

Analysis and visualization of signal execution in network-driven biological processes

By

Oscar Orlando Ortega Sandoval

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHYLOSOPHY

in

Chemical and Physical Biology

June 30, 2021

Nashville, Tennessee

Approved:

Alissa Weaver, M.D., Ph.D.

Vivian Gama, Ph.D.

Christopher Fonnesbeck, Ph.D.

William Holmes, Ph.D.

ii

To the memory of the 6402 innocent Colombians

iii

ACKNOWLEDGEMENTS

Throughout my Ph.D. journey, I have received support and help from many people.

I would first like to thank my advisor, Dr. Carlos F. Lopez, who guided me during my PhD

studies and provided me with all the tools necessary to be successful. Dr. Lopez's

knowledge and insights were invaluable for developing the methods and analysis described

in this thesis. I also want to thank Dr. Lopez for his patience and wisdom during the times

when it seemed like I was not moving forward. I would also like to thank my PhD

committee members, Dr. Alissa Weaver, Dr. Vivian Gama, Dr. Christopher Fonnesbeck.

and Dr. William Holmes, for giving me different perspectives about my projects, providing

insights about the biology and the models I worked with, and helping me identify potential

pitfalls in my research. I want to thank Dr. Gama for her generosity and for letting me work

in her lab to gain experience doing experiments.

I would also like to thank my lab mates as they were always there to help me. I would

like to express my sincere gratitude to Blake Wilson, Leonard Harris, and Alex Lubbock for

teaching me modeling, coding, and writing skills.

I would like to thank the Vanderbilt International Scholar Program that provided

me funding and a community of international students at the beginning of my graduate

studies. I would also like to thank the Department of Biochemistry at Vanderbilt for

funding my research. I would like to thank the Office of Biomedical Research Education &

Training for all the training and information that they provided me, which helped me get

multiple job offers.

I would also like to thank my girlfriend Andrea Cuentas and our cat Pola for all of

our adventures, for supporting and motivating me, and for being a source of happiness.

Finally, I want to thank my parents, Orlando Ortega and Nancy Sandoval, and my

siblings Diego Ortega, Felipe Ortega, and Laura Ortega for their unconditional support,

inspiration, and motivation to always move forward.

iv

TABLE OF CONTENTS

DEDICATION ... ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

Chapters

1. Introduction .. 1

1.1. Introduction to ODE models and calibration ... 2

1.2. Defining a cost function for calibration ... 4

1.3. Types of calibration and quantification of parameter uncertainty 5

1.4. Introduction to dynamic flux analysis ... 6

1.5. Introduction to network visualization ... 7

1.6. Reproducibility of systems biology models ... 9

1.7. Organization .. 10

2. Development and analysis of the JNK3 Activation Reaction Model (JARM) 11

2.1. Introduction: Biological background and model scope ... 11

2.2. Materials and methods ... 16

2.2.1. Experimental data .. 16

2.2.2. Model implementation and calibration

2.3. Results .. 21

3. PyDyNo: a tool to analyze parameter uncertainty in biochemical models 25

3.1. Summary ... 25

3.2. Introduction ... 26

v

3.3. Materials and methods .. 28

3.3.1. Development on the python ecosystem .. 28

3.3.2. Workflow to obtain a discretized representation of network dynamics 28

3.3.3. Obtaining dominant subnetworks ... 29

3.3.4. Obtaining modes of signal execution .. 34

3.3.5. Sequence analysis .. 35

3.4. Results and discussion ... 35

4. Probability-based mechanisms in biological networks with parameter

uncertainty .. 39

4.1. Summary ... 39

4.2. Introduction ... 39

4.3. Materials and methods ...41

4.3.1. Mathematical models of apoptosis .. 42

4.3.2. Experimental data ... 42

4.3.3. Bayesian inference and parameter calibration .. 42

4.3.4. Analysis of signal execution .. 42

4.4. Results ... 43

4.4.1. Bayesian parameter optimization yields indistinguishable protein

concentration dynamics ... 43

4.4.2. A discretized flux-based analysis of signal execution in networks 46

4.4.3. Key execution modes emerge despite parameter uncertainty....................... 49

4.4.4. Signal execution modes respond differently to eCaspase perturbation 53

4.4.5. Reducing execution mode uncertainty through parameter measurements . 54

4.4.6. Modes of signal execution in a detailed apoptosis models with increased

parameter uncertainty .. 56

4.5. Discussion ... 65

4.5.1. Availability ... 66

5. Interactive multiresolution visualization of cellular network processes 67

5.1. Summary ... 67

vi

5.2. Introduction ... 67

5.3. Materials and methods .. 69

5.3.1. Overview .. 69

5.3.2. Input data ... 70

5.3.3. Output data.. 70

5.3.4. PyViPR main visualization functions ... 70

5.3.5. Model calibration ... 71

5.3.6. Parameter selection for analysis ... 72

5.4. Results ... 72

5.4.1. PyViPR overview .. 72

5.4.2. Design choices for PyViPR .. 74

5.4.3. Network creation from multiple model components 75

5.4.4. Dynamic visualization in PyViPR ... 78

5.4.5. Exploration of a biological process with PyViPR: apoptosis execution 79

5.4.6. Multiresolution visualization and exploration of EARM 80

5.4.7. Parameter sets fit experimental data but yield different network dynamics

 .. 85

5.5. Discussion ..91

5.5.1. Limitations of the study .. 93

6. Discussion and future directions ... 94

6.1. Advances in model reproducibility .. 94

6.2. Advances in model visualization .. 88

6.3. Advances in the quantification of parameter uncertainty .. 88

References .. 100

vii

LIST OF TABLES

Table Page

2.1 JARM species and their corresponding initial conditions. The first u in JNK3

corresponds to the threonine site, and the second u is the tyrosine site 13

2.2 Reactions defined in JARM. The left column shows the bidirectional and catalytic

reactions that are generated from PySB rules. The right column shows the kinetic

parameters involved in each reaction. Experimentally measured kinetic constants are

highlighted in red. ... 15

5.1 Summary of the Biological Functions Enclosed in Each Community. 84

viii

LIST OF FIGURES

Figure Page

2.1 Network of all possible interactions between MKK4, MKK7, JNK3, and arrestin-3 .. 12

2.2 Simulated trajectories of p(Thr)JNK3, p(Thr)JNK3 and doubly phosphorylated JNK3

calibrated to reproduce the experimental data .. 19

2.3 Posterior probability distributions for calibrated JARM kinetic parameters.. 20

2.4 Top panel: corresponds to the time-dependent concentration changes of active

(doubly phosphorylated) JNK3, pTyr-JNK3 bound to arrestin-3 and pThr-JNK3 bound to

arrestin-3. Center panel: represents the catalysis reaction rate values of singly

phosphorylated JNK3. Bottom panel: shows the catalysis reaction rate values of active

(doubly phosphorylated) JNK3 .. 22

2.5 Top panel: Simulated model trajectories of doubly phosphorylated JNK3. The red

and black lines show the production of ppJNK3 when arrestin-3 is present and absent,

respectively. Bottom panel: Simulated effect of varying arrestin-3 concentration in the

system. ...24

3.1 Algorithm to obtain dynamic fingerprints from a simulation 30

3.2 Modes of signal execution in JARM .. 37

3.3 Amounts of activated JNK3 are markedly different for each execution mode after the

50% MKK7 knockdown .. 38

4.1 Abridged Extrinsic Apoptosis Reaction (aEARM) network and parameter calibration

results ... 45

4.2 PyDyno workflow. .. 48

4.3 Modes of signal execution in aEARM ... 52

4.4 Time of death responses are markedly different for the same perturbation. 55

4.5 Parameter measurements reduce execution mode uncertainty 58

4.6 Modes of signal execution in the full Extrinsic Apoptosis Reaction Network 60

https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740145
https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740145
https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740145
https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740145
https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740145
https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740146
https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740146
https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740146
https://vanderbilt365-my.sharepoint.com/personal/oscar_ortega_vanderbilt_edu/Documents/complete_thesis%20(Repaired).docx#_Toc71740146

ix

4.7 Upper panel: Time to death distributions in the execution modes 1 and 2 in the “wild

type” condition, after a 50% Mcl1 knockdown, and after a 50% knockdown of Bcl2. The

boxplot inside the distributions shows the median, first quartile and third quartile of the

datasets. Execution modes 1 and 2 show substantial differences in their response to the

knockdowns. Lower panel: Time to death distributions in the execution mode 1 after

adding a drug that binds XIAP at t=8000 s, and at t=4000, and a drug that binds XIAP

and Mcl1 at 4000 s. B) List of the 10 parameters in EARMv2.0 that contribute the most to

model prediction. ... 64

5.1 PyViPR Visual Encodings. (A) Node types used for visualizations as labeled 76

5.2 Multiresolution Visualization of a Reaction Network .. 81

5.3 Dynamic Visualization of EARM at Different Resolutions ... 87

5.4 In Silico Knock outs of Bcl-2 Proteins Modulates PARP Cleavage 90

1

Chapter 1

Introduction

Biological systems have been studied from a reductionist perspective since the early

days of molecular biology and have yielded important insights (Morange, 1998). This

reductionist approach consists in breaking a large system into different parts and

identifying the connections between these parts. All with the assumption that molecule

structures and their interactions provide enough explanation to understand the whole

system. Apoptosis, an important pathway dysregulated in multiple human diseases (Singh

et al., 2019), and JNK3 activation cascade, a pathway that can trigger apoptosis through p53

(Dhanasekaran & Reddy, 2008), are two examples of biological processes that have been

studied through the reductionist approach leading to the identification of key protein-

protein interactions. However, it has been increasingly clear that only knowing the

interaction network of biological processes is not enough to understand and modulate

these processes (Barzel & Barabási, 2013). This has led to the use of the systems biology

approach, where mathematical models are employed to study the complex dynamics that

arise during cellular signaling processes.

The systems biology approach consists of studying the interactions between

multiple molecular components and their dynamics to understand the structure of a

system and the emergent properties that arise as a result of the interactions (Kitano, 2002).

According to Kitano, to understand a biological system it is necessary to study four key

properties: 1) System structures: the network of protein interactions generated by extensive

research in molecular biology, 2) System dynamics: the changes in temporal concentration

of biomolecules, which are studied through mathematical equations 3) The control

method: the mechanisms used to modulate cell states, and 4) The design method:

approaches used to design biological systems with desired properties. In this work, we

focused on understanding the dynamics of the apoptosis and JNK3 activation signaling

2

processes and developed novel tools to analyze signal flow through networks and

visualize network structures and dynamics.

To study the dynamical properties of the Apoptosis and JNK3 models we used the

rule-based modeling framework PySB (Lopez et al., 2013). This framework encodes the

protein-protein interactions and their dynamics into a network of ordinary differential

equations (ODEs) using the law of mass action kinetics (Voit et al., 2015). These ODEs

contain parameters describing the strength of reactions that are often unknown. To make

useful predictions with these models it is necessary to calibrate the parameters and ensure

that models reproduce prior experimental data. After calibration, parameters have

uncertainties and the effect of these uncertainties on signal execution and prediction have

not been studied extensively. Additionally, models encoding biological processes are

becoming increasingly larger and harder to visualize. Therefore, the overarching goal of

this work is to analyze and visualize the Apoptosis and JNK3 models to understand how

different signal execution patterns arise due to parameter uncertainty. In the following

sections we present an introduction about the central topics involved in this work.

1.1 Introduction to ODE models and calibration

The Human Genome Project and other large-scale projects have provided genomics,

transcriptomics, and proteomics data that has enabled the development of mathematical

models to study biological processes (Collins & McKusick, 2001; Legrain et al., 2011). The

first step to build a model consists in defining the possible interactions between the

molecules in a network. This is accomplished by studying the experimental data available

from the signaling mechanism of interest as well as exploring databases, e.g. STRING

(Szklarczyk et al., 2019), that contain known and predicted protein-protein interactions.

These networks can be studied through different mathematical frameworks including

Ordinary Differential Equations (ODE), Boolean networks, stochastic equations and petri

nets (Bartocci & Lió, 2016; W. Chen et al., 2010; Machado et al., 2011). In this work, we

focused on the analysis of mechanistic ODE models which are used to describe the

temporal dynamics of protein concentration driven by consumption and production in

3

different interactions. ODE-based models are particularly useful in the analysis of

regulatory motifs like feedback mechanisms and cascade motifs that control the

relationship between stimuli and responses (Alon, 2006).

In the ODE framework, cellular reactions are described by the law of mass action,

which indicates that the rate of a chemical reaction is directly proportional to the

concentration of the molecules involved in the reaction (Voit et al., 2015). Thus, for

example the dynamics of an enzymatic reaction, E + S <> ES > E + P, is described by the

following system of ODEs:

𝑑[𝐸]

𝑑𝑡
= − 𝑘𝑓[𝐸][𝑆] + 𝑘𝑟[𝐸𝑆] + 𝑘𝑐𝑎𝑡[𝐸𝑆]

𝑑[𝑆]

𝑑𝑡
= − 𝑘𝑓[𝐸][𝑆] + 𝑘𝑟[𝐸𝑆]

𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘𝑓[𝐸][𝑆] − 𝑘𝑟[𝐸𝑆] − 𝑘𝑐𝑎𝑡[𝐸𝑆]

𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸𝑆]

Where the expression 𝑑[·] 𝑑𝑡⁄ on the left-hand side represent the rate of change of

a molecular species over time and the expressions on the right-hand side describe the

interactions that controls the rate of change of a protein. The solution of this systems of

differential equations yields the concentrations of the molecules over time. These

mechanistic ODE-based models contain two types of parameters: kinetic parameters (in

this case 𝑘𝑓, 𝑘𝑟 , 𝑘𝑐𝑎𝑡), which describe the strength of protein-protein interactions, and

initial conditions that refer to the initial protein levels at the beginning of a simulation.

Initial protein concentrations can be measured experimentally but all initial conditions of

a model are rarely measured (Albeck et al., 2008; Neumann et al., 2010). Kinetic

parameters are usually not measured due to technical difficulties or they are measured in

vitro where it is not clear whether these values are similar to values in a crowded

intracellular environment (Schreiber et al., 2009). Thus, the majority of parameter values

in a model are unknown and must be estimated in order to obtain quantitative insights

4

from biological network-driven processes. Model parameters are inferred by comparing

simulated trajectories of molecular species to their corresponding experimental data and

adjusting parameter values so that the simulated trajectories reproduce the experimental

data as close as possible. In the next section, we will introduce the concept of cost function,

which determines how well a simulation from a calibrated parameter vector fits the

experimental data.

1.2 Defining a cost function for calibration

To compare the simulation results from a model to the experimental data it is

necessary to define a suitable metric. This metric should take into account the simulated

data as well as the experimental data and measure how different the trajectories are from

each other. One of the most common cost functions is chi-squared which measures the

squared differences of the simulated data to the experimental data and normalizes it by the

variance obtained from replicated experiments. Chi-squared is defined as follows:

𝜒2 = ∑ ∑
1

2𝜎𝑖
2(𝑡)

[𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 (𝑡; Θ) − 𝑥𝑑𝑎𝑡𝑎

𝑖 (𝑡)]2

𝑖𝑡

Where Θ is the parameter vector used to run a simulation, 𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 (𝑡; Θ) correspond

to the simulated trajectory of molecular species 𝑖 with parameter vector Θ, 𝑥𝑑𝑎𝑡𝑎
𝑖 is the

experimental data from species 𝑖, and 𝜎𝑖
2 is the variance from the experimental data of

species 𝑖. The index 𝑖 runs over all species (observables) that have experimental data, and

the index 𝑡 runs over all time points at which the data was measured. Thus, calibrating a

mechanistic model corresponds to minimizing this function, that is finding the parameter

vector that makes the difference between experimental data and simulated trajectories

closest to zero. This optimization can be performed by different algorithms including

Particle Swarm Optimization (Kennedy & Eberhart, 1995) and Differential Evolution

Adaptive Metropolis (Shockley et al., 2018; Jasper A. Vrugt, 2016). Additionally, 𝜒2 is also

the negative log of the likelihood that the data will be observed for a given set of

5

parameters, assuming that measurement errors at time 𝑡 have a Gaussian distribution with

variance 𝜎𝑖
2. This opens the possibility of using Bayesian methods to obtain calibrated

parameters. Bayesian methods have the benefit that they calculate the uncertainty of the

parameters and also provide information about the parameter vectors that are more likely.

1.3 Types of calibration and quantification of parameter uncertainty

In the past, mathematical models used to be calibrated manually (Kholodenko et

al., 1999), where kinetic parameter where derived from basic physical-chemical quantities

and fine-tuned manually to fit the data and the quality of the fit was assessed visually.

Thanks to advances in computation, novel algorithms have been developed. These

algorithms can be categorized in deterministic, stochastic, and hybrid approaches

(Heinemann & Raue, 2016).

Deterministic approaches consist in harnessing the information provided by the

derivative of the cost function to determine the direction in parameter space where the

cost function is minimum. Algorithms use this information to define the next parameter

vector to sample and iteratively reduce the value of the cost function. There are algorithms

like gradient descent that use the first order derivative, but they can easily get stuck at

saddle points in a high dimensional parameter space. To address this, algorithms like

Newton’s method (Meza, 2011) and the Levenberg-Marquardt algorithm (More, 1978) use

the curvature information provided by the second order derivative to optimally navigate

the parameter space and improve convergence. The disadvantage of deterministic

approaches is that optimization runs can get stuck in local minima. To circumvent this

problem, multi-start approaches are utilized where optimization algorithms are run

multiple times starting from different positions in parameter space. The assumption is that

starting from different locations improves the chances of finding a global minimum.

Stochastic approaches evaluate the cost function multiple times and use heuristics

to search for the parameter vectors that minimize the cost function (Abdel-Basset et al.,

2018). Heuristic methods commonly used in systems biology (Sun et al., 2012) include

simulated annealing (Dekkers & Aarts, 1991), genetic algorithms (Deb, 1999), differential

6

evolution (Storn & Price, 1997), and particle swarm optimization (Kennedy & Eberhart,

1995). Stochastic approaches usually do not include gradient information, but novel hybrid

methods, e.g. scatter search (Egea et al., 2007), initially explore the parameter space using

stochastic algorithms and then switch to gradient-based methods to fine-tune the search

locally.

Given that experimental measurements have uncertainties, when models are

calibrated these uncertainties are propagated to the fitted parameter values and to the

model-simulated predictions, this uncertainty is defined as practical identifiability (Vanlier

et al., 2012). Additionally, depending on the structure of the model there can be structural

identifiability when model parameters are functionally related and thus parameter values

cannot be constrained to reasonable ranges (Raue et al., 2009). Multiple methods exist to

quantify parameter uncertainty (Mitra & Hlavacek, 2019a). In addition to quantifying

parameter uncertainty, it is important to understand the effect of these uncertainties in

signal execution through biomolecular networks. Simulations with different parameter

vectors can show different signal executions through the network, and different

sensitivities to perturbations in the network. The next section describes a dynamic

approach to study the effect of parameter uncertainty on signal execution through a

network.

1.4 Introduction to dynamic flux analysis

Studying signal execution in networks is difficult because there are many factors

that affect signal execution. Some of these factors include the number and strength of

interactions that proteins can have, and the concentration dynamics of biomolecules. To

study the functional consequences of molecular polyspecificity, Stites and colleagues

combined the measurements of protein abundance and binding affinities with a

computational framework and determined that the relative importance of protein-protein

interactions is cell line dependent (Stites et al., 2015). To study network dynamics Harush

et al. analyzed multiple networks with different topologies and used a perturbative

formalism to analyze their signal flow at steady state (Harush & Barzel, 2017). They

7

analytically tracked the contribution of all nodes to the flow of information and then

derived an equation that relates network structure and its dynamics with flow patterns.

Although these studies provided important insights about signal execution, they were

developed to study signal flow at steady state conditions, omitting transient dynamics.

These dynamics are important as they provide information about signal flow through the

network and the timing of perturbations required to better modulate a cell response.

An approach that takes into account the effect of transient dynamics and parameter

uncertainty in models of signaling networks is presented in this work. In this method,

described in more detail in Chapter 3 and 4, a model is simulated with a calibrated

parameter vector and instantaneous reaction rates are calculated for each protein-protein

interaction. Then, using an approach inspired in tropical algebra (Noel et al., 2011) and

ultradriscretization theory (Kato et al., 2017a), at each simulated time point a dominant

subnetwork is obtained from tracking the reactions with highest signal flow. The sequence

of dominant networks is defined as a signal execution fingerprint. This discretization step

is repeated for each calibrated parameter vector. Then, our method uses the longest

common subsequence metric, and clustering algorithms to compare and group execution

fingerprints, respectively. Groups with similar execution fingerprints are said to have the

same execution mode. Thus, our analysis is one of the first approaches, to the best of our

knowledge, that takes into account non-equilibrium dynamics of signaling networks and

parameter uncertainty to create a paradigm shift towards a more probabilistic

understanding of signal execution in biochemical networks.

In addition to analyses of signal flow under different conditions, visualization

techniques can be used to further study cellular signaling processes. These visualizations

are useful as they help researchers to perform exploratory analysis of the model topology,

detect patterns that arise from reaction dynamics, and generate hypotheses about the

importance and regulation of biomolecules in a network. In the next section, we discuss

visualizations of network-driven biological processes.

1.5 Introduction to network visualization

8

It has become increasingly clear that biological processes are the result of complex

interactions of cellular molecules including proteins, RNA, DNA, and metabolites (Barabási

& Oltvai, 2004). These complex interactions are represented in a network, where nodes

correspond to molecules involved in a pathway and edges represent interactions between

molecules. Edges can be undirected when there is not enough information about the

direction and nature of the interaction between the nodes and directed when there is

information about information flow (transcription factor to gene it regulates) or material

flow (substrate to a product). The dynamics of these network-driven biological processes

are studied using mathematical models to extract mechanistic insights about the regulation

of these biological processes (Aldridge et al., 2006). As new interactions and crosstalk

proteins are discovered and integrated into mathematical models, these have become

larger and difficult to identify relevant structures and patterns of signal execution. In this

scenario, visualization tools present one effective way to explore network processes,

acquire conceptual insights about signal-execution mechanisms, and quickly generate

mechanistic hypotheses about dynamic regulation.

Tools to visualize network-driven biological processes that are encoded in

mathematical models can be classified in two groups, static and dynamic. Static

representations include molecular species network (Bergmann et al., 2017), species-

reactions network (Schaff et al., 2016), contact map (Boutillier et al., 2018; Cheng et al.,

2014; L. A. Harris et al., 2016), rules defined in the model (Boutillier et al., 2018; Cheng et

al., 2014), rules network (Danos et al., 2012; Smith et al., 2012), and atom-rule graphs (Sekar

et al., 2017). Dynamic visualizations integrate information about temporal changes

obtained from a simulation into networks, and facilitate the understanding of causality,

feedback mechanisms, or oscillations that occur during biological processes. Current

approaches to represent model dynamics include: Copasi (Bergmann et al., 2017) and the

Kappa Dynamic Influence Network (Forbes et al., 2017). In Copasi, a tool only compatible

for SBML models (Hucka et al., 2003), species concentrations from simulation results are

encoded qualitatively in the size of the box around the nodes of a graph and no information

is included about reaction rate values and concentrations. The Kappa Dynamic Influence

9

Network, a web service tool for Kappa models (Boutillier et al., 2018), provides a node-link

diagram that displays the temporal influence that each rule has on other rules. Overall,

these tools have provided important insights about biological networks. However, there is

still an unmet need to effectively visualize increasingly large models and to quantitatively

and intuitively display reactions fluxes throughout networks to identify dynamic patterns

of signal execution.

A tool that enables the visualization of large networks and their dynamics is

presented in this work. This tool, described in more detail in Chapter 5, is a Python package

that provides interactive visualizations within the Jupyter Notebook web application

(Kluyver et al., 2016). We used Jupyter notebooks because it is a platform for literate

programming (Knuth, 2001) that enables researchers to define both code and

documentation at the same time whilst developing a workflow for model definition,

visualization, and analysis. Our tool has a two-fold functionality: I) it facilitates exploratory

analysis of the network and dynamics of biochemical models to generate novel hypotheses,

and II) it promotes the reproducibility and dissemination of model analysis pipelines. Thus,

this tool accelerates the process of model analysis to generate novel insights about the

mechanisms of cell behavior.

1.6 Reproducibility of systems biology models

Reproducibility of published results is essential for the advancement and credibility

of science. However, multiple studies have demonstrated that a large percentage of studies

published in scientific journals are not reproducible (Baker & Penny, 2016). In a

computational field like systems biology, it would be expected that most published models

would be reproducible, but a recent survey identified that ~50% of the models considered

are not reproducible (Tiwari et al., 2021). Thus, in this work we deposited all code used for

analysis and algorithms in GitHub (https://github.com/LoLab-VU) and used Binder

(Jupyter et al., 2018) to enable researchers to reproduce our analysis on mybinder.org

servers. Also, all tools developed here can be easily integrated into Jupyter Notebooks

(Kluyver et al., 2016), which are files with code and documentation that are easy to share.

https://github.com/LoLab-VU

10

1.7 Organization

In Chapter 2, we introduce a model, calibration and analysis of the JNK3 activation

cascade. In Chapter 3, we introduce Pydyno, which is a software tool to study signal flow

through biochemical networks under different conditions. We include details about the

implementation, sequence analysis and visualization methods. In Chapter 4, we present a

detailed analysis of the Apoptosis pathway using Pydyno. We show how model calibration

yields multiple parameter vectors that fit the experimental data and how these parameter

uncertainties affect signal execution. In Chapter 5, we present PyViPR, a tool that combines

community detection algorithms and simulation results to visualize large models and their

dynamics. In Chapter 6, we discuss the results of this work and make conclusion remarks.

11

Chapter 2

Development and analysis of the JNK3 activation Reaction Model (JARM)

2.1. Introduction: Biological background and model scope

JNK3 is a mitogen-activated protein kinase (MAPK) involved in different

physiological processes like apoptosis and cell proliferation when it is activated, and its

upregulation has been implicated in neurodegenerative diseases (Yoon et al., 2012). The

cascade to activate JNK3 starts from ASK1 (MAP3K kinase), which then activates MKK4/7

(MAP2K kinases) by phosphorylating them, and in turn MKK4/7 activate JNK3 by

phosphorylating the tyrosine and threonine sites, respectively (Keshet & Seger, 2010).

Recent studies showed that arrestin-3 is a scaffold that facilitates the activation of JNK3

(Zhan et al., 2013). JNK3 is phosphorylated by MKK4 and MKK7 in solution and in the

arrestin-3 scaffold, which results in a variety of protein complexes and reactions. However,

the mechanisms by which the scaffold improves the activation rate of JNK3 are poorly

understood. Thus, it is important to analyze the interactions and dynamics of arrestin-3,

MKK4/7 and JNK3 to gain insights about the mechanisms that control JNK3 activation.

We developed the JNK3 Activation Reaction Model (JARMv1.0) to understand the

systems-level regulation of JNK3 activation by analyzing the dynamics and reaction rates

of the interactions between arrestin-3, MKK4/7 and JNK3. In JARM, arrestin-3 have two

binding sites, one where MKK4 or MKK7 binds, and the other where JNK3 binds. JNK3 have

a tyrosine site that can be phosphorylated by MKK4 and a threonine site that can be

phosphorylated by MKK7. Also, MKK4/7 can phosphorylate JNK3 in the presence or

absence of the arrestin-3 scaffold. In the arrestin-3 scaffold, after MKK4 phosphorylates its

respective site, it can be replaced by MKK7, and vice versa. JNK3 is activated when it has

been phosphorylated both in the tyrosine and threonine sites. A diagram of all model

interactions is shown in Figure 2.1, and a summary of species and reactions generated by

PySB are shown in Table 2.1 and Table 2.2, respectively.

12

Figure 2.1 Network of all possible interactions between MKK4, MKK7, JNK3, and arrestin-3. Nodes
represent the different complexes formed by the interacting species, and circles in the JNK3 node
show the phosphorylation state of the tyrosine (left) and threonine (right) sites. The different orders
in which JNK3 can be phosphorylated are highlighted by color: arrestin-3:MKK4/7 formation before
JNK3 binding (green); arrestin-3:JNK3 complex formation before MKK4/7 binding (yellow); and
MKK4/7 binding JNK3 in the absence of arrestin-3 (blue). The convention of Kitano et al (Kitano et
al., 2005) was followed.

13

Species Starting concentrations (Molar)

Arrestin 0, 5

pMKK4 0.05

pMKK7 0.05

uuJNK3 0.59

puJNK3 0

upJNK3 0.0067

Arrestin:pMKK4 0

Arrestin:pMKK7 0

Arrestin:uuJNK3 0

Arrestin:upJNK3 0

Arrestin:puJNK3 0

uuJNK3:pMKK4 0

puJNK3:pMKK4 0

upJNK3:pMKK4 0

uuJNK3:pMKK7 0

upJNK3:pMKK7 0

puJNK3:pMKK7 0

Arrestin:uuJNK3:pMKK4 0

Arrestin:upJNK3:pMKK4 0

Arrestin:puJNK3:pMKK4 0

Arrestin:uuJNK3:pMKK7 0

Arrestin:puJNK3:pMKK7 0

Arrestin:upJNK3:pMKK7 0

ppJNK3:pMKK4 0

ppJNK3:pMKK7 0

Arrestin:ppJNK3:pMKK4 0

Arrestin:ppJNK3:pMKK7 0

ppJNK3 0

Table 2.1 JARM species and their corresponding initial conditions. The first u in JNK3 corresponds
to the threonine site, and the second u is the tyrosine site

14

PySB-generated Reaction Rate or Equilibrium Constant

Arrestin + pMKK4  Arrestin:pMKK4 KD_pMKK4_Arr = 347 molar

Arrestin + pMKK7  Arrestin:pMKK7 KD_pMKK7_Arr = 13 molar

Arrestin + uuJNK3  Arrestin:uuJNK3 KD_uuJNK3_Arr = 1.4 molar

Arrestin + upJNK3  Arrestin:upJNK3 KD_upJNK3BindArr = 4.2 molar

Arrestin + puJNK3  Arrestin:puJNK3 KD_puJNK3BindArr = 10.5 molar

Arrestin:pMKK4 + uuJNK3 

Arrestin:pMKK4:uuJNK3

KD_MKK4_Arr_bind_uuJNK3 = 1.4 molar

Arrestin:pMKK4:uuJNK3 →

Arrestin:pMKK4:upJNK3

kcat_pMKK4_ArrJNK3

Arrestin:pMKK4:puJNK3 →

Arrestin:pMKK4:ppJNK3

kcat_pMKK4_ArrJNK3

Arrestin:pMKK4:upJNK3  Arrestin:upMKK4

+ upJNK3

KD_upJNK3_bind_Arr_MKK4

Arrestin:pMKK4:puJNK3  Arrestin:puMKK4

+ puJNK3

KD_puJNK3_bind_Arr_MKK4

Arrestin:pMKK4:ppJNK3  Arrestin:ppMKK4

+ ppJNK3

KD_ppJNK3_Arr = 220 molar

Arrestin:pMKK7 + uuJNK3 

Arrestin:pMKK7:uuJNK3

KD_MKK7_Arr_bind_uuJNK3 = 1.4 molar

Arrestin:pMKK7:uuJNK3 →

Arrestin:pMKK7:puJNK3

Kcat_pMKK7_ArrJNK3

Arrestin:pMKK7:upJNK3 →

Arrestin:pMKK7:ppJNK3

Kcat_pMKK7_ArrJNK3

Arrestin:pMKK7:puJNK3  Arrestin:puMKK7

+ puJNK3

KD_puJNK3_bind_Arr_MKK7

Arrestin:pMKK7:upJNK3 

Arrestin:upMKK47+ puJNK3

KD_upJNK3_bind_Arr_MKK7

Arrestin:pMKK7:ppJNK3  Arrestin:ppMKK7

+ ppJNK3

KD_ppJNK3_Arr = 220 molar

15

Arrestin:uuJNK3 + pMKK4 

Arrestin:uuJNK3:pMKK4

KD_MKK4BindArr_uuJNK3

Arrestin:puJNK3 + pMKK4 

Arrestin:puJNK3:pMKK4

KD_MKK4BindArr_uuJNK3

Arrestin:uuJNK3 + pMKK7 

Arrestin:uuJNK3:pMKK7

KD_MKK7BindArr_JNK3

Arrestin:upJNK3 + pMKK7 

Arrestin:upJNK3:pMKK7

KD_MKK7BindArr_JNK3

Arrestin:pMKK4:upJNK3 + pMKK7 →

Arrestin:pMKK7:upJNK3 + pMKK4

keq_pMKK4_to_pMKK7

Arrestin:pMKK7:puJNK3 + pMKK4 →

Arrestin:pMKK4:puJNK3 + pMKK7

keq_pMKK7_to_pMKK4

pMKK4 + uuJNK3  pMKK4:uuJNK3 KD_MKK4_uuJNK3

pMKK4 + puJNK3  pMKK4:puJNK3 KD_MKK4_puJNK3

pMKK4:uuJNK3 → pMKK4:upJNK3 kcat_pMKK4_ArrJNK3

pMKK4:puJNK3 → pMKK4:ppJNK3 kcat_pMKK4_ArrJNK3

pMKK4:upJNK3  pMKK4 + upJNK3 KD_pJNK3_MKK4complex

pMKK4:ppJNK3  pMKK4 + ppJNK3 KD_pJNK3_MKK4complex

pMKK7 + uuJNK3  pMKK7:uuJNK3 KD_MKK7_uuJNK3

pMKK7 + upJNK3  pMKK7:upJNK3 KD_MKK7_upJNK3

pMKK7:uuJNK3 → pMKK7:puJNK3 kcat_pMKK7_ArrJNK3

pMKK7:upJNK3 → pMKK7:ppJNK3 kcat_pMKK7_ArrJNK3

pMKK7:puJNK3  pMKK7 + puJNK3 KD_pJNK3_MKK7complex

pMKK7:ppJNK3  pMKK7 + ppJNK3 KD_pJNK3_MKK7complex

Table 2.2 Reactions defined in JARM. The left column shows the bidirectional and catalytic
reactions that are generated from PySB rules. The right column shows the kinetic parameters
involved in each reaction. Experimentally measured kinetic constants are highlighted in red.

16

2.2. Materials and methods

2.2.1. Experimental data

Our collaborators generated all the key data to study the role of arrestin-3 in the

JNK3 activation cascade. The experimental data can be found in reference (N. A. Perry et

al., 2019). This data consisted of 54 measurements at different time points of JNK3

phosphorylated in both the threonine and tyrosine sites, JNK3 phosphorylated only in the

threonine site, and JNK3 phosphorylated only in the tyrosine site. Each data point was

collected in triplicate enabling the calculation of the mean and standard deviation, which

were used for model calibration. Additionally, our collaborators measured the affinities of

MKK4/4 and JNK3 for arrestin-3, effectively reducing the number of parameters that had

to be calibrated in JARMv1.0

2.2.2. Model implementation and calibration

JARMv1.0 was implemented in Python using the PySB framework (Lopez et al., 2013)

that enables users to build mathematical models of biochemical systems as Python

programs. In all, JARMv1.0 included 28 biochemical species, 60 chemical reactions, and 44

free parameters. When this program is executed, a set of rules is translated to 28 ordinary

differential equations (ODEs) using the mass action kinetics formalism. The solution of the

ODEs shows how the concentration dynamics of the molecular species change as a result

of the interactions in which they are involved. Since the ODEs generated by JARM require

association and dissociation rate constants instead of dissociation equilibrium constants

(KD) values, all experimentally determined KD values were converted into rate parameters

using the equation KD=kr/kf. For the model calibration, kf rates were set within the “average

enzyme” distribution of specificity constant (Aldridge et al., 2006; Bar-Even et al., 2011;

Zheng et al., 2012), whereas the kr were allowed to change. Out of linear range values at

initial time points and higher than theoretical maximum values in the time-course data

were set to zero and the theoretical maximum, respectively. We applied scaling

normalization to both the time-course data and the simulated trajectories.

17

Model calibration was performed using the PyDREAM package (Shockley et al.,

2018), which is a python implementation of the (Multiple-Try) Differential Evolution

Adaptive Metropolis (DREAM(ZS)) algorithm (J. A. Vrugt & Ter Braak, 2011). To reduce the

number of model parameters to calibrate, we used experimentally measured dissociation

constants for the interactions between MKK4/7, JNK3, and arrestin-3 (N. A. Perry et al.,

2019), and literature values for the interactions between MKK4/7 and JNK3 alone (Ho et

al., 2006). We assumed that the catalytic constants for JNK3 phosphorylation were the

same within a scaffold complex and in solution. The model was pre-equilibrated to allow

complexes to form before the reaction is initiated. Parameter prior probabilities were

specified as uniform distributions with the lower and upper boundary set with the lowest

and highest values from the protein–protein kinetic interaction data and structures

(PPKIDS) dataset (H. Bai et al., 2011), indicating a lack of knowledge about the likely

parameter values. Literature-based values and experimental measures were fixed. The fit of

simulated trajectories to experimental data was measured using the sum of the squared

differences:

Where t is the time span of the simulation and experiments, Θ = (𝜃1, … , 𝜃𝑛) are the

parameters of the model, 𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 are the simulations of the model under condition i and

𝑥𝑑𝑎𝑡𝑎
𝑖 (𝑡) is the experimental data under condition i. This function corresponds to the

negative log of the likelihood (−ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛩))) in the Bayesian framework assuming

the measurement errors at time t have a normal distribution. Using the Bayes formula, the

value of the log posterior distribution, i.e. the probability of a parameter vector given the

experimental data, for a particular parameter vector is defined as

− ln(𝑝𝑜𝑠𝑡(𝛩)) ∝ − ln(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛩)) − ln (𝑝𝑟𝑖𝑜𝑟(𝛩))

Where 𝑝𝑜𝑠𝑡(𝛩) is the posterior probability of parameter vector 𝛩, and 𝑝𝑟𝑖𝑜𝑟(𝛩) are

the prior probabilities assigned to each of the parameters in the parameter vector 𝛩.

PyDREAM samples the posterior distribution and finds probable parameter sets that fit the

18

experimental data within the constraints that the network interactions and the network

kinetics imposes. To further constraint the model, we added the requirement that

thermodynamic cycles present in the interaction network must obey detailed balance/free

energy conservation in the likelihood function.

The DREAM(ZS) algorithm was run using PyDREAM with five chains that started in

parameter locations provided by previous calibrations using the Particle Swarm

Optimization algorithm (Kennedy & Eberhart, 1995). Each chain sampled 500,000

parameter sets and the first 250,000 samples were discarded as burn-in. All chains were

tested for convergence using the Gelman-Rubin criterion. To measure the goodness of fit

of the calibrated model to the experimental data we use the 𝜒2 statistic. A good fit would

correspond to a 𝜒2 value that is approximately equal to the number of experimentally

obtained data points. Using the 5000 most likely parameters obtained from the calibration

we obtained a 𝜒2 value of 32.32 (±0.09). Given that we measured 36 experimental points

for pTyr-JNK3 and pThr-JNK3 reactions, we conclude that the model shows a reasonable

fit to the experimental data.

19

Figure 2.2 Simulated trajectories of p(Thr)JNK3, p(Thr)JNK3 and doubly phosphorylated JNK3
calibrated to reproduce the experimental data. Dots and error bars indicate the mean and standard
deviation of the experimental data and solid lines represent the model simulations.

20

Figure 2.3 Posterior probability distributions for calibrated JARM kinetic parameters. The x-axis
corresponds to the base-10 logarithm range for possible values of kinetic parameters in JARM. The
y-axis represents the probability of each of the possible parameter values. The resulting
distributions provide an idea of the range and likelihood of each parameter value given the
experimental data. As shown, some parameters exhibit a broad range of values (~3 orders of
magnitude) but the key catalytic parameters for arrestin-3 are well constrained. Parameter values
were obtained as described in the calibration section. Parameter names with the prefix ‘kr’, ‘kcat’
and ‘keq’ correspond to the reverse, catalysis (sec-1 units) and forward ((uM*sec)-1 units) rate
constants, respectively.

21

2.3. Results

To identify a biochemical reaction mechanism that explains the JNK3 activation, we

used JARMv1.0, as it encodes the protein interactions relevant to MKK4/7 phosphorylation

of JNK3 with and without arrestin-3 (Fig. 2.1). JARMv1.0 was encoded using PySB (Lopez et

al., 2013) to enable hypothesis testing as we explored plausible mechanisms. We used an in

vitro kinase activation assay to give the model a dynamic point of reference for calibration.

This assay characterized the JNK3 phosphorylation time course, in the presence or absence

of arrestin-3, by MKK7 and MKK4 (Fig. 2.2, experimental data). The data showed 2.2-fold

more phosphorylation of Thr-221 than Tyr-223 at 60 s incubation when arrestin-3 is

present. It also showed that ppJNK3 generation in the presence of arrestin-3 displayed a

fold change between 1.2 and 1.8 higher than in the absence of arrestin-3. These data were

used to calibrate JARMv1.0.

To populate JARMv1.0 parameters, we used our experimentally determined binding

constants and values reported in the literature (Zhan et al., 2014). As described in the

previous section, remaining parameters were estimated using PyDREAM, a Bayesian

parameter inference formalism (Shockley et al., 2018). This yielded parameter probability

distributions, constrained by our experimental data, rather than single best-fit values

(Figure 2.3). Inspecting these distributions, we observed a few that spanned a narrow

parameter range whereas others spanned a broader parameter range. These distributions

can be interpreted as an estimate for model sensitivity to parameter variations. From a

statistical perspective, JNK3 activation is less sensitive to parameters with broad

distributions, and more sensitive to those with a narrow distribution. The calibration

results suggest that the system is most sensitive to the catalytic phosphorylation constants

of MKK4 and MKK7 (Figure. 2.3). This gave us confidence that experimental measurements

provided suitable constraints to explore the dynamics of JNK3 phosphorylation even

without direct measurements of other parameters.

22

Figure 2.4 Top panel: corresponds to the time-dependent concentration changes of active (doubly
phosphorylated) JNK3, pTyr-JNK3 bound to arrestin-3 and pThr-JNK3 bound to arrestin-3. Center
panel: represents the catalysis reaction rate values of singly phosphorylated JNK3. Bottom panel:
shows the catalysis reaction rate values of active (doubly phosphorylated) JNK3

23

Calibrated JARMv1.0 showed that the time-dependent concentrations of singly

phosphorylated JNK3 in complex (pTyr-JNK3:Arrestin-3, pThr-JNK3:Arrestin-3) or doubly

phosphorylated JNK3 (ppJNK3), exhibit nonlinear dynamics that emerge from multiple

simultaneous reactions (Figure 2.2). Our Bayesian calibration estimated that the catalytic

constant of JNK3 phosphorylation by MKK7 is 2 orders of magnitude faster than the one of

JNK3 phosphorylation by MKK4 (Figure 2.3). As shown in Figure 2.4, in the early time

points of the simulation MKK7 rapidly produces the first phosphorylation of JNK3 (pThr-

JNK3) and, it accumulates in the system over time. Then, MKK4 predominantly produces

the second JNK3 phosphorylation via the arrestin-3 scaffold as its reaction rate is up to one

order of magnitude faster than all other second phosphorylation events with or without

arrestin-3 (Figure 2.4). Taken together, these data suggest that MKK4 phosphorylation is

the rate-limiting step in the JNK3 activation pathway, but multiple interactions take place

to accomplish this outcome. This is consistent with active MKK4 having a lower affinity for

arrestin-3 (Table. 2.2).

As previous studies have shown that less than 50% dual phosphorylation over total

JNK expression can lead to a robust physiological response (Khalid et al., 2016; Lei et al.,

2002; Muniyappa & Das, 2008) we used JARMv1.0 to study whether arrestin-3 changes the

time to reach this threshold. We found that the reactions involving arrestin-3 reach the

50% threshold 2.63 times faster compared with the reaction system without arrestin-3

(Figure. 2.5 Top panel). Finally, we simulated JARMv1.0 with different concentrations of

arrestin-3 and identified that the optimal concentration of arrestin-3 for maximal JNK3

phosphorylation is around ~0.49 µM (Figure. 2.5 Bottom panel).

All code used to build the model, fit the model parameters and perform analysis is

freely distributed as open-source software and available in the Lopez lab GitHub repository

(github.com/LoLab-VU/JARM).

http://github.com/LoLab-VU/JARM

24

Figure 2.5 Top panel: Simulated model trajectories of doubly phosphorylated JNK3. The red and
black lines show the production of ppJNK3 when arrestin-3 is present and absent, respectively.
Bottom panel: Simulated effect of varying arrestin-3 concentration in the system.

25

Chapter 3

PyDyno: a tool to analyze parameter uncertainty in biochemical models

3.1 Summary

The advent of quantitative techniques to probe biomolecular-signaling processes

have led to increased use of mathematical models to extract mechanistic insight from

complex datasets. These complex mathematical models can yield useful insights about

intracellular signal execution but the task to identify key molecular drivers in signal

execution, within a complex network, remains a central challenge in quantitative biology.

This challenge is compounded by the fact that calibrated models usually have parameter

uncertainties that could yield multiple signal execution modes and thus multiple potential

drivers in signal execution. Here, we present a novel approach to identify signaling drivers

and characterize dynamic signal processes within a network. Our method, PyDyNo,

combines physical chemistry, statistical clustering, and tropical algebra formalisms to

identify interactions that drive time-dependent behavior in signaling pathways. We use our

algorithm to study the effect of parameter uncertainty in the cascade of JNK3 activation.

We show that given the parameter uncertainty there are different ways in which the signal

can be executed, and we define them as execution modes. These execution modes respond

differently, based on the dominant reactions, to the same perturbation to the network.

These results can be used along experimental design approaches to identify signal

execution mode of a cellular process and target the reactions through which most signal is

flowing to modulate a pathway response

26

3.2 Introduction

Many cellular signaling processes can be represented as complex networks of

interconnected biochemical components (Jordan, Landau and Iyengar, 2000). The

dynamics of these networks regulate cellular functions by controlling how cells transduce

external signal cues into cellular decisions (Purvis and Lahav, 2013). However, there are

still fundamental questions about the dynamics of signal execution in biochemical

networks, and how changes in concentration or kinetic parameters in a biochemical

network could lead to system-wide reconfigurations that can manifest as different cell

signaling and fate decisions. Therefore, explaining the dynamic response mechanisms of a

network to perturbations and predicting outcomes based on prior knowledge is necessary

to accelerate our understanding of cellular signaling dynamics.

To explain the input/output responses of intracellular signaling pathways

researchers have appealed to information theoretic approaches (Cheong et al., 2011;

Brennan, Cheong and Levchenko, 2012; Levchenko and Nemenman, 2014; Suderman et al.,

2017; Shockley et al., 2019). These approaches cast signal transduction in terms of channel

capacities, which are the maximum amounts of information that noisy biochemical

pathways can transmit from an input stimulus to an output response. This kind of analysis

has revealed that the maximum channel capacity of a biochemical process is context

dependent and could require the cooperativity of multiple cells to achieve actual

information transfer (Suderman et al., 2017). In previous work, we applied information

theoretic analysis to the COX-2 reaction network and observed that given an external noise

source and a limited set of data, some paths were more or less likely to be utilized

depending on the initial levels of signaling molecules (Shockley et al., 2019). Despite the

insights provided by information theoretic approaches, little has been done to understand

the actual network flux which controls the input/output response. Indeed, the fundamental

philosophy of information theoretic approaches is to treat the biochemical network purely

in terms of input/output relationships, thereby disregarding the details of the transient

dynamics which underpin signal transduction through the network. As such, questions

remain about how non-equilibrium dynamics flow through a biochemical network, how

27

the patterns of transient reaction-flux control network response, as well as what dynamic

paths are plausible under a given set of conditions.

Reaction-flux based analysis is particularly challenging because many concurrent

biochemical interactions take place at any given time in biological networks (Nobeli, Favia

and Thornton, 2009) and the reaction rates of these interactions change over time. The

quantity of interactions and temporal dynamics makes it difficult to identify meaningful

patterns across all the competing biochemical reactions. Ultra-discretization (Kato,

Tsujimoto and Zuk, 2017a) and tropical geometry (Noel, Grigoriev and Vakulenko, 2011)

methods address these difficulties by mapping continuous non-linear dynamic processes

onto piece-wise additive representations where only the dominant terms, i.e protein-

protein interactions, are considered. This effectively separates out the most important

reactions of the systems dynamics and identifies the conditions in which the important

reactions change. Noel and others have demonstrated that such a procedure can also be

applied to the dynamics of biochemical networks, however, they principally considered the

approach to guide model reduction.

Here, we adapt the notion of dominance used in ultra-discretization and tropical

geometry methods to define a dynamic signal execution fingerprint. This fingerprint

encodes the temporal patterns of transient reaction flux that dominate signal execution

through a biochemical network. Using this approach, we effectively reduce a complex

biochemical network down to a subnetwork of dominant protein-protein interactions and

thereby identify the dynamic paths relevant for signal propagation in non-equilibrium

states. Our approach can be combined with Bayesian inference to rigorously incorporate

the effects of parameter uncertainty on the dynamic signal processing mechanisms in

biochemical network models. We clustered the signal execution fingerprints generated by

the inferred parameter sets and were able to identify conserved modes of dynamic signal

transduction that are plausible within the constraints of the experimental data used to train

the model. This approach is particularly applicable to biochemical networks which can be

represented using physicochemical models that mathematically encode the network of

biochemical interactions using mass-action kinetics based differential equations.

28

3.3 Materials and methods

3.3.1 Development on the python ecosystem.

The Pydyno package was written in Python 3, a powerful objected-oriented

programming language that is easy to learn and have a clear syntax (Van Rossum & Drake,

2009). Pydyno utilizes PySB (Lopez et al., 2013) and Tellurium (Choi et al., 2018) to develop

and simulate models of network-driven biological processes. These models can be

calibrated using Bayesian methods (Mitra et al., 2019; Shockley et al., 2018) to obtain

kinetic parameters or initial conditions that make the model reproduce the experimental

data. Then, Pydyno employs NetworkX (Hagberg et al., 2008) to obtain a network

representation of the simulated models, and Numpy (C. R. Harris et al., 2020) and Sympy

(Meurer et al., 2017) to compute the dominant sub-networks as described in section 2.24.

Finally, Pydyno leverages SciPy (Virtanen et al., 2020) to calculate a distance matrix that is

used with clustering algorithms from Scikit-learn (Pedregosa et al., 2011) to obtain groups

of dominant subnetworks with similar signal executions.

3.3.2 Workflow to obtain a discretized representation of network dynamics

As shown in Figure 3.1, the PyDyNo workflow starts from a model that can be

defined in the PySB or SBML format. Next, our algorithm builds a bipartite graph from the

model reaction network. This bipartite graph has a set of nodes that correspond to model

species, and another set of nodes that correspond to reactions, and edges only connect

species nodes with reaction nodes. This bipartite graph enables us to identify the all

reactions that produce a specific species. PyDyNo updates the direction of graph edges

related to bidirectional reactions to indicate the net flux of the reaction at a specific time

point. Then, PyDyNo starts tracking the signal flow from a user defined species target to

obtain the dominant subnetwork. Each unique dominant subnetwork is assigned a specific

label. This process is repeated for each simulation time point and results in a sequence of

labels that provide a fingerprint of signal execution for a parameter vector. The approach

to obtain dominant subnetworks is described in the next section.

29

3.3.3 Obtaining dominant subnetworks

3.3.3.1 Constructing the digital signature for a subnetwork

The digital signature of a model simulation is a temporal ordered sequence of labels

denoting the dominant sub-network at each time point of the simulation. The dominant

sub-network for a given time point is a subset of the signaling pathway over which the most

signal is flowing to the production of a pre-determined target species (i.e., signaling protein

or protein complex); each unique dominant sub-network is assigned a unique integer label

for the digital signature.

Construction of the dominant sub-networks uses the instantaneous reaction rates

at each simulation time point, which change over time as molecular species are consumed

and produced. Hence, the dominant sub-networks can change at each time of the model

simulations, resulting in a dynamic sequence of dominant sub-networks; i.e., the digital

signature of the model simulation. The procedures for constructing the dominant sub-

networks and for selecting dominant reaction are detailed in the proceeding paragraphs.

Supplementary figure 4 shows an algorithm diagram version of the construction of digital

signatures.

3.3.3.2 Constructing a dominant sub-network

The generation of the dominant sub-network at a given time point starts with creating a

bipartite directed graph (digraph) representation of the model which consists of molecular

species and reaction nodes. All molecular species and reactions within the model are

encoded as nodes with unidirectional edges connecting molecular species with their

respective reaction nodes. The directionality of each edge is determined by the sign of the

reaction rate of the given species-reaction pair at the current time point; for reversible

reactions the reaction rate is the sum of forward and reverse rate terms. The bipartite

digraph provides an instantaneous snapshot of the direction of fluxes through

30

Figure 3.1 Algorithm to obtain dynamic fingerprints from a simulation. Briefly, the algorithm
consists in building a bipartite graph from the model, and then simulating the model with a specific
parameter vector. Next, the algorithm obtains the dominant reactions from a network and builds a
subnetwork. This procedure is repeated for each simulated time point

31

the signaling network.

We then hierarchically construct a dominant pathway starting from the user-

defined target species. For the first step, we identify the set of dominant reactions, i.e.,

those reactions which contribute most to the production of the target species. Dominant

reactions are classified based on the instantaneous reaction rates; the conditions

determining the dominant reactions are detailed in the following paragraph. We then trace

back through the bipartite graph along those dominant reactions to the corresponding

reactant species, which are added to the dominant sub-network. For each reactant species

that was added to the sub-network we determine their dominant reactions and trace back

through the bipartite graph to the next set of reactant species. This procedure is continued

for a pre-determined number of iterations defined by the user parameter depth. Once the

procedure is complete, the result is a species-to-species sub-network representing the

dominant pathway over which most of the signal is flowing to produce the target at the

current time point.

Note that we have defined the dominant sub-networks and their construction based

on production of the target species. Alternatively, the procedure can be formulated to

define the dominant sub-networks and their construction based on the consumption of the

target species, which we detail in the Supplement.

3.3.3.3 Selecting dominant reactions

One aspect of network complexity is that signaling proteins can participate in

multiple interactions [cite]; in a bipartite digraph this is represented by a molecular species

having edges connecting it to multiple reactions. The goal therefore is to simplify the

system and focus on only those reactions which are most important to the production of a

species; we term this sub-set of reactions the dominant reactions. To determine the set of

dominant reactions we build on some of the concepts from Noel et al. (Noel et al., 2011),

who applied a tropical geometry framework to smooth ODE systems.

32

When the signaling network is modelled with a system of ODEs the rate of change

of a molecular species, 𝑥𝑖, is:

𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑘𝑗𝑆𝑖𝑗𝑥α𝑗

𝑟

𝑗=1

 Eq 1

where 𝑘𝑗 > 0 are kinetic constants, 𝑥𝑖 are variable concentrations, Sij = βi
j

− αi
j

are the entries of the stoichiometric matrix, αj = (α1
j
, … , αn

j
) are multi-indices, and xαj =

x1

α1
j

… xn
αn

j

.

We treat the ODE of molecular species xi as a polynomial function of the uni-

directional rate terms,

 𝑣𝑖(𝑡) =
𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑀𝑗

𝑟

𝑗=1

  Eq 2

where the Mj = kjSijx
αj are the monomials representing the uni-directional rate

terms. Since reversible reactions are bi-directional, they contribute two uni-directional rate

monomials to the total rate of change of a species: one each for the forward (consumes 𝑥𝑖)

and reverse (produces 𝑥𝑖) directions of the reaction. We account for this bi-directionality

by combining the two uni-directional rate monomials into a single net reaction rate

monomial term,

 Δ𝑀𝑗 = 𝑀𝑗,𝑓𝑜𝑟 + 𝑀𝑗,𝑟𝑒𝑣 Eq 3

where Mj,for and Mj,rev are the monomials corresponding to the forward and reverse

reaction rate monomials of reaction 𝑗 with respect to species xi. Eq 2 is then updated to,

 𝑣𝑖(𝑡) =
𝑑𝑥𝑖

𝑑𝑡
= ∑ Δ𝑀𝑗

𝑟𝑟𝑒𝑣

𝑗=1

+ ∑ 𝑀𝑘

𝑟𝑖𝑟𝑟𝑒𝑣

𝑘=1

 Eq 4

33

where the first sum is over reversible reactions (rrev) and the second sum is over

irreversible reactions (rirrev).

We now define the set of reaction rate terms from Eq 4 as:

 𝑅 = {Δ𝑀1, … , Δ𝑀𝑟𝑟𝑒𝑣
} ∪ {𝑀1, … , 𝑀𝑟𝑖𝑟𝑟𝑒𝑣

} Eq 5

Since we only want to trace back the production of species 𝑥𝑖 we can reduce R to its

subset containing only the positive terms R+,

 𝑅+ = {𝑚 ∈ 𝑅 ∣ 𝑚 > 0} Eq 6

The most dominant monomial contributing to the production of 𝑥𝑖 is then given by,

 𝑀𝑑 = max(𝑅+) Eq 7

where Md identifies the most dominant reaction in the production of 𝑥𝑖. Next, we

want to identify any additional reactions which contribute to production of 𝑥𝑖 with a similar

magnitude as 𝑀𝑑. We therefore apply the concept of dominancy as defined by Noel et

al.(Noel et al., 2011), where monomials 𝑀𝑖 and 𝑀𝑗are said to be on a par with each other

within a level ρ > 0 if

 𝑝𝑎𝑟(𝑀𝑖 , 𝑀𝑗) = ¬ 𝑑𝑜𝑚(𝑀𝑖 , 𝑀𝑗) = 𝑠𝑒𝑝(𝑀𝑖 , 𝑀𝑗) < ρ Eq 8

where dom(Mi, Mj) is a binary function of monomials for which monomial 𝑀𝑗 is said

to dominate monomial 𝑀𝑘 at a level ρ > 0 if,

 𝑑𝑜𝑚(𝑀𝑗 , 𝑀𝑘) = 𝑠𝑒𝑝(𝑀𝑗 , 𝑀𝑘) > ρ Eq 9

And sep(Mj, Mk) is the separation (i.e., Euclidean distance) in logarithmic space

between the monomials,

 𝑠𝑒𝑝(𝑀𝑗 , 𝑀𝑘) = |log(|𝑀𝑗|) − log(|𝑀𝑘|)| Eq 10

Using this application of dominancy (Eq 8) the set of dominant reactions terms, Dxi
,

is given by,

34

 𝐷𝑥𝑖
= {𝑚 ∈ 𝑅+ ∣ 𝑝𝑎𝑟(𝑀𝑑 , 𝑚)} Eq 11

Thus, we construct a set of reaction terms containing the most dominant reaction

term 𝑀𝑑 and all terms that are on par with 𝑀𝑑. The level of separation ρ used to determine

whether terms are on par is a user defined quantity.

3.3.4 Obtaining modes of signal execution

Simulating biochemical models with different initial protein levels or kinetic

parameters may result in different dynamic fingerprints. These different fingerprints can

be compared to determine their level of discrepancy. We can then group sequences that

have similar dominant subnetworks and define these groups of sequences as modes of

signal execution. To accomplish this grouping, it is necessary to find a suitable distance

metric that accounts for the differences of interest when comparing sequences. Once we

have a metric, we can obtain a distance matrix which can be used with clustering

algorithms to identify the modes of signal execution.

3.3.4.1 Defining a suitable distance measure for clustering

Multiple distance measures exist that can be used the calculate the dissimilarity

between two sequences. Each of the distances have different sensitivities to sequencing,

timing and duration of a dominant subnetwork. Since our goal is to identify groups of

simulations that have the same dominant subnetwork, we chose the Longest Common

Subsequence (LCS) distance (Bergroth et al., 2000). This metric is more sensitive to

sequencing, i.e., the order of appearance of dominant paths in a signature. By focusing on

the differences in the state distribution, it allows us to identify different modes of signal

execution and novel protein targets that modulate biochemical signals within a network

depending on the parameters of the model.

The LCS distance is defined as:

𝑑𝐿𝐶𝑆 = 𝐴(𝑥, 𝑥) + 𝐴(𝑦, 𝑦) − 2𝐴(𝑥, 𝑦)

35

Where 𝐴𝑠(𝑥, 𝑦) corresponds to the number of elements in one sequence that can be

uniquely matched with elements occurring in the same order (not necessarily contiguous)

in the other sequence.

3.3.5 Sequence analysis

In PyDyNo, we use the LCS metric to calculate the distance between all pairs of

dynamic signatures and obtain a distance matrix. Then, we use this matrix with clustering

techniques to identify groups of dynamic fingerprints that have similar patterns in the

sequence of dominant subnetworks. PyDyNo includes three clustering algorithms:

Agglomerative (Rokach & Maimon, 2005), spectral (Planck & Luxburg, 2006) and

HDBSCAN clustering (Campello et al., 2013). We also added the Silhouette score function

(Rousseeuw, 1987) from Scikit-learn to determine the optimal number of clusters. Finally,

we implemented three algorithms described by Gabadinho and colleagues (Gabadinho et

al., 2011) to identify representative dynamic signatures from each of the clusters.

3.4 Results and discussion

To validate our method, we used PyDyNo to analyze the signal execution in the JNK3

Activation Reaction Model (JARM) (N. A. Perry et al., 2019). JARM describes all the

interactions between MKK4, MKK7, arrestin-3 and JNK3 that lead to the double

phosphorylation and activation of JNK3. JNK3 activation has been linked to

neurodegenerative diseases (Antoniou et al., 2011). JARM comprises 28 molecular species

and 50 parameters. To do the analysis, we used the 5000 more likely parameter vectors

from the model calibration described in Chapter 2.

We used PyDyNo to track how doubly phosphorylated JNK3 was generated. When

multiple reactions produced a protein, we defined that dominant reactions were those

within 0.5 orders of magnitude of the largest reaction rate. Given that we had 5000

simulations with their respective parameter vectors, we obtained 5000 dynamic

fingerprints. We then employed the spectral clustering algorithm with the Silhouette score

and identified that JARM has three execution modes. To visualize the differences in

36

dynamic signatures, we used the plot_sequences function from PyDyNo (Figure 3.2). Each

horizontal line depicted in Figure 3.2 corresponds to a sequence of dominant subnetworks.

Each color represents a specific dominant subnetwork that contains information about

how the signal is flowing throughout the network.

After identifying the three execution modes in JARM, we hypothesized that each

execution mode would respond differently to the same perturbation in the system. To test

this hypothesis, we performed a 50% in silico knockdown of MKK7, an essential protein in

the JNK3 cascade that phosphorylates JNK3 in its threonine site. As shown in Figure 3.3, we

observed that after the MKK7 knockdown, each execution mode displays different

dynamics and total concentration of activated JNK3 at the end of the simulation.

Specifically, in mode 1 the amount of activated JNK3 was reduced from 59% ± 1% in wild

type to 35% ± 3% after the knockdown, in mode 2 the reduction was from 58% ± 1% to 41%

± 2%, and in mode 3 the reduction was from 58% ± 1% to 39% ± 4%. These results confirmed

our hypothesis that execution modes exhibit different responses to the same perturbation

in the system.

Altogether, we described how our method discretizes simulation dynamics and

showed its usefulness to study signal execution in complex biochemical networks. PyDyNo

combines network analysis and clustering algorithms and is particularly useful to analyze

parameter uncertainties and their relationship with different execution modes. One

advantage of our approach is that it uses signal flow, which results from the interplay

between kinetic parameters and species concentration, rather than only the inferred

kinetic parameters as other analyses have used previously (Yao et al., 2016). This approach

enables us to consider the variability in species initial protein levels that explain cell-to-cell

variability (Spencer et al., 2009; Strasen et al., 2018) and their role in defining different cell

states. We anticipate that PyDyNo will be used with experimental design approaches to

detect the characteristic execution mode of a system and reduce the uncertainty in

predictions.

37

Figure 3.2 Modes of signal execution in JARM. Dynamic fingerprints organized by the clusters they
belong to. Each cluster plot is composed of horizontal lines that correspond to dynamic
fingerprints, i.e. sequences of dominant subnetworks, and each subnetwork is assigned a different
color.

38

Figure 3.3 Amounts of activated JNK3 are markedly different for each execution mode after the 50%
MKK7 knockdown. Protein concentration trajectories of activated JNK3 grouped by execution
modes. Insets show the average and standard deviation of activated JNK3 at the last time point of
the simulation.

39

Chapter 4

Probability-based mechanisms in biological networks with parameter uncertainty

Oscar O. Ortega, Blake A. Wilson, James C. Pino, Michael W. Irvin, Geena V. Ildefonso,

Shawn P. Garbett, Carlos F. Lopez bioRxiv 2021.01.26.428266

4.1 Summary

Mathematical models of biomolecular networks are commonly used to study

mechanisms of cellular processes, but their usefulness is often questioned due to parameter

uncertainty. Here, we employ Bayesian parameter inference and dynamic network analysis

to study dominant reaction fluxes in models of extrinsic apoptosis. Although a simplified

model yields thousands of parameter vectors with equally good fits to data, execution

modes based on reaction fluxes clusters to three dominant execution modes. A larger

model with increased parameter uncertainty shows that signal flow is constrained to eleven

execution modes that use 53 out of 2067 possible signal subnetworks. Each execution mode

exhibits different behaviors to in silico perturbations, due to different signal execution

mechanisms. Machine learning identifies informative parameters to guide experimental

validation. Our work introduces a probability-based paradigm of signaling mechanisms,

highlights systems-level interactions that modulate signal flow, and provides a

methodology to understand mechanistic model predictions with uncertain parameters.

4.2 Introduction

Many biological processes can be represented as networks of interconnected

biochemical components enabling the study of their dynamics and signaling mechanisms

(Bonneau, 2008; K. A. Janes et al., 2008; Jordan et al., 2000; Weerts et al., 2018). These

analyses typically entail building a network, either from prior knowledge or through

network inference, developing a mathematical model of the network interactions, and

subsequently calibrating the model to experimental data (Jaqaman & Danuser, 2006; Raue

40

et al., 2011; Shockley et al., 2018). Although small networks have been studied with great

success, the fact remains that for large networks many parameters remain difficult to

ascertain and optimization routines yield multiple parameter sets that reproduce the

protein concentration trajectories equally well (Eydgahi et al., 2013; Gutenkunst et al.,

2007a; Mitra & Hlavacek, 2019b). This has led to a common practice whereby one or a few

parameter vectors are chosen to make mechanistic predictions which can be validated by

experiments with varying degrees of success (Albeck et al., 2008; Becker et al., 2010; K. A.

Janes et al., 2005). However, criticisms remain regarding the usefulness of large and

complex mathematical models of cellular processes with many uncertain parameters.

Information Theory based methods (Shannon, 1948) have been one of the successful

approaches to date to explain input/output responses of intracellular signaling pathways

(Brennan et al., 2012; Cheong et al., 2011; Levchenko & Nemenman, 2014; Shockley et al.,

2019; Suderman et al., 2017). These approaches cast signal transduction in terms of channel

capacities – the maximum amount of biochemical information that can travel from an input

stimulus to an output response. These analyses have revealed that the maximum channel

capacity of a biochemical process is context dependent and could require the cooperativity

of multiple cells to achieve actual information transfer (Suderman et al., 2017). Previous

work also applied information theoretic analysis to an allosterically regulated network and

observed that the preferred path for information flow through the network was highly

dependent on substrate concentrations (Shockley et al., 2019). Although these insights

have been valuable to advance our understanding cellular regulatory processes, questions

still remain about how reaction rates from non-equilibrium dynamics modulate signal flow

in a biochemical network and further how these transient dynamics are impacted by

parameter uncertainty.

Analysis of execution patterns in biochemical networks necessarily implies a

detailed understanding of instantaneous fluxes throughout the system. However, reaction-

flux based analysis is particularly challenging due to multiple concurrent biochemical

interactions and their associated reaction rate fluctuations in time (Nobeli et al., 2009).

Therefore, the number of interactions and temporal dynamics makes it difficult to establish

41

whether persistent behaviors emerge from myriad biochemical reactions. Recent works in

Tropical Geometry and Ultradiscretization Theory have proposed a mathematical

formalism that makes it possible to map continuous functions into piecewise linear meshes

in the Ultradiscrete space (Kato et al., 2017a). Approaches inspired in these novel

mathematical treatments have been used to guide biochemical model reduction and

simplification (Noel et al., 2011). For this work, we hypothesized dynamic analysis using

these methods could enable us to identify dominant fluxes in a dynamic biochemical

network, identify patterns of execution, and explore their dependence on model

parameters. We reasoned that we could cast this analysis onto a Bayesian probability

framework to assign statistical weight to the identified execution patterns, thus providing

a novel statistical interpretation to cellular reaction mechanisms.

The remainder of the article is organized as follows. We first show how Bayesian

inference of model parameters can yield tens of thousands of parameter vectors that all

reproduce an experimental data set equally well. We then introduce a method, inspired in

Ultradiscretization Theory and Tropical Algebra, to define a dynamic signal execution

fingerprint, which can then be used to cluster execution modes according to model

parameters. Surprisingly, we find that despite the thousands of parameter vectors that fit

the experimental data of a biological system, only a handful of execution modes emerge as

possible signal processing mechanisms. Subsequently, we demonstrate how parameter

vectors that belong to different execution modes offer a biased view of signaling processes

that could easily lead to misleading interpretations of network-driven processes. We

further demonstrate how increases in parameter unidentifiability exacerbate the problem

of model certainty in signal execution, but still identify the signal execution path

probabilities associated with a given set of parameters. Our work therefore shows that

network dynamics exploration, given available experimental data, could play a central role

to identify true systems-level processes that shed light on signal processing mechanisms

from a statistical perspective.

4.3 Materials and methods

42

4.3.1 Mathematical models of apoptosis

A coarse-grained ODE model of TRAIL-dependent apoptotic signaling (aEARM) was

encoded with PySB (Lopez et al., 2013). This model grouped reactions into simple dynamic

motifs representing key mechanistic blocks in TRAIL-dependent apoptosis pathway: TRAIL

mediated DISC formation, initiator caspase-8 activation via the DISC and feedback

activation via effector caspases (-3, -6, and -9), effector caspase activation, and apoptotic

marker (PARP) cleavage were all encoded as simple catalysis reactions. MOMP formation

(via initiator caspase-activated Bid) and accumulation of MOMP dependent pro-apoptotic

signals were modeled as a Bid-dependent activation and subsequent feedback self-

activation step. This activation-amplification motif reproduces the observed sigmoidal

“snap-action” dynamics of MOMP-dependent pro-apoptotic effectors (e.g., Smac, CytoC).

Initial values of the model components were drawn from values present in earlier apoptosis

models (e.g., EARM). Initial values of the MOMP dependent signaling component took the

same value as Bax and Bak in the EARM model. The ODE model was integrated using the

Python LSODA ODE solver with relative and absolute tolerances set to 1e-2 and 1e-1

respectively (the model is encoded in copies per cell which takes values of 10,000 to 1M).

We also used the Lopez embedded Extrinsic Apoptosis Reaction Model (EARMv2.0)

(Lopez et al., 2013) to analyze the resulting uncertainty from model calibration.

4.3.2 Experimental data

To calibrate aEARM and EARMv2.0 we used published data that contain the

trajectories of the initiator reporter protein (IC-RP), and effector caspase reporter protein

(EC-RP) (Spencer et al., 2009). In the model, the simulated trajectories from truncated Bid

and cleaved PARP were fit to IC-RP and EC-RP, respectively.

4.3.3 Bayesian inference and parameter calibration

The model’s reaction rate parameters were calibrated to normalized IC-RP and EC-

RP fluorescence time-course data, using the Differential Evolutions Adaptive Metropolis

43

MCMC sampling algorithm (DREAM(ZS)) encoded in python as PyDREAM (Shockley et

al., 2018). This Bayesian calibration uses as prior distributions log-normal distributions

centered at biologically plausible rate values of forward binding, reverse binding and

catalysis (1e-6 s-1 molecule-1, 1e-3 s-1, 1 s-1). The likelihood function assumes the IC-RP and

EC-RP data are normally distributed with standard deviation calculated from multiple

measurements. The sampling used employed a burn-in of 80,000 steps followed by

220,000 step sampling of the target distribution. Additional settings were applied to the

gamma term in the DREAM algorithm: number of crossovers (nCR) = 25, adapt gamma =

True, probability of gamma-unity (p_gamma_unity) = 0.1, resolution of gamma term

(gamma_levels) = 8. Convergence was diagnosed by the Gelman-Rubin convergence

diagnostic (i.e., GR ≤ 1.2) for each calibrated parameter. This calibration provided a wide

range of kinetic parameter values and we note that even if there was experimental data for

all species in a model, due to model sloppiness the parameter distributions would not be

sufficiently constrained (Gutenkunst et al., 2007a).

4.3.4 Analysis of signal execution

To analyze signal execution throughout biochemical networks we used the method

defined in Chapter 3. This method describes the steps to track the signal flow in the

network and how to discretize the signal to obtain a dynamic fingerprint for simulations

with different parameter vectors.

4.4 Results

4.4.1 Bayesian parameter optimization yields indistinguishable protein

concentration dynamics.

To investigate the role of parameter uncertainty on signal execution through

biochemical networks we focused on the extrinsic apoptosis form of programmed cell death

(Elmore, 2007). Apoptosis is a ubiquitous biological process in metazoans used as a

mechanism to maintain cell numbers and overall organism homeostasis (Koonin &

Aravind, 2002). For the first part of our analysis we employed a modified version of the

44

Extrinsic Apoptosis Reaction Model (EARMv2.0) (Lopez et al., 2013). We found this

abridged EARM (aEARM), depicted in Figure 4.1A, was the largest model we could build

that would both preserve key biochemical interactions that represent extrinsic apoptosis,

and in which all model parameters achieve convergence by the Gelman-Rubin diagnostics

after parameter calibration with Bayesian methods. The model captures key biological

features of apoptosis execution including signal initiation by TNF-Related Apoptosis

Inducing Ligand (TRAIL), subsequent activation of initiator caspases (Caspase 8) (Kantari

& Walczak, 2011) type 1 and type 2 activation of effector caspases (Caspase 3) (Özören & El-

Deiry, 2002) and completion of apoptosis execution by cleavage of Poly(ADP-ribose)

polymerase (PARP) (Kaufmann et al., 1993). Overall, aEARM comprises 22 molecular

species and 34 kinetic parameters (see details in Methods). We used PyDREAM (Shockley

et al., 2018) to calibrate the model to previously published experimental data that

comprises the concentration dynamics of truncated Bid (tBid) and cleaved PARP (cPARP).

45

Figure 4.1 Abridged Extrinsic Apoptosis Reaction (aEARM) network and parameter calibration
results. A) Reaction network using the Kitano convention. Yellow nodes are protein receptors,
green nodes are generic proteins, and red nodes are truncated/cleaved proteins. B) Simulated
trajectories of truncated Bid and Cleaved PARP calibrated to reproduce the experimental data. Red
dots and bars indicate the mean and standard deviation of the experimental data and blue lines
correspond to the simulated trajectories. C) Marginal probability distributions of the first 12
individual kinetic parameters that were recovered from the PyDREAM run by integrating out all
other dimensions. Forward rates, reverse rate, and catalytic values were all found to be within
biologically relevant ranges (H. X. Zhou, 2010). D) Probability of each of the unique parameter
vectors sampled after burn-in in the PyDREAM calibration. To obtain the probability of each
parameter set the number of visits to a specific parameter vector was normalized by the total
number of visits.

46

Given that the model was calibrated to HeLa cell data, we hypothesize that signal

patterns are representative of signal processing and execution of Type-II cells treated with

death-inducing ligands such as TRAIL. In all, we ran the PyDREAM sampling for 100,000

steps after burn-in and collected 300,000 parameter vectors from which 27,242 were

unique. All unique parameter vectors fit the data equally well (Figure 4.1B). All parameters

were deemed to have converged by the Gelman-Rubin diagnostics (Gelman & Rubin, 1992).

We obtained the marginal distributions from the sampled parameter vectors as show in

Figure 4.1C. Given the Markov Chain Monte Carlo (MCMC) aspect of our parameter

inference method, we were able to obtain parameter vector probabilities as shown in Figure

4.1D (Chiband & Greenberg, 2008). The probability distribution of parameter vectors

exhibits characteristic exponential-like decay shape indicating that some parameters are

more likely than others. With this calibrated model to experimental data, we then probed

signal execution patterns in the aEARM network from a probabilistic perspective. We note

that throughout the manuscript, a parameter vector refers to a set of positive real values,

one value for each of the kinetic parameters defined in aEARM, used to run a simulation.

A parameter distribution refers to the frequency of occurrence of different values from the

same kinetic parameter.

4.4.2 A discretized flux-based analysis of signal execution in networks.

As shown in Figure 4.1B, all the parameter vectors obtained from the Bayesian

calibration yield protein concentration dynamics indistinguishable from the experimental

trajectories of tBid and cPARP. Individual parameters from these vectors take widely

different values as depicted by their distributions in Figure 4.1C. This uncertainty in the

parameter values affects the reaction rates of the protein interactions generating different

reaction flux patterns in the network during signal execution. We therefore wanted to study

the non-equilibrium flux of the reactions in the aEARM network and aimed to explore

whether parameter uncertainty yielded specific patterns of signal execution.

Analysis of flux dynamics during signal execution requires tracking the signal flow

through a network at all simulation time points as multiple concurrent reaction rates

47

consume or produce molecular species. We assumed that the reactions with the highest

flux at any given time dominate the network signal execution and provide a proxy to

observe the effect of different parameter vectors in the network. Our aim was thus to

identify the reaction rates with the highest flux throughout the whole network as

simulations evolved over time. To analyze the non-equilibrium flux and find the dominant

reaction paths during signal execution, we developed an algorithm inspired by

Ultradiscretization Theory and Tropical Algebra as described in Methods (Kato et al.,

2017b; Noel et al., 2011). Our approach enabled us to identify paths relevant for flux

propagation in non-equilibrium states. We refer to these paths of flux propagation through

the network as execution modes for the remainder of this manuscript.

We introduce the workflow for reaction flux discretization and execution mode

identification as shown schematically in Figure 4.2A-B. Signal discretization requires three

steps. First, we identify a target node (Fig 4.2B) for which the signal flux will be tracked.

Second, we calculate the reaction rates that produce or consume the target node, identify

the largest reaction rate (𝑥) and test whether it is dominant over other reactions (𝑦) using

the discretization operation |log10 𝑥| − |log10 𝑦| > ρ, where r is the order of magnitude

difference necessary to consider dominance (see Methods section for details). Third, we

identify the chemical species produced by the dominant reaction(s) and jump to that

species, thus starting the process again from the first step, and thereby tracking the

dominant signal fluxes through the whole network and obtaining a subnetwork. This

dominant subnetwork is assigned a unique integer label as shown in Figure 4.2A. The

procedure is repeated for all simulation time points. As a result, the dynamic nature of

signal execution for a given parameter vector is abstracted to a sequence of labels that can

be compared to other sequences using a suitable metric (Figure 4.2B). We call this

sequence of labels obtained from a simulation a dynamic fingerprint because it is unique

for a given signal processing event with a specific parameter set.

48

Figure 4.2 PyDyno workflow. A) First, the network of interaction is obtained from a model and a
target node (labeled T) from where the signal is going to be tracked is defined. Red nodes are
molecular species in a model, edges represent interactions between nodes, bolded edges are the
dominant interactions. Next, at each time point of a simulation our analysis obtains a dominant
subnetwork, bolded edges in the network, through which most of the signal is going through and
this subnetwork is assigned a label. Sim 0 and Sim 1, simulations ran with different parameter sets,
exhibit different dominant subnetworks. B) As each subnetwork is assigned a label, we can get a
sequence of labels per simulation that can be compared to other simulations with the Longest
Common Subsequence metric and obtain a distance matrix. This distance matrix can be used with
clustering algorithms to obtain groups with similar modes of signal execution.

49

4.4.3 Key execution modes emerge despite parameter uncertainty

To identify the dynamic execution patterns in aEARM in response to death ligand

cues, we carried out our signal discretization analysis for the 27,242 unique parameters and

obtained dynamic fingerprints for each parameter vector. We then asked whether there

were similarities among dynamic fingerprints across parameter sets. To investigate this

question, we quantified the distance between each dynamic fingerprint using the Longest

Common Subsequence (LCS) metric. We chose this metric due to its sensitivity to order

differences in which successive subnetworks labels appear (Studer & Ritschard, 2015). This

metric thus assigns a larger distance to a pair of dynamics fingerprints that execute the

signal differently. Next, we calculated the pairwise distance between all dynamic

fingerprints obtaining a 27,242 by 27,242 distance matrix. This matrix enabled us to use an

agglomerative clustering algorithm (Rokach & Maimon, 2005) to probe whether clusters

of dynamic fingerprints would emerge. As shown in Figure 4.3A, we found that all 27,242

dynamic fingerprints could all be classified into three clusters (Supplemental Table 2),

which we denominate “execution modes”. Given that each parameter vector has a defined

probability (Figure 4.1D) and is associated with a dynamic fingerprint, we could calculate

the probabilities of signal execution through each mode as 42%, 36%, and 22% for

Execution Mode 1 (EM1), Execution Mode 2 (EM2), and Execution Mode 3 (EM3)

respectively. These three execution modes account for all the parameter vectors inferred

from the explored probability space and no vectors were found that did not belong to either

of these modes. We note that these execution modes are comprise three subnetworks out

of eight possible subnetworks for signal flow.

The dominant flux subnetwork for each execution mode is shown schematically in

Figure 4.3B. We note the highlighted paths represent the dominant reaction fluxes, i.e.

these fluxes are within an order of magnitude of the largest reaction at each node for the

given parameter set and simulation time point. As shown, Execution Mode 1 (EM1)

comprises events from initial death-ligand binding to the receptor, through formation of

the Death Inducing Signaling Complex (DISC), and subsequent activation of initiator

Caspase. The initiator Caspase then truncates and activates Bid, which in turn activates

50

MOMP, a species that abstracts mitochondrial outer membrane pore (MOMP) formation.

Activated MOMP can then further activate MOMP in a positive feedback loop and activate

the effector Caspase downstream. As highlighted in Figure 4.3B(EM1), activated MOMP is

dominantly used to both activate more MOMP, through the positive feedback loop, and

activate the effector Caspase.

The flux through the network in Execution Mode 2 (EM2) is similar to that of Mode

1 but the execution path differs at MOMP regulation. As highlighted in blue in Figure 4.3B

EM2, activated MOMP is largely consumed in the positive feedback loop to activate more

MOMP. The signal flux downstream of activated MOMP is at least an order of magnitude

less than the highlighted route for the parameters in EM2. Therefore, effector Caspase

activation and apoptosis execution takes place due to a smaller reaction flux in the network

relative to the MOMP-level activity in EM2. For those parameters belonging to EM3, signal

execution seems to flow largely toward PARP cleavage, with less MOMP-level regulation.

Our results therefore show that despite uncertainties in inferred model parameters due to

limited available data, the modes of signal execution are identifiable. Identifying a limited

number of execution modes highlights the need to thoroughly characterize the model

parameter space, given experimental constraints, to understand and make inferences about

execution mechanisms. We note that using a single vector of parameters would lead to

incomplete model prediction as no one single parameter vector captures the rich dynamics

exhibited by all the statistically inferred parameter vectors.

To further understand the impact of each execution mode on MOMP regulation, we

examined the relative concentration of activated MOMP (MOMP*) and the binding

complexes in which it participates. We calculated the percentages of MOMP*, inactive

MOMP bound to MOMP* (MOMP-MOMP*), and effector caspase bound to MOMP* (EC-

MOMP*). As shown in Figure 4.3C, the relative abundance of these species over time

exhibits different concentration patterns in each execution mode. In EM1, the relative

abundance of EC-MOMP* is ~20%, indicating that the signal flow through this reaction is

lower than in EM3 but still important in the overall dynamics. In EM2, 85 % of MOMP* is

bound to inactive MOMP at all time points before cell death. This can be explained by a

51

high MOMP activation rate due to Bid and the MOMP* positive feedback loop

autoactivation. In contrast to EM2, the MOMP-MOMP* abundance in EM3 decreased to

~35%, while EC-MOMP* is increased to ~50%. This increase in EC-MOMP* abundance,

indicates that the binding rate of MOMP* to EC is larger than the binding rate of MOMP

to MOMP*. We note that the initial concentration of inactive MOMP in the model is an

order of magnitude larger than that of EC. Thus, this result is in stark contrast with the

result from EM2 where the reaction rates exhibit different relative values.

52

Figure 4.3 Modes of signal execution in aEARM. A) Dynamic fingerprints organized by the clusters
they belong to. Each cluster plot is composed of horizontal lines that correspond to dynamic
fingerprints, i.e. sequences of dominant subnetworks, and each subnetwork is assigned a different
color. B) Signal execution modes as defined by the most common subnetwork in each cluster. The
complete aEARM network is shown in black, and the dominant subnetworks for Mode 1, 2, and 3
are highlighted in yellow, blue, and red, respectively. C) Effect of the different signal execution
modes in the relative concentration of activated MOMP and its associated complexes. For each
cluster, we calculated the temporal relative concentration of MOMP*, MOM*P-MOMP and
MOMP*-EC point by obtaining their individual average concentrations and dividing it by the sum
of their concentrations. This visualization provides insights about the usage MOMP* in each
cluster.

53

4.4.4 Signal execution modes respond differently to eCaspase perturbation

We then asked whether in-silico experiments could help us understand differences

in signal execution that could lead to experimentally testable hypotheses. We therefore

carried out in-silico knockdown experiments of eCaspase, as its activation is essential for

the final steps of apoptosis execution (Mehal et al., 2006). In addition, effector caspase

inhibitors are readily available for laboratory use (D. K. Perry et al., 1997; Solania et al.,

2019). We hypothesized that each execution mode would exhibit different execution

mechanisms when eCaspase was knocked down by 50%. To explore the impact of eCaspase

knockdown for each execution mode, we compared the concentration dynamics for MOMP

and cPARP given by wild type and eCaspase knockdown conditions.

For each execution mode we plotted the cPARP concentration trajectories and

obtained the time of death (ToD) for each simulated cell as described in Methods. As shown

in Figure 4.4A, the ToD in EM1 exhibits a modest decrease of 14.96 s, but also presents a

larger standard deviation of 702 s. For EM 2 the ToD increased from 10351 ± 132 s (WT) to

10809 ± 226 s for eCaspase knockdown (Δt = 458 s). In contrast, EM3 eCaspase knockdown

leads to a decreased ToD from 10261 ± 83 in WT to 9507 ± 516 s in the knockdown (Δt = -

754 ± 523 s) These results therefore show that each execution mode can exhibit

significantly different – and a times juxtaposed –responses to the same perturbation.

We then probed the effect of the eCaspase knockdown on the reaction rates

associated to MOMP* (a node where the signal bifurcates): MOMP* binding to MOMP,

and MOMP* binding to EC. Specifically, we focused on the reaction rate peak and the time

to reach peak of the reaction rate throughout the simulation, as shown in Figure 4.4B and

supplementary Figure 4.2. The peaks of the MOMP*+MOMP binding reaction (Figure 4.4B

upper row) appear unchanged across all execution modes, yet the time to reach the peaks

vary significantly. The median time to peaks were 6.14%, 0.36%, and 11.76% faster for

modes 1, 2, and 3, respectively. Concurrently, the peaks of the MOMP*+EC binding reaction

(Figure 4.4B lower row) are reduced approximately 50% as expected by the 50% reduction

of the available EC, and the median time to peaks were 6.77%, 0.4%, and 14.48% faster for

modes 1, 2, and 3, respectively. In combination, for mode 1, the relative change of the

54

MOMP and EC reaction peaks have large interquartile ranges IQR= -10.37% to –1.01% and

IQR=-1.13% to –11.39%, respectively, which explains the variability in the time to cell death.

For mode 2, the time to the peak of MOMP and EC reactions change marginally and given

that the EC peak is 50% of the WT condition, this leads to longer times to accumulate the

necessary number of EC molecules for cells to commit to apoptosis. Finally, for mode 3, the

median time to reach the MOMP reaction peak and the EC reaction peak is 11.76% and

14.48%, faster than in the WT condition, respectively. This causes faster activation of

MOMP and EC which leads to earlier apoptosis in cells. To summarize, although the

biochemical signal flows differently in each execution mode, the protein concentration

dynamics exhibit similar outcomes (Figure 4.4A Wild Type). However, when a

perturbation is made to the network, the outcome can vary significantly, as shown for each

execution mode.

4.4.5 Reducing execution mode uncertainty through parameter measurements

Given that the aEARM calibrated parameter vectors yield three execution modes

with their respective probabilities, there is uncertainty about which execution mode is most

representative of the cellular process. We then asked whether we could identify parameters

that, if measured experimentally, would reduce the execution mode uncertainty. We

hypothesize that identifying key parameters that inform execution mechanisms could

guide experiments to improve our knowledge about network-driven signal processing. To

measure the uncertainty of the execution modes, we used Shannon’s entropy 𝐻 =

− ∑ 𝑃(𝑥𝑖) log2 𝑃(𝑥𝑖)𝑛
𝑖=1 (Shannon, 1948). As aEARM has 3 execution modes the maximum

entropy in the system is log2 3 = 1.58, which would signify that each execution modes

have a 33% probability. Using the probabilities of the previously obtained execution modes

(Figure 4.3A) and Shannon’s formula we calculated an entropy of 1.54 indicating a high

uncertainty in the execution across all modes

55

Figure 4.4 Time of death responses are markedly different for the same perturbation. A) Cleaved
PARP (cPARP) protein concentration trajectories for the “wild type” case (top row) grouped by
Execution Modes. Mode 1, 2, 3 have 11270, 10727, and 5245 trajectories, respectively. Inset includes
the average time to death and the standard deviation calculated from all trajectories in each
execution mode. PARP cleavage exhibits a markedly different trajectory pattern (bottom row) after
eCaspase is knocked down by 50%. B) MOMP* + MOMP and MOMP* + EC reaction rate
trajectories. Dashed lines correspond to the mean of all reaction rates trajectories in an execution
mode and the shadows represent the standard deviations. Trajectories from the “wild type”
condition are colored in red and trajectories from the 50% effector caspase KD are colored in blue,
and show key differences in their dynamics. Insets include the median percentage change in the
reaction rate peak (ΔF) and the time to reach that peak (ΔT) in the EC KD condition relative to the
wild type condition. The interquartile range is included as a measure of the variation in the ΔF and
ΔT changes.

56

To determine the most informative parameters that should be measured to reduce

execution mode uncertainty, we used XGBOOST (T. Chen & Guestrin, 2016), a gradient

boosted Machine Learning technique that can classify parameter vectors into their

corresponding execution modes. We used the calibrated parameter sets as training data

where each individual kinetic parameter (kf, kr, kc) is a feature, and the mode of execution

is our target variable.

Feature importance analysis from the XGBOOST analysis shows that parameters kf7

and kf6 contribute the most to training loss reduction during the classification task (Figure

4.5A). As illustrated in Figure 4.5C, parameters kf6 and kf7 correspond to the binding rate

of MOMP* to inactivated MOMP, and MOMP* to EC, respectively. These two parameters

are part of the reactions where the signal flux is bifurcated in the network, indicating that

their values play an important role in the definition of the execution modes. To show the

differences in parameter values for each execution mode we plotted the values of the kf6

and kf7 parameters. As shown in Figure 4.5B the execution modes have different

distributions of the kf6 and kf7 parameters with some overlap. As depicted in Figure 4.5D,

we simulated 100 measurements of the kf7 parameter and found that these measurements

have various degrees of entropy reduction. Therefore, measuring MOMP-related

parameters could help further reduce execution mode uncertainty and improve model-

based predictions.

4.4.6 Modes of signal execution in a detailed apoptosis model with increased

parameter uncertainty

Based on our results with aEARM, we then asked how a larger model with higher

parameter uncertainty would fare under the presented signal execution analysis. We

shifted to a larger extrinsic apoptosis reaction model (EARM V2.0), which has been studied

and characterized in previous work (Lopez et al., 2013). As illustrated in Figure 4.6A,

EARMV2.0 is considerably larger than aEARM as the biochemical interactions are

described with higher molecular resolution. In all, EARM V2.0 has 77 molecular species

and 105 kinetic parameters. As described in Methods, we used PyDREAM to calibrate the

57

model to published experimental data (Spencer et al., 2009). Although, the calibration

yielded parameter vectors that fit the experimental data indistinguishably well

(supplemental Figure 4.4), we note that only 62 model parameters converged according to

the Gelman-Rubin diagnostic (GR < 1.2) after two million iterations (see Supplemental

Table 3 and Supplemental Figure 4.5). Distributions of 9 converged parameters are shown

in Figure 4.6B. The remaining parameters exhibited GR values between 1.21 and 13.52. From

a Bayesian perspective, non-convergent parameters imply that the experimental data

simply cannot constrain their values to a distribution and thus results in higher variability.

As our analysis is focused on understanding execution modes in network-driven processes,

a model with poorly identified parameters presents an opportunity to explore how signal

execution could be best interpreted and understood in large model systems with high

parameter uncertainty.

58

Figure 4.5 Parameter measurements reduce execution mode uncertainty. A) List of the 10
parameters that contribute the most to model prediction. Parameters with higher total gains,
compared to another parameter, provide larger improvements to accuracy in model prediction. B)
Parameter values of kf6 and kf7 grouped by the execution mode they belong to. A Gaussian kernel
was used to estimate the density probability of parameter values in each execution mode. C)
Schematic representation of the aEARM network. Kinetic parameters kf6 and kf7 and their
corresponding reactions are highlighted in the network. D) Changes in the execution modes
entropy after simulated measurements of kf7.

59

We followed the same procedure used in the previous sections to explore the

execution modes in EARM V2.0 (See Methods for details). Our analysis found that

calibration to the experimental data constrains the signal flow to eleven execution modes,

that can be represented by 53 dominant subnetworks out of 2067 possible subnetworks. As

shown in Figure 4.6C, the apoptosis execution signal could flow through any of these paths

with varying degrees of probability, with Execution Mode 1 (EM1) exhibiting a probability

of ~20 and the first four modes capturing ~50% of the signal probability, thus suggesting

high path entropy as we have seen in previous work (Shockley et al., 2019). Videos can be

found in the supplement that show animations of signal flow for all execution modes in the

context of EARM V2.0.

Next, we tested whether each execution mode exhibits different responses to the

same perturbation. We selected EM1 and EM2 for analysis as these modes exhibit the

highest probability for signal execution. As illustrated in Figure 4.6D, the mBid interaction

with Mcl1 is dominant in EM1. In contrast, the mBid interactions with Mcl1 and Bcl2 are

both dominant in EM2, thus highlighting the importance of both antiapoptotic proteins to

understand the signaling mechanisms during apoptosis execution during the cell response

to an apoptotic inducer.

60

Figure 4.6 Modes of signal execution in the full Extrinsic Apoptosis Reaction Network. A) Network

of the interactions between the proteins in the apoptosis pathway. Proteins highlighted in green

are nodes where the signal flux can be divided. The convention of Kitano (Kitano et al., 2005) was

61

followed. B) Marginal probability distributions of 9 individual kinetic parameters converged by the

Gelman-Rubin diagnostic. C) Dynamic fingerprints organized by the execution modes they belong

to. Each cluster plot is composed of horizontal lines that correspond to dynamic fingerprints, i.e.

sequences of dominant subnetworks, and each subnetwork is assigned a different color. Execution

modes are sorted from highest to lowest probability. D) Signal execution in Mode 1 (left) and Mode

2 (right) as defined by the most common subnetwork in each mode at t=7000s.

62

We then performed two in silico experiments for EM1 and EM2: (i) a 50%

knockdown (KD) of the antiapoptotic protein Mcl1 as well as (ii) a 50% knockdown of the

antiapoptotic protein Bcl2. For the Mcl1 KD, we found that the EM1 median ToD decreased

from 10022.46 s (WT) to 8686.52 s (Figure 4.7C-upper panel). This is expected since mBid

and Mcl1 interactions are dominant in this mode. By contrast the median ToD in EM2

decreased from 9943.65 s (WT) to 9335.85 s. This modest decrease in ToD can be attributed

to the fact that although Mcl1 and mBid interactions are important in EM2, the dominance

of Bcl2 compensates for the absence of Mcl1 and reduces the impact on ToD for the Mcl1

KD.

For the Bcl2 KD, we found that the median ToD in EM1 has a minor change from

10022.46 s to 10011.87 s, expected because mBid activity is not significantly affected by Bcl2

in this mode. By contrast, in EM2, mBid activity is modulated by Mcl1 and Bcl2. Thus, a

reduction in the initial protein levels of Bcl2 enables more mBid proteins to activate pro

apoptotic proteins and this leads to an increase in ToD to 9580 s (Figure 4.7C-upper panel).

Taken together this data shows that distinct execution modes respond differently to the

same perturbation and that their responses can be predicted based on the dominant

reactions for a given execution mode.

To further emphasize the importance of transient dynamics on signal processing,

we explored EM1 dynamic fingerprints and found that SMAC inhibition of XIAP occurs at

later time points of the simulations (>8640 s). Therefore, we hypothesized that XIAP

inhibition would be more effective earlier during signal execution. To test this, we added

an XIAP inhibitor to EARMV2.0 at either 4000 s or 8000 s. As shown, when the inhibitor

is added at the later time point, we observed a small reduction (Figure 4.7A lower panel)

in the median ToD from 9943.65 s in the WT to 9380.44 s (Δt = 563.21 s). In contrast, when

the inhibitor is added at the earlier time point, when SMAC is not yet released from the

mitochondria, the inhibitor binds to XIAP enabling C3 to cleave PARP and thereby

reducing the median ToD to 6766.10 (Δt = 3177.55 s).

As combination therapies have become important to combat drug resistance

(Gayvert et al., 2017; Sarah, 2017), especially in cancers, we explored whether our analysis

63

provided information about potential targets for cotreatment. As we previously mentioned,

Mcl1 and XIAP are dominant antiapoptotic proteins in EM1, thus we hypothesized that

inhibition of both proteins would yield a shorter ToD compared to only inhibiting XIAP.

To test this, we added two drugs that independently inhibit XIAP and Mcl1 and obtained a

ToD of 5951.11 s representing a 12% reduction in the ToD compared to XIAP inhibition only

(Figure 4.7A lower panel). Finally, to guide experiments that would identify the most likely

execution mode out of the 11 execution modes obtained, we developed an XGBOOST model

of execution mode estimation and performed feature importance analysis. As shown in

Figure 4.7B, we found that the parameters controlling the kinetics of mBid binding to BcxL,

and XIAP binding to C3 yield the most information about execution modes in EARMV2.0.

Taken together, these results suggest that the analysis of signaling dynamics from

uncertain parameters help us identify dominant reactions that control signal flow in a

network during signal processing and how these networks are more sensitive to

perturbations of those reactions.

64

Figure 4.7 Upper panel: Time to death distributions in the execution modes 1 and 2 in the “wild
type” condition, after a 50% Mcl1 knockdown, and after a 50% knockdown of Bcl2. The boxplot
inside the distributions shows the median, first quartile and third quartile of the datasets. Execution
modes 1 and 2 show substantial differences in their response to the knockdowns. Lower panel: Time
to death distributions in the execution mode 1 after adding a drug that binds XIAP at t=8000 s, and
at t=4000, and a drug that binds XIAP and Mcl1 at 4000 s. B) List of the 10 parameters in EARMv2.0
that contribute the most to model prediction.

65

4.5 Discussion

It has been long recognized that model parameter optimization to experimental

data is key to investigate the dynamical properties that control cell behavior (Read et al.,

2018). Unfortunately, parameter optimization usually yields large parameter uncertainties

due to a general lack of quantitative data as well as model identifiability (Ashyraliyev et al.,

2009). Even a complete set of time course data is insufficient to constraint most rate

parameters (Gutenkunst et al., 2007a). In this work. we wanted to examine the effects of

parameter uncertainty on signal execution through a biochemical network. Despite the

many parameter vectors which reproduce the experimental protein dynamics, we found

that the signal flow in a network was constrained to only a few modes of execution. Our

analysis further shows that within a Bayesian calibration scheme, it is possible to assign

probabilities to each execution mode, thus greatly improving our understanding of signal

dynamics. Therefore, the probabilistic approach introduced in this work could open a novel

perspective to understand network-driven processes from a statistical perspective.

In this work we also showed that large models with high parameter uncertainty such

as EARMv2.0 can be used to make model-based predictions, but those predictions should

be considered within the probabilistic context provided by execution modes obtained from

the calibrated parameters. Our analysis shows that parameter uncertainty as a result of

model calibration can be mapped to signal execution modes that respond differently to

perturbations, thus demonstrating that using a single best fit parameter vector is

insufficient to understand signal dynamics in complex models. Further, our analysis

allowed us to identify biochemical species, model parameters and times to maximize a

given perturbation. This information about signal flow could be used to study drug-

induced network rewiring processes (e.g. (Lee et al., 2012)), provide mechanistic

explanations to drug responses, and predict sequential combinations of drugs that could

better modulate a response signal in biochemical networks.

Finally, although our approach provided novel insights about signal execution in an

important biological network, it has certain limitations. Our analysis assumes that

66

reactions with high flux are the most important for signal processing in a network.

However, this may not always be the case for other networks or for networks with temporal

changes in model topologies (Klinke, 2010). Although our approach is computationally

expensive, particularly as models increase in size, requiring hundreds of thousands of

parameter samples to reach a convergence criterion, we believe this is a relatively small

price to pay in contrast to the number of experiments that would be necessary to attain the

same level of mechanistic knowledge about a network-driven process.

4.5.1 Availability

All the code to reproduce the figures that contain model calibration, modes of signal

execution, visualizations, and hypothesis exploration, is open source and can be found as

Jupyter Notebooks in this GitHub repository: https://github.com/LoLab-VU/pydyno.

These shareable and reusable notebooks contain all the source code and markup text that

explains the rationale for each step in the analysis.

67

Chapter 5

Interactive Multiresolution Visualization of Cellular Network Processes

Ortega OO, Lopez CF. Interactive Multiresolution Visualization of Cellular Network

Processes. iScience. 2020 Jan 24;23(1):100748

5.1 Summary

Cellular signaling pathways are controlled by networks of biomolecular interactions

that process signals from environmental cues (Blinov et al., 2006; Lemmon & Schlessinger,

2010; Sachs et al., 2005). These molecular networks give rise to nonlinear dynamic

processes that are difficult to explain and predict using reductionist methods (A. C. Ahn et

al., 2006). Mathematical models of cellular signaling pathways have become commonplace

to gain insights and describe the molecular mechanisms that control cellular processes

(Albeck et al., 2008; Gaddy et al., 2017; K. a Janes et al., 2005; N. A. Perry et al., 2019). In

general, these models continue to grow in size and complexity, which makes the

exploration of network structure and dynamics increasingly challenging. Visualization

tools present one effective way to explore network processes and acquire conceptual

insights about signal-execution mechanisms. In addition, visualization tools can facilitate

the detection of execution patterns and aid in hypothesis generation for experimental

validation. However, most tools focus on static single-resolution network representations

of models and generally lack support to visualize model dynamics. Therefore, there is an

unmet need for tools that facilitate multi-resolution visualizations of model networks and

simulated dynamics.

5.2 Introduction

Numerous tools have been developed to visualize network representations of

models that capture relationships between model components. Some examples include

molecular species networks (Bergmann et al., 2017), hierarchical species networks

68

(Paduano & Forbes, 2015), species-reactions networks (Schaff et al., 2016), contact maps

(Boutillier et al., 2018; Cheng et al., 2014; L. A. Harris et al., 2016), model-defined rules

(Boutillier et al., 2018; Cheng et al., 2014), and rule-based networks (Danos et al., 2012;

Smith et al., 2012), among many others (Dang et al., 2015; Kolpakov et al., 2019; Tiger et

al., 2012). Although these tools have been highly useful within their domains, they exhibit

limitations when it comes to visualizing the structures of increasingly complex networks

with an ever-larger number of nodes and edges labels. Moreover, standalone visualization

tools can be difficult to incorporate into model-building and analysis workflows, further

compounding the lack of reproducibility in analysis pipelines.

Identifying reactions that drive cellular processes is central to dynamic network

analysis, yet it is highly challenging without visualization tools to facilitate an intuitive

understanding of the signal execution mechanisms. A handful of tools to visualize dynamic

network processes have been published, notably COPASI (Bergmann et al., 2017) and the

Kappa Dynamic Influence Network (KDIN) (Forbes et al., 2017). COPASI uses a network in

which nodes represent biochemical species and edges represent biochemical interactions.

Species concentrations obtained from a simulation are encoded in the size of the box

around the network nodes. Kappa employs a network in which nodes are the model rules

and the edges indicate that the rules have common reactant or product species. KDIN

quantitatively represents the temporal influence that each biochemical rule exerts on other

rules. Although both tools yield useful information about dynamic network processes,

information about the reactions that drive the dynamic consumption and production of

different biomolecules, essential to understanding signal execution mechanisms, is not

easily obtained. In addition, these tools have been developed for software-specific

environments, thus limiting their use in general modeling and analysis workflows.

In this work we tackle three main visualization challenges that, we believe, will

accelerate the conceptual understanding of biological network processes: (1) develop

legible and comprehensible visualizations of increasingly large networks; (2) generate

intuitive dynamic network visualizations of model simulations; and (3) facilitate the

integration of visualizations into model building and analysis pipelines. To tackle these

69

challenges, we developed Python Visualization of Processes and Reactions (PyViPR), a

Python-based framework that provides multiple static and dynamic representations of

biological processes. Importantly, PyViPR unifies tools typically used in isolation, enables

access to community-detection algorithms, and encodes model simulations into node and

edge attributes, thus enabling the study of network dynamics at multiple resolutions.

PyViPR embeds all its visualization and analysis capabilities within Jupyter Notebooks

(Kluyver et al., 2016) to facilitate reproducibility and dissemination of model analysis

pipelines. PyViPR currently supports the rendering of rule-based models declared in the

PySB framework (Lopez et al., 2013), BioNetGen (BNG) (L. A. Harris et al., 2016), and Kappa

language (Boutillier et al., 2018), as well as models encoded in the SBML format (Hucka et

al., 2003), thus providing a general tool to visualize models of biochemical network

processes. In what follows we describe PyViPR's design and implementation, followed by a

demonstration of key PyViPR capabilities in the exploration of cellular signal processing.

5.3 Materials and methods

5.3.1 Overview

PyViPR embeds static and dynamic network visualizations of different biochemical

model components into a Jupyter Notebook (Kluyver et al., 2016). To generate these

visualizations, PyViPR requires as input data a model or simulation result encoded in one

of the accepted formats (See input data section below). Once a model or simulation result

has been passed to one of the PyViPR functions, in the back-end PyViPR uses the Python

package NetworkX (Hagberg et al., 2008) to generate node edge graphs that store

information from model components (e.g., molecular species, reactions, rules) and

simulation results. Species nodes can be clustered based on community detection

algorithms or model compartments. Then, the NetworkX graph is converted into a JSON

file that is passed to the JavaScript front-end which employs Cytoscape.js (Franz et al., 2015)

and some of its extensions to render the graphs, apply layout algorithms, expand and

collapse compound nodes (Dogrusoz et al., 2018), and enable the dynamic visualization of

model simulation results for the visualization of networks within Jupyter Notebooks.

70

5.3.2 Input data

PyViPR currently includes three interfaces that enable the support of multiple

model and graph formats: (i) PySB interface, which uses the PySB package (Lopez et al.,

2013) to handle models encoded in the BioNetGen, SBML, PySCeS, E-Cell, and PySB format,

(ii) Tellurium interface, which uses the Tellurium package (Medley et al., 2018) to handle

models encoded in SBML and Antimony, and (iii) Graph interface, which uses NetworkX

and Cytoscape.js to handle graphs encoded in GraphML, SIF, SBGN XML, Cytoscape JSON,

GEXF, GML and YAML.

5.3.3 Output data

All visualizations are rendered as networks within a Jupyter Notebook. These

networks can be locally downloaded in the following formats: PNG, SIF, GraphML and

JSON.

5.3.4 PyViPR main visualization functions

PyViPR enables the interactive visualization of different model components as well

as simulated trajectories of molecular species and reaction rates. The main visualization

functions include:

• sp_rxns_bidirectional_view(model): Shows a bipartite network where one set of

nodes are species and the other set are bidirectional reactions. Edges connect

reaction nodes with their respective reactants and products species.

• sp_view(model): Shows the unipartite network of interacting species.

• projected_bireactions_view(model): Shows the unipartite network of reactions

projected from the bipartite species-reactions graph.

• sp_comm_louvain_view(model): Shows the unipartite network of interacting

species grouped by the Louvain community detection algorithm.

71

• sp_dyn_view(model): Shows a species network. Edges size and color are updated

according to reaction rate values, and nodes pie charts slices are updated according

to the concentration of species.

• cluster_rxns_by_rules_view(model): Shows the unipartite graph of the interactions

between the reactions in a model. Reaction nodes are grouped by the rules that

generated them.

• highlight_nodes_view(species, reactions): Highlights the species and/or reactions

passed as arguments.

A more detailed description of these and other visualization functions can be found

on the PyViPR documentation website (https://pyvipr.readthedocs.io/)

5.3.5 Model calibration

For the calibration of EARM, nominal values for rate constants were set to their

published values in EARM 2.0 (Lopez et al., 2013). All rate constants were allowed to

change two orders of magnitude above and below their nominal values, indicating a lack

of knowledge about the likely parameter values. Experimental time-courses of the initiator

caspase reporter protein (IC-RP), mitochondrial intermembrane space reporter protein

(IMS-RP), and effector caspase reporter protein (EC-RP) were used from previously

published data (Spencer et al., 2009). In the model, tBid, cytosolic Smac, and cleaved PARP

were fit to the data for IC-RP, IMS-RP, and EC-RP, respectively. Model calibration was then

performed using the simplePSO package, which is a python implementation of the Particle

Swarm Optimization algorithm (Kennedy & Eberhart, 1995). The fit of simulated

trajectories to experimental data was measured using the sum of the squared differences:

𝜒2 = ∑ ∑
1

2𝜎𝑖
2(𝑡)

[𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 (𝑡; Θ) − 𝑥𝑑𝑎𝑡𝑎

𝑖 (𝑡)]2

𝑖𝑡

Where Θ is the parameter vector used to run a simulation, 𝑥𝑚𝑜𝑑𝑒𝑙
𝑖 (𝑡; Θ) correspond

to the simulated trajectory of molecular species 𝑖 with parameter vector Θ, 𝑥𝑑𝑎𝑡𝑎
𝑖 is the

experimental data from species 𝑖, and 𝜎𝑖
2 is the variance from the experimental data of

https://pyvipr.readthedocs.io/

72

species 𝑖. The index 𝑖 runs over all species (observables) that have experimental data, and

the index 𝑡 runs over all time points at which the data was measured.

We first ran PSO 100 times to determine a reasonable cost function threshold to

consider that a calibrated parameter is a good fit. We chose the parameter set with the

lowest function, which corresponds to a value of 2.8, and visually inspected that the fit was

good. Then, we ran PSO 10000 times, and only kept parameter sets that had a cost function

of 2.8 or less.

5.3.6 Parameter selection for analysis

To obtain the two maximally different parameter sets from the 6572 calibrated

parameter sets, we first standardize the kinetic parameter values as kinetic parameters with

a variance that is order of magnitudes larger than others might dominate the distance

function and lead to parameters that are mostly different at that specific kinetic parameter.

To standardize the values of a kinetic parameter we remove the mean and scale to unit

variance:

𝑧 = (𝑥 − 𝑢)/𝑠

Where 𝑥 is a value of a specific kinetic parameter, 𝑢 and 𝑠 are the mean and the

standard deviation of the specific kinetic parameter, respectively.

After standardizing the kinetic parameter values, we use the Euclidean metric to

calculate the pairwise distances between the 6572 calibrated parameter sets, and then

choose the two parameter sets that yield the largest distance.

5.4 Results

5.4.1 PyViPR Overview

PyViPR is a Python package that operates within the Jupyter notebooks

environment (Kluyver et al., 2016). In this manner, PyViPR takes full advantage of a Literate

Programming paradigm (Knuth, 2001), which enables the definition of both code and

documentation concurrently and allows users to develop shareable workflows for model

definition, visualization, and analysis. PyViPR leverages the capabilities of PySB to generate

73

model objects, import models from BNGL and SBML formats, and provide simulation-

based results for dynamic visualization. In addition, PyViPR integrates Cytoscape.js (Franz

et al., 2015), a well-established JavaScript library for graph visualization, into the Python

environment to interactively render static and dynamic visualization of model networks.

Therefore, PyViPR merges software packages that would traditionally be used in isolation

onto a common modeling environment. Further, PyViPR benefits from community-driven

software development, and improvements made to any of its software dependencies are

automatically accrued by the framework. PyViPR encourages community-driven

collaboration through its open-source philosophy built around GitHub:

https://github.com/LoLab-VU/PyViPR.

A typical PyViPR workflow comprises the following steps. First, a supported model

file is passed to one of the PyViPR visualization functions. PyViPR then uses NetworkX

(Hagberg et al., 2008) to convert the model components into graph nodes and edges. The

user could then simplify the graph through community detection (e.g., with the Louvain

algorithm (Blondel et al., 2008)) on the NetworkX graph object. The software will then

create a compound node and place all the nodes from a community within it. For dynamic

visualization, PyViPR maps the simulated species concentrations and reaction data to node

and edge properties. The resulting NetworkX graph is transferred to cytoscape.js via a JSON

dictionary and rendered real-time in a Jupyter notebook for visualization. We note that the

user can interact with all graph objects in a Jupyter notebook rendering to, e.g. change the

layout, groupings, or placement of a given graph.

PyViPR supports visualization of the two main approaches used to build chemical

kinetics models of cellular regulatory networks. In the first approach, reaction networks

are generated by enumerating all the molecular species and reactions that can occur in a

cellular process. This reaction network can then be translated into a set of Ordinary

Differential Equations (ODEs) or stochastic equations (Aldridge et al., 2006). In the second

approach, rule-based modeling formalisms (Boutillier et al., 2018; Faeder et al., 2009;

Lopez et al., 2013) are used to circumvent the need to enumerate all the species and

reactions by hand. In these formalisms, species are defined as structured objects that can

https://github.com/LoLab-VU/PyViPR

74

have binding and state sites, and reaction rules define interactions between specific

domains or binding sites on a given species. Then, rule-based modeling tools automatically

generate a reaction network by identifying all possible species that have the conditions

required to undergo the interaction defined in a rule. PyViPR supports visualization of both

model encodings through a Tellurium (Choi et al., 2018) interface for reaction network

models and a PySB (Lopez et al., 2013) interface for rule-based models.

In addition to biochemical network visualization, PyViPR supports the following

graph formats widely used in the systems-biology community: GraphML, SIF, SBGN XML,

Cytoscape JSON, GEXF, GML, and YAML. Additionally, rendered graphs in a Jupyter

Notebook can be downloaded in the following formats: PNG, SIF, GraphML, and JSON.

5.4.2 Design Choices for PyViPR

Numerous approaches have been developed to visualize temporal networks. Beck et

al. (Beck et al., 2017) surveyed a range of existing tools and derived a taxonomy based on

temporal representation, either as an animation or as a static timeline. From this

perspective, PyViPR would be classified as a hybrid visualization that uses the node-edge

paradigm to visualize networks, an animation for visual representation of time, and

superimposition of pie charts embedded in nodes as well as edges width and color, to

represent the temporal changes in species concentration and reaction flux, respectively.

PyViPR was designed with the following visualization goals:

G.1) Highlight functionally related species by grouping them in compound nodes.

G.2) Understand how a signal is executed in a biochemical network and how it depends on

parameter values.

G.3) Provide easy-to-use interactive visualizations for investigating the topology and

simulation results of biochemical models.

Murray et al. (Murray et al., 2017a) identify a task taxonomy for biological pathways

analysis across three categories: attribute, relation, and modification tasks. PyViPR

75

specifically supports attribute tasks, to obtain information about a species node, and

relationship tasks to identify types of relationships between nodes (e.g. protein binding,

protein translocation), the direction of nodes interactions, and grouping relationships (e.g.

model compartments, communities). With respect to the temporal features tasks described

in the task taxonomy of network evolution analysis by Ahn et al. (J. W. Ahn et al., 2014),

PyViPR focuses on the temporal features of aggregated events. More specifically, PyViPR

aims to make it easy to observe at any point in time, the reaction rates that have a higher

flux than other reactions.

To satisfy the design criteria introduced above, we made the following design

choices:

DC.1) Employ node-link diagrams for all static and dynamic visualizations to show

interactions between model components. We decided to use node-link diagrams because

they are commonly used by biology experimentalists (Cerami et al., 2011; Demir et al., 2010)

and computational modelers (Murray et al., 2017b) and that would facilitate the

interpretation and communication of results.

DC.2) Dynamically map simulated species concentrations and reaction rates values

onto pie charts embedded within nodes and edge color and width, respectively. Our main

goal is to clearly show the reactions that carry most flux and drive the behavior of the

system over time. Therefore, we followed the design principles for the representation of

flow quantity and direction discussed by Bernhard et al. (Jenny et al., 2018) and used color

brightness to represent reaction flow quantity on edges.

DC.3) Include search mechanisms, multiple layout options, zoom and grouping

functionality to organize model components, and focus on important details, thus enabling

interactive exploration of complex biological networks.

5.4.3 Network Creation from Multiple Model Components

PyViPR supports visualization of multiple model components, including molecular

species, reactions, rules, compartments, macro functions (Lopez et al., 2013), and modules

76

comprising independent model elements (Lopez et al., 2013). These components are

depicted by either simple nodes, which are fundamental units in a graph (Figure 5.1A), or

compound nodes, which can contain children nodes and are used to group simple nodes

with shared attributes or through user-defined groupings. Interactions between these

different model components correspond to unidirectional or bidirectional reactions and

are represented by arrows (Figure 5.1B).

Figure 5.1 PyViPR Visual Encodings. (A) Node types used for visualizations as labeled.

(B) Edge types used for interactions: unidirectional interactions (left) are depicted with a

unidirectional arrow and represent irreversible biochemical reactions. Bidirectional interactions

(middle) are depicted with bidirectional arrows and represent reversible reactions. Arrows fill state

indicate directionality from reactant (hollow) to product (solid) species. Solid bidirectional arrows

represent bidirectional interactions lacking directionality information. Modifier reaction (right) are

77

depicted with an arrow tail shaped with a hollow diamond and a solid arrow head and represent

reactions where the species is both a reactant and a product of the reaction. (C) Pie charts

embedded within nodes indicate the concentration of a species relative to its maximum value in

the simulation. (D) Color shade of arrows indicate the fractional reaction flux for interactions.

78

To create a bipartite network, PyViPR first obtains the list of species and

rules/reactions from a model and adds them as nodes to the network. Then, PyViPR uses

edges to connect species nodes with their respective rule/reaction node. To reduce the

network resolution a bipartite graph can be projected onto a unipartite graph that contains

only the species or rules/reactions nodes. This unipartite species graph can then be

organized by grouping the species nodes using the biological compartments on which they

are located. Similarly, a unipartite rules graph can be grouped by the macro functions used

to create them or the model modules where they are defined. This allows users to

interactively explore and revise the model network topology at different resolutions.

A key feature in PyViPR is the use of community detection algorithms to

automatically cluster nodes and thereby simplify network complexity. For example, the

Louvain method detects communities by optimizing the graph modularity. In this method,

optimization is achieved by first iterating over all nodes and assigning each node to a

community that results in the greatest local modularity increase, then each small

community is grouped into one node and the first step is repeated until no modularity

increase can occur (Blondel et al., 2008). As a result, the Louvain algorithm finds groups

of highly connected nodes that could have similar biological functions or represent

molecular-complex formation processes (Fortunato, 2010) (design goal 1). Other

community detection algorithms based on label propagation (Cordasco & Gargano, 2010;

Raghavan et al., 2007), fluid communities (Parés et al., 2018), and centrality (Girvan &

Newman, 2002) methods are also available in PyViPR. Alternatively, users can also

manually define clusters of nodes interactively for a “human in the loop” type optimization

(Däschinger et al., 2017; Holzinger, 2016). Taking advantage of the PySB interface to

BioNetGen, we also incorporated (1) compact rule visualization, (2) atom-rule graph, and

(3) tunable compression pipeline as implemented by Sekar et al. (Sekar et al., 2017) into

the PyViPR workflow to enable a more thorough and complete visualization of large rule-

based models.

5.4.4 Dynamic Visualization in PyViPR

79

PyViPR supports dynamic visualization of deterministic and stochastic model

simulations. This visualization mode uses a unipartite network (Design Choice DC.1) in

which nodes represent model species and edges represent reactions between the species.

Species concentrations and reaction rates are encoded into the properties of nodes and

edges, respectively (Design Choice DC.2).

To represent temporal concentration changes during a simulation, we embedded

pie charts within the graph species nodes. Pie chart slices within each node depict the

species concentration relative to the maximum amount attained throughout the

simulation. Pie chart slices are updated at each time point during animation (Figure 5.1C).

Absolute species concentrations at a given time point are also accessible as tooltips through

a click-hold gesture on a species node.

PyViPR aims to highlight reactions with high rates of consumption or production,

as these can drive complex network processes (Design Goal 2). To attain this goal,

simulated reaction rates are encoded on both the color shade and the thickness of arrows

that connect interacting species. For each species PyViPR obtains its related reactions and

then calculates the fractional flux of each reaction using a normalization function:

𝑓𝑖,𝑐(𝑡) =
𝑟𝑖,𝑐(𝑡)

∑ 𝑟𝑗,𝑐
𝑛
𝑗=1

where 𝑟𝑖,𝑐 is the reaction rate value at a specific time point, n is the number of

reactions, and the sub-index c indicates the type of reaction (consumption or production).

Fractional fluxes are then linearly mapped to a color shade ranging from low (light shade)

to high (dark shade) flux representations (Figure 5.1D). In addition, reaction rate values,

relative to their maximum value throughout the simulation, are represented by edge

thickness. Absolute reaction rate values for each interaction and at any given time point

are also accessible as tooltips using the click-hold gesture.

5.4.5 Exploration of a Biological Process with PyViPR: Apoptosis Execution

80

To illustrate the visualization capabilities of PyViPR, we use the Extrinsic Apoptosis

Reaction Model (EARM v2.0) (Lopez et al., 2013) to perform an exploratory analysis of the

receptor-mediated apoptosis signaling network. Briefly, EARM v2.0 describes the

biochemical interactions from an initial death ligand cue to a cleaved PARP response.

Initiator caspases trigger interactions among the Bcl-2 family of proteins that lead to

mitochondrial outer membrane permeabilization (MOMP). MOMP, in turn, propagates

the signal to effector caspase activation and PARP cleavage. EARM is a sizable model that

comprises 74 molecular species, 127 parameters, 62 rules, and 100 reactions. We explored

the EARM network using the following steps: (1) visualization of the apoptosis species-rules

bipartite network; (2) application of the Louvain community detection algorithm to

functionally cluster species nodes; (3) study of the simulation dynamics at a coarse-grained

community level; and (4) identification of molecular targets that modulate model behavior.

5.4.6 Multiresolution Visualization and Exploration of EARM

We wanted to study the architecture of the network defined in EARM to find

insights about molecular organization and function in apoptosis execution. We first

visualized a species-rules bipartite network (Figure 5.2, upper panel). However, this

network is difficult to explore, as no discernible structures are readily apparent. We then

projected the species-rules bipartite graph onto a species unipartite graph and clustered

highly connected nodes using the Louvain algorithm (Figure 5.2, middle panel). These

communities can also be further collapsed to obtain the EARM communities graph, a

coarse-grained representation of the apoptosis pathway (Figure 5.2, lower panel).

81

82

Figure 5.2 Multiresolution Visualization of a Reaction Network. Upper panel: EARM species rules
bipartite graph. Green nodes represent molecular species with initial condition set to zero, cyan
nodes are species with nonzero initial conditions, and red nodes represent rules defined in the
model. Middle panel: EARM species graph obtained from projecting the bipartite graph into a
unipartite graph. Densely connected nodes have been automatically grouped into communities
detected with the Louvain algorithm. Lower panel: EARM communities graph obtained by
collapsing each communities into a single node. Community node names are assigned by the
species with the highest number of interactions within its community. All edges correspond to
interactions between species nodes as specified in the EARM model.

83

The Louvain community detection algorithm identified nine communities,

numbered 0–8, which is summarized in Table 5.1. Briefly, these communities capture

biologically relevant and functional processes throughout the apoptosis pathway.

Community 1, describing Caspase 8 activation and Bid truncation, is linked with

Communities 3 and 4, the starting points for type I and type II cellular apoptosis,

respectively (Özören & El-Deiry, 2002). Interestingly, Mcl-1, a potent apoptosis inhibitor,

was placed in a separate community from all the other Bcl-2 inhibitors, highlighting its

unique inhibitory interactions that have been well documented (Yang-Yen, 2006).

Community 4 is also connected to Communities 5 and 8 that correspond to Bak and Bax

activation, polymerization, and pore formation, respectively. These communities capture

mitochondrial regulation events that lead to eventual MOMP formation in type II apoptosis

execution (Kale et al., 2017; YIN, 2000). These MOMP-related communities are connected

to Communities 2 and 7, which correspond to MOMP-driven release of cytochrome c and

Smac from the mitochondria. Finally, these communities connect to Community 3, which

corresponds to the activation of executioner Caspase 3 (C3) and subsequent PARP cleavage,

which signals that the cell has executed apoptosis. As shown, C3 can be directly activated

by Caspase 8 (C8) (type I) or by the apoptosome formed after cytochrome c is released via

MOMP (type II).

84

Community

Number
Apoptosis Subprocess References

0
Ligand-receptor interactions that lead to the DISC

formation and regulation by Flip

(Pennarun et al.,

2010)

1

Initiator Caspase 8 activation by DISC and Caspase 6

and subsequent truncation of Bid by activated

Caspase 8

(Kantari &

Walczak, 2011)

2
Release of cytochrome C through mitochondrial Bax

and Bak pores

(Garrido et al.,

2006)

3
Activation and regulation of effector Caspase 3,

formation of apoptosomes, and cleavage of PARP
(Zou et al., 2003)

4

Bcl-2 family of interactions responsible for

translocation of Bax to the mitochondria by

mitochondrial Bid (mBid) and inhibition of Bax, Bak,

and mBid by BclxL and Bcl2

(Kale et al., 2017;

YIN, 2000)

5 Formation of mitochondrial Bax pores

(Annis et al., 2005;

Westphal et al.,

2014)

6 Mcl1 inhibition of pro-apoptotic proteins (Yang-Yen, 2006)

7
Release of Smac through mitochondrial Bax and Bak

pores and its subsequent inhibition by XIAP
(Deng et al., 2002)

8 Formation of mitochondrial Bak pores

(Dewson et al.,

2009; Westphal et

al., 2014)

Table 5.1 Summary of the Biological Functions Enclosed in Each Community.

85

The Louvain algorithm also led to some interesting observations regarding

molecular interactions. For example, Caspase 3, the effector caspase, is the species with the

highest within-community node degree, indicating that it is a highly regulated protein in

apoptosis execution. Also, mBid has the highest number of interactions across

communities, indicating that it plays a key regulatory role in apoptosis execution.

Taken together, we find that Louvain community detection could be used as an

interactive “coarse-graining” methodology to automatically group biochemical

interactions, simplify mechanism exploration, and identify important proteins within a

biochemical network.

5.4.7 Parameter Sets Fit Experimental Data but Yield Different Network Dynamics

To demonstrate the advantages of dynamic visualization, we calibrated EARM to

previously published time course experimental data (Spencer et al., 2009) using the

Particle Swarm Optimization (PSO) algorithm (Kennedy & Eberhart, 1995). Ten thousand

PSO runs were carried out, which resulted in 6,572 parameter sets with an error ≤ 2.8 (See

Methods section for details). It is well established that multiple parameter sets can fit

experimental data equally well, due to parameter unidentifiability and model sloppiness

(Gutenkunst et al., 2007b). To explore the mechanistic implications of different parameter

sets on EARM execution, we compared the dynamics generated by two different parameter

sets, labeled Parameter Set 1 (PS1) and Parameter Set 2 (PS2) (Table S1), as described below.

We hypothesized that these two parameter sets with different kinetic parameter

values would yield distinct signal mechanisms. Thus, we first asked whether a trajectory

plot of tBid dynamics could yield useful mechanistic information about apoptosis execution

with different parameter sets. As shown in Figure 5.3A, both parameter sets generated tBid

trajectories that were essentially indistinguishable, yielding no mechanistic information

from the two distinct parameter sets. We then employed the EARM communities graph to

compare the global dynamic signal execution for both parameter sets. Figure 5.3B shows

three time points in signal execution for PS1 (upper panel) and PS2 (lower panel). As shown,

there is little activity between communities in both parameter sets in the early time points

86

(Figure 5.3B left). However, for PS1 at t = 4040s we observe that Community 1, which

regulates C8 activation, exhibits increased flux toward Community 3, which controls C3

activation. This indicates that C3 is being activated by C8. Despite the activation of the

effector Caspase, apoptosis does not take place because the antiapoptotic XIAP inhibits

active C3 activity. Community 4, which regulates mBid, also exhibits increased signal flux

toward the Community 8 (active Bax regulation), indicating that the pores formed in the

mitochondria are dominated by Bax oligomerization.

87

88

Figure 5.3 Dynamic Visualization of EARM at Different Resolutions. Panel (A) includes three plots
of the simulated tBid and the experimental data used for calibration. Gray lines correspond to the
experimental data with error bars indicating the standard deviation. Arrows indicate the
concentration level at the corresponding time point. The time points shown here are the same ones
used to obtain snapshots of the dynamic visualization in the following panels. Panel (B) shows, for
PS1 and PS2, the global reaction flow dynamics between the communities detected with the Louvain
algorithm. Panel (C) shows, for PS1 and PS2, the temporal changes in the strength of the
interactions between mitochondrial Bid and the anti-apoptotic and pro-apoptotic proteins. Pie
chart slices within the nodes show the concentration of a species relative to the maximum amount
of the concentration attained across all time points of the simulation. Edges color shade and
thickness represent the fractional flux and relative reaction value, respectively.

89

PS2 also exhibited increased signal flux between communities but with different

interaction patterns compared with those seen in PS1. Specifically, it exhibited significant

flux between Community 4 and Community 6 (mMcl1 regulation) at t = 7474s, suggesting

that mBid was being inhibited by mMcl1. Also, there was significant signal flux from

Community 2, which regulates cytochrome c release from the mitochondria, toward

Community 3, indicating that pores were already formed in the mitochondria and

cytochrome c was being released to aid with the formation of the apoptosome. Therefore,

dynamic visualization of signal flow across communities confirms our hypothesis about

signal execution and demonstrates the usefulness of PyViPR to explore the complex

dynamics that occur in biochemical processes.

To further explore the effects of kinetic parameters in model behavior, we focused

on local signal flow through mBid and its interactions, as they are tightly linked to MOMP

and cellular time-to-death (Spencer et al., 2009). As shown in Figure 5.3C, for PS1 we

observed that most of mBid was used to transport cytosolic Bax to the mitochondrial outer

membrane (MOM), whereas no activation of Bak occurred, suggesting that pore activity in

the MOM was primarily due to Bax (see Video S1). We, therefore, hypothesized that the

model with PS1 depends on Bax for apoptosis execution. In contrast, for PS2, we observed

that mBid activity was primarily inhibited by the anti-apoptotic Mcl1 (see Video S2). We

thus hypothesized that under PS2 an MCL-1 knockdown would free mBid to activate Bax

and Bak and more rapidly commit cells to apoptosis. We tested both hypotheses derived

from our visualization-based analysis using in silico experiments. First, we knocked out Bax

and simulated EARM with PS1 (Figure 5.4). We found that knocking out Bax protected cells

from apoptosis induction with TRAIL, confirming that Bax plays an important role in

apoptosis regulation. We then knocked out Mcl1 and simulated EARM with PS2. We found

that the time-to-death was reduced by 22.6%, corroborating that Mcl1 inhibition delayed

apoptosis. As a control, we knocked out Mcl1 for PS1 and Bax for PS2 and found that the

dynamics of cPARP were not considerably affected.

90

Figure 5.4 In Silico Knock outs of Bcl-2 Proteins Modulates PARP Cleavage. EARM was run using
Parameter Set 1 (left) and Parameter Set 2 (right) and with knockout (KO) of either Bax or Mcl-1 as
labeled. Bax KO has a significant effect on the dynamics of PARP cleavage (yellow line) for
Parameter Set 1 but almost no noticeable effect for Parameter Set 2 (right). In contrast, Mcl-1 KO
has almost no effect for Parameter Set 1 (left) but a significant effect in Parameter Set 2 (right).

91

Taken together, our results demonstrate that despite multiple parameters fitting the

data equally well, apoptosis is executed differently for each parameter set. Our observations

align with experimental results that show cellular dependence on Bcl-2 regulators for

apoptosis execution (Deng et al., 2002; P. Zhou et al., 1997). Importantly, visualization of

the dynamic process enabled us to identify key reactions under different parameter sets

and generate testable hypotheses to better understand the execution mechanism.

5.5 Discussion

In this paper, we presented PyViPR, a tool to visualize the structure and dynamics

of biochemical network models. PyViPR enables a straightforward workflow of model

creation, analysis, visualization, and hypothesis generation. Additionally, PyViPR

integrates community detection algorithms to organize the nodes of biochemical networks

and ease the exploration of complex networks. Lastly, PyViPR provides an interface for

intuitive dynamic visualization that facilitates the observation of signal flow across

biochemical models.

Multiple tools exist for static visualization of biological networks. Some of the tools

used to visualize reaction-based models include Dynetica (Eidum et al., 2014), COPASI

(Bergmann et al., 2017), CySBML (König et al., 2012), and Omix (Droste et al., 2011).

Although these tools provide useful visualizations of biochemical models, they are

implemented as Graphical User Interfaces, which can hinder the creations of pipelines for

model creation, visualization, and analysis. Also, these tools can become difficult to use as

network complexity increases. PyViPR aims to address these issues by enabling access to

community detection algorithms for network simplification and facilitating the model

definition, visualization, and analysis pipelines in a single Jupyter Notebook environment.

Various tools for visualization of rule-based models have also been published. These

include Simmune (Cheng et al., 2014), BioNetGen (Sekar et al., 2017; Smith et al., 2012),

rxncon (Tiger et al., 2012), Virtual Cell (Vasilescu et al., 2018), and Kappa (Boutillier et al.,

2018). All of these tools take advantage of the structured definition of molecules and rules

92

to generate intelligible visualizations of large models. PyViPR does not use these structured

definitions and instead uses the rule-based modeling framework to obtain the set of

reactions from a given model. This set of reactions is often larger than the number of rules,

thus limiting the size of models that can be intelligibly visualized with PyViPR. To address

this potential shortcoming, we leveraged the flexibility of a Python-based environment and

provided an interface to BioNetGen's atom-rules graph algorithm.

Visualization tools to explore the dynamics of temporal network processes can be

classified into three groups based on the components animated: (1) Species nodes

animation, where the simulated species concentration is mapped onto the size/color of

nodes (e.g. COPASI (Bergmann et al., 2017), Narrator (Mandel et al., 2007), CytoModeler

(Xia et al., 2011)); (2) species nodes and edge animation, where the simulated species

concentration is mapped onto the size/color of nodes, whereas reaction rate values are

encoded into the edge thickness (e.g. DBSolve (Gizzatkulov et al., 2010)); and (3) rules

nodes and edges animation (e.g. DIN-Viz (Forbes et al., 2017)), where the number of hits

of a rule is mapped into the node size, and the influence of one rule on another is encoded

into the edge width. Similar to the first two groups of dynamic visualization approaches,

PyViPR maps the species concentrations into nodes. The main difference, however, is that

PyViPR encodes the reaction rates into edges width and colors in a more insightful way as

it highlights the edges that carry most of the signal flow. Additionally, PyViPR is better

suited for dynamic visualization of large networks, as it can use community detection

algorithms to cluster nodes and then animate the coarse-grained network with the

simulation results. Lastly, it is difficult to compare PyViPR with the third group of

visualization tools, as PyViPR uses a species graph, whereas the latter uses a rules graph to

encode the simulation results. However, one advantage that PyViPR has is that the

visualization can be easily communicated to non-modeling scientists, as it only requires

knowledge about the biological network being studied.

We believe that PyViPR could be incorporated into existing modeling and

simulation workflows provided by Python-based tools such as Tellurium notebooks

(Medley et al., 2018) and PySCeS (Olivier et al., 2005). In the future, we plan to incorporate

93

community-detection algorithms that consider the weight of the edges for the clustering

of nodes. Additionally, we plan to improve the synchronization from the JavaScript

frontend to the Python backend to enable users to interactively modify model parameters

and components.

All the model exploratory analyses, which include model calibration, visualization,

hypothesis exploration, and testing, were performed in Jupyter Notebooks. These shareable

and reusable notebooks contain all the source code and markup text that explains the

rationale for each step in the analysis. We believe that access to these resources will

promote reproducibility and transparency by enabling other researchers to rerun or expand

the presented model analysis. We invite the community to contribute to open-source tools

such as PyViPR to improve model analysis and visualization (see Supplement Information

Section and https://mybinder.org/v2/gh/LoLab-VU/PyViPR/master).

5.5.1 Limitations of the Study

Although PyViPR can visualize a broad range of systems biology models, it is not a

panacea for model visualization. Specifically, PyViPR has limitations to generate intelligible

networks of rule-based models with rules that generate a few hundreds of molecular

reactions. This limitation emerges because PyViPR visualizations are created from the

molecular reactions, which are typically more numerous than model rules, instead of the

monomers and rules encoded in a model. In this case, specialized visualization tools such

as atom-rules (Sekar et al., 2017), rxncon (Tiger et al., 2012), and Kappa (Boutillier et al.,

2018) could be better suited to obtain intelligible visualizations of rule-based models.

94

Chapter 6

Discussion and future directions

Mathematical models are becoming increasingly used to describe biochemical

processes and understand the systems behavior that arises from protein-protein

interactions involved in a signaling pathway. These models have provided insights into the

multiple mechanisms that cells use to generate a response to perturbations. Some of these

mechanisms include a snap-action switch controlling apoptosis (Albeck et al., 2008),

spatial localization of proteins by scaffolds (Locasale et al., 2007), and a conveyor belt

mechanism for signal amplification of JNK3 (N. A. Perry et al., 2019). As models have

proven useful to understand complex dynamics, in recent years, the U.S. Food and Drug

Administration (FDA) has advocated for the use of mechanistic models to advance the

discovery, development and clinical use of therapeutic drugs (Madabushi et al., 2019;

Sorger et al., 2011). These models, also known as Quantitative Systems Pharmacology (QSP)

models, aim to describe the biochemical networks targeted by drugs, provide an

understanding of the mechanisms of action of compounds under study, and investigate

exposure-response relations for many therapeutics.

In this thesis, we develop tools and analyses to gain confidence in model results,

contributing to the advancement of three specific areas: 1) Model reproducibility. 2)

Quantification of parameter uncertainty and its effect on predictions and signal execution

and 3) Model visualization. Improvements in these areas are essential for systems biology

and QSP models to gain insights into the mechanisms that modulate cellular processes in

different contexts.

6.1 Advances in model reproducibility

Regarding model reproducibility, multiple tools exist to address different parts of

this issue. For example, the SBML format was created to share, communicate and store

models (Hucka et al., 2003). Although SBML ensures a standard format for models,

95

problems reproducing model analysis still exist as information about the protocols used to

generate simulations is limited. Thus, the Simulation Experiment Description Markup

Language (SED-ML) (Waltemath et al., 2011) was developed to address this lack of

information about simulation experiments.

Although SBML and SED-ML have provided a common framework to describe

models and simulations, a recent study found that 49% of the published models analyzed

are not reproducible (Tiwari et al., 2021). Furthermore, they observed that the percentage

of not reproducible models increased with model size, and more than 80% of models with

more than 81 species are not reproducible. In this scenario of large models, rule-based

modeling tools like PySB can play an important role. PySB facilitates the declaration of

large models by using a syntax similar to biochemical reactions and automatically generates

the ordinary differential equations that describe cellular processes. This framework enables

easy revision and extendibility, which is essential for reproducibility purposes. However, if

no information is shared about how different simulations and paper figures are generated,

it can lead to the same reproducibility problems.

In our work, we employed a novel workflow that takes advantage of the vast

ecosystem of tools available for the Python community and ensures reproducibility of all

model results and analysis without the need of installing any software. In this workflow, we

first use PySB to build, simulate and analyze a model within a Python Jupyter Notebook

(Kluyver et al., 2016) and then store those notebooks in a free GitHub repository. Once the

Jupyter Notebook with all the information is stored in GitHub, we used binder (Jupyter et

al., 2018) to enable other researchers to run those notebooks in a browser-based executable

environment where they can immediately reproduce the results previously obtained. We

applied this workflow to the JNK3 activation reaction model, and the results can be

reproduced here: https://github.com/LoLab-VU/JARM

Our approach for reproducibility can be used for models and analyses that require

small-size files as GitHub and binder have storage and memory limits. In cases where large

files and high computer processing power is necessary, we can envision a solution with

https://github.com/LoLab-VU/JARM

96

Docker containers (Boettiger, 2015) that include all the software, model, and analyses and

can be run in a local computer system.

6.2 Advances in model visualization

To facilitate the visualization of model networks, simulation results and strengthen

the reproducibility of modeling workflows, we developed the Python Visualization of

Processes and Reactions (PyViPR) tool. PyViPR complements the already existing suite of

tools that include NetworkViewer (Cheng et al., 2014), ReactionFlow (Dang et al., 2015),

RuleBender (Smith et al., 2012), and DIN (Forbes et al., 2017) by providing two novel

visualizations: 1) Clustered networks by community detection algorithms, and 2) Dynamic

networks. These visualizations were designed to effectively display increasingly large

networks and show the temporal patterns of species concentrations and reaction rates in

an interactive manner. Additionally, PyViPR integrates other tools like atom-rules (Sekar

et al., 2017) to visualize rule-based models and other graph formats like GraphML, SIF, and

SBGN. We develop PyViPR as a Jupyter widget to be easily included in the modeling

workflow and thus guarantee the reproducibility of model building, analysis, and

visualization.

The dynamic visualizations generated by PyViPR enable the rapid generation of

hypotheses by explicitly showing the protein-protein interactions with highest reaction

rates, which then can be targeted to module signal execution. Additionally, PyViPR

facilitates the communication of results with non-modeling scientists as models and

simulations can be shown in the context of all protein-protein interactions.

 In the future, we plan first to create an input format to import model networks and

simulation results from other modeling tools into PyViPR for visualization. Second, we will

add support to visualize stochastic simulations. Third, we plan to incorporate community-

detection algorithms that consider the weight of the edges for the clustering of nodes.

Lastly, we plan to improve the synchronization from the JavaScript frontend to the Python

backend to enable users to modify model parameters and components interactively

97

6.3 Advances in the quantification of model uncertainty

Various approaches exist to calibrate models to experimental data (Mitra &

Hlavacek, 2019b). Bayesian calibration tools have gained relevance in the fields of genetics,

genomics, bioinformatics, and computational systems biology as they provide essential

information about parameter distributions and their correlations (Wilkinson, 2007). In

Chapter 2 of this work, we employed PySB to build a model of the JNK3 activation cascade

and then used PyDREAM, a Bayesian calibration tool, to fit the model to experimental data.

This calibration yielded parameter probability distributions constrained by the

experimental data available and enabled us to compare kinetic parameters taking into

account the uncertainty of their values. Additionally, given the statistical nature of

PyDREAM we could identify the most likely parameter vectors that reproduce the

experimental data. Altogether, the experimental data, our model with calibrated parameter

distributions, and the analysis of reaction rates provided insights into the mechanism that

amplifies the activation of JNK3.

For the development and analysis of the JNK3 activation reaction model (JARM), we

applied the experimentation/modeling cycle that starts by gathering experimental data,

building a mechanistic model, calibrating and analyzing the model to generate new

hypotheses that provide more data to refine the model. By using this approach, we were

able to identify limitations with the first set of experimental data and suggest new

experiments that improved our understanding of the JNK3 activation cascade. This result

demonstrates the power of combining models with experimental approaches to understand

the mechanisms that modulate biological processes. In the future, to gain more confidence

in JARM, we could validate the prediction that 0.49 μM is the optimal concentration of the

scaffold protein arrestin-3 for maximal JNK3 activation.

Biological experiments have uncertainties that during the calibration process are

propagated to uncertainties in model parameter values. Additionally, as we build larger

models, it is common to have many more parameters than experimental data, i.e., an

underdetermined system, which results in model unidentifiability and large parameter

uncertainties. These uncertainties are propagated to model predictions, and thus it is

98

important to understand the mechanisms involved in the generation of different

predictions. We tackle this issue by developing PyDyNo, a tool that tracks the signal flow

throughout the network with different calibrated parameter vectors.

PyDyNo leverages tropical algebra, chemical kinetics, network analysis, and

clustering algorithms to identify modes of signal execution in model networks. We applied

this tool to the Extrinsic Apoptosis Reaction Model (EARM) and found that despite the

many parameter vectors that fit the experimental data, there are only a few modes of signal

execution in the model network. These different execution modes predict different

outcomes when the same perturbation is applied to the system. Furthermore, we showed

that calibrating biochemical models with a Bayesian approach enabled us to assign

probabilities to each execution mode, significantly enhancing our understanding of signal

dynamics. As a result, the probabilistic approach developed in this thesis may provide a

novel framework to understand cellular signaling processes.

As execution modes from a model have a distinctive response, PyDyNo could be

used with experimental design approaches to identify the most likely execution mode of a

biological system and thus reduce the uncertainty in predictions. This approach could play

an important role in the development of quantitative systems pharmacology models, as

uncertainty reduction and high predictive power is necessary for drug development

applications (J. P. F. Bai et al., 2019).

The execution modes identified by PyDyNo lead to the question: Do cells actually

have different execution modes or are these execution modes a result of the uncertainty of

the experiments and model identifiability? We believe that it is likely a combination of the

two as cells might have different crowding environments (H.-X. Zhou et al., 2008) that can

lead to different kinetics. As we showed in Chapter 4, different kinetic parameters might

have unique execution modes. Also, these different execution modes can be part of a bet-

hedging strategy (Jolly et al., 2018) where the kinetics heterogeneity can be viewed as an

strategy that aims to optimizes the survival of a clonal population in a dynamic

environment. Thus, as a future direction it would be important and interesting to

experimentally determine whether the execution modes exist in cell populations.

99

Finally, previous works have explored the dynamic patterns of signal flow in

complex networks. Erin Shockley and colleagues combined flux analysis with information

theory to study how the COX-2 pathway integrates signals with varying input

concentrations (Shockley et al., 2019). Harush and Barzel studied multiple networks with

different topologies and used a perturbative formalism to analyze their signal flow at steady

state (Harush & Barzel, 2017). Overall, these analyses have provided key biological and

network insights about signal flow in complex networks. However, these approaches were

developed to study signal flow at steady state conditions, omitting transient dynamics.

These dynamics are important as, over time, they change the signal flow in a network and

provide information about the optimal timing of perturbations to modulate a cell response.

Our analysis provides a novel approach that considers the non-equilibrium dynamics of

signaling networks and calibration parameter uncertainty to create a paradigm shift

towards a more probabilistic understanding of signal execution in biochemical networks.

100

REFERENCES

Abdel-Basset, M., Abdel-Fatah, L., & Sangaiah, A. K. (2018). Chapter 10 - Metaheuristic
Algorithms: A Comprehensive Review. In A. K. Sangaiah, M. Sheng, & Z. Zhang
(Eds.), Computational Intelligence for Multimedia Big Data on the Cloud with
Engineering Applications (pp. 185–231). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-0-12-813314-9.00010-4

Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006). The Limits of Reductionism in
Medicine: Could Systems Biology Offer an Alternative? PLoS Medicine, 3(6), e208.
https://doi.org/10.1371/journal.pmed.0030208

Ahn, J. W., Plaisant, C., & Shneiderman, B. (2014). A task taxonomy for network evolution
analysis. IEEE Transactions on Visualization and Computer Graphics, 20(3), 365–376.
https://doi.org/10.1109/TVCG.2013.238

Albeck, J. G., Burke, J. M., Spencer, S. L., Lauffenburger, D. A., & Sorger, P. K. (2008).
Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death.
PLoS Biology, 6(12), e299. https://doi.org/10.1371/journal.pbio.0060299

Aldridge, B. B., Burke, J. M., Lauffenburger, D. a, & Sorger, P. K. (2006). Physicochemical
modelling of cell signalling pathways. Nature Cell Biology, 8(11), 1195–1203.
https://doi.org/10.1038/ncb1497

Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological
Circuits (1st ed.). In Star (Vol. 10). Chapman and Hall/CRC.
https://doi.org/https://doi.org/10.1201/9781420011432

Annis, M. G., Soucie, E. L., Dlugosz, P. J., Cruz-Aguado, J. A., Penn, L. Z., Leber, B., &
Andrews, D. W. (2005). Bax forms multispanning monomers that oligomerize to
permeabilize membranes during apoptosis. EMBO Journal, 24(12), 2096–2103.
https://doi.org/10.1038/sj.emboj.7600675

Antoniou, X., Falconi, M., Di Marino, D., & Borsello, T. (2011). JNK3 as a Therapeutic
Target for Neurodegenerative Diseases. Journal of Alzheimer’s Disease, 24, 633–642.
https://doi.org/10.3233/JAD-2011-091567

Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J. A., & Blom, J. G. (2009). Systems
biology: Parameter estimation for biochemical models. FEBS Journal, 276(4), 886–
902. https://doi.org/10.1111/j.1742-4658.2008.06844.x

Bai, H., Yang, K., Yu, D., Zhang, C., Chen, F., & Lai, L. (2011). Predicting kinetic constants
of protein-protein interactions based on structural properties. Proteins: Structure,
Function and Bioinformatics, 79(3), 720–734. https://doi.org/10.1002/prot.22904

Bai, J. P. F., Earp, J. C., & Pillai, V. C. (2019). Translational Quantitative Systems
Pharmacology in Drug Development : from Current Landscape to Good Practices.

101

The AAPS Journal, 1–13. https://doi.org/10.1208/s12248-019-0339-5

Baker, M., & Penny, D. (2016). Is there a reproducibility crisis? Nature, 533(7604), 452–
454. https://doi.org/10.1038/533452A

Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D. S., & Milo, R.
(2011). The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends
Shaping Enzyme Parameters. Biochemistry, 50(21), 4402–4410.
https://doi.org/10.1021/bi2002289

Barabási, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s
functional organization. Nature Reviews Genetics, 5(2), 101–113.
https://doi.org/10.1038/nrg1272

Bartocci, E., & Lió, P. (2016). Computational Modeling, Formal Analysis, and Tools for
Systems Biology. PLoS Computational Biology, 12(1), 1–22.
https://doi.org/10.1371/journal.pcbi.1004591

Barzel, B., & Barabási, A. L. (2013). Universality in network dynamics. Nature Physics,
9(10), 673–681. https://doi.org/10.1038/nphys2741

Beck, F., Burch, M., Diehl, S., & Weiskopf, D. (2017). A Taxonomy and Survey of Dynamic
Graph Visualization. Computer Graphics Forum, 36(1), 133–159.
https://doi.org/10.1111/cgf.12791

Becker, V., Schilling, M., Bachmann, J., Baumann, U., Raue, A., Maiwald, T., Timmer, J., &
Klingmüller, U. (2010). Covering a broad dynamic range: Information processing at
the erythropoietin receptor. Science, 328(5984), 1404–1408.
https://doi.org/10.1126/science.1184913

Bergmann, F. T., Hoops, S., Klahn, B., Kummer, U., Mendes, P., Pahle, J., & Sahle, S.
(2017). COPASI and its applications in biotechnology. Journal of Biotechnology,
261(June), 215–220. https://doi.org/10.1016/j.jbiotec.2017.06.1200

Bergroth, L., Hakonen, H., & Raita, T. (2000). A survey of longest common subsequence
algorithms. Proceedings - 7th International Symposium on String Processing and
Information Retrieval, SPIRE 2000, 39–48. https://doi.org/10.1109/SPIRE.2000.878178

Blinov, M. L., Faeder, J. R., Goldstein, B., & Hlavacek, W. S. (2006). A network model of
early events in epidermal growth factor receptor signaling that accounts for
combinatorial complexity. BioSystems, 83(2-3 SPEC. ISS.), 136–151.
https://doi.org/10.1016/j.biosystems.2005.06.014

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10). https://doi.org/10.1088/1742-5468/2008/10/P10008

Boettiger, C. (2015). An Introduction to Docker for Reproducible Research. SIGOPS Oper.
Syst. Rev., 49(1), 71–79. https://doi.org/10.1145/2723872.2723882

102

Bonneau, R. (2008). Learning biological networks: From modules to dynamics. Nature
Chemical Biology, 4(11), 658–664. https://doi.org/10.1038/nchembio.122

Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F., Krivine, J., Feret, J., Cristescu, I.,
Forbes, A. G., & Fontana, W. (2018). The Kappa platform for rule-based modeling.
Bioinformatics, 34(13), i583–i592. https://doi.org/10.1093/bioinformatics/bty272

Brennan, M. D., Cheong, R., & Levchenko, A. (2012). Systems biology. How information
theory handles cell signaling and uncertainty. Science (New York, N.Y.), 338(6105),
334–335. https://doi.org/10.1126/science.1227946

Campello, R. J. G. B., Moulavi, D., & Sander, J. (2013). Density-Based Clustering Based on
Hierarchical Density Estimates. Advances in Knowledge Discovery and Data Mining,
160–172. https://doi.org/10.1007/978-3-642-37456-2_14

Cerami, E. G., Gross, B. E., Demir, E., Rodchenkov, I., Babur, Ö., Anwar, N., Schultz, N.,
Bader, G. D., & Sander, C. (2011). Pathway Commons, a web resource for biological
pathway data. Nucleic Acids Research, 39(SUPPL. 1), 685–690.
https://doi.org/10.1093/nar/gkq1039

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 785–794. https://doi.org/10.1145/2939672.2939785

Chen, W., Niepel, M., & Sorger, P. (2010). Classic and contemporary approaches to
modeling biochemical reactions. Genes & Development, 24, 1861–1875.
https://doi.org/10.1101/gad.1945410.Freely

Cheng, H. C., Angermann, B. R., Zhang, F., & Meier-Schellersheim, M. (2014).
NetworkViewer: Visualizing biochemical reaction networks with embedded
rendering of molecular interaction rules. BMC Systems Biology, 8(1), 1–16.
https://doi.org/10.1186/1752-0509-8-70

Cheong, R., Rhee, A., Wang, C. J., Nemenman, I., & Levchenko, A. (2011). Information
Transduction Capacity of Noisy Biochemical Signaling Networks. Science, 334(6054),
354–358. https://doi.org/10.1126/science.1204553

Chiband, S., & Greenberg, E. (2008). Understanding the Metropolis-Hastings Algorithm.
49(4), 327–335.

Choi, K., Medley, J. K., König, M., Stocking, K., Smith, L., Gu, S., & Sauro, H. M. (2018).
Tellurium: An extensible python-based modeling environment for systems and
synthetic biology. BioSystems, 171(July), 74–79.
https://doi.org/10.1016/j.biosystems.2018.07.006

Collins, F. S., & McKusick, V. A. (2001). Implications of the Human Genome Project for
Medical Science. JAMA, 285(5), 540–544.

Cordasco, G., & Gargano, L. (2010). Community detection via semi-synchronous label

103

propagation algorithms. 2010 IEEE International Workshop on Business Applications
of Social Network Analysis, BASNA 2010. https://doi.org/10.1109/BASNA.2010.5730298

Dang, T. N., Murray, P., Aurisano, J., & Forbes, A. G. (2015). ReactionFlow: An interactive
visualization tool for causality analysis in biological pathways. BMC Proceedings,
9(Suppl 6), 1–18. https://doi.org/10.1186/1753-6561-9-S6-S6

Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh,
C., & Winskel, G. (2012). Graphs, Rewriting and Pathway Reconstruction for Rule-
Based Models. FSTTCS 2012 - IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, 18(Fsttcs), 276–288.
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.276

Däschinger, M., Knote, A., Green, R., & Von Mammen, S. (2017). A human-in-the-loop
environment for developmental biology. September, 475–482.
https://doi.org/10.7551/ecal_a_078

Deb, K. (1999). An introduction to genetic algorithms. Sadhana, 24(4), 293–315.
https://doi.org/10.1007/BF02823145

Dekkers, A., & Aarts, E. (1991). Global optimization and simulated annealing.
Mathematical Programming, 50(1), 367–393. https://doi.org/10.1007/BF01594945

Demir, E., Cary, M. P., Paley, S., Fukuda, K., Lemer, C., Vastrik, I., Wu, G., D’Eustachio, P.,
Schaefer, C., Luciano, J., Schacherer, F., Martinez-Flores, I., Hu, Z., Jimenez-Jacinto,
V., Joshi-Tope, G., Kandasamy, K., Lopez-Fuentes, A. C., Mi, H., Pichler, E., … Bader,
G. D. (2010). The BioPAX community standard for pathway data sharing. Nature
Biotechnology, 28(9), 935–942. https://doi.org/10.1038/nbt.1666

Deng, Y., Lin, Y., & Wu, X. (2002). TRAIL-induced apoptosis requires Bax-dependent
mitochondrial release of Smac/DIABLO. Genes and Development, 16(1), 33–45.
https://doi.org/10.1101/gad.949602

Dewson, G., Kratina, T., Czabotar, P., Day, C. L., Adams, J. M., & Kluck, R. M. (2009). Bak
Activation for Apoptosis Involves Oligomerization of Dimers via Their α6 Helices.
Molecular Cell, 36(4), 696–703.
https://doi.org/https://doi.org/10.1016/j.molcel.2009.11.008

Dhanasekaran, D. N., & Reddy, E. P. (2008). JNK signaling in apoptosis. Oncogene, 27(48),
6245–6251. https://doi.org/10.1038/onc.2008.301

Dogrusoz, U., Karacelik, A., Safarli, I., Balci, H., Dervishi, L., & Siper, C. (2018). Efficient
methods and readily customizable libraries for managing complexity of large networks.
1–18.

Droste, P., Miebach, S., Niedenfuhr, S., Wiechert, W., & Noh, K. (2011). Visualizing multi-
omics data in metabolic networks with the software Omix—A case study.
Biosystems, 105(2), 154–161.

104

Egea, J. A., Rodríguez-Fernández, M., Banga, J. R., & Martí, R. (2007). Scatter search for
chemical and bio-process optimization. Journal of Global Optimization, 37(3), 481–
503. https://doi.org/10.1007/s10898-006-9075-3

Eidum, D., Asthana, K., Unni, S., Deng, M., & You, L. (2014). Construction, visualization,
and analysis of biological network models in Dynetica. Quantitative Biology, 2(4),
142–150. https://doi.org/10.1007/s40484-014-0036-4

Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology,
35(4), 495–516. https://doi.org/10.1080/01926230701320337

Eydgahi, H., Chen, W. W., Muhlich, J. L., Vitkup, D., Tsitsiklis, J. N., & Sorger, P. K. (2013).
Properties of cell death models calibrated and compared using Bayesian approaches.
Molecular Systems Biology, 9(644), 644. https://doi.org/10.1038/msb.2012.69

Faeder, J. R., Blinov, M. L., & Hlavacek, W. S. (2009). Rule-based modeling of biochemical
systems with BioNetGen. Methods in Molecular Biology (Clifton, N.J.), 500, 113–167.
https://doi.org/10.1007/978-1-59745-525-1_5

Forbes, A. G., Burks, A., Lee, K., Li, X., Boutillier, P., Krivine, J., & Fontana, W. (2017).
Dynamic Influence Networks for Rule-based Models. IEEE Transactions on
Visualization and Computer Graphics, 2626(c).
https://doi.org/10.1109/TVCG.2017.2745280

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.
https://doi.org/10.1016/j.physrep.2009.11.002

Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., & Bader, G. D. (2015). Cytoscape.js:
A graph theory library for visualisation and analysis. Bioinformatics, 32(2), 309–311.
https://doi.org/10.1093/bioinformatics/btv557

Gabadinho, A., Ritschard, G., Studer, M., & Müller, N. S. (2011). Extracting and Rendering
Representative Sequences BT - Knowledge Discovery, Knowlege Engineering and
Knowledge Management (A. Fred, J. L. G. Dietz, K. Liu, & J. Filipe (eds.); pp. 94–106).
Springer Berlin Heidelberg.

Gaddy, T. D., Wu, Q., Arnheim, A. D., & Finley, S. D. (2017). Mechanistic modeling
quantifies the influence of tumor growth kinetics on the response to anti-angiogenic
treatment. PLoS Computational Biology, 13(12), 1–23.
https://doi.org/10.1371/journal.pcbi.1005874

Garrido, C., Galluzzi, L., Brunet, M., Puig, P. E., Didelot, C., & Kroemer, G. (2006).
Mechanisms of cytochrome c release from mitochondria. Cell Death &
Differentiation, 13(9), 1423–1433. https://doi.org/10.1038/sj.cdd.4401950

Gayvert, K. M., Aly, O., Platt, J., Bosenberg, M. W., Stern, D. F., & Elemento, O. (2017). A
Computational Approach for Identifying Synergistic Drug Combinations. PLOS
Computational Biology, 13(1), e1005308. https://doi.org/10.1371/journal.pcbi.1005308

105

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7(4), 457–472. https://doi.org/10.1214/ss/1177011136

Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences of the United States of
America, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799

Gizzatkulov, N. M., Goryanin, I. I., Metelkin, E. A., Mogilevskaya, E. A., Peskov, K. V, &
Demin, O. V. (2010). DBSolve Optimum: a software package for kinetic modeling
which allows dynamic visualization of simulation results. BMC Systems Biology, 4(1),
109. https://doi.org/10.1186/1752-0509-4-109

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., & Sethna, J. P.
(2007a). Universally sloppy parameter sensitivities in systems biology models. PLoS
Computational Biology, 3(10), 1871–1878. https://doi.org/10.1371/journal.pcbi.0030189

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., & Sethna, J. P.
(2007b). Universally sloppy parameter sensitivities in systems biology models -
Supporting Text 3 : Fragility of Other Predictions Fraction of Ras active Fraction of
Mek active. PLoS Computational Biology, 3(10), 3–4.

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure,
dynamics, and function using NetworkX. Proceedings of the 7th Python in Science
Conference (SciPy), SciPy, 11–15. https://doi.org/10.1016/j.jelectrocard.2010.09.003

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., …
Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

Harris, L. A., Hogg, J. S., Tapia, J. J., Sekar, J. A. P., Gupta, S., Korsunsky, I., Arora, A.,
Barua, D., Sheehan, R. P., & Faeder, J. R. (2016). BioNetGen 2.2: Advances in rule-
based modeling. Bioinformatics, 32(21), 3366–3368.
https://doi.org/10.1093/bioinformatics/btw469

Harush, U., & Barzel, B. (2017). Dynamic patterns of information flow in complex
networks. Nature Communications, 8(1), 1–11. https://doi.org/10.1038/s41467-017-
01916-3

Heinemann, T., & Raue, A. (2016). Model calibration and uncertainty analysis in signaling
networks. Current Opinion in Biotechnology, 39, 143–149.
https://doi.org/10.1016/j.copbio.2016.04.004

Ho, D. T., Bardwell, A. J., Grewal, S., Iverson, C., & Bardwell, L. (2006). Interacting JNK-
docking sites in MKK7 promote binding and activation of JNK mitogen-activated
protein kinases. The Journal of Biological Chemistry, 281(19), 13169–13179.
https://doi.org/10.1074/jbc.M601010200

106

Holzinger, A. (2016). Interactive machine learning for health informatics: when do we
need the human-in-the-loop? Brain Informatics, 3(2), 119–131.
https://doi.org/10.1007/s40708-016-0042-6

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P.,
Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S., Gilles, E. D.,
Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman, T. C., Hofmeyr, J. H., …
Wang, J. (2003). The systems biology markup language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics, 19(4),
524–531. https://doi.org/10.1093/bioinformatics/btg015

Janes, K. A., Albeck, J. G., Gaudet, S., Sorger, P. K., Lauffenburger, D. A., & Yaffe, M. B.
(2005). Cell signaling: A systems model of signaling identifies a molecular basis set
for cytokine-induced apoptosis. Science, 310(5754), 1646–1653.
https://doi.org/10.1126/science.1116598

Janes, K. A., Reinhardt, H. C., & Yaffe, M. B. (2008). Cytokine-Induced Signaling Networks
Prioritize Dynamic Range over Signal Strength. Cell, 135(2), 343–354.
https://doi.org/10.1016/j.cell.2008.08.034

Janes, K. a, Albeck, J. G., Gaudet, S., Sorger, P. K., Lauffenburger, D. a, & Yaffe, M. B.
(2005). A systems model of signaling identifies a molecular basis set for cytokine-
induced apoptosis. Science (New York, N.Y.), 310(5754), 1646–1653.
https://doi.org/10.1126/science.1116598

Jaqaman, K., & Danuser, G. (2006). Linking data to models: Data regression. Nature
Reviews Molecular Cell Biology, 7(11), 813–819. https://doi.org/10.1038/nrm2030

Jenny, B., Stephen, D. M., Muehlenhaus, I., Marston, B. E., Sharma, R., Zhang, E., & Jenny,
H. (2018). Design principles for origin-destination flow maps. Cartography and
Geographic Information Science, 45(1), 62–75.
https://doi.org/10.1080/15230406.2016.1262280

Jolly, M. K., Kulkarni, P., Weninger, K., Orban, J., & Levine, H. (2018). Phenotypic
plasticity, bet-hedging, and androgen independence in prostate cancer: Role of non-
genetic heterogeneity. Frontiers in Oncology, 8(MAR), 1–12.
https://doi.org/10.3389/fonc.2018.00050

Jordan, J. D., Landau, E. M., & Iyengar, R. (2000). Signaling networks: The origins of
cellular multitasking. Cell, 103(2), 193–200. https://doi.org/10.1016/S0092-
8674(00)00112-4

Jupyter, P., Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., Holdgraf, C.,
Kelley, K., Nalvarte, G., Osheroff, A., Pacer, M., Panda, Y., Perez, F., Ragan-Kelley, B.,
& Willing, C. (2018). Binder 2.0 - Reproducible, interactive, sharable environments
for science at scale. Proceedings of the 17th Python in Science Conference, Scipy, 113–
120. https://doi.org/10.25080/majora-4af1f417-011

107

Kale, J., Osterlund, E. J., & Andrews, D. W. (2017). BCL-2 family proteins: changing
partners in the dance towards death. Cell Death and Differentiation, 25(1), 65–80.
https://doi.org/10.1038/cdd.2017.186

Kantari, C., & Walczak, H. (2011). Caspase-8 and Bid: Caught in the act between death
receptors and mitochondria. Biochimica et Biophysica Acta (BBA) - Molecular Cell
Research, 1813(4), 558–563.
https://doi.org/https://doi.org/10.1016/j.bbamcr.2011.01.026

Kato, T., Tsujimoto, S., & Zuk, A. (2017a). Spectral Analysis of Transition Operators,
Automata Groups and Translation in BBS. Communications in Mathematical Physics,
350(1), 205–229. https://doi.org/10.1007/s00220-016-2702-z

Kato, T., Tsujimoto, S., & Zuk, A. (2017b). Spectral Analysis of Transition Operators,
Automata Groups and Translation in BBS. Communications in Mathematical Physics,
350(1), 205–229. https://doi.org/10.1007/s00220-016-2702-z

Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., & Poirier, G. G. (1993).
Specific Proteolytic Cleavage of Poly(ADP-ribose) Polymerase: An Early Marker of
Chemotherapy-induced Apoptosis. Cancer Research, 53(17), 3976–3985.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Neural Networks, 1995.
Proceedings., IEEE International Conference On, 4, 1942–1948 vol.4.
https://doi.org/10.1109/ICNN.1995.488968

Keshet, Y., & Seger, R. (2010). The MAP Kinase Signaling Cascades: A System of Hundreds
of Components Regulates a Diverse Array of Physiological Functions. In R. Seger
(Ed.), MAP Kinase Signaling Protocols: Second Edition (pp. 3–38). Humana Press.
https://doi.org/10.1007/978-1-60761-795-2_1

Khalid, S., Drasche, A., Thurner, M., Hermann, M., Ashraf, M. I., Fresser, F., Baier, G.,
Kremser, L., Lindner, H., & Troppmair, J. (2016). cJun N-terminal kinase (JNK)
phosphorylation of serine 36 is critical for p66Shc activation. Scientific Reports, 6,
20930. https://doi.org/10.1038/srep20930

Kholodenko, B. N., Demin, O. V., Moehren, G., & Hoek, J. B. (1999). Quantification of
short term signaling by the epidermal growth factor receptor. Journal of Biological
Chemistry, 274(42), 30169–30181. https://doi.org/10.1074/jbc.274.42.30169

Kitano, H. (2002). Systems Biology: A brief overview. Science, 295(March), 1662–1664.

Kitano, H., Funahashi, A., Matsuoka, Y., & Oda, K. (2005). Using process diagrams for the
graphical representation of biological networks. Nature Biotechnology, 23(8), 961–
966. https://doi.org/10.1038/nbt1111

Klinke, D. J. (2010). Signal transduction networks in cancer: Quantitative parameters
influence network topology. Cancer Research, 70(5), 1773–1782.
https://doi.org/10.1158/0008-5472.CAN-09-3234

108

Kluyver, T., Ragan-kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley,
K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C.
(2016). Jupyter Notebooks—a publishing format for reproducible computational
workflows. Positioning and Power in Academic Publishing: Players, Agents and
Agendas, 87–90. https://doi.org/10.3233/978-1-61499-649-1-87

Knuth, D. E. (2001). Literate Programming. The Computer Journal, 27(2), 97–111.
http://www.literateprogramming.com/knuthweb.pdf%5Cnpapers2://publication/uui
d/1054D560-6236-44D9-9459-EFC794CD28DF

Kolpakov, F., Akberdin, I., Kashapov, T., Kiselev, L., Kolmykov, S., Kondrakhin, Y.,
Kutumova, E., Mandrik, N., Pintus, S., Ryabova, A., Sharipov, R., Yevshin, I., & Kel, A.
(2019). BioUML: an integrated environment for systems biology and collaborative
analysis of biomedical data. Nucleic Acids Research, 47(W1), W225–W233.
https://doi.org/10.1093/nar/gkz440

König, M., Dräger, A., & Holzhütter, H. G. (2012). CySBML: A cytoscape plugin for SBML.
Bioinformatics, 28(18), 2402–2403. https://doi.org/10.1093/bioinformatics/bts432

Koonin, E., & Aravind, L. (2002). Origin and evolution of eukaryotic apoptosis: the
bacterial connection. Cell Death and Differentiation, 9, 394–404.
https://doi.org/10.1038/sj/cdd/4400991

Lee, M. J., Ye, A. S., Gardino, A. K., Heijink, A. M., Sorger, P. K., MacBeath, G., & Yaffe, M.
B. (2012). Sequential application of anticancer drugs enhances cell death by rewiring
apoptotic signaling networks. Cell, 149(4), 780–794.
https://doi.org/10.1016/j.cell.2012.03.031

Legrain, P., Aebersold, R., Archakov, A., Bairoch, A., Bala, K., Beretta, L., Bergeron, J.,
Borchers, C. H., Corthals, G. L., Costello, C. E., Deutsch, E. W., Domon, B., Hancock,
W., He, F., Hochstrasser, D., Marko-Varga, G., Salekdeh, G. H., Sechi, S., Snyder, M.,
… Omenn, G. S. (2011). The Human Proteome Project: Current State and Future
Direction. Molecular & Cellular Proteomics, 10(7), M111.009993.
https://doi.org/https://doi.org/10.1074/mcp.M111.009993

Lei, K., Nimnual, A., Zong, W.-X., Kennedy, N. J., Flavell, R. A., Thompson, C. B., Bar-Sagi,
D., & Davis, R. J. (2002). The Bax subfamily of Bcl2-related proteins is essential for
apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Molecular and
Cellular Biology, 22(13), 4929–4942. https://doi.org/10.1128/mcb.22.13.4929-4942.2002

Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell,
141(7), 1117–1134. https://doi.org/10.1016/j.cell.2010.06.011

Levchenko, A., & Nemenman, I. (2014). Cellular noise and information transmission.
Current Opinion in Biotechnology, 28C, 156–164.
https://doi.org/10.1016/j.copbio.2014.05.002

Locasale, J. W., Shaw, A. S., & Chakraborty, A. K. (2007). Scaffold proteins confer diverse

109

regulatory properties to protein kinase cascades. Proceedings of the National
Academy of Sciences, 104(33), 13307–13312. https://doi.org/10.1073/pnas.0706311104

Lopez, C. F., Muhlich, J. L., Bachman, J. A., & Sorger, P. K. (2013). Programming biological
models in Python using PySB. Molecular Systems Biology, 9(646), 1–19.
https://doi.org/10.1038/msb.2013.1

Machado, D., Costa, R. S., Rocha, M., Ferreira, E. C., Tidor, B., & Rocha, I. (2011). Modeling
formalisms in systems biology. AMB Express, 1(1), 1–14. https://doi.org/10.1186/2191-
0855-1-45

Madabushi, R., Benjamin, J. M., Grewal, R., Pacanowski, M. A., Strauss, D. G., Wang, Y.,
Zhu, H., & Zineh, I. (2019). The US Food and Drug Administration’s Model-Informed
Drug Development Paired Meeting Pilot Program: Early Experience and Impact.
Clinical Pharmacology and Therapeutics, 106(1), 74–78.
https://doi.org/10.1002/cpt.1457

Mandel, J. J., Fuß, H., Palfreyman, N. M., & Dubitzky, W. (2007). Modeling biochemical
transformation processes and information processing with Narrator. BMC
Bioinformatics, 8(1), 103. https://doi.org/10.1186/1471-2105-8-103

Medley, J. K., Choi, K., König, M., Smith, L., Gu, S., Hellerstein, J., Sealfon, S. C., & Sauro,
H. M. (2018). Tellurium notebooks—An environment for reproducible dynamical
modeling in systems biology. PLoS Computational Biology, 14(6), 1–24.
https://doi.org/10.1371/journal.pcbi.1006220

Mehal, W. Z., Inayat, I., & Flavell, R. A. (2006). Caspases 3 and 7: Key Mediators of
Mitochondrial Events of Apoptosis. Science, February, 847–851.

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar,
Am., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., … Scopatz, A.
(2017). SymPy: symbolic computing in Python. PeerJ Computer Science, 3, e103.
https://doi.org/10.7717/peerj-cs.103

Meza, J. C. (2011). Newton’s method. WIREs Computational Statistics, 3(1), 75–78.
https://doi.org/https://doi.org/10.1002/wics.129

Mitra, E. D., & Hlavacek, W. S. (2019a). Parameter estimation and uncertainty
quantification for systems biology models. Current Opinion in Systems Biology, 18, 9–
18. https://doi.org/10.1016/j.coisb.2019.10.006

Mitra, E. D., & Hlavacek, W. S. (2019b). Parameter estimation and uncertainty
quantification for systems biology models. In Current Opinion in Systems Biology
(Vol. 18, pp. 9–18). Elsevier Ltd. https://doi.org/10.1016/j.coisb.2019.10.006

Mitra, E. D., Suderman, R., Colvin, J., Ionkov, A., Hu, A., Sauro, H. M., Posner, R. G., &
Hlavacek, W. S. (2019). PyBioNetFit and the Biological Property Specification
Language. IScience, 19, 1012–1036. https://doi.org/10.1016/j.isci.2019.08.045

110

Morange, M. (1998). A history of molecular biology / Michel Morange ; translated by
Matthew Cobb. In Molecular biology. Harvard University Press.

More, J. J. (1978). Levenberg--Marquardt algorithm: implementation and theory. In
Watson G.A. (Ed.), Numerical analysis (Vol. 630). Springer Berlin Heidelberg.
https://doi.org/https://doi.org/10.1007/BFb0067700

Muniyappa, H., & Das, K. C. (2008). Activation of c-Jun N-terminal kinase (JNK) by widely
used specific p38 MAPK inhibitors SB202190 and SB203580: a MLK-3-MKK7-
dependent mechanism. Cellular Signalling, 20(4), 675–683.
https://doi.org/10.1016/j.cellsig.2007.12.003

Murray, P., McGee, F., & Forbes, A. G. (2017a). A taxonomy of visualization tasks for the
analysis of biological pathway data. BMC Bioinformatics, 18(2), 21.
https://doi.org/10.1186/s12859-016-1443-5

Murray, P., McGee, F., & Forbes, A. G. (2017b). A taxonomy of visualization tasks for the
analysis of biological pathway data. BMC Bioinformatics, 18(S2), 21.
https://doi.org/10.1186/s12859-016-1443-5

Neumann, L., Pforr, C., Beaudouin, J., Pappa, A., Fricker, N., Krammer, P. H., Lavrik, I. N.,
& Eils, R. (2010). Dynamics within the CD95 death-inducing signaling complex
decide life and death of cells. Molecular Systems Biology, 6(352), 352.
https://doi.org/10.1038/msb.2010.6

Nobeli, I., Favia, A. D., & Thornton, J. M. (2009). Protein promiscuity and its implications
for biotechnology. Nature Biotechnology, 27(2), 157–167.
https://doi.org/10.1038/nbt1519

Noel, V., Grigoriev, D., & Vakulenko, S. (2011). Tropical geometries and dynamics of
biochemical networks . Application to hybrid cell cycle models . 1–19.

Olivier, B. G., Rohwer, J. M., & Hofmeyr, J. H. S. (2005). Modelling cellular systems with
PySCeS. Bioinformatics, 21(4), 560–561. https://doi.org/10.1093/bioinformatics/bti046

Özören, N., & El-Deiry, W. S. (2002). Defining characteristics of types I and II apoptotic
cells in response to TRAIL. Neoplasia, 4(6), 551–557.
https://doi.org/10.1038/sj.neo.7900270

Paduano, F., & Forbes, A. G. (2015). Extended LineSets: A visualization technique for the
interactive inspection of biological pathways. BMC Proceedings, 9(Suppl 6), 1–13.
https://doi.org/10.1186/1753-6561-9-S6-S4

Parés, F., Gasulla, D. G., Vilalta, A., Moreno, J., Ayguadé, E., Labarta, J., Cortés, U., &
Suzumura, T. (2018). Fluid communities: A competitive, scalable and diverse
community detection algorithm. Studies in Computational Intelligence, 689, 229–240.
https://doi.org/10.1007/978-3-319-72150-7_19

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

111

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12(85), 2825–2830.
http://jmlr.org/papers/v12/pedregosa11a.html

Pennarun, B., Meijer, A., de Vries, E. G. E., Kleibeuker, J. H., Kruyt, F., & de Jong, S. (2010).
Playing the DISC: Turning on TRAIL death receptor-mediated apoptosis in cancer.
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1805(2), 123–140.
https://doi.org/https://doi.org/10.1016/j.bbcan.2009.11.004

Perry, D. K., Smyth, M. J., Stennicke, H. R., Salvesen, G. S., Duriez, P., Poirier, G. G., &
Hannun, Y. A. (1997). Zinc is a potent inhibitor of the apoptotic protease, caspase-3:
A novel target for zinc in the inhibition of apoptosis. Journal of Biological Chemistry,
272(30), 18530–18533. https://doi.org/10.1074/jbc.272.30.18530

Perry, N. A., Kaoud, T. S., Ortega, O. O., Kaya, A. I., Marcus, D. J., Pleinis, J. M., Berndt, S.,
Chen, Q., Zhan, X., Dalby, K. N., Lopez, C. F., Iverson, T. M., & Gurevich, V. V. (2019).
Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal
amplification. Proceedings of the National Academy of Sciences, 116(3), 810–815.
https://doi.org/10.1073/pnas.1819230116

Planck, M., & Luxburg, U. Von. (2006). A Tutorial on Spectral Clustering A Tutorial on
Spectral Clustering. Statistics and Computing, 17(March), 395–416.
https://doi.org/10.1007/s11222-007-9033-z

Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 76(3), 1–11.
https://doi.org/10.1103/PhysRevE.76.036106

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U., & Timmer,
J. (2009). Structural and practical identifiability analysis of partially observed
dynamical models by exploiting the profile likelihood. Bioinformatics, 25(15), 1923–
1929. https://doi.org/10.1093/bioinformatics/btp358

Raue, A., Kreutz, C., Maiwald, T., Klingmuller, U., & Timmer, J. (2011). Addressing
parameter identifiability by model-based experimentation. IET Systems Biology, 5(2),
120–130. https://doi.org/10.1049/iet-syb.2010.0061

Read, M. N., Alden, K., Timmis, J., & Andrews, P. S. (2018). Strategies for calibrating
models of biology. Briefings in Bioinformatics, 21(1), 24–35.
https://doi.org/10.1093/bib/bby092

Rokach, L., & Maimon, O. (2005). Clustering methods. Data Mining and Knowledge
Discovery Handbook, 321–352. https://doi.org/10.1007/0-387-25465-X_15

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20(C), 53–65.

112

https://doi.org/10.1016/0377-0427(87)90125-7

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-
signaling networks derived from multiparameter single-cell data.[see
comment][erratum appears in Science. 2005 Aug 19;309(5738):1187]. Science,
308(5721), 523–529.

Sarah, C. (2017). Cancer: Identifying synergistic drug combinations. In Nature reviews.
Drug discovery (Vol. 16, Issue 5, p. 314). NLM (Medline).
https://doi.org/10.1038/nrd.2017.76

Schaff, J. C., Vasilescu, D., Moraru, I. I., Loew, L. M., & Blinov, M. L. (2016). Rule-based
modeling with Virtual Cell. Bioinformatics, 32(18), 2880–2882.
https://doi.org/10.1093/bioinformatics/btw353

Schreiber, G., Haran, G., & Zhou, H.-X. (2009). Fundamental aspects of protein-protein
association kinetics. Chemical Reviews, 109(3), 839–860.
https://doi.org/10.1021/cr800373w

Sekar, J. A. P., Tapia, J. J., & Faeder, J. R. (2017). Automated visualization of rule-based
models. PLoS Computational Biology, 13(11), 1–23.
https://doi.org/10.1371/journal.pcbi.1005857

Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System
Technical Journal, 27(July 1928), 379–423.

Shockley, E. M., Rouzer, C. A., Marnett, L. J., Deeds, E. J., & Lopez, C. F. (2019). Signal
integration and information transfer in an allosterically regulated network. Npj
Systems Biology and Applications, 5(1). https://doi.org/10.1038/s41540-019-0100-9

Shockley, E. M., Vrugt, J. A., & Lopez, C. F. (2018). PyDREAM: High-dimensional
parameter inference for biological models in python. Bioinformatics, 34(4), 695–697.
https://doi.org/10.1093/bioinformatics/btx626

Singh, R., Letai, A., & Sarosiek, K. (2019). Regulation of apoptosis in health and disease:
the balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology,
20(3), 175–193. https://doi.org/10.1038/s41580-018-0089-8

Smith, A. M., Xu, W., Sun, Y., Faeder, J. R., & Marai, G. E. (2012). RuleBender: integrated
modeling, simulation and visualization for rule-based intracellular biochemistry.
BMC Bioinformatics, 13(Suppl 8), S3. https://doi.org/10.1186/1471-2105-13-S8-S3

Solania, A., González-Paéz, G. E., & Wolan, D. W. (2019). Selective and Rapid Cell-
Permeable Inhibitor of Human Caspase-3. ACS Chemical Biology, 14(11), 2463–2470.
https://doi.org/10.1021/acschembio.9b00564

Sorger, P. K., Allerheiligen, S. R. ., Abernethy, D. R., Altman, R. B., Brouwer, K. L. .,
Califano, A., D’Argenio, D. Z., Iyengar, R., Jusko, W. J., Lalonde, R., Lauffenburger, D.
A., Shoichet, B., Stevens, J. L., Subramaniam, S., Van der Graaf, P., & Vicini, P. (2011).

113

Quantitative and Systems Pharmacology in the Post-genomic Era: New Approaches
to Discovering Drugs and Understanding Therapeutic Mechanisms (National
Institutes of Health, Bethesda, MD, 2011). In National Institutes of Health.
https://doi.org/10.12693/APhysPolA.102.295

Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M., & Sorger, P. K. (2009). Non-genetic
origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature, 459(7245), 428–
432. https://doi.org/10.1038/nature08012

Stites, E. C., Aziz, M., Creamer, M. S., Von Hoff, D. D., Posner, R. G., & Hlavacek, W. S.
(2015). Use of mechanistic models to integrate and analyze multiple proteomic
datasets. Biophysical Journal, 108(7), 1819–1829.
https://doi.org/10.1016/j.bpj.2015.02.030

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient Heuristic for
global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4),
341–359. https://doi.org/10.1023/A:1008202821328

Strasen, J., Sarma, U., Jentsch, M., Bohn, S., Sheng, C., Horbelt, D., Knaus, P., Legewie, S.,
& Loewer, A. (2018). Cell-specific responses to the cytokine TGFβ are determined by
variability in protein levels. Molecular Systems Biology, 14(1), e7733.
https://doi.org/10.15252/msb.20177733

Studer, M., & Ritschard, G. (2015). What matters in differences between life trajectories: a
comparative review of sequence dissimilarity measures. Journal of the Royal
Statistical Society: Series A (Statistics in Society), n/a-n/a.
https://doi.org/10.1111/rssa.12125

Suderman, R., Bachman, J. A., Smith, A., Sorger, P. K., & Deeds, E. J. (2017). Fundamental
trade-offs between information flow in single cells and cellular populations.
Proceedings of the National Academy of Sciences, 114(22), 5755–5760.
https://doi.org/10.1073/pnas.1615660114

Sun, J., Garibaldi, J. M., & Hodgman, C. (2012). Parameter estimation using metaheuristics
in systems biology: A comprehensive review. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 9(1), 185–202.
https://doi.org/10.1109/TCBB.2011.63

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic,
M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. von. (2019).
STRING v11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic
Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131

Tiger, C. F., Krause, F., Cedersund, G., Palmér, R., Klipp, E., Hohmann, S., Kitano, H., &
Krantz, M. (2012). A framework for mapping, visualisation and automatic model
creation of signal-transduction networks. Molecular Systems Biology, 8(578), 1–20.
https://doi.org/10.1038/msb.2012.12

114

Tiwari, K., Kananathan, S., Roberts, M. G., Meyer, J. P., Sharif Shohan, M. U., Xavier, A.,
Maire, M., Zyoud, A., Men, J., Ng, S., Nguyen, T. V. N., Glont, M., Hermjakob, H., &
Malik-Sheriff, R. S. (2021). Reproducibility in systems biology modelling. Molecular
Systems Biology, 17(2), 1–7. https://doi.org/10.15252/msb.20209982

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.

Vanlier, J., Tiemann, C. A., Hilbers, P. A. J., & van Riel, N. A. W. (2012). An integrated
strategy for prediction uncertainty analysis. Bioinformatics, 28(8), 1130–1135.
https://doi.org/10.1093/bioinformatics/bts088

Vasilescu, D., Greene, J., Schaff, J. C., Moraru, I. I., & Blinov, M. L. (2018). Molecular
Process Diagram: A precise, scalable and compact visualization of rule-based models.
BioRxiv. https://doi.org/10.1101/503359

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
… Contributors, S. 1. . (2020). SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-
019-0686-2

Voit, E. O., Martens, H. A., & Omholt, S. W. (2015). 150 Years of the Mass Action Law.
PLoS Computational Biology, 11(1), 1–7. https://doi.org/10.1371/journal.pcbi.1004012

Vrugt, J. A., & Ter Braak, C. J. F. (2011). DREAM(D): An adaptive Markov Chain Monte
Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial
posterior parameter estimation problems. Hydrology and Earth System Sciences,
15(12), 3701–3713. https://doi.org/10.5194/hess-15-3701-2011

Vrugt, Jasper A. (2016). Markov chain Monte Carlo simulation using the DREAM software
package: Theory, concepts, and MATLAB implementation. Environmental Modelling
and Software, 75, 273–316. https://doi.org/10.1016/j.envsoft.2015.08.013

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller, A. K.,
Moraru, I. I., Nickerson, D., Sahle, S., Snoep, J. L., & Le Novère, N. (2011).
Reproducible computational biology experiments with SED-ML - The Simulation
Experiment Description Markup Language. BMC Systems Biology, 5(1), 198.
https://doi.org/10.1186/1752-0509-5-198

Weerts, H. H. M., Van den Hof, P. M. J., & Dankers, A. G. (2018). Identifiability of linear
dynamic networks. Automatica, 89, 247–258.
https://doi.org/10.1016/j.automatica.2017.12.013

Westphal, D., Kluck, R. M., & Dewson, G. (2014). Building blocks of the apoptotic pore:
how Bax and Bak are activated and oligomerize during apoptosis. Cell Death &
Differentiation, 21(2), 196–205. https://doi.org/10.1038/cdd.2013.139

Wilkinson, D. J. (2007). Bayesian methods in bioinformatics and computational systems

115

biology. Briefings in Bioinformatics, 8(2), 109–116. https://doi.org/10.1093/bib/bbm007

Xia, T., Van Hemert, J., & Dickerson, J. A. (2011). CytoModeler: A tool for bridging large-
scale network analysis and dynamic quantitative modeling. Bioinformatics, 27(11),
1578–1580. https://doi.org/10.1093/bioinformatics/btr150

Yang-Yen, H.-F. (2006). Mcl-1: a highly regulated cell death and survival controller.
Journal of Biomedical Science, 13(2), 201–204. https://doi.org/10.1007/s11373-005-9064-
4

Yao, J., Pilko, A., & Wollman, R. (2016). Distinct cellular states determine calcium
signaling response. MSB, 92093. https://doi.org/10.1101/059287

YIN, X.-M. (2000). Signal transduction mediated by Bid, a pro-death Bcl-2 family
proteins, connects the death receptor and mitochondria apoptosis pathways. Cell
Research, 10(3), 161–167. https://doi.org/10.1038/sj.cr.7290045

Yoon, S. O., Park, D. J., Ryu, J. C., Ozer, H. G., Tep, C., Shin, Y. J., Lim, T. H., Pastorino, L.,
Kunwar, A. J., Walton, J. C., Nagahara, A. H., Lu, K. P., Nelson, R. J., Tuszynski, M.
H., & Huang, K. (2012). JNK3 perpetuates metabolic stress induced by Aβ peptides.
Neuron, 75(5), 824–837. https://doi.org/10.1016/j.neuron.2012.06.024

Zhan, X., Kaoud, T. S., Kook, S., Dalby, K. N., & Gurevich, V. V. (2013). JNK3 enzyme
binding to arrestin-3 differentially affects the recruitment of upstream mitogen-
activated protein (MAP) kinase kinases. Journal of Biological Chemistry, 288(40),
28535–28547. https://doi.org/10.1074/jbc.M113.508085

Zhan, X., Kook, S., Gurevich, E. V, & Gurevich, V. V. (2014). Arrestin-dependent activation
of JNK family kinases. Handbook of Experimental Pharmacology, 219, 259–280.
https://doi.org/10.1007/978-3-642-41199-1_13

Zheng, L.-S., Zhang, Y.-Y., Wu, J.-W., Wu, Z., Zhang, Z.-Y., & Wang, Z.-X. (2012). A
continuous spectrophotometric assay for mitogen-activated protein kinase kinases.
Analytical Biochemistry, 421(1), 191–197. https://doi.org/10.1016/j.ab.2011.11.018

Zhou, H.-X., Rivas, G., & Minton, A. P. (2008). Macromolecular Crowding and
Confinement: Biochemical, Biophysical, and Potential Physiological Consequences.
Annual Review of Biophysics, 37(1), 375–397.
https://doi.org/10.1146/annurev.biophys.37.032807.125817

Zhou, H. X. (2010). Rate theories for biologists. Quarterly Reviews of Biophysics, 43(2),
219–293. https://doi.org/10.1017/S0033583510000120

Zhou, P., Qian, L., Kozopas, K. M., & Craig, R. W. (1997). Mcl-1, a Bcl-2 family member,
delays the death of hematopoietic cells under a variety of apoptosis-inducing
conditions. Blood, 89(2), 630–643. http://www.ncbi.nlm.nih.gov/pubmed/9002967

Zou, H., Yang, R., Hao, J., Wang, J., Sun, C., Fesik, S. W., Wu, J. C., Tomaselli, K. J., &
Armstrong, R. C. (2003). Regulation of the Apaf-1/caspase-9 apoptosome by caspase-3

116

and XIAP. Journal of Biological Chemistry, 278(10), 8091–8098.
https://doi.org/10.1074/jbc.M204783200

