0.877 0 

FEV1 PEF 0.7058 0 

    

FVC PEF 0.4351 1.28 x 10-136 

FEV1: forced expiratory volume in one second, FVC: forced vital capacity, 

MDD: major depressive disorder, PEF: peak expiratory flow 

 

3.3.3 PheWAS Analyses with Lung Function and MDD PRS 

We built PRS for lung function (818,738 SNPs) and MDD (803,205 SNPs) from publicly 

available GWAS summary statistics for lung function measures and MDD. To confirm expected 

associations with lung function, we used linear regression to test for the association between the lung 

function PRS and their corresponding pre-bronchodilator lung function traits in a subset of BioVU 

patients with available lung function data. The PRS were robustly associated with the corresponding lung 

function traits (Appendix 1, Table 6-1). We performed a PheWAS using logistic regression models to 

examine associations between PRSs and 1,857 phecodes in the entire study population. Cases and 

controls were defined independently for each phecode, and phecodes with less than 20 cases were 

excluded (N = 438 phecodes). The lung function PRS were consistently associated with decreased COPD 

in the PheWAS (Table 3-3). Similar associations were observed in sex-stratified analyses, though the 

significance of the association varied between lung function phenotypes (Appendix 1, Figure 6-2 to 

Figure 6-5 and Table 6-11 to Table 6-18). The MDD-PRS was significantly associated with increased risk 
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of mood disorders (odds ratio [OR]=1.28, 95% confidence interval [CI]: 1.25-1.32; p=6.42x10-76) and 

MDD (OR=1.27, 95% CI: 1.22-1.32; p=1.41x10-31) when adjusting for age, sex, and the first 3 PCs 

(Table 3-3). In sex-stratified analyses, the MDD-PRS was also significantly associated with mood 

disorders and MDD (Appendix 1, Figure 6-6 and Table 6-9, Table 6-10). 

Table 3-3. Association of lung function and MDD PRS with COPD and MDD in European BioVU 

participants (2007 – 2019). 

In addition to the expected phenotype associations, we observed a significant association between 

the MDD-PRS and COPD when adjusting for age, sex, and the first 3 PCs (OR=1.13; 95% CI: 1.09-1.17; 

P value =3.72 x 10-12) (Table 3-3, Error! Reference source not found.A, Appendix 1, Table 6-3).  

Adjusting for smoking attenuated the association and was no longer statistically significant (OR=1.09; 

95% CI: 1.04-1.13; p=8.07x10-5) (Table 3-3, Error! Reference source not found.B, Appendix 1, Table 

6-4). Similar patterns were observed for both men and women in the sex-stratified analyses of PRS-MDD 

(Appendix 1, Figure 6-6 and Table 6-2, Table 6-9, Table 6-10). None of the lung function PRS were 

associated with MDD in the smoking adjusted or smoking unadjusted analyses (Table 3-3, Figure 3-1, 

Appendix 1, Table 6-5 to Table 6-8). Similarly, no significant associations between any of the lung 

PRS 

COPD MDD 

OR1 95% CI1 OR2 95% CI2 OR1 95% CI1 OR2 95% CI2 

FEV1 0.87 0.84-0.90 0.87 0.84-0.90 1.00 0.96-1.04 0.99 0.95-1.03 

FVC 0.94 0.91-0.98 0.95 0.91-0.99 1.00 0.96-1.04 0.99 0.95-1.03 

FEV1/FVC 0.83 0.81-0.86 0.83 0.80-0.87 1.00 0.96-1.04 1.01 0.97-1.05 

PEF 0.89 0.86-0.92 0.88 0.85-0.92 1.03 0.99-1.07 1.03 0.99-1.07 

MDD 1.13 1.09-1.17 1.07 1.03-1.12 1.27 1.22-1.32 1.24 1.19-1.30 

1Model adjusted for age, sex, first 3 principal components (N=72,445) 
2Model adjusted for age, sex, first 3 principal components, and ever smoking (N=53,503) 

COPD: chronic obstructive pulmonary disease, FEV1: forced expiratory volume in one second, FVC: 

forced vital capacity, MDD: major depressive disorder, PEF: peak expiratory flow; OR = odds ratio; CI = 

confidence interval 
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function PRS and MDD were observed in the sex-stratified analyses (Appendix 1, Figure 6-2 to Figure 

6-5 and Table 6-2, Table 6-11 to Table 6-18).  

 

3.3.4 Multi-trait Conditional Analysis to Detect Potential Pleiotropy 

We used mtCOJO to adjust MDD for the genetic effects of FEV1/FVC. The majority of SNPs 

showed little to no change in the effect estimate. The median percent change in the beta before and after 

conditioning was 0%, with an inter-quartile range of -6% to 5%. However, HEIDI-outlier identified three 

SNPs (rs12040241, rs7617480, rs12967855) with evidence of pleiotropy between MDD and FEV1/FVC 

(Appendix 1, Table 6-19). 

3.4 Discussion 

We evaluated the potential for shared genetic architecture between lung function and MDD. We 

did not observe a significant global genetic correlation between lung function traits and MDD, consistent 

Figure 3-1. Phenome-wide association study among BioVU participants (2007-2019) of (a) FEV1, (b) 

FVC, (c) FEV1/FVC, and (d) PEF polygenic scores, adjusted for age, sex, first three principal 

components, and ever smoking. 
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with prior work.72 In contrast, genetic correlations between lung function traits ranged from -0.08 to 0.87, 

similar to previous studies.87 Local genetic correlation did identify a small but statistically significant 

increase in genetic correlation on chromosome 6 in the human leukocyte antigen (HLA) region. This 

finding is consistent with the known role of inflammation and the immune system in both COPD366,367 and 

MDD368,369. We found that the PRS-MDD was significantly associated with COPD in our PheWAS, but 

this association was no longer statistically significant when controlling for smoking. Conversely, none of 

the lung function PRS showed a significant association with MDD in PheWAS analyses, suggesting little 

shared genetic architecture between lung function and MDD. However, using multi-trait conditional 

analysis, we identified three potentially pleiotropic SNPs. Interestingly, two of these SNPs were 

associated with both mood and smoking traits in a prior GWAS.370–375 An intronic variant in KLHDC8B, 

rs7617480, was previously identified as genome-wide significant in GWAS of smoking cessation370 and 

subjective well-being.371 The second SNP, rs12967855, an intronic variant in CELF4, was previously 

found to have genome-wide significant associations with lifetime smoking index372 and unipolar 

depression.373–375 

While we identified three potentially pleiotropic variants, our findings do not provide strong 

evidence for a shared genetic architecture between MDD and COPD. Smoking behaviors may contribute 

to the relationship between MDD and COPD.251,252,376 Cigarette smoking and nicotine dependence have 

been identified as potential confounding factors of the relationship between COPD and mood disorders,376 

and smoking may modify associations between COPD and depression.250 Among individuals with COPD, 

current smokers report higher rates of depression symptoms and have increased mortality risks compared 

to former smokers and individuals without depression.377,378 Previous studies have also shown that 

smokers with mental illness have higher mortality rates, particularly from respiratory conditions.377,379–381 

Further study is needed to understand the underlying mechanisms linking smoking, COPD, and 

MDD.(59–61) 

This study has several strengths and considerations. We used available summary statistics from 

large, well-powered GWAS to conduct our analyses.87,351,352 We also used the rich BioVU resource with 
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extensive clinical data allowing us to examine multiple phenotypes. Our study is limited by the inclusion 

of only European ancestry participants. PRS performance decreases in cross-ancestry analysis,382,383 and 

the limited number of lung function GWAS that have been conducted in African Americans have had 

small sample sizes with few genome-wide significant findings.86,98 Further research is needed to 

understand the genetic relationship between COPD and MDD in non-European descent populations. 

Another limitation of our study is the lack of a replication population to validate our findings. However, 

our findings are consistent with prior research.72,87 Finally, our study relied on EHR data, which can 

present challenges due to data missingness and misclassification.308,309,311–313 We chose to use phecodes to 

define phenotypes in our study, as previous research has demonstrated that phecodes better capture 

clinical disease than ICD codes alone.200 For the majority of phenotypes, we expect the effects of 

misclassification to be minimal or biased toward the null.384,385 We also encountered challenges due to 

missingness, particularly for smoking data (Table 3-1), which is prone to high rates of missingness and 

inaccuracies in EHRs.386–389 Individuals who were missing smoking data were younger and had a lower 

prevalence of COPD than those with available smoking information (Table 6-20), thus relying on 

complete case analysis may limit the generalizability of our findings. 

In conclusion, we found that the elevated prevalence of MDD in COPD cannot be solely 

explained by shared genetic risk factors. Our findings suggest a role for shared environmental or 

behavioral risk factors, such as smoking. We identified three potentially pleiotropic SNPs that can be 

prioritized in future studies of MDD and COPD. These findings require further investigation into the 

biological underpinnings between MDD and COPD to elucidate the causal mechanism underlying their 

relationship.  
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CHAPTER 4 

 

 Immunotherapy-Mediated Thyroid Dysfunction: Genetic Risk and Impact on Outcomes with 

PD-1 Blockade in Non-Small Cell Lung Cancer 
 

4.1 Introduction 

Immune checkpoint inhibitor (CPI) based therapy, which targets the adaptive immune system, is 

associated with remarkable long-term responses in a subset of cancers.390–392 Benefit from CPI therapy is 

affected by tumor-specific features, such as PD-L1 expression393,394 or tumor mutational burden395 and 

host-specific features associated with underlying immunity such as the microbiome396–398 and, possibly, 

the germline genetics of the host.399–403 

The dual role of CPIs in promoting T cell activation but also autoimmunity leads to a variety of 

clinically significant systemic autoinflammatory responses (immune related adverse events, irAEs) in a 

subset of individuals.404 The presentations of irAEs often mimic autoimmune conditions that occur 

spontaneously, but it is unclear if the underlying mechanism is shared or distinct despite the phenotypic 

similarity. Furthermore, it is uncertain whether and which irAEs are associated with CPI benefit. While 

some studies show an association between an irAE and improved outcomes,405–408 others do not,409,410 and 

some show worse outcomes.411,412 These conflicting findings may be due to factors such as (a) survivor 

bias (patients who respond to therapy and are on therapy longer are more likely to develop irAEs) and (b) 

heterogeneous cohorts (combining cancer types, irAEs with different pathophysiology, ranges of 

presentation/ severity and different types of treatment of irAEs). We hypothesized that examining a 

specific irAE in a single cancer type that is routinely observed early in the CPI treatment course would 

yield clarity on the relationship between irAE development, immunity, and CPI benefit. 

Thyroid irAEs occur early in the course of CPI exposure413,414 and are among the most common 

irAE, with a cumulative incidence of approximately 10% of patients on PD-1 blockade therapy.415,416 

Spontaneous autoimmune hypothyroidism is common and appears to be at least partially heritable.417,418 

Genome-wide association studies (GWAS) have identified many common variants contributing to risk.419  
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It is unclear whether hypothyroidism that occurs following PD-1 blockade therapy is genetically similar 

to hypothyroidism that occurs in the general population. Additionally, whether this genetic risk impacts 

PD-1 blockade benefit is unknown. 

To further understand the relationships between underlying autoimmunity, thyroid irAEs, and 

immunotherapy outcomes, we examined patients with non-small cell lung cancer (NSCLC) receiving PD-

1 blockade-based therapy in cohorts from 3 academic medical centers. To investigate the genetics of 

thyroid irAEs, we first developed a genetic predictor of spontaneous hypothyroidism in non-cancer 

patients. We used the UK Biobank, an open access resource containing genetic and health related traits 

from ~500,000 volunteers in the UK and built a polygenic risk score420 which integrates the information 

from many polymorphisms in the genome. We then validated that score in non-cancer patients in the 

Vanderbilt University biobank (BioVU). Finally, we evaluated whether genetic risk of sporadic 

hypothyroidism by GWAS is associated with incident hypothyroidism following PD-1 blockade and also 

evaluated the association between genetic risk and survival. 

 

4.2 Methods 

4.2.1 Patients 

This retrospective study was approved by the institutional review board at Memorial Sloan 

Kettering (MSK), Vanderbilt University Medical Center (VUMC), and Dana Farber Cancer Institute 

(DFCI). All patients at MSK and DFCI provided written informed consent for blood banking. Patients in 

this study had advanced NSCLC and received PD-1 blockade-based therapy (either PD-1 blockade 

monotherapy or in combination with CTLA-4 blockade). In the MSK cohort, 551 patients who received 

CPIs between 2011-2018 and had an available baseline blood sample were included (Table 4-1). In the 

VUMC population, 195 individuals who had received CPIs between 2009-2019 were identified from 

BioVU, VUMC’s DNA biobank linked to de-identified electronic health records.291 At DFCI, 561 

patients with NSCLC who received CPIs between 2013-2020 were examined. 
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For the germline genetic analysis, patients from MSK and VUMC (MSK and VUMC cohort) 

were analyzed together as they were both genotyped using the same GWAS array. Patients from DFCI 

were analyzed separately as an independent cohort. 

 

Table 4-1. Baseline patient characteristics and treatment details. 

Characteristic MSK 

(n = 551) 

VUMC 

(n = 193) 

DFCI 

(n = 561) 

Median age (IQR) – yr 67 (59-73) 63 (57-69) 67 (60-74) 

Biological sex – no. (%)    

   Female 291 (53) 74 (38) 313 (56) 

   Male 260 (47) 119 (62) 248 (44) 

Race, self-reported – no./total no. (%)    

   White 458/533 (86) 176/191 (92) 506/551 (92) 

   Black 39/533 (7) 11/191 (6) 22/551 (4) 

   Asian 34/533 (6) 2/191 (1) 17/551 (3) 

   Other 2/553 (<1)* 2/191 (1) 6/551 (1) 

   Unknown 18 2 10 

Ethnicity, self-reported – no./total no. (%)    

   Hispanic or Latino 18/545 (3) 2/186 (1) 10/561 (2) 

   Non-Hispanic or Latino 527/545 (96)* 184/186 (99) 551/561 (98) 

   Unknown 6 7 0 

Cigarette smoking status – no./total no. (%)    

   Former or current 472/551 (86) 166/188 (88) 363/421 (86) 

   Never 79/551 (14) 22/188 (12) 58/421 (14) 

   Unknown 0 5 140 

Histology – no. (%)    

   Adenocarcinoma 427 (78) 120 (62) 416 (74) 

   Non-adenocarcinoma 124 (22) 73 (38) 145 (26) 

Treatment – no. (%)    

   Anti-PD-(L)1 monotherapy 480 (87) 179 (93) 527 (94) 

   Anti-PD-(L)1 + CTLA-4 combination 71 (13) 14 (7) 34 (6) 

*Percentages may not add up to 100 due to rounding. IQR = interquartile range, PD-(L)1 = programmed cell 

death protein (ligand) 1, CTLA-4 = cytotoxic T-lymphocyte-associated protein 4 

 

4.2.2 Clinical Variables 

MSK medical records and pharmacy records were reviewed for age, self-reported demographics, 

smoking status, lung cancer histology, past medical history, and CPI treatment history. These elements 

were abstracted and entered into a clinical data sheet. VUMC data were extracted using MedEx or from 
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structured tables within existing de-identified medical records.421 All treatment dates underwent manual 

chart review by a trained thoracic oncology nurse, and data were entered into a REDCap database. 

  

4.2.3 Thyroid irAE Event 

A thyroid event after the start of CPI therapy was defined as either (1) incident hypothyroidism or 

(2) transient incident hyperthyroidism followed by incident hypothyroidism. Incident hypothyroidism was 

defined as (a) a TSH of ≥ 10 mU/L or (b) TSH of ≥ 5 mU/L with a new prescription of levothyroxine ≥ 

50 mcg. Incident hyperthyroidism was defined as TSH < 0.05 mU/L. Individuals with incident 

hyperthyroidism without subsequent hypothyroidism (N = 2) was excluded from the analysis due to 

testing shortly before patients transitioned to hospice with no additional follow up thereafter. A baseline 

history of hypothyroidism or hyperthyroidism was defined as documentation of a thyroid condition prior 

to the start of CPI therapy. We excluded these patients from the analysis due to the challenge in defining 

whether a thyroid irAE occurred. 

In the MSK cohort, medical records were manually reviewed to identify cases of thyroid events. 

Extracted laboratory and medication data were used to identify thyroid events in the VUMC population, 

with manual chart review confirmation. In the DFCI cohort, extracted laboratory and medication data 

were similarly used to identify thyroid events. 

  

4.2.4 Response Assessment 

In the MSK cohort, best overall response (BOR) was assessed by investigator-assessed Response 

Evaluation Criteria in Solid Tumors (RECIST) v1.1 from the start of CPI therapy to the date of tumor 

progression or death due to any cause. Progression-free survival (PFS) and overall survival (OS) was 

assessed from the date of start of CPI therapy. 

Due to the nature of the VUMC cohort data, direct PFS data were not available. Time on 

treatment, defined as the date of the last dose of CPI minus the date of the first dose of CPI, was used as a 
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proxy for PFS. OS data was not available due to de-identification of data precluding linkage to the 

National Death Index (NDI). 

In the DFCI cohort, overall survival (OS) was assessed from the date of start of CPI therapy, with 

linkage to the NDI up to 12/2019. Patients treated after the NDI check were censored at last contact at 

DFCI. The VUMC and DFCI cohorts did not have response assessment available. 

 

4.2.5 Genotyping of MSK and VUMC Samples 

Blood DNA from MSK and VUMC were genotyped on the Affymetrix Axiom Precision 

Medicine Diversity Array. Imputation was performed on the Michigan Imputation Server using the 1000 

Genomes Phase 3 v5 reference panel. Standard quality control measures were implemented to remove 

poorly genotyped samples (call rate < 95%), SNPs (genotyping rate < 95%), and rare variants (minor 

allele frequency < 0.005) prior to imputation.  After dropping samples with missing genotypes or low-

quality genotypes, we had a total of N = 729 (N = 536 from MSKCC and N = 193 from VUMC) in the 

genetics dataset.  

  

4.2.6 Genotype Imputation of DFCI Samples from Tumor Sequencing 

Samples from DFCI had tumor panel sequencing as part of routine clinical care from which 

germline variants were imputed using off-target reads. OncoPanel, a custom targeted hybrid capture 

sequencing platform, was used to assay genomic variation from tumor biopsies. Germline variant 

imputation was performed across all samples from raw sequence reads using the STITCH imputation 

software, which leverages ultra-low coverage read data together with the 1000 Genomes Phase 3 v5 

reference panel to infer probabilistic germline calls for the autosomal chromosomes. Quality control was 

performed to remove poorly imputed variants (INFO < 0.4) and rare variants (minor allele frequency < 

0.01).  

 

4.2.7 Polygenic Risk Assessment 
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Summary statistics were obtained from previous genome-wide association studies of 2 thyroid-

related phenotypic outcomes in the UK Biobank - self-reported hypothyroidism (22,500 individuals, 

436,818 controls)422 and thyroid medication use (H03A medication category; 24,835 individuals, 280,750 

controls).423 Polygenic risk scores (PRS) were constructed using LDpred, which estimates posterior mean 

effect sizes using Bayesian priors and linkage disequilibrium information.424 PRS weights will be made 

available at time of manuscript publication. 

  

4.2.8 Quality control of PRS in DFCI Samples 

A partially overlapping set of 833 patients with a variety of solid tumors seen at the DFCI had 

both OncoPanel next generation sequencing (as part of the same clinical cohort) and direct germline 

genotyping (as part of an orthogonal biobank). This set was used to validate the tumor imputed PRS. 

DNA samples were processed from whole blood and genotyped on the Illumina Multi-Ethnic Genotyping 

Array (MEGA), the Expanded Multi-Ethnic Genotyping Array (MEGA-Ex) array, and the Multi-Ethnic 

Global (MEG) BeadChip; imputed to the Haplotype Reference Consortium reference panel; and then 

restricted to ~1.1 million HapMap3 variants that typically exhibit high imputation accuracy across 

genotyping platforms. PRSs were inferred using the imputed variants that passed quality control in each 

respective study (i.e. no harmonization across the two platforms was imposed). 

 

4.2.9 External Validation of Polygenic Risk Score 

External validation of the PRS was performed in a population of 51,070 individuals of European 

descent with no cancer diagnosis in BioVU. European ancestry was determined using principal 

components analysis (PCA). Individuals in this cohort were genotyped on the Illumina MEGA-Ex array 

and subjected to standard quality control. Imputation was performed with the Haplotype Reference 

Consortium reference panel on the Michigan Imputation Server.294 PRS were calculated using the 

previously derived weights from LDpred and the score function in PLINK 1.9.296,350 Spontaneous 

hypothyroidism cases and controls were defined using phecodes, which aggregate similar ICD-9-CM and 
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ICD-10-CM. Individuals must have at least 2 ICD codes for hypothyroidism to be assigned a phecode, 

and individuals with other thyroid diseases were excluded from the control set. 

 

4.2.10 Ancestry Analysis 

We determined genetic ancestry using PCA in PLINK 1.9.296,350 PCA was conducted in each 

genotype data separately: the BioVU dataset without cancer and CPI (MEGA-Ex array), the MSK and 

VUMC cohorts (Affymetrix PMDA array), and the DFCI dataset which included imputed SNPs from low 

coverage sequencing. 

  

4.2.11 Statistical Analyses 

De-identified data on duration of treatment and vital status at the time of the database lock on 

October 1, 2020 for the MSK cohort was used for the survival analysis. Patients who did not experience 

the event of interest at the database lock were censored at the time of the last follow up date. Survival 

analyses for PFS and OS were performed using Kaplan-Meier time-to-event estimates. We also 

determined the association between incident thyroid events and PFS and OS using multivariate Cox 

regression. We ran the Cox regression encoding thyroid events as a dichotomous variable counting any 

thyroid event during therapy. In addition, to account for potential survival bias, we also conducted 

analyses in which thyroid events were tested as time-dependent covariates. As a sensitivity analysis, 

landmark analysis in patients with OS of at least 90 days was performed in the MSK cohort. Ninety days 

was chosen as it includes more than half of patients with a thyroid irAE event (n=37/65, 57%). All 

models included age, sex, and concurrent use of anti-CTLA-4 therapy as covariates. 

To test the association between prevalent hypothyroidism and PRS in BioVU (non-cancer 

patients), we used logistic regression models and adjusted for age at last visit, sex, and the first 10 

principal components to account for genetic ancestry. 

The association of PRS with incident hypothyroidism in the context of CPI therapy was tested 

using multivariate Cox regression with covariates for age, sex, and the first 10 principal components, and 
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hazard ratios (HRs) were computed per standard deviation of the PRS. In the DFCI cohort, additional 

technical covariates were included for sequencing panel version, whether the patient was sequenced after 

the start of therapy, and number of prior therapy lines. 

Receiver operating characteristic (ROC) curves were used to visualize how well the PRS model 

discriminated hypothyroidism events and area under the ROC curve (AUROC) was estimated to quantify 

the overall prediction accuracy of the PRS. All p-values were two-sided. Statistical analysis and data 

visualization was performed using R v4.0.3 (R foundation for Statistical Computing, Vienna, Austria) 

with RStudio v1.3.1093. 

A summary of the methods is illustrated in Appendix 2, Figure 6-7. 

  

4.2.12 Individual Variant Testing 

To better understand the shared biology between thyroid irAEs and spontaneous hypothyroidism, 

we analyzed the association with individual SNPs and thyroid irAEs. We focused on 16,751 SNPs that 

were noted to be genome-wide significant (p<5x10-8) from the UK Biobank dataset in the GWAS for self-

reported hypothyroidism since the UK Biobank is so well-powered. Of these, we filtered on minor allele 

frequency >0.01 and imputation quality R2>0.5 in the MSKCC and VUMC GWAS dataset, leaving 

16,132 SNPs. We tested the association of these SNPs with thyroid irAEs using Cox models, adjusted for 

age, sex, and ancestry as estimated by principal components (Appendix 2, Table 6-21). To determine the 

appropriate level for multiple hypothesis testing correction, we used the LD clump feature in PLINK and 

used a threshold of R2>0.5 to identify the number of effectively independent regions tested, with a result 

of N = 1,057. Therefore, we used a multiple hypothesis testing correction of 0.05/1057 or 4.73 x 10-5 to 

account for multiple testing. All p-values were two-sided. To characterize potential function of a variant 

we used an online resource which includes distance from transcriptional start site, expression quantitative 

trait locus (eQTL) data and promoter Hi-C results (https://genetics.opentargets.org/)425 and the GTEx 

consortium data (https://www.gtexportal.org/home/).426  

 

https://genetics.opentargets.org/
https://www.gtexportal.org/home/
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4.3 Results 

4.3.1 Study Population for Analysis 

We identified 3 cohorts of patients with NSCLC who received CPI for our analysis: 551 

individuals from MSK (MSK cohort), 193 individuals from VUMC (VUMC cohort), as well as 561 

individuals from DFCI (DFCI cohort). The median follow-up time was 18.7 months (IQR: 7.5-44.4 

months) for the MSK cohort, 11.1 months (IQR: 4.1-31.8 months) for the VUMC cohort, and 12.0 

months (IQR: 4.3-26.2 months) for the DFCI cohort. Thyroid dysfunction, as defined by either 

hypothyroidism or hyperthyroidism with progression to hypothyroidism, occurred in 12% (n=65/551) of 

patients in the MSK cohort and was found to be an early event after CPI start, occurring within a median 

of 2.4 months (IQR: 1.4-4.2 months). Thyroid dysfunction occurred in 16% (n= 31/195, median of 4.1 

months, IQR: 1.6-7.9 months) and 7% (n=42/561, median of 5.8 months, IQR: 4.8-13.1 months) of the 

patients in the VUMC and DFCI cohorts, respectively. 

Age (median, interquartile range [IQR]: 67, 59-73 MSK; 63, 57-69 VUMC; 67, 60-74 DFCI), 

race and ethnicity, and smoking status (former or current: 86% MSK, 88% VUMC, 86% DFCI of patients 

where information is available) was similar across sites (Table 4-1). There were slight differences in 

gender (Female: 53% MSK, 38% VUMC, 56% DFCI). Adenocarcinoma was the most common histology 

(78% MSK, 62% VUMC, 74% DFCI) at the three sites, and most patients received anti-PD-(L)1 

monotherapy (87% MSK, 93% VUMC, 94% DFCI). A small fraction of patients (13% at MSK, 7% at 

VUMC, 6% at DFCI) received anti-PD-(L)1 and anti-CTLA-4 combination therapy. 

 

4.3.2 Thyroid irAEs Are an Early Event and Associated with Longer Survival 

We first examined the association between thyroid irAEs and response in the MSK (BOR, PFS, 

and OS) and VUMC (PFS) cohorts, as these cohorts had manually abstracted outcome data. We did this 

by comparing patients with thyroid irAEs and those who neither had a history of hypothyroidism nor 

thyroid irAEs.  
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Table 4-2. Hazard ratios of the effect of thyroid irAEs on progression-free survival in the combined 

MSK+VUMC cohort. Models were adjusted for age, sex, and combined anti-PD-(L)1 + anti-CTLA-4 

therapy. 

 Progression-Free Survival 

Analysis aHR 95% CI p-value 

Standard Cox regression analysis 0.42 0.33-0.54 6x10-12 

Time-dependent analysis 0.68 0.52-0.88 4x10-3 

aHR = adjusted hazard ratio 

 

Compared to those without a thyroid event, individuals with thyroid irAEs had a higher objective 

response rate (MSK cohort: 38/65, 58% vs 110/486, 23%, p<0.0001 Fisher’s exact) and longer PFS 

(combined MSK+VUMC cohort: 54% vs 19% progression-free at 1 year, 13% vs 3% progression-free at 

3 years) and OS (MSK cohort: 85% vs 56% alive at 1 year, 35% vs 14% alive at 3 years) (Figure 4-1). 

The adjusted HR for PFS for thyroid irAEs in the combined cohort were 0.42 (95% CI: 0.33-0.54) and 

0.68 (95% CI: 0.52-0.88) in our standard Cox and time-dependent analysis, respectively (Table 4-2). We 

found that 57% (n=37/65) of thyroid dysfunction events occurred within 90 days of CPI start in the MSK 

cohort. As a sensitivity analysis, we examined whether the same relationship held by only examining the 

patients who had OS longer than 90 days in the MSK cohort (86%, 475/551). Thyroid irAEs remained 

significantly associated with PFS (49% vs 20% at 1 year, 14% vs 4% at 3 years, HR: 0.50, 95% CI: 0.33-

0.74) and OS (73% vs 62% alive at 1 year, 30% vs 15% alive at 3 years, HR: 0.59, 95% CI: 0.38-0.94) 

(Appendix 2, Figure 6-8).  In individuals with available PD-L1 expression data (n = 320), thyroid irAEs 

remained significantly associated with PFS (HR: 0.39, 95% CI: 0.26-0.58) and OS (HR: 0.36, 95% CI: 

0.22-0.58) when adjusting for PD-L1 expression. 

Given this highly significant relationship between development of thyroid irAEs and multiple 

objective measures of response demonstrating clinical benefit of CPIs, we evaluated whether a hereditary 

predisposition to development of hypothyroidism could predict thyroid irAEs as well as CPI benefit. 
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4.3.3 Polygenic Risk Score for Thyroid Disorders Is Associated with Developing Thyroid irAEs 

We next asked whether predisposition to a baseline thyroid condition is associated with 

developing thyroid irAEs. We developed a PRS for thyroid disorders using the UK Biobank. We used 

two different phenotypic proxies for thyroid disease: self-reported hypothyroidism and thyroid medication 

use and developed PRS for each of these using LDpred. The SNP weights for these PRSs were highly 

correlated (Pearson correlation = 0.9). We validated these PRSs using participants who were not included 

in our VUMC lung cancer and immunotherapy cohort but had genotypes available in the VUMC BioVU 

population (non-cancer patients). Since the UK Biobank is predominantly of European ancestry, we 

restricted the VUMC BioVU to those who were of European ancestry. Overall, there was a strong 

association of each individual PRS with hypothyroidism (AUROC = 0.6 for both) (Appendix 2, Figure 

6-9A) with an odds ratio/standard deviation of 1.33 (95% CI 1.29-1.37) for the PRS for self-reported 

hypothyroidism and an increased odds ratio by decile (Appendix 2, Figure 6-9B). We then applied these 

Figure 4-1. Thyroid irAEs as a predictor of PFS in the combined MSK+VUMC cohort and OS in the 

MSK cohort. Kaplan-Meier survival curves are unadjusted and compare those who had a thyroid irAE to 

those who did not have a thyroid irAE. The x-axis reflects time from start of CPI therapy. 
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PRSs to our discovery cohort. Since the effect sizes for these 2 PRSs were highly correlated, we focused 

primarily on the PRS for self-reported hypothyroidism (hypothyroidism PRS) from the UK Biobank. 

The hypothyroidism PRS was significantly associated with development of thyroid irAEs in the 

MSK+VUMC cohort (Figure 4-2A), and it had similar performance for predicting thyroid irAEs 

(AUROC = 0.6) in comparison with its performance in the VUMC BioVU cohort (spontaneous 

hypothyroidism). The thyroid medication PRS from UK Biobank had similar performance (Appendix 2, 

Figure 6-10). In a Cox regression model adjusted for age, sex, and the first ten principal components, the 

HR per standard deviation for the hypothyroidism PRS was 1.34 (95% CI: 1.08-1.66; p = 8.73x10-3), with 

similar effect sizes seen for the other PRS (Table 4-3). The hypothyroidism PRS results remained 

significant after removing individuals who received combination CPI therapy (HR: 1.34, 95% CI: 1.07-

1.69, p = 0.01) and only including individuals of European ancestry (HR: 1.27, 95% CI: 1.02-1.59, p = 

0.03). Additionally, when examining the PRS by tertile, individuals in the highest tertile PRS scores had 

higher rates of hypothyroidism events than the first and second tertile (Figure 4-2A; Appendix 2, Figure 

6-10). 

We sought to replicate these PRS associations in the DFCI cohort. First, we confirmed that the 

PRS was imputed accurately from tumors using a separate set of 833 benchmark individuals with both 

tumor sequencing and germline SNP array data available (see Methods): the correlation between the 

tumor imputed PRS and the germline ground truth PRS was >0.87 for all PRSs evaluated, with no visible 

outliers (Appendix 2, Figure 6-11). Next, we tested each PRS for association with the time to thyroid 

irAE: both PRSs were significantly associated, with the PRS for self-reported hypothyroidism yielding an 

HR of 1.39 (95% CI 1.07-1.82; p=0.01 by Cox regression) (AUROC=0.64) with similar effect sizes seen 

for the other PRS (Figure 4-2B; Appendix 2, Figure 6-12). 
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Table 4-3. PRS as a predictor of CPI-induced thyroid irAEs in the MSK+VUMC cohort. HRs of the effect 

of PRS as a predictor of thyroid irAEs in the combined MSK+VUMC cohort. Cox regression model was 

adjusted for age, sex, and the first ten principal components. 

PRS Phenotype aHR 95% CI p-value 

Hypothyroidism 1.34 1.08-1.66 8.73x10-3 

Thyroid medications 1.32 1.07-1.63 9.98x10-3 

aHR = adjusted hazard ratio 

 

Figure 4-2. Hypothyroidism PRS (using self-reported hypothyroidism) as a predictor of CPI-induced thyroid 

irAEs in the (A) MSK+VUMC cohort and (B) the DFCI cohort. The left panel shows the ROC curve and right 

panel shows time to event by PRS tertile. P-values for the three curves are calculated using a log-rank test. 
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4.3.4 Analysis of individual loci associated with thyroid irAEs 

As an exploratory analysis, we evaluated whether any of the genome-wide significant 

associations identified in the UK Biobank for self-reported hypothyroidism are also individually 

associated with thyroid irAEs. After filtering on minor allele frequency and imputation quality, we tested 

each of 16,132 significant UK Biobank SNPs for association with hypothyroidism irAEs in the 

MSK+VUMC cohort (Appendix 2, Table 6-21).  Of these, 1,502 of were nominally associated (p<0.05) 

with thyroid irAEs and exhibited significant sign consistency (1,143/1,502 were associated in the same 

direction) underscoring the shared genetic effect observed through the PRS. One SNP, rs9268543 

(p=7.5x10-7), surpassed stringent Bonferroni correction, even though the MSK+VUMC cohort was orders 

of magnitude smaller than the UK Biobank and thus underpowered for individual variant discovery. This 

SNP falls within the HLA locus and has been associated with numerous other autoimmune traits.427,428 

This variant is also an expression quantitative trait locus (eQTL) for several genes at this locus, most 

strongly for HLA-DQA2.426 

  

4.3.5 PRS for Hypothyroidism Is Not Associated with PFS or OS 

Lastly, we assessed whether PFS for hypothyroidism was associated with CPI response. Despite 

the association between both PRSs and thyroid irAEs, neither PRS was significantly associated with PFS 

or OS in the MSK cohort (Appendix 2, Table 6-22; Appendix 2, Figure 6-13A). Likewise, in the DFCI 

cohort no significant association between PRS and OS was observed (Appendix 2, Figure 6-13B). 

 

4.4 Discussion 

We examined the associations between hereditary predisposition for spontaneous 

hypothyroidism, thyroid irAEs, and benefit from CPI treatment with the goal of inferring whether there 

may be shared biology. Thyroid irAEs occurred early during treatment, and those who developed this 

irAE were more likely to have a beneficial initial response and to achieve a longer duration of response to 
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CPI therapy compared to those who did not. We developed a PRS for hypothyroidism that performed 

similarly in predicting development of spontaneous hypothyroidism in the general population and thyroid 

irAEs in multiple patient cohorts. However, the PRS did not predict benefit from immunotherapy. 

We saw a rapid onset of thyroid irAEs in the MSK and VUMC datasets. In the DFCI dataset, 

thyroid events occurred on average later, but this could have been due to the later and less frequent TSH 

measurements in this cohort and despite this the PRS performed similarly in the DFCI cohort. The rapid 

onset of thyroid irAEs in the MSK dataset and VUMC datasets in a genetically predisposed population 

and our previous work on finding shared auto-antibodies413 suggests that the checkpoint inhibitors 

unmasked a pre-existing subclinical autoimmune condition suppressed by immune checkpoints.  

A potential limitation of our study is survivor bias, or time from CPI start to development of 

thyroid irAEs. However, this irAE consistently occurred early after CPI start and survivor bias was 

adjusted for in time-dependent and landmark analyses. We found thyroid irAEs significantly associated 

with multiple markers of response: BOR, PFS, and OS. Additionally there is plausibility that tipping 

immunologic homeostasis of immune tolerance with CPI therapy not only leads to indirect cancer cell 

cytotoxicity but also potentiates (or drives) development of anti-thyroid antibodies leading to thyroid 

irAEs. Therefore, we infer there exists a shared immunologic mechanism that drives both thyroid irAEs 

and CPI benefit leading to improved survival. Furthermore, there are other cancer therapy settings in 

which development of thyroid dysfunction is associated with response to treatment (e.g. IL-2).429 

Another limitation of our analyses is that our PRS was developed in UK Biobank which includes 

participants who are predominantly of European ancestry. The cohorts of CPI-treated patients we tested 

were also predominantly of European ancestry. Since PRS may not generalize well across different 

ancestry populations301 the PRS we tested may not work to predict irAEs in non-European ancestry 

populations. Larger studies of patients on CPI in non-European ancestry populations are needed to 

understand the genetics of treatment benefit and irAEs in these populations. 

The underlying factor leading to thyroid irAEs and CPI benefit may have a hereditary origin, an 

environmental origin, or may be a combination of multiple factors. Our PRS developed for spontaneous 
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hypothyroidism, a diagnosis that generally has an autoimmune etiology, was able to perform similarly 

well in predicting thyroid irAEs. This supports a shared biological mechanism encapsulated by the PRS 

driving autoimmune hypothyroidism and thyroid irAEs. In short, this suggests there exists genetic 

polymorphism-based hereditary factors that contribute to developing thyroid irAEs. Our results suggest 

that other irAEs may be predictable using analogous PRS for similar clinical phenotypes. 

Our analyses may also be useful to help understand the mechanisms that underlie thyroid irAEs. 

To examine shared loci, we focused on the large, well-powered UK Biobank as the discovery GWAS, and 

investigated which SNPs replicated in our MSK+VUMC cohort. We found that one loci was associated 

with thyroid irAEs after stringent multiple test correction. The HLA locus with the top variant 

(rs9268543) was previously associated with many autoimmune diseases, including rheumatoid arthritis,427 

inflammatory bowel disease428 and with hypothyroidism and type 1 diabetes in the UK Biobank.  The 

overlap between HLA genetic variants for spontaneous hypothyroidism and thyroid irAEs suggests that at 

least some of the antigens underlying the disorder overlap. This variant is an attractive target for 

downstream experimental analysis to understand the mechanisms of irAEs. Future studies with larger 

sample sizes may help to identify additional shared loci between spontaneous hypothyroidism and thyroid 

irAEs and possibly to identify new loci at which the genetics do not overlap. 

Our hypothyroidism PRS did not distinguish between those benefiting and not benefiting from 

CPIs. This suggests that in contrast to inherited factors, metabolic, epigenetic or environmental factors 

(e.g. shared exogenous exposures among those who benefit/do not benefit from CPI that shape the 

adaptome over time) play a larger role in driving the mechanism behind thyroid irAEs and CPI benefit. 

Additionally, the present analysis may be underpowered to detect the difference. Since the PRS for 

hypothyroidism had an AUROC of ~0.6, larger cohort sizes may be needed to overcome the 

heterogeneity of environmental factors. The association between thyroid irAEs and treatment response 

could also be due to inherited genetic factors that are not captured by the PRS. The PRS developed from 

UK Biobank was developed exclusively from common genetic variants and does not capture the effect of 

rare genetic variants. Since rare variants may contribute a large fraction of heritability for some complex 
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traits,430,431 future studies using whole genome sequencing data may reveal a relationship between 

heritable genetic variation for thyroid irAEs and CPI benefit.  An alternative explanation may be that the 

genetic contribution captured by the PRS may solely reflect a “branch” off target effect of CPI therapy 

(e.g. cross presentation of shared antigens that are not associated with CPI benefit) decoupled from the 

adaptive immune mechanisms of CPI therapy that lead to improved outcomes. If the latter explanation is 

correct, it would suggest that the genetic component of an individual’s cancer-immune set point may not 

be the same factors that confer autoimmune thyroid disease risk. 

Individual irAEs have distinct disease kinetics that differentially affect survival bias and varied 

severity ranging from subclinical to life-threatening404 - unsurprisingly, not all are consistently associated 

with CPI benefit.409,432,433 Our finding that development of thyroid irAEs secondary to PD-1 blockade-

based therapy is associated with CPI benefit is similar to what has been seen in the literature.434 Thyroid 

irAEs occur early, are common, and can be treated with thyroid hormone supplementation, making it an 

early clinical signal suggestive of long-term benefit from CPI therapy. 

Genetic predisposition to irAEs has previously been examined in studies associating irAE risk 

with human leukocyte antigen (HLA) genes435–438 and/or individual SNPs.439 Only one other study has 

examined these associations using PRSs, which is more reflective of underlying susceptibility to 

autoimmune disease.440,441 Our findings differ from this study of genetics of autoimmune skin conditions 

and survival.442 Khan et al. developed a PRS of autoimmune dermatologic conditions and applied the 

PRSs to a clinical trial of PD-1 blockade in bladder cancer. Similar to our results, they found an 

association between the autoimmune PRSs and irAE. In contrast to our findings where hypothyroid PRSs 

were not associated with CPI benefit, dermatologic PRSs were associated with overall survival in patients 

receiving CPI therapy.442 This suggests predisposition for specific autoimmune diseases differentially 

impacts immunotherapy benefit. 

In summary, in this study of patients from three academic centers, we found that developing 

thyroid irAEs was robustly associated with benefit from CPI therapy. Genetic predisposition measured by 

PRSs for spontaneous - immune-mediated - hypothyroidism was associated with the irAE but did not 
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predict CPI benefit, suggesting distinct immune pathways driving underlying genetic risk for 

hypothyroidism and benefit from CPI. Large scale and mechanistic studies are needed to elucidate 

underlying pathways linking genetic risk, specific irAEs, and therapeutic response. Understanding the 

relationships and biological underpinnings of these processes are critical for both advancement of 

precision immunotherapy and development of new therapies for our patients. 
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CHAPTER 5 

 

 Conclusion and Future Directions 

 

5.1 Summary of Findings 

 The goal of this dissertation was to utilize genetic techniques to understand the relationships 

between lung cancer, COPD, and comorbid conditions using DNA biobanks linked to electronic health 

records. The three aims were as follows: 

1. Develop a phenotyping algorithm to identify COPD cases in EHR (Chapter 2) 

2. Examine the genetic relationship between COPD and MDD within an EHR (Chapter 3) 

3. Investigate genetic predictors of thyroid irAEs in lung cancer patients treated with 

immunotherapy in an EHR (Chapter 4) 

In the first aim, we used the Synthetic Derivative, a de-identified version of Vanderbilt University 

Medical Center’s EHR, to develop two phenotyping algorithms for COPD. The code-only algorithm used 

ICD codes to define cases and controls, while the code+keyword algorithm included text from the 

problem list in addition to ICD codes to define cases. Both algorithms have unique advantages and 

disadvantages. The code-only algorithm relied solely on structured data, making it easy to implement. In 

addition, ICD codes are widely used across the world, making the algorithm easily portable between EHR 

systems.443 However, the code-only algorithm introduced the potential for more misclassification, as the 

specificity (71.9%) and PPV (60.9%) in the validation set were lower than the code+keyword algorithm 

which displayed improved specificity (94.1%) and PPV (88.6%). The more stringent criteria reduced the 

number of COPD cases identified by the algorithm in the Synthetic Derivative from 28,520 with the code-

only algorithm to 12,622 cases. Furthermore, the use of “oxygen” as a keyword inherently biased our 

cases to those with more severe disease (Figure 2-3). The choice of which algorithm to use will ultimately 

depend on the setting, as the balance between sample size, ease of implementation, and potential 

misclassification will vary across research applications.  
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The second aim focused on the relationship between COPD and MDD. We used summary 

statistics from previous GWAS to evaluate the genetic correlation between these often comorbid 

conditions and found the genetic correlation to be low. We leveraged BioVU, a DNA biobank linked to 

the Vanderbilt Synthetic Derivative, to develop PRSs for both lung function and MDD and to perform 

PheWAS. Although the MDD-PRS was significantly associated with COPD, the strength of the 

association was attenuated when controlling for smoking. Furthermore, the lung function PRS were not 

associated with MDD. Overall, our findings suggest that the relationship between COPD and MDD is not 

due to shared genetic risk factors. The influence of smoking on our findings supports further research into 

the relationship between smoking, COPD, and depression. In addition to being a major risk factor for 

COPD, smoking has been found to be independently associated with MDD.250–252 By demonstrating a 

weak genetic relationship between COPD and MDD, our findings encourage research into other 

explanations for the comorbidity between the two traits, which may ultimately help determine better 

diagnostic or treatment methods for individuals with both COPD and MDD. 

In the final aim, we explored the role of genetics in the development of irAEs in individuals with 

lung cancer treated with PD-1/PD-L1 immunotherapy with or without combined CTLA-4 

immunotherapy. We focused on hypothyroid events, as these are one of the most common irAEs,415,444 

typically occur early after treatment,413–415 and can be easily diagnosed with routine lab tests.175,445 In our 

cohort, hypothyroid irAEs were associated with improved progression-free and overall survival, 

consistent with previous studies on the positive prognostic impact of irAEs.174,176–178 We built a PRS using 

summary statistics from a GWAS of hypothyroidism in the general population, and we found that the 

PRS was significantly associated with the development of a thyroid irAE. This suggests that the 

development of thyroid irAEs is at least in part due to an underlying increased genetic risk for 

hypothyroidism. However, our PRS was not associated with progression-free or overall survival, 

indicating that the positive prognostic impact of thyroid irAEs is not solely driven by genetic risk factors. 

Overall, these findings provide valuable insight into the biology of thyroid irAEs in NSCLC individuals 

treated with immunotherapy. 
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5.2 Limitations 

 One major limitation of our study is the lack of population diversity. Our analyses were primarily 

limited to individuals of European descent. Poor representation of non-European populations is a 

widespread problem in biomedical and genetics research.223,224,446 Due to the demographics of the 

Vanderbilt University Medical Center patient population, our non-European sample sizes are small, 

limiting our ability to perform robust statistical analyses in these populations. Research in diverse 

populations is a priority in biomedical research. Racial and ethnic disparities have been identified across a 

range of clinical phenotypes and health outcomes.447,448 Differences in allele frequencies between ancestry 

groups can have important ramifications for clinical practice, as variants associated with severe drug 

reactions have been identified at high frequencies in certain genetic ancestries.223,224 Linkage 

disequilibrium patterns also vary between populations. In GWAS, variants identified as significant are not 

necessarily the causal SNP, but rather may be SNPs in high linkage disequilibrium with the causal SNP. 

This can lead to failure to replicate findings in other ancestry populations where the strength of the 

linkage between the tag SNP and the causal SNP is not as strong.224 Gene-gene interactions and gene-

environment interactions may also vary across ancestries, leading to differences in genotype-phenotype 

associations.224 While our findings provide important insight into the genetic relationships between 

COPD, lung cancer, and comorbid traits, the generalizability of these findings across populations is 

unknown. 

 A second limitation of this project is the reliance on EHR data. Inconsistencies in documentation, 

data missingness, and inaccuracies in the clinical record pose challenges for EHR research.305–313 ICD 

codes were designed for billing purposes, so they are not always the most accurate tools for secondary 

research use.316–318 In addition, tertiary care centers such as Vanderbilt University Medical Center often 

contain denser clinical data for individuals with more severe disease, which can bias findings.313 To 

address these issues, our code-only COPD phenotyping algorithm required the presence of multiple ICD 
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codes, and our code+keyword algorithm included information beyond ICD codes, which has been shown 

to improve phenotyping accuracy.316,318 For both algorithms, we demonstrated that the association 

between COPD case status and epidemiologic and genetic risk factors was consistent with previous 

research. Furthermore, we implemented a medical home definition to help mitigate differences in 

documentation density between our case and control sets. In our PRS and PheWAS analyses, we relied on 

phecodes for phenotype definition, which have been shown to be more accurate than ICD codes alone.449 

For our study of irAEs in NSCLC, all charts underwent clinical review to ensure accuracy of diagnoses 

and treatment dates. Overall, we implemented several strategies to minimize the impact of EHR 

misclassification on our findings. 

 

5.3 Future Directions 

 The research presented in this dissertation expands our understanding of the genetic relationships 

between COPD, lung cancer, and comorbid conditions and presents opportunities for future research. The 

phenotyping algorithm we developed in the first aim enables a wide range of research applications, 

including epidemiologic, genetic, and clinical research opportunities for COPD studies. EHRs have been 

identified as a valuable tool for addressing gaps in COPD research,219,220 and our phenotyping algorithm 

will empower continued research on COPD. Findings in our second and third aim provide a foundation 

for additional research on the relationship between COPD and MDD, such as possible role of systemic 

inflammation, hypoxemia or oxidative stress, smoking, and other environmental risk factors.238,248–250 Our 

finding that a hypothyroidism PRS predicts thyroid irAEs but not improve survival in NSCLC warrants 

further study to identify other factors that may be involved in the survival benefit associated with thyroid 

irAEs. Finally, replication of our findings in diverse populations is necessary to identify potential 

differences in the genetic relationships between COPD and MDD and genetic risk for thyroid irAEs in 

non-European ancestry populations. 
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 Overall, this project contributes important knowledge to the fields of COPD and lung cancer 

research. COPD and lung cancer are major contributors to morbidity and mortality worldwide. By 

leveraging genetic tools, we were able to improve our understanding of these diseases, which will 

ultimately lead to better diagnostic, treatment, and prevention strategies. 
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CHAPTER 6 

 

 Appendices 

 

6.1 Appendix 1 

 

Figure 6-1. Overall study design. 

MDD: major depressive disorder, GWAS: genome-wide association study, PRSs: polygenic risk scores, 

PRS-CS: polygenic risk score-continuous shrinkage, PheWAS: phenome-wide association study 
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Figure 6-2. Sex-stratified phenome-wide association study results for FEV1 PRS in A) women and B) 

men in BioVU, adjusted for age, first 3 principal components, and ever smoking. 
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Figure 6-3. Sex-stratified phenome-wide association study results for FVC PRS in A) women and B) men 

in BioVU, adjusted for age, first 3 principal components, and ever smoking. 
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Figure 6-4. Sex-stratified phenome-wide association study results for FEV1/FVC PRS in A) women and 

B) men in BioVU, adjusted for age, first 3 principal components, and ever smoking. 
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Figure 6-5. Sex-stratified phenome-wide association study results for PEF PRS in A) women and B) men 

in BioVU, adjusted for age, first 3 principal components, and ever smoking. 
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Figure 6-6. Sex-stratified phenome-wide association study results for MDD PRS in A) women and B) 

men in BioVU, adjusted for age, first 3 principal components, and ever smoking. 
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Table 6-1. Association of polygenic risk scores with pulmonary function measures. 

Phenotype 

Pre-bronchodilator PFT Post-bronchodilator PFT 

Beta SE P Beta SE P 

FEV1 0.10 0.01 7.71x10-15 0.08 0.02 1.08x10-4 

FVC 0.10 0.02 2.55x10-10 0.08 0.02 3.21x10-4 

FEV1/FVC 2.58 0.19 <2x10-16 2.64 0.36 5.52x10-13 

PEF 0.25 0.04 1.37x10-11 0.19 0.06 2.23x10-3 

 

Association tests were performed with the PFT corresponding to the PRS phenotype (eg, FEV1-PRS was tested for associations with pre- and post-

bronchodilator FEV1). Analyses were adjusted for age at last visit, sex, ever smoking, and the first 3 PCs.  
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Table 6-2. Sex-stratified phenome-wide association between MDD and lung function PRS and phenotypes of interest among BioVU participants 

(2007-2019). 

PRS 

COPD MDD 

OR1 95% CI1 OR2 95% CI2 OR1 95% CI1 OR2 95% CI2 

Women   

FEV1 0.88 0.83-0.92 0.88 0.83-0.93 1.01 0.97-1.06 1.01 0.96-1.06 

FVC 0.96 0.92-1.01 0.98 0.92-1.04 1.01 0.97-1.06 1.01 0.96-1.06 

FEV1/FVC 0.83 0.79-0.87 0.82 0.78-0.87 1.00 0.95-1.05 1.01 0.96-1.06 

PEF 0.87 0.83-0.92 0.86 0.81-0.91 1.03 0.99-1.06 1.04 0.98-1.09 

MDD 1.13 1.08-1.19 1.09 1.02-1.15 1.27 1.21-1.33 1.27 1.19-1.35 

Men   

FEV1 0.86 0.82-0.90 0.86 0.82-0.91 0.97 0.91-1.04 0.95 0.89-1.02 

FVC 0.93 0.88-0.97 0.93 0.88-0.98 0.97 0.91-1.04 0.95 0.89-1.02 

FEV1/FVC 0.84 0.80-0.88 0.84 0.80-0.89 1.00 0.94-1.07 1.01 0.94-1.08 

PEF 0.91 0.87-0.95 0.91 0.86-0.96 1.02 0.96-1.09 1.01 0.95-1.09 

MDD 1.13 1.08-1.19 1.08 1.02-1.15 1.26 1.18-1.35 1.21 1.12-1.32 

1Model adjusted for age, first 3 principal components (Women, N = 40,584; Men, N = 31,861) 
2Model adjusted for age, first 3 principal components, and ever smoking (Women, N = 30,515; COPD and MDD men, N = 22,988) 

 

COPD: chronic obstructive pulmonary disease, FEV1: forced expiratory volume in one second, FVC: forced vital capacity, MDD: 

major depressive disorder, PEF: peak expiratory flow; OR = odds ratio; CI = confidence interval 
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Table 6-3. Phenome-wide association results passing Bonferroni significance for MDD-PRS, adjusted for age at last visit, sex, and first three 

principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

296 1.28 1.25 1.32 6.42E-76 6591 44955 Mood disorders mental disorders 

300 1.25 1.22 1.29 1.06E-57 5909 44955 Anxiety disorders mental disorders 

296.2 1.28 1.24 1.32 1.32E-55 4771 44955 Depression mental disorders 

300.1 1.23 1.19 1.27 3.04E-35 4158 44955 Anxiety disorder mental disorders 

296.22 1.27 1.22 1.32 1.41E-31 2690 44955 Major depressive disorder mental disorders 

296.1 1.32 1.25 1.40 3.83E-22 1280 44955 Bipolar mental disorders 

316 1.27 1.21 1.34 1.17E-20 1563 56257 Substance addiction and disorders mental disorders 

418 1.11 1.09 1.14 1.13E-18 9077 47707 Nonspecific chest pain circulatory system 

318 1.19 1.14 1.23 2.23E-17 2613 56257 Tobacco use disorder mental disorders 

785 1.09 1.06 1.11 2.28E-14 11096 45613 Abdominal pain symptoms 

760 1.11 1.08 1.14 5.12E-13 6119 53631 Back pain symptoms 

496 1.13 1.09 1.17 3.72E-12 3466 56992 Chronic airway obstruction respiratory 

297 1.39 1.26 1.52 1.52E-11 447 44955 Suicidal ideation or attempt mental disorders 

317 1.22 1.15 1.29 5.15E-11 1141 56257 Alcohol-related disorders mental disorders 

530 1.08 1.06 1.11 7.89E-11 7747 45696 Diseases of esophagus digestive 

338 1.11 1.07 1.14 1.60E-10 4174 56656 Pain neurological 

530.1 1.09 1.06 1.12 4.12E-10 6329 45696 Esophagitis, GERD and related diseases digestive 

304 1.25 1.16 1.34 6.70E-10 822 44955 Adjustment reaction mental disorders 

338.2 1.20 1.13 1.27 7.67E-10 1171 56656 Chronic pain neurological 

433 1.10 1.07 1.14 3.07E-09 4261 61020 Cerebrovascular disease circulatory system 

295 1.39 1.24 1.55 4.20E-09 334 44955 Schizophrenia and other psychotic disorders mental disorders 

411 1.08 1.05 1.10 4.65E-09 9907 54084 Ischemic Heart Disease circulatory system 

770 1.18 1.11 1.25 8.93E-09 1285 65166 Myalgia and myositis unspecified symptoms 

300.9 1.41 1.25 1.58 1.02E-08 293 44955 Posttraumatic stress disorder mental disorders 

721.1 1.15 1.10 1.21 1.05E-08 1749 57927 Spondylosis without myelopathy musculoskeletal 

278 1.08 1.05 1.11 1.05E-08 6063 55663 Overweight, obesity and other hyperalimentation endocrine/metabolic 
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Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

278.1 1.09 1.06 1.12 1.49E-08 4936 55663 Obesity endocrine/metabolic 

278.11 1.13 1.08 1.18 1.77E-08 2313 55663 Morbid obesity endocrine/metabolic 

721 1.14 1.09 1.19 2.56E-08 2057 57927 Spondylosis and allied disorders musculoskeletal 

411.4 1.08 1.05 1.10 5.19E-08 8505 54084 Coronary atherosclerosis circulatory system 

301 1.52 1.30 1.78 1.29E-07 164 44955 Personality disorders mental disorders 

530.11 1.09 1.05 1.12 1.55E-07 4683 45696 GERD digestive 

327.3 1.09 1.05 1.12 2.79E-07 4008 55592 Sleep apnea neurological 

512 1.05 1.03 1.07 3.38E-07 15823 38159 Other symptoms of respiratory system respiratory 

317.1 1.22 1.13 1.32 5.61E-07 647 56257 Alcoholism mental disorders 

216 0.88 0.84 0.93 6.85E-07 1668 64544 Benign neoplasm of skin neoplasms 

313 1.17 1.10 1.24 7.52E-07 1126 67018 Pervasive developmental disorders mental disorders 

295.1 1.46 1.26 1.70 9.19E-07 171 44955 Schizophrenia mental disorders 

250.2 1.06 1.04 1.09 1.50E-06 7590 55837 Type 2 diabetes endocrine/metabolic 

300.11 1.24 1.13 1.37 4.77E-06 451 44955 Generalized anxiety disorder mental disorders 

798 1.07 1.04 1.10 4.97E-06 5940 43662 Malaise and fatigue symptoms 

428 1.07 1.04 1.10 6.58E-06 5562 58987 Congestive heart failure; nonhypertensive circulatory system 

496.2 1.19 1.10 1.29 8.05E-06 672 56992 Chronic bronchitis respiratory 

495 1.09 1.05 1.13 1.50E-05 2817 56992 Asthma respiratory 

297.1 1.32 1.16 1.50 1.59E-05 247 44955 Suicidal ideation mental disorders 

250 1.05 1.03 1.08 1.61E-05 8658 55837 Diabetes mellitus endocrine/metabolic 

532 1.08 1.04 1.13 1.97E-05 3015 45696 Dysphagia digestive 

496.21 1.21 1.11 1.33 2.01E-05 496 56992 Obstructive chronic bronchitis respiratory 

557.1 0.73 0.63 0.85 2.30E-05 185 49703 Celiac disease digestive 

070 1.14 1.07 1.21 2.42E-05 1092 58969 Viral hepatitis infectious diseases 

313.1 1.18 1.09 1.28 2.56E-05 663 67018 Attention deficit hyperactivity disorder mental disorders 

 

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-4. Phenome-wide association results passing Bonferroni significance for MDD-PRS, adjusted for age at last visit, sex, ever smoking, and 

first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

296 1.26 1.22 1.29 1.09E-54 5952 30132 Mood disorders mental disorders 

300 1.24 1.20 1.27 1.27E-43 5410 30132 Anxiety disorders mental disorders 

296.2 1.25 1.21 1.29 8.68E-42 4406 30132 Depression mental disorders 

300.1 1.21 1.17 1.25 4.38E-28 3927 30132 Anxiety disorder mental disorders 

296.22 1.24 1.19 1.30 5.21E-25 2529 30132 Major depressive disorder mental disorders 

296.1 1.26 1.19 1.34 1.16E-13 1134 30132 Bipolar mental disorders 

418 1.09 1.06 1.12 1.52E-10 7839 32907 Nonspecific chest pain circulatory system 

316 1.20 1.13 1.27 3.02E-10 1375 39784 Substance addiction and disorders mental disorders 

530 1.08 1.06 1.11 1.62E-09 7075 31386 Diseases of esophagus digestive 

530.1 1.09 1.06 1.12 1.65E-09 5923 31386 Esophagitis, GERD and related diseases digestive 

785 1.07 1.05 1.10 5.10E-09 9460 31689 Abdominal pain symptoms 

297 1.36 1.22 1.50 6.34E-09 395 30132 Suicidal ideation or attempt mental disorders 

770 1.18 1.12 1.25 8.13E-09 1277 46992 Myalgia and myositis unspecified symptoms 

304 1.24 1.15 1.33 8.65E-09 769 30132 Adjustment reaction mental disorders 

760 1.09 1.06 1.12 9.09E-09 5687 36955 Back pain symptoms 

530.11 1.09 1.06 1.13 2.26E-08 4556 31386 GERD digestive 

338.2 1.18 1.11 1.25 5.22E-08 1146 39419 Chronic pain neurological 

318 1.13 1.08 1.18 6.04E-08 2578 39784 Tobacco use disorder mental disorders 

338 1.09 1.06 1.13 1.15E-07 3998 39419 Pain neurological 

721.1 1.14 1.09 1.20 2.02E-07 1666 40733 Spondylosis without myelopathy musculoskeletal 

721 1.13 1.08 1.18 3.52E-07 1932 40733 Spondylosis and allied disorders musculoskeletal 

300.9 1.36 1.21 1.53 3.93E-07 289 30132 Posttraumatic stress disorder mental disorders 

295 1.36 1.20 1.53 5.86E-07 280 30132 Schizophrenia and other psychotic disorders mental disorders 

278.11 1.12 1.07 1.17 6.36E-07 2110 38824 Morbid obesity endocrine/metabolic 

327.3 1.09 1.05 1.13 6.49E-07 3706 38728 Sleep apnea neurological 

278.1 1.08 1.05 1.11 1.22E-06 4496 38824 Obesity endocrine/metabolic 
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Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

278 1.07 1.04 1.10 1.32E-06 5529 38824 Overweight, obesity and other hyperalimentation endocrine/metabolic 

433 1.09 1.05 1.13 4.03E-06 3556 44206 Cerebrovascular disease circulatory system 

301 1.48 1.25 1.75 4.54E-06 144 30132 Personality disorders mental disorders 

532 1.10 1.06 1.14 5.10E-06 2638 31386 Dysphagia digestive 

317 1.16 1.09 1.24 8.05E-06 963 39784 Alcohol-related disorders mental disorders 

300.11 1.24 1.13 1.36 9.79E-06 445 30132 Generalized anxiety disorder mental disorders 

798 1.07 1.04 1.10 1.11E-05 5849 29059 Malaise and fatigue symptoms 

313 1.17 1.09 1.25 1.22E-05 886 49476 Pervasive developmental disorders mental disorders 

613 1.17 1.09 1.26 1.92E-05 740 49722 Other nonmalignant breast conditions genitourinary 

345.3 1.17 1.09 1.25 2.12E-05 820 40411 Convulsions neurological 

216 0.90 0.85 0.94 2.56E-05 1625 46209 Benign neoplasm of skin neoplasms 

 

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-5. Phenome-wide association results passing Bonferroni significance for FEV1-PRS, adjusted for age at last visit, sex, ever smoking, and 

first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250 0.88 0.85 0.90 8.89E-25 7474 39344 Diabetes mellitus endocrine/metabolic 

250.2 0.88 0.86 0.91 1.61E-20 6662 39344 Type 2 diabetes endocrine/metabolic 

250.1 0.80 0.76 0.84 3.55E-18 1456 39344 Type 1 diabetes endocrine/metabolic 

495 0.86 0.83 0.90 3.35E-13 2522 40953 Asthma respiratory 

496 0.87 0.84 0.90 1.35E-12 2901 40953 Chronic airway obstruction respiratory 

250.3 0.83 0.79 0.88 9.81E-12 1350 39344 Insulin pump user endocrine/metabolic 

585 0.91 0.89 0.94 5.16E-10 5635 39043 Renal failure genitourinary 

250.24 0.85 0.81 0.90 7.47E-09 1344 39344 Type 2 diabetes with neurological manifestations endocrine/metabolic 

557.1 0.66 0.57 0.77 4.55E-08 163 34315 Celiac disease digestive 

250.22 0.84 0.79 0.90 4.89E-07 891 39344 Type 2 diabetes with renal manifestations endocrine/metabolic 

585.3 0.91 0.88 0.95 8.54E-07 3457 39043 Chronic renal failure [CKD] genitourinary 

278 0.93 0.91 0.96 1.84E-06 5529 38824 Overweight, obesity and other hyperalimentation endocrine/metabolic 

250.14 0.76 0.67 0.85 2.23E-06 271 39344 Type 1 diabetes with neurological manifestations endocrine/metabolic 

276 0.94 0.92 0.97 3.24E-06 8647 33867 Disorders of fluid, electrolyte, and acid-base balance endocrine/metabolic 

512 0.95 0.93 0.97 6.56E-06 13541 25437 Other symptoms of respiratory system respiratory 

278.1 0.93 0.90 0.96 1.02E-05 4496 38824 Obesity endocrine/metabolic 

250.6 0.85 0.79 0.91 1.22E-05 710 39344 Polyneuropathy in diabetes endocrine/metabolic 

250.7 0.83 0.76 0.90 1.35E-05 541 47391 Diabetic retinopathy endocrine/metabolic 

394.7 0.74 0.65 0.85 1.36E-05 202 42442 Disease of tricuspid valve circulatory system 

401 0.95 0.93 0.97 1.56E-05 17683 25393 Hypertension circulatory system 

070.4 0.72 0.62 0.84 2.15E-05 160 42117 Chronic hepatitis infectious diseases 

250.13 0.73 0.64 0.85 2.56E-05 172 39344 Type 1 diabetes with ophthalmic manifestations endocrine/metabolic 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-6. Phenome-wide association results passing Bonferroni significance for FVC-PRS, adjusted for age at last visit, sex, ever smoking, and 

first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250 0.86 0.84 0.88 3.71E-32 7474 39344 Diabetes mellitus endocrine/metabolic 

250.2 0.86 0.84 0.89 3.29E-27 6662 39344 Type 2 diabetes endocrine/metabolic 

250.1 0.81 0.77 0.86 1.17E-14 1456 39344 Type 1 diabetes endocrine/metabolic 

250.3 0.82 0.78 0.87 2.44E-12 1350 39344 Insulin pump user endocrine/metabolic 

250.24 0.83 0.79 0.88 6.18E-11 1344 39344 Type 2 diabetes with neurological manifestations endocrine/metabolic 

585 0.91 0.88 0.94 1.85E-10 5635 39043 Renal failure genitourinary 

250.22 0.82 0.76 0.87 2.95E-09 891 39344 Type 2 diabetes with renal manifestations endocrine/metabolic 

278 0.92 0.90 0.95 2.42E-08 5529 38824 Overweight, obesity and other hyperalimentation endocrine/metabolic 

278.1 0.92 0.89 0.95 1.17E-07 4496 38824 Obesity endocrine/metabolic 

401 0.94 0.92 0.97 6.05E-07 17683 25393 Hypertension circulatory system 

216 1.13 1.08 1.19 8.03E-07 1625 46209 Benign neoplasm of skin neoplasms 

250.23 0.78 0.71 0.86 8.67E-07 410 39344 Type 2 diabetes with ophthalmic manifestations endocrine/metabolic 

250.7 0.81 0.75 0.88 1.48E-06 541 47391 Diabetic retinopathy endocrine/metabolic 

571 0.91 0.87 0.94 1.68E-06 2687 41807 Chronic liver disease and cirrhosis digestive 

401.1 0.95 0.92 0.97 2.90E-06 16060 25393 Essential hypertension circulatory system 

585.3 0.92 0.89 0.95 3.66E-06 3457 39043 Chronic renal failure [CKD] genitourinary 

571.5 0.90 0.87 0.94 4.63E-06 2187 41807 Other chronic nonalcoholic liver disease digestive 

416 0.88 0.84 0.93 5.47E-06 1430 42948 Cardiomegaly circulatory system 

250.6 0.85 0.78 0.91 9.67E-06 710 39344 Polyneuropathy in diabetes endocrine/metabolic 

276.5 0.91 0.87 0.95 1.28E-05 2279 33867 Hypovolemia endocrine/metabolic 

495 0.92 0.88 0.95 1.56E-05 2522 40953 Asthma respiratory 

250.14 0.77 0.68 0.87 1.57E-05 271 39344 Type 1 diabetes with neurological manifestations endocrine/metabolic 

276 0.95 0.93 0.97 2.40E-05 8647 33867 

Disorders of fluid, electrolyte, and acid-base 

balance endocrine/metabolic 

401.2 0.91 0.88 0.95 2.42E-05 3200 25393 Hypertensive heart and/or renal disease circulatory system 
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OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls 
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Table 6-7. Phenome-wide association results passing Bonferroni significance for FEV1/FVC-PRS, adjusted for age at last visit, sex, ever smoking, 

and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

496 0.83 0.80 0.87 1.54E-19 2901 40953 Chronic airway obstruction respiratory 

495 0.87 0.83 0.90 1.16E-11 2522 40953 Asthma respiratory 

496.2 0.76 0.70 0.83 3.73E-10 570 40953 Chronic bronchitis respiratory 

496.21 0.74 0.67 0.82 1.60E-09 425 40953 Obstructive chronic bronchitis respiratory 

557.1 0.63 0.54 0.74 1.15E-08 163 34315 Celiac disease digestive 

250.1 0.86 0.82 0.91 3.86E-08 1456 39344 Type 1 diabetes endocrine/metabolic 

496.1 0.77 0.70 0.85 7.71E-08 447 40953 Emphysema respiratory 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-8. Phenome-wide association results passing Bonferroni significance for PEF-PRS, adjusted for age at last visit, sex, ever smoking, and 

first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250.1 0.81 0.77 0.85 2.86E-16 1456 39344 Type 1 diabetes endocrine/metabolic 

250 0.92 0.90 0.94 2.64E-11 7474 39344 Diabetes mellitus endocrine/metabolic 

496 0.88 0.85 0.92 4.40E-10 2901 40953 Chronic airway obstruction respiratory 

557.1 0.66 0.57 0.76 5.69E-09 163 34315 Celiac disease digestive 

709 0.80 0.75 0.87 7.42E-09 660 43401 Diffuse diseases of connective tissue dermatologic 

495 0.89 0.86 0.93 1.15E-08 2522 40953 Asthma respiratory 

250.2 0.93 0.90 0.95 1.41E-08 6662 39344 Type 2 diabetes endocrine/metabolic 

250.3 0.86 0.82 0.91 5.76E-08 1350 39344 Insulin pump user endocrine/metabolic 

709.2 0.72 0.63 0.82 8.12E-07 201 43401 Sicca syndrome dermatologic 

250.14 0.78 0.70 0.88 2.29E-05 271 39344 Type 1 diabetes with neurological manifestations endocrine/metabolic 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-9. Phenome-wide association results passing Bonferroni significance for MDD-PRS in women, adjusted for age at last visit, ever smoking, 

and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

296 1.28 1.23 1.32 8.52E-39 3815 16045 Mood disorders mental disorders 

300 1.25 1.20 1.29 3.33E-31 3619 16045 Anxiety disorders mental disorders 

296.2 1.26 1.21 1.32 1.03E-29 2936 16045 Depression mental disorders 

300.1 1.22 1.17 1.27 1.82E-20 2648 16045 Anxiety disorder mental disorders 

296.22 1.25 1.19 1.31 2.54E-17 1688 16045 Major depressive disorder mental disorders 

296.1 1.33 1.23 1.44 9.36E-13 681 16045 Bipolar mental disorders 

530 1.12 1.08 1.16 6.63E-10 3885 18431 Diseases of esophagus digestive 

785 1.09 1.06 1.12 9.57E-09 6119 17020 Abdominal pain symptoms 

530.1 1.12 1.07 1.16 1.27E-08 3321 18431 Esophagitis, GERD and related diseases digestive 

770 1.19 1.12 1.26 1.80E-08 1111 25716 Myalgia and myositis unspecified symptoms 

530.11 1.13 1.08 1.17 2.59E-08 2660 18431 GERD digestive 

760 1.09 1.06 1.13 1.10E-06 3617 20345 Back pain symptoms 

304 1.23 1.13 1.35 4.93E-06 507 16045 Adjustment reaction mental disorders 

418 1.08 1.04 1.12 1.13E-05 4266 19221 Nonspecific chest pain circulatory system 

316 1.19 1.10 1.28 1.35E-05 710 23875 Substance addiction and disorders mental disorders 

613 1.18 1.09 1.27 1.41E-05 730 26872 Other nonmalignant breast conditions genitourinary 

300.9 1.37 1.18 1.58 1.92E-05 198 16045 Posttraumatic stress disorder mental disorders 

216 0.87 0.82 0.93 2.11E-05 1055 25996 Benign neoplasm of skin neoplasms 

 

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-10. Phenome-wide association results passing Bonferroni significance for MDD-PRS in men, adjusted for age at last visit, ever smoking, 

and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

296 1.23 1.17 1.28 1.76E-17 2137 14087 Mood disorders mental disorders 

300 1.21 1.15 1.27 1.06E-13 1791 14087 Anxiety disorders mental disorders 

296.2 1.23 1.16 1.30 1.22E-13 1470 14087 Depression mental disorders 

296.22 1.24 1.15 1.33 4.03E-09 841 14087 Major depressive disorder mental disorders 

300.1 1.19 1.12 1.26 5.61E-09 1279 14087 Anxiety disorder mental disorders 

418 1.09 1.05 1.14 3.48E-06 3573 13686 Nonspecific chest pain circulatory system 

316 1.21 1.11 1.31 5.91E-06 665 15909 Substance addiction and disorders mental disorders 

318 1.14 1.08 1.22 1.48E-05 1307 15909 Tobacco use disorder mental disorders 

 

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-11. Phenome-wide association results passing Bonferroni significance for FEV1-PRS in women, adjusted for age at last visit, ever 

smoking, and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250 0.88 0.85 0.91 2.93E-12 3574 23498 Diabetes mellitus endocrine/metabolic 

250.1 0.79 0.74 0.85 5.19E-11 793 23498 Type 1 diabetes endocrine/metabolic 

250.2 0.89 0.86 0.92 5.83E-10 3136 23498 Type 2 diabetes endocrine/metabolic 

495 0.86 0.82 0.91 6.22E-09 1660 23492 Asthma respiratory 

250.3 0.83 0.77 0.90 2.23E-06 678 23498 Insulin pump user endocrine/metabolic 

401 0.93 0.90 0.96 5.00E-06 8733 16298 Hypertension circulatory system 

250.24 0.83 0.77 0.90 6.26E-06 606 23498 Type 2 diabetes with neurological manifestations endocrine/metabolic 

496 0.88 0.83 0.93 9.24E-06 1352 23492 Chronic airway obstruction respiratory 

401.1 0.93 0.90 0.96 1.49E-05 8022 16298 Essential hypertension circulatory system 

557.1 0.68 0.57 0.81 2.67E-05 110 19752 Celiac disease digestive 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  

 

 

Table 6-12. Phenome-wide association results passing Bonferroni significance for FEV1-PRS in men, adjusted for age at last visit, ever smoking, 

and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250 0.87 0.84 0.90 4.72E-14 3900 15846 Diabetes mellitus endocrine/metabolic 

250.2 0.88 0.84 0.91 4.76E-12 3526 15846 Type 2 diabetes endocrine/metabolic 

250.1 0.80 0.74 0.86 9.91E-09 663 15846 Type 1 diabetes endocrine/metabolic 

496 0.86 0.82 0.91 3.73E-08 1549 17461 Chronic airway obstruction respiratory 

585 0.90 0.87 0.94 1.20E-07 3283 15262 Renal failure genitourinary 

250.3 0.83 0.77 0.89 8.77E-07 672 15846 Insulin pump user endocrine/metabolic 

276 0.92 0.89 0.95 4.96E-06 4395 13550 Disorders of fluid, electrolyte, and acid-base balance endocrine/metabolic 

442.8 0.42 0.28 0.62 9.69E-06 21 17459 Aneurysm of other specified artery circulatory system 

585.3 0.90 0.86 0.94 1.13E-05 2055 15262 Chronic renal failure [CKD] genitourinary 

495 0.86 0.80 0.92 1.25E-05 862 17461 Asthma respiratory 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-13. Phenome-wide association results passing Bonferroni significance for FVC-PRS in women, adjusted for age at last visit, ever 

smoking, and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250 0.86 0.83 0.89 2.39E-17 3574 23498 Diabetes mellitus endocrine/metabolic 

250.2 0.86 0.83 0.90 2.06E-14 3136 23498 Type 2 diabetes endocrine/metabolic 

250.1 0.80 0.74 0.86 4.10E-10 793 23498 Type 1 diabetes endocrine/metabolic 

250.24 0.80 0.74 0.87 1.02E-07 606 23498 Type 2 diabetes with neurological manifestations endocrine/metabolic 

250.3 0.82 0.76 0.89 3.84E-07 678 23498 Insulin pump user endocrine/metabolic 

278 0.92 0.88 0.95 1.21E-06 3516 21540 Overweight, obesity and other hyperalimentation endocrine/metabolic 

278.1 0.91 0.87 0.94 1.52E-06 2830 21540 Obesity endocrine/metabolic 

401 0.93 0.90 0.96 3.49E-06 8733 16298 Hypertension circulatory system 

401.1 0.93 0.90 0.96 6.91E-06 8022 16298 Essential hypertension circulatory system 

278.11 0.89 0.84 0.94 1.44E-05 1471 21540 Morbid obesity endocrine/metabolic 

585 0.91 0.87 0.95 2.49E-05 2352 23781 Renal failure genitourinary 

216 1.14 1.07 1.22 2.56E-05 1055 25996 Benign neoplasm of skin neoplasms 

401.2 0.88 0.82 0.93 2.69E-05 1324 16298 Hypertensive heart and/or renal disease circulatory system 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  

 

 

Table 6-14. Phenome-wide association results passing Bonferroni significance for FVC-PRS in men, adjusted for age at last visit, ever smoking, 

and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250 0.86 0.83 0.89 2.70E-16 3900 15846 Diabetes mellitus endocrine/metabolic 

250.2 0.86 0.83 0.90 3.14E-14 3526 15846 Type 2 diabetes endocrine/metabolic 

250.3 0.83 0.77 0.89 1.32E-06 672 15846 Insulin pump user endocrine/metabolic 

585 0.91 0.88 0.95 2.30E-06 3283 15262 Renal failure genitourinary 

250.1 0.83 0.77 0.90 3.64E-06 663 15846 Type 1 diabetes endocrine/metabolic 

250.22 0.82 0.76 0.89 3.74E-06 583 15846 Type 2 diabetes with renal manifestations endocrine/metabolic 

276 0.92 0.89 0.96 7.03E-06 4395 13550 Disorders of fluid, electrolyte, and acid-base balance endocrine/metabolic 

571 0.89 0.84 0.94 1.68E-05 1402 17306 Chronic liver disease and cirrhosis digestive 

276.5 0.87 0.82 0.93 2.23E-05 1082 13550 Hypovolemia endocrine/metabolic 
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OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls 
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Table 6-15. Phenome-wide association results passing Bonferroni significance for FEV1/FVC-PRS in women, adjusted for age at last visit, ever 

smoking, and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

496 0.82 0.78 0.87 3.27E-11 1352 23492 Chronic airway obstruction respiratory 

495 0.88 0.83 0.92 2.93E-07 1660 23492 Asthma respiratory 

496.21 0.73 0.64 0.84 5.00E-06 231 23492 Obstructive chronic bronchitis respiratory 

496.2 0.77 0.68 0.86 7.19E-06 307 23492 Chronic bronchitis respiratory 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  

 

 

 

Table 6-16. Phenome-wide association results passing Bonferroni significance for FEV1/FVC-PRS in men, adjusted for age at last visit, ever 

smoking, and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

496 0.84 0.80 0.89 6.07E-10 1549 17461 Chronic airway obstruction respiratory 

495 0.85 0.79 0.91 5.05E-06 862 17461 Asthma respiratory 

496.2 0.76 0.67 0.86 1.22E-05 263 17461 Chronic bronchitis respiratory 

557.1 0.54 0.41 0.71 1.38E-05 53 14563 Celiac disease digestive 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  
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Table 6-17. Phenome-wide association results passing Bonferroni significance for PEF-PRS in women, adjusted for age at last visit, ever smoking, 

and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250.1 0.80 0.75 0.86 1.07E-10 793 23498 Type 1 diabetes endocrine/metabolic 

709 0.81 0.74 0.87 9.71E-08 575 24051 Diffuse diseases of connective tissue dermatologic 

496 0.86 0.81 0.91 1.64E-07 1352 23492 Chronic airway obstruction respiratory 

250 0.92 0.88 0.95 1.00E-06 3574 23498 Diabetes mellitus endocrine/metabolic 

250.3 0.84 0.78 0.90 2.36E-06 678 23498 Insulin pump user endocrine/metabolic 

495 0.89 0.85 0.94 3.75E-06 1660 23492 Asthma respiratory 

557.1 0.67 0.57 0.80 9.81E-06 110 19752 Celiac disease digestive 

709.2 0.75 0.65 0.86 2.49E-05 190 24051 Sicca syndrome dermatologic 

  

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls  

 

 

 

Table 6-18. Phenome-wide association results passing Bonferroni significance for PEF-PRS in men, adjusted for age at last visit, ever smoking, 

and first three principal components. 

Phecode OR L95 U95 P Ncases Ncontrols Phecode description Phecode group 

250.1 0.82 0.77 0.89 3.90E-07 663 15846 Type 1 diabetes endocrine/metabolic 

250 0.92 0.89 0.95 5.76E-06 3900 15846 Diabetes mellitus endocrine/metabolic 

 

OR: odds ratio, L95: lower 95% confidence interval, U95: upper 95% confidence interval, Ncases: number of cases, Ncontrols: number of controls   
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Table 6-19. Single nucleotide polymorphisms identified as potentially pleiotropic between FEV1/FVC and major depressive disorder. 

Chromosome Position SNP Nearest gene Phenotype PMID Reference 

1 176,030,977 rs12040241 COP1 Body mass index 20935630 450 

Waist-hip ratio 20935629 451 

  

3 49,173,299 rs7617480 KLHDC8B Adiponectin levels 22479202 452 

Advanced age-related 

macular degeneration 

23455636 453 

Age at menarche 21102462 454 

Bone mineral density (hip 

and spine) 

18445777 455 

Cholesterol (HDL, LDL, and 

total) 

20339536, 19060906 456,457 

College completion 23722424 458 

Late-onset Alzheimer’s 

disease 

21390209 459 

Parkinson’s disease 22451204 460 

Paternal transmission 

distortion 

22377632 461 

Serum creatinine 20383146 462 

Smoking cessation 30643251 370 

Sporadic Creutzfeldt-Jakob 

disease 

22210626 463 

Subjective well-being 29292387 464 

Triglycerides 20686565 465 

Years of education 23722424 458 

  

18 37,558,282 rs12967855 CELF4 College completion 23722424 458 

Depressed affect 29942085 375 

Height 20881960 466 

Household income 31844048 467 

Infant head circumference 22504419 468 

Lifetime smoking index 31689377 372 

Mitral annular calcium 23388002 469 
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Unipolar depression 32231276, 30718901 373,374 

Years of education 23722424, 30595370 458,470 
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Table 6-20. Comparison of BioVU participants with and without smoking data. 

Characteristic Missing Smoking Data 

(N = 18,944) 

Complete Cases 

(N = 53,503) 

Median age (IQR) 47 (18-65) 58 (41-69) 

Gender (N, %)   

    Female 10,069 (53.2) 30,515 (57.0) 

    Male 8,873 (46.8) 22,988 (43.0) 

    Missing 2 0 

Chronic obstructive pulmonary 

disease (N, %) 

565 (3.0) 2,901 (5.4) 

Major depressive disorder (N, %) 161 (0.8) 2,529 (4.7) 
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6.2 Appendix 2 

 

 

 

 
  

Figure 6-7. Schema of the methods for examining the relationships between spontaneous hypothyroidism, 

thyroid irAEs, and response to anti-PD-(L)1 therapy. 
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Figure 6-8. Thyroid irAEs as a predictor of PFS and OS in individuals with OS > 90 days in the MSK 

cohort. Kaplan-Meier survival curves are unadjusted and compare those who had a thyroid irAE to those 

who did not have a thyroid irAE. The xaxis reflects time from start of CPI therapy. 
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Figure 6-9. Validation of PRS models for thyroid disease developed in UK Biobank in BioVU. A) 

ROC curves for PRS for self-reported hypothyroidism and taking thyroid medications were 

developed in UK Biobank using LDpred and tested in BioVU among participants who were not 

known to have lung cancer and received CPI. B) Relative risk of PRS by decile in the non-cancer 

VUMC BioVU cohort. 
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Figure 6-10. Thyroid medication PRS as a predictor of CPI-induced hypothyroidism events in the VUMC 

and MSK cohort. The left panel shows the ROC curve and right panel shows time to event by PRS tertile. 

P-values for the three curves are calculated using a log-rank test. 
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A) B) 

Figure 6-11. PRS values for DFCI tumor imputed and germline genotyped samples. PRSs shown are: A) 

hypothyroidism and B) thyroid medication. Each point represents an individual with genotyped (x-axis) and imputed 

(y-axis) PRS values. Pearson correlation between the scores is listed in each panel. 
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Figure 6-12. Hypothyroidism PRS (using thyroid medication PRS) as a predictor of CPI-induced 

hypothyroidism events in the DFCI cohort. The left panel shows the ROC curve and right panel shows 

time to event by PRS tertile. P-values for the three curves are calculated using a log-rank test. 
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Figure 6-13. PFS in the combined MSK + VUMC cohort and OS in the MSK cohort starting from the 

time of CPI therapy start by PRS tertile. (A) hypothyroidism PRS and (B) thyroid medication PRS. 
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Table 6-21. Individual SNPs from the UK Biobank hypothyroidism GWAS  

that were associated with CPI-induced thyroid irAEs in the MSK + VUMC cohort at p <  

0.05. Bold italics indicates variant passed multiple hypothesis testing. Effect and  

alternate alleles in the MSK + VUMC cohort were aligned to the effect and alternate  

alleles in the original UK Biobank GWAS. Models in the MSK + VUMC cohort were  

adjusted for age at diagnosis, sex, and the first ten principal components.  

 
Variant Information MSK + VUMC Cohort Results UK Biobank GWAS Results 

Chr Position 

(GRCh37) 

SNP Effect 

allele 

Alt 

allele 

Effect 

allele 

freq 

HR L95 U95 p-value Effect 

allele 

freq 

β Standard 

error 

p-value 

6 32379295 rs9268515 G C 0.86 0.5 0.35 0.71 1.12E-04 0.81 -0.00519 0.00883 2.80E-09 

16 67973953 rs5923 G A 0.93 0.45 0.28 0.72 8.80E-04 0.95 -0.00574 0.001039 2.60E-08 

16 67476572 rs8056260 A G 0.91 0.43 0.25 0.72 1.37E-03 0.96 -0.00704 0.001075 3.80E-11 

8 141639262 rs11783023 C T 0.26 1.62 1.19 2.21 2.09E-03 0.28 0.003325 0.000491 1.20E-11 

16 68361498 rs7206600 C T 0.96 0.41 0.23 0.73 2.41E-03 0.98 -0.00807 0.001454 2.60E-08 

2 204769395 rs28386480 C T 0.52 1.55 1.15 2.10 3.72E-03 0.54 0.002749 0.000442 6.60E-10 

6 32608931 rs9272679 T C 0.76 1.76 1.20 2.57 3.77E-03 0.43 -0.00992 0.000665 5.80E-50 

6 32587350 rs1281932 G A 0.81 0.62 0.45 0.86 4.68E-03 0.80 -0.00974 0.000792 1.40E-34 

20 17860022 rs6111715 G C 0.81 0.61 0.43 0.86 4.87E-03 0.82 0.003711 0.000576 7.80E-11 

2 204698111 rs2882970 T C 0.74 1.7 1.17 2.48 5.53E-03 0.75 0.005722 0.000518 8.70E-29 

1 200840467 rs12756886 T C 0.89 0.56 0.37 0.85 6.01E-03 0.88 -0.00437 0.00068 9.40E-11 

6 32633282 rs9274447 T C 0.79 1.83 1.19 2.81 6.15E-03 0.66 -0.00775 0.00069 1.80E-28 

4 10716939 rs4293777 G C 0.53 0.66 0.49 0.89 6.23E-03 0.53 -0.0037 0.000442 7.80E-17 
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Variant Information MSK + VUMC Cohort Results UK Biobank GWAS Results 

Chr Position 

(GRCh37) 

SNP Effect 

allele 

Alt 

allele 

Effect 

allele 

freq 

HR L95 U95 p-value Effect 

allele 

freq 

β Standard 

error 

p-value 

16 68390697 rs61733486 C T 0.94 0.5 0.3 0.83 7.28E-03 0.94 -0.00521 0.000946 2.30E-08 

6 29367498 rs4713220 A T 0.56 1.52 1.12 2.06 7.31E-03 0.57 0.003625 0.000654 2.60E-10 

12 111582630 rs73413596 T C 0.87 0.56 0.37 0.86 7.86E-03 0.92 0.00514 0.000839 3.10E-10 

11 116979911 rs12271161 G A 0.78 1.83 1.17 2.86 7.88E-03 0.81 0.003652 0.000559 3.10E-11 

6 31437566 rs9404989 G T 0.98 0.32 0.14 0.74 8.22E-03 0.98 0.013439 0.001705 2.50E-14 

7 37382465 rs60600003 T G 0.9 0.56 0.36 0.86 8.24E-03 0.9 -0.0044 0.000739 9.30E-10 

6 31312058 rs2394977 C G 0.58 0.68 0.51 0.91 1.04E-02 0.56 0.004264 0.000653 1.00E-15 

6 31463128 rs9267352 G A 0.74 0.66 0.47 0.91 1.14E-02 0.74 0.005833 0.000676 7.20E-16 

6 31616174 rs569347663 A T 0.97 0.44 0.24 0.84 1.20E-02 1 -0.0354 0.005556 1.60E-10 

2 1378060 rs4927602 G A 0.49 0.69 0.51 0.93 1.36E-02 0.5 -0.00264 0.000467 2.40E-08 

3 188070964 rs2103022 A G 0.23 1.53 1.09 2.15 1.41E-02 0.24 0.002904 0.000527 1.40E-08 

14 98692996 rs1257926 G A 0.53 0.7 0.53 0.94 1.59E-02 0.52 -0.00278 0.000443 1.10E-10 

6 32605295 rs1129735 C T 0.66 0.7 0.52 0.94 1.67E-02 0.63 -0.00923 0.0007 8.00E-41 

6 31435869 rs4713466 C T 0.89 0.62 0.42 0.92 1.71E-02 0.86 0.005798 0.000943 3.10E-09 

6 31436074 rs2518028 T C 0.32 0.66 0.47 0.93 1.73E-02 0.35 0.005452 0.000708 8.90E-19 

14 68749927 rs3784099 G A 0.67 1.5 1.07 2.11 1.77E-02 0.72 0.003107 0.000491 2.70E-11 

1 108379684 rs2125748 G A 0.77 1.57 1.08 2.28 1.89E-02 0.75 0.002831 0.000512 1.80E-08 
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Variant Information MSK + VUMC Cohort Results UK Biobank GWAS Results 

Chr Position 

(GRCh37) 

SNP Effect 

allele 

Alt 

allele 

Effect 

allele 

freq 

HR L95 U95 p-value Effect 

allele 

freq 

β Standard 

error 

p-value 

6 32587588 rs9271406 A G 0.56 0.71 0.54 0.95 2.08E-02 0.5 -0.00606 0.000686 4.60E-23 

17 7240391 rs61759532 C T 0.83 0.69 0.5 0.94 2.11E-02 0.75 -0.00399 0.000527 1.00E-14 

6 32580591 rs7449585 G T 0.74 0.7 0.52 0.95 2.12E-02 0.95 0.010027 0.001139 1.60E-20 

6 32624377 rs567302488 G A 0.93 3.19 1.19 8.59 2.15E-02 0.62 -0.00888 0.000693 1.70E-37 

6 31247441 rs2844607 C T 0.78 0.69 0.5 0.95 2.27E-02 0.72 0.005255 0.000684 1.30E-10 

9 21637351 rs71504798 C G 0.92 3.11 1.17 8.26 2.28E-02 0.91 -0.00499 0.000767 8.20E-11 

11 117030633 rs200545029 T C 0.94 2.75 1.15 6.59 2.34E-02 0.94 0.006043 0.000953 8.60E-11 

6 32078373 rs3807039 A C 0.92 0.61 0.39 0.94 2.36E-02 0.89 -0.00487 0.000805 2.20E-08 

3 105911539 rs7633167 C A 0.44 0.71 0.53 0.96 2.37E-02 0.43 0.002601 0.000448 5.70E-09 

1 108337108 rs17484960 G A 0.55 0.72 0.54 0.96 2.38E-02 0.5 -0.00312 0.000441 9.00E-13 

1 236629134 rs12117927 C A 0.54 0.71 0.53 0.96 2.52E-02 0.51 -0.00267 0.000452 1.10E-09 

6 32402889 rs9268615 G A 0.55 0.72 0.55 0.96 2.55E-02 0.64 -0.0069 0.000848 1.10E-15 

19 7240776 rs4804433 G T 0.25 1.42 1.04 1.93 2.56E-02 0.21 0.00325 0.00054 5.80E-09 

6 32603321 rs62404084 C T 0.84 0.66 0.45 0.95 2.71E-02 0.81 0.005054 0.000717 6.40E-10 

3 12195622 rs308952 A G 0.14 0.52 0.3 0.93 2.75E-02 0.13 0.004684 0.000648 1.40E-13 

3 188080043 rs7640386 T C 0.75 0.68 0.48 0.96 2.78E-02 0.78 -0.00432 0.000532 2.00E-16 

9 100506414 rs7862400 C A 0.44 0.71 0.52 0.96 2.80E-02 0.53 -0.00331 0.000447 3.90E-14 



 105 

Variant Information MSK + VUMC Cohort Results UK Biobank GWAS Results 

Chr Position 

(GRCh37) 

SNP Effect 

allele 

Alt 

allele 

Effect 

allele 

freq 

HR L95 U95 p-value Effect 

allele 

freq 

β Standard 

error 

p-value 

9 100737755 rs10984601 A G 0.74 0.71 0.52 0.96 2.88E-02 0.7 -0.00388 0.000491 1.50E-15 

16 67349478 rs138453996 G A 0.97 0.46 0.23 0.93 2.97E-02 0.98 -0.01041 0.001578 3.10E-11 

6 29566369 rs3095273 A G 0.26 0.67 0.47 0.96 3.00E-02 0.29 -0.00376 0.000667 3.00E-08 

6 32781776 rs2856997 C A 0.6 0.71 0.52 0.97 3.00E-02 0.61 0.003736 0.000577 1.60E-08 

6 91024294 rs927297 G C 0.35 1.39 1.03 1.86 3.04E-02 0.4 0.003524 0.000456 4.70E-15 

9 5425847 rs10815220 A G 0.75 1.47 1.04 2.09 3.09E-02 0.72 -0.00308 0.000491 4.80E-10 

6 31850308 rs74434374 C A 0.95 0.55 0.32 0.95 3.17E-02 0.95 0.008211 0.001318 2.30E-10 

6 31249127 rs2253487 G A 0.6 0.73 0.55 0.97 3.18E-02 0.59 0.004741 0.000632 2.00E-09 

9 21585265 rs970987 C A 0.37 0.69 0.49 0.97 3.33E-02 0.34 0.003916 0.000468 3.80E-17 

2 204573392 rs35988305 C G 0.62 1.38 1.02 1.87 3.59E-02 0.64 0.003279 0.000459 2.90E-13 

6 31397689 rs143015185 A T 0.96 0.53 0.3 0.96 3.61E-02 0.95 -0.01705 0.001288 5.30E-25 

4 149648035 rs17583283 G A 0.52 0.74 0.55 0.98 3.62E-02 0.56 0.00319 0.000446 3.50E-13 

5 133455153 rs244693 A C 0.07 1.66 1.03 2.67 3.64E-02 0.08 0.005357 0.000824 9.60E-11 

10 63809624 rs10821948 C A 0.62 0.73 0.55 0.98 3.77E-02 0.68 -0.00397 0.000474 1.20E-17 

6 32667595 rs1794279 G T 0.92 2.13 1.04 4.37 3.85E-02 0.87 -0.0141 0.001508 2.80E-19 

6 32582603 rs13204736 G T 0.65 0.74 0.55 0.99 3.94E-02 0.7 -0.00642 0.00762 3.00E-18 

4 40307564 rs13136820 C T 0.36 1.36 1.02 1.83 3.95E-02 0.32 0.002945 0.000475 8.90E-10 
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Variant Information MSK + VUMC Cohort Results UK Biobank GWAS Results 

Chr Position 

(GRCh37) 

SNP Effect 

allele 

Alt 

allele 

Effect 

allele 

freq 

HR L95 U95 p-value Effect 

allele 

freq 

β Standard 

error 

p-value 

19 50197406 rs12981033 A G 0.58 0.73 0.54 0.99 3.98E-02 0.61 0.00303 0.000452 7.00E-12 

1 108321313 rs4914960 A G 0.22 0.66 0.44 0.98 4.08E-02 0.19 -0.00421 0.00056 3.70E-14 

4 149720635 rs13143096 C T 0.5 0.74 0.55 0.99 4.14E-02 0.5 0.002441 0.000444 1.90E-08 

8 8317887 rs2921059 G T 0.95 0.56 0.32 0.98 4.19E-02 0.56 0.005286 0.000867 9.60E-10 

16 79337033 rs2881665 C T 0.16 1.5 1.01 2.22 4.22E-02 0.12 0.003754 0.000682 3.90E-08 

12 112179471 rs4766897 T C 0.29 1.36 1.01 1.83 4.22E-02 0.34 0.008059 0.000466 2.20E-68 

2 204740866 rs231726 C T 0.7 0.72 0.53 0.99 4.26E-02 0.67 -0.0087 0.00047 7.00E-77 

6 31080859 rs2233966 A G 0.46 1.35 1.01 1.81 4.26E-02 0.5 -0.00759 0.000764 7.30E-16 

6 31403625 rs7759215 C T 0.97 0.56 0.32 0.98 4.35E-02 0.87 -0.00919 0.000835 1.50E-21 

6 32594470 rs114309058 G A 0.49 1.35 1.01 1.8 4.54E-02 0.75 0.005841 0.000705 4.30E-16 

17 7252148 rs2292067 G T 0.65 0.73 0.54 0.99 4.57E-02 0.63 -0.00264 0.000461 5.70E-09 

13 111206226 rs9521838 G A 0.8 1.48 1.01 2.19 4.65E-02 0.77 0.002838 0.000525 4.80E-08 

6 33047898 rs2567281 C A 0.89 1.99 1.01 3.95 4.77E-02 0.92 0.006656 0.000861 6.70E-15 

13 24789706 rs1220604 G A 0.53 1.35 1 1.81 4.83E-02 0.55 -0.00267 0.000449 1.90E-09 

9 21582326 rs7046475 T C 0.22 0.66 0.43 1 4.87E-02 0.22 0.004 0.000537 7.60E-14 

6 33048937 rs7770501 C G 0.86 1.81 1 3.27 4.91E-02 0.88 0.006474 0.000764 8.20E-17 

13 43063831 rs66749983 A T 0.7 1.4 1 1.94 4.91E-02 0.69 -0.00361 0.000478 3.90E-14 
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Variant Information MSK + VUMC Cohort Results UK Biobank GWAS Results 

Chr Position 

(GRCh37) 

SNP Effect 

allele 

Alt 

allele 

Effect 

allele 

freq 

HR L95 U95 p-value Effect 

allele 

freq 

β Standard 

error 

p-value 

6 31917291 rs2072634 C T 0.98 0.49 0.24 1 4.98E-02 0.98 0.01083 0.001717 1.10E-09 

Chr: chromosome, SNP: single nucleotide polymorphism, Alt allele: alternate allele, freq: frequency, HR: hazard ratio, L95: lower 

95% confidence interval, U95: upper 95% confidence interval 
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Table 6-22. PRS as a predictor of PFS in the combined MSK + VUMC  

cohort and OS in the MSK cohort. Time-dependent models were adjusted for age, sex,  

combined anti-PD-(L)1 + anti-CTLA-4 therapy, and first 10 principal components.  

Adjusted hazard ratios are per standard deviation of the PRS. 

 PFS OS 

PRS phenotype aHR 95% CI p-value aHR 95% CI p-value 

Hypothyroidism 1.00 0.92-1.08 0.96 1.05 0.94-1.18 0.4 

Thyroid medications 1.00 0.92-1.08 0.97 1.07 0.96-1.20 0.2 

PFS: progression-free survival, OS: overall survival, aHR: adjusted hazard ratio, CI: confidence 

interval 
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