
 
Modeling mammalian metabolism using novel stable isotopic techniques 

 

By 
 

Mohsin Rahim 
 
 

Dissertation  

Submitted to the Faculty of the 

Graduate School of Vanderbilt University  

in partial fulfillment of the requirements  

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Chemical and Biomolecular Engineering 

August 31, 2021  

Nashville, Tennessee 

 
 

Approved: 
 

Jamey D. Young, Ph.D. 

John T. Wilson, Ph.D. 

Ethan S. Lippmann, Ph.D. 

Richard M. O’Brien, Ph.D.



ii 

 

 

 

 

 

 

DEDICATION 

 

 

 

To my mother, for all the sacrifices she made to get me here.  

  



iii 

 

ACKNOWLEDGEMENTS 

My last six years at Vanderbilt have allowed me to grow as a scientist and a person, and I owe this success 

to the support of many people. First and foremost, I would like to thank my advisor, Jamey Young, 

for his incredible mentorship, support, and encouragement in helping me develop as a scientist. I 

came into his lab with basic biology skills and almost no laboratory experience. Over these six 

years, he has challenged me to think critically and encouraged me to venture outside of my comfort 

zone, learning more about not only mathematical modeling but also mammalian physiology. I am 

also truly grateful for his financial support, for having my back, and for his colossal patience as I 

struggled during my six months to obtain a simple linear calibration curve. Additionally, I would 

like to thank my undergraduate mentors and professors, Farzan Aminian, Joshua Schwartz, and 

Wilson Terrell; thank you for nurturing my scientific curiosity and for encouraging me to apply to 

graduate school. I am also thankful for the guidance of my dissertation committee members: 

Richard O’Brien, John Wilson and Ethan Lippmann. My first project involved significant 

collaboration with Richard and Karin Bosma at the O’Brien lab, and I am very grateful for their 

patience and support as I learned so much while working on that specific project.  

The Young lab will forever have a special place in my heart for me, thanks to all its brilliant members that 

I got to interact with, learn from and had the pleasure of teaching. It really has been incredible working and 

hanging out with lab mates such as Sarah Sacco, Ian Cheah, Piyoosh Babele, Bo Wang, Baltazar Zuniga, 

Javier Gomez, Rachel Moen, and Tomasz Bednarski; from summer outings to relay races, it really has been 

quite the ride. I am grateful for Irina Trenary for all her help and patience over the years as she taught me 

how to pipette, perform cell culture, and most importantly, for keeping the lab always stocked up, even 

during a pandemic. I would also like to thank my good friend, Amy Zheng for always lending an ear and 



iv 

 

for discussing all things flux analysis and for sharing spicy Vanderbilt gossip. It gives me great comfort 

and ease that I am leaving my projects in the hands of a very competent and inquisitive scientist and friend, 

Deveena Banerjee; given her work ethic, she is destined for great things. And finally, a special thank you 

to my great friend and mentor Clinton Hasenour. I think it would be an understatement to say that he shaped 

my graduate school experience, scientifically and socially. The projects that he set up are the backbone of 

this dissertation and will continue to shape the physiology side of the Young Lab.  

My experience at Vanderbilt would not have been the same without some of the lifelong friends that I have 

made here. Jonah Rosch, I think had we not become friends in our first year of grad school, I doubt I would 

have stayed in the program for longer than a year. Our friendship and time together completely changed 

my graduate school experience, thank you for always being there. Kyle Garland, Allison Bosworth, Katie 

Ozgun, Ella Hoogenboezem, Richard Darcy, Dushyant Barpaga, Michael Marin, and to all my friends who 

I did not mention here, your friendship really made living in Nashville and surviving through graduate 

school an incredible experience and I could not have asked for better friends. Also, I am blessed to have 

two very caring college friends, Hinna Hassan and Kevin Gaughan; thank you for all your encouragement 

and motivation during college and graduate school. Last and most importantly, I would like to thank my 

very special friend, Prarthana Patil. Her unwavering love and support encouraged me to become a better 

scientist and a better person; I truly could not have done this PhD without her by my side.    

I am incredibly grateful to have a very loving and caring family. I am truly thankful for my host parents, 

Barbara and John Greene, without their help and support I never would have even made it through college, 

let alone apply to graduate school. My siblings, Ahsan Rahim and Anum Rahim, thank you for your moral 

support, pep talks and de-stressing family vacations. Finally, and most of all, I would like to thank my 

parents for affording me the opportunities that they themselves did not get. Thank you for all your sacrifices 

and patience. I am eternally grateful for my mother’s love and constant support, for her sacrifices and for 

praying for me at every step of the way.   



v 

 

TABLE OF CONTENTS 
 

DEDICATION .............................................................................................................................................. ii 
ACKNOWLEDGEMENTS ......................................................................................................................... iii 
LIST OF TABLES ........................................................................................................................................ x 

LIST OF FIGURES ..................................................................................................................................... xi 
LIST OF ABBREVIATIONS ..................................................................................................................... xv 

1. INTRODUCTION .................................................................................................................................... 1 

2. BACKGROUND AND LITERATURE REVIEW ................................................................................... 7 

2.1 Mammalian Metabolism ..................................................................................................................... 7 

2.2 Metabolic Flux Analysis ..................................................................................................................... 8 

2.2.1 Experimental Design Considerations for MFA ........................................................................... 8 

2.2.2 Isotopomer measurement techniques ......................................................................................... 10 

2.2.3 Data modeling and analysis of isotope labeling experiments .................................................... 13 

2.3 Applications of Metabolic Flux Analysis in physiology ................................................................... 15 

2.3.1 Liver Metabolism ....................................................................................................................... 16 

2.3.2 Pancreatic Metabolism ............................................................................................................... 18 

2.3.3 Cardiac and skeletal muscle metabolism ................................................................................... 20 

2.3.4 Multi-tissue metabolic flux analysis .......................................................................................... 21 

2.4 Conclusions ....................................................................................................................................... 21 

3. G6PC2 negatively regulates glucose oxidation and insulin secretion in β-cells ..................................... 23 

3.1 Abstract ............................................................................................................................................. 23 

3.2 Introduction ....................................................................................................................................... 24 

3.3 Methods ............................................................................................................................................. 26 

3.3.1 Cell culture ................................................................................................................................. 26 

3.3.2 Generation of G6pc2 knockout (KO) and control βTC3 cells ................................................... 26 

3.3.3 Isotope labelling studies ............................................................................................................. 28 

3.3.4 Extraction of metabolites and GC-MS analyses ........................................................................ 28 

3.3.5 Extracellular uptake and excretion rates .................................................................................... 29 

3.3.6 13C Metabolic flux analysis ........................................................................................................ 29 

3.3.7 Intracellular and media insulin quantification ........................................................................... 30 

3.3.8 Intracellular metabolite quantification and assessment of redox markers ................................. 30 

3.3.9 Glucose cycling .......................................................................................................................... 31 

3.3.10 Measurement of cytoplasmic calcium .......................................................................................... 32 

3.3.11 Gene expression analysis ......................................................................................................... 32 



vi 

 

3.3.12 Statistical analyses ................................................................................................................... 32 

3.4 Results ............................................................................................................................................... 33 

3.4.1 βTC3 cell line is a representative in vitro model to study the effects of G6pc2 on β-cell 
metabolism .......................................................................................................................................... 33 

3.4.2 Generation and validation of βTC3 G6pc2 knockout cells ........................................................ 34 

3.4.3 Assessment of metabolic fluxes reveals increased oxidative metabolism due to loss of G6PC2
 ............................................................................................................................................................ 38 

3.4.4 Knockout of G6pc2 promotes a reduced cytosolic redox potential in βTC3 cells ..................... 41 

3.5 Discussion ......................................................................................................................................... 44 

3.6 Acknowledgements ........................................................................................................................... 50 

3.7 APPENDIX: Supplemental figures and tables .................................................................................. 51 

4. In vivo Estimates of Liver Metabolic Fluxes Assessed by 13C-Propionate and 13C-Lactate are Impacted 
by Tracer Recycling and Equilibrium Assumptions ................................................................................... 63 

4.1 Abstract ............................................................................................................................................. 63 

4.2 Introduction ....................................................................................................................................... 64 

Figure 4.1: Metabolic flux analysis (MFA) determines fluxes through model-based regression of isotope 
labeling measurements. ........................................................................................................................... 66 

4.3 Methods ............................................................................................................................................. 67 

4.3.1 In vivo Procedures in the Mouse ................................................................................................ 67 

4.3.2 Metabolite Extraction, Derivatization, and GC-MS .................................................................. 67 

4.3.3 Metabolic Flux Analysis (MFA) ................................................................................................ 68 

4.3.4 Correction of Liver Oxaloacetate Isotopomers to Account for 13CO2 Recycling ...................... 69 

4.3.5. Calculation of Percent Equilibration in the 4C reactions of the CAC ...................................... 70 

4.3.6. Quantification and Statistical Analysis ..................................................................................... 71 

4.4 Results ............................................................................................................................................... 71 

4.4.1 Secondary Tracer Effects Influence Estimates of Liver Pyruvate Cycling ................................ 71 

4.4.2 Incongruent Hepatic Flux Estimates are Obtained with Base Models of 13C3Lac/2H and 
13C3Prop/2H Tracers ............................................................................................................................ 72 

4.4.3 13C3Lac Infusion without 2H Tracers Enables Rigorous Testing of Base Model Assumptions . 72 

4.4.4 Model Expansion to Account for Extrahepatic Metabolism Significantly Alters Pyruvate Cycle 
and CAC Fluxes .................................................................................................................................. 76 

4.4.5 Expanded Two-Compartment Models Provide Consistent Hepatic Flux Estimates Using 
13C3Prop/2H and 13C3Lac/2H Tracers In Vivo ...................................................................................... 79 

4.5 Discussion ......................................................................................................................................... 82 

4.6 Acknowledgements ........................................................................................................................... 86 

4.7 Appendix: Supplemental figures and tables ...................................................................................... 87 

https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Submission/Rahim%5eJ%20Mohsin-Dissertation-083121.docx#_Toc80038931
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Submission/Rahim%5eJ%20Mohsin-Dissertation-083121.docx#_Toc80038931


vii 

 

5. Multi-tissue 2H/13C flux analysis reveals reciprocal upregulation of renal gluconeogenesis in hepatic 
PEPCK-C knockout mice ......................................................................................................................... 101 

5.1 Abstract ........................................................................................................................................... 101 

5.2 Introduction ..................................................................................................................................... 102 

5.3 Methods ........................................................................................................................................... 103 

5.3.1 In vivo Procedures in the Mouse ............................................................................................. 103 

5.3.2 Gene Expression Analysis ....................................................................................................... 104 

5.3.3 Western Blotting ...................................................................................................................... 105 

5.3.4 Glucagon Measurement ........................................................................................................... 105 

5.3.5 Metabolite Extraction, Derivatization, and GC-MS ................................................................ 105 

5.3.6 2H/13C Metabolic Flux Analysis (MFA) .................................................................................. 106 

5.3.7 Statistical Analysis ................................................................................................................... 107 

5.3.8 Study approval ......................................................................................................................... 107 

5.4 Results ............................................................................................................................................. 108 

5.4.1 Development of a novel liver-kidney multi-compartment model to quantify glucose-producing 
fluxes in vivo ..................................................................................................................................... 108 

5.4.2 Liver PEPCK-C KO mice exhibit significant renal gluconeogenesis compared to WT littermates
 .......................................................................................................................................................... 110 

5.4.3 Results from the dual organ liver-kidney model are consistent with whole-body flux estimates 
and previous NMR-based 2H/13C studies .......................................................................................... 112 

5.5 Discussion ....................................................................................................................................... 116 

5.6 Acknowledgements ......................................................................................................................... 121 

5.7 Appendix: Supplemental figures and tables .................................................................................... 123 

6. Simultaneous in vivo multi-organ fluxomics in obese mice ................................................................. 134 

6.1 Abstract ........................................................................................................................................... 134 

6.2 Introduction ..................................................................................................................................... 135 

6.3 Methods ........................................................................................................................................... 137 

6.3.1 Experimental model and subject details................................................................................... 137 

6.3.2 In vivo procedures in the mouse ............................................................................................... 137 

6.3.3 Metabolite extraction, derivatization, and GC-MS .................................................................. 138 

6.3.4 Multi-tissue metabolic flux analysis (MFA) ............................................................................ 139 

6.3.5 Multi-omics analysis ................................................................................................................ 140 

6.3.6 Gene expression analysis ......................................................................................................... 141 

6.3.7 Quantification of tissue and plasma metabolites and assessment of redox markers ................ 141 

6.3.8 Liver histology, plasma analyses and body composition measurements ................................. 142 

6.3.9 Statistical Analysis ................................................................................................................... 142 



viii 

 

6.4 Results ............................................................................................................................................. 144 

6.4.1 Simultaneous flux assessment of hepatic, cardiac and skeletal muscle reveals organ-specific 
metabolic signatures of obesity ......................................................................................................... 144 

6.4.2 Genetic, metabolite and redox changes during the hepatic response to increasing steatosis and 
fibrosis .............................................................................................................................................. 146 

6.4.3 Myocardial oxidative glucose metabolism is elevated despite an upregulation in fatty acid 
oxidation ........................................................................................................................................... 149 

6.4.4 Reduced skeletal muscle mitochondrial fluxes are associated with dysregulation of multiple 
metabolic pathways ........................................................................................................................... 151 

6.4.5 Multi-omics analysis reveals tissue specific biomarkers for obesity ....................................... 153 

6.5 Discussion ....................................................................................................................................... 156 

6.5.1 Limitations of the study ........................................................................................................... 161 

6.6 Acknowledgements ......................................................................................................................... 162 

6.7 Appendix: Supplemental figures and tables .................................................................................... 163 

7. INCA 2.0: a tool for integrated, dynamic modeling of NMR- and MS-based isotopomer measurements 
and rigorous metabolic flux analysis ........................................................................................................ 176 

7.1 Abstract ........................................................................................................................................... 176 

7.2 Introduction ..................................................................................................................................... 177 

7.3 Methods ........................................................................................................................................... 179 

7.3.1 Animals Care ........................................................................................................................... 179 

7.3.2 Heart perfusions and metabolite extractions ............................................................................ 179 

7.3.3 NMR and GC-MS analysis of plasma glucose ........................................................................ 180 

7.3.4 NMR analysis of cardiac tissue extracts .................................................................................. 181 

7.3.5 Tracer simulation and flux estimation using tcaSIM/tcaCALC ............................................... 181 

7.3.8 EMU modeling of NMR isotopomers in INCA ....................................................................... 182 

7.3.7 Metabolic flux analysis (MFA) ................................................................................................ 183 

7.4 Results ............................................................................................................................................. 184 

7.4.1 INCA 2.0 tracer simulations predict 13C NMR isotopomer ratios consistent with tcaSIM ..... 184 

7.4.2 Regression of 13C NMR isotopomer ratios in INCA 2.0 estimates cardiac fluxes consistent with 
tcaCALC ........................................................................................................................................... 185 

7.4.3 Flux estimation using dynamic 13C NMR datasets improves cardiac flux precision ............... 188 

7.4.4 Integration of MS and NMR datasets improves precision of in vivo hepatic flux estimates ... 190 

7.5 Discussion ....................................................................................................................................... 193 

7.6 Acknowledgements ......................................................................................................................... 196 

7.7 Appendix: Supplemental figures and tables .................................................................................... 197 

8. CONCLUSIONS AND FUTURE WORK ........................................................................................... 210 



ix 

 

8.1 Conclusions ..................................................................................................................................... 210 

8.2 Recommendations for future work.................................................................................................. 212 

LIST OF REFERENCES .......................................................................................................................... 218 

APPENDIX OF DETAILED PROTOCOLS ............................................................................................ 239 

Metabolite extraction from plasma ....................................................................................................... 239 

Metabolite extraction from frozen tissues ............................................................................................. 240 

RNA and protein extraction from cells ................................................................................................. 241 

Di-O-isopropylidene propionate derivatization of glucose ................................................................... 244 

MOX-TBDMS derivatization of metabolite extracts ............................................................................ 246 

Designing TIDE primers and performing TIDE analysis to quantify efficiency for CRISPR/Cas9 
knockout ................................................................................................................................................ 247 

 
  



x 

 

LIST OF TABLES 

CHAPTER 3 

Table 3A.1: Pancreatic β-cell metabolic reaction network for 13C MFA. (Related to Fig. 3.4-3.6 and Table 
3A.2) ........................................................................................................................................................... 60 
Table 3A.2: GC-MS fragment ions of measured metabolites regressed using the metabolic model for MFA. 
(Related to Fig. 3.4-3.6, S3, 3A.5-3A.7 and Table 3A.1) ........................................................................... 62 
 

CHAPTER 4 

Table 4A.1: Base reaction network for 2H/13C MFA. Related to Figures 4.2D, 4.2E and 4A.1. ................ 94 
Table 4A.2: Comparison of selected flux estimates between base and expanded models of 13C/2H studies. 
Related to Figures 4.2 and 4.5, 4A.1 and 4A.7. .......................................................................................... 95 
Table 4A.3: Expanded reaction network for 13C MFA. Related to Figures 4.4, 4A.4 and 4A.6. ............... 97 
Table 4A.4: Expanded reaction network for 2H/13C MFA. Related to Figures 4.5 and 4A.7. .................... 99 
Table 4A.5:Measured GC-MS fragment ions. Related to all Figures ....................................................... 100 
 

CHAPTER 5 

Table 5A.1: Dual organ metabolic reaction network for 2H/13C MFA. .................................................... 128 
Table 5A.2: GC-MS fragment ions of measured metabolites regressed using the metabolic model for MFA.
 .................................................................................................................................................................. 130 
Table 5A.3: Metabolic fluxes in the liver and kidneys of WT and KO mice (Related to Fig. 5.3) .......... 131 
 

CHAPTER 6 

Table 6A.1: Multi-organ metabolic reaction network for 13C MFA. ........................................................ 172 
Table 6A.2: GC-MS fragment ions of measured metabolites regressed using the multi-tissue metabolic 
model. ....................................................................................................................................................... 175 
 

CHAPTER 7 

Table 7A.1: Metabolic parameters used to simulate cardiac metabolism in tcaSIM. All relative fluxes are 
normalized to citrate synthase (=1). .......................................................................................................... 206 
Table 7A.2: Cardiac metabolic reaction network constructed in INCA 2.0 for comparison against tcaSIM 
and tcaCALC. ........................................................................................................................................... 207 
Table 7A.3: Isotopomers simulated by tcaSIM and INCA 2.0. ................................................................ 208 
Table 7A.4: Pool sizes of glycolytic and citric acid cycle metabolites in the heart used for dynamic 
simulations ................................................................................................................................................ 209  

https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712083
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712083
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712084
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712084
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712085
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712087
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712088
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712089


xi 

 

LIST OF FIGURES 

CHAPTER 1 

Figure 1.1: Metabolic model expansion helps reduce isotope-specific differences ...................................... 4 
Figure 1.2: Simultaneous assessment of metabolic fluxes in PEPCK-C knockout mice shows reciprocity 
between the liver and kidneys in maintaining euglycemia. .......................................................................... 5 
 

CHAPTER 3 

Figure 3.1: Validation of βTC3 cell line as a representative model to study metabolic regulation by G6pc2
 .................................................................................................................................................................... 34 
Figure 3.2: Generation of βTC3 G6pc2 knockout and control cell lines using CRISPR-Cas9 .................. 35 
Figure 3.3: Knockout of G6pc2 in βTC3 cells leads to increased GSIS ..................................................... 36 
Figure 3.4: MFA in βTC3 G6pc2 WT and KO cells shows increased absolute flux through glycolytic and 
mitochondrial pathways .............................................................................................................................. 37 
Figure 3.5: Metabolic fluxes relative to net glucose uptake reveal flux rerouting through NADPH producing 
reactions ...................................................................................................................................................... 39 
Figure 3.6: Knockout of G6pc2 promotes a reduced redox potential in βTC3 cells ................................... 43 
Figure 3.7: Schematic illustrating the effect of G6pc2 KO on oxidative metabolism, energetics, and insulin 
secretion of βTC3 cells ............................................................................................................................... 45 
Figure 3A.1 Measurement of glucose uptake and release fluxes in INS-1 832/13 rat insulinoma cells ..... 51 
Figure 3A.2: Cycled abundance in two biological replicates of G6pc2 WT and KO βTC3 single cell clones 
at 5 and 11 mM glucose concentrations ...................................................................................................... 52 
Figure 3A.3: Atom percentage enrichment (APE) in metabolites over time to determine isotopic steady 
state in isotope labelling experiments ......................................................................................................... 53 
Figure 3A.4: Extracellular uptake and excretion rates in G6pc2 WT and KO βTC3 cells ......................... 54 
Figure 3A.5 :Enrichment of glycolytic metabolites in G6pc2 WT and KO βTC3 cells labeled with [1,2-
13C2]glucose ................................................................................................................................................ 55 
Figure 3A.6: Enrichment of CAC metabolites in G6pc2 WT and KO βTC3 cells labeled with 2 mM [U-
13C5]glutamine ............................................................................................................................................. 56 
Figure 3A.7: Metabolic fluxes relative to net glucose uptake in G6pc2 WT and KO βTC3 cells .............. 57 
Figure 3A.8:Intracellular metabolite abundance in G6pc2 WT and KO βTC3 cells labeled with 2 mM [U-
13C5]glutamine ............................................................................................................................................. 58 
Figure 3A.9: Enrichment patterns in glycolytic metabolites after incubation with 2 mM [U-13C5]glutamine
 .................................................................................................................................................................... 59 
 

CHAPTER 4 

Figure 4.1: Metabolic flux analysis (MFA) determines fluxes through model-based regression of isotope 
labeling measurements. ............................................................................................................................... 66 

https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712242
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712242
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712243
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712244
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712245
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712245
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712246
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712246
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712247
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712248
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712248
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712113
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712114
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712114
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712115
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712115
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712116
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712117
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712117
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712118
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712118
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712119
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712120
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712120
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712121
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712121
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712267
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712267


xii 

 

Figure 4.2: Base model shows evidence of secondary tracer effects and provides different estimates of 
hepatic fluxes for 13C3Lac/2H and 13C3Prop/2H tracers ............................................................................... 73 
Figure 4.3:Testing the assumptions of secondary tracer effects and fumarate/oxaloacetate equilibration in 
13C3Lac infusion study ................................................................................................................................ 74 
Figure 4.4: Expansion of base model in mice infused with 13C3Lac only ................................................... 78 
Figure 4.5: Comparison of 13C3Lac/2H and 13C3Prop/2H isotopes for hepatic flux estimation using expanded 
models of metabolism ................................................................................................................................. 81 
Figure 4A.1: Regression of base model to specific measurement sets. Related to Figures 4.2, 4A.2, and 
Table 4A.1................................................................................................................................................... 87 
Figure 4A.2: Confidence interval widths in dual tracer models. Related to Figures 4.2 and 4.5 ............... 88 
Figure 4A.3: Mass isotopomer measurements for plasma and liver metabolites. Related to Figures 3, 4, S4, 
S5, S6, and Tables S3 and S5. .................................................................................................................... 89 
Figure 4A.4: Expansion of models in mice infused with 13C3Lac. Related to Figures 4, S3, S5 and Tables 
S3 and S5 .................................................................................................................................................... 90 
Figure 4A.5: Confidence interval widths in 13C3Lac studies. Related to Figures 4.4, 4A.4 and 4A.6........ 91 
Figure 4A. 6: Testing the assumption of low VPDH.L flux during fasting with 13C3Lac. Related to Figure 
4.4B, 4A.3, 4A.5, and Tables 4A.3 and 4A.5 ............................................................................................. 92 
Figure 4A.7: Comparison of 13C3Lac/2H and 13C3Prop/2H isotopes for hepatic flux estimates using expanded 
models of metabolism. Related to Figures 4.5, 4A.2, and Tables 4A.2 and 4A.4 ...................................... 93 
 

CHAPTER 5 

Figure 5.1. Mass isotopomer distributions (MIDs) of liver, kidney, and plasma metabolites. ................. 109 
Figure 5.2. Liver-kidney multi-compartment model enables quantification of tissue-specific fluxes using 
2H/13C metabolic flux analysis (MFA). ..................................................................................................... 111 
Figure 5.3: Liver PEPCK-C KO mice exhibit significant renal gluconeogenesis compared to WT 
littermates. ................................................................................................................................................. 113 
Figure 5.4: Comparison of flux estimates between the dual-organ model and a previously developed single-
compartment model. ................................................................................................................................. 115 
Figure 5.5: Metabolic pathways affected by knockout of hepatic PEPCK-C. .......................................... 116 
Figure 5A.1: Measured and predicted fractional enrichments of liver metabolites for WT and KO mice.
 .................................................................................................................................................................. 123 
Figure 5A.2: Measured and predicted fractional enrichments of kidney metabolites for WT and KO mice.
 .................................................................................................................................................................. 124 
Figure 5A.3: Measured and predicted fractional enrichments of plasma glucose for WT and KO mice. 125 
Figure 5A.4: Mean hepatic and renal fluxes with 95% confidence intervals represented as error bars. .. 126 
Figure 5A.5: Protein expression of Pck1 (PEPCK-C) and Pck2 (PEPCK-M) in the liver and kidney. .... 127 
 

CHAPTER 6 

Figure 6.1: Hepatic, cardiac and skeletal muscle fluxes reveal organ specific metabolic signatures of obesity
 .................................................................................................................................................................. 143 

https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712268
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712268
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712269
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712269
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712270
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712271
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712271
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712274
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712274
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712275
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712276
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712276
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712277
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712277
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712278
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712280
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712280
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712281
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712282
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712282
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712283
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712283
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712284
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712284
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712289
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712289
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712290
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712290
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712291
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712292
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712293
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712295
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712295


xiii 

 

Figure 6.2: Genetic, metabolite and redox changes support increased hepatic flux measured in obesogenic 
mice ........................................................................................................................................................... 148 
Figure 6.3: Myocardial oxidative glucose metabolism is elevated despite an upregulation in fatty acid 
oxidation under obesity ............................................................................................................................. 150 
Figure 6.4: Obese mice have reduced mitochondrial flux in the skeletal muscle along with dysregulation of 
multiple metabolic pathways .................................................................................................................... 152 
Figure 6.5: Multi-omics analysis reveals tissue specific biomarkers for obesity ...................................... 154 
Figure 6A.1: Hyperphagic mice show phenotypic signatures of obesity along with impaired glucose 
metabolism ................................................................................................................................................ 163 
Figure 6A.2: Hepatic and skeletal muscle fluxes but not cardiac fluxes are affected by hyperphagia ..... 164 
Figure 6A.3: Changes in hepatic genes and metabolite due to obesity ..................................................... 165 
Figure 6A.4: Significantly affected genes in the livers of obese mice. ..................................................... 166 
Figure 6A.5: Genetic and metabolite changes in the cardiac muscle of obese mice ................................ 167 
Figure 6A.6: Genetic and metabolite changes in the gastrocnemius muscle of obese mice ..................... 168 
Figure 6A.7: Genetic and metabolite changes in the vastus muscle of obese mice .................................. 169 
Figure 6A.8: Supervised and unsupervised multivariate analysis confirms the robustness of tissue specific 
biomarkers identified using sPLS-DA analysis ........................................................................................ 170 
Figure 6A.9: Multi-omics analysis reveals gastrocnemius specific biomarkers for obesity ..................... 171 
 

CHAPTER 7 

Figure 7.1 Simulation of 13C NMR isotopomer ratios using tcaSIM and INCA 2.0 ................................ 186 
Figure 7.2: Regression of cardiac fluxes using glutamate isotopomers in tcaCALC and INCA 2.0 shows 
good agreement when fitting data from [1,6-13C2]glucose and [U-13C]LCFA tracers .............................. 187 
Figure 7.3: INST-MFA of dynamic 13C NMR measurements provides more precise estimation of cardiac 
fluxes ......................................................................................................................................................... 189 
Figure 7.4: Combining NMR and GC-MS measurements in INCA 2.0 improves precision of in vivo hepatic 
flux estimates ............................................................................................................................................ 192 
Figure 7A.1: Comparison of simulated NMR isotopomers using tcaSIM and INCA 2.0 ........................ 197 
Figure 7A.2: Comparison of measured glutamate isotopomers against those predicted by tcaCALC and 
INCA 2.0 ................................................................................................................................................... 198 
Figure 7A.3: Dynamic and steady-state 13C NMR glutamate isotopomer ratios ...................................... 199 
Figure 7A.4: Dynamic and steady-state 13C NMR aspartate isotopomer ratios ........................................ 200 
Figure 7A.5: Dynamic and steady-state NMR alanine Isotopomers ......................................................... 201 
Figure 7A.6: Formation of glutamate, aspartate and alanine isotopomers over time in the heart when [1-
13C]acetate is administered as a tracer. .................................................................................................... 202 
Figure 7A.7: Formation of glutamate, aspartate and alanine isotopomers over time in the heart when [2-
13C]acetate is administered as a tracer. .................................................................................................... 203 
Figure 7A.8: Formation of glutamate, aspartate and alanine isotopomers over time in the heart when [U-
13C2]acetate is administered as a tracer. .................................................................................................... 204 

https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712296
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712296
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712297
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712297
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712298
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712298
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712299
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712301
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712301
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712302
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712303
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712304
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712305
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712306
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712307
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712308
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712308
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712309
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712310
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712311
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712311
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712312
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712312
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712313
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712313
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712314
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712315
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712315
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712316
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712317
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712318
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712319
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712319
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712320
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712320
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712321
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712321


xiv 

 

Figure 7A.9: Estimation of cardiac fluxes using steady-state versus dynamic NMR isotopomer 
measurements ............................................................................................................................................ 205 

CHAPTER 8 

Figure 8.1: Metabolic effect of G6pc2 KO in primary mice islets ........................................................... 213 
Figure 8.2: Metabolic fluxes in the liver and kidneys of MC4R-/- KO mice ............................................. 217 

 

 

 

  

https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712322
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712322
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712323
https://d.docs.live.net/8f33146c20951b4e/Documents/Vanderbilt/Research/Rahim/Dissertation/Rahim%20-%20Dissertation%20-%20Final%20Draft%20RO'B%20jdy.docx#_Toc79712324


xv 

 

LIST OF ABBREVIATIONS 

2PG 2-phosphoglycerate 
3PG/3PGA 3-phosphoglycerate/3-phosphoglyceric acid 
6PGDH 6-phosphogluconate dehydrogenase  
α-KG α-ketoglutarate  
AcCoA Acetyl CoA 
Ala Alanine 
Asp Aspartate 
AV Arteriovenous 
BCAA Branch chain amino acids 
BPG Bisphosphoglycerate  
CAC Citric Acid Cycle 
CAM Cardiovascular-associated mortality  
Cit Citrate 
CO2 Carbon Dioxide 
CS Citrate synthase 
D Doublet 
DHAP Dihydroxyacetone phosphate 
DiO Di-isopropylidene propionate  
E4P Erythrose 4-phosphate 
EMU Elementary mass unit 
Enol Enolase 
ER Endoplasmic reticulum 
ESI Electron spray ionization 
ETA Extracellular Time-Course Analysis  
F16BP Fructose 1,6-bisphosphate 
F6P Fructose-6-phosphate 
FACS fluorescence activated cell sorting  
FBG Fasting blood glucose 
FFA Free fatty acid 
FH Fumarate Hydratase 
FPI Fasting plasma insulin 
Fum Fumarate 
G3P Glycerol-3-phosphate 
G3PP Glycerol-3-phosphate phosphatase 
G6P Glucose-6-phosphate 
G6PC Glucose-6-phosphatase catalytic subunit 



xvi 

 

G6PDH Glucose-6-phosphate dehydrogenase  
GAP Glucose-6-phosphatase catalytic subunit 
GC Gas Chromatography 
GCGR Glucagon receptor  
GK Glucokinase 
Gln Glutamine 
Glu Glutamate 
GRX1 Glutaredoxin 
GSH Glutathione  
GSIS Glucose stimulated insulin secretion 
GSSG Glutathione disulfide  
GWAS Genome-wide association studies  
H&E Hematoxylin and eosin  
HTS home-built superconducting 
IDDM Insulin dependent diabetes mellitus  
IDH Isocitrate dehydrogenase 
IGRP Islet-specific glucose-6-phosphatase catalytic subunit-related protein  
ILE Isotope labelling experiment 
INCA Isotopomer Network Compartmental Analysis  
INST-MFA isotopically nonstationary MFA 
KO Knockout 
KRHB Krebs-Ringer HEPES buffer  
Lac Lactate 
LC Liquid Chromatography 
LDH Lactate dehydrogenase 
MAG Monoacetone glucose 
Mal Malate 
MC4R Glycerol-4-Phosphate 
MDH Malate dehydrogenase 
ME Malic enzyme 
MFA Metabolic flux analysis 
MID mass isotopomer distribution 
MIDA Mass isotopomer distribution analysis 
MMPC Mouse Metabolic Phenotyping Center  
Mox-TBDMS Methyloxime tert-butyldimethylsilyl  
MRS Magnetic resonance spectroscopy 
MS Mass spectrometry 
NADH Reduced nicotinamide adenine dinucleotide  
NADPH Reduced nicotinamide adenine dinucleotide phosphate 



xvii 

 

NAFLD Non-alcoholic fatty liver disease 
NASH Non-alcoholic steatohepatitis 
NIDDM Non-insulin dependent diabetes mellitus  
NMR Nuclear magnetic resonance 
Oac Oxaloacetate 
PC Pyruvate carboxylase 
PCA Perchloric acid 
PCK/PEPCK Glycerol-C-Phosphate 
PDH Pyruvate dehydrogenase 
PEP Phosphoenolpyruvate 
PEPCK-C Cytosolic phosphoenolpyruvate carboxykinase 
PEPCK-M Mitochondrial phosphoenolpyruvate carboxykinase 
PINTA Positional isotopomer NMR tracer analysis  
PK Pyruvate kinase 
PPP Pentose phosphate pathway 
PSP Phosphoserine phosphatase 
PYGL Liver glycogen Phosphorylase 
PYGM Muscle glycogen Phosphorylase 
Pyr Pyruvate 
Q Quartet 
S7P Sedoheptulose-7-phosphate 
SCS Succinyl coenzyme A synthetase 
SEM Standard error of the mean  
SENP1 Sentrin/SUMO-specific protease 1  
Ser Serine 
SERCA sarco-endoplasmic reticulum calcium ATPase  
sPLS-DA Sparse partial least-squares discriminate analysis  
SSR Sum of squared residuals 
Suc Succinate 
T2D Glycerol-2-Phosphate 
TCA Tricarboxylic acid 
TIDE Tracking of Indels by DEcomposition  
ToF Time of flight 
TPI Triosephosphate isomerase 
WD Western diet 
WT Wild type 
   



1 

 

1. INTRODUCTION 

The overall theme of this dissertation is the development of organ specific metabolic models and application 

of stable isotope based metabolic flux analysis (MFA) to uncover the molecular mechanisms and metabolic 

regulation in animal and human physiology. Over the past several decades, biochemists have been 

successful in describing the general network of reactions that comprise cell metabolism. While the basic 

architecture of central carbon metabolism is known, the regulation of these pathways in physiological and 

pathological conditions complicates identification of the enzymes most amenable to therapeutic 

intervention [1]. Despite advancement in molecular biology techniques, metabolism is often considered at 

the level of individual reactions where most studies examine changes in enzyme expression or relative 

changes in metabolite levels to interrogate metabolism [2], [3]. While this offers some insight into the 

metabolic phenotype of the system, metabolic flux is better characterized when the flow of multiple 

metabolites through metabolic networks is studied simultaneously [4]. The combination of these techniques 

with the use of isotope-labeled tracers enables quantification of dynamic pathway operation inside living 

cells and tissues using metabolic flux analysis [4], [5]. The majority of this dissertation focuses on 

constructing metabolic modeling strategies and applying MFA to characterize and understand the metabolic 

regulation in overnutritive states such as hyperglycemia and obesity. Furthermore, I provide examples on 

integrating measurements from two analytical platforms, mass spectrometry and nuclear magnetic 

resonance spectroscopy, in the flux analysis software tool INCA to assess cardiac and hepatic fluxes.  

Worldwide obesity has tripled since 1975, and in 2016, 1.9 billion adults were overweight and 650 million 

obese. Among these obese individuals, more than 422 million had diabetes [6], [7]. Obesity is linked with 

non-alcoholic fatty liver disease (NAFLD) and is strongly associated with type 2 diabetes mellitus and 

cardiovascular diseases [8]–[10]. Despite important advances, there is a critical knowledge gap in 

accurately modelling the progression and regulation of these metabolic diseases in a physiologically 

relevant state. The research shown in this dissertation focuses on the development of novel metabolic flux 
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model and provides four physiological applications of these techniques. First, it provides an in-depth 

understanding of the metabolic effects of the G6pc2 enzyme and hyperglycemia on glucose oxidation and 

insulin secretion in β-cells. Second, it examines the impact of Cori cycling and secondary tracer effects on 

mathematically modeling hepatic and extrahepatic fluxes in vivo. Third, I provide a dual-organ metabolic 

model to simultaneously assess hepatic and renal fluxes. Lastly, the dual organ model is further expanded 

to understand the effects of increasing adiposity on the skeletal and cardiac muscle and their communication 

with the liver in vivo. The research shown here is significant because it provides novel metabolic models to 

understand glucose-stimulated insulin secretion, non-alcoholic fatty liver disease and cardiometabolic 

disorders; metabolic conditions that are signatures of type 2 diabetes, obesity and cardiovascular disease. 

Thus, the outcomes of this research will not only increase our fundamental understanding of the metabolic 

syndrome but will also have broad positive impact on the field of diabetes, obesity and cardiovascular 

disease.  

This dissertation is divided into the following chapters:  

Chapter 2 reviews previous studies that detail the development and advancements in experimental, 

analytical and computation tools that enable flux characterization. I then review the applications of 

these technologies in assessing hepatic, pancreatic, cardiac, and skeletal muscle metabolism.   

Chapter 3 assesses the metabolic effects of G6pc2 on glycolytic and mitochondrial fluxes under 

euglycemic and hyperglycemic conditions in pancreatic cell lines. CRISPR/Cas9 gene editing and 

metabolic flux analysis were used to study the metabolism of βTC3 cells, a murine pancreatic β-cell line, 

and examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. I found that deletion of 

G6pc2 led to substantial elevations in net glucokinase and citrate synthase fluxes. Intracellular insulin 

content and GSIS were enhanced by up to ~2 fold along with increased cytosolic redox potential and 

reductive carboxylation flux. Importantly, normalization of fluxes to the net glucose uptake rate showed 
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increased flux through a couple of NADPH producing pathways in the CAC, independent of elevated 

glycolytic flux. These results suggest that G6PC2 also regulates CAC pathways, separate from its 

modulation of glycolysis. These results demonstrate that G6pc2 regulates GSIS by modulating not only 

glycolysis but also citric acid cycle (CAC) activity in β-cells.  

Chapter 4 tests the validity of key assumptions used to model stable isotope labeling of liver metabolism 

in vivo. I examined an important controversy surrounding the estimates of liver CAC and gluconeogenesis 

fluxes using a flexible modeling platform that enables rigorous testing of standard assumptions. The results 

show that liver pyruvate cycling fluxes are incongruent between different 13C tracers in models with 

conventional assumptions. When models are expanded to include more labeling measurements and fewer 

constraining assumptions, however, liver pyruvate cycling is significant, and inconsistencies in hepatic flux 

estimates using [13C3]lactate and [13C3]propionate isotopes emanate, in part, from peripheral tracer recycling 

and incomplete isotope equilibration within the citric acid cycle (Fig. 1.1). Furthermore, this study paves 

the way for conducting in vivo isotope labeling studies and analyzing hepatic and extrahepatic contributions 

simultaneously. 
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Figure 1.1: Metabolic model expansion helps reduce isotope-specific differences  

Chapter 5 details the development and application of a novel stable isotope approach to simultaneously 

quantify hepatic and renal gluconeogenic and oxidative metabolic fluxes in vivo. Hepatic gluconeogenesis 

from phosphoenolpyruvate was disrupted via liver-specific knockout of cytosolic PEPCK (KO). Hepatic 

and renal fluxes were assessed by integrating the isotopic enrichment of plasma and tissue metabolites from 

mice infused with 2H/13C isotopes in a multi-compartment metabolic model. Hepatic gluconeogenesis and 

glucose production were reduced in KO mice, yet whole-body glucose production and arterial glucose were 

unaffected. Glucose homeostasis was maintained by a compensatory rise in renal glucose production and 

gluconeogenesis. Renal oxidative metabolic fluxes of KO mice increased to sustain the energetic and 

metabolic demands of elevated gluconeogenesis (Fig 1.2). These results show the reciprocity of the liver 

and kidney in maintaining glucose homeostasis by regulating gluconeogenic flux through PEPCK-C. This 
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is the first study to simultaneously assess the metabolic fluxes in multiple organs from a single mouse in 

vivo.  

 
Figure 1.2: Simultaneous assessment of metabolic fluxes in PEPCK-C knockout mice shows 
reciprocity between the liver and kidneys in maintaining euglycemia.  

Chapter 6 describes the development of an MFA-based approach to simultaneously quantify metabolic 

fluxes in the liver, heart, and skeletal muscle in a single mouse in vivo. This method was applied to several 

cohorts of mice to examine the nature of metabolic dysfunction in obese animals. Diet-induced obesity 

caused an increase in gluconeogenesis and endogenous glucose production from the liver and was 

accompanied by elevations in glycolytic and mitochondrial cardiac fluxes, whereas CAC activity in the 

skeletal muscle was significantly reduced. These results challenge the fuel selection hypothesis proposed 

by the Randle cycle. The metabolic model devised in this study will have significant applications in better 

characterizing non-communicable diseases, (patho)physiology, and drug metabolism. 

Chapter 7 demonstrates the ability of INCA 2.0, an updated version of our in-house MFA software 

package, to simulate and regress mass spectrometry (MS) and nuclear magnetic resonance (NMR) based 

isotopomer measurements to assess metabolic fluxes. Using physiologically relevant cardiac and hepatic 

metabolic models, I tested and validated the capabilities of INCA 2.0. The results show that INCA 2.0 can 

simulate and regress steady-state and dynamic NMR measurements to precisely estimate cardiac fluxes. 
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Furthermore, the combination of 13C NMR and MS datasets improved the precision of estimated fluxes. 

Overall, the ability to regress fluxes using both measurement modalities in the same mathematical model 

is expected to aid in the design of more sophisticated isotope labelling studies and allow for significant 

advancements in the fields of metabolic engineering, cell culture, and mammalian physiology. 

Chapter 8 concludes the dissertation with a summary of the main findings and presents ideas for the 

possible extension of these projects.  
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2. BACKGROUND AND LITERATURE REVIEW 

Some sections are taken from Current Opinion in Biotechnology (2021). 71:1-8. 

2.1 Mammalian Metabolism 

In mammalian cells, energy metabolism can be divided into two types of pathways: catabolic pathways and 

anabolic pathways [11]. Catabolism involves metabolic processes that break down molecules to obtain 

energy and nutrients, whereas anabolism involves the synthesis of complex molecules for cell growth, 

repair, signaling, and storage of energy [12]. Some of the fundamental catabolic pathways are glycolysis, 

glycogenolysis, TCA cycle, β-oxidation and proteolysis where energy sources such as sugar, fatty acid and 

proteins are broken down to produce energy in the form of ATP or reduced NAD(P)H co-factors. Anabolic 

pathways such as gluconeogenesis, glycogenesis, lipogenesis, and amino acid synthesis are activated to 

produce energy storage molecules such as glycogen and triglycerides when the body is in a state of positive 

energy balance [12]. However, even under negative energy balance, anabolic pathways are active in specific 

organs to generate fuels for other tissues. For example, under conditions of fasting or starvation, the liver 

synthesizes glucose and ketone bodies via anabolic processes such as gluconeogenesis and ketogenesis, to 

be consumed by the heart, brain, and muscle [13]. Therefore, mammalian metabolism involves constant 

crosstalk between organs and tissues that have varying fuel needs and consumption rates.  

Although the fundamental metabolic currency remains the same across cell types, the metabolic 

requirements of cells are dictated by their tissue-specific functions and environment. For example, T-

lymphocytes reprogram their metabolic pathways from reliance on β-oxidation and the CAC to using 

glycolytic, pentose phosphate, and glutaminolytic pathways to proliferate upon stimulation of an immune 

response [14]. In contrast, differentiated cardiomyocytes do not proliferate and rely more heavily on 

oxidative phosphorylation to produce ATP and fulfill their intensive energy demands [15]. In many cell 

types, metabolism varies over time and switches upon the energy needs of the cell. CHO cells for example 



8 

 

switch from lactate production to lactate consumption and upregulate their pentose pathway and CAC flux 

when secreting large amounts of recombinant antibody during the production phase of industrial 

bioprocesses [16]. Therefore, the physiology of each tissue requires different ratios of metabolic substrates 

and thus cannot be modelled using the same metabolic networks and constraints.  

2.2 Metabolic Flux Analysis 

While biochemical analysis can be used to study enzyme expression and metabolite concentration, these 

measurements rely upon the assumption that functional outputs of metabolism are directly related to 

intermediate concentrations [2], [3].  Metabolic flux analysis circumvents these drawbacks and can be used 

to decipher the contribution of different pathways to supply metabolic demands for energy and molecular 

building blocks. To perform MFA, cells are fed an isotopically labeled substrate. Cell metabolism is then 

quenched and intracellular metabolites are extracted [17], [18]. NMR spectroscopy or MS approaches are 

then used to measure the incorporation of the labeled substrate atoms into downstream metabolites. The 

relative abundance of various labeling patterns in the metabolites depends directly on the relative fluxes in 

cellular metabolism [19]. Using computational methods, MFA combines intracellular labeling data with 

extracellular uptake and secretion fluxes to generate flux maps to describe changes in metabolism across 

different experimental conditions. Systemic flux maps therefore provide functional information on the 

dynamic metabolic state of cells and their response to various perturbations [20]. Several experimental, 

analytical, and computational considerations need to be taken into account prior to performing metabolic 

flux analysis in mammalian systems.  

2.2.1 Experimental Design Considerations for MFA 

Proper selection of metabolic tracer(s) is critical for quantifying specific pathway activities, since it 

ultimately determines the quality (i.e., precision and accuracy) of flux results that can be obtained [21]. 

Single tracer experiments, while simpler to analyze and interpret, seldom provide sufficient information to 
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resolve fluxes through multiple overlapping pathways. Thus, the choice of isotopic tracer varies depending 

upon the pathway being investigated. Generally, 13C glucose tracers are best for determining fluxes in upper 

metabolism (e.g., glycolysis and PPP), while 13C glutamine tracers typically produce better resolution of 

fluxes in lower parts of metabolism (e.g., TCA cycle and reductive carboxylation) [22], [23]. Most 13C 

MFA models for in vitro studies include all major metabolic pathways of central carbon metabolism such 

as glycolysis, pentose phosphate pathway (PPP), TCA cycle, as well as any relevant reactions that connect 

these pathways [24]. To quantify these pathways in vitro, typically parallel labeling experiments with 

different tracers are performed and all the data are integrated into a single comprehensive flux model [16], 

[22]. For example, parallel labeling experiments with [1,2-13C2]glucose and [U-13C5]glutamine have proven 

to be particularly informative and complementary [16], [22]. When conducting parallel labeling 

experiments, it is important that the only difference between the experiments is the choice of labeled 

substrate, i.e., the concentrations of all nutrients in the media must be the same for all experiments [25]. In 

addition to quantifying intracellular metabolic fluxes, it is vital to also measure extracellular fluxes which 

represent the crosstalk between the cells and their environment. Typically, extracellular fluxes are measured 

by dividing the rate of change in metabolite concentration over time by the integrated viable cell count [26]. 

Specialized software packages such as ETA can aid in the calculation of these external rates [27]. After 

conducting labelling experiments, cells are extracted using organic solvents and metabolite pool sizes and 

isotopic enrichments are analyzed using analytical platforms such as a GC-MS.  

Quantification of in vivo fluxes is much more challenging, mainly due to the requirement of sophisticated 

mathematical models and computational tools to deconvolute the complicated enrichment patterns that 

emerge as a result of multiple simultaneous tracers. Additionally, assessment of extracellular exchange rates 

and determination of the contributions from different cell/tissue types from in vivo studies remains a major 

challenge. In the past, due to a lack of computational techniques, initial in vivo metabolic studies used a 

single tracer to accurately delineate a particular flux, however, this approach was rather inefficient and 
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provided minimal information [28]. By leveraging advancements in the field of optimal experiment design 

[24], modern in vivo MFA studies typically infuse a cocktail of different isotope tracers that have been 

tailored to the pathways of interest. Administration of multiple stable isotopes to rodents has enabled the 

concurrent assessment of glycolytic/gluconeogenic, TCA cycle, and anaplerotic fluxes in liver and cardiac 

tissue [29], [30], thus minimizing the number of animals required for comprehensive studies of in vivo 

metabolism. Similar approaches have been adapted to human subjects, where combined administration of 

2H and 13C tracers has been used to quantify glucose turnover, hepatic TCA cycle activity and ketone 

turnover during starvation [31] or obesity [32]. However, the high cost, administrative burden, and 

minimally invasive sampling required for human subjects research have meanwhile prompted innovation 

and miniaturization of surgical procedures required for in vivo metabolic tracer studies in rodents. For 

example, implantation of dual arterial-venous catheters has enabled simultaneous tracer infusion and 

plasma sampling in conscious, unrestrained mice [33]. Such techniques are critically important for in vivo 

studies of metabolism, since physiological alterations caused by anesthesia or stress at the time of sample 

collection can lead to unacceptable variability that obscures the experimental effects under investigation.  

2.2.2 Isotopomer measurement techniques  

Metabolic flux analysis can help distinguish flux contributions from different metabolic pathways based on 

specific labeling patterns, detectable by MS or NMR spectroscopy methods. MS platforms such as GC-MS, 

LC-MS and tandem MS/MS systems have significantly higher sensitivity (~pmol to nmol range) and can 

precisely determine the total unenriched and enriched fractions of a metabolite pool [34]. However, MS-

based systems do not directly provide positional enrichment information unless the metabolite is subjected 

to extensive chemical degradation or source/collision-induced fragmentation. Instead, MS systems output 

the relative abundance of chemical species that differ in the number of heavy atoms incorporated (i.e., M+0, 

M+1, M+2, etc.), which can then be used to determine the mass isotopomer distribution (MID) of a given 

metabolite [35].  
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MS-based platforms can detect low-abundance metabolites with much higher sensitivity compared to NMR 

instruments and are thus becoming increasingly popular for in vivo flux characterization, especially for 

mouse studies and other situations where sample volumes are limited [29]. Mass spectrometry-based 

metabolite enrichment analysis gained traction in the early to mid-90s, when GC–MS based isotopomer 

analysis was used for quantification of metabolic fluxes in perfused rat livers and hearts by measuring the 

labeling patterns of different intermediary metabolites [35]–[37]. Due to its high sensitivity, MS based 

methods quickly gained popularity, with studies quantifying anaplerosis in rat hearts for pyruvate, lactate, 

succinate, citrate, fumarate, and malate [37]. Additionally, increased stability of metabolites with suitable 

derivatization methods enabled the quantification of compounds ranging from pmol to nmol within a 

particular sample [38]. However, due to limited instrument sensitivity to detect low isotope enrichments 

(<0.1%), mass spectrometry could only resolve isotopomer pools to a minor extent [39]. Due to a higher 

noise threshold, only unlabeled versus labeled fractions of lactate, alanine, glutamine, and glutamate were 

determined by Katz et al. [40].  

Recently, gas chromatography-mass spectrometry (GC-MS), widely used for measuring semi-volatile 

compounds such as fatty acids and organic acids, has experienced a renaissance due to improvements in 

sample derivatization techniques [41] and addition of tandem MS (MS/MS) [42] and time of flight (ToF) 

capabilities [43]. The advent of electrospray ionization (ESI) has concurrently revolutionized the use of 

liquid chromatography (LC)-MS and LC-MS/MS in biomedical applications, chiefly due to its versatility 

and limited sample preparation requirements [44], [45]. The ability of high-resolution MS to distinguish 

between 2H-labeled and 13C-labelled metabolites based on their mass defects allows contributions from 

multiple tracers to be directly quantified in the same sample [46]. Fragmentation of parent metabolites by 

MS/MS instruments can provide additional information about the position of labeled atoms in isotopically 

enriched metabolites [47]. Therefore, high-resolution MS/MS analysis combines some of the most 

attractive features of NMR—extensive positional labeling information and ability to distinguish different 
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isotopic nuclei—with the high sensitivity that is achievable by MS instruments. Such enhancements enable 

accurate measurement of metabolite abundance and isotope enrichment from plasma and tissues samples 

collected from in vivo tracer experiments [48], [49].  

NMR spectroscopy has a different data output from GC- or LC-MS systems, one that provide distinct 

positional information pertaining to metabolite enrichment patterns. For example, 13C NMR provides two 

types of information: (i) relative signal intensity from different 13C-enriched carbon positions in a molecule 

and (ii) the relative intensity of the various multiplets within a resonance signal (due to interaction between 

adjacent 13C nuclei, also known as 13C-13C coupling) [50]. While 13C NMR does not specify the total amount 

of labeled and unlabeled fraction, other modalities such as 1H-[13C] NMR can be used to overcome this 

limitation and quantify the fractional enrichment of 13C atoms bound to hydrogen at specific molecular 

positions [51]. Together, this information can be used to determine the position-specific 13C labelling in a 

measured metabolite, even when the isotopic enrichment is as low as 0.1%. However, 13C NMR 

spectroscopy has two major limitations when applied to measure stable isotope enrichment. First, it does 

not directly determine the unenriched (i.e., M+0) fraction of the metabolite pool. Second, it has limited 

sensitivity to detect low-abundance metabolites, e.g., present at lower than µmol amounts [34]. This 

limitation typically restricts the application of 13C NMR to measurements of highly abundant intracellular 

metabolites, such as glutamate and aspartate.  

Early attempts at isotopomer analysis relied on measurements of a small number of highly abundant 

metabolites (e.g., glucose, lactate, glutamine, alanine) using NMR spectroscopy [52]. Since then, 13C and 

1H NMR have been widely applied for determination of isotope labeling patterns [53]–[57]. 1H–13C COSY 

NMR spectroscopy enables the determination of isotopomers of a compound yielding maximal possible 

information. For example, this technique was used for isotopomer determination of amino acids from 

protein hydrolysates of Escherichia coli [58], [59].  More importantly, NMR’s use in studying cardiac and 

hepatic fluxes gained significant traction in the early 90s. NMR based approaches were preferred for in vivo 
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isotopomer analysis because of their ability to assess position-specific isotope enrichments and directly 

distinguish 2H and 13C nuclei [50], [51], [60]–[64]. However, labeling patterns of intermediary metabolites 

usually occurring at low concentrations were difficult to obtain directly by NMR, which allowed mass 

spectrometry methods to gain popularity in the mid-2000s.  

Recent advancements in NMR based techniques, however, have helped revitalize the technique by reducing 

sample size requirements and expanding measurements to include previously undetectable metabolites. An 

underappreciated aspect of NMR is its ability to accurately quantify low isotope enrichments (e.g., 0.1%) 

that are below the noise threshold of typical MS measurements [65]. This is a major advantage for some in 

vivo studies, especially in human subjects, where cost and safety constraints limit the total amount of tracer 

that can be administered. Overall, the two analytical platforms have extensively, yet independently, been 

used to collet isotopomer data and assess metabolic fluxes in vitro and in vivo. 

2.2.3 Data modeling and analysis of isotope labeling experiments 

Isotope labelling experiments (ILEs) rely on the enzymatic rearrangement of substrate atoms in unique and 

predictable ways. Consequently, the enrichment patterns that emerge in downstream products after tracer 

administration encode detailed information about the activity of upstream metabolic pathways and their 

relative fluxes. Under certain conditions, it is possible to infer information about the pathway activity or 

metabolite turnover by qualitatively assessing the isotope enrichment data. However, due to the intricate 

rearrangement of substrate atoms through intersecting metabolic pathways, mathematical models are often 

necessary to determine metabolic fluxes from isotope labeling data. This is especially true when analyzing 

complex datasets involving multiple tracers [65], integrating measurements of numerous metabolites and 

their adducts [66] or derivatives [29], and accounting for the added complexity of reversible isotope 

exchange [67] and secondary tracer recycling [48] that inevitably occur during in vivo tracer studies. Under 
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these circumstances, intuitive inspection of the isotope labeling data can often lead to erroneous or 

incomplete conclusions. 

Metabolic models used for MFA are specific to the system under investigation. Each reaction in the model 

is associated with an annotated enzyme or transport process, and atom rearrangements are assigned to each 

reaction based on its biochemical mechanism. This information is used to enumerate mass balances and 

isotopomer balances that describe the conservation of atoms within the metabolic network. In some cases, 

these balances can be distilled to closed-form equations that relate isotope enrichment measurements to 

pathway fluxes. While convenient to use, these simplified equations involve implicit assumptions and 

approximations that may not be appropriate or fully validated under the conditions of interest. An 

alternative approach uses least-squares regression to obtain a best-fit flux solution that provides optimal 

agreement between model-predicted and experimentally determined isotopomer measurements. The model 

parameters are iteratively adjusted, and the balance equations are repeatedly solved until the measurement 

residuals are minimized [68].  

Quantification of fluxes using metabolic flux analysis involves solving a non-linear regression problem to 

obtain a set of metabolic fluxes that best reproduces the measured isotope labeling patterns and external 

rates. Over the last decade, many software tools have been developed for performing these 13C-MFA 

calculations, including INCA [69], Metran [70], OpenFLUX2 [71], OpenMebius [72], and WUFlux [73]. 

All of these software packages are based on the EMU framework [20], [74] and use various optimization 

strategies to find the optimal solution by minimizing the sum of squared residuals. After the estimation of 

fluxes, it is vital to ascertain that the goodness-of-fit is satisfactory by evaluating the magnitude of the sum-

of-squared residuals (SSR) value [75]. If the model is adequate, and the experimental data contain only 

random measurement errors, the minimized SSR value is a stochastic variable described by a χ2-distribution. 

The number of degrees of freedom is equal to the number of independent measurements n minus the number 

of fitted parameters p. The acceptable range of SSR values is between χ2
α/2(n−p) and χ2

1-α/2(n−p), where α 
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is a chosen threshold value, typically, α = 0.05 for 95% confidence. If the minimized SSR value is too high, 

i.e., there is significant disagreement between the measured data and the best-fit model predictions, then 

the flux solution must be rejected, and flux analysis assumptions must be re-assessed [26].  

Model-based regression approaches account for the complexities of in vivo stable isotope experiments and 

can rigorously test assumptions used in the calculation of metabolic fluxes. The availability of flexible 

software tools for simulating metabolic tracer experiments [76], extracting isotopic enrichments from 

metabolomics datasets [77], and estimating fluxes from isotopomer measurements [69], [70], [78] now 

make sophisticated MFA workflows increasingly practicable. Comprehensive isotopomer modeling has the 

potential to reconcile apparently divergent results and identify flux estimates that are sensitive to 

methodological differences or, conversely, are robust to a variety of study designs and assumptions [48]. 

The large amount of isotopomer data obtainable from each sample results in a highly overdetermined flux 

solution that can be statistically assessed to detect errors in measurements or model formulation [79]. 

Furthermore, regression approaches can accommodate a broad range of modeling assumptions, isotope 

tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations. As a 

result, models for in vivo MFA can be readily adapted to a broad range of study designs and physiological 

conditions.  

2.3 Applications of Metabolic Flux Analysis in physiology 

Most obesity-associated diseases such as type 2 diabetes and non-alcoholic fatty liver disease are 

characterized by metabolic dysfunction. Yet, even when metabolic changes are not the underlying cause of 

a disease, metabolic dysregulation is closely connected with the progression of many major pathologies 

such as cancer, cardiomyopathy, and neurodegenerative disorders. Therefore, studying altered metabolic 

pathways holds tremendous potential for determining therapeutic targets and diagnostic markers. Over the 

past several decades, there have been continuous efforts to utilize stable-isotope-based flux analysis to 
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assess metabolism in specific tissues, both in vitro and in vivo. Because this dissertation focuses on 

construction of metabolic models pertaining to the liver, pancreas, cardiac and skeletal muscle, the 

following sections summarize the efforts made to characterize metabolism in those particular tissues. 

2.3.1 Liver Metabolism 

The value of MFA has been most evident in the field of hepatology research because the liver is a metabolic 

hub of the body. Using hepatic cell lines and primary hepatocytes, in vitro experiments have helped 

elucidate the effects of hormones, amino acids, and drugs in a highly controlled environment [80]. For 

example, our group has shown that N-acetylcysteine scavenges ROS, phenformin inhibits mitochondrial 

activity and BAPTA chelates intracellular calcium in cultured hepatocytes [81], [82]. While in vitro studies 

are more economical and help elucidate the fundamental molecular mechanisms within a specific cell type, 

they fail to capture the inherent complexity of organ systems that interact with other tissues through 

exchange of metabolites or signaling proteins that control their metabolic state. Therefore, decades of work 

have helped generate methods to assess hepatic metabolism in vivo and are summarized below. 

Prior to the use of MFA, several different approaches were employed to study intermediary hepatic fluxes 

in vivo. Spanning over several decades, invasive techniques such as arteriovenous (AV) measurements were 

used to calculate gluconeogenic and glycogenolytic contributions to glucose production [83]–[85]. To 

minimize surgical requirements and improve reproducibility of data [85], [86], 13C NMR spectroscopy and 

isotope tracer analyses were used to quantify net hepatic glycogenolysis and gluconeogenesis in human 

subjects [87], [88]. A more generalizable version of this technique called mass isotopomer distribution 

analysis (MIDA), which does not require direct measurements of precursor pool enrichment, was used to 

assess hepatic gluconeogenesis [89]–[93]. In the mid-90s, methods using deuterated water (2H2O) gained 

popularity due to the limited technical requirements and cross-species applicability [63], [94], [95]. In this 

approach, the 2H fractional enrichments bound to C2, C5, and C6 carbon positions of the monoacetone 
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glucose (MAG) derivative of plasma glucose were used to calculate the relative hepatic flux contributions 

from gluconeogenesis and glycogenolysis [63], [94]–[98]. Stable or radioactive glucose tracers were co-

administered with 2H2O to quantify absolute rates of gluconeogenesis and glycogenolysis [61].  

By coupling 13C and 2H2O tracers, several studies implemented this methodology to assess hepatic fluxes 

in a variety of hormonal, genetic, and nutritional states [86], [87], [99]–[104]. For example, Wajngot et al. 

used deuterated water and [6,6-2H2]glucose to show that gluconeogenesis contributed more to glucose 

production in diabetic individuals than in control subjects [102]. Furthermore, this coupling of multiple 

isotopic tracers has enabled the investigation of anaplerotic, cataplerotic, and oxidative metabolism in the 

liver [2], [29], [51], [99]–[101], [105]–[108]. To simultaneously quantify hepatic glucose and energy 

producing fluxes, the Burgess group devised an isotopomer analysis method that used the position-specific 

resolution of 2H- and 13C-NMR of plasma glucose to assess the influence of genes, nutritive states, and 

therapeutics on hepatic fluxes in mice [2], [109], [110] and humans [32], [99].  

While the application of metabolic flux analysis in physiology is nascent, the field of quantifying hepatic 

fluxes spans many decades [36], [40], [118]–[120], [62], [111]–[117]. These methods rely upon simplifying 

assumptions, tracer selection and closed-form analytical equations that estimate fluxes benefiting from 

these assumptions [121]. Recently, regression based metabolic flux analysis approaches have gained 

popularity with flexibility in testing modeling assumptions and incorporation of multiple tracers and 

measurement inputs. These studies leverage the GC-MS based fragmentation of plasma glucose to assess 

hepatic gluconeogenic and CAC fluxes in microvolumes of plasma collected from conscious, unrestrained 

mice [29]. These methods are further aided with the development of flexible MFA software, like INCA 

[69], to allow for the introduction of additional reactions, testing of assumptions, and simulation of MIDs 

of intermediary metabolites. Lately, these networks have been used to test the recycling of 13CO2 [29], 

measurement of ketogenesis [122], and cross-validation of NMR datasets with GC-MS-based MIDs [65].  
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2.3.2 Pancreatic Metabolism 

The main function of pancreatic islet β-cells is to synthesize and secrete insulin at appropriate rates to 

control blood glucose within a narrow range. Glucose stimulated insulin secretion (GSIS) is biphasic. While 

the KATP channel-dependent pathway is critical for activating the first phase of GSIS, significant amounts 

of insulin are secreted in the second (KATP independent) phase of insulin secretion, which is regulated by 

glucose metabolism and several fuel secretagogues [123]. Studies using carbon isotope tracing by NMR 

and mass spectrometry techniques have demonstrated that the anaplerotic flux of pyruvate to oxaloacetate 

via pyruvate carboxylase (PC) is strongly responsive to changes in extracellular glucose and GSIS in β- 

cells [124]–[127]. Inhibition of pyruvate carboxylase by phenylacetic acid in the INS-1 cell line and rat 

islets leads to inhibition of GSIS [128]–[131]. Anaplerotic flux is connected with NADPH production via 

malic enzyme (ME) and through a reductive carboxylation pathway recently uncovered in β-cells through 

the application of stable isotope flux methods [132]. NADPH is a key modulator of the amplifying insulin 

pathway because it converts GSSG to GSH, which elicits insulin granule exocytosis via sentrin/SUMO-

specific protease-1 (SENP1) [133], [134].  

 
NADPH production is also thought to be modulated by the pentose monophosphate shunt pathway (PPP), 

which is also considered as a potential regulator of GSIS. The inhibition of the NADPH-generating enzymes 

of the pathway, namely glucose-6-phosphate dehydrogenase (G6PDH) [135] or 6-phosphogluconate 

dehydrogenase (6PGDH) [136], results in impaired GSIS. However, the role of the PPP in regulating GSIS 

via NADPH is debated and is proposed to be connected to nucleotide production [135]–[137]. Future 

studies benefiting from the use of stable isotope metabolic tracing methods may be required to determine 

the pathway’s contribution to NADPH production. Another pathway connected with amplifying GSIS is 

the phosphoenolpyruvate (PEP) cycle. The cycle connects the production of mitochondrial GTP, generated 

by succinyl-CoA synthase (SCS) during glucose stimulation, to its utilization by the mitochondrial isoform 
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of phosphoenolpyruvate carboxykinase (PEPCK-M) [138], [139]. The generation of the very high free 

energy PEP molecule is suggested to allow the β-cell to continue to synthesize ATP as a direct product of 

the pyruvate kinase reaction, even at maximum mitochondrial oxidative phosphorylation potential [57]. 

While metabolic flux studies have revealed an approximate doubling of PEPCK-M flux when comparing 

cells expressing GTP-dependent SCS to those expressing ATP-dependent SCS, no differences in oxidative 

flux of glucose to the TCA cycle through pyruvate dehydrogenase or in anaplerotic flux via PC have been 

found between the two groups of cells [140]. New findings indicate the PEP cycle might be connected with 

the first phase of insulin secretion along with pyruvate kinase [141].  

 
Recently, an islet specific enzyme, G6PC2, has been implicated in regulating fasting blood glucose levels 

and GSIS [142]. Previous work from our group has shown that G6PC2, along with glucokinase (GK), form 

a futile substrate cycle where G6PC2 de-phosphorylates G6P, generated by GK, back into glucose [142], 

[143]. This suggests that G6PC2, in conjunction with GK, may regulate glycolytic flux and consequently 

affect the glucose sensitivity of GSIS [142]. Various observations support this model. Glucose-6-

phosphatase activity [142] and glucose cycling [144] are abolished in G6pc2 knockout (KO) islets and 

G6pc2 KO mice exhibit reduced fasting blood glucose (FBG) with no change in fasting plasma insulin 

(FPI) compared to wild-type (WT) controls as a consequence of a leftward shift in the dose response curve 

for GSIS [142]. G6pc2 KO islets incubated for short durations (<2h) in sub-maximal glucose also show 

higher glycolytic flux and increased GSIS compared to islets isolated from WT littermates [142], [145]. 

These prior results suggest that G6pc2 negatively regulates GSIS by opposing flux through glycolysis, but 

the effect of G6pc2 deletion on other downstream pathways that control insulin release, such as the TCA 

cycle and PPP is unknown. Genetic studies in humans have generated data that indicate that G6PC2 may 

regulate pulsatile insulin secretion [146], [147], which suggests that G6PC2 may regulate aspects of beta 

cell metabolism other than glycolysis. Overall, insulin secretion is intricately regulated via many pathways, 
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and an important area for future studies includes the simultaneous assessment of multiple metabolic 

pathway fluxes to reveal their metabolic control of insulin secretion. 

2.3.3 Cardiac and skeletal muscle metabolism 

Dysregulation in cardiac metabolism is closely associated with heart disease. To quantify the substrate 

preferences in the perfused heart, sophisticated 13C NMR techniques have been developed [50], [148]–

[150]. These methods help assess the relative contributions of pyruvate, fatty acid, and ketone body 

oxidation to AcCoA formation, which is the primary fuel for the heart. Leveraging the platform used for 

estimating hepatic fluxes, initial attempts to quantify cardiac fluxes have relied upon measurements of 

glutamate enrichment in hearts perfused with 13C labelled precursors. Subsequent efforts combined the use 

of GC-MS and NMR datasets and implemented isotopomer analysis to assess cardiac substrate usage. An 

important aspect that is analyzed in cardiac metabolism is the concerted regulation of pyruvate 

dehydrogenase (PDH) and fatty acid oxidation that is required to maintain supplies of AcCoA. In order to 

measure the myocardial PDH flux, hyperpolarized magnetic resonance spectroscopy have enabled the in 

vivo quantification of pyruvate dehydrogenase in the heart [151], [152]. More recently, a rigorous MFA 

based approach was applied to labeling data acquired from a prior study [15] to assess energy metabolism 

in perfused hearts [153]. Overall, these studies show that cardiac metabolism is intricately balanced between 

glucose and fatty acid metabolism, and shifts in substrate usage often occur in various forms of injury to 

the myocardium [154], [155].  

Skeletal muscle is considered to be a major tissue involved in the maintenance of glucose homeostasis 

because its contribution to glucose uptake is ≈75% of the total contribution of peripheral tissues [156], and 

it is the main tissue responsible for insulin-dependent glucose utilization. Using 13C magnetic resonance 

spectroscopy (MRS) and analysis of 13C isotopomers of glutamate, early studies characterizing skeletal 

muscle metabolism focused on determining the primary oxidative substrates [157]. Building on these 
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findings, follow-up studies used 13C NMR to assess anaplerotic fluxes in isolated skeletal muscles [158], 

[159]. Recent studies, using noninvasive MRS, have assessed the substrate oxidation rates of skeletal 

muscles using plasma enrichments in vivo [160]. Furthermore, these studies have shown that offspring of 

type 2 diabetic patients have impaired mitochondrial substrate oxidation in the skeletal muscle [161]. While 

13C/31P NMR techniques have been used to assess mitochondrial energy coupling [162], use of metabolic 

flux analysis to quantify skeletal muscle metabolism has been limited.  

2.3.4 Multi-tissue metabolic flux analysis 

While the work highlighted above focuses on assessing fluxes in a single tissue, recent technological 

advancements have enabled the assessment of circulating fluxes between multiple tissues in vivo. There is 

an increasing motivation to evaluate the major sources of carbon for each tissue. Recent stable isotope 

infusion studies show that circulating lactate is a major carbon shuttle between numerous tissues in the body 

and may serve as the primary fuel for TCA cycle metabolism [163]. Contrastingly, others have shown that 

glucose, not lactate, is the dominant source of oxidative metabolism [164] and glycerol may be a major 

contributor of ‘new’ glucose synthesized during fasting [165]. Furthermore, recent work suggests that 

lactate is produced rapidly from glucose by certain muscle tissues, whereas many other tissues rely heavily 

on stored glycogen rather than glucose to sustain glycolytic metabolism in vivo [166]. Also, evaluation of 

fifteen nutrient tracers on circulating fluxes shows that glucose-lactate and triglyceride-glycerol-fatty acid 

cycles carry most of the carbon around the body [167]. These innovative approaches indicate an emerging 

trend towards assessing metabolic exchanges between multiple tissues and provide an opportunity to 

simultaneously resolve intermediary metabolism within those tissues.  

2.4 Conclusions 

Advancements in experimental, analytical, and computational techniques have enabled the resolution and 

quantification of a wider range of metabolic pathways using MFA. Decades of work in the fields of hepatic, 
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pancreatic and muscle metabolism have furthered our understanding of tissue-specific metabolism. Using 

these technical and physiological advancements, in the remaining chapters of this dissertation I describe 

the development of in vitro and in vivo metabolic models and complementary experimental workflows to 

investigate the regulation of mammalian metabolism using stable isotope-based MFA.  
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3. G6PC2 negatively regulates glucose oxidation and insulin secretion in β-cells 

3.1 Abstract 

Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) 

and cardiovascular-associated mortality. G6PC2, a predominantly islet-specific glucose-6-phosphatase 

catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, has been linked with variations in 

FBG in genome-wide association studies (GWAS). Deletion of G6pc2 in mice leads to lower FBG without 

affecting fasting plasma insulin levels in vivo. At 5 mM glucose G6pc2 knockout (KO) islets exhibit no 

glucose cycling, increased glycolytic flux and enhanced glucose-stimulated insulin secretion (GSIS). 

However, the broader effects of G6pc2 KO on β-cell metabolism and redox regulation are unknown. Here 

we used CRISPR/Cas9 gene editing and metabolic flux analysis in βTC3 cells, a murine pancreatic β-cell 

line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion 

of G6pc2 led to a 67% and 62% increase in glycolytic and citric acid cycle flux at 5 and 11 mM glucose 

concentrations, respectively. Intracellular insulin content and GSIS were enhanced by up to ~2 fold along 

with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative 

to net glucose uptake revealed upregulation in two NADPH producing pathways in the CAC; reductive 

carboxylation and malic enzyme flux were increased by 32% and 67%, respectively. These results 

demonstrate that G6pc2 regulates GSIS by modulating not only glycolysis but also citric acid cycle (CAC) 

activity in β-cells. Furthermore, our results provide support for a new paradigm wherein glucokinase and 

G6PC2 together regulate glycolytic flux and glucose oxidation, and thereby exert control over GSIS. 

Overall, our findings implicate G6PC2 as a novel therapeutic target for enhancing insulin secretion and 

lowering FBG, which would benefit individuals with prediabetes, T2D and obesity.  
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3.2 Introduction 

Glucose-6-phosphatase, a multi-component system located in the endoplasmic reticulum (ER), catalyzes 

the conversion of glucose-6-phosphate (G6P) to glucose [168]. This enzyme system is composed of several 

integral membrane proteins including a G6P transporter, encoded by SLC37A4, which carries the substrate 

from the cytosol to the ER lumen. Once in the ER, G6P is hydrolyzed by a glucose-6-phosphatase catalytic 

subunit (G6PC) to glucose and inorganic phosphate, and these products are subsequently transported to the 

cytosol. Three G6PC isoforms, encoded by G6PC1, G6PC2, and G6PC3, have been identified and are 

selectively expressed in different tissues [145], [168]. G6PC1 is predominantly expressed in the liver and 

kidneys where it catalyzes the terminal step in endogenous glucose production through gluconeogenesis 

and glycogenolysis. G6PC3 is highly expressed in the kidneys, testis, skeletal muscle, and brain [168] 

where it functions to eliminate the noncanonical metabolite, 1,5-anhydroglucitol-6-phosphate [169]. 

G6PC2, also known as the islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP), is 

predominantly expressed in pancreatic islet β-cells [168]. 

Previous work from our group has shown that G6PC2, along with glucokinase (GK), form a futile substrate 

cycle where G6PC2 de-phosphorylates G6P, generated by GK, back into glucose. This suggests that 

G6PC2, in conjunction with GK, may regulate glycolytic flux and consequently affect the glucose 

sensitivity of glucose stimulated insulin secretion (GSIS) [142]. Various observations support this model. 

Glucose-6-phosphatase activity [142] and glucose cycling [144] are abolished in G6pc2 knockout (KO) 

islets and G6pc2 KO mice exhibit reduced fasting blood glucose (FBG) with no change in fasting plasma 

insulin (FPI) compared to wild-type (WT) controls as a consequence of a leftward shift in the dose response 

curve for GSIS [142]. G6pc2 KO islets incubated for short durations (<2h) in sub-maximal glucose also 

show higher glycolytic flux and increased GSIS compared to islets isolated from WT littermates [142], 

[145]. These prior results suggest that G6pc2 negatively regulates GSIS by opposing flux through glycolysis 

but the effect of G6pc2 deletion on other downstream pathways that control insulin release, such as the 
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citric acid cycle (CAC) and pentose phosphate pathway (PPP) is unknown. Genetic studies in humans have 

generated data that indicate that G6PC2 may regulate pulsatile insulin secretion [146], which suggests that 

G6PC2 may regulate aspects of beta cell metabolism other than glycolysis. 

To better understand the role of G6pc2 in β-cells, we describe here the application of 13C metabolic flux 

analysis (MFA) to assess global changes in glucose and oxidative metabolism in response to G6pc2 

deletion. MFA is a stable isotope-based approach that relies on the inherent assumption that the system 

under investigation is at metabolic steady state. However, obtaining sufficient isotope enrichment to enable 

precise flux estimation in cell culture systems often requires extended incubation times (≥24h) [26]. 

Unfortunately, prolonged culture of primary islets causes gradual loss of their in vivo metabolic phenotype 

[144], resulting in no apparent differences in net glucose uptake or media insulin concentration between 

WT and G6pc2 KO islets [143]. To minimize the confounding effects of phenotypic instability and cellular 

heterogeneity that complicate ex vivo studies of primary islets, we used a pancreatic mouse β-cell line 

(βTC3) to examine the metabolic effects of G6pc2 loss. 

We applied CRISPR-Cas9 gene editing to generate stable G6pc2 KO and WT βTC3 cell lines for MFA 

studies. We also developed a mathematical model to assess isotope labeling measurements and quantify 

flux through the major pathways of glycolysis, PPP, CAC, and anaplerosis in β-cells. Metabolic fluxes were 

estimated by simultaneously regressing isotope enrichment measurements from 21 unique metabolite 

fragment ions and 13 extracellular uptake and excretion rates obtained from WT and KO cells incubated 

with 13C isotopes. The results indicate that G6pc2 deletion leads to a significant increase in oxidative fluxes 

and GSIS. A 65% increase in glycolytic and CAC activity was accompanied by up to a ~2-fold upregulation 

in intracellular insulin content and GSIS. Furthermore, we observed an increase in the cytosolic 

NADPH:NADP+ ratio along with a 2-fold flux increase through the reductive carboxylation pathway from 

glutamine to citrate. Importantly, normalization of fluxes to the net glucose uptake rate showed increased 

flux through a couple of NADPH producing pathways in the CAC, independent of elevated glycolytic flux. 
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These results suggest that G6PC2 also regulates CAC pathways, separate from its modulation of glycolysis. 

More broadly, these data suggest that G6PC2 could be a potential target for enhancing insulin secretion and 

lowering FBG in individuals with prediabetes, type 2 diabetes (T2D) and obesity.   

3.3 Methods 

3.3.1 Cell culture 

The βTC3 cell line was cultured in RPMI 1640 medium (ThermoFisher; Cat no. 11875-093) supplemented 

with 10% fetal bovine serum (Sigma; Cat. No. F2442) and 1X penicillin-streptomycin (Gibco; Cat. No. 

15140122). Rat islet-derived INS1-832/13 cells were cultured in RPMI medium supplemented with 10% 

fetal bovine serum, 0.05 mM β-mercaptoethanol, and 1X penicillin-streptomycin. All cells were cultured 

at 37°C in a 5% CO2 humid atmosphere. 

3.3.2 Generation of G6pc2 knockout (KO) and control βTC3 cells 

G6pc2 KO and control Cas9-expressing βTC3 cells were generated in a multi-step process. We first 

generated a variant βTC3 cell line that stably expresses Cas9. To achieve this, cells were washed twice with 

Dulbecco’s phosphate-buffered saline (Gibco; Cat. No. 14190144), dissociated with TrypLE Select 

Enzyme (Gibco; Cat. No. 12563029) and collected as a single-cell suspension. Cell density was measured, 

and cells were then transduced in a 12-well plate with a lentivirus encoding Edit-R mKate2-tagged Cas9 

nuclease at a multiplicity of infection (MOI) of 2.0 under conditions specified by the manufacturer 

(Dharmacon; Cat. No. VCAS11863). This virus confers constitutive mKate2-tagged Cas9 expression 

driven by the CMV promoter. By utilizing a 2A self-cleaving peptide, both the fluorescent mKate2 reporter 

and Cas9 are expressed within the same mRNA strand and translated into two separate proteins. Antibiotic-

free complete growth medium (RPMI 1640 (Gibco; Cat. No. 11875093), supplemented with 10% FBS 

(Sigma; Cat. No. F2442) was added to the transduced cells at a 1:3 volume ratio (transduction media: 

antibiotic-free complete growth media) after 5 hours, and medium was changed every 48 hours. Once cells 



27 

 

reached a confluency of ~5 million cells/well (~6 days), they were dissociated with TrypLE Select Enzyme 

and resuspended in phenol-red free RPMI medium (Gibco; Cat. No. 11835030) supplemented with 10 mM 

HEPES buffer (Gibco; Cat. No. 15630106) and antibiotic-antimycotic solution (Gibco; Cat. No. 15240062).  

Transduction and Cas9 integration were confirmed under a fluorescence microscope prior to fluorescence 

activated cell sorting (FACS). Cells with high fluorescence signal were clonally sorted onto 96-well plates 

using a 5-laser FACS Aria III (BD Biosciences) with a 100 μm nozzle. Sorted cells were collected in 150 

μl per well antibiotic-containing complete RPMI 1640 growth medium (Gibco; Cat. No. 11875093) 

supplemented with 10% FBS (Sigma; Cat. No. F2442), 10 mM HEPES (Gibco; Cat. No. 15630080), and 

1X penicillin-streptomycin (Gibco, Cat. No. 15140122). Clones were supplemented with an additional 100 

μL of antibiotic-containing complete growth medium per well approximately 24 hours after sorting. 

Medium was changed with antibiotic-containing complete growth media every 48 hours. mKate2-tagged 

Cas9-expressing clones were identified using fluorescent image analysis (Leica Microscope Dmi8 and 

ImageJ). The clones showing the highest fluorescent signal were selected for further analysis and 

experimental use.  

To generate knockouts, G6pc2 crRNA (Cat. Nos. CM-065306-01, CM-065306-02, CM-065306-03) and 

synthetic tracrRNA (Cat. No. U-002005-20) were ordered from Dharmacon and resuspended according to 

the manufacturer’s instructions. Cas9-expressing βTC3 cells (~10,000 cells per well in 4 wells of a 24-well 

plate) were incubated with 25 nM crRNA, 25 nM tracrRNA, and Dharmafect 1 reagent (Cat. No. T-2001-

01) in antibiotic-free RPMI medium (Gibco; Cat. No. 11875093) for 48 hours at 37°C. After 48 hours, the 

cells were switched to antibiotic-containing complete growth medium, allowed to recover and then 

subjected to another round of crRNA:tracrRNA delivery. After three rounds of transfection, the βTC3 cells 

were expanded and prospectively analyzed for G6pc2 expression and activity by TIDE (Tracking of Indels 

by Decomposition) analysis [170] and a stable isotope-based glucose cycling assay [143], respectively. The 

isolate with the highest KO efficiency and lowest glucose cycling was selected for use in subsequent studies. 
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3.3.3 Isotope labelling studies  

Prior to labelling experiments, G6pc2 WT and KO βTC3 cells were washed with PBS and passaged twice 

in glucose-free RPMI media supplemented with 10% dialyzed FBS and 5- or 11 mM glucose on 10-cm 

plates. After the second passage, βTC3 cells were grown to ~60% confluency, washed twice with PBS and 

incubated for 24h in RPMI media supplemented with dialyzed FBS and 2 mM [U-13C5] glutamine plus 

unlabeled 5- or 11 mM glucose, or with 5- or 11 mM [1,2-13C2] glucose plus 2 mM unlabeled glutamine. 

Post incubation, media and cells were harvested and subjected to further analyses as described below. 

3.3.4 Extraction of metabolites and GC-MS analyses 

Intracellular metabolites from βTC3 cells were extracted as previously described [171]. Briefly, 

intracellular metabolism was quenched with 2 mL of −80 °C methanol, and cells were scraped into a 

mixture of 1:1:1 chloroform, methanol, and water. Twenty μL of 5-mM norvaline and 5-mM [U-

13C6,2H7]glucose was spiked as an internal standard for metabolite quantification. The aqueous phase was 

split into two parts, dried, and processed to form either methyloxime tert-butyldimethylsilyl (Mox-

TBDMS) derivatives of organic and amino acids [172] or the di-isopropylidene propionate (DiO) derivative 

of glucose [41]. Media metabolites were quantified by adding 20 µL of 5-mM norvaline in 50 µL of media 

followed by cold acetone precipitation. Calibration standards with known amounts of each metabolite were 

prepared and derivatized simultaneously with the extracted samples for absolute quantification of 

metabolite abundances. Derivatized samples were analyzed by GC-MS. Sample volumes of 1 μL were 

injected in a 5:1 split in an Agilent 7890A gas chromatography system equipped with two HP-5 ms (15 m 

x 0.25 mm x 0.25 μm; Agilent J&W Scientific) capillary columns and interfaced with an Agilent 5977C 

mass spectrometer. Previously defined temperature programs for Mox-TBDMS [172] and DiO [29] 

derivatives were used for data collection. Derivative peaks were integrated using a custom MATLAB 

function [143] to obtain mass isotopomer distributions (MIDs) for the metabolite fragment ions shown in 
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Table S1. Measurement uncertainty was assessed by calculating the root-mean-square deviation between 

the MID of unlabeled standards and the theoretical MID computed from the known abundances of naturally 

occurring isotopes. Absolute metabolite abundances were normalized to the total number of cells present 

at the time of sample collection.  

3.3.5 Extracellular uptake and excretion rates 

Extracellular uptake and excretion rates of βTC3 cells were determined in triplicate growth experiments. 

Ten-centimeter tissue culture dishes were seeded at a density of 150,000 cells/mL in 10 mL of RPMI media 

supplemented with 5- or 11 mM glucose. After incubating parallel dishes for 12h, 24h, 48h, or 72h, 

extracellular media was collected and stored at -80 °C for further analysis while the cells were washed with 

PBS, detached using 0.05% Trypsin-EDTA (Gibco; Cat no. 25300062) and counted using a Cedex XS cell 

counter (Roche; Cat no. 702070001). Concentrations of media metabolites were then analyzed using GC-

MS (see Extraction of metabolites and GC-MS analyses). We integrated the media metabolite 

concentrations and cell counts at each timepoint into our previously developed MATLAB-based software 

package Extracellular Time-Course Analysis (ETA) to quantify cell-specific uptake and excretion rates of 

measured metabolites [27]. The spontaneous degradation of glutamine to ammonia and 

pyrrolidonecarboxylic acid was included in the specific rate calculations and the degradation rate was 

determined to be 0.0031 h−1 by measuring glutamine disappearance in control cell-free plates. Evaporation 

rates determined in these control plates were found to be negligible in comparison to cell-specific metabolic 

rates. 

3.3.6 13C Metabolic flux analysis 

13C MFA was performed by minimizing the sum-of-squared residuals (SSR) between model-simulated and 

experimentally determined measurements. The Isotopomer Network Compartmental Analysis (INCA) 

software package [69] was used to develop a model of β-cell metabolism (Table S1) and estimate fluxes by 
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fitting the model to the experimental datasets. Extracellular uptake rates and metabolite enrichment 

measurements were provided as inputs into the INCA model for flux analysis of βTC3 cell cultures. The 

standard error in these measurements was set to either the root-mean-square deviation of the unenriched 

control samples or the standard error of the mean (SEM) obtained from biological replicates, whichever 

was greater. Best-fit metabolic flux solutions were determined for each experiment by least-squares 

regression of the experimental measurements to the isotopomer network model. To ensure that a global 

solution was obtained, flux estimations were repeated a minimum of 25 times from randomized initial 

guesses. A chi-square test was used to assess goodness-of-fit, and a sensitivity analysis was performed to 

determine 95% confidence intervals associated with the calculated flux values. Although the metabolic 

model does not directly capture the flux through G6PC2 (VG6PC2), the combination of 13C metabolite 

enrichments and net glucose uptake measurements help estimate the net flux through glucokinase (VGK Net) 

where VGK Net = VGK – VG6PC2. 

3.3.7 Intracellular and media insulin quantification 

A previously described [173] islet insulin extraction protocol was adapted to measure insulin content within 

βTC3 cells. Approximately 5 million βTC3 WT and KO cells were washed 4 times with ice-cold PBS, 

prior to 48-hour refrigeration in 300 μL of acid alcohol (1 mL concentrated HCl; 110 mL 95% ethanol). 

After incubation for 48h, the extract was centrifuged for 10 minutes at 2000 RPM at 4°C. Lastly, 200 μL 

of supernatant was collected and stored at -20°C for insulin analysis. Insulin from cell extracts and media 

was quantified using radioimmunoassay (Millipore) by the Vanderbilt Diabetes Research and Training 

Center Hormone Assay Core. 

3.3.8 Intracellular metabolite quantification and assessment of redox markers 

Intracellular metabolites from 8-10 million βTC3 WT and KO cells were extracted as defined above (see 

Extraction of metabolites and GC-MS analyses). Absolute quantification of metabolite amount was 
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performed by running calibration standards along with extracted samples. Cell counts in biological 

replicates were assessed after detaching and counting them using 0.05% Trypsin-EDTA (Gibco; Cat no. 

25300062) and Cedex XS cell counter (Roche; Cat no. 702070001), respectively. Metabolite amount was 

normalized to total volume estimated using cell counts and assuming an average volume of a β-cell of 

approximately 1100 μm3 from previous studies [174]. For analysis of ammonium, 300 µL sample was 

diluted by dH2O to 1.5 mL and then analyzed using an Ammonia Gas Sensing Electrode (Cat. No. 

9512BNWP, Thermo Fisher Scientific, MA, USA) according to the manual. Cytosolic and mitochondrial 

redox state were estimated using enzymatic equilibrium relations described elsewhere [175]. The cytosolic 

NADH/NAD+ was estimated from lactate dehydrogenase equilibrium (i.e. cNADH/NAD+ = 

[Lactate]/[Pyruvate] x 1/KLDH; where KLDH = 1.11 x 10-4). Similarly, cytosolic NADPH/NADP+ was 

estimated from malate dehydrogenase equilibrium (cNADPH/NADP+ = [Malate]/[Pyruvate][CO2] x KMDH; 

where KMDH = 34.4 x 103 uM). Lastly, mitochondrial NADPH/NADP+ was estimated from glutamate 

dehydrogenase equilibrium (mNADPH/NADP+=[Glutamate]/[α-ketoglutarate][NH4
+] x KGDH; where 

KGDH=2.49 x 10-3 mM) [175]. 

3.3.9 Glucose cycling  

Glucose cycling in βTC3 and INS1-832/13 cells was measured using our previously defined approach 

[143]. Briefly, 8-10 million cells were incubated for 24 or 72 hr 37°C in RPMI 1640 medium containing 5 

mM or 11 mM glucose in 10-cm dishes. Cells were incubated in either naturally labeled glucose or 

[1,2,3,4,5,6,6-2H7]glucose (Cambridge Isotope Laboratories; Cat no. DLM-2062). Following the 24 or 72 

hr incubation, the supernatant was collected for glucose derivatization and GC-MS analysis (see Extraction 

of metabolites and GC-MS analyses).  The glucose MID was quantified, and absolute glucose concentration 

was determined through comparison to a standard curve. Glucose cycling and glucose uptake rates were 

calculated as described previously [143]. 
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3.3.10 Measurement of cytoplasmic calcium 

βTC3 WT and KO cells were cultured in RPMI with 5mM glucose or 11mM glucose for 24h at 37°C, 5% 

CO2 in 35 mm tissue culture dishes. Cells were loaded with 2 μM Fura-2, AM (Invitrogen, Waltham, MA) 

for 25 min. Cells were then washed, incubated (for 15 min), and perfused with Krebs-Ringer HEPES buffer 

(KRHB) containing (mM) 119.0 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, and 10.0 HEPES (pH 

7.35 adjusted by NaOH) supplemented with either 5 mM glucose or 11 mM glucose. Baseline Ca2+ levels 

was recorded at glucose concentrations indicated in the figure legends. βTC3 KATP channels were 

subsequently inhibited with 100 µM tolbutamide in KRHB; only cells that showed functional KATP channels 

as determined by tolbutamide-induced Ca2+ influx were analyzed. Fura-2 AM Ca2+ fluorescence (excited at 

488 nm) was measured at 340 nm and 380 nm (F340/F380) every 5s as an indicator of intracellular Ca2+ using 

a Ti2 microscope (Nikon, Tokyo, Japan) and a back-illuminated sCMOS Prime 95B camera (Teledyne 

Photometrics, Tucson, AZ, USA). 

3.3.11 Gene expression analysis 

RNA was isolated from ~2 million βTC3 cells using QIAshredder (Qiagen, Cat no. 79656) and RNeasy 

Mini Kit (Qiagen, Cat no. 74104), according to manufacturer protocols. To perform quantitative real-time 

PCR analysis, cDNA was synthesized using the iScript cDNA synthesis kit (Bio-Rad, Cat no. 1708891). 

Next, this cDNA was diluted tenfold with DI water, mixed with previously defined primer sequences [145] 

(Integrated DNA Technologies) and iQ SYBR Green Supermix (Bio-Rad, Hercules, CA) and analyzed on 

a CFX96 Real-Time PCR System (Bio-Rad, Hercules, CA). Gene expression was normalized to Ppia using 

the 2-ΔCt method [176]. 

3.3.12 Statistical analyses 

Unless otherwise specified, data are presented as means ± SEM. Differences between groups were tested 

using an unpaired parametric t-test without assuming consistent standard deviations (Welch’s t-test). Unless 
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otherwise stated in figure legends, significant differences were defined as follows: ***p < 0.01, **p < 0.05, 

and *p < 0.1. 

3.4 Results 

3.4.1 βTC3 cell line is a representative in vitro model to study the effects of G6pc2 on β-cell 

metabolism  

Prior to conducting metabolic studies on βTC3 cells, we validated that the cell line has characteristics 

suitable for studying the function of G6PC2. We examined expression of G6pc2, Gck (HK IV) and Slc2a2. 

Gck and Slc2a2 encode glucokinase and the GLUT2 glucose transporter, respectively [177]. All 3 genes 

were expressed in βTC-3 cells and their expression was not dependent on glucose concentrations. (Fig. 

3.1A). We also verified that glucose cycling (Fig. 3.1B), a functional readout of G6PC2 activity, was present 

at levels comparable to those previously measured in primary islets at 5 mM (~10%) and 11 mM (~20%) 

glucose concentrations [143], [178]. In contrast, glucose cycling studies in INS1-832/13 cells (Fig. 3A.1A-

D), a rat insulinoma cell line, showed negligible glucose cycling (≤ 3%) and net release of glucose (~1 

nmol/106 cells/hr), further validating that G6pc2 is a pseudogene in rats [179]. Lastly, uptake and excretion 

rates of metabolites connected to central carbon metabolism roughly doubled when the glucose 

concentration was increased from 5 to 11 mM (Fig. 3.1C) and this was associated with a linear increase in 

insulin secretion over 72h (Fig. 3.1D). These results indicate that β-cell specific features are conserved 

within βTC3 cells, making the cell line a representative model for our studies investigating the effects of 

G6PC2 on metabolism.  
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3.4.2 Generation and validation of βTC3 G6pc2 knockout cells 

To examine the effects of G6pc2 deletion in βTC3 cells, we engineered G6pc2 knockout (KO) and control 

(WT) cell lines by using the CRISPR/Cas9 gene editing technique. We first generated a βTC3 cell line with 

constitutive Cas9 expression using lentiviral transduction (Fig. 3.2A). The highest Cas9-expressing βTC3 

single cell clones were identified using fluorescence-activated cell sorting (FACS) followed by  

Figure 3.1: Validation of βTC3 cell line as a representative model to study metabolic regulation by G6pc2 
A) Media insulin content over time for βTC3 cells incubated at 5 and 11 mM glucose concentrations. Data represent 

means±SEM (n=3). 
B) mRNA expression of genes regulating glucose metabolism. Data represent means±SEM (n=3) relative to 

expression of the housekeeping gene ppia.  
C) Estimated percentage glucose cycling in βTC3 cells at 5 and 11 mM glucose concentrations. Data represent 

means±SEM (n=3). 
D) Extracellular uptake and excretion rates measured in βTC3 cells incubated at 5 and 11 mM glucose 

concentrations. Positive values represent net excretion while negative values indicate net uptake. Data represent 
means±SEM (n=3). 



35 

 

 
Figure 3.2: Generation of βTC3 G6pc2 knockout and control cell lines using CRISPR-Cas9  
A) Schematic providing an overview of βTC3 G6pc2 KO cell line development using CRISPR-Cas9 (See 

Experimental procedures for details). 
B) mKate2 and brightfield superimposed images from 3 biological replicates of βTC3 cells expressing Cas9 protein. 

The single cell clone with the highest mKate2 fluorescence, shown here, was selected for CRISPR RNA 
transfection 

C) TIDE analysis showing the total percentage of insertions and deletions (indels) around 3 different loci targeted 
with three different CRISPR RNA sequences in four biological replicates of the single cell clone shown in Fig 2B.  

D) Verification of loss of G6pc2 functional activity in KO cells by measurement of glucose cycling (see Ref. 7 for 
details) at 5 and 11 mM glucose concentrations. Cas9 expressing single cell clone from Fig. 2B was used as βTC3 
wild-type (WT) control. Data represent means±SEM, ***p<0.01, **p<0.05 (n=3). 
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immunofluorescent imaging (Fig. 3.2B). To generate KO cells, three unique synthetic gRNA 

(crRNA:tracerRNA conjugates, each targeting a specific cut site) were delivered to the highest Cas9-

expressing single cell clone using lipofection. To generate WT control cells, only tracerRNA was delivered 

to the highest Cas9 expressing single cell clone. using the same transfection protocol. After three rounds of 

gRNA or tracerRNA treatment, four biological isolates were expanded and analyzed using the Tracking of 

Indels by DEcomposition (TIDE) genomic assessment tool to quantify the percentage knockout (see 

Experimental procedures for details). Computational assessment of Sanger-sequenced genomic DNA 

showed all three cut sites were predicted to have indel formations with biological isolates 2 and 4 having 

>90% indel formation at the first cut site (Fig. 3.2C), which is highly indicative of efficient knockout. To 

confirm loss of G6PC2 functional activity, we measured glucose cycling in KO isolates 2 and 4. Our results 

indicate that glucose cycling was almost completely abolished (Fig. 3.2D) with negligible glucose release 

flux (Fig. 3A.2D) in the KO cells at 5 and 11 mM glucose concentrations. Additionally, there was no change 

in the cycled abundance of glucose over time in either KO isolate, whereas an 8-10% increase was observed 

in WT isolates within 24h of incubation (Fig. 3A.2A-B). The total glucose uptake flux (Fig. 3A.2C) trended 

higher in the KO isolates, however the differences were not significant. 

Figure 3.3: Knockout of G6pc2 in βTC3 cells leads to increased GSIS 
A) Insulin production normalized to cell count at 5 mM (left) and 11 mM (right) glucose concentrations in βTC3 G6pc2 

WT and KO cells. Data represent means±SEM, ***p<0.01, **p<0.05 (n=4). 
B) Intracellular insulin content normalized to cell count (left) and to total surface area (right) at 5 and 11 mM glucose 

concentrations in βTC3 G6pc2 WT and KO cells. Data represent means±SEM, ***p<0.01, *p<0.10 (n=4). 
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Figure 3.4: MFA in βTC3 G6pc2 WT and KO cells shows increased absolute flux through glycolytic and 
mitochondrial pathways 
A) Flux network representing oxidative βTC3 metabolism constructed in INCA (14). Measured media metabolites are 

shown in blue while measured intracellular metabolites are highlighted in green.  
B) Absolute extra- and intracellular fluxes in G6pc2 WT and KO βTC3 cells at 5 mM glucose concentration estimated 

using MFA. Data represent means±SEM, *p<0.05 (n=3). 
C) Absolute extra- and intracellular fluxes in G6pc2 WT and KO βTC3 cells at 11 mM glucose concentration estimated 

using MFA. Data represent means±SEM, *p<0.05 (n=3). 



38 

 

To further validate our novel cell model, we measured intracellular and media insulin concentration in 

G6pc2 WT and KO cells at 5 and 11 mM glucose concentrations. Contrary to primary islets, where longer 

incubation times (>24h) led to normalization of GSIS in KO cells due to metabolic adaptation [143], we 

saw a consistent elevation of media insulin production by βTC3 KO cells compared to WT cells at both 

glucose concentrations examined (Fig. 3.3A). Measurement of intracellular insulin content also showed 

that KO cells not only secreted more insulin but also stored more insulin per cell and per cell surface area 

(Fig. 3.3B). Collectively, these results demonstrate that the engineered βTC3 KO cell clones had negligible 

G6PC2 activity and therefore provided a cellular model of G6pc2 deletion. These results also further 

support our previously published results characterizing G6PC2 as a negative regulator of GSIS [142].  

3.4.3 Assessment of metabolic fluxes reveals increased oxidative metabolism due to loss of G6PC2  

To elucidate the underlying mechanisms responsible for increased GSIS in G6pc2 KO cells, we developed 

a β-cell specific mathematical model to determine metabolic fluxes from 13C labeling measurements. Stable 

isotope studies were initially conducted on parental βTC3 cells to determine the optimal tracers and 

incubation times required to reach isotopic steady state. These studies showed that glycolytic metabolites 

reached isotopic steady within 24h of incubation with [U-13C6]glucose (Fig. 3A.3A) whereas CAC 

metabolites did not reach isotopic steady state even after 72h of labeling (Fig. 3A.3B). In contrast to 

analyses with [U-13C6]glucose, using [U-13C5]glutamine isotopic steady state 13C enrichment of CAC 

metabolites was achieved between 12 and 24h of incubation (Fig. 3A.3C). Based on these data, we 

determined that parallel labelling experiments with [1,2-13C2]glucose and [U-13C5]glutamine for 24h would 

provide an optimal experimental design for steady-state MFA. These tracers were previously shown to 

produce measurements that are highly sensitivity to fluxes in glycolysis/PPP and CAC, respectively [24]. 

A metabolic model including glycolysis and the oxidative PPP was developed (Fig. 3.4A, Table S1) using 

previously established carbon atom transitions [24]. CAC metabolism was modeled using both oxidative  
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Figure 3.5: Metabolic fluxes relative to net glucose uptake reveal flux rerouting through NADPH producing reactions 
A) Flux map highlighting the absolute metabolic changes associated with G6pc2 KO in βTC3 cells. Fluxes highlighted in red are upregulated compared to G6pc2 

WT βTC3 cells. 
B) Select significantly altered metabolic fluxes relative to net glucose uptake (VGK Net) in G6pc2 WT and KO βTC3 cells at 5 mM (left) and 11 mM (right) glucose 

concentrations estimated using MFA. Data represent means±SEM, *p<0.05 (n=3). 
C) Flux map highlighting the metabolic changes relative to VGK Net associated with G6pc2 KO in βTC3 cells. Fluxes highlighted in red are upregulated compared to 

G6pc2 WT βTC3 cells. 
D) Cytoplasmic calcium levels at 5 and 11 mM glucose concentration measured G6pc2 WT and KO βTC3 cells. Results are the mean 245 measurements from WT 

cells and 256 measurements from KO cells taken at every 5 sec interval for a total of 300 seconds. ***p < 0.01 (n=3) 
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and reductive pathways (Fig. 3.4A, Table S1), the latter of which has been shown to promote GSIS in rat 

islets [132]. In addition to measurements of extracellular uptake and excretion rates (Fig. 3A.4), measured 

mass isotopomer distributions (MIDs) of several media and intracellular metabolites (Fig 3A.5, 3A.6) were 

also provided as inputs to the metabolic model in order to estimate intracellular fluxes using MFA (see 

Experimental procedures for details). 

Similar to other mammalian cells [180], glucose and glutamine were the major carbon substrates utilized 

by βTC3 cells and were metabolized largely via the mitochondrial CAC (Fig. 3.4B-C). Excretion of 

overflow products (lactate, pyruvate, alanine and citrate) represented a minor fate for disposal of excess 

carbon (Fig. 3.4B-C, S4). Negligible fluxes were detected through oxidative PPP and to the overflow 

products aspartate, glycerol, malate, and succinate. Glycolytic and mitochondrial fluxes were substantially 

elevated in G6pc2 KO cells compared to WT cells at both glucose concentrations examined. At 5 mM 

glucose, glycolytic (VPK) and mitochondrial (VCS) fluxes were ~67% and ~62% higher compared to WT 

cells (Fig. 3.4B), respectively. Increased oxidative fluxes were accompanied by a ~1.7 fold increase in 

serine (VPSP) and glutamine anaplerosis (VGln.entry). Additionally, we observed significant increases in the 

excretion fluxes of pyruvate, alanine and citrate, but not lactate (Fig. 3.4B, 3A.4A). We observed similar 

increases in oxidative fluxes at 11 mM glucose, with glycolytic (VPK) and CAC (VCS) fluxes increased by 

~60% and 56%, respectively, compared to WT cells (Fig. 3.4C). Anaplerosis from glutamine, but not serine, 

was ~1.8 fold higher in KO cells compared to WT cells. We also observed significant increases in the 

excretion fluxes of pyruvate, alanine and lactate, but not citrate (Fig. 3.4C).  

While we saw a significant elevation in absolute glycolytic and mitochondrial fluxes in KO cells (Fig 3.5A), 

it was important to determine whether there were metabolic effects arising from the loss of G6PC2 that 

were independent of increased glycolysis. To accomplish that, we normalized all metabolic fluxes to the to 

the net glucokinase flux (VGK Net). This normalization revealed more subtle changes in the relative 

distribution of glycolytic flux within KO cells. In particular, relative fluxes through pyruvate carboxylase 
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(VPC/VGK Net) and malic enzyme (VME/VGK Net) were increased in combination with a decrease in VMDH/VGK 

at both glucose concentrations (Fig. 3.5B-C, 3A.7A-B). In addition, we observed a shift in overflow 

products from increased pyruvate excretion at 5 mM glucose concentration, to increased pyruvate, lactate 

and alanine release at 11 mM glucose concentration, potentially due to a shift in the redox state of the KO 

cells (Fig 3.5B).  

Interestingly, this normalization relative to net glucokinase flux also showed that the exchange flux between 

citrate and α-ketoglutarate (α-KG) was significantly elevated at both glucose concentrations, suggesting 

increased reductive activity of isocitrate dehydrogenase (IDH). Reductive carboxylation flux through 

mitochondrial IDH2 has been proposed as a mechanism that drives NADPH production by cytosolic IDH1, 

which acts as a coupling factor to regulate insulin secretion [132]. While our analysis cannot distinguish 

contributions from cytosolic and mitochondrial isoforms to the total IDH exchange flux, increased cycling 

between citrate and α-KG is consistent with enhanced redox coupling between IDH1/2 in KO cells (Fig 

3.5C). Furthermore, similar to data obtained in primary KO islets [142], we measured a significant elevation 

in baseline cytoplasmic calcium levels within the KO cells at 5 and 11 mM glucose concentrations (Fig 

3.5D). Overall, these results show that deletion of G6pc2 leads to a broad acceleration in glycolytic and 

mitochondrial metabolism, primarily by rerouting more glucose and glutamine towards oxidative pathways 

that supply ATP and redox cofactors linked to GSIS.  

3.4.4 Knockout of G6pc2 promotes a reduced cytosolic redox potential in βTC3 cells 

Our assessment of metabolic fluxes suggested the activation of reductive IDH flux and NADPH-producing 

pathways that have previously been implicated in augmenting GSIS [132], [181]. To further investigate the 

increase in reductive carboxylation seen in KO cells, we analyzed the MID of intracellular citrate (Fig. 

3.6A). Oxidation of labelled glutamine through the forward progression of the CAC results in M+4 

enrichment of citrate. In contrast, M+5 citrate is indicative of reductive carboxylation of α-KG by IDH2 
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[132]. A significantly lower (M+4)/(M+5) ratio was observed in KO cells, consistent with a 2-fold increase 

in IDH exchange flux estimated by 13C MFA at both glucose concentrations (Fig. 3.6B). To test if the 

increased IDH exchange flux is secondary to increased mitochondrial flux, we normalized the metabolic 

fluxes to CAC activity (VCS). Even after this normalization, the reductive IDH flux was significantly higher 

in KO cells compared to the WT cells at both glucose concentrations (Fig. 3.6C). This shows that if equal 

amount of carbon enters in the CAC of WT and KO cells, a higher percentage is routed through the reductive 

carboxylation pathway.  

The redox state of β-cells during glucose stimulation is tightly correlated with their capacity for GSIS [132], 

[182]. Therefore, using classical equations and metabolite concentrations (see Experimental procedures) 

[175], we determined the metabolic redox state in WT and KO cells. Cytosolic NADH/NAD+
 was 

unchanged at 5 mM glucose concentration but was increased at 11 mM glucose concentration (Fig. 3.6D). 

This is consistent with a 55% decrease in pyruvate excretion flux (Fig. 3A.4A-B) along with a 60% increase 

in VLDH/VGK flux in KO cells (Fig. 3.5A) from 5 to 11 mM glucose concentration. Additionally, increased 

malic enzyme and IDH activity was associated with significant elevation in cytosolic NADPH/NADP+ 

ratios at both 5- and 11 mM glucose concentrations (Fig. 3.6E). In agreement with the increase in cytosolic 

NADPH/NADP+ ratio, the mitochondrial NADPH/NADP+ fraction was reduced in the KO cells at both 

glucose concentrations (Fig. 3.6F). These results can be explained by the increase in IDH exchange flux, 

which has been proposed as a mechanism to transfer reductant (in the form of NADPH) from the 

mitochondria to the cytosol through the concerted action of IDH1/2 isozymes and the mitochondrial 

citrate/isocitrate carrier [132]. Importantly, flux through the reductive carboxylation and the malic enzyme 

pathways was upregulated by 67% and 32% in the KO cells, respectively, independent of the elevated 

glucose uptake rate (Fig. 3.5C). Overall, these results show that ablation of G6pc2 alters the cytosolic and 

mitochondrial redox state through upregulation of pathways connected with cytosolic NAD(P)H 

production, separate from its effects on glycolytic metabolism.
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Figure 3.6: Knockout of G6pc2 promotes a reduced redox potential in βTC3 cells 
A) Ratio of M+4/M+5 isotopomer enrichment in G6pc2 WT and KO βTC3 cells labeled with [U-13C5]glutamine at 5 and 11 mM glucose concentrations. Data represent means±SEM, 

***p<0.01 (n=3). 
B) Absolute exchange flux through isocitrate dehydrogenase (VIDH Exch) in G6pc2 WT and KO βTC3 cells labeled with [U-13C5]glutamine at 5 and 11 mM glucose concentrations. 

Data represent means±SEM, ***p<0.01 (n=3). 
C) Oxidative (VIDH Net) and reductive fluxes (VIDH Exch) relative to total citrate synthase flux (VCS) in G6pc2 WT and KO βTC3 cells labeled with [U-13C5]glutamine at 5 and 11 mM 

glucose concentrations. Data represent means±SEM, **p<0.05, *p<0.10 (n=3). 
D) Cytosolic NADH/NAD+ assessed by pyruvate/lactate ratio in G6pc2 WT and KO βTC3 cells at 5 and 11 mM glucose concentrations. Data represent means±SEM, **p<0.05 (n=3) 
E) Cytosolic NADPH/NADP+ assessed by malate/pyruvate ratio in G6pc2 WT and KO βTC3 cells at 5 and 11 mM glucose concentrations. Data represent means±SEM, ***p<0.01, 

**p<0.05 (n=3). 
F) Mitochondrial redox state (NAPDH/NADP+) indicated by the [α-KG][NH4]/[Glu] ratio in G6pc2 WT and KO βTC3 cells at 5 and 11 mM glucose concentrations. Data represent 

means±SEM, ***p<0.01, *p<0.10 (n=3) 
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3.5 Discussion 

Prior studies on G6PC2 have shown that it negatively regulates glucose stimulated insulin secretion and 

elevates fasting blood glucose in vivo [142]. However, while G6PC2 is predicted to control the fate of G6P, 

its effect on islet metabolism remains largely unknown. Here, using a mathematical modeling approach, we 

have quantified the metabolic effect of G6PC2 on β-cell metabolism and GSIS. Our results show that 

deletion of G6pc2 not only affects glycolytic flux but also, as expected, increases CAC flux. However, even 

after normalizing for the increased glycolytic flux, an increase in CAC flux and NADPH producing 

pathways is still apparent (Fig. 3.7). As observed in G6pc2 KO islets, we see that the deletion of G6pc2 in 

βTC-3 cells increases GSIS. More importantly, we show, again by normalizing for the increased glycolytic 

flux, that while this increase in GSIS is largely fueled by elevated glycolytic flux, it is also bolstered by the 

influence of G6PC2 on downstream mitochondrial pathways. Additionally, these findings again challenge 

the existing dogma that GK alone regulates glycolytic flux and show that G6PC2 plays a pivotal role in 

glucose sensitivity of β-cells. 

Our results here extend the previous findings on the metabolic control exerted by glucokinase on glycolysis 

[183], [184]. Our revised model here suggests that GK and G6PC2 together help regulate glycolytic flux, 

as the loss of the latter increases glycolytic flux and insulin secretion. Glycolytic flux and insulin secretion 

in β-cells have also been associated with the pentose monophosphate shunt, which is an important generator 

of NADPH and precursor nucleotides [135], [140]. Our metabolic model showed minimal oxidative flux 

through the pentose phosphate pathway in both WT and KO cells, although we did see a significant increase 

in the ratio of cytosolic NADPH to NADP+. Also, our model estimated significant upregulation of pyruvate 

kinase flux (VPK), which recently has been implicated as a dominant regulatory node of glycolysis and 

insulin secretion [141]. The increase seen in VPK in our steady-state metabolic model is secondary to the 

increase in VGK Net, indicative of the latter stage of the 2-state model proposed by Lewandowski et. al [141]. 

While others have suggested mitochondrial GTP and PEP cycling as insulin amplifying signals [138], [185],  
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Figure 3.7: Schematic illustrating the effect of G6pc2 KO on oxidative metabolism, energetics, and insulin secretion of βTC3 cells 
Ablation of G6pc2 leads to increased glycolytic and citric acid cycle (CAC) flux. Cyclic flux through IDH and other putative NADPH-producing pathways is also 
upregulated along with an increase and a decrease in cytosolic(c) and mitochondrial(m) NADPH:NADP+ ratios, respectively. A combination of these metabolic 
perturbations, previously associated with increased GSIS (23), result in enhanced insulin production and release. Created with BioRender.com 
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we measured negligible enrichment in PEP post incubation with 13C5 glutamine labelled media (Fig. 3A.9). 

PEP cycle and PEPCK-M have been shown to be active prior to membrane depolarization [141], whereas 

our model captures oxidative steady-state metabolism after depolarization and calcium entry when PDH 

and CAC flux is high and PEPCK-M activity is minimized.  

As expected, increasing the glucose concentration in the parental, WT and KO βTC3 cells led to an overall 

increase in the uptake and excretion fluxes. Several potential pathways have been implicated in regulating 

excess-fuel detoxification in β-cells, including pyruvate, lactate, alanine, glutamate and more recently, free 

fatty acids (FFA) and glycerol [186], [187]. The recent discovery of a mammalian glycerol-3-phosphate 

phosphatase (G3PP) has been associated with linear increases in glycerol production with increasing 

glucose concentrations within murine pancreatic islets [186], [188]. The inclusion of this pathway, along 

with the enrichment measurements of glycerol-3-phosphate and glycerol, in our metabolic model showed 

a >2-fold increase in glycerol release flux in KO cells at both glucose concentrations (Fig. 3.4B-C, 3A.4A-

B). However, compared to other metabolites, the overflow of carbon through G3PP was still limited in 

magnitude. Instead, we saw that increased oxidative metabolism in KO cells is supported by an increase in 

the net uptake and excretion of several glycolytic metabolites centered around the pyruvate node (Fig. 

3A.4). At lower glucose concentrations, relative to VGK net, only pyruvate release was significantly elevated 

with a decrease in VLDH and no changes in alanine excretion (Fig 3.5B). However, at higher glucose 

concentrations, we saw an increase VPyr release/VGK net, VLDH/VGK net and VALT/VGK net in the KO cells (Fig 

3.5B, 3A.4B). This is consistent with recent findings [187], wherein β-cells pyruvate responds most strongly 

to increasing fuel pressure, potentially to maintain redox equilibrium. Interestingly, the metabolic flux 

analysis results (Fig. 3.4B-C) also showed a concurrent increase in glutamine uptake flux with rising 

glucose concentrations, fueling increased CAC activity along with glycolysis. These results indicate that 

despite the loss of G6PC2, a tight coupling between glycolysis and mitochondrial metabolism is maintained, 

a hallmark of β-cells [189]. 
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While G6PC2 is closely connected with glycolysis, our studies also showed the upregulation of several 

mitochondrial pathways, independent of increased glucose uptake rate, associated with enhancements in 

insulin secretion. Similar to our results (Fig. 3.7), increased anaplerosis through pyruvate carboxylase [126], 

enhanced pyruvate recycling via malic enzyme [190] and upregulation of reductive flux through the 

isocitrate–IDH1/IDH2 pathway [132] have all been associated with upregulation in GSIS. Consistent with 

increased flux from VME and VIDH, we also measured an increase in cytosolic NAPDH:NADP+ ratio along 

with a slight but significant decrease in mitochondrial NADPH:NADP+ ratio. Cytosolic NADPH production 

has previously been shown to drive the reduction of glutathione (GSH) by GSH reductase [133], [191]. 

This leads to the activation of glutaredoxin (GRX1), which mediates the reduction and activation of 

sentrin/SUMO-specific protease 1 (SENP1) [133]. SENP1 then acts as a deSUMOylase that removes 

SUMO peptides from secretory granule-trafficking proteins to enhance insulin exocytosis [192]. Increased 

flux through NADPH producing pathways due to the loss of G6PC2 (Fig. 3.5C) thus may be responsible 

for increased GSIS in the KO cells (Fig. 3.3). Additionally, at higher glucose concentrations, we also saw 

an increase in cytosolic NADH:NAD+ ratio along with upregulation of VLDH and VLac Release, factors 

indicative of hyperglycemia [193]. Together these results indicate that reductive CAC flux, an important 

coupling factor that regulates insulin secretion [132], is increased upon the loss of G6PC2.  

Since G6PC2 is an islet specific isoform of glucose-6-phosphatase, it can directly control the concentration 

of G6P present in the β-cells. Elevated G6P levels can lead to a reduction in the calcium accumulation in 

the endoplasmic reticulum through the metabolite’s ability to lower sarco-endoplasmic reticulum calcium 

ATPase (SERCA) activity [194]. More importantly, inhibition of glucose-6-phosphatase has been shown 

to lower Ca2+ sequestration in endoplasmic reticulum of permeabilized islets [195]. Therefore, glycolytic 

and mitochondrial flux increases seen here (Fig 3.5A,C) due to the knockout of G6PC2 may directly be 

associated with changes in calcium signaling in the ER and the cytosol of βTC3 cells. Regulation of 

mitochondrial pathways by calcium, through allosteric interactions or otherwise, is well understood for 
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many enzymes in central carbon metabolism. Increased calcium levels are known to activate multiple 

dehydrogenases in the CAC, such as isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, 

stimulating the respiratory chain and ATP supply [196]. More importantly, consistent with our results (Fig. 

3.5D), previous studies in G6pc2 KO mice islets have also shown elevated cytoplasmic calcium levels along 

with enhanced glycolytic flux [142], [145].  Our flux, cytoplasmic calcium and redox results here suggest 

that G6PC2, through the suppression of calcium signaling, exerts control not only on glycolytic but also 

mitochondrial metabolism. Future studies will focus on better understanding the role of G6PC2 on calcium 

signaling in the ER and the cytosol.  

Several genome-wide association studies (GWAS) have identified multiple genetic variants in G6PC2 to 

be associated with fasting blood glucose levels [197], [198], with studies suggesting that single nucleotide 

polymorphisms (SNPs) in G6PC2 affect RNA splicing [199], protein expression [200] and DNA 

methylation [201].  Consistent with previous findings [142] and our results, a recent study in human EndoC-

βH1 cell line shows that knockdown of G6PC2 increases insulin secretion at submaximal glucose 

concentrations [202]. However, contrary to the results of Ng et al. [202], our study shows an increase, as 

opposed to a decrease, in intracellular insulin content upon ablation of G6pc2. A different result was seen 

in G6pc2 KO islets where no change in intracellular insulin content was observed despite increased insulin 

secretion [142]. These apparently inconsistent results may partly be explained by differences in the duration 

of glucose stimulation. Unlike Pound. et. al. [142] and Ng et al. [202], where the cells were exposed to 

glucose for 30 minutes to an hour, in our study we incubated the cells in glucose for 24h. This may have 

resulted in increased insulin mRNA transcription and translation, since longer incubations have been shown 

to upregulate proinsulin mRNA levels [203].   

Our metabolic model (Fig. 3.4A, Table 3A.1) relies upon some fundamental modelling assumptions that 

introduce some inherent limitations. Firstly, we assume that the citrate enrichment is equivalent to that of 

isocitrate. This is a safe assumption since no carbon rearrangements are known to occur at the aconitase 
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reaction at equilibrium [204]. Secondly, the oxidative IDH reaction modeled in our network does not 

differentiate between the flux through cytosolic IDH (IDH1) and mitochondrial IDH (IDH2/3) and 

represents the total flux through both enzymes. Given the identical carbon transitions between IDH 

isoforms, deconvolution of these pathways is inherently challenging and future studies requiring the 

expression of exogenous reporter systems may be needed to resolve compartment specific IDH fluxes [205]. 

Third, use of only glucose and pyruvate measurements, two metabolites typically used to assess the 

contribution of PPP to glycolysis [206], provided limited resolution of pentose phosphate pathway (PPP) 

flux. Future studies, benefiting from the use of LC-MS/MS platforms, will be needed to measure enrichment 

in pentose intermediates to better resolve the intermediary fluxes within the pathway. Finally, although all 

data pertaining to knockout of G6pc2 confirms its role as a negative regulator of oxidative metabolism, 

operation of the pathways described herein remains to be tested in primary mouse and human islets. These 

studies are feasible but challenging in light of the longer incubation times needed for 13C-MFA, leading to 

ex vivo culture adaptions, feedback effects due to media insulin build up along with functional heterogeneity 

of human islet aliquots obtained from different donors.  

In conclusion, the data presented in this study show that G6PC2 acts as a negative regulator of oxidative 

metabolism and GSIS. Our findings suggest that G6PC2, together with GK, regulates glycolysis, citric acid 

cycle activity and pathways that control NADPH and insulin production. More importantly, these results 

validate our hypothesis that knockout of G6pc2 causes a leftward shift in the dose-response curve for GSIS 

and is a potential target for enhancing insulin secretion. Since elevated G6PC2 expression is associated 

with increased FBG levels and thus heightened risk for cardiovascular-associated mortality (CAM) in vivo 

[199], [207], our study also suggests that G6PC2 inhibitors would be useful for lowering FBG and the risk 

of CAM. However, one needs to be judicious in interpreting these findings as recent studies suggest that 

under specific physiological conditions, such as prolonged fasting and ketogenic feeding, G6PC2 offers 

protection against hypoglycemia [178]. Future studies will involve understanding the direct and/or indirect 
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signals that result in the metabolic changes brought about by the deletion of G6pc2. Finally, deeper 

exploration of the potential role of G6PC2 in development of, or compensation for, β cell failure in T2D 

remains to be explored in genetic and dietary animal models. 
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3.7 APPENDIX: Supplemental figures and tables 

Figure 3A.1 Measurement of glucose uptake and release fluxes in INS-1 832/13 rat insulinoma cells 
Measurement of (A) glucose cycling, (B) total glucose uptake flux (v1), (C) total glucose release flux (v2), and 
(D) net glucose uptake flux (vnet) at 5 and 11 mM glucose concentrations in INS-1 832/13 cells. Data represent 
means±SEM (n=3). 
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Figure 3A.2: Cycled abundance in two biological replicates of G6pc2 WT and KO βTC3 single cell clones at 
5 and 11 mM glucose concentrations 
Cycled abundance, which is the ratio M+0:M+6 isotopomers to M+0:M+7 isotopomers, measured in cell media 
taken at 24h and 48h after incubation with [1,2,3,4,5,6,6-2H7]glucose at (A) 5 mM and (B) 11 mM glucose 
concentrations. Data represent means±SEM, ***p<0.01 (n=3). (C) Total glucose uptake flux (v1) and (D) Total 
glucose release flux (v2) measured in βTC3 G6pc2 WT and KO cells. Data represent means±SEM (n=3). 
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Figure 3A.3: Atom percentage enrichment (APE) in metabolites over time to determine isotopic steady state 
in isotope labelling experiments 
A) APE in glycolytic metabolites reaches steady state within 24h when labelled with 11 mM [U-13C6]glucose. 
B) APE in CAC metabolites continues to increase in enrichment over 72h when labelled with 11 mM [U-13C6]glucose. 
C) APE in CAC metabolites reaches steady state between 12 to 24h when labelled with 2 mM [U-13C5]glutamine. 
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Figure 3A.4: Extracellular uptake and excretion rates in G6pc2 WT and KO βTC3 cells 
Extracellular uptake and excretion measured in G6pc2 WT and KO βTC3 cells incubated at (A) 5 and (B) 
11 mM glucose concentrations. Positive values represent excretion fluxes while negative values indicate net 
uptake of metabolite. Data represent means±SEM, *p<0.05 (n=3). 
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Figure 3A.5 :Enrichment of glycolytic metabolites in G6pc2 WT and KO βTC3 cells labeled with [1,2-13C2]glucose 
Intracellular enrichment in glycolytic metabolites measured in G6pc2 WT and KO βTC3 cells incubated with (A) 5 and (B) 11 mM [1,2-
13C2]glucose. Data represent means±SEM, ***p<0.01, **p<0.05 (n=3).  
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Figure 3A.6: Enrichment of CAC metabolites in G6pc2 WT and KO βTC3 cells labeled with 2 mM [U-13C5]glutamine 
Intracellular enrichment in CAC metabolites measured in G6pc2 WT and KO βTC3 cells incubated with (A) 5 and (B) 11 mM glucose. Data 
represent means±SEM, ***p<0.01, **p<0.05 (n=3). 
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Figure 3A.7: Metabolic fluxes relative to net glucose uptake in G6pc2 WT and KO βTC3 cells  
Metabolic fluxes relative to net glucose uptake (VGK Net) in G6pc2 WT and KO βTC3 cells at (A) 5 mM and (B) 11 
mM glucose concentrations estimated using MFA. Data represent means±SEM, *p<0.05 (n=3) 
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Figure 3A.8:Intracellular metabolite abundance in G6pc2 WT and KO βTC3 cells labeled with 2 mM 
[U-13C5]glutamine 
Intracellular metabolite abundance measured in G6pc2 WT and KO βTC3 cells incubated with (A) 5 and 
(B) 11 mM glucose. Data represent means±SEM, ***p<0.01, **p<0.05, *p<0.10 (n=3).  
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Figure 3A.9: Enrichment patterns in glycolytic metabolites after incubation with 2 mM [U-13C5]glutamine 
Intracellular enrichment in (A) phosphoenolpyruvate (PEP) (B) 3-phosphoglycerate (3PG), and (C) pyruvate, 
uncorrected for background abundance in G6pc2 WT and KO βTC3 cells at 5 and 11 mM glucose concentrations 
incubated with 2 mM [U-13C5]glutamine for 24h. The theoretical values represent the unlabeled MIDs for each 
metabolite. (D) APE of pyruvate at 5 and 11 mM glucose concentrations (E) Schematic showing pathways that can 
enrich 3PG, PEP and pyruvate when [U-13C5]glutamine is used as tracer. Only pyruvate showed isotopic enrichment 
while PEP and 3PG had negligible 13C incorporation, suggesting that PEPCK-M is inactive at steady state in βTC3 
cells. Data represent means±SEM, ***p<0.01 (n=3) 
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Glycolysis 

VGluc.source Gluc.source (ABCDEF) → Gluc (ABCDEF) 
VGK Gluc (ABCDEF) → G6P (ABCDEF) 
VPGI G6P (ABCDEF) → F6P (ABCDEF) 

VALDO F6P (ABCDEF) → DHAP (CBA) + GAP (DEF) 
VTPI DHAP (ABC) ↔ GAP (ABC) 

VG3PDH DHAP (ABC) → G3P (ABC) 
VG3PP G3P (ABC) → Glycerol.ext (ABC) 

VGAPDH GAP (ABC) → 3PG (ABC) 
VPSP Ser (ABC) → 3PG (ABC) 
VPK 3PG (ABC) → Pyr (ABC) 

VPyr.exch Pyr (ABC) ↔ Pyr.ext (ABC) 
VPyr.release Pyr.ext (ABC) → Pyr.sink (ABC) 

VLDH Pyr (ABC) ↔ Lac (ABC) 
VLac.exch Lac (ABC) ↔ Lac.ext (ABC) 

VLac.release Lac.ext (ABC) → Lac.sink (ABC) 
VALT Pyr (ABC) ↔ Ala (ABC) 

VAla.exch Ala (ABC) ↔ Ala.ext (ABC) 
VAla.release Ala.ext (ABC) → Ala.sink (ABC) 

VPC Pyr (ABC) + CO2 (D) → Oac (ABCD) 
VPDH Pyr (ABC) → AcCoA (BC) + CO2 (A) 

Pentose Phosphate Pathway 

VG6PDH G6P (ABCDEF) → P5P (BCDEF) + CO2 (A) 
VTK1 S7P (ABCDEFG) + GAP (HIJ) ↔ F6P (ABCHIJ) + E4P (DEFG) 
VPPP P5P (ABCDE) + P5P (FGHIJ) ↔ S7P (ABFGHIJ) + GAP (CDE) 
VTK2 P5P (ABCDE) + E4P (FGHI) ↔ F6P (ABFGHI) + GAP (CDE) 

Citric Acid Cycle 

VCS Oac (ABCD) + AcCoA (EF) → Cit (DCBFEA) 
VFat.entry FA (AB) → AcCoA (AB) 
VICHD Cit (ABCDEF) ↔ α-kg (ABCDE) + CO2 (F) 
VGDH Glu (ABCDE) ↔ α-kg (ABCDE) 

Table 3A.1: Pancreatic β-cell metabolic reaction network for 13C MFA. (Related to Fig. 3.4-3.6 and Table 3A.2)  
Network maps of β-cell metabolism track carbon atoms through model reactions. Metabolites used to regress fluxes in 
both compartments are shown in Table 3A.2. Unenriched sources and sinks and “CO2” are annotated as “.source” and 
“.sink”, respectively. 13C isotopes are introduced into model reactions as “.tracer”. Extracellular metabolites are 
designated as “.ext”.  
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VGS Gln (ABCDE) ↔ Glu (ABCDE) 
VGlu.entry Glu.ext (ABCDE) ↔ Glu (ABCDE) 
VGlu.source Glu.source (ABCDE) → Glu.ext (ABCDE) 
VGln.source Gln.source (ABCDE) → Gln.ext (ABCDE) 
VGln.entry Gln.ext (ABCDE) → Gln (ABCDE) 
VαKGDH α-kg (ABCDE) → Suc (BCDE) + CO2 (A) 

VSuc.release Suc (ABCD) → Suc.ext (ABCD) 
VSDH Suc (ABCD) ↔ Fum (ABCD) 
VFM Fum (ABCD) ↔ Mal (ABCD) 

VMDH Mal (ABCD) ↔ Oac (ABCD) 
VME Mal (ABCD) ↔ Pyr (ABC) + CO2 (D) 
VAST Oac (ABCD) ↔ Asp (ABCD) 

VAsp.exch Asp (ABCD) ↔ Asp.ext (ABCD) 
VAsp.source Asp.source (ABCD) → Asp.ext (ABCD) 
VMal.release Mal → Mal.sink 
VCit.release Cit → Cit.sink 

Isotope uptake, CO2 recycling and biomass equation 

VGluc.tracer Gluc.tracer (ABCDEF) → Gluc (ABCDEF) 
VGln.tracer Gln.tracer (ABCDE) → Gln.ext (ABCDE) 
VCO2.source CO2.source (A) → CO2 (A) 
VCO2.sink CO2 (A) → CO2.sink (A) 
VBiomass 1389*G6P → Biomass 

  



62 

 

  

Metabolite m/z Derivative Formula Carbons  

3-Phosphoglycerate 585 C23H54O7Si4P C1 C2 C3    

Alanine 260 C11H26O2NSi2 C1 C2 C3    

Alanine 232 C10H26ONSi2  C2 C3    

Aspartate 302 C14H32O2NSi2 C1 C2     

Aspartate 390 C17H40O3NSi3  C2 C3 C4   

Aspartate 418 C18H40O4NSi3 C1 C2 C3 C4   

Citrate 459 C20H39O6Si3 C1 C2 C3 C4 C5 C6 

Fumarate 287 C12H23O4Si2 C1 C2 C3 C4   

Glucose 301 C14H21O7 C1 C2 C3 C4 C5 C6 

Glutamate  432 C19H42O4NSi3  C2 C3 C4 C5  

Glutamate 330 C16H36O2NSi2 C1 C2 C3 C4 C5  

Glutamine 431 C19H43O3N2Si3 C1 C2 C3 C4 C5  

Glycerol 377 C17H41O3Si3 C1 C2 C3    

Glycerol-3-Phosphate 571 C20H51O6Si4P C1 C2 C3    

Lactate 261 C11H25O3Si2 C1 C2 C3    

Lactate 233 C10H25O2Si2  C2 C3    

Malate 419 C18H39O5Si3 C1 C2 C3 C4   

Phosphoenolpyruvate 453 C17H38O6Si3P C1 C2 C3    

Pyruvate 174 C6H12O3NSi C1 C2 C3    

Serine 390 C17H40O3NSi3 C1 C2 C3    

Succinate 289 C12H25O4Si2 C1 C2 C3 C4   

Table 3A.2: GC-MS fragment ions of measured metabolites regressed using the metabolic model for MFA. 
(Related to Fig. 3.4-3.6, S3, 3A.5-3A.7 and Table 3A.1) 
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4. In vivo Estimates of Liver Metabolic Fluxes Assessed by 13C-Propionate and 13C-Lactate 

are Impacted by Tracer Recycling and Equilibrium Assumptions 

Cell Reports (2020), 32-5:107986 

4.1 Abstract 

Isotope-based assessment of metabolic flux is achieved through a judicious balance of measurements and 

assumptions. Recent publications debate the validity of key assumptions used to model stable isotope 

labeling of liver metabolism in vivo. Here we examine the controversy surrounding estimates of liver citric 

acid cycle and gluconeogenesis fluxes using a flexible modeling platform that enables rigorous testing of 

standard assumptions. Fasted C57Bl/6J mice are infused with either [13C3]lactate or [13C3]propionate 

isotopes, and hepatic fluxes are regressed using models with gradually increasing complexity and relaxed 

assumptions. We confirm that liver pyruvate cycling fluxes are incongruent between different 13C tracers 

in models with conventional assumptions. When models are expanded to include more labeling 

measurements and fewer constraining assumptions, however, liver pyruvate cycling is significant and 

inconsistencies in hepatic flux estimates using [13C3]lactate and [13C3]propionate isotopes emanate, in part, 

from peripheral tracer recycling and incomplete isotope equilibration within the citric acid cycle.  
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4.2 Introduction 

Hepatic gluconeogenesis and the mitochondrial citric acid cycle (CAC) act in concert to supply the body 

with glucose when the dietary supply is reduced (e.g., during fasting). Many reactions in these pathways 

are catalyzed by regulatory enzymes that have been proposed as drug targets for treating insulin resistance, 

type 2 diabetes, and fatty liver disease. There has been a long-running debate over the nature of liver 

metabolic adaptations that occur during the progression of these obesity-related conditions. Some groups 

hypothesize that impairments in mitochondrial metabolism are responsible for accumulation of toxic lipid 

species that cause insulin resistance and tissue damage in the liver. Others hypothesize that hepatic lipid 

overload causes elevations in CAC and anaplerotic fluxes that drive excess gluconeogenesis and 

accumulation of toxic free radicals. Because metabolic flux alterations cannot be assessed in vivo without 

the use of isotope tracers, the two competing hypotheses cannot be completely resolved without accurate 

methods to model and interpret data from in vivo isotope labeling experiments (ILEs). 

An ILE introduces a stable or radioactive tracer (e.g., containing heavy isotopes such as 13C or 14C) to a live 

biological system. After the tracer has been sufficiently metabolized through the target biochemical 

pathways of interest, the isotope enrichment of downstream metabolites is determined experimentally. 

Because different pathways rearrange the labeled atoms in unique ways, it is often possible to calculate 

metabolic flux rates from the relative abundance of different isotopically labeled species (i.e., isotopomers) 

comprising those metabolites. Various approaches have been taken to estimate hepatic pathway fluxes from 

in vivo ILEs. Least-squares regression approaches have been developed to estimate fluxes from metabolite 

mass isotopomer distributions (MIDs). Other approaches relate positional isotopomer abundances to 

pathway fluxes through distilled mathematical equations.  

Regardless of the approach, assumptions are implemented to limit the complexity of model-based flux 

analysis. It is often assumed that primary isotopes equilibrate completely in the liver; also, the release, 
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circulation, and reuptake of enriched products of liver metabolism are assumed to have a negligible impact 

on liver metabolic flux estimates. A challenge to these assumptions was illustrated in the classic debate 

over in vivo estimates of the parameter y, which represents the ratio of liver anaplerosis to citrate synthase 

flux. In the academic exchange, studies that used isotopic acetate or lactate yielded very different flux ratios. 

This incompatibility was partially reconciled through evidence that, in contrast to lactate, the extensive 

extrahepatic metabolism of isotopic acetate generated metabolites which artefactually lowered y values 

[62], [208]–[211].  

The aforementioned studies underscore the importance of secondary sites of isotope metabolism and 

generation. We have previously developed a modeling platform for in vivo liver metabolic flux analysis 

(MFA) that has been optimized for application to the conscious mouse [29] (Fig 4.1A). Mice are infused 

with 2H and/or 13C isotopes, metabolites are analyzed by GC-MS, and fluxes are estimated by least-squares 

regression of MID measurements using the INCA software [69]. One advantage of INCA is that users can 

adjust the mathematical model to rapidly test the effects of specific reactions or modeling assumptions on 

the best-fit solution (Fig 4.1B). Nevertheless, our MFA platform shares some common challenges with 

other contemporary in vivo flux analysis approaches. Specifically, stable isotopes delivered in large 

quantities may perturb the intrinsic metabolism of the pathways they are intended to assess. Primary 

isotopes, or their enriched products, may also be metabolized in non-target tissues in vivo, and metabolites 

enriched from their breakdown or exchange may circulate to the liver and further impact flux estimates.  

Here we applied INCA to model the formation and effects of secondary tracers on liver flux analysis in 

vivo. These effects were tested in models that treat the liver as a single compartment or as a central hub in 

a multi-compartment network that accommodates the Cori cycle. Fluxes were regressed in models 

constrained by more common assumptions (base models) or expanded to rigorously account for incomplete 

isotope equilibration and additional metabolite measurements (expanded models). Using the 

aforementioned models, we assessed differences in the utility of [13C3]propionate (13C3Prop) and 
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[13C3]lactate (13C3Lac) as tracers for regressing liver metabolic fluxes, with or without 2H isotopes, in 

overnight fasted C57Bl/6J mice.   

 

  

Figure 4.1: Metabolic flux analysis (MFA) determines fluxes through model-based regression of isotope labeling 
measurements.  
(A) MFA workflow. (1) Stable isotopes and replacement erythrocytes are infused intravenously in catheterized mice to enrich liver 
and plasma metabolites. (2) Plasma and liver tissue harvested at the end of the infusion are extracted and derivatized for GC-MS 
analysis. (3) Chromatographic peaks corresponding to the metabolites of interest are integrated and processed to obtain mass 
isotopomer distributions (MIDs). (4) The best-fit solution for all fluxes included in the metabolic model is obtained by minimizing 
the sum of squared residuals (SSR) between experimentally determined and model-simulated MIDs. 
(B) Verification of best-fit solution. (1) The best-fit solution for each mouse is accepted if the minimized SSR is within the 
expected range of a chi-square cumulative distribution function. (2) Flux uncertainties are assessed by determining the sensitivity 
of the minimized SSR to variations in each flux value. For example, the points of intersection with the dotted line indicate the 
boundaries of the 95% confidence interval (CI) of the estimated pyruvate carboxylase (PC) flux. (3) Varying the flux values away 
from the optimal solution increases the measurement residuals, as shown in the suboptimal case.   
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4.3 Methods 

4.3.1 In vivo Procedures in the Mouse 

Indwelling catheters were surgically implanted in the jugular vein and carotid artery ~1wk prior to 

experimentation for infusing and sampling, respectively, as previously described [212]. In vivo studies were 

performed identically to those described in detail elsewhere in long-term (~19-20hr) fasted mice [29]. 

Briefly, mice received an intravenous primed, continuous infusion of [6,6-2H2]glucose (440µmol/kg + 

4.4µmol/kg/min), bolus of 2H2O to enrich body water to 4.5% (abbreviated collectively as 2H), and a 

primed, continuous infusion of 13C3Prop (1.1mmol/kg + 0.055mmol/kg/min) or 13C3Lac (0.160mmol/kg + 

0.040mmol/kg/min) (Cambridge Isotope Laboratories, Tewksbury MA). Isotopes were delivered over a 4hr 

time course, as previously described. A separate cohort of overnight fasted mice was infused with a primed, 

continuous infusion of 13C3Lac (0.160mmol/kg + 0.040mmol/kg/min, respectively) for 120min in the 

absence of 2H isotopes for relative liver flux estimation. Mice were sacrificed through cervical dislocation 

and liver tissue was rapidly excised and freeze-clamped in liquid nitrogen at the close of the study; plasma 

samples and tissues obtained at the end of the study were stored at -80°C prior to analysis.  

 
4.3.2 Metabolite Extraction, Derivatization, and GC-MS 

Plasma glucose was extracted and derivatized according to protocols developed elsewhere [41]. Following 

acetone or a biphasic methanol/water/chloroform extraction, polar plasma (~10-50µL) and liver (~30-

50mg) metabolites were converted to their methoxamine tert-butylsylil derivatives (TBDMS) using 

MBTSTFA+1% TBDMCS (ThermoFisher Scientific, Waltham MA). Glucose and other metabolite 

derivatives were injected in an Agilent 7890A gas chromatograph equipped with an HP-5ms capillary 

column and 5975C mass spectrometer in scan mode for analysis of isotopic enrichment. Metabolites were 

identified through comparison to a library of known standards, and the accuracy of MID measurements was 
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validated through an assessment of unenriched control samples. Post hoc simulations for metabolite MIDs 

were performed following best-fit flux regression for each mouse. 

 
4.3.3 Metabolic Flux Analysis (MFA) 

All metabolic models were constructed using the Isotopomer Network Compartmental Analysis (INCA) 

software package (accessible at http://mfa.vueinnovations.com/mfa) [69]; metabolic networks and 

carbon/hydrogen atom transitions for each modeled reaction are summarized in Tables 4A.1, 4A.3 and 

4A.4. Flux models were constructed from classical biochemical reactions with consideration to those 

published previously [75], [111], [213]. Unless otherwise noted, assumptions used for flux analysis were 

the same as those provided in a previous publication [29]. MIDs for glucose, plasma and liver polar 

metabolites were introduced into INCA for flux regression. After constraining citrate synthase flux (VCS.L) 

to an arbitrary value of 100, relative fluxes were estimated by minimizing the sum of squared residuals 

(SSRs) between simulated and experimentally derived MIDs. Measurement uncertainties were estimated 

based on the root-mean square error of unenriched control samples and/or the standard error of 

measurement of technical GC-MS replicates. Best-fit flux estimates were obtained from least-squares 

regression starting from at least 25 random initial values. Goodness of fit was assessed by a chi-square test, 

and 95% flux confidence intervals were calculated by evaluating the sensitivity of SSRs to variations in 

flux values [75]. In studies where both 13C/2H isotopes were infused, relative fluxes were converted to 

absolute fluxes using the known [6,6-2H2]glucose infusion rate and mouse weights. For mice infused with 

13C/2H isotopes, glucose-producing flux from glycerol (VGK.L) was summed with glycogen (VPYGL.L) and 

presented in hexose units (VPYGL+GK.L). 

MIDs and NMR positional enrichments were simulated in INCA using the best-fit flux solutions obtained 

from in vivo labeling experiments. Where appropriate, urea and lactate enrichments obtained during the 

isotopic steady state were included in the liver flux regressions. An increase in the 13C enrichment of the 
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CO2 pool in vivo is anticipated to some extent, given the introduction of propionate or lactate isotopes into 

the CAC. A modeling approach was taken to accommodate the reintroduction of locally synthesized 13CO2 

in the liver in a previous publication [29]. Here, 13CO2/bicarbonate enrichment was assumed to equilibrate 

with the carbonyl carbon of urea (retained by the urea-TBMDS m/z 231 ion), since carbamoyl phosphate 

is formed from HCO3
- in hepatic mitochondria. As such, the Urea231 enrichment was used as a proxy for 

13CO2, similar to that applied elsewhere [213]. The MIDs of additional metabolites (e.g., Lac261 ion as a 

measure of lactate enrichment) were included in specific flux regressions as described in Results (Table 

S5). Unless otherwise noted, a two-tailed t-test was used to test for differences with significance at p≤0.05.    

 
4.3.4 Correction of Liver Oxaloacetate Isotopomers to Account for 13CO2 Recycling 

In the absence of 13CO2 recycling, the fully labeled M+4 isotopomer Oac1111 should exhibit negligible 

abundance and only the M+3 oxaloacetate isotopomers Oac1110 and Oac0111 should be formed from 13C3Lac 

infusion. Yet, after correcting the aspartate MID for natural isotopic background, significant M+4 

enrichment was detected (Figure 4.3E), which stems from carboxylation of M+3 pyruvate with recycled 

13CO2 (Figure 4.3D). Because 13CO2 can lead to production of M+3 oxaloacetate isotopomers other than 

Oac1110 and Oac0111, the measured MIDs of alanine (a proxy for liver pyruvate) and urea (a proxy for liver 

CO2) were used to mathematically correct the M+3 oxaloacetate isotopomers to account for contributions 

from 13CO2 recycling: 

𝑂𝑂𝑂𝑂𝑂𝑂1234𝑐𝑐𝑐𝑐𝑐𝑐 (𝑀𝑀 + 3) = 𝑂𝑂𝑂𝑂𝑂𝑂1234(𝑀𝑀 + 3) + 𝑉𝑉𝑃𝑃𝑃𝑃
𝑉𝑉Σ𝐴𝐴𝐴𝐴𝐴𝐴

∙ 𝐶𝐶𝐶𝐶2 ∙13 [𝑃𝑃𝑃𝑃𝑃𝑃123(𝑀𝑀 + 3) − 𝑃𝑃𝑃𝑃𝑃𝑃123(𝑀𝑀 + 2)]  

𝑂𝑂𝑂𝑂𝑂𝑂234𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀 + 3) = 𝑂𝑂𝑂𝑂𝑂𝑂234(𝑀𝑀 + 3) − 𝑉𝑉𝑃𝑃𝑃𝑃
𝑉𝑉Σ𝐴𝐴𝐴𝐴𝐴𝐴

∙ 𝐶𝐶𝐶𝐶213 ∙ 𝑃𝑃𝑃𝑃𝑃𝑃23(𝑀𝑀 + 2) , 

where 

𝑂𝑂𝑂𝑂𝑂𝑂1234(𝑀𝑀 + 3) = M+3 abundance of Asp418 fragment ion (derived from carbons 1-4 of 
oxaloacetate) 

𝑂𝑂𝑂𝑂𝑂𝑂234(𝑀𝑀 + 3) = M+3 abundance of Asp390 fragment ion (derived from carbons 2-4 of 
oxaloacetate) 
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𝑂𝑂𝑂𝑂𝑂𝑂1234𝑐𝑐𝑐𝑐𝑐𝑐 (𝑀𝑀 + 3) = M+3 abundance of Asp418 after correction for 13CO2 recycling 

𝑂𝑂𝑂𝑂𝑂𝑂234𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀 + 3) = M+3 abundance of Asp390 after correction for 13CO2 recycling 

𝑃𝑃𝑃𝑃𝑃𝑃123(𝑀𝑀 + 3) = M+3 abundance of Ala260 fragment ion (derived from carbons 1-3 of pyruvate) 

𝑃𝑃𝑃𝑃𝑃𝑃123(𝑀𝑀 + 2) = M+2 abundance of Ala260 

𝑃𝑃𝑃𝑃𝑃𝑃23(𝑀𝑀 + 2) = M+2 abundance of Ala232 fragment ion (derived from carbons 2-3 of pyruvate) 

𝐶𝐶𝐶𝐶213 = M+1 abundance of Urea231 fragment ion (derived from liver CO2), 

and the ratio of pyruvate carboxylase flux (VPC) to total anaplerosis (V∑Ana) is determined by: 

𝑉𝑉𝑃𝑃𝑃𝑃
𝑉𝑉Σ𝐴𝐴𝐴𝐴𝐴𝐴

= 𝑂𝑂𝑂𝑂𝑂𝑂1234(𝑀𝑀+4)
𝑃𝑃𝑃𝑃𝑃𝑃123(𝑀𝑀+3) ∙ 𝐶𝐶𝐶𝐶213 . 

All MIDs were corrected for natural stable isotope abundance prior to applying the above equations. 

4.3.5. Calculation of Percent Equilibration in the 4C reactions of the CAC 

If oxaloacetate fully equilibrates with rotationally symmetric CAC intermediates (i.e., fumarate and 

succinate) through reversible exchange, an equal abundance of the M+3 oxaloacetate isotopomers Oac1110 

and Oac0111 would be expected (Figure 4.3D). However, incomplete equilibration would cause the 

abundance of Oac1110 (formed directly from pyruvate carboxylation) to exceed the abundance of Oac0111 

(formed from reversible exchange with fumarate). Once the corrected oxaloacetate M+3 abundances were 

calculated as described above, the abundances of Oac1110 and Oac0111 positional isotopomers formed from 

13C3Lac were determined as follows: 

𝑂𝑂𝑂𝑂𝑂𝑂0111 = 𝑂𝑂𝑂𝑂𝑂𝑂234𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀 + 3)  

𝑂𝑂𝑂𝑂𝑂𝑂1110 = 𝑂𝑂𝑂𝑂𝑂𝑂1234𝑐𝑐𝑐𝑐𝑐𝑐 (𝑀𝑀 + 3) − 𝑂𝑂𝑂𝑂𝑂𝑂234𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀 + 3). 

These abundances were then used to assess the percentage isotope equilibration using the equation: 

%𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �1 − 𝑂𝑂𝑂𝑂𝑂𝑂1110−𝑂𝑂𝑂𝑂𝑂𝑂0111
𝑂𝑂𝑂𝑂𝑂𝑂1110+𝑂𝑂𝑂𝑂𝑂𝑂0111

� × 100% \ 
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4.3.6. Quantification and Statistical Analysis 

All data were analyzed using an unpaired student’s t-test without assuming a consistent standard 

deviation between groups. Biological replicates and significance values for each analysis are noted in 

each figure caption.  

4.4 Results 

4.4.1 Secondary Tracer Effects Influence Estimates of Liver Pyruvate Cycling 

We previously described a base model of in vivo liver metabolism that was applied to regress hepatic CAC 

and gluconeogenic fluxes from MID measurements of plasma glucose obtained from conscious, 

unrestrained mice [29]. The model consists of a biochemical network with hydrogen and carbon atom 

transitions defined for each reaction (Table 4A.1). The model assumes full equilibration of four-carbon 

(4C) intermediates in the CAC and no re-entry of labeled CO2 or other secondary tracers. We used the best-

fit solutions obtained from our prior studies of four long-term fasted mice infused with 13C3Prop/2H tracers 

to simulate the predicted MIDs of liver lactate (Lac261) and alanine (Ala260) fragment ions (Figure 4.2A). 

The simulated MIDs qualitatively resembled the measured enrichments of liver lactate and alanine, 

confirming that the base model is capable of accurately predicting isotope enrichments in other liver-

derived metabolites in addition to glucose.  

The assumption that secondary tracer effects are minimal is a pragmatic first approximation, as analyzing 

sources of secondary tracers and deriving equations that account for those measurements ad hoc may be 

impractical in some cases. However, upon further investigation we found that plasma lactate and urea (an 

indicator of circulating bicarbonate) were enriched significantly above natural isotopic background 

following 120min of 13C3Prop/2H infusion (Fig. 4.2B). Inclusion of these measured lactate and CO2 

enrichments in the model regressions (Fig. 4.2C) increased pyruvate cycling flux estimates (VPC.L, VPCK.L, 

and VPK+ME.L) in the liver (Fig. 4.2D and 4A.1A), similar to the effect of 14CO2 recycling in prior studies 
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using [3-14C]lactate in humans [213]. In summary, these findings indicate that recycling of labeled lactate 

and CO2 to the liver from the plasma is significant, and it likely impacts in vivo estimates of liver pyruvate 

cycling obtained with 13C tracers when applying the assumptions implicit to our base model. 

4.4.2 Incongruent Hepatic Flux Estimates are Obtained with Base Models of 13C3Lac/2H and 

13C3Prop/2H Tracers 

Adjustments were made to the base model of liver metabolism to accommodate a study with the infusion 

of 13C3Lac/2H or 13C3Prop/2H isotopes (Table 4A.1). The infusion rate for each 13C isotope was analogous 

to previous studies [29], [214]. All mice were long-term fasted to induce a gluconeogenic state of the liver. 

No differences in glucose producing fluxes or blood glucose concentrations were observed between 

13C3Lac/2H and 13C3Prop/2H tracer infusions (Figure 4.2E,F and 4A.1B, 4A.2A). Nevertheless, pyruvate 

cycle fluxes (VPC.L, VPCK.L, VPK+ME.L) estimated from 13C3Prop/2H infusions were higher than those estimated 

with an analogous model of 13C3Lac/2H infusion (Figure 4.2E and 4A.1B, 4A.2A, Table 4A.2). Thus, best-

fit pyruvate cycle fluxes obtained from base models were incongruent between 13C3Lac/2H and 13C3Prop/2H 

labeling studies.   

A similar disparity has been observed in perfused livers [109] and in vivo [214]. Others have proposed these 

discrepancies may result from incomplete randomization of 13C atoms derived from 13C-lactate due to its 

lesser interconversion with symmetric 4C-intermediates in the CAC. This is purported to occur for 13C 

tracers that enter the CAC downstream of fumarate (e.g., lactate or alanine), rather than those that enter 

upstream of succinate (e.g., propionate) [109]. Thus, we next examined the effects of incomplete isotope 

randomization on estimated flux ratios in our base models.  

4.4.3 13C3Lac Infusion without 2H Tracers Enables Rigorous Testing of Base Model Assumptions  

Because of the aforementioned uncertainties related to (i) the extent of reversibility of 4C reactions of the 

CAC and (ii) the influence of secondary tracer recycling on liver flux estimates, we designed a study to   
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Figure 4.2: Base model shows evidence of secondary tracer effects and provides different estimates of hepatic fluxes for 
13C3Lac/2H and 13C3Prop/2H tracers  
(A) Model simulated and empirically measured (means ± SEM, n=4) liver metabolite MIDs for lactate (m/z 261) and alanine (m/z 
260) and 
(B) MIDs of plasma and liver lactate (m/z 261) and urea (m/z 231) obtained at isotopic steady state from long-term fasted C57Bl/6J 
mice infused with 13C3Prop/2H isotopes contrasted with MIDs from unlabeled control samples (means ± SEM, n=4) 
(C) Network map of the base model showing infusion of either 13C3Lac or 13C3Prop with 2H2O. Plasma urea was used as a proxy 
measurement for CO2 enrichment 
(D) Flux estimates obtained from the base model using plasma glucose enrichments alone contrasted with those that included 13CO2 
and plasma lactate measurements in the flux regression. Arrows highlighted in green represent significant changes between flux 
estimates obtained from the base model using the two measurement sets. Fluxes expressed as means ± SEM (n=4, *p ≤ 0.05) 
(E) Flux estimates obtained from the base model using plasma glucose enrichments alone in mice infused with either 13C3Lac/2H or 
13C3Prop/2H isotopes. Arrows highlighted in green show significant flux changes between the 13C3Lac/2H and 13C3Prop/2H isotope 
studies using the base model. Fluxes expressed as means ± SEM (n=6-7 *p ≤ 0.05) 
(F) Blood glucose log (mg/dL) during the infusion of 13C3Lac/2H or 13C3Prop/2H isotopes in 19-20hr fasted C57Bl/6J mice (means ± 
SEM, n=6-7) 
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Figure 4.3:Testing the assumptions of secondary tracer effects and fumarate/oxaloacetate equilibration in 13C3Lac infusion 
study 
(A) Hepatic production of labelled glucose from 13C3Lac can be metabolized by the muscle to produce recycled lactate that can 
contribute to secondary tracer effects (Cori cycling)  
(B) MID of liver alanine (m/z 260) obtained at the end of the 13C3Lac infusion. Data are corrected for natural isotope abundance 
and presented as means ± SEM (n=7) 
(C) MID of plasma lactate (m/z 261) obtained at the end of the 13C3Lac infusion. Data are corrected for natural isotope 
abundance and presented as means ± SEM (n=7) 
(D) CAC isotopomers formed directly from 13C3Lac or 13C3Prop tracers. Carboxylation of M+3 pyruvate with 12CO2 produces 
M+3 oxaloacetate (Oac) labeled at carbon positions 1-3 (i.e., Oac1110). Reversible exchange between oxaloacetate and fumarate 
results in randomization of Oac1110 and Oac0111 isotopomers due to the rotational symmetry of fumarate. The extent of 
equilibration between Oac1110 and Oac0111 depends on the rate of oxaloacetate-fumarate interconversion relative to the rate of 
lactate anaplerosis. In contrast, anaplerotic flux from propionate must traverse the symmetric fumarate pool prior to exiting the 
CAC. In the presence of 13CO2 recycling, carboxylation of M+3 pyruvate with 13CO2 produces M+4 oxaloacetate  
(E) The M+4 isotopomer is detected in the MID of liver aspartate (m/z 418), indicative of 13CO2 recycling. Data are corrected for 
natural isotope abundance and presented as means ± SEM (n=7) 
(F) Equilibration of M+3 oxaloacetate isotopomers derived from 13C3Lac. Percent equilibration was assessed using the measured 
MIDs of Asp418 and Asp390 ions as described in STAR Methods. This empirical estimate was compared to theoretical values 
obtained from model-simulated MIDs predicted under assumptions of either 100% or 90% randomization of Oac produced in 
the PC reaction. Data are presented as means ± SEM (n=7); †p≤0.05  
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specifically address these assumptions by infusing mice with 13C3Lac only (Fig. 4A.1A and 4.3A), without 

interference from 2H tracers. Our measurement set was expanded to include additional plasma and liver 

metabolites not typically considered in prior in vivo flux analyses: lactate and alanine in both liver and 

plasma compartments, and glutamate, alpha-ketoglutarate, aspartate, and urea extracted from liver tissue. 

The infusion of 13C3Lac significantly increased the enrichment of circulating and hepatic metabolites (Fig. 

4A.3). We observed significant M+1 and M+2 enrichments of liver alanine (Fig. 4A.3B) and plasma lactate 

(Fig. 4A.3C) after correcting the MIDs for natural background abundance of stable isotopes. The presence 

of these mass isotopomers reflects contributions from both liver pyruvate cycling and extrahepatic Cori 

cycling. The abundance of recycled M+1 and M+2 isotopomers relative to the uncycled M+3 isotopomer 

is higher in liver alanine than in plasma lactate, indicating that intrahepatic pyruvate cycling occurs after 

lactate is extracted from plasma. The presence of M+1 and M+2 isotopomers in plasma lactate also provides 

some evidence that tracer recycling occurs outside the liver, and the contribution from Cori cycling should 

be considered when making quantitative estimates of liver pyruvate cycle fluxes. 

Next, we examined measurements of liver oxaloacetate labeling to assess the randomization of M+3 species 

that traverse the 4C reactions of the CAC (Fig. 4.3D). The measured M+3 and M+4 abundances of the 

Asp418 fragment ion (Fig. 4.3E), which is biosynthetically derived from oxaloacetate, and the M+3 

abundance of Asp390 (Fig. 4A.3A), which is derived from carbons 2-4 of oxaloacetate, were used to 

calculate the fractional abundances of Oac1110 and Oac0111 isotopomers (see Methods). After accounting for 

13CO2 recycling, randomization in the oxaloacetate pool was determined to be ~90% with 13C3Lac as a 

tracer (Fig. 4.3F). A similar calculation can be performed with predicted Ala and Asp MIDs simulated from 

the base model of liver metabolism: a model that accounts for 13CO2 recycling and assumes 90%, but not 

100%, randomization leads to results comparable to those derived from the empirically measured MIDs 

(Fig. 4.3F). These results suggest that in vivo estimates of hepatic metabolism would benefit from relaxing 
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common assumptions regarding secondary tracer recycling and equilibration of 4C intermediates in the 

CAC. 

 
4.4.4 Model Expansion to Account for Extrahepatic Metabolism Significantly Alters Pyruvate Cycle 

and CAC Fluxes 

To relax several constraining assumptions of the base model and accommodate a broader set of plasma and 

tissue measurements, we constructed an expanded model that explicitly accounts for Cori cycling between 

hepatic and extrahepatic compartments (Fig. 4.4A, Table 4A.3). Liver pyruvate was allowed to reversibly 

exchange with liver lactate/alanine and glutamate was allowed to reversibly exchange with α-ketoglutarate. 

Importantly, the triose phosphate isomerase (TPI) and fumarate hydratase (FH) reactions were no longer 

assumed to fully equilibrate, but instead the reaction reversibilities were treated as adjustable parameters 

and determined by model regression of plasma and tissue MIDs. When the expanded model was regressed 

to data from 13C3Lac infusions, the best-fit flux estimates indicated that the FH reaction was ~92% 

equilibrated, matching closely with values determined empirically from analysis of oxaloacetate isotopomer 

ratios (Fig. 4.3F). Because mice were fasted to deplete liver glycogen prior to isotope infusions, the 

regressed estimates of glucose production from glycogen were typically ~1%. Thus, VPYGL.L was treated as 

inactive in the subsequent analyses to improve model reproducibility. 

We compared best-fit solutions obtained from one-compartment (i.e., liver only) or two-compartment 

versions of the expanded model when regressed with plasma and liver MIDs obtained from 13C3Lac 

infusions (Fig. 4.4B and 4A.4). Model expansion did not adversely impact flux precision, as confidence 

intervals for most fluxes were well constrained in both models (Fig. 4A.5A,B). Liver glucose production 

and net lactate uptake fluxes were not significantly different between the two models. Gluconeogenesis 

from PEP accounted for the majority of VEndoRa, with a smaller fraction emanating from glycerol, and total 

liver anaplerotic flux (VPCK.L) was ~4-fold higher than the rate of citrate synthase (VCS.L) in both models 
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(Fig. 4.4B and 4A.4). In contrast, allowing return of lactate through the Cori cycle reduced liver pyruvate 

cycling (VPK+ME.L, VPC.L, VPCK.L) and CAC (VCS.L) fluxes in the two-compartment model relative to the liver-

only model (Fig. 4.4B). Nevertheless, liver pyruvate cycling remained substantial in both models, with 

~57% of total anaplerosis returned to pyruvate (VPK+ME.L) in the two-compartment model compared to ~68% 

in the liver-only model (Fig. 4.4B).  

Pyruvate decarboxylation by the pyruvate dehydrogenase (PDH) complex is generally assumed to be low 

in long-term fasted conditions. Albeit less precise, fluxes regressed using either one- or two-compartment 

expanded models with an active PDH reaction were consistent with low levels of pyruvate decarboxylation 

(VPDH.L was ~5% the rate of total pyruvate flux into the CAC) (Fig. 4A.6). Estimates of liver glutamate 

anaplerosis were particularly sensitive to changing model assumptions about PDH activity, as increased 

glutamate entry effectively offset reductions in VCS.L so that estimates of VMDH.L were unchanged when 

PDH was active (Fig. 4A.4 and 4A.6). Other liver fluxes were not significantly altered by inclusion of PDH 

in the reaction network. Importantly, the effects of Cori cycling to reduce pyruvate cycle and CAC fluxes 

were replicated in models with an active PDH complex (VPDH.L) (Fig. 4A.6). In summary, estimates of liver 

pyruvate cycling and CAC-associated fluxes were sensitive to changing model assumptions regarding 

secondary tracer recycling and equilibration in the CAC. On the other hand, glucose-producing fluxes were 

robust to changes in these same model assumptions. 

Finally, we examined whether an alternative approach for assessing liver pyruvate cycling would be 

similarly impacted by assumptions related to secondary tracer recycling. Perry et al. (2016) have previously 

described a method for estimating liver pyruvate cycling that relies on the measured ratio of [2-13C]alanine 

to [2-13C]malate enrichments following infusion with [3-13C]lactate. We simulated steady-state 13C 

enrichments at the C2 positions of malate and alanine derived from [3-13C]lactate based on best-fit flux 

solutions obtained from either the one- or two-compartment expanded model. 
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Figure 4.4: Expansion of base model in mice infused with 13C3Lac only 
(A) Network diagram showing the expanded model with an extrahepatic compartment to facilitate 
descriptions of Cori cycling in 13C3Lac tracer experiments. A broader set of plasma and tissue measurements 
was used to constrain the model (Table S3) 
(B) Comparison of expanded model flux results with either one compartment (liver only) or two 
compartments showing relative flux estimates in 19-20hr fasted, C57Bl/6J mice infused with 13C3Lac. Fluxes 
are normalized to total glucose production (VEndoRa=100). Fluxes highlighted in green show significant 
changes between the two models.  Data are presented as means ± SEM (n=7); p ≤ 0.05 
(C) [2-13C]alanine/[2-13C]malate ratio predicted for varying liver VPK+ME.L/VPC.L ratios in a simulated study 
using [3-13C]lactate. Simulations were performed using the best-fit solutions obtained from a liver-only or 
two-compartment expanded model regressed to fit the 13C3Lac measurements. Data are presented as means ± 
SEM (n=7); *p ≤ 0.01 determined using unpaired t-test without assuming consistent SD.  
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Both models simulated [2-13C]Ala/[2-13C]Mal ratios that varied linearly with liver VPK+ME/VPC flux, but the 

two-compartment model predicted higher isotopomer ratios compared to the liver-only model (Fig. 4.4C). 

The divergence between the models was most substantial at the lower range of VPK+ME/VPC flux, where the 

two-compartment model predicted a non-zero [2-13C]Ala/[2-13C]Mal ratio even in the absence of liver 

pyruvate cycling due to contributions from extrahepatic sources of [2-13C]Ala. This incongruity provides 

evidence that secondary tracer effects are also embedded in liver flux estimates obtained from other stable 

isotope approaches, since these estimates do not differentiate between pyruvate cycling within the liver or 

in an extrahepatic compartment. 

 
4.4.5 Expanded Two-Compartment Models Provide Consistent Hepatic Flux Estimates Using 

13C3Prop/2H and 13C3Lac/2H Tracers In Vivo 

Plasma and liver tissues extracted from mice in prior 13C3Prop/2H and 13C3Lac/2H studies (assessed with 

base models in Fig. 4.2D-E) were re-analyzed to yield a similar set of metabolite MIDs as shown in Fig. 

4A.3. Expanded models for the exchange of both 13C/12C and 2H/1H atoms were constructed to 

accommodate measurements from 13C3Lac/2H and 13C3Prop/2H experiments (Fig. 4.5A and Table 4A.4). 

These models were similar to the expanded 13C-only model of Fig. 4.4A with the following modifications: 

(i) hydrogen atom transitions were included, (ii) reactions to account for infusion of 2H and 13C3Prop tracers 

were added, (iii) glycogenolysis was assumed active, and (iv) glutamate anaplerosis was assumed inactive. 

The latter assumption was necessary as glutamate MID measurements were not attainable from samples 

collected in 13C3Lac/2H and 13C3Prop/2H experiments, making the VGlu.source flux unidentifiable. Hepatic flux 

estimates obtained from 13C3Lac/2H and 13C3Prop/2H infusions were similar when regressed with expanded 

models: VEndoRa and VEnol.L were comparable (Fig. 4.5B and 4A.7), and pyruvate cycle and CAC fluxes were 

not significantly different (Table 4A.2). Thus, expanded models that allow secondary tracer recycling and 
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data-driven estimation of in vivo reaction reversibility provide congruent liver flux estimates with 

13C3Prop/2H or 13C3Lac/2H.  

To investigate the impacts of model expansion, we compared flux estimates from expanded versus base 

models using the same tracer datasets. There were no significant differences between fluxes estimated by 

the expanded and base 13C3Prop/2H models. However, the expanded 13C3Lac/2H model showed a significant 

elevation in hepatic pyruvate cycling (VPK+ME.L, VPC.L, VPCK.L) and CAC (VCS.L) fluxes compared to the base 

13C3Lac/2H model (Table 4A.2). Thus, model expansion had a more pronounced impact on flux estimates 

obtained from 13C3Lac/2H studies than 13C3Prop/2H studies. 

Finally, we used our expanded model of 13C3Prop/2H experiments to assess a 13C NMR approach for 

estimating liver metabolic fluxes using this same combination of tracers. Jin et al. (2005) have previously 

described a method for estimating liver pyruvate cycling that relies on the measured ratio of 

(D12−Q)/(D12−D23) multiplets obtained from the C2 resonance of plasma glucose. We adapted our base 

and expanded models to simulate these multiplet signals [65] using best-fit flux solutions obtained from 

our 13C3Prop/2H infusions. Both models simulated C2 multiplet ratios that varied roughly in proportion to 

liver VPK+ME/VPC flux, with only slight divergence at higher levels of pyruvate cycling flux (Fig. 4.5C). The 

agreement between the two models can be explained by the approximately offsetting effects of 13CO2 

recycling and Cori cycling on the simulated C2 multiplet ratio. 13CO2 recycling tends to elevate the quartet 

(Q) signal while Cori cycling tends to decrease it, thus making the (D12−Q)/(D12−D23) ratio fairly 

insensitive to model expansion. This empirical finding is not a theoretically generalizable result, however, 

and may depend on the tracer infusion rate, the physiological state of the animals, as well as other 

methodological parameters.       
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Figure 4.5: Comparison of 13C3Lac/2H and 13C3Prop/2H isotopes for hepatic flux estimation using 
expanded models of metabolism 
(A) Network map showing expanded model with 13C3Prop/2H or 13C3Lac/2H isotopes and highlighting 
measured metabolites 
(B) Comparison of two-compartment expanded models regressed to either 13C3Prop/2H or 13C3Lac/2H labeling 
measurements. Absolute flux estimates are shown for 19-20hr fasted, C57Bl/6J mice. Data are presented as 
means ± SEM (µmol/kg/min, n=5)  
(C) Glucose-C2 13C-NMR (D12−Q)/(D12−D23) multiplet ratio predicted for varying liver VPK+ME.L/VPC.L ratios 
using different models of the [13C3]propionate tracer experiment. Simulations were performed using the best-fit 
solutions obtained from the base model (Figure 2D) or two-compartment expanded model (Figure 5B) 
regressed to 13C3Prop/2H measurements. Data are presented as means ± SEM (n=4 for base model, n=7 for 
expanded model) 
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4.5 Discussion 

Isotope-based flux analysis is the gold standard for measurements of in vivo metabolism and has provided 

important insights into whole-body fuel utilization, cancer metabolism, insulin resistance and fatty liver 

disease [107], [109], [163], [215]–[217]. Thus, the use of MFA to model and interpret data from in vivo 

ILEs is only expected to increase. During an effort to improve the robustness of our own MFA platform for 

assessing in vivo liver metabolism, we noted isotope-specific inconsistencies similar to previous 

observations that have given rise to a contentious debate in the literature [109], [218], [219]. Studies with 

13C-propionate administered to human fatty liver patients or high-fat fed mice have reported dramatic 

elevations in liver CAC and anaplerotic fluxes compared to controls [99], [107]. In contrast, studies with 

13C-acetate have reported no increases in CAC or anaplerotic fluxes in fatty liver patients [220]. However, 

the mathematical model used to estimate fluxes in the latter study neglected liver pyruvate kinase (PK) 

activity and therefore did not account for the possibility of liver pyruvate cycling, which is needed to explain 

the labeling patterns typically observed with 13C NMR analysis of plasma samples obtained from 13C-

propionate tracer studies [221]. 

The omission of PK flux in models of liver metabolism is supported by arguments that “futile” pyruvate 

cycling is not energetically feasible, that inhibition of PK by glucagon during fasting should prevent 

pyruvate cycling, and that some experiments with 13C-lactate tracers indicate that liver pyruvate cycling is 

negligible [219]. One explanation for the divergent results of prior studies is that elevated rates of liver 

anaplerosis and pyruvate cycling reported in some cases may have been an artefact of 13C-propionate 

administration [214]. Yet, large estimates for hepatic PK flux have been measured in fasted conditions 

across species with radioactive and stable isotopes [62], [111], [209], [213]. One might expect liver flux 

analysis in perfusion or in vitro to clarify discrepancies in PK flux estimates. However, removal of the liver 

from the physiological milieu can rapidly alter PK activity [222], [223]. Liver PK activity is also responsive 

to endocrine hormone regulation. This was shown using [3-13C]lactate to assess metabolic fluxes in 
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perfused livers from 48hr fasted rats in the presence or absence of glucagon [223]. VPK was ~50% the rate 

of VPCK in control livers, which was reduced to ~20% during the perfusion of glucagon [223]. The 

aforementioned work is one publication among several to yield sizeable estimates of VPK+ME/VPCK and 

VPK+ME/VCS in the liver [209], [213], [224]; it is noteworthy that no research in these cited publications used 

isotopic propionate to estimate liver fluxes.  

Because of the significance of pyruvate cycling in the interpretation of ILEs and the importance of PK in 

regulating liver glycolysis and gluconeogenesis, we sought to examine the incongruent findings of prior 

studies by testing specific modeling assumptions and assessing different combinations of isotope tracers 

and measurements that have been previously used to estimate liver metabolic fluxes in vivo. We confirmed 

that assumptions about extrahepatic tracer recycling and equilibration of 4C CAC intermediates can 

significantly alter estimates of pyruvate cycle fluxes. These assumptions may be sensitive to hormonal and 

nutritional status and to whether the primary tracer enters “upstream” or “downstream” of oxaloacetate. It 

is noteworthy that multi-compartment models with expanded metabolite labeling measurements and fewer 

simplifying assumptions still indicated significant liver pyruvate cycling.  

Previous work suggests that extrahepatic tissues may not process isotopic propionate and lactate 

equivalently [211]. This has been shown in the perfused heart where the provision of propionate can 

influence oxidative metabolism [154]. Nevertheless, liver flux estimates using both isotopes achieved 

reasonable agreement when broader in vivo physiology was modeled. Liver VPK+ME flux was reduced, but 

not eliminated, by the in vivo operation of the Cori cycle in models that accounted for extrahepatic 

metabolism. Total anaplerosis was consistently observed to be higher than the rate of citrate synthase, 

regardless of the isotope used in the study. Estimates of the VPCK/VCS ratio reported here are within the 

range previously observed across modeling platforms and species using various isotopes [62], [99], [100], 

[106], [209], [213], [218], [224]. These observations, perhaps, help to resolve some of the recent concerns 

expressed by others on the incompatibility of 13C-labeled propionate or lactate for the measurement of 
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hepatic fluxes. Our results also underscore the importance of model design and optimal isotope selection 

for the accuracy and precision of MFA [24]. 

No differences in plasma glucose concentration, endogenous glucose production, or gluconeogenesis were 

observed in mice infused with either 13C3Prop or 13C3Lac, consistent with other recently published data 

[29], [109]. The substrate actions of propionate on hepatic metabolism, however, are unclear. Others have 

reported that propionate increases glucose production and plasma glucose concentrations in rats [218]. 

Conversely, administration of propionate with lactate in perfused liver has been shown to inhibit glucose 

production [225]. Similar limitations may also be important in the use of 13C3Lac, as circulating lactate acts 

as a major carbon shuttle between and within numerous tissues in the body [163], and recycled lactate 

significantly contributes to gluconeogenesis during fasting [165]. In fact, infusion of [U-13C6]glucose and 

the generation of enriched lactate from extrahepatic tissues may serve as an experimental tracer strategy for 

estimating endogenous glucose production and gluconeogenesis [75], [110]. In consideration of these data, 

we developed expanded models where liver and extrahepatic metabolism were treated as separate 

compartments bridged by a plasma compartment, and plasma lactate was allowed to equilibrate with 

extrahepatic pyruvate/alanine.  

Affirmative claims regarding the ability of these expanded models to resolve specific peripheral fluxes are 

cautioned as the extrahepatic compartment was not designed to encompass the gamut of metabolism present 

outside the liver. For example, gluconeogenic fluxes from extrahepatic tissues (e.g., kidney) were assumed 

to have a marginal influence on plasma glucose enrichment. This assumption was validated, in part, by the 

acceptable agreement between plasma glucose and liver metabolite enrichments obtained when both were 

simultaneously regressed using expanded models. It is also plausible that other enriched plasma metabolites 

not measured here could influence flux solutions. Though the liver displays some functional heterogeneity, 

liver metabolites were modeled as steady-state components of a single gluconeogenic compartment. This 

is a limited but reasonable assumption for hepatocytes; but not likely to be true for nonparenchymal cells 
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of the liver which could not be separated from tissue extracts. It is important to also consider that our results 

are specific to a discrete set of well controlled, in vivo conditions; the experimental strategy and results 

presented here should not necessarily be extrapolated to other designs (e.g., involving significant variations 

in nutrient load). A carotid artery catheter was surgically implanted to avoid mouse handling during plasma 

sample collection. It is not known whether other sampling procedures might impact the endocrine state of 

the mouse and interfere with flux estimates. 

Model-based regression approaches are needed to account for the complexities of in vivo stable isotope 

experiments and to rigorously test assumptions used in the calculation of metabolic fluxes. The availability 

of flexible modeling tools [e.g., INCA [69], Metran [70], 13CFLUX2 [78]] now make this increasingly 

possible. Comprehensive isotopomer modeling and integrative flux analysis methodologies have the 

potential to reconcile apparently divergent results and identify flux estimates that are sensitive to 

methodological differences or, conversely, are robust to a variety of study designs and assumptions. The 

INCA software is generalizable to tracers with any combination of labeled atoms, and we can readily 

construct models that take differences in tracers or administration route into account. Furthermore, INCA 

can model transient labeling experiments that result from a step input of labeled tracer [69]. As a result, we 

expect that the findings of the current study are applicable to a wide range of experimental systems used in 

metabolism research, and the models can be adapted to other possible study designs. 

Here, we demonstrate the significance of secondary tracer effects and incomplete isotope equilibration on 

flux estimates obtained from in vivo ILEs, which can impact a variety of flux modeling approaches. When 

we expanded our base model by adding several liver-specific metabolite measurements while relaxing 

assumptions related to isotopic equilibrium and tracer recycling, our results indicate that significant liver 

pyruvate cycling persists under fasting conditions. Furthermore, we did not find evidence that exogenous 

propionate administration had a significant effect on glucose-producing or pyruvate cycling fluxes. 

Although estimates of liver pyruvate cycling were influenced by Cori cycle activity, accounting for 
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extrahepatic metabolism in an expanded multi-compartment MFA model did not abolish liver pyruvate 

cycle flux. One potential way to further examine the role and importance of pyruvate cycling in the liver 

would be to utilize liver-specific, genetic or pharmacological inhibition of the PK enzyme.  
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4.7 Appendix: Supplemental figures and tables 

 

Figure 4A.1: Regression of base model to specific measurement sets. Related to Figures 4.2, 4A.2, and Table 4A.1 
(A) Flux estimates obtained from the base model using plasma glucose MIDs alone contrasted with those that included 

13CO2 and plasma lactate measurements in the flux regression. Data are presented as means (µmol/kg/min) ± SEM, 
(n=4) *p<0.05 vs. base model with glucose measurements only 

(B) Base model flux estimates from mice infused with 13C3Lac/2H or 13C3Prop/2H isotopes. Data are presented as means 
(µmol/kg/min) ± SEM (n=6-7) *p<0.05 vs. 13C3Lac/2H base model  
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Figure 4A.2: Confidence interval widths in dual tracer models. Related to Figures 4.2 and 4.5 
95% confidence intervals were calculated for relative hepatic and extrahepatic fluxes in INCA.  

(A) 13C3Lac/2H (SSR Ave: 19.9±3.5, Expected Range: 11-36.8 DOF: 22) and 13C3Prop/2H Base Models (SSR Ave: 32.5±5.4, Expected 
Range: 11-36.8 DOF: 22). VTracer represents the flux VLac.tracer or VProp.tracer in the liver compartment, depending on the experiment 

(B) 13C3Lac/2H (SSR Ave: 78.4±8.3, Expected Range: 49.6-96.2, DOF: 72) and 13C3Prop/2H Expanded Models (SSR Ave: 70.9±8.1, 
Expected Range: 49.6-96.2, DOF: 72). VTracer represents the flux VLac.inf in blood plasma or the flux of VProp.inf in the liver 
compartment, depending on the experiment 

Upper and lower bounds are presented as the mean differences (x-axis) from the relative flux estimates (n=5-7). Ranges are expressed 
relative to VCS.L=100. The Expected Range of the SSR is calculated from the 95% confidence limits of a chi-square cumulative distribution 
function with the indicated degrees of freedom (DOF) 
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Figure 4A.3: Mass isotopomer measurements for plasma and liver metabolites. Related to Figures 3, 4, S4, S5, S6, and Tables S3 and S5.  
(A) Liver lactate (m/z 261, 233), alanine (m/z 260, 232), glutamate (m/z 432, 330), aspartate (m/z 418, 390), α-ketoglutarate (m/z 346), and 

urea (m/z 231) derivative measurements 
(B) Plasma glucose (m/z 301,145,173, 259, 284, 370), alanine, (m/z 260, 232) and lactate (m/z 261, 233) derivative measurements 

Enriched mass isotopomer distributions were determined using GC-MS for metabolites extracted from liver and plasma harvested at the close of 
the experimental period from 19-20hr fasted C57Bl/6J mice infused with 13C3Lac. Unenriched samples were obtained from control C57Bl/6 mice 
for metabolite identification and measurement error determination. Data are presented as means ± SEM (n=7) 
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Figure 4A.4: Expansion of models in mice infused with 13C3Lac. Related to Figures 4, S3, S5 and Tables 
S3 and S5 

(A) Relative flux estimates from expanded model (liver only) using plasma and liver tissue measurements 
(B) Relative flux estimates from the same mice presented in (A) regressed using an expanded model 

including an extrahepatic compartment to facilitate descriptions of Cori cycling; mice were infused 
with 13C3Lac only.    

Data are presented as means ± SEM (n=7) *p<0.05 vs. 13C3Lac expanded model – liver only 
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Figure 4A.5: Confidence interval widths in 13C3Lac studies. Related to Figures 4.4, 4A.4 and 4A.6 
(A) 13C3Lac expanded model – Liver Only for networks without PDH (SSR Ave: 65.1±8.9, Expected Range: 44.6-89.2, DOF: 65) or with PDH 

(+VPDH.L) (SSR Ave: 53.9±6.0, Expected Range 43.8-88, DOF: 64) 
(B) 13C3Lac expanded model with two compartments for networks without PDH (SSR Ave: 80.7±9.6, Expected Range: 63.1-114.7, DOF: 87) or 

with PDH (+VPDH.L) (SSR Ave: 68.4±6.6, Expected Range: 62.2-113.5, DOF: 86) 
Upper and lower bounds are presented as the mean differences (x-axis) from relative flux estimates (n=5-7). Ranges are expressed relative to VCS.L=100. 
The Expected Range of the SSR is calculated from the 95% confidence limits of a chi-square cumulative distribution function with the indicated 
degrees of freedom (DOF) 
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Figure 4A. 6: Testing the assumption of low VPDH.L flux during fasting with 13C3Lac. Related to Figure 
4.4B, 4A.3, 4A.5, and Tables 4A.3 and 4A.5 

(A) Relative flux estimates from expanded model (liver only) using plasma and liver tissue 
measurements and an active pyruvate dehydrogenase complex (+VPDH.L) in the liver 

(B) Relative flux estimates from the same mice presented in (A) using a two-compartment expanded 
model with an active pyruvate dehydrogenase complex (+VPDH.L) in the liver 

Data are presented as means ± SEM (n=7) 
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Figure 4A.7: Comparison of 13C3Lac/2H and 13C3Prop/2H isotopes for hepatic flux estimates using 
expanded models of metabolism. Related to Figures 4.5, 4A.2, and Tables 4A.2 and 4A.4 
(A) Expanded model (two compartments) showing absolute flux estimates in 19-20hr fasted, C57Bl/6J mice 
infused with 13C3Lac/2H or  
(B) 13C3Prop/2H isotopes 
Data are presented as means ± SEM (µmol/kg/min, n=5) 
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Flux Base Model Reaction Network   

  Liver Compartment: Glucose Synthesizing and Oxidative Metabolic Reactions 

VGlc.inf Glucose.inf (AaBbCcDdEeFfg)  Glucose.P (AaBbCcDdEeFfg) 

VEndoRa H6P (AaBbCcDdEeFfg)  Glucose.P (AaBbCcDdEeFfg) 

VPYGL.L Glycogen (AaBbCcDdEeFfg) + H (h)  H6P (AaBhCcDdEeFfg) + H (b) 

VAldo.L T3P (ChBcAab) + T3P (DdEeFfg) + H (i)  H6P (AbBiCcDdEeFfg) + H (h) + H (a) 

VGAPDH.L BPG (ABbCcd) + H (e) + H (f)  T3P (AfBeCcd) + H (b) 

VGK.L Glycerol (AaeBbCcd) + H (f)  T3P (AeBfCcd) + H (a) + H (b) 

VEnol.L PEP (ABCcd) + H (b)  BPG (ABbCcd) 

VPK+ME.L PEP (ABCab) + H (c)  Pyr (ABCabc) 

VLDH.L Lac (ABbCcde)  Pyr (ABCcde) + H (b) 

VLac.source Lac.source (ABaCbcd)  Lac (ABaCbcd) 

VPC.L Pyr (ABCcde) + CO2 (D) + H (f) + H (g)  0.5*Oac (ABCfgD) + 0.5*Oac (DCBfgA) + H (c) +      

VPCK.L Oac (ABCabD)  PEP (ABCab) + CO2 (D) 

VCS.L Oac (ABCcdD) + AcCoA (EFfgh)  Cit (DCcdBFfgEA) + H (h) 

VIDH.L Cit (ABabCDcdEF) + H (e)  Akg (ABCeaDcdE) + H (b) + CO2 (F) 

VOGDH.L Akg (ABCabDcdE)  SucCoA (BCabDcdE) + CO2 (A) 

VSDH.L SucCoA (ABabCcdD) + H (e) + H (f)  0.5*Oac (ABCefD) + 0.5*Oac (DCBefA) + H (a) + H        

VPCC.L PropCoA (ABabCcde) + CO2 (D)  SucCoA (ACcdBabD) + H (e) 

VBicarb.source Bicarb.source (A)  CO2 (A) 

VBicarb.sink CO2 (A)  Bicarb.sink (A) 

VH.inf H.inf (a)  H (a) 

VH.sink H  H.sink 

  

13C-Isotope Infusate Reactions 

VLac.tracer Lac.tracer (ABaCbcd)  Lac (ABaCbcd) 

VProp.tracer Prop.tracer (ABabCcde)  PropCoA (ABabCcde) 

 

Table 4A.1: Base reaction network for 2H/13C MFA. Related to Figures 4.2D, 4.2E and 4A.1.  
The base model of liver metabolism tracks carbon (uppercase) and hydrogen (lowercase) atoms through the 
specified enzymatic reactions. Fluxes are regressed from plasma measurements of glucose MIDs using 
either 13C3Lac/2H or 13C3Prop/2H isotopes. Unenriched sources and sinks are denoted “.source” and “.sink”, 
respectively. 2H and 13C isotopes are introduced into model reactions as “.tracer” sources. Compartments 
are denoted by “.P” for plasma and “.L” for liver. Liver is the default compartment if no compartment is 
designated for a metabolite. Simulations were performed post hoc from fluxes regressed to experimental 
labeling data. Unless otherwise noted here, reaction network and model assumptions have been described 
elsewhere [14] 
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Table 4A.2: Comparison of selected flux estimates between base and expanded models of 13C/2H 
studies. Related to Figures 4.2 and 4.5, 4A.1 and 4A.7. 
 a denotes fluxes that are significantly different between the 13C3Lac/2H and 13C3Prop/2H Base Models. b 
denotes fluxes that are significantly different between the 13C3Lac/2H Base and 13C3Lac/2H Expanded 
Models. Data presented as means (µmol/kg/min) ± SEM (p ≤ 0.05, n=5-7)  

 
 

Flux 
Reaction 

Base Model 
13C3Lac/2H 

Base Model 
13C3Prop/2H 

Expanded Model 
13C3Lac/2H 

Expanded Model 
13C3Prop/2H 

VCS.L 73 ± 6 100 ± 11 183 ± 28 b 195 ± 42 

VEnol.L 131 ± 16 131 ± 11 191 ± 20 189 ± 20 

VPYGL+GK.L 26 ± 4 29 ± 3 15 ± 7 14 ± 4 

VLDH.L 131 ± 16 106 ± 10 191 ± 20 164 ± 17 

VPC.L 141 ± 19 214 ± 22 a 363 ± 59 b 247 ± 69 

VPCK.L 141 ± 19 240 ± 22 a 363 ± 59 b 272 ± 74 

VPK+ME.L 9 ± 5 109 ± 13 a 172 ± 42 b 82 ± 63 
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Flux Expanded Model Reaction Network (13C transitions only) 

  Liver Compartment: Glucose Synthesizing and Oxidative Metabolic Reactions 

VEndoRa G6P (ABCDEF)  Glucose.P (ABCDEF) 

VAldo.L DHAP (ABC) + GAP (DEF)  G6P (CBADEF) 

VTPI.L DHAP (ABC)  GAP (ABC) 

VGAPDH.L BPG (ABC)  GAP (ABC) 

VGK.L Glycerol (ABC)  DHAP (ABC) 

VEnol.L PEP (ABC)  BPG (ABC) 

VPK+ME.L PEP (ABC)  Pyr (ABC) 

VLDH.L Lac (ABC)  Pyr (ABC) 

VLac.source Lac.source (ABC)  Lac (ABC) 

VALT.L Ala (ABC)  Pyr (ABC) 

VPC.L Pyr (ABC) + CO2 (D)  Oac (ABCD) 

VPCK.L Oac (ABCD)  PEP (ABC) + CO2 (D) 

VPDH.L Pyr (ABC)  AcCoA (BC) + CO2 (A) 

VβOxid.L Fat (AB)  AcCoA (AB) 

VCS.L Oac (ABCD) + AcCoA (EF)  Cit (DCBFEA) 

VIDH.L Cit (ABCDEF)  Akg (ABCDE) + CO2 (F) 

VGDH.L Glu (ABCDE)  Akg (ABCDE) 

VGlu.source Glu.source (ABCDE)  Glu (ABCDE) 

VOGDH.L Akg (ABCDE)  SucCoA (BCDE) + CO2 (A) 

VSCS.L SucCoA (ABCD)  Suc* (ABCD) 

VSDH.L Suc* (ABCD)  Fum* (ABCD) 

VFH.L Fum* (ABCD)  Mal (ABCD) 

VMDH.L Mal (ABCD)  Oac (ABCD) 

VBicarb source Bicarb.source (A)  CO2 (A) 

VBicarb sink CO2 (A)  Bicarb.sink (A) 

 

13C-Isotope Infusate Reactions 

VLac.tracer Lac.inf (ABC)  Lac (ABC) 

VLac.inf Lac.inf (ABC)  Lac.P (ABC) 

 

 

Table 4A.3: Expanded reaction network for 13C MFA. Related to Figures 4.4, 4A.4 and 4A.6. (Table and 
caption continues to next page) 
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Extrahepatic Compartment: Glycolytic, and Cori Cycle Reactions 

VHK.E Glucose.P (ABCDEF)  G6P.E (ABCDEF) 

VPYGM.E Glycogen.E (ABCDEF)  G6P.E (ABCDEF) 

VAldo.E G6P.E (ABCDEF)  GAP.E (CBA) + DHAP.E (DEF) 

VTPI.E GAP.E (ABC)  DHAP.E (ABC) 

VGAPDH.E GAP.E (ABC)  BPG.E (ABC) 

VEnol.E BPG.E (ABC)  PEP.E (ABC) 

VPK.E PEP.E (ABC)  Pyr.E (ABC) 

VPyrOxid.E Pyr.E (ABC)  CO2 (A) + CO2 (B) + CO2 (C) 

VLDH.E Pyr.E (ABC)  Lac.P (ABC) 

VLacTransport Lac.P (ABC)  Lac (ABC) 

 

Table 4A.3: Expanded reaction network for 13C MFA. Related to Figures 4.4, 4A.4 and 4A.6.  
Expanded model of liver metabolism for tracking only carbon atoms through the specified enzymatic reactions. 
Fluxes are regressed from liver and plasma measurements for mice infused with 13C3Lac. Unenriched sources and 
sinks are denoted “.source” and “.sink”, respectively. Infused 13C isotopes are introduced into model reactions as 
“.tracer” sources in liver-only models or “.inf” sources for two-compartment models. (Note that these two types 
of tracer input fluxes are not expected to be equivalent in the case of 13C3Lac administration, since VLac.tracer 
represents liver-specific uptake of the tracer while VLac.inf represents infusion of tracer into the plasma 
compartment.) Compartments are denoted by “.P” for plasma, “.E” for extrahepatic, and “.L” for liver. Liver is 
the default compartment if no compartment is designated for a metabolite. The two-compartment model includes 
reactions for the liver, 13C-bicarbonate recycling, and Cori cycle reactions. *denotes that the carbons of succinate 
and fumarate are symmetric. 
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Flux Expanded Model Reaction Network (2H/13C transitions) 

  Expanded Liver Compartment: Glucose Synthesizing and Oxidative Metabolic Reactions 

VGlc.Inf Glucose.inf (AaBbCcDdEeFfg)  Glucose.P (AaBbCcDdEeFfg) 

VEndoRa G6P (AaBbCcDdEeFfg)  Glucose.P (AaBbCcDdEeFfg) 

VPYGL.L Glycogen (AaBbCcDdEeFfg) + H (h)  G6P (AaBhCcDdEeFfg) + H (b) 

VAldo.L DHAP (AabBCcd) + GAP (DeEfFgh) + H (i)  G6P (CdBiAaDeEfFgh) + H (b) + H (c) 

VTPI.L DHAP (AabBCcd) + H (e)  GAP (AbBeCcd) + H (a) 

VGAPDH.L BPG (ABbCcd) + H (a)  GAP (AaBbCcd) 

VGK.L Glycerol (AabBeCcd)  DHAP (AabBCcd) + H (e) 

VEnol.L PEP (ABCcd) + H (b)  BPG (ABbCcd) 

VPK+ME.L PEP (ABCab) + H (c)  Pyr (ABCabc) 

VLDH.L Lac (ABbCcde)  Pyr (ABCcde) + H (b) 

VLac.source Lac.source (ABbCcde)  Lac (ABbCcde) 

VALT.L Ala (ABbCcde) + H (f)  Pyr (ABCcdf) + H (b) + H (e) 

VPC.L Pyr (ABCcde) + CO2 (D)  Oac (ABCcdD) + H (e) 

VPCK.L Oac (ABCabD)  PEP (ABCab) + CO2 (D) 

VCS.L Oac (ABCcdD) + AcCoA (EFfgh)  Cit (DCcdBFfgEA) + H (h) 

VIDH.L Cit (ABabCDcdEF) + H (e)  Akg (ABCeaDcdE) + H (b) + CO2 (F) 

VGDH.L Glu (ABeCabDcdE)  Akg (ABCabDcdE) + H (e) 

VOGDH.L Akg (ABCabDcdE)  SucCoA (BCabDcdE) + CO2 (A) 

VSCS.L SucCoA (ABabCcdD)  Suc* (ABabCcdD) 

VPCC.L PropCoA (ABabCcde) + CO2 (D)  SucCoA (ACcdBabD) + H (e) 

VSDH.L Suc* (ABabCcdD)  Fum* (ABaCdD) + H (b) + H (c) 

VFH.L Fum* (ABaCbD) + H (c)  Mal (ABaCcbD) 

VMDH.L Mal (ABaCbcD)  Oac (ABCbcD) + H (a) 

VBicarb.source Bicarb.source (A)  CO2 (A) 

VBicarb.sink CO2 (A)  Bicarb.sink (A) 

VH.inf H.inf (a)  H (a) 

VH.sink H  H.sink 

 

Table 4A.4: Expanded reaction network for 2H/13C MFA. Related to Figures 4.5 and 4A.7. (Table and 
caption continues to next page) 
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13C-Isotope Infusate Reactions 

VLac.inf Lac.inf (ABbCcde)  Lac.P (ABbCcde) 

VProp.inf Prop.inf (ABabCcde)  PropCoA (ABabCcde) 

 

Expanded Extrahepatic Compartment: Glycolytic, and Cori Cycle Reactions 

VHK.E Glucose.P (AaBbCcDdEeFfg)  G6P.E (AaBbCcDdEeFfg) 

VPYGM.E Glycogen.E (AaBbCcDdEeFfg) + H (h)  G6P.E (AaBhCcDdEeFfg) + H (b) 

VAldo.E G6P.E (CdBiAaDeEfFgh) + H (b) + H (c)  DHAP.E (AabBCcd) + GAP.E (DeEfFgh) + H (i) 

VTPI.E DHAP.E (AabBCcd) + H (e)  GAP.E (AbBeCcd) + H (a) 

VGAPDH.E GAP.E (AaBbCcd)  BPG.E (ABbCcd) + H (a) 

VEnol.E BPG.E (ABbCcd)  PEP.E (ABCcd) + H (b) 

VPK.E PEP.E (ABCab) + H (c)  Pyr.E (ABCabc) 

VALT.E Ala.E (ABbCcde) + H (f)  Pyr.E (ABCcdf) + H (b) + H (e) 

VPyrOxid.E Pyr.E (ABCcde)  H (c) + H (d) + H (e) + CO2 (A) + CO2 (B) + CO2 (C) 

VLDH.E Pyr.E (ABCcde) + H (b)  Lac.P (ABbCcde) 

VLacTransport Lac.P (ABbCcde)  Lac (ABbCcde) 

 

Table 4A.4: Expanded reaction network for 2H/13C MFA. Related to Figures 4.5 and 4A.7.  
Expanded model of liver metabolism for tracking both carbon (uppercase) and hydrogen (lowercase) atoms through 
the specified enzymatic reactions. Fluxes are regressed from liver and plasma measurements using either 13C3Lac/2H 
or 13C3Prop/2H isotopes. See Tables S1 and S3 for nomenclature 
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Metabolite m/z Formula Carbons 

Alanine 260 C11H26O2NSi2 1 2 3    

Alanine 232 C10H26ONSi2  2 3    

Aspartate 390 C17H40O3NSi3  2 3 4   

Aspartate 418 C18H40O4NSi3 1 2 3 4   

α-Ketoglutarate 346 C14H28O5NSi2 1 2 3 4 5  

Glutamate 432 C19H42O4NSi3 1 2 3 4 5  

Glutamate 330 C16H36O2NSi2  2 3 4 5  

Glucose 370 C17H24O8N 1 2 3 4 5  

Glucose 301 C14H21O7 1 2 3 4 5 6 

Glucose 284 C13H18O6N 1 2 3 4   

Glucose 259 C12H19O6    4 5 6 

Glucose 173 C8H13O4     5 6 

Glucose 145 C6H11O3N 1 2     

Lactate 261 C11H25O3Si2 1 2 3    

Lactate 233 C10H25O2Si2  2 3    

Urea 231 C9H23N2OSi2 1      

Table 4A.5:Measured GC-MS fragment ions. Related to all Figures 
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5. Multi-tissue 2H/13C flux analysis reveals reciprocal upregulation of renal 

gluconeogenesis in hepatic PEPCK-C knockout mice 

JCI Insights (2021), 6(11) 
5.1 Abstract 

The liver is the major source of glucose production during fasting under normal physiological conditions. 

However, the kidney may also contribute to maintaining glucose homeostasis in certain circumstances. To 

test the ability of the kidney to compensate for impaired hepatic glucose production in vivo, we developed 

a novel stable isotope approach to simultaneously quantify gluconeogenic and oxidative metabolic fluxes 

in the liver and kidney. Hepatic gluconeogenesis from phosphoenolpyruvate was disrupted via liver-specific 

knockout of cytosolic PEPCK (KO). 2H/13C isotopes were infused in fasted KO and wild-type (WT) 

littermate mice, and fluxes were estimated from isotopic measurements of tissue and plasma metabolites 

using a multi-compartment metabolic model. Hepatic gluconeogenesis and glucose production were 

reduced in KO mice, yet whole-body glucose production and arterial glucose were unaffected. Glucose 

homeostasis was maintained by a compensatory rise in renal glucose production and gluconeogenesis. 

Renal oxidative metabolic fluxes of KO mice increased to sustain the energetic and metabolic demands of 

elevated gluconeogenesis. These results show the reciprocity of the liver and kidney in maintaining glucose 

homeostasis by coordinated regulation of gluconeogenic flux through PEPCK-C. Combining stable 

isotopes with mathematical modeling provides a versatile platform to assess multi-tissue metabolism in 

various genetic, (patho)physiological, and pharmacological settings. 
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5.2 Introduction 

Biochemical methods to quantify gene transcript, enzyme, and metabolite levels are widely used to assess 

metabolic pathway regulation. Though informative and even vital in some contexts, static measurements of 

biomolecule abundance may not be reliable indicators of the movement of substrates through a metabolic 

pathway (i.e., metabolic flux). For example, cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) 

decarboxylates and phosphorylates oxaloacetate to form phosphoenolpyruvate (PEP), yet PEPCK-C 

expression does not solely determine the rate of hepatic gluconeogenesis [2]. Burgess et al. have shown that 

PEPCK-C expression can vary widely while exerting limited control over gluconeogenic flux in perfused 

livers [2]. Similarly, knockout of PEPCK-C from the liver (KO) increases the mRNA of several enzymes 

of the hepatic citric acid cycle (CAC) [226]; however, flux through the CAC is expected to be minimal 

under these conditions [2], [227].  

Isotopic tracer techniques have been developed to address the limitations of static metabolite and enzyme 

measurements in order to more accurately quantify metabolic flux. In general, these methods introduce a 

stable isotope to a live biological system; metabolic fluxes are then determined by analyzing the isotopic 

enrichment of metabolites in that system using mathematical models [172], [228]. Recent studies have 

applied metabolic flux analysis (MFA) to better understand nutrient production and utilization in normal 

and pathologic physiology [48], [164], [166], [167], [217]. Several groups have focused on quantifying 

liver gluconeogenic and oxidative metabolism using stable isotopes, including our own prior contributions 

to assess in vivo fluxes in conscious, catheterized mice and rats [29], [48], [65], [110], [229], [230]. 

It may be reasonable and necessary to assume the kidney has a minor role in endogenous glucose production 

in some conditions, as no methods exist to disambiguate the hepatic and renal contributions to glucose 

production in conscious mice. As a result, the functional interaction between the liver and kidneys in 

controlling metabolic fluxes is largely understudied. For example, gluconeogenesis from PEP is severely 
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impaired in perfused livers isolated from KO mice [2], [227], but rates of whole-body glucose production 

and gluconeogenesis are sufficient to maintain fasting euglycemia [101], [226]. The authors note that two 

other potential sites of gluconeogenesis—the intestines and kidney—may compensate for the absence of 

hepatic PEPCK-C [101]. Studies testing the significance of intestinal gluconeogenesis have been debated 

[231]–[233]; a recent study by Potts et. al [234] showed that PEPCK-C in the small intestine supports 

nutrient processing of lipids and amino acids but is not necessary to maintain normal rates of glucose 

production during fasting. The kidney cortex expresses all gluconeogenic enzymes, including PEPCK, 

FBPase, and G6PC1 and may significantly contribute to glucose production in certain contexts [235]–[237].  

Here we developed an isotopic flux modeling approach to simultaneously quantify gluconeogenic and 

oxidative metabolic fluxes in the liver and kidneys. This technique was then applied to WT and KO mice 

to test the hypothesis that renal gluconeogenic and oxidative metabolism compensates for deficiencies in 

hepatic gluconeogenesis in KO mice. Metabolic fluxes were estimated from the enrichment of plasma, liver, 

and kidney metabolites of WT and KO mice infused with 2H/13C isotopes. The results show that the kidneys 

have significant gluconeogenic potential upon loss of hepatic PEPCK-C. A 30-fold rise in renal 

gluconeogenesis was accompanied by an upregulation in the expression of both PEPCK-C and 

mitochondrial PEPCK (PEPCK-M) isozymes in the kidney. Furthermore, renal CAC fluxes were 

accelerated to sustain the energetic and metabolic demands of glucose production. More broadly, our novel 

multi-compartment model provides a versatile platform to simultaneously assess in vivo hepatic and renal 

metabolism in a variety of experimental systems. 

5.3 Methods 

5.3.1 In vivo Procedures in the Mouse 

Approximately one week prior to experimentation, jugular vein and carotid artery catheters were surgically 

implanted in 15-week-old PEPCK-C WT and KO mice for infusing and sampling, respectively [212]. In 
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vivo infusion studies were performed in long-term (~18h) fasted mice, similar to those described in detail 

elsewhere [29]. Briefly, mice received a bolus of 2H2O to enrich body water at 4.5% and a primed 

(440µmol/kg), continuous (4.4µmol/kg/min) infusion of [6,6-2H2]glucose (abbreviated collectively as 2H) 

for 4 hrs. A primed (1.1mmol/kg), continuous (0.055mmol/kg/min) infusion of [13C3]propionate 

(Cambridge Isotope Laboratories, Tewksbury MA) was administered for ~2hrs prior to plasma sampling 

and tissue excision. Liver and kidney tissue were rapidly excised and freeze-clamped in liquid nitrogen at 

the close of the study. Plasma samples and tissues obtained at the end of the study were stored at −80°C 

prior to analysis. 

5.3.2 Gene Expression Analysis 

RNA was isolated from ~40 mg of powdered kidneys using TRizol reagent (Invitrogen, Cat# 15596026) 

and RNeasy Mini Kit (Qiagen, Cat# 74104), according to manufacturer protocols. cDNA was synthesized 

using the iScript cDNA synthesis kit (Bio-Rad, Cat# 1708891) and diluted tenfold with DI water. cDNA 

was then combined with target primers (defined below) (Integrated DNA Technologies) and iQ SYBR 

Green Supermix (Bio-Rad, Hercules, CA) and analyzed on a CFX96 Real-Time PCR System (Bio-Rad, 

Hercules, CA). Transcripts were quantified using the 2-ΔΔCt method [176] and normalized to the WT group, 

with Ppia as an internal reference. Primer sequences were as follows: Pck1, forward 5′- 

CTGCATAACGGTCTGGACTTC, reverse 5′- CAGCAACTGCCCGTACTCC; Pck2, forward 5′- 

ATGGCTGCTATGTACCTCCC, reverse 5′- GCGCCACAAAGTCTCGAAC; Gcgr, forward 5′- 

TGCACTGCACCCGAAACTAC, reverse 5′- CATCGCCAATCTTCTGGCTGT; G6pc, forward 5′- 

CGACTCGCTATCTCCAAGTGA, reverse 5′- GTTGAACCAGTCTCCGACCA; Ppargc1a, forward 5′- 

TATGGAGTGACATAGAGTGTGCT, reverse 5′- CCACTTCAATCCACCCAGAAAG. All abundances 

were normalized to Ppia: forward 5′- GGCCGATGACGAGCCC, reverse 5′- 

TGTCTTTGGAACTTTGTCTGCAA. 
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5.3.3 Western Blotting 

Protein was extracted from approximately 30 mg of frozen livers and kidneys with CelLytic MT 

mammalian tissue lysis/extraction reagent supplemented with protease inhibitor cocktail, and PMSF (Cat 

No. C3228, Millipore Sigma). Samples were centrifuged at 16,000 g and 4°C for 20 min, and the resulting 

supernatants constituted the total protein extracts. Protein concentrations were determined by a BCA assay 

kit (PierceTM BCA Protein Assay Kit, Cat No. 23225, Thermo Fisher Scientific). Samples were added in 

concentrations of 30 μg/lane for SDS-PAGE Western blotting using NuPAGE 10% Bis-Tris Mini Gels. 

Total protein on the membrane was quantified using Revert 700 Total Protein Stain (Cat No. 926-11016, 

LI-COR Biotechnology). Membranes were probed with antibodies against Pck1 (1:1000 dilution, Cat No. 

10004943, Cayman Chemicals, RRID: AB_10141789) and Pck2 (1:1000 dilution, Cat No. 6924, Cell 

Signaling Technology, RRID: AB_10836185). All western blots were imaged using the LI-COR Odyssey 

Fc imaging system, and signal was quantified using the LI-COR Image Studio software. 

5.3.4 Glucagon Measurement 

Plasma glucagon was determined by the Vanderbilt University Mouse Metabolic Phenotyping Center 

Hormone Assay and Analytical Resources Core using an ELISA assay kit (Cat No. 10-1271-01, Mercodia 

Inc). 

5.3.5 Metabolite Extraction, Derivatization, and GC-MS 

Plasma glucose was extracted using cold acetone to precipitate protein. Samples were air dried at 60°C for 

30 minutes followed by immediate derivatization. Tissue metabolites were isolated from 30-50 mg of liver 

and powdered kidney using a biphasic methanol/water/chloroform extraction. The polar layer of the extract 

was isolated using a fine-tipped pipette and air-dried overnight for storage at −80 °C prior to derivatization. 

Plasma glucose samples were converted into three separate derivatives of di-O-isopropylidene, 

methyloxime pentapropionate, or aldonitrile pentapropionate according to protocols described elsewhere 
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[41]. Polar metabolites from tissue extracts were converted to their methoxime tert-butylsilyl derivatives 

(TBDMS) using MtBSTFA+1% TBDMCS (Cat No. 1-270144-200, Regis Technologies). Derivatized 

samples were injected onto a HP-5ms column (Cat No. 19091S-433, Agilent Technologies) in an Agilent 

7890A gas chromatograph paired with an Agilent 5975C mass spectrometer. Data were acquired in scan 

mode, and metabolites were identified through comparison of mass spectra using a previously generated 

standard library. In some cases, multiple fragments of the same metabolite were used for flux analysis 

(Table S2). Combining data from multiple fragments can improve the precision of flux estimates by 

providing increased information on the position of isotope labeling within a parent molecule. For example, 

the three glucose derivatives described above yield a total of six independent GC-MS fragment ions (301, 

145, 173, 259, 284, and 370 m/z), which each contain a unique subset of carbon and hydrogen atoms derived 

from the parent glucose molecule (Table S2). The accuracy of mass isotopomer distribution (MID) 

measurements was validated through comparison of the theoretical and experimental values of unenriched 

control samples.   

5.3.6 2H/13C Metabolic Flux Analysis (MFA) 

The complete metabolic network and the carbon/hydrogen transitions used in the multi-compartment liver-

kidney model can be found in Table S1. Metabolic equations were constructed from classical biochemical 

reactions and previously defined networks [29], [48]. Glycerol-3-phosphate was included as a measurement 

to help resolve gluconeogenic flux from glycerol and to quantify the extent of equilibration between DHAP 

and GAP in the triose phosphate isomerase reaction. Fumarate and malate measurements were also 

introduced, enabling the model to estimate the extent of equilibration within the four-carbon branch of the 

CAC [48]. Despite deletion of PEPCK-C in the livers of KO mice, the hepatic VPEPCK reaction was included 

in the model to account for potential contributions from PEPCK-M and/or residual PEPCK-C expression 

in liver. The renal flux model was similar to that of the liver except with respect to glycogen. Since the 
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renal cortex does not synthesize appreciable amounts of glycogen [235], [237], glycogen synthase and 

phosphorylase reactions were omitted from the renal compartment.  

MFA was performed by minimizing the sum of squared residuals (SSR) between model-simulated and 

experimental metabolite labeling measurements. The Isotopomer Network Compartmental Analysis 

(INCA) software package [69] was used to develop metabolic models and regress all fluxes. Plasma glucose 

and polar liver and kidney metabolite MIDs were provided as measurements into INCA. The error in these 

measurements was set to either the root-mean square error of unenriched control samples or the standard 

error of measurement of technical GC-MS replicates, whichever was greater. Best-fit metabolic flux 

solutions were determined for each animal by least-squares regression of the experimental measurements 

to the isotopomer network model. To ensure that a global solution was obtained, flux estimations were 

repeated a minimum of 100 times from randomized initial guesses. A chi-square test was used to assess 

goodness-of-fit, and a sensitivity analysis was performed to determine 95% confidence intervals associated 

with the calculated flux values. Initially, fluxes were estimated relative to the combined glucose production 

flux from liver and kidneys (VGluc.Prod) constrained to an arbitrary value of 100. Relative fluxes were 

converted to absolute fluxes using the [6,6-2H2]-glucose infusion rate and mouse weights.  

5.3.7 Statistical Analysis 

Data were analyzed using an unpaired 2-tailed Student’s t-test without assuming a consistent standard 

deviation between groups. Results with a p-value <0.05 were considered significant. 

5.3.8 Study approval 

All protocols were approved by the Vanderbilt Institutional Animal Care and Use Committee. Mice with a 

liver-specific deletion of cytosolic PEPCK (Pck1) driven by the albumin-cre transgene (Pck1lox/loxAlb-cre) 

and wild-type littermates (Pck1lox/lox) were used [226]. Male mice were studied to facilitate comparison to 
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previous studies on Pck1 KO mice. Mice were maintained on a 12-h light-dark cycle with ad libitum access 

to water and a standard rodent chow diet (LabDiet 5001, PMI Nutrition International). 

5.4 Results 

5.4.1 Development of a novel liver-kidney multi-compartment model to quantify glucose-producing 

fluxes in vivo 

To better understand the renal contribution to gluconeogenesis in the absence of hepatic PEPCK-C, a range 

of metabolites were isolated from the plasma, liver, and kidney of WT and KO mice obtained at the end of 

an infusion of 2H2O, [6,6-2H2]glucose, and [13C3]propionate. The mass isotopomer distribution (MID) of 

liver glutamate showed significantly higher enrichment in KO mice compared to WT mice, indicating that 

the livers of KO mice were able to extract the administered 2H/13C isotopes from plasma (Fig. 5.1E). In 

contrast, metabolites measured above the PEPCK node, such as glycerol-3-phosphate (Fig. 5.1C) and 3-

phosphoglyceric acid (Fig. 5.1D), exhibited an inverse trend with lower enrichments observed in the livers 

of KO mice. Arterial glucose enrichment in KO mice (Fig. 5.1F) was also lower than in WT mice, 

suggesting higher contributions from unlabeled sources to plasma glucose production in KO mice. To assess 

hepatic and renal contributions in maintaining euglycemia in the absence of liver PEPCK-C, we developed 

a novel metabolic model (Table 5A.1) to determine fluxes from MIDs of metabolites extracted from the 

plasma, liver, and kidneys (Fig. 5.1).  

Our previously developed liver metabolic reaction network [29] was expanded to include a kidney 

compartment with reactions of glucose production and oxidative metabolism (Fig. 5.2A, Table 5A.1, also 

see Methods). The resulting liver-kidney flux model was used to regress MIDs of measured metabolites 

(Fig. 5.1 and Table 5A.2) and to obtain a best-fit solution for all fluxes in the metabolic network [69] (Fig. 

5A.1-5A.3). The precision of hepatic and renal fluxes was determined by calculating 95% confidence 

intervals for each estimated flux (Fig. 5A.4). The multi-compartment flux model yielded acceptable  
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Figure 5.1. Mass isotopomer distributions (MIDs) of liver, kidney, and plasma metabolites.  
A. alanine B. lactate C. glycerol-3-phosphate D. 3-phosphoglyceric acid and E. glutamate and F. plasma glucose fragments from WT (n=7) 
and KO (n=4) mice. Differences between group means were assessed by a 2-tailed t test (* denotes P < 0.05). Data are means±SEM and 
are not corrected for natural isotope abundance.  
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statistical fits with an average SSR of 56±10 and 89±8 for WT and KO groups, respectively. The goodness-

of-fit was verified by comparing the SSR values to the expected range of the chi-square cumulative 

distribution function (95% confidence interval range of 55−108). The MFA approach is summarized in Fig. 

5.2B with further details available in Methods. 

5.4.2 Liver PEPCK-C KO mice exhibit significant renal gluconeogenesis compared to WT 

littermates 

Fluxes estimated in KO mice using the liver-kidney model indicate diminished CAC activity and glucose 

production by the liver compared to WT mice (Fig. 5.3A), consistent with previous results obtained in 

perfused livers[2], [227]. Hepatic glucose production decreased from 70 to 25 µmol·kg-1·min-1 in KO mice, 

and pyruvate cycling and enolase flux were diminished. The majority of glucose produced from KO livers 

came from glycogen (~40%) and gluconeogenesis from glycerol (~30%) (Fig. 5.3A), consistent with a 

significant decrease in enrichment measured in plasma glucose MIDs (Fig. 5.1F). Furthermore, anaplerotic 

fluxes from glutamate (VGlu.source) and pyruvate (VPC) were significantly decreased, consistent with the 

reduction in total cataplerotic flux (VPEPCK) in livers of KO mice (Fig. 5.3A). The increased enrichment of 

CAC intermediates and decreased enrichment of glycolytic metabolites in the liver—such as 3-

phosphoglycerate—reflected the limited flux of labeled carbon exiting the hepatic CAC of KO mice (Fig. 

5.1C-E). 

The kidney compensated for the absence of hepatic PEPCK-C by increasing glucose production to maintain 

euglycemia (Fig. 5.3B). Renal glucose production was increased from 2 to 34 µmol·kg-1·min-1 through an 

acceleration in gluconeogenic fluxes from both glycerol and PEP. Oxidative, CAC flux also increased to 

sustain the energetic demands of gluconeogenesis. Cataplerotic and anaplerotic fluxes through PEPCK and 

pyruvate carboxylase (PC) were significantly higher in the kidneys of KO mice. Similar to WT hepatic 

metabolism, a large proportion (~75%) of renal cataplerosis was returned to the CAC through pyruvate 

kinase (and malic enzyme) flux in KO mice. To supply gluconeogenic precursors, increases in net   
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anaplerotic fluxes from both propionate and lactate were observed in the kidneys of KO mice. A limited 

amount of net anaplerosis to the CAC from glutamine/glutamate was observed in kidneys, although 

significant exchange flux was detected between glutamate and α-ketoglutarate (α-KG) (Table 5A.3). Given 

Figure 5.2. Liver-kidney multi-compartment model enables 
quantification of tissue-specific fluxes using 2H/13C metabolic flux 
analysis (MFA).  
A. Dual-organ metabolic network model developed for MFA. The top 
compartment shows the metabolic reactions in the liver and the bottom 
represents those in the kidney. Measured metabolites are highlighted in 
green. B. Overview of 2H/13C MFA workflow. Steady-state MFA typically 
has two experimental inputs: external uptake/excretion rates and metabolite 
enrichment measurements. These inputs are integrated into a metabolic 
model constructed using specialized software, such as INCA, which 
determines the best-fit flux solution by least-squares regression. Typical 
outputs from INCA include best-fit flux estimates for all metabolic reactions 
in the network, statistical analysis of the goodness-of-fit, and 95% 
confidence intervals for the estimated fluxes.  
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that KO mice exhibited an increase in renal gluconeogenic flux from PEP, we hypothesized that expression 

of PEPCK also increased in the kidneys of KO mice. In the absence of hepatic PEPCK-C (Fig. 5.3C), we 

observed a ~2-fold increase in PEPCK-C and PEPCK-M (Pck2) expression in the kidney (Fig. 5.3D). These 

results are consistent with increased renal glucose production, gluconeogenesis, and PEPCK flux. 

Interestingly, immunoblots showed negligible protein expression of both liver PEPCK isoforms in KO mice 

(Fig. 5.3C).  G6pc1 knockout in the liver increases renal gluconeogenic gene expression and circulating 

glucagon concentrations, leading to the hypothesis that glucagon-mediated changes in gene expression 

facilitate an increase in renal gluconeogenic flux [238]. Based on these prior findings, we measured plasma 

glucagon concentrations (Fig. 5.3E) and renal gluconeogenic genes regulated by glucagon receptor 

signaling (Fig. 5.3F). Indeed, plasma glucagon levels were elevated in KO mice alongside increased kidney 

expression of the glucagon receptor (Gcgr), gluconeogenic enzymes (Pck1, G6pc1) and mitochondrial 

metabolic transcription factor (Ppargc1a). Taken together, these data indicate that loss of cytosolic PEPCK 

in the liver leads to extrahepatic compensation from the kidneys in order to maintain euglycemia in vivo, 

potentially through increased glucagon action on the kidney.   

5.4.3 Results from the dual organ liver-kidney model are consistent with whole-body flux estimates 

and previous NMR-based 2H/13C studies 

To further validate our results, we applied our previously developed MFA approach [29] to estimate whole-

body gluconeogenic fluxes in WT and KO mice using only the measured plasma glucose MIDs (Fig. 5.1F). 

The flux results obtained from our whole-body gluconeogenic model showed a ~86% increase in citric acid 

cycle activity and ~33% decrease in pyruvate cycling in KO mice with no significant changes in endogenous 

glucose production (Fig. 5.4), consistent with results from prior NMR-based 2H/13C studies [101]. Next, we 

compared these whole-body flux estimates with results from the multi-compartment liver-kidney model. 

Since the whole-body flux model does not distinguish between hepatic and renal gluconeogenic  
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Figure 5.3: Liver PEPCK-C KO mice exhibit significant renal gluconeogenesis compared to WT littermates.  
A. Absolute hepatic fluxes for WT (n=7) and KO (n=4) mice, analyzed by a 2-tailed t test where * P < 0.05. The map represents 
the hepatic compartment shown in Fig. 2B, Table S1. Measured metabolic nodes are shown in green (also see Table S2, S3). 
Arrows with green highlighting represent fluxes that are reduced in the livers from KO mice compared to WT littermates. B. 
Absolute renal fluxes for WT (n=7) and KO (n=4) mice, analyzed by a 2-tailed t test where * P < 0.05. The map represents 
the renal compartment shown in Fig. 2B, Table S1. Measured metabolic nodes are shown in green (also see Table S2, S3). 
Arrows with red highlighting represent fluxes that are increased in the kidneys from KO mice compared to WT littermates. 
Pck1 and Pck2 fold change in the C. liver and D. kidney of KO (n=4) relative to WT (n=4) mice. Differences between group 
means were assessed by a 2-tailed t test (* denotes P < 0.05, † denotes P < 0.10). Protein expression was normalized to total 
protein content in each lane. E. Plasma glucagon concentration after ~20h of fasting in WT (n=4) and KO (n=6) mice, analyzed 
by a 2-tailed t test where * P < 0.05. F. Fold change in gene expression in kidneys of KO (n=4) relative to WT (n=4) mice, 
analyzed by a 2-tailed t test where * P < 0.05. 
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contributions, we combined the liver and kidney flux estimates from our dual organ model to obtain 

equivalent flux estimates. Summation of hepatic and renal fluxes showed strong agreement with whole-

body flux estimates (Fig. 5.4). Endogenous glucose production (VEndoRa), propionate uptake (VPCC), total 

anaplerosis (VAnaplerosis), net gluconeogenesis (VEnol) and contributions from glycerol and glycogen 

(VPYGL+GK) were comparable between the two metabolic models. Though not significant, the opposing trend 

in VPYGL+GK observed between the two models may result from an improvement in the resolution of glycerol 

fluxes with the integration of glycerol-3-phosphate MID measurements. While the single-compartment 

model showed a decrease in VPEPCK, VPK+ME, and VPC, combined flux estimates from the dual-organ model 

showed no statistical differences in pyruvate cycling between WT and KO mice. This distinction likely 

stems from the use of tissue-specific alanine and lactate MID measurements in the dual-organ model, 

providing additional constraints to improve the resolution of pyruvate cycle fluxes. The combined 

magnitude of hepatic and renal fluxes were in general agreement with whole-body flux estimates (Fig. 5.4) 

and with those measured by other groups [101]. 
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Figure 5.4: Comparison of flux estimates between the dual-organ model and a previously developed single-compartment model.  
Results from our previously developed single- compartment model [29], which estimates fluxes using plasma glucose enrichments only (blue), were 
compared to the sum of hepatic and renal fluxes estimated using the dual organ model developed here (orange). Flux values are reported in 
µmol/kg/min (mean ± SEM) for WT and KO mice (n ≥ 4), analyzed by a 2-tailed t test where * P < 0.05. Pathways highlighted in green indicate a 
significant flux reduction in KO mice, whereas pathways highlighted in red indicate a significant flux increase in KO mice compared to WT 
littermates using the single-compartment model. 
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5.5 Discussion 

Prior studies have assessed the effects of liver PEPCK-C inhibition on hepatic gluconeogenic and 

intermediary metabolism in vivo or in perfused livers. However, no studies have introduced methods that 

separate the hepatic and renal contributions to gluconeogenic and oxidative metabolic fluxes in vivo. Here, 

we present a novel mathematical modeling approach that quantifies the metabolic contributions of the liver 

and kidneys to maintain glucose homeostasis. Similar to results shown in perfused livers [2], [227], KO 

mice diminished hepatic gluconeogenesis, CAC activity, anaplerosis, and pyruvate cycling in vivo. The 

present study quantifies a previously undefined interaction whereby the kidneys of KO mice exhibited 

marked upregulation in gluconeogenic flux, anaplerosis/cataplerosis, and oxidative metabolism (Fig. 5.5). 

These changes in renal fluxes correlated with an increase in the expression of downstream targets of 

glucagon signaling.  

 
Figure 5.5: Metabolic pathways affected by knockout of hepatic PEPCK-C.  
Results from our novel liver-kidney metabolic model show that loss of hepatic PEPCK-C diminishes gluconeogenesis, 
CAC activity, anaplerosis, and pyruvate cycling in the liver. Increases in renal gluconeogenesis, CAC activity and 
anaplerosis help maintain euglycemia during fasting. Pathways highlighted in green indicate a significant flux 
reduction in the livers of KO mice, whereas pathways highlighted in red indicate a significant flux increase in the 
kidneys of KO mice compared to WT littermates.   
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Fluxes calculated from the enrichment of plasma glucose alone have shown that whole-body glucose 

production is generally unaffected while gluconeogenesis is modestly reduced by the loss of hepatic 

PEPCK-C [101]. Not only do we confirm those previous results, but we also characterize the metabolic 

flux compensation that occurs in the kidney to maintain euglycemia during inhibition of hepatic 

gluconeogenesis. Consistent with She et al., we observed a trend toward decreased VEndoRa in KO mice, 

suggesting the kidneys may not fully compensate for the loss of hepatic gluconeogenic capacity. The results 

here provide additional evidence that plasma glucose enrichment is reflective of liver metabolism under 

ordinary fasting conditions. Generally speaking, hepatic fluxes in WT mice estimated with the liver-kidney 

model are qualitatively similar to those determined from a single-compartment model of whole-body 

glucose metabolism (Fig. 5.4). For example, total cataplerosis (VPCK) exceeds CAC-derived 

gluconeogenesis (VEnol), with surplus PEP returning to the CAC through pyruvate cycling (VPK+ME) in both 

models. CAC activity is also similar in magnitude to glucose production. Thus, approximations of hepatic 

metabolism from glucose enrichment alone may be reasonable in WT mice when more comprehensive 

techniques are unavailable or impractical.        

When modeling both in vivo liver and kidney metabolism, removal of hepatic PEPCK-C diminishes liver 

gluconeogenesis, cataplerosis, anaplerosis, and CAC metabolism. These results are consistent with the 

fundamental coupling of energy-consuming, biosynthetic reactions and energy-producing reactions in the 

liver. Fluxes that deliver substrates for both oxidation and glucose synthesis are lowered when the liver is 

incapable of performing gluconeogenesis from the CAC. In fact, Berglund et al. have shown that fasting 

and glucagon administration lose their effects on the energy state of the liver when PEPCK-C is removed 

[239]. PC and PEPCK are the prominent anaplerotic and cataplerotic nodes controlling the net flow of 

substrates in and out of the CAC and thereby regulate the initial steps of gluconeogenesis. PEPCK-C 

removal decreased hepatic pyruvate cycling, as VPEPCK, VPK+ME, and VPC were diminished in vivo. It was 
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recently shown that loss of PC from the liver significantly decreases the expression of PEPCK, reflecting a 

codependent coupling of gene expression and metabolite flux [110]. In some conditions, cataplerotic 

activity of PEPCK promotes anaplerotic entry of carbon via glutaminolysis and uptake of glutamine [240]. 

Our results show that the inverse relationship exists whereby loss of PEPCK-C decreases hepatic 

anaplerosis from all sources, including from sources that flux to α-KG (e.g. glutamate).   

Until now, studies have relied on gene/enzyme expression or static metabolite assays to probe the impact 

of impaired hepatic gluconeogenesis on renal metabolic fluxes. Our study builds upon previous work [226], 

[238], [241] by quantifying the specific hepatic and renal flux contributions to glucose production in KO 

mice. Not only did the expression of gluconeogenic enzymes increase, but, more importantly, the rate of 

metabolic flux through renal gluconeogenesis and the CAC increased upon loss of liver PEPCK-C. 

Comparable to fluxes observed in WT livers, we observed significantly higher VPEPCK, VPC, and CAC fluxes 

in the kidneys of KO mice. These data are consistent with previous studies showing a reliance on renal 

glucose production during the anhepatic phase of liver transplantation in humans [242]. A recent in vivo 

isotope labeling study reported increased enrichment of metabolites and expression of gluconeogenic genes 

in the kidney after knockout of hepatic PC, a major anaplerotic enzyme in the liver [110]. It stands to reason 

that metabolite MIDs from that study [110] would be a rich data source to simultaneously regress renal and 

hepatic fluxes using the model developed here. 

Cytosolic and mitochondrial PEPCK exhibit similar catalytic properties [243], yet PEPCK-M may only 

account for up to 5% of the total hepatic PEPCK activity in mice and rats [244], [245]. It has also been 

reported that PEPCK-M requires the presence of PEPCK-C to substantially affect CAC activity and 

gluconeogenesis in perfused livers [246]. The analyses presented here are consistent with these results, as 

the loss of PEPCK-C inhibited gluconeogenesis from PEP and significantly lowered PEPCK-M expression. 

This effect is similar to the relationship between Pdk1 and Pdk2 isozymes in the liver, where ablation of 

Pdk1 has a destabilizing effect on the protein levels of Pdk2 [247]. In contrast, the expression of genes that 
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mediate gluconeogenesis and oxidative metabolism in the kidney was increased as a result of hepatic 

PEPCK-C deletion. Some of these changes in gene expression may emanate, in part, through increased 

glucagon signaling in the kidney [238]; the influence of other potential regulators (e.g., glucocorticoids, 

acidosis, etc.) [238], [241] was not evaluated here. Interestingly, we observed increased renal expression of 

Pck2 protein but not Pck2 mRNA in KO mice. Unlike PEPCK-C, it is less certain whether glucoregulatory 

hormones like glucagon and insulin influence PEPCK-M expression, which has generally been described 

as constitutive in nature [243], [248], [249]. The results presented here suggest that renal PEPCK-M 

expression is post-transcriptionally upregulated upon the loss of hepatic PEPCK-C.     

Recent work from others has helped characterize the contribution of glucose and other circulating 

metabolites to the CAC in multiple organs [164], [167]. Though our work captures some of systemic fluxes, 

it focuses more heavily on characterizing intermediary metabolism within the liver and the kidneys. We 

expect this novel approach to be leveraged to rigorously investigate liver-kidney interactions in models of 

diabetes, obesity, fatty liver disease, and steatohepatitis. One advantage of our methodology is that it does 

not depend on measurements of renal arterial-venous differences, which require additional surgical 

expertise and may introduce some analytical imprecision [231]. Thus, this technology may provide new 

avenues to better understand the reciprocal or even pathophysiological relationship between the liver and 

kidneys in various contexts.  

As detailed in Results, the dual-organ model relies upon assumptions that introduce some inherent 

limitations:  

The model does not account for additional sources of glucose synthesis other than the liver and kidney. 

While some studies indicate that glucose production by the small intestine is marginal in certain conditions 

[231], [234], our results do not strictly exclude the possibility of increased intestinal gluconeogenesis during 

a chronic deficiency in hepatic glucose production, as suggested elsewhere [241]. If the intestines were to 
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generate a significant amount of plasma glucose and exhibit a unique gluconeogenic metabolism, we would 

anticipate a significant lack-of-fit between simulated and measured isotopomers. Yet, statistically 

acceptable fits were obtained for all data sets in our study. That said, it is possible that the intestines have 

an undetectable (e.g., redundant) influence on whole-body adaptations to impaired hepatic gluconeogenesis 

that cannot be distinguished from kidney or liver contributions based on our available measurements.  

No other study has quantified in vivo renal glucose production and other associated metabolic fluxes in 

conscious, unrestrained mice. Thus, renal flux estimates reported here do not benefit from measurements 

obtained through arteriovenous balance and radio isotope-dilution methods and may not be reflective of 

cross-species differences [235], [250]–[253].  

The dual-organ model estimated significantly different renal fluxes between WT and KO groups, yet a 

comparison of uncorrected MIDs showed similar enrichments for many kidney metabolites in WT and KO 

mice. This may be explained by the fact that MIDs are a composite of 2H and 13C enrichment and, as a 

result, a basic analysis of individual isotopomer patterns will not provide the resolution of a model-based 

flux regression. Furthermore, isotope incorporation into measured metabolite pools can result from a 

combination of net flux as well as reversible/cyclic exchange flux of the tracer. Hence, many pools become 

enriched with isotope due to metabolite turnover in the absence of net flux through a pathway. The modeling 

software used in these studies (INCA) provides a platform to rigorously test various modes of isotope 

incorporation while accounting for mass balance constraints on all pathway intermediates, thus enabling 

the detection of non-obvious changes in metabolic flux that could be overlooked by direct inspection of the 

mass isotopomer data [69]. As a result, most fluxes were reasonably well resolved in both liver and kidney 

compartments.  

The MFA approach used here relies on measuring a validated panel of labeled metabolites (Table 5A.2) 

that is sufficient to precisely quantify gluconeogenic and oxidative fluxes in our metabolic models. This 
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targeted approach was not designed to assess global changes in adjacent or overlapping metabolic pathways, 

which might be revealed through an untargeted metabolomics analysis of tissue and plasma extracts.  

Lastly, a unique facet of our experimental system is the ability to measure plasma glucose enrichment over 

time and verify steady state conditions over a similar isotope-infusion time course [29]. However, end-point 

measurements of tissue metabolites can be obtained only in a terminal sample and, therefore, steady-state 

assumptions for liver and kidney metabolites cannot be confirmed.   

In summary, this study describes the development and application of a novel liver-kidney metabolic model 

that can be used to simultaneously assess intermediary metabolism in the liver and kidneys of individual 

mice, based on measurements of isotope enrichment in tissue and plasma metabolites. Our flux model 

shows that isotopic tracing and metabolic flux analysis are extensible tools that can aid in shaping our 

understanding of in vivo mammalian metabolism. Applying our dual-organ model, we show that mice 

lacking hepatic PEPCK-C maintain euglycemia by upregulating renal glucose production and oxidative 

metabolism. Loss of hepatic PEPCK-C diminishes gluconeogenesis, CAC activity, anaplerosis, and 

pyruvate cycling in the liver. Compensatory increases in expression of both PEPCK isozymes in the kidneys 

facilitates increased gluconeogenesis and cataplerosis from the CAC. Although hepatic PEPCK-C knockout 

has been extensively studied, its cross-regulatory effects on renal metabolism have not been rigorously 

defined. The integration of numerous measurements of metabolite enrichment from the plasma, liver, and 

kidney into a comprehensive liver-kidney metabolic model provides a platform to simultaneously evaluate 

hepatic and renal metabolism in vivo in other genetic, (patho)physiological, or pharmacological contexts. 
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5.7 Appendix: Supplemental figures and tables 

  

Figure 5A.1: Measured and predicted fractional enrichments of liver metabolites for WT and KO mice.  
Linearity analysis of measured and predicted liver metabolite MIDs for A. WT (n=7) and B. KO (n=4) mice. Values on 
the x and y axes (means±SEM) represent the uncorrected measured and predicted fractional enrichments, respectively. 
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Figure 5A.2: Measured and predicted fractional enrichments of kidney metabolites for WT and KO mice.  
Linearity analysis of measured and predicted kidney metabolite MIDs for A. WT (n=7) and B. KO (n=4) mice. Values on the x and y 
axes (means±SEM) represent the uncorrected measured and predicted fractional enrichments, respectively. 



125 

 

  

Figure 5A.3: Measured and predicted fractional enrichments of plasma glucose for WT and KO mice.  
Linearity analysis of measured and predicted plasma glucose MIDs for A. WT (n=7) and B. KO (n=4) mice. Values on the x and y axes (means±SEM) 
represent the uncorrected measured and predicted fractional enrichments, respectively. 
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Figure 5A.4: Mean hepatic and renal fluxes with 95% confidence intervals represented as error bars.  
Absolute A. hepatic and B. renal fluxes for WT (n=7) and KO (n=4) mice 
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Figure 5A.5: Protein expression of Pck1 (PEPCK-C) and Pck2 (PEPCK-M) in the liver and kidney.  
Total protein stain used to determine fold changes in protein expression of Pck1 and Pck2 in the A. liver and B. 
kidney of KO (n=4) and WT (n=4) mice.   



128 

 

Table 5A.1: Dual organ metabolic reaction network for 2H/13C MFA.  
Network maps of liver and kidney metabolism track carbon (uppercase) and hydrogen (lowercase) atoms 
through model reactions. Metabolites used to regress fluxes in both compartments are shown in Table S2. 
Metabolites in the liver, kidney, and plasma compartments are denoted as “.L”, “.K”, and “.P,” respectively. 
Unenriched sources and sinks for “H” and “CO2” are annotated as “.source” and “.sink”, respectively. 2H 
and 13C isotopes are introduced into model reactions as “iso.uptake”. The Dummy metabolite and reaction 
VFixed were used to constrain the relative glucose production rate to 100.   
 

Hepatic Compartment 
Flux Reaction Network 

VGlucProd.L G6P.L (AaBbCcDdEeFfg) → Gluc.P (AaBbCcDdEeFfg) + Dummy 
VPYGL.L Glycogen.L (AaBbCcDdEeFfg) + H (q) → G6P.L (AaBqCcDdEeFfg) + H (b) 
VPGI.L F16BP.L (CcdBAaDeEfFgh) + H (q) → G6P.L (CcBqAaDeEfFgh) + H (d) 
VAld.L DHAP.L (AabBCcd) + GAP.L (DeEfFgh) → F16BP.L (CcdBAaDeEfFgh) + H (b) 
VTPI.L DHAP.L (AaqBCcd) + H (z) ↔ GAP.L (AqBzCcd) + H (a) 
VG3PDH.L G3P.L (AabBcCde) ↔ DHAP.L (AabBCde) + H I 
VGK.L Glycerol.L (AabBcCde) → G3P.L (AabBcCde) 
VGAPDH.L BPG.L (AbbCcd) + H (a) → GAP.L (AaBbCcd) 
VEnol.L PEP.L (ABCcd) + H (b) → BPG.L (AbbCcd) 
VPCK.L Oac.L (ABCabD) → PEP.L (ABCab) + CO2.L (D) 
VPK+ME.L PEP.L (ABCab) + H I → Pyr.L (ABCabc) 
VPC.L Pyr.L (ABCcde) + CO2.L (D) → Oac.L (ABCcdD) + H I 
VLDH.L Lac.L (AbbCcde) ↔ Pyr.L (ABCcde) + H (b) 
VLac Source.L Lac.Source (AbbCcde) → Lac.L (AbbCcde) 
VCS.L Oac.L (ABCcdD) + AcCoA.L (Effgh) → Cit.L (DccdBFfgEA) + H (h) 
VICDH.L Cit.L (AbabCDcdEF) + H I ↔ α-KG.L (ABCeaDcdE) + H (b) + CO2.L (F) 
VaKGDH.L α-KG.L (ABCabDcdE) → SucCoA.L (BcabDcdE) + CO2.L (A) 
VSCS.L SucCoA.L (AbabCcdD) → Suc.L (AbabCcdD) 
VSDH.L Suc.L (AbabCcdD) ↔ Fum.L (AbaCdD) + H (b) + H (c) 
VFM.L Fum.L (AbaCbD) + H I ↔ Mal.L (AbaCcbD) 
VMDH.L Mal.L (AbaCbcD) ↔ Oac.L (ABCbcD) + H (a) 
VCO2 Source.L BicarbL.source (A) → CO2.L (A) 
VCO2 Sink.L CO2.L (A) → BicarbL.sink (A) 
VIso.uptake.L PropCoA.inf (AbabCcde) → PropCoA.L (AbabCcde) 
VPCC.L PropCoA.L (AbabCcde) + CO2.L (D) → SucCoA.L (AccdBabD) + H I 
VALT.L Ala.L (AbbCcde) + H (f) ↔ Pyr.L (ABCcdf) + H (b) + H I 
VGDH.L Glu.L (AbeCabDcdE) ↔ α-KG.L (ABCabDcdE) + H I 
VGlu Source.L Glu.Source (AbeCabDcdE) → Glu.L (AbeCabDcdE) 

Renal Compartment 

Flux Reaction Network 
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VGlucProd.K G6P.K (AaBbCcDdEeFfg) → Gluc.P (AaBbCcDdEeFfg) + Dummy 
VPGI.K F16BP.K (CcdBAaDeEfFgh) + H (q) → G6P.K (CcBqAaDeEfFgh) + H (d) 
VAld.K DHAP.K (AabBCcd) + GAP.K (DeEfFgh) → F16BP.K (CcdBAaDeEfFgh) + H (b) 
VTPI.K DHAP.K (AaqBCcd) + H (z) ↔ GAP.K (AqBzCcd) + H (a) 
VGAPDH.K BPG.K (AbbCcd) + H (a) → GAP.K (AaBbCcd) 
VG3PDH.K G3P.K (AabBcCde) ↔ DHAP.K (AabBCde) + H I 
VGK.K Glycerol.K (AabBcCde) → G3P.K (AabBcCde) 
VEnol.K PEP.K (ABCcd) + H (b) → BPG.K (AbbCcd) 
VPCK.K Oac.K (ABCabD) → PEP.K (ABCab) + CO2.K (D) 
VPK+ME.K PEP.K (ABCab) + H I → Pyr.K (ABCabc) 
VPC.K Pyr.K (ABCcde) + CO2.K (D) → Oac.K (ABCcdD) + H I 
VLDH.K Lac.K (AbbCcde) ↔ Pyr.K (ABCcde) + H (b) 
VLac Source.K Lac.Source (AbbCcde) → Lac.K (AbbCcde) 
VCS.K Oac.K (ABCcdD) + AcCoA.K (Effgh) → Cit.K (DccdBFfgEA) + H (h) 
VICDH.K Cit.K (AbabCDcdEF) + H I ↔ α-KG.K (ABCeaDcdE) + H (b) + CO2.K (F) 
VaKGDH.K α-KG.K (ABCabDcdE) → SucCoA.K (BcabDcdE) + CO2.K (A) 
VSCS.K SucCoA.K (AbabCcdD) → Suc.K (AbabCcdD) 
VSDH.K Suc.K (AbabCcdD) ↔ Fum.K (AbaCdD) + H (b) + H (c) 
VFM.K Fum.K (AbaCbD) + H I ↔ Mal.K (AbaCcbD) 
VMDH.K Mal.K (AbaCbcD) ↔ Oac.K (ABCbcD) + H (a) 
VCO2 Source.K BicarbK.source (A) → CO2.K (A) 
VCO2 Sink.K CO2.K (A) → BicarbL.sink (A) 
VIso.uptake.K PropCoA.inf (AbabCcde) → PropCoA.K (AbabCcde) 
VPCC.K PropCoA.K (AbabCcde) + CO2.K (D) → SucCoA.K (AccdBabD) + H I 
VALT.K Ala.K (AbbCcde) + H (f) ↔ Pyr.K (ABCcdf) + H (b) + H I 
VGDH.K Glu.K (AbeCabDcdE) ↔ α-KG.K (ABCabDcdE) + H I 
VGlu Source.K Glu.Source (AbeCabDcdE) → Glu.K (AbeCabDcdE) 

Transport Reactions 
V66Gluc Gluc.inf (AaBbCcDdEeFfg) → Gluc.P (AaBbCcDdEeFfg) 
VHinf H.inf (a) → H (a) 
VHsink H → Sink 
VFixed Dummy → Sink 
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Table 5A.2: GC-MS fragment ions of measured metabolites regressed using the metabolic model for MFA.  
HR and HS refer to diastereotopic hydrogens attached to each carbon. Hydrogens marked with an asterisk (H*) are modeled as equivalent. 
 

 

 

 

  

Metabolite m/z Derivative Formula Carbons and Hydrogens 

Alanine 260 C11H26O2Nsi2 C1 C2 H1 C3 H2* H3* H4*       

Alanine 232 C10H26ONSi2  C2 H1 C3 H2* H3* H4*       

Glutamate  432 C19H42O4Nsi3 C1 C2 H1 C3 H2R H3S C4 H4R H5S C5    

Glutamate 330 C16H36O2Nsi2  C2 H1 C3 H2R H3S C4 H4R H5S C5    

Glycerol-3-Phosphate 571 C20H51O6Si4P C1 H1R H2S C2 H3 C3 H4R H5S      

Glucose 370 C17H24O8N C1  C2 H2 C3 H3 C4 H4 C5 H5    

Glucose 301 C14H21O7 C1 H1 C2 H2 C3 H3 C4 H4 C5 H5 C6 H6R H7S 

Glucose 284 C13H18O6N C1  C2 H2 C3 H3 C4 H4      

Glucose 259 C12H19O6       C4 H4 C5 H5 C6 H6R H7S 

Glucose 173 C8H13O4         C5 H5 C6 H6R H7S 

Glucose 145 C6H11O3N C1 H1 C2 H2          

Lactate 261 C11H25O3Si2 C1 C2 H1 C3 H2* H3* H4*       

Lactate 233 C10H25O2Si2  C2 H1 C3 H2* H3* H4*       

Urea 231 C13H32N2Osi2 C1             
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Table 5A.3: Metabolic fluxes in the liver and kidneys of WT and KO mice (Related to Fig. 5.3) 
Absolute fluxes (mean ± SEM) in the hepatic and renal compartment of WT (n=7) and KO (n=4) mice. 
Exchange fluxes have been normalized to a scale of 0−100 by dividing each exchange flux (Vexch) by the 
sum Vexch+VGluc.Prod, where VGluc.Prod is the combined glucose production flux from liver and kidneys. 
Significant flux differences between WT and KO mice are marked with an asterisk, analyzed by a 2-tailed 
t test where * P < 0.05. 

 WT KO 

Liver Compartment 
VGlucProd.L* 69 ± 5 21 ± 5 

VPYGL.L 8 ± 1 10 ± 4 

VPGI.L* 61 ± 5 11 ± 4 

VAld.L* 61 ± 5 11 ± 4 

VTPI.L* 47 ± 3 4 ± 3 

VTPI.L exchange 78 ± 7 100 ± 1 

VG3PDH.L* 15 ± 4 14 ± 2 

VG3PDH.L exchange 12 ± 3 32 ± 23 

VGK.L 15 ± 4 14 ± 2 

VGAPDH.L* 107 ± 7 8 ± 6 

VEnol.L* 107 ± 7 8 ± 6 

VPCK.L* 347 ± 40 12 ± 11 

VPK+ME.L* 240 ± 37 5 ± 5 

VPC.L* 307 ± 37 10 ± 9 

VLDH.L* 45 ± 9 1 ± 1 

VLDH.L exchange* 54 ± 10 3 ± 2 

VLac Source.L* 45 ± 9 1 ± 1 

VCS.L* 83 ± 8 17 ± 12 

VICDH.L* 83 ± 8 17 ± 12 

VICDH.L exchange* 100 ± 1 26 ± 25 

VaKGDH.L* 104 ± 10 17 ± 12 

VSCS.L* 124 ± 11 20 ± 14 

VSDH.L* 124 ± 11 20 ± 14 

VSDH.L exchange 12 ± 9 27 ± 25 
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VFM.L* 124 ± 11 20 ± 14 

VFum.L exchange 83 ± 11 44 ± 22 

 WT KO 

VMDH.L* 124 ± 11 20 ± 14 

VMDH.L exchange* 87 ± 5 25 ± 25 

VCO2 Source.L* 591 ± 87 132 ± 62 

VCO2 Sink.L* 798 ± 93 166 ± 85 

VIso.uptake.L* 20 ± 2 3 ± 2 

VPCC.L* 20 ± 2 3 ± 2 

VALT.L* 23 ± 10 5 ± 5 

VALT.L exchange 46 ± 13 76 ± 25 

VGDH.L* 23 ± 10 1 ± 1 

VGDH.L exchange* 100 ± 1 25 ± 25 

VGlu Source.L* 21 ± 5 1 ± 1 

Renal Compartment 
VGlucProd.K* 2 ± 2 39 ± 7 

VPGI.K* 2 ± 2 39 ± 7 

VAld.K* 2 ± 2 39 ± 7 

VTPI.K* 2 ± 2 29 ± 5 

VTPI.K exchange 58 ± 16 33 ± 10 

VGAPDH.K* 4 ± 4 67 ± 12 

VG3PDH.K* 1 ± 1 11 ± 3 

VG3PDH.K exchange 1 ± 1 2 ± 1 

VGK.K* 1 ± 1 11 ± 3 

VEnol.K* 4 ± 4 67 ± 12 

VPCK.K* 14 ± 14 279 ± 34 

VPK+ME.K* 11 ± 11 213 ± 27 

VPC.K* 13 ± 13 260 ± 34 

VLDH.K* 3 ± 3 48 ± 11 

VLDH.K exchange* 3 ± 3 50 ± 6 
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VLac Source.K* 3 ± 3 48 ± 11 

VCS.K* 9 ± 9 156 ± 18 

VICDH.K* 9 ± 9 156 ± 18 

 WT KO 

VICDH.K exchange 100 ± 1 50 ± 27 

VaKGDH.K* 9 ± 9 156 ± 18 

VSCS.K* 10 ± 10 175 ± 18 

VSDH.K* 10 ± 10 175 ± 18 

VSDH.K exchange 1 ± 1 1 ± 1 

VFM.K* 10 ± 10 175 ± 18 

VFum.K exchange 93 ± 7 100 ± 1 

VMDH.K* 10 ± 10 175 ± 18 

VMDH.K exchange* 12 ± 12 96 ± 3 

VCO2 Source.K* 87 ± 87 1019 ± 284 

VCO2 Sink.K* 104 ± 104 1329 ± 309 

VIso.uptake.K* 2 ± 2 20 ± 2 

VPCC.K* 2 ± 2 20 ± 2 

VALT.K 1 ± 1 1 ± 1 

VALT.K exchange 1 ± 1 1 ± 1 

VGDH.K 1 ± 1 1 ± 1 

VGDH.K exchange* 16 ± 11 76 ± 25 

VGlu Source.K 1 ± 1 1 ± 1 
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6. Simultaneous in vivo multi-organ fluxomics in obese mice 

6.1 Abstract 

Metabolic flux control is distributed across several distinct tissues and organ systems. The use of isotope-

based metabolic flux analysis (MFA) has enabled the quantification of metabolic fluxes in vivo. Research 

groups capable of performing in vivo MFA have primarily confined their focus to intermediary metabolism 

in a single organ which helps to reduce analytical complexity. As a result, the crosstalk of metabolic fluxes 

across multiple organ systems in normal and pathophysiology has largely been understudied. Here we 

present an in vivo, MFA-based approach to simultaneously quantify metabolic fluxes in the liver, heart, and 

skeletal muscle in a single mouse. This method was scaled to several cohorts of mice to examine the 

metabolic dysfunction in obesity. Diet-induced obesity caused an increase in gluconeogenesis and 

endogenous glucose production from the liver and was accompanied by a >1.9-fold elevation in cardiac 

glycolytic and mitochondrial flux whereas citric acid cycle activity in the skeletal muscle was significantly 

reduced. Despite a ~2-fold increase in myocardial glucose oxidation, fatty acid oxidation genes were also 

elevated. These findings challenge the “glucose-fatty acid cycle” showing that fuel selection and flux differs 

between cardiac and skeletal muscle under obesity. Furthermore, using multivariate multi-omics analysis 

we identified regulatory and clinical biomarkers of obesity in each tissue. Our results here demonstrate that 

the metabolic syndrome has wide ranging effects on fluxes in each organ. We anticipate our multi-tissue 

metabolic model to have significant applications in better characterizing non-communicable diseases, 

(patho)physiology, and drug metabolism.  
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6.2 Introduction 

Metabolism is vital for cellular function where enzymes break down nutrients to provide the chemical 

energy and material resources required for organisms to grow and survive. Understanding changes in 

metabolic regulation under both normal and pathological conditions is essential for developing 

interventions to prevent, diagnose, and treat metabolic diseases. It is preferential to study metabolic control 

in vivo, since the body is a complex, cross-regulatory environment aimed at maintaining homeostasis  [254]. 

Gene and protein abundances, although helpful, often do not directly correlate with pathway fluxes because 

metabolic enzymes are tightly regulated by several factors such as allosteric feedback, post-translational 

modifications, and substrate availability [2], [228]. Furthermore, metabolic fluxes cannot be determined 

solely from static measurements of metabolite pool sizes [17]. In contrast, metabolic flux analysis (MFA) 

can provide functional readouts of in vivo metabolic pathway activity, offering an ultimate representation 

of the cellular phenotype of each tissue [255].   

Assessment of in vivo metabolic fluxes has largely focused on the liver since it is a metabolic hub of the 

body. Decades of work by various groups has led to generation of refined in vivo methods for assessing 

gluconeogenesis, glycogenolysis, anaplerosis, citric acid cycle (CAC), lipid biosynthesis, fat oxidation, and 

ketogenesis fluxes in the liver [68], [256]. However, understanding in vivo metabolism of multiple organs 

using isotopic tracers presents inherent challenges due to organ crosstalk, systemic circulation of isotopes 

and multiple overlapping pathways. Recently, by taking advantage of the advances in computational and 

analytical technologies, several groups have attempted to quantify the systemic fluxes of circulating 

metabolites, focusing on the major nutrient sources that serve as the primary fuel to specific tissues and the 

TCA cycle [163], [164], [166], [167]. Some have begun to develop techniques to simultaneously quantify 

metabolic fluxes in multiple tissues[257], however to our knowledge, no study has simultaneously 

quantified intermediary metabolism within glycolytic and gluconeogenic tissues in a single mouse.  
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Quantification of intermediary metabolism can help decipher the energy demands on various pathways 

required for the functioning of a particular organ. For example, cardiac tissue heavily relies on oxidative 

phosphorylation where the mitochondria account for ~35% of the heart’s volume [258] while skeletal 

muscle is more glycolytic and the mitochondria only occupy 4-15% of the tissue volume [259]. Similarly, 

during exercise, glucose uptake increases linearly with increasing VO2,max in the skeletal muscle whereas 

the myocardial glucose uptake rates do not scale linearly [260]. More importantly, while extensive research 

has been conducted to assess of hepatic metabolism, limited methods exist to quantify metabolic fluxes in 

the skeletal muscle and the heart in vivo [161], [261]–[264]. Advancements in magnetic resonance 

spectroscopy have enabled the quantification of small number of fluxes such as pyruvate dehydrogenase in 

the heart and the muscle [151], [152], but in vivo assessment of intermediary metabolism in skeletal and 

cardiac largely remains challenging.  

Here we developed an isotopic flux modeling approach to simultaneously quantify gluconeogenic and 

glycolytic fluxes in the liver, heart, gastrocnemius, and vastus in vivo. The methodology was applied to 

three cohorts of mice (WT Chow, KO Chow and KO WD) in which adiposity and metabolic disease were 

progressively increased. Fluxes were assessed from the enrichment of plasma and tissue metabolites infused 

with radio and stable isotopes. Our results show an 8-fold increase in hepatic pyruvate cycling and a 50% 

increase in endogenous glucose production (EGP) as a consequence of hyperphagia and western diet 

feeding. More importantly, we saw a ~2.3 and ~1.9 fold increase in the glycolytic and CAC flux in the 

heart, respectively, despite an elevation in fatty acid oxidation genes in obese mice. Conversely, skeletal 

muscle showed a >50% decrease in CAC flux with reductions in glucose oxidation and CAC activity. 

Additionally, integrative multi-omics analysis of transcriptomics, metabolomics and fluxomics data 

identified tissue specific biomarkers that underly the progression of obesity in animals. More broadly, our 

modeling platform can be scaled to numerous conditions where changes in metabolism across organ 

systems may be relevant. 
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6.3 Methods 

6.3.1 Experimental model and subject details 

All protocols and procedures were approved by the Vanderbilt Institutional Animal Care and Use 

Committee. All studies were performed on ~16-week-old, male C57Bl/6 mice (Wild-type [WT]) or MC4R 

deficient mice (Knockout [KO]), based on the same parental background; parental breeders were 

generously provided by the Roger D. Cone laboratory [265]. Mice were maintained on a 12-h light-dark 

cycle with ad libitum access to water and a standard rodent chow diet (5L0D, 29% protein, 58% 

carbohydrates, 13% fat by caloric contribution; LabDiet, St. Louis, MO) for 8 weeks. At 8 weeks of age, a 

small cohort of mice were switched to WD (D12079B, 17% protein, 43% carbohydrates, and 40% fat by 

caloric contribution; Research Diets Inc., New Brunswick, NJ) while others were kept on chow diet for 

another 8 weeks. Overall, 3 groups were utilized for these studies: WT mice on chow (WT Chow), KO 

mice on chow (KO chow) and KO mice on western diet for 8 weeks (KO WD).  

6.3.2 In vivo procedures in the mouse 

One week prior to conducting isotope infusion studies, 15-week-old mice were surgerized with dual, jugular 

vein and carotid artery, catheters for simultaneous infusion and sampling of blood, respectively [212]. In 

vivo studies were performed by infusing a cocktail of tracers in overnight fasted mice (~16h) through a 

jugular vein catheter over a total time course of 180min. Mice were primed (1.5 µCi) and then intravenously 

infused with a continuous (0.075 µCi/min) dose of [3-3H]glucose for 180min. 60min after the start of the 

[3-3H]glucose infusion, a primed (0.200 mmol/kg), continuous (0.050 mmol/kg/min) infusion of 

[13C3]lactate was administered for 120min. Lastly, a 12 μCi bolus of [14C] 2-deoxyglucose was given 25min 

before the end of each infusion. Blood samples were collected from an carotid artery catheter just prior to 

[13C3]lactate infusion, and then at 2, 5, 10, 15, and 25min after the bolus of [14C] 2-deoxyglucose. After the 

final blood sample, mice were rapidly euthanized and excised tissues were snap frozen in liquid nitrogen 

for further analysis.  
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This protocol enabled the measurement of rates for endogenous glucose production, tissue-specific glucose 

uptake, and the stable, isotopic enrichment of plasma and tissue metabolites from a single, unstressed 

mouse. Throughout the study, blood glucose levels were monitored using an Accu-Check glucometer 

(Roche Diagnostics, Indianapolis, IN) and hematocrit was maintained through an infusion of donor 

erythrocytes (suspended in 10U/mL heparinized-saline). Additionally, age-matched mice from each group 

were maintained similarly—except without surgery or isotope tracer infusions—for body composition and 

gene expression analysis following an overnight fast (~19h). Mice were placed in a restrainer prior to obtain 

plasma (isolated from blood obtained from the cut tail) and tissues were rapidly obtained and snap frozen 

in liquid nitrogen post euthanasia. All plasma and tissues samples obtained at the end of the study were 

stored at -80°C until processed for further analysis.  

6.3.3 Metabolite extraction, derivatization, and GC-MS 

Plasma and tissue metabolites were extracted and derivatized as described elsewhere [48]. Briefly, plasma 

glucose was extracted using cold acetone to precipitate protein. Samples were air dried followed by 

immediate derivatization into three separate derivatives of di-O-isopropylidene, methyloxime 

pentapropionate or aldonitrile pentapropionate according to protocols described elsewhere [41].  Polar 

metabolites were isolated from 40 μL of plasma or 30-50 mg of liver, heart, gastrocnemius, and vastus 

tissues using a biphasic methanol/water/chloroform extraction. The polar layer of the extract was isolated 

using a fine-tipped pipette and air-dried overnight for storage at −80 °C prior to derivatization. Ten μL of 

5-mM norvaline was spiked as an internal standard for metabolite quantification. Metabolites were then 

converted to their methyloxime tert-butyldimethylsilyl (Mox-TBDMS) derivatives using MtBSTFA+1% 

TBDMCS (Cat No. 1-270144-200, Regis Technologies). Derivatized samples were analyzed by GC-MS. 

Sample volumes of 1 μL were injected in a 5:1 split in an Agilent 7890A gas chromatography system 

equipped with two HP-5 ms (15 m x 0.25 mm x 0.25 μm; Agilent J&W Scientific) capillary columns and 

interfaced with an Agilent 5977C mass spectrometer. Previously defined temperature programs for Mox-
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TBDMS [172] and glucose derivatives [29] were used for data collection. Derivative peaks were integrated 

using a custom MATLAB function [143] to obtain mass isotopomer distributions (MIDs) for the metabolite 

fragment ions shown in Table S2. Measurement uncertainty was assessed by calculating the root-mean-

square deviation between the MID of unlabeled standards and the theoretical MID computed from the 

known abundances of naturally occurring isotopes. 

6.3.4 Multi-tissue metabolic flux analysis (MFA) 

The complete metabolic network and the carbon/hydrogen transitions used in the multi-compartment flux 

model can be found in Table S1. Metabolic equations were constructed from classical biochemical reactions 

and previously defined networks [24], [29], [48]. The hepatic and extrahepatic compartments are identical 

to those shown in our previous work [48]. Cardiac fluxes, including important sources and sinks of carbon, 

were modeled based on prior findings [15], [50], [153]. Myocardial glycogen breakdown was neglected in 

the model since the glycogen breakdown during fasting is non-existent and the glycogen pool is miniscule 

in the heart (<2% of total cell volume) [266], [267]. Given that the skeletal muscle consumes fats and stored 

glycogen under fasting [268], [269], entry of unlabeled carbon source representing inflow of glycerol and 

glycogen were added to the compartment as VPYGM+GK. Major sources of efflux for the skeletal muscles 

were modelled as lactate and glutamate, two metabolites connected with anaerobic respiration and ammonia 

clearance, respectively. It is important to note that the hepatic and extrahepatic compartments were allowed 

to communicate with the cardiac and skeletal muscle compartments via glucose, lactate, and alanine. 

However, in order to better constrain the model, only the metabolite enrichment and isotopomer information 

was allowed to exchange between the compartments (Fig. 6.1A, Table 6A.1). Metabolite fragments used 

for each compartment have been shown in Table 6A.2.  

MFA was performed by minimizing the sum of squared residuals (SSR) between model-simulated and 

experimental metabolite labeling measurements. The Isotopomer Network Compartmental Analysis 
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(INCA) software package [69] was used to develop metabolic models and regress all fluxes. Plasma, liver, 

heart, gastrocnemius, and vastus metabolite MIDs were provided as measurements into INCA. The error in 

these measurements was set to either the root-mean square error of unenriched control samples or the 

standard error of measurement of technical GC-MS replicates, whichever was greater. Best-fit metabolic 

flux solutions were determined for each animal by least-squares regression of the experimental 

measurements to the isotopomer network model. To ensure that a global solution was obtained, flux 

estimations were repeated a minimum of 100 times from randomized initial guesses. A chi-square test was 

used to assess goodness-of-fit, and a sensitivity analysis was performed to determine 95% confidence 

intervals associated with the calculated flux values. Initially, fluxes in the hepatic and extrahepatic 

compartments were estimated relative to liver citrate synthase flux by constraining the VCS.L to an arbitrary 

value of 100. Relative cardiac and skeletal muscle fluxes were estimated by setting the glucose uptake flux 

(VGK) to 100. Endogenous glucose production (EndoRa), determined by subtracting the [3-3H] glucose 

infusion rate from the glucose turnover rate [270], was used to convert relative hepatic and extrahepatic 

fluxes to absolute rates. Similarly, relative cardiac and skeletal muscle fluxes were converted into absolute 

rates using Rg, an index of tissue-specific glucose uptake, determined from [14C]2-DG administration as 

shown previously [271].  

6.3.5 Multi-omics analysis 

For multivariate analysis, transcriptomics, metabolomics and fluxomics datasets for each compartment 

were z-score normalized and imported into the MetaboAnalyst software [272]. To find variables that best 

discriminate the WT chow, KO chow and KO WD groups in each tissue, we performed several supervised 

and unsupervised clustering analyses. Since the number of measurements far outnumbered the number of 

samples, we first performed a sparse partial least-squares discriminate analysis (sPLS-DA) with lasso 

penalization to determine the top 10 biomarkers that best separate the groups. Next, using disease severity 

as the correlation variable, we used the pattern finder tool in MetaboAnalyst to identify the top 25 variables 
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that correlate with increasing obesity. Lastly, we generated a hierarchical clustering heatmap, an 

unsupervised clustering method, to select the top 10 significantly altered metabolites in each tissue.  

6.3.6 Gene expression analysis 

RNA was isolated from ~30 mg of liver, heart, gastrocnemius, and vastus using Trizol reagent (Cat. No. 

15596026, Invitrogen), according to manufacturer protocols. To eliminate phenolic impurities carried over 

from the Trizol extraction, we further processed the samples using a Rneasy mini kit (Qiagen, Hilden, 

Germany). RNA yield from each sample was determined using a NanoDrop ND-100 spectrophotometer 

(Thermo Scientific, Wilmington, DE) and RNA integrity was determined using a 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA). RNA transcript abundance for each tissue was analyzed using the 

NanoString nCounter mRNA custom codeset panel, according to manufacturer protocols. Briefly, 

hybridization reactions were set up by adding 10 μL of hybridization buffer, 5 μL of TagSet Master mix, 5 

μL of Extension TagSet, 1 μL of 30x working probe A pool, 1 μL of 30x working probe B pool, 3 μL of 

Dnase/Rnase free water and 5 μL of RNA Sample (20 ng/μL), for a total volume of 30 μL to each sample 

tube. The samples were hybridized at 67 °C for 16 hours. The hybridized samples were then analyzed using 

the FLEX system’s nCounter Prep Station and the cartridge was scanned using a nCounter Digital Analyzer 

to generate RCC files. Raw counts were normalized with the nSolver software (4.0) package using the 

geometric mean of both positive control probes and housekeeping probes. Lastly, logarithmic fold change, 

relative to the WT chow group, was calculated using the normalized data obtained from nSolver.  

6.3.7 Quantification of tissue and plasma metabolites and assessment of redox markers 

All plasma and tissue metabolites were extract as defined above (See Metabolite Extraction, Derivatization, 

and GC-MS). Absolute quantification of metabolite amount was performed by running calibration standards 

along with extracted samples. Plasma and tissue metabolite amount was normalized to the plasma volume 

and tissue weight, respectively. For analysis of ammonium, 300 µL sample was diluted by dH2O to 1.5 mL 
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and then analyzed using an Ammonia Gas Sensing Electrode (Cat. No. 9512BNWP, Thermo Fisher 

Scientific, MA, USA) according to the manual. Cytosolic and mitochondrial redox state for each tissue 

were estimated using enzymatic equilibrium relations described elsewhere [175]. The cytosolic 

NADH/NAD+ was estimated from lactate dehydrogenase equilibrium (i.e. cNADH/NAD+ = 

[Lactate]/[Pyruvate] x 1/KLDH; where KLDH = 1.11 x 10-4). Similarly, cytosolic NADPH/NADP+ was 

estimated from malate dehydrogenase equilibrium (cNADPH/NADP+ = [Malate]/[Pyruvate][CO2] x KMDH; 

where KMDH = 34.4 x 103 uM). Lastly, mitochondrial NADPH/NADP+ was estimated from glutamate 

dehydrogenase equilibrium (mNADPH/NADP+=[Glutamate]/[α-ketoglutarate][NH4
+] x KGDH; where 

KGDH=2.49 x 10-3 mM) [175]. 

6.3.8 Liver histology, plasma analyses and body composition measurements 

Liver histology was conducted as previously described [217]. Briefly, liver tissues were fixed in formalin, 

routinely processed, embedded in paraffin, and cut into sections. Hematoxylin and eosin (H&E) stained 

sections of liver from each mouse were evaluated for evidence of NAFLD by a board-certified veterinary 

pathologist in masked fashion. Scoring of nonalcoholic steatohepatitis was based on previous published 

criteria [273]. Plasma glucose concentrations were determined using an Accu-Chek glucometer (Roche, 

Risch-Rotkreuz, Switzerland). Body composition was assessed using a Bruker Minispec benchtop pulsed 

NMR (7T) system (model mq7.5) (Bruker, Billerica, MA). Insulin was measured with radioimmunoassay 

RI-13K (MilliporeSigma, Burlington, MA).  

6.3.9 Statistical Analysis 

Unless otherwise specified, data are presented as means ± SEM. Differences between groups were tested 

using ANOVA and Tukey multiple comparisons post hoc analysis. Analysis of histological scoring was 

performed using Kruskall-Wallis ANOVA with a Dunn’s multiple comparisons test for post hoc analysis.  
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Figure 6.1: Hepatic, cardiac and skeletal muscle fluxes reveal organ specific metabolic signatures of obesity 
(A) Overview of isotope infusion protocol. Fold change in absolute fluxes assessed in the (B) liver, (C) heart, (D) Gastrocnemius, (E) Vastus 
tissues of KO WD (n=6) mice relative to WT Chow (n=8) controls. The map represents the metabolic network shown in Table S1. Red and 
blue arrows represent fluxes that are significantly increased and decreased in the KO WD mice compared to lean WT chow mice, respectively.  
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6.4 Results 

6.4.1 Simultaneous flux assessment of hepatic, cardiac and skeletal muscle reveals organ-specific 

metabolic signatures of obesity 

To assess the metabolic effects of hyperphagia and western-diet feeding on the body, we studied ~19h 

fasted, 16-week-old WT and KO mice. To disambiguate the effect of hyperphagia from western diet 

feeding, lean mice (WT chow) were compared to hyperphagic (KO chow) and hyperphagic and diet-

induced obese (KO WD) mice. Hyperphagia and western diet feeding led to a significant increase in body 

weight and fat mass for the KO animals (Fig. 6A.1A-D). Consistent with these changes in body 

composition, we also saw impairment in glucose tolerance (Fig. 6A.1E-F) and increased fasting plasma 

glucose and insulin levels. Additionally, estimation of HOMA-IR using these two parameters suggesting 

lower insulin sensitivity in both KO cohorts (Fig. 6A.1I). To quantify metabolic fluxes, a cocktail of stable 

and radio isotopes was infused to via indwelling dual-catheters implanted in the jugular vein and carotid 

artery. Endogenous glucose production (VEndoRa) or the peripheral glucose disposal (Rd), assessed using 

tritiated glucose (3-3H-glucose), was significantly higher in the KO chow and WD mice (Fig. 6A.1J). In 

line with increased VEndoRa and higher plasma insulin levels (Fig. 6A.1H), use of 2-14C deoxyglucose (2-

DG) as an index for tissue specific glucose uptake rates showed an increase in glucose uptake by the cardiac 

and skeletal muscle (Fig. 6A.1K-M).  

To assess tissue-specific intermediary fluxes, a range of metabolites were isolated from the plasma, liver, 

heart, gastrocnemius, and vastus tissues at the end of a primed, continuous infusion of 13C3 lactate in each 

mouse (Fig. 6.1A). Taking advantage of Cori cycling and the systemic circulation of 13C isotopes, we 

expanded our previously developed 2-compartment model [48] to a multi-organ metabolic model. In 

addition to assessing hepatic and extrahepatic fluxes, we also estimated glycolytic and mitochondrial 

metabolism in vivo within the heart, gastrocnemius and vastus (Fig. 6A.1). To assess cardiac and skeletal 
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muscle metabolism, tissue specific metabolic models were constructed and mass isotopomer distributions 

(MIDs) from glucose, lactate, and alanine in the extrahepatic compartment were allowed to irreversibly 

exchange with each glycolytic tissue (for details, see Methods). Simultaneous estimation of metabolic 

fluxes revealed tissue specific alterations due to progressive adiposity.    

Consistent with previous reports [99], [107], [217], western diet feeding layered with hyperphagia had 

significant effects on hepatic fluxes compared to lean controls. Western diet feeding led to a significant 

increase in pyruvate cycling fluxes (VPEPCK.L, VPK.L, VPC.L) (Fig. 6.1B) accompanied by a doubling of both, 

CAC activity and acetyl-CoA oxidation in the CAC (Fig. 6.1B). Increased anaplerosis and cataplerosis 

through pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK), two rate limiting 

enzymes of gluconeogenesis [2], [110], caused a ~1.7 and ~1.5 fold increase in hepatic gluconeogenesis 

(VEnol.L) and fasting endogenous glucose production (VEndoRa) in KO WD mice, respectively (Fig. 6A.1B, 

6A.1J). Additionally, the extrahepatic compartment showed an 56% increase in glucose uptake (VHK.E) and 

a 78% increase in lactate production (VLDH.E). This is consistent with increased Rg measured in the heart, 

gastrocnemius and vastus muscles (Fig. 6A.1K-M). Compared to lean mice, KO chow-fed mice had limited 

but still significant effects on hepatic fluxes (Fig. 6A.2A). Increased food consumption in KO chow mice 

(Fig. 6A.1B) coincided with a 4-fold increase in hepatic PDH activity (VPDH.L) and ~50% increase in both 

hepatic gluconeogenesis and endogenous glucose production (Fig. 6A.2A). Similar to the KO WD group, 

extrahepatic glucose uptake (VHK.E) was also elevated by 1.5-fold in the KO chow cohort (Fig. 6A.2A).   

In line with the increased production of hepatic glucose in KO WD mice, assessment of cardiac fluxes 

showed a ~2.3-fold elevation in the hexose kinase flux (VHK.E) (Fig. 6.1C, 6A.1K). Consistent with this 

increase, we also saw a ~2.3x and 1.9x increase in glycolytic (VPK.H) and CAC (VCS.H) activity, respectively. 

Additionally, anaplerosis from pyruvate (VPyrSource.H) supported an increase in cardiac pyruvate 

dehydrogenase (VPDH.H) and CAC flux. Despite an increase in endogenous glucose production, KO chow 

mice did not exhibit any differences in cardiac metabolism compared to WT chow mice (Fig. 6A.2B).  
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In contrast to myocardial metabolism, flux estimation in the skeletal muscle of KO WD mice showed 

significantly lower oxidative fluxes despite a modest increase in glucose uptake (Fig. 6.1D-E, 6A.2C-D). 

The gastrocnemius skeletal muscle showed a 2-fold decrease in CAC flux along with a 73% decrease in 

anaplerotic flux through PC (VPC.G) in KO WD mice compared to WT Chow littermates. Consistent with 

this decreased CAC activity, acetyl-CoA entry through PDH (VPDH.G) and other sources (VFatEntry.G) was also 

reduced by 64% and 48% respectively (Fig. 6.1D). Decreased anaplerosis through PC was accompanied 

with an 88% decrease in malic enzyme activity (Fig. 6.1D). Similar to gastrocnemius, KO WD mice had 

decreased oxidative flux through the vastus skeletal muscle, with a 4-fold and 1.8-fold decrease in VPC.V 

and VCS.V, respectively (Fig. 6.1E). We also measured a 38% decrease in glycolytic flux to the CAC (VPK.V) 

(Fig. 6.1E). KO chow mice showed similar perturbations in skeletal muscle metabolic fluxes to those seen 

in the KO WD cohort when compared to littermate lean controls (Fig. 6A.2C-D). Gastrocnemius from KO 

chow animals showed reductions in VPYGM.G (65%), VPC.G (73%), VCS.G (55%), VFatEntry.G (47%), VME.G 

(88%), and VMDH.G (37%) (Figure S2C). Similar to KO WD mice, vastus from KO chow mice showed a 

decrease in glycolysis (45%), pyruvate anaplerosis (61%) and CAC activity (36%) (Figure 6A.2D). Overall, 

these results show that that our innovative approach can simultaneously quantify the distinct changes in 

metabolic flux that occur across multiple organs in response increasing metabolic disease.    

6.4.2 Genetic, metabolite and redox changes during the hepatic response to increasing steatosis and 

fibrosis 

Histology data from the livers of the three cohorts of mice showed an increase in steatosis (Fig. 6.2A), 

hepatocellular ballooning (Fig. 6A.3B), lobular inflammation (Fig. 6A.3C), and fibrosis (Fig. 6.2B), 

resulting in an overall elevation in the non-alcoholic steatohepatitis (NASH) activity score (Fig. 6.2C). 

Increased activity score and a rise in pyruvate cycling and gluconeogenic fluxes (Fig. 6.2D) in obese 

subjects is consistent with previous findings [107], [109], [217]. The increase seen in the hepatic pyruvate 

cycling fluxes of KO WD mice compared with lean controls (Fig. 6.2D) coincided with several metabolite 
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changes measured in the livers of these mice (Fig. 6.2E). A 2-fold decrease in aspartate and malate and a 

~2-fold increase in pyruvate concentration (Fig. 6.2E) corresponded to increased flux through VPC, VPEPCK 

and pyruvate kinase and malic enzyme (VPK+ME). Contrary to previous data [109], our results showed that 

under the pathophysiological conditions of obesity and non-alcoholic fatty liver disease (NAFLD), 

cytosolic NAD(P)H:NAD(P) is decreased in the liver yielding a more oxidized cytoplasm (Fig. 6.2F,G). 

However, similar to the findings of Satapati et. al, we did see a 40% and 80% increase in mitochondrial 

NADH:NAD+
 of KO chow and KO WD livers, respectively (Fig. 6.2H). These results are consistent with 

newer findings showing that NAFLD and NASH development primarily alters the hepatic mitochondrial 

redox potential due to the production of a majority of ROS species in that specific cell compartment [274], 

[275].   

In addition to measuring metabolite changes, we also measured the mRNA expression of 72 hepatic genes 

(Fig. 6.2I, 6A.3D, 6A.4). Our results showed an increase in CAC genes (Cs and Idh2) (Fig. 6.2I, 6A.4) in 

the KO chow and KO WD groups, consistent with increased gluconeogenesis and CAC flux. Interestingly, 

Pck1 expression inversely correlated with our flux results, perhaps to compensate for increased VPEPCK in 

the KO WD group. Expression of Pklr and Pdk4, the genes encoding liver pyruvate kinase and pyruvate 

dehydrogenase kinase, corresponded with increased VPK.L and decreased VPDH.L, respectively. Compared to 

WT chow controls, measurement of other glycolytic and mitochondrial metabolites showed a 3.5 and 4-

fold increase in hepatic glutamine levels and a 30% and 44% decrease in hepatic glycine levels of KO chow 

and KO WD mice, respectively (Fig. 6.2E, 6A.3C). Expression of Asns and Gls2, genes connected with 

glutamine hydrolysis and mitochondrial uptake, were severely reduced (Fig. 6.2I). 
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Figure 6.2: Genetic, metabolite and redox changes support increased hepatic flux measured in obesogenic mice 
Scoring of (A) steatosis, (B) fibrosis, and (C) activity in the livers of WT Chow (n=8), KO Chow (n=7) and KO WD mice 
(n=6) (*** P<0.01). Assessment of (D) absolute hepatic fluxes (E) hepatic metabolite concentration, and (F-G) cytosolic 
and mitochondrial redox markers in the three cohorts of mice (* P<0.10, ** P<0.05, *** P<0.01). (I) mRNA expression 
of genes connected with glycolysis, CAC, amino acid, and urea cycle metabolism in the liver.  (* P<0.05 for WT chow 
vs. KO Chow, Φ P<0.05 for WT chow vs. KO WD). 
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Despite these genetic changes in glutamine metabolism, glutamate anaplerosis into the CAC was not 

affected at the flux level (Fig. 6.2D). This is perhaps due to hepatic glutamine’s connection with other 

metabolic pathways such as the urea cycle [276]. Indeed, measurement of urea cycle genes showed 

significant reduction in ureagenesis (Fig. 6.2I), corresponding with changes seen by others under the 

conditions of NAFLD and NASH [277], [278]. Overall, these results show that hepatic fluxes estimated by 

our metabolic model are in agreement with genetic and metabolomic changes caused by obesity and the 

development of NAFLD and NASH.  

6.4.3 Myocardial oxidative glucose metabolism is elevated despite an upregulation in fatty acid 

oxidation  

To characterize static indices of metabolism in the heart, we measured glycolytic and CAC metabolites and 

mRNA levels of 60 genes associated with those pathways (Fig. 6A.S5). Assessment of cytosolic 

NADH:NAD+ and NADPH:NADP+ ratios using cardiac metabolite concentrations (see Methods for details) 

revealed a more reduced cytosol in KO WD hearts (Fig. 6.3A-B), indicative of increased glycolysis [279]. 

Indeed, measurement of cardiac fluxes showed an increase in glycolytic (VPK.H) and CAC (VCS.H) activity 

(Fig. 6.3C), potentially leading to higher cytosolic NADH and NADPH production. Measurement of mRNA 

expression of rate limiting glycolytic enzymes showed significant upregulation in Hk2 and Pfkm along with 

an increase gene expression of the muscle glucose transporter, Glut4 (Fig. 6.3D). The increase seen in PDH 

flux (VPDH.H) corresponded with decreased Pdk4 expression, an inhibitor of PDH (Fig. 6.3D). Similarly, 

transcription factors regulating mitochondrial oxidation, namely Atp2a2 and Ppara, were also elevated 

consistent with increased CAC flux in KO WD mice (Fig. 6.3E). Despite an increase in glucose oxidation 

via PDH, acetyl-CoA entry into the CAC (VFatEntry.H) was unchanged, suggesting impairment in acetyl-CoA 

oxidation by the CAC (Fig. 6.3C). Genes connected with fatty acid oxidation (Cpt1b, Cpt2, Acadm and 

Acadl) were significantly elevated in the KO WD group, suggesting enzymes required for cardiac  
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Figure 6.3: Myocardial oxidative glucose metabolism is elevated despite an upregulation in fatty acid oxidation 
under obesity 
(A-B) Cytosolic redox state and (C) absolute metabolic fluxes in the hearts of WT Chow (n=8), KO Chow (n=7) and KO 
WD mice (n=6) (* P<0.10, ** P<0.05, *** P<0.01). mRNA expression of genes regulating (D) glycolysis (E) mitochondrial 
function and (F) fatty acid oxidation in the heart (* P<0.05 for WT chow vs. KO Chow, Φ P<0.05 for WT chow vs. KO 
WD). Plasma and cardiac (G) glutamine to glutamate ratios and (H) lactate concentrations in the three groups of mice (* 
P<0.10, ** P<0.05, *** P<0.01). 



151 

 

β-oxidation were elevated (Fig. 6.3F). Interestingly, measurement of Crat, a mitochondrial matrix enzyme 

whose activity negatively correlates with intramuscular lipid intermediates [280], [281], also showed severe 

upregulation (Fig. 6.3D). These findings suggest that obesity leads to increased myocardial glucose 

oxidation without increasing acetyl-CoA oxidation in the CAC from other sources (e.g. fatty acids). These 

results challenge the existing notion that obesity leads increased myocardial fatty acid oxidation and  

reduced entry and oxidation of glucose, better known as the Randle cycle [282]. Interestingly, Irs1 

expression was also downregulated (Fig. 6.3E), potentially to compensate for the increased glucose uptake 

caused by high plasma insulin levels (Fig. 6A.1H). Additionally, genes involved in mitochondrial 

biogenesis (Nrf1 and Tfam) were slightly but significantly repressed (Fig. 6.3E).  

Plasma and heart metabolites showed congruence between the two compartments. We saw a severe 

reduction in plasma and heart glutamine to glutamate ratio (Fig. 6.3G) in both KO chow and KO WD 

groups, a signature of cardiometabolic disease and insulin resistance [283]–[285]. Elevation in plasma 

lactate, a biomarker of metabolic health [286], coincided with a similar rise in cardiac lactate concentration 

in obese mice compared to WT chow controls (Fig. 6.3H). This is consistent with the increase and decrease 

measured in Ldha and Ucp3 genetic expression, respectively (Fig. 6.3D, 6.3E).  These data suggest that 

plasma lactate, glutamine and glutamate are biomarkers of cardiometabolic dysfunction.  

6.4.4 Reduced skeletal muscle mitochondrial fluxes are associated with dysregulation of multiple 

metabolic pathways 

Estimation of skeletal muscle metabolic fluxes showed significant downregulation through oxidative 

pathways in both KO chow and KO WD mice (Fig. 6.4A-B,1D-E). Reduction in pyruvate anaplerosis 

through VPC flux was associated with a reduction in the muscle lactate pool size (Fig. 6.4C-D,6A.6B, 

6A.7B), suggesting a more oxidized cytosol. Indeed assessment of NADH:NAD+ in both gastrocnemius 

and vastus skeletal muscle showed a significantly oxidized cytosol for both KO chow and KO WD mice, 

relative to lean WT chow controls (Fig. 6.4E-F).  
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Figure 6.4: Obese mice have reduced mitochondrial flux in the skeletal muscle along with dysregulation of multiple 
metabolic pathways 
Absolute fluxes estimated in the (A) gastrocnemius and (B) vastus skeletal muscles of WT Chow (n=8), KO Chow (n=7) and 
KO WD mice (n=6) (* P<0.10, ** P<0.05, *** P<0.01). (C-F) (C-D) Lactate concentration and (E-F) cytosolic NADH:NAD+ 
ratio, assessed using metabolite concentration, in the gastrocnemius and vastus tissues (* P<0.10, ** P<0.05, *** P<0.01). 
Log fold change in mRNA expression of genes regulating glycolysis, pyruvate metabolism and fatty acid metabolism in (G) 
gastrocnemius and (H) vastus muscles (* P<0.05 for WT chow vs. KO Chow, Φ P<0.05 for WT chow vs. KO WD).     
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Quantification of mRNA expression of Ldha and Ldhb showed a decrease and an increase, respectively in 

the KO chow and KO WD groups, possibly to generate more pyruvate for anaplerosis (Fig. 6.4F-G, 6A.6C, 

6A.7C).  

Interestingly, despite a slight but significant increase in glucose uptake rate, glycerol and glycogen flux 

(VPYGL+GK.V), was reduced along with a decrease in glycolysis in the vastus muscle (VPK.V) (Fig. 6.4B). In 

agreement with this result, glycolytic genes (Pfkm, Pfkfb1, Pkm) were downregulated in both skeletal 

muscles along with a reduction in Pygm (Fig. 6.4F-G, 6A.6A, 6A.6C, 6A.7A, 6A.7C). While flux through 

this pathway was significantly limited in vastus, we measured downregulation of another pathway in the 

gastrocnemius of KO chow and KO WD mice. Acetyl-CoA entry into the CAC (VFatEntry.G) and anaplerosis 

through various sources (pyruvate, lactate and glutamate) was significantly reduced in gastrocnemius 

muscle of obese mice (Fig. 6.4A). Consistent with this lower AcCoA flux into the CAC, we measured an 

upregulation of genes connected with fatty acid oxidation and carnitine production (Fig. 6.4F-G, 6A.6A, 

6A.6C, 6A.7A, 6A.7C). Additionally, branch chain amino acids (BCAA) genes, Bcat1 and Bcat2, were 

significantly reduced in both skeletal muscles (Fig. 6.4F-G, 6A.6C, 6A.7C) along with a rise in plasma 

BCAA for the KO chow and KO WD mice (Fig. 6A.4E). These results show that obesity leads to severe 

reduction in glycolytic and mitochondrial fluxes in the skeletal muscle and are a result of perturbations in 

multiple metabolic pathways i.e., glycogen and glycerol oxidation, fatty acid oxidation and anaplerosis of 

the CAC.  

6.4.5 Multi-omics analysis reveals tissue specific biomarkers for obesity 

To better understand the pleotropic effects of obesity, we combined the transcriptomics, metabolomics and 

fluxomics datasets for each tissue type and plasma to identify the top 10 variables that help distinguish the 

three cohorts of mice. To perform this multi-omics analysis, exploratory statistical features in 

Metaboanalyst 5.0 [272] were used to identify the top 10 variables associated with increasing levels of   
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Figure 6.5: Multi-omics analysis reveals tissue specific biomarkers for obesity 
Top 10 loadings that help separate the WT Chow (n=8), KO Chow (n=7) and KO WD mice (n=6) in sparse 
partial least square analysis score plots for the (A) liver (B) plasma (C) heart and (D) vastus compartments.   
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obesity in each tissue. Additionally, we performed several types of multivariate analysis to cross-check and 

verify the robustness of our results (see Methods for details). Our results from sPLS-DA analysis of the 

hepatic dataset showed distinct clustering of the three groups, with identification of genes regulating lipid 

metabolism (Cd36, Pparg, Scd1), oxidative pentose phosphate pathway (Rbks, H6pd), CAC (Idh2), 

glutamine (Gls2), alanine (Got1), and pyruvate metabolism (Pdk4, Pck1) as biomarkers of hepatic injury 

and obesity (Fig. 6.5A). Similarly, correlation analysis – using progressive levels of obesity (WT chow → 

KO chow → KO WD) as a feature of interest – showed similar top 25 features (Fig. 6A.8A). Additionally, 

heat map clustering using Euclidean distance metrics and ANOVA analysis also identified the exact same 

top 10 variables that best separate the three groups (Fig. 6A.8B). Similar analysis on the plasma metabolites 

and fluxes showed Homa-IR as the top biomarker that best separates the groups followed by several other 

plasma metabolites including plasma lactate, glutamine, and the BCAA, leucine. Interestingly, correlation 

analysis identified similar variables along with several extrahepatic fluxes such as VLDH.E, VHK.E and VPYGM.E 

(Fig. 6.5C). Lastly, heatmap clustering using ANOVA showed results consistent with the sPLS-DA analysis 

(Fig. 6.5D).   

Identification of cardiac biomarkers of obesity using sPLS-DA analysis showed reduction in histidine and 

glutamine concentrations as well as a decrease in Mlxipl and Irs1 gene expression as top variables that help 

separate the experimental groups (Fig. 6.5E, F). Other cardiac factors of interest included oxidative 

metabolism genes (Hk2, Acadm, Atp2a2) and our previously identified cardiometabolic dysfunction 

biomarker, Gln to Glu concentration ratio (Fig. 6.3G). Correlation analysis identified additional metabolic 

indicators of obesity such as cardiac enrichment of glutamine and increased Crat expression (Fig. 6A.8E). 

Heatmap clustering analysis of the cardiac multi-omics dataset implicated three additional genes, Slc2a4 

(Glut4), Pdk4 and Pdhx as potential biomarkers of obesity (Fig. 6A.8F). The increase in Slc2a4 expression 

and a decrease in Pdk4 in obesogenic mice is consistent with our cardiac flux results (Fig. 6.3C). Lastly, 

multivariate analysis of multi-omics datasets from gastrocnemius and vastus skeletal muscles identified 
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similar biomarkers. Sparse PLS-DA analysis (Fig. 6A.9A) showed increasing enrichment in glycerol-3-

phosphate, 3-phosphoglyceric acid (3PGA), pyruvate and lactate as a potential identifier of obesity in the 

gastrocnemius (Fig. 6A.9A). Other genes connected with oxidative metabolism (Pc, Hk2, Ucp3) and 

impaired fatty acid and BCAA oxidation (Acly, Acadm, Acly and Bcat1) were also implicated by sPLS-DA 

loadings in the gastrocnemius muscle (Fig. 6A.9A). Likewise, sPLS-DA of vastus dataset (Fig. 6.5H) 

showed G3P and 3PGA enrichments as indicators along with genes connected with glycolysis (Pygm, Pfkm, 

Pfkfb1, Pkm, Ldha) and impaired fatty acid and BCAA oxidation (Crat and Bcat1) (Fig. 6.5G). All of these 

biomarkers were also identified in heatmap clustering and correlation analysis based on disease progression, 

both for gastrocnemius (Fig. 6A.9C-D) and vastus (Fig. 6A.8G-H). These various types of multivariate 

analysis yielding similar biomarkers for each specific compartment validates the robustness of our dataset. 

Although few flux measurements were identified in this multi-omics analysis as biomarkers of obesity, 

almost all the metabolites and genes implicated here are associated with the flux changes seen in each tissue. 

Overall, this exploratory statistical analysis not only provides tissue specific biomarkers for disease 

progression but identifies potential pathways of interest that may be targeted to modulate flux changes and 

ameliorate metabolic diseases.  

6.5 Discussion 

Prior studies have investigated the effects of metabolic diseases on metabolic fluxes within specific tissues 

[99], [109], [217], [287]. But, to our knowledge, no studies have introduced methods that simultaneously 

assess intermediary metabolic fluxes in several tissues in a single mouse. Here, we present a novel 

mathematical modeling approach that simultaneously characterizes metabolic fluxes in the liver, heart, 

gastrocnemius and vastus with the generalizability and scalability to test hypotheses in a number of 

conditions. Here we investigated the effects of hyperphagia and western diet feeding on hepatic, cardiac 

and skeletal muscle fluxes in a setting relevant to the study of cardiometabolic disease. Similar to previous 

findings, livers from obese mice showed an elevation in pyruvate cycling and gluconeogenesis along with 
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increased endogenous glucose production. Interestingly, we found that despite an increase in glucose 

uptake, glycolytic and mitochondrial fluxes in the skeletal muscles were severely reduced. However, 

cardiac metabolism exhibited the opposite trend, showing an increase in oxidative metabolism and CAC 

activity. These findings show distinct metabolic signatures of each organ in response to obesity.  

An altered metabolic response to obesity in cardiac and skeletal muscles has previously been examined and 

is indicative of varying insulin sensitivity of the different tissues [288]. Patients with non-insulin dependent 

diabetes mellitus (NIDDM) and insulin-dependent diabetes mellitus (IDDM) but no history of coronary 

heart disease showed signs of insulin resistance in the skeletal muscle but had no alterations in myocardial 

glucose uptake under insulin stimulated conditions [288]–[290]. Under obesogenic conditions, metabolic 

flexibility of utilizing Fas and glucose is impaired [291]. It is widely accepted that under such conditions, 

reduced cardiac glucose uptake and increased fatty acid oxidation are putative causes of cardiac dysfunction 

[282], [292]–[294]. However, we saw that in response to 8 weeks of WD feeding, cardiac fluxes connected 

with glucose oxidation were enhanced while the terminal entry of acetyl-CoA into the CAC (VFatEntry.H) was 

unchanged, despite an upregulation in fatty acid oxidation genes (Fig. 6.3). These results challenge the 

notion that in the setting of obesity, when plasma insulin levels are elevated, cardiac glucose uptake rates 

decrease. This discrepancy is attributed to the methodology implemented to quantify glucose uptake rates 

in previous studies, which have often been conducted in isolated hearts or cells with glucose as the sole 

substrate [295]. Recent work, using [18F] 2-fluoro-2-deoxy-D-glucose and PET imaging in vivo, supports 

our findings, and shows that glucose uptake rates are markedly elevated in the hearts of both young and 

middle-aged mice fed a high-fat, high-cholesterol Western diet [296]. Our study builds upon these findings, 

by quantifying glucose oxidation rates and showing that PDH and CS flux is significantly increased under 

obesity (Fig. 6.1C, 6.3C). Additionally, no change in VFatEntry.H yet increased expression of acylcarnitine 

genes such as Crat suggests that increased plasma insulin levels do not inhibit lipid trafficking in the heart, 

thus preventing the accumulation of lipid intermediates in the heart. Several studies support these findings, 
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showing that myocardial ceramide content is unaltered in obese mice [293], [297] and obese (and T2DM) 

patients [298]. Overall, these findings have high clinical relevance due to the enormous patient population 

living with obesity and at substantial risk of cardiovascular disease.  

Many studies have used various approaches to study skeletal muscle metabolism in animal models of 

obesity and diabetes [160], [299], [300]. However, discrepant results have been observed showing that 

high-fat feeding in rats is associated with no variation [301], [302] or even a higher mitochondrial capacity 

[303], and that insulin resistance caused by high fat feeding could be related to incomplete 

intramitochondrial β-oxidation [300]. Our results here show a significant decrease in CAC flux, despite an 

increase in glucose uptake rate in the gastrocnemius and vastus muscle (Fig. 6.4A,B). The flux of the 

terminal product of fat oxidation (Acetyl-CoA) into the CAC is modeled in our flux network (VFatEntry), 

which was significantly reduced in the gastrocnemius; a similar trend was observed in the vastus (Fig. 

6.4A,B). Our transcriptomics results also showed a significant elevation in FAO genes, suggesting elevated 

β-oxidation in the skeletal muscles of obese mice (Fig. 6.4G,H). These results are consistent with previous 

findings, showing that high-fat feeding increases incomplete FAO in the skeletal muscle unmatched by 

compensatory increases in the CAC activity in both animals and humans [300], [304], [305].  

The “glucose-fatty acid cycle” postulated by Randle indicates that increased fatty acid oxidation would 

suppress glycolysis and pyruvate oxidation [282]. In agreement with the Randle cycle, we saw elevations 

in fatty acid genes concomitant with reduction in glycolytic and pyruvate oxidation genes in the skeletal 

muscle. Interestingly, despite elevated FAO genes, VFatEntry was decreased in the gastrocnemius along with 

a significant decrease in VPDH, where the latter has been shown to be potently inhibited by fatty acids [306], 

[307]. The reduction of PDH and CS flux shown here are consistent with the hypothesis proposed by Koves 

et al. where excessive yet incomplete β-oxidation results in impaired mitochondrial flux and acetyl carnitine 

build up [300], [308], [309]. Interestingly, glucose uptake flux was elevated yet glycolytic flux was still 

significantly lower, mostly due to reductions in glycogen/glycerol flux in obese mice. Skeletal muscle stores 
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~80% of total body glycogen, where it acts as a major contributor to glycolysis under fasting and exercise 

[268], [310]. The reduced glycolytic flux seen in vastus skeletal muscle could perhaps be connected with 

either an impairment in glycogen synthase seen in both obese mice and humans [311]–[313] and/or to the 

inhibition of glycolytic enzymes by fatty acids [282], [306].  

Integrated multi-omics approaches have emerged as an invaluable tool to obtain a better understanding of 

the complexity and interactions of the biological systems including those predisposing obesity [314]. Using 

multi-omics analyses, our study identified important biomarkers of hepatic, cardiac, and skeletal muscle 

metabolism that could further investigated to elucidate the underlying mechanisms or as an indicator of 

disease severity. For example, increased hepatic Cd36 gene expression, seen here, has also been reported 

to be significantly upregulated in NAFLD patients [315] and mediates FA uptake, thus playing a significant 

role in hepatic steatosis [316]. Though changes in hepatic Pck1 expression and pyruvate cycling in liver are 

characteristic of NAFLD/NASH[99], [107], little is known why the latter is elevated under obesogenic 

conditions and thus require further investigation. A potential cardiometabolic risk factor of obesity 

identified here is the heart Gln:Glu ratio which resembled strongly with plasma Gln:Glu ratio. Plasma 

Gln:Glu ratio has been found to be inversely associated with body mass index, blood pressure, circulating 

triglycerides and insulin resistant-traits in obese humans and rodents [283]–[285]. Thus, the ratio either 

from the heart or the plasma, may serve as a valuable biomarker of cardiometabolic risk. Identification of 

Bcat1 as a classifier for obesity is supported by recent evidence that shows reduced BCAT activity in the 

muscle leads to impaired lipid metabolism [317] and increased circulating BCAA [318]. Further studies 

need to be conducted to better understand the role of BCAA in regulating skeletal muscle fluxes. Similarly, 

plasma multi-omics analysis showed HOMA-IR, a well-establish index of insulin resistance used in type 2 

diabetic patients [319], as the lead plasma biomarker of obesity. Additionally, several metabolites including 

plasma lactate were identified as variables that best separated the three cohorts, consistent with a recent 

study showing that elevated fasting plasma lactate levels are a metric for assessing the severity of the 
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metabolic syndrome [286]. Taken together, these tissue specific factors identify important clinical 

biomarkers and potential molecular targets for obesity-related disease such as NAFLD/NASH.  

Advancements in analytical platforms and mathematical modeling have enabled in vivo flux analysis studies 

to become an important tool for studying physiology and metabolic diseases [68]. Using enrichment of 

plasma metabolites and mathematical equations, recent studies have quantified the fluxes of circulating 

metabolites and their contribution to the TCA cycle [163], [164], [167]. Albeit impressive, these studies do 

not provide any insights on intermediary metabolism within each tissue. Additionally, the methodology 

provided in these studies require experimentalists to set up and solve complicated mathematical equations 

to quantify these fluxes. Our approach here overcomes both these limitations since it provides tissue specific 

metabolic models that estimate intermediary tissues fluxes and it utilizes a generalized software package, 

INCA, which automatically generates and solves all equations, outputting metabolic fluxes for the user. 

Another intriguing feature of our metabolic flux model is its generalizability and scalability, allowing for 

the removal or addition of other tissue compartments depending on the rigor of the analysis required. For 

example, we saw that the results from extrahepatic glycolytic compartment showed increased extrahepatic 

glucose uptake (VHK.E), lower glycogen contributions (VPYGM.E) and higher LDH activity (VLDH.E) under 

obese conditions, consistent with certain muscle specific metabolic fluxes (Figure 6.2). Thus, 

approximations of extrahepatic metabolism from the plasma enrichment alone may be reasonable in studies 

when more comprehensive techniques are unavailable or impractical. Additionally, our metabolic model is 

flexible to where additional compartments for tissues (e.g., brown and white adipose tissue) can be 

developed for assessment of metabolic fluxes.  Therefore, the generality of our platform is standout feature 

of this approach and has much broader implications in studying the effects of drugs and diseases on different 

tissues and even tumor macro environments. 

In summary, we present the development and application of a novel multi-tissue metabolic model can be 

used to simultaneously assess intermediary metabolism in the liver, heart, gastrocnemius and vastus 
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muscles within a single mouse based on the isotope enrichment measurements of tissue and plasma 

metabolites. By making use of technical and computational advancements in systems biology, our flux 

approach shows that isotopic tracing and metabolic flux analysis can help resolve in vivo fluxes that are 

otherwise non-quantifiable. Applying our multi-tissue model, we show that obesity has organ specific 

effects on the body and that metabolic diseases NAFLD and NASH do not develop in a vacuum. Our results 

showed a significant increase in hepatic pyruvate cycling, gluconeogenesis, and glucose production 

concomitant with severe hepatic steatosis and obesity. Increased plasma insulin levels correlated with 

increased glucose uptake by cardiac and skeletal muscle, however, intermediary metabolism of the two 

tissues was contrastingly different in response to obesity. Both skeletal muscles, gastrocnemius, and vastus, 

showed a decrease in mitochondrial flux which was in turn connected with reduced fatty acid entry into the 

CAC and a reduction in glycolytic flux. Conversely, the heart showed a significantly higher glycolytic and 

mitochondrial flux with no changes in fatty acid contributions to the CAC. Additionally, using integrative 

multi-omics analysis we were able to identify important regulatory and clinical biomarkers of obesity. 

Overall, the development of this metabolic model provides a flexible platform to simultaneously evaluate 

in vivo fluxes in response to genetic, (patho)physiological and pharmacological interventions.  

6.5.1 Limitations of the study 

The multi-compartment here relies upon some assumptions that introduce some inherent limitations. The 

model does not account for additional sources of glucose synthesis other than the liver, though, recent 

studies suggest a negligible contribution from other tissues to glucose production unless livers 

gluconeogenic ability is compromised [257]. However, had another tissue generated a significant amount 

of plasma glucose and a unique underlying metabolism, we would anticipate a significant lack-of-fit 

between simulated and measured isotopomers. Yet, statistically acceptable fits were obtained for all data 

sets in our study. That said, the scalability of this flux approach allows for the addition of other 

gluconeogenic or glycolytic tissues if required. Secondly, the model currently only allows for the exchange 
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of enrichment information of metabolites between various glycolytic tissues and does not capture absolute 

circulating fluxes between tissues (see Methods for details). Third, our glycolytic metabolic model for the 

heart and skeletal muscle does not include the oxidative pentose phosphate pathway due to lack of 

enrichment measurements of phosphate sugars. Although the oxPPP activity is considered to be very low 

in cardiac [320] and skeletal muscles [321], future studies benefiting from the use of LC-MS/MS will 

further explore the metabolic effects in this pathway [322]. Lastly, a unique facet of our experimental 

system is the ability to measure plasma glucose enrichment over time and verify steady state conditions 

over a similar isotope-infusion time course [29]. However, end-point measurements of tissue metabolites 

can be obtained only in a terminal sample and, therefore, steady-state assumptions for tissue metabolites 

cannot be confirmed. 
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6.7 Appendix: Supplemental figures and tables 

  

Figure 6A.1: Hyperphagic mice show phenotypic signatures of obesity along with impaired glucose metabolism  
(A) Body weight, (B) weekly food intake, (C) lean and (D) fat body mass, (E) oral glucose tolerance test response and (F) area under the 
curve, 16h fasting (G) arterial glucose and (H) plasma insulin concentration and (I) HOMA-IR index in WT chow (n=8), KO Chow (n=7) 
and KO WD (n=6) mice. Assessment of (J) peripheral glucose disposal rate (Rd) using [3-3H]glucose and tissue specific glucose uptake (Rg) 
measured in the heart, gastrocnemius and vastus using [14C]-2-deoxyglucose in all three groups of mice (* P<0.1, ** P<0.05, *** P<0.01).  
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Figure 6A.2: Hepatic and skeletal muscle fluxes but not cardiac fluxes are affected by hyperphagia  
Fold change in absolute fluxes assessed in the (B) liver, (C) heart, (D) gastrocnemius, (E) vastus tissues of KO chow (n=7) mice relative to and WT chow (n=8) 
lean controls. The map represents the metabolic network shown in Table S1. Red and blue arrows indicate fluxes that are significantly increased and decreased in 
the KO chow group, compared to lean WT chow mice, respectively.  
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Figure 6A.3: Changes in hepatic genes and metabolite due to obesity 
(A) Hepatocellular ballooning and (B) lobular inflammation scores, (C) metabolite measurements and (D) heatmap 
of genetic changes in the livers of WT Chow (n=8), KO Chow (n=7) and KO WD mice (n=6). (E) Assessment of 
plasma metabolites in the three cohorts of mice (* P<0.10, ** P<0.05, *** P<0.01). 
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Figure 6A.4: Significantly affected genes in the livers of obese mice.  
Plots show log2 fold change in mRNA expression of significantly affected genes in KO Chow (n=7) and KO WD 
(n=6) livers relative to livers from WT chow (n=8) mice. (* P<0.10, ** P<0.05, *** P<0.01) 
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Figure 6A.5: Genetic and metabolite changes in the cardiac muscle of obese mice 
(A) Heatmap of Log2 fold change in the mRNA level of genes regulating various metabolic pathways in KO Chow (n=7) and 
KO WD (n=6) hearts relative to hearts from WT chow (n=8) mice. (B) Cardiac metabolite concentration in WT Chow (n=8), 
KO Chow (n=7) and KO WD mice (n=6) (means±SEM, *** P<0.01). (C) Plots show log2 fold change in mRNA expression of 
significantly affected genes in the KO Chow (n=7) and KO WD (n=6) hearts relative to hearts from WT chow (n=8) mice. (* 
P<0.10, ** P<0.05, *** P<0.01) 
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Figure 6A.6: Genetic and metabolite changes in the gastrocnemius muscle of obese mice 
(A) Heatmap of Log2 fold change in the mRNA level of genes regulating various metabolic pathways in the gastrocnemius 
muscle of KO Chow (n=7) and KO WD (n=6) relative to the WT chow (n=8) group. (B) Gastrocnemius metabolite 
concentration in WT Chow (n=8), KO Chow (n=7) and KO WD mice (n=6) (means±SEM, *** P<0.01). (C) Plots show log2 
fold change in mRNA expression of significantly affected genes in the gastrocnemius muscle of KO Chow (n=7) and KO WD 
(n=6) relative to the WT chow (n=8) group. (* P<0.10, ** P<0.05, *** P<0.01) 
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Figure 6A.7: Genetic and metabolite changes in the vastus muscle of obese mice 
(A) Heatmap of Log2 fold change in the mRNA level of genes regulating various metabolic pathways in the vastus muscle of 
KO Chow (n=7) and KO WD (n=6) relative to the WT chow (n=8) group. (B) Vastus metabolite concentration in WT Chow 
(n=8), KO Chow (n=7) and KO WD mice (n=6) (means±SEM, *** P<0.01). (C) Plots show log2 fold change in mRNA 
expression of significantly affected genes in the vastus muscle of KO Chow (n=7) and KO WD (n=6) relative to the WT chow 
(n=8) group. (* P<0.10, ** P<0.05, *** P<0.01) 
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Figure 6A.8: Supervised and unsupervised multivariate analysis confirms the robustness of tissue specific biomarkers 
identified using sPLS-DA analysis 
Factors identified in the (A-B) hepatic, (C-D) extrahepatic, (E-F) cardiac and (G-H) vastus compartment using hierarchical 
heatmap clustering and correlation analysis with disease progression as the variable of interest. 
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Figure 6A.9: Multi-omics analysis reveals gastrocnemius specific biomarkers for obesity 
(A) Top 10 loadings that help separate the WT Chow (n=8), KO Chow (n=7) and KO WD mice (n=6) in sparse partial least square analysis score plots for 
the gastrocnemius tissue. Factors identified in the gastrocnemius compartment using (B) hierarchical heatmap clustering and (C) correlation analysis with 
disease progression as the variable of interest. 
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Table 6A.1: Multi-organ metabolic reaction network for 13C MFA.  
Network maps of liver, heart, gastrocnemius, and vastus metabolism track carbon atoms through model 
reactions. Metabolites used to regress fluxes in each compartments are shown in Table S2. Metabolites in 
the liver, extrahepatic, heart, gastrocnemius and vastus are denoted as “.L”, “.E”,“.H”, “.G”, and “.V” 
respectively. Unenriched sources and sinks are annotated as “.source” and “.sink”, respectively. 
[13C3]lactate is introduced into model reactions as “iso.uptake”.  
 

Hepatic Compartment 
Flux Reaction Network 

VEndoRa G6P.L (ABCDEF) →Gluc.E (ABCDEF) 
VTPI.L DHAP.L (ABC) ↔ GAP.L (ABC) 
VGK.L Glycerol.L (ABC) → DHAP.L (ABC) 
VEnol.L PEP.L (ABC) → BPG.L (ABC) 
VPEPCK.L Oac.L (ABCD) → PEP.L (ABC) + CO2.L (D) 
VPK+ME.L PEP.L (ABC) → Pyr.L (ABC) 
VPDH.L Pyr.L (ABC) → CO2.L (A) + AcCoA.L (BC) 
VLDH.L Lac.L (ABC) ↔ Pyr.L (ABC) 
VLac.source Lac.source (ABC) → Lac.L (ABC) 
VPC.L Pyr.L (ABC) + CO2.L (D) → Oac.L (ABCD) 
VCS.L Oac.L (ABCD) + AcCoA.L (EF) → Cit.L (DCBFEA) 
VICDH.L Cit.L (ABCDEF) ↔ α-kg.L (ABCDE) + CO2.L (F) 
VGDH.L Glu.L (ABCDE) ↔ α-kg.L (ABCDE) 
VGLS.L Glu.L (ABCDE) ↔Gln.L (ABCDE) 
VGLN.L Gln.E (ABCDE) ↔ Gln.L (ABCDE) 
VSDH.L Suc.L (ABCD) ↔ Fum.L (ABCD) 
VFM.L Fum.L (ABCD) ↔ Mal.L (ABCD) 
VMDH.L Mal.L (ABCD) ↔ Oac.L (ABCD) 
VFatEntry.L Fat.L (AB) → AcCoA.L (AB) 
VCO2.Bal1.L BicarbL.source (A) → CO2.L (A) 
VCO2.Bal2.L CO2.L (A) → BicarbL.sink (A) 

Extrahepatic Compartment 
VGln.source Gln.source (ABCDE) → Gln.E (ABCDE) 
VLac.Inf Lac.isotope (ABC) → Lac.E (ABC) 
VLacTransport.E Lac.E (ABC) → Lac.L (ABC) 
VHK.E Gluc.E (ABCDEF) → F6P.E (ABCDEF) 
VPYGM.E Glycogen.E (ABCDEF) → F6P.E (ABCDEF) 
VAldo.E F6P.E (ABCDEF) → GAP.E (CBA) + DHAP.E (DEF) 
VTPI.E GAP.E (ABC) ↔ DHAP.E (ABC) 
VEnol.E GAP.E (ABC) → PEP.E (ABC) 
VPK.E PEP.E (ABC) → Pyr.E (ABC) 
VLDH.E Pyr.E (ABC) ↔ Lac.E (ABC) 
VPyrOxid.E Pyr.E (ABC) → CO2 (A) + CO2 (B) + CO2 (C) 

Heart Compartment 
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VHK.H Gluc.H (ABCDEF) → G6P.H (ABCDEF) 
VPGI.H G6P.H (ABCDEF) → F6P.H (ABCDEF) 
VALDO.H F6P.H (ABCDEF) → DHAP.H (CBA) + GAP.H (DEF) 
VG3PDH.H G3P.H (ABC) ↔ DHAP.H (ABC) 
VTPI.H DHAP.H (ABC) ↔ GAP.H (ABC) 
VGAPDH.H GAP.H (ABC) → BPG.H (ABC) 
VEnol.H BPG.H (ABC) → PEP.H (ABC) 
VPK.H PEP.H (ABC) → Pyr.H (ABC) 
VLDH.H Pyr.H (ABC) ↔ Lac.H (ABC) 
VALT.H Pyr.H (ABC) ↔ Ala.H (ABC) 
VPDH.H Pyr.H (ABC) → AcCoA.H (BC) + CO2.H (A) 
VPC.H Pyr.H (ABC) + CO2.H (D) → Oac.H (ABCD) 
VCS.H Oac.H (ABCD) + AcCoA.H (EF) → Cit.H (DCBFEA) 
VICDH.H Cit.H (ABCDEF) → α-kg.H (ABCDE) + CO2.H (F) 
VαKGDH.H α-kg.H (ABCDE) → Suc.H (BCDE) + CO2.H (A) 
VSDH.H Suc.H (ABCD) ↔ Fum.H (ABCD) 
VFM.H Fum.H (ABCD) ↔ Mal.H (ABCD) 
VMDH.H Mal.H (ABCD) ↔ Oac.H (ABCD) 
VFatEntry.H Fat.H (AB) → AcCoA.H (AB) 
VLacRelease.H Lac.H → Lach.sink  
VPyrSource.H Pyr.source (ABC) → Pyr.H (ABC) 
VOacSink.H Oac.H → Asp.sink 
VCO2.Bal1.H BicarbH.source (A) → CO2.H (A) 
VCO2.Bal2.H CO2.H (A) → BicarbH.sink (A) 
VGlucUptake.H 0*Gluc.E (ABCDEF) → Gluc.H (ABCDEF) 
VLacUptake.H  0*Lac.E (ABC) → Lac.H (ABC) 
VAlaUptake.H 0*Pyr.E (ABC) → Ala.H (ABC) 

Gastrocnemius Compartment 
VHK.G Gluc.G (ABCDEF) → G6P.G (ABCDEF) 
VPGI.G G6P.G (ABCDEF) → F6P.G (ABCDEF) 
VPYGM.G  Glycogen.G (ABCDEF) → G6P.G (ABCDEF) 
VALDO.G F6P.G (ABCDEF) → DHAP.G (CBA) + GAP.G (DEF) 
VTPI.G  DHAP.G (ABC) ↔ GAP.G (ABC) 
VGAPDH.G GAP.G (ABC) → BPG.G (ABC) 
VEnol.G BPG.G (ABC) → PEP.G (ABC) 
VPK.G PEP.G (ABC) → Pyr.G (ABC) 
VLDH.G Pyr.G (ABC) ↔ Lac.G (ABC) 
VALT.G Pyr.G (ABC) ↔ Ala.G (ABC) 
VPDH.G Pyr.G (ABC) → AcCoA.G (BC) + CO2.G (A) 
VPC.G Pyr.G (ABC) + CO2.G (D) → Oac.G (ABCD) 
VCS.G Oac.G (ABCD) + AcCoA.G (EF) → Cit.G (DCBFEA) 
VICDH.G Cit.G (ABCDEF) → α-kg.G (ABCDE) + CO2.G (F) 
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VαKGDH.G α-kg.G (ABCDE) → Suc.G (BCDE) + CO2.G (A) 
VSDH.G Suc.G (ABCD) ↔ Fum.G (ABCD) 
VFM.G Fum.G (ABCD) ↔ Mal.G (ABCD) 
VMDH.G Mal.G (ABCD) ↔ Oac.G (ABCD) 
VME.G Mal.G (ABCD) → Pyr.G (ABC) + CO2.G (D) 
VFatEntry.G Fat.G (AB) → AcCoA.G (AB) 
VOacSink.G α-kg.G → Glu.sink 
VLacRelease.G Lac.G → Lac.sink 
VPyrSource.G Pyr.source (ABC) → Pyr.G (ABC) 
VCO2.Bal1.G BicarbG.source (A) → CO2.G (A) 
VCO2.Bal2.G CO2.G (A) → BicarbG.sink (A) 
VGlucUptake.G 0*Gluc.E (ABCDEF) → Gluc.G (ABCDEF) 
VLacUptake.G  0*Lac.E (ABC) → Lac.G (ABC) 
VAlaUptake.G 0*Pyr.E (ABC) → Ala.G (ABC) 

Vastus Compartment 
VHK.V Gluc.V (ABCDEF) → G6P.V (ABCDEF) 
VPGI.V G6P.V (ABCDEF) → F6P.V (ABCDEF) 
VPYGM.V  Glycogen.V (ABCDEF) → G6P.V (ABCDEF) 
VALDO.V F6P.V (ABCDEF) → DHAP.V (CBA) + GAP.V (DEF) 
VTPI.V  DHAP.V (ABC) ↔ GAP.V (ABC) 
VGAPDH.V GAP.V (ABC) → BPG.V (ABC) 
VEnol.V BPG.V (ABC) → PEP.V (ABC) 
VPK.V PEP.V (ABC) → Pyr.V (ABC) 
VLDH.V Pyr.V (ABC) ↔ Lac.V (ABC) 
VALT.V Pyr.V (ABC) ↔ Ala.V (ABC) 
VPDH.V Pyr.V (ABC) → AcCoA.V (BC) + CO2.V (A) 
VPC.V Pyr.V (ABC) + CO2.V (D) → Oac.V (ABCD) 
VCS.V Oac.V (ABCD) + AcCoA.V (EF) → Cit.V (DCBFEA) 
VICDH.V Cit.V (ABCDEF) → α-kg.V (ABCDE) + CO2.V (F) 
VαKGDH.V α-kg.V (ABCDE) → Suc.V (BCDE) + CO2.V (A) 
VSDH.V Suc.V (ABCD) ↔ Fum.V (ABCD) 
VFM.V Fum.V (ABCD) ↔ Mal.V (ABCD) 
VMDH.V Mal.V (ABCD) ↔ Oac.V (ABCD) 
VME.V Mal.V (ABCD) → Pyr.V (ABC) + CO2.V (D) 
VFatEntry.V Fat.V (AB) → AcCoA.V (AB) 
VOacSink.V α-kg.V → Glu.sink 
VLacRelease.V Lac.V → Lac.sink 
VPyrSource.V Pyr.source (ABC) → Pyr.V (ABC) 
VCO2.Bal1.V BicarbV.source (A) → CO2.V (A) 
VCO2.Bal2.V CO2.V (A) → BicarbV.sink (A) 
VGlucUptake.V 0*Gluc.E (ABCDEF) → Gluc.V (ABCDEF) 
VLacUptake.V  0*Lac.E (ABC) → Lac.V (ABC) 



175 

 

Table 6A.2: GC-MS fragment ions of measured metabolites regressed using the multi-tissue 
metabolic model. 
Metabolite fragment ions measured using a GC-MS and integrated into the metabolic model to constrain 

fluxes in hepatic ( ), extrahepatic ( ), cardiac ( ) and gastrocnemius/vastus skeletal muscle ( ) 
compartments.   

 

Metabolite m/z Derivative Formula Carbons  Compartment 

Alanine 260 C11H26O2NSi2 C1 C2 C3        
Alanine 232 C10H26ONSi2  C2 C3        

Aspartate 302 C14H32O2NSi2 C1 C2         

Aspartate 390 C17H40O3NSi3  C2 C3 C4       

Aspartate 418 C18H40O4NSi3 C1 C2 C3 C4       
Citrate 459 C20H39O6Si3 C1 C2 C3 C4 C5 C6     

Fumarate 287 C12H23O4Si2 C1 C2 C3 C4       
Glucose 370 C17H24O8N C1 C2 C3 C4 C5      

Glucose 301 C14H21O7 C1 C2 C3 C4 C5 C6     

Glucose 284 C13H18O6N C1 C2 C3 C4       

Glucose 259 C12H19O6    C4 C5 C6     

Glucose 173 C8H13O4     C5 C6     

Glucose 145 C6H11O3N C1 C2         

Glutamate  432 C19H42O4NSi3  C2 C3 C4 C5      

Glutamate 330 C16H36O2NSi2 C1 C2 C3 C4 C5      

Glycerol-3-Phosphate 571 C20H51O6Si4P C1 C2 C3        

Lactate 261 C11H25O3Si2 C1 C2 C3        
Lactate 233 C10H25O2Si2  C2 C3        
Malate 419 C18H39O5Si3 C1 C2 C3 C4       

Pyruvate 174 C6H12O3NSi C1 C2 C3        

Urea 231 C13H32N2OSi2 C1          
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7. INCA 2.0: a tool for integrated, dynamic modeling of NMR- and MS-based 

isotopomer measurements and rigorous metabolic flux analysis 

7.1 Abstract 

Metabolic flux analysis (MFA) combines experimental measurements and computational modeling to 

determine biochemical reaction rates in live biological systems. Advancements in analytical 

instrumentation, such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), 

have facilitated chemical separation and quantification of isotopically enriched metabolites. However, no 

software packages currently exist that can integrate isotopomer measurements from both MS and NMR 

analytical platforms and have flexibility to estimate metabolic fluxes from either isotopic steady-state or 

dynamic labeling experiments. By applying physiologically relevant cardiac and hepatic metabolic models 

to assess NMR isotopomer measurements, we herein test and validate new modeling capabilities of our 

enhanced flux analysis software tool, INCA 2.0. We demonstrate that INCA 2.0 can simulate and regress 

steady-state 13C NMR datasets from perfused hearts with accuracy comparable to other established flux 

assessment tools. Furthermore, by simulating the infusion of three different 13C acetate tracers, we show 

that MFA based on dynamic 13C NMR measurements can more precisely resolve cardiac fluxes compared 

to isotopically steady-state flux analysis. Finally, we show that estimation of hepatic fluxes using combined 

13C NMR and MS datasets improves the precision of estimated fluxes by up to 50%. Overall, our work here 

illustrates how the recently added NMR data modeling capabilities of INCA 2.0 can enable entirely new 

experimental designs that lead to improved flux resolution and can be applied to a wide range of biological 

systems and measurement time courses.  
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7.2 Introduction 

Since their inception and implementation in the 1930s [323], stable isotope tracer studies have provided 

valuable insights for understanding the metabolic pathways underlying various diseases and disorders, as 

well as normal physiology. During this time, several metabolic models have been developed to translate 

isotope enrichment measurements into estimates of metabolic flux [29], [36], [40], [50], [51], [119], [324], 

[325]. Modern isotope labeling studies integrate numerous metabolite measurements, often enriched with 

multiple isotope tracers administered simultaneously or in parallel, to assess flux through a network of 

intersecting metabolic pathways [32], [65], [257], [326]. To fully decipher the flux information encoded in 

these complex isotope enrichment measurements, sophisticated mathematical models and computational 

approaches such as metabolic flux analysis (MFA) are typically required [18].  MFA is an integrated 

experimental and computational workflow that quantifies metabolic fluxes within living cells/tissues by 

employing models of biochemical reaction networks to regress mass spectrometry (MS) and/or nuclear 

magnetic resonance (NMR) spectroscopy measurements of isotopic enrichment [18].  

NMR spectroscopy and gas/liquid chromatography conjugated to mass spectrometry (GC- or LC-MS) have 

different data outputs that provide distinct information pertaining to metabolite enrichment patterns. For 

example, 13C NMR provides two types of information: (i) relative signal intensity from different 13C-

enriched carbon positions in a molecule and (ii) the relative intensity of the various multiplets within a 

resonance signal (due to interaction between adjacent 13C nuclei, also known as 13C-13C coupling) [50]. 

Other modalities such as 1H-[13C] NMR can be used to quantify the fractional enrichment of 13C atoms 

bound to hydrogen at specific molecular positions [327]. Together, this information can be used to 

determine the position-specific 13C labelling in a measured metabolite, even when the isotopic enrichment 

is as low as 0.1%. However, 13C NMR spectroscopy has two major limitations when applied to measure 

stable isotope enrichment. First, it does not directly determine the unenriched (i.e., M+0) fraction of the 

metabolite pool. Second, it has limited sensitivity to detect low-abundance metabolites, e.g., present at 
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lower than µmol amounts [34]. This limitation typically restricts the application of 13C NMR to 

measurements of highly abundant intracellular metabolites, such as glutamate and aspartate. Conversely, 

MS platforms such as GC-MS, LC-MS and tandem MS/MS systems have significantly higher sensitivity 

(~pmol to nmol range) and can precisely determine the total unenriched and enriched fractions of a 

metabolite pool [34]. However, MS-based systems do not directly provide positional enrichment 

information unless the metabolite is subjected to extensive chemical degradation or source/collision-

induced fragmentation. Instead, MS systems output the relative abundance of chemical species that differ 

in the number of heavy atoms incorporated (i.e., M+0, M+1, M+2, etc.), which can then be used to 

determine the mass isotopomer distribution (MID) of a given metabolite [35]. Currently, no analytical 

platform exists that combines the high sensitivity of MS with the extensive positional enrichment 

information obtainable from NMR spectroscopy.  

Although we cannot directly combine the features of NMR and MS into a single measurement, we can 

leverage the unique strengths of the two modalities by applying specialized MFA software to estimate 

metabolic fluxes from integrated MS and NMR datasets. Unfortunately, the majority of flux estimation 

software packages either support only MS datasets, such as INCA [69], METRAN [20], [70] and 

OpenFLUX2 [71], or only NMR datasets, such as tcaSIM [76], tcaCALC, and NMR2FLUX [328]. A few 

MFA tools like influx_s [329] and 13CFLUX2 [78] can model isotopic measurements from both analytical 

platforms, but these software packages can only describe measurements at isotopic equilibrium. Currently, 

there is not a publicly available software tool that can model integrated NMR and MS datasets obtained 

from either steady-state or dynamic labeling experiments. 

With analytical advancements in both NMR spectroscopy and MS, there is an increasing impetus for 

quantifying metabolic fluxes to better understand metabolism in systems ranging from cell cultures to ex 

vivo tissues/organs to intact multicellular organisms. Prior studies have individually applied NMR or MS 

to characterize in vivo fluxes of hepatic [29], [48], [101], cardiac [50], [330], and circulatory metabolites 
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[49], [164], [166], [167]. Additionally, studies assessing microbial [57], [59], [331] and plant [332], [333] 

metabolism have often involved either NMR- or MS-based analysis of isotope enrichment. To fully harness 

the advantages of both NMR and MS measurements and to design more sophisticated MFA experiments, 

we extended our previously developed metabolic modeling software, INCA [69], to enable tracer 

simulations and flux estimation using combined NMR and MS datasets. Prior versions of INCA were 

capable of modeling dynamic or steady-state labeling measurements obtained with MS, but not NMR. Our 

updated software package, INCA 2.0, was compared and validated against current steady-state NMR tracer 

simulation and flux estimation packages using a perfused heart model. Furthermore, we demonstrate that 

improved cardiac flux resolution is obtainable from dynamic, rather than steady-state, 13C NMR datasets. 

Lastly, we show that combining NMR and GC-MS datasets enables more accurate quantification of hepatic 

fluxes in vivo. Overall, these test cases demonstrate how INCA 2.0 can leverage the data complexity and 

richness available from different analytical platforms to enhance the precision and flexibility of MFA 

studies and enable innovative applications of stable isotopes in metabolism research.  .   

7.3 Methods 

7.3.1 Animals Care 

Studies involving animals were carried out using protocols approved by the Institutional Animal Care and 

Use Committees of the University of Florida and University of Texas Southwestern Medical Center [65], 

[330]. Male C57BL6/J mice and Sprague Dawley rats were maintained on 12-hr/12-hr dark/light cycles, 

with unrestricted access to standard chow and water unless otherwise noted.  

7.3.2 Heart perfusions and metabolite extractions 

Heart perfusions and metabolite extractions were performed as previously outlined in Ragavan et al (2017). 

Briefly, hearts were excised from the thoracic cavity of mice after euthanasia. The cannulated hearts were 

then perfused with Krebs-Henseleit buffer, [1,6-13C2]glucose, [U-13C] free fatty acids (FAs), and insulin. 
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After 30 minutes of perfusion, hearts were immediately freeze-clamped and stored at -80°C for metabolite 

extraction. Metabolites in the heart were isolated using perchloric acid (PCA) extraction. Powdered heart 

tissue was mixed with ice-cold PCA, vortexed and then centrifuged. The supernatant was decanted, 

neutralized and centrifuged to remove insoluble potassium perchlorate and finally lyophilized. Salt-free 

NMR samples were prepared by dissolving the lyophilized powder in deionized water, centrifuged to 

remove excess salt and lyophilized again. A total of 9 mouse hearts were perfused, and metabolites were 

extracted for flux and isotopomer analysis.  

7.3.3 In vivo stable isotope infusions and sample collection 

Stable isotope infusions were carried out as previously described by Deja et al. (2020). Briefly, rats were 

surgically catharized via the jugular vein and allowed to recover for 4 days. Experiments were carried out 

in 24-h fasted rats. Prior to tracer infusion, rats were intraperitoneally injected with 2H2O solution. For the 

tracer infusions, rats were primed for 10 minutes with [U-13C3]propionate and [3,4-13C2]glucose followed 

by an 80-min continuous infusion. At the end of the infusion, rats were anesthetized using isoflurane and 

blood was collected by cardiac puncture into EDTA-coated tubes. Plasma was separated by centrifugation, 

aliquoted and stored at -80°C for further analysis. 

7.3.3 NMR and GC-MS analysis of plasma glucose 

NMR and GC-MS data from in vivo isotope infusions were acquired as detailed in Deja et al. (2020). For 

NMR analysis, plasma glucose was converted to monoacetone glucose (MAG) using a previously described 

procedure [65], [99], [227]. 2H and 13C NMR spectra were recorded using a 14.1-T Varian Inova 

spectrometer followed by quantification of resonance areas by ACD NMR Processor software. For GC-MS 

analysis, plasma glucose was extracted and derivatized according to protocols described elsewhere [41]. 

GC-MS data was collected using an Agilent 7890A GC paired with an Agilent 5975-C mass spectrometer. 
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Derivatized glucose samples were analyzed using previously defined GC-MS settings [172]. Deuterated 

body water enrichment was measured as previously described [51].  

7.3.4 NMR analysis of cardiac tissue extracts 

NMR spectra of tissue extracts were acquired as previously described [330]. Briefly, spectra were measured 

using a 14.1-T NMR magnet equipped with either a CP-DUL cryoprobe (Bruker Biospin, Billerica, MA) 

or a home-built superconducting (HTS) probe. Samples were prepared by dissolving the lyophilized powder 

in 2H2O-containing sodium phosphate buffer and EDTA. An internal standard (DSS-D6 and NaN3 in 2H2O) 

was spiked into the solution. Total sample volumes were either 200 μL (for CP-DUL probe) or 50 μL (for 

HTS probe). 1H spectra and 13C spectra were then measured with a spectral width of 12 ppm and 240 ppm, 

respectively. Lastly, ACD NMR Processor was used to extract relative peak areas for glutamate. 

7.3.5 Tracer simulation and flux estimation using tcaSIM/tcaCALC 

Previously developed NMR software packages, tcaSIM and tcaCALC, were obtained from the National 

Center for In Vivo Metabolism at the University of Texas-Southwestern. An NMR isotopomer simulation 

software, tcaSIM, solves numerical equations to predict the steady-state NMR isotopic enrichments of a 

pre-defined set of central carbon metabolites after 13C isotope administration [50], [334]. We simulated 

NMR isotopomer abundances using the MATLAB-based version of tcaSIM [76]. The built-in metabolic 

network model used by tcaSIM is shown in Fig. 7.1A, and Table 7A.1 shows the selected metabolic 

parameters used to simulate cardiac isotopomer data. Resonance areas of 13C glutamate spectra obtained 

from perfused hearts were used as inputs to the same metabolic model (Fig. 7.1A) and regressed numerically 

to estimate fluxes using the MS-DOS version of tcaCALC. Complementary to tcaSIM, tcaCALC solves the 

inverse problem of iteratively determining the metabolic parameters given a set of fractional enrichments 

and 13C NMR multiplets [50], [335], [336]. 
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7.3.8 EMU modeling of NMR isotopomers in INCA 

The INCA software tool was upgraded with capabilities to model NMR-based isotope enrichment 

measurements as outputs of tracer simulations or inputs of flux estimations [69]. A new version of the 

software, INCA 2.0, was developed to simulate isotopomer and cumomer fractions in addition to MS-based 

MID measurements. When properly normalized, these fractions can be used to calculate 13C NMR multiplet 

ratios, 2H NMR spectra, or 1H NMR fractional enrichments. As first described by Antoniewicz et al. (2007), 

INCA uses linear transformations of EMU (elementary metabolite unit) mass isotopomer abundances to 

simulate NMR measurements. For example, the C2 isotopomer fractions of glutamate (Glu) were calculated 

from the transformation: 
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where 𝐺𝐺𝐺𝐺𝐺𝐺2𝑀𝑀+1 is the M+1 abundance of the EMU comprising C2 of glutamate, 𝐺𝐺𝐺𝐺𝐺𝐺12𝑀𝑀+2 is the M+2 

abundance of the EMU comprising C1 and C2, 𝐺𝐺𝐺𝐺𝐺𝐺23𝑀𝑀+2 is the M+2 abundance of the EMU comprising C2 

and C3, and 𝐺𝐺𝐺𝐺𝐺𝐺123𝑀𝑀+3 is the M+3 abundance of the EMU comprising C1, C2, and C3. Normalizing the 

isotopomer fractions by their sum provides a prediction of glutamate C2 isotopomer ratios that are 

measureable by 13C NMR:  
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INCA users can specify any combination of isotopomer measurements in order to model NMR fine spectra 

for tertiary carbon atoms or other long-range 13C-13C couplings.  
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The output signals of 1H-[13C] NMR and 2H NMR are proportional to the fractional enrichments of 13C and 

2H, respectively, at each atom position monitored. Consequently, these measurements are readily expressed 

in terms of cumomers, rather than isotopomers. Since the heaviest cumomer fraction of a selected set of n 

labeled atoms is equivalent to the M+n abundance of the corresponding EMU, it is straightforward to relate 

cumomer fractions to EMU abundances. For example, 2H NMR spectra of glucose (Glc) were calculated 

from the transformation: 
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where 𝐺𝐺𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝑀𝑀+1 represents the M+1 abundance of the EMU comprising the j-th hydrogen atom of glucose. 

Note that the 2H NMR signals are normalized such that the measurement is represented by a set of cumomer 

ratios. In contrast, 1H-[13C] NMR provides fractional enrichment measurements that can be modeled 

directly as cumomer fractions (i.e., without normalization) as shown below for the C2, C3, and C4 positions 

of glutamate: 

�
𝐺𝐺𝐺𝐺𝐺𝐺(2)
𝐺𝐺𝐺𝐺𝐺𝐺(3)
𝐺𝐺𝐺𝐺𝐺𝐺(4)

� = �
𝐺𝐺𝐺𝐺𝐺𝐺2𝑀𝑀+1

𝐺𝐺𝐺𝐺𝐺𝐺3𝑀𝑀+1

𝐺𝐺𝐺𝐺𝐺𝐺4𝑀𝑀+1
� 

where 𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗𝑀𝑀+1 represents the M+1 abundance of the EMU comprising the j-th carbon atom of glutamate. 

7.3.7 Metabolic flux analysis (MFA) 

MFA was performed by minimizing the sum of squared residuals (SSR) between model-simulated and 

experimental metabolite labeling measurements. Cardiac glutamate and plasma glucose labeling were 
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provided as measurements into INCA for perfused hearts and in vivo infusion studies, respectively. The 

error in these measurements was set to either the root-mean square error of unenriched control samples or 

the standard error of measurement in biological and technical replicates, whichever was greater. Best-fit 

metabolic flux solutions were determined for each experiment by least-squares regression of the 

experimental measurements to the isotopomer network model. To ensure that a global solution was 

obtained, flux estimations were repeated a minimum of 50 times from randomized initial guesses. A chi-

square test was used to assess goodness-of-fit, and a sensitivity analysis was performed to determine 95% 

confidence intervals associated with the calculated flux values.  

The complete metabolic network and the carbon transitions used for cardiac metabolism can be found in 

Table S2. Metabolic equations were constructed from classical biochemical reactions and previously 

defined networks [50], [153]. For dynamic cardiac tracer simulations, pool size measurements of glycolytic 

and citric acid cycle metabolites (Table S4) were determined as previously described [330] and from 

classical literature [35], [337].  Previously published liver metabolic models [29], [65] were used to 

characterize in vivo glucose production, details of which can be found in Deja et. al (2020). 

7.4 Results 

7.4.1 INCA 2.0 tracer simulations predict 13C NMR isotopomer ratios consistent with tcaSIM 

INCA was previously developed for analysis of MS datasets, but the software has been recently adapted to 

simulate 13C NMR multiplet ratios. To test the accuracy of these newly added NMR prediction capabilities, 

we evaluated INCA against a widely used NMR isotopomer simulation software, tcaSIM. Metabolic 

parameters in tcaSIM were set to resemble those previously reported in literature (Table 7A.1) [15], [153]. 

A metabolic model representing heart muscle was constructed within INCA 2.0 (Fig. 7.1A, Table 7A.2, 

also see Methods) and flux values were adjusted to match the metabolic parameters of tcaSIM (Fig.7.1B, 

Table 7A.1, 7A.3). Isotopomer ratios were simulated in INCA by setting the citrate synthase flux (VCS) to 
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100, and formulae were derived to convert the INCA relative flux values to metabolic parameters required 

by tcaSIM (Fig. 7.1A). Comparison of fluxes simulated in INCA to metabolic parameters set in tcaSIM 

confirmed that the model and flux values entered in each program were equivalent (Fig. 7.1B, R2 = 1.000). 

Next, using these identical flux values in both software packages, we simulated all one-bond 13C NMR 

isotopomer ratios for glutamate, aspartate and alanine. INCA 2.0 was able to exactly replicate the 

isotopomer ratios generated by tcaSIM, accurate to 4 decimal places (Fig. 7.1C, 7A.1, Table 7A.S4). These 

results show that INCA 2.0 can simulate 13C NMR multiplet ratios that are consistent with the established 

NMR data modeling program tcaSIM. Unlike tcaSIM, however, the INCA 2.0 metabolic model is fully 

customizable by the user and can simulate the labeling of any metabolite present in the user-specified 

reaction network.  

7.4.2 Regression of 13C NMR isotopomer ratios in INCA 2.0 estimates cardiac fluxes consistent with 

tcaCALC 

To verify whether INCA 2.0 can accurately regress NMR datasets to estimate fluxes, we regressed 

experimental 13C NMR data from perfused mouse hearts to our previously described cardiac metabolic 

network (Fig. 7.1A, Table 7A.2). The tcaCALC program, a flux estimation software package widely 

adopted by the metabolism community, was used to compare flux estimation results with those determined 

by INCA 2.0. Steady state 13C NMR isotopomer data were acquired from PCA extracts of perfused hearts 

incubated in [1,6-13C2]glucose and [U-13C2]LCFA. Glutamate isotopomer ratios were obtained by 

integration and extraction of relative peak areas from 13C NMR spectra (see Methods for details). These 

ratios were then provided as measurement inputs to the metabolic network model (Fig. 7.1A), solved 

numerically using tcaCALC and also regressed in INCA 2.0. Relative flux values from INCA 2.0 were 

consistent with those estimated by tcaCALC (Fig. 7.2A). Linear regression analysis showed that the 

regression coefficient (R2) between the two sets of fluxes was 0.9998 (Fig. 7.2B). To test the goodness-of-

fit of the solutions obtained from each software package, we compared the model-predicted glutamate   
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Figure 7.1 Simulation of 13C NMR isotopomer ratios using tcaSIM and INCA 2.0  
A. Flux map shows the cardiac pathway modeled in INCA and the corresponding metabolic parameters used 

in tcaSIM 
B. Comparison of flux parameters fixed in tcaSIM and INCA 2.0. Fluxes set in INCA 2.0 were converted to 

flux ratios using the formulae shown in Fig. 1A. Linear regression between INCA 2.0 and tcaSIM fluxes 
computed an ideal coefficient of determination (R2 =1.000)  

C. tcaSIM and INCA 2.0 predict identical 13C NMR isotopomer ratios for glutamate and aspartate using an 
equivalent set of flux parameters. Each set of multiplet ratios is sum-normalized to 1 
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isotopomers to the experimentally measured values (Fig. 7.2C-D, Fig. 7A.2). The experimentally measured 

glutamate isotopomers show similar levels of agreement with model-predicted values produced by 

tcaCALC (Fig. 7.2C, R2=0.9976) and INCA 2.0 (Fig. 7.2D, R2=0.9977). Unlike tcaCALC, which does not 

report the best-fit SSR value, INCA 2.0 confirms an acceptable fit to the data based on an average SSR of 

3.7±1.1. (The expected 95% confidence range is 0−5.0.)   

 

  

Figure 7.2: Regression of cardiac fluxes using glutamate isotopomers in tcaCALC and INCA 2.0 shows good 
agreement when fitting data from [1,6-13C2]glucose and [U-13C]LCFA tracers 
A. Relative cardiac fluxes estimated using tcaCALC and INCA 2.0 (n=9, means ± SEM) 
B. Linearity analysis of cardiac fluxes estimated in INCA 2.0 versus tcaCALC (n=9, means ± SEM) 
C. Linearity Analysis of glutamate isotopomer ratios estimated by tcaCALC against measured values obtained from 

NMR spectra (n=9, means ± SEM) 
D. Linearity Analysis of glutamate isotopomer ratios estimated by INCA 2.0 against measured values obtained from 

NMR spectra (n=9, means ± SEM)  
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Overall, these results indicate that INCA can precisely regress 13C NMR datasets to estimate fluxes 

consistent with tcaCALC while providing statistical tests to verify the goodness-of-fit, a feature that is 

currently lacking in tcaCALC.  

7.4.3 Flux estimation using dynamic 13C NMR datasets improves cardiac flux precision 

One of the unique features of INCA 2.0 is the capability to simulate dynamic isotopomer measurements 

and regress metabolic fluxes from non-steady-state labeling data using isotopically nonstationary MFA 

(INST-MFA). To determine whether dynamic NMR isotopomer measurements can improve the precision 

of flux estimates relative to steady-state measurements, we simulated non-steady state 13C NMR isotopomer 

ratios with INCA 2.0 by setting cardiac fluxes to values reported in literature [15], [153]. Since dynamic 

labeling also depends on the abundance of intermediate metabolites, estimates of metabolite pool sizes were 

matched with those measured in myocardial cells (Table 7A.5) [330]. Three different 13C isotopic tracers 

([1-13C]acetate, [2-13C]acetate and [U-13C2]acetate) were simulated under isotopically steady-state and 

dynamic conditions. Previous studies suggest that 13C-acetate labelling experiments reach steady state 

within 30 minutes of heart perfusion [35]. Therefore, dynamic simulations were run from 0 to 30 minutes 

with a maximum step size of 1 min. Dynamic simulations of [U-13C2]acetate labeling, for example, show 

that the D12 doublet initially dominates the C2 resonance of glutamate but is partially supplanted by the 

quartet (Q) signal over time (Fig. 7.3B). Similarly, we observed a gradually decreasing D45 doublet and 

increasing quartet signal for the C4 isotopomers of glutamate (Fig. 7.3B). This pattern emerged because 

acetate labelling was initially present on the fourth and fifth carbons of α-KG, forming a strong D45 doublet. 

However, as labelled carbon circulated through multiple rounds of the TCA cycle, the symmetry of 

succinate and re-entry of carbon through oxaloacetate led to the re-distribution of 13C labelling into other 

carbon positions of α-KG, eventually reaching steady state within 30 min (Fig. 7.3B, 7A.3, 7A.8, also see 

Supplementary Results). Note that contributions from natural 13C abundance were not included in these 

simulations, although this option can be selected by users when modeling NMR data in INCA 2.0. 
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Figure 7.3: INST-MFA of dynamic 13C NMR measurements provides more precise estimation of 
cardiac fluxes 
A. Flux map shows the cardiac fluxes used in INCA 2.0 to simulate steady-state and dynamic isotopomers of 

glutamate, aspartate and alanine 
B. Glutamate C2 and C4 isotopomers simulated at steady state and dynamic time points using the flux solution 

shown in Fig. 7.3A 
C. Comparison of confidence interval widths from flux solutions obtained using steady-state versus dynamic 
measurements 
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Next, using these simulated enrichments, we regressed fluxes and performed parameter continuation to 

determine 95% confidence intervals for fluxes determined from each metabolic tracer using steady state or 

transient isotopomer measurements. To ensure a fair comparison, we added an equal number of replicate 

measurements for the steady state dataset to match the 30 time points simulated for the dynamic dataset. 

Our results show substantially higher precision (i.e., narrower 95% confidence intervals) for fluxes 

determined from the dynamic dataset when using [U-13C2] or [2-13C]acetate (Fig. 7.3C, 7A.9).  The most 

striking improvements in the TCA cycle, where formation of complex labeling patterns in glutamate, 

aspartate and alanine provided increased information to the INST-MFA flux regression. In contrast, since 

VGlycolysis and VLDH fluxes are both sources of unlabeled carbon that simply dilute the pyruvate enrichment, 

no significant improvement in precision was observed for these two flux estimates. Although flux resolution 

was improved for all three tracers when using dynamic isotopomer measurements, [1-13C]acetate showed 

the least improvement because the steady-state and dynamic enrichment patterns are very similar (Fig. 

7A.9). Furthermore, minimal 13C incorporation and the lack of complicated enrichment patterns with [1-

13C] acetate administration resulted in poor resolution of the TCA cycle fluxes evident by the extremely 

wide flux confidence intervals (Fig. 7A.9B). Overall, these results show that INCA 2.0 can accurately 

simulate and regress dynamic NMR datasets and, furthermore, that INST-MFA of dynamic NMR datasets 

can estimate fluxes with improved precision compared to steady-state MFA.  

7.4.4 Integration of MS and NMR datasets improves precision of in vivo hepatic flux estimates 

With the added functionality to model 13C and 2H NMR measurements, we tested whether regression of 

combined MS and NMR datasets improves the precision of flux estimates. Plasma glucose from in vivo 

2H/13C infused rats was derivatized and analyzed using GC-MS and NMR approaches. Datasets obtained 

from each analysis were then entered into INCA and regressed using a hepatic metabolic model (Fig. 7.4A) 

described previously by Deja et al. (2020) (See Methods for details). Regression of glucose enrichment data 

provided equivalent flux estimates for the GC-MS dataset alone, the NMR dataset alone, and the combined 
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dataset (Fig. 7.4B, also see Methods). Analysis of 95% confidence intervals of flux estimates showed 

consistent improvements in flux precision when both GC-MS and NMR datasets were regressed 

simultaneously (Fig. 7.4C). While analysis of the GC-MS dataset requires deconvolution of flux 

contributions toward several different mass isotopomers, the pyruvate cycling fluxes (VPEP, VPEPCK, and 

VPK+ME) were better resolved by 13C NMR measurements due to their dependence on a distinct D12/Q 

multiplet ratio at the C2 position of MAG [65]. Additionally, positional information on carbon one, two, 

five and six allowed for more accurate assessment of the glycerol kinase (VGK) flux from the NMR dataset 

(Fig. 7.4C). However, combining isotope enrichments from both GC-MS and NMR datasets enabled better 

flux resolution than either dataset alone (Fig. 7.4C). These results show that INCA 2.0 can successfully 

integrate both NMR and MS datasets to improve the precision of estimated fluxes. Additionally, these 

results show that GC-MS and NMR datasets provide different and complementary isotope enrichment 

information, even for the same metabolite (e.g., glucose in this case), which helps to better determine the 

flux solution. Overall, these results show that the capabilities of INCA 2.0 to simulate and regress NMR 

datasets open a myriad of possibilities to design more sophisticated isotope labeling experiments and better 

constrain metabolic fluxes in a variety of biological systems. 
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Figure 7.4: Combining NMR and GC-MS measurements in INCA 2.0 improves precision of in vivo 
hepatic flux estimates 
A. Flux map shows the hepatic pathway modeled in INCA 2.0 using glucose measurements  
B. Fluxes estimated using glucose enrichment measurements obtained through GC-MS, NMR or both. 

Values represent fluxes relative to VG6PC; error bars represent 95% confidence intervals  
C. Differences between the upper and lower bounds of 95% confidence intervals determined from regression 
of GC-MS, NMR, or combined measurement sets 



193 

 

7.5 Discussion 

Technological advancements in analytical instrumentation now provide increasingly larger and richer 

metabolite measurements, which require modern software packages for rigorous data analysis and 

modeling.  Here we examined physiological applications of metabolic flux analysis using our newly 

expanded software tool, INCA 2.0. Simulation of cardiac 13C NMR measurements with INCA 2.0 provided 

equivalent results to tcaSIM, a widely used software for NMR isotopomer simulation and tracer experiment 

design. Using steady-state 13C NMR measurements from perfused hearts, we also showed that fluxes 

estimated in INCA 2.0 were comparable to those calculated using tcaCALC. Finally, we assessed two new 

categories of tracer experiments that can be modeled in INCA 2.0 but not in other publicly available 

software tools. First, we found that INST-MFA of cardiac metabolism based on simulated 13C NMR 

datasets from three different 13C-acetate tracers led to improved flux precision when compared to steady-

state MFA. Second, we demonstrated that regression of combined NMR and MS measurements in INCA 

2.0 provided more precise in vivo hepatic flux estimates than either measurement set alone.  

Deconvolution of flux contributions from intersecting metabolic pathways often requires sophisticated 

experimental designs involving multiple isotope tracers and metabolite measurements. Interpretation of the 

complex datasets obtained from these experiments depends on the availability of powerful yet user-friendly 

metabolic modeling tools. For example, analytical and computational advancements have enabled the 

concurrent assessment of glycolytic/gluconeogenic, TCA cycle, and anaplerotic fluxes in liver [29], [101] 

and cardiac tissues [30]. However, these studies have relied solely on either NMR or MS datasets. A major 

challenge is to combine information from different analytical platforms in order to delineate isotope 

enrichment patterns and determine metabolic fluxes with improved precision.  

Recent attempts to assess hepatic metabolism non-invasively using plasma metabolites has led to the 

development of tools such as positional isotopomer NMR tracer analysis (PINTA), which incorporates data 
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from both MS and NMR platforms [287]. PINTA uses relative positional enrichment measurements from 

13C NMR and total 13C enrichment measurements from GC-MS to determine in vivo citrate synthase and 

pyruvate carboxylase fluxes in the liver. Albeit impressive in its precision and applicability to human 

physiology [31], PINTA is limited to characterizing hepatic mitochondrial oxidation. In contrast, INCA 

provides a software platform that can be used to create models of (steady-state or dynamic) isotope labeling 

in any metabolic pathway, which can involve any combination of metabolic tracers and measured 

metabolites. Our additions to INCA further build on these capabilities by leveraging the increased 

information content of combined NMR and MS datasets to characterize a broad set of intermediary fluxes 

(Fig. 7.4B) while offering the flexibility to adapt models to describe organ-specific metabolic networks 

based on user input (Fig. 7.1A). We expect that using INCA 2.0 to integrate datasets from multiple 

analytical platforms will enable improved flux assessment and empower experimentalists to design more 

sophisticated and information-rich labeling studies.  

An assumption critical to  13C-MFA is that all metabolites are at metabolic steady state [26]. In fact, most 

isotope labeling studies of cardiac metabolism have been performed under metabolic and isotopic steady 

state conditions [15], [34], [35], [330]. While parallel tracer studies with different 13C tracers can effectively 

determine cardiac metabolic fluxes, exquisite attention to detail is required to obtain biological and 

operational reproducibility between multiple tracer experiments. Furthermore, parallel tracer experiments 

significantly increase the number of biological replicates required for flux assessment [153]. Because of 

the capability to acquire NMR time-course data non-invasively [338]–[341], INST-MFA of dynamic 13C 

labeling studies offers an alternative approach to precisely characterize metabolic fluxes while minimizing 

the number of parallel labeling experiments and biological replicates. Currently, the primary challenge in 

analyzing dynamic labeling studies is the lack of computational software available to model such datasets. 

Using INCA 2.0, we show that dynamic 13C NMR datasets can be used to constrain models of cardiac 

metabolism and provide significant improvements in flux precision compared to steady-state measurements 
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(Fig. 7.3). These advancements create an opportunity to design dynamic labeling studies that can leverage 

the improved information content of time-course measurements to precisely determine fluxes with fewer 

experiments.   

Development of user-friendly software tools has made 13C MFA more accessible to experimentalists. INCA 

2.0 and other software packages such as METRAN [20], [70] and WuFlux [73] provide the end-user with 

a graphical interface to construct metabolic models. This allows experimentalists and other metabolism 

researchers, who may not be programming experts, to construct metabolic models without writing computer 

code or specifying model configurations in text or XML files [342]. However, INCA 2.0 does not sacrifice 

functionality or extensibility for user-friendliness. Unlike tcaSIM, tcaCALC, and PINTA, which are hard-

coded to describe specific metabolic pathways, INCA allows the user to construct new reaction networks 

or adapt existing models to describe any type of metabolism ranging from mammals to plants [332] to 

microbes [331]. An added advantage of these customizable metabolic networks is the flexibility to define 

and simulate MS- or NMR-based measurements for any metabolite of interest. For example, our cardiac 

model (Fig. 7.1A) used glutamate measurements to determine fluxes, whereas our liver model (Fig. 7.4A) 

relied on plasma glucose enrichments to determine hepatic fluxes. By using an optimized EMU-based 

algorithm [20], [74], INCA 2.0 enables efficient simulation of comprehensive NMR and MS datasets and 

regression of metabolic fluxes within a user-friendly and cross-compatible MATLAB package. INCA 2.0 

also offers built-in statistical tests (see Methods for details) to assess the model goodness-of-fit, an 

important feature that is lacking in some MFA software.  

Although numerous software packages have been developed for metabolic flux analysis, few offer support 

for modeling both NMR and MS datasets, while even fewer provide capabilities to model steady-state or 

dynamic labeling experiments [68]. Here we have shown examples of how INCA 2.0 can be used to 

characterize fluxes in two prominent metabolic tissues, liver and heart, using 13C NMR, 2H NMR, and GC-

MS data. These biological examples are aimed at providing metabolism researchers with new software tools 
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and computational models to describe modern metabolic tracer experiments, thus lowering the 

implementation barriers of 13C MFA. Our work here can be used to further explore the impact of metabolic 

diseases, such as type 2 diabetes (T2D), obesity, and non-alcoholic fatty liver disease (NAFLD), on cardiac 

and hepatic intermediary metabolism. The ability to regress fluxes using both NMR and MS datasets in the 

same mathematical model is expected to aid in the design of more sophisticated isotope labelling studies 

and allow for significant advancements in the fields of metabolic engineering, cell culture, and mammalian 

physiology. We also foresee numerous applications of INCA 2.0 in further characterizing tissue-specific 

metabolism and understanding organ crosstalk in both normal and diseased states.   
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7.7 Appendix: Supplemental figures and tables 

Figure 7A.1: Comparison of simulated NMR isotopomers using tcaSIM and INCA 2.0  
A. Simulated isotopomer fractional enrichments of alanine using tcaSIM and INCA 2.0 
B. Regression analysis of glutamate isotopomers simulated using tcaSIM versus INCA 2.0 
C. Regression analysis of aspartate isotopomers simulated using tcaSIM versus INCA 2.0 
D. Regression analysis of alanine isotopomers simulated using tcaSIM versus INCA 2.0 
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Figure 7A.2: Comparison of measured glutamate isotopomers against those predicted by tcaCALC 
and INCA 2.0 
A. Comparison of measured glutamate isotopomer ratios against predicted values generated by tcaCALC 

and INCA 2.0 
B. Linear regression of glutamate isotopomer ratios determined by tcaCALC and INCA 2.0 
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Figure 7A.3: Dynamic and steady-state 13C NMR glutamate isotopomer ratios  
Steady-state and transient glutamate isotopomers simulated using [1-13C]acetate, [2-13C]acetate and [U-
13C2]acetate as tracer 
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Figure 7A.4: Dynamic and steady-state 13C NMR aspartate isotopomer ratios  
Steady-state and transient aspartate isotopomers simulated using [1-13C]acetate, [2-13C]acetate and [U-
13C2]acetate as tracers 
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Figure 7A.5: Dynamic and steady-state NMR alanine Isotopomers  
Steady-state and transient alanine isotopomers simulated using [1-13C]acetate, [2-13C]acetate and [U-13C2]acetate as 
tracers 
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Figure 7A.6: Formation of glutamate, aspartate and alanine isotopomers over time in the heart when 
[1-13C]acetate is administered as a tracer.  
Different combinations of glutamate, aspartate, and alanine isotopomers are formed at the end of the 1st and 
2nd turns of the TCA cycle when [1-13C] acetate is used as a tracer. Carbon atoms highlighted in black 
represent presence of 13C enrichment from the tracer. Over time, after many turns of the TCA cycle, all 
isotopomers reach steady state (See Supplementary Results for details) 
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Figure 7A.7: Formation of glutamate, aspartate and alanine isotopomers over time in the heart when [2-
13C]acetate is administered as a tracer.  
Different combinations of glutamate, aspartate, and alanine isotopomers are formed at the end of the 1st and 2nd turns of 
the TCA cycle when [2-13C] acetate is used as a tracer. Carbon atoms highlighted in black represent presence of 13C 
enrichment from the tracer. Over time, after many turns of the TCA cycle, all isotopomers reach steady state (See 
Supplementary Results for details) 
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Figure 7A.8: Formation of glutamate, aspartate and alanine isotopomers over time in the heart when [U-13C2]acetate 
is administered as a tracer.  
Different combinations of glutamate, aspartate, and alanine isotopomers are formed at the end of the 1st and 2nd turns of the 
TCA cycle when [U-13C2] acetate is used as a tracer. Carbon atoms highlighted in black represent presence of 13C enrichment 
from the tracer. Over time, after many turns of the TCA cycle, all isotopomers reach steady state (See Supplementary Results 
for details) 
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Figure 7A.9: Estimation of cardiac fluxes using steady-state versus dynamic NMR isotopomer measurements  
A. Cardiac fluxes estimated using steady-state versus dynamic glutamate, aspartate and alanine NMR isotopomer 

measurements.  
B. Confidence interval width for fluxes determined from steady-state versus dynamic datasets using [1-13C]acetate 

or [2-13C]acetate as tracer. SS=steady state, D=dynamic.  
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Table 7A.1: Metabolic parameters used to simulate cardiac metabolism in tcaSIM. All relative fluxes 
are normalized to citrate synthase (=1). 
 

tcaSIM 
parameter Description Value 

GLY Glycerol enrichment 0 

GK Glycerol kinase relative flux 0 

TPI Triose phosphate isomerase equilibration 1 

PK Pyruvate kinase relative flux 0 

LDH Lactate enrichment 0.1466 

PDH Pyruvate dehydrogenase relative flux 0.0627 

CO2 Carbon dioxide enrichment 0 

YPC Pyruvate carboxylase relative flux 0.0839 

FAT12 Fatty acids enrichment 0.7833 

GLYOX Glyoxylate pathway relative flux 0 

ROF Oxaloacetate-fumarate equilibration 1 

RSM Conserved orientation transfer  
between succinate and fumarate 

0.5 

YS Relative anaplerotic flux 0.1302 

AS0 Anaplerotic substrate 1 

ACS Acetyl- or acyl-CoA synthetase 0.9373 
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Table 7A.2: Cardiac metabolic reaction network constructed in INCA 2.0 for comparison against 
tcaSIM and tcaCALC.  
A model of cardiac metabolism was developed to track carbon atoms through the reaction network. 
Metabolite measurements used to regress fluxes are shown in Table S2. 13C isotopes are introduced into 
model reactions via glucose and long chain fatty acids. The reaction VCS was used to constrain the relative 
citric acid cycle flux to 100. 

 

Flux Reaction Network 
VGlycolysis Glucose (ABCDEF) → Pyr (CBA) + Pyr (DEF) 

VPDH Pyr (ABC) → AcCoA (BC) + CO2 (A) 

VPC Pyr (ABC) + CO2 (D) → Oac (ABCD) 

VCS AcCoA (AB) + Oac (CDEF) → Cit (FEDBAC) 

VIDH Cit (ABCDEF) → Akg (ABCDE) + CO2 (F) 

VαKGDH Akg (ABCDE) → ½Suc (BCDE) + ½Suc (EDCB) + CO2 (A) 

VSDH ½Suc (ABCD) + ½Suc (CDBA) ↔ ½Fum (ABCD) + ½Fum (DCBA) 

VFM ½Fum (ABCD) + ½Fum (DCBA) ↔ Mal (ABCD) 

VMDH Mal (ABCD) ↔ Oac (ABCD) 

VOac.Sink Oac → Sink 

VLCFA Acetate (AB) → AcCoA (AB) 

VFFA FFA (AB) → AcCoA (AB) 

VGluc.tracer Glucose.tracer (ABCDEF) → Glucose (ABCDEF) 

VSuc.source Suc.source (ABCD) → ½Suc (ABCD) + ½Suc (CDBA) 
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Table 7A.3: Isotopomers simulated by tcaSIM and INCA 2.0.  

Glutamate Isotopomer Ratios tcaSIM INCA 2.0 

GLU1S 0.1575 0.1575 

GLU1D 0.8425 0.8425 

GLU2S 0.0978 0.0978 

GLU2D23 0.1373 0.1373 

GLU2D12 0.2496 0.2495 

GLU2Q 0.5154 0.5154 

GLU3S 0.0721 0.0721 

GLU3D 0.4107 0.4107 

GLU3T 0.5172 0.5172 

GLU4S 0.0287 0.0287 

GLU4D34 0.0448 0.0448 

GLU4D45 0.3618 0.3618 

GLU4Q 0.5647 0.5647 

GLU5S 0 0 

GLU5D 1 1 

 

Aspartate Isotopomer Ratios tcaSIM INCA 2.0 

ASP1S 0.1575 0.1575 

ASP1D 0.8425 0.8425 

ASP2S 0.0978 0.0978 

ASP2D23 0.2495 0.2495 

ASP2D12 0.1373 0.1373 

ASP2Q 0.5154 0.5154 

ASP3S 0.0978 0.0978 

ASP3D23 0.1373 0.1373 

ASP3D34 0.2495 0.2495 

ASP3Q 0.5154 0.5154 

ASP4S 0.1575 0.1575 

ASP4D 0.8425 0.8425 
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Table 7A.4: Pool sizes of glycolytic and citric acid cycle metabolites in the heart used for dynamic 
simulations 
Pool sizes used for metabolites are consistent with those measured within myocardial cells [330]. Pool size 
values have been normalized to the turnover rate of citrate of 9.66 min-1 and are thus unit-less [154]. 
Glutamate pool size was set to 40 times that of citrate while alanine and aspartate pool sizes were set to 
1/10th that of glutamate, consistent with values reported in literature [337], [343]. 

  

Metabolite Pool Size 
Acetyl-CoA 0.1806 

α-KG 0.096 
Citrate 10.3595 

Fumarate 0.1681 
Glutamate 413.9799 

Lactate 6.7479 
Malate 1.2784 

Oxaloacetate 0.0528 
Pyruvate 0.1807 
Succinate 2.8744 
Alanine 41.3980 

Aspartate 41.3980 
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8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The research presented here shows the development of novel metabolic models and their applications in 

answering challenging questions in biology and physiology. The results shown in the prior chapters of this 

dissertation conclude that metabolic flux analysis is an effective approach to discover and quantify 

physiological mechanisms in cells, tissues, and the whole body, which would be otherwise impossible to 

observe. The models and tools developed here can be further applied to help characterize diseased metabolic 

states and guide the development of drugs and therapeutics in the context of diabetes and obesity.  

The data presented in Chapter 3 shows the role of G6PC2 as a negative regulator of glycolytic as well as 

mitochondrial metabolism. These findings challenge the dogma that GK alone regulates oxidative 

metabolism and thus insulin secretion in the beta cell. Results shown here validate the hypothesis previously 

presented by others that G6pc2 causes a leftward shift in the dose-response curve for GSIS and thus is a 

potential target for enhancing insulin secretion. Given that G6PC2 expression is associated with increased 

fasting blood glucose (FBG) levels and thus heightened risk for cardiovascular-associated mortality (CAM) 

in vivo [199], [207], these data suggest that G6PC2 inhibitors would be useful for lowering FBG and the 

risk of CAM. However, one needs to be judicious in interpreting these findings as recent studies suggest 

that under specific physiological conditions, such as prolonged fasting and ketogenic feeding, G6PC2 offers 

protection against hypoglycemia [178]. More broadly, the flux model developed in this chapter can be 

further applied to assess the metabolic regulation of primary islets and other pancreatic cell lines under 

conditions of hypo- and hyperglycemia.  

Findings from Chapter 4 establish the significance of secondary tracer effects due to Cori cycling and their 

impact on estimating hepatic fluxes. The expanded model, which relaxes certain assumptions through the 

analysis of broader measurement sets, indicates that significant hepatic pyruvate cycling persists under 
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fasted conditions. Additionally, exogenous propionate administration has no noticeable effects on 

gluconeogenic or pyruvate cycling fluxes. Overall, the results from this study conclude that secondary tracer 

effects are significant and the expansion of the hepatic model can help explain the previously seen 

differences between 13C propionate and lactate tracers [109], [219]. 

Results from Chapter 5 highlight the ability of stable isotope-based studies to simultaneously quantify 

hepatic and renal fluxes. The approach developed in the chapter shows that isotopic tracing and metabolic 

flux analysis are extensible tools that can aid in shaping our understanding of in vivo mammalian 

metabolism. Application of the dual-organ model shows that mice lacking hepatic PEPCK-C maintain 

euglycemia by upregulating renal glucose production and oxidative metabolism. Loss of hepatic PEPCK-

C diminishes gluconeogenesis, citric acid cycle (CAC) activity, anaplerosis, and pyruvate cycling in the 

liver. Compensatory increases in expression of both PEPCK isozymes in the kidneys facilitates increased 

gluconeogenesis and cataplerosis from the CAC. The integration of tissue and plasma metabolites provides 

a platform to simultaneously evaluate hepatic and renal metabolism in vivo.  

The research presented in chapter 6 leverages the expanded model presented in chapter 4 to simultaneously 

assess intermediary metabolism in the liver, heart, gastrocnemius and vastus muscles within a single mouse, 

using isotope enrichment measurements of tissue and plasma metabolites. Application of this multi-tissue 

model emphasizes that obesity has organ-specific effects that do not develop in isolation. Additionally, 

using integrative multi-omics analysis, I was able to identify important regulatory and clinical biomarkers 

of obesity-induced metabolic dysfunction. The development of this metabolic model provides a flexible 

platform to simultaneously evaluate in vivo fluxes in response to genetic, (patho)physiological and 

pharmacological interventions. 

Lastly, the INCA software package was upgraded with the capability to model steady-state and dynamic 

NMR measurements, and these new features were validated using both synthetic and experimental datasets 
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to precisely determine cardiac and hepatic fluxes. The ability to regress fluxes using both NMR and MS 

datasets in the same mathematical model is expected to aid in the design of more sophisticated isotope 

labelling studies and allow for significant advancements in the fields of metabolic engineering, cell culture, 

and mammalian physiology. We also foresee numerous applications of INCA 2.0 in further characterizing 

tissue-specific metabolism and understanding organ crosstalk in both normal and diseased states.  

8.2 Recommendations for future work 

The work presented in this dissertation has merely scratched the surface of all the possible applications of 

MFA in studying physiology and disease. The in vitro models presented here can readily be adapted to 

better characterize in vivo metabolism, and the in vivo models can be further applied to study different 

diseased states in animals and humans.  

The beta cell model examined in Chapter 3 establishes the role of G6PC2 as a negative regulator of 

oxidative metabolism, but operation of the pathways described herein remain to be tested in primary mouse 

and human islets. Preliminary studies assessing metabolic fluxes in mouse islets show high variability and 

thus mitigate any significant trends present in glycolytic and mitochondrial fluxes as well as insulin 

secretion (Fig. 8.1). The variability in these studies partially stems from adaptations that occur ex vivo in 

islets due to longer incubation times (>24h) [144]. Therefore, studies in primary islets need to be optimized 

for shorter incubation times with enriched media to capture metabolic effects that may not persist in 

prolonged culture. A starting point for optimizing these media conditions would be to add stable isotopes 

(glucose or glutamine) in the recovery media in the pre-incubation step and run the isotope labelling 

experiment for one to three hours. My results from the βTC3 cells showed that isotopic steady state was 

achieved in glycolytic intermediates within 3h (Fig. 3.3A) while earlier timepoints were not studied. This 

indicates that primary islets, which generate significantly more insulin that the βTC3 cells (Fig. 8.1E), may 

well reach steady state even earlier than 3h.   
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Figure 8.1: Metabolic effect of G6pc2 KO in primary mice islets  
A) Extracellular uptake and excretion measured in primary mice islets at 11 mM glucose concentrations. Positive values represent 

excretion fluxes while negative values indicate net uptake of metabolite. Data represent means±SEM (n=15). 
B) Flux network representing oxidative islet metabolism constructed in INCA. Measured media metabolites are shown in blue.  
C) Absolute extra- and intracellular fluxes in G6pc2 WT and KO primary mice islets estimated using MFA. Data represent 

means±SEM (n=3). 
D) Atom percent enrichment in glycolytic (labelled using [1,2-13C2] glucose) and TCA cycle metabolites (labelled using [U-13C5] 

glutamine). Data represent means±SEM (n≥6). 
E) Media insulin content after 24h incubation of primary mice islets. Data represent means±SEM (n=15). 
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Another improvement that can help resolve the fluxes in the oxidative pentose phosphate pathway in the β-

cell model is the measurement of phosphorylated sugars. Development of LC-MS/MS methods, as 

previously described [322], or improvements in TMS derivatization for GC-MS systems will allow for the 

measurement of sugar phosphates. Additionally, assessment of NADPH:NADP+ ratios from metabolite 

concentrations can also be further verified using a two-photon excitation microscope accessible at the 

Vanderbilt Biophotonics Center in the βTC3 cell line and primary mice islets. Ultimately, the metabolic 

model presented in Chapter 3 has further applications in studying β-cell metabolism under various 

conditions and can also be further applied to study the effects of type 2 diabetes in islets from human donors. 

Lastly, I measured changes in mitochondrial flux, independent from elevated glucose uptake rate. 

Consistent with these findings, baseline Ca2+ were also elevated at both 5 and 11 mM glucose concentration. 

To test whether calcium levels are elevated either in response to higher glycolysis or due to the loss of 

G6PC2, it would best to conduct flux studies and measure calcium levels in the presence of a KATP channel 

inhibitor, diazoxide. Additionally, elevated G6P levels are connected with a reduction in the calcium 

accumulation in the endoplasmic reticulum through the metabolite’s ability to lower sarco-endoplasmic 

reticulum calcium ATPase (SERCA) activity [194]. More importantly, inhibition of glucose-6-phosphatase 

has been shown to lower Ca2+ sequestration in endoplasmic reticulum of permeabilized islets [195]. 

Therefore, it is vital to measure the absolute concentration of G6P in WT and KO cells, where an elevation 

might suggest lower calcium sequestration in the ER. The experiment to measure levels of G6P can be 

combined with glucose cycling experiments to determine if rates of intracellular glucose cycling are higher 

internally then those measured in the media. Lastly, we can also conduct an experiment in WT and KO cells 

to see if calcium release from the ER is controlling glycolysis by using thapsigargin and measuring 

intracellular insulin content and media concentration.  

The in vivo models presented in Chapter 4, 5 and 6 assume that the tissue metabolite enrichment is in 

isotopic steady state. While plasma enrichment is unchanged during the last 20 minutes of the infusion 
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studies, further studies need to be conducted to confirm that this assumption holds true for tissue 

metabolites. A suggested experiment involves taking mice from the same cohort and running a series of 

infusion studies where tissues are extracted after 100-, 110- and 120-min post 13C3 lactate administration 

(~n=3-5 per time point). Next steps would be to compare the enrichment across the three time points in a 

number of tissues, including the liver, kidney, heart, gastrocnemius, and vastus, and verify if the mass 

isotopomer distribution (MIDs) of metabolites is indeed constant.  

While I showed that the kidney compensates for the loss of hepatic glucose production, the exact 

mechanism of action was not identified. Plasma glucagon levels were elevated and so was the expression 

of genes regulated by glucagon’s action in the kidneys of KO mice. To further test this hypothesis, a 

PEPCK-C KO mice with a renal glucagon receptor (GCGR) knockout model will be needed which is 

difficult to obtain. Alternatively, perfused kidneys from PEPCK-C WT and KO mice could be used under 

conditions of low glucagon to determine the signaling mechanism responsible for increased renal glucose 

production in these mice. Additionally, the contributions of the intestines to glucose production were not 

determined in our current model. Apart from expanding the flux model to encompass glucose production 

from the intestines, future studies could be conducted with dual knockouts of PEPCK in the liver and 

intestines as well as in the liver and kidneys. Obviously, these study require obtaining the pertinent mouse 

model prior to performing isotope infusion studies.  

The dual-organ model described in chapter 5 has further applications in studying the effect of obesity on 

renal and hepatic metabolism. In fact, applying this model on MC4R-/- mice fed 20 weeks of Western diet 

(WD) shows significant elevation in pyruvate cycling in the liver yet a reduction in oxidative and 

mitochondrial fluxes in the kidneys (Figure 8.2). This model has significant applications in studying the 

effects of disease and drugs on renal metabolism; for example, it can be applied to elucidate the effects of 

SGLT2 inhibitors on renal and hepatic metabolism. The multi-tissue model from Chapter 6 has even wider 

ranging applications in (patho)physiology and disease. It is already being applied in our lab to study the 
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metabolic effects of CDN1163, a small molecule drug that activates SERCA2, on multiple tissues in the 

body.  

Lastly, the testing and validation of INCA 2.0 performed in Chapter 7 provides a stepping stone for 

leveraging combined NMR and MS measurements of isotope enrichment. The flux simulations for 

regressing dynamic isotopomer measurements in the heart (see Section 7.4.3) can be applied to better 

resolve cardiac flux under conditions of hypertrophy and other cardiometabolic disorders. Furthermore, 

there are no software packages in the public domain that can model 1H and 13C NMR datasets together. 

Given that INCA allows the simultaneous regression of these datasets, future studies can take advantage of 

these features to better constrain the models presented in Chapter 3-6. One potential future application of 

this approach is to perform 13C NMR on tissues with low enrichments to acquire position-specific labeling 

descriptions of glutamate and alanine, two vital metabolites that can help resolve glycolytic and 

mitochondrial fluxes. This can help further constrain the model presented in Chapter 6 in tissues where 

isotopic enrichment is low, such as the heart and skeletal muscle. Broadly, this dissertation provides 

expanded MFA models that hold immense value in assessing in vitro and in vivo metabolic fluxes in normal 

and pathological conditions in animals and humans.  
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Figure 8.2: Metabolic fluxes in the liver and kidneys of MC4R-/- KO mice 
Metabolic fluxes were estimated using the dual-organ model in the (A) liver and (B) kidneys of 28-week-
old MC4R-/- KO mice, fed chow (n=4) or WD (n=7) for 20 weeks. Values represent means ± SEM, 
*P<0.10, **P<0.05, ***P<0.01. 
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APPENDIX OF DETAILED PROTOCOLS 

Metabolite extraction from plasma 

Materials: 

• 10 mL Methanol (MeOH) at -20oC 
• 10 mL Chloroform (ChCl3) at -20oC 
• 10 mL of UltraPure H2O on ice 
• 5 mM Norvaline 
• Crushed ice to hold samples 
• Microcentrifuge tubes 
• Vortexer with access to 4oC freezer 
• Centrifuge set to 0oC 

 
Procedure: 

1. Prepare 650µL mixture of MeOH/ChCl3 (2:1) for every 30-50 µL of plasma  
2. Add the 650µL mixture of MeOH/ChCl3 (2:1) to a sample and vortex for ~30s 
3. Add 10 uL of 5 mM norvaline to each sample; place the sample on ice  
4. Vortex all samples simultaneously for 10min at 4°C 
5. Place samples in crushed ice for 20min 
6. Add 200 µL of cold ChCl3 followed by 385 µL of ice cold H2O to a sample 
7. Vortex for ~1min and place on ice 
8. Repeat (7.) for remaining samples 
9. Centrifuge samples at 0°C for 10min at 14,000 RPM 
10. Isolate the aqueous phase with a fine-tipped pipette and place in a microcentrifuge tube 
11. Overnight dry samples at room temperature under gentle air flow 
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Metabolite extraction from frozen tissues 

Materials: 

o 10 mL Methanol (MeOH) at -20°C 
o 10 mL Chloroform (ChCl3) at -20°C 
o 10 mL of Pure DI Water kept cold on crushed ice 
o 5 mM norvaline 
o Crushed ice to hold samples 
o Vortexer 
o Centrifuge set to 0°C and 12,000 RPM 
o 30-50 mg of tissues aliquoted in tubes and stored on Liquid Nitrogen (LN2) 
o Reacti-Vap Evaportor 

 
Tissue Extraction: 

1. Add beads to screw-cap conical sample tubes.  
2. Prepare 2:1 mixture of MeOH/CHCl3 and place it on Ice 
3. Add 650 µL mixture of MeOH/CHCl3 (2:1) to each sample tube (1mL tube) containing 30 to 50 

mg of tissue  
4. Add 10 µl of 5 mM Norvaline as Internal Standard 
5. Homogenize each sample using the BeadBug (highest speed, 2 cycles, 60 seconds each) 

Important: Place samples on ice for 5 minutes between cycles 
6. Place samples in crushed ice for 20 min 
7. Add 200µL of cold ChCl3 followed by 385µL of ice-cold DI Water to each sample 
8. Vortex for ≈1min and place on ice 
9. Centrifuge samples at 0°C for 5 min at 12,000 RPM 
10. Isolate the aqueous phase (top layer) with a fine-tipped pipette and place in a microcentrifuge 

tube (1.7/2 mL) 
11. Overnight dry samples at room temperature under gentle air flow  
12. Store samples at -80°C for GC-MS analysis or add 50 µL of solution A for LC-MS analysis  
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RNA and protein extraction from cells 

Cleaning: Buffer RLT contains a guanidine salt and is therefore not compatible with disinfecting reagents 
containing bleach. Buffer RPE is supplied as a concentrate.  
Before using for the first time, add 4 volumes of ethanol (96–100%) as indicated on the bottle to obtain a 
working solution.  
A maximum of 100 μg RNA can be cleaned up in this protocol. This amount corresponds to the RNA 
binding capacity of the RNeasy spin column. 
 
RNA and protein extraction from Cells  
NOTE: The centrifugation temperature should be 20–25°C. This can cause formation of precipitates that 
can clog the RNeasy spin column. If this happens, set the centrifugation temperature to 25°C. Warm the 
ethanol-containing lysate to 37°C before transferring it to the RNeasy spin column. 
 
 1. Aspirate media and gently rinse cells with PBS 
 2. Add 350ul of RLT Lysis buffer (1mL + 10ul of b-mercaptoethanol) and disrupt the cells by 

vigorously pipetting up and down (Note: Check under microscope) 
Note: < 5 x106 add 350ul RLT and up to 107 cells add 600 µL 
 3. Pipet the lysate directly into a QIAshredder spin column placed in a 2 ml collection tube, and 

centrifuge for 2 min at full speed. 
       Collect flow-through. 
 4. Add 350µL volume of 70% ethanol to the homogenized lysate and mix well by pipetting. Do 

not centrifuge. 
 5. Transfer up to 700 μl of the sample, including any precipitate that may have formed, to a 

RNeasy spin column placed in a 2 ml collection tube. Close the lid gently, and centrifuge for 15 s 
at ≥8000 x g (≥10,000 rpm).  

***Save flow-through for protein quantification***  Go to protein extraction for details 
 6. Add 700 μl Buffer RW1 to the RNeasy spin column. Close the lid gently, and centrifuge for 

15 s at ≥8000 x g (≥10,000 rpm) to wash the spin column membrane.  
       Discard the flow-through. 
 7. Continue from step 8.  

 
RNase Free DNase Set (Qiagen: 79254) 

• Set at room temp for 15 mins 
• Using a needle and syringe, add 550µL of RNase free water into vial of lyophilized Dnase 
• Gently mix by inverting, do not vortex 
• Store: -20C for months, 2-8C for 6 weeks 
• For each sample: 10µL of reconstituted DNase + 70µL of RDD buffer 

 
 8. Add 350 μl Buffer RW1 to the RNeasy spin column. Incubate for 5 mins at room temp (helps 

remove DNA contamination) 
 9. Close the lid gently, and centrifuge for 15 s at ≥8000 x g (≥10,000 rpm) to wash the spin 

column membrane. 
Discard the flow-through. 
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 Add 10 μl DNase I stock solution (see above) to 70 μl Buffer RDD. Mix by gently inverting the 
tube, and centrifuge briefly to collect residual liquid from the sides of the tube. 

 Add the DNase I incubation mix (80 μl) directly to the RNeasy spin column membrane, and 
place on the benchtop (20–30°C) for 15 min. 

 Add 350 μl Buffer RW1 to the RNeasy spin column. Close the lid gently, and centrifuge for 15 s 
at ≥8000 x g (≥10,000 rpm) to wash the spin column membrane. 

Discard the flow-through. 
 Add 500 μl Buffer RPE to the RNeasy spin column. Close the lid gently, and centrifuge for 15 s 

at ≥8000 x g (≥10,000 rpm) to wash the spin column membrane. 
Discard the flow-through. 
 Add 500 μl Buffer RPE to the RNeasy spin column. Close the lid gently, and centrifuge for 2 

mins at ≥8000 x g (≥10,000 rpm) to wash the spin column membrane. 
Discard the flow-through. 

  
ENSURE THAT THE PREVIOUS STEP IS DONE AT RT and NOT at 4C. NECESSARY FOR 
COMPLETE REMOVAL OF ETHANOL IMPURITIES IN RPE. 
 
 Place the RNeasy spin column in a new 2 ml collection tube and discard the old collection tube 

with the flow-through. Close the lid gently, and centrifuge at full speed for 1 min 
 Place the RNeasy spin column in a new 1.5 ml collection tube. Add 40 μl RNase-free water 

directly to the spin column membrane. Close the lid gently, and centrifuge for 1 min at ≥8000 x g 
(≥10,000 rpm) to elute the RNA 

 Repeat previous step, collect 40µL flow through from pervious step, add it to the spin column 
and centrifuge for 1 min at 8000 x g 

Note: Repeat RNA elution and incubate the RNeasy spin column on the benchtop for 10 min with 
RNase-free water before centrifuging if your yield is low. 
 
Protein extraction from Buffer RLT Lysates  
Note: Precipitated, denatured protein obtained using this protocol is suitable for SDS-Page, western 
blotting and 2D gel electrophoresis 
 Transfer flow-through from the 2 mL tube to a 15 mL falcon tube.  
 Add 4 volumes of ice-cold acetone to the flow-through: 

a. So, for example, if you had added 350 µL of RLT + 350 µL of 70% ethanol in step 2 and 4, 
the flow-through volume will be ~700 µL, therefore add 2800 µL of ice-cold acetone.  

b. If you added 600 µL of RLT + 600 µL of 70% ethanol, add 4800 µL of ice-cold acetone to the 
flow-through 

 Incubate for 30 min on ice or at –20°C. 
 Centrifuge for 10 min at maximum speed in a benchtop centrifuge. Discard the supernatant and air-

dry the pellet. 
 Optional: Wash the pellet with 100 μl ice-cold ethanol and air-dry. Do not over dry the pellet as this 

may make resuspension more difficult. 
 Freeze down pellet at -80C for later analysis. 
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Quantification, and Determination of Quality of RNA 

• RNA should be determined by measuring the absorbance at 260 nm (A260) in a 
spectrophotometer  

• To ensure significance, A260 readings should be greater than 0.15.  
• An absorbance of 1 unit at 260 nm corresponds to 44 μg of RNA per ml (A260=1 → 44 μg/ml) 
• The ratio between the absorbance values at 260 and 280 nm gives an estimate of RNA purity. 
• the A260/A280 ratio is influenced considerably by pH. Since water is not buffered, the pH and 

the resulting A260/A280 ratio can vary greatly. Lower pH results in a lower A260/A280 ratio and 
reduced sensitivity to protein contamination. 

• Pure RNA has an A260/A280 ratio of 1.9–2.1 in 10 mM Tris·Cl, pH 7.5. 
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Di-O-isopropylidene propionate derivatization of glucose 

I. Chemicals 
a. Acetone, stored at 4°C ((CH3)2CO; Sigma-Aldrich #179124-4L) 
b. 96% Sulfuric acid (H2SO4; EMD Millipore #SX1244-5 2.5L) 
c. 0.44 M Sodium Carbonate solution (Na2CO3; Fisher Scientific #S495-500) 
d. Saturated sodium chloride solution (Fisher Scientific #S271-1) 
e. Propionic anhydride (C6H10O3; Sigma-Aldrich #240311-50G) 
f. Pyridine (C5H5N; Sigma-Aldrich #270970-100ML)) 
g. Ethyl acetate (CH3COOCH2CH3; Fisher Scientific #E195-1 1L) 
h. 5 mM U-13C6-D7-Glucose (Cambridge Isotopes); Optional 

II. Materials 
a. 1.5 mL microcentrifuge tubes 
b. 10 mL screw-cap culture tubes (Fisher Scientific #14-959-25A) 
c. 100 mL glass vials or test tubes 
d. Pipettes and tips 
e. 1 mL glass Pasteur pipettes and bulb 
f. 1.5 mL GC injection vial and injection caps (Agilent 5182-0716, 5182-0717) 
g. 250 μL glass inserts (Agilent 5181-1270) 

III. Equipment 
a. Sample dryer (e.g. Pierce Reacti-Therm III and Reacti-Vap III) 
b. Heating block 
c. Microcentrifuge 
d. Vortex 

IV. Procedure 
a. Sample Preparation – protein precipitation 

i. Transfer 20 μL of sample or standard to a labeled microcentrifuge tube 
ii. If needed, spike in 20 μL of 5 mM U-13C6-D7-Glucose to use as an internal standard for 

estimating absolute glucose concentration; pipette up and down to mix 
iii. Add 300 μL cold acetone  
iv. Vortex vigorously for 10 seconds 
v. Centrifuge for 5 minutes at 14,000 rpm 

vi. Carefully transfer the supernatant by pipetting to a labeled 10 mL screw-top culture tube  

vii. Evaporate samples to dryness under air flow at 60°C 
1. Drying takes approximately 20 minutes 
2. Breakpoint; samples can sit at 4 °C overnight before proceeding 

b. Derivatization 
i. In a glass vial or test tube, carefully mix 1 part sulfuric acid:46 parts acetone v/v; swirl to mix 

1. Must be prepared fresh 
ii. Add 500 μL of acetone/sulfuric acid solution to each sample 

iii. Vortex 10 seconds 
iv. Incubate at room temperature for 60 minutes 
v. Add 400 μL of 0.44mM sodium carbonate solution to stop the reaction; swirl to mix until 

bubbling ceases 
vi. Add 1 mL of saturated sodium chloride solution  

vii. Add 1 mL of ethyl acetate  
viii. Vortex vigorously for 15 seconds 

http://www.sigmaaldrich.com/catalog/search?interface=All&term=179124&lang=en&region=US&focus=product&N=0+220003048+219853269+219853286
http://www.emdmillipore.com/food-analytics/gr-acs-sulfuric-acid/EMD_CHEM-SX1244/p_WYib.s1LCHQAAAEWNcofVhTm?WFSimpleSearch_NameOrID=SX1244-5&BackButtonText=search+results
http://www.fishersci.com/ecomm/servlet/fsproductdetail?storeId=10652&productId=762330&catalogId=29104&matchedCatNo=S495500&fromSearch=1&searchKey=500||S495&highlightProductsItemsFlag=Y&endecaSearchQuery=%23store%3DScientific%23nav%3D0%23rpp%3D25%23offSet%3D0%23keyWord%3DS495-500%23searchType%3DPROD%23SWKeyList%3D%5b%5d&xrefPartType=From&savings=0.0&xrefEvent=1389400317132_0&searchType=PROD&hasPromo=0
http://www.fishersci.com/ecomm/servlet/fsproductdetail?storeId=10652&productId=763767&catalogId=29104&matchedCatNo=S2711||S27110&fromSearch=1&searchKey=S271||1&highlightProductsItemsFlag=Y&endecaSearchQuery=%23store%3DScientific%23nav%3D0%23rpp%3D25%23offSet%3D0%23keyWord%3DS271-1%23searchType%3DPROD%23SWKeyList%3D%5b%5d&xrefPartType=From&savings=0.0&xrefEvent=1389400378921_0&searchType=PROD&hasPromo=0
http://www.sigmaaldrich.com/catalog/search?interface=All&term=240311&lang=en&region=US&focus=product&N=0+220003048+219853269+219853286
http://www.sigmaaldrich.com/catalog/search?interface=All&term=270970&lang=en&region=US&focus=product&N=0+220003048+219853269+219853286
http://www.fishersci.com/ecomm/servlet/fsproductdetail?storeId=10652&productId=665562&catalogId=29104&matchedCatNo=E1951&fromSearch=1&searchKey=E195||1&highlightProductsItemsFlag=Y&endecaSearchQuery=%23store%3DScientific%23nav%3D0%23rpp%3D25%23offSet%3D0%23keyWord%3DE195-1%2B%23searchType%3DPROD%23SWKeyList%3D%5b%5d&xrefPartType=From&savings=0.0&xrefEvent=1389399197622_0&searchType=PROD&hasPromo=0
http://www.isotope.com/cil/index.cfm
http://www.fishersci.com/ecomm/servlet/fsproductdetail?storeId=10652&productId=650544&catalogId=29104&matchedCatNo=1495925A&fromSearch=1&searchKey=1495925A&highlightProductsItemsFlag=Y&endecaSearchQuery=%23store%3DScientific%23nav%3D0%23rpp%3D25%23offSet%3D0%23keyWord%3D1495925A%23searchType%3DPROD%23SWKeyList%3D%5b%5d&xrefPartType=From&savings=0.0&xrefEvent=1389398917404_0&searchType=PROD&hasPromo=0
http://www.chem.agilent.com/store/ProductDetail.aspx?productID=5182-0716%28Agilent%29
http://www.chem.agilent.com/store/ProductDetail.aspx?productID=5182-0717%28Agilent%29
http://www.chem.agilent.com/store/ProductDetail.aspx?productID=5181-1270%28Agilent%29
http://www.geminibv.nl/labware/pierce-reacti-therm-iii-reacti-vap-iii-en?set_language=en
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ix. Allow tubes to incubate 2 minutes or until the two layers are fully separated 
1. If bottom layer has a lot of bubbles, add an additional 400 μL of 0.44mM sodium 

carbonate solution 
x. Using a glass pipette tip with the Drummond pipet-aid, carefully transfer the top organic layer 

to a labeled microcentrifuge tube 
1. The top layer should be > 1 mL 

xi. Evaporate to dryness under air flow at room temperature  
1. Drying takes approximately 45 minutes – 1 hour 
2. The dried samples are usually white powder 
3. Breakpoint; samples can sit at 4 °C overnight before proceeding 

xii. In a glass vial or test tube (II.c.), prepare a 2:1 solution of propionic anhydride:pyridine; swirl 
to mix 

1. Must be prepared fresh 
xiii. Add 150 μL of propionic anhydride/pyridine solution to each sample; scrape powder with tip 

to dissolve and pipette up and down to mix 
xiv. Incubate for 30 minutes at 60°C on the heating block 
xv. Centrifuge for 30 seconds at 14,000 rpm to remove condensation 

xvi. Evaporate samples to dryness under air flow at 60°C. Takes around 20-30 minutes 
xvii. Dissolve the samples in 100 μL ethyl acetate 

xviii. Centrifuge 10 minutes at 14,000 rpm to remove solid debris 
xix. Transfer supernatant to a GC injection vial containing a 150 μL glass insert 

1. Close vials tightly and store at -20°C 
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MOX-TBDMS derivatization of metabolite extracts 

1. Introduction 
This protocol describes the derivatization of intracellular metabolites for subsequent GC/MS 
analysis. 
 

2. Required Materials and Equipment 
• MOX reagent (Pierce Biotechnology, product# 45950) 
• TBDMS: MTBSTFA + 10% TBDMCS, 1 mL ampules (Pierce Biotechnology, product# 

48927) 
• 2 mL amber glass injection vial 
• 150 uL insert for injection vial 
• Evaporator (Pierce Reacti-Vap) 
• Sonicator 
• Heating block 

 
3. Sample preparation 

• Dry frozen sample under air flow at room temperature (approximately 60 min) 
 

4. MOX derivatization protocol 
• Dissolve dried sample in 50 uL MOX reagent 
• Spin samples for 30 seconds at 14,000 rpm 
• Place in sonication bath for 30 min. at room temperature 
• Spin samples for 30 seconds at 14,000 rpm 
• Incubate for 90 min. at 40 °C on a heating block 

 
5. TBDMS derivatization protocol 
 For TBDMS: 

• Add 70 uL of MTBSTFA +1 % TBDMCS directly into the sample, pipette up and down to 
mix 

• Spin samples for 30 seconds at 14,000 rpm 
• Incubate for 30 min. at 70 °C on a heating block  
• To drive the reaction to completion, leave samples at room temperature overnight 
 

6. Preparation for GC/MS 
•  Centrifuge for 5 min at 14,000 rpm to remove solid debris 
•  Transfer liquid to injection vial containing a 150 uL microvolume insert 
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Designing TIDE primers and performing TIDE analysis to quantify efficiency for CRISPR/Cas9 

knockout 

Notes 

• You will need the SnapGene viewer software to view fasta files. 
• This protocol uses the G6pc2 knockout in βTC3/Cas9 cells as an example. 
• The following information comes with the gRNAs that are ordered from Dharmacon.  In this 

chart, ‘Sequence’ refers to the 20 bp guide sequence, ‘Genomic Location’ refers to the specific 
site on the genome of the species (mm10 is the mouse genome for the βTC3 cell, +chr refers to 
the chromosome number, 69226586-69226608 refers to the base pair location). ‘Accession 
Exons’ refers to the specific exon of the cut site. 

 

Designing Primers for PCR Amplification Around the Expected Cut Site 

1. Download the most updated genome version of the species of your cell line.  For example, the 
mouse genome sequence (mm10) is required for the βTC3 line, found in the following link and 
clicking ‘download human genome’: 

https://ftp.ensembl.org/pub/release-99/fasta/mus_musculus/cdna/ 
For Rat: ftp://ftp.ensembl.org/pub/release-90/fasta/rattus_norvegicus/dna/ 

2. Each mouse chromosome is included in a separate zip file.  Download the zip file with the 
chromosome of your expected cut site.   

3. Open the full chromosome sequence in SnapGene Viewer, located on the lab desktop computer. 
4. Find the expected cut site by typing ‘Control+f’ and typing the 20 bp sequence.  The region will 

become highlighted.  TIDE recommends designing primers to create a DNA sequence of ~700 bp 
to include the target site ~200 bp downstream from the sequencing start site.  The region 
upstream of the cut site is used to align the sequencing data of the test sample with that of the 
control sample.  In addition, conventional Sanger sequencing typically has unread nucleotides at 
the start (listed as ‘N’), which should not be close to the expected cut site. 

 

https://ftp.ensembl.org/pub/release-99/fasta/mus_musculus/cdna/
ftp://ftp.ensembl.org/pub/release-90/fasta/rattus_norvegicus/dna/


248 

 

 
5. Highlight a region ~700 bp that includes the expected cut site, starting ~340 bp upstream of the 

cut site and ending ~340 bp after the cut site. 

 
6. Copy this region and paste into NCBI Primer-BLAST website: 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/  
Make sure to select Genome under Primer Pair Specificity and select your organism type.  

 

 

7. Set the ranges for the forward and reverse primer regions, 1 to ~100 for the forward primer region 
and ~600 to ~700 for the reverse primer region.  This ensures that the cut site is far enough from 
the start and end points. 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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8. Click ‘get primers’ and the program will design the top primers based on optimizing Tm, GC%, 
and self-complementarity.  The primers will vary in length.  Typically, any of these top primers 
should work sufficiently. 

 

 

9. Order the top primer sequence from IDT.  Several primer pairs can be ordered to ensure that they 
will work properly in PCR and for the cheap cost of ordering primers. Primers will arrive within a 
couple of days after ordering. 
 

Performing PCR on Genomic DNA 

1. Extract DNA from your control sample (Cas9 cell line without any crRNA delivery) and test 
sample (Cas9 cell line with crRNA delivery), according to the DNA extraction protocol (see 
protocol).  Make sure that the DNA is efficiently dilute in the QuickExtract reagent.  Too 
concentrated DNA will not allow PCR amplification to occur, clog gel lanes, and make pipetting 
difficult.  Too dilute DNA will require an extra concentration step to load enough DNA into each 
PCR reaction. 

2. Measure the DNA concentration using the Qubit fluorometer in Lippmann lab. 
3. Set up a standard PCR reaction according to the Taq polymerase instructions with your designed 

primers, aiming for ~50 ng per reaction. Scale up the reaction to ensure enough yield at the end 
(typically 8 Rxns in a PCR tube strip). 

 
NEB Taq DNA Polymerase with Standard Taq Buffer 

 1 Rxn (50 uL) [uL] 8 Rxn (400 uL) [uL] 
10X Standard Buffer 5 40 

10 mM dNTPs 1 8 
10 uM FP 2 16 
10 uM RP 2 16 

Genomic DNA X (~50 ng) X (~400 ng) 
Polymerase 0.25 2 

Ultrapure Water Fill to 50 uL Fill to 400 uL 
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4. Perform the PCR reaction on the thermocycler for 30 cycles.  Combine the reactions. 
Step Temperature Time 

Initial Denaturation 95C 30 seconds 

30 cycles 95C 30 seconds 

58C 30 seconds 

68C 1 minute 

Final Extension 68C 5 minutes 

Hold 4C ∞ 

5. Following the PCR reaction, the DNA needs to be cleaned up.  This can either be done with a 
PCR cleanup spin column kit or PCR cleanup gel extraction kit (see protocols).   

6. Use the Qubit Fluorometer to measure the concentration of the DNA after cleanup. 
7. Perform phenol/chloroform extraction with ethanol precipitation (see protocol) to concentrate the 

sample according to the following guidelines.  A sequence of ~700 bp of purified PCR products 
should be ~2 ng/uL, in 10 uL of water for ~20 ng of total mass. 

8. Add 25 pmol of forward primer in 5 uL of volume to the 10 uL of sample, for a total volume of 
15 uL.  Mix the solution by pipetting up and down a few times.  The samples are now ready to be 
sent in for sequencing and can be placed in the fridge for storage for up to one week.  Freeze in 
the -20 freezer for long term storage. 
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Genewiz Sample Submission 

1. Log into Genewiz (create account if you haven’t already done so and make sure to contact 
support to get an educational account for Vanderbilt): 

https://clims4.genewiz.com/RegisterAccount/Login?returnUrl=https://clims4.genewiz.com//CustomerHo
me?language=en-US&language=en-US  

2. Click ‘PCR Product-Purified.”  Select ‘PCR Product-Purified’ under DNA Type, ‘Premix’ under 
Service type, ‘same day’ for service priority, either ‘column’ or ‘gel extracted’ for purification 
type and input the number of samples.  In the chart, type your sample name, select 501-1000 bp 
under length, and type the name of the primer.  Then click save and review. 

 

 

 

3. Look over the summary sheet then click add to cart.  
4. Click ‘sample pickup at Vanderbilt University Light Hall 902 by 2:00pm’.  Then click 

‘checkout’.  
5. Print two copies of the order form, one is for your records.  The other copy is to tape the tube 

samples to.  Fold the sheet in half with the samples and bring to Light Hall a little before 2:00pm.  
The dropoff box is at room temperature, so it is best to wait to as close to 2:00pm before dropping 
off to make sure the samples are not left sitting out.  

6. Sequencing can take a of couple days to get the results back.  When the results are available, an 
email will be sent to you.  Click the link or log onto your Genewiz account to view your results. 

7. The results list the QS and CRL from the sequencing.  Values of QS over 40 and CRL over 500 
are good results with minimal background.  Too low of values of QS may require a redo with the 
difficult sequencing option.  If the QS and CRL still fail after a redo, the sample may be bad and 
this procedure must be performed again to ensure as little background as possible from 
sequencing. 

8. Once the sequences pass the QS and CRL thresholds, download all the files in .ab1 format. 
 

https://clims4.genewiz.com/RegisterAccount/Login?returnUrl=https://clims4.genewiz.com//CustomerHome?language=en-US&language=en-US
https://clims4.genewiz.com/RegisterAccount/Login?returnUrl=https://clims4.genewiz.com//CustomerHome?language=en-US&language=en-US
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TIDE Analysis 

1. Login to your TIDE profile (create one if you haven’t).  http://shinyapps.datacurators.nl/tide/  
2. Begin by typing the name of your data, selecting spCas9, selecting your 20 bp guide sequence, 

selecting your control sample in .ab1 format and your test sample in .ab1 format. 

 
 

3. Click advanced settings to view the alignment window, decomposition window, indel size range, 
and P-value threshold.  The default settings should be sufficient.  Click Update View. 

http://shinyapps.datacurators.nl/tide/
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4. The results will then be displayed.  The most important information is the efficiency of the indel 

spectrum.  In the following graph, there is an efficiency of 89.1% indel formation, with 11.9% of 
the sequences showing no difference between the control and test samples.  An R2 value above 
0.93 means that the two sequencing files align well and that the data can be trusted   
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5. Other information is generated including quality control to look for aberrant sequence signals, ctrl/edit align to show the sequence that the 
program uses to align the two files, and quantification of indel frequencies to show the indel spectrum in more detail. 
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Ctrl align: GACTCCTGGAGTGTGTTCAA 
edit align:  GACTCCTGGAGTGTGTTCAA 
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