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CHAPTER I

Estimating Productivity in the Presence of Spillovers: Firm-level Evidence from the US Production Network

I.1 Introduction
Production function estimation is at the heart of a number of important questions in economics. From examining
changes to market power, assessing the impact of trade liberalization, to decomposing the sources of aggregate produc-
tivity growth, understanding firms’ decisions and their implications on market outcomes often hinges on the accurate
measurement of total factor productivity (TFP).

A significant finding of the literature on firm-level productivity is that businesses exhibit marked differences in
TFP, even within narrowly-defined industries, and a vast body of work seeks to explain this dispersion.1 One possible
explanation is that firms may affect each other in ways that do not show up in the prices of intermediate goods and
services; they may experience spillovers from knowledge transfers or agglomeration externalities. For example, in
the trade literature, firms have been found to impact the productivity of counterparts through activities such as foreign
direct investment (FDI) and exporting.2 Javorcik (2004) finds that FDI in Lithuania has a positive effect on the
productivity of domestic firms through backward linkages, while Keller and Yeaple (2009) document the existence
of horizontal spillovers from multinationals to US firms. Likewise, Alvarez and López (2008) provide evidence from
Chile of positive productivity spillovers from domestic and foreign-owned exporters on their suppliers, and Alfaro-
Urena et al. (2019) finds TFP gains of 6− 9% among Costa Rican firms after they begin to supply to multinational
corporations.

My paper quantifies the transmission of productivity gains through buyer-supplier relationships in the United
States, and examines how the existence of spillovers affects the measurement of TFP. I consider spillovers not just from
firm activities, but directly from productivity as well. A firm’s TFP could increase or decline due to the productivity of
the firms with which it has a relationship. The expected direction of this effect is not immediately clear: firms could
learn from their peers and become more productive or might free-ride on their trading partners’ efficiency. Empirical
investigations into direct efficiency spillovers are relatively new. Serpa and Krishnan (2018) examine this question
with data on firm-level buyer-supplier relationships in the US, while Bazzi et al. (2017) use input-output matrices to
construct measures of the relationships between Indonesian firms. Both studies find that firms enjoy significant boosts
to productivity from their relationships with more productive counterparts.

However, an important gap exists in the literature on productivity spillovers. Many studies assess the existence of
spillovers using TFP estimates obtained from semi-parametric proxy variable/control function approaches. Introduced
by Olley and Pakes (1996) and refined in Levinsohn and Petrin (2003), Wooldridge (2009) and Ackerberg et al. (2015)
(hereafter OP, LP, Wooldridge and ACF respectively), these methods rely on an assumption that a firm’s future produc-
tivity depends only on its own past productivity and characteristics. Alternative methods like Gandhi et al. (2020) rely
on first order conditions for identification, but still rely on the same assumption on the productivity evolution process.
This implies that each firm’s productivity evolves independently, and implicitly rules out the existence of anticipated
spillovers.

The contributions of this paper are three-fold. First, I show that when productivity spillovers exist, failing to
account for this interdependence could lead to biased estimates of production function elasticities and TFP. Using
Monte Carlo experiments, I demonstrate that input elasticities are generally not consistent when the law of motion for
productivity precludes spillovers. As De Loecker (2013), De Loecker et al. (2016), and Garcia-Marin and Voigtländer

1See Syverson (2011) for a review.
2See Keller (2010) for a review of the evidence on spillovers from FDI and exporting.
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(2019) point out, our conclusions about what drives changes in productivity are sensitive to how it is measured.
De Loecker (2013) shows that measuring TFP under standard assumptions can lead us to underestimate the impact
of exporting on productivity. In Garcia-Marin and Voigtländer (2019), the downward bias in learning-by-exporting
estimates comes from revenue-based productivity measures that cannot disentangle the lower prices firms charge upon
entry into export markets from their increased efficiency. Unfortunately, the direction of bias in spillover estimates
is not so clear-cut. I find that, depending on the structure of the network and persistence of productivity over time,
estimating spillovers on mismeasured TFP can lead us to overestimate network effects in some cases and underestimate

them in others.
Secondly, I propose a modification to standard control function and first order condition approaches that flexibly

accounts for the presence of spillovers. To do so, I apply results from the peer effects and spatial econometrics
literatures Lee (2003); Bramoullé et al. (2009); Lee and Yu (2016), with an important distinction: these papers deal
with outcomes that are observed, whereas I jointly estimate the outcome and spillovers. This comes at the cost of a
few additional assumptions that are, nonetheless, compatible with both the standard production function and network
effects frameworks. An advantage of the proposed method is that, even in the absence of spillovers, the estimator does
not generate spurious network effects and provides consistent, albeit less precise, estimates of the input elasticities.
It can also accommodate confounders such as common shocks to firms in the same network and the endogeneity of
network formation. I extend the framework to examine heterogeneous spillovers in the manner of Dieye and Fortin
(2017) and Patacchini et al. (2017), that vary by the nature of the relationship between firms and their characteristics.

Third, I apply this methodology to examine the transmission of efficiency gains through the production network
of publicly listed firms in the United States from 1977 to 2016. I find evidence of positive productivity spillovers,
with a stronger impact from suppliers to customers, and substantial heterogeneity by sector and firm size. Estimates
suggest that if the most connected firm in a given year was 10 percent more productive, spillovers would lead to an
increase in aggregate TFP of 0.2 to 1.9 percent. Furthermore, the cumulative impact of spillovers over time implies
that the average firm in 1978 would be 16 percent more productive by 2016 due to spillovers alone. Decomposing
the spillovers by sector, shows that electronics manufacturers have benefited from almost all other sectors and while
retailers are important sources of efficiency gains.

My results highlight an additional channel for industrial policy to affect economic growth. Given that a substantial
portion of these spillovers can be attributed to distribution and information technology, policymakers could target
high-growth sectors that can generate these second-order effects. Furthermore, the centrality of a few firms to the
production network suggests that policies adversely impacting such firms could have broader negative ramifications
for the US economy.

In the next section, I describe the data and features of the sample of the US production network that I observe.
Section I.3 presents my empirical framework and discusses the biases that arise from ignoring spillovers in the standard
control function approach. In section I.4, I propose a procedure for estimating production functions in the presence of
various network effects and clarify the assumptions needed to obtain valid estimates. I introduce a model of network
formation in section I.5 to account for endogenous network selection. Section I.6 demonstrates the advantages of
my approach over existing methods using Monte Carlo experiments. I consider extensions to the benchmark model
including a gross output production function in section I.7. Section I.8 presents my empirical results and section I.9
concludes.

I.2 Data: The US Production Network
I begin by describing the data with which I characterize the firm-level production network within the United States,
to highlight features that will be important for my empirical methodology. To examine the magnitude and origins
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of productivity spillovers in the US, I rely on a panel of publicly-listed firms in the Compustat database from 1977
to 2016. Compustat collects companies’ financial statements from form 10-K reports filed with the US Securities
and Exchange Commission (SEC). This provides detailed information on firms’ sales, capital stock, expenses and
employees. I supplement this with industry-level deflators and wages from the US Bureau of Economic Analysis
(BEA) to construct the necessary variables for estimating a production function.3

Information on buyer-supplier links also comes from 10-K reports. Statement no. 14 issued in December 1976 by
the Financial Accounting Standards Board (FASB) requires each firm to report any customers that are responsible for
10% or more of its sales within a fiscal year. I conservatively match the reported customer names to company financial
data. The resulting network contains 18,872 unique buyer-supplier pairs and 66,052 dyad-year observations.4

I restrict the firm-level sample to the businesses that either report or are reported as customers, and have positive
values of sales, capital stock, labor and materials. I discard firms in agriculture, forestry and fishing, because these
industries have too few observations in both the firm- and dyad-level datasets. This yields an unbalanced panel of
8,353 firms and 55,047 firm-year observations.

Table I.1 reports average firm characteristics by decade and over the full sample. Due to the nature of the firms in
question, and the restriction to companies with customer or supplier data, firms in the sample tend to be large, averaging
19,000 employees and $6.08 billion in annual sales. Based on the BEA’s classification of large enterprises as firms
employing 500 or more workers, about two-thirds of the sample are large firms. As shown in table I.2, manufacturers
comprise more than half of the firms in the sample. Information and Services are the next largest sectors represented
in the sample.5

The observed sample of the production network is sparse; that is, the number of connections per firm is low.
Figure I.1 shows that firms report 1 or 2 customers on average, while the same customers are reported by about 3 or
4 suppliers. Consistent with the 10% sales reporting requirement, reported customers tend to be large; the average
customer realizes about eight times as much in sales as the average supplier in the data (see figure I.5). This may be
due to two factors: relatively small firms are likely to have major customers and larger firms are likely to be major
customers. However, although the value traded in the average reported relationship is sizable and increases over time,
figure I.2 indicates each individual relationship makes up a declining share of suppliers’ sales.

In figure I.4, I examine features of the network that affect the identification of spillovers within my framework.
Network density, measured by the number of observed links as a fraction of all possible links, does not exceed 0.28%
in any year. The network gets sparser at the beginning of the sample and denser after the mid-90’s. At the same time,
network transitivity, the number of observed triads as a share of all possible triads, trends upwards throughout the
sample, but does not exceed 1.2%. In sections I.3 and I.4, I discuss the importance of density and transitivity for both
the biases in input elasticities from standard approaches and the performance of my proposed estimator.

Each year, the production network is often dominated by a large cluster of firms connected to each other. Figure
I.3 shows that the number of edges in the largest connected component as a share of all edges in the network ranges
from 56 to 70%. This is largely due to the presence of a few well-connected firms while the remainder of the network
consists of peripheral small clusters.

Variations in clustering patterns over time reflect changes in the relative importance of each industry. Figure I.7
reports the 10 most central firms as measured by the number of links a firm has as a share of all observed links. In
the first 10 years of the sample, manufacturers of automotives and other durable goods dominated the list. In the next
decade, AT&T rose to the top of the list, and electronics manufacturers like IBM had begun to emerge. In the 1997-

3See section A.4 in the appendix for further details on variable construction.
4Other studies that have used this dataset to study the US production network include Atalay et al. (2011), Lim et al. (2017) and Serpa and

Krishnan (2018). I am grateful to the authors of Atalay et al. (2011) for graciously sharing their matched buyer-supplier data with me.
5See section A.4 for a full list of industries in each sector.

3



2006, Walmart had risen to the top the list, and while automotive and electronics manufacturers still featured at the top
of the centrality distribution, their centrality had declined relative to earlier decades. By the end of the sample, most
manufacturers had been superseded by retailers and wholesalers had become the most connected firms, with Walmart
continuing to top the list.

Figure I.6 shows the relationship between a firm’s labor productivity, as measured by the natural log of sales per
employee and that of its average buyer or seller. The slope of the fitted regression line is 0.38, indicating a strong
positive correlation between the two quantities. Interpreting this relationship would require distinguishing between
several possible explanations. Foremost is the question of direction: does a firm become more efficient by learning
from its neighbors, or does causation move in the opposite direction? And if a firm is simultaneously affected by and
affecting its partners, how can one pin down the magnitude of the effect? On the other hand, this relationship may
be driven by the sorting of firms; if more productive firms trade with each other, then this correlation is evidence of
network formation rather than spillovers. Yet another possibility is that supply chains are a channel for the transmission
of production and demand shocks, inducing the revenues of connected firms to move in the same direction.

Each of these explanations has different implications for how productivity is measured: if there are spillovers
due to learning, then firms’ input decisions will likely be influenced by the efficiency of their suppliers or buyers,
whereas unanticipated common shocks are unlikely to affect input choices to the same degree. In the next section, I
introduce an empirical framework with the goal of distinguishing between these channels, examining how they impact
the measurement of TFP, and quantifying the direction and magnitude of productivity spillovers.
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Table I.1: Firm Characteristics

1977-1986 1987-1996 1997-2006 2007-2016 Full Sample

Sales 3.29 3.65 6.45 10.57 6.08
(12.27) (14.64) (22.17) (28.9) (21.03)

Sales per 1000 employees 0.29 0.34 0.51 0.83 0.5
(1.16) (0.82) (3.63) (7.19) (4.12)

Value Added 0.93 1.02 1.88 3.47 1.85
(2.9) (3.04) (5.34) (8.23) (5.47)

Capital stock 3.23 3.52 4.89 9.79 5.4
(12.01) (14.49) (18.13) (33.22) (21.41)

Materials 2.53 2.85 4.73 7.12 4.37
(11.06) (13.45) (18.86) (22.98) (17.56)

Employees (thousands) 15.35 13.9 19.15 27.22 18.95
(48.73) (43.41) (61.46) (84.71) (62.02)

Large firm (employees ≥ 500) 0.65 0.63 0.68 0.77 0.68

Observations 10339 15268 15495 13455 54557

This table reports average characteristics of firms in the sample. Standard deviations are in parentheses. All monetary values are in 2009 billion
USD.

Table I.2: Industry Composition

1977-1986 1987-1996 1997-2006 2007-2016 Full Sample

Mining 9.2 5.8 4.0 7.4 6.3
Utilities 6.9 5.3 2.8 3.4 4.4
Construction 0.9 0.8 0.9 1.0 0.9
Durables Manufacturing 25.4 21.4 19.1 16.8 20.4
Non-Durables Manufacturing 17.6 17.7 18.6 19.7 18.4
Electronics Manufacturing 14.9 17.9 19.7 16.8 17.6
Wholesale 3.3 4.7 4.3 3.7 4.1
Retail 3.6 4.3 4.6 4.7 4.4
Transport and Warehousing 4.4 3.3 3.4 4.3 3.8
Information 5.5 8.9 10.5 10.2 9.0
Finance, Insurance & Real Estate 2.7 2.8 3.3 4.9 3.5
Services 5.6 7.1 8.9 6.9 7.3

Total 100 100 100 100 100

This table reports the distribution of firms in the sample by primary sector as determined by the BEA industry classification.
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Figure I.1: Average Firm Degree
This figure shows annual average out- and in-degrees (customers
and suppliers) for firms in the sample.

Figure I.2: Value Traded in Relationships
This figure shows the annual average value traded by each buyer-
supplier pair in nominal Million USD and as share of the each
seller’s total sales.

Figure I.3: Network Clustering and Components
This figure shows the number of connected components and the
largest component as share of all edges in the network sample over
time.

Figure I.4: Network Density and Transitivity
This figure shows the density and transitivity of the network sample
over time.

Figure I.5: Customer and Supplier Sales
This figure shows annual average sales (in 2009 Billion USD) of
firms reporting and reported as customers in the sample.

Figure I.6: Relationship between Labor Productivity of
Firms and their Trading Partners
This figure shows the relationship between the labor productivity of
a firm and its buyers and suppliers. The slope of the fitted regression
line is 0.38.
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Figure I.7: Firm Centrality
This figure shows the top 10 firms by average centrality in each period.
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I.3 Empirical Framework
Consider a production technology for firm i in period t in which productivity is Hicks-neutral:

Yit = F(Lit ,Kit)eωit+εit (I.1)

where output Yit is a function of labor, Lit and capital, Kit . Output is shifted by an exogenous shock eεit independent
of all variables known to the firm by the end of the period, the information set It . eωit is firm-specific TFP that
is unobserved by researchers but known to the firm when making production decisions. F(·) is known up to some
parameters. Taking the natural log of (I.1) yields:

yit = f (Lit ,Kit)+ωit + εit (I.2)

The main limitation to estimating f (·) is a simultaneity problem: firms choose their inputs based on the realization
of ωit . Therefore, simply regressing a firm’s output on its inputs would lead to a biased estimate of f (·).

To address this issue, the control function/proxy variable approach makes a set of assumptions on timing, a proxy
variable and how productivity evolves over time. The existence of spillovers primarily poses a problem for the last set
of assumptions. Productivity is typically assumed to follow a first-order Markov process:

ωit = h(ωit−1)+ηit (I.3)

where h(·) is unknown and ηit is mean independent of firm’s information set at the beginning of the period It−1.
Suppose instead that ωit is affected by some other firm j either through its past decisions xxx jt−1 and/or its current
productivity ω jt :

ωit = h(ωit−1,xxx jt−1,ω jt)+ζit (I.4)

where E[ζit |It−1] = 0. The effect of xxx jt−1 represents spillovers from firm j′s activities such as research and develop-
ment (R&D), FDI, exporting, etc. The inclusion of ω jt indicates that j being more productive could contemporane-
ously influence i’s productivity. Since firm j’s TFP is also determined by its past productivity ω jt , this representation
indirectly allows for spillovers from productivity to occur with a one-period lag, but also accommodates the possibility
that firm i is also affected by random shocks to j’s productivity, ζ jt within the same period. In addition, it enables
researchers to differentiate between direct effects of firm activities

When researchers estimate TFP under the assumption in (I.3) whereas the true process is represented by (I.4),
then the effect of firm j on i is attributed to ηit , which now violates the conditional independence assumption. In the
following subsections, I examine the biases arising from standard control function approaches in greater detail.

Accounting for xxx jt−1 is fairly straightforward if we assume that it is known to i at the beginning of the period;
that is, xxx jt−1 ∈ It−1. However, ω jt poses a more serious problem because it is jointly realized with ωit and cannot
therefore be assumed to be in It−1. In section I.4, I outline the assumptions needed to properly account for the effect
of ω jt on ωit when estimating production functions.
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I.3.1 Control Function Approach
Suppose f (·) takes the form of a simple Cobb-Douglas production function as in Ackerberg et al. (2015):6

yit = α``it +αkkit +ωit + εit (I.5)

where yit ,kit , and `it are the logs of value-added7, capital and labor respectively. Obtaining consistent estimates of ααα

and ωit requires three sets of assumptions.
The first relates to the timing of firms’ decisions. Capital is a state variable, determined in the preceding period as

a deterministic function of the firm’s previous capital stock and its investment decision: kit = κ(kit−1, iit−1). Labor, on
the other hand, may or may not have dynamic implications. It may be fully adjustable and chosen after productivity
is realized, or partly (or wholly) determined in the previous period. It, however, needs to be chosen prior to the inter-
mediate input decision. Based on its current capital stock, workforce and productivity, the firm chooses intermediate
inputs according to the following function:

mit =M(kit , `it ,ωit)

Next, one needs to assume that the demand for materials, g(·) is strictly monotonic in productivity, and that
productivity is the only unobservable component of the input demand function. This guarantees that TFP can be
expressed solely as a function of observables ωit =M−1(kit , `it ,mit). Substituting into the production function yields:

yit = α``it +αkkit +M−1(kit , `it ,mit)+ εit (I.6)

Although αk and α` are not identified in this equation, we can obtain consistent estimates of the firm’s expected
value-added:

E[yit |Iit ] = ϕit = α``it +αkkit +ωit (I.7)

This disentangles productivity from the idiosyncratic shock εit . In order to identify capital and labor elasticities, the
evolution process for productivity must be specified. A standard assumption is that productivity follows a first-order
Markov process given its information set Iit−1 in the previous period:

ωit = h(ωit−1)+ηit (I.8)

where E[ωit |Iit−1] = E[ωit |ωit−1] = h(ωit−1). h(·) is known to the firm but unobserved by the researcher, while ηit is
idiosyncratic. Given (I.7) I can write lagged productivity as:

ωit−1 = ϕit−1−αkkit−1−α``it−1

=⇒ ωit = h(ϕit−1−αkkit−1−α``it−1)+ηit

Substituting into the production function yields:

yit = α``it +αkkit +h(ϕit−1−αkkit−1−α``it−1)+ηit + εit

6I choose ACF because it allows for relatively flexible assumptions on the data-generating process for output, capital, labor and materials.
However, this critique applies more broadly to OP, LP, Wooldridge and first order condition approaches such as Gandhi et al. (2020) that rely on
similar assumptions on the productivity evolution process.

7Output minus intermediate inputs.
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Since E[εit |Iit ] = 0 and E[ηit |Iit−1] = 0 by assumption, then we can identify αk,α` based on the moment restriction:

E[εit +ηit |Iit−1] = E[yit −αkkit −α``it −h(ϕit−1−αkkit−1−α``it−1)|Iit−1] = 0 (I.9)

Using this equation, we can derive moment conditions to estimate the elasticities. Since, there are three unknowns,
(αk,α`,h(·)), a typical set of moments would be:

E[(ηit + εit)kit , `it−1,ϕit−1] = 0 (I.10)

I.3.2 Network Effects
To examine biases due to the existence of spillovers, we need to first understand how network effects are characterized.
Within a given year, relationships between nt firms result in a network. This can be represented by an nt×nt adjacency
matrix At such that Ai j,t = 1 if firm i has a relationship with firm j in that year and zero otherwise. These relationships
could be transactional (i sells inputs to j) or some other form of firm interdependence, such as i and j sharing a board
member. The adjacency matrix need not be symmetric. As is standard in the peer-effects literature, I impose Aii,t = 0
for all i so that a firm cannot have a spillover effect on itself.

In most examples, I focus on buyer-supplier networks, but this framework could apply to other types of inter-firm
relationships.8 Suppose we are interested in how upstream firms are affected by the productivity of their downstream
network. Let Nit be the set of i’s customers in period t and nit = |Nit |.9 We would like to estimate the following
network effects equation:

ωit = β1 +ρωit−1 + xxxit−1βββ xxx +λ
1
nit

∑
j∈Nit

ω jt +
1
nit

∑
j∈Nit

xxx jt−1βββ x̄ + cψt +ζit (I.11)

where xit−1 is a 1× k vector of exogenous firm characteristics that could influence productivity, such as past R&D or
exporting.

In this equation, there are three ways in which firm i’s network could be related to its productivity. In the terminol-
ogy of Manski (1993), the first channel is endogenous network effects: a firm’s productivity is affected by the average
productivity of its neighbors. This is measured by λ .

The second mechanism is contextual effects captured by βββ x̄. Firms may be influenced by the characteristics or
activities of their neighbors. For example, a firm’s R&D could generate positive productivity spillovers on its business
partners.

A firm’s relationships could also result in correlated effects, productivity shocks common to all firms in a network
cluster. Let ψt index the sub-components of a network in period t, that is firms who are at least indirectly connected
to each other. Then cψt is a correlated effect for all firms in component ψt .

An underlying assumption here is that the network is exogenous; that is, firms do not select partners in ways that
are systematically correlated with their productivity. For now, I abstract from network selection and address it in
section I.5.

For the rest of this discussion, it would be convenient to rewrite these equations in matrix notation. Define the

8Provided the network satisfies certain conditions for identification. See the rest of this section for details.
9Note that for some final goods producers and retailers, nit = 0. These firms may not experience spillovers from others, but could still affect

their suppliers.
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interaction matrix Gt as the row-normalized form of At .10 Equation (I.11) can be rewritten as:

ωt = β1ι +ρωt−1 + xxxt−1βββ xxx +λGtωt +Gtxxxt−1βββ x̄ + cψt +ζt (I.12)

The reduced form is as follows:

ωt = (1−λGt)
−1 (

β1ι +ρωt−1 + xxxt−1βββ xxx +Gtxxxt−1βββ x̄ + cψt +ζt
)

(I.13)

|λ |< 1 implies that we can represent (I−λGt)
−1 as a geometric series.

ωt =
∞

∑
s=0

λ
sGs

t
(
β1ι +ρωt−1 + xxxt−1βββ xxx +Gtxxxt−1βββ x̄ + cψt +ζt

)
(I.14)

Bramoullé et al. (2009) prove that (I.12) is identified if the identity matrix I, G and G2 are linearly independent. The
presence of intransitive triads11 guarantees that linear independence holds. Production networks naturally have this
structure because supply-chains tend to be unidirectional. Therefore, if ωt was observed, one could estimate (I.12)
using 2SLS (Lee, 2003; Bramoullé et al., 2009), QMLE (Lee and Yu, 2016) or Bayesian methods in (Goldsmith-
Pinkham and Imbens, 2013).

Measuring productivity adds a layer of complexity to the problem. A typical strategy as in Javorcik (2004) and
Serpa and Krishnan (2018), is to first obtain TFP values by estimating a production function such as using a method
described above, and use these estimates in the network effects equation in (I.12). However, these approaches implic-
itly rule out the presence of spillovers, and the resulting TFP estimates are incompatible with the a wide set of network
models nested in the peer effects model above.

I.3.3 Biases due to Network Effects
When productivity is affected by network effects, the independence assumption on the productivity shock is violated.
However, the impact on the estimation of production function elasticities will differ by the type of effect.

Suppose TFP is estimated under the exogeneity assumption in (I.3) but the true process is given by equation (I.12).
This implies:12

E[ηt |It−1] = xxxt−1βββ xxx +λGtE[ωt |It−1]+Gtxxxt−1βββ x̄ +E[cψt |It−1]

In general, this expression is not equal to zero. xxxt−1 is a source of omitted variable bias but De Loecker (2013) and
Gandhi et al. (2020) show that the productivity process can be modified to account for its impact, as long as xxxt−1 is in
the firm’s information set at the beginning of the period.13 Contextual effects can be accounted for in the same way
under similar assumptions. Provided that network formation is exogenous, including Gtxxxt−1 in equation (I.3) would
eliminate bias from this dimension.

GtE[ωt |It−1] poses a serious challenge because in general, E[ωt |It−1] 6= 0. Consider the correlation between
neighbors’ current productivity and current capital stock. Using the reduced form of Gtωt :

E[Gtωt ◦ kt ] = E[Gt (1−λGt)
−1 (β1ι +ρωt−1 + xxxt−1βββ xxx +Gtxxxt−1βββ x̄ +ζt)◦ kt ]

10Gi j,t = 1/nit if Ai j,t = 1 and zero otherwise.
11An intransitive triad in a graph is a set of nodes i, j,k, such that i is connected to j and j to k, but k is not connected to i.
12Here, I assume that Gt , {ωωω jt−1} j∈Nit and {xxx jt−1} j∈Nit are in firm i’s information set at the beginning of the period. I discuss this assumption

explicitly in the next section.
13For example, as De Loecker (2013) notes, including firm’s current export status would not be valid because that is dependent on productivity

in the same period, but using previous export status would satisfy this condition.
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where ◦ is the Hadamard product.14 Even though capital stock was determined in the previous period, it is still
correlated with current productivity spillovers because productivity persists over time, and investment in the previous
period was a function of productivity at the time. That is k(it) = κ(kt−1, it−1(ωt−1)) and therefore, E[Gtωt × kt ] 6= 0.
The same argument can be made for labor which is a function of productivity in the same period: lt−1(ωt−1) =⇒
E[Gtωt ◦ `t−1] 6= 0.

The direction of bias will depend on the sign and size of λ and the relationship between capital, labor and pro-
ductivity. For example, if networks generate positive productivity externalities and capital stock is increasing in
productivity, then αk will be biased upwards. If λ is small enough, then the size of bias will be minimal. TFP values
will be underestimated but the direction of bias on λ is unclear.

On their own, correlated effects or network fixed effects do not introduce bias in the estimation of αk and α`. Since
the common component shocks are idiosyncratic each period, then kt and `t−1, which were determined in the previous
period are independent of cψt . However, to the extent that network components and links do not vary much over time,
failing to account for cψt t would bias αk and α` estimates.

To illustrate the bias from ignoring endogenous network effects, consider the following process:

ωt = ρ(I−λGt)
−1

ωt−1 +(I−λGt)
−1

ζit = ρ

∞

∑
s=0

λ
sGs

t ωt−1 +
∞

∑
s=0

λ
sGs

t ζit (I.15)

Then the second stage of ACF is equivalent to estimating:15

=⇒ yt = α``t +αkkt +ρ

∞

∑
s=0

λ
sGs

t (yt−1−α``t−1−αkkt−1−ut−1)+
∞

∑
s=0

λ
sGs

t ζt + εt

Let ∆Gxt = xt −ρ ∑
∞
s=0 λ sGs

t xt−1, ∆err
xt = ρ ∑

∞
s=1 λ sGs

t xt−1 and ∆xt = xt −ρxt−1 = ∆Gxt +∆err
xt . This implies:

∆
Gyt = α`∆

G`t +αk∆
Gkt +

∞

∑
s=0

λ
sGs

t ζt +∆
G

εt (I.16)

This is equivalent to the dynamic panel approach in Blundell and Bond (2000). However, growth in output, labor and
capital have been purged of the variation from network effects in the previous period. When we assume no spillovers,
we estimate:

∆yt = α`∆`t +αk∆kt +ut (I.17)

Therefore, in the linear AR1 case, ignoring spillovers is equivalent to introducing non-classical measurement error
into both output and inputs. Bias from ignoring spillovers can also be characterized as an omitted variables problem.
By estimating equation (I.17), where ut = ρ ∑

∞
s=1 λ sGs

t ωt−1 +∑
∞
s=0 λ sGs

t ζt + εt . That is, the standard ACF procedure
succeeds in eliminating the endogeneity problem that arises from input decisions depending on the firm’s own pro-
ductivity, but is unable to account for the influence of its network’s past productivity. In either case, an instrumental
variable approach would help to eliminate the problem. The key would be to find variables that are correlated with
changes to labor and capital but uncorrelated with output, particularly the input choices and output of other firms.

In the OP/LP case where the labor elasticity is consistently estimated in the first stage, the second stage is equivalent

14Element-wise multiplication.
15See section A.1 for derivation.
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to estimating:

∆
Gỹt = αk∆

Gkt +
∞

∑
s=0

λ
sGs

t ζt +∆
G

εt (I.18)

(I.19)

where ỹt = yt − α̂``t . Then by estimating ∆ỹt = αk∆kt +ut under the standard assumption of no-spillovers:

plim α̂k =
cov(∆kt ,∆ỹt)

var(∆kt)
(I.20)

= αk

(
1−ρ

∞

∑
s=1

λ
s cov(∆kt ,Gs

t kt−1)

var(∆kt)

)
+ρ

∞

∑
s=1

λ
s cov(∆kt ,Gs

t ỹt−1)

var(∆kt)
(I.21)

On one hand, αk is re-scaled by the covariance between the firm’s capital growth and its network’s previous capital.
If this covariance is positive, then it would shrink α̂k or even reverse its sign. Higher ρ will increase the attenuation
factor, as will λ if it is positive. When λ is negative, it leads to an alternating series that dampens attentuation. The
network structure also plays a role: when long chains exist, Gs

t kt−1 > 0 even for high values of s. By contrast, a
network in which firms are paired off, so that the longest chain has length 1. Then Gs

t kt−1 = 0 for all s > 1 and
attentuation would be lower under this scenario.

On the other hand, there is another source of bias that depends on the covariance between the firm’s capital growth
and its network’s previous output purged of the variation from labor. When this covariance is positive, α̂k overestimates
αk, and the effects of ρ,λ and Gt now work in the opposite direction. Depending on the signs and magnitudes of these
covariances, it is possible to obtain estimates of αk close to the true value if the two opposing effects cancel out.

Even in this simplified setting, the direction and magnitude of bias are not easily predictable ex-ante. This means
that one cannot merely apply a bias correction to estimates obtained under standard assumptions. It motivates a
modification to the estimation procedure that can flexibly account for a variety of productivity processes and network
effects. I propose a modification to the ACF procedure that achieves this without many additional assumptions.
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I.4 Accounting for Spillovers
I.4.1 Endogenous and Contextual Effects
Assuming network exogeneity and no correlated effects, I write a more general form of the linear-in-means equation
(I.12) above:

ωt = h(ωt−1,xxxt−1,Gtxxxt−1)+λGtωt +ζt (I.22)

Note that h(·) is unknown and can be estimated using a polynomial approximation. This allows for flexible interactions
between ωt−1, xxxt−1 and Gtxxxt−1. The key requirement is that the endogenous effect enters linearly. This leads to the
reduced form:

ωt = (I−λGt)
−1h(ωt−1,xxxt−1,Gtxxxt−1)+(I−λGt)

−1
ζt (I.23)

|λ |< 1 implies that we can approximate (I−λGt)
−1 by a geometric series.

ωt =
∞

∑
s=0

λ
sGs

t h(ωt−1,xxxt−1,Gtxxxt−1)+
∞

∑
s=0

λ
sGs

t ζt (I.24)

This yields a consistent estimate of the conditional expectation of TFP:

E[ωt |It−1] =
∞

∑
s=0

λ
sGs

t h(ωt−1,xxxt−1,Gtxxxt−1) (I.25)

since the resulting error term satisfies the mean independence condition:

E
[
(I−λGt)

−1
ζt
∣∣It−1

]
= E

[
∞

∑
s=0

λ
sGs

t ζt
∣∣It−1

]
= 0

.
Note that equation (I.24) also indicates how λ can be identified. Given the reduced-form equation, Gtωt can be

written as:

Gtωt = Gth(ωt−1,xxxt−1,Gtxxxt−1)+
∞

∑
s=1

λ
sGs+1

t h(ωt−1,xxxt−1,Gtxxxt−1)+
∞

∑
s=0

λ
sGs+1

t ζt (I.26)

As long as productivity is sufficiently persistent, we can use the current network’s past productivity Gtωt−1 as an
instrument for the impact of network’s current productivity Gtωt . This is because a firm is only affected by its current
neighbors’ past productivity through the neighbors’ current productivity. Therefore, λ is identified from the variation
in Gtωt .

Equation (I.26) indicates that there are additional instruments available to identify the endogenous network effect.
These are more common in the network effects literature and rely on the existence of intransitive triads in the network
(Lee, 2003; Bramoullé et al., 2009). For example G2

t ωt and G2
t xxxt−1 is one set of possible instruments because G2

t

captures the neighbors of a firm’s neighbors, and these indirect connections affect the firm only through the firm’s
direct relationships.

Note however, that the relevance of these additional instruments relies on the strength of the endogenous effect.
Whereas Gtωt−1 is a good instrument as long as productivity is persistent, G2

t ωt−1 requires both persistence and
|λ |> 0 while G2

t xxxt−1 requires that both endogenous and contextual network effects be nonzero.
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Substituting the reduced form equation into the vectorized production function:

yt = αkkt +α``t +(1−λGt)
−1 [h(ϕt−1−αkkt−1−α``t−1,xxxt−1,Gtxxxt−1)+ζt ]+ εt (I.27)

which leads to the polynomial expansion:

yt = αkkt +α``t +
∞

∑
s=0

λ
sGs

t h(ϕt−1−αkkt−1−α``t−1,xxxt−1,Gtxxxt−1)+
∞

∑
s=0

λ
sGs

t ζt + εt (I.28)

Accounting for network effects in the estimation procedure comes at the cost of additional assumptions. The first,
as seen above, is that the endogenous effect enters the productivity process linearly. This would not hold if there
were non-monoticities in spillovers. For instance, if firms are likely to free-ride on very productive neighbors and
are also negatively affected by very unproductive networks, but are able to learn from moderately productive firms,
then the linearity assumption would not hold. However, there is reason to believe that linearity is, at the very least, a
good approximation for understanding the network effect and it is a common assumption in the peer effects literature.
Furthermore, one need not assume linearity if endogenous spillovers are not contemporaneous. For example, if we
assume firms are affected by the past productivity of the previous network (Gt−1ωt−1), or the past productivity of
their current network (Gtωt−1), then either of these terms could enter h(·) non-linearly without posing a problem for
identification.

Secondly, we need to assume that {Gi, jt} j∈Nit is in the firm’s information set Iit−1 at the beginning of the period.
This is consistent with a network that is fixed over time: Gt = G ∀ t = 1...T or any network formation processes that
takes place at the beginning of every period before productivity is realized. For example, in the context of production
networks, if all firms choose their suppliers at the beginning of each year, this condition would be met. The key
here is the timing: firms make production decisions based on their realized productivities inclusive of spillovers. In
addition, ω jt−1,xxx jt−1 ∈Iit−1∀ j ∈Nit . That is, firms can observe the past productivity and decisions of their neighbors.
This likely holds true for buyer-supplier relationships in which buyers often do due diligence on future suppliers, and
would need to be examined in other contexts such as geographic proximity, family networks, affiliate relationships,
interlocking boards, and so on.

Third, I assume that correlations between the TFPs of connected firms are generated by spillovers rather than
common shocks. I relax this assumption in the next section.

Finally, this procedure requires that Gt is exogenous, that is, network formation and productivity are not driven by
factors that firms observe but we do not. This assumption can also be relaxed but will require the network formation
process to be specified. I do so in section I.5.

I.4.2 Correlated Effects
Although network fixed effects alone do not bias the estimates of capital and labor elasticities, if endogenous or
contextual spillovers are also present, failing to account for common shocks will lead to the mismeasurement of TFP.
Therefore, given a productivity process with a component-year-specific fixed effect:

ωt = h(ωt−1,xxxt−1,Gtxxxt−1)+λGtωt + cψt +ζt (I.29)

cψt can be eliminated by differencing using a matrix Jt such that Jt)cψt = 0. Bramoullé et al. (2009) suggest two ways
to define Jt . The first is within local differencing by setting Jt = I−Gt . This subtracts the mean of a firm’s neighbors’
variables from the its own. An alternative would be global differencing, which subtracts not just the mean of a firm’s
neighbors, but all the firms in the component. That is, define Jt such that Hi j,t = 1− 1

nψt
if i, j ∈ ψt and 1 otherwise.

Local differencing would suffice in an undirected network because if two firms are linked, then the link is reported
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in Gi j,t and G ji,t . However in directed networks, there may be some firms that are in the same sub-component and are
therefore facing component-specific shocks but ∑ j∈Nit Gi j,t = 0, because the firm only has connections coming from
one direction. For example, in a study of how customers affect the productivity of their suppliers, firm i may be a final
goods producer whose productivity generates upstream spillovers but does not supply to any downstream firms. Yet it
would be exposed to any shocks that affects the entire supply chain. If edges in Gt are classified as links from suppliers
to customers, Gi j,t = 0∀ j and (I−Gt)cψt = cψt . In this case, local differencing would not eliminate the correlated
effect, but global differencing would.

When Jt is chosen appropriately, then transforming equation (I.29) yields:

Jtωt = Jth(ωt−1,xxxt−1,Gtxxxt−1)+λJtGtωt + Jtζt

with the corresponding reduced form:

JtGtωt =
∞

∑
s=0

λ
sJtGs

t h(ωt−1,xxxt−1,Gtxxxt−1)+
∞

∑
s=0

λ
sJtGs

t ζt

Note that differencing the productivity process will require that the production function be transformed as well.
That is:

Jtyt =αkJtkt +α`Jt`t +
∞

∑
s=0

λ
sJtGs

t h(ϕt−1−αkkt−1−α``t−1,xxxt−1,Gtxxxt−1)

+
∞

∑
s=0

λ
sJtGs

t ζt + Jtεt (I.30)

I.4.3 Estimation Procedure
I summarize my benchmark estimation procedure and outline modifications to deal with correlated effects. Estimation
is a two-stage process. The first stage is the same as in Ackerberg et al. (2015). Estimate equation (I.6): yt =

αkkt +α``t +M−1(kt , `t ,mt)+ εt , using a polynomial approximation.16 This yields estimates ϕ̂t = yt − ε̂t .
In the second stage, estimate equation (I.28) by GMM with kt , `t , ϕ̂t−1,Gt ϕ̂t−1 as instruments. Alternatively, to

reduce computational complexity, one can concentrate out the parameters in h(·) and proceed as follows. Start with
guesses of the production function elasticities: α∗k ,α

∗
` and compute ω∗t = ϕ̂t −α∗k kt −α∗` `t . Estimate the productivity

process by 2SLS:

ω
∗
t = h(ω∗t−1,xxxt−1,Gtxxxt−1)+λGtω

∗
t +ut (I.31)

with a polynomial approximation of h(.) and [Gtωt−1,G2
t ωt−1,G2

t xxxt−1] as instruments for Gtωt . Using predicted
values, E[ω∗t |It−1] from the regression, compute the residual in the productivity process:

u∗t = ω
∗
t −h∗(ω∗t−1,xxxt−1,Gtxxxt−1)−λ

∗Gtω
∗
t

Then solve for a new set of (α∗k ,α
∗
` ) that satisfy the sample moment conditions:

Ent [u∗t ◦ kt , `t−1] = 0 (I.32)

Iterate through all steps of the second stage until the parameters converge to values [α̂1, α̂k, α̂l ]. The corresponding

16Like ACF, this estimation procedure can be used with other value-added production function specifications such as the translog.
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second stage parameters, λ̂ and the parameters in ĥ(·) are consistent estimates of network effects. Standard errors can
be obtained by residual-based or vertex bootstrapping. See section A.6 in the appendix for details on bootstrapping
network data.

To account for correlated effects, estimate the first stage as in the benchmark procedure, and apply the Jt transfor-
mation to all variables in the second stage.

I.5 Network Endogeneity
So far, I have assumed that the network is exogenous, but it is also possible that a firm’s productivity may be correlated
with how it forms relationships. This issue is reminiscent of the selection problem in Olley and Pakes (1996) – firms
are only observed if their productivity is above some threshold. In this case, observed interfirm relationships may
depend on TFP. To address this issue, I incorporate the network selection model in Arduini et al. (2015) and Qu et al.
(2017) into the benchmark estimation procedure above.

I.5.1 Network Selection Model
Endogenous network formation as modeled by Qu et al. (2017) and Arduini et al. (2015) highlights a possible link
between a firm’s TFP and the nature of its network. Shocks to productivity are correlated with the chances of meeting
potential partners. For example, firms that are better able to search for buyers or suppliers may also be more productive.
In this case, a positive relationship between a firm’s TFP and its networks’ TFP or choices would be a result of the
improved search rather than any spillovers.17

At the beginning of each period, firms i and j consider the surplus of a link Vi(Ai j,t). Both firms want to form a
link if Vi(Ai j,t = 1)−Vi(Ai j,t = 0)> 0.18 I parametrize this difference in surplus as:

Vi(Ai j,t = 1)−Vi(Ai j,t = 0) =Ui jt(γ)+ξi jt

where ξi jt is i.i.d and follows a logistic distribution.

Ui jt(γ) = γ1 + zzzitγγγ i + zzz jtγγγ j + zzzi jtγγγ i j + γhHi jt (I.33)

Note that despite the slight abuse of notation, γγγ i,,,γγγ j,,,γγγ i j are not random coefficients. They are parameters whose
subscripts denote that they correspond to i, j or the dyad’s characteristics.

zzzit may include ωit−1,xit−1 and other variables such as industry that influence a firm’s relationship decision but may
have no direct impact on productivity. zzzi jt usually includes the distance between i and j’s characteristics: |zzzit − zzz jt | or
some other dyad-specific measures, such as the physical distance between the firms, industry input-output shares, etc.
A negative coefficient on |zzzit − zzz jt | indicates that firm i wants to match with firms that are similar. Hi jt measures past
linkages; a large and positive γh indicates that firm i prefers to stick with its previous partners. Past linkages can be
specified broadly; for instance, Hi jt = Ai j,t−1 would mean that firm i only considers linkages from the previous period,

17Other studies such as Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016) model network endogeneity as a correlation between
unobserved variables in the network selection model and the error term of the outcome equation. The interpretation differs; in this setting selection
would be driven by unobserved synergies such as common business philosophies. If these factors are also correlated with productivity, then
estimated spillovers would capture the effect of assortativity in these unobserved characteristics (see Serpa and Krishnan (2018)) for an application
to productivity spillovers. I choose the Arduini et al. (2015) model for two reasons. First, it allows me to explicitly highlight the dual role that
productivity may play in search and interfirm spillovers. Secondly, the reduction of the problem to a selection correction term preserves the usual
structure of the estimator, while the Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016) relies on Bayesian estimation of a full
likelihood model.

18This model can apply to both directed and undirected networks. For example, in a buyer-supply network, the the surplus from i supplying j
would be considered differently from the reverse direction.
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while Hi jt = 1(∑m
s=1 Ai j,t−s > 0, m≤ t) measures whether i and j were connected in any of the last m periods.19

The probability that a link Ai j,t forms is given by:

P(Ai j,t = 1 |It−1) = P(Ui jt(γ)+ξi jt > 0) =
eUi jt (γ)

1+ eUi jt (γ)

The specified model, coupled with a logistic distribution implies that, conditional on firm and dyad characteristics,
historical connectivity, and the unobserved ξt , the probability that i wants to form a link with j is independent of
its decision to connect with some other firm k. While this may be restrictive, it is analytically and computationally
tractable, and still manages to capture important features of real-world networks.

For example, this model allows for the possibility that a firm can choose multiple partners; i need not prefer j to
all other firms, it just needs to prefer matching with j to not matching. This is useful for characterizing production
networks, in which a non-negligible number of firms trade with more than one partner. As in Goldsmith-Pinkham and
Imbens (2013), this model can also accommodate some interdependence in the linking decision through the choice of
variables such as the number of links in the previous period, whether the firms had neighbors in common etc.

Network endogeneity arises from the relationship between ξi jt and the error term in the productivity process, ζit .
Let ξ

′
it = {ξi jt}nt

j 6=i be a row vector of the error terms from all the dyadic regressions with links originating from i.

(ζit ,ξ
′
it)∼ i.i.d.(0,Σζ ξ ) where Σζ ξ =

(
σ2

ζ
σ
′
ζ ξ

σζ ξ Σξ

)
is positive definite, σ2

ζ
is a scalar, σζ ξ is an nt −1 column vector

of covariances, and Σξ = σ2
ξ

Int−1. Stacking all the ξit ’s in a matrix:

Ξt =


ξ
′
1t
...

ξ
′
nt t


then the error term in the productivity process can be written as:

ζit = Ξtδδδ +νt

where δδδ = Σ
−1
ξ

σζ ξ , νt is independent of ξit and σ2
ν = σ2

ζ
−σ

′
ζ ξ

Σ
−1
ξ

σζ ξ . Therefore, the productivity process becomes:

ωt = h(ωt−1,xxxt−1,Gtxxxt−1)+λGtωt +Ξtδδδ +νt (I.34)

Gt is endogenous when σζ ξ 6= 0 and the selectivity bias is equal to Ξtδδδ .

I.5.2 Accounting for Selection
To the estimate model, assume ζit is normally distributed. Then Arduini et al. (2015) shows that the selectivity bias
can be controlled for using a Heckman-type mills ratio:

µit =
Nt

∑
j 6=i

gi j,t
φ(Φ−1(p))
Φ(Φ−1(p))

+(1−gi j,t)
φ(Φ−1(p))

1−Φ(Φ−1(p))
(I.35)

=
Nt

∑
j 6=i

gi j,t
φ(Φ−1(p))

p
+(1−gi j,t)

φ(Φ−1(p))
1− p

19There are alternative models such as Graham (2017) that include firm-year fixed effects in the dyadic regression model. Estimation of such
models will depend on the sparsity of the network.
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where p = P(Ai j,t = 1 |It−1), and φ and Φ are the probability and cumulative density functions for a standard normal
variable. The i.i.d assumption on ξi jt ’s dispenses with the need to estimate all Nt −1 parameters in δδδ . Instead, due to
the summation above, one only has to estimate a single parameter δ =

σζ ξ

σ2
ξ

.

I.5.3 Estimation Procedure
Incorporating the selection model is similar to the Olley and Pakes (1996) correction for attrition. The first stage
of my benchmark procedure is unchanged with the estimation of ϕ̂it and ε̂it using the proxy variable. In the second
stage, starting with the initial guesses of the labor and capital coefficients (α∗k ,α

∗
` ), compute ω∗it−1 = ϕ̂it−1−α∗k kit−1−

α∗` `it−1.
Using ω∗it−1 and other variables that could determine the observed links between firms, estimate the selection

model in equation (I.33) to obtain γ∗. Next, compute the predicted probabilities p∗ = eUi jt (γ
∗)

1+eUi jt (γ∗)
and the selection

correction term µ∗it = ∑
Nt
j 6=i gi j,t

φ(Φ−1(p∗))
p∗ +(1−gi j,t)

φ(Φ−1(p∗))
1−p∗ . Include this correction term as one of the explanatory

variables in the productivity process equation:

ω
∗
t =

∞

∑
s=0

λ
sGs

t h(ω
∗
t−1,xxxt−1,Gtxxxt−1)+δ

∞

∑
s=0

λ
sGs

t µ
∗
it +ut (I.36)

The resulting residuals are now purged of the omitted variable bias arising from network selection and can be used to
construct the sample moments in (I.31) for identification of the elasticities.20

I.6 Monte Carlo Experiments
I conduct three sets of experiments to assess the performance of the standard ACF estimator and my modified pro-
cedure when various types of network effects are present. In the first set of experiments, I examine how each type
of network effect individually affects the bias and efficiency of capital and labor elasticity estimates obtained using
the ACF procedure. Next, I demonstrate how my modified procedure performs when endogenous, contextual and
correlated effects are cumulatively present and consider the sensitivity of the estimates from my benchmark proce-
dure to misspecification. Finally, I compare the performance of ACF and my benchmark procedure as the size of the
endogenous effect, the persistence of productivity and the density of the network vary.

For all three experiments, I draw a balanced sample of 1000 firms over 10 years. I use a Cobb-Douglas production
function in logs:

yit = α``it +αkkit +ωit + εit

where εit ∼ N (0,σ2
ε ). I set α` = 0.6,αk = 0.4 and σ2

ε = 1.21 The productivity process varies depending on the
experiment. To avoid the impact of arbitrary initial values, I simulate 20 periods and discard the first 10.

To induce variation in cluster (component) size and the length of supply chains, I split the firms into four industries
with 400, 300, 200, and 100 firms in the first, second, third and fourth industries respectively and construct an inter-
industry trade structure as follows: Industry 1 sells 17, 33 and 44 percent of its output to industries 2, 3 and 4
respectively. 2 sells to 50 percent each to 3 and 4, while industry 3 sells all its output to 4. The fourth industry sells

20In principle, the selection model would be re-estimated for each value of ω∗it−1 as the values (α∗k ,α
∗
` ) are updated in each iteration. However,

this significantly increases the computational cost of the procedure. As long as the initial guesses of the elasticities, such as those obtained from an
OLS regression, are reasonably close to their true values measurement error in the lagged TFP variable should not have an outsized effect on the
estimates of the selection correction term. In my Monte Carlo simulations, results were quite similar when selection was estimated only once and
when it was re-estimated in each iteration.

21See section A.2 for further details on the Monte Carlo setup.
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nothing to other firms. This structure is fixed over time, and does not represent the actual network but is a measure of
industry compatibility that I use to generate both exogenous and endogenous networks as described below.22

I.6.1 Experiment 1: Bias in Standard ACF estimates due to Network Effects
I simulate five data generating processes (DGPs) to demonstrate the bias in standard ACF estimates of the input elas-
ticities from each type network effect—endogenous, contextual and correlated—and network endogeneity separately.

The productivity process is:

ωt = β1ι +ρωt−1 +βxxt +λGtωt +βx̄Gtxt + cψt +ζt (I.37)

where ζit ∼ N (0,σ2
ζ
). To induce a non-linear relationship between x and capital, I generate it according to x =

0.5ln(
√

Kt−1)+ x̃, where x̃ ∼N (−2,σ2
x̃ ). Since it depends on Kt−1, it is not correlated with ζt . I set β1 = 0.5,ρ =

0.6,βx = 0.4,σ2
ζ
= 1.25, and σ2

x̃ = 5.
For DGPs 1 to 4, I generate an exogenous directed network in each period by randomly assigning links with

probability P(Ai jt = 1) = indsharei j
indsize j

where indsharei j is the compatibility of i and j’s industries obtained from the
industry compatibility matrix described above, while indsize j is the number of firms in j’s industry. DGP 1 has no
network effects (λ = 0,βx̄ = 0,cψt = 0) and exogenous network formation, and ACF estimates should be consistent.
DGP 2 features only the endogenous effect (λ = 0.3,βx̄ = 0,cψt = 0) while DGP 3 features only the contextual effect
(λ = 0,βx̄ = 0.3,cψt = 0). In DGP 4, I draw component fixed effects in each period from a normal distribution with a
mean of 1 and a standard deviation of 1 (λ = 0,βx̄ = 0,cψt N (1,1)). For DGP 5, I start with an exogenous network in
the first period, then simulate future networks using the model in section I.5 with the coefficient of the selection term
δ =

σζ ξ

σ2
ξ

= 0.003, while there are no other network effects (λ = 0,βx̄ = 0,cψt = 0).

I estimate the production function using standard ACF with a second-degree polynomial approximation in the first
and second stages. The results are shown in table I.3. The largest bias comes from the presence of an endogenous
effect. It leads to a capital coefficient estimate that is almost 25% higher than the true value. In comparison, a
contextual effect of the same size has a negligible impact on the capital coefficient. As expected, correlated effects
reduce precision but do not have a sizable impact on bias. In the absence of any other network effects, endogenous
network formation has no impact on bias or efficiency of the estimated input elasticities. Therefore, of all the network
effects, ignoring endogenous spillovers introduces the greatest bias in the production function elasticities.

22I have set up data-generating processes for my Monte Carlo experiments to be as simple as possible while allowing for network effects.
However, it is worth noting that these DGPs do not reflect important features of firm-level empirical data, particularly fat-tailed productivity and
network degree distributions. Exploring how these features would affect bias and precision on my estimator is left for future work.
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Table I.3: Bias due to Network Effects with Standard ACF Procedure

DGP α` αk

True values 0.6 0.4

No network effects Mean 0.599 0.4
Std. Dev. (0.025) (0.061)

Endogenous Effect (λ = 0.3) Mean 0.596 0.495
Std. Dev. (0.032) (0.066)

Contextual Effect (βx̄ = 0.3) Mean 0.598 0.414
Std. Dev. (0.04) (0.063)

Correlated Effect (cψt ∼N (1,1)) Mean 0.58 0.38
Std. Dev. (0.171) (0.271)

Endogenous Network
(

σζ ξ

σ2
ξ

= 0.003
)

Mean 0.6 0.391

Std. Dev. (0.014) (0.082)

Based on 1000 replications.This table reports production function elasticites obtained using the procedure in Ackerberg et al.
(2015). Each row includes a separate network effect in the law of motion on productivity.

I.6.2 Experiment 2: Comparison of Estimates from Standard and Modified ACF Procedures
Next, I compare the performance my estimator against standard ACF in table I.4 using four DGPs. The Monte Carlo
setup is essentially the same as in experiment 1 above. However, I introduce network effects cumulatively rather
than individually. DGP 1 favors the ACF procedure with no network effects and exogenous network formation, while
DGP 2 introduces both endogenous and contextual network effects. DGP 3 is similar to the second DGP but with the
addition of correlated effects, while DGP 4 has all the previous network effects with endogenous network formation.

I consider 4 estimators. The first is a standard ACF that assumes no network effects. Using the TFP measure
obtained from ACF, I estimate network effects with the generalized 2SLS procedure described in section I.4.3. This
is the approach typically used in empirical studies of productivity spillovers. ACF-N is my modified procedure that
jointly estimates productivity and network effects. ACF-ND uses global differencing to eliminate correlated effects,
and ACF-NDS accounts for selection using the network formation model in section I.5.3. All estimators use a second-
degree polynomial in capital, labor and materials in the first stage, and a linear productivity process in the second.

Under DGP 1, all estimators perform well when estimating both the production function and the productivity pro-
cess. Furthermore, precision is not diminished. It is important to note that allowing for spillovers under the modified
procedure does not introduce spurious network effects. With the combined impact of endogenous and contextual
effects in DGP 2, ACF significantly overestimates the capital coefficient but still gives reasonable estimates of net-
work effects in the productivity process, although the endogenous effect is slightly overestimated. All three modified
procedures yield estimates of the input elasticities that are close to the truth but slightly underestimate λ .

When there are network fixed effects, my benchmark procedure, ACF-N overestimates the labor coefficient and
underestimates capital elasticity, the persistence parameter, and the endogenous effect. In these respects, ACF performs
better because when correlated effects are unaccounted for, all network terms containing Gt introduce bias because they
are correlated with the error term. Differencing improves both consistency and precision, with standard deviations up
to 60 times smaller than under ACF and ACF-N. Bias due to endogenous network formation is negligible, presumably
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Table I.4: Comparison of Estimates from Standard ACF and Modified ACF Procedures

DGP Estimator
Elasticities Productivity Process Coefficients

α` αk ρ βx βx̄ λ
σζ ξ

σ2
ξ

DGP 1

True values 0.6 0.4 0.6 0.4 0.0 0.0 0.0

ACF Mean 0.599 0.4 0.6 0.401 0. -0.001
Std. Dev. (0.025) (0.061) (0.015) (0.026) (0.009) (0.01)

ACF-N Mean 0.602 0.392 0.601 0.398 0. -0.001
Std. Dev. (0.018) (0.061) (0.016) (0.019) (0.009) (0.01)

ACF-ND Mean 0.603 0.389 0.601 0.397 -0. -0.
Std. Dev. (0.024) (0.064) (0.016) (0.024) (0.01) (0.011)

ACF-NDS Mean 0.603 0.39 0.601 0.397 -0. 0. -0.
Std. Dev. (0.024) (0.064) (0.016) (0.025) (0.01) (0.012) (0.002)

DGP 2

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.0

ACF Mean 0.595 0.516 0.556 0.402 0.092 0.332
Std. Dev. (0.035) (0.07) (0.017) (0.035) (0.016) (0.042)

ACF-N Mean 0.601 0.401 0.596 0.399 0.121 0.242
Std. Dev. (0.018) (0.046) (0.016) (0.018) (0.013) (0.026)

ACF-ND Mean 0.602 0.398 0.595 0.397 0.118 0.249
Std. Dev. (0.028) (0.055) (0.016) (0.028) (0.014) (0.026)

ACF-NDS Mean 0.602 0.396 0.596 0.397 0.115 0.257 -0.004
Std. Dev. (0.027) (0.055) (0.016) (0.028) (0.014) (0.026) (0.002)

DGP 3

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.0

ACF Mean 0.616 0.496 0.479 0.362 0.121 0.357
Std. Dev. (0.169) (0.417) (0.171) (0.161) (0.102) (0.496)

ACF-N Mean 0.741 0.162 0.514 0.257 0.082 0.222
Std. Dev. (0.154) (0.215) (0.269) (0.154) (0.072) (0.62)

ACF-ND Mean 0.614 0.368 0.605 0.385 0.109 0.266
Std. Dev. (0.032) (0.052) (0.017) (0.032) (0.012) (0.018)

ACF-NDS Mean 0.614 0.368 0.605 0.385 0.108 0.269 -0.002
Std. Dev. (0.032) (0.052) (0.018) (0.032) (0.012) (0.018) (0.002)

DGP 4

True values 0.6 0.4 0.6 0.4 0.1 0.3 0.003

ACF Mean 0.607 0.35 0.603 0.374 0.128 0.255
Std. Dev. (0.138) (0.239) (0.147) (0.166) (0.109) (0.122)

ACF-N Mean 0.705 0.183 0.637 0.291 0.067 0.236
Std. Dev. (0.137) (0.213) (0.184) (0.142) (0.056) (0.2)

ACF-ND Mean 0.619 0.368 0.61 0.383 0.091 0.281
Std. Dev. (0.073) (0.116) (0.056) (0.07) (0.023) (0.037)

ACF-NDS Mean 0.621 0.362 0.612 0.38 0.09 0.28 0.001
Std. Dev. (0.078) (0.129) (0.064) (0.076) (0.026) (0.037) (0.002)

Based on 1000 replications. Estimators are based on Ackerberg et al. (2015) with ACF denoting the standard procedure, while N, D, and S indicate
modifications to account for network effects, network differencing, and network selection respectively. Data generating processes are outlined above
(see appendix A.2 for details). DGP1 has no network effects, DGP2 has correlated and endogenous effects, DGP3 includes correlated, endogenous
and network fixed effects, while DGP4 features all 3 network effects and an endogenous network formation process.
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because the coefficient
σζ ξ

σ2
ξ

on the omitted variable, is small. Other than reduced precision when compared with ACF-

ND, estimates of the productivity process and input elasticities are not different from when selection is accounted for
with ACF-NDS.

I.6.3 Experiment 3: Effect of Network Density on Bias and Precision
Since the first experiment shows that most important source of bias is the endogenous effect, I further explore how
precision and consistency vary with network density in the presence of an endogenous spillover. I employ a quadratic
AR1 process for productivity:

ωt = β1 +ρ1ωt−1 +ρ2ω
2
t−1 +λGtωt +ζt (I.38)

where ζit ∼ N (0,σ2
ζ
). I set β1 = 0.5,ρ2 = −0.01, and σ2

ζ
= 5. The quadratic term is necessary to explore high

values of λ and ρ1. If productivity is persistent and the endogenous spillover is also large, then simulated values
of productivity grow quite large for some firms, and the resulting investment series soon tends to infinity for highly
productive firms.23. The quadratic term serves as a dampener to control the size ωt in the simulation.24 Additionally,
it allows for the comparison of ACF and my modified procedure when the productivity is process not linear.

To vary network density, I draw random exogenous networks using Erdős and Rényi (1960) graphs, also known as
binomial graphs. Firms are edges are formed Ai jt

i.i.d.∼ Bern(p) and the density of the graph is equal to the probability
of an link forming between two firms, p. This class of graphs has several features worth noting. First, intransitivity
rises as the density falls. This is an advantage because intransitivity helps with identification of the endogenous
network effect, so we can expect more precise estimates as the network gets more sparse. Secondly, when p > 1

Nt
, a

giant component emerges that contains more vertices than any other component of the network. In my Monte Carlo
experiments, this means that for graphs with density > 0.001 the infinite series of terms Gs

t will go to zero much more
slowly than with density ≤ 0.001. Therefore, one would expect the potential bias to be greater as density increases,
particularly once it crosses the 0.001 threshold. However, it is worth noting that the resulting degree distribution is
binomial B(Nt −1, p), which is approximately normal whereas buyer-supplier networks have empirically been found
to follow a Pareto (power-law) degree distribution (Bernard and Moxnes, 2018).

Table I.5 shows the results of varying network density. ACF estimates of the capital elasticity appear unbiased for
densities ≤ 0.001 and increases to over 50% of the true value for densities above 0.001. Estimates of λ increase with
density while ρ1 moves in the opposite direction. In comparison, my benchmark procedure ACF-N provides stable
and consistent estimates of both the elasticities and productivity process at most densities. When the network is very
sparse, however, my procedure underestimates λ and does so with less precision because the instrument G2

t ωt−1 is
weaker when there are fewer triads in the network.

In section A.3 in the appendix, I also examine how my approach performs as the persistence of productivity and the
size of the endogenous network effect vary. Unsurprisingly, my procedure yields more consistent and precise estimates
as productivity gets more persistent, increasing the relevance of Gtωt−1 as an instrument, and as the endogenous
spillover gets larger, raising the relevance of the G2

t ωt−1 instrument. Importantly, even when λ = 0, my procedure still
yields consistent estimates as long as ρ is sufficiently large.

23See details on optimal investment in section A.2.5 in the appendix
24It is also worth mentioning that in empirical applications, estimating flexible forms of the productivity process may be necessary. Otherwise,

linearity of the Markov process may force estimates of λ to be small or negative.
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Table I.5: Effect of Sparsity on Bias and Precision (Quadratic AR1)

Density Estimator
Elasticities Productivity Process Coefficients

α` αk β1 ρ1 ρ2 λ

0.6 0.4 0.5 0.8 -0.01 0.3

0.0001

ACF 0.603 0.358 -0.125 0.809 -0.01 0.087
(0.024) (0.239) (2.369) (0.216) (0.003) (0.106)

ACF-N 0.617 0.413 -0.23 0.76 -0.01 0.226
(0.057) (0.165) (2.845) (0.196) (0.022) (0.109)

0.0003

ACF 0.604 0.359 0.122 0.81 -0.01 0.113
(0.024) (0.216) (1.975) (0.19) (0.003) (0.12)

ACF-N 0.632 0.381 0.379 0.764 -0.011 0.241
(0.093) (0.113) (1.456) (0.195) (0.038) (0.238)

0.0005

ACF 0.605 0.377 0.209 0.798 -0.01 0.132
(0.024) (0.195) (1.691) (0.169) (0.003) (0.126)

ACF-N 0.641 0.371 0.412 0.753 -0.009 0.25
(0.106) (0.113) (1.226) (0.217) (0.034) (0.097)

0.0007

ACF 0.606 0.387 0.271 0.791 -0.01 0.159
(0.027) (0.182) (1.509) (0.158) (0.003) (0.137)

ACF-N 0.646 0.362 0.51 0.745 -0.007 0.243
(0.116) (0.116) (0.506) (0.237) (0.046) (0.1)

0.0009

ACF 0.606 0.411 0.266 0.771 -0.01 0.18
(0.03) (0.168) (1.359) (0.147) (0.004) (0.145)

ACF-N 0.635 0.371 0.532 0.767 -0.011 0.252
(0.101) (0.098) (0.308) (0.2) (0.037) (0.085)

0.001

ACF 0.606 0.423 0.243 0.761 -0.01 0.196
(0.032) (0.161) (1.295) (0.147) (0.007) (0.152)

ACF-N 0.63 0.377 0.539 0.778 -0.009 0.225
(0.09) (0.088) (0.305) (0.203) (0.031) (1.04)

0.003

ACF 0.602 0.617 -0.343 0.523 -0.017 0.261
(0.053) (0.114) (1.261) (0.137) (0.011) (0.184)

ACF-N 0.611 0.389 0.585 0.815 -0.01 0.283
(0.038) (0.049) (0.256) (0.06) (0.009) (0.035)

0.005

ACF 0.605 0.637 -0.109 0.462 -0.019 0.312
(0.067) (0.138) (0.987) (0.161) (0.017) (0.201)

ACF-N 0.608 0.388 0.509 0.818 -0.01 0.291
(0.03) (0.057) (0.298) (0.05) (0.007) (0.042)

0.007

ACF 0.606 0.639 -0.405 0.47 -0.026 0.545
(0.073) (0.149) (13.879) (0.694) (0.207) (6.696)

ACF-N 0.607 0.385 0.437 0.818 -0.01 0.294
(0.027) (0.068) (0.339) (0.053) (0.002) (0.027)

0.009

ACF 0.606 0.638 0.132 0.448 -0.018 0.339
(0.073) (0.154) (2.354) (0.217) (0.05) (1.188)

ACF-N 0.606 0.386 0.405 0.815 -0.01 0.302
(0.03) (0.077) (0.393) (0.06) (0.005) (0.175)

0.01

ACF 0.606 0.639 0.011 0.452 -0.019 0.388
(0.072) (0.153) (1.8) (0.2) (0.046) (0.925)

ACF-N 0.606 0.386 0.404 0.815 -0.01 0.301
(0.031) (0.078) (0.404) (0.061) (0.005) (0.14)

0.03

ACF 0.605 0.644 -0.23 0.478 -0.011 0.317
(0.069) (0.149) (5.307) (1.216) (0.238) (2.909)

ACF-N 0.605 0.387 0.417 0.813 -0.01 0.298
(0.032) (0.083) (0.398) (0.064) (0.004) (0.061)

0.05

ACF 0.606 0.643 0.054 0.414 -0.024 0.446
(0.072) (0.152) (3.357) (0.782) (0.151) (1.833)

ACF-N 0.605 0.388 0.417 0.813 -0.01 0.299
(0.032) (0.084) (0.399) (0.065) (0.004) (0.062)

0.07

ACF 0.606 0.643 0.005 0.423 -0.022 0.419
(0.073) (0.154) (1.994) (0.457) (0.085) (1.053)

ACF-N 0.604 0.388 0.42 0.813 -0.01 0.297
(0.03) (0.084) (0.4) (0.064) (0.003) (0.049)

0.09

ACF 0.606 0.643 0.001 0.426 -0.021 0.413
(0.071) (0.154) (1.774) (0.406) (0.074) (0.928)

ACF-N 0.604 0.388 0.42 0.813 -0.01 0.297
(0.03) (0.084) (0.401) (0.063) (0.003) (0.049)

0.1

ACF 0.606 0.642 -0.003 0.425 -0.021 0.417
(0.073) (0.157) (1.812) (0.417) (0.077) (0.952)

ACF-N 0.604 0.388 0.42 0.814 -0.01 0.296
(0.028) (0.083) (0.403) (0.061) (0.003) (0.032)

0.3

ACF 0.605 0.644 -0.048 0.437 -0.019 0.388
(0.07) (0.15) (1.033) (0.184) (0.025) (0.454)

ACF-N 0.603 0.389 0.422 0.813 -0.01 0.296
(0.027) (0.084) (0.409) (0.062) (0.003) (0.032)

0.5

ACF 0.606 0.644 -0.054 0.435 -0.019 0.392
(0.072) (0.153) (1.048) (0.189) (0.027) (0.468)

ACF-N 0.604 0.389 0.421 0.813 -0.01 0.296
(0.027) (0.083) (0.412) (0.062) (0.003) (0.032)

0.7

ACF 0.607 0.643 -0.025 0.427 -0.021 0.416
(0.074) (0.156) (1.63) (0.365) (0.066) (0.827)

ACF-N 0.604 0.388 0.42 0.814 -0.01 0.296
(0.027) (0.084) (0.413) (0.062) (0.003) (0.032)

0.9

ACF 0.607 0.642 -0.054 0.435 -0.019 0.392
(0.074) (0.156) (1.063) (0.189) (0.027) (0.478)

ACF-N 0.604 0.388 0.422 0.813 -0.01 0.297
(0.029) (0.085) (0.414) (0.063) (0.004) (0.052)

Based on 1000 replications. Estimators are based on Ackerberg et al. (2015) with ACF denoting the standard procedure
and ACF-N indicating the modified procedure to account for network effects. Networks are exogenous erdos-renyi (bi-
nomial) graphs with densities as shown. The data-generating process for productivity is quadratic AR1 with endogenous
network effects. True values of the parameters are at the top of the table. Standard deviations are in parentheses.
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I.7 Extensions
I.7.1 Gross Production Functions
So far, I have only considered a structural value-added production function, which often requires the assumption
that the production function is Leontief with respect to intermediate inputs. In this section I consider a framework
exploiting first order conditions on intermediate input choices as in Gandhi et al. (2020, GNR hereafter). Under
similar assumptions as in the proxy variable approach above, the standard GNR procedure can be modified to jointly
estimate network effects and productivity.

Like ACF, the GNR methodology assumes that TFP enters the production function in a Hicks-neutral fashion.
However, intermediate inputs now enter directly into the production function:

Yt = F(Lt ,Kt ,Mt)eωt+εt

⇐⇒ yt = f (`t ,kt ,mt)+ωt + εt (I.39)

For simplicity, assume that materials are flexible while both labor and capital have dynamic implications.
The procedure consists of two stages. The first stage exploits first order conditions from profit maximization to

estimate the elasticity of intermediate inputs with respect to output. Given the production technology above, the firm
chooses materials to maximize profits:

max
Mt

PtE[F(Lt ,Kt ,Mt)eωt+εt ]−PM
t Mt (I.40)

where Pt and PM
t are the prices of output and materials respectively. The static first order condition with respect to

materials is:

Pt
∂

∂Mt
F(Lt ,Kt ,Mt)eωt E = PM

t (I.41)

where E ≡ E[eεt |It ] = E[eεt ] which relies on the assumption that the error terms are unconditionally independent.25

It is also pertinent to note that this first order condition makes an implicit assumption about market structure: that
the firm is a price-taker in both input and output markets. Therefore, this framework cannot directly examine impacts
of or effects on market power. I retain this assumption in my modified procedure.

∂

∂Mt
F(Lt ,Kt ,Mt)eωt E =

PM
t

Pt

Mt

Yt

∂

∂Mt
F(Lt ,Kt ,Mt)eωt E =

PM
t Mt

PtYt

ln
(

∂

∂mt
f (`t ,kt ,mt)

)
− εt + ln(E ) = st (I.42)

where st ≡ ln(PM
t Mt
PtYt

) is the log of the intermediate input expenditure share of revenue.

E[εt |It ] = 0 =⇒ E[st |It ] = ln
(

∂

∂mt
f (`t ,kt ,mt)

)
+ ln(E ) (I.43)

Let DE (`t ,kt ,mt) ≡
∂

∂mt
f (`t ,kt ,mt)×E . Then given the moment of εt in (I.43) above, lnDE (`t ,kt ,mt) can be esti-

mated by non-linear least squares regression of the materials expenditure share on the log of a polynomial in labor,

25See Gandhi et al. (2020) for details on estimation under a relaxed conditional independence assumption.
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capital and materials. Furthermore:

εt = lnDE (`t ,kt ,mt)− st =⇒ eεt = DE (`t ,kt ,mt)e−st

E =E[eεt ] = E[DE (`t ,kt ,mt)e−st ] (I.44)

Using the estimates of DE from the share regression, we can replace the moment in (I.44) with its empirical equivalent
and compute the constant E . This enables us obtain an estimate of the materials elasticity:

D(`t ,kt ,mt) =
∂

∂mt
f (`t ,kt ,mt) =

DE (`t ,kt ,mt)

E
(I.45)

The second stage of GNR requires assumptions on the productivity process to estimate the rest of the production
function. By the fundamental theorem of calculus:

∫
∂

∂mt
f (`t ,kt ,mt)dmt = f (`t ,kt ,mt)+C (`t ,kt) (I.46)

The goal is to estimate C (·) since we can compute
∫ ∂

∂mt
f (`t ,kt ,mt)dmt using D(`t ,kt ,mt) from the first stage. By

substituting for f (`t ,kt ,mt) using equation (I.39):

∫
∂

∂mt
f (`t ,kt ,mt)dmt = yt −ωt − εt +C (`t ,kt)

Yt ≡ yt −
∫

∂

∂mt
f (`t ,kt ,mt)dmt − εt =−C (`t ,kt)+ωt (I.47)

It is at this point that the assumption on the productivity evolution process comes into play. GNR maintains the same
first-order Markov assumption as ACF:

ωt = h(ωt−1)+ηt , where E[ηt |It−1] = 0 (I.48)

ωt−1 = Yt−1 +C (`t−1,kt−1)

=⇒ Yt =−C (`t ,kt)+h(Yt−1 +C (`t−1,kt−1))+ηt (I.49)

We can estimate C (·) and h(·), normalizing the former to contain no constant, based on unconditional moments derived
from E[ηt |It :

E[ηt`
τ`
t kτk

t ] = 0

E[ηtY
τY

t−1 ] = 0
(I.50)

where τ`,τk and τY are determined by the degrees of the polynomial approximations for C (·) and h(·) respectively.

I.7.1.1 Accounting for Network Effects
As with the modified ACF approach, I maintain the same assumptions and procedure in the first stage of GNR. Network
effects come into play at the second stage when the law of motion on productivity is required for identification.

Note however, that by maintaining the same assumptions in the first stage, I do not account for ways in which
the firm’s network could potentially influence its intermediate input choices. For now, I focus specifically on network
effects that operate through productivity spillovers and leave the implications for materials demand for future work.

I replace the productivity evolution process in (I.48) with one that allows for a linearly additive endogenous net-
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work effect:26

ωt = h(ωt−1)+λGtωt +ζt where E[ζt |It−1] = 0

=⇒ ωt =
∞

∑
s=0

λ
sGs

t h(ωt−1)+
∞

∑
s=0

λ
sGs

t ζt

The equation (I.49) becomes:

Yt =−C (`t ,kt)+
∞

∑
s=0

λ
sGs

t h(Yt−1 +C (`t−1,kt−1))+
∞

∑
s=0

λ
sGs

t ζt (I.51)

This yields an additional set of moments from which the endogenous effect λ can be identified:

E[ζtGs
t Y

τY
t−1 ] = 0 where s≥ 1 (I.52)

I.7.2 Alternative Network Effect Specifications
The modified ACF procedure introduced in section I.4 can accommodate specifications of the productivity process
that account for other ways in which spillovers may occur. In this section, I consider some of these specifications, and
how they affect the estimator and what additional assumptions are needed, if any.

I.7.2.1 Local-Aggregate Endogenous Effect
The linear-in-means equation considered so far is also known as the local-average model because it assumes that the
average productivity and characteristics of a firm’s neighbors is the key source of spillovers. Another model is the
local-aggregate model as in Liu and Lee (2010) and Liu et al. (2014), that considers the sum rather than the average.
That is:

ωt = h(ωt−1,xxxt−1,Atxxxt−1)+λAtωt +ζt (I.53)

where At is the adjacency matrix. This model has different implications from the local-average model. There are also
hybrid models that include local-average contextual effects and local-aggregate endogenous effects:

ωt = h(ωt−1,xxxt−1,Gtxxxt−1)+λAtωt +ζt (I.54)

or both local-average and local-aggregate endogenous effects:

ωt = h(ωt−1,xxxt−1,Gtxxxt−1)+λAAtωt +λGGtωt +ζt (I.55)

See Liu and Lee (2010) and Liu et al. (2014) for further discussion of the conditions under which these network
effects are identified. In general as long as the matrix inversion conditions to obtain a reduced form and the information
set conditions hold, my benchmark procedure only needs to be modified by changing the network matrix where
necessary.

I.7.2.2 Heterogeneous Network Effects
So far, my model of network effects has assumed homogeneous spillovers. However, the model can account for a
finite set of heterogeneous network effects. If I partition the network into a finite set of B groups such as buyers and
suppliers, industries, or based on firm size, then I can estimate:

ωt = h(ωt−1,xxxt−1,{Gb,txxxt−1}B
b=1)+

B

∑
b=1

λbGb,tωt +ζt (I.56)

26For clarity of exposition, I leave out contextual and correlated effects, but they can be included in much the same way as with ACF.
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Note that xxxt−1,{Gb,txxxt−1}B
b=1ωt = λGtωt where λ is a weighted average of the heterogeneous effects. Therefore,

my benchmark procedure can still be used to consistently estimate TFP without any modification. Afterwards, the
heterogeneous network effect parameters can be obtained using the specification above. Dieye and Fortin (2017) and
Patacchini et al. (2017) discuss the identification conditions and estimation procedures for this model in greater detail.

I.8 Results
In this section, I use my empirical framework to examine the magnitude of endogenous productivity spillovers through
vertical relationships in the US production network. I explore how these spillovers vary over time, industry and firm
size and document substantial heterogeneity in the sources and recipients of network effects.

I estimate a gross production function with a linear intermediate input share equation and a second-degree polyno-
mial in capital and labor in the second stage.27 I also estimate a value-added Cobb Douglas production function with
materials as the proxy variable and a second-degree polynomial in the first stage. In both specifications, I assume a
linear productivity process that includes an endogenous network effect and recover both production function elastici-
ties and productivity spillovers from my modified approach. Because spillovers imply that TFP is jointly determined
for linked firms across industries, the production function cannot be estimated separately for each industry. Therefore,
I control for industry and year fixed effects in the productivity equation. In addition, due to the observed variation in
the network structure over time, I estimate both specifications separately for each decade in the sample.

I compare my estimates with results from standard GNR and ACF approaches with industry and year fixed effects
in the productivity equation for comparability. Because standard approaches do not yield estimates of productivity
spillovers, I use TFP estimates from these procedures in a second stage. To obtain network effect coefficients, I apply
the generalized 2SLS (G2SLS) approach in Lee (2003) and Bramoullé et al. (2009). In the first step, I estimate λ ∗

by 2SLS using [Gtωt−1,G2
t ωt−1] as instruments for Gtωt . I compute E∗[Gtωt |It−1] using the reduced form equation

in (I.13). This is the feasible estimate of the best instrumental variable (IV) for Gtωt . Then I estimate 2SLS again,
this time with E∗[Gtωt |It−1] instrumenting for Gtωt . To eliminate component-year fixed effects, I apply global
differencing described in section I.4.2 to both standard and modified procedures.

As discussed in section I.2, the buyer-supplier network is only partially observed because firms only need to
report their major customers; only about 18% of links fall below the 10% sales threshold. To address this, I rely on
information about link intensity: I weight each relationship by the value traded between the two firms in that year.
This mitigates some of the bias from missing links, because links that fall below the 10% threshold are would have
weights close to zero. There is also the added advantage of allowing more important trading partners to have a larger
impact on a firm’s productivity.28

I.8.1 Production Function Elasticities
Tables I.6 and I.7 report the estimated elasticities of output with respect to inputs from gross output and value-added
production functions, respectively. GNR/ACF refer to the standard procedures, GNR-N/ACF-N denote my modified
approach that accounts for endogenous productivity spillovers, and GNR-ND/ACF-ND indicate specifications that
account for both endogenous network effects and component-year fixed effects. Because I assume that the network
does not affect intermediate input demand in the gross output specification, the elasticity of output with respect to
materials does not vary across specifications.

Estimated capital and labor elasticities are also quite similar with and without accounting for network effects. The
relative importance of each input varies over time; in the gross output specification, the elasticity of output with respect
to labor falls from about 0.49 between 1977-1986 by 0.26 in the 2007-2016 period. By contrast, results from in the
value-added specification move in the opposite direction, with labor elasticity rising from about 0.62 to 0.68 over the
same time horizon.

27This specification implies a translog production function.
28As a robustness check, I estimate all specifications with an unweighted network in section A.5.2 of the appendix. The results are similar in

magnitude, indicating that major trading partners are the more salient sources of spillovers.
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Table I.6: Gross Production Function Elasticities

Period Estimator Capital Labor Materials

1977-1986
GNR 0.280 0.489 0.341
GNR-N 0.271 0.497 0.341
GNR-ND 0.279 0.493 0.341

1987-1996
GNR 0.267 0.382 0.489
GNR-N 0.266 0.383 0.490
GNR-ND 0.271 0.379 0.490

1997-2006
GNR 0.159 0.278 0.529
GNR-N 0.173 0.269 0.529
GNR-ND 0.170 0.273 0.529

2007-2016
GNR 0.183 0.263 0.508
GNR-N 0.194 0.257 0.508
GNR-ND 0.191 0.262 0.508

All
GNR 0.210 0.321 0.500
GNR-N 0.219 0.318 0.500
GNR-ND 0.221 0.317 0.500

This table reports the average input elasticities from a gross output production function
estimated on US firms in Compustat. Estimators are based on Gandhi et al. (2020): GNR
denotes the standard procedure with a linear first stage, a second-degree polynomial in
the second stage, and a linear productivity process. GNR-N and GNR-ND are mod-
ifications to accommodate network effects and network differencing respectively. All
specifications include industry and year fixed effects in the productivity process.

Table I.7: Value-Added Production Function Elasticities

Period Estimator Capital Labor

1977-1986
ACF 0.395 0.632
ACF-N 0.398 0.629
ACF-ND 0.405 0.623

1987-1996
ACF 0.441 0.606
ACF-N 0.437 0.614
ACF-ND 0.429 0.626

1997-2006
ACF 0.362 0.670
ACF-N 0.361 0.672
ACF-ND 0.347 0.685

2007-2016
ACF 0.327 0.670
ACF-N 0.326 0.671
ACF-ND 0.316 0.686

All
ACF 0.384 0.644
ACF-N 0.383 0.646
ACF-ND 0.375 0.657

This table reports input elasticities of a Cobb-Douglas value-added production
function (in logs) estimated on US firms in Compustat. Estimators are based
on Ackerberg et al. (2015): ACF denotes the standard procedure with a second-
degree polynomial in the first stage and a linear productivity process. ACF-N and
ACF-ND are modifications to accommodate network effects and network differ-
encing respectively. All specifications include industry and year fixed effects in
the productivity process.
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I.8.2 Endogenous Productivity Spillovers
I now turn to estimates of productivity spillovers. First, I define the network as undirected: a firm j belongs in firm i’s
neighborhood if it either buys from or sells to the firm. Table I.8 and figure I.8 show the endogenous network effects
from gross output TFP.

Based on TFP measures from the standard GNR approach, the results suggest that a firm’s productivity rises by
0.084 percent in the short run when its average buyer or seller gets 10 percent more productive. Accounting for
endogenous productivity spillovers in TFP estimation raises the point estimate to 0.09 percent, but differencing out
common shocks to productivity lowers the estimate to 0.076 percent. The persistence of TFP over time also implies a
substantial long-run effect of having more trading partners in one period. An estimated coefficient of 0.9 on ln TFPt−1,
means that transacting with a 10 percent more efficient firm in a single period results in a long-run efficiency gain of
0.76 percent. In the value-added specification, the impact of correlated effects is striking; the estimated short-run
impact of a 10 percent rise in the average neighbor’s TFP goes from 0.07 percent with standard ACF to 0.01 when I
account for both endogenous and correlated effects in the production function estimation.

Across all specifications, estimates from the standard approach and my modified procedure are often statistically
indistinguishable. This is consistent with the discussion in section A.1 and results from the Monte Carlo experiment
in table I.5: standard approaches yielded estimates of productivity spillovers that were closest to the true effect when
the network density was between 0.1 and 0.3 percent. As shown in figure I.4, the density of the observed network in
my sample ranges from 0.12 to 0.28 percent and lies within the region with the least bias in estimated spillovers.

It is worth noting, however, that because these spillovers have a cumulative impact over time and space, even
small differences in these point estimates could have result in substantially different implications. To illustrate this, I
simulate a growth path for the average firm in 1978 under the assumption that it is connected to the median firm in the
same year. For simplicity, I assume there are no shocks to productivity and the average firm is also its partner’s only
connection, and this relationship remains the same for all periods. Then I compute:

ω̃t =
(

I− λ̂G
)−1(

β̂1 + ρ̂ω̃t−1

)
, G =

(
0 1
1 0

)
(I.57)

where t = {1979 . . .2016}, β̂1 = 0.203, and ρ̂ = 0.9. λ̂ takes on three possible values: the point estimates from GNR,
GNR-N and GNR-ND. I difference the cumulative TFP growth from what it would be in a no-spillover scenario in
which λ̂ = 0. Figure I.12 shows that an endogenous effect of 0.0076, as obtained from GNR-ND, implies that the
average firm would grow an additional 16.3 percent due to spillovers by 2016. Standard GNR would overstate the
cumulative impact of spillovers, implying 18 percent additional growth, while accounting for network effects without
eliminating common productivity shocks would suggest a cumulative spillover effect of 19.6 percent.

To understand the economic importance of these spillovers in the cross-section, I compute a back-of-the-envelope
estimate of the impact of the most connected firm in each year on aggregate TFP through spillovers. Let j denote the
most central firm in year t. I sum up j’s contribution to the network average for each of its connections, weighting by
firm i’s nominal revenues in that period, and multiply that by the spillover estimate. That is:

Contribution jt = λ̂ ∑
it

weightitGi jt (I.58)

whew weightit =
Revenueit

Avg Revenuet
. Figure I.14 shows that for λ̂ = 0.002, a 10 percent increase in the TFP of the most central

firm would correspond with a 0.25 to 1.9 percent rise in aggregrate TFP through spillovers alone.

I.8.2.1 Relationship Direction and Dynamics
Next, I examine how spillovers depend on the nature of the relationship between firms. Figure I.10 and table I.10
show that productive suppliers have almost 5 times the impact on their customers as productive buyers have on their
suppliers: a 10 percent more productive supplier raises efficiency by 0.095 percent while customers raise productivity
by 0.02 percent. As depicted in figure I.13, having a more productive supplier implies that the average firm would
grow an additional 19.3 percent over the sample period due to spillovers, as compared to 4.3 percent from a more
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productive customer.29

To investigate how much this is driven by maintaining old relationships as opposed to forming new ones, I de-
compose the interaction matrix into buyers/sellers that the firm traded with in both the current and the previous year
(Gt ∩Gt−1), and new links (Gt \Gt−1). The results in table I.12 suggest that both old and new suppliers are important
sources of spillovers, while new customers are the primary sources of buyer-to-seller spillovers.

Estimates from value-added specifications do not show a significant difference between spillovers from buyers to
sellers or vice versa. In figure I.11 and table I.11, a 10 percent more efficient supplier is associated with a 0.016 percent
rise in productivity while the effect of buyers is 0.011 percent. These effects are statistically indistinguishable from
each other. For the rest of this discussion, I focus on estimates from gross output production functions, but additional
results from value-added specifications are in section A.5.1 in the appendix.

I.8.2.2 Heterogeneity by Sector
In this section, I investigate how the spillovers transmit within and across sectors. I estimate a gross output production
function with endogenous and correlated effects, allowing spillovers to vary by the sector of the firm and its trading
partners. I classify sectors based on the share of observed links that are from sellers to buyers, or from buyers to sellers
respectively. If 50 percent or more of links between sector u and sector v are from suppliers in u to customers in v,
then the spillovers from u to v are classified as downstream, while the impact of sector v on firms in u is considered
an upstream spillover. Figures I.15 and I.16 depict estimates of downstream and upstream spillovers, respectively that
are significant at the 5 percent level. Table I.13 reports the full set of estimates.

These results highlight the important role of information technology (IT), retailers and services in productivity
growth within the US. As shown by figure I.15, the substantial downstream spillovers occur within the electronics
manufacturing sector. Furthermore, the synergies between electronics manufacturing and the finance, insurance and
real estate sector is primarily driven by technology patent holders (SIC 6794 and NAICS 533110) such as InterDigital
Inc. which provides mobile technology research services to mobile phone manufacturers such as Apple. Manufacturers
also tend to amplify the impact of productivity growth in other sectors because they enjoy efficiency boosts from both
directions: electronics manufacturers from mainly customers and manufacturers of non-durables from their suppliers
(see figure I.16). Retailers are an import source of upstream spillovers, while transport and warehousing firms generate
downstream spillovers. None of these sectors receives efficiency boosts from other sectors, and in fact, experience
negative network effects. Negative endogenous effects suggests free-riding or, given that I use deflated sales as a
measure of output, downward pressure on prices by more profitable firms.

I.8.2.3 The Role of Firm Size
Finally, I consider the role of firm size in the transmission of efficiency gains through the production network. I classify
firms as large if they have 500 or more employees, the definition used by the US BEA. The results are reported in table
I.14 and figure I.17 highlights estimates that are significant at the 5% level. Large productive suppliers are an important
source of productivity gains for both large and small firms, with small customers benefiting nearly twice as much as
large buyers. Small efficient suppliers also have a substantial impact on their large customers. The effect of customer
efficiency on their suppliers is driven solely by large firms.

Given that the average firm in my sample is larger than the average firm in the US, at least 60 percent or more
the sample can be classified as large based on this definition. In table I.15, I check how sensitive these results are to
different classifications of firm size. I consider three alternative definitions based on the number of employees: greater
than or equal to 1000, 5000 or an industry-year specific median. The results are similar across definitions except that,
as excepted, the impact of large firms diminishes while that of small firms rises.

29Larger confidence intervals in the 1977-1986 period are likely due to a combination of fewer firms in the sample, a denser network, and fewer
reported links.
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Figure I.8: Spillover Estimates (Gross-Output)
This figure shows point estimates and 95% confidence intervals of
endogenous productivity spillovers from a gross output production
function. See table I.8 for standard errors.

Figure I.9: Spillover Estimates (Value-Added)
This figure shows point estimates and 95% confidence intervals of
endogenous productivity spillovers from a value-added production
function. See table I.9 for standard errors.

Figure I.10: Spillover Estimates by Relationship Direction (Gross-Output)
This figure shows point estimates and 95% confidence intervals of endogenous productivity spillovers by direction of the relationship from a
gross output production function. See table I.10 for standard errors.

Figure I.11: Spillover Estimates by Relationship Direction (Value-Added)
This figure shows point estimates and 95% confidence intervals of endogenous productivity spillovers by direction of the relationship from a
value-added production function. See table I.11 for standard errors.
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Figure I.12: Cumulative Impact of Endogenous Productivity
Spillovers over Time
This figure depicts a simulated path of log(TFP) for a firm
with productivity equal to the 1978 average, assuming it is
connected to the median firm in the same year. Endogenous
productivity spillovers are assumed to be 0.0084, 0.009 and
0.0076 obtained from GNR, GNR-N and GNR-ND respec-
tively. The bottom dotted line assumes that the firm experi-
ences no spillovers.

Figure I.13: Cumulative Impact of Endogenous Productivity
Spillovers by Relationship Type
This figure depicts a simulated path of log(TFP) for a firm
with productivity equal to the 1978 average, assuming it is
connected to the median firm in the same year. Endoge-
nous productivity spillovers are assumed to be 0.002, 0.0095
and 0.0076 for customers, suppliers or either, respectively.
The bottom dotted line assumes that the firm experiences no
spillovers.

Figure I.14: Contribution of Most Central Firms to Aggregate TFP
This figure shows the impact of a 10% increase in the TFP of the most central firm in each year to aggregate productivity through
spillovers. The contribution of the most central firm j in year t is calculated as λ̂ ∑it weightit Gi jt where λ̂ = 0.02 and weightit =

Revenueit
Avg Revenuet
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Figure I.15: Downstream Productivity Spillovers by Sector

This figure shows downstream productivity spillovers (λ ) that vary by the sector of the firm and its trading partners. Estimates are significant at the
5% level. Sector nodes are weighted by the total number of connections originating from or going to firms in the sector, across all time periods. See
table I.13 for the full set of coefficients.
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Figure I.16: Upstream Productivity Spillovers by Sector

This figure shows upstream productivity spillovers (λ ) that vary by the sector of the firm and its trading partners. Estimates are significant at the
5% level. Industry nodes are weighted by the total number of connections originating from or going to firms in the sector, across all time periods.
See table I.13 for the full set of coefficients.
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Figure I.17: Endogenous Productivity Spillovers by Firm Size

This figure shows endogenous productivity spillovers that vary by firm size. Estimates are significant
at the 10% level. See table I.10 for the full set of coefficients.
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Table I.8: Endogenous Productivity Spillovers (Gross
Output)

Dependent Variable: lnTFPt
Neighbors’

Period Estimator lnTFPt−1 lnTFPt

1977-1986

GNR 0.8401 0.0068
(0.0205) (0.0049)

GNR-N 0.839 0.007
(0.0207) (0.0049)

GNR-ND 0.8257 0.0001
(0.0227) (0.0057)

1987-1996

GNR 0.8313 -0.0077
(0.0244) (0.0043)

GNR-N 0.8312 -0.0075
(0.0244) (0.0043)

GNR-ND 0.8229 -0.0109
(0.0271) (0.0044)

1997-2006

GNR 0.858 0.0033
(0.013) (0.0042)

GNR-N 0.8585 0.0041
(0.0134) (0.0042)

GNR-ND 0.8586 0.0046
(0.0147) (0.0053)

2007-2016

GNR 0.8957 0.0145
(0.0215) (0.005)

GNR-N 0.8963 0.0133
(0.0214) (0.0052)

GNR-ND 0.8918 0.0109
(0.023) (0.0048)

All

GNR 0.9035 0.0084
(0.0067) (0.0023)

GNR-N 0.9025 0.009
(0.0067) (0.0023)

GNR-ND 0.8996 0.0076
(0.0073) (0.0024)

This table reports coefficients of a linear productivity evolution process
with endogenous network effects estimated on US firms in Compustat.
Each TFP measure is from a gross output production function (in logs)
estimated with the standard Gandhi et al. (2020) procedure (GNR), or
with modifications to accommodate network effects (GNR-N) and net-
work differencing (GNR-ND). Network effects for GNR are estimated
using the generalized 2SLS procedure in Lee (2003); Bramoullé et al.
(2009). Standard errors are in parentheses. All specifications include
industry and year fixed effects.

Table I.9: Endogenous Productivity Spillovers
(Value-Added)

Dependent Variable: lnTFPt
Neighbors’

Period Estimator lnTFPt−1 lnTFPt

1977-1986

ACF 0.8169 0.0123
(0.0207) (0.0065)

ACF-N 0.8168 0.0097
(0.0207) (0.0062)

ACF-ND 0.807 -0.0039
(0.0214) (0.0105)

1987-1996

ACF 0.8472 -0.002
(0.0135) (0.005)

ACF-N 0.8479 -0.0036
(0.0134) (0.0049)

ACF-ND 0.8482 -0.0093
(0.0121) (0.0057)

1997-2006

ACF 0.8679 0.0086
(0.0116) (0.0058)

ACF-N 0.8682 0.0083
(0.0116) (0.0059)

ACF-ND 0.8685 0.0064
(0.0104) (0.0051)

2007-2016

ACF 0.8774 0.0063
(0.0321) (0.005)

ACF-N 0.8776 0.0061
(0.032) (0.005)

ACF-ND 0.8691 -0.0046
(0.0358) (0.0044)

All

ACF 0.8687 0.007
(0.0095) (0.0026)

ACF-N 0.8688 0.0064
(0.0095) (0.0026)

ACF-ND 0.8663 0.001
(0.0101) (0.0026)

This table reports coefficients of a linear productivity evolution process
with endogenous network effects estimated on US firms in Compustat.
Each TFP measure is from a value-added production function (in logs)
estimated with the standard Ackerberg et al. (2015) procedure (ACF), or
with modifications to accommodate network effects (ACF-N) and net-
work differencing (ACF-ND). Network effects for ACF are estimated
using the generalized 2SLS procedure in Lee (2003); Bramoullé et al.
(2009). Standard errors are in parentheses. All specifications include
industry and year fixed effects.
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Table I.10: Productivity Spillovers by Relationship
Direction (Gross Output)

Dependent Variable: lnTFPt
Customers’ Suppliers’

Period Estimator lnTFPt lnTFPt

1977-1986

GNR 0.0035 0.0159
(0.0041) (0.0048)

GNR-N 0.0019 0.0124
(0.0027) (0.0034)

GNR-ND -0.0038 0.0156
(0.0046) (0.0049)

1987-1996

GNR 0.0056 -0.0084
(0.0038) (0.0038)

GNR-N 0.0072 -0.0138
(0.004) (0.0041)

GNR-ND 0.0048 -0.0145
(0.004) (0.0041)

1997-2006

GNR 0.0013 0.0023
(0.0005) (0.0005)

GNR-N 0.0011 0.0034
(0.0005) (0.0006)

GNR-ND 0.0007 0.0043
(0.0006) (0.0006)

2007-2016

GNR 0.0007 0.0017
(0.0004) (0.0006)

GNR-N 0.0005 0.0027
(0.0005) (0.0008)

GNR-ND 0.0002 0.0026
(0.0004) (0.0008)

All

GNR 0.0026 0.0053
(0.0008) (0.0009)

GNR-N 0.0032 0.0102
(0.001) (0.0013)

GNR-ND 0.002 0.0095
(0.0009) (0.0012)

This table reports coefficients of a linear productivity evolution process
with endogenous network effects estimated on US firms in Compustat.
Each TFP measure is from a gross output production function (in logs)
estimated with the standard Gandhi et al. (2020) procedure (GNR), or
with modifications to accommodate network effects (GNR-N) and net-
work differencing (GNR-ND). Network effects for GNR are estimated
using the generalized 2SLS procedure for heterogenous peer effects in
Dieye and Fortin (2017); Patacchini et al. (2017). Standard errors are in
parentheses. All specifications include industry and year fixed effects.

Table I.11: Productivity Spillovers by Relationship
Direction (Value-Added)

Dependent Variable: lnTFPt
Customers’ Suppliers’

Period Estimator lnTFPt lnTFPt

1977-1986

ACF 0.0018 0.0024
(0.0014) (0.0014)

ACF-N 0.0015 0.0027
(0.0014) (0.0014)

ACF-ND -0.0003 0.002
(0.0016) (0.0015)

1987-1996

ACF 0.0011 0.0012
(0.0008) (0.0008)

ACF-N 0.0011 0.0007
(0.0008) (0.0008)

ACF-ND 0.0011 0.0004
(0.0008) (0.0008)

1997-2006

ACF 0.0013 0.0016
(0.0006) (0.0006)

ACF-N 0.0012 0.002
(0.0006) (0.0006)

ACF-ND 0.0007 0.0022
(0.0006) (0.0006)

2007-2016

ACF 0.001 0.0012
(0.0005) (0.0005)

ACF-N 0.001 0.0014
(0.0004) (0.0005)

ACF-ND 0.0011 0.001
(0.0004) (0.0004)

All

ACF 0.0013 0.0016
(0.0003) (0.0004)

ACF-N 0.0012 0.0018
(0.0003) (0.0004)

ACF-ND 0.0011 0.0016
(0.0003) (0.0003)

This table reports coefficients of a linear productivity evolution process
with endogenous network effects estimated on US firms in Compustat.
Each TFP measure is from a value-added production function (in logs)
estimated with the standard Ackerberg et al. (2015) procedure (ACF), or
with modifications to accommodate network effects (ACF-N) and net-
work differencing (ACF-ND). Network effects for ACF are estimated
using the generalized 2SLS procedure for heterogenous peer effects in
Dieye and Fortin (2017); Patacchini et al. (2017). Standard errors are in
parentheses. All specifications include industry and year fixed effects.
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Table I.12: Productivity Spillovers by Relationship Dynamics (Gross Output)

Dependent Variable: lnTFPt
Continuing New Continuing New
Customers’ Customers’ Suppliers’ Suppliers’

Period Estimator lnTFPt lnTFPt lnTFPt lnTFPt

1977-1986

GNR 0.0032 0.0006 0.0143 0.0073
(0.0033) (0.0039) (0.0037) (0.0038)

GNR-N 0.0 0.0001 0.0087 0.0052
(0.0017) (0.0018) (0.002) (0.0018)

GNR-ND -0.0004 -0.0019 0.0113 0.0049
(0.0023) (0.0022) (0.0024) (0.0023)

1987-1996

GNR 0.0072 0.0033 -0.0035 -0.0118
(0.0035) (0.0039) (0.0041) (0.0035)

GNR-N 0.0074 0.0082 -0.009 -0.0194
(0.0041) (0.0049) (0.0049) (0.004)

GNR-ND -0.0128 0.0101 -0.0009 -0.0175
(0.0046) (0.0064) (0.0101) (0.0081)

1997-2006

GNR -0.0007 0.0005 0.0003 0.0013
(0.0004) (0.0004) (0.0003) (0.0003)

GNR-N -0.0009 0.0003 0.0014 0.0025
(0.0004) (0.0004) (0.0004) (0.0004)

GNR-ND -0.0011 0.0002 0.0019 0.0031
(0.0005) (0.0005) (0.0005) (0.0004)

2007-2016

GNR 0.0005 0.0006 0.0015 0.0013
(0.0004) (0.0004) (0.0005) (0.0004)

GNR-N 0.0005 0.0004 0.0031 0.0026
(0.0005) (0.0005) (0.0008) (0.0006)

GNR-ND 0.0003 0.0003 0.0031 0.0027
(0.0005) (0.0005) (0.0009) (0.0007)

All

GNR 0.0008 0.0017 0.0028 0.0038
(0.0006) (0.0006) (0.0006) (0.0006)

GNR-N 0.001 0.0017 0.0067 0.0077
(0.0007) (0.0007) (0.0009) (0.0008)

GNR-ND 0.0005 0.0013 0.0071 0.0082
(0.0007) (0.0008) (0.001) (0.0009)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated
on US firms in Compustat. Each TFP measure is from a gross output production function (in logs) estimated with the
standard Gandhi et al. (2020) procedure (GNR), or with modifications to accommodate network effects (GNR-N) and
network differencing (GNR-ND). Network effects for GNR are estimated using the generalized 2SLS procedure for
heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Standard errors are in parentheses. All
specifications include industry and year fixed effects.
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Table I.13: Productivity Spillovers by Sector (Gross Output)

Dependent Variable: lnTFPt
Firm’s Sector

Non-
Partners’ Sector Mining Utilities Constr Durables Durables Electronics Wholesale Retail Trans & WH Info FIRE Services

Mining -0.0084 -0.0096 -0.0064 0.0017 0.0075 -0.0161 0.0172 0.0094 0.0102 0.0357 0.0042 0.0028
(0.0064) (0.0038) (0.0331) (0.005) (0.0027) (0.0326) (0.0104) (0.008) (0.0092) (0.0111) (0.0085) (0.008)

Utilities -0.0032 -0.0007 0.0061 0.003 0.01 0.0134 0.0041 -0.0028 0.0018 -0.0024 -0.0038 0.0105
(0.0059) (0.0028) (0.0104) (0.0027) (0.0021) (0.0082) (0.0083) (0.0084) (0.0065) (0.0125) (0.0178) (0.006)

Construction -0.0192 0.0014 0.0147 0.0055 -0.0058 -0.0079 0.0113 -0.0075 0.017 0.0043 -0.0005 0.0282
(0.0312) (0.0041) (0.0115) (0.0059) (0.0036) (0.0133) (0.0076) (0.009) (0.0228) (0.0035) (0.0061) (0.0218)

Durables Mfg 0.0077 0.0002 0.0265 0.0025 0.0012 -0.0036 0.0079 -0.0016 0.0029 0.0039 0.0052 0.0032
(0.0065) (0.003) (0.0231) (0.0022) (0.0016) (0.0024) (0.0027) (0.0016) (0.0035) (0.0034) (0.0063) (0.0034)

Non-Durables Mfg -0.0061 -0.0014 -0.0028 0.0001 -0.001 -0.0067 0.0034 -0.0062 -0.0065 -0.0026 -0.0175 -0.0102
(0.0052) (0.0028) (0.0132) (0.0018) (0.0013) (0.0048) (0.0027) (0.0016) (0.0038) (0.0044) (0.0085) (0.0038)

Electronics Mfg -0.0433 -0.0157 -0.0275 -0.0003 -0.0043 0.0244 0.013 0.0021 0.0079 0.0007 0.0207 0.0001
(0.0501) (0.0055) (0.0355) (0.0046) (0.0038) (0.0029) (0.0031) (0.0032) (0.0058) (0.0031) (0.0091) (0.0043)

Wholesale -0.0052 0.0126 0.0121 0.0022 0.0032 0.0165 0.01 0.0017 0.0033 0.0022 -0.0132 0.0027
(0.0118) (0.0075) (0.0164) (0.0021) (0.0012) (0.0021) (0.0038) (0.0014) (0.0104) (0.0024) (0.0118) (0.004)

Retail 0.0113 -0.0037 -0.0075 0.0074 0.003 0.0194 0.0104 0.0012 -0.0013 0.009 0.018 0.0017
(0.0118) (0.0104) (0.016) (0.0028) (0.0013) (0.0036) (0.0019) (0.0026) (0.004) (0.0041) (0.0046) (0.0044)

Transport and
Warehousing

0.0079 0.0116 0.0575 0.0037 0.0033 0.0067 0.0078 0.0022 -0.0031 0.0007 -0.0088 0.0
(0.0094) (0.0034) (0.0184) (0.0041) (0.002) (0.0059) (0.0109) (0.0039) (0.0042) (0.0081) (0.0073) (0.0103)

Information 0.0244 -0.0023 0.0085 -0.0035 -0.001 0.0151 0.0064 -0.001 -0.018 0.0041 0.0066 -0.0074
(0.0118) (0.0069) (0.017) (0.0039) (0.0028) (0.0025) (0.0049) (0.0026) (0.0048) (0.0028) (0.0047) (0.004)

Finance, Insur &
Real Estate

0.0004 0.005 -0.0134 0.0 -0.0044 0.0134 -0.0026 0.0017 0.0045 0.0042 -0.0021 0.0048
(0.0112) (0.0143) (0.0128) (0.0044) (0.0025) (0.0034) (0.0149) (0.002) (0.0043) (0.0031) (0.0043) (0.0036)

Services 0.0035 -0.0088 0.0083 0.0088 0.0042 0.0022 0.0084 0.0042 0.0025 0.0052 0.009 0.0025
(0.0117) (0.0036) (0.0253) (0.0023) (0.0023) (0.0028) (0.0072) (0.0026) (0.005) (0.0031) (0.0048) (0.0037)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat. Each TFP measure is from a gross output production
function (in logs) estimated with the standard Gandhi et al. (2020) procedure (GNR), or with modifications to accommodate network effects (GNR-N) and network differencing (GNR-ND). Network
effects for GNR are estimated using the generalized 2SLS procedure for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Sectors are determined according to the BEA
industry classification. Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table I.14: Productivity Spillovers by Firm Size & Relationship Direction (Gross Output)

Dependent Variable: lnTFPt
Partner Firm
Size Relationship Size 1977-1986 1987-1996 1997-2006 2007-2016 All

Large

Customers
Large 0.0012 0.0033 -0.0001 0.0003 0.002

(0.0031) (0.0073) (0.0004) (0.0004) (0.0008)

Small -0.0032 -0.0028 0.0005 -0.0004 0.0021
(0.0037) (0.0056) (0.0006) (0.0006) (0.001)

Suppliers
Large 0.0141 -0.0226 0.0024 0.0026 0.0083

(0.0032) (0.0103) (0.0004) (0.0007) (0.001)

Small 0.0509 -0.0638 0.0046 -0.005 0.0143
(0.0273) (0.0208) (0.0024) (0.0025) (0.0077)

Small

Customers
Large -0.0115 -0.0701 -0.0058 -0.0059 -0.0091

(0.0106) (0.0447) (0.0026) (0.0064) (0.0076)

Small -0.0004 -0.0387 0.0 -0.0008 -0.0045
(0.0127) (0.0329) (0.0021) (0.0027) (0.0052)

Suppliers
Large 0.0122 -0.0124 0.0021 0.0023 0.0081

(0.0034) (0.0054) (0.0004) (0.0006) (0.0009)

Small 0.0502 -0.0144 0.0032 0.0 0.0075
(0.0227) (0.0133) (0.0019) (0.003) (0.0053)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat.
Each TFP measure is from a gross output production function (in logs) estimated with the standard Gandhi et al. (2020) procedure (GNR), or with
modifications to accommodate network effects (GNR-N) and network differencing (GNR-ND). Network effects for ACF are estimated using the
generalized 2SLS procedure for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are businesses with 500
or more employees.Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table I.15: Productivity Spillovers by Varying Firm Size Cutoffs (Gross Output)

Dependent Variable: lnTFPt
Firm’s Sector

Partner Size Relationship Firm Size 500 1000 5000 Median

Large

Customers
Large 0.002 0.0017 0.0015 0.0011

(0.0008) (0.0008) (0.0008) (0.0008)

Small 0.0021 0.0036 0.0019 0.0015
(0.001) (0.0011) (0.001) (0.001)

Suppliers
Large 0.0083 0.008 0.006 0.0088

(0.001) (0.001) (0.0008) (0.001)

Small 0.0143 0.0094 0.0086 0.0093
(0.0077) (0.0036) (0.0027) (0.0016)

Small

Customers
Large -0.0091 -0.001 -0.0038 0.0019

(0.0076) (0.0061) (0.0039) (0.0015)

Small -0.0045 -0.0051 0.0007 0.0026
(0.0052) (0.0036) (0.0012) (0.0012)

Suppliers
Large 0.0081 0.0086 0.008 0.0074

(0.0009) (0.001) (0.0012) (0.0011)

Small 0.0075 0.0074 0.0091 0.0088
(0.0053) (0.0033) (0.0013) (0.0013)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms
in Compustat. Each TFP measure is from a gross output production function (in logs) estimated with the standard Gandhi et al.
(2020) procedure (GNR), or with modifications to accommodate network effects (GNR-N) and network differencing (GNR-
ND). Network effects for GNR are estimated using the generalized 2SLS procedure for heterogenous peer effects in Dieye and
Fortin (2017); Patacchini et al. (2017). Large firms are defined by having at least as many employees as the cutoffs indicated
above. The median cutoff is determined by industry and year. Standard errors are in parentheses. All specifications include
industry and year fixed effects.
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I.9 Conclusion
This paper examines how efficiency gains are transmitted through vertical relationships. The existence of spillovers
implies a form of firm interdependence that matters for consistent estimation of production functions. Using Monte
Carlo experiments, I show that endogenous spillovers—the effect of the average productivity of a firm’s neighbors on
its own productivity—are an important source of bias when not accounted for in TFP estimation. Furthermore, the
direction of this bias cannot always be clearly predicted a priori, and varies by the density of the network and the
persistence of productivity. However, for moderately sparse networks, standard approaches may deliver reasonably
unbiased estimates of production function elasticities and spillovers.

Under additional assumptions on firms’ information sets and the structure of the network, I propose a methodology
that can flexibly accommodate various network effects and endogenous network formation, and can be applied to
both gross output and value-added production functions. I show experimentally that it performs better than standard
approaches as long as the network is not too dense and productivity is sufficiently persistent.

Using data from Compustat on supplier-customer relationships in the US, I investigate the extent of productivity
spillovers in from 1977 to 2016. I find that firms benefit from having more productive buyers and sellers, with both
large and small suppliers having a larger effect than customers. Furthermore, the cumulative impact of spillovers over
the 4 decades in the sample could mean a 16 percent difference in efficiency when compared to a no-spillover scenario.

Estimates suggest that if the most connected firm in a given year was 10 percent more productive, spillovers would
lead to an increase in aggregate TFP of 0.2 to 1.9 percent. This also works in the opposite direction: a significant
decline in productivity of central firms could mean substantial second-order impacts to US aggregate efficiency due
to the interdependence of firms’ activities through supply chains. This suggests that industrial and trade policies that
could potentially affect the productivity of well-connected firms needs to account for potential indirect effects both
upstream and downstream.

The sectoral composition of the production network plays a large role in the size and transmission of produc-
tivity gains. I find substantial heterogeneity in the size and spillovers between and within sectors, with electronics
manufacturers benefiting from efficiency gains from most sectors, while retailers and services boost other sectors.

Consistent with my Monte Carlo experiments, estimates from standard approaches empirically yielded estimates
of network effects that were similar to those obtained from my procedure, because the observed network density fell
within the region where bias in spillover estimates was minimized. While this is reassuring for studies conducted on
networks with similar levels of sparsity, caution should be taken when networks are much sparser or denser.

Results differed between gross output and value-added specifications. As discussed in Gandhi et al. (2017), value-
added and gross output productivity measures may vary significantly and lead to substantively different policy impli-
cations about the dispersion of firm productivity. My paper reveals that the choice of production function also matters
for the estimation of productivity spillovers.
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CHAPTER II

Home-Country Productivity Spillovers from US Multinational Activity

II.1 Introduction
For a long time, scholars and policymakers have sought to understand how the activities of multinational enterprises
(MNEs) shape the economic landscapes of the countries in which they operate. Of particular interest has been the
prospect of multinationals as drivers of international technology diffusion, the idea that firms could gain productivity-
enhancing knowledge through interactions with producers from other countries. In this regard, inward foreign direct
investment (FDI) by MNEs has received considerable attention: if multinationals generate positive externalities on
domestic firms in foreign (host) countries, then there is a policy rationale for attracting inward FDI.1

The effect of outward FDI has been explored to a lesser extent and researchers have focused primarily on the
impacts on home-country employment, investment and exporting (Lipsey, 2004; Desai et al., 2009). However, policies
promoting and subsidizing outward FDI have recently gained traction in developing countries, particularly in China
(Perea and Stephenson, 2017). Proponents of such policies highlight the potential for productivity spillovers from
multinational parent companies to domestic firms in the home country.

In this paper, I examine the impact of outward FDI in the US by estimating how much the productivity of US firms
varies by their exposure to US multinationals through horizontal and vertical linkages. Using data from 1989 to 2016
on publicly-listed companies in Compustat, I document a positive relationship between an MNE’s productivity and
its activities abroad. To examine spillovers, I construct firm-specific measures of exposure to MNEs through vertical
buyer-supplier relationships and horizontal product-market competition. My results show that domestic customers and
competitors of MNEs tend to be more productive, while MNE suppliers within the US experience a negative impact
on their total factor productivity (TFP).

The rest of this paper proceeds as follows: in the next section, I provide an overview of the existing literature.
Section II.3 outlines my empirical approach, and section II.4 describes the data. Results are presented in section II.5.
Section II.6 concludes.

II.2 Background and Related Literature
The basis for home-country productivity spillovers from outward FDI relies on the existence of an “own-firm effect”,
that is, the impact of an MNE’s activities abroad on the its own productivity. Navaretti and Castellani (2004) and Borin
and Mancini (2016) find that Italian firms become more productive after investing abroad, and Hijzen et al. (2011) find
weaker productivity impacts for French MNEs. There are several reasons why one could expect a positive own-firm
effect of FDI on productivity. MNEs may be become more productive due to scale economies, affiliate specialization
within the firm, or knowledge acquired as result of deliberate technology-sourcing2 in the host-country, and the parent
company subsequently learning from its affiliates.

The knowledge or technology acquisition channel is the more salient source of potential home-country productivity
spillovers. If an MNE’s performance is improved by knowledge acquired abroad, domestic firms in the home country
could benefit from relationships with the parent company in the same way that foreign firms in host countries could
benefit from relationships with its affiliates. That is, transmission channels for spillovers from outward FDI are likely to
be similar to those discussed in the literature on inward FDI. Within an industry, greater domestic productivity could be

1See Smeets (2008), Harrison and Rodrı́guez-Clare (2010), Havranek and Irsova (2011) and Alfaro (2017) for reviews of the literature.
2For instance, early work by Kogut and Chang (1991) and Yamawaki (1993) suggests Japanese firms’ investments in the US were aimed at

tapping into the technological capacity of innovative US industries.
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driven by competitive pressures, imitation of manufacturing processes or managerial strategies (Wang and Blomström,
1992), and workers moving to domestic firms with knowledge retained from experience in MNEs (Glass and Saggi,
2002). Vertical spillovers across buyer-supplier relationships could also be generated by customers of MNEs gaining
access to higher-quality inputs, or suppliers benefiting from being integrated into MNEs’ more efficient supply chains
(Javorcik, 2004; Alfaro-Urena et al., 2019).

Empirical evidence of home-country productivity spillovers from outward FDI is limited. At the macroeconomic
level, Potterie and Lichtenberg (2001) estimates the impact of changes in a country’s R&D stock on its trade and
investment partners, and finds larger spillovers from investing in R&D-intensive countries than from being invested
in by those countries. Castellani and Pieri (2016) study a set of European countries, and finds that home-country
labor productivity growth is positively correlated with outward investments in sales and distribution, but negatively
correlated with outward investments in manufacturing activities. At the firm level, Braconier et al. (2001) find no
relationship between Swedish firms’ labor productivity and research and development (R&D) in foreign countries,
while Globerman et al. (2000) show that domestic firms are more likely to cite patents from foreign locations in which
Swedish multinationals have greater investments. Using data from on Estonian enterprises, Vahter et al. (2007) find
a positive own-firm effect of outward FDI but weak evidence of intra-sectoral spillovers. My paper is most closely
related to work by Tang and Altshuler (2015), who find a positive relationship between the productivity of domestic
publicly-listed companies in the US and multinational activities in downstream industries.

In addition to providing further evidence on the existence of outward FDI spillovers, I improve upon existing work
by exploiting firm-level variation in exposure to multinationals within the same product space and in buyer-supplier
relationships. There are several advantages of firm-specific linkages over industry-level proxies. Firstly, it enables me
to detect spillovers that would otherwise be masked by sector aggregation. This has been shown to be quantitatively
meaningful in the inward FDI literature. For instance, Newman et al. (2015) find that domestic Vietnamese firms who
purchase inputs from MNE affiliates have higher productivity, whereas industry-level forward spillovers from MNEs is
negative. Secondly, by observing the interfirm linkages, I avoid making assumptions about the MNEs’ input sourcing
behavior which, as Barrios et al. (2011) point out, are implicit in standard industry-level measures.

Furthermore, I am able to explore richer interactions between vertical and horizontal effects. Consider a scenario
represented in Figure II.1, suppliers A and B in the upstream sector sell to competitor A and the MNE respectively,
while customers A and B in the downstream sector buy from the MNE and competitor B, respectively. Supplier B
could experience direct backward spillovers (BSMB) due to its trading relationship with the MNE. Supplier A, on the
other hand, is only indirectly affected by the MNE, either through the horizontal spillovers from Supplier B or the
horizontal impact of the MNE on Competitor A (BSMAA) who purchases from Supplier A. Industry-level measures
of MNE exposure would only recover a composite estimate of the direct and indirect vertical spillovers, while my
approach is able to distinguish between them and quantify the relative importance of each channel.

An additional contribution of my work is that I distinguish between general productivity spillovers in the US econ-
omy and the specific effects of MNE activities. Many of the mechanisms through which home-country spillovers from
MNEs may occur are not exclusive to outward FDI; knowledge acquired by any other means could be transmitted in
much the same way as technical expertise gained abroad. To the extent that exposure to more productive firms has
differential impacts from interacting with less productive firms, estimated effects of transacting or competing with
MNEs may have more to do with their producitivity than their international activities. Existing studies show theoreti-
cally (Helpman et al., 2004) and empirically (Wagner, 2011) that more productive firms engage in FDI. Furthermore,
as discussed above, outward FDI may also raise the productivity of multinationals themselves due to scale economies
rather than knowledge transfers. This is an important distinction because the policy implications significantly differ. If
outward FDI results knowledge transfers or spillovers, this would be reflected in both the impact of MNEs themselves
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Figure II.1: Possible interactions between horizontal and vertical spillovers.
Arrows show the direction of spillovers. Solid and dashed lines indicate direct and indirect spillovers respectively. BS, HS, and FS denote backward, horizontal and
forward spillovers respectively.

and the indirect effect of their increased productivity, and could justify outward FDI promotion policies. However,
if outward FDI does not generate any additional knowledge, there could still be positive spillovers operating through
MNEs’ raised productivity, but would make a less compelling case for the promotion of outward FDI in particular.

II.3 Empirical Approach
In this section, I describe my empirical strategy for recovering MNE spillover effects, which involves jointly estimating
a firm-level production function and a productivity process that depends on a firm’s interactions with MNEs and across
industries. I incorporate spillovers into the productivity estimation process because, as I demonstrate in the previous
chapter, failing to account for the way spillovers could affect a firm’s input choices and output through its productivity
may bias estimates TFP and spillovers. In section II.3.1, I present a specification of the firm’s productivity process,
then outline how I embed it within the production function estimation procedure in II.3.2.

II.3.1 The Productivity Process with MNE Spillovers
To estimate the relationship between a firm’s productivity and its exposure to multinationals, researchers typically
estimate an equation of the form:

ωist = β1 +βHHorizontalst +βBBackwardst +βF Forwardst +βs +βt +ηit (II.1)

where ωist is the natural log of the Total Factor Productivity (TFP) of firm i in industry s at time t, and Horizontalst ,
Backwardst , and Forwardst are industry-level measures of multinational activity in the same, downstream and up-
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stream industries respectively. βs and βt are industry and year fixed effects.
However, in order to disentangle direct and indirect effects, as well as distinguish between general and MNE-

specific spillovers, I estimate the following specification:

ωist = α1 +δMNEist−1 + γHHorizontalist + γBBackwardist + γF Forwardist

+ρωist−1 +λHω
Hi
jst +λBω

Bi
jst +λF ω

Fi
jst +αst +ηist (II.2)

where, as before, ωist is the firm’s log(TFP) in the period, and MNEist−1 is the firm’s multinational status in the
previous period. I use lagged MNE status to allow reverse technology transfer from affiliates to take place with a one-
period lag, and δ captures the own-firm effect of multinational experience. Horizontalist , Backwardist , and Forwardist

are the shares of a firm i’s current product-market competitors, customers, and suppliers that were multinationals in
the previous year. Therefore, γH , γB and γF measure the direct spillover effects of competing and transacting with
multinationals.

To account for general productivity spillovers, I include ω
Hi
jst , ω

Bi
jst , and ω

Fi
jst which are averages of the log(TFP) of

firm i’s current competitors, customers and suppliers, respectively. The corresponding λH , λB, and λF are endogenous

network effects, that reflect the impact of competing and trading with more productive firms.
Note that, by using firm-specific measures, I am able to include industry-year fixed effects αst to account for

time-varying industry-wide changes in productivity and MNE exposure. Finally, I include firm i’s lagged productivity
ωist−1 to specify an AR-1 productivity process that can be embedded in the TFP estimation procedure.

Following the network effects literature,3 I represent (II.2) in a vectorized form by constructing interaction ma-
trices: GH

t , GB
t and GF

t , where element GH
i jt is a weight specifying firm j’s proximity to firm i in the product-market

space, GB
i jt is firm i’s sales to firm j as a share of firm i’s sales to all other firms, and GF

i jt is firm i’s purchases from firm
j as a share of firm i’s purchases from all other firms. Note that these matrices are time-varying, allowing for changes
in the existence and importance of firm-to-firm links. Then equation (II.2) becomes:

ωt = α1ι +δMNEt−1 + γHGH
t MNEt−1 + γBGB

t MNEt−1 + γF GF
t MNEt−1

+ρωt−1 +λHGH
t ωt +λBGB

t ωt +λF GF
t ωt +αst +ηt (II.3)

where each variable xt is a column vector of xist ’s and ι is a vector of ones.
The reduced form of this vectorized equation allows for closer examination of potential direct and indirect impacts

of MNE activities. Let I be the identity matrix, λλλ = (λH ,λB,λF)
′ , γγγ = (γH ,γB,γF)

′, Gt(λλλ ) = λHGH
t −λBGB

t −λF GF
t ,

and Gt(γγγ) = γHGH
t − γBGB

t − γF GF
t . If |λH |< 1, |λB|< 1, and |λF |< 1, then equation (II.3) can be rewritten as:4

(I−Gt(λλλ ))ωt = δMNEt−1 +Gt(γγγ)MNEt−1 +ρωt−1 +αst +ηt

=⇒ ωt = (I−Gt(λλλ ))
−1 [δMNEt−1 +Gt(γγγ)MNEt−1 +ρωt−1 +αst +ηt ]

ωt =
∞

∑
τ=0

Gt(λλλ )
τ (δ I +Gt(γγγ))MNEt−1 +ρ

∞

∑
τ=0

Gt(λλλ )
τ
ωt−1 +

∞

∑
τ=0

Gt(λλλ )
τ(αst +ηt) (II.4)

Equation II.4 implies that a firm’s productivity is influenced by an infinite series of combinations of direct and indirect
spillovers from multinational activity in its network. Given the assumption that the λ ’s are bounded in absolute value
by 1, then the indirect effects, operating through the endogenous network effects, lessen in importance as the degrees

3See Lee (2003) and Bramoullé et al. (2009).
4The constant has been suppressed for ease of exposition.
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of separation between firms within the network increases. Taking a closer look at the first two terms in the first
summation on the right-hand side of equation (II.4):

1

∑
τ=0

Gt(λλλ )
τ (δ I +Gt(γγγ))MNEt−1 = (δ I +Gt(γγγ)+δGt(λλλ )+Gt(λλλ )Gt(γγγ))MNEt−1

= δMNEt−1 +Gt(δλλλ + γγγ)MNEt−1 +Gt(λλλ )Gt(γγγ)MNEt−1 (II.5)

Gt(δλλλ + γγγ)MNEt−1 in equation II.5 shows that without controlling for general productivity spillovers among firms,
the total effect of interacting with MNEs can be decomposed into a direct effect (γ) that is MNE-specific and an indirect
effect (δλλλ ) that operates through the impact of an MNE’s activities on their own productivity. Gt(λλλ )Gt(γγγ)MNEt−1

also highlights some of the rich second-order interactions of spillover effects such as λF γHGF
t GH

t MNEt−1, which is
the effect of a firm’s suppliers competing with multinationals or λ 2

B(G
B
t )

2MNEt−1, the effect of a firm supplying inputs
to MNEs’ suppliers.

II.3.2 Estimating TFP
To recover firm-level TFP estimates, along with the spillover coefficients, I use my modification of the Gandhi et al.
(2020) approach for estimating gross output production functions introduced in the previous chapter. I estimate a
Hicks-neutral production function of labor, capital, and intermediate inputs:

Yt = F(Lt ,Kt ,Mt)eωt+εt

⇐⇒ yt = f (`t ,kt ,mt)+ωt + εt (II.6)

I assume materials are flexible, labor and capital have dynamic implications and the error terms εt are unconditionally
independent.

The procedure consists of two stages. The first stage exploits first order conditions from profit maximization to
estimate the elasticity of intermediate inputs with respect to output. Given the production technology above, the firm
chooses materials to maximize profits:

max
Mt

PtE[F(Lt ,Kt ,Mt)eωt+εt ]−PM
t Mt (II.7)

where Pt and PM
t are the prices of output and materials respectively. The static first order condition with respect to

materials implies:

st = ln
(

∂

∂mt
f (`t ,kt ,mt)

)
+ ln(E )− εt (II.8)

=⇒ st = lnDE (`t ,kt ,mt)− εt (II.9)

where st ≡ ln(PM
t Mt
PtYt

) is the log of materials expenditure share of revenue, DE (`t ,kt ,mt) ≡
∂

∂mt
f (`t ,kt ,mt)×E and

E ≡ E[eεt |It ] = E[eεt ]. I approximate DE (`t ,kt ,mt) by a second-degree polynomial in labor, capital and materials,
and estimate equation (II.9) using non-linear least squares. Using the estimated coefficients, I compute the implied
materials elasticity:

D̂(`t ,kt ,mt) =
D̂E (`t ,kt ,mt)

Ê
(II.10)
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where Ê is the mean of the first-stage residuals. By the fundamental theorem of calculus:∫
D(`t ,kt ,mt)dmt = f (`t ,kt ,mt)+C (`t ,kt) (II.11)

=⇒ yt −
∫

D(`t ,kt ,mt)dmt − εt =−C (`t ,kt)+ωt (II.12)

Therefore I can compute:

Ŷt = yt −
∫

D̂(`t ,kt ,mt)dmt − ε̂t (II.13)

In the second stage of the procedure, I approximate C (·) by a second-degree polynomial, normalized to contain no
constant, and estimate it using two-step generalized method of moments (GMM) as follows. Starting with a guess
C̃ (·),5 I compute:

ω̃t = Ŷt − C̃ (`t ,kt)

and ω̃t−1 = Ŷt−1− C̃ (`t−1,kt−1)

Then estimate:

ω̃t = α1ι +ρω̃t−1 +Gt(λλλ )ω̃t +δMNEt−1 +Gt(γγγ)MNEt−1 +αst +ηt

by two-stage least squares, with GH
t ω̃t−1, GB

t ω̃t−1, GF
t ω̃t−1 and {Gq

t Gr
t MNEt−1}r,q∈{H,B,F} as instruments for GH

t ω̃t ,
GB

t ω̃t , GF
t ω̃t . Then I find a new set parameters of C̃ (·) that satisfy the moments:

E[ηt ◦ `t ,kt , `tkt , `
2
t ,k

2
t ] = 0 (II.14)

where ◦ is the Hadamard product and the empirical moments are constructed using ẽtat obtained the estimation above.
The process is repeated until the parameters converge to a solution Ĉ (·) and (ρ̂, δ̂ , α̂1,γ̂ , λ̂λλ ).

II.4 Data
In this section, I describe the sources of data used in my analysis, examine the characteristics of my sample, and
discuss some of the advantages and limitations of the data.

II.4.1 Data Sources
This study uses Compustat data from 1989-2016 on non-agricultural publicly-listed companies in the US. Firms’ fi-
nancial information is obtained from their annual reports filed with the Securities and Exchange Commission (SEC).
I construct measures of inputs and output from the firms’ reported expenditures and sales, deflated by industry-level
price indices from the Bureau of Economic Analysis (BEA).6 I restrict the sample to domestic US firms and multina-
tionals with US-based parent companies by dropping firms with headquarters located outside the US.

Information on firms’ international activities are collected from the Compustat Business Segments file containing
information on the geographic segments in which the firm operates. I classify a firm as a multinational if it has

5I use OLS estimates as starting values.
6See the appendix for details on variable construction.
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subsidiaries in any non-US location. Therefore, MNEt−1 = 1 if a firm had any subsidiaries outside the US in the
previous year, and is 0 otherwise.

Firm-level buyer-supplier linkages are obtained from the Compustat Customer Segments file. Financial Account-
ing Standards no. 14 requires firms to report major customers that are responsible for 10% or more of a firms’ sales
in a year. I use the matches constructed in the preceding chapter, similar to the dataset used in Atalay et al. (2011).
This enables me to directly identify multinationals’ buyers and suppliers, rather than relying on input-output tables.
As Barrios et al. (2011) show, industry-based vertical spillover measures of exposure to multinationals are sensitive to
assumptions about the use of domestic and imported inputs, as well as MNEs’ input-sourcing decisions.

Horizontal linkages between firms are obtained from Hoberg and Phillips (2010) and Hoberg and Phillips (2016)
which measures proximity within the product-market space based on the similarity between firms’ business descrip-
tions. Identifying competitors in this way is particularly advantageous in my setting for two reasons. First, this yields
granular measures of who multinationals’ competitors are. Secondly, unlike typical industry classifications, the prod-
uct similarity measure does not impose transitivity: that firms i and j, and j and k are close competitors does not
automatically imply that i and k are also close competitors. Therefore, the interaction matrix constructed using this
product-market similarity measure satisfies the linear independence condition needed to identify endogenous produc-
tivity spillovers described in Chapter 1.

I restrict the sample period to 1989-2016 because 1989 is the first year in which the horizontal linkage data is
available and 2016 is the last year with matched customer-supplier data. I also drop firms with no vertical or horizontal
links. The resulting sample is a set of 5,466 unique firms and 33,723 firm-year observations. The vertical relationship
data contains 12,139 unique buyer-supplier links and 47,468 dyad-year observations, while the horizontal network
consists of 138,303 unique competitor pairs and 572,303 horizontal links across all years.

II.4.2 Descriptive Statistics
Table II.1 summarizes some characteristics of firms in the sample across all years. Because this study only examines
publicly-listed companies, firms in the sample tend to be large across the board, and MNEs comprise more than half
of firm-year observations. MNEs are, on average, larger than domestic firms with about 7.65 billion (2009 USD) in
annual sales over the sample period, compared to 3.2 billion for domestic firms. MNEs also tend to have larger capital
stocks, purchase more intermediate inputs, and hire more employees on average than their domestic counterparts.
However, they also tend to vary more in size, with higher standard deviations across all of these measures.

The network characteristics in Table II.1 are all weighted sums or averages, with weights corresponding to the
product-space similarity scores for the horizontal links, and dyad-specific sales for the vertical links. Domestic firms
are less likely to reported as major customers, with an average in-degree of 0.69 while about 1.49 suppliers are
identified per MNE. There does not appear to be a substantial difference between the number of major customers
reported by domestic firms and MNEs. Firms of both types also tend to have similar shares of MNEs among their
customers. However, MNEs have a higher average share of MNEs as suppliers at 21% compared to 9% for domestic
firms. This may again be function of the reporting threshold, with domestic firms less likely to be reported by larger
MNEs than by smaller domestic firms.

The horizontal network is much denser than the vertical network, with about 14.65 and 17.29 competitors on
average for domestic and multinational firms respectively. MNEs tend to compete closely with each other, with an
average of 12.22 horizontal links to MNEs and with multinationals comprising 59% of their competitors on average.
Domestic firms also predominantly compete with other domestic firms, with MNEs only making up 25% of their
competitors on average. These sorting patterns in the product-market space would be obscured by industry-level
measures, which typically assume that all firms within the same industry face equal exposure to MNEs.
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II.5 Results
II.5.1 TFP Estimates
This section presents results of the model presented in section II.3 on the data described above. I estimate three
specifications: the first includes network effects from MNE exposure but no endogenous productivity spillovers, the
second contains MNE-specific and general network effects, and the third accounts for both types of spillovers and
controls for network cluster-specific productivity shocks in each year. All specifications include industry-year and
region fixed effects, and control for a firm’s MNE status in the production function.

The estimated production function parameters are similar across all specifications, with elasticities of output with
respect to labor, capital and intermediate inputs at about 0.25, 0.15 and 0.52 respectively. Figure II.2 depicts the
distribution of estimated productivity in 2016 from each specification, which does not differ substantially in mean or
variance.

Estimated productivity does differ across MNEs and domestic firms, and between domestic firms that compete or
trade with MNEs and those that do not. Figure 3 shows how average log(TFP) from the third specification compares
over the sample period across firm types. In the first panel, I compare all firms based on their multinational status.
MNEs are more productive than domestic firms on average, except for the period between 2000 and 2005 when
average productivity growth for both types of firms proceeded at a similar pace. In the other three panels, I only
examine domestic firms, and categorize them by whether or not they have at least one MNE customer, supplier or
competitor. Throughout the sample period, domestic firms that purchase from MNEs tend to be more productive than
their counterparts that do not, while the opposite pattern holds for domestic suppliers of MNEs. MNE competitors and
non-competitors are on similar productivity growth paths at the beginning of the sample, but their trajectories begin to
diverge in 2000, with MNE competitors exhibiting greater productivity.

II.5.2 Productivity Spillovers from MNEs
These patterns reflect the productivity process coefficients and spillovers estimates in Tables II.2 and II.3. In Table
II.3, Columns (1) and (2) are network effects estimated within the same productivity process for domestic firms and
MNEs without endogenous network effects, the next two columns report coefficients from the second specification
with endogenous effects, and columns (5) and (6) reports estimates from the third specification that accounts for
common productivity shocks with network fixed effects. In Table II.2, each column represents the three respective
specifications mentioned above.

My results suggest that the own-firm effect is positive: MNEs are about 0.7 to 1% more productive in the short
run. Given that productivity is highly persistent with an AR1 parameter of 0.89, this implies a long-run effect of 7 to
10%. Across all specifications, firms that have a higher share of MNEs among their competitors or suppliers are more
productive, while firms with a greater share of MNE customers are less productive.

However, the magnitudes of these effects differ depending on whether or not endogenous effects are included in
the productivity process. Results in column (1) of Table II.3 suggest that domestic firms who only compete with MNEs
are about 2.8% more productive than domestic firms who compete only with other domestic firms, but columns (3) and
(5) indicate an effect size of about 1.5%. The difference is even starker for multinational firms: without accounting
for endogenous effects, there is 1% productivity advantage of competing with only other MNEs as compared to only
domestic firms, but it diminishes to a statistically insignificant 0.2% when we factor in the effect of being in a more
competitive product-market in general.

Focusing on the third specification reported in columns (5) and (6) of Table II.3, spillover estimates vary between
MNEs and domestic firms. Multinational firms experience a smaller positive impact of competing with MNEs and
negative effect of supplying to MNEs than domestic firms do. The opposite holds for the impact of purchasing from
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a greater share of MNEs; the effect is higher for multinationals who experience a short-run 1.3% productivity boost
compared to 0.96% for domestic firms.

These disparities are further exacerbated by the differences in the actual observed interactions with MNEs. The
average multinational for whom MNEs comprise 21% of its suppliers experiences a 0.27% productivity gain compared
to the average domestic firm’s gain of 0.086% from the MNEs that make up 9% of its suppliers. Furthermore, when
I consider spillovers to the average domestic firm from its interactions with MNEs across vertical and horizontal
linkages, the overall effect is quite modest: a 0.375% gain from 25% of its competitors, a 0.581% decline due to 45%
of its customer base, and a 0.086% effect from 9% of its suppliers, yields a combined negative impact of 0.12%.

Indirect impacts of trading and competing with multinationals are also relatively muted in comparison to the direct
spillovers. Given the own-firm effect in Table II.2 and the endogenous productivity spillovers in Table II.3, domestic
firms that compete with only MNEs get an additional 0.0012% productivity boost due to the increased TFP that MNEs
enjoy from their international activities.

My results differ from the findings by Tang and Altshuler (2015) who find positive but insignificant horizontal
spillovers from US multinationals to domestic firms, significant positive spillovers from MNEs in downstream sectors
to domestic firms upstream (backward spillovers), and marginally significant negative forward effects of MNEs in up-
stream industries on domestic firms downstream (forward spillovers). There are several reasons for these differences.
First, as discussed earlier, Tang and Altshuler (2015) construct measures of MNE exposure at the industry level. In
my case, I focus on firm-specific exposure based on the observed interactions between firms. Therefore, the inclusion
of industry-year fixed effects eliminates the kind of variation that was used to identify spillovers in Tang and Altshuler
(2015). Finally, I estimate a gross output production function on all non-agricultural sectors, rather than a value-added
production function on the manufacturing sector.

The positive impact of MNEs on their customers rather than their suppliers is the reverse of what has been found in
the literature on host-country effects. This may suggest an important difference between the value of MNE operations
at home and abroad: an MNE in a foreign country may be substantially closer to the technological frontier than
domestic firms and can serve as an important source of innovation for their suppliers, whereas in the home country,
MNEs and their domestic suppliers may be proximate in the technology space. Therefore, the added benefit of MNEs
at home may arise mainly from their ability to supply inputs at a lower cost, higher quality, or more efficient pace to
their customers, due to their experience with organizing complex supply chains globally.

II.5.3 Alternative Measures of MNE Exposure
So far, I have measured multinational activity by whether or not a firm reported a foreign subsidiary in the previous
year. Now, I consider how my results change if multinational status is measured by how active these foreign affiliates
are, as proxied by their sales abroad. I construct two alternative measures: an indicator for whether the firm had
any international sales in the preceding year and a firm’s foreign sales as a share of total revenue. Table II.4 reports
estimates from a specification including both endogenous productivity spillovers and network fixed effects.

Both measures yield qualitatively similar results: positive horizontal and forward spillovers, and negative backward
spillovers for both domestic firms and MNEs. However, intensity of foreign activity as captured by the share of
international sales, appears to matter. Compared to the benchmark 1.5% short-run productivity boost to domestic
firms from competiting exclusively with MNEs, there is a 4.67% gain if those multinationals are predominantly active
abroad (i.e. have a foreign sales share close to 1).
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II.6 Conclusion
Overall, the findings of this study suggest that there are home-country spillovers from MNEs to domestic firms in the
United States. By using observed horizontal and vertical relationships between firms, I am able to identify effects
that operate directly and indirectly through these linkages. These results do not, however, provide a strong case for
subsidizing outward FDI. For the average domestic firm, the combined impact of all types of interactions with MNEs
is modest and negative.

Nevertheless, the findings of this study should interpreted with caution because of several limitations. First, the
composition of the sample and observed vertical links means that the findings here may not be representative of
the population of US firms. Secondly, I cannot directly test the channels through which these spillovers occur. For
example, this study does not distinguish between the transmission of exchange-rate shocks and productivity gains.
Future work could examine the impact of additional factors such as affiliate location: if reverse technology transfers
from affiliates to the parent company are taking place, then one would expect greater spillovers from firms with
subsidiaries in technologically advanced locations.

Another limitation, shared by many other studies of productivity spillovers, is that I estimate productivity using
revenues rather than physical output. Consequently, my estimates reflect overall impacts on profitability rather than
simply physical productivity. Given that the observed vertical linkages tend to be between firms and their major
customers, this may partly explain the negative backward spillovers, especially if MNEs are adept at securing discounts
from their suppliers.

Table II.1: Firm Characteristics

Domestic Multinational
Mean SD Mean SD

Sales 3.2 10.04 7.65 23.68
Employees (thousands) 10.62 32.93 22.69 80.08
Capital stock 3.08 10.62 5.2 20.08
Materials 2.26 7.53 5.51 20.06
No. of suppliers 0.69 2.6 1.49 5.73
No. of customers 1.13 1.13 1.08 1.36
No. of competitors 14.65 22.54 17.29 23.99
No. of MNE suppliers 0.31 1.66 1.03 4.67
No. of MNE customers 0.69 0.85 0.85 1.17
No. of MNE competitors 5.12 10.43 12.22 18.27
MNE share of suppliers 0.09 0.27 0.21 0.39
MNE share of customers 0.45 0.47 0.5 0.48
MNE share of competitors 0.25 0.31 0.59 0.39

Observations 16443 17280

This table reports means and standard deviations of characteristics of firms in the
sample over the period 1989-2016. Monetary values are in 2009 billion USD. All
supplier, customer and competitor characteristics are weighted by the value purchased,
value sold, and product-market distance respectively.
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Figure II.2: Distribution of ln(TFP) in 2016
This figure shows the distributions of ln(TFP) in 2016, estimated on a sample of firms in Compustat using the Iyoha (2021) modification
of the Gandhi et al. (2020) procedure to allow for productivity spillovers from MNEs, endogenous network effects, and network fixed
effects.

Figure II.3: Average Productivity by Firm Type and Trading Partner
The first panel of this figure compares estimated productivity of all firms by MNE status. The other three panels compare domestic
firms by whether or not they buy from, supply to or compete with at least one MNE.
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Table II.2: Productivity Process Coefficients

Dependent Variable: lnTFPt
(1) (2) (3)

ln(T FP)t−1 0.887 0.887 0.886
(0.005) (0.005) (0.005)

MNEt−1 0.007 0.011 0.012
(0.004) (0.005) (0.005)

Constant 1.947 1.88 1.878
(0.093) (0.09) (0.091)

Network FE No No Yes

This table reports coefficients of a linear productivity process
from a productionfunction estimated on US firms in Compustat
(in logs) with the Iyoha (2021) modification of the Gandhi et al.
(2020) procedure. Standard errors are in parentheses. All
specifications include industry-year and region fixed effects.

Table II.3: Productivity Spillovers

Dependent Variable: lnTFPt
Domestic MNE Domestic MNE Domestic MNE

(1) (2) (3) (4) (5) (6)

Competitors’ MNEt−1 0.0278 0.0104 0.0149 0.0024 0.0151 0.0016
(0.005) (0.0035) (0.0059) (0.0049) (0.006) (0.0049)

Customers’ MNEt−1 -0.014 -0.0098 -0.0129 -0.0108 -0.0129 -0.0104
(0.0038) (0.0029) (0.0047) (0.0047) (0.0047) (0.0047)

Suppliers’ MNEt−1 0.0137 0.0228 0.009 0.0122 0.0096 0.0127
(0.004) (0.003) (0.0045) (0.0038) (0.0046) (0.0039)

Competitors’ ln(T FP)t 0.001 0.0008 0.001 0.0007
(0.0002) (0.0003) (0.0002) (0.0003)

Customers’ ln(T FP)t 0.0006 0.0005 0.0006 0.0005
(0.0003) (0.0003) (0.0003) (0.0003)

Suppliers’ ln(T FP)t 0.001 0.0013 0.001 0.0013
(0.0003) (0.0002) (0.0003) (0.0003)

Network FE No No No No Yes Yes

This table reports network effects from a production function estimated on US firms in Compustat (in logs) with the Iyoha (2021) modi-
fication of the Gandhi et al. (2020) procedure.Standard errors are in parentheses. All specifications include industry-year and region fixed
effects.
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Table II.4: Productivity Spillovers with Alternative Measures of MNE Exposure

Dependent Variable: lnTFPt
Domestic MNE Domestic MNE

(1) (2) (3) (4)

Competitors’ any foreign salest−1 0.0154 0.0007
(0.006) (0.0049)

Competitors’ foreign sales sharet−1 0.0467 0.0024
(0.0137) (0.008)

Customers’ any foreign salest−1 -0.0132 -0.0102
(0.0047) (0.0046)

Customers’ foreign sales sharet−1 -0.0373 -0.0225
(0.0102) (0.007)

Suppliers’ any foreign salest−1 0.0104 0.0131
(0.0046) (0.0039)

Suppliers’ foreign sales sharet−1 0.0228 0.023
(0.0121) (0.0069)

Competitors’ ln(T FP)t 0.001 0.0007 0.0011 0.0007
(0.0002) (0.0003) (0.0002) (0.0002)

Customers’ ln(T FP)t 0.0006 0.0005 0.0005 0.0004
(0.0003) (0.0003) (0.0003) (0.0002)

Suppliers’ ln(T FP)t 0.001 0.0012 0.001 0.0014
(0.0003) (0.0003) (0.0003) (0.0002)

This table reports network effects from a production function estimated on US firms in Compustat (in logs) with the Iyoha
(2021) modification of the Gandhi et al. (2020) procedure. Standard errors are in parentheses. All specifications include
network, industry-year, and region fixed effects.
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CHAPTER III

The Impact of the US-China Trade War on Latin America: Evidence from Importer-Exporter Linkages

III.1 Introduction
In 2018, the United States Trump Administration enacted a series of protectionist policies against several of its major
trade partners, including a series of tariffs targeting about $247 billion in imports from China (Fajgelbaum et al.,
2020). Many countries responded to these policies by imposing retaliatory tariffs and filing cases against the US at
the World Trade Organization (WTO). The scope of these tariff increases has renewed interest in third-country effects
of bilateral trade policies. These impacts are typically analyzed in the context of trade liberalization, when countries
enter into bilateral trade agreements; the events of 2018 provide an opportunity for examining the third-country effects
of protectionism as well.

In this paper, I focus specifically on restrictions placed by the US and China on imports from each other, and
empirically investigate the short-run third-country effects of the trade war on importer-exporter relationships between
the US, China, and a subset of Latin American countries. Specifically, I examine trade diversion and trade deflection to
Mexico and Colombia. I find very little evidence that trade between Colombia and the US or China, in goods subject
to the tariffs, changed significantly as a result of the trade war. I also find no evidence of changes in maritime trade
between Mexico and the US or China in the affected goods.

The rest of this chapter proceeds as follows: section III.2 provides background on the US-China trade war and
a review of related literature. In section III.3, I discuss my estimation strategy for quantifying trade diversion and
deflection, while section III.4 describes the data used in the empirical analysis. I present my results in section III.5.
Section III.6 concludes.

III.2 Background and Literature
III.2.1 The US-China Trade War
The US-China trade war began in early 2018 with US-imposed tariffs on imports of solar panels and washing machines
in February, and steel and aluminum in March. These tariffs applied to a broad set of countries, including China. In
April, China responded with retaliatory tariffs on imports of aluminum, wine, fruit and meat from the US.1 Between
July and September, the trade war intensified with both the US and China imposing additional tariffs that raised the
average tariff on US imports of goods from China from 3.8 to 12 percent, and on China’s imports of US goods from
7.2 to 18.3 percent (Bown, 2019).

There are several reasons why the US-China trade war offers a useful setting for studying third-country effects.
As Amiti et al. (2019) points out, the 2018 tariffs provide an exogenous shock to international trade because the
election of President Trump was unexpected, and there was substantial uncertainty about the specific components of
his administration’s trade policies. Secondly, the breadth of goods affected by import tariffs during the trade war
increases the range of countries that could potentially be alternative import sources or export destinations.

Much of the research on the trade war has focused on the direct impacts of the tariffs on the US and China.
Fajgelbaum et al. (2020) assess the short-run impact of the 2018 tariffs and find an aggregate welfare loss of 0.04%
GDP in the US. Amiti et al. (2019) also find that the tariffs led to a rise in prices of US-made intermediate and final
goods, complete pass-through of tariffs to domestic prices of imported goods, and a decrease in the number of imported
varieties. Analysis by Cavallo et al. (2021) suggests that tariff incidence has fallen mainly on US firms, with lowered

1Other countries, including Mexico, also imposed retaliatory tariffs during this period.
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margins for US retailers, while Handley et al. (2020) find that US exporters affected by import tariffs experienced a
decline in export growth in 2018 and 2019, with a larger effect in 2019.

III.2.2 Trade Diversion and Deflection
Trade diversion considerations were introduced to the economics literature by Viner (1950) who discussed potential
negative welfare effects of preferential trade agreements (PTAs): although PTAs could increase welfare by creating
trade between the members, import source diversion could reduce welfare as firms in member countries switch from
trading with non-members. With respect to protectionism rather than PTAs, I extend the discussion in Bown and
Crowley (2007) on potential impacts of an anti-dumping duty to the import tariffs in the trade war. US tariffs on
Chinese imports would generate trade diversion if US importers reduce their purchases of the affected goods from
China, and increase their imports of those goods from other countries. These same tariffs would result in trade
deflection if Chinese exporters that would otherwise have supplied goods to the US, sell those goods in other countries
instead.

In this study, I consider trade diversion and deflection as a result of both US tariffs on imports from China, and
China’s tariffs on imports from the US. Specifically, I assess whether US importers substituted away from Chinese
producers and towards Mexican and Colombian exporters, and if Chinese exporters sold more products to Mexican
and Colombian importers as a result of US-imposed tariffs. Similarly, I estimate the impact that China’s tariffs on
US-produced goods had on the Mexico and Colombia’s exports to China and imports from the US.

Researchers have documented trade diversion and deflection as a result of other US trade policies. Flaaen et al.
(2020) find that after antidumping import duties were imposed on US imports of washing machines from Korea and
Mexico in 2012, US firms switched to sourcing from China, and after safeguard tariffs were passed against washer
imports from China in 2016, US import sourcing moved to Thailand and Vietnam. These shifts were primarily driven
by the relocation decisions of washing machine producers. A notable result of the Flaaen et al. (2020) study is that the
2018 tariffs on washers also led to an increase in the price of dryers, a tariff-exempt but complementary good. This
indicates that the third-country effects of the trade war could also show up in close substitutes and complements. I
discuss how my empirical strategy takes this into account in the next section. There is also evidence of trade deflection
from US anti-dumping duties. Bown and Crowley (2007) studied the US imposition of antidumping duties on Japan,
and found that it led to an increase of Japan’s exports of the same products to the average third country market.

My results confirm the findings of Cigna et al. (2020) on trade diversion as a result of the 2018 US import tariffs.
Using monthly product-level data, the authors find no evidence of widespread import source diversion by the US
towards third countries as a result of tariffs levied against imports from China. I make two additional contributions: I
assess trade diversion from China’s retaliatory tariffs, and also examine trade deflection.

III.3 Empirical Strategy
To assess the third-country effects of the US-China trade war, I utilize an event-study difference-in-differences strategy
that exploits the timing of the import tariff announcements. I aggregate firm-to-firm transaction-level data to the firm-
product level and estimate the following specification:

∆ ln(zi jt) =
m

∑
τ=−q

βτ E jτ + γi j + γst + εi jt (III.1)

where i denotes a firm and j indexes an HS 6-digit product in quarter t. E jτ is the treatment variable, and is equal to 1
from the quarter in which a tariff is imposed on product j, and 0 before that. For never-treated products, E jτ is always
equal to 0. q and m are the number of quarters before and after the tariff is imposed. The parameters of interest are the
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βτ ’s. γi j is a firm-product fixed effect and γst is a sector-time fixed effect, where sectors are defined at the HS 2-digit
product-level, in order to exploit only variation within groups of related commodities. Standard errors are clustered at
the HS 6-digit product level.

Although US-tariffs are imposed at the HS 10-digit level and China’s tariffs are at the HS 8-digit level, I analyze
effects on HS 6-digit product categories for two reasons. First, data on Mexico is only available at the HS 6-digit
level. Secondly, as Cigna et al. (2020) points out, trade diversion effects are likely to show up in substitution towards
closely-related goods or the increased purchases of complementary goods. Only looking at trade in the specific HS 10
commodities targeted could lead to the underestimation of these effects.

I account for seasonality by taking 4-quarter log differences of the dependent variable, which yields the year-on-
year growth rate. I consider four variables for zi jt : the average value traded per trading partner, the average quantity
per trading partner, the average price (unit value) per trading partner, and the number of (unique) trading partners in the
time period. I construct an unbalanced panel of firm-product pairs,2 and use the inverse hyperbolic sine transformation,
ln(z+

√
z2 +1), to avoid dropping observations with zeros at t or t− 4. Here, trading partners refer to other firms,

rather than countries, and enables me to observe how the relationship between Mexican or Colombian importers and
exporters, and their average supplier or buyer in the US and China is changing as a result of the trade war.

To examine trade diversion due to US import tariffs on Chinese goods, I estimate the effect of the tariff an-
nouncements on Mexico and Colombia’s exports to the US. For trade deflection from US import tariffs, I estimate the
impact of the tariff announcements on Mexico and Colombia’s imports from China. Similarly, I use Mexico-China
and Colombia-China exports to examine trade diversion due to China’s import tariffs on US goods, and Mexico-US
and Colombia-US imports to investigate trade deflection from these tariffs. I exclude products, such as steel and
aluminum, that were subject to concurrent tariffs imposed on other countries by the US and retaliatory actions from
those countries, to avoid the confounding effects of trade policies that were not specific to the US-China bilateral
relationship.3

III.4 Data
This study employs transaction-level customs data on Colombia and Mexico obtained from Import Genius. The data
spans most of the universe of maritime shipments by Mexico from 2015-2019, and all modes of transportation for
Colombia. Each record contains the name of the shipper and recipient of the goods, as well as the source (destination)
country for imports (exports). Colombian data reports HS 10-digit codes, while Mexican data reports products at the
HS 6-digit level. The data also contains Total FOB values (in US dollars) for Colombian imports and exports, and
Total CIF values for Mexican imports. Trade values are not reported in the Mexico export data. I use gross weight
in metric tons as a measure of quantity, and prices are unit values derived by dividing the total value of shipments by
their weight.

To obtain the number of unique trading partners for each firm, I match firm names using the TF-IDF (Term-
Frequency Inverse Document Frequency) approach4 to identify multiple shipments sent by the same exporter or re-
ceived by the same importer. I clean the data by eliminating duplicate transactions between the same pair of firms,
and of the same quantity and value in a single day. I also exclude records that are missing the name of the shipment’s
recipient or sender, or both the value and quantity of the shipment. I aggregate this data to the quarterly level for each

2A firm-product pair is included if it has a positive quantity traded in the current quarter, or in the same quarter in the preceding or subsequent
year.

3There could be other policy confounders during this period that I do not directly address. For example, China also lowered the average tariff
on its imports from the rest of the world by 1.3 percentage points in 2018 (Bown, 2019). However, to the extent that such policies are not highly
correlated with US-China tariffs, I am able to assess the differential impact of the trade war on targeted goods as compared to non-targeted.

4This method converts firm names into vectors and assigns every pair of names a similarity score equal to the cosine of the angle between their
vectors. I use a conservative cutoff of 0.99999 to identify matched firms.
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Colombian and Mexican firm-product pair.
I use data on the US-China trade war from Fajgelbaum et al. (2020) to identify products affected by tariffs and the

effective dates.5 I aggregate import tariffs from the HS 10 level for the US and the HS 8 level for China to the HS
6 level. For HS 6 products with multiple effective dates, I assign treatment to begin at the earliest effective date. I
exclude all products subject to tariffs imposed by the US on imports from countries other than China, and retaliatory
tariffs imposed by other countries on imports from the US in 2018.

III.5 Benchmark Estimates
In this section, I present reduced form estimates of the impact of the US-China trade war on Colombia and Mexico’s
trade with the US and China. First I examine trade diversion and deflection due to US-imposed tariffs, and then assess
the impact of China’s retaliatory tariffs working in the opposite direction.

III.5.1 The Impact of US Tariffs on Chinese Imports
III.5.1.1 Trade Diversion
Figure III.1 shows estimates from the event study specification in equation III.1 for Colombian exports to the US.
Since the tariffs were imposed between July and September, the estimated coefficients span the first quarter of 2016
to the fourth quarter of 2019, with 2018 Q2 normalized to zero. The pre-trends indicate that before the tariffs were
announced, Colombia’s exports to the US of goods subject to the tariffs had relatively higher growth rates than goods
not targeted by the import tariffs. However, the gap between treated and untreated products declined after the tariffs
were imposed. This suggests, if anything, a relative reduction in exports of target goods from Colombia to the US
—the opposite of what one would expect to see if trade diversion was indeed occurring. There also does not appear to
be any effect on the prices charged by Colombian exporters to US firms.

For Mexico, there is also weak evidence of trade diversion. The second panel of Figure III.2 does appear to indicate
an uptick in the relative growth rate of the number of US firms importing treated goods from Mexican firms in the last
two quarters of 2019. However, given a slightly upward pretend, it is not clear that this growth can be attributed to the
trade war.

III.5.1.2 Trade Deflection
Turning to Colombia’s imports from China, the first and third panels of Figure III.3 suggest a positive trend in the
growth rate of the value imported and number of trading partners for targeted goods relative to non-targeted goods
after the US import tariffs came into effect. However, this positive trend can also be observed in the pre-announcement
period and can hardly be ascribed to the tariffs themselves. As with exports to the US, there does not appear to be any
systematic changes in prices faced by Colombian importers for Chinese goods as a result of the trade war.

Price effects on Mexico’s imports are similarly absent as illustrated in the fourth panel of Figure III.4. And while
there is no discernible trend in the average value or quantity of importers per trading partner or the number of Chinese
firms from which Mexican firms purchased targeted products, there is also little to indicate that the tariffs imposed by
the US had a differential impact along the aforementioned dimensions.

III.5.2 The Impact of China’s Import Tariffs on US Products
I now turn to the analysis of tariffs levied by China on the import of US products, and their effect on China’s im-
ports from Mexico and Colombia, as well as the latter countries’ imports from the US. The tariffs in question were

5Tariffs went into effect shortly after they were announced. Therefore, for the purpose of this study, there is no substantive difference between
announcement and effective dates.
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announced in April 2018, and between July and September. Because the bulk of goods were treated in Q3 2018 (after
excluding steel and aluminum), I trim the post-treatment period to four quarters after the tariff announcement.

III.5.2.1 Trade Diversion
Based on the coefficients in Figure III.5, there does not appear to any evidence that Chinese importers switched some
of their sourcing from the US to Colombia after tariffs on US goods were announced. There does seem to be an
upward trend in the relative growth of the number of trading partners in targeted goods that stalls after the tariffs
are announced. While Colombian export prices of non-targeted goods tend to be rising more than target goods after
the tariff increases, this appears to also have been the case in some quarters before the trade war began. Furthermore,
export price reductions would not be consistent with trade diversion as a result of a positive demand shock from China.

Mexico’s exports to China, as shown in Figure III.6, also bears no indication of trade diversion in the year after
China’s tariffs against the US were imposed.

III.5.2.2 Trade Deflection
With respect to Colombia’s imports from the US, Figure III.7, shows a decline in the growth rate of value and quantity
traded, as well as the number of trade partners for targeted goods relative to goods that were not subject to Chinese
import tariffs. This would be inconsistent with the US deflecting exports to Colombia that would otherwise have gone
to China. Interestingly, a spike in the growth rates of Colombia-US imports appears to have occurred about 3 to 6
quarters before the tariffs were announced, which was during 2017 Q1 to Q4 for most goods subject to the tariffs. In
addition, although there is not clear evidence of pricing effects as a result of the tariffs, there does appear to be a spike
in the growth rates of prices of targeted goods a year prior to the tariff announcements.

For Mexico, there is some indication in Figure III.8 that the value and quantity imported from the US grew at a
faster pace for targeted goods in the quarter that import tariffs were imposed and in subsequent periods. The number
of trading partners also appears to have been positively impacted, while price remained unaffected.

III.5.3 Robustness
The inclusion of observations with zero trade values in the benchmark specification may have impacted the estimates
by biasing them toward a null effect, especially if firm-to-firm trade is infrequent. In Figures III.9 to III.16, I report
impacts on value, quantity and number of trade partners where these outcomes are year-on-year differences of their
natural logs. Therefore, each regression only includes firm-product pairs with positive values of the dependent variable.

The results either confirm the earlier findings of no relative changes, or even slight declines in the trade between
Colombia/Mexico and the US or China. Taken together, they provide no evidence of trade diversion or deflection to
Mexico or Colombia in the short run as a result of the US-China trade war.

III.6 Conclusion
Overall, this paper employs firm-level customs data from Colombia and Mexico to examine some third-country effects
of the 2018 tariff increases during the US-China trade war. My results confirm an existing finding in the literature of
no evidence of import source diversion in the short-run due to US-imposed tariffs. I also find very little to suggest that
China imported more from or exported more to Mexico or Colombia as a result of the trade war.

This study does not necessarily rule out trade diversion or deflection in all context, but does so only for Mexico
and Colombia. If these countries are not good substitute source or destination countries for US or Chinese imports
and exports, then it is possible that the third-country effects absent here, manifested in other countries. Furthermore,
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given that a significant portion of trade between Mexico and the US occurs by land rather than shipping, I am unable
to detect trade diversion that may have occurred through this mode of transport.

Beyond trade diversion and deflection, other third-country impacts could show up through global value chains. For
example, declines in industrial output in the US and China due to the trade war may have reduced demand for crude
oil from Colombia or in intermediate goods from Mexico. Future work could empirically investigate these effects.
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Figure III.1: Impact of US-China Import Tariffs on Colombia-US Exports
This figure plots event study estimates of differences in exports of treated vs. untreated goods from Colombian firms to US importers after the US imposed tariffs on
imports from China. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes other than prices have been
transformed using the inverse hyperbolic sine function and year-on-year differencing. Every specification includes firm-product and HS 2 sector-quarter fixed effects.

Figure III.2: Impact of US-China Import Tariffs on Mexico-US Exports
This figure plots event study estimates of differences in exports of treated vs. untreated goods from Mexican firms to US importers after the US imposed tariffs on
imports from China. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes other than prices have been
transformed using the inverse hyperbolic sine function and year-on-year differencing. Every specification includes firm-product and HS 2 sector-quarter fixed effects.
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Figure III.3: Impact of US-China Import Tariffs on Colombia-China Imports
This figure plots event study estimates of differences in imports of treated vs. untreated goods by Colombian firms from Chinese exporters after the US imposed tariffs
on imports from China. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes other than prices have been
transformed using the inverse hyperbolic sine function and year-on-year differencing. Every specification includes firm-product and HS 2 sector-quarter fixed effects.

Figure III.4: Impact of US-China Import Tariffs on Mexico-China Imports
This figure plots event study estimates of differences in imports of treated vs. untreated goods by Mexican firms from Chinese exporters after the US imposed tariffs
on imports from China. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes other than prices have been
transformed using the inverse hyperbolic sine function and year-on-year differencing. Every specification includes firm-product and HS 2 sector-quarter fixed effects.
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Figure III.5: Impact of China-US Import Tariffs on Colombia-China Exports
This figure plots event study estimates of differences in exports of treated vs. untreated goods from Colombian firms to Chinese importers after China imposed tariffs
on imports from the US. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes other than prices have been
transformed using the inverse hyperbolic sine function and year-on-year differencing. Every specification includes firm-product and HS 2 sector-quarter fixed effects.

Figure III.6: Impact of China-US Import Tariffs on Mexico-China Exports
This figure plots event study estimates of differences in exports of treated vs. untreated goods from Mexican firms to Chinese importers after China imposed tariffs on
imports from the US. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes other than prices have been
transformed using the inverse hyperbolic sine function and year-on-year differencing. Every specification includes firm-product and HS 2 sector-quarter fixed effects.
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Figure III.7: Impact of China-US Import Tariffs on Colombia-US Imports
This figure plots event study estimates of differences in imports of treated vs. untreated goods by Colombian firms from US exporters after China imposed tariffs on
imports from the US. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes other than prices have been
transformed using the inverse hyperbolic sine function and year-on-year differencing. Every specification includes firm-product and HS 2 sector-quarter fixed effects.

Figure III.8: Impact of China-US Import Tariffs on Mexico-US Imports
This figure plots event study estimates of differences in imports of treated vs. untreated goods by Mexican firms from US exporters after China imposed tariffs on imports
from the US. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes other than prices have been transformed
using the inverse hyperbolic sine function and year-on-year differencing. Every specification includes firm-product and HS 2 sector-quarter fixed effects.
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Figure III.9: Robustness: Impact of US-China Import Tariffs on Colombia-US Exports
This figure plots event study estimates of differences in exports of treated vs. untreated goods from Colombian firms to US importers after the US imposed tariffs on
imports from China. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes are year-on-year log-differenced.
Every specification includes firm-product and HS 2 sector-quarter fixed effects.

Figure III.10: Robustness: Impact of US-China Import Tariffs on Mexico-US Exports
This figure plots event study estimates of differences in exports of treated vs. untreated goods from Colombian firms to US importers after the US imposed tariffs on
imports from China. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes are year-on-year log-differenced.
Every specification includes firm-product and HS 2 sector-quarter fixed effects.
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Figure III.11: Robustness: Impact of US-China Import Tariffs on Colombia-China Imports
This figure plots event study estimates of differences in imports of treated vs. untreated goods by Colombian firms from Chinese exporters after the US imposed tariffs on
imports from China. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes are year-on-year log-differenced.
Every specification includes firm-product and HS 2 sector-quarter fixed effects.

Figure III.12: Robustness: Impact of US-China Import Tariffs on Mexico-China Imports
This figure plots event study estimates of differences in imports of treated vs. untreated goods by Mexican firms from Chinese exporters after the US imposed tariffs on
imports from China. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes are year-on-year log-differenced.
Every specification includes firm-product and HS 2 sector-quarter fixed effects.
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Figure III.13: Robustness: Impact of China-US Import Tariffs on Colombia-China Exports
This figure plots event study estimates of differences in exports of treated vs. untreated goods from Colombian firms to Chinese importers after China imposed tariffs on
imports from the US. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes are year-on-year log-differenced.
Every specification includes firm-product and HS 2 sector-quarter fixed effects.

Figure III.14: Robustness: Impact of China-US Import Tariffs on Mexico-China Exports
This figure plots event study estimates of differences in exports of treated vs. untreated goods from Mexican firms to Chinese importers after China imposed tariffs on
imports from the US. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes are year-on-year log-differenced.
Every specification includes firm-product and HS 2 sector-quarter fixed effects.
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Figure III.15: Robustness: Impact of China-US Import Tariffs on Colombia-US Imports
This figure plots event study estimates of differences in imports of treated vs. untreated goods by Colombian firms from US exporters after China imposed tariffs on
imports from the US. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes are year-on-year log-differenced.
Every specification includes firm-product and HS 2 sector-quarter fixed effects.

Figure III.16: Robustness: Impact of China-US Import Tariffs on Mexico-US Imports
This figure plots event study estimates of differences in imports of treated vs. untreated goods by Mexican firms from US exporters after China imposed tariffs on
imports from the US. Observations are at the firm-product-quarterly level. Products are defined by HS 6-digit categories. All outcomes are year-on-year log-differenced.
Every specification includes firm-product and HS 2 sector-quarter fixed effects.
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Appendix A

Appendix

A.1 Derivation of Bias Terms
In this section, I derive expressions for the bias in production function elasticities shown in section I.3.3.
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This is equivalent to the dynamic panel approach in Blundell and Bond (2000). However, growth in output, labor
and capital have been purged of the variation from network effects in the previous period. When we assume no
spillovers, we estimate:

∆yt = α`∆`t +αk∆kt +ut (A.2)

Therefore, in the linear AR1 case, ignoring spillovers is equivalent to introducing non-classical measurement error
into both output and inputs.

Bias from ignoring spillovers can also be characterized as an omitted variables problem. By estimating equation
(A.2), where ut = ρ ∑

∞
s=1 λ sGs

t ωt−1 +∑
∞
s=0 λ sGs

t ζt + εt . That is, the standard ACF procedure succeeds in eliminating
the endogeneity problem that arises from input decisions depending on its own productivity, but is unable to account
for the influence of its network’s past productivity.

In either case, an instrumental variable approach would help to eliminate the problem. The key would be to find
variables that are correlated with changes to labor and capital but uncorrelated with output, particularly the input
choices and output of other firms.

In the OP case where the labor elasticity is estimated in the first stage, the second stage is equivalent to estimating:
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(A.4)
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where ỹt = yt − α̂``t . Then by estimating ∆ỹt = αk∆kt +ut under the standard assumption of no-spillovers:
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var(∆kt)
(A.5)
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(A.6)

When productivity is mismeasured by ignoring spillovers, the resulting estimates also result in incorrect conclu-
sions about spillover effects. When (α`,αk) are consistently estimated, and

ω̂t = ϕ̂t − α̂``t − α̂kkt (A.7)

plim ω̂t = ϕt −α``t −αkkt = ωt (A.8)

However, when we estimate (α̃`, α̃k) =
(
α̂`+αerr

` , α̂k +αerr
k

)
, to obtain ω̃t = ϕ̂t − α̃``t − α̃kkt . Then
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where ωerr
t = αerr

` `t +αerr
k kt In the generalized 2SLS procedure for estimating network effects, we estimate λ̃ in the

first stage by using Gtω̃t−1 as an instrument for Gtω̃t in this equation:1 The true model is:

ωt = ρωt−1 +λGtωt +ζt

but we estimate:
ω̃t = ρω̃t−1 +λGtω̃t + vt

A.2 Monte Carlo Setup
The Monte Carlo setup closely follows Collard-Wexler and De Loecker (2016), Van Biesebroeck (2007) and Ackerberg
et al. (2015) with modifications for network generation and the inclusion of spillovers in the productivity process. I
generate a balanced panel of 1000 firms over 10 time periods.

A.2.1 Production Function
I use a structural value-added production function that is Leontief in materials.

Yit = min{Lα`
it Kαk

it eωit ,αmMit}eεit (A.10)

=⇒ Yit = Lα`
it Kαk

it eωit+εit = αmMiteεit (A.11)

In logs, yit = α``it +αkkit +ωit + εit (A.12)

where εit ∼N (0,σ2
ε ). I set α` = 0.6,αk = 0.4 and σ2

ε = 1

A.2.2 Productivity Process and Network
Productivity evolves according to an AR1 process that allows for contemporaneous endogenous productivity spillovers.
For ease of notation, I write the equation in vectorized form:

ωt = β1ι +ρωt−1 +λGtωt +ζt (A.13)

1Further lags of the network effect can be used (G2
t ω̃t ,G3

t ω̃t and so on). However, for ease of exposition, I focus on the just-identified case.
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where ζit ∼N (0,σ2
ζ
). I set σ2

ζ
= 5. I generate productivity using the reduced form of the above equation:

ωt = (I−λGt)
−1 (β1ι +ρωt−1 +ζt) (A.14)

Gt is the interaction matrix defined as in section I.3.2 derived from the network. I generate exogenous networks using
Erdős and Rényi (1960) graphs, also known as binomial graphs. Firms are edges are formed Ai jt

i.i.d.∼ Bern(p).

A.2.3 Intermediate Input Demand

Mit =
1

αm
Kαk

it Lα`
it eωit (A.15)

In logs, mit = αkkit +α``it +ωit − ln(αm) (A.16)

A.2.4 Labor Demand
Wages, Wit are firm-year specific and distributed log-normally: ln(Wt) ∼N (0,σ2

w). Then each firm chooses optimal
labor according to:
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) 1
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(A.17)

In logs, `it =
1

1−α`
(ln(α`)+αkkit +ωit − ln(Wit)) (A.18)

A.2.5 Capital and Optimal Investment
Capital is accumulated as follows:

Kit = (1−δ )Kit−1 + It−1 (A.19)

I set the depreciation rate at δ = 0.2.
Investment is subject to convex adjustment costs c(Iit) =

b
2 I2

it with b = 0.3. Optimal investment can be derived by
setting up the profit maximization problem:2

Πit = Lα`
it Kαk

it eωit −WitLit −
b
2

I2
it (A.20)

Here, I assume perfect competition and normalize the price of output to 1. The firm’s value function is :

V (Lit ,Kit ,Wit ,ωit) = max
Lit ,Kit

Lα`
it Kαk

it eωit −WitLit −
b
2

I2
it +β Eit V (Lit+1,Kit+1,Wit+1,ωit+1) (A.21)

such that Kit+1 = (1−δ )Kit + It (A.22)

β is the discount factor and is fixed at 0.95. Optimal investment solves the Euler equation
∂V
∂ I

= 0:

bIit = β Eit VK(Lit+1,Kit+1,Wit+1,ωit+1) (A.23)

2This derivation follows Collard-Wexler and De Loecker (2016) and Van Biesebroeck (2007).
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The envelope condition yields:

VK(Lit ,Kit ,Wit ,ωit) = αkLα`
it Kαk−1

it eωit +β (1−δ )Eit VK(Lit+1,Kit+1,Wit+1,ωit+1) (A.24)

Substituting in (A.17) and (A.23):
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Given a constant returns to scale technology (α`+αk = 1), the Euler equation becomes:
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Since wages and productivity are drawn independently,
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depends on the whether spillovers exist, and if they do, how firms form expectations about future links.

When there are no spillovers λ = 0:
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Let G represent the result of firms’ beliefs about their future network. For example, if networks are non-stochastic
or firms naively believe that Gt+τ = Gt ∀τ > 0, then we can set G = Gt+1, which is deterministic given our previous
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assumption that Gt+1 ∈It :

Et

[
e

ωit+1+τ
1−α`

]
= Et

[
exp

(
ρτ+1

1−α`
(I−λG)−(τ+1)

ωt +
1

1−α`

τ

∑
r=0

ρ
r(I−λG)−(r+1)

εt+τ+1−r

)]

= exp
(

ρτ+1

1−α`
(I−λG)−(τ+1)

ωt

)
τ

∏
r=0

Eit

[
exp
(

ρr

1−α`
(I−λG)−(r+1)

εt+τ+1−r

)]

= exp
(

ρτ+1

1−α`
(I−λG)−(τ+1)

ωt

)
τ

∏
r=0

exp

(
ρ2rσ2

ζ

2(1−α`)2 (I−λG)−2(r+1)
ι

)

Eit

[
e

ωit+1+τ
1−α`

]
= exp

(
ρτ+1

1−α`
(I−λG)−(τ+1)

ωt

)
τ

∏
r=0

exp

(
ρ2rσ2

ζ

2(1−α`)2(1−λ )2(r+1)

)
(A.32)

Therefore, optimal investment choice reduces to a function of parameters and current productivity:
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b
α
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(A.33)
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When there are no spillovers, this reduces to:
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(A.34)

For alternative assumptions on the productivity process, such as a quadratic AR1 process, and endogenous network
formation, it is not feasible to derive an closed-form solution as above. However, as long technology exhibits constant
returns to scale, I approximate optimal investment as follows. Firstly, given |β (1− δ )| < 1, then for some tolerance
level close to zero, β τ(1− δ )τ < tolerance. Therefore, I can choose M sufficiently high such that ∑

M
τ=0 β τ(1−

δ )τ Eit

[
W

−α`
1−α`
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e
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]
is a good approximation for ∑

∞
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[
W

−α`
1−α`
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e

ωit+1+τ
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]
. I set a tolerance level

of e−4, and given β (1−δ ) = 0.95(1−0.2), then M = 34.
Next, at each time t, I draw 100 realizations of the sequence {ωit+1+τ}M

τ=0 for each firm i and approximate
Eit

[
exp
(

ωit+1+τ

1−α`

)]
= 1

100 ∑
100
s=0 exp

(
ωit+1+τ,s

1−α`

)
.
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A.3 Additional Monte Carlo Experiments
In this section, I consider how bias and precision change with the size of the endogenous network effect, and the
persistence of productivity over time. The Monte Carlo setup is the same as in section I.6.3.

When I vary λ , ACF and ACF-N perform similarly, yielding comparable estimates of the input elasticities and
spillover effects. Low values of λ are difficult to detect, while at very high values, there is a sharp decline in efficiency,
with the decline greater under ACF. Under the linear process with negative spillovers, ACF-N appears to perform better
than ACF as λ rises in magnitude.

Finally, variations in ρ1 have striking effects on the estimation of λ because it determines the strength of Gtωt−1 as
an instrument for Gtωt . Intuitively, if productivity is not persistent, then neighbors’ lagged TFP is a weak instrument
for the contemporaneous effect of neighbors’s productivity, because the intertemporal correlation is not strong. ACF-
N is not immune to this issue, and loses efficiency in its estimates of λ unless ρ1 is sufficiently high. However the
input elasticities are relatively well estimated by ACF-N, while ACF leads to biased estimates for high values of ρ1:
overestimating the capital coefficient when ρ1 = 0.8 and underestimating it when ρ1 = 0.9.
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Table A.1: Effect of λ on Bias and Precision (Quadratic AR1)

λ Estimator
Elasticities Productivity Process Coefficients

α` αk β1 ρ1 ρ2
λ

True 0.6 0.4 0.5 0.8 -0.01

0.01

ACF Mean 0.603 0.353 -0.198 0.809 -0.01 0.
Std. Dev. (0.024) (0.251) (2.706) (0.23) (0.003) (0.061)

ACF-N Mean 0.608 0.355 -0.038 0.811 -0.009 -0.02
Std. Dev. (0.037) (0.234) (2.394) (0.212) (0.027) (0.337)

0.03

ACF Mean 0.603 0.353 -0.182 0.809 -0.01 0.019
Std. Dev. (0.024) (0.247) (2.457) (0.224) (0.003) (0.061)

ACF-N Mean 0.608 0.354 -0.03 0.812 -0.01 -0.009
Std. Dev. (0.035) (0.23) (2.218) (0.206) (0.003) (0.686)

0.05

ACF Mean 0.603 0.354 -0.16 0.808 -0.01 0.038
Std. Dev. (0.024) (0.242) (2.212) (0.218) (0.003) (0.062)

ACF-N Mean 0.608 0.353 -0.027 0.813 -0.01 0.038
Std. Dev. (0.034) (0.225) (2.002) (0.201) (0.003) (0.27)

0.07

ACF Mean 0.604 0.354 -0.132 0.808 -0.01 0.057
Std. Dev. (0.024) (0.237) (1.978) (0.212) (0.003) (0.062)

ACF-N Mean 0.607 0.354 0.013 0.814 -0.01 0.055
Std. Dev. (0.033) (0.219) (1.746) (0.193) (0.003) (0.143)

0.09

ACF Mean 0.604 0.357 -0.099 0.805 -0.01 0.076
Std. Dev. (0.024) (0.23) (1.759) (0.204) (0.003) (0.063)

ACF-N Mean 0.607 0.355 0.044 0.814 -0.01 0.071
Std. Dev. (0.033) (0.212) (1.546) (0.184) (0.003) (0.136)

0.1

ACF Mean 0.604 0.36 -0.08 0.803 -0.01 0.086
Std. Dev. (0.024) (0.226) (1.65) (0.2) (0.003) (0.063)

ACF-N Mean 0.607 0.356 0.059 0.814 -0.01 0.08
Std. Dev. (0.033) (0.208) (1.443) (0.179) (0.003) (0.151)

0.3

ACF Mean 0.606 0.643 0.054 0.414 -0.024 0.446
Std. Dev. (0.072) (0.152) (3.357) (0.782) (0.151) (1.833)

ACF-N Mean 0.605 0.388 0.417 0.813 -0.01 0.299
Std. Dev. (0.032) (0.084) (0.399) (0.065) (0.004) (0.062)

0.5

ACF Mean 0.645 0.362 -5.659 0.723 -0.012 0.651
Std. Dev. (0.151) (0.156) (270.251) (0.645) (0.063) (8.7)

ACF-N Mean 0.648 0.351 -3.503 0.77 -0.012 0.704
Std. Dev. (0.1) (0.101) (204.646) (0.311) (0.034) (6.386)

0.7

ACF Mean 0.682 0.318 -3.839 0.668 -0.012 1.148
Std. Dev. (0.19) (0.19) (217.5) (4.683) (0.616) (11.871)

ACF-N Mean 0.685 0.314 4.003 0.592 -0.001 0.671
Std. Dev. (0.144) (0.144) (91.859) (0.669) (0.099) (2.519)

Based on 1000 replications. Estimators are based on Ackerberg et al. (2015) with ACF denoting the standard procedure and ACF-N indicating the modified procedure to account for network effects. Networks are exogenous
Erdos-Renyi (binomial) graphs with 0.05 density. The data-generating process for productivity is quadratic AR1 with endogenous network effects.
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Table A.2: Effect of ρ on Bias and Precision (Quadratic AR1)

ρ Estimator
Elasticities Productivity Process Coefficients

α` αk β1
ρ1

ρ2 λ

True 0.6 0.4 0.5 -0.01 0.3

0.1

ACF Mean 0.644 0.413 -271.942 0.485 -0.047 52.923
Std. Dev. (0.138) (0.384) (8697.007) (12.757) (1.038) (1683.731)

ACF-N Mean 0.65 0.39 2.029 0.113 -0.009 0.151
Std. Dev. (0.1) (0.365) (90.035) (0.514) (0.041) (10.864)

0.2

ACF Mean 0.634 0.362 3.014 0.255 -0.003 -0.094
Std. Dev. (0.131) (0.234) (30.083) (1.139) (0.109) (5.893)

ACF-N Mean 0.647 0.343 -0.796 0.205 -0.01 0.14
Std. Dev. (0.099) (0.219) (37.532) (0.127) (0.031) (7.268)

0.3

ACF Mean 0.628 0.369 1.427 0.286 -0.001 0.069
Std. Dev. (0.109) (0.161) (6.855) (0.587) (0.166) (3.382)

ACF-N Mean 0.645 0.345 -0.132 0.312 -0.009 1.074
Std. Dev. (0.095) (0.151) (31.101) (0.103) (0.03) (24.603)

0.4

ACF Mean 0.617 0.381 1.412 0.314 0.028 -0.083
Std. Dev. (0.086) (0.122) (15.72) (2.994) (1.188) (11.549)

ACF-N Mean 0.638 0.354 0.251 0.409 -0.01 0.45
Std. Dev. (0.084) (0.118) (21.734) (0.086) (0.028) (8.122)

0.5

ACF Mean 0.609 0.389 0.831 0.518 -0.013 0.268
Std. Dev. (0.061) (0.094) (1.139) (0.193) (0.104) (0.935)

ACF-N Mean 0.628 0.364 1.104 0.512 -0.011 0.105
Std. Dev. (0.072) (0.103) (13.659) (0.066) (0.022) (7.008)

0.6

ACF Mean 0.606 0.398 0.758 0.609 -0.009 0.253
Std. Dev. (0.044) (0.082) (0.549) (0.053) (0.017) (0.146)

ACF-N Mean 0.619 0.373 1.087 0.613 -0.01 0.186
Std. Dev. (0.057) (0.09) (6.734) (0.064) (0.016) (1.727)

0.7

ACF Mean 0.601 0.465 0.575 0.665 -0.012 0.29
Std. Dev. (0.043) (0.086) (0.38) (0.081) (0.014) (0.1)

ACF-N Mean 0.608 0.385 0.642 0.714 -0.01 0.279
Std. Dev. (0.036) (0.081) (2.109) (0.053) (0.005) (0.47)

0.8

ACF Mean 0.606 0.643 0.054 0.414 -0.024 0.446
Std. Dev. (0.072) (0.152) (3.357) (0.782) (0.151) (1.833)

ACF-N Mean 0.605 0.388 0.417 0.813 -0.01 0.299
Std. Dev. (0.032) (0.084) (0.399) (0.065) (0.004) (0.062)

0.9

ACF Mean 0.708 0.113 -5.964 0.65 -0.028 0.346
Std. Dev. (0.093) (0.273) (33.081) (4.953) (0.367) (4.293)

ACF-N Mean 0.603 0.386 0.024 0.922 -0.01 0.296
Std. Dev. (0.028) (0.09) (1.165) (0.122) (0.002) (0.033)

Based on 1000 replications. Estimators are based on Ackerberg et al. (2015) with ACF denoting the standard procedure and ACF-N indicating the modified
procedure to account for network effects. Networks are exogenous Erdos-Renyi (binomial) graphs with 0.05 density. The data-generating process for
productivity is quadratic AR1 with endogenous network effects.
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A.4 Variable Construction
• Sales: Net sales deflated by an industry deflator for GDP.

• Labor: Number of employees

• Capital: Total property, plant and equipment (gross) before depreciation. Following the method in İmrohoroğlu
and Tüzel (2014), I deflate using the yearly implicit price deflator for fixed investment at the calculated age of
capital. Capital age is computed as the ratio of accumulated depreciation to current depreciation, smoothed by
taking a 3-year moving average. The year at which the deflator is applied is current year − average capital age.
All years before 1929 are bottom-coded because that is the earliest year in the deflator data.

• Materials: Estimated as Cost of goods sold plus Selling, General and Administrative Expenses minus labor
costs. Salaries and wage costs are missing for most firms, so I estimate labor costs by multiplying number of
employees by 2-digit industry wages per full-time equivalent employee. Figure A.1 shows that these estimates
strongly correlate with wage costs that were reported in the data. Estimated materials are deflated by the 2-digit
industry price indices for intermediate inputs.

• Value-added: Sales minus materials, deflated by industry price indices for value-added.

• Exports: International Sales as reported in the geographic segments information on annual reports. These figures
are often reported by location of the final customer, but do not always differentiate between exports from the
US and sales by multinational firms within foreign countries. However, to the extent that this contains some
measure of exporting, a dummy for exporting based on positive values of this variable should have minimal
measurement error.

• Industry: Industry classifications are based on those used in input-output tables from the Bureau of Economic
Analysis (BEA). There are 65 industries from before 1997 and 71 industries from 1997 onwards. These roughly
correspond to 3-digit NAICS and 2-digit SIC codes. Compustat’s annual financials only reports the latest indus-
try classification, therefore, I obtain historical NAICS codes from the primary business segment. I also replace
SIC codes for companies that are incorrectly coded as ”99” (unclassifiable) from annual reports in the EDGAR
database and business segment data. These are then converted to BEA industry codes using the concordances
provided by the bureau. All deflators, price indices and input-output tables are based on these BEA industry
codes. However, in regressions I combine industries with too few observations. These include: transit and
ground transportation with general transportation and warehousing, and other transportation and support activi-
ties; Funds, trusts and other financial vehicles combined with securities, commodity contracts and investments;
Legal services with miscellaneous professional services; Ambulatory health, hospitals, nursing and residential
care with social assistance. This results in 41 industry groups.
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Table A.3: Sample Size by Industry and Sector
Sector Industry Observations

Mining Mining, except oil and gas 445
Oil and gas extraction 2323
Support activities for mining 691

Utilities Utilities 2427
Construction Construction 481
Durables Manufacturing Electrical equipment, appliances, and components 1063

Fabricated metal products 1190
Furniture and related products 303
Machinery 2571
Miscellaneous manufacturing 1490
Motor vehicles, bodies and trailers, and parts 1975
Nonmetallic mineral products 368
Other transportation equipment 1059
Primary metals 902
Wood products 192

Non-Durables Manufacturing Apparel and leather and allied products 1410
Chemical products 3959
Food and beverage and tobacco products 1561
Paper products 601
Petroleum and coal products 1068
Plastics and rubber products 778
Printing and related support activities 223
Textile mills and textile product mills 448

Electronics Manufacturing Computer and electronic products 9581
Wholesale Wholesale trade 2215
Retail Food and beverage stores 347

General merchandise stores 574
Motor vehicle and parts dealers 153
Other retail 1303

Transport and Warehousing Air transportation 422
Other transportation and support activities 265
Pipeline transportation 487
Rail transportation 238
Transit and ground passenger transportation 14
Transportation and warehousing 22
Truck transportation 322
Warehousing and storage 13
Water transportation 284

Information Broadcasting and telecommunications 2213
Data processing, internet publishing, and other information services 633
Motion picture and sound recording industries 292
Publishing industries, except internet (includes software) 1788

FIRE Federal Reserve banks, credit intermediation, and related activities 554
Funds, trusts, and other financial vehicles 25
Insurance carriers and related activities 397
Real estate 222
Rental and leasing services and lessors of intangible assets 445
Securities, commodity contracts, and investments 247

Services Accommodation 117
Administrative and support services 664
Ambulatory health care services 263
Amusements, gambling, and recreation industries 56
Computer systems design and related services 1162
Educational services 46
Food services and drinking places 238
Hospitals 76
Legal services 4
Miscellaneous professional, scientific, and technical services 998
Nursing and residential care facilities 42
Other services, except government 115
Performing arts, spectator sports, museums, and related activities 30
Social assistance 3
Waste management and remediation services 159

This table reports the number firm-year observations in the sample by primary sector and industry as determined by the BEA
industry classification. 80



Figure A.1: Estimated and Reported Labor Expenses
This figure shows the correlation between labor expenses reported in Compustat and
labor costs estimated using industry wage expenditure.

A.5 Additional Results and Robustness Checks
A.5.1 Value-Added Estimates
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Table A.4: Productivity Spillovers by Relationship Dynamics (Value-Added)

Dependent Variable: lnTFPt
Continuing New Continuing New
Customers’ Customers’ Suppliers’ Suppliers’

Period Estimator lnTFPt lnTFPt lnTFPt lnTFPt

1977-1986

ACF 0.0009 0.0023 0.002 0.0005
(0.0014) (0.0014) (0.0011) (0.001)

ACF-N 0.0008 0.0022 0.0021 0.0007
(0.0014) (0.0014) (0.0011) (0.001)

ACF-ND 0.0008 0.001 0.003 0.0003
(0.0016) (0.0015) (0.0013) (0.0011)

1987-1996

ACF 0.0001 0.0003 -0.0006 0.001
(0.0009) (0.001) (0.0007) (0.0006)

ACF-N 0.0002 0.0003 -0.0011 0.0005
(0.0009) (0.001) (0.0007) (0.0006)

ACF-ND 0.0004 0.0004 -0.0012 0.0006
(0.001) (0.001) (0.0007) (0.0007)

1997-2006

ACF 0.0008 0.0004 0.0003 0.0014
(0.0005) (0.0005) (0.0004) (0.0004)

ACF-N 0.0008 0.0004 0.0006 0.0017
(0.0005) (0.0005) (0.0004) (0.0004)

ACF-ND 0.0005 0.0004 0.0006 0.002
(0.0005) (0.0004) (0.0005) (0.0004)

2007-2016

ACF 0.0012 0.0003 0.0011 0.0003
(0.0006) (0.0004) (0.0004) (0.0003)

ACF-N 0.0011 0.0003 0.0013 0.0004
(0.0006) (0.0004) (0.0004) (0.0003)

ACF-ND 0.0012 0.0003 0.0011 0.0002
(0.0007) (0.0004) (0.0004) (0.0003)

All

ACF 0.0007 0.0008 0.0006 0.0009
(0.0003) (0.0003) (0.0003) (0.0002)

ACF-N 0.0007 0.0008 0.0008 0.001
(0.0003) (0.0003) (0.0003) (0.0002)

ACF-ND 0.0007 0.0008 0.0007 0.0011
(0.0004) (0.0003) (0.0003) (0.0002)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated
on US firms in Compustat. Each TFP measure is from a value-added production function (in logs) estimated with the
standard Ackerberg et al. (2015) procedure (ACF), or with modifications to accommodate network effects (ACF-N)
and network differencing (ACF-ND). Network effects for ACF are estimated using the generalized 2SLS procedure
for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Standard errors are in parentheses.
All specifications include industry and year fixed effects.
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Table A.5: Productivity Spillovers by Sector (Value-Added)

Dependent Variable: lnTFPt
Firm’s Sector

Non-
Partners’ Sector Mining Utilities Constr Durables Durables Electronics Wholesale Retail Trans & WH Info FIRE Services

Mining 0.0037 -0.0004 0.009 0.0027 0.0014 -0.0057 -0.0011 -0.0026 0.0121 0.0135 -0.001 -0.0035
(0.0018) (0.0011) (0.0092) (0.0013) (0.0009) (0.0081) (0.0034) (0.0025) (0.0055) (0.0068) (0.0036) (0.0025)

Utilities 0.0029 0.0025 0.0034 -0.0001 0.0022 0.0025 0.0052 -0.0023 0.0024 -0.0013 -0.003 0.0033
(0.0018) (0.001) (0.004) (0.001) (0.0011) (0.0021) (0.0033) (0.0028) (0.0021) (0.0054) (0.0107) (0.0034)

Construction 0.0151 0.0014 0.009 0.0013 -0.0014 -0.0018 -0.0107 -0.0057 0.0047 0.0004 0.001 0.0096
(0.0172) (0.0013) (0.0049) (0.0023) (0.0009) (0.0032) (0.0068) (0.0037) (0.0091) (0.001) (0.0033) (0.0107)

Durables Mfg 0.0008 -0.0007 0.0171 -0.0002 -0.0019 -0.0017 0.0013 -0.0014 -0.0002 -0.0011 0.0027 0.003
(0.0018) (0.0008) (0.0084) (0.0006) (0.0006) (0.0006) (0.0012) (0.0007) (0.0013) (0.0013) (0.0035) (0.0014)

Non-Durables Mfg 0.0023 0.0007 0.0048 -0.0011 -0.0011 -0.0006 0.003 -0.0043 0.0035 -0.0012 -0.0073 -0.0059
(0.0019) (0.0011) (0.0061) (0.0006) (0.0005) (0.0011) (0.0012) (0.0007) (0.0019) (0.0016) (0.0035) (0.0017)

Electronics Mfg -0.0087 -0.0011 -0.008 0.0004 -0.0014 0.0012 0.0042 -0.0013 0.0008 -0.0006 0.0049 -0.0
(0.0081) (0.0014) (0.0084) (0.0006) (0.0012) (0.0006) (0.0011) (0.0013) (0.0013) (0.0008) (0.004) (0.0014)

Wholesale 0.0007 -0.0005 0.0214 0.0007 0.001 0.0024 0.0061 -0.002 -0.0022 -0.0004 -0.0068 -0.0012
(0.0042) (0.0013) (0.0216) (0.0007) (0.0006) (0.0008) (0.0025) (0.0009) (0.0026) (0.0012) (0.0058) (0.0015)

Retail -0.0052 -0.0082 0.0023 0.0018 0.0006 0.005 0.0033 0.0001 -0.0012 0.0044 0.0086 0.0002
(0.0039) (0.0032) (0.0169) (0.0007) (0.0006) (0.0018) (0.0016) (0.0012) (0.0013) (0.0022) (0.0032) (0.0022)

Transport and
Warehousing

0.0031 -0.0003 0.013 0.0006 0.0005 -0.0016 0.0162 0.0025 0.0004 -0.0 0.0161 -0.0034
(0.0029) (0.0008) (0.0084) (0.0013) (0.0006) (0.0029) (0.0059) (0.0019) (0.0016) (0.0019) (0.0044) (0.0024)

Information 0.0071 0.0002 0.0036 -0.0026 -0.0017 0.0011 0.0055 -0.0003 -0.0042 0.002 0.0029 -0.0022
(0.0052) (0.0013) (0.0064) (0.0012) (0.0011) (0.0007) (0.0021) (0.0014) (0.0014) (0.0009) (0.0019) (0.0015)

Finance, Insur &
Real Estate

0.002 -0.0049 -0.0054 -0.0007 -0.0008 0.0031 0.0038 -0.0022 0.0027 -0.0013 -0.0008 0.0009
(0.0034) (0.0045) (0.003) (0.0012) (0.0006) (0.0009) (0.0066) (0.001) (0.0012) (0.0012) (0.0017) (0.0015)

Services -0.0006 -0.0004 0.0055 0.0004 -0.001 0.0003 -0.0004 0.0003 -0.0014 0.0004 0.0011 0.0007
(0.0027) (0.001) (0.015) (0.0008) (0.0006) (0.0007) (0.002) (0.0016) (0.0015) (0.0012) (0.0017) (0.0015)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat. Each TFP measure is from a gross output production function
(in logs) estimated with the standard Ackerberg et al. (2015) procedure (ACF), or with modifications to accommodate network effects and network differencing (ACF-ND). Network effects for ACF are
estimated using the generalized 2SLS procedure for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Sectors are determined according to the BEA industry classification.
Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table A.6: Productivity Spillovers by Firm Size & Relationship Direction (Value-Added)

Dependent Variable: lnTFPt
Partner Firm
Size Relationship Size 1977-1986 1987-1996 1997-2006 2007-2016 All

Large

Customers
Large 0.0002 0.0005 0.0002 0.0007 0.0008

(0.0015) (0.0007) (0.0005) (0.0004) (0.0003)

Small 0.0066 0.0007 -0.0021 -0.0001 0.002
(0.0019) (0.001) (0.0007) (0.0006) (0.0004)

Suppliers
Large 0.0002 -0.0009 0.0012 0.0007 0.0004

(0.0013) (0.0006) (0.0004) (0.0003) (0.0002)

Small 0.0339 0.0006 -0.0012 -0.0038 0.0028
(0.018) (0.005) (0.0046) (0.0031) (0.0027)

Small

Customers
Large -0.0033 -0.0046 -0.0088 -0.0043 -0.0054

(0.0047) (0.0048) (0.004) (0.0022) (0.0023)

Small 0.0125 -0.0059 -0.0021 0.0022 -0.0003
(0.0071) (0.0062) (0.0029) (0.0059) (0.0028)

Suppliers
Large 0.0013 -0.0001 0.0017 0.0005 0.0007

(0.0011) (0.0007) (0.0005) (0.0003) (0.0002)

Small 0.0218 -0.0004 0.0045 -0.0023 0.0039
(0.0088) (0.0046) (0.0041) (0.0046) (0.0025)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat. Each
TFP measure is from a value-added production function (in logs) estimated with the standard Ackerberg et al. (2015) procedure (ACF), or with
modifications to accommodate network effects (ACF-N) and network differencing (ACF-ND). Network effects for ACF are estimated using the
generalized 2SLS procedure for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are businesses with 500
or more employees.Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table A.7: Productivity Spillovers by Varying Firm Size Cutoffs (Value-Added)

Dependent Variable: lnTFPt
Firm’s Sector

Partner Size Relationship Firm Size 500 1000 5000 Median

Large

Customers
Large 0.0008 0.0008 -0.0 0.0002

(0.0003) (0.0003) (0.0003) (0.0003)

Small 0.002 0.003 0.0014 0.0022
(0.0004) (0.0004) (0.0004) (0.0004)

Suppliers
Large 0.0004 0.0002 -0.0006 -0.0

(0.0002) (0.0002) (0.0002) (0.0002)

Small 0.0028 0.0049 0.0037 0.0048
(0.0027) (0.0015) (0.001) (0.0006)

Small

Customers
Large -0.0054 -0.002 -0.0009 -0.0003

(0.0023) (0.0015) (0.0009) (0.0005)

Small -0.0003 -0.0014 0.0004 0.0019
(0.0028) (0.0018) (0.0006) (0.0007)

Suppliers
Large 0.0007 0.0006 -0.0001 0.0

(0.0002) (0.0002) (0.0003) (0.0003)

Small 0.0039 0.0038 0.0039 0.0032
(0.0025) (0.0015) (0.0006) (0.0006)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms
in Compustat. Each TFP measure is from a value-added production function (in logs) estimated with the standard Ackerberg
et al. (2015) procedure (ACF), or with modifications to accommodate network effects (ACF-N) and network differencing (ACF-
ND). Network effects for ACF are estimated using the generalized 2SLS procedure for heterogenous peer effects in Dieye and
Fortin (2017); Patacchini et al. (2017). Large firms are defined by having at least as many employees as the cutoffs indicated
above. The median cutoff is determined by industry and year. Standard errors are in parentheses. All specifications include
industry and year fixed effects.
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A.5.2 Unweighted Estimates
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Table A.8: Endogenous Productivity Spillovers (Gross
Output, Unweighted)

Dependent Variable: lnTFPt
Neighbors’

Period Estimator lnTFPt−1 lnTFPt

1977-1986

GNR 0.8403 0.0068
(0.0205) (0.0049)

GNR-N 0.8391 0.0074
(0.0207) (0.0049)

GNR-ND 0.8248 -0.0001
(0.0228) (0.0058)

1987-1996

GNR 0.8314 -0.0065
(0.0244) (0.0039)

GNR-N 0.8312 -0.0063
(0.0244) (0.0039)

GNR-ND 0.8232 -0.0093
(0.0271) (0.0039)

1997-2006

GNR 0.8583 0.0001
(0.013) (0.0043)

GNR-N 0.8588 0.0003
(0.0132) (0.0043)

GNR-ND 0.8584 0.0002
(0.0145) (0.0055)

2007-2016

GNR 0.8964 0.0115
(0.0214) (0.0048)

GNR-N 0.8964 0.0113
(0.0214) (0.005)

GNR-ND 0.889 0.0096
(0.0229) (0.0047)

All

GNR 0.9038 0.0076
(0.0066) (0.0023)

GNR-N 0.9027 0.0086
(0.0067) (0.0024)

GNR-ND 0.8998 0.0069
(0.0073) (0.0025)

This table reports coefficients of a linear productivity evolution process
with endogenous network effects estimated on US firms in Compustat.
Each TFP measure is from a gross output production function (in logs)
estimated with the standard Gandhi et al. (2020) procedure (GNR), or
with modifications to accommodate network effects (GNR-N) and net-
work differencing (GNR-ND). Network effects for GNR are estimated
using the generalized 2SLS procedure in Lee (2003); Bramoullé et al.
(2009). Interaction matrices for network effects are unweighted. Stan-
dard errors are in parentheses. All specifications include industry and
year fixed effects.

Table A.9: Productivity Spillovers by Relationship
Direction (Gross Output, Unweighted)

Dependent Variable: lnTFPt
Customers’ Suppliers’

Period Estimator lnTFPt lnTFPt

1977-1986

GNR 0.0036 0.0167
(0.004) (0.005)

GNR-N 0.0022 0.017
(0.0033) (0.0045)

GNR-ND -0.0025 0.0127
(0.0036) (0.004)

1987-1996

GNR 0.0063 -0.008
(0.004) (0.0036)

GNR-N 0.0079 -0.0122
(0.0039) (0.0035)

GNR-ND -0.0056 -0.012
(0.0044) (0.0079)

1997-2006

GNR 0.0013 0.0023
(0.0005) (0.0005)

GNR-N 0.001 0.0033
(0.0005) (0.0005)

GNR-ND 0.0006 0.0041
(0.0006) (0.0006)

2007-2016

GNR 0.0006 0.0016
(0.0004) (0.0006)

GNR-N 0.0004 0.0024
(0.0004) (0.0008)

GNR-ND 0.0002 0.0025
(0.0004) (0.0008)

All

GNR 0.0025 0.0053
(0.0008) (0.0009)

GNR-N 0.0024 0.0079
(0.0008) (0.0011)

GNR-ND 0.0015 0.008
(0.0008) (0.001)

This table reports coefficients of a linear productivity evolution process
with endogenous network effects estimated on US firms in Compustat.
Each TFP measure is from a gross output production function (in logs)
estimated with the standard Gandhi et al. (2020) procedure (GNR), or
with modifications to accommodate network effects (GNR-N) and net-
work differencing (GNR-ND). Network effects for GNR are estimated
using the generalized 2SLS procedure for heterogenous peer effects in
Dieye and Fortin (2017); Patacchini et al. (2017). Interaction matrices
for network effects are unweighted. Standard errors are in parentheses.
All specifications include industry and year fixed effects.
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Table A.10: Productivity Spillovers by Relationship Dynamics (Gross Output, Unweighted)

Dependent Variable: lnTFPt
Continuing New Continuing New
Customers’ Customers’ Suppliers’ Suppliers’

Period Estimator lnTFPt lnTFPt lnTFPt lnTFPt

1977-1986

GNR 0.0037 0.001 0.0149 0.0092
(0.0034) (0.0039) (0.0038) (0.0039)

GNR-N 0.0013 0.0004 0.0138 0.0095
(0.0024) (0.0026) (0.0029) (0.0028)

GNR-ND 0.0001 -0.0028 0.0157 0.0088
(0.0031) (0.0031) (0.0032) (0.0035)

1987-1996

GNR 0.0077 0.0033 -0.003 -0.0121
(0.0035) (0.0039) (0.0038) (0.0037)

GNR-N -0.0036 0.0165 -0.0041 -0.0295
(0.0048) (0.0068) (0.0081) (0.0077)

GNR-ND -0.0116 0.0101 0.0006 -0.0214
(0.0046) (0.0065) (0.009) (0.0088)

1997-2006

GNR -0.0007 0.0005 0.0003 0.0013
(0.0004) (0.0004) (0.0003) (0.0003)

GNR-N -0.0009 0.0003 0.0015 0.0026
(0.0004) (0.0004) (0.0004) (0.0004)

GNR-ND -0.0011 0.0002 0.002 0.0031
(0.0005) (0.0005) (0.0005) (0.0004)

2007-2016

GNR 0.0005 0.0005 0.0015 0.0013
(0.0004) (0.0004) (0.0005) (0.0004)

GNR-N 0.0004 0.0004 0.0025 0.0022
(0.0004) (0.0004) (0.0007) (0.0005)

GNR-ND 0.0001 0.0003 0.0025 0.0022
(0.0004) (0.0004) (0.0008) (0.0006)

All

GNR 0.0008 0.0017 0.0029 0.0038
(0.0006) (0.0006) (0.0006) (0.0006)

GNR-N 0.0009 0.0017 0.0066 0.0076
(0.0007) (0.0007) (0.0009) (0.0008)

GNR-ND 0.0005 0.0012 0.007 0.0081
(0.0007) (0.0008) (0.001) (0.0009)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated
on US firms in Compustat. Each TFP measure is from a gross output production function (in logs) estimated with the
standard Gandhi et al. (2020) procedure (GNR), or with modifications to accommodate network effects (GNR-N) and
network differencing (GNR-ND). Network effects for GNR are estimated using the generalized 2SLS procedure for
heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Interaction matrices for network effects
are unweighted. Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table A.11: Productivity Spillovers by Sector (Gross Output, Unweighted)

Dependent Variable: lnTFPt
Firm’s Sector

Non-
Partners’ Sector Mining Utilities Constr Durables Durables Electronics Wholesale Retail Trans & WH Info FIRE Services

Mining -0.0082 -0.0093 -0.0062 0.0017 0.0071 -0.0155 0.0165 0.0088 0.0098 0.0343 0.0042 0.0027
(0.0062) (0.0037) (0.0317) (0.0048) (0.0026) (0.0312) (0.01) (0.0077) (0.0088) (0.0107) (0.0082) (0.0077)

Utilities -0.0031 -0.0006 0.006 0.0029 0.0097 0.0127 0.0041 -0.0027 0.0018 -0.0023 -0.0035 0.01
(0.0057) (0.0027) (0.0102) (0.0026) (0.002) (0.0079) (0.008) (0.0081) (0.0063) (0.0121) (0.0173) (0.0058)

Construction -0.0189 0.0012 0.0144 0.0052 -0.0057 -0.0076 0.0109 -0.0072 0.0164 0.0041 -0.0002 0.0276
(0.0303) (0.004) (0.0112) (0.0057) (0.0035) (0.0128) (0.0073) (0.0087) (0.0222) (0.0034) (0.0059) (0.0213)

Durables Mfg 0.0074 0.0002 0.0255 0.0024 0.0012 -0.0036 0.0076 -0.0016 0.0028 0.0037 0.0049 0.003
(0.0063) (0.0029) (0.0223) (0.0021) (0.0016) (0.0023) (0.0026) (0.0016) (0.0034) (0.0033) (0.0061) (0.0033)

Non-Durables Mfg -0.0059 -0.0014 -0.0028 0.0 -0.0009 -0.0065 0.0033 -0.006 -0.0063 -0.0025 -0.0169 -0.0098
(0.005) (0.0027) (0.0129) (0.0017) (0.0013) (0.0046) (0.0026) (0.0015) (0.0037) (0.0043) (0.0082) (0.0037)

Electronics Mfg -0.0413 -0.015 -0.0262 -0.0001 -0.004 0.0231 0.0126 0.0021 0.0076 0.0005 0.0203 0.0002
(0.0478) (0.0053) (0.034) (0.0044) (0.0036) (0.0028) (0.0029) (0.0031) (0.0055) (0.0029) (0.0089) (0.0041)

Wholesale -0.005 0.0122 0.0115 0.0021 0.0031 0.016 0.0096 0.0016 0.0032 0.0021 -0.0125 0.0026
(0.0114) (0.0073) (0.0157) (0.002) (0.0012) (0.002) (0.0037) (0.0013) (0.0101) (0.0023) (0.0114) (0.0038)

Retail 0.0109 -0.0035 -0.0072 0.0071 0.0029 0.0187 0.0101 0.0012 -0.0012 0.0086 0.0175 0.0016
(0.0114) (0.01) (0.0154) (0.0027) (0.0013) (0.0035) (0.0018) (0.0025) (0.0038) (0.004) (0.0045) (0.0043)

Transport and Warehousing 0.0075 0.0111 0.0536 0.0035 0.0031 0.0063 0.0074 0.0021 -0.003 0.0007 -0.0084 0.0
(0.009) (0.0032) (0.0183) (0.004) (0.0019) (0.0057) (0.0105) (0.0038) (0.004) (0.0079) (0.007) (0.01)

Information 0.0235 -0.0023 0.0083 -0.0034 -0.001 0.0145 0.0062 -0.001 -0.0174 0.004 0.0064 -0.0071
(0.0114) (0.0066) (0.0165) (0.0038) (0.0027) (0.0024) (0.0047) (0.0025) (0.0046) (0.0027) (0.0046) (0.0038)

Finance, Insur & Real Estate 0.0003 0.0048 -0.013 -0.0 -0.0044 0.0129 -0.0024 0.0017 0.0043 0.004 -0.0019 0.0047
(0.0108) (0.0137) (0.0124) (0.0043) (0.0024) (0.0033) (0.0144) (0.0019) (0.0042) (0.003) (0.0042) (0.0034)

Services 0.0032 -0.0086 0.0082 0.0084 0.004 0.0021 0.008 0.004 0.0023 0.005 0.0088 0.0024
(0.0113) (0.0035) (0.0245) (0.0022) (0.0022) (0.0027) (0.0069) (0.0025) (0.0048) (0.003) (0.0047) (0.0036)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat. Each TFP measure is from a gross output production
function (in logs) estimated with the standard Gandhi et al. (2020) procedure (GNR), or with modifications to accommodate network effects (GNR-N) and network differencing (GNR-ND). Network
effects for GNR are estimated using the generalized 2SLS procedure for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Sectors are determined according to the BEA
industry classification. Interaction matrices for network effects are unweighted. Standard errors are in parentheses. All specifications include industry and year fixed effects.
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Table A.12: Productivity Spillovers by Firm Size & Relationship Direction (Gross Output, Unweighted)

Dependent Variable: lnTFPt
Partner Firm
Size Relationship Size 1977-1986 1987-1996 1997-2006 2007-2016 All

Large

Customers
Large 0.001 0.0028 -0.0001 0.0003 0.0019

(0.0034) (0.0073) (0.0005) (0.0004) (0.0008)

Small -0.0039 -0.0019 0.0006 -0.0004 0.0019
(0.0042) (0.0056) (0.0006) (0.0006) (0.001)

Suppliers
Large 0.0151 -0.0252 0.0025 0.0026 0.0081

(0.0036) (0.0108) (0.0004) (0.0007) (0.001)

Small 0.0569 -0.0686 0.0047 -0.005 0.0139
(0.0304) (0.0216) (0.0025) (0.0025) (0.0076)

Small

Customers
Large -0.0134 -0.0778 -0.0063 -0.0059 -0.009

(0.0117) (0.0468) (0.0028) (0.0064) (0.0075)

Small 0.0002 -0.051 0.0 -0.0008 -0.0044
(0.0143) (0.0392) (0.0022) (0.0027) (0.0052)

Suppliers
Large 0.0138 -0.0125 0.0023 0.0022 0.008

(0.0039) (0.0058) (0.0005) (0.0006) (0.0009)

Small 0.0581 -0.0154 0.0033 0.0 0.0074
(0.0272) (0.0137) (0.002) (0.003) (0.0052)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms in Compustat.
Each TFP measure is from a gross output production function (in logs) estimated with the standard Gandhi et al. (2020) procedure (GNR), or with
modifications to accommodate network effects (GNR-N) and network differencing (GNR-ND). Network effects for ACF are estimated using the
generalized 2SLS procedure for heterogenous peer effects in Dieye and Fortin (2017); Patacchini et al. (2017). Large firms are businesses with 500
or more employees.Interaction matrices for network effects are unweighted. Standard errors are in parentheses. All specifications include industry
and year fixed effects.
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Table A.13: Productivity Spillovers by Varying Firm Size Cutoffs (Gross Output, Unweighted)

Dependent Variable: lnTFPt
Firm’s Sector

Partner Size Relationship Firm Size 500 1000 5000 Median

Large

Customers
Large 0.0019 0.0016 0.0014 0.001

(0.0008) (0.0008) (0.0008) (0.0008)

Small 0.0019 0.0033 0.0017 0.0014
(0.001) (0.0011) (0.001) (0.001)

Suppliers
Large 0.0081 0.0078 0.006 0.0087

(0.001) (0.001) (0.0008) (0.001)

Small 0.0139 0.0093 0.0084 0.0091
(0.0076) (0.0035) (0.0027) (0.0016)

Small

Customers
Large -0.009 -0.001 -0.0039 0.0018

(0.0075) (0.006) (0.0038) (0.0015)

Small -0.0044 -0.0051 0.0007 0.0026
(0.0052) (0.0036) (0.0012) (0.0012)

Suppliers
Large 0.008 0.0086 0.0079 0.0073

(0.0009) (0.001) (0.0012) (0.0011)

Small 0.0074 0.0071 0.009 0.0087
(0.0052) (0.0032) (0.0013) (0.0013)

This table reports coefficients of a linear productivity evolution process with endogenous network effects estimated on US firms
in Compustat. Each TFP measure is from a gross output production function (in logs) estimated with the standard Gandhi et al.
(2020) procedure (GNR), or with modifications to accommodate network effects (GNR-N) and network differencing (GNR-
ND). Network effects for GNR are estimated using the generalized 2SLS procedure for heterogenous peer effects in Dieye and
Fortin (2017); Patacchini et al. (2017). Large firms are defined by having at least as many employees as the cutoffs indicated
above. The median cutoff is determined by industry and year. Interaction matrices for network effects are unweighted. Standard
errors are in parentheses. All specifications include industry and year fixed effects.
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A.6 Bootstrap for Network Data
A.6.1 Residual-based resampling
Resampling network data needs to preserve the dependence structure between firms and across time. In my empirical
application, I use the residual-based bootstrap whose asymptotic properties have been studied in the context of cross-
sectional spatially correlated data by Jin and Lee (2012). I modify the procedure by treating my unbalanced panel as
repeated cross-sections. I estimate the model, and obtain my first stage estimates ϕ̂ and residuals ε̂t . If the residuals
do not have zero mean, I subtract the empirical mean from each residual and obtain ε̃t . Then, for each t = {1, · · · ,T}
I draw samples of size nt from ε̃nt . Sampling R times, I obtain {ε∗rt }R

r=1 and use these to generate psuedosamples:

y∗rt = ϕ̂t + ε
∗r
t

I re-estimate both the production function and productivity process on these pseudo-samples, obtaining a set of elas-
ticities {(α∗r` ,α∗r` )} and productivity process parameters {(ρ∗r,λ ∗r,βββ ∗r)} that I use to construct standard errors and
confidence intervals.

A.6.2 Vertex Resampling
An alternative procedure is the vertex bootstrap introduced by Snijders and Borgatti (1999). Although this method
is potentially more robust to model misspecification, the resulting adjacency matrices are not guaranteed to satisfy
the linear independence conditions for consistency of the G2SLS peer effects estimator. The procedure is as follows:
Let M be the set of unique firms across all years in the data, with cardinality m and let R be the number of bootstrap
repetitions.

For each bootstrap repetition r, randomly select m firms from M with replacement to form a bootstrap sample Mr.
Each firm k in Mr corresponds to a firm i(k) ∈M; I include observations from all years in which i(k) appears in the
original dataset. This is the standard block bootstrapping procedure for panel data, which maintains the dependence
structure across time within a firm.

Next, for each year, construct the adjacency matrix Art from the original At . Every pair of firms (k,h) in Mr

corresponds to (i(k), i(h)) in M. Therefore, if i(k) 6= i(h), then we can set

Akh,rt = Ai(k)i(h),t

However, At does not provide information on edges between duplicated nodes (i(k) = i(h)), because in the original
network, a firm could not buy from itself. But in the bootstrap sample, k and h are considered different firms. Therefore,
I fill in these edges by uniformly sampling from all the elements of At . Finally, the interaction matrix Grt is constructed
by row-normalizing Art .
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