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Introduction 

 

The twentieth century witnessed two revolutions in science1,2. Physicists (chemists, engineers, 

etc.) translated physical laws into mathematical models as part of a model-based scientific paradigm that 

massively accelerated technological innovation and an increasingly detailed understanding of the physical 

world. Biologist, meanwhile, deconstructed biological processes into their foundational functional 

components as part of a reductionist scientific paradigm that culminated in an exhaustive genetic parts-list 

for several organisms3. The achievements of both approaches set the stage for a fusion of methods from 

biology and physics to drive a new model-based investigation of biological processes: systems biology4-7. 

Systems biology entered the scene on a promise of new insights necessary to propel biomedical 

innovation and discovery, on par with what occurred in physics. Instead, systems biology discovered a 

frustrating combination of challenges unlike that encountered by physicists. Specifically, issues of 

biological complexity, multiscale organization, and heterogeneity8 complicate access to quantitative 

measurements of biological systems9. The dearth of quantitative biological measurements constrains the 

modeling efforts needed for a model-based investigation of biology. This challenge has garnered 

considerable attention from systems biologists who have devised various experimental and modeling 

strategies to contend with or confront the data-problem of biology. In this work, I introduce a modeling 

approach that enables incorporation of nonquantitative measurements -- as more abundant substitute for 

quantitative measurements.   

This incorporation of nonquantitative measurements entails a model of the measurement -- i.e., a 

model of the relationship between the measured observables and underlying biological mechanisms. 

Previous work in this area focused on the uncertain constraints encoded by categorical data. Their 

approaches complicate application Bayesian modeling methods10, 11 and/or introduce ad hoc assumptions 

into the modeling process12. The limitations of previous approaches obscure estimates of model 

uncertainty and distort model predictions. This work shifts the focus toward the measurement; the 

measurement process and its partially uncharacterized connection to underlying biological mechanism. It 
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introduces a probabilistic and data-driven measurement model that, as a probabilistic model, enables easy 

application of Bayesian modeling methods and, as a data-driven model, avoids the introduction of ad hoc 

assumptions. This measurement model approach also incorporates machine learning to resolve 

uncertainty in link between measurement and specific properties of the underlying biological mechanism. 

This work focuses on the application of nonquantitative measurements to mechanistic (ordinary 

differential equation (ODE) based) models of cellular processes, but its concepts readily apply to other 

modeling scenerios. 

The first chapter describes data-problem in biology. It begins with a summary of the modeling 

approaches in systems biology (though this work focuses on bottom-up modeling approaches). Bottom-up 

modeling approaches construct mechanistic models by assembling mathematical representations of first-

principal factors (i.e., individual interactions, etc.) into a system of equations describing the mechanism. 

Empirical data drives essential steps of the bottom-up modeling process (e.g., model calibration). This 

chapter details how the dearth of quantitative data complicates model calibration and limits modeling 

capabilities. It also describes why the dearth of quantitative data persists despite ongoing efforts to 

improve measurement technologies in biology. Finally, this chapter describes modeling and measurement 

strategies that have recently emerged to address the dearth of quantitative measurements in biology.  

The second chapter introduces a new probabilistic data-driven measurement model that integrates 

nonquantitative data into model calibration strategies.  This chapter describes the model calibration step 

which tunes or estimates the values of the mechanistic model’s free parameters to maximize it alignment 

with data. This alignment between model and data is defined using a likelihood or objective function; 

traditional formulations of this function include some function of the sum of squared errors (SSE)13 and 

do not accommodate nonquantitative input. This chapter explains how a measurement model overcomes 

this challenge, then demonstrates it via calibration of a model of apoptosis signaling to nonquantitative 

measurements: ordinal values of the abundance of apoptotic signaling proteins and nominal observations 

of apoptosis vs survival. The calibrations used Bayesian methods, which enabled easy uncertainty 

estimation and thereby revealed how the size and composition of a dataset impacts the uncertainty of a 
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calibrated mechanistic model. This chapter also demonstrates the risk of strategies that introduce ad hoc 

assumptions about the measurement to introduce artifacts into the predictions made by a calibrated 

mechanistic model. Finally, it shows how machine learning can identify connections between 

measurement and underlying cellular process: e.g., features encoded in the mechanistic model that best 

predict nominal observations of apoptosis vs survival outcomes.  

In the final chapter, I discuss future directions for the probabilistic and data-driven measurement 

model. It starts with a demonstration of the original premise of systems biology: a model-based 

investigation of biological processes. I employed the bottom-up modeling approach to investigate a 

complex network of regulatory crosstalk interactions linking apoptotic and necroptotic cell death 

signaling14. Modeling these interactions enabled prediction of new details in the regulatory crosstalk 

mechanism and design of experimental confirmation of those details. This demonstrates the investigative 

potential of bottom-up modeling and encourages continued efforts to resolve challenges stemming from a 

dearth of quantitative measurements in biology. The rest of the chapter focuses on the challenges and 

potential of extending the measurement model concept to a broader suite of cellular measurements. It 

focuses on measurements or observations that may lack a known link to variables encoded in the model; I 

explore feature selection and dimensionality reduction to learn a representation of the model variables that 

best confirms with the measured data. It also focuses on heterogeneity and its impact on the measurement 

process; there, I explore ways of encoding heterogeneity as part of the measurement model. Throughout, 

this work highlights the unique challenge of biology: its complexity, multiscale organization, and 

heterogeneity. While it offers a workaround to the dearth of quantitative data, it does not replace the need 

for more data. On the contrary, it encourages scientists to collect as many measurements (quantitative or 

nonquantitative) as possible.  
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Chapter 1 
 

The demand for more data in systems biology and methods of addressing it 

 

1.1.   Summary 

Systems biology applies interdisciplinary techniques to the problem of understanding how 

biological species engage a complex network of interactions to produce an emergent behavior. Its 

potential for generating useful insights for advancing drug design, bioengineering, synthetic biology, etc. 

has resulted in a surge in its popularity. Systems biology has shortcomings, however, that attest to its 

dependence on large amounts of precise biological measurements. The fact that these measurements do 

not yet exist prevalently, presents a significant obstacle to progress in systems biology. Scientists have 

addressed the demand for more data in system biology by creating innovative measurement methods, 

trimming models to accommodate the current dearth of useable data, and inventing ways to more 

efficiently use existing data. This review covers the strategies scientists use to address the demand for 

more data in systems biology.  

 

1.2.   Introduction 

The 1950s marked the beginning of a transition toward increased application of basic sciences to 

guide -- and hopefully accelerate – technological innovation in several areas, including drug 

development15. The transition proved wildly successful to a myriad of industries16. Pharmaceuticals, 

however, witnessed a paradoxically steady decline in production during this period as it churned out half 

as many successful new drugs per billion USD every decade17 Drug discovery methods rely on 

reductionist approaches to biology, i.e., approaches that try to model intricate biological behaviors as the 

work of only one or a few biological components18. Attempts to targets these biological “magic-bullet” 

components with drugs routinely encounter unanticipated pharmacokinetics problems, low efficacy, 
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toxicity, and adverse effects – and ultimately fail19. Scientists have criticized the overuse of the 

reductionist approach biology20, 21. 

These failures point to a prevailing challenge to drug design and biological science in general: 

biological complexity. Biological properties are complex in that they do not follow the action of a single 

component; instead they emerge from a network of dynamic interactions involving many biological 

components22. This motivates the advancement of approaches that investigate biological behaviors as 

properties of complex biological networks. Such approaches have coalesced into a body of methods and 

analyses encompassed in the term, systems biology4-7.  

Biological systems possess unique properties that frustrate scientific efforts to investigate them. 

Specifically, biological systems create a near intractable demand for high precision quantitative data8, 23. 

Systems biology addresses this challenge with new measurement technologies and modeling strategies to 

increase the availability and utilization of biological data. The following describes systems biology, albeit 

with an emphasis on the bottom-up approach. It then explores the role of data in the success and failure of 

systems biology efforts.  

 

1.3.   Systems Biology 

Modern definitions of systems biology vary widely, but often remark that systems biology 

reflects a “departure from reductionist thinking” in biology. Jacques Loeb introduced the reductionist 

view, in 1912, that biological components act as mechanical cogs driving their assigned biological 

functions2. This view inspired more than half a century of reductionist approaches that sought to identify 

which components drive specific biological behaviors. Reductionism culminated in whole genome 

projects, and the amassing of a nearly comprehensive “parts list” of biology3, 24. This contribution 

positioned scientists to begin investigating the connections between biological components and systems-

level consequences of their interconnectedness.  The establishment of system biology has begun to steer 

biology away from the reductionist thinking that preceded it7. 
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The emergence of systems biology also coincides with the advent of technologies that make its 

investigations feasible i.e., high-throughput screening and “omics” technologies, measurement advances 

(e.g., in imaging25, mass spectrometry26, 27 and flow cytometry28), microfluidics29, data analysis advances 

(e.g., network modeling30, deep learning31, 32) and parallel computing33, 34. Indeed, systems biology ebbs 

and flows with the pace of innovations that allow better measurement and analysis of biological data (i.e., 

more precise and comprehensive measurement, more efficient storage and curation, and better analysis, 

modeling and visualization biological data)35. This technological requirement for progress in systems 

biology presents special opportunities for physicists, mathematicians and engineers. Their influx 

engenders the interdisciplinary culture of systems biology but has also expanded and blurred the 

definition of systems biology7. Systems biology now refers to a wide variety of research; much of which 

clusters into two broad and interacting domains: top-down and bottom-up36. 

Top-down, or data-driven, approaches start with comprehensive descriptions of a biological 

system (i.e., observed biological behaviors and accompanying measurements of thousands of biological 

species) and attempt to characterize properties of its biological components (specifically, the network of 

interactions amongst the biological components). In contrast, bottom-up approaches start with well 

characterized properties of the biological components, and their interactions, and attempt to reconstruct 

observed biological behaviors36. Note, the definitions of “component” and “system” vary with the scope 

of the investigation. For instance, a protein structure model of Bax might define Bax oligomerization at 

the mitochondrial outer membrane as a system-level property37 while a dynamical model of mitochondria 

dependent apoptosis38 defines it as the property of a component.  

The top-down and bottom-up approaches occupy opposite ends of a spectrum, described by Doug 

Laffenburger, of approaches to investigate and model biological properties39. Along the spectrum, there 

exists models that blend aspects of top-down and bottom-up approaches in order to push investigations 

beyond the limits of either individual approach. All systems biology approaches must negotiate a 

compromise between the kinds of insights they provide and the amount of data they require40. Therefore, 
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scientists must carefully consider which modeling approaches best apply to their investigation.  The 

following section briefly describes conventional modeling approaches used in systems biology.  

 

1.3.1. Top-down Approach to Systems Biology 

Top-down approaches use statistical and machine learning frameworks to explain, and model, the 

patterns of abundance or activity of biological species that correspond to biological phenotypes and/or 

experimental treatments. These data-driven models typically uncover large networks of statistical 

interactions (e.g. correlative associations between the biological species). Clustering algorithms sort 

biological components, e.g., genes, into groups of similarly behaving gene-clusters42-44. These gene-

clusters may include (supervised) or exclude (unsupervised) phenotype and experimental treatment 

information. Regression and classification models identify a set of genetic markers and/or gene 

expression profiles that best predict observed biological phenotypes44. Correlation and mutual information 

frameworks give more detail by inferring networks of pair-wise statistical associations between the 

biological components45. These networks explain which interactions occur but lack information about 

how the interactions proceed. Bayesian network models describe directed interactions, i.e. wherein one 

gene that exerts influence on another46.  

The models produced in top-down modeling approaches investigate large datasets for useful 

insights for predicting biological behaviors. Top-down network models can predict interesting structural 

properties (network motifs and hubs, scale-free attributes, etc.) that may prove insightful for 

understanding biological mechanism and observed phenotypes47. Scientists can further interpret top-down 

models considering existing knowledge and literature documented biological mechanisms, to glean 

mechanistic insights48. Top-down approaches leverage data to uncover, ab initio, the network of 

interactions behind a biological process, but uncovering the specific mechanistic details of these 

interactions requires bottom-up approaches.  
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1.3.2. Bottom-up Approach to Systems Biology 

Bottom-up approaches to systems biology model biological phenotypes as the integrated effect of 

a network of interactions; wherein each modeled interaction possesses a detailed mechanistic description 

based on underlying biophysical first-principles49. The near comprehensive “parts list” of biology, that 

amassed through decades of reductionist work, includes functional definitions of biological species (e.g. 

as ligands, protein complex scaffold, enzymes). Systems biologists attach to these biological species an 

abstract representation50 (e.g., as depicted in Kitano diagrams) and a mathematical description of the first-

principal properties (e.g., kinetics, transport, mechanics) that govern their interactions. The bottom-up 

modeling approach can help predict biological behaviors and offer mechanics explanations for those 

behaviors. It generally accomplishes via three model building steps: model assembly, model calibration, 

and model selection.  

In model assembly, scientists decide on a model topology: i.e. which interactions to include as 

relevant to the experimental question, and how to represent those interactions mathematically. This step 

relies heavily on molecular biology literature and, assembling an adequate set of interactions requires 

substantial effort and time. The interactions can take on various mathematical representations: Boolean51, 

petri-net52, and agent-based modeling expressions53, mass-action kinetics rate laws (e.g., as ordinary 

differential equations (ODEs)), and spatially resolved expressions (e.g., partial differential equations and 

cellular automata54). Each mathematical framework offers a kind of trade-off between the level of detail 

in the model and the amount of data required to validate the model55, 56. For instance, Boolean models 

generally require less data than ODE models. In model assembly, scientists usually employ simplifying 

assumptions to limit the scope and size of a model so that it specifically addresses a biological question, 

while adhering to technical constraints. There exists, however, a continued effort to model entire cells via 

bottom-up modeling approaches57, 58. 

Model calibration presents a significant challenge to bottom-up modeling approaches, as these 

more detailed models possess notably more free parameters than do top-down models59. In this step, 

scientists try to identify a narrow range of parameter values that optimize the agreement between the 
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model and experimental data. Bottom-up models commonly feature non-linear dynamics and a therefore 

intractable non-convex model calibration objective function59. Therefore, model calibrations commonly 

recur to stochastic optimization algorithms (e.g. Approximate Bayesian Markov-chain Monte Carlo 

Algorithms60, Differential Evolution61, Particle Swarm Optimization62). Precise model calibration presents 

a significant challenge to bottom-up modeling approaches as it requires expensive data: quantitative time-

course measurements (e.g., via fluorescent markers) of the abundance and activity of biological species13, 

59. Even with perfectly suited data, model sloppiness (i.e., that model behaviors depend on only a few 

covariant combinations of parameters) imposes a hard limit on the parameter estimates’ precision63-64. 

Qualitative modeling (e.g., Boolean) approaches allow scientists to address experimental questions while 

at least partially circumventing the model calibration step51.  

Model selection helps scientists derive new mechanistic insights into a biological process via the 

bottom-up modeling approach65. The bottom-up modeling process can expose unconsidered gaps in the 

understanding of a biological process. Scientists address these knowledge gaps with a barrage of plausible 

hypothetical mechanistic explanations. Model calibration then produces an ensemble of equally valid 

parameterized models per each hypothetical model topology. Bayesian evidence-based model selection, 

which uses Bayes Factor to compare competing model topologies, entails a costly integration over the 

space of parameterized models (or in statistical mechanics terms, calculations of the Helmholtz free 

energy between ensembles of parameterized models66). Sethna and Brown accomplished model selection 

using a metric of model sloppiness to approximate the energy difference between competing models66. 

Scientists extend model selection algorithms to generalized exploration of plausible biological 

mechanisms, but such efforts can have prohibitive computational and data requirements.  

Biological processes have subtle and complicated elements that will overwhelm the scientist who 

tries to deconstruct them “in their head”. Isaac Newton remarked that “equations are smarter than us” 67**. 

As such, the equations of bottom-up modeling approaches provide a powerful tool for elucidating the 

nuances of biological mechanism67. Scientists employ bottom-up approaches to investigate biological 

processes when they involve of a small number of well characterized dynamical interactions and when 
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precise time-course measurements are available56. Bottom-up modeling approaches find and fill gaps in 

the mechanistic understanding of biological processes. These approaches have their foundations in 

engineering, where modeling drives design. Scientists investigate model uncertainties and error to define 

the nature and scope of model predictions and propose targets of new optimally designed experiments. 

Model based design applies insights from systems biology to support of ongoing efforts in 

bioengineering68, synthetic biology69, and drug design70.  

The potential of bottom-up modeling approaches to understand subtle details of biological 

processes has contributed to its growing appeal. I explore this potential further in the next two chapters. 

The increasing presence of bottom-up modeling approaches in biological research and drug design has set 

the course toward a future where modeling and experimentation occur within a standardized, completely 

integrated, collaborative workflow71. Natural language processing methods and model visualization tools 

will automate and streamline key aspects of model assembly72. Advances in parallel computing will 

accelerate model calibration and model selection and support the development of larger bottom-up 

models73, 74.  

 

1.3.3. Middle-Out Approach to Systems Biology 

Biologists consult top-down modeling approaches, early in biological investigations, to build 

large network models of the interactions responsible for a set of biological phenotypes. As these 

biological investigations develop, biologists migrate toward bottom-up modeling approaches to resolve 

the mechanistic details of a subset of these potential interactions4. This research trajectory takes biological 

investigations through a handoff region where neither top-down nor bottom-up modeling approaches fully 

apply. Middle-out approaches occupy this region (at the center of the Lauffenburger spectrum) where 

methods aim to translate large data-driven network models into smaller refined mechanistic models; 

and/or vice versa4. Top-down models serve as templates for exploring biological mechanism using 

middle-out models that overlay their network edges with corresponding coarse-grained mechanistic 

representations. These models begin with simple representative operations but gradually acquire more 
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detailed expressions (e.g., ODEs) for increased local granularity75. Modelers have extended this approach 

to genome scale kinetic models76. Conversely, the mechanistic details of bottom-up models adhere to a 

local modeling and experimental scope, but researchers can extend this scope via by appending data-

driven edges. The resulting hybrid model captures a wider scope of biological behaviors while retaining 

the high local resolution supplied by the mechanistic model77. These kinds of hybrid models have proved 

particularly useful in multi-scale modeling77, 78. Various middle-out modeling strategies have emerged to 

mediate the compromise between large top-down networks of low-detail interactions and technically 

demanding more detailed bottom-up mechanistic models. The remaining sections discuss topics that 

apply most to bottom-up modeling approaches but have general relevance to all systems biology 

modeling approaches. 

 

1.4.   Challenges to Systems Biology 

Systems biology adapts physics and engineering inspired approaches to advance an understanding 

of the systems-level consequences of interacting biological species. Scientists expect such approaches to 

revolutionize biology; giving it systematic theory-based experimentation, streamlined model-based drug-

design, and theoretical foundations commensurate with that of physics or engineering.  Despite 

maintained progress in this direction, systems biology has not yet met those initial promises. Modeling 

efforts still struggle to produce precise, accurate, and insightful enough predictions for drug design and 

other applications. Sydney Brenner criticized systems biology as “low-input, high-throughput and no-

output”79.  Indeed, some models, though technically demanding, hardly outperform random guesses80. 

Unsurprisingly, there still exists a stark difference (as Woltosz noted) between the high-throughput “trial 

and error” used in drug design and the methodical model- based engineering utilized in designing e.g., 

airplanes81. Biology presents unique challenges that transcend the immediate capabilities of methods 

borrowed from physics and engineering. Issues of complexity, multiscale organization and heterogeneity 

combine make biological systems more difficult to study than many other systems. 
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Biological systems possess a level of complexity that distinguishes them from other large and 

complicated systems82. In this context, I make an important distinction between complicatedness and 

complexity: a complicated system involves a large number of interacting parts; a complex system can 

possess few parts and a simple set of governing interactions, and yet produce a vast and unpredictable 

range of possible outcomes. Biological systems have such an evolved network of pleotropic signaling 

hubs (i.e., that influence several processes), single-link nodes (that only serve a single, perhaps redundant 

function) and other kinds of nodes in order to confer a complex robustness against noise and injury83. 

Biological complexity also manifests as the hierarchical “multi-scale” organization of biological 

systems. In biological systems, atoms dictate the properties of a diverse array of macromolecules, which 

integrate into complexes and compartments, which then form cells, tissues, organs and, organisms. Each 

level of organization occupies a specific spatial-temporal scale, contains a complex network of 

interactions, and connects to other levels. Multi-scale organization allows specialization and 

diversification of biological processes by isolating them spatially and temporally within a given scale.  

Biological systems exhibit nondeterministic variable behaviors that originate, in part, from 

random fluctuations in the activity, localization and abundance of its components. This biological noise 

has extrinsic sources (e.g. fluctuations in the cellular milieu, and inherited variations in cell size and 

content) and intrinsic sources (e.g. stochastic changes in the abundance of cellular protein count and 

Brownian motion of diffusing molecules. Biological systems tolerate and even utilize noise84-86. Feedback 

circuits87, 88 and other signaling motifs89 attenuate noise and/or collapse noisy signals into a few discrete 

stable states. Biological processes also amplify noise in order to promote heterogeneity, as this helps 

create resilient subpopulations and drives specialization of diverse cellular functions90,.  

Complexity, multiscale organization and heterogeneity conspire to complicate and impede both 

the measurement and modeling of biological systems. Biological complexity (detailed in Figure 1.1 and 

Box 1.1) increases the number of components models require, and concomitantly increases the amount of 

data needed to describe biological processes56, 59.  The multi-scale organization of biological systems 

exacerbates this demand for more detailed models while limiting the feasibility of useful biological  
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Figure 1.1. Challenging Properties of Biology: Complexity, Multiscale and Heterogeneity As detailed in Box 
1.1., three properties of biology (complexity, multiscale organization and heterogeneity) interact to impede 
measurement and modeling of biological systems. 
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Box 1.1. Interaction of Biology Complexity, Multiscale and Heterogeneity with Models and Measurements   

Model Sloppiness and Scope: Complexity gives rise to model sloppiness, a property that dictates that model 
behavior depends on (instead of a few parameters) a few combinations of several parameters. This property expands 
the set of components and interactions (i.e., the model scope or size) necessary to describe biological processes and 
limits the identification of which components and interactions to include in the model.  Biology’s hierarchy of scale 
compounds this effect of complexity by requiring detailed descriptions of components and interactions that span 
multiple temporal and spatial scales.  
 
Multi-scale Processes Affect Intrinsic and Extrinsic Noise: Biological systems possess components whose behaviors 
depend on underlying complex processes that occur (usually asynchronously) on a smaller spatial and temporal 
scale. These processes produce variability, i.e., intrinsic noise, in how the components interact within the larger 
biological system. Conversely, biological systems respond to their environment, a complex network of signals that 
occupy larger spatial and temporal scales (i.e., biological context). These signals affect extrinsic noise. Multi-scale 
interactions expand and complicate models of biology.  
 
Modeling Noise and Heterogeneity: Noise propagates through complex systems to yield a wide variety of emergent 
behaviors. In biological systems, this variability gives rise to heterogeneity. Some modeling efforts may require 
complicated frameworks that account for and/or simulate biological noise. Modeling noise expands the scope of a 
model and complicates its simulation and model calibration.  
 
Noise/Heterogeneity and measurement: The measurement process commonly incorporates inherently noisy 
biological processes (e.g., antibody binding, fluorescently tagged protein expression) that limit the measurement’s 
sensitivity and specificity. The inherent variability in biological systems obscures measurements, especially those 
which average over a heterogeneous population. Experiments and measurements that aim to capture this variability 
often introduce perturbations and compromise biological context.  
 
Precision vs Biological Context: Biological systems interact with their local environment. Cells, for example, 
engage paracrine signals supplied by their surrounding tissue. In vitro experiments and measurements permit more 
precise cellular measurements but strip away the paracrine signals that establish aspects of the cell’s biological 
context. Experiments and measurements contend with a tradeoff between precision and biological context.  
 
Complex Response to Perturbation and Experiment: Complex systems spread the impact of an intended localized 
perturbation across several interactions in efforts to maintain some preset biological state. This lends to uncertainties 
in the design and implementation of experiments. Accomplishing an intended perturbation or experimental condition 
may disrupt other essential drivers of the biological phenotype or sacrifice the biological context of the experiment.   

 



 15 

measurements. Noise obscures the details of biological processes but, when appropriately considered, it 

can provide important insights into the mechanisms that drive a particular phenotype91. Models that 

encode the added details of intrinsic and extrinsic noise sources, however, contain additional free 

parameters and require measurements and experiments that can capture biological response to noise. 

These measurements tend to disrupt other important drivers of the phenotype92.   

 

1.5.   Addressing the Demand for Measured Data 

The persistent challenges of systems biology attest to an inextricable link between models and 

measured biological data. The mechanistic insights and predictive power of systems biology models 

depend on the amount, kind and precision of available measured data. The most appropriate 

measurements often do not exist and may be awaiting the advent of new measurement technologies. 

Systems biology cannot advance unless supported by an adequate supply of useful biological 

measurements. Scientists address this challenge with a myriad of technologies and practices.  

 

1.5.1. Simpler Models Offset the Demand for Data 

Systems biology has adopted strategies to cope with the current dearth of the measurements need 

for modeling biological processes. Specifically, model parameterization requires a sufficient number of 

quantitative measurements. Modelers can negotiate this demand for data by limiting the number of model 

parameters56. As mentioned above, simplifying assumptions help limit the size of a model and constrain 

its scope to a particular experimental question. Common examples include assumptions that neglect 

intracellular diffusion and localization; approximate large chains of reactions with a single Hill equation; 

and neglect avidity of protein oligomers. My colleagues in the Lopez lab and I have encoded models of 

extrinsic apoptosis with varying degrees of model simplification93-95. This has allowed more amenable 

models and insights that pertain to our specific experimental scope(s). These simplifying assumptions, 

however, prevent reliable extrapolation beyond the initial experimental scope. Course-grained 

descriptions (e.g. Boolean) of biological mechanism limit or eliminate the model parameters. These less 
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detailed models explain and predict non-quantitative observations; and therefore, require little or no 

quantitative data, but can only provide qualitative predictions96. Hybrid models append ODE modules to 

otherwise coarse-grained descriptions of a biological process, in order to reach a compromise between the 

need for more reliable and detailed model predictions and the need for a simplified model that tolerates 

absent of data77. This set up adds ODE parameters that require quantitative dynamic data to estimate. The 

output from the ODE module inputs into a Boolean, or similar, model that predicts qualitative results of 

the dynamics modeled in the ODE model.  For instance, J. Molina-Mora et al. parameterized a model of 

sphingolipid metabolism fluorescence measurements of a sphingolipid indicator. This model predicted the 

dynamics of sphingolipid in perturbed cells and related those prediction, via a fuzzy logical model, to cell 

viability97. 

Scientists can, at least partially, forgo model calibration in more detailed models (e.g., ODE 

models) by instead analyzing parameter-independent properties of the model. For instance, Deyan Luan et 

al. avoided calibration of their ODE model of human extrinsic coagulation dynamics by focusing on 

qualitative information that can be gleaned through analysis of robust properties over a random 

(uncertain) set of parameters98. These analyses focus on model properties (e.g., sensitivity coefficients98, 

critical components, bifurcation behaviors) that rely more on the model’s topology than its parameters. 

Steady-state and other constraint-based models estimate a wide range of ODE model parameters that 

correspond to end-point steady-state behaviors. Model calibration for these models does not require as 

much quantitative or time-course data or computational resources, but the models provide low-precision 

predictions of dynamic behaviors. 

 

1.5.2. Facilitating easier access to existing data 

The most obvious response to the dearth of measured data in systems biology involves practices 

and techniques that increase the amount of useable measured data. Modeling efforts generally include the 

time-consuming step of mining (typically manually) through hundreds of publications, figures and data 

files to extract pertinent information and measurements.  With a new finding appearing in PubMed every 
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thirty seconds99, the production of new data far outpaces its integration into systems biology. These data 

have no standardized presentation and can often possess ambiguous naming, multiple references to a 

single object and, incompletely or inconsistently described experimental setups, contexts, labs, etc. 

Advances in automated and crowd-sourced data curation help accelerate the identification, extraction  

and organization of these biological data into more quickly searchable, interoperable and usable 

databases100.   

 

1.5.3. Technologies generate new quantitative data 

While the modeling process can include information for different kinds of measured data, the 

model parameterization step requires specifically quantitative measurements (which constitute only a 

small fraction of the measurements of biological processes).  Technological innovation drives ongoing 

improvement in the precision, reliability and capabilities of biological assays. Mukesh Kumar et. al. 

recently improved the quantification capabilities of Western blots by replacing the antibodies, that 

mediate detection, in a conventional western blot with isotopically label protein chimeras for mass 

spectrometry (MS) based detection101. This enabled absolute quantification of proteins in Drosophila 

melanogaster tissue102. Other researchers have transferred the Western blot into microfluidic devices in 

order to measure of protein abundance single cells103. This technology accomplished detection and 

profiling of rare circulating tumor cells104. The application of microfluidics to MS (using isobaric tag or 

iTRAQ-labels) has permitted precise quantitative measurement protein abundance single cells105. 

Integrating nanoscale “nanostraws” into microfluidic devices has given researchers to non-destructive 

access to intracellular protein concentration106. This potentially allows high-precision quantitative time-

course measurements of currently elusive cellular contents.  

Technological advances have also improved the characterization of protein location, activity, 

regulation (via post-translational modification), etc. For example, new technologies allow better assaying 

of kinase activity. Quantitative microscopy using novel peptide-based biosensors has recently 

accomplished multiplex, non-destructive, spatial-temporal, measurement of intracellular kinase 
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activity107. Multiplex substrate profile via MS allows quantitative profiling of a kinase’s peptide 

substrates and characterizes the rate of phosphorylation for those substrate108. Proteins possess multiple 

phosphorylation sites. Recent application of MS has produced a quantitative landscape of the site-specific 

post-translational modification of a protein in vitro109, 110.   

These technologies improve the quantification and characterization of intracellular proteins, but 

restrict their measurements, generally, to a single snapshot per sample; the most precise measurements 

destroy the sample. Desire to maintain the biological context of an experiment may preclude the use of 

these technologies. Further, these technologies require technical skill and money to implement. 

Researchers may have reservations about investing in such expensive quantitative measurements if 

modeling efforts that incorporate those data do not substantially augment their investigation71. 

 

1.5.4. Improved processing of measurements 

The quantitative measurements, typically needed for model model calibration, constitute only a 

small fraction of the data in biological research. There exist methods for making the remaining non-

quantitative data more useful to conventional model calibration methods. Figure 1.2 describes different 

non-quantitative measurements of intracellular protein concentration111. For instance, the relationship 

between the intracellular concentration of a biological species and the fluorescent intensity of its indicator 

can be explained (to some extent) by some function, 𝑥!"# = 𝑓(𝑥, 𝒄). Noise and uncharacterized 

influences on the measurements (e.g. sensitivity and saturation limits) confound the relationship. Hence, 

the term “semi-quantitative” refers to uncertainty that exist in the structure and parameter values of the 

function. Researchers construct a standard curve of known concentrations and accompanying 

fluorescence measurements in order to model their relationship.  In a recent example of elaborate such 

standard curves can become, scientists formulated a model of fluorescence measurements of 

mitochondrial transmembrane potential that accounted for cell-to-cell variations in mitochondrial number, 

size, affinity for the fluorophore etc112. This added detail improved the measurement by extracting the 

noise related to the highly variable cellular mitochondrial content112. 
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Figure 1.2: Types of Measurements in Biology Measurements assign a value, 𝑥!"#, to a 
characteristic,	𝑥, of the systems. The relation between the characteristic and its measured value depends 
on the kind of measurement. Quantitative measurements provide the most unambiguous description of a 
characteristic, and therefore are most useful. Less expensive, and less informative, measurements abound 
in biology. A, Quantitative measurements (e.g. mass spectrometric measurements of protein abundance) 
give a linear relationship between the characteristic, concentration, and its measured value. The 
measurements often contain a ratio or interval relation to a reference. B, Semi-quantitative measurements 
(e.g., fluorescence indicators or protein abundance) have a less certain nonlinear relationship between the 
characteristic to its measured value. C, Ordinal measurements (e.g., Western Blot of protein abundance) 
relate pairs of measurements by ordering them according to their magnitude. The larger measured value 
corresponds, generally, to an increased display of the characteristic. D, Nominal measurements (e.g., cell 
fate decision) further relate pairs of measurements according to whether are similar or different. Two 
measurements in the same nominal category represent similar displays of the characteristic. Two 
measurements with different nominal categories represent to dissimilar displays of the characteristic, and 
a value, 𝑐, represents the degree of dissimilarity.   
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Biological noise, and technical noise (i.e., arising in the measurement process) can prevent 

precise measurement of the interval between two quantities (e.g., in Western Blots113). Instead, the 

measurement only distinguishes which quantity as greater than the other. These ordinal measurements 

constitute the bulk of molecular biological data. Quantitative Western blots (QWBs) feature a precise 

fluorescent tag and standard curve to aid quantification114. Quantitative western blot measurements, 

however, contain several sources of uncertainty (e.g., nonlinearities in antibody affinity115, unreliable 

loading controls116, misleading normalization113, 117), that when neglected render the measurement 

ordinal118. Western blots (and QWBs), despite their abundance, go unused in model calibration efforts in 

systems biology. Other prominent measurements, nominal measurements, only convey binary 

information, (e.g. absent vs. present) or information that lacks an explicit ordering (e.g. cell type). 

Nominal data can provide useful information to modeling efforts, described below, when they have an 

established relationship to metric markers.   Uncovering those relationships, however, requires additional 

measurements. 

 

1.5.5. Using non-quantitative data as a substitute  

The inadequate supply of quantitative measurements in biology has prompted modelers to explore 

model calibration strategies that leverage the far more abundantly available non-quantitative data. Perhaps 

the most common approach involves pseudo-arbitrarily assigning numerical values to stand in for the 

non-quantitative (specifically ordinal and nominal) measurements as comparators for the parameterized 

model119. For example, Sabrina Spencer used ODE models to characterize the contribution of non-genetic 

biological noise to heterogeneity in TRAIL induced apoptosis. This model arbitrarily defined apoptosis 

with a threshold at 50% maximum simulated PARP cleavage. Prior knowledge about the delayed uptick 

in the activity of PARP cleaving caspases that immediately precedes apoptosis supports use of this 

threshold120.  Modelers extend this idea by employing signal temporal logic to construct intricate time-

resolved numerical definitions of non-quantitative observations. Researchers recently modeled the 

dynamics endocytosis and subsequent GFP expression in newly transfected cells. This model represents 
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endocytosis and mRNA release as a single binary event; a Boolean trigger, or temporal threshold, that 

dictated an accompanying change in GFP translation rate121.  

When fluorescence measurements lack an accompanying standard curve (described above), data-

driven normalization schemes scale semi-quantitative data and model predictions so that they possess 

consistent max and min, quartiles, means and standard deviations, etc122. Data-driven normalization 

schemes assume a linear, log-linear relationship, etc. between fluorescence and concentration. (The 

necessity of such normalization curves qualifies these measurements “semi-quantitative”.) Arbitrarily 

scaling, normalization, and signal temporal logic impose assumptions about the relationship between 

some characteristic of the biological system (e.g., concentration) and its non-quantitative measurement 

(e.g., fluorescence). These assumptions potentially bias the model, rendering it prone to incorrectly 

predict new behaviors. The next chapter explores the risk of arbitrarily specifying the measurement 

model. 

The incorporation of non-quantitative data into a model requires a functional definition of the 

non-quantitative data in terms of metrics present in the model. Experiments can help establish this 

definition. Andrew Paek et. al. characterized a relationship between the dynamics of p53 accumulation in 

cisplatin treated HCT116 cells and their commitment to cell death123. This produced a functional 

definition of cell death (specifically early and rapid accumulation of p53) that was used to simulate 

fractional killing of cells in a heterogeneous population124. This model then predicted bifurcate dynamics 

in p53 regulated cIAP and Bax abundance distinguish dying and surviving cells. Roux et al. similarity 

characterized a Heaviside function classifier that separates dead and surviving cells based on the 

underlying dynamics of caspase activity125. More elaborate methods for defining markers of cell fate exist 

but are not yet integrated into the mechanistic modeling paradigm44.  This approach, though effective, 

does not entirely remove the requirement for quantitative time-course data since fluorescence data were 

required to characterize the relationship between cell signaling and cell death. 

Non-quantitative measurements possess a minimal mathematical definition (listed in Figure 1.2); 

attaching additional details to these definitions requires the support of data to assure against potentially 
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biasing the model126. Optimal scaling accomplishes model calibration while only using these minimal 

mathematical definitions. For example, optimal scaling defines ordinal and nominal measurements with a 

range of corresponding values. The upper and lower boundaries of this representative range are positioned 

to maximize support of the model. The moveable boundaries in optimal scaling introduce additional free 

parameters to the model. Michael Pargett et. al. recently applied optimal scaling to partial differential 

equation models of embryonic expression of bone morphogenic protein (BMP) in drosophila10. Ordinal 

values of BMP expression were derived from colorimetric and fluorescence BMP indicators. These 

ordinal values were modeled as bounded intervals on the BMP concentrations. Adjusting the parameters 

in the partial differential equation model along with the boundaries of the BMP ordinal categories 

accomplished low-bias model parameter calibration. Schmiester et al. incorporated this strategy into 

PyPESTO, a model model calibration framework127. Optimal scaling uses hard boundaries to demark the 

edges of ordinal values. This rigorous treatment ignores uncharacterized noise sources that contribute to 

the nonquantitative character of measurements in biology (e.g. how noise sources can add uncertainty to 

the boundaries to demark the edges of ordinal values). Researchers therefore employ arbitrary gap 

intervals, between the boundaries of adjacent categories, to account for noise and increase the utility of 

the data10, 127. The discretization of continuous variables that occurs in optimal scaling also prevents easy 

implementation of Bayesian model calibration methods. Mitra et al. adapted a constraints-based method 

of calibrating models to certain categorical data to employ Bayesian methods12. Their work avoids 

discretizing continuous variables by instead defining a continuous probability of each categorical value. 

However, their formulation features ad hoc assumptions that may bias the model calibration.  

 

1.6.   Recommendations Moving Forward 

Systems biology has become an essential driver of forward progress in biology. Its shortcomings 

attest to the mismatch between common goals and promises of systems biology modeling efforts and the 

amount of useable data required to accomplish those goals. Researchers and modelers often interact only 

after their individual projects have reached a stubborn road block. Researchers should initiate 
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collaborations between experimentalists and models at the start of biological investigations. Modelers 

should clearly communicate what realistic modeling capabilities exist, provided available or prospective 

data. This will help focus the modeling efforts on attainable goals that best support a specific 

investigation. Top-down data-driven modeling efforts have begun to incorporate larger and more diverse 

datasets. This trend will, hopefully, expand into bottom-up modeling efforts.   
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Chapter 2 

 

Model certainty in biological network processes with uncertain data. 

 

Michael W. Irvin, Arvind Ramanathan, and Carlos F. Lopez 

bioRxiv 2021.05.18.44474 

 

2.1.   Summary 

Mathematical models are often used to study the structure and dynamics of network-driven 

cellular processes. In cell biology, models representing biochemical reaction networks have provided 

significant insights but are often plagued by a dearth of available quantitative data necessary for 

simulation and analysis. This has in turn led to questions about the usefulness of biochemical network 

models with unidentifiable parameters and high-degree of parameter sloppiness. In response, approaches 

to incorporate highly-available non-quantitative data and use this data to improve model certainty have 

been undertaken with various degrees of success. Here we employ a Bayesian inference and Machine 

Learning approach to first explore how quantitative and non-quantitative data can constrain a mechanistic 

model of apoptosis execution, in which all models can be identified. We find that two orders of 

magnitude more ordinal data measurements than those typically collected are necessary to achieve the 

same accuracy as that obtained from a quantitative dataset. We also find that ordinal and nominal non-

quantitative data on their own can be combined to reduce model uncertainty and thus improve model 

accuracy. Further analysis demonstrates that the accuracy and certainty of model predictions strongly 

depends on accurate formulations of the measurement as well as the size and make-up of the 

nonquantitative datasets. Finally, we demonstrate the potential of a data-driven Machine Learning 

measurement model to identify informative mechanistic features that predict or define nonquantitative 

cellular phenotypes, from a systems perspective. 
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2.2.   Introduction 

The combination of systems approaches and quantitative data promised a novel understanding of 

cellular mechanisms that would spur science-driven innovation in biology and medicine – as happened in 

physics, chemistry, and engineering81. Despite massive research efforts and data accumulation, our 

understanding of cellular regulation, signaling and many other processes as biomolecular systems remains 

rudimentary. The systems and quantitative biology fields continue to employ strategies from physics and 

engineering to construct models of biological mechanism from first principles128, 129. However, these 

strategies are incompatible with the types of measurements and observations that predominate biological 

investigations. Observations from biological experiments investigating cell fate outcomes (apoptosis, 

necroptosis, etc.) are collected as categorical values, which are hard to define in terms of variables 

encoded in mathematical mechanistic models of biological processes130. Therefore, the connection of 

mechanistic models to corresponding biological measurements is subject to practitioner interpretation. As 

a result, vast amounts of existing nonquantitative data in cell biology have led to mechanistic 

formulations based on simple inference and informal reasoning. Noise, complexity and the hierarchical 

organization of biology limits how we can experimentally perturb and measure biological systems8, 59, 131, 

132. Therefore, a relative dearth of quantitative data exists that reveals itself in mechanistic models with 

poor parameter constraints. Unfortunately, both non-quantitative and quantitative data, collected in an 

unplanned manner, results in missed opportunities to quantitatively explain complex cellular 

mechanisms133.  

This data-to-knowledge problem in biology has prompted researchers to incorporate 

nonquantitative data as a complement or substitute for quantitative data in the development of 

mechanistic models10-12, 127. The traditional workflow employed to train mechanistic models to data 

comprises mechanistic models and experimental measurements linked through a calibration method (Box 

2.1.)134, 135. Such workflows have been adapted to incorporate nonquantitative data into mechanistic 

models and have revealed their intrinsic value in mechanistic hypothesis exploration. For example, 

pioneering work by Pargett and co-workers employed optimal scaling and multi-objective optimization 
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for training mechanistic models to large ordinal datasets10. Schmiester et al. incorporated this strategy into 

PyPESTO, a model model calibration framework127. Their formulation imposes discrete boundaries on 

the mechanistic model to reflect discrete ordinal values in the data, but this approach limits their ability to 

integrate multiple datatypes or use Bayesian methods for training and uncertainty estimation of 

mechanistic models. More recently, Mitra et al. applied predefined constraint-based models of categorical 

data and modified their approach to allow definition of a likelihood function within a Bayesian 

formalism11, 12. However, the ad hoc nature of their constraint models leaves room for biasing 

assumptions. Given the limited application of Bayesian methods and biases introduced by ad hoc 

assumptions, the field still has a limited understanding of the contribution of nonquantitative and 

quantitative data to mechanistic knowledge in biological systems.  

In this work, we tackle the data-to-knowledge challenge by introducing the concept of a 

measurement model, a statistical construct, into systems modeling approaches, which aims to rigorously 

define measurements and observations in terms of an underlying mechanisms111. This definition entails 

formulation of a function that maps variables encoded in a mechanistic model to values in the 

nonquantitative data. Our approach departs from previous work in that it uses machine-learning based 

classifiers whose free parameters are estimated to accomplish data-driven identification of measurement 

model properties. It also uses a probabilistic formulation that lends itself to Bayesian methods and can 

therefore provide an unbiased evaluation of the predictive power of models trained to nonquantitative 

data. In what follows, we present our findings about common types of biological measurements, followed 

by a presentation of our methodology. In this work we use a mechanistic model of apoptosis execution to 

demonstrate how the amount and type of data applied to a mechanistic model can affect its predictive 

power. It is well established that apoptosis signaling is involved in many cellular processes in health, 

disease, and development136. Its biological importance is further underscored by available quantitative and 

nonquantitative empirical data125. We also establish how an ad hoc formulation of a measurement model 

can lead to spurious results and further show how these a priori assumptions can be examined within a 

Bayesian, data-driven context. Finally, we demonstrate the potential of a machine learning measurement 
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model formulation to identify phenomenological links between features (e.g. predictors and drivers) of a 

biomolecular mechanism and emergent biological phenotype. We expect our approach to improve our 

understanding of the data-to-knowledge relationship in biological processes, leading to a probabilistic 

understanding of biochemical mechanisms, and accelerated identification of systems-level interactions 

that drive biological network dynamics. 

 

2.3.   Results 

2.3.1. Contributions and biases from different data types to mechanistic models 

We first explored how experimental data measurements are used to constrain mathematical 

models of cellular processes. Mechanistic models typically employ physical chemistry formalisms 

comprised of reaction rates and chemical species concentrations to represent networks of biochemical 

reactions. Direct quantitative measurement of all chemical reactions and species would provide needed 

model parameters to carry out simulations and in silico experiments. However, these measurements are 

typically not available and likely untenable for real systems, thus leading to indirect measurements used 

to infer model parameter values using an objective function (Eq. 7) or a likelihood function (Eq. 8). When 

these functions are optimized, the resulting mathematical model can provide valuable new predictions  

and insights about the cellular process. Measurements from cell biology experiments comprise four broad 

types, namely, nominal, ordinal, semi-quantitative, and quantitative (Figure 2.1); each data type reveals 

different insights about the cellular process. In apoptosis signaling, for instance, nominal observations 

supported early research where it helped identify key components in the apoptosis signaling pathway137. 

Apoptosis and survival outcomes – as indicated by nominal nuclear fragmentation data (Figure 2.1. top 

row) – helped determine two parallel signaling arcs that proceed following initiator caspase activation: 

mitochondria-dependent and -independent pathways137. These pathways trigger apoptosis by activating 

effector caspases137. We built an abridged Extrinsic Apoptosis Reaction Model (aEARM)95, which 

represents these extrinsic apoptosis execution mechanisms as biomolecular reactions (Figure 2.2. A).  
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Figure 2.1. Measurements encountered in cell biology Nominal measurements (top) can help understand 
intracellular signaling activity as it relates to broader cellular and physiological behaviors. With cellular phenotype 
markers or drivers, we can attribute different nominal observations to distinct (intra)cellular states. This is often 
modeled as in Eq. 1, where each observable measurement (𝑦!"#) corresponds to a given state. Ordinal measurements 
(second row) can be graded cellular phenotype observations (e.g., cell state transitions in cellular differentiation) or 
measurements of intracellular contents where noise can obscure intervals between values (e.g., Western Blots). 
Ordinal measurements imply a relative ordering of quantities along an axis but not their relative distance, i.e., we 
may know 𝑦$ ≤ 𝑦% without knowing 𝑦$ − 𝑦% (Eq. 2). Semi-quantitative measurements (third row) typically arise 
when an investigation has progress toward a more quantitative understanding of the intracellular signaling. Semi-
quantitative measurements (e.g., fluorescent intracellular markers) imply a quantitative relationship but a scaling 
function is necessary for true quantitation (Eq. 3). True quantitative measurements (bottom row) do not imply 
assumptions and the quantity measured can be used directly in the model (Eq. 4), such as mass-spectrometry protein 
concentration measurements. As shown schematically on the left triangle schematic, ordinal and nominal 
measurements are more abundant in biology due to their ease of production but are more difficult to interpret, 
whereas semi-quantitative and quantitative measurements are less common but have a more straightforward 
interpretation. (This figure is an updated version of Figure 1.2. and is included in this chapter for additional context 
and reader convenience)  
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Box 2.1. Objective functions and the role of a measurement model. Mechanistic models of biological processes 
are typically encoded as systems of (ordinary) differential equations (Eq. 5). Model calibration relies on an objective 
function (Eq. 7) -- or in a Bayesian setting, a likelihood function (Eq. 8) -- quantifies the degree of dissimilarity or 
similarity between model variables and corresponding measurements. Note, the objective or likelihood function uses 
measurement model (Eq. 6) which converts modeled variables 𝑥(𝑡) to a quantity 𝑦(𝑡$ , 	𝜃)	that can be compared to 
data 𝑦+(𝑡$). In physics and engineering, where measurements are typically quantitative, the measurement model can 
be neglected. For nonquantitative measurements and observations, the measurement model takes more 
consideration.  
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Nominal observations do not provide a definitive estimation of their quantity of interest (i.e., their 

measurand) and instead, encode weak constraints on the measurand values (Eq. 1). They can guide 

mechanistic modeling by revealing salient structural elements of a cellular process but provide limited 

insight into the dynamics and complex regulatory cues of apoptosis signaling. Ordinal measurements 

have featured prominently in works investigating apoptosis signaling. They have uncovered clues about 

the dynamics and complex regulatory mechanisms of apoptosis. For instance, ordinal measurements of 

DISC (i.e., a ligand-dependent membrane bound ‘death inducing signaling complex’) components, 

initiator and effector caspases (Figure 2.1. second row), bid, etc. revealed how cells resist apoptosis by 

limiting (but not completely eliminating) pro-apoptotic cues138; the sub-maximal pro-apoptotic signaling 

presents as delay in the dynamics of caspase activation139. To better understand caspase activation 

dynamics and its effect on apoptosis and survival, we need mathematical models of the apoptosis 

signaling dynamics. Ordinal measurements, however, do not readily support a mathematical description 

of apoptosis signaling dynamics. Emerging work has leveraged ordinal and nominal measurements in the 

development of mathematical models of biological signaling but the weak constraints encoded by these 

measurements (Eq. 1 and Eq. 2) add uncertainty and bias to the modeling process.  

Technical challenges confine our quantitative and semi-quantitative measurement to just a few 

apoptotic signaling proteins. Fluorescence indicators of caspase activity125 (and by proxy, caspase 

substrate cleavage) enabled time course measurements of Bid and PARP cleavage dynamics (Figure 2.1. 

third row)125. They revealed pro-apoptotic activation of Bid and PARP, in TRAIL induced apoptotic 

HeLa cells, follows sigmoidal dynamics with delays and switch times that are sensitive to various 

regulatory factors. These measurements provide the details necessary for a mathematical description of 

apoptosis signaling dynamics and complexity. Our mathematical model aEARM captures the events from 

initial death ligand cue, initiator caspase activation, BID truncation (tBID), mitochondrial outer 

membrane permeabilization (MOMP) and eventual PARP cleavage (cPARP), as shown schematically on 

Figure 2.2. 140-144. The model was calibrated to above fluorescence data, as described in Methods145. Semi-

quantitative measurements like fluorescence, like non-quantitative measurements lack a definitive 
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estimation of the measurand because their interpretation requires mathematical manipulation, typically 

through scaling (Eq. 3), which can also add uncertainty and bias. Quantitative measurements can be used 

directly in a model without further modifications (Figure 2.1., fourth row) thus minimizing the 

uncertainty and bias introduced in the model from measurement interpretation. Therefore, the specific 

type of measurement and its interpretation could add significant uncertainty and bias to the mechanistic 

explanation of a given process. 

To study the bias and uncertainty originating from different types of measurements, we introduce 

a concept from statistics, and social sciences: the measurement model (Box 2.1.)146. Briefly, a 

measurement model is a function (Eq. 6) that describes the relationship between the measurement and its 

measurand. This function maps variables from the mechanistic model 𝒙 to the values expressed in the 

data 𝑦,. This function is often assumed or implied, particularly for semi-quantitative data that can more 

readily be applied to the model calibration. However, the application of nominal and ordinal datatypes to 

mechanistic models is not straightforward, because their interpretation (as we show in the following 

sections) can significantly bias model-derived insights. Consequently, modeling efforts have relied almost 

exclusively on quantitative and semi-quantitative data. By contrast, the much more abundant non-

quantitative datatypes are often ignored or used inappropriately. 

Early modeling efforts interpreted nonquantitative data as a series of arbitrary surrogate quantities 

for the ordinal or nominal values in a corresponding dataset119, 134. More recently, discrete boundaries on 

the values of the measurand were imposed along with a distance metric to describe how well the 

mechanistic model satisfies nominal or ordinal constraints in the non-quantitative data10-12, 127. These 

approaches reveal the value of nonquantitative data for mechanistic model calibration, but the often-ad 

hoc nature of these constraint-based measurement models has been an overlooked source of model bias. 

To minimize biases from the interpretation of non-quantitative datatypes and apply Bayesian inference 

methods for model calibration, we developed a data-driven probabilistic measurement model (Box 2.2.). 

Our measurement model is data-driven in that it possesses free parameters that are calibrated to match 

data; this lets us replace a priori assumptions about the measurement with a data-driven parametrization, 
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and thereby calibrate mechanistic models whose accuracy and precision better reflect the information 

contained in the data. Our measurement model is probabilistic as it replaces discrete boundary-based 

measurement models and distance metrics with a probability (Box 2.2., Eq. 9) of the ordinal or nominal 

value, which enables easy formulation of a likelihood function and application of Bayesian optimization 

methods that utilize MCMC sampling. In our approach, the measurement model is a mathematical 

construct that represents the measurand through a Machine-Learning probabilistic classifier whose free 

parameters are simultaneously estimated with the free parameters of the mathematical model during 

calibration (Box 2.2.). As a probabilistic classifier, the measurement model effectively describes the 

probability of the categories encoded in the non-quantitative data given values of the measurand (Eq. 9). 

The measurand, in our case, is encoded in the mechanistic model. For example, the measurement model 

(Eq. 9, Box 2.2.) can use ordinal logistic classifiers to model the probability of a categorical value as a 

function of variable(s) encoded by the mechanistic model. Also, the probability that a cell death or 

survival observations represents a specific state of the mechanistic model. In the calibration process, the 

measurement model is an explicit intermediate step between simulation of the mechanistic model 

dynamics and calculation of the likelihood (Box 2.2.). As described in the Methods section, this approach 

uses the Python based PySB models-as-programs framework and PyDREAM, a Python implementation 

of the DREAM(ZS) algorithm to sample posterior values of models’ free parameters. However, other 

model building and parameter sampling (or optimization) algorithms could be employed by the user. In 

what follows, we examine the impact of different measurement modalities and interpretations on 

mechanistic model constraints in apoptosis execution. This work motivates an approach that could be 

generalized to any mathematical model to rigorously integrate quantitative and nonquantitative data types. 

 

2.3.2. Uncertainty associated with different data types in model calibration 

To date, molecular biology investigations of intracellular signaling processes and their 

mechanisms predominantly report nonquantitative measurements. However, it is unclear exactly how well 

these measurements support the development of mechanistic models. We therefore asked how various 
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measurement datatypes impact the certainty and accuracy of model calibrations. Specifically, we explored 

how to adjust the size and make-up of nonquantitative datasets to better support mechanistic inferences. 

The resulting posterior predictive region for tBID dynamics of aEARM calibrated to (semi-quantitative) 

fluorescence data is shown in Figure 2.2. (B, top row). As expected, the data can effectively constrain the 

model and the 95% credible region of posterior predictions for tBid dynamics falls within the data 

uncertainty region. We then extracted a parameter vector from the fluorescence optimized data and used it 

as a baseline (reference) to generate ordinal datasets for tBID and other aEARM variables as described in 

Methods and shown Figures 2.2. (B, bottom four rows). These synthetic datasets could be considered as 

numerical representations of a time-course western blot dataset. We then calibrated aEARM kinetic rate 

and measurement model parameters to the ordinal and nominal datasets.  

As shown in Figure 2.2. B, ordinal datasets accurately predicted quantitative predictions of 

“ground truth” dynamics for tBID. The 95% credible region of posterior predictions of tBID dynamics of 

aEARM trained to these ordinal datasets each contained “ground truth” dynamics for tBID. We also use 

the area bounded by the 95% credible region of posterior predictions of tBID as a measure of model 

certainty; with a smaller area indicating higher certainty. The ordinal dataset containing measurements at 

every 25-minute interval (i.e., typical of time-dependent western blot datasets), however, did not 

significantly constrain the posterior predictive regions of these dynamics (Figure 2.2. D). Increasing the 

number of measurements, however, increases the certainty of the posterior predictions of tBID dynamics; 

this certainty approaches that of the typical semi-quantitative (fluorescence) dataset, which has an area of 

2.7, when then the number of ordinal measurements is increased threefold, which had an area of 6.2. The 

areas bounded by the 95% credible region for each ordinal time-course dataset is described in the Figure 

2.2. B (Bottom two rows). 

To explore the impact of nominal data on model optimization, we again extracted a parameter 

vector from the fluorescence optimized data and used it as a baseline (reference) to generate nominal 

datasets akin to an apoptosis execution observation as described in Methods. Previous work has described 

how features of apoptosis signaling dynamics can predict cell death vs survival18. The generated nominal 
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dataset describes binary cell-fate outcomes that emerge as a consequence of extrinsic apoptosis signaling 

dynamics. We encode this information in a nominal measurement model as described in Methods. 

Parameters of aEARM and the free-parameters encoded in the measurement model were jointly calibrated 

to a synthetically generated dataset of 400 survival vs death outcomes as shown in Figure 2.3. A (left). As 

shown in Figure 2.3. A (right), the binary cell-fate data minimally constrain the posterior predictive 

region of tBID dynamics relative to the prior constraints on the model. This is expected as the binary cell-

fate data-type essentially condenses complex apoptotic signaling dynamics to a single categorical value.  

In lieu of its limited ability to constrain mechanistic models, modeling efforts understandably 

disregard nominal data. However, we hypothesized that combining nonquantitative datatypes and 

covering multiple variables in the model could improve model certainty. To explore the effect of multiple 

data type combinations on model calibration, we again optimized the aEARM model parameters, but this 

time to a dataset containing nominal and ordinal measurements. As described in Methods, we added a 

synthetic dataset containing 61 ordinal time-course measurements for the DISC complex to the nominal 

dataset described above (Figure 2.3. B (left)). We modeled the likelihood of this combined dataset as the 

product of the likelihoods of the individual constituent datasets (see Methods for details). In Figure 2.3. A 

and 2.3. B (right), we see the nominal and ordinal datasets yields larger 95% credible regions for the 

posterior predictions of tBID dynamics. However, (in Figure 2.3. C) the combined dataset better 

constrained the posterior predictions of normalized tBID dynamics than either dataset alone, with a 95% 

credible region area of 26.5 (compared to 55.0 and 56.4 for the ordinal and nominal datasets alone). 

Therefore, the model uncertainty stemming from only using tBID nominal data was decreased by 

including more detailed upstream measurements. However, the contribution of DISC ordinal data alone 

was comparable to that of the tBID nominal data in isolation (Figure 2.3. B (right)). This data suggests 

that distributed measurements across multiple variables in a pathway yield synergistic effects on 

calibrated model accuracy and certainty. 
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Box 2.2. Model calibration with the data-driven probabilistic measurement model. A.) The measurement model 
is an intermediate step between the mechanistic model and likelihood function of the measurement/observations. It 
receives variables from the mechanistic model and transforms for use in the likelihood function. This probabilistic 
machine-learning measurement model estimates probabilities of class membership as a function of the mechanistic 
model variables (Eq. 9). This measurement model is data-driven in that it contains free-parameters that are evaluated 
via the likelihood function (Eq. 10). B.) The measurement model uses values of e.g., tBID (grey curve) to estimate 
the probability of membership in an ordinal category (dotted data). C.) Plots a posterior ensemble of estimates of the 
probability of membership into 5 ordinal categories (x-axis) as a function of normalized tBID concentration (y-axis). 
The plot shows the median (solid line) and 95% credible region (shaded region) of the predictions (Category colors 
match data plotted in B). Algorithm) The mechanistic model and measurement model are calibrated simultaneously 
using Bayesian sampling methods through stepwise operations as described in each numeral.  
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Figure 2.2. Predicted Bid truncation dynamics of aEARM trained to different sized ordinal datasets. Multiple 
Bayesian optimizations were run on the A.) abridged Extrinsic Apoptosis Reaction Model (aEARM) using different 
sized ordinal dataset to probe how dataset size influenced certainty of aEARM predictions.  B.) Initiator caspase 
reporter (IC-RP) fluorescence time-course measurements (at 180s intervals) were measured (top left) as a proxy for 
truncated tBid (data from Albeck et al28). The plot shows the mean (dotted line) +/- 1 standard deviation (shaded 
region) for each time point. The 95% credible region (top right) of posterior predictions (shaded region) for tBID 
concentration in aEARM, calibrated to fluorescence measurements of IC-RP and EC-RP (See also Figure B.2.). The 
median prediction (solid line) and true (dotted line) tBID concentration trajectories are shown. In the next four rows 
(from top to bottom), Ordinal measurements of tBID (left) at every 1500, 300, 180 and 60s interval, respectively. 
The 95% credible region of predictions (shaded region), median prediction (solid line) and true (dotted line) tBID 
dynamics for aEARM calibrated to ordinal measurements of tBID and cPARP occurring at every 1500, 300, 180 and 
60s timepoint are plotted in plots on the right. The plots for cPARP ordinal measurements and predictions are found 
in Figure B.2.  
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Figure 2.3. Predicted Bid truncation dynamics of aEARM trained to nominal and ordinal datasets. A.) 
Nominal cell death (x) vs survival (o) outcomes data for cells treated with 10ng/mL (orange) and 50ng/mL (grey) of 
TRAIL and with known relative values of DISC formation (x-axis).  The 95% credible region (shaded region) of 
posterior predictions of tBID dynamics of aEARM calibrated to nominal data (right plot). The median prediction 
(solid line) and true (dotted line) are also plotted. B.) Ordinal measurements for initiator caspase-DISC 
colocalization (IC-DISC) at 300s intervals (left plot). The 95% credible region (shaded region) of posterior 
predictions of tBID dynamics of aEARM calibrated to ordinal IC-DISC data (right plot), and C.) of aEARM 
calibrated to nominal and ordinal IC-DISC data. The median prediction (solid line) and true (dotted line) were also 
plotted. The fit to IC-DISC data is shown in Figure B.8.  
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Figure 2.4. Predicted Bid truncation dynamics of aEARM trained to ordinal data using different 
measurement model parameterizations. A.) and B.) The 95% credible region of posterior predictions (shaded 
region) of tBID dynamics for aEARM calibrated to ordinal measurements two fixed parameterizations for the 
measurement model (see Table A.3). The adjacent panels plot the measurement models predicted probability of 
class membership (x-axis) as a function of normalized tBID concentration (y-axis). C.) D.) and E.) The 95% credible 
region of posterior predictions (shaded region) of tBID dynamics of aEARM calibrated to ordinal measurements 
uniform, Cauchy (scale=0.05) and Cauchy (scale=0.005) prior distributions for the parameterizations for the 
measurement model, respectively. In each, the median prediction (solid line) and true (dotted line) tBID dynamics 
are also shown. The adjacent panels give the 95% credible region of posterior predictions of the probability of class 
membership (x-axis) as a function of normalized tBID concentration (y-axis). Four accompanying plots show the 
prior (blue), posterior (orange) and true (dashed line) values of measurement model parameters.   
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2.3.3. Data-driven measurement model as an indicator of model bias 

Traditionally, applying quantitative or semi-quantitative data to a mechanistic model has been 

relatively straightforward as they typically follow a well-establish and simple relationship between the 

measurement and the measurand. However, for non-quantitative data, measurement uncertainty can 

prompt researchers to make assumptions about the relationship between measurement and measurand, 

which may negatively impact in the resulting mechanistic model. We therefore asked how the encoding of 

assumptions into our models of non-quantitative measurements could impact mechanistic model 

calibrations. To attain this goal, we calibrated aEARM kinetic rate parameters to the ordinal dataset, but 

this time we replaced the free parameters in the measurement model fixed a priori parameterizations or 

we encoded our assumptions as priors on the measurement model’s free-parameters. We tested four 

situations: (i) fixed parameters, a case where the measurement model is pre-parameterized by the user, 

presumably reflecting full confidence in their assumptions about the measurement;  (ii) strong prior 

knowledge, a case where there is strong belief in the assumed values of the measurement model 

parameters; (iii) weak prior knowledge, a case where there is only weak belief in the assumed values of 

the measurement model parameters; and (iv) no prior knowledge, that is no constraints on the 

measurement model parameters. 

Figures 2.4. A and 2.4. B show the ordinal class probabilities for tBID as modeled by (i) two 

distinct pre-parameterized measurement models. In case 1, lowest and highest categories correspond to a 

narrow range of tBID values, while the three internal categories each account for roughly 1/3rd of the 

tBID range. This parameterization might aim to account for effects of sensitivity and saturation on the 

measurement. In case 2, all five ordinal categories each account for 1/5th of the range of tBID values. The 

right panels in Figures 2.4. A. and 2.4. B. show the assumed relationship between tBID concentration and 

probability of each ordinal category. Figures 2.4. A. and 2.4. B. (left plots) also show posterior 

predictions of tBID dynamics by aEARM calibrated to the ordinal dataset using these fixed pre-

parameterized measurement models. The different measurement model pre-parameterization produced 

markedly different posterior predictions of tBID dynamics by the resulting aEARM calibrations. This 
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raises potential concerns that assumptions in our interpretation of the measurement can artificially 

influence our interpretation of the mechanism. 

In Figure 2.4. B, the 50% probability boundary between adjacent categories occurs at every 0.2 

interval; essentially dividing the [0,1] range of tBID values into five equally spaced ordinal categories. 

Shown in Figure 2.4. C-E, we represent this as a flexible assumption by encoding it in our priors (ii – iv) 

i.e., Cauchy distributions centered at every 0.2 interval (as detailed in Methods). The smaller the scale – 

more narrowly focused – prior distributions reflect less flexibility in the free-parameter and a stronger 

belief in our prior assumptions. Figure 2.4. C-E shows the posterior predictions of tBID dynamics of 

aEARM calibrated to the ordinal dataset using increasingly more constrained priors on the measurement 

model parameters. The resulting posterior predictions of tBID dynamics were all less constrained than 

that of aEARM calibrated using fixed pre-parameterized measurement models (Figure 2.4. A and 2.4. B) 

but they were more accurate as they contained the “ground-truth” tBID dynamics. Strongly constrained 

priors on the measurement model parameters (ii) produced a less certain mechanistic model; as indicated 

by its wider 95% credible region of posterior predictions of tBID dynamics (Figure 2.4. E). The posterior 

distributions of measurement model parameters were spread out enough to give significant support of 

both the “ground truth” and the a priori assumed parameter values. This uncertainty in the measurement 

model parameter distributions translated into a less certain measurement model and less certain 

predictions of tBID dynamics.  Weaker constraints on the measurement model parameters were encoded 

via larger scale prior distribution (Figure 2.4. D). In Figure 2.4. D we see these prior distributions, while 

centered on our a priori assumptions, includes the “ground truth” parameters. The posterior distributions 

of the measurement model parameters were therefore more constrained; likewise, the measurement model 

and posterior predictions of tBID dynamics had more certainty. This is also observed, in Figure 2.4. C, 

the case where no prior assumptions were applied to the measurement model parameters (iv). The 

accuracy of the predictions of tBID dynamics comes from the flexibility of the data-driven measurement 

models’ parameters. This flexibility enables optimization (or prediction) of key properties of the 

measurement given the data. Figure 2.4. (right panels) shows the predicted probabilities of the ordinal 
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categories (as a function predicted cellular tBID content); these predictions are accurate in that they 

contain “ground truth” probabilities. Using this approach, we calibrated more accurate models of 

mechanism by simultaneously learning a more accurate model of the measurement. This motivates us to 

further explore the data-driven measurement model as a potential new avenue for insights.  

 

2.3.4. Mechanistic insights from data-driven measurement models 

We have shown thus far how a machine-learning measurement model can reduce uncertainty and 

increase accuracy in model calibration. Through mechanistic model calibration to categorical data, we 

effectively employ machine-learning classifiers to constrain mechanistic model dynamics to a 

corresponding categorical phenotype. We can then employ the measurement model in reverse, to better 

understand how properties of a biological mechanism predict, drive and define a particular phenotype. 

This kind of knowledge would be essential for model-driven experimental data acquisition and model-

guided validation. 

To demonstrate this concept, we calibrated aEARM to nominal cell survival vs death data using a 

measurement model that estimated the contribution of variables in aEARM to the cell survival vs. death 

predition. The survival vs death dataset was synthesized based on maximum log-rate of change of tBID 

and the time at which the rate of change maximized; these features were encoded into the measurement 

model, but their contribution was represented as a free parameter. In addition, the measurement model 

also considered the potential contribution of an unrelated variable (i.e. concentration of a reactants in 

reactions that occurred independently of the cell death ligand). Jointly calibrating aEARM and this 

measurement model to cell survival vs death data allowed data-driven predictions of how variables 

encoded in aEARM relate to cell survival vs death. Figure 2.5. shows posterior predictions of the values 

of potential predictors of cell survival vs death. The shade region marks the 95% credible interval for the 

line marking 50% cell survival probability. Figure 2.5. (bottom row) provides the posterior distribution of 

weight coefficients for each the features encoded in the measurement model. (Larger absolute values of 

the weight coefficient indicate greater importance of the feature.) The calibrated measurement model  
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Figure 2.5. Measurement model predicts features of cell death vs. survival using aEARM calibrated to cell 
death datasets. Normalized predicted values of the features used in the cell death vs. survival measurement model – 
the x-axis is the maximum Bid truncation rate, and the y-axis is the time at maximum Bid truncation rate (top row) 
or an unrelated non-apoptotic signal (middle row) – for corresponding to observed cell death (x) and survival (o) 
outcomes. These feature values are modeled by aEARM parameterized by 100 parameter vectors randomly drawn 
from the posterior; for each parameterization, 5 out of the total simulated population of 400 cells were plotted. The 
grey and orange curves, in these plots, are 0.05 contours for the estimated density of simulated cell populations 
produced for each of the 100 parameter vectors – grey and orange correspond to 50 and 10ng/ml TRAIL treatments, 
respectively. The measurement model predicts a probability of cell death vs survival based on simulated values of 
the above features. The lower right region of the plots in the top row. (i.e., early maximization of Bid truncation and 
higher maximal Bid truncation rates) is associated with higher probability of cell death. The shaded region is the 
95% credible region of the posterior prediction of the line marking 50% probability of cell death or survival. The 
black and blue lines are the median predicted and true 50% probability lines, respectively. The bottom row plots the 
posterior distributions of the weight for each feature (i.e., the product of the slope term and feature coefficient 
encoded in the measurement model): maximum Bid truncation rate (green), time at maximum Bid truncation 
(orange) and unrelated non-apoptotic signal (blue). Plots in the left column are predictions of aEARM calibrated to 
the cell death vs. survival dataset. Plots right column were those of aEARM calibrated to the cell death vs survival + 
ordinal IC-DISC combined dataset.  
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correctly identified time at maximum Bid truncation as the most important predictor of cell survival; and 

the unrelated variable as the least important predictor. Calibration of aEARM to the mixed dataset, 

described in the previous section, yielded a measurement model that equivalently predicted identified 

time at maximum Bid truncation as the most important predictor of cell survival; and the unrelated 

variable as the least important predictor. Calibration of a mechanistic model to categorical phenotype 

data, using data-driven measurement models, enabled correct identification of predictors (and potentially 

drivers or markers) of categorical phenotypes. The data-driven probabilistic measurement model we 

propose in this research was essential to this finding. 

 

2.4. Discussion 

We used data-driven probabilistic measurement models to calibrate, using Bayesian methods, a 

dynamical model of biological mechanism to quantitative and nonquantitative data. Our approach allowed 

us to estimate posterior predictive regions for the calibrated models and to observe how the size of a 

dataset, its different measurement types, and our assumptions about the measurements affect model 

accuracy and certainty. Our findings support results from previous studies that suggest nonquantitative 

data are valuable for mechanistic modeling efforts10-12, 127. For instance, a sufficiently large ordinal dataset 

can constrain the posterior predictions of a mechanistic model as much as quantitative dataset. However, 

we far more nonquantitative data than is typically generated would be necessary for nonquantitative 

assays to match the information content of quantitative assays. In Figure 2.2. B (second row), fourteen 

ordinal measurements of tBID – typical of common immunoblot measurements of intracellular biology – 

did not constrain the model around an accurate prediction of tBID dynamics. Instead, it took 24x as many 

ordinal measurements of tBID (336 measurements) to constrain the mechanistic model of apoptosis as 

well as the fluorescence dataset (112 measurements). We also found that datasets that combined 

categorical measurements of multiple variables in aEARM out-perform the datasets with measurements of 

an individual variable. These findings suggest one could overcome challenges posed by a dearth of 
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quantitative data by devising experiments that, while nonquantitative, produce a larger number of diverse 

measurements that can cover multiple variables.  

We also found the posterior predictions of our mechanistic model were sensitive to the 

assumptions, we encode in the measurement model, about the relationship between measurement and 

measurand. All measurements possess uncertain (or unknown) properties, but this uncertainty has a 

pronounced presence in nonquantitative measurements. The limitations of nonquantitative data exist 

because they impose less informative constraints on models, and this leaves room for biasing assumptions 

and/or uncertainty. Uncertainty in nonquantitative measurements drives the, often unacknowledged and 

implicit, assumptions about the relationship between measurement and measurand (i.e. between data and 

model). With the proposed Bayesian calibration framework, we are able to observe how assumptions 

about measurement affected the uncertainty and accuracy of the posterior predictions, in essence 

providing a measurable quality of how well the model can make mechanistic predictions. We found that 

inaccurate ad hoc assumptions about the measurement could produce models that suggested, with a higher 

degree certainty, an inaccurate prediction (Figure 2.4. B). This finding suggests that ad hoc assumptions 

about measurements can lull practitioners into a false sense of confidence about the model and the data. 

This concern also motivated Schmiester and co-workers to avoid certain ad hoc assumption in their model 

calibration approach127. 

Having a measurement model whose attributes are determined by data creates an opportunity to 

learn new details about the relationship between a measurement and its measurand(s). For instance, could 

a model of biological mechanism plus cell phenotype observations data enable identification of cell 

phenotype predictors? To explored this, we encoded a small number of suspected cell-fate predictors into 

our measurement model and let the data (and the mechanistic model) determine, through model 

calibration, their respective contribution to phenotype. In doing so, model calibration using our data-

driven measurement model performed feature selection to correctly identify the most important predictor 

of cell death. In general, this kind of measurement model, which relates mechanism to cellular phenotype, 
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can be used to predict phenotype outcomes and identify potentially informative experimental conditions 

from in silico perturbation experiments. 

 

2.5. Conclusions 

The present work presents an analysis and a proof-of-concept that can be improved upon in future 

work. We chose linear logistic classifiers, as they enable easy formulation of a likelihood function and 

application of Bayesian calibration methods, but other probabilistic classifiers could be used. We 

constrained our measurement representation to small number of potential features to avoid complications 

of high dimensionality to our machine learned measurement model. However, dimensionality reduction 

and feature learning (e.g. PCA) can, in theory, be integrated into the measurement model’s preprocessing 

and/or model calibration workflow. Possibilities for integrating more complex machine learning into 

models of measurement will depend on dataset size, computational power, and modeling goals.  

Our work introduces the concept of measurement models to the mechanistic modeling paradigm. 

Measurement models have their origin in social sciences and statistics146. They also appear in more 

quantitative applications; some recent examples include management147, manufacturing148, and computer 

vision149. These measurement models can take on more complexity than the examples we provided, 

depending on the unique needs of the problems in these areas. The use of measurement models in these 

areas is motivated by a desire to define and quantify observations of nuanced and/or subjective 

phenomena; and connect those observations to an underlying theory. Biology, being “harder” than social 

sciences, but arguably “softer” than physics will straddle the technical domains of both. As a field, we 

face the same challenge as these social sciences given that our mechanistic models are situated within a 

larger context of explaining nuanced and subjective biological phenomena (e.g. cell-fate, morphology, 

physiology and overall health vs. pathology). As practitioners, we never encode everything into our 

mechanistic models; instead there is always some aspect of the model (or its interpretation) that aims to 

connect back to these relevant biological phenomena. This fact ultimately motivates our application of 

data-driven probabilistic measurement models in our mechanistic models of intracellular biology. 
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2.6. Methods 

2.6.1. Extrinsic Apoptosis Reaction Model 

We built an abridged extrinsic apoptosis reaction model (aEARM) and trained it using 

PyDREAM to normalized fluorescence time-course data95. We built this abridged version of EARM to 

simplify convergence of Bayesian calibration algorithms and thus make feasible probability-based 

predictions on the model-data relationship95. The aEARM abstracts detailed mitochondrial reactions from 

the original model as two sequential mitochondrial outer membrane pore (MOMP) “signal” activation 

steps. In addition, apoptosome formation and effector caspase activation reactions take place in a single 

activation step. The aEARM does capture key dynamic characteristics, such as the snap-action delay 

dynamics of apoptotic effector molecules that is observed empirically145. For this work, three additional 

non-apoptotic species were encoded and linked via feedback activation and inactivation loops to test 

whether our data-driven measurement model could discriminate between drivers and non-drivers of 

apoptosis. (Supplemental Table 2). These additional species and reactions do not interact with any species 

or reaction in the aEARM model. The aEARM was encoded using rule-based modeling python package 

PySB150.  

The aEARM parameters – initial conditions and rate coefficients – were adapted from the 

previously developed EARM and/or calibrated to fit available fluorescence data. Initial conditions 

parameters were lifted from the previously developed EARM (Supplemental Table 1). Previous work 

characterized extrinsic heterogeneity in the expression of proteins and its effect on apoptosis. To model 

extrinsic heterogeneity in apoptosis signaling, initial values of certain species (marked in table 1) were 

sampled from a log-normal distribution such that its mean equaled that in Supplemental Table 1 and 

coefficient of variation was 0.20. Rate coefficients were calibrated (described below) to fit normalized 

fluorescence time-course measurements of initiator and effector caspase reporter proteins (IC-RP and EC-

RP respectively).  
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2.6.2. Integrating aEARM Dynamics  

Snap-action delay dynamics present challenges for Ordinary Differential Equation (ODE)-based 

models, as they feature rapid non-stiff to stiff transitions during integration. For this work we employed 

the LSODA integrator (from scipy, via the PySB solver suite), suitable for non-stiff/stiff systems151. 

However, we found that particularly poorly behaved parameter vectors could prolong integration 

evaluations in LSODA. Integrator settings were adjusted for efficiency and accuracy of integration as 

follows: mxstep (2^20), atol (1e-6 default), rtol (1e-3 default). The aEARM was integrated over a 

linear space of 100 time-points spanning 0 to 20160 seconds, in direct correspondence with the 

fluorescence time-course data145. Additional time-points in the data were obtained via linear interpolation. 

 

2.6.3. Measurement Models and Likelihood Functions 

Likelihood formulations incorporated a measurement model and resulting distance metric for 

each datatype in the study: fluorescence time-course data, synthetic ordinal time-course data, and 

synthetic survival vs death binary data for a sample of 400 initial conditions. These likelihood functions 

were used to calibrate the models to each dataset. In addition to their use in the likelihood formulation, the 

measurement models, were also used to generate synthetic non-quantitative datasets.  

We first trained the aEARM to normalized fluorescence time-course data for IC-RP and EC-RP, 

i.e. fluorescent proxies for substrates of initiator and effector caspase, respectively (i.e. Bid and PARP, 

respectively). Consistent with previous work, we defined a likelihood that assume an i.i.d. Gaussian-noise 

component 𝜖~𝑁(0, 𝜎$) on normalized tBID and cPARP predictions of the aEARM; where 𝜎$assumedly 

equals the variance of the data38,,95. This yields a log-likelihood function (Eq. 11) where data the, 𝑦,, and 

normalized aEARM predictions, 𝑦, are compared for each time-point, 𝑡, and observable, 𝑖 (i.e. tBID/IC-

RP and cPARP/EC-RP). The aEARM trained to these fluorescence data served as the starting point in the 

synthesis of ordinal, nominal, mixed, etc. datasets, below.  
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)       (11) 

 

To train the aEARM to synthetic ordinal time-course data, a measurement model (i.e. that models 

the probability of each ordinal category as a function of an aEARM variable) was defined and applied in 

the formulation of a likelihood function152. The ordinal logistic regression python package, MORD, 

applies empirical ordering constraints to Scikit-Learn’s logistic regression class; this class then calculates 

a probability for each ordinal category162. The ordinal logistic model, encoded in MORD, defines ordinal 

constraints as a linear function of predicted values of an aEARM variable (e.g.  𝑝B𝑦'*+, ≥ 𝑐-F𝑥'*+,) =

𝜑B𝛼𝑥'*+, +	𝛽-C for aEARM variable,	𝑥'*+,) where each ordinal constraint, 𝑗, is a logistic function 𝜑(𝑧) 

with a different offset coefficient, 𝛽-, but shared slope coefficient, 𝛼, for each of the ordinal categories. 

Each ordinal constraint function is combined, using the sequential model (i.e. the product of the logistic 

functions), to give a probability of each ordinal category, 𝑃B𝑦%(𝑡) = 𝑐-F𝑥%(𝑡, 𝜽), 𝛼% , 𝛽%,-)153, 154. These 

offset and slope coefficients are additional free parameters to be inferred in the model calibration. For 

example, a measurement model with 𝐾 categories can be defined using 𝐾 − 1 ordinal constraints and will 

therefore add a total of 𝐾 free parameters (i.e. 𝐾 − 1 offset coefficients and 1 shared slope coefficient) to 

the model. We also encoded error in our synthetic ordinal data by defining a 5% misclassification 

probability; i.e. we assume 95% probability the reported ordinal category, 𝑐- =	𝑦,, and 2.5% probability 

of adjacent categories, 𝑐- =	𝑦, ± 1, (5% for adjacent terminal categories). We model this by the marginal 

probability that the observation classified into the category predicted by the model: 

∑ 𝑃B𝑦,%(𝑡)F𝑦%(𝑡) = 𝑐-C/
-

154. Together, this yields a log-likelihood function (Eq. 12) where the probability 

of each category 𝑐- is calculated for each time-point, 𝑡, and observable, 𝑖; and applied toward a likelihood 

of the data 𝑦, given the model. Where noted, we also trained the aEARM using measurement models with 

preset fixed parameters (Table A.3.).  
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We trained aEARM to synthetic binary (survival vs death) data by incorporating a measurement model 

(i.e. logistic model of the probability of each categorical outcome) similar to that used for the ordinal data. 

We used the Scikit-Learn logistic regression class to model the probability of a cell-death outcome, 𝑦 =

𝑐), as a linear function of features, 𝑥4, derived from the aEARM simulation:  𝑝(𝑦 = 𝑐)|𝒙) =

𝜑 R𝛼B𝛽 + ∑ 𝛽4𝑥45
4 CS, where 𝛼 is a slope term, 𝛽 is an intercept and 𝛽4 are weight coefficients for each of 

the 𝐿 features155. Previous studies used a priori knowledge and assumptions about which features of a 

cell-fate marker’s dynamics to associate with the binary outcome. For instance, recent work delineates 

necrotic and survival cell fate outcomes using a threshold in the concentration of a known necroptosis 

marker (this assumption enabled models of necroptosis in the absence of an established relationship 

between the dynamics of the marker and commitment to necroptosis). Roux et al, investigated an 

empirical relationship between initiator caspase reporter protein (IC-RP), a fluorescent indicator of 

caspase activity or proxy for caspase substrate cleavage, and apoptosis in TRAIL stimulated HeLa 

cells125. They found, instead of concentration, the maximum rate of change in IC-RP and the time when 

that rate of change maximized better predicted the apoptosis-survival decision125. The features we use in 

our study are based on findings by Roux et al125. The features are derived from aEARM simulated tBID 

dynamics, 𝑥'*+,(𝑡, 𝜽): time at maximum rate of change, and log-maximum rate of change. To test the 

measurement model’s ability to discriminate between predictors and non-predictors of cell death, we 

encoded an additional feature: the concentration of an unrelated non-apoptotic species (USM2 in Table 

A.2.) when bid truncation maximizes. Together this totals three features. We interpret each observation in 

the dataset as an independent Bernoulli random variable. Each cell death vs survival observation is 

compared with these three features, 𝑥4,6, extracted from an aEARM trajectory that was simulated from a 

unique vector of initial conditions. There were 400 observations; 2 sets of 200 observations corresponding 

to 10 and 50ng/mL initial ligand concentration. Together, this yields a log-likelihood function (Eq. 13) 
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where each, 𝑚, of the 𝑀 aEARM simulated trajectories corresponds to an observation 𝑦,6. Given the 

definitiveness of observed surviving vs dead outcomes, we considered the chance of misclassification to 

be zero (i.e. 𝑃(𝑦,6|𝑦6 = 𝑐)) = 0 when 𝑦,6 ≠ 𝑐)).  

 

 log ℒ(𝒚9|𝜽, 𝜶, 𝜷) = ∑ 𝑃(𝑦,6|𝑦6 = 𝑐)) log𝜑 R𝛼B𝛽 + ∑ 𝛽4𝑥4,65
4 CS𝑴

𝒎 	 

       +	∑ B1 − 𝑃(𝑦,6|𝑦6 = 𝑐))C log X1 − 	𝜑 R𝛼B𝛽 + ∑ 𝛽4𝑥4,65
4 CSY𝑴

𝒎    (13) 

 

2.6.4. Generating Synthetic Datasets 

The calibration of aEARM to IC-RP and EC-RP fluorescence time-course data provided an 

optimally fit vector of rate coefficient parameters, which served as the “ground truth” parameter vector in 

the synthesis of the nonquantitative datasets (Table A.5.). These parameters were applied to aEARM, and 

the resulting aEARM was used simulate time-courses for variables to be indicated in the nonquantitative 

data: truncated BID (tBID), initiator caspase localization to the death inducing signaling complex (IC-

DISC), and cleaved PARP (cPARP).  

These time-courses were converted to ordinal time-course datasets. The effective bit resolution of 

a measurement technology dictates how many unique values it can distinguish156. The total number of 

ordinal categories, 𝐾, was set such that resulting dataset had less than 70% of the effective bit resolution, 

𝐸𝐵𝑅, (Eq. 14) of the IC-RP of EC-RP data. The signal to noise ratio,	𝑆𝑁𝑅, (Eq. 15) assumes the data, 𝑑, 

were subject to Gaussian noise and a 0.10 misclassification rate between adjacent values; modeled as the 

0.95 quantile of a unit normal distribution40. Therefore, the number of ordinal categories were 5 and 4 for 

tBID and cPARP, respectively. The number of ordinal categories for IC-DISC were arbitrarily set to 4. 

Arbitrary values of slope and offset coefficients (Table A.3.) were designated “ground truth” and applied 

to ordinal measurement models (described above). The resulting measurement models map the values in 

the aEARM simulated time-courses to probabilities of each ordinal category. These probabilities were 

used to simulate random class assignments for synthetic ordinal datasets (see Figure 2.2.). The aEARM 
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was trained to time-course ordinal values of tBID and cPARP or time-course ordinal values of IC-DISC 

and nominal data described below. 

 

𝐾 ≤ 0.7 × 29*: ,								𝐸𝐵𝑅 = −(𝑆𝑁𝑅 + 	1.76) 6.02⁄        (14) 

 

𝑆𝑁𝑅 = 20	log); 𝑞;.=>rms(𝑑) (max𝑑 −min𝑑)⁄        (15) 

 

To generate synthetic nominal (binary cell survival vs death) data, two heterogeneous populations 

of 200 aEARM tBID (and an unrelated non-apoptotic species, USM2) trajectories were simulated from 

ground truth parameters. The populations had distinct initial ligand concentrations (10 or 50 ng/mL). 

Heterogeneity was modeled by a log-normal random sample of certain initial conditions (described 

above). These time-courses were preprocessed to yield values of the features encoded in nominal 

measurement model, above. This measurement model (which was encoded with preset “ground truth” 

values of slope, intercept and weight coefficients – See Table A.4.) maps these features to probabilities of 

the binary outcomes. These probabilities were used to simulate random class assignments for synthetic 

nominal datasets (Figure 2.3. B).  

To generate a synthetic distribution of times at which Bid truncation was half-maximal, two 

heterogenous populations of 200 aEARM tBID time-courses, corresponding to 10 and 50ng/mL initial 

ligand concentrations, were simulated from ground truth parameters (as above). Time at half-maximal 

tBID was calculated via linear interpolation and rounded to the nearest 3-minute time-point (i.e. to reflect 

temporal resolution of common time-series intracellular experiments) (Figure 2.3. A.).  

 

2.6.5.  Model Calibration via Bayesian Inference 

The aEARM was calibrated using DREAM(ZS) algorithm for all datasets61. Rate parameters in 

aEARM were given independent log-normal distribution prior probability functions with a location equal 

to the ground-truth parameter vector and a scale term of 1.5. The nominal (cell death vs survival) dataset 
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features a heterogeneous population of values. We modeled this heterogeneity with a random sample of 

initial conditions (described above). This random sample was shifted and scaled according to inferred 

values of the model mean and variance. The mean (if estimated) was given a log-normal distribution prior 

probability function with a location equal to ground-truth and a scale term of 1.5. The extrinsic noise (or 

variance) was given inverse gamma distribution with 𝑎 and 𝑏 terms such that the resulting coefficient of 

variation had a prior mean and standard deviation of 0.20 and 0.015 respectively. 

Prior probability functions were also applied to the measurement models’ free-parameters. To in 

encode empirical ordering constraints on the ordinal measurement model, the slope terms, 𝛼, were greater 

than zero; they were given independent exponential distribution prior probability functions (with location 

of 0.0 and scale of 100.0). To insure monotonically increasing offset terms, each offset, 𝛽-, was defined 

by the distance, 𝜃-, from its preceding offset term; 𝛽-	 =	𝛽-@)	 +	𝜃-. The first offset, 𝛽; =	𝜃;,  and 

subsequent distance, 𝜃-, terms were given independent exponential distribution prior probability functions 

(with location of 0.0 and scale of 0.25). We explored the effect of increasingly biased priors on the 

ordinal measurement model parameters. Where noted, the slope terms, 𝛼, were given increasingly 

constrained independent prior probability functions: uniform (0.0 - 100.0 bounds), Cauchy (50.0 location 

and 10.0 scale) and Cauchy (50.0 location and 1.0 scale). The offset, 𝛽;, and distance, 𝜃-, terms were 

similarly given independent uniform (0.0 - 1.0 bounds), Cauchy (0.2 location and 0.05 scale) and Cauchy 

(0.2 location and 0.005 scale) distribution prior probability functions. Parameters for the measurement 

model were given independent Laplace distribution prior probability functions with a location of 0.0 and 

scale of 1.0 for the slope, 𝛼,  and 0.10 for the intercept and weighting coefficients, 𝛽and 𝛽4. 

The likelihood functions were described above. Additional settings applied to the DREAM(ZS) 

algorithm were: number of chains (4) number of crossover points (nCR=25), adaptive gamma (TRUE), 

probability of gamma=1 (p_gamma_unity=0.10), gamma term resolution (gamma_levels=8).  A burn-in 

period wherein crossover weights are adapted was set to 50,000-step burn-in for ordinal datasets and 

100,000+ step burn-in. The calibration algorithm continued until it reached the stopping criterion: when 
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the Gelman-Rubin metric (calculated on the latter 50% of the traces) was less than or equal to 1.2 for all 

free-parameters in the model; at which point the parameter traces were considered converged61. Gelman-

Rubin metrics for each calibration are listed in Table A.6. Model calibrations were run on a x64 Intel with 

32 total CPU threads (256GB RAM) and x64 AMD with 256 threads (1024GB RAM). Run times varied 

widely given the stochastic nature of the optimization algorithm but were typically one to seven days for 

simple model calibrations. Random samples of 1000 parameter were taken from the latter 50% of the 

resulting parameter-traces were used in subsequent analyses. Source code for the model calibrations as 

well as code for downloading the resulting parameter-traces is found at https://github.com/LoLab-

VU/Opt2Q.   

2.6.6. Model Predictions 

We simulated the equal-tailed 95% credible region of the posterior predictions of aEARM via 

samples of the model parameters posterior distribution. This was done by randomly generating 1000 

parameter sets sub-sampled from the posterior sample of parameters generated via PyDREAM. For each 

parameter set, tBID time-courses (and/or cPARP, IC-DISC) were simulated from aEARM. The 95% 

credible region of the predictions was then determined via 0.025 and 0.975 quantile bounds on the tBID 

(or other variables) values for each time-point in the simulated time-course. The area bounded in the 95% 

posterior credible interval was determined by summing the difference between the 0.025 and 0.975 

quantile bounds across 100 equally spaced time points on the trajectory. The 95% posterior credible 

intervals on the measurement model predictions were similarly the described by calculating 0.025 and 

0.975 quantile boundaries on the predictions of the measurement model parameterized via 1000 parameter 

set samples from a posterior. This includes the posterior probability distributions of the feature 

coefficients encoded in the nominal measurement model. To model predictions of the nominal dataset, 

however, we randomly generated 100 parameter sets via sub-sampling of the posterior parameter 

distribution. For each parameter set, we simulate tBID dynamics from the set of 400 initial conditions as 

described above; from that we compute maximum BID truncation rate and time at maximum BID 

truncation rate for each of the 400 trajectories. The 0.05 contour of the KDE of the resulting 400 values of 
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maximum BID truncation rate and time at maximum BID truncation rate was plotted for each of the 100 

parameter sets.  
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Chapter 3 

 

Challenges and Future Directions: Considering Complexity, Multiscale Organization, and 

Heterogeneity in System Biology Measurement Model Applications 

 

3.1. Introduction 

Despite ongoing experiments, emerging measurement technologies, and increasing computational 

abilities, progress in systems biology remains encumbered by an unmet demand for quantitative data157. 

Specifically, there exists the need for quantitative time-course measurements of intracellular dynamics 

(biomacromolecules, complexes, post translational modifications, etc.) needed to calibrate mechanistic 

models of cellular processes. This work reveals and addresses some challenges posed by the dearth of 

quantitative data. The previous chapter introduced an analytical tool that leverages nonquantitative data 

(as a more available substitute) to calibrate mechanistic models of biological processes. As a data-driven 

approach this innovation lets us calibrate mechanistic models while avoiding unchecked ad hoc 

assumptions about the supporting measurements. As a probabilistic approach it lets us define a 

representation of the relationship between a model and its supporting measurements that includes 

information about the uncertainty cellular measurements or observations. The measurement model opens 

new possibilities in that it will make available to model calibration a wide range of measurements and 

observations previously neglected by systems biologists. Extending the measurement model concept to 

these measurements and observations will still face undiscussed challenges.  

The dearth of quantitative measurements of intracellular biology is a challenge that stems from 

and reflects more fundamental challenges in biology: complexity, multiscale organization, and 

heterogeneity8. Complexity gives rise to unanticipated cellular behaviors that emerge from a network of 

interactions and cannot easily be attributed to the action of a single factor. Systems biology began with 

the goal of understanding complexity in biology. The Multiscale organization of biological processes 

requires scientist consider of influence of events that occur in between individual proteins and last for few 
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seconds along with events that involve whole organs and last days or weeks in their investigation of 

biological mechanism78. The multiscale organization of biology is an evolved consequence (or example) 

of biological complexity that can drastically change the implications of experiments that focus too 

narrowly on a temporal and/or spatial scale. Heterogeneity adds an element of variability and stochasticity 

to biological processes and properties. Heterogeneity of a system (e.g., a cell population) can drive 

system-level behaviors as well as conceal distinct phenomena among the system components84. Future 

efforts to expand the use of measurement models to common measurements of intracellular biology must 

confront these fundamental challenges.  

In this chapter, I take preliminary steps to calibrate model of cell death signaling to indirect 

and/or nonquantitative measurements of intracellular components (e.g., nominal cell-fate decisions, 

immunoblot measurements of cellular protein content, cell viability and cell viability rate). I detail the 

challenges of modeling these measurements and propose potential avenues for addressing them. I begin 

with the challenge of biological complexity. Systems biology aims to understand biological mechanisms 

as situated in a broader context of complexity. The biology of cell death exemplifies the challenge of 

complexity as multiple programmed cell death modalities engage a shared signaling molecules in a web 

of biomolecular regulatory crosstalk158. The interdependency between distinct cell death modalities 

engenders unexpected behaviors and complicates investigations of cell death. I demonstrate the potential 

of systems biology (despite the limitations of data) to investigate complexity through a model of 

apoptotic-necroptotic signaling crosstalk. I implement the three main steps of mechanistic modeling – 

model assembly, model calibration and model selection – to produce and analyze models of apoptosis and 

necroptosis signaling. The resulting modeled provided new insights into the mechanism by which 

apoptotic drivers regulate necroptosis initiation. This model demonstrates potential of system biology to 

tackle challenges of complexity, and warrants continued pursuit of solutions to the data-problem in 

systems biology.  

The next sections focus on generalizing the measurement concept to common measurements of 

biology. I address challenges encountered in my work toward extending the measurement model to cell-
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fate decision. This endeavor prompted me to consider how definitions of phenotype relate to underlying 

intracellular drivers and/or markers; much like how behaviors at one temporal spatial scale relate to 

properties at a smaller temporal spatial scale. This fundamental property of biology, its multiscale 

organization, reveals itself in our treatment of phenotype. Empirical descriptions of a phenotype (along 

with its broader biological impact) use a few distinguishing markers taken from a much larger set of 

observed mechanistic characteristics44. For instance, necroptosis follows nonlinear changes in hundreds of 

signaling proteins, but was defined (in recent work) as a necrotic morphology accompanied by MLKL 

phosphorylation and release of DAMPs14. This simplified definition let us translate cellular necroptosis to 

multiscale understanding of effects of necroptosis in tissue14. The empirical description of phenotype 

precedes the model of phenotype, and often the model of phenotype requires additional specification. A 

measurement model abstracts the complex dynamics of intracellular cell-fate signaling mechanisms to a 

cell-fate phenotype that is defined by a few markers, then uses this condensed model in a broader 

computational context. I explore potential avenues for defining models of necroptotic phenotype. The 

approaches I consider apply dimensionality reduction and feature methods in ways that mirror the models 

(in multiscale modeling approaches) of behaviors that emerge from one temporal-spatial scale and act on 

another temporal spatial scale159.   

 The final section discusses the challenge of heterogeneity in models of biological measurements. 

Biological processes are inherently variable and stochastic. This makes it difficult to summarize 

biological processes using a single representative model of dynamics. Instead, experiments must conduct 

more replicate measurements and models must simulate the repeated draws from an underlying 

probability distribution. I discuss model calibration in the case where both the model and supporting 

experimental data capture heterogeneity. I then explore ways in which bulk measurement of 

heterogeneous populations (e.g., immunoblot measurements) obscure and distort the dynamics of the 

individuals.  I also discuss potential modeling approaches to address the interaction between measurement 

and heterogeneity by modeling the measurement process (and how it transforms underlying 

heterogeneity).   
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The preliminary work outlined in this chapter suggests that addressing the challenges of 

complexity, multiscale organization, and heterogeneity, in future work will require additional integration 

of machine-learning into mechanistic models of biology (and their measurements)159, 160. While machine 

learning measurement models will enable adaptation to an expanding set of modeling scenarios, the 

necessity of data and data-driven strategies remain. Therefore, this chapter highlights challenges and 

possibilities of leveraging more types of measurements in order to meet (but not replace) the demand for 

data.  

 

3.2. Systems Biology Addresses the Challenge of Complexity but is Limited by a Dearth Data 

Biological complexity represents a significant barrier to understanding and solving problems in 

biology. This fundamental property of biology prevents us from translating the details of a biological 

process to a systems-level understanding. For instance, the last decade of cell death research has 

identified a myriad of new cell death modalities, each carried out by an ever-expanding parts list of 

biomolecular drivers161. Despite this wealth of detail, the association between cell death and human 

disease continues to baffle scientists. The current consensus view of cell death describes a morass of 

interdependent regulatory mechanisms, which clearly attests to the problem of biological complexity.   

The most prominent form of cell death, apoptosis, is a regulated and immunologically silent 

cellular demise that features clear morphological characteristics: cytoplasmic and nuclear fragmentation, 

cellular blebbing and disintegration into small apoptotic bodies158. This process clears roughly 60 billion 

damaged, diseased, and unneeded cells from an adult human per day**162, 163. Proper execution of 

apoptosis is therefore a crucial requirement for tissue homeostasis, development, and response to 

pathogens. Abnormal engagement of apoptosis factors heavily in several cardiovascular, autoimmune, 

degenerative and neoplastic pathologies164.Apoptosis is therefore tightly controlled by a network of 

regulatory interactions164; including interactions that elicit non-apoptotic cell death as a back-up165. For  
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Figure 3.1. Bottom-up modeling approach investigates BID mediated apoptosis-necroptosis crosstalk The 
crosstalk between apoptosis and necroptosis, for example, features complexity of mechanism that makes it suitable 
for a bottom-up modeling approach. Specifically, to investigate the role of Bid in regulating necroptosis, we encoded 
a mechanistic model of TNF Complex I dynamics (TNF ligation, recruitment of scaffolding proteins, cIARP-
mediated RIP1 poly-ubiquitination and CYLD mediate RIP1 de-ubiquitination); RIP1 release from Complex I and 
formation of cytoplasmic Complex II. This complex initiates MOMP formation and apoptosis by enabling Caspase-
8 mediated BID truncation. With limited caspase activity formation of a RIP1-RIP3 dependent necroptosome and 
necroptosis can proceed. Recent observations, however, suggest a non-truncated BID can regulate necroptosome 
formation by inhibiting the accumulation of RIP1. We encoded the above mechanism as a system of ODEs and 
appended to the model one of several hypothetical interactions between BID and necroptosis signalers. We 
calibrated each model to time course data for cPARP and MLKL. By noting the calibrated models’ predictions for in 
silico apoptotic and necroptotic conditions we narrowed the the set of hypotheses to those that contained a novel 
stable interaction between BID, cFLIP, and capsoase 8. The Hessian eigenspectral of a model with this complex 
featured more bands ≤ 1.0 than the model that lacked this complex (indicating more robust support for the 
hypothetical complex). This complex was later indicated by immunoprecipitation. 
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instance, necroptosis is a regulated necrotic cell death program that activates in cells facing (among other 

things) an interruption of normal apoptotic signaling166. The necrotic morphology, which appears in other 

programmed cell death modalities, features swelling and lysis of cellular organelles and release of 

intracellular contents to the extracellular space. This provokes immunogenic responses that both 

ameliorate and exacerbate disease. Further complicating the picture, many initiators and mediators of 

apoptosis also initiate and mediate necroptosis. The interactions shared by apoptosis and necroptosis 

permit molecular crosstalk between the two pathways, thereby making the problem of cell death (and its 

impact on health) a problem of biological complexity.   

A central motivation for my dissertation research is the promise that systems biology (specifically 

bottom-up modeling) can provide a unique and valuable understanding of biological phenomenal that 

connects inextricably to complexity. I expect this understanding to help make sense of the complex 

network of biomolecular interactions that drive important processes like cell death. In this section, I 

explore this promise through an application of bottom-up modeling strategies to a question of apoptosis-

necroptosis crosstalk.  

Recent experiments by our collaborators, Sandra Zinkel and Patrice Wagner, suggest an 

unanticipated role of the pro-apoptotic BH3-only family member protein, Bid, in regulating necroptosis14. 

They constructed a mouse that blocked apoptosis in hematopoietic cells through genetic deletion of Bak 

and Bax. Further deletion of Bid (to create BaxBakBid triple knockout mice) resulted in increased levels 

of pro-necroptotic, RIP1 kinase, and thus robust activation of necroptosis. The immunogenic response to 

necroptosis further triggered a feedback amplification loop of the pro-necroptotic signaling; and 

unchecked necroptotic cell death drove myelodysplastic and bone marrow failure syndromes in the mice. 

Bid restricts necroptosis through suppression of Rip1 levels. Their work also suggests Bid enhances 

caspase 8 mediated RIP1 proteolytic degradation, while (at least partially) avoiding -- Bid is a caspase 8 

substrate -- caspase 8 meditated processing. We investigated Bid mediated apoptosis-necroptosis crosstalk 

using a bottom-up modeling algorithm: model assembly encodes a mathematical representation of key 

reactions in apoptosis and necroptosis; model parameterization estimates values of the free parameters 
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that minimize the discrepancy between the model prediction and time-course data; model selection uses 

an approximation of Bayes factor to select between pairs of competing hypothetical models the model 

that is maximally supported by data. By integrating complex apoptotic and necroptotic signaling 

dynamics into as single mathematical framework, this modeling approach lets us explore, in silico, 

mechanisms by which pro-apoptotic signaling events might regulate (through Bid) necroptosis.   

We modeled salient features of TNF (or LPS) induced cell death167. As summarized in Figure 3.1. 

A., TNF ligation triggers formation of a pleiotropic protein complex at the plasma membrane (Complex 

I). Complex I recruits pro-survival proteins (e.g. cIAP168), that polyubiquitinate RIP1.  The complex also 

recruits CYLD00, which reverses RIP1 polyubiquitination and drives the cell toward programmed cell 

death signaling. We encoded a distinction between RIP1 prior to ubiquitination and RIP1 after de-

ubiquitination. De-ubiquitinated RIP1 initiates formation of a cytoplasmic protein complex169 (Complex 

II), which recruits pro-apoptotic Caspase 8.  We encoded complex II dependent dimerization of caspase 8. 

Caspase 8 homodimers170 dissociate from complex II and catalyze proteolytic cleavage of RIP1, Bid, and 

several other substrates. Caspase/cFLIP171 heterodimers remain in complex II and catalyze proteolytic 

cleavage of RIP1 and not Bid. Proteolytic cleavage of Bid by Caspase 8 activates apoptotic signaling. We 

modeled apoptotic reactions: Bid recruitment to the mitochondria, complexation of Bax and Bak, 

formation of a mitochondrial outer membrane pore (MOMP), and finally activation of apoptosis effector 

caspases as described in previous chapters. De-ubiquitinated RIP1 can also trigger necroptosis through 

recruitment of RIP3 into a complex (necrosome) that catalyzes the phosphorylative activation of 

pronecroptotic MLKL172. These interactions were encoded (using PySB rule-based modeling) as ODE 

representations of general mass-action descriptions of protein binding and catalysis reactions. The 

formation and conversion of large complexes (e.g., MOMP formation) were abbreviated to a few self-

catalyzed reactions.  

We used this model (which we called ANRM or apoptosis-necroptosis reaction model) to 

examine how hypothetical mechanisms of Bid mediated RIP1 regulation impact in silico predictions of 

apoptotic and necroptotic behaviors. We regarded effector caspase cleavage product, cleaved PARP 
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(cPARP), and phospho-MLKL (pMLKL) as apoptotic and necroptotic markers, respectively. ANRM 

predicted snap-action dynamics for cPARP and pMLKL; model simulation where cPARP reached half-

maximal concentration before pMLKL did, were considered apoptotic (and vice versa). With an absence 

of quantitative cPARP and pMLKL time-course measurements, we generated sigmoidal temporal profiles 

for cPARP and MLKL that reflected comparable immunoblot data. To calibrate the model, we used a 

MCMC algorithm38 as described by Eydgahi et al. along with a sum of squared error model of the log-

likelihood function and log-normal priors around generic (physiological) values of reaction rate 

coefficient parameters. We appended to ANRM hypothetical mechanisms of Bid dependent suppression 

of RIP1; the model calibration process was repeated for each hypothetical model. We examined how each 

hypothetical model responded to in silico proapoptotic and pronecroptotic conditions (i.e., to varying 

initial levels of Caspase 8, RIP1, cFLIP, and Bid). This narrowed the set of hypothetical mechanisms to 

those that accurately predicted apoptosis or necroptosis in response to apoptotic or necroptotic conditions, 

respectively. We used ANRM to manually explore roughly 20 hypotheses, with input from Sandra Zinkel 

and Patrice Wagner. The remaining competing models were discriminated by comparing the range of 

eigenvalues of the Hessian matrix of posteriors produced by each model at their best-fit parameter locus 

(Figure 3.1. B.). The model with multiple smaller eigenvalues indicates it is consistent with the data over 

a larger volume of parameter space (thereby exhibiting greater statistical weight)38, 173.  This analysis 

implicated as the most likely mechanism (Figure 3.1. B.): a ligand dependent post translational 

modification of Bid facilitates complexation of cFLIP and Caspase 8; this Bid-cFLIP-Caspase 8 complex 

then catalyzes the proteolytic degradation of RIP1. We confirmed the existence of this ligand dependent 

complex via immunoprecipitation with Bid (Figure 3.1. C.).  

This exercise demonstrates the power of bottom-up modeling to identify, in a complex biological 

system, new insight into the mechanisms that engender certain nuanced biological phenomena. However, 

the full benefit of this analysis is lost in how we adapted to the lack quantitative time-course data. We 

synthesized quantitative time-course interpretations of available nonquantitative data: ordinal immunoblot 

measurements and nominal cell-fate (apoptosis vs necroptosis) observations. The ad hoc nature of these 
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interpretations makes it unclear to what extent our results reflect trends in the data and not artifacts of our 

interpretations of the measured data. Nonetheless, the successful identification of a complex that 

facilitates Bid dependent suppression of necroptosis demonstrates the potential of bottom-up modeling 

approaches to help understand biological complexity. It also warrants future work to address the 

challenges posed by the dearth of available measurements needed for bottom-up modeling in systems 

biology. The previous chapter introduced a data-driven measurement model that enables incorporation of 

nominal and ordinal measurements into the model calibration process. In the next sections, I consider 

extending the measurement model concept to common measurements of intracellular biology; I discuss 

potential challenges and propose possible avenues for addressing these challenges.  

3.3. Generalizing the Measurement Model: Addressing a Challenge of Multiscale Biology 

Biological systems and processes occupy several spatial and temporal scales. What transpires at 

one spatial and temporal scale has drastic impacts on other scales78. This fundamental property of 

biological systems -- its multiscale organization -- can drive unpredictable behaviors and therefore poses a 

significant challenge to the study of biological systems. For instance, the multiscale biology of 

hematopoiesis dictates that genetic knockdown of cell death effectors (Bid, Bak, and Bax) produces an 

unexpected excess cell death that drives myelodyspastic syndrome (MDS) and bone marrow failure. 

Hematopoeitic cells in BaxBakBid triple knockout mice undergo necroptosis (which emerges from short-

lived intracellular interactions that depend on extracellular pro-necrotic cues)14. Necroptosis also triggers 

longer-lived tissue-level interactions that in turn affect the generation of extracellular pro-necroptotic 

cues. This model of MDS shows an interdependence across small (intracellular) and large (extracellular) 

scales with cell death at its nexus. Strategies that enable investigation and modeling of multiscale 

biological systems have therefore garnered considerable attention.   

Models that capture multiscale properties of biology must integrate information across multiple 

spatial and temporal domains. It is infeasible to model the dozens or hundreds of intracellular reactions 

that dictate cellular behavior of each of the several thousand individual cells in a tissue. Instead, 

multiscale modeling abstracts the complex dynamics of the intracellular scale to a simplified model that  
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Figure 3.2. Modeling phenotype as an emergent property of a complex system through dimensionality 
reduction (feature extraction).  The multi-scale organization of biological systems prompts us to think of 
phenotypes at one temporal-spatial scale as emerging from the dynamics at a smaller scale. For instance, we 
modeled a cellular phenotype (death vs. survival) as an emergent property of RIP1 dynamics: A.) the dynamics of 
RIP1 localization to the plasma membrane bound complex (Complex 1) following TNFa ligation, B.) RIP1 
ubiquitination and C.) subsequent deubiquitination, and D.) RIP1 mediated formation of cytoplasmic complex 
(Complex 2) were simulated using an ODE model of TNF complex 1 dynamics for an in silico heterogeneous set 
(n=600) of initial conditions. E. I used dynamics time warping (DTW) to compress these time-courses to a scalar 
distance metric relative to 60 landmark trajectories. This use of DTW reduced the dimensionality of the model 
simulations to 60. The 60 DTW features can be applied directly to a probabilistic classifier that models the death vs. 
survival outcome. Alternatively, we further reduced the dimensionality of the modeled dynamics by via isomap 
multi-dimensional scaling.  
  

A. B. C. D. 
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Figure 3.3. Modeling phenotype as an emergent property of a complex system through dimensionality 
reduction via perceptually important points or critical points. As an alternative to DTW, we compressed high-
dimensional dynamics of by identifying important points in the models simulated time-courses. Dynamics of 
caspase 8 in the TRAIL dependent death inducing signaling complex (DISC) (left column) and dynamics of BID 
truncation (right column) encoded by aEARM. A. Six perceptually important points (PIP) for each trajectory are 
show. B. Critical points (i.e., relative max and min and points of inflection) were estimated for each trajectory.  
perceptually important point.  
  

A. 

B. 
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conserves enough information to enable its inclusion in a tissue-level model. The goal is a low-

dimensional representation of the high-dimensional intracellular dynamics. Empirical markers of cell-fate 

(e.g., necroptosis markers) similarly condense high-dimensional intracellular states to a few variables 

(e.g., presence of pMLKL and sensitivity to RIP1 or RIP3 kinase inhibitors). The previous chapter 

introduced a measurement model that defined nominal observations (apoptotic cell death vs. survival 

outcomes) in terms of features of Bid truncation dynamics. This definition was based on experiments that 

identified these features as predictors of apoptosis and survival. An empirical description of cell-fate in 

terms of temporal dynamics of intracellular signaling is rare. To expand the measurement model concept 

from Opt2Q to a wider range of cell-fate observations, researchers would therefore need to consider 

dimensionality reduction strategies to translate high-dimensional intracellular dynamics to a manageable 

set of features that discriminate distinct cell fates44, 174.  

The measurement models introduced in the previous chapter (in Opt2Q) intentionally avoided 

dimensionality reduction in order to focus solely on idea of a measurement model. A future improvement 

to the measurement model would incorporate dimensionality reduction strategies. This would enable 

mechanistic model calibration using observations that lack a definitive link to the variables encoded in the 

mechanistic model. In Figure 3.2., I applied a feature extraction method simulated intracellular RIP1 

dynamics. I used an ODE model of Complex I and Complex II dynamics (as schematized in Figure 3.1.) 

to simulate time-courses of RIP1 recruitment to Complex I (A.), polyubiquitination (B.), de-

ubiquitination (C.), and recruitment to Complex II (D.). Dynamic time warping175 (DTW) non-linearly 

shifts and stretches the time axis of a pair of temporal sequences in order to maximize their similarity. 

The distance between these temporally warped sequences enables classification of the time-courses.  I 

used DTW to determine the distance between 600 time-courses and 60 landmark time-courses. This 

reduced the dimensionality of the simulated temporal profiles to 60. A measurement model could apply a 

probabilistic classifier to these 60 features176 (e.g., to classify them into necroptotic vs survival outcomes). 

Alternatively, to further reduce the dimensionality, I applied Isomap multidimensional scaling177 which 

finds a low-dimensional embedding of the 60-feature space that conserves geodesic distances between 
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pairs of time-courses. The first two Isomap dimensions captured over 95% of the variability of the 

simulated dynamics. This dimensionality reduction strategy requires a large dataset (containing hundreds 

of measurements) in order to provide reliable classification of the cell-fates. Further, the features 

extracted do not have an easy interpretation in terms of variables and temporal features of the simulated 

dynamics. This can complicate out-of-sample predictions of cell-fate using a measurement model that 

incorporates this approach. The challenges of this approach are like those that would arise using PCA or 

similar feature extraction methods.   

The measurement model that relates a mechanistic model of intracellular dynamics (i.e., ODE 

simulated time-courses of various modeled species) to an observed phenotype (e.g., cell-death outcome) 

can exploit the relative simplicity of the curves produced by ODE models of biology. We can effectively 

reduce the dimensionality of such time-courses by identifying perceptually important points178 (PIP) or 

critical points (e.g., relative maximum and minimum, and points of inflection). The perceptually 

important points algorithm identifies the subset of points along a curve necessary to recover the general 

shape of the curve. PIP can be applied to a wide range of curve shapes (or time-courses). Figure 3.3. A. 

shows the points identified by the PIP algorithm on simulated time-courses of Caspase 8 localization to 

the DISC and Bid truncation dynamics – as modeled by aEARM (see Chapter 2). Alternatively, in Figure 

3.3. B, critical points are identified for the same time-courses. This dimensionality reduction strategy 

could be integrated into a measurement model of cell-fate without drastically increasing the demand for 

data. It is, however, limited to continuous models (e.g., ODE simulations) of intracellular dynamics. 

Application of this approach to stochastic models would require preprocessing (e.g., moving average 

calculations) to smoothen the predicted time-courses.   

The measurement model, we introduced in the previous chapter, enables mechanistic model 

calibration using nominal cell fate outcomes. The data-driven property of this Opt2Q measurement model 

opens opportunities to glean insights into how intracellular mechanism connects (as predictors or drivers) 

to a cellular phenotype. There exist uncertainties in the definition or classification of phenotypes. For 

instance, our collaborators used pMLKL as a sole marker of necroptosis but, pMLKL can also indicate 
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pyroptosis, as it accompanies both cellular phenotypes179. A data-driven measurement model can also 

help resolve these uncertainties by identifying intracellular predictors and drivers of a phenotype. Roux et 

al. used fluorescence measurements of Bid truncation dynamics to identify features of Bid truncation 

dynamics that predict apoptosis125. They constructed a phenotype phase map of the apoptosis and survival 

that allowed them to reconstruct apoptotic responses to experimental and therapeutic interventions. The 

Opt2Q measurement model leveraged knowledge of underlying apoptotic mechanisms along with a 

dataset of apoptosis vs survival outcomes to also generate this phase map. By integrating dimensionality 

reduction methods into the Opt2Q measurement model we can narrow a large set of features to a few 

predictors of cell fate. This method moves the characterization of cellular phenotypes away from the ad 

hoc hypothesis driven approach and toward a data-driven approach (which, aligns well with current 

direction of systems biology180).  

 

3.4. Generalizing the Measurement Model: Addressing a Challenge of Heterogeneity  

Biological systems feature random variations in the abundance and activity of its components. 

These variations have two sources: intrinsic and extrinsic. Intrinsic variations, or intrinsic noise, arise 

from stochastic diffusion, binding and chemical reaction events that happen between the proteins within a 

cell. Intrinsic noise most notably impacts the assembly of protein complexes since these complexes have a 

low copy number within the cell. Extrinsic noise is the heterogeneity, between cells, in protein content. 

This heterogeneity results from random fluctuations in protein expression, etc.  Organisms have evolved a 

strong tolerance for and dependence on noise84-86. The signaling mechanism that commits cells to 

apoptosis may tolerate extrinsic and intrinsic noise while the timing of apoptosis may be sensitive to 

noise. For instance, Albeck et al. noticed execution of apopotosis in cells subjected to low concentrations 

of TRAIL occurred over a larger span of time than cells subjected to higher concentrations145. In other 

instances, heterogeneity propagates into the cell death vs survival decision.  
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Figure 3.4. Modeling calibration and extrinsic heterogeneity. To address the affect of extrinsic heterogeneity on 
model calibration, we modeled dynamics of tBID in a heterogeneous population of cells; specifically, the time at 
half-maximal tBID concentration (B.) solid histogram). These data were expressed as a histogram, 𝜋+ =
𝑝(𝑦+|𝜙) = 	∏ 𝑝(𝑦+&|𝜙),'

&() (B.) shaded area). The schematic A.) describes how the apoptotic cell death model 
(aEARM) was simulated for a set (size = K) of heterogeneous initial conditions. The distribution of the resulting in-
silico values of time at half maximal  tBID were modeled using a Gaussian mixture model (B.) solid lines). The 
empirical and modeled distributions were compared using a likelihood function that is proportional to their 
Kullback-Leibler divergence (Eq. 16)181. The rate parameters, extrinsic noise and smoothing terms (𝜃, 𝜑, and 
𝜏, 	respectively) were additional free parameters.  The posterior distributions (C.) of the prediction of the mean tBID 
dynamics are shown. 
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Figure 3.5. Modeling extrinsic heterogeneity in sample prep in ordinal measurements.  Model calibration 
methods that ignore heterogeneity may miss the influence of heterogeneity on the cellular behaviors. Similarly, 
experimental methods that obscure heterogeneity also obscure details of the cellular behaviors. A. Cellular 
fluorescent intensity of effector caspase activity indicator (EC-RP) – a proxy for PARP cleavage – reveals 
heterogeneity in snap-switch dynamics of PARP cleavage. The snap-switch dynamics is obscured when, in B., the 
fluorescent measurement is averaged over the heterogeneous population of cells. Immunoblot measurements (C.) 
(wherein sample prep) effectively averages intracellular contents of a cellular population) mirror the averaged 
fluorescence measurements in B.  We model the collapse of heterogeneous dynamics via sample prep by defining 
(Eq 17) concentration of the prepped sample 𝑥*+	in terms of the average of cellular concentrations �̅�	(𝑠,	and 𝑛 are 
the concentration variance and cellular population size, respectively) the variability contributed by technical error  
𝜖,. We apply this model of sample prep to a measurement model of ordinal immunoblot (E.) measurements. The 
measurement model’s ordinal classifier therefore determines the marginal (i.e., marginalized over the probability 
density function of sample prep concentrations) probability of each category.  F. is an a in silico representation of 
the predicted immunoblot intensity values. The width and shading of each rectangle are proportional to their most 
probable ordinal value and probability of the that ordinal value (respectively).  A., B., and C. are taken from Albeck 
et al.145 
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Figure 3.4. A. shows an example of extrinsic noise applied to the abridged model of apoptosis 

(aEARM see previous chapter). Log-normal distributed noise with a mean 𝜃 and coefficient of variation 

𝜑 was applied to select parameters of aEARM. By evaluating aEARM for several simulations (sample 

size of 𝐾 = 50) of the model parameters we generated an in silico sample of the apoptosis dynamics; 

specifically time at half-maximal Bid truncation (𝑡)/$). The density of   in silico sample of 𝑡)/$ was 

modeled using a mixture of Gaussians having a scale of 𝜏 . The model parameters -- aEARM rate 

parameters, 𝜃, 𝜑, and  𝜏 -- were calibrated using a likelihood function181 that compares empirical and in 

silico distributions of  𝑡)/$ using a function of the Kullback-Leibler divergence. Shown in Figure 3.4. B., 

the resulting 95% credible region for predictions of the mean of the Bid truncation dynamics were tightly 

constrained around ground truth dynamics of aEARM. Conversely, calibrating aEARM to the mean and 

standard deviation of the  𝑡)/$ dataset provides a far less certain model, as indicated by the broader 95% 

credible region of the predicted Bid truncation dynamics.  

Empirical measurements of biological systems are subject to biological and technical noise 

sources whether the resulting measured dataset reflect the noise or not. Therefore, models of biological 

measurements should consider noise. The measurement model introduced in the previous chapter used a 

logistic model of categorical values. This modeling framework assumes the categorical measurement is a 

random Bernoulli distributed variable. Alternatively, a probit model of the categorical outcome could be 

used to model the probability of a normally distributed latent variable crossing some threshold between 

distinct categorical values182. More work remains before we can to account for heterogeneity and its effect 

on common measurements of intracellular biology.  

Several measurements of intracellular biology entail sample preparations that collapse 

heterogeneous cellular properties into a single value. For instance, the cell lysis step in immunoblot 

measurements can artificially flatten the dynamics in individual cells. Experiments, by Albeck et al., 

investing the relationship between sigmoidal PARP cleavage dynamics (Figure 3.5. A.) and cPARP 

immunoblot measurements (Figure 3.5. C.), found that snap switch dynamics are obscured in the 
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immunoblot similarly to how averaging cPARP values over a heterogeneous population obscures the 

dynamics145. The most heterogeneous population (shown in green in these figures) has the flattened 

representation of the dynamics (shown in Figures 3.5. B., and 3.5. C.). Cell lysis steps average the 

intracellular content in a population of cells. This average can be expressed as having a normal 

probability density with mean and variance described by Eq. 17. With this formulation, we reimagine the 

ordinal measurement model of immunoblot measurements. A heterogeneous population of measured 

cPARP values, Figure 3.5. D., (or in silico cPARP predictions) is used to model a density function for the 

population average cPARP value (or the amount of cPARP in the cell lysate). The measurement model’s 

ordinal classifier then determines the marginal (i.e., marginalized over the probability density function of 

sample prep concentrations) probability of each category.   

A large dataset with individual cell-fate outcomes, each corresponding to known experimental 

treatments, is rare. Roux et al. created a dataset with apoptosis and survival outcomes and corresponding 

temporal profiles of a fluorescence indicator of BID truncation125. Such datasets do not yet exist for non-

apoptotic cell death modalities. Microfluidic devices enable precise manipulation of pL cell cultures (i.e., 

enabling experimentation on individual cells). For instance, I subjected individual L929 cells to pro-

necroptotic conditions in a nanophysiometer183 and monitored them as they underwent necrotic cell death 

(See Figure C.1.). The most common measurements linking cell death to intracellular mechanism are cell 

viability measurements. These measurements average individual cell death outcomes to provide a value 

for the proportion of cells undergoing cell death. A measurement model of cell viability would include a 

similar averaging step that marginalizes the probability of cell death (i.e., as predicted using the nominal 

measurement model in the previous chapter) over an in silico population of cells (Figure 3.6.).  

Alternatively, cell viability could be modeled as a non-linear function of intracellular dynamics (without 

inclusion of a classifier to distinguish individual cellular outcomes). This approach was not explored in 

our work. Cell viability studies provide too few measurements to constrain the predictions of a dynamical 

model of cell death. Our collaborators, Maria Metzig and Alexander Hoffman, captured necroptotic cell 

death in a population at every 90s interval for 24 hours (as shown in Figure 3.7. A.)184. They used this to  
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Figure 3.6. Modeling extrinsic heterogeneity in sample prep in nominal measurements. Models of nominal 
measurements, and observations, must also consider heterogeneity and the impact of sample prep on model 
calibration. Cell viability studies effectively average the individual cell death vs. survival fate outcomes for a 
heterogeneous population of cells. This averaging effect is appended to a model of cell fate to produce a model of 
cell viability. A. Initiator caspase activity (a proxy for Bid truncation) dynamics were simulated across and in silico 
population of cells (each having a distinct vector of initial conditions).  B. The dynamics preprocessed to define 
features of apoptotic cell death. C. The resulting features, maximal initiator caspase activity (a proxy for Bid 
truncation) and the time when initiator caspase activity maximizes, were plotted. Empirical measurements of these 
features (left column) are taken from Roux et al125. D. By averaging probability of cell death vs survival for each in 
the population of cells we estimate cell viability.   

A. 

B. 

C. 

D. 
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Figure 3.7. Modeling extrinsic heterogeneity in sample prep in nominal measurements. Recent work by Metzig 
et al.184 provides vastly more measurements of cell viability than is typical of experiments measuring cell viability. 
A. They measured the rate of change in cell viability by monitoring the percentage of cells that died within a sliding 
3hr window following treatment with TNF. The resulting dataset (B.) contained measurements of cell viability rate 
at every 1.5 min interval for 20hr of TNF treatment. We trained a model of necroptosis signaling to this data by 
applying a measurement model that modeled cell viability by averaging probability of cell death vs survival for each 
in an in silico population of cells; and cell viability rate by finding the difference in cell viability across a sliding 3hr 
window. The measurement model classified cell death vs survival using a logistic classifier on values of 
accumulated MLKL. C. The trained model predicted points of inflection in the amount of MLKL to occur in the 16-
24hrs, 8-16hrs, 4.5-8hr and 4.5-8hrs intervals for (0.1, 1, 10 and 100ng/mL TNF, respectively). These predictions 
are supported by immunoblot measurements showing a transition toward full saturation occurring in the same 
intervals.  

A.

B.

C.
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Figure 3.8. Effects of sample size in model calibrations of feature models of extrinsic heterogeneity. Models of 
biological mechanism that address heterogeneity typically require evaluation of an intractable likelihood. The 
likelihood is intractable in that it is impossible to evaluate the mechanistic model over the domain of the probability 
density function that describes the heterogeneity (i.e., the domain is uncountably infinite). Instead, the likelihood is 
approximated with evaluations over a finite sample from probability density function that describes the 
heterogeneity (i.e., the size of the in silico population). The size of the in silico population affects the reliability of 
the likelihood approximation. A. a histogram of repeated evaluations of the likelihood approximated using an in 
silico population size of 30 (left) and 150 (right). The approximated likelihood took a range of values (x-axis in both 
plots). A model of TNF Complex 1 dynamics of was trained to cell viability data. B. The maximal likelihood 
predictions of 50% cell-death probability curve for an in silico population of 30 (left) and 150 (right). C. The 
maximal likelihood predictions of cell viability for an in silico population of 30 (left) and 150 (right).   

A.

B.

C.
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determine the cell viability rate – the change in proportion of necroptotic cells in a moving 3hr window 

(Figure 3.8. B.). We applied a measurement model that simulated cell viability (and thereby changes in 

cell viability) that uses probabilistic classifier to model the probability of cell death as a function of 

accumulated pMLKL. A model of necroptosis (i.e., Complex I, Complex II and Necroptosome signaling, 

shown in Figure 3.1. A.) calibrated to cell viability rate correctly predicted rapid increases in MLKL 

phosphorylation to occur in temporal windows that were later reflected in pMLKL immunoblot 

measurements.  

Heterogeneity of a biological process requires more far more measurements than is typical of 

common biological assays to capture and model. This should direct scientist to collect more 

measurements to support biological research. Models of heterogeneity engender an intractable 

likelihood00 that features a continuous random process or probability distribution that would require an 

infinite number of simulations (or draws) to evaluate. The likelihood is therefore approximated using a 

finite number of simulations. The size of the simulated sample set dictates the accuracy and reliability of 

the likelihood evaluation. To show this, I simulated a model of Complex I and Complex II dynamics (as 

shown in Figure 3.1.); used in silico intracellular amount of RIP1 in Complex I and polyubiquitinated 

RIP1 as predictors in a measurement model of cell death vs survival (Figure 3.8. B.); and calibrated the 

model to cell viability data Figure 3.8. C.). This likelihood function marginalizes the probability of cell 

death outcome over a population of cells; size =30 (Figure 3.8. left) or size = 150 (Figure 3.8. right) per 

experimental condition. Figure 3.8. A. shows the variability of the likelihood estimate for a single vector 

of model parameters. The smaller sample of simulations had a highly variable estimate of the likelihood. 

Approximate Bayesian computation (ABC-MCMC) addresses the intractable likelihood through 

modifications to its rejection algorithm61. Variability in the likelihood function, however, can produce 

sticking of a stochastic optimizer (i.e., when the optimizer receives an overestimate of the likelihood 

function and rejects new parameters that do not match that overestimated value) and drastically slow 

convergence of the Bayesian calibration. Further, the variability in the likelihood function decreases the 

certainty of the model calibration. Figure 3.8. B. show predictions of the line marking 50% probability of 
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cell death and Figure 3.8. C. shows predicted cell viabilities for a measurement model using simulated 

populations of size =30 (left) or size = 150 (right). Accurate approximation of a likelihood function of a 

model of biological heterogeneity requires a sufficiently large sample of simulations of the random 

process or probability distribution that models the heterogeneity. This requires many times more 

evaluations of the dynamical model (i.e., numerical integration of the model’s ODEs) to accomplish. We 

used a GPU parallelized LSODA numerical integration package (CUPSODA)74 to run hundreds of model 

evaluations. LSODA enables efficient and accurate ODE solutions but can stall in integration of poorly 

behaved models (i.e., models that possess the rapid non-stiff to stiff transitions typical of snap-action 

delay processes). DASSL is an alternative to the LSODA algorithm that better handles stiff-non-stiff 

transitions186. Future work would integrate high performance implementations of DASSL (e.g., GPU 

parallelization187) into PySB modeling package.  

 

3.5. Conclusions 

Systems biology has the unrealized potential to drive science-driven innovation in biology and 

medicine the way physics, chemistry and engineering has for several other industries. Systems biology 

cannot realize the potential without first confront its need for large amounts of the high-precision and 

quantitative measurements enjoyed in physics, chemistry and engineering. Fundamental properties of 

biology -- complexity, multiscale organization and heterogeneity – place tight constraints on what or how 

measurements occur. This leaves modeling, i.e., new modeling approaches that reconcile mechanism to 

measurement, as the essential response to the data problem in biology.  In this work, I introduce a data-

driven and probabilistic measurement model (Opt2Q) as a solution to the challenge posed by the dearth of 

quantitative data in systems biology. By integrating more of the measurements produced in typical 

investigations of cellular biology into an unbiased probabilistic modeling framework we can produce 

models that more accurately reflect the information in our experiments. But more work remains. With 

advancing computational capabilities and machine-learning methods, the Opt2Q measurement model can, 

in theory, adapt any kind of measurement to mechanistic models. This will provide new access to several 
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biological processes that continue to evade current modeling efforts. However, the demand, in systems 

biology, for more of data remains. Scientists should therefore devise experiments that collect more 

measurements (regardless of the kind(s) of measurement), if they intend to implement modeling 

approaches of systems biology.  
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Appendices 

A. Supplemental Tables for Chapter 2 

 

Table A.1. Extrinsic Apoptosis Reaction Model Initial Conditions Parameters 

Species Symbol Value Notes 
Ligand (TRAIL) ‘L_0’ 3000 3000 copies per cell equates to 50ng/mL 
Receptor ‘R_0’ 200  
DISC ‘DISC_0’ 0 The death inducing signaling complex (DISC) is initially 

absent 
Initiator Caspase ‘IC_0’ 2.0e4 Caspase 8 
Effector Caspase ‘EC_0’ 1.0e4 Caspase 3 
MOMP signal* ‘MOMP_sig_0’ 1.0e5 Uses the EARM initial value for Smac 
PARP ‘PARP_0’ 1.0e6 PARP (Caspase 3 substrate and apoptosis marker) 
Three Unrelated* 
Signaling 
Molecules 

‘USM1_0’ 1.0e3 These signaling molecules do not interact with aEARM and are 
linked together via a separate set of activation and inactivation 
reactions (Supplemental table 2)  

‘USM2_0’ 1.0e3 
‘USM3_0’ 1.0e3 

*Indicates values that were subjected log-normal extrinsic noise. Additionally, rate parameter ‘kc0’ (which catalyzes 
the formation of DISC) was subjected to extrinsic noise using the same procedure as for those noted in the table.    
 

Table A.2. Reactions for unrelated signaling molecules 

USM1 catalyzes USM2 activation 𝑈𝑆𝑀1∗ +𝑈𝑆𝑀2	 ⇌ 𝑈𝑆𝑀1∗: 𝑈𝑆𝑀2	 ⟶ 𝑈𝑆𝑀1∗ +𝑈𝑆𝑀2∗  
USM2 catalyzes USM3 activation 𝑈𝑆𝑀2∗ +𝑈𝑆𝑀3	 ⇌ 𝑈𝑆𝑀2∗: 𝑈𝑆𝑀3	 ⟶ 𝑈𝑆𝑀2∗ +𝑈𝑆𝑀3∗  
USM3 catalyzes USM1 activation 𝑈𝑆𝑀3∗ +𝑈𝑆𝑀1	 ⇌ 𝑈𝑆𝑀3∗: 𝑈𝑆𝑀1	 ⟶ 𝑈𝑆𝑀3∗ +𝑈𝑆𝑀1∗  
USM1 catalyzes USM3 inactivation 𝑈𝑆𝑀1∗ +	𝑈𝑆𝑀3∗ 	⇌ 𝑈𝑆𝑀1∗: 𝑈𝑆𝑀3∗ 	⟶ 𝑈𝑆𝑀1∗ +𝑈𝑆𝑀3  
USM2 catalyzes USM1 inactivation 𝑈𝑆𝑀2∗ +	𝑈𝑆𝑀1∗ 	⇌ 𝑈𝑆𝑀2∗: 𝑈𝑆𝑀1∗ 	⟶ 𝑈𝑆𝑀2∗ +𝑈𝑆𝑀1  
USM3 catalyzes USM2 inactivation 𝑈𝑆𝑀3∗ +	𝑈𝑆𝑀2∗ 	⇌ 𝑈𝑆𝑀3∗: 𝑈𝑆𝑀2∗ 	⟶ 𝑈𝑆𝑀3∗ +𝑈𝑆𝑀2  

* Indicates activated.  
 
Note, monotonically increasing values would correlate highly with TRAIL dependent species in aEARM, 

as an artifact of the aEARM species all having nonequilibrium values at t=0. This activation and 

inactivation scheme can produce slow oscillations, which decrease their correlation with TRAIL 

dependent species in aEARM.  
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Table A.3. – Parameterizations of Ordinal Measurement Model 

“Ground Truth Parameterization” 𝛼'*+, = 50.0, 𝜷'*+, = (0.03, 0.40, 0.82, 0.97) 
𝛼BCD:C = 50.0, 𝜷BCD:C = (0.03, 0.20, 0.97) 
𝛼+E@,+FE = 50.0, 𝜷+E_,+FE = (0.05, 0.40, 0.85) 

Ad hoc parameterization (Case 1) 𝛼'*+, = 50.0, 𝜷'*+, = (0.00, 0.33, 0.67, 1.00) 
𝛼BCD:C = 50.0, 𝜷BCD:C = (0.00, 0.50, 1.00) 

Ad hoc parameterization (Case 2) 𝛼'*+, = 50.0, 𝜷'*+, = (0.20, 0.40, 0.60, 0.80) 
𝛼BCD:C = 50.0, 𝜷BCD:C = (0.25, 0.50, 0.75) 

  
 

Table A.4. – Ground Truth Parameterization of Nominal Measurement Model  

“Ground Truth Parameterization” 𝛼 = 4.0 (slope term) 
𝛽 = −0.25 (intercept term) 
𝛽HIJK4L'KM	#%NIL4 = 0.0 
𝛽OPQ '*+,	JL'K = 0.25 
𝛽'%6K	L'OPQ '*+,	JL'K = −1.0 

  
 

Table A.5. – Ground Truth Parameterization of aEARM 

kf0 1.15594933e-07 kr2 6.87631084e-02 kc4 3.39059104e-03 kf7 1.98195485e-05 
kr0 1.04056134e-05 kc2 1.09271827e-02 kf5 8.69183082e-10 kr7 1.82182416e-04 
kc0 1.12028665e-05 kf3 3.82096809e-06 kr5 1.15619903e-03 kc7 3.90039620e-03 
kf1 1.93083645e-06 kr3 1.39230000e-05 kc5 8.49612026e-06 kf8 1.76040074e-05 
kr1 1.71446702e-03 kc3 2.95330594e-02 kf6 7.69174202e-07 kr8 1.34854804e-03 
kc1 3.29355599e-01 kf4 1.61609297e-05 kr6 7.35417590e-04 kc8 1.67799299e-01 
kf2 1.48867282e-08 kr4 1.71818138e-02 kc6 5.18485726e-03 kc9 8.28571278e-08 
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Table A.6: Gelman Rubin Values for Calibrated Models 
 

Model Parameter 
Fluorescence Data 
GR Values 

Ordinal Data (1500s intervals)  GR 
Values 

Ordinal Data (300s intervals)  GR 
Values 

kf0 1.08514627 1.00416013 1.12613066 
kr0 1.00220123 1.00731437 1.01094174 
kc0 1.03226655 1.01661178 1.04884635 
kf1 1.0526068 1.00787276 1.04161391 
kr1 1.00504595 1.08370608 1.01497949 
kc1 1.02257591 1.01803541 1.03766028 
kf2 1.0130557 1.00138999 1.01795943 
kr2 1.00305479 1.00047459 1.00459635 
kc2 1.00393523 1.00892224 1.00669506 
kf3 1.00236732 1.12747739 1.1033154 
kr3 1.00518277 1.01158553 1.03838169 
kc3 1.00208664 1.02737927 1.01072007 
kf4 1.03636438 1.02287885 1.01291816 
kr4 1.00973982 1.03539431 1.01106759 
kc4 1.07074804 1.090603 1.0257023 
kf5 1.06039857 1.00451871 1.05108669 
kr5 1.11159688 1.03016518 1.01993528 
kc5 1.06253039 1.00534456 1.19839917 
kf6 1.16079145 1.00726142 1.03689339 
kr6 1.01920037 1.01311067 1.00727259 
kc6 1.12806401 1.03022348 1.05880415 
kf7 1.1978977 1.00103472 1.05011201 
kr7 1.015523 1.00363864 1.01582668 
kc7 1.04973795 1.02434569 1.05180776 
kf8 1.09112645 1.01930478 1.0592043 
kr8 1.00130727 1.00505759 1.01064644 
kc8 1.05073858 1.08118403 1.02354009 
kc9 1.00629721 1.02264177 1.0120538 
kf10 1.00377768     
kr10 1.00236537     
kc10 1.00127349     
kf11 1.00073078     
kr11 1.00006038     
kc11 1.01171049     
tBID_blot_c   1.03099437 1.04455791 
tBID_blot_t1   1.00577635 1.04113665 
tBID_blot_t2   1.00475455 1.0276283 
tBID_blot_t3   1.18645775 1.01563682 
tBID_blot_t4   1.03067735 1.03781179 
cPARP_blot_c   1.0238484 1.0136447 
cPARP_blot_t1   1.11064182 1.1217791 
cPARP_blot_t2   1.09517445 1.04147523 
cPARP_blot_t3   1.06658201 1.07456182 
population term       
slope       
intercept       
unrelated signal coef       
max tBID rate       
time at max tBID rate       
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Table A.6. (continued): Gelman Rubin Values for Calibrated Models 

Model Parameter 
Ordinal Data (180s intervals)  
GR Values 

Ordinal Data (60s intervals)  GR 
Values 

kf0 1.09227853 1.19455225 
kr0 1.01355927 1.00077791 
kc0 1.21872921 1.19973674 
kf1 1.08038175 1.09315405 
kr1 1.0152864 1.00105368 
kc1 1.01258181 1.02240288 
kf2 1.02564596 1.00383742 
kr2 1.00373621 1.00119441 
kc2 1.00598853 1.00285406 
kf3 1.0182979 1.05590664 
kr3 1.00074794 1.00111898 
kc3 1.02153065 1.01906018 
kf4 1.00281514 1.0082177 
kr4 1.00078925 1.0129524 
kc4 1.02105192 1.19698486 
kf5 1.11968392 1.0070741 
kr5 1.02852199 1.00461711 
kc5 1.07532827 1.01683151 
kf6 1.05350227 1.01504637 
kr6 1.00341359 1.00527656 
kc6 1.02009389 1.01470974 
kf7 1.00398446 1.06631947 
kr7 1.00484732 1.00983058 
kc7 1.05113986 1.02668767 
kf8 1.00181596 1.00884647 
kr8 1.00307851 1.00269787 
kc8 1.03648993 1.05647474 
kc9 1.00024721 1.00279375 
kf10     
kr10     
kc10     
kf11     
kr11     
kc11     
tBID_blot_c 1.00332379 1.02397397 
tBID_blot_t1 1.00534022 1.02255679 
tBID_blot_t2 1.06528275 1.01778354 
tBID_blot_t3 1.0136356 1.01897305 
tBID_blot_t4 1.05682272 1.04328318 
cPARP_blot_c 1.01365954 1.03105962 
cPARP_blot_t1 1.01185214 1.02320031 
cPARP_blot_t2 1.02776775 1.02698812 
cPARP_blot_t3 1.0190093 1.04132186 
population term     
slope     
intercept     
unrelated signal coef     
max tBID rate     
time at max tBID rate     
IC_DISC_blot_c     
IC_DISC_blot_t1     
IC_DISC_blot_t2     
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Table A.6. (continued): Gelman Rubin Values for Calibrated Models 

Model Parameter 

Ordinal Data Uniform 
Priors for Measurement 
Model 

Ordinal Data Cauchy (s=0.05) priors 
for Measurement Model 

Ordinal Data Cauchy (s=0.005) priors for 
Measurement Model 

kf0 1.07737054 1.03191813 1.1328619 
kr0 1.00259287 1.01752463 1.00351023 
kc0 1.03789017 1.04074446 1.06318023 
kf1 1.07576464 1.01380773 1.0017717 
kr1 1.06738237 1.00712663 1.00813843 
kc1 1.10226386 1.04113557 1.01000593 
kf2 1.00068557 1.00418444 1.00362501 
kr2 1.0011541 1.00432116 1.00103303 
kc2 1.00030986 1.01747953 1.00041386 
kf3 1.03228596 1.0080699 1.03240523 
kr3 1.00378028 1.00538727 1.00497349 
kc3 1.08034193 1.00231253 1.01343209 
kf4 1.01376285 1.06893954 1.00778619 
kr4 1.00201924 1.00359284 1.00103777 
kc4 1.04892641 1.03878297 1.01617983 
kf5 1.04063891 1.0222424 1.02449938 
kr5 1.03929407 1.01615766 1.00350635 
kc5 1.02879373 1.01421718 1.00302031 
kf6 1.03374728 1.05569952 1.01600363 
kr6 1.01707809 1.01822194 1.01683535 
kc6 1.02665254 1.02118882 1.08812762 
kf7 1.04782734 1.05077333 1.00623474 
kr7 1.00492933 1.01692564 1.00060767 
kc7 1.06241425 1.01119753 1.13249616 
kf8 1.00887196 1.01008733 1.00351389 
kr8 1.00109911 1.00243843 1.0022869 
kc8 1.00634403 1.13854335 1.10138409 
kc9 1.0005081 1.01064269 1.00241524 
kf10       
kr10       
kc10       
kf11       
kr11       
kc11       
tBID_blot_c 1.06175948 1.03161885 1.00405138 
tBID_blot_t1 1.05877672 1.01005417 1.02304313 
tBID_blot_t2 1.19211738 1.13115608 1.03286286 
tBID_blot_t3 1.18990995 1.0739582 1.17343317 
tBID_blot_t4 1.01935735 1.18526477 1.05742366 
cPARP_blot_c 1.13717314 1.09934593 1.11144046 
cPARP_blot_t1 1.15650209 1.10662718 1.09565958 
cPARP_blot_t2 1.02989154 1.1249058 1.10627225 
cPARP_blot_t3 1.0807912 1.1616861 1.15043555 
population term       
slope       
intercept       
unrelated signal coef       
max tBID rate       
time at max tBID rate       
IC_DISC_blot_c       
IC_DISC_blot_t1       
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Table A.6. (continued): Gelman Rubin Values for Calibrated Models 

Model Parameter 
Ordinal Data ad hoc 
measurement model (case 1) 

Ordinal Data ad hoc measurement 
model (case 2) 

kf0 1.07183296 1.00000592 
kr0 1.00263502 1.00018696 
kc0 1.11656015 1.00470607 
kf1 1.15953028 1.11455866 
kr1 1.00063062 1.05000013 
kc1 1.07288909 1.16411978 
kf2 1.00182892 1.19552739 
kr2 1.00409273 1.11353462 
kc2 1.00344124 1.18997792 
kf3 1.00682301 1.17230406 
kr3 1.00014235 1.00006023 
kc3 1.04108872 1.06430983 
kf4 1.00444363 1.33857703 
kr4 1.00267552 1.01517747 
kc4 1.14963217 1.14393001 
kf5 1.08464278 1.02789781 
kr5 1.01703471 1.01150415 
kc5 1.00304983 1.02425553 
kf6 1.11694745 1.01069756 
kr6 1.00721167 1.00315432 
kc6 1.10724666 1.072313 
kf7 1.05194206 1.02347356 
kr7 1.00192184 1.00212701 
kc7 1.01155434 1.03646728 
kf8 1.024501 1.01555239 
kr8 1.00134119 1.00672554 
kc8 1.16182793 1.27993175 
kc9 1.00187187 1.4356259 
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Table A.6. (continued): Gelman Rubin Values for Calibrated Models 

Model Parameter 
Cell Death 
Dataset 

Cell Death and IC-DISC 
Data 

IC-DISC Ordinal 
Data 

kf0 1.147082389 1.193508804 1.025888058 
kr0 1.044549798 1.008386606 1.014422169 
kc0 1.025309202 1.01875332 1.168214291 
kf1 1.040691259 1.02818894 1.09296232 
kr1 1.012969697 1.007636634 1.001200069 
kc1 1.055136276 1.033107565 1.020263262 
kf2 1.083912804 1.019927873 1.028984715 
kr2 1.009869421 1.006757301 1.000222658 
kc2 1.078414444 1.004699709 1.013178451 
kf3 1.026369587 1.102132649 1.027554019 
kr3 1.016666553 1.003595864 1.002519069 
kc3 1.107343918 1.009143694 1.041325643 
kf4 1.04447673 1.009667955 1.039020146 
kr4 1.027860627 1.009341313 1.003006034 
kc4 1.180435979 1.097402311 1.063978927 
kf5 1.029934603 1.074718714 1.028936545 
kr5 1.019712202 1.06652895 1.008325575 
kc5 1.02241033 1.14509581 1.025696761 
kf6 1.043800183 1.218209169 1.048466699 
kr6 1.046639613 1.047536954 1.026881137 
kc6 1.054575418 1.072500435 1.012896495 
kf7 1.037915934 1.68575507 1.03771687 
kr7 1.147434517 1.061381782 1.000948168 
kc7 1.064822622 1.122795274 1.052213192 
kf8 1.090951064 1.02801587 1.012671669 
kr8 1.021929242 1.032207782 1.005317571 
kc8 1.026358748 1.297306767 1.022151632 
kc9 1.018902592 1.001625898 1.025093796 
kf10 1.008415077 1.00323074 1.007755469 
kr10 1.034442813 1.003569568 1.004258882 
kc10 1.019863359 1.00298905 1.006463655 
kf11 1.04564885 1.011607656 1.003158814 
kr11 1.004836579 1.010118764 1.013272594 
kc11 1.013629331 1.010063299 1.004651762 
population term 1.010681473 1.012081154   
slope 1.038709572 1.010643589   
intercept 1.047805799 1.038549728   
unrelated signal 
coef 1.044461028 1.001983281   
max tBID rate 1.004573799 1.17125971   
time at max tBID 
rate 1.018539041 1.016101671   
IC_DISC_blot_c   1.034005667 1.037952935 
IC_DISC_blot_t1   1.042627137 1.034646881 
IC_DISC_blot_t2   1.094231403 1.115679326 
IC_DISC_blot_t3   1.026081419 1.026988824 
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B. Supplemental Figures for Chapter 2 

 
 

 
 
 
Figure B.1. Measurement model parameters calibrated to an ordinal dataset. The ordinal dataset contained a 
single ordinal value for tBID (Box 2, B.) and cPARP (A.) at every 60 second interval. Prior and posterior 
distributions for measurement model parameters are plotted in C. The 95% credible region of posterior predictions 
(shaded region) for the measurement model for tBID (Box 2, C.) and cPARP (B.) are plotted. The solid line in these 
plots is the median prediction for the measurement model. These plots give estimates of the probability of the 
ordinal value (x-axis) as a function of the normalized value of tBID or cPARP (y-axis). The ordinal categories are 
color coded and plotted in ascending order (for example, the ‘blue’ category is lower than the ‘orange’.   

A. 

B. 
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Figure B.2. PARP cleavage dynamics of aEARM trained to Fluorescence EC-RP data. Bayesian optimization 
of aEARM parameters trained to A.) Effector caspase reporter (EC-RP) fluorescence time-course measurements at 
180s intervals (i.e. a proxy for PARP cleavage) and IC-RP fluorescence time-course (Fig 2A) data from [REF]). The 
plot shows the mean (dotted line) +/- 1 standard deviation (shaded region) for each time point. B.) The 95% credible 
region of posterior predictions (shaded region) for cPARP concentration in aEARM, calibrated to fluorescence 
measurements of IC-RP and EC-RP data. The median prediction (solid-line) and true (dotted line) cPARP 
concentration trajectories are shown. C., E., G., and I.) Ordinal measurements of cPARP at occurring at every 1500, 
300, 180 and 60s timepoint, respectively. The 95% credible region of posterior predictions of cPARP dynamics for 
aEARM calibrated to ordinal measurements of tBID and cPARP occurring at every 1500, 300, 180 and 60s 
timepoint, respectively. The 95% credible region of predictions (shaded region), median prediction (solid line) and 
true (dotted line) cPARP dynamics for aEARM calibrated to ordinal measurements of tBID and cPARP occurring at 
every 1500, 300, 180 and 60s timepoint, are plotted in D., F., H., and J., respectively. The plots for tBID ordinal 
measurements and predictions are found in Figure 2.   
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Figure B.3. Model parameters calibrated to a Fluorescence Dataset Parameters for aEARM were calibrated to 
fluorescence time-course measurements of EC-RP and IC-RP at every 180s interval. Prior (blue) and posterior 
(orange) distributions log10 of the value of parameter are shown.  
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Figure B.3. (continued) Model parameters (remaining) calibrated to a Fluorescence Dataset Parameters for 
aEARM were calibrated to fluorescence time-course measurements of EC-RP and IC-RP at every 180s interval. 
Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown.  
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Figure B.4. Model parameters calibrated to an Ordinal Dataset Parameters for aEARM were calibrated to 
ordinal values of tBID and cPARP abundance at every 60s interval. Prior (blue) and posterior (orange) distributions 
log10 of the value of parameter are shown.  
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Figure B.4. (continued) Model parameters calibrated to an Ordinal Dataset Parameters for aEARM were 
calibrated to ordinal values of tBID and cPARP abundance at every 60s interval. Prior (blue) and posterior (orange) 
distributions log10 of the value of the aEARM parameter are shown. Prior and posterior distributions of the value of 
measurement model coefficients are also shown (these are not log-scale).  
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Figure B.5. Model parameters calibrated to an Ordinal Dataset Parameters for aEARM were calibrated to 
ordinal values of tBID and cPARP abundance at every 180s interval. Prior (blue) and posterior (orange) distributions 
log10 of the value of parameter are shown.   
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Figure B.5. (continued) Model parameters calibrated to an Ordinal Dataset Parameters for aEARM were 
calibrated to ordinal values of tBID and cPARP abundance at every 180s interval. Prior (blue) and posterior (orange) 
distributions log10 of the value of the aEARM parameter are shown. Prior and posterior distributions of the value of 
measurement model coefficients are also shown (these are not log-scale). 
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Figure B.6. Model parameters calibrated to an Ordinal Dataset Parameters for aEARM were calibrated to 
ordinal values of tBID and cPARP abundance at every 300s interval. Prior (blue) and posterior (orange) distributions 
log10 of the value of parameter are shown. 
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Figure B.6. (continued) Model parameters calibrated to an Ordinal Dataset Parameters for aEARM were 
calibrated to ordinal values of tBID and cPARP abundance at every 300s interval. Prior (blue) and posterior (orange) 
distributions log10 of the value of the aEARM parameter are shown. Prior and posterior distributions of the value of 
measurement model coefficients are also shown (these are not log-scale). 
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Figure B.7. Model parameters calibrated to an Ordinal Dataset Parameters for aEARM were calibrated to 
ordinal values of tBID and cPARP abundance at every 1500s interval. Prior (blue) and posterior (orange) 
distributions log10 of the value of parameter are shown. 
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Figure B.7. (continued) Model parameters calibrated to an Ordinal Dataset Parameters for aEARM were 
calibrated to ordinal values of tBID and cPARP abundance at every 1500s interval. Prior (blue) and posterior 
(orange) distributions log10 of the value of the aEARM parameter are shown. Prior and posterior distributions of the 
value of measurement model coefficients are also shown (these are not log-scale). 
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Figure B.8. Predicted Initiator caspase and DISC colocalization dynamics of aEARM trained to ordinal and 
mixed ordinal/nominal datasets. The 95% credible region (shaded region) of posterior predictions of IC-DISC 
dynamics of aEARM calibrated to ordinal IC-DISC data in Figure 4C, A.) and a mixed dataset containing the 
nominal data in Figure 4A the ordinal IC-DISC data, C.). The median predictions (solid-line) and true (dotted line) 
are also plotted. The adjacent panels B.) and D.) give the 95% credible region of posterior predictions (shaded 
regions) for the probability of class membership (x-axis) as a function of aEARM-simulated normalized IC-DISC 
concentration (y-axis). The ordinal categories are color coded and plotted in ascending order. 
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Figure B.9. Model parameters calibrated to a Cell Death Dataset Parameters for aEARM were calibrated to 
nominal observations of cell death vs survival. Prior (blue) and posterior (orange) distributions log10 of the value of 
parameter are shown. 
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Figure B.9. (continued) Model parameters calibrated to a Cell Dataset Parameters for aEARM were calibrated 
to nominal observations of cell death vs survival. Prior (blue) and posterior (orange) distributions log10 of the value 
of the aEARM parameter are shown. Prior and posterior distributions of the value of measurement model 
coefficients are also shown (these are not log-scale). 
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Figure B.10. Model parameters calibrated to Ordinal IC-DISC Dataset Parameters for aEARM were calibrated 
to ordinal values of IC-DISC abundance at every 300s interval. Prior (blue) and posterior (orange) distributions log10 
of the value of parameter are shown. 
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Figure B.10. (continued) Model parameters calibrated to Ordinal IC-DISC Dataset Parameters for aEARM 
were calibrated to ordinal values of IC-DISC abundance at every 300s interval. Prior (blue) and posterior (orange) 
distributions log10 of the value of parameter are shown. Prior and posterior distributions of the value of measurement 
model coefficients are also shown (these are not log-scale). 
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Figure B.11. Model parameters calibrated to Mixed Ordinal and Nominal Dataset Parameters for aEARM were 
calibrated to ordinal values of IC-DISC abundance at every 300s interval and to nominal observations of cell death 
vs survival. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. 
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Figure B.11. (continued) Model parameters calibrated to Mixed Ordinal and Nominal Dataset Parameters for 
aEARM were calibrated to ordinal values of IC-DISC abundance at every 300s interval and to nominal observations 
of cell death vs survival. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. 
Prior and posterior distributions of the value of measurement model coefficients are also shown (these are not log-
scale). 
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Figure B.12. Predicted PARP cleavage dynamics of aEARM trained to ordinal data using different 
measurement model priors.  
The 95% credible region of posterior predictions (shaded region) of cPARP dynamics of aEARM calibrated to 
ordinal values of tBID and cPARP at every 60s interval. Uniform, Cauchy (scale=0.05) and Cauchy (scale=0.005) 
prior distributions for the parameterizations for the measurement model, respectively. In each, the median prediction 
(solid line) and true (dotted line) cPARP dynamic sare also shown. The adjacent panels give the 95% credible region 
of posterior predictions of the probability of class membership (x-axis) as a function of normalized cPARP 
concentration (y-axis). 
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Figure B.13.Predicted PARP cleavage dynamics of aEARM trained to ordinal data using different ad hoc 
parameterizations of the measurement model. The 95% credible region of posterior predictions (shaded region) 
of cPARP dynamics for aEARM calibrated to ordinal measurements of tBID and cPARP at every 60s interval. Two 
fixed parameterizations for the measurement model. The adjacent panels plot the measurement models predicted 
probability of class membership (x-axis) as a function of normalized cPARP concentration (y-axis). The adjacent 
panels give the 95% credible region of posterior predictions of the probability of class membership (x-axis) as a 
function of normalized cPARP concentration (y-axis). 
 
  



 121 

 
Figure B.14. Model parameters calibrated to Ordinal Dataset using Uniform priors on Measurement Model 
Parameters Parameters for aEARM were calibrated to ordinal values of tBID and cPARP abundance at every 60s 
interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. Uniform priors 
were placed on the measurement model parameters (these are not log-scale).  
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Figure B.14. (continued) Model parameters calibrated to Ordinal Dataset using Uniform priors on 
Measurement Model Parameters Parameters for aEARM were calibrated to ordinal values of tBID and cPARP 
abundance at every 60s interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are 
shown. Uniform priors were placed on the measurement model parameters (these are not log-scale). 
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Figure B.15. Model parameters calibrated to Ordinal Dataset using Cauchy priors on Measurement Model 
Parameters. Parameters for aEARM were calibrated to ordinal values of tBID and cPARP abundance at every 60s 
interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. Cauchy priors 
with a scale term of 0.05 were placed on the measurement model parameters (these are not log-scale). 
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Figure B.15. (Continued) Model parameters calibrated to Ordinal Dataset using Cauchy priors on 
Measurement Model Parameters. Parameters for aEARM were calibrated to ordinal values of tBID and cPARP 
abundance at every 60s interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are 
shown. Cauchy priors with a scale term of 0.05 were placed on the measurement model parameters (these are not 
log-scale) 
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Figure B.16. Model parameters calibrated to Ordinal Dataset using Cauchy priors on Measurement Model 
Parameters. Parameters for aEARM were calibrated to ordinal values of tBID and cPARP abundance at every 60s 
interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. Cauchy priors 
with a scale term of 0.005 were placed on the measurement model parameters (these are not log-scale). 
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Figure B.16. (Continued) Model parameters calibrated to Ordinal Dataset using Cauchy priors on 
Measurement Model Parameters. Parameters for aEARM were calibrated to ordinal values of tBID and cPARP 
abundance at every 60s interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are 
shown. Cauchy priors with a scale term of 0.005 were placed on the measurement model parameters (these are not 
log-scale).  
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Figure B.17. Model parameters calibrated to Ordinal Dataset using Fixed ad hoc Measurement Model 
Parameters. Parameters for aEARM were calibrated to ordinal values of tBID and cPARP abundance at every 60s 
interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. Fixed ad hoc 
values were applied to the measurement model parameters (see Table A.3. (Case 1)) 
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Figure B.17. (continued) Model parameters calibrated to Ordinal Dataset using Fixed ad hoc Measurement 
Model Parameters. Parameters for aEARM were calibrated to ordinal values of tBID and cPARP abundance at 
every 60s interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. Fixed 
ad hoc values were applied to the measurement model parameters (see Table A.3. (Case 1)) 
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Figure B.18. Model parameters calibrated to Ordinal Dataset using Fixed ad hoc Measurement Model 
Parameters. Parameters for aEARM were calibrated to ordinal values of tBID and cPARP abundance at every 60s 
interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. Fixed ad hoc 
values were applied to the measurement model parameters (see Table A.3. (Case 2)) 
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Figure B.18. (continued) Model parameters calibrated to Ordinal Dataset using Fixed ad hoc Measurement 
Model Parameters. Parameters for aEARM were calibrated to ordinal values of tBID and cPARP abundance at 
every 60s interval. Prior (blue) and posterior (orange) distributions log10 of the value of parameter are shown. Fixed 
ad hoc values were applied to the measurement model parameters (see Supplemental Table A.3. (Case 2)) 
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C. Necrotic Cell Death in a Nanophysiometer 

 

 

Figure C.1. Necrotic Cell Death Observation in a Nanophysiometer Necrotic cell death in L929 cells that were 
cultured in a nanophysiometer with 50ng TNF. The nanophysiometer is a microfluidic device00 that can subject 
individual cells to unique and knowable experimental stimuli. By monitoring these cells we can generate the data 
necessary to support a measurement model of necrotic cell death outcomes.  
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D. List of Equations 

 

𝑦!"# 	 ∈ {0, 1, … 𝐽}          (1) 

𝑦!"#,$ ≠	𝑦!"#,% 	⟶	𝑦$ ≠ 𝑦%  

 

𝑦!"# 	 ∈ {0, 1, … 𝐽}          (2) 

𝑦!"#,$ ≼	𝑦!"#,% 	⟶	𝑦$ ≤ 𝑦%  

 

 𝑦!"# =	𝑓/(𝑦, 𝒄)           (3) 

 

 𝑦!"# = 	𝑦           (4) 

  

 𝑥(𝒕) = 𝒇(𝒕, 	𝜽)           (5) 

 

 𝑦(𝑡$ , 	𝜽) = 	𝑓/O𝒙(𝑡)Q          (6) 

 

 𝑑 = 	∑ 𝑤$O𝑦+(𝑡$)	 − 	𝑦(𝑡$ , 	𝜽)Q
,&

$()              (7) 

  

 log ℒ(𝒚Z|𝜽) = 	 𝑐 + ∑ 0)
,1!"

O𝑦+(𝑡$)	 − 𝑦(𝑡$ , 	𝜽)Q
,&

$()        (8) 

 

 {𝑃(𝑦$ = 𝑐)|𝑥$(𝑡)), 𝑃(𝑦$ = 𝑐,|𝑥$(𝑡)), … 	𝑃(𝑦$ = 𝑐2|𝑥$(𝑡))} = 𝑓/O𝜽/ , 	𝑥$(𝑡)Q    (9) 

 

 𝑃(𝒚Z|𝜽, 𝜽/) = 	∏ ∑ 𝑃(𝑦+$|𝑦$ = 𝑐%)𝑃O𝑦$ = 𝑐%]𝑥$(𝑡))2
%()

'
$()                   (10) 

 

 log ℒ(𝒚9|𝜽) = 	∑ ∑ −1 2𝜎%(𝑡)$⁄ 	× B𝑦,%(𝑡) − 𝑦%(𝑡, 𝜽)C
$&

'
(
)                 (11) 
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 log ℒ(𝒚9|𝜽, 𝜶, 𝜷) = ∑ ∑ log∑ 𝑃B𝑦,%(𝑡)F𝑦%(𝑡) = 𝑐-C𝑃B𝑦%(𝑡) = 𝑐-F𝑥%(𝑡, 𝜽), 𝛼% , 𝛽%,-)/
-

𝑻
𝒕

𝑵
𝒊          (12) 

 

 log ℒ(𝒚9|𝜽, 𝜶, 𝜷) = ∑ 𝑃(𝑦,6|𝑦6 = 𝑐)) log𝜑 R𝛼B𝛽 + ∑ 𝛽4𝑥4,65
4 CS𝑴

𝒎 	 

       +	∑ B1 − 𝑃(𝑦,6|𝑦6 = 𝑐))C log X1 − 	𝜑 R𝛼B𝛽 + ∑ 𝛽4𝑥4,65
4 CSY𝑴

𝒎                 (13) 

 

𝐾 ≤ 0.7 × 29*: ,								𝐸𝐵𝑅 = −(𝑆𝑁𝑅 + 	1.76) 6.02⁄       (14) 

 

𝑆𝑁𝑅 = 20	log); 𝑞;.=>rms(𝑑) (max𝑑 −min𝑑)⁄       (15) 

 

ℒ(𝐷|	𝜃, 𝜑, 	𝜏)	 = 𝑘	exp	(−𝑁	𝐾𝐿B𝜋,F|𝜋)C        (16) 

  

  

 


