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Chapter 1  

 

Introduction 

 

Biological systems have been studied from a reductionist perspective since the early 

days of molecular biology and have yielded important insights (Morange, 1998). This 

reductionist approach consists in breaking a large system into different parts and 

identifying the connections between these parts. All with the assumption that molecule 

structures and their interactions provide enough explanation to understand the whole 

system. Apoptosis, an important pathway dysregulated in multiple human diseases (Singh 

et al., 2019), and JNK3 activation cascade, a pathway that can trigger apoptosis through p53 

(Dhanasekaran & Reddy, 2008), are two examples of biological processes that have been 

studied through the reductionist approach leading to the identification of key protein-

protein interactions. However, it has been increasingly clear that only knowing the 

interaction network of biological processes is not enough to understand and modulate 

these processes (Barzel & Barabási, 2013). This has led to the use of the systems biology 

approach, where mathematical models are employed to study the complex dynamics that 

arise during cellular signaling processes.  

The systems biology approach consists of studying the interactions between 

multiple molecular components and their dynamics to understand the structure of a 

system and the emergent properties that arise as a result of the interactions (Kitano, 2002). 

According to Kitano, to understand a biological system it is necessary to study four key 

properties: 1) System structures: the network of protein interactions generated by extensive 

research in molecular biology, 2) System dynamics: the changes in temporal concentration 

of biomolecules, which are studied through mathematical equations 3) The control 

method: the mechanisms used to modulate cell states, and 4) The design method: 

approaches used to design biological systems with desired properties. In this work, we 

focused on understanding the dynamics of the apoptosis and JNK3 activation signaling
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processes and developed novel tools to analyze signal flow through networks and 

visualize network structures and dynamics. 

To study the dynamical properties of the Apoptosis and JNK3 models we used the 

rule-based modeling framework PySB (Lopez et al., 2013). This framework encodes the 

protein-protein interactions and their dynamics into a network of ordinary differential 

equations (ODEs) using the law of mass action kinetics (Voit et al., 2015). These ODEs 

contain parameters describing the strength of reactions that are often unknown. To make 

useful predictions with these models it is necessary to calibrate the parameters and ensure 

that models reproduce prior experimental data. After calibration, parameters have 

uncertainties and the effect of these uncertainties on signal execution and prediction have 

not been studied extensively. Additionally, models encoding biological processes are 

becoming increasingly larger and harder to visualize. Therefore, the overarching goal of 

this work is to analyze and visualize the Apoptosis and JNK3 models to understand how 

different signal execution patterns arise due to parameter uncertainty. In the following 

sections we present an introduction about the central topics involved in this work. 

 

1.1   Introduction to ODE models and calibration 

The Human Genome Project and other large-scale projects have provided genomics, 

transcriptomics, and proteomics data that has enabled the development of mathematical 

models to study biological processes (Collins & McKusick, 2001; Legrain et al., 2011). The 

first step to build a model consists in defining the possible interactions between the 

molecules in a network. This is accomplished by studying the experimental data available 

from the signaling mechanism of interest as well as exploring databases, e.g. STRING 

(Szklarczyk et al., 2019), that contain known and predicted protein-protein interactions. 

These networks can be studied through different mathematical frameworks including 

Ordinary Differential Equations (ODE), Boolean networks, stochastic equations and petri 

nets (Bartocci & Lió, 2016; W. Chen et al., 2010; Machado et al., 2011).  In this work, we 

focused on the analysis of mechanistic ODE models which are used to describe the 

temporal dynamics of protein concentration driven by consumption and production in 
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different interactions. ODE-based models are particularly useful in the analysis of 

regulatory motifs like feedback mechanisms and cascade motifs that control the 

relationship between stimuli and responses (Alon, 2006).  

In the ODE framework, cellular reactions are described by the law of mass action, 

which indicates that the rate of a chemical reaction is directly proportional to the 

concentration of the molecules involved in the reaction (Voit et al., 2015). Thus, for 

example the dynamics of an enzymatic reaction, E + S <> ES > E + P, is described by the 

following system of ODEs: 

 

𝑑[𝐸]

𝑑𝑡
= − 𝑘𝑓[𝐸][𝑆] + 𝑘𝑟[𝐸𝑆] + 𝑘𝑐𝑎𝑡[𝐸𝑆] 

𝑑[𝑆]

𝑑𝑡
= − 𝑘𝑓[𝐸][𝑆] + 𝑘𝑟[𝐸𝑆] 

𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘𝑓[𝐸][𝑆]  −  𝑘𝑟[𝐸𝑆]  −  𝑘𝑐𝑎𝑡[𝐸𝑆] 

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸𝑆] 

 

Where the expression 𝑑[·] 𝑑𝑡⁄  on the left-hand side represent the rate of change of 

a molecular species over time and the expressions on the right-hand side describe the 

interactions that controls the rate of change of a protein. The solution of this systems of 

differential equations yields the concentrations of the molecules over time. These 

mechanistic ODE-based models contain two types of parameters: kinetic parameters (in 

this case 𝑘𝑓, 𝑘𝑟 , 𝑘𝑐𝑎𝑡), which describe the strength of protein-protein interactions, and 

initial conditions that refer to the initial protein levels at the beginning of a simulation. 

Initial protein concentrations can be measured experimentally but all initial conditions of 

a model are rarely measured (Albeck et al., 2008; Neumann et al., 2010). Kinetic 

parameters are usually not measured due to technical difficulties or they are measured in 

vitro where it is not clear whether these values are similar to values in a crowded 

intracellular environment (Schreiber et al., 2009). Thus, the majority of parameter values 

in a model are unknown and must be estimated in order to obtain quantitative insights 
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from biological network-driven processes. Model parameters are inferred by comparing 

simulated trajectories of molecular species to their corresponding experimental data and 

adjusting parameter values so that the simulated trajectories reproduce the experimental 

data as close as possible. In the next section, we will introduce the concept of cost function, 

which determines how well a simulation from a calibrated parameter vector fits the 

experimental data. 

 

1.2   Defining a cost function for calibration 

To compare the simulation results from a model to the experimental data it is 

necessary to define a suitable metric. This metric should take into account the simulated 

data as well as the experimental data and measure how different the trajectories are from 

each other. One of the most common cost functions is chi-squared which measures the 

squared differences of the simulated data to the experimental data and normalizes it by the 

variance obtained from replicated experiments. Chi-squared is defined as follows: 

 

𝜒2  =  ∑ ∑
1

2𝜎𝑖
2(𝑡)

[𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 (𝑡;  Θ)  − 𝑥𝑑𝑎𝑡𝑎

𝑖 (𝑡)]2

𝑖𝑡

 

 

Where Θ is the parameter vector used to run a simulation, 𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 (𝑡;  Θ) correspond 

to the simulated trajectory of molecular species 𝑖 with parameter vector Θ, 𝑥𝑑𝑎𝑡𝑎
𝑖  is the 

experimental data from species 𝑖, and 𝜎𝑖
2 is the variance from the experimental data of 

species 𝑖. The index 𝑖 runs over all species (observables) that have experimental data, and 

the index 𝑡 runs over all time points at which the data was measured. Thus, calibrating a 

mechanistic model corresponds to minimizing this function, that is finding the parameter 

vector that makes the difference between experimental data and simulated trajectories 

closest to zero. This optimization can be performed by different algorithms including 

Particle Swarm Optimization (Kennedy & Eberhart, 1995) and Differential Evolution 

Adaptive Metropolis (Shockley et al., 2018; Jasper A. Vrugt, 2016). Additionally, 𝜒2 is also 

the negative log of the likelihood that the data will be observed for a given set of 
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parameters, assuming that measurement errors at time 𝑡 have a Gaussian distribution with 

variance 𝜎𝑖
2. This opens the possibility of using Bayesian methods to obtain calibrated 

parameters. Bayesian methods have the benefit that they calculate the uncertainty of the 

parameters and also provide information about the parameter vectors that are more likely. 

  

1.3   Types of calibration and quantification of parameter uncertainty 

In the past, mathematical models used to be calibrated manually (Kholodenko et 

al., 1999), where kinetic parameter where derived from basic physical-chemical quantities 

and fine-tuned manually to fit the data and the quality of the fit was assessed visually. 

Thanks to advances in computation, novel algorithms have been developed. These 

algorithms can be categorized in deterministic, stochastic, and hybrid approaches 

(Heinemann & Raue, 2016). 

Deterministic approaches consist in harnessing the information provided by the 

derivative of the cost function to determine the direction in parameter space where the 

cost function is minimum. Algorithms use this information to define the next parameter 

vector to sample and iteratively reduce the value of the cost function. There are algorithms 

like gradient descent that use the first order derivative, but they can easily get stuck at 

saddle points in a high dimensional parameter space. To address this, algorithms like 

Newton’s method (Meza, 2011) and the Levenberg-Marquardt algorithm (More, 1978) use 

the curvature information provided by the second order derivative to optimally navigate 

the parameter space and improve convergence. The disadvantage of deterministic 

approaches is that optimization runs can get stuck in local minima.  To circumvent this 

problem, multi-start approaches are utilized where optimization algorithms are run 

multiple times starting from different positions in parameter space. The assumption is that 

starting from different locations improves the chances of finding a global minimum. 

Stochastic approaches evaluate the cost function multiple times and use heuristics 

to search for the parameter vectors that minimize the cost function (Abdel-Basset et al., 

2018). Heuristic methods commonly used in systems biology (Sun et al., 2012) include 

simulated annealing (Dekkers & Aarts, 1991), genetic algorithms (Deb, 1999), differential 
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evolution (Storn & Price, 1997), and particle swarm optimization (Kennedy & Eberhart, 

1995). Stochastic approaches usually do not include gradient information, but novel hybrid 

methods, e.g. scatter search (Egea et al., 2007), initially explore the parameter space using 

stochastic algorithms and then switch to gradient-based methods to fine-tune the search 

locally. 

Given that experimental measurements have uncertainties, when models are 

calibrated these uncertainties are propagated to the fitted parameter values and to the 

model-simulated predictions, this uncertainty is defined as practical identifiability (Vanlier 

et al., 2012). Additionally, depending on the structure of the model there can be structural 

identifiability when model parameters are functionally related and thus parameter values 

cannot be constrained to reasonable ranges (Raue et al., 2009). Multiple methods exist to 

quantify parameter uncertainty (Mitra & Hlavacek, 2019a). In addition to quantifying 

parameter uncertainty, it is important to understand the effect of these uncertainties in 

signal execution through biomolecular networks. Simulations with different parameter 

vectors can show different signal executions through the network, and different 

sensitivities to perturbations in the network. The next section describes a dynamic 

approach to study the effect of parameter uncertainty on signal execution through a 

network. 

 

1.4   Introduction to dynamic flux analysis 

Studying signal execution in networks is difficult because there are many factors 

that affect signal execution. Some of these factors include the number and strength of 

interactions that proteins can have, and the concentration dynamics of biomolecules. To 

study the functional consequences of molecular polyspecificity, Stites and colleagues 

combined the measurements of protein abundance and binding affinities with a 

computational framework and determined that the relative importance of protein-protein 

interactions is cell line dependent (Stites et al., 2015). To study network dynamics Harush 

et al. analyzed multiple networks with different topologies and used a perturbative 

formalism to analyze their signal flow at steady state (Harush & Barzel, 2017). They 
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analytically tracked the contribution of all nodes to the flow of information and then 

derived an equation that relates network structure and its dynamics with flow patterns. 

Although these studies provided important insights about signal execution, they were 

developed to study signal flow at steady state conditions, omitting transient dynamics. 

These dynamics are important as they provide information about signal flow through the 

network and the timing of perturbations required to better modulate a cell response. 

An approach that takes into account the effect of transient dynamics and parameter 

uncertainty in models of signaling networks is presented in this work. In this method, 

described in more detail in Chapter 3 and 4, a model is simulated with a calibrated 

parameter vector and instantaneous reaction rates are calculated for each protein-protein 

interaction. Then, using an approach inspired in tropical algebra (Noel et al., 2011) and 

ultradriscretization theory (Kato et al., 2017a), at each simulated time point a dominant 

subnetwork is obtained from tracking the reactions with highest signal flow. The sequence 

of dominant networks is defined as a signal execution fingerprint. This discretization step 

is repeated for each calibrated parameter vector.  Then, our method uses the longest 

common subsequence metric, and clustering algorithms to compare and group execution 

fingerprints, respectively. Groups with similar execution fingerprints are said to have the 

same execution mode. Thus, our analysis is one of the first approaches, to the best of our 

knowledge, that takes into account non-equilibrium dynamics of signaling networks and 

parameter uncertainty to create a paradigm shift towards a more probabilistic 

understanding of signal execution in biochemical networks.  

In addition to analyses of signal flow under different conditions, visualization 

techniques can be used to further study cellular signaling processes. These visualizations 

are useful as they help researchers to perform exploratory analysis of the model topology, 

detect patterns that arise from reaction dynamics, and generate hypotheses about the 

importance and regulation of biomolecules in a network. In the next section, we discuss 

visualizations of network-driven biological processes. 

 

1.5   Introduction to network visualization 
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It has become increasingly clear that biological processes are the result of complex 

interactions of cellular molecules including proteins, RNA, DNA, and metabolites (Barabási 

& Oltvai, 2004). These complex interactions are represented in a network, where nodes 

correspond to molecules involved in a pathway and edges represent interactions between 

molecules. Edges can be undirected when there is not enough information about the 

direction and nature of the interaction between the nodes and directed when there is 

information about information flow (transcription factor to gene it regulates) or material 

flow (substrate to a product). The dynamics of these network-driven biological processes 

are studied using mathematical models to extract mechanistic insights about the regulation 

of these biological processes (Aldridge et al., 2006). As new interactions and crosstalk 

proteins are discovered and integrated into mathematical models, these have become 

larger and difficult to identify relevant structures and patterns of signal execution. In this 

scenario, visualization tools present one effective way to explore network processes, 

acquire conceptual insights about signal-execution mechanisms, and quickly generate 

mechanistic hypotheses about dynamic regulation. 

Tools to visualize network-driven biological processes that are encoded in 

mathematical models can be classified in two groups, static and dynamic. Static 

representations include molecular species network (Bergmann et al., 2017), species-

reactions network (Schaff et al., 2016), contact map (Boutillier et al., 2018; Cheng et al., 

2014; L. A. Harris et al., 2016), rules defined in the model (Boutillier et al., 2018; Cheng et 

al., 2014), rules network (Danos et al., 2012; Smith et al., 2012), and atom-rule graphs (Sekar 

et al., 2017). Dynamic visualizations integrate information about temporal changes 

obtained from a simulation into networks, and facilitate the understanding of causality, 

feedback mechanisms, or oscillations that occur during biological processes. Current 

approaches to represent model dynamics include: Copasi (Bergmann et al., 2017) and the 

Kappa Dynamic Influence Network (Forbes et al., 2017). In Copasi, a tool only compatible 

for SBML  models (Hucka et al., 2003), species concentrations from simulation results are 

encoded qualitatively in the size of the box around the nodes of a graph and no information 

is included about reaction rate values and concentrations. The Kappa Dynamic Influence 
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Network, a web service tool for Kappa models (Boutillier et al., 2018), provides a node-link 

diagram that displays the temporal influence that each rule has on other rules. Overall, 

these tools have provided important insights about biological networks. However, there is 

still an unmet need to effectively visualize increasingly large models and to quantitatively 

and intuitively display reactions fluxes throughout networks to identify dynamic patterns 

of signal execution.  

A tool that enables the visualization of large networks and their dynamics is 

presented in this work. This tool, described in more detail in Chapter 5, is a Python package 

that provides interactive visualizations within the Jupyter Notebook web application 

(Kluyver et al., 2016). We used Jupyter notebooks because it is a platform for literate 

programming (Knuth, 2001) that enables researchers to define both code and 

documentation at the same time whilst developing a workflow for model definition, 

visualization, and analysis. Our tool has a two-fold functionality: I) it facilitates exploratory 

analysis of the network and dynamics of biochemical models to generate novel hypotheses, 

and II) it promotes the reproducibility and dissemination of model analysis pipelines. Thus, 

this tool accelerates the process of model analysis to generate novel insights about the 

mechanisms of cell behavior. 

 

1.6   Reproducibility of systems biology models 

Reproducibility of published results is essential for the advancement and credibility 

of science. However, multiple studies have demonstrated that a large percentage of studies 

published in scientific journals are not reproducible (Baker & Penny, 2016). In a 

computational field like systems biology, it would be expected that most published models 

would be reproducible, but a recent survey identified that ~50% of the models considered 

are not reproducible (Tiwari et al., 2021). Thus, in this work we deposited all code used for 

analysis and algorithms in GitHub (https://github.com/LoLab-VU) and used Binder 

(Jupyter et al., 2018) to enable researchers to reproduce our analysis on mybinder.org 

servers. Also, all tools developed here can be easily integrated into Jupyter Notebooks 

(Kluyver et al., 2016), which are files with code and documentation that are easy to share. 

https://github.com/LoLab-VU
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1.7   Organization 

In Chapter 2, we introduce a model, calibration and analysis of the JNK3 activation 

cascade. In Chapter 3, we introduce Pydyno, which is a software tool to study signal flow 

through biochemical networks under different conditions. We include details about the 

implementation, sequence analysis and visualization methods. In Chapter 4, we present a 

detailed analysis of the Apoptosis pathway using Pydyno. We show how model calibration 

yields multiple parameter vectors that fit the experimental data and how these parameter 

uncertainties affect signal execution. In Chapter 5, we present PyViPR, a tool that combines 

community detection algorithms and simulation results to visualize large models and their 

dynamics. In Chapter 6, we discuss the results of this work and make conclusion remarks. 
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Chapter 2  

 

Development and analysis of the JNK3 activation Reaction Model (JARM) 

 

2.1.   Introduction: Biological background and model scope 

JNK3 is a mitogen-activated protein kinase (MAPK) involved in different 

physiological processes like apoptosis and cell proliferation when it is activated, and its 

upregulation has been implicated in neurodegenerative diseases (Yoon et al., 2012). The 

cascade to activate JNK3 starts from ASK1 (MAP3K kinase), which then activates MKK4/7 

(MAP2K kinases) by phosphorylating them, and in turn MKK4/7 activate JNK3 by 

phosphorylating the tyrosine and threonine sites, respectively (Keshet & Seger, 2010). 

Recent studies showed that arrestin-3 is a scaffold that facilitates the activation of JNK3 

(Zhan et al., 2013). JNK3 is phosphorylated by MKK4 and MKK7 in solution and in the 

arrestin-3 scaffold, which results in a variety of protein complexes and reactions. However, 

the mechanisms by which the scaffold improves the activation rate of JNK3 are poorly 

understood. Thus, it is important to analyze the interactions and dynamics of arrestin-3, 

MKK4/7 and JNK3 to gain insights about the mechanisms that control JNK3 activation. 

We developed the JNK3 Activation Reaction Model (JARMv1.0) to understand the 

systems-level regulation of JNK3 activation by analyzing the dynamics and reaction rates 

of the interactions between arrestin-3, MKK4/7 and JNK3. In JARM, arrestin-3 have two 

binding sites, one where MKK4 or MKK7 binds, and the other where JNK3 binds. JNK3 have 

a tyrosine site that can be phosphorylated by MKK4 and a threonine site that can be 

phosphorylated by MKK7. Also, MKK4/7 can phosphorylate JNK3 in the presence or 

absence of the arrestin-3 scaffold. In the arrestin-3 scaffold, after MKK4 phosphorylates its 

respective site, it can be replaced by MKK7, and vice versa. JNK3 is activated when it has 

been phosphorylated both in the tyrosine and threonine sites. A diagram of all model 

interactions is shown in Figure 2.1, and a summary of species and reactions generated by 

PySB are shown in Table 2.1 and Table 2.2, respectively. 
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Figure 2.1 Network of all possible interactions between MKK4, MKK7, JNK3, and arrestin-3. Nodes 
represent the different complexes formed by the interacting species, and circles in the JNK3 node 
show the phosphorylation state of the tyrosine (left) and threonine (right) sites. The different orders 
in which JNK3 can be phosphorylated are highlighted by color: arrestin-3:MKK4/7 formation before 
JNK3 binding (green); arrestin-3:JNK3 complex formation before MKK4/7 binding (yellow); and 
MKK4/7 binding JNK3 in the absence of arrestin-3 (blue). The convention of Kitano et al (Kitano et 
al., 2005) was followed. 
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Species Starting concentrations (Molar) 

Arrestin 0, 5 

pMKK4 0.05 

pMKK7 0.05 

uuJNK3 0.59 

puJNK3 0 

upJNK3 0.0067 

Arrestin:pMKK4 0 

Arrestin:pMKK7 0 

Arrestin:uuJNK3 0 

Arrestin:upJNK3 0 

Arrestin:puJNK3 0 

uuJNK3:pMKK4 0 

puJNK3:pMKK4 0 

upJNK3:pMKK4 0 

uuJNK3:pMKK7 0 

upJNK3:pMKK7 0 

puJNK3:pMKK7 0 

Arrestin:uuJNK3:pMKK4 0 

Arrestin:upJNK3:pMKK4 0 

Arrestin:puJNK3:pMKK4 0 

Arrestin:uuJNK3:pMKK7 0 

Arrestin:puJNK3:pMKK7 0 

Arrestin:upJNK3:pMKK7 0 

ppJNK3:pMKK4 0 

ppJNK3:pMKK7 0 

Arrestin:ppJNK3:pMKK4 0 

Arrestin:ppJNK3:pMKK7 0 

ppJNK3 0 

Table 2.1 JARM species and their corresponding initial conditions. The first u in JNK3 corresponds 
to the threonine site, and the second u is the tyrosine site 
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PySB-generated Reaction Rate or Equilibrium Constant 

Arrestin + pMKK4  Arrestin:pMKK4 KD_pMKK4_Arr = 347 molar 

Arrestin + pMKK7  Arrestin:pMKK7 KD_pMKK7_Arr = 13 molar 

Arrestin + uuJNK3  Arrestin:uuJNK3 KD_uuJNK3_Arr = 1.4 molar 

Arrestin + upJNK3  Arrestin:upJNK3 KD_upJNK3BindArr = 4.2 molar 

Arrestin + puJNK3  Arrestin:puJNK3 KD_puJNK3BindArr = 10.5 molar 

Arrestin:pMKK4 + uuJNK3  

Arrestin:pMKK4:uuJNK3 

KD_MKK4_Arr_bind_uuJNK3 = 1.4 molar 

Arrestin:pMKK4:uuJNK3 → 

Arrestin:pMKK4:upJNK3 

kcat_pMKK4_ArrJNK3 

Arrestin:pMKK4:puJNK3 → 

Arrestin:pMKK4:ppJNK3 

kcat_pMKK4_ArrJNK3 

Arrestin:pMKK4:upJNK3  Arrestin:upMKK4 

+ upJNK3 

KD_upJNK3_bind_Arr_MKK4 

Arrestin:pMKK4:puJNK3  Arrestin:puMKK4 

+ puJNK3 

KD_puJNK3_bind_Arr_MKK4 

Arrestin:pMKK4:ppJNK3  Arrestin:ppMKK4 

+ ppJNK3 

KD_ppJNK3_Arr = 220 molar 

Arrestin:pMKK7 + uuJNK3  

Arrestin:pMKK7:uuJNK3 

KD_MKK7_Arr_bind_uuJNK3 = 1.4 molar 

Arrestin:pMKK7:uuJNK3 → 

Arrestin:pMKK7:puJNK3 

Kcat_pMKK7_ArrJNK3 

Arrestin:pMKK7:upJNK3 → 

Arrestin:pMKK7:ppJNK3 

Kcat_pMKK7_ArrJNK3 

Arrestin:pMKK7:puJNK3  Arrestin:puMKK7 

+ puJNK3 

KD_puJNK3_bind_Arr_MKK7 

Arrestin:pMKK7:upJNK3  

Arrestin:upMKK47+ puJNK3 

KD_upJNK3_bind_Arr_MKK7 

Arrestin:pMKK7:ppJNK3  Arrestin:ppMKK7 

+ ppJNK3 

KD_ppJNK3_Arr = 220 molar 
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Arrestin:uuJNK3 + pMKK4  

Arrestin:uuJNK3:pMKK4 

KD_MKK4BindArr_uuJNK3 

Arrestin:puJNK3 + pMKK4  

Arrestin:puJNK3:pMKK4 

KD_MKK4BindArr_uuJNK3 

Arrestin:uuJNK3 + pMKK7  

Arrestin:uuJNK3:pMKK7 

KD_MKK7BindArr_JNK3 

Arrestin:upJNK3 + pMKK7  

Arrestin:upJNK3:pMKK7 

KD_MKK7BindArr_JNK3 

Arrestin:pMKK4:upJNK3 + pMKK7 → 

Arrestin:pMKK7:upJNK3 + pMKK4 

keq_pMKK4_to_pMKK7 

Arrestin:pMKK7:puJNK3 + pMKK4 → 

Arrestin:pMKK4:puJNK3 + pMKK7 

keq_pMKK7_to_pMKK4 

pMKK4 + uuJNK3  pMKK4:uuJNK3 KD_MKK4_uuJNK3 

pMKK4 + puJNK3  pMKK4:puJNK3 KD_MKK4_puJNK3 

pMKK4:uuJNK3 → pMKK4:upJNK3 kcat_pMKK4_ArrJNK3 

pMKK4:puJNK3 → pMKK4:ppJNK3 kcat_pMKK4_ArrJNK3 

pMKK4:upJNK3  pMKK4 + upJNK3 KD_pJNK3_MKK4complex 

pMKK4:ppJNK3  pMKK4 + ppJNK3 KD_pJNK3_MKK4complex 

pMKK7 + uuJNK3  pMKK7:uuJNK3 KD_MKK7_uuJNK3 

pMKK7 + upJNK3  pMKK7:upJNK3 KD_MKK7_upJNK3 

pMKK7:uuJNK3 → pMKK7:puJNK3 kcat_pMKK7_ArrJNK3 

pMKK7:upJNK3 → pMKK7:ppJNK3 kcat_pMKK7_ArrJNK3 

pMKK7:puJNK3  pMKK7 + puJNK3 KD_pJNK3_MKK7complex 

pMKK7:ppJNK3  pMKK7 + ppJNK3 KD_pJNK3_MKK7complex 

Table 2.2 Reactions defined in JARM. The left column shows the bidirectional and catalytic 
reactions that are generated from PySB rules. The right column shows the kinetic parameters 
involved in each reaction. Experimentally measured kinetic constants are highlighted in red. 
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2.2.   Materials and methods 

2.2.1. Experimental data 

Our collaborators generated all the key data to study the role of arrestin-3 in the 

JNK3 activation cascade. The experimental data can be found in reference (N. A. Perry et 

al., 2019). This data consisted of 54 measurements at different time points of JNK3 

phosphorylated in both the threonine and tyrosine sites, JNK3 phosphorylated only in the 

threonine site, and JNK3 phosphorylated only in the tyrosine site. Each data point was 

collected in triplicate enabling the calculation of the mean and standard deviation, which 

were used for model calibration. Additionally, our collaborators measured the affinities of 

MKK4/4 and JNK3 for arrestin-3, effectively reducing the number of parameters that had 

to be calibrated in JARMv1.0 

 

2.2.2. Model implementation and calibration  

JARMv1.0 was implemented in Python using the PySB framework (Lopez et al., 2013) 

that enables users to build mathematical models of biochemical systems as Python 

programs. In all, JARMv1.0 included 28 biochemical species, 60 chemical reactions, and 44 

free parameters. When this program is executed, a set of rules is translated to 28 ordinary 

differential equations (ODEs) using the mass action kinetics formalism. The solution of the 

ODEs shows how the concentration dynamics of the molecular species change as a result 

of the interactions in which they are involved.  Since the ODEs generated by JARM require 

association and dissociation rate constants instead of dissociation equilibrium constants 

(KD) values, all experimentally determined KD values were converted into rate parameters 

using the equation KD=kr/kf. For the model calibration, kf  rates were set within the “average 

enzyme” distribution of specificity constant (Aldridge et al., 2006; Bar-Even et al., 2011; 

Zheng et al., 2012), whereas the kr were allowed to change. Out of linear range values at 

initial time points and higher than theoretical maximum values in the time-course data 

were set to zero and the theoretical maximum, respectively. We applied scaling 

normalization to both the time-course data and the simulated trajectories.  
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Model calibration was performed using the PyDREAM package (Shockley et al., 

2018), which is a python implementation of the (Multiple-Try) Differential Evolution 

Adaptive Metropolis (DREAM(ZS)) algorithm (J. A. Vrugt & Ter Braak, 2011). To reduce the 

number of model parameters to calibrate, we used experimentally measured dissociation 

constants for the interactions between MKK4/7, JNK3, and arrestin-3 (N. A. Perry et al., 

2019), and literature values for the interactions between MKK4/7 and JNK3 alone (Ho et 

al., 2006). We assumed that the catalytic constants for JNK3 phosphorylation were the 

same within a scaffold complex and in solution. The model was pre-equilibrated to allow 

complexes to form before the reaction is initiated. Parameter prior probabilities were 

specified as uniform distributions with the lower and upper boundary set with the lowest 

and highest values from the protein–protein kinetic interaction data and structures 

(PPKIDS) dataset (H. Bai et al., 2011), indicating a lack of knowledge about the likely 

parameter values. Literature-based values and experimental measures were fixed. The fit of 

simulated trajectories to experimental data was measured using the sum of the squared 

differences: 

 

 

 

Where t is the time span of the simulation and experiments, Θ = (𝜃1, … , 𝜃𝑛) are the 

parameters of the model, 𝑥𝑚𝑜𝑑𝑒𝑙
𝑖  are the simulations of the model under condition i and 

𝑥𝑑𝑎𝑡𝑎
𝑖  (𝑡) is the experimental data under condition i. This function corresponds to the 

negative log of the likelihood (−ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛩))) in the Bayesian framework assuming 

the measurement errors at time t have a normal distribution. Using the Bayes formula, the 

value of the log posterior distribution, i.e. the probability of a parameter vector given the 

experimental data, for a particular parameter vector is defined as  

− ln(𝑝𝑜𝑠𝑡(𝛩)) ∝ − ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛩)) − ln (𝑝𝑟𝑖𝑜𝑟(𝛩)) 

Where 𝑝𝑜𝑠𝑡(𝛩) is the posterior probability of parameter vector 𝛩, and 𝑝𝑟𝑖𝑜𝑟(𝛩) are 

the prior probabilities assigned to each of the parameters in the parameter vector 𝛩. 

PyDREAM samples the posterior distribution and finds probable parameter sets that fit the 



18 

 

experimental data within the constraints that the network interactions and the network 

kinetics imposes. To further constraint the model, we added the requirement that 

thermodynamic cycles present in the interaction network must obey detailed balance/free 

energy conservation in the likelihood function.  

The DREAM(ZS) algorithm was run using PyDREAM with five chains that started in 

parameter locations provided by previous calibrations using the Particle Swarm 

Optimization algorithm (Kennedy & Eberhart, 1995). Each chain sampled 500,000 

parameter sets and the first 250,000 samples were discarded as burn-in. All chains were 

tested for convergence using the Gelman-Rubin criterion. To measure the goodness of fit 

of the calibrated model to the experimental data we use the 𝜒2 statistic. A good fit would 

correspond to a 𝜒2 value that is approximately equal to the number of experimentally 

obtained data points. Using the 5000 most likely parameters obtained from the calibration 

we obtained a 𝜒2 value of 32.32 (±0.09). Given that we measured 36 experimental points 

for pTyr-JNK3 and pThr-JNK3 reactions, we conclude that the model shows a reasonable 

fit to the experimental data. 
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Figure 2.2 Simulated trajectories of p(Thr)JNK3, p(Thr)JNK3 and doubly phosphorylated JNK3 
calibrated to reproduce the experimental data. Dots and error bars indicate the mean and standard 
deviation of the experimental data and solid lines represent the model simulations. 
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Figure 2.3 Posterior probability distributions for calibrated JARM kinetic parameters. The x-axis 
corresponds to the base-10 logarithm range for possible values of kinetic parameters in JARM. The 
y-axis represents the probability of each of the possible parameter values. The resulting 
distributions provide an idea of the range and likelihood of each parameter value given the 
experimental data. As shown, some parameters exhibit a broad range of values (~3 orders of 
magnitude) but the key catalytic parameters for arrestin-3 are well constrained. Parameter values 
were obtained as described in the calibration section. Parameter names with the prefix ‘kr’, ‘kcat’ 
and ‘keq’ correspond to the reverse, catalysis (sec-1 units) and forward ((uM*sec)-1 units) rate 
constants, respectively.  
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2.3.   Results 

To identify a biochemical reaction mechanism that explains the JNK3 activation, we 

used JARMv1.0, as it encodes the protein interactions relevant to MKK4/7 phosphorylation 

of JNK3 with and without arrestin-3 (Fig. 2.1). JARMv1.0 was encoded using PySB (Lopez et 

al., 2013) to enable hypothesis testing as we explored plausible mechanisms. We used an in 

vitro kinase activation assay to give the model a dynamic point of reference for calibration. 

This assay characterized the JNK3 phosphorylation time course, in the presence or absence 

of arrestin-3, by MKK7 and MKK4 (Fig. 2.2, experimental data). The data showed 2.2-fold 

more phosphorylation of Thr-221 than Tyr-223 at 60 s incubation when arrestin-3 is 

present. It also showed that ppJNK3 generation in the presence of arrestin-3 displayed a 

fold change between 1.2 and 1.8 higher than in the absence of arrestin-3. These data were 

used to calibrate JARMv1.0.  

To populate JARMv1.0 parameters, we used our experimentally determined binding 

constants and values reported in the literature (Zhan et al., 2014). As described in the 

previous section, remaining parameters were estimated using PyDREAM, a Bayesian 

parameter inference formalism (Shockley et al., 2018). This yielded parameter probability 

distributions, constrained by our experimental data, rather than single best-fit values 

(Figure 2.3). Inspecting these distributions, we observed a few that spanned a narrow 

parameter range whereas others spanned a broader parameter range. These distributions 

can be interpreted as an estimate for model sensitivity to parameter variations. From a 

statistical perspective, JNK3 activation is less sensitive to parameters with broad 

distributions, and more sensitive to those with a narrow distribution. The calibration 

results suggest that the system is most sensitive to the catalytic phosphorylation constants 

of MKK4 and MKK7 (Figure. 2.3). This gave us confidence that experimental measurements 

provided suitable constraints to explore the dynamics of JNK3 phosphorylation even 

without direct measurements of other parameters.   
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Figure 2.4 Top panel: corresponds to the time-dependent concentration changes of active (doubly 
phosphorylated) JNK3, pTyr-JNK3 bound to arrestin-3 and pThr-JNK3 bound to arrestin-3. Center 
panel: represents the catalysis reaction rate values of singly phosphorylated JNK3. Bottom panel: 
shows the catalysis reaction rate values of active (doubly phosphorylated) JNK3 
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Calibrated JARMv1.0 showed that the time-dependent concentrations of singly 

phosphorylated JNK3 in complex (pTyr-JNK3:Arrestin-3, pThr-JNK3:Arrestin-3) or doubly 

phosphorylated JNK3 (ppJNK3), exhibit nonlinear dynamics that emerge from multiple 

simultaneous reactions (Figure 2.2). Our Bayesian calibration estimated that the catalytic 

constant of JNK3 phosphorylation by MKK7 is 2 orders of magnitude faster than the one of 

JNK3 phosphorylation by MKK4 (Figure 2.3). As shown in Figure 2.4, in the early time 

points of the simulation MKK7 rapidly produces the first phosphorylation of JNK3 (pThr-

JNK3) and, it accumulates in the system over time. Then, MKK4 predominantly produces 

the second JNK3 phosphorylation via the arrestin-3 scaffold as its reaction rate is up to one 

order of magnitude faster than all other second phosphorylation events with or without 

arrestin-3 (Figure 2.4). Taken together, these data suggest that MKK4 phosphorylation is 

the rate-limiting step in the JNK3 activation pathway, but multiple interactions take place 

to accomplish this outcome. This is consistent with active MKK4 having a lower affinity for 

arrestin-3 (Table. 2.2). 

As previous studies have shown that less than 50% dual phosphorylation over total 

JNK expression can lead to a robust physiological response (Khalid et al., 2016; Lei et al., 

2002; Muniyappa & Das, 2008) we used JARMv1.0 to study whether arrestin-3 changes the 

time to reach this threshold. We found that the reactions involving arrestin-3 reach the 

50% threshold 2.63 times faster compared with the reaction system without arrestin-3 

(Figure. 2.5 Top panel). Finally, we simulated JARMv1.0 with different concentrations of 

arrestin-3 and identified that the optimal concentration of arrestin-3 for maximal JNK3 

phosphorylation is around ~0.49 µM (Figure. 2.5 Bottom panel). 

All code used to build the model, fit the model parameters and perform analysis is 

freely distributed as open-source software and available in the Lopez lab GitHub repository 

(github.com/LoLab-VU/JARM). 

 

 

http://github.com/LoLab-VU/JARM
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Figure 2.5 Top panel: Simulated model trajectories of doubly phosphorylated JNK3. The red and 
black lines show the production of ppJNK3 when arrestin-3 is present and absent, respectively. 
Bottom panel: Simulated effect of varying arrestin-3 concentration in the system. 
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Chapter 3  

 

PyDyno: a tool to analyze parameter uncertainty in biochemical models 

 

3.1     Summary 

The advent of quantitative techniques to probe biomolecular-signaling processes 

have led to increased use of mathematical models to extract mechanistic insight from 

complex datasets. These complex mathematical models can yield useful insights about 

intracellular signal execution but the task to identify key molecular drivers in signal 

execution, within a complex network, remains a central challenge in quantitative biology. 

This challenge is compounded by the fact that calibrated models usually have parameter 

uncertainties that could yield multiple signal execution modes and thus multiple potential 

drivers in signal execution. Here, we present a novel approach to identify signaling drivers 

and characterize dynamic signal processes within a network. Our method, PyDyNo, 

combines physical chemistry, statistical clustering, and tropical algebra formalisms to 

identify interactions that drive time-dependent behavior in signaling pathways. We use our 

algorithm to study the effect of parameter uncertainty in the cascade of JNK3 activation. 

We show that given the parameter uncertainty there are different ways in which the signal 

can be executed, and we define them as execution modes. These execution modes respond 

differently, based on the dominant reactions, to the same perturbation to the network.  

These results can be used along experimental design approaches to identify signal 

execution mode of a cellular process and target the reactions through which most signal is 

flowing to modulate a pathway response 
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3.2     Introduction 

Many cellular signaling processes can be represented as complex networks of 

interconnected biochemical components (Jordan, Landau and Iyengar, 2000). The 

dynamics of these networks regulate cellular functions by controlling how cells transduce 

external signal cues into cellular decisions (Purvis and Lahav, 2013). However, there are 

still fundamental questions about the dynamics of signal execution in biochemical 

networks, and how changes in concentration or kinetic parameters in a biochemical 

network could lead to system-wide reconfigurations that can manifest as different cell 

signaling and fate decisions. Therefore, explaining the dynamic response mechanisms of a 

network to perturbations and predicting outcomes based on prior knowledge is necessary 

to accelerate our understanding of cellular signaling dynamics.   

To explain the input/output responses of intracellular signaling pathways 

researchers have appealed to information theoretic approaches (Cheong et al., 2011; 

Brennan, Cheong and Levchenko, 2012; Levchenko and Nemenman, 2014; Suderman et al., 

2017; Shockley et al., 2019). These approaches cast signal transduction in terms of channel 

capacities, which are the maximum amounts of information that noisy biochemical 

pathways can transmit from an input stimulus to an output response. This kind of analysis 

has revealed that the maximum channel capacity of a biochemical process is context 

dependent and could require the cooperativity of multiple cells to achieve actual 

information transfer (Suderman et al., 2017). In previous work, we applied information 

theoretic analysis to the COX-2 reaction network and observed that given an external noise 

source and a limited set of data, some paths were more or less likely to be utilized 

depending on the initial levels of signaling molecules (Shockley et al., 2019). Despite the 

insights provided by information theoretic approaches, little has been done to understand 

the actual network flux which controls the input/output response. Indeed, the fundamental 

philosophy of information theoretic approaches is to treat the biochemical network purely 

in terms of input/output relationships, thereby disregarding the details of the transient 

dynamics which underpin signal transduction through the network. As such, questions 

remain about how non-equilibrium dynamics flow through a biochemical network, how 
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the patterns of transient reaction-flux control network response, as well as what dynamic 

paths are plausible under a given set of conditions.   

Reaction-flux based analysis is particularly challenging because many concurrent 

biochemical interactions take place at any given time in biological networks (Nobeli, Favia 

and Thornton, 2009) and the reaction rates of these interactions change over time. The 

quantity of interactions and temporal dynamics makes it difficult to identify meaningful 

patterns across all the competing biochemical reactions. Ultra-discretization (Kato, 

Tsujimoto and Zuk, 2017a) and tropical geometry (Noel, Grigoriev and Vakulenko, 2011) 

methods address these difficulties by mapping continuous non-linear dynamic processes 

onto piece-wise additive representations where only the dominant terms, i.e protein-

protein interactions, are considered. This effectively separates out the most important 

reactions of the systems dynamics and identifies the conditions in which the important 

reactions change. Noel and others have demonstrated that such a procedure can also be 

applied to the dynamics of biochemical networks, however, they principally considered the 

approach to guide model reduction.  

Here, we adapt the notion of dominance used in ultra-discretization and tropical 

geometry methods to define a dynamic signal execution fingerprint. This fingerprint 

encodes the temporal patterns of transient reaction flux that dominate signal execution 

through a biochemical network. Using this approach, we effectively reduce a complex 

biochemical network down to a subnetwork of dominant protein-protein interactions and 

thereby identify the dynamic paths relevant for signal propagation in non-equilibrium 

states. Our approach can be combined with Bayesian inference to rigorously incorporate 

the effects of parameter uncertainty on the dynamic signal processing mechanisms in 

biochemical network models. We clustered the signal execution fingerprints generated by 

the inferred parameter sets and were able to identify conserved modes of dynamic signal 

transduction that are plausible within the constraints of the experimental data used to train 

the model. This approach is particularly applicable to biochemical networks which can be 

represented using physicochemical models that mathematically encode the network of 

biochemical interactions using mass-action kinetics based differential equations. 
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3.3     Materials and methods 

3.3.1   Development on the python ecosystem. 

The Pydyno package was written in Python 3, a powerful objected-oriented 

programming language that is easy to learn and have a clear syntax (Van Rossum & Drake, 

2009). Pydyno utilizes PySB (Lopez et al., 2013) and Tellurium (Choi et al., 2018) to develop 

and  simulate models of network-driven biological processes. These models can be 

calibrated using Bayesian methods (Mitra et al., 2019; Shockley et al., 2018) to obtain 

kinetic parameters or initial conditions that make the model reproduce the experimental 

data. Then, Pydyno employs NetworkX (Hagberg et al., 2008) to obtain a network 

representation of the simulated models, and Numpy (C. R. Harris et al., 2020) and Sympy 

(Meurer et al., 2017) to compute the dominant sub-networks as described in section 2.24. 

Finally, Pydyno leverages SciPy (Virtanen et al., 2020) to calculate a distance matrix that is 

used with clustering algorithms from Scikit-learn (Pedregosa et al., 2011) to obtain groups 

of dominant subnetworks with similar signal executions. 

 

3.3.2   Workflow to obtain a discretized representation of network dynamics 

As shown in Figure 3.1, the PyDyNo workflow starts from a model that can be 

defined in the PySB or SBML format. Next, our algorithm builds a bipartite graph from the 

model reaction network. This bipartite graph has a set of nodes that correspond to model 

species, and another set of nodes that correspond to reactions, and edges only connect 

species nodes with reaction nodes. This bipartite graph enables us to identify the all 

reactions that produce a specific species. PyDyNo updates the direction of graph edges 

related to bidirectional reactions to indicate the net flux of the reaction at a specific time 

point. Then, PyDyNo starts tracking the signal flow from a user defined species target to 

obtain the dominant subnetwork. Each unique dominant subnetwork is assigned a specific 

label. This process is repeated for each simulation time point and results in a sequence of 

labels that provide a fingerprint of signal execution for a parameter vector. The approach 

to obtain dominant subnetworks is described in the next section.  
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3.3.3   Obtaining dominant subnetworks 

3.3.3.1   Constructing the digital signature for a subnetwork 

The digital signature of a model simulation is a temporal ordered sequence of labels 

denoting the dominant sub-network at each time point of the simulation. The dominant 

sub-network for a given time point is a subset of the signaling pathway over which the most 

signal is flowing to the production of a pre-determined target species (i.e., signaling protein 

or protein complex); each unique dominant sub-network is assigned a unique integer label 

for the digital signature.  

Construction of the dominant sub-networks uses the instantaneous reaction rates 

at each simulation time point, which change over time as molecular species are consumed 

and produced. Hence, the dominant sub-networks can change at each time of the model 

simulations, resulting in a dynamic sequence of dominant sub-networks; i.e., the digital 

signature of the model simulation. The procedures for constructing the dominant sub-

networks and for selecting dominant reaction are detailed in the proceeding paragraphs.  

Supplementary figure 4 shows an algorithm diagram version of the construction of digital 

signatures. 

 

3.3.3.2   Constructing a dominant sub-network 

The generation of the dominant sub-network at a given time point starts with creating a 

bipartite directed graph (digraph) representation of the model which consists of molecular 

species and reaction nodes. All molecular species and reactions within the model are 

encoded as nodes with unidirectional edges connecting molecular species with their 

respective reaction nodes. The directionality of each edge is determined by the sign of the 

reaction rate of the given species-reaction pair at the current time point; for reversible 

reactions the reaction rate is the sum of forward and reverse rate terms. The bipartite 

digraph provides an instantaneous snapshot of the direction of fluxes through   
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Figure 3.1 Algorithm to obtain dynamic fingerprints from a simulation. Briefly, the algorithm 
consists in building a bipartite graph from the model, and then simulating the model with a specific 
parameter vector. Next, the algorithm obtains the dominant reactions from a network and builds a 
subnetwork. This procedure is repeated for each simulated time point 
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the signaling network.  

We then hierarchically construct a dominant pathway starting from the user-

defined target species. For the first step, we identify the set of dominant reactions, i.e., 

those reactions which contribute most to the production of the target species. Dominant 

reactions are classified based on the instantaneous reaction rates; the conditions 

determining the dominant reactions are detailed in the following paragraph. We then trace 

back through the bipartite graph along those dominant reactions to the corresponding 

reactant species, which are added to the dominant sub-network. For each reactant species 

that was added to the sub-network we determine their dominant reactions and trace back 

through the bipartite graph to the next set of reactant species. This procedure is continued 

for a pre-determined number of iterations defined by the user parameter depth. Once the 

procedure is complete, the result is a species-to-species sub-network representing the 

dominant pathway over which most of the signal is flowing to produce the target at the 

current time point. 

Note that we have defined the dominant sub-networks and their construction based 

on production of the target species. Alternatively, the procedure can be formulated to 

define the dominant sub-networks and their construction based on the consumption of the 

target species, which we detail in the Supplement. 

 

3.3.3.3   Selecting dominant reactions 

One aspect of network complexity is that signaling proteins can participate in 

multiple interactions [cite]; in a bipartite digraph this is represented by a molecular species 

having edges connecting it to multiple reactions. The goal therefore is to simplify the 

system and focus on only those reactions which are most important to the production of a 

species; we term this sub-set of reactions the dominant reactions. To determine the set of 

dominant reactions we build on some of the concepts from Noel et al. (Noel et al., 2011), 

who applied a tropical geometry framework to smooth ODE systems. 
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When the signaling network is modelled with a system of ODEs the rate of change 

of a molecular species, 𝑥𝑖, is: 

 
𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑘𝑗𝑆𝑖𝑗𝑥α𝑗

𝑟

𝑗=1

 Eq 1 

 

where 𝑘𝑗 > 0 are kinetic constants, 𝑥𝑖 are variable concentrations, Sij = βi
j

− αi
j
 

are the entries of the stoichiometric matrix, αj = (α1
j
, … , αn

j
) are multi-indices, and xαj =

x1

α1
j

… xn
αn

j

. 

 

We treat the ODE of molecular species xi as a polynomial function of the uni-

directional rate terms, 

 𝑣𝑖(𝑡) =
𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑀𝑗

𝑟

𝑗=1

  Eq 2 

 

where the Mj = kjSijx
αj are the monomials representing the uni-directional rate 

terms. Since reversible reactions are bi-directional, they contribute two uni-directional rate 

monomials to the total rate of change of a species: one each for the forward (consumes 𝑥𝑖) 

and reverse (produces 𝑥𝑖) directions of the reaction. We account for this bi-directionality 

by combining the two uni-directional rate monomials into a single net reaction rate 

monomial term, 

 Δ𝑀𝑗 = 𝑀𝑗,𝑓𝑜𝑟 + 𝑀𝑗,𝑟𝑒𝑣 Eq 3 

where Mj,for and Mj,rev are the monomials corresponding to the forward and reverse 

reaction rate monomials of reaction 𝑗 with respect to species xi. Eq 2 is then updated to, 

 

 𝑣𝑖(𝑡) =
𝑑𝑥𝑖

𝑑𝑡
= ∑ Δ𝑀𝑗

𝑟𝑟𝑒𝑣

𝑗=1

+ ∑ 𝑀𝑘

𝑟𝑖𝑟𝑟𝑒𝑣

𝑘=1

 Eq 4 
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where the first sum is over reversible reactions (rrev) and the second sum is over 

irreversible reactions (rirrev). 

We now define the set of reaction rate terms from Eq 4 as: 

 𝑅 = {Δ𝑀1, … , Δ𝑀𝑟𝑟𝑒𝑣
} ∪ {𝑀1, … , 𝑀𝑟𝑖𝑟𝑟𝑒𝑣

} Eq 5 

 

Since we only want to trace back the production of species 𝑥𝑖 we can reduce R to its 

subset containing only the positive terms R+, 

 𝑅+ = {𝑚 ∈ 𝑅 ∣ 𝑚 > 0} Eq 6 

 

The most dominant monomial contributing to the production of 𝑥𝑖 is then given by, 

 𝑀𝑑 = max(𝑅+) Eq 7 

 

where Md identifies the most dominant reaction in the production of 𝑥𝑖. Next, we 

want to identify any additional reactions which contribute to production of 𝑥𝑖 with a similar 

magnitude as 𝑀𝑑. We therefore apply the concept of dominancy as defined by Noel et 

al.(Noel et al., 2011), where monomials 𝑀𝑖 and 𝑀𝑗are said to be on a par with each other 

within a level ρ > 0 if 

 𝑝𝑎𝑟(𝑀𝑖 , 𝑀𝑗) = ¬ 𝑑𝑜𝑚(𝑀𝑖 , 𝑀𝑗) = 𝑠𝑒𝑝(𝑀𝑖 , 𝑀𝑗) <  ρ Eq 8 

 

where dom(Mi, Mj) is a binary function of monomials for which monomial 𝑀𝑗 is said 

to dominate monomial 𝑀𝑘 at a level ρ >  0 if,  

 𝑑𝑜𝑚(𝑀𝑗 , 𝑀𝑘) = 𝑠𝑒𝑝(𝑀𝑗 , 𝑀𝑘) >  ρ Eq 9 

 

And sep(Mj, Mk) is the separation (i.e., Euclidean distance) in logarithmic space 

between the monomials, 

 𝑠𝑒𝑝(𝑀𝑗 , 𝑀𝑘) = |log(|𝑀𝑗|) − log(|𝑀𝑘|)| Eq 10 

 

Using this application of dominancy (Eq 8) the set of dominant reactions terms, Dxi
, 

is given by, 
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 𝐷𝑥𝑖
= {𝑚 ∈ 𝑅+ ∣ 𝑝𝑎𝑟(𝑀𝑑 , 𝑚)} Eq 11 

 

Thus, we construct a set of reaction terms containing the most dominant reaction 

term 𝑀𝑑 and all terms that are on par with 𝑀𝑑. The level of separation ρ used to determine 

whether terms are on par is a user defined quantity. 

 

3.3.4   Obtaining modes of signal execution 

Simulating biochemical models with different initial protein levels or kinetic 

parameters may result in different dynamic fingerprints. These different fingerprints can 

be compared to determine their level of discrepancy. We can then group sequences that 

have similar dominant subnetworks and define these groups of sequences as modes of 

signal execution. To accomplish this grouping, it is necessary to find a suitable distance 

metric that accounts for the differences of interest when comparing sequences. Once we 

have a metric, we can obtain a distance matrix which can be used with clustering 

algorithms to identify the modes of signal execution. 

 

3.3.4.1   Defining a suitable distance measure for clustering 

Multiple distance measures exist that can be used the calculate the dissimilarity 

between two sequences. Each of the distances have different sensitivities to sequencing, 

timing and duration of a dominant subnetwork. Since our goal is to identify groups of 

simulations that have the same dominant subnetwork, we chose the Longest Common 

Subsequence (LCS) distance (Bergroth et al., 2000). This metric is more sensitive to 

sequencing, i.e., the order of appearance of dominant paths in a signature. By focusing on 

the differences in the state distribution, it allows us to identify different modes of signal 

execution and novel protein targets that modulate biochemical signals within a network 

depending on the parameters of the model. 

The LCS distance is defined as: 

 

𝑑𝐿𝐶𝑆 = 𝐴(𝑥, 𝑥) + 𝐴(𝑦, 𝑦) − 2𝐴(𝑥, 𝑦) 
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Where 𝐴𝑠(𝑥, 𝑦) corresponds to the number of elements in one sequence that can be 

uniquely matched with elements occurring in the same order (not necessarily contiguous) 

in the other sequence. 

 

3.3.5   Sequence analysis 

In PyDyNo, we use the LCS metric to calculate the distance between all pairs of 

dynamic signatures and obtain a distance matrix. Then, we use this matrix with clustering 

techniques to identify groups of dynamic fingerprints that have similar patterns in the 

sequence of dominant subnetworks. PyDyNo includes three clustering  algorithms: 

Agglomerative (Rokach & Maimon, 2005), spectral (Planck & Luxburg, 2006) and 

HDBSCAN clustering (Campello et al., 2013). We also added the Silhouette score function 

(Rousseeuw, 1987) from Scikit-learn to determine the optimal number of clusters. Finally, 

we implemented three algorithms described by Gabadinho and colleagues (Gabadinho et 

al., 2011) to identify representative dynamic signatures from each of the clusters. 

 

3.4     Results and discussion 

To validate our method, we used PyDyNo to analyze the signal execution in the JNK3 

Activation Reaction Model (JARM) (N. A. Perry et al., 2019). JARM describes all the 

interactions between MKK4, MKK7, arrestin-3 and JNK3 that lead to the double 

phosphorylation and activation of JNK3. JNK3 activation has been linked to 

neurodegenerative diseases (Antoniou et al., 2011). JARM comprises 28 molecular species 

and 50 parameters. To do the analysis, we used the 5000 more likely parameter vectors 

from the model calibration described in Chapter 2. 

We used PyDyNo to track how doubly phosphorylated JNK3 was generated. When 

multiple reactions produced a protein, we defined that dominant reactions were those 

within 0.5 orders of magnitude of the largest reaction rate. Given that we had 5000 

simulations with their respective parameter vectors, we obtained 5000 dynamic 

fingerprints. We then employed the spectral clustering algorithm with the Silhouette score 

and identified that JARM has three execution modes. To visualize the differences in 
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dynamic signatures, we used the plot_sequences function from PyDyNo (Figure 3.2). Each 

horizontal line depicted in Figure 3.2 corresponds to a sequence of dominant subnetworks. 

Each color represents a specific dominant subnetwork that contains information about 

how the signal is flowing throughout the network. 

After identifying the three execution modes in JARM, we hypothesized that each 

execution mode would respond differently to the same perturbation in the system. To test 

this hypothesis, we performed a 50% in silico knockdown of MKK7, an essential protein in 

the JNK3 cascade that phosphorylates JNK3 in its threonine site. As shown in Figure 3.3, we 

observed that after the MKK7 knockdown, each execution mode displays different 

dynamics and total concentration of activated JNK3 at the end of the simulation. 

Specifically, in mode 1 the amount of activated JNK3 was reduced from 59% ± 1% in wild 

type to 35% ± 3% after the knockdown, in mode 2 the reduction was from 58% ± 1% to 41% 

± 2%, and in mode 3 the reduction was from 58% ± 1% to 39% ± 4%. These results confirmed 

our hypothesis that execution modes exhibit different responses to the same perturbation 

in the system. 

Altogether, we described how our method discretizes simulation dynamics and 

showed its usefulness to study signal execution in complex biochemical networks. PyDyNo 

combines network analysis and clustering algorithms and is particularly useful to analyze 

parameter uncertainties and their relationship with different execution modes. One 

advantage of our approach is that it uses signal flow, which results from the interplay 

between kinetic parameters and species concentration, rather than only the inferred 

kinetic parameters as other analyses have used previously (Yao et al., 2016). This approach 

enables us to consider the variability in species initial protein levels that explain cell-to-cell 

variability (Spencer et al., 2009; Strasen et al., 2018) and their role in defining different cell 

states. We anticipate that PyDyNo will be used with experimental design approaches to 

detect the characteristic execution mode of a system and reduce the uncertainty in 

predictions.  



37 

 

 

Figure 3.2 Modes of signal execution in JARM. Dynamic fingerprints organized by the clusters they 
belong to. Each cluster plot is composed of horizontal lines that correspond to dynamic 
fingerprints, i.e. sequences of dominant subnetworks, and each subnetwork is assigned a different 
color. 
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Figure 3.3 Amounts of activated JNK3 are markedly different for each execution mode after the 50% 
MKK7 knockdown. Protein concentration trajectories of activated JNK3 grouped by execution 
modes. Insets show the average and standard deviation of activated JNK3 at the last time point of 
the simulation. 
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Chapter 4  

 

Probability-based mechanisms in biological networks with parameter uncertainty 

 

Oscar O. Ortega, Blake A. Wilson, James C. Pino, Michael W. Irvin, Geena V. Ildefonso, 

Shawn P. Garbett, Carlos F. Lopez bioRxiv 2021.01.26.428266 

 

4.1   Summary 

Mathematical models of biomolecular networks are commonly used to study 

mechanisms of cellular processes, but their usefulness is often questioned due to parameter 

uncertainty. Here, we employ Bayesian parameter inference and dynamic network analysis 

to study dominant reaction fluxes in models of extrinsic apoptosis. Although a simplified 

model yields thousands of parameter vectors with equally good fits to data, execution 

modes based on reaction fluxes clusters to three dominant execution modes. A larger 

model with increased parameter uncertainty shows that signal flow is constrained to eleven 

execution modes that use 53 out of 2067 possible signal subnetworks. Each execution mode 

exhibits different behaviors to in silico perturbations, due to different signal execution 

mechanisms. Machine learning identifies informative parameters to guide experimental 

validation. Our work introduces a probability-based paradigm of signaling mechanisms, 

highlights systems-level interactions that modulate signal flow, and provides a 

methodology to understand mechanistic model predictions with uncertain parameters. 

 

4.2   Introduction 

Many biological processes can be represented as networks of interconnected 

biochemical components enabling the study of their dynamics and signaling mechanisms 

(Bonneau, 2008; K. A. Janes et al., 2008; Jordan et al., 2000; Weerts et al., 2018). These 

analyses typically entail building a network, either from prior knowledge or through 

network inference, developing a mathematical model of the network interactions, and 

subsequently calibrating the model to experimental data (Jaqaman & Danuser, 2006; Raue 
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et al., 2011; Shockley et al., 2018). Although small networks have been studied with great 

success, the fact remains that for large networks many parameters remain difficult to 

ascertain and optimization routines yield multiple parameter sets that reproduce the 

protein concentration trajectories equally well (Eydgahi et al., 2013; Gutenkunst et al., 

2007a; Mitra & Hlavacek, 2019b). This has led to a common practice whereby one or a few 

parameter vectors are chosen to make mechanistic predictions which can be validated by 

experiments with varying degrees of success (Albeck et al., 2008; Becker et al., 2010; K. A. 

Janes et al., 2005). However, criticisms remain regarding the usefulness of large and 

complex mathematical models of cellular processes with many uncertain parameters. 

Information Theory based methods (Shannon, 1948) have been one of the successful 

approaches to date to explain input/output responses of intracellular signaling pathways 

(Brennan et al., 2012; Cheong et al., 2011; Levchenko & Nemenman, 2014; Shockley et al., 

2019; Suderman et al., 2017). These approaches cast signal transduction in terms of channel 

capacities – the maximum amount of biochemical information that can travel from an input 

stimulus to an output response. These analyses have revealed that the maximum channel 

capacity of a biochemical process is context dependent and could require the cooperativity 

of multiple cells to achieve actual information transfer (Suderman et al., 2017). Previous 

work also applied information theoretic analysis to an allosterically regulated network and 

observed that the preferred path for information flow through the network was highly 

dependent on substrate concentrations (Shockley et al., 2019). Although these insights 

have been valuable to advance our understanding cellular regulatory processes, questions 

still remain about how reaction rates from non-equilibrium dynamics modulate signal flow 

in a biochemical network and further how these transient dynamics are impacted by 

parameter uncertainty. 

Analysis of execution patterns in biochemical networks necessarily implies a 

detailed understanding of instantaneous fluxes throughout the system. However, reaction-

flux based analysis is particularly challenging due to multiple concurrent biochemical 

interactions and their associated reaction rate fluctuations in time (Nobeli et al., 2009). 

Therefore, the number of interactions and temporal dynamics makes it difficult to establish 
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whether persistent behaviors emerge from myriad biochemical reactions. Recent works in 

Tropical Geometry and Ultradiscretization Theory have proposed a mathematical 

formalism that makes it possible to map continuous functions into piecewise linear meshes 

in the Ultradiscrete space (Kato et al., 2017a). Approaches inspired in these novel 

mathematical treatments have been used to guide biochemical model reduction and 

simplification (Noel et al., 2011). For this work, we hypothesized dynamic analysis using 

these methods could enable us to identify dominant fluxes in a dynamic biochemical 

network, identify patterns of execution, and explore their dependence on model 

parameters. We reasoned that we could cast this analysis onto a Bayesian probability 

framework to assign statistical weight to the identified execution patterns, thus providing 

a novel statistical interpretation to cellular reaction mechanisms. 

The remainder of the article is organized as follows. We first show how Bayesian 

inference of model parameters can yield tens of thousands of parameter vectors that all 

reproduce an experimental data set equally well. We then introduce a method, inspired in 

Ultradiscretization Theory and Tropical Algebra, to define a dynamic signal execution 

fingerprint, which can then be used to cluster execution modes according to model 

parameters. Surprisingly, we find that despite the thousands of parameter vectors that fit 

the experimental data of a biological system, only a handful of execution modes emerge as 

possible signal processing mechanisms. Subsequently, we demonstrate how parameter 

vectors that belong to different execution modes offer a biased view of signaling processes 

that could easily lead to misleading interpretations of network-driven processes. We 

further demonstrate how increases in parameter unidentifiability exacerbate the problem 

of model certainty in signal execution, but still identify the signal execution path 

probabilities associated with a given set of parameters. Our work therefore shows that 

network dynamics exploration, given available experimental data, could play a central role 

to identify true systems-level processes that shed light on signal processing mechanisms 

from a statistical perspective. 

 

4.3   Materials and methods 
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4.3.1   Mathematical models of apoptosis 

A coarse-grained ODE model of TRAIL-dependent apoptotic signaling (aEARM) was 

encoded with PySB (Lopez et al., 2013). This model grouped reactions into simple dynamic 

motifs representing key mechanistic blocks in TRAIL-dependent apoptosis pathway: TRAIL 

mediated DISC formation, initiator caspase-8 activation via the DISC and feedback 

activation via effector caspases (-3, -6, and -9), effector caspase activation, and apoptotic 

marker (PARP) cleavage were all encoded as simple catalysis reactions. MOMP formation 

(via initiator caspase-activated Bid) and accumulation of MOMP dependent pro-apoptotic 

signals were modeled as a Bid-dependent activation and subsequent feedback self-

activation step. This activation-amplification motif reproduces the observed sigmoidal 

“snap-action” dynamics of MOMP-dependent pro-apoptotic effectors (e.g., Smac, CytoC). 

Initial values of the model components were drawn from values present in earlier apoptosis 

models (e.g., EARM). Initial values of the MOMP dependent signaling component took the 

same value as Bax and Bak in the EARM model. The ODE model was integrated using the 

Python LSODA ODE solver with relative and absolute tolerances set to 1e-2 and 1e-1 

respectively (the model is encoded in copies per cell which takes values of 10,000 to 1M). 

 

We also used the Lopez embedded Extrinsic Apoptosis Reaction Model (EARMv2.0) 

(Lopez et al., 2013) to analyze the resulting uncertainty from model calibration. 

 

4.3.2   Experimental data 

To calibrate aEARM and EARMv2.0 we used published data that contain the 

trajectories of the initiator reporter protein (IC-RP), and effector caspase reporter protein 

(EC-RP) (Spencer et al., 2009). In the model, the simulated trajectories from truncated Bid 

and cleaved PARP were fit to IC-RP and EC-RP, respectively. 

 

4.3.3   Bayesian inference and parameter calibration 

The model’s reaction rate parameters were calibrated to normalized IC-RP and EC-

RP fluorescence time-course data, using the Differential Evolutions Adaptive Metropolis 
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MCMC sampling algorithm (DREAM(ZS)) encoded in python as PyDREAM (Shockley et 

al., 2018). This Bayesian calibration uses as prior distributions log-normal distributions 

centered at biologically plausible rate values of forward binding, reverse binding and 

catalysis (1e-6 s-1 molecule-1, 1e-3 s-1, 1 s-1). The likelihood function assumes the IC-RP and 

EC-RP data are normally distributed with standard deviation calculated from multiple 

measurements. The sampling used employed a burn-in of 80,000 steps followed by 

220,000 step sampling of the target distribution. Additional settings were applied to the 

gamma term in the DREAM algorithm: number of crossovers (nCR) = 25, adapt gamma = 

True, probability of gamma-unity (p_gamma_unity) = 0.1, resolution of gamma term 

(gamma_levels) = 8. Convergence was diagnosed by the Gelman-Rubin convergence 

diagnostic (i.e., GR ≤ 1.2) for each calibrated parameter. This calibration provided a wide 

range of kinetic parameter values and we note that even if there was experimental data for 

all species in a model, due to model sloppiness the parameter distributions would not be 

sufficiently constrained (Gutenkunst et al., 2007a). 

 

4.3.4   Analysis of signal execution 

To analyze signal execution throughout biochemical networks we used the method 

defined in Chapter 3. This method describes the steps to track the signal flow in the 

network and how to discretize the signal to obtain a dynamic fingerprint for simulations 

with different parameter vectors.  

 

4.4   Results 

4.4.1   Bayesian parameter optimization yields indistinguishable protein 

concentration dynamics.  

To investigate the role of parameter uncertainty on signal execution through 

biochemical networks we focused on the extrinsic apoptosis form of programmed cell death 

(Elmore, 2007). Apoptosis is a ubiquitous biological process in metazoans used as a 

mechanism to maintain cell numbers and overall organism homeostasis (Koonin & 

Aravind, 2002). For the first part of our analysis we employed a modified version of the 
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Extrinsic Apoptosis Reaction Model (EARMv2.0) (Lopez et al., 2013). We found this 

abridged EARM (aEARM), depicted in Figure 4.1A, was the largest model we could build 

that would both preserve key biochemical interactions that represent extrinsic apoptosis, 

and in which all model parameters achieve convergence by the Gelman-Rubin diagnostics 

after parameter calibration with Bayesian methods. The model captures key biological 

features of apoptosis execution including signal initiation by TNF-Related Apoptosis 

Inducing Ligand (TRAIL), subsequent activation of initiator caspases (Caspase 8) (Kantari 

& Walczak, 2011) type 1 and type 2 activation of effector caspases (Caspase 3) (Özören & El-

Deiry, 2002) and completion of apoptosis execution by cleavage of Poly(ADP-ribose) 

polymerase (PARP) (Kaufmann et al., 1993). Overall, aEARM comprises 22 molecular 

species and 34 kinetic parameters (see details in Methods). We used PyDREAM (Shockley 

et al., 2018) to calibrate the model to previously published experimental data that 

comprises the concentration dynamics of truncated Bid (tBid) and cleaved PARP (cPARP).   



45 

 

 

 

Figure 4.1 Abridged Extrinsic Apoptosis Reaction (aEARM) network and parameter calibration 
results. A) Reaction network using the Kitano convention. Yellow nodes are protein receptors, 
green nodes are generic proteins, and red nodes are truncated/cleaved proteins. B) Simulated 
trajectories of truncated Bid and Cleaved PARP calibrated to reproduce the experimental data. Red 
dots and bars indicate the mean and standard deviation of the experimental data and blue lines 
correspond to the simulated trajectories. C) Marginal probability distributions of the first 12 
individual kinetic parameters that were recovered from the PyDREAM run by integrating out all 
other dimensions. Forward rates, reverse rate, and catalytic values were all found to be within 
biologically relevant ranges (H. X. Zhou, 2010). D) Probability of each of the unique parameter 
vectors sampled after burn-in in the PyDREAM calibration. To obtain the probability of each 
parameter set the number of visits to a specific parameter vector was normalized by the total 
number of visits. 
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Given that the model was calibrated to HeLa cell data, we hypothesize that signal 

patterns are representative of signal processing and execution of Type-II cells treated with 

death-inducing ligands such as TRAIL. In all, we ran the PyDREAM sampling for 100,000 

steps after burn-in and collected 300,000 parameter vectors from which 27,242 were 

unique. All unique parameter vectors fit the data equally well (Figure 4.1B). All parameters 

were deemed to have converged by the Gelman-Rubin diagnostics (Gelman & Rubin, 1992). 

We obtained the marginal distributions from the sampled parameter vectors as show in 

Figure 4.1C. Given the Markov Chain Monte Carlo (MCMC) aspect of our parameter 

inference method, we were able to obtain parameter vector probabilities as shown in Figure 

4.1D (Chiband & Greenberg, 2008). The probability distribution of parameter vectors 

exhibits characteristic exponential-like decay shape indicating that some parameters are 

more likely than others. With this calibrated model to experimental data, we then probed 

signal execution patterns in the aEARM network from a probabilistic perspective. We note 

that throughout the manuscript, a parameter vector refers to a set of positive real values, 

one value for each of the kinetic parameters defined in aEARM, used to run a simulation. 

A parameter distribution refers to the frequency of occurrence of different values from the 

same kinetic parameter. 

 

4.4.2   A discretized flux-based analysis of signal execution in networks. 

As shown in Figure 4.1B, all the parameter vectors obtained from the Bayesian 

calibration yield protein concentration dynamics indistinguishable from the experimental 

trajectories of tBid and cPARP. Individual parameters from these vectors take widely 

different values as depicted by their distributions in Figure 4.1C. This uncertainty in the 

parameter values affects the reaction rates of the protein interactions generating different 

reaction flux patterns in the network during signal execution. We therefore wanted to study 

the non-equilibrium flux of the reactions in the aEARM network and aimed to explore 

whether parameter uncertainty yielded specific patterns of signal execution. 

Analysis of flux dynamics during signal execution requires tracking the signal flow 

through a network at all simulation time points as multiple concurrent reaction rates 
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consume or produce molecular species. We assumed that the reactions with the highest 

flux at any given time dominate the network signal execution and provide a proxy to 

observe the effect of different parameter vectors in the network. Our aim was thus to 

identify the reaction rates with the highest flux throughout the whole network as 

simulations evolved over time. To analyze the non-equilibrium flux and find the dominant 

reaction paths during signal execution, we developed an algorithm inspired by 

Ultradiscretization Theory and Tropical Algebra as described in Methods (Kato et al., 

2017b; Noel et al., 2011). Our approach enabled us to identify paths relevant for flux 

propagation in non-equilibrium states. We refer to these paths of flux propagation through 

the network as execution modes for the remainder of this manuscript.  

We introduce the workflow for reaction flux discretization and execution mode 

identification as shown schematically in Figure 4.2A-B. Signal discretization requires three 

steps. First, we identify a target node (Fig 4.2B) for which the signal flux will be tracked. 

Second, we calculate the reaction rates that produce or consume the target node, identify 

the largest reaction rate (𝑥) and test whether it is dominant over other reactions (𝑦) using 

the discretization operation |log10 𝑥|  − |log10 𝑦|  >  ρ, where r is the order of magnitude 

difference necessary to consider dominance (see Methods section for details). Third, we 

identify the chemical species produced by the dominant reaction(s) and jump to that 

species, thus starting the process again from the first step, and thereby tracking the 

dominant signal fluxes through the whole network and obtaining a subnetwork. This 

dominant subnetwork is assigned a unique integer label as shown in Figure 4.2A. The 

procedure is repeated for all simulation time points. As a result, the dynamic nature of 

signal execution for a given parameter vector is abstracted to a sequence of labels that can 

be compared to other sequences using a suitable metric (Figure 4.2B). We call this 

sequence of labels obtained from a simulation a dynamic fingerprint because it is unique 

for a given signal processing event with a specific parameter set. 
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Figure 4.2 PyDyno workflow. A) First, the network of interaction is obtained from a model and a 
target node (labeled T) from where the signal is going to be tracked is defined. Red nodes are 
molecular species in a model, edges represent interactions between nodes, bolded edges are the 
dominant interactions. Next, at each time point of a simulation our analysis obtains a dominant 
subnetwork, bolded edges in the network, through which most of the signal is going through and 
this subnetwork is assigned a label. Sim 0 and Sim 1, simulations ran with different parameter sets, 
exhibit different dominant subnetworks. B) As each subnetwork is assigned a label, we can get a 
sequence of labels per simulation that can be compared to other simulations with the Longest 
Common Subsequence metric and obtain a distance matrix. This distance matrix can be used with 
clustering algorithms to obtain groups with similar modes of signal execution. 
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4.4.3   Key execution modes emerge despite parameter uncertainty 

To identify the dynamic execution patterns in aEARM in response to death ligand 

cues, we carried out our signal discretization analysis for the 27,242 unique parameters and 

obtained dynamic fingerprints for each parameter vector. We then asked whether there 

were similarities among dynamic fingerprints across parameter sets. To investigate this 

question, we quantified the distance between each dynamic fingerprint using the Longest 

Common Subsequence (LCS) metric. We chose this metric due to its sensitivity to order 

differences in which successive subnetworks labels appear (Studer & Ritschard, 2015). This 

metric thus assigns a larger distance to a pair of dynamics fingerprints that execute the 

signal differently. Next, we calculated the pairwise distance between all dynamic 

fingerprints obtaining a 27,242 by 27,242 distance matrix. This matrix enabled us to use an 

agglomerative clustering algorithm (Rokach & Maimon, 2005) to probe whether clusters 

of dynamic fingerprints would emerge. As shown in Figure 4.3A, we found that all 27,242 

dynamic fingerprints could all be classified into three clusters (Supplemental Table 2), 

which we denominate “execution modes”. Given that each parameter vector has a defined 

probability (Figure 4.1D) and is associated with a dynamic fingerprint, we could calculate 

the probabilities of signal execution through each mode as 42%, 36%, and 22% for 

Execution Mode 1 (EM1), Execution Mode 2 (EM2), and Execution Mode 3 (EM3) 

respectively. These three execution modes account for all the parameter vectors inferred 

from the explored probability space and no vectors were found that did not belong to either 

of these modes. We note that these execution modes are comprise three subnetworks out 

of eight possible subnetworks for signal flow. 

The dominant flux subnetwork for each execution mode is shown schematically in 

Figure 4.3B. We note the highlighted paths represent the dominant reaction fluxes, i.e. 

these fluxes are within an order of magnitude of the largest reaction at each node for the 

given parameter set and simulation time point. As shown, Execution Mode 1 (EM1) 

comprises events from initial death-ligand binding to the receptor, through formation of 

the Death Inducing Signaling Complex (DISC), and subsequent activation of initiator 

Caspase. The initiator Caspase then truncates and activates Bid, which in turn activates 
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MOMP, a species that abstracts mitochondrial outer membrane pore (MOMP) formation. 

Activated MOMP can then further activate MOMP in a positive feedback loop and activate 

the effector Caspase downstream. As highlighted in Figure 4.3B(EM1), activated MOMP is 

dominantly used to both activate more MOMP, through the positive feedback loop, and 

activate the effector Caspase.  

The flux through the network in Execution Mode 2 (EM2) is similar to that of Mode 

1 but the execution path differs at MOMP regulation. As highlighted in blue in Figure 4.3B 

EM2, activated MOMP is largely consumed in the positive feedback loop to activate more 

MOMP. The signal flux downstream of activated MOMP is at least an order of magnitude 

less than the highlighted route for the parameters in EM2. Therefore, effector Caspase 

activation and apoptosis execution takes place due to a smaller reaction flux in the network 

relative to the MOMP-level activity in EM2. For those parameters belonging to EM3, signal 

execution seems to flow largely toward PARP cleavage, with less MOMP-level regulation. 

Our results therefore show that despite uncertainties in inferred model parameters due to 

limited available data, the modes of signal execution are identifiable. Identifying a limited 

number of execution modes highlights the need to thoroughly characterize the model 

parameter space, given experimental constraints, to understand and make inferences about 

execution mechanisms. We note that using a single vector of parameters would lead to 

incomplete model prediction as no one single parameter vector captures the rich dynamics 

exhibited by all the statistically inferred parameter vectors.   

To further understand the impact of each execution mode on MOMP regulation, we 

examined the relative concentration of activated MOMP (MOMP*) and the binding 

complexes in which it participates. We calculated the percentages of MOMP*, inactive 

MOMP bound to MOMP* (MOMP-MOMP*), and effector caspase bound to MOMP* (EC-

MOMP*). As shown in Figure 4.3C, the relative abundance of these species over time 

exhibits different concentration patterns in each execution mode. In EM1, the relative 

abundance of EC-MOMP* is ~20%, indicating that the signal flow through this reaction is 

lower than in EM3 but still important in the overall dynamics. In EM2, 85 % of MOMP* is 

bound to inactive MOMP at all time points before cell death. This can be explained by a 
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high MOMP activation rate due to Bid and the MOMP* positive feedback loop 

autoactivation. In contrast to EM2, the MOMP-MOMP* abundance in EM3 decreased to 

~35%, while EC-MOMP* is increased to ~50%. This increase in EC-MOMP* abundance, 

indicates that the binding rate of MOMP* to EC is larger than the binding rate of MOMP 

to MOMP*. We note that the initial concentration of inactive MOMP in the model is an 

order of magnitude larger than that of EC. Thus, this result is in stark contrast with the 

result from EM2 where the reaction rates exhibit different relative values.  
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Figure 4.3 Modes of signal execution in aEARM. A) Dynamic fingerprints organized by the clusters 
they belong to. Each cluster plot is composed of horizontal lines that correspond to dynamic 
fingerprints, i.e. sequences of dominant subnetworks, and each subnetwork is assigned a different 
color. B) Signal execution modes as defined by the most common subnetwork in each cluster. The 
complete aEARM network is shown in black, and the dominant subnetworks for Mode 1, 2, and 3 
are highlighted in yellow, blue, and red, respectively. C) Effect of the different signal execution 
modes in the relative concentration of activated MOMP and its associated complexes. For each 
cluster, we calculated the temporal relative concentration of MOMP*, MOM*P-MOMP and 
MOMP*-EC point by obtaining their individual average concentrations and dividing it by the sum 
of their concentrations. This visualization provides insights about the usage MOMP* in each 
cluster. 
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4.4.4   Signal execution modes respond differently to eCaspase perturbation 

We then asked whether in-silico experiments could help us understand differences 

in signal execution that could lead to experimentally testable hypotheses. We therefore 

carried out in-silico knockdown experiments of eCaspase, as its activation is essential for 

the final steps of apoptosis execution (Mehal et al., 2006). In addition, effector caspase 

inhibitors are readily available for laboratory use (D. K. Perry et al., 1997; Solania et al., 

2019). We hypothesized that each execution mode would exhibit different execution 

mechanisms when eCaspase was knocked down by 50%. To explore the impact of eCaspase 

knockdown for each execution mode, we compared the concentration dynamics for MOMP 

and cPARP given by wild type and eCaspase knockdown conditions. 

For each execution mode we plotted the cPARP concentration trajectories and 

obtained the time of death (ToD) for each simulated cell as described in Methods. As shown 

in Figure 4.4A, the ToD in EM1 exhibits a modest decrease of 14.96 s, but also presents a 

larger standard deviation of 702 s. For EM 2 the ToD increased from 10351 ± 132 s (WT) to 

10809 ± 226 s for eCaspase knockdown (Δt = 458 s). In contrast, EM3 eCaspase knockdown 

leads to a decreased ToD from 10261 ± 83 in WT to 9507 ± 516 s in the knockdown (Δt = -

754 ± 523 s) These results therefore show that each execution mode can exhibit 

significantly different – and a times juxtaposed –responses to the same perturbation. 

We then probed the effect of the eCaspase knockdown on the reaction rates 

associated to MOMP* (a node where the signal bifurcates): MOMP* binding to MOMP, 

and MOMP* binding to EC. Specifically, we focused on the reaction rate peak and the time 

to reach peak of the reaction rate throughout the simulation, as shown in Figure 4.4B and 

supplementary Figure 4.2. The peaks of the MOMP*+MOMP binding reaction (Figure 4.4B 

upper row) appear unchanged across all execution modes, yet the time to reach the peaks 

vary significantly. The median time to peaks were 6.14%, 0.36%, and 11.76% faster for 

modes 1, 2, and 3, respectively. Concurrently, the peaks of the MOMP*+EC binding reaction 

(Figure 4.4B lower row) are reduced approximately 50% as expected by the 50% reduction 

of the available EC, and the median time to peaks were 6.77%, 0.4%, and 14.48% faster for 

modes 1, 2, and 3, respectively. In combination, for mode 1, the relative change of the 
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MOMP and EC reaction peaks have large interquartile ranges IQR= -10.37% to –1.01% and 

IQR=-1.13% to –11.39%, respectively, which explains the variability in the time to cell death. 

For mode 2, the time to the peak of MOMP and EC reactions change marginally and given 

that the EC peak is 50% of the WT condition, this leads to longer times to accumulate the 

necessary number of EC molecules for cells to commit to apoptosis. Finally, for mode 3, the 

median time to reach the MOMP reaction peak and the EC reaction peak is 11.76% and 

14.48%, faster than in the WT condition, respectively. This causes faster activation of 

MOMP and EC which leads to earlier apoptosis in cells. To summarize, although the 

biochemical signal flows differently in each execution mode, the protein concentration 

dynamics exhibit similar outcomes (Figure 4.4A Wild Type). However, when a 

perturbation is made to the network, the outcome can vary significantly, as shown for each 

execution mode.  

 

4.4.5   Reducing execution mode uncertainty through parameter measurements 

Given that the aEARM calibrated parameter vectors yield three execution modes 

with their respective probabilities, there is uncertainty about which execution mode is most 

representative of the cellular process. We then asked whether we could identify parameters 

that, if measured experimentally, would reduce the execution mode uncertainty. We 

hypothesize that identifying key parameters that inform execution mechanisms could 

guide experiments to improve our knowledge about network-driven signal processing. To 

measure the uncertainty of the execution modes, we used Shannon’s entropy 𝐻 =

− ∑ 𝑃(𝑥𝑖) log2 𝑃(𝑥𝑖)𝑛
𝑖=1  (Shannon, 1948). As aEARM has 3 execution modes the maximum 

entropy in the system is log2 3 =  1.58, which would signify that each execution modes 

have a 33% probability. Using the probabilities of the previously obtained execution modes 

(Figure 4.3A) and Shannon’s formula we calculated an entropy of 1.54 indicating a high 

uncertainty in the execution across all modes 
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Figure 4.4 Time of death responses are markedly different for the same perturbation. A) Cleaved 
PARP (cPARP) protein concentration trajectories for the “wild type” case (top row) grouped by 
Execution Modes. Mode 1, 2, 3 have 11270, 10727, and 5245 trajectories, respectively. Inset includes 
the average time to death and the standard deviation calculated from all trajectories in each 
execution mode. PARP cleavage exhibits a markedly different trajectory pattern (bottom row) after 
eCaspase is knocked down by 50%. B) MOMP* + MOMP and MOMP* + EC reaction rate 
trajectories. Dashed lines correspond to the mean of all reaction rates trajectories in an execution 
mode and the shadows represent the standard deviations. Trajectories from the “wild type” 
condition are colored in red and trajectories from the 50% effector caspase KD are colored in blue, 
and show key differences in their dynamics. Insets include the median percentage change in the 
reaction rate peak (ΔF) and the time to reach that peak (ΔT) in the EC KD condition relative to the 
wild type condition. The interquartile range is included as a measure of the variation in the ΔF and 
ΔT changes.  
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To determine the most informative parameters that should be measured to reduce 

execution mode uncertainty, we used XGBOOST (T. Chen & Guestrin, 2016), a gradient 

boosted Machine Learning technique that can classify parameter vectors into their 

corresponding execution modes. We used the calibrated parameter sets as training data 

where each individual kinetic parameter (kf, kr, kc) is a feature, and the mode of execution 

is our target variable.  

Feature importance analysis from the XGBOOST analysis shows that parameters kf7 

and kf6 contribute the most to training loss reduction during the classification task (Figure 

4.5A). As illustrated in Figure 4.5C, parameters kf6 and kf7 correspond to the binding rate 

of MOMP* to inactivated MOMP, and MOMP* to EC, respectively. These two parameters 

are part of the reactions where the signal flux is bifurcated in the network, indicating that 

their values play an important role in the definition of the execution modes. To show the 

differences in parameter values for each execution mode we plotted the values of the kf6 

and kf7 parameters. As shown in Figure 4.5B the execution modes have different 

distributions of the kf6 and kf7 parameters with some overlap. As depicted in Figure 4.5D, 

we simulated 100 measurements of the kf7 parameter and found that these measurements 

have various degrees of entropy reduction. Therefore, measuring MOMP-related 

parameters could help further reduce execution mode uncertainty and improve model-

based predictions. 

  

4.4.6   Modes of signal execution in a detailed apoptosis model with increased 

parameter uncertainty 

Based on our results with aEARM, we then asked how a larger model with higher 

parameter uncertainty would fare under the presented signal execution analysis. We 

shifted to a larger extrinsic apoptosis reaction model (EARM V2.0), which has been studied 

and characterized in previous work (Lopez et al., 2013). As illustrated in Figure 4.6A, 

EARMV2.0 is considerably larger than aEARM as the biochemical interactions are 

described with higher molecular resolution. In all, EARM V2.0 has 77 molecular species 

and 105 kinetic parameters. As described in Methods, we used PyDREAM to calibrate the 
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model to published experimental data (Spencer et al., 2009). Although, the calibration 

yielded parameter vectors that fit the experimental data indistinguishably well 

(supplemental Figure 4.4), we note that only 62 model parameters converged according to 

the Gelman-Rubin diagnostic (GR < 1.2) after two million iterations (see Supplemental 

Table 3 and Supplemental Figure 4.5). Distributions of 9 converged parameters are shown 

in Figure 4.6B. The remaining parameters exhibited GR values between 1.21 and 13.52. From 

a Bayesian perspective, non-convergent parameters imply that the experimental data 

simply cannot constrain their values to a distribution and thus results in higher variability. 

As our analysis is focused on understanding execution modes in network-driven processes, 

a model with poorly identified parameters presents an opportunity to explore how signal 

execution could be best interpreted and understood in large model systems with high 

parameter uncertainty.  
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Figure 4.5 Parameter measurements reduce execution mode uncertainty. A) List of the 10 
parameters that contribute the most to model prediction. Parameters with higher total gains, 
compared to another parameter, provide larger improvements to accuracy in model prediction. B) 
Parameter values of kf6 and kf7 grouped by the execution mode they belong to. A Gaussian kernel 
was used to estimate the density probability of parameter values in each execution mode. C) 
Schematic representation of the aEARM network. Kinetic parameters kf6 and kf7 and their 
corresponding reactions are highlighted in the network. D) Changes in the execution modes 
entropy after simulated measurements of kf7. 
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We followed the same procedure used in the previous sections to explore the 

execution modes in EARM V2.0 (See Methods for details). Our analysis found that 

calibration to the experimental data constrains the signal flow to eleven execution modes, 

that can be represented by 53 dominant subnetworks out of 2067 possible subnetworks. As 

shown in Figure 4.6C, the apoptosis execution signal could flow through any of these paths 

with varying degrees of probability, with Execution Mode 1 (EM1) exhibiting a probability 

of ~20 and the first four modes capturing ~50% of the signal probability, thus suggesting 

high path entropy as we have seen in previous work (Shockley et al., 2019). Videos can be 

found in the supplement that show animations of signal flow for all execution modes in the 

context of EARM V2.0. 

Next, we tested whether each execution mode exhibits different responses to the 

same perturbation. We selected EM1 and EM2 for analysis as these modes exhibit the 

highest probability for signal execution. As illustrated in Figure 4.6D, the mBid interaction 

with Mcl1 is dominant in EM1. In contrast, the mBid interactions with Mcl1 and Bcl2 are 

both dominant in EM2, thus highlighting the importance of both antiapoptotic proteins to 

understand the signaling mechanisms during apoptosis execution during the cell response 

to an apoptotic inducer. 
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Figure 4.6 Modes of signal execution in the full Extrinsic Apoptosis Reaction Network. A) Network 

of the interactions between the proteins in the apoptosis pathway. Proteins highlighted in green 

are nodes where the signal flux can be divided. The convention of Kitano (Kitano et al., 2005) was 
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followed. B) Marginal probability distributions of 9 individual kinetic parameters converged by the 

Gelman-Rubin diagnostic. C) Dynamic fingerprints organized by the execution modes they belong 

to. Each cluster plot is composed of horizontal lines that correspond to dynamic fingerprints, i.e. 

sequences of dominant subnetworks, and each subnetwork is assigned a different color. Execution 

modes are sorted from highest to lowest probability. D) Signal execution in Mode 1 (left) and Mode 

2 (right) as defined by the most common subnetwork in each mode at t=7000s.  
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We then performed two in silico experiments for EM1 and EM2: (i) a 50% 

knockdown (KD) of the antiapoptotic protein Mcl1 as well as (ii) a 50% knockdown of the 

antiapoptotic protein Bcl2. For the Mcl1 KD, we found that the EM1 median ToD decreased 

from 10022.46 s (WT) to 8686.52 s (Figure 4.7C-upper panel). This is expected since mBid 

and Mcl1 interactions are dominant in this mode. By contrast the median ToD in EM2 

decreased from 9943.65 s (WT) to 9335.85 s. This modest decrease in ToD can be attributed 

to the fact that although Mcl1 and mBid interactions are important in EM2, the dominance 

of Bcl2 compensates for the absence of Mcl1 and reduces the impact on ToD for the Mcl1 

KD.  

For the Bcl2 KD, we found that the median ToD in EM1 has a minor change from 

10022.46 s to 10011.87 s, expected because mBid activity is not significantly affected by Bcl2 

in this mode. By contrast, in EM2, mBid activity is modulated by Mcl1 and Bcl2. Thus, a 

reduction in the initial protein levels of Bcl2 enables more mBid proteins to activate pro 

apoptotic proteins and this leads to an increase in ToD to 9580 s (Figure 4.7C-upper panel). 

Taken together this data shows that distinct execution modes respond differently to the 

same perturbation and that their responses can be predicted based on the dominant 

reactions for a given execution mode. 

To further emphasize the importance of transient dynamics on signal processing, 

we explored EM1 dynamic fingerprints and found that SMAC inhibition of XIAP occurs at 

later time points of the simulations (>8640 s). Therefore, we hypothesized that XIAP 

inhibition would be more effective earlier during signal execution. To test this, we added 

an XIAP inhibitor to EARMV2.0 at either 4000 s or 8000 s. As shown, when the inhibitor 

is added at the later time point, we observed a small reduction (Figure 4.7A lower panel) 

in the median ToD from 9943.65 s in the WT to 9380.44 s (Δt = 563.21 s). In contrast, when 

the inhibitor is added at the earlier time point, when SMAC is not yet released from the 

mitochondria, the inhibitor binds to XIAP enabling C3 to cleave PARP and thereby 

reducing the median ToD to 6766.10 (Δt = 3177.55 s). 

As combination therapies have become important to combat drug resistance 

(Gayvert et al., 2017; Sarah, 2017), especially in cancers, we explored whether our analysis 
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provided information about potential targets for cotreatment. As we previously mentioned, 

Mcl1 and XIAP are dominant antiapoptotic proteins in EM1, thus we hypothesized that 

inhibition of both proteins would yield a shorter ToD compared to only inhibiting XIAP. 

To test this, we added two drugs that independently inhibit XIAP and Mcl1 and obtained a 

ToD of 5951.11 s representing a 12% reduction in the ToD compared to XIAP inhibition only 

(Figure 4.7A lower panel). Finally, to guide experiments that would identify the most likely 

execution mode out of the 11 execution modes obtained, we developed an XGBOOST model 

of execution mode estimation and performed feature importance analysis. As shown in 

Figure 4.7B, we found that the parameters controlling the kinetics of mBid binding to BcxL, 

and XIAP binding to C3 yield the most information about execution modes in EARMV2.0. 

Taken together, these results suggest that the analysis of signaling dynamics from 

uncertain parameters help us identify dominant reactions that control signal flow in a 

network during signal processing and how these networks are more sensitive to 

perturbations of those reactions. 
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Figure 4.7 Upper panel: Time to death distributions in the execution modes 1 and 2 in the “wild 
type” condition, after a 50% Mcl1 knockdown, and after a 50% knockdown of Bcl2. The boxplot 
inside the distributions shows the median, first quartile and third quartile of the datasets. Execution 
modes 1 and 2 show substantial differences in their response to the knockdowns. Lower panel: Time 
to death distributions in the execution mode 1 after adding a drug that binds XIAP at t=8000 s, and 
at t=4000, and a drug that binds XIAP and Mcl1 at 4000 s. B) List of the 10 parameters in EARMv2.0 
that contribute the most to model prediction. 
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4.5   Discussion 

It has been long recognized that model parameter optimization to experimental 

data is key to investigate the dynamical properties that control cell behavior (Read et al., 

2018). Unfortunately, parameter optimization usually yields large parameter uncertainties 

due to a general lack of quantitative data as well as model identifiability (Ashyraliyev et al., 

2009). Even a complete set of time course data is insufficient to constraint most rate 

parameters (Gutenkunst et al., 2007a). In this work. we wanted to examine the effects of 

parameter uncertainty on signal execution through a biochemical network. Despite the 

many parameter vectors which reproduce the experimental protein dynamics, we found 

that the signal flow in a network was constrained to only a few modes of execution. Our 

analysis further shows that within a Bayesian calibration scheme, it is possible to assign 

probabilities to each execution mode, thus greatly improving our understanding of signal 

dynamics. Therefore, the probabilistic approach introduced in this work could open a novel 

perspective to understand network-driven processes from a statistical perspective.  

In this work we also showed that large models with high parameter uncertainty such 

as EARMv2.0 can be used to make model-based predictions, but those predictions should 

be considered within the probabilistic context provided by execution modes obtained from 

the calibrated parameters. Our analysis shows that parameter uncertainty as a result of 

model calibration can be mapped to signal execution modes that respond differently to 

perturbations, thus demonstrating that using a single best fit parameter vector is 

insufficient to understand signal dynamics in complex models. Further, our analysis 

allowed us to identify biochemical species, model parameters and times to maximize a 

given perturbation. This information about signal flow could be used to study drug-

induced network rewiring processes (e.g. (Lee et al., 2012)), provide mechanistic 

explanations to drug responses, and predict sequential combinations of drugs that could 

better modulate a response signal in biochemical networks. 

 

Finally, although our approach provided novel insights about signal execution in an 

important biological network, it has certain limitations. Our analysis assumes that 
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reactions with high flux are the most important for signal processing in a network. 

However, this may not always be the case for other networks or for networks with temporal 

changes in model topologies (Klinke, 2010). Although our approach is computationally 

expensive, particularly as models increase in size, requiring hundreds of thousands of 

parameter samples to reach a convergence criterion, we believe this is a relatively small 

price to pay in contrast to the number of experiments that would be necessary to attain the 

same level of mechanistic knowledge about a network-driven process.  

 

4.5.1   Availability 

All the code to reproduce the figures that contain model calibration, modes of signal 

execution, visualizations, and hypothesis exploration, is open source and can be found as 

Jupyter Notebooks in this GitHub repository: https://github.com/LoLab-VU/pydyno. 

These shareable and reusable notebooks contain all the source code and markup text that 

explains the rationale for each step in the analysis.  

 

 

 

 

 

  



67 

 

Chapter 5  

 

Interactive Multiresolution Visualization of Cellular Network Processes 

 

Ortega OO, Lopez CF. Interactive Multiresolution Visualization of Cellular Network 

Processes. iScience. 2020 Jan 24;23(1):100748 

 

5.1   Summary 

Cellular signaling pathways are controlled by networks of biomolecular interactions 

that process signals from environmental cues (Blinov et al., 2006; Lemmon & Schlessinger, 

2010; Sachs et al., 2005). These molecular networks give rise to nonlinear dynamic 

processes that are difficult to explain and predict using reductionist methods (A. C. Ahn et 

al., 2006). Mathematical models of cellular signaling pathways have become commonplace 

to gain insights and describe the molecular mechanisms that control cellular processes 

(Albeck et al., 2008; Gaddy et al., 2017; K. a Janes et al., 2005; N. A. Perry et al., 2019). In 

general, these models continue to grow in size and complexity, which makes the 

exploration of network structure and dynamics increasingly challenging. Visualization 

tools present one effective way to explore network processes and acquire conceptual 

insights about signal-execution mechanisms. In addition, visualization tools can facilitate 

the detection of execution patterns and aid in hypothesis generation for experimental 

validation. However, most tools focus on static single-resolution network representations 

of models and generally lack support to visualize model dynamics. Therefore, there is an 

unmet need for tools that facilitate multi-resolution visualizations of model networks and 

simulated dynamics. 

 

5.2   Introduction 

Numerous tools have been developed to visualize network representations of 

models that capture relationships between model components. Some examples include 

molecular species networks (Bergmann et al., 2017), hierarchical species networks 
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(Paduano & Forbes, 2015), species-reactions networks (Schaff et al., 2016), contact maps 

(Boutillier et al., 2018; Cheng et al., 2014; L. A. Harris et al., 2016), model-defined rules 

(Boutillier et al., 2018; Cheng et al., 2014), and rule-based networks (Danos et al., 2012; 

Smith et al., 2012), among many others (Dang et al., 2015; Kolpakov et al., 2019; Tiger et 

al., 2012). Although these tools have been highly useful within their domains, they exhibit 

limitations when it comes to visualizing the structures of increasingly complex networks 

with an ever-larger number of nodes and edges labels. Moreover, standalone visualization 

tools can be difficult to incorporate into model-building and analysis workflows, further 

compounding the lack of reproducibility in analysis pipelines. 

Identifying reactions that drive cellular processes is central to dynamic network 

analysis, yet it is highly challenging without visualization tools to facilitate an intuitive 

understanding of the signal execution mechanisms. A handful of tools to visualize dynamic 

network processes have been published, notably COPASI (Bergmann et al., 2017) and the 

Kappa Dynamic Influence Network (KDIN) (Forbes et al., 2017). COPASI uses a network in 

which nodes represent biochemical species and edges represent biochemical interactions. 

Species concentrations obtained from a simulation are encoded in the size of the box 

around the network nodes. Kappa employs a network in which nodes are the model rules 

and the edges indicate that the rules have common reactant or product species. KDIN 

quantitatively represents the temporal influence that each biochemical rule exerts on other 

rules. Although both tools yield useful information about dynamic network processes, 

information about the reactions that drive the dynamic consumption and production of 

different biomolecules, essential to understanding signal execution mechanisms, is not 

easily obtained. In addition, these tools have been developed for software-specific 

environments, thus limiting their use in general modeling and analysis workflows. 

In this work we tackle three main visualization challenges that, we believe, will 

accelerate the conceptual understanding of biological network processes: (1) develop 

legible and comprehensible visualizations of increasingly large networks; (2) generate 

intuitive dynamic network visualizations of model simulations; and (3) facilitate the 

integration of visualizations into model building and analysis pipelines. To tackle these 
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challenges, we developed Python Visualization of Processes and Reactions (PyViPR), a 

Python-based framework that provides multiple static and dynamic representations of 

biological processes. Importantly, PyViPR unifies tools typically used in isolation, enables 

access to community-detection algorithms, and encodes model simulations into node and 

edge attributes, thus enabling the study of network dynamics at multiple resolutions. 

PyViPR embeds all its visualization and analysis capabilities within Jupyter Notebooks 

(Kluyver et al., 2016) to facilitate reproducibility and dissemination of model analysis 

pipelines. PyViPR currently supports the rendering of rule-based models declared in the 

PySB framework (Lopez et al., 2013), BioNetGen (BNG) (L. A. Harris et al., 2016), and Kappa 

language (Boutillier et al., 2018), as well as models encoded in the SBML format (Hucka et 

al., 2003), thus providing a general tool to visualize models of biochemical network 

processes. In what follows we describe PyViPR's design and implementation, followed by a 

demonstration of key PyViPR capabilities in the exploration of cellular signal processing. 

 

5.3   Materials and methods 

5.3.1   Overview 

PyViPR embeds static and dynamic network visualizations of different biochemical 

model components into a Jupyter Notebook (Kluyver et al., 2016). To generate these 

visualizations, PyViPR requires as input data a model or simulation result encoded in one 

of the accepted formats (See input data section below). Once a model or simulation result 

has been passed to one of the PyViPR functions, in the back-end PyViPR uses the Python 

package NetworkX (Hagberg et al., 2008) to generate node edge graphs that store 

information from model components (e.g., molecular species, reactions, rules) and 

simulation results. Species nodes can be clustered based on community detection 

algorithms or model compartments. Then, the NetworkX graph is converted into a JSON 

file that is passed to the JavaScript front-end which employs Cytoscape.js (Franz et al., 2015) 

and some of its extensions to render the graphs, apply layout algorithms, expand and 

collapse compound nodes (Dogrusoz et al., 2018), and enable the dynamic visualization of 

model simulation results for the visualization of networks within Jupyter Notebooks. 
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5.3.2   Input data 

PyViPR currently includes three interfaces that enable the support of multiple 

model and graph formats: (i) PySB interface, which uses the PySB package (Lopez et al., 

2013) to handle models encoded in the BioNetGen, SBML, PySCeS, E-Cell, and PySB format, 

(ii) Tellurium interface, which uses the Tellurium package (Medley et al., 2018) to handle 

models encoded in SBML and Antimony, and (iii) Graph interface, which uses NetworkX 

and Cytoscape.js to handle graphs encoded in GraphML, SIF, SBGN XML, Cytoscape JSON, 

GEXF, GML and YAML. 

 

5.3.3   Output data 

All visualizations are rendered as networks within a Jupyter Notebook. These 

networks can be locally downloaded in the following formats: PNG, SIF, GraphML and 

JSON. 

 

5.3.4   PyViPR main visualization functions 

PyViPR enables the interactive visualization of different model components as well 

as simulated trajectories of molecular species and reaction rates. The main visualization 

functions include: 

• sp_rxns_bidirectional_view(model): Shows a bipartite network where one set of 

nodes are species and the other set are bidirectional reactions. Edges connect 

reaction nodes with their respective reactants and products species. 

• sp_view(model): Shows the unipartite network of interacting species. 

• projected_bireactions_view(model): Shows the unipartite network of reactions 

projected from the bipartite species-reactions graph. 

• sp_comm_louvain_view(model): Shows the unipartite network of interacting 

species grouped by the Louvain community detection algorithm. 
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• sp_dyn_view(model): Shows a species network. Edges size and color are updated 

according to reaction rate values, and nodes pie charts slices are updated according 

to the concentration of species. 

• cluster_rxns_by_rules_view(model): Shows the unipartite graph of the interactions 

between the reactions in a model. Reaction nodes are grouped by the rules that 

generated them. 

• highlight_nodes_view(species, reactions): Highlights the species and/or reactions 

passed as arguments. 

 

A more detailed description of these and other visualization functions can be found 

on the PyViPR documentation website (https://pyvipr.readthedocs.io/) 

 

5.3.5   Model calibration 

For the calibration of EARM, nominal values for rate constants were set to their 

published values in EARM 2.0 (Lopez et al., 2013). All rate constants were allowed to 

change two orders of magnitude above and below their nominal values, indicating a lack 

of knowledge about the likely parameter values. Experimental time-courses of the initiator 

caspase reporter protein (IC-RP), mitochondrial intermembrane space reporter protein 

(IMS-RP), and effector caspase reporter protein (EC-RP) were used from previously 

published data (Spencer et al., 2009). In the model, tBid, cytosolic Smac, and cleaved PARP 

were fit to the data for IC-RP, IMS-RP, and EC-RP, respectively. Model calibration was then 

performed using the simplePSO package, which is a python implementation of the Particle 

Swarm Optimization algorithm (Kennedy & Eberhart, 1995). The fit of simulated 

trajectories to experimental data was measured using the sum of the squared differences: 

𝜒2  =  ∑ ∑
1

2𝜎𝑖
2(𝑡)

[𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 (𝑡;  Θ)  − 𝑥𝑑𝑎𝑡𝑎

𝑖 (𝑡)]2

𝑖𝑡

 

Where Θ is the parameter vector used to run a simulation, 𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 (𝑡;  Θ) correspond 

to the simulated trajectory of molecular species 𝑖 with parameter vector Θ, 𝑥𝑑𝑎𝑡𝑎
𝑖  is the 

experimental data from species 𝑖, and 𝜎𝑖
2 is the variance from the experimental data of 

https://pyvipr.readthedocs.io/
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species 𝑖. The index 𝑖 runs over all species (observables) that have experimental data, and 

the index 𝑡 runs over all time points at which the data was measured. 

 

We first ran PSO 100 times to determine a reasonable cost function threshold to 

consider that a calibrated parameter is a good fit. We chose the parameter set with the 

lowest function, which corresponds to a value of 2.8, and visually inspected that the fit was 

good. Then, we ran PSO 10000 times, and only kept parameter sets that had a cost function 

of 2.8 or less. 

 

5.3.6   Parameter selection for analysis 

To obtain the two maximally different parameter sets from the 6572 calibrated 

parameter sets, we first standardize the kinetic parameter values as kinetic parameters with 

a variance that is order of magnitudes larger than others might dominate the distance 

function and lead to parameters that are mostly different at that specific kinetic parameter. 

To standardize the values of a kinetic parameter we remove the mean and scale to unit 

variance: 

𝑧 = (𝑥 − 𝑢)/𝑠 

Where 𝑥 is a value of a specific kinetic parameter, 𝑢 and 𝑠 are the mean and the 

standard deviation of the specific kinetic parameter, respectively. 

After standardizing the kinetic parameter values, we use the Euclidean metric to 

calculate the pairwise distances between the 6572 calibrated parameter sets, and then 

choose the two parameter sets that yield the largest distance. 

 

5.4   Results 

5.4.1   PyViPR Overview 

PyViPR is a Python package that operates within the Jupyter notebooks 

environment (Kluyver et al., 2016). In this manner, PyViPR takes full advantage of a Literate 

Programming paradigm (Knuth, 2001), which enables the definition of both code and 

documentation concurrently and allows users to develop shareable workflows for model 

definition, visualization, and analysis. PyViPR leverages the capabilities of PySB to generate 
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model objects, import models from BNGL and SBML formats, and provide simulation-

based results for dynamic visualization. In addition, PyViPR integrates Cytoscape.js (Franz 

et al., 2015), a well-established JavaScript library for graph visualization, into the Python 

environment to interactively render static and dynamic visualization of model networks. 

Therefore, PyViPR merges software packages that would traditionally be used in isolation 

onto a common modeling environment. Further, PyViPR benefits from community-driven 

software development, and improvements made to any of its software dependencies are 

automatically accrued by the framework. PyViPR encourages community-driven 

collaboration through its open-source philosophy built around GitHub: 

https://github.com/LoLab-VU/PyViPR. 

A typical PyViPR workflow comprises the following steps. First, a supported model 

file is passed to one of the PyViPR visualization functions. PyViPR then uses NetworkX 

(Hagberg et al., 2008) to convert the model components into graph nodes and edges. The 

user could then simplify the graph through community detection (e.g., with the Louvain 

algorithm (Blondel et al., 2008)) on the NetworkX graph object. The software will then 

create a compound node and place all the nodes from a community within it. For dynamic 

visualization, PyViPR maps the simulated species concentrations and reaction data to node 

and edge properties. The resulting NetworkX graph is transferred to cytoscape.js via a JSON 

dictionary and rendered real-time in a Jupyter notebook for visualization. We note that the 

user can interact with all graph objects in a Jupyter notebook rendering to, e.g. change the 

layout, groupings, or placement of a given graph. 

PyViPR supports visualization of the two main approaches used to build chemical 

kinetics models of cellular regulatory networks. In the first approach, reaction networks 

are generated by enumerating all the molecular species and reactions that can occur in a 

cellular process. This reaction network can then be translated into a set of Ordinary 

Differential Equations (ODEs) or stochastic equations (Aldridge et al., 2006). In the second 

approach, rule-based modeling formalisms (Boutillier et al., 2018; Faeder et al., 2009; 

Lopez et al., 2013) are used to circumvent the need to enumerate all the species and 

reactions by hand. In these formalisms, species are defined as structured objects that can 

https://github.com/LoLab-VU/PyViPR


74 

 

have binding and state sites, and reaction rules define interactions between specific 

domains or binding sites on a given species. Then, rule-based modeling tools automatically 

generate a reaction network by identifying all possible species that have the conditions 

required to undergo the interaction defined in a rule. PyViPR supports visualization of both 

model encodings through a Tellurium (Choi et al., 2018) interface for reaction network 

models and a PySB (Lopez et al., 2013) interface for rule-based models. 

In addition to biochemical network visualization, PyViPR supports the following 

graph formats widely used in the systems-biology community: GraphML, SIF, SBGN XML, 

Cytoscape JSON, GEXF, GML, and YAML. Additionally, rendered graphs in a Jupyter 

Notebook can be downloaded in the following formats: PNG, SIF, GraphML, and JSON. 

 

5.4.2   Design Choices for PyViPR 

Numerous approaches have been developed to visualize temporal networks. Beck et 

al. (Beck et al., 2017) surveyed a range of existing tools and derived a taxonomy based on 

temporal representation, either as an animation or as a static timeline. From this 

perspective, PyViPR would be classified as a hybrid visualization that uses the node-edge 

paradigm to visualize networks, an animation for visual representation of time, and 

superimposition of pie charts embedded in nodes as well as edges width and color, to 

represent the temporal changes in species concentration and reaction flux, respectively. 

PyViPR was designed with the following visualization goals: 

 

G.1) Highlight functionally related species by grouping them in compound nodes. 

G.2) Understand how a signal is executed in a biochemical network and how it depends on 

parameter values. 

G.3) Provide easy-to-use interactive visualizations for investigating the topology and 

simulation results of biochemical models. 

 

Murray et al. (Murray et al., 2017a) identify a task taxonomy for biological pathways 

analysis across three categories: attribute, relation, and modification tasks. PyViPR 
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specifically supports attribute tasks, to obtain information about a species node, and 

relationship tasks to identify types of relationships between nodes (e.g. protein binding, 

protein translocation), the direction of nodes interactions, and grouping relationships (e.g. 

model compartments, communities). With respect to the temporal features tasks described 

in the task taxonomy of network evolution analysis by Ahn et al. (J. W. Ahn et al., 2014), 

PyViPR focuses on the temporal features of aggregated events. More specifically, PyViPR 

aims to make it easy to observe at any point in time, the reaction rates that have a higher 

flux than other reactions. 

To satisfy the design criteria introduced above, we made the following design 

choices: 

 

DC.1) Employ node-link diagrams for all static and dynamic visualizations to show 

interactions between model components. We decided to use node-link diagrams because 

they are commonly used by biology experimentalists (Cerami et al., 2011; Demir et al., 2010) 

and computational modelers (Murray et al., 2017b) and that would facilitate the 

interpretation and communication of results. 

DC.2) Dynamically map simulated species concentrations and reaction rates values 

onto pie charts embedded within nodes and edge color and width, respectively. Our main 

goal is to clearly show the reactions that carry most flux and drive the behavior of the 

system over time. Therefore, we followed the design principles for the representation of 

flow quantity and direction discussed by Bernhard et al. (Jenny et al., 2018) and used color 

brightness to represent reaction flow quantity on edges. 

DC.3) Include search mechanisms, multiple layout options, zoom and grouping 

functionality to organize model components, and focus on important details, thus enabling 

interactive exploration of complex biological networks. 

 

5.4.3   Network Creation from Multiple Model Components 

PyViPR supports visualization of multiple model components, including molecular 

species, reactions, rules, compartments, macro functions (Lopez et al., 2013), and modules 
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comprising independent model elements (Lopez et al., 2013). These components are 

depicted by either simple nodes, which are fundamental units in a graph (Figure 5.1A), or 

compound nodes, which can contain children nodes and are used to group simple nodes 

with shared attributes or through user-defined groupings. Interactions between these 

different model components correspond to unidirectional or bidirectional reactions and 

are represented by arrows (Figure 5.1B). 

 

 

Figure 5.1 PyViPR Visual Encodings. (A) Node types used for visualizations as labeled. 

(B) Edge types used for interactions: unidirectional interactions (left) are depicted with a 

unidirectional arrow and represent irreversible biochemical reactions. Bidirectional interactions 

(middle) are depicted with bidirectional arrows and represent reversible reactions. Arrows fill state 

indicate directionality from reactant (hollow) to product (solid) species. Solid bidirectional arrows 

represent bidirectional interactions lacking directionality information. Modifier reaction (right) are 
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depicted with an arrow tail shaped with a hollow diamond and a solid arrow head and represent 

reactions where the species is both a reactant and a product of the reaction. (C) Pie charts 

embedded within nodes indicate the concentration of a species relative to its maximum value in 

the simulation. (D) Color shade of arrows indicate the fractional reaction flux for interactions. 
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To create a bipartite network, PyViPR first obtains the list of species and 

rules/reactions from a model and adds them as nodes to the network. Then, PyViPR uses 

edges to connect species nodes with their respective rule/reaction node. To reduce the 

network resolution a bipartite graph can be projected onto a unipartite graph that contains 

only the species or rules/reactions nodes. This unipartite species graph can then be 

organized by grouping the species nodes using the biological compartments on which they 

are located. Similarly, a unipartite rules graph can be grouped by the macro functions used 

to create them or the model modules where they are defined. This allows users to 

interactively explore and revise the model network topology at different resolutions. 

A key feature in PyViPR is the use of community detection algorithms to 

automatically cluster nodes and thereby simplify network complexity. For example, the 

Louvain method detects communities by optimizing the graph modularity. In this method, 

optimization is achieved by first iterating over all nodes and assigning each node to a 

community that results in the greatest local modularity increase, then each small 

community is grouped into one node and the first step is repeated until no modularity 

increase can occur (Blondel et al., 2008). As a result, the Louvain algorithm finds groups 

of highly connected nodes that could have similar biological functions or represent 

molecular-complex formation processes (Fortunato, 2010) (design goal 1). Other 

community detection algorithms based on label propagation (Cordasco & Gargano, 2010; 

Raghavan et al., 2007), fluid communities (Parés et al., 2018), and centrality (Girvan & 

Newman, 2002) methods are also available in PyViPR. Alternatively, users can also 

manually define clusters of nodes interactively for a “human in the loop” type optimization 

(Däschinger et al., 2017; Holzinger, 2016). Taking advantage of the PySB interface to 

BioNetGen, we also incorporated (1) compact rule visualization, (2) atom-rule graph, and 

(3) tunable compression pipeline as implemented by Sekar et al. (Sekar et al., 2017) into 

the PyViPR workflow to enable a more thorough and complete visualization of large rule-

based models. 

 

5.4.4   Dynamic Visualization in PyViPR 
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PyViPR supports dynamic visualization of deterministic and stochastic model 

simulations. This visualization mode uses a unipartite network (Design Choice DC.1) in 

which nodes represent model species and edges represent reactions between the species. 

Species concentrations and reaction rates are encoded into the properties of nodes and 

edges, respectively (Design Choice DC.2). 

To represent temporal concentration changes during a simulation, we embedded 

pie charts within the graph species nodes. Pie chart slices within each node depict the 

species concentration relative to the maximum amount attained throughout the 

simulation. Pie chart slices are updated at each time point during animation (Figure 5.1C). 

Absolute species concentrations at a given time point are also accessible as tooltips through 

a click-hold gesture on a species node. 

PyViPR aims to highlight reactions with high rates of consumption or production, 

as these can drive complex network processes (Design Goal 2). To attain this goal, 

simulated reaction rates are encoded on both the color shade and the thickness of arrows 

that connect interacting species. For each species PyViPR obtains its related reactions and 

then calculates the fractional flux of each reaction using a normalization function: 

 

𝑓𝑖,𝑐(𝑡) =  
𝑟𝑖,𝑐(𝑡)

∑ 𝑟𝑗,𝑐
𝑛
𝑗=1

 

 

where 𝑟𝑖,𝑐 is the reaction rate value at a specific time point, n is the number of 

reactions, and the sub-index c indicates the type of reaction (consumption or production). 

Fractional fluxes are then linearly mapped to a color shade ranging from low (light shade) 

to high (dark shade) flux representations (Figure 5.1D). In addition, reaction rate values, 

relative to their maximum value throughout the simulation, are represented by edge 

thickness. Absolute reaction rate values for each interaction and at any given time point 

are also accessible as tooltips using the click-hold gesture. 

 

5.4.5   Exploration of a Biological Process with PyViPR: Apoptosis Execution 
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To illustrate the visualization capabilities of PyViPR, we use the Extrinsic Apoptosis 

Reaction Model (EARM v2.0) (Lopez et al., 2013) to perform an exploratory analysis of the 

receptor-mediated apoptosis signaling network. Briefly, EARM v2.0 describes the 

biochemical interactions from an initial death ligand cue to a cleaved PARP response. 

Initiator caspases trigger interactions among the Bcl-2 family of proteins that lead to 

mitochondrial outer membrane permeabilization (MOMP). MOMP, in turn, propagates 

the signal to effector caspase activation and PARP cleavage. EARM is a sizable model that 

comprises 74 molecular species, 127 parameters, 62 rules, and 100 reactions. We explored 

the EARM network using the following steps: (1) visualization of the apoptosis species-rules 

bipartite network; (2) application of the Louvain community detection algorithm to 

functionally cluster species nodes; (3) study of the simulation dynamics at a coarse-grained 

community level; and (4) identification of molecular targets that modulate model behavior. 

 

5.4.6   Multiresolution Visualization and Exploration of EARM 

We wanted to study the architecture of the network defined in EARM to find 

insights about molecular organization and function in apoptosis execution. We first 

visualized a species-rules bipartite network (Figure 5.2, upper panel). However, this 

network is difficult to explore, as no discernible structures are readily apparent. We then 

projected the species-rules bipartite graph onto a species unipartite graph and clustered 

highly connected nodes using the Louvain algorithm (Figure 5.2, middle panel). These 

communities can also be further collapsed to obtain the EARM communities graph, a 

coarse-grained representation of the apoptosis pathway (Figure 5.2, lower panel). 
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Figure 5.2 Multiresolution Visualization of a Reaction Network. Upper panel: EARM species rules 
bipartite graph. Green nodes represent molecular species with initial condition set to zero, cyan 
nodes are species with nonzero initial conditions, and red nodes represent rules defined in the 
model. Middle panel: EARM species graph obtained from projecting the bipartite graph into a 
unipartite graph. Densely connected nodes have been automatically grouped into communities 
detected with the Louvain algorithm. Lower panel: EARM communities graph obtained by 
collapsing each communities into a single node. Community node names are assigned by the 
species with the highest number of interactions within its community. All edges correspond to 
interactions between species nodes as specified in the EARM model. 
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The Louvain community detection algorithm identified nine communities, 

numbered 0–8, which is summarized in Table 5.1. Briefly, these communities capture 

biologically relevant and functional processes throughout the apoptosis pathway. 

Community 1, describing Caspase 8 activation and Bid truncation, is linked with 

Communities 3 and 4, the starting points for type I and type II cellular apoptosis, 

respectively (Özören & El-Deiry, 2002). Interestingly, Mcl-1, a potent apoptosis inhibitor, 

was placed in a separate community from all the other Bcl-2 inhibitors, highlighting its 

unique inhibitory interactions that have been well documented (Yang-Yen, 2006). 

Community 4 is also connected to Communities 5 and 8 that correspond to Bak and Bax 

activation, polymerization, and pore formation, respectively. These communities capture 

mitochondrial regulation events that lead to eventual MOMP formation in type II apoptosis 

execution (Kale et al., 2017; YIN, 2000). These MOMP-related communities are connected 

to Communities 2 and 7, which correspond to MOMP-driven release of cytochrome c and 

Smac from the mitochondria. Finally, these communities connect to Community 3, which 

corresponds to the activation of executioner Caspase 3 (C3) and subsequent PARP cleavage, 

which signals that the cell has executed apoptosis. As shown, C3 can be directly activated 

by Caspase 8 (C8) (type I) or by the apoptosome formed after cytochrome c is released via 

MOMP (type II). 
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Community 

Number 
Apoptosis Subprocess References 

0 
Ligand-receptor interactions that lead to the DISC 

formation and regulation by Flip 

(Pennarun et al., 

2010) 

1 

Initiator Caspase 8 activation by DISC and Caspase 6 

and subsequent truncation of Bid by activated 

Caspase 8 

(Kantari & 

Walczak, 2011) 

2 
Release of cytochrome C through mitochondrial Bax 

and Bak pores 

(Garrido et al., 

2006)  

3 
Activation and regulation of effector Caspase 3, 

formation of apoptosomes, and cleavage of PARP 
(Zou et al., 2003)  

4 

Bcl-2 family of interactions responsible for 

translocation of Bax to the mitochondria by 

mitochondrial Bid (mBid) and inhibition of Bax, Bak, 

and mBid by BclxL and Bcl2 

(Kale et al., 2017; 

YIN, 2000)  
 

5 Formation of mitochondrial Bax pores 

(Annis et al., 2005; 

Westphal et al., 

2014)  
 

6 Mcl1 inhibition of pro-apoptotic proteins (Yang-Yen, 2006)  

7 
Release of Smac through mitochondrial Bax and Bak 

pores and its subsequent inhibition by XIAP 
(Deng et al., 2002)  

8 Formation of mitochondrial Bak pores 

(Dewson et al., 

2009; Westphal et 

al., 2014)  
 

Table 5.1 Summary of the Biological Functions Enclosed in Each Community.  
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The Louvain algorithm also led to some interesting observations regarding 

molecular interactions. For example, Caspase 3, the effector caspase, is the species with the 

highest within-community node degree, indicating that it is a highly regulated protein in 

apoptosis execution. Also, mBid has the highest number of interactions across 

communities, indicating that it plays a key regulatory role in apoptosis execution. 

Taken together, we find that Louvain community detection could be used as an 

interactive “coarse-graining” methodology to automatically group biochemical 

interactions, simplify mechanism exploration, and identify important proteins within a 

biochemical network. 

 

5.4.7   Parameter Sets Fit Experimental Data but Yield Different Network Dynamics 

To demonstrate the advantages of dynamic visualization, we calibrated EARM to 

previously published time course experimental data (Spencer et al., 2009) using the 

Particle Swarm Optimization (PSO) algorithm (Kennedy & Eberhart, 1995). Ten thousand 

PSO runs were carried out, which resulted in 6,572 parameter sets with an error ≤ 2.8 (See 

Methods section for details). It is well established that multiple parameter sets can fit 

experimental data equally well, due to parameter unidentifiability and model sloppiness 

(Gutenkunst et al., 2007b). To explore the mechanistic implications of different parameter 

sets on EARM execution, we compared the dynamics generated by two different parameter 

sets, labeled Parameter Set 1 (PS1) and Parameter Set 2 (PS2) (Table S1), as described below. 

We hypothesized that these two parameter sets with different kinetic parameter 

values would yield distinct signal mechanisms. Thus, we first asked whether a trajectory 

plot of tBid dynamics could yield useful mechanistic information about apoptosis execution 

with different parameter sets. As shown in Figure 5.3A, both parameter sets generated tBid 

trajectories that were essentially indistinguishable, yielding no mechanistic information 

from the two distinct parameter sets. We then employed the EARM communities graph to 

compare the global dynamic signal execution for both parameter sets. Figure 5.3B shows 

three time points in signal execution for PS1 (upper panel) and PS2 (lower panel). As shown, 

there is little activity between communities in both parameter sets in the early time points 
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(Figure 5.3B left). However, for PS1 at t = 4040s we observe that Community 1, which 

regulates C8 activation, exhibits increased flux toward Community 3, which controls C3 

activation. This indicates that C3 is being activated by C8. Despite the activation of the 

effector Caspase, apoptosis does not take place because the antiapoptotic XIAP inhibits 

active C3 activity. Community 4, which regulates mBid, also exhibits increased signal flux 

toward the Community 8 (active Bax regulation), indicating that the pores formed in the 

mitochondria are dominated by Bax oligomerization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

 



88 

 

Figure 5.3 Dynamic Visualization of EARM at Different Resolutions. Panel (A) includes three plots 
of the simulated tBid and the experimental data used for calibration. Gray lines correspond to the 
experimental data with error bars indicating the standard deviation. Arrows indicate the 
concentration level at the corresponding time point. The time points shown here are the same ones 
used to obtain snapshots of the dynamic visualization in the following panels. Panel (B) shows, for 
PS1 and PS2, the global reaction flow dynamics between the communities detected with the Louvain 
algorithm. Panel (C) shows, for PS1 and PS2, the temporal changes in the strength of the 
interactions between mitochondrial Bid and the anti-apoptotic and pro-apoptotic proteins. Pie 
chart slices within the nodes show the concentration of a species relative to the maximum amount 
of the concentration attained across all time points of the simulation. Edges color shade and 
thickness represent the fractional flux and relative reaction value, respectively. 
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PS2 also exhibited increased signal flux between communities but with different 

interaction patterns compared with those seen in PS1. Specifically, it exhibited significant 

flux between Community 4 and Community 6 (mMcl1 regulation) at t = 7474s, suggesting 

that mBid was being inhibited by mMcl1. Also, there was significant signal flux from 

Community 2, which regulates cytochrome c release from the mitochondria, toward 

Community 3, indicating that pores were already formed in the mitochondria and 

cytochrome c was being released to aid with the formation of the apoptosome. Therefore, 

dynamic visualization of signal flow across communities confirms our hypothesis about 

signal execution and demonstrates the usefulness of PyViPR to explore the complex 

dynamics that occur in biochemical processes. 

To further explore the effects of kinetic parameters in model behavior, we focused 

on local signal flow through mBid and its interactions, as they are tightly linked to MOMP 

and cellular time-to-death (Spencer et al., 2009). As shown in Figure 5.3C, for PS1 we 

observed that most of mBid was used to transport cytosolic Bax to the mitochondrial outer 

membrane (MOM), whereas no activation of Bak occurred, suggesting that pore activity in 

the MOM was primarily due to Bax (see Video S1). We, therefore, hypothesized that the 

model with PS1 depends on Bax for apoptosis execution. In contrast, for PS2, we observed 

that mBid activity was primarily inhibited by the anti-apoptotic Mcl1 (see Video S2). We 

thus hypothesized that under PS2 an MCL-1 knockdown would free mBid to activate Bax 

and Bak and more rapidly commit cells to apoptosis. We tested both hypotheses derived 

from our visualization-based analysis using in silico experiments. First, we knocked out Bax 

and simulated EARM with PS1 (Figure 5.4). We found that knocking out Bax protected cells 

from apoptosis induction with TRAIL, confirming that Bax plays an important role in 

apoptosis regulation. We then knocked out Mcl1 and simulated EARM with PS2. We found 

that the time-to-death was reduced by 22.6%, corroborating that Mcl1 inhibition delayed 

apoptosis. As a control, we knocked out Mcl1 for PS1 and Bax for PS2 and found that the 

dynamics of cPARP were not considerably affected.  
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Figure 5.4 In Silico Knock outs of Bcl-2 Proteins Modulates PARP Cleavage. EARM was run using 
Parameter Set 1 (left) and Parameter Set 2 (right) and with knockout (KO) of either Bax or Mcl-1 as 
labeled. Bax KO has a significant effect on the dynamics of PARP cleavage (yellow line) for 
Parameter Set 1 but almost no noticeable effect for Parameter Set 2 (right). In contrast, Mcl-1 KO 
has almost no effect for Parameter Set 1 (left) but a significant effect in Parameter Set 2 (right). 
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Taken together, our results demonstrate that despite multiple parameters fitting the 

data equally well, apoptosis is executed differently for each parameter set. Our observations 

align with experimental results that show cellular dependence on Bcl-2 regulators for 

apoptosis execution (Deng et al., 2002; P. Zhou et al., 1997). Importantly, visualization of 

the dynamic process enabled us to identify key reactions under different parameter sets 

and generate testable hypotheses to better understand the execution mechanism. 

 

5.5   Discussion 

In this paper, we presented PyViPR, a tool to visualize the structure and dynamics 

of biochemical network models. PyViPR enables a straightforward workflow of model 

creation, analysis, visualization, and hypothesis generation. Additionally, PyViPR 

integrates community detection algorithms to organize the nodes of biochemical networks 

and ease the exploration of complex networks. Lastly, PyViPR provides an interface for 

intuitive dynamic visualization that facilitates the observation of signal flow across 

biochemical models. 

Multiple tools exist for static visualization of biological networks. Some of the tools 

used to visualize reaction-based models include Dynetica (Eidum et al., 2014), COPASI 

(Bergmann et al., 2017), CySBML (König et al., 2012), and Omix (Droste et al., 2011). 

Although these tools provide useful visualizations of biochemical models, they are 

implemented as Graphical User Interfaces, which can hinder the creations of pipelines for 

model creation, visualization, and analysis. Also, these tools can become difficult to use as 

network complexity increases. PyViPR aims to address these issues by enabling access to 

community detection algorithms for network simplification and facilitating the model 

definition, visualization, and analysis pipelines in a single Jupyter Notebook environment. 

 

Various tools for visualization of rule-based models have also been published. These 

include Simmune (Cheng et al., 2014), BioNetGen (Sekar et al., 2017; Smith et al., 2012), 

rxncon (Tiger et al., 2012), Virtual Cell (Vasilescu et al., 2018), and Kappa (Boutillier et al., 

2018). All of these tools take advantage of the structured definition of molecules and rules 
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to generate intelligible visualizations of large models. PyViPR does not use these structured 

definitions and instead uses the rule-based modeling framework to obtain the set of 

reactions from a given model. This set of reactions is often larger than the number of rules, 

thus limiting the size of models that can be intelligibly visualized with PyViPR. To address 

this potential shortcoming, we leveraged the flexibility of a Python-based environment and 

provided an interface to BioNetGen's atom-rules graph algorithm. 

Visualization tools to explore the dynamics of temporal network processes can be 

classified into three groups based on the components animated: (1) Species nodes 

animation, where the simulated species concentration is mapped onto the size/color of 

nodes (e.g. COPASI (Bergmann et al., 2017), Narrator (Mandel et al., 2007), CytoModeler 

(Xia et al., 2011)); (2) species nodes and edge animation, where the simulated species 

concentration is mapped onto the size/color of nodes, whereas reaction rate values are 

encoded into the edge thickness (e.g. DBSolve (Gizzatkulov et al., 2010)); and (3) rules 

nodes and edges animation (e.g. DIN-Viz (Forbes et al., 2017)), where the number of hits 

of a rule is mapped into the node size, and the influence of one rule on another is encoded 

into the edge width. Similar to the first two groups of dynamic visualization approaches, 

PyViPR maps the species concentrations into nodes. The main difference, however, is that 

PyViPR encodes the reaction rates into edges width and colors in a more insightful way as 

it highlights the edges that carry most of the signal flow. Additionally, PyViPR is better 

suited for dynamic visualization of large networks, as it can use community detection 

algorithms to cluster nodes and then animate the coarse-grained network with the 

simulation results. Lastly, it is difficult to compare PyViPR with the third group of 

visualization tools, as PyViPR uses a species graph, whereas the latter uses a rules graph to 

encode the simulation results. However, one advantage that PyViPR has is that the 

visualization can be easily communicated to non-modeling scientists, as it only requires 

knowledge about the biological network being studied. 

We believe that PyViPR could be incorporated into existing modeling and 

simulation workflows provided by Python-based tools such as Tellurium notebooks 

(Medley et al., 2018) and PySCeS (Olivier et al., 2005). In the future, we plan to incorporate 



93 

 

community-detection algorithms that consider the weight of the edges for the clustering 

of nodes. Additionally, we plan to improve the synchronization from the JavaScript 

frontend to the Python backend to enable users to interactively modify model parameters 

and components. 

All the model exploratory analyses, which include model calibration, visualization, 

hypothesis exploration, and testing, were performed in Jupyter Notebooks. These shareable 

and reusable notebooks contain all the source code and markup text that explains the 

rationale for each step in the analysis. We believe that access to these resources will 

promote reproducibility and transparency by enabling other researchers to rerun or expand 

the presented model analysis. We invite the community to contribute to open-source tools 

such as PyViPR to improve model analysis and visualization (see Supplement Information 

Section and https://mybinder.org/v2/gh/LoLab-VU/PyViPR/master). 

 

5.5.1   Limitations of the Study 

Although PyViPR can visualize a broad range of systems biology models, it is not a 

panacea for model visualization. Specifically, PyViPR has limitations to generate intelligible 

networks of rule-based models with rules that generate a few hundreds of molecular 

reactions. This limitation emerges because PyViPR visualizations are created from the 

molecular reactions, which are typically more numerous than model rules, instead of the 

monomers and rules encoded in a model. In this case, specialized visualization tools such 

as atom-rules (Sekar et al., 2017), rxncon (Tiger et al., 2012), and Kappa (Boutillier et al., 

2018) could be better suited to obtain intelligible visualizations of rule-based models. 
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Chapter 6  

 

Discussion and future directions 

 

Mathematical models are becoming increasingly used to describe biochemical 

processes and understand the systems behavior that arises from protein-protein 

interactions involved in a signaling pathway. These models have provided insights into the 

multiple mechanisms that cells use to generate a response to perturbations. Some of these 

mechanisms include a snap-action switch controlling apoptosis (Albeck et al., 2008), 

spatial localization of proteins by scaffolds (Locasale et al., 2007), and a conveyor belt 

mechanism for signal amplification of JNK3 (N. A. Perry et al., 2019). As models have 

proven useful to understand complex dynamics,  in recent years, the U.S. Food and Drug 

Administration (FDA) has advocated for the use of mechanistic models to advance the 

discovery, development and clinical use of therapeutic drugs (Madabushi et al., 2019; 

Sorger et al., 2011). These models, also known as Quantitative Systems Pharmacology (QSP) 

models, aim to describe the biochemical networks targeted by drugs, provide an 

understanding of the mechanisms of action of compounds under study, and investigate 

exposure-response relations for many therapeutics.  

In this thesis, we develop tools and analyses to gain confidence in model results, 

contributing to the advancement of three specific areas: 1) Model reproducibility. 2) 

Quantification of parameter uncertainty and its effect on predictions and signal execution 

and 3) Model visualization. Improvements in these areas are essential for systems biology 

and QSP models to gain insights into the mechanisms that modulate cellular processes in 

different contexts. 

 

6.1   Advances in model reproducibility 

Regarding model reproducibility, multiple tools exist to address different parts of 

this issue. For example, the SBML format was created to share, communicate and store 

models (Hucka et al., 2003). Although SBML ensures a standard format for models, 
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problems reproducing model analysis still exist as information about the protocols used to 

generate simulations is limited. Thus, the Simulation Experiment Description Markup 

Language (SED-ML) (Waltemath et al., 2011) was developed to address this lack of 

information about simulation experiments. 

Although SBML and SED-ML have provided a common framework to describe 

models and simulations, a recent study found that 49% of the published models analyzed 

are not reproducible (Tiwari et al., 2021). Furthermore, they observed that the percentage 

of not reproducible models increased with model size, and more than 80% of models with 

more than 81 species are not reproducible. In this scenario of large models, rule-based 

modeling tools like PySB can play an important role. PySB facilitates the declaration of 

large models by using a syntax similar to biochemical reactions and automatically generates 

the ordinary differential equations that describe cellular processes. This framework enables 

easy revision and extendibility, which is essential for reproducibility purposes. However, if 

no information is shared about how different simulations and paper figures are generated, 

it can lead to the same reproducibility problems. 

In our work, we employed a novel workflow that takes advantage of the vast 

ecosystem of tools available for the Python community and ensures reproducibility of all 

model results and analysis without the need of installing any software. In this workflow, we 

first use PySB to build, simulate and analyze a model within a Python Jupyter Notebook 

(Kluyver et al., 2016) and then store those notebooks in a free GitHub repository. Once the 

Jupyter Notebook with all the information is stored in GitHub, we used binder (Jupyter et 

al., 2018) to enable other researchers to run those notebooks in a browser-based executable 

environment where they can immediately reproduce the results previously obtained. We 

applied this workflow to the JNK3 activation reaction model, and the results can be 

reproduced here: https://github.com/LoLab-VU/JARM 

Our approach for reproducibility can be used for models and analyses that require 

small-size files as GitHub and binder have storage and memory limits. In cases where large 

files and high computer processing power is necessary, we can envision a solution with 

https://github.com/LoLab-VU/JARM
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Docker containers (Boettiger, 2015) that include all the software, model, and analyses and 

can be run in a local computer system.  

 

6.2   Advances in model visualization 

To facilitate the visualization of model networks, simulation results and strengthen 

the reproducibility of modeling workflows, we developed the Python Visualization of 

Processes and Reactions (PyViPR) tool. PyViPR complements the already existing suite of 

tools that include NetworkViewer (Cheng et al., 2014), ReactionFlow (Dang et al., 2015), 

RuleBender (Smith et al., 2012), and DIN (Forbes et al., 2017) by providing two novel 

visualizations: 1) Clustered networks by community detection algorithms, and 2) Dynamic 

networks. These visualizations were designed to effectively display increasingly large 

networks and show the temporal patterns of species concentrations and reaction rates in 

an interactive manner.  Additionally, PyViPR integrates other tools like atom-rules (Sekar 

et al., 2017) to visualize rule-based models and other graph formats like GraphML, SIF, and 

SBGN. We develop PyViPR as a Jupyter widget to be easily included in the modeling 

workflow and thus guarantee the reproducibility of model building, analysis, and 

visualization. 

The dynamic visualizations generated by PyViPR enable the rapid generation of 

hypotheses by explicitly showing the protein-protein interactions with highest reaction 

rates, which then can be targeted to module signal execution. Additionally, PyViPR 

facilitates the communication of results with non-modeling scientists as models and 

simulations can be shown in the context of all protein-protein interactions. 

 In the future, we plan first to create an input format to import model networks and 

simulation results from other modeling tools into PyViPR for visualization. Second, we will 

add support to visualize stochastic simulations. Third, we plan to incorporate community-

detection algorithms that consider the weight of the edges for the clustering of nodes. 

Lastly, we plan to improve the synchronization from the JavaScript frontend to the Python 

backend to enable users to modify model parameters and components interactively 
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6.3   Advances in the quantification of model uncertainty 

Various approaches exist to calibrate models to experimental data (Mitra & 

Hlavacek, 2019b). Bayesian calibration tools have gained relevance in the fields of genetics, 

genomics, bioinformatics, and computational systems biology as they provide essential 

information about parameter distributions and their correlations (Wilkinson, 2007). In 

Chapter 2 of this work, we employed PySB to build a model of the JNK3 activation cascade 

and then used PyDREAM, a Bayesian calibration tool, to fit the model to experimental data. 

This calibration yielded parameter probability distributions constrained by the 

experimental data available and enabled us to compare kinetic parameters taking into 

account the uncertainty of their values. Additionally, given the statistical nature of 

PyDREAM we could identify the most likely parameter vectors that reproduce the 

experimental data. Altogether, the experimental data, our model with calibrated parameter 

distributions, and the analysis of reaction rates provided insights into the mechanism that 

amplifies the activation of JNK3.  

For the development and analysis of the JNK3 activation reaction model (JARM), we 

applied the experimentation/modeling cycle that starts by gathering experimental data, 

building a mechanistic model, calibrating and analyzing the model to generate new 

hypotheses that provide more data to refine the model. By using this approach, we were 

able to identify limitations with the first set of experimental data and suggest new 

experiments that improved our understanding of the JNK3 activation cascade. This result 

demonstrates the power of combining models with experimental approaches to understand 

the mechanisms that modulate biological processes. In the future, to gain more confidence 

in JARM, we could validate the prediction that 0.49 μM is the optimal concentration of the 

scaffold protein arrestin-3 for maximal JNK3 activation. 

Biological experiments have uncertainties that during the calibration process are 

propagated to uncertainties in model parameter values. Additionally, as we build larger 

models, it is common to have many more parameters than experimental data, i.e., an 

underdetermined system, which results in model unidentifiability and large parameter 

uncertainties. These uncertainties are propagated to model predictions, and thus it is 
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important to understand the mechanisms involved in the generation of different 

predictions. We tackle this issue by developing PyDyNo, a tool that tracks the signal flow 

throughout the network with different calibrated parameter vectors.  

PyDyNo leverages tropical algebra, chemical kinetics, network analysis, and 

clustering algorithms to identify modes of signal execution in model networks. We applied 

this tool to the Extrinsic Apoptosis Reaction Model (EARM) and found that despite the 

many parameter vectors that fit the experimental data, there are only a few modes of signal 

execution in the model network. These different execution modes predict different 

outcomes when the same perturbation is applied to the system. Furthermore, we showed 

that calibrating biochemical models with a Bayesian approach enabled us to assign 

probabilities to each execution mode, significantly enhancing our understanding of signal 

dynamics. As a result, the probabilistic approach developed in this thesis may provide a 

novel framework to understand cellular signaling processes.   

As execution modes from a model have a distinctive response, PyDyNo could be 

used with experimental design approaches to identify the most likely execution mode of a 

biological system and thus reduce the uncertainty in predictions. This approach could play 

an important role in the development of quantitative systems pharmacology models, as 

uncertainty reduction and high predictive power is necessary for drug development 

applications (J. P. F. Bai et al., 2019). 

The execution modes identified by PyDyNo lead to the question: Do cells actually 

have different execution modes or are these execution modes a result of the uncertainty of 

the experiments and model identifiability? We believe that it is likely a combination of the 

two as cells might have different crowding environments (H.-X. Zhou et al., 2008) that can 

lead to different kinetics. As we showed in Chapter 4, different kinetic parameters might 

have unique execution modes. Also, these different execution modes can be part of a bet-

hedging strategy (Jolly et al., 2018) where the kinetics heterogeneity can be viewed as an 

strategy that aims to optimizes the survival of a clonal population in a dynamic 

environment. Thus, as a future direction it would be important and interesting to 

experimentally determine whether the execution modes exist in cell populations. 
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Finally, previous works have explored the dynamic patterns of signal flow in 

complex networks. Erin Shockley and colleagues combined flux analysis with information 

theory to study how the COX-2 pathway integrates signals with varying input 

concentrations (Shockley et al., 2019). Harush and Barzel studied multiple networks with 

different topologies and used a perturbative formalism to analyze their signal flow at steady 

state (Harush & Barzel, 2017). Overall, these analyses have provided key biological and 

network insights about signal flow in complex networks. However, these approaches were 

developed to study signal flow at steady state conditions, omitting transient dynamics. 

These dynamics are important as, over time, they change the signal flow in a network and 

provide information about the optimal timing of perturbations to modulate a cell response. 

Our analysis provides a novel approach that considers the non-equilibrium dynamics of 

signaling networks and calibration parameter uncertainty to create a paradigm shift 

towards a more probabilistic understanding of signal execution in biochemical networks. 
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