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Chapter I

Introduction

In this thesis, we focus on topics related to the Dehn function of a finitely presented metabelian group and relative

Dehn function of a finitely generated metabelian groups. We establish a commutative algebra approach to estimate

upper bounds for the Dehn function of a given finitely presented metabelian group. This approach yields much wilder

results than estimating the upper bound. It first gives a uniform upper bound for Dehn functions of all finitely presented

metabelian groups. Secondly, we give a similar result for Dehn functions relative to the variety of metabelian groups.

For a finitely presented metabelian group, we also analyze contributions of different parts, including the metabelian

part and the commutative algebra part, to its Dehn function. Finally, we use this technique to compute and estimate

the Dehn functions as well as the relative Dehn functions for various examples.

I.1 Notation and Conventions

We denote the set of rational integers by Z and the set of real numbers by R. N indicates the set of natural numbers,

where our convention is that 0 /∈N. In addition, we let R+ = {x ∈ R | x > 0}.

If G is a group, we will denote by G′ = [G,G] the derived (commutator) subgroup, by Gab
∼= G/G′ the abelianiza-

tion. For elements x,y ∈ G,n ∈ N, our convention is xny = y−1xny, [x,y] = x−1y−1xy. We use double bracket 〈〈·〉〉G to

denote the normal closure of a set in the group G. Sometimes we omit the subscript when there is no misunderstand-

ing in the context. For a set X , we denote the free group generated by the set X as F(X ). We also use F(X ) to

represent the set of reduced words in alphabet X ∪X −1.

In addition, for a group G and a commutative ring K with 1 6= 0, we let KG be the group ring of G over K. An

element λ ∈ KG is usually denoted as λ = ∑g∈G αgg,αg ∈ K where all but finitely many αg’s are 0. We also regard λ

as a function λ : G → K with finite support, where λ (g) = αg.

We say a group G that is an extension of a group A by a group T if A is a normal subgroup of G and T ∼= G/T .

Let π : G → G/A be the natural homomorphism. We say an extension A by T splits if there exists a homomorphism

s : T → G such that π ◦ s = idT . In this case, G is a semidirect product of A and T , denoted by A⋊T . One special case

of the semidirect product we consider in this thesis is the (regular) wreath product. For groups A and T , let B =⊕t∈T At

be the direct sum of copies of A indexed by elements in T . Then the wreath product A ≀T is defined to be the semidirect

product B⋊T where T acts on B by t ◦ (aω) = (at−1ω ). The subgroup B is called the base group of the wreath product.

If A is abelian, then A can be considered a module over ZT , and the action of T on A is given by conjugation. In

this case, we also say that G is an extension of a T -module A by T . Throughout the thesis, we will use the following

1



notation for actions of ZT on A. Let λ = ∑t∈T αtt ∈ ZT . Then for a ∈ A, we define

aλ := ∏
t∈T

aαtt .

Since λ has finite support, the product is finite.

I.2 The Word Problem

Let X be a set. A word over X is a sequence of elements of X . A group word over X is a sequence of elements of X

and their inverses, i.e. symbols x−1,x ∈ X . The length of a word w is denoted by |w|. We say a group word over X is

reduced if it does not contain any subwords of the form xx−1 and x−1x for any x ∈ X . The set of reduced group words

over X is denoted by F(X). It is equipped with the binary operation: the product uv of two reduced group words u,v is

the result of reducing the concatenation of u and v. With this operation, F(X) is turned into a group which is called the

free group over X . The identity element of F(X) is the empty word denoted by /0. For every group G, any map X → G

extends uniquely to a homomorphism F(X) → G: any word is mapped to the product of the images of its letter. In

particular, every group G generated by at most |X | elements is a homomorphic image of F(X). Let ϕ be one of these

surjective homomorphisms. The kernel of ϕ is a normal subgroup of F(X). Let R be a subset of F(X) such that its

normal closure coincides with kerϕ . Then we say group G has a presentation 〈X | R〉, where X is called the generating

set and R is called the relation set while r ∈ R is called a relation (or a relator).

The word problem in G (related to ϕ or 〈X | R〉) is the following

Problem I.2.1 (The word problem). Given a reduced group word w over X , decide if ϕ(w) = 1 in G or not.

If the generating set is finite, the group is called finitely generated. In addition, if the relation set is also finite, the

group is called finitely presented. It turns out that for finitely generated groups the solvability of the word problem

does not depend on the choice of ϕ or even the choice of the finite set X [24]. Throughout this thesis, we only concern

finitely generated and finitely presented groups. Therefore, in what follows, we will discuss the solvability of the word

problem for a group without noting an explicit finite generating set.

I.3 The Dehn function

Given a finitely presented group G equipped with a finite presentation P = 〈X | R〉, there exists a epimorphism

ϕ : F(X)→ G such that kerϕ = 〈〈R〉〉. A reduced group word w over X represents the identity in G if and only if there

exists k ∈ N, f1, f2, . . . , fk ∈ F(X),r1,r2, . . . ,rk ∈ R and ε1,ε2, . . . ,εk ∈ {±1} such that

w =F(X)

k

∏
i=1

f−1
i r

εi
i fi.

2



If w = 1 in G, the area of w with respect to P , denoted by AreaP(w), is the minimal value k so that such repsentation

of w exists. The Dehn function δP : N→N with respect to P is defined to be δP(n) = sup{AreaP(w) | |w|6 n}.

Dehn functions are defined up to an asymptotic equivalence ≈ taken on functions N → N by f ≈ g if and only

if f 4 g and g 4 f where f 4 g if and only if there exists C > 0 such that f (n) 6 Cg(Cn)+Cn+C for all n ∈ N.

One can verify that ≈ is an equivalence relation. This relation preserves the asymptotic nature of a function. For

example, it distinguishes polynomials of different degrees and likewise polynomials and the exponential function. It

also distinguishes functions like np and np logn for p > 1. On the other hand, it identifies all polynomials of the same

degree, and likewise all exponential functions, i.e., an ≈ bn for a,b > 1.

Despite the dependence of Dehn function on finite presentations of a group, all Dehn functions of the same finitely

presented group are equivalent under ≈ [17], i.e., given a finitely presented group G with finite presentations P and

P ′, one can show that δP ≈ δP ′ . Thus, we define the Dehn function of a finitely presented group G, δG, as the Dehn

function of any of its finite presentation.

The Dehn function was first introduced by computer scientists Madlener and Otto to describe the complexity of

the word problem of a group [24], also by Gromov as a geometric invariant of finitely presented groups [17] (see also

Gersten [16] where the name “Dehn function” was introduced). There have been a lot of significant results about Dehn

functions in the past 30 years, revealing the relationship between this geometric invariant and algebraic properties of

the group. Some of the numerous examples are:

(a) A finitely presented group has a decidable word problem if and only if its Dehn function is bounded above by a

recursive function [24].

(b) A finite generated group is hyperbolic if and only if it has sub-quadratic Dehn function [17], [30].

(c) If G is the fundamental group of a compact Riemannian manifold M, then δG is equivalent to the smallest isoperi-

metric function of the universal cover M̃ [10].

I.4 Metabelian Groups

This thesis studies the Dehn function of a particular class of groups, finitely presented metabelian groups. A group G is

metabelian if its derived subgroup G′ = [G,G] is abelian. Metabelian groups are defined by the identity [[x,y], [z,w]] =

1, which implies that all commutators commutes in a metabelian group. It also follows that the class of metabelian

groups form a variety. Recall that a variety, in the sense of B.H. Neumann [28], is a class of groups closed under

subgroups, epimorphic images, and unrestricted direct products. The fact that metabelian groups form a variety allows

us to define the relative Dehn function for a finitely generated metabelian group, which we will discuss in detail in

Chapter VI.

Now, let us give some interesting examples of metabelian groups that we will deal with throughout this thesis.

3



1. Metabelian Baumslag-Solitar Group.

The metabelian Baumslag-Solitar group BS(1,n) has a presentation

BS(1,n) = 〈a, t | at = an〉,

where n is a positive integer. The derived subgroup BS(1,n)′ is isomorphic to the additive group of n-adic ratio-

nal numbers, which is not finite generated but abelian. Therefore BS(1,n) is metabelian. We can write metabelian

Baumslag-Solitar groups as a semidirect product: BS(1,n)∼=Z[1/n]⋊Z, where Z acts on Z[1/n] by multiplication by

n.

2. Lamplighter Group

The name of this group comes from viewing the group as an acting on a doubly infinite sequence of street lamps

. . . , l−2, l−1, l1, l2, . . . each of which may be on and off, and a lamplighter standing at some lamp lk. View in wreath

product we have the lamplighter group L2 = Z2 ≀Z. Recall the wreath product A ≀ T is defined to be the semidirect

product of ⊕t∈T At by T with the conjugation action.

One standard presentation for L2 is

〈a, t | a2 = 1, [a,atn

] = 1,n ∈ N〉.

We are also able to extend the idea of lamplighter group to integers greater than 2. For an integer m > 2, we can

have “lamps” with m different status, for examples, m− 1 different colors and “off”. In a similar fashion, we define

general lamplighter group Lm to be Zm ≀Z.

The lamplighter groups are examples of metabelian groups that are finitely generated but not finitely presented.

3. Baumslag’s Group Γ

The Baumslag’ Group Γ is presented by

〈a,s, t | [a,at ] = 1, [s, t] = 1.as = aat〉.

This is the first example of a finitely presented group with an abelian normal subgroup of infinite rank, has derived

subgroup [Γ,Γ] =⊕i∈ZZ. The subgroup 〈a, t〉 of Γ is

Z ≀Z=

(
⊕

i∈Z

Z

)
⋊Z= 〈a, t | [a,atk

],k ∈ Z〉.

Introducing the relation am = 1 in Γ we have a family of metabelian groups Γm = 〈Γ | am〉 [21]. It’s not hard to see that

[Γ,Γ] = ⊕i∈ZZm where Zm is the cyclic group of order m. Thus Γm contains a copy of Zm ≀Z, the lamplighter group

4



Lm.

I.5 Main Results

The solvability of the word problem for finitely generated metabelian group is known for a long time [22]. As we will

discuss in Section III.1, a finitely generated metabelian group is residually finite. It immediately follows that the word

problem is decidable for metabelian groups [24]. One consequence is that the Dehn function of a finitely presented

metabelian group is recursive. In Section III.2, we will list a few examples of finitely presented metabelian groups

and their Dehn funcitons. One spoiler for now is that all of them are asymptotically bounded above by the exponential

function. It is an intriguing question if there is a uniform upper bound for Dehn functions of finitely presented groups.

We answer this question by proving the following theorem.

Theorem A. Let G be a finitely presented metabelian group. Let k be the minimal torsion-free rank of an abelian

group T such that there exists an abelian normal subgroup A in G satisfying G/A ∼= T .

Then the Dehn function of G is asymptotically bounded above by

(1) (Theorem II.4.2) n2 if k = 0;

(2) (Theorem VI.6.5) 2n if k = 1;

(3) (Theorem V.1.1) 2n2k
if k > 1.

It follows that a function of the form 2h(n) where h(n) is any superpolynomial function is a uniform upper bound

for Dehn functions of finitely presented metabelian groups.

In general, not all finitely generated metabelian groups are finitely presented. In fact, most of them are not. But

finitely generated metabelian groups satisfy the maximal condition for normal subgroups [19], if we restrict everything

in the variety of metabelian groups, a finitely generated metabelian group is always relatively finitely presentable. In

Section VI.2, we will extend the notion of presentation and the Dehn function to the variety of metabelian groups. Thus

for a finitely generated metabelian group G, we instead studying the relative Dehn function (defined in Section VI.2),

denoted by δ̃G(n), which exists for all finitely generated metabelian groups. Applying the same technique, we first

observe that

Theorem B (Theorem VI.3.1). Let G be a finitely presented metabelian group. Then

δ̃G(n)4 δG(n)4 max{δ̃ 3
G(n

3),2n}.

It follows that

5



Theorem C (Theorem VI.3.6). Let G be a finitely generated metabelian group. Let k be the minimal torsion-free rank

of an abelian group T such that there exists an abelian normal subgroup A in G satisfying G/A ∼= T .

Then the relative Dehn function of G is asymptotically bounded above by

(1) (Theorem II.4.2) n2 if k = 0;

(2) (Theorem VI.6.5) a polynomial if k = 1;

(3) (Theorem VI.3.6) 2n2k
if k > 0.

There is no uniform polynomial bound when k = 1. We will later show that, when k = 1, for every natural number

l there exists a finitely generated metabelian group Hl such that its relative Dehn function is greater than nl .

The general method we establish in this paper provides a way to estimate the relative Dehn function of metabelian

groups. The following are some of the results.

Theorem D. (1) (Proposition VI.4.4) The metabelianized Baumslag-Solitar group B̃S(n,m) = 〈a, t | (an)t = am〉S2

has at most cubic relative Dehn function when n 6= m and has at most quartic relative Dehn function when n = m.

(2) (Corollary VI.4.5) The metabelianized Baumslag-Solitar group B̃S(n,m) = 〈a, t | (an)t = am〉S2
,m > 2,m = n+1

has at most quadratic relative Dehn function.

(3) (Proposition VI.4.6) The lamplighter groups Lm have at most cubic relative Dehn function for every m.

(4) (Proposition VI.5.1) The lamplighter group L2 has linear relative Dehn function.

(5) (Corollary VI.6.3) For each l ∈ N there exists a finitely generated metabelian group such that its relative Dehn

function asymptotically is greater or equal to nl.

The last result follows from the following connection between subgroup distortion functions (defined in Sec-

tion VI.6) and relative Dehn functions.

Let A and T be free abelian groups with bases {a1,a2, . . . ,am} and {t1, t2, . . . , tk} respectively. Consider the wreath

product W := A ≀T . Let B := 〈〈A〉〉 be the base group, which is a T -module. For a finite subset X = { f1, f2, . . . , fl}

of B, let H be the subgroup of W generated by X ∪{t1, t2, . . . , tk} and G be the group W/〈〈X 〉〉.

Theorem E (Theorem VI.6.1). Let W,H,G be groups defined as above, then

∆W
H (n)4 δ̃ k

G(n)+ nk, δ̃G(n)4 max{n3,(∆W
H (n2))3}.

In particular, if k = 1, then we have

∆W
H (n)4 δ̃G(n).
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If we only consider the case k = 1, we have the following result.

Theorem F (Theorem VI.6.5). Let G be a finitely generated metabelian group such that the minimal torsion-free rank

of an abelian group T such that there exists an abelian normal subgroup A in G satisfying G/A ∼= T is one. Then the

relative Dehn function of G is polynomially bounded. If in addition G is finitely presented, the Dehn function of G is

asymptotically bounded above by the exponential function.

In the last section, we generalize one result in [21], and show the following.

Theorem G (Theorem VII.1.4). Every wreath product of a free abelian group of finite rank with a finitely generated

abelian group can be embedded into a metabelian group with exponential Dehn function. In particular, any free

metabelian group of finite rank is a subgroup of a metabelian group with exponential Dehn function.

The proof of Theorem VII.1.4 can be found in Section VII.2.
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Chapter II

Dehn Function

II.1 Properties of the Dehn Function

Let f be a map from a metric space (X ,dX) to a metric space (Y,dY ). Then f is called a quasi-isometry from (X ,dX)

to (Y,dY ) if there exist constants A > 1,B > 0, and C > 0 such that the following two conditions hold:

(1) For all pair of points x,y ∈ X , we have that

∀x,y ∈ X :
1

A
dX( f (x), f (y))−B 6 dY (x,y)6 AdX(x,y)+B.

(2) For every point y in Y is within distance C to an image point, i.e.,

∀y ∈ Y,∃x ∈ X : dY (y, f (x)) 6C.

Two metric spaces (X ,dX),(Y,dY ) are called quasi-isometric if there exists a quasi-isometry between them. It can

be shown that being quasi-isometric is an equivalence relation. Two groups are called quasi-isometric if the Cayley

graphs of them with respect to the word length are quasi-isometric. Quasi-isometric invariants are one major interest

in geometric group theory, following the work by Gromov.

Let G be a finitely presented group in the category of all groups, namely G = 〈X | R〉 where |X |, |R|< ∞.

Theorem II.1.1 (Gromov [17]). Let G be a finitely presented group, G = 〈X〉. Let H be a finitely generated group

with generating set Y , |X |, |Y |< ∞. If G,H are quasi-isometric, then H is finitely presented and δG,X ≈ δH,Y .

Since Cayley graphs of the same group over different generating sets are quasi-isometric, we have that the Dehn

function to finite presentations of a finitely presented group is independent from the choice of the finite presentation.

Corollary II.1.2. Let P,P ′ be two finite presentations of G, then

δP(n)≈ δP ′(n).

Another useful consequence of Theorem II.1.1 is that the Dehn function of a finitely presented group is preserved

by taking a finite index subgroup.

Corollary II.1.3. Let G be a finitely presented group and H 6 G such that [G : H] < ∞, then H is finitely presented

and quasi-isometric to G hence δH ≈ δG.
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One technique we apply a lot throughout the thesis is passing the problem to a finite index subgroup with a nicer

structure, which simplifies the computation a lot.

II.2 Van Kampen Diagram

One way to visualize the area of a given word is to consider what is called a van Kampen diagram. Let G = 〈X | R〉

be a finitely presented group and w be a reduced word which is equal to 1. Then by the previous discussion, w has a

decomposition as following:

w =F(X)

k

∏
i=1

r
fi
i where ri ∈ R∪R−1, fi ∈ F(X). (II.1)

For every decomposition (II.1), we can draw a diagram which consists of a bouquet of “lollipops”. Each “lollipop”

corresponds to a factor r
fi
i , the stem of which is a path labeled by fi and the candy of which is a cycle path labeled by

ri. Going counterclockwise around the “lollipop” starting and ending at the tip of the stem, we read f−1
i ri fi. Thus the

boundary of the bouquet of “lollipops” is labeled by the word which is the right-hand side of (II.1).

Note that we obtained w from the right hand side of (II.1) by cancelling all consecutive pairs of xx−1 or x−1x,x ∈ X

on the boundary and removing subgraphs whose boundaries labelled by xx−1 or x−1x,x ∈ X (which is a “dipole” or

a sphere). In the diagram, the corresponding process is identifying two consecutive edges with the same label but

different orientation on the boundary. After finitely many such reductions, we will obtain a diagram whose boundary

is labeled by w.

Figure II.1: a bouquet of “Lolipops” and its corresponding van Kampen Diagram

The resulting diagram is called the Van-Kampen diagram of w. The edges are labeled by elements in X and cells

are (i.e. the closure of a bounded connected components of the plane minus the graph) labeled by words from R∪R−1.

For example, in group 〈a,b | [a,b] = 1〉, the Van-Kampen diagram of [a2,b] = [a,b]a[a,b] looks like this.
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Figure II.2: the Van-Kampen diagram of [a2,b] = [a,b]a[a,b]

The following is called the van Kampen Lemma.

Lemma II.2.1 ([32]). If a reduced group word w over the alphabet X is equal to 1 in G = 〈X | R〉, then there exists a

van Kampen diagram over the presentation of G with boundary label w.

Conversely, let ∆ be a van Kampen diagram over G= 〈X |R〉 where X =X−1 and R is closed under cyclic shifts and

inverses. Let w be the boundary of ∆. Then w is equal in the free group F(X) to a word of the form u1r1u2r2 . . .ukrkuk+1

where

(1) each ri is from R;

(2) u1u2 . . .uk+1 = 1 in F(X);

(3) ∑m+1
i=1 |ui|6 4e where e is the number of edges of ∆.

In particular, w is equal to 1 in G.

We say a Van Kampen diagram is minimal if it has the minimal number of cells over all such diagrams of the same

word. For a word w =G 1, the area of w is the same as the number of cells of a minimal van Kampen diagram.

Other applications of the van Kampen diagram can be found in many books. For example, in the book [29], one can

found the study of using van Kampen diagrams to construct groups with extreme properties such as infinite bounded

torsion group, Tarski monsters, etc.

II.3 Estimate the Upper Bound

One commonly used method to estimate the upper bound of the Dehn function of a finitely presented group is counting

how many relators are cost when converting a word to the identity. To be precise, let G be a finitely presented group

with a finite presentation 〈X | R〉. Let w1,w2 be words that are equal in group G. Then the cost of converting w1 to

w2 (w2 to w1) in G is defined to be the area of w−1
2 w1 (resp. w−1

1 w2) in G. If w2 happens to be the identity, then the

cost of converting w1 to w2 coincides with the area of w1. By the definition of the area, it is not hard to see that if

w1 =G w2 =G w3 and the cost of converting w1 to w2, w2 to w3 is N1 and N2 respectively then the cost of converting

w1 to w3 is at most N1 +N2.
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Let us give an example. Suppose G = 〈a,b | [a,b] = 1〉, which is a free abelian group of rank 2. Consider words

w1 = abab and w2 = a2b2. We can get w2 from w1 by commuting the letter b and a in the middle. To operate this

commutation, we insert the relator [a,b] into w1 as follows:

w1 = abab = abab[b,a]b = aabb = w2.

The third equality above holds in the free group generated by a,b. It implies w−1
2 w1 = [a,b]b. Thus the cost of

converting w1 to w2 is 1.

In general, let G = 〈X | R〉 be a finitely presented group. Suppose we have a word w1 which has the form of uq1v

and there exists r ∈ R±1 such that q2 = q1r. Then we can apply the relator r to w1 by multiply rv on the left to w1, that

is, w2 = w1rv = uq2v. Under a sequence of such operations, we can convert a word to another word that is equal to the

original word in G and by counting the number of relators we use, we can estimate the upper bound of the cost of this

conversion. Therefore, given a word w which represents the identity in G, we can estimate the upper bound of its area

by estimating the cost to convert it to the identity.

To demonstrate the idea, let us compute the upper bound of the Dehn function of a finitely generated abelian group.

Firstly, we note that this problem can be reduced to the case of free abelian group of finite rank, where since every

infinite finitely generated abelian group has a free abelian subgroup of finite index. Let T be a free abelian group of

rank k. We choose our preferred presentation of T , 〈t1, t2, . . . , tk | [ti, t j] = 1,1 6 i < j 6 k〉. Under this presentation,

to convert a subword of the form tit j to t jti, we need to apply the relator [ti, t j] = 1 if i < j or the inverse of [t j, ti] if

i > j. Now given a reduced word w such that w =T 1 and |w| = 1, the sum of exponents of ti is zero for all i. Let ni

be the number of the occurrence of t±1
i in w. It is not hard to see that ∑k

i=1 ni = n. Thus we can convert w to 1 in the

following way: first we gather all t1 in w to the left by commuting everything on the left side of each t±1
1 , operating

this process from the left most t±1
1 to the right most t±1

1 ; Then all t±1
1 will be canceled on the left end; We repeat this

process for t2, t3, . . . , tk and we will end up with the identity. The cost of moving one t±1
i to the left most is at most n,

and hence the cost of gathering all t±1
i to the left is at most ni · n. Therefore the total cost is at most n ·∑i=1 ni = n2.

The Dehn function of a finitely generated abelian group is at most quadratic.

II.4 Estimate the Lower Bound

The lower bound of the Dehn function is usually the harder one to estimate, compared with the upper bound. There

are various techniques: the distortion function in HNN extensions [1], the abelianized or centralized Dehn functions

[5], and, the technique we will use in this thesis, the van Kampen diagram. The general idea is we found a sequence of

words, the lower bound for areas of which can be estimated by investigating their corresponding minimal van Kampen

diagrams, that induces a lower bound for the Dehn function of the group. In the following, we will demonstrate this
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technique to compute the lower bound for the Dehn functions of finitely generated abelian groups with torsion-free

rank greater or equal to 2.

Recall that a subgroup H of G is a retract if there exists an endomorphism ϕ : G → G such that ϕ is the identity

map on H, i.e., ϕ(h) = h,∀h ∈ H. We have the following lemma.

Lemma II.4.1. Let G be a finitely presented group and H be a retract of G. Then H is finitely presented and δH(n)4

δG(n).

Proof. Let P = 〈X |R〉 be a finite presentation of G and m=max{|r|,r ∈R}. Let ϕ be the retraction of G onto H. And

let Y = {y = ϕ(x) | x ∈ X} and S = {s | s is a word in Y ∪Y−1,s =H 1, |s|6 m}. We claim that Q := 〈Y | S〉 is a finite

presentation for H. It is not hard to see that Y generates H. For w =h 1, w can be represented as ∏k
i=1 r

hi
i ,ri ∈ R∪R−1

in alphabet X ∪X−1. Then w = ϕ(w) = ∏k
i=1 ϕ(ri)

ϕ(hi). Since |ϕ(ri)| 6 |ri| 6 m, ϕ(ri) lies in S. Therefore Q is a

finite presentation of H. Followed by the same argument, we have that if w = 1, AreaQ(w) 6 AreaP(w). It follows

immediately that δH(n)4 δG(n).

Now let G be a finitely generated abelian group with a torsion-free rank greater or equal to 2. Note that we can

pass the problem of finding the lower bound of δG to the case G = Z2, since Z2 is always a retract of G. Suppose

G = 〈a,b | [a,b]〉. The only cell in a van Kempen diagram over the presentation of G looks like the following.

Figure II.3: the [a,b] cell

Cells form two different types of band, a-band and b-band. It is not hard to check that two bands of the same type

do not intersect each other and a band does not intersect itself. Comparing the orientation of edges, an a-band cannot

intersect a b-band twice, vice versa.

Figure II.4: a-band and b-band
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We consider the minimal van Kampen diagram ∆n of wn = [an,bn]. An a-band starts at the boundary ∂∆n will

end at ∂∆n. Therefore there are at least n a-bands in ∆n. Same argument holds for b-bands. Thus in ∆n, we have at

least n a-bands and n b-bands. It follows that there are at least n2 cells in ∆n since any pair of an a-band and a b-band

intersects once. We have Area(wn)> n2 and |wn|= 4n. Hence δG(n) is at least quadratic by definition.

Figure II.5: The van Kampen diagram of wn

Combining the result from Section II.3, we have that finitely generated abelian groups with torsion-free rank

greater or equal to 2 have quadratic Dehn function. In summary, we prove the following:

Theorem II.4.2. The Dehn function of a finitely generated abelian group G is quadratic if the torsion-free rank of G

is greater than one and is linear otherwise.

This theorem is well-known and in this thesis we will use it a lot. The result will appear in the proof of Lemma V.3.1,

Lemma V.4.1, and Proposition V.1.2. Moreover, this theorem directly implies the part (1) of both Theorem A and The-

orem C, the first and easiest piece of our main theorem. The technique, using the van Kampen diagram to estimate the
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lower bound for the Dehn function, will appear in Section VII.2.
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Chapter III

Metabelian Groups

III.1 Properties of Finitely Generated Metabelian Groups

Throughout this thesis, we only consider finitely generated metabelian groups since we mainly focus on the Dehn

function and the relative Dehn function. Let G be a finitely generated metabelian group. It can be written as an

extension of two abelian groups A by T , by definition. It induces a short exact sequence as follows,

1 A G T 1 .

T is finitely generated since G is finitely generated. It follows from a theorem by Philip Hall [19] that A is a finitely

generated T -module where T acts on A by conjugation. This module structure enables us to use the commutative

algebra approach to study finitely generated metabelian groups. We will discuss this idea in detail in Section V.4,

where we solve the word problem for G by solving the word problem for the T -module A.

To our purpose, let us list some useful properties for finitely generated metabelian groups (most of them can be

found in [22]).

(1) Finitely generated metabelian groups are residually finite, i.e., the normal subgroups of finite index have trivial

intersection.

(2) Finitely generated metabelian groups satisfy the maximal condition for normal subgroups, i.e., any properly as-

cending chain of normal subgroups is finite [19]. It implies that any normal subgroup of a finitely generated

metabelian group is a normal closure of a finite set.

(3) Finitely metabelian groups are linear groups over finite products of fields (See in [31], [23], [36]), which implies

that they have solvable word problems.

(4) It follows from (2) that finitely generated metabelian groups are finitely presentable in the variety of metabelian

groups.

(5) Bieri-Strebel introduced a geometric invariant which distinguishes the finitely presented metabelian groups from

the others [6]. We will sketch the proof for one direction of their main theorem in Section III.3.

(6) A finitely generated metabelian group can be embedded into a finitely presented metabelian group [4].
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III.2 Examples of Metabelian Groups and their Dehn Functions

Before we consider finitely generated metabelian groups and their relative Dehn functions, we should first consider

finitely presented ones and their Dehn functions. It is a good starting point because: (1) we know how finitely presented

metabelian groups look like due to the theorem by Bieri and Strebel [6]; (2) we have more tools to study the Dehn

function since the relative Dehn function highly depend on the variety; (3) The technique we established for the Dehn

function can be carried to the relative case easily.

The followings are some known examples of Dehn functions of metabelian groups.

(1) The first class of examples is the class of metabelian Baumslag-Solitar groups BS(1,n),n > 2, which has the

presentation

BS(1,n) = 〈a, t | tat−1 = an〉,

for any n > 2. It is well-known that metabelian Baumslag-Solitar groups have exponential Dehn function up to

equivalence. The upper bound can be estimated by computing the cost of converting a word to the identity. The

lower bound can be shown using the van Kampen diagram. The proof can be found in many places, for example,

[18], [1].

(2) For Baumslag’s groups Γ and Γm we introduced in Section I.4, M. Kassabov and T. R. Riley [21] showed that Γ

has an exponential Dehn function while the Dehn function of Γm is at most n4. In particular, Y. de Cornulier and

R. Tessera [13] showed that Γp has a quadratic Dehn function when p is a prime number.

(3) The third example consists of groups that are a semidirect product of a finitely generated free abelian group and

cyclic group, namely, Zn ⋊Z. Bridson and Gersten have shown that the Dehn function of such groups are either

polynomial or exponential depending on the action of Z on Zn [9].

(4) Lattices in Rn ⋊α Rn−1,n > 3, have quadratic Dehn function [17], where α : Rn−1 → GL(n,R) is an injective

homomorphism whose image consists of all diagonal matrices with diagonal entries (et1 ,et2 , . . . ,etn) verifying

t1 + t2 + · · ·+ tn = 0. Drutu extends the result for the case that a1t1 + a2t2 + · · ·+ antn = 0 for any fixed vector

(a1,a2, . . . ,an) with at least three nonzero components [14].

(5) Let

G = 〈a,b, t | [a,b] = 1,at = ab,bt = ab2〉.

G is metabelian and polycyclic and it is also the fundamental group of a closed, orientable fibred 3-manifold. It

has been shown that G has exponential Dehn function [5]. The lower bound can be proved using the structure of

the second homology of G.
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Note that all known examples of the Dehn functions of finitely presented metabelian groups are bounded above

(up to equivalence) by the exponential function. A more general theorem from Cornulier and Tessera [11, Theorem

A] implies that the Dehn function of a polycyclic group is bounded above by the exponential function. This theorem

also works for metabelian Baumslag-Solitar groups, which are not polycyclic, but will fail to work for the Baumslag’s

group Γ. Those facts raise the main question we concern in this thesis, that is,

Question III.2.1. Is the Dehn function of a finitely presented metabelian group is bounded above (up to equivalence)

by the exponential function?

We will discuss this question in Section VIII.1.

Another remark is that there exists a metabelian group with polynomially bounded but not exact polynomial Dehn

function [37]. It is not known that whether there exists a finitely presented metabelian group with an intermediate

Dehn function, i.e., the function is both superpolynomial and subexponential.

III.3 Finitely Presented Metabelian Groups

In this section, we will sketch the proof of Theorem 3.1 in [6], which is a part of their main theorem [6, Theorem 5.1]

characterizing all finitely presented metabelian groups. It provides us a workable presentation for an arbitrary finitely

presented metabelian group. This theorem from Bieri and Strebel essentially says that a finitely generated metabelian

group is finitely presentable if and only if all the metabelian relations (things like [[x,y], [z,w]] = 1) can be generated

by a finitely many relators. The following geometric lemma unveils the mechanics behind their main theorem.

Let Rn be the Euclidean vector space with the usual inner product 〈·, ·〉. We denote the norm induced by this inner

product by ‖x‖=
√
〈x,x〉. If r > 0, then Br denotes the open ball of radius r, i.e Br = {x ∈ Rn | ‖x‖< r}.

We consider a finite collection F of finite subsets L ⊂ Rn. Say that an element x ∈ Rn can be taken from Br if

either x ∈ Br or if there exists L ∈ F such that

x+L = {x+ y | y ∈ L} ⊂ Br.

Lemma III.3.1 (Bieri, Strebel [6, Lemma 1.1]). Assume that for every 0 6= x ∈Rn, there is L ∈ F such that 〈x,y〉> 0

for all y ∈ L. Then there exists a radius r0 ∈R+ and a function ε : (r0,∞)→R+ with the property that for r > r0 each

element of Br+ε(r) can be taken from Br by F .

Proof. Let Sn−1 ⊂ Rn be the unit sphere and consider the function f : Sn−1 → R given by

f (u) = max
L

min
y
{〈u,y〉 | y ∈ L ∈ F}, for u ∈ Sn−1.

The function f is continuous. By the assumption on F , we have f (u) > 0 for all u ∈ S n−1. Since Sn−1 is compact,

17



the followings are well-defined:

C = inf{ f (u) | u ∈ Sn−1}> 0,D = max
L

min
y
{‖y‖ | y ∈ L ∈ F} > 0.

Note that L ⊂ BD for every L ∈ F . We claim that Lemma III.3.1 holds with the following explicit choice of ρ0 and ε:

r0 =
D2

2C
,ε(r) =C−

D2

2r
.

Note that ε(r) is positive and strictly increasing when r > r0.

Let x ∈Rn be an element with ‖x‖> r0. By the definition of C there is L = Lx ∈ F such that

min
y
{〈

−x

‖x‖
,y〉 | y ∈ Lx}>C,

or equivalently

max
y

{〈
x

‖x‖
,y〉 | y ∈ Lx}>C.

Therefore we have, for all y ∈ Lx,

‖x+ y‖2 = ‖x‖2 + 2〈
x

‖x‖
,y〉‖x‖+ ‖y‖2

6 ‖x‖2 − 2C‖x‖+D2
6 ‖x‖2.

Moreover,

‖x+ y‖−‖x‖=
‖x+ y‖2−‖x‖2

‖x+ y‖+ ‖x‖
6

−2C‖x‖+D2

2‖x‖
=−ε(‖x‖).

We can choose r > r0 such that r < ‖x‖< r+ ε(r) we get

‖x+ y‖< (r+ ε(r))− ε(‖x‖)6 r, for all y ∈ Lx.

Hence x+Lx ⊂ Br. The lemma is proved.

Let T be a finitely generated abelian group, written multiplicatively. A (real) character of T is a homomorphism

χ : T → R of T into the additive group of the field of real numbers R. Let torT be the torsion subgroup of T . Then

T/ torT ∼= Zk ⊂ Rk where k is the rank of T . We fix a homomorphism θ : T → Rk. For every character χ : T → R,

there is a unique R-linear map χ̄ : Rk → R such that χ = χ̄ ◦ θ . And by the Riesz representation theorem, there is

a unique element xχ ∈ Rk such that χ̄(y) = 〈xχ ,y〉,∀y ∈ Rk, whence χ(t) = 〈xχ ,θ (t)〉 [6]. Therefore each character

χ corresponds a vector xχ in Rk. Conversely, given a vector x in Rk, we can define a corresponding character by

χ(t) = 〈x,θ (t)〉. This will be a useful realization for characters on T .
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Every character χ : T → R can be extended to a “character” of the group ring χ : ZT → R∪{+∞} by putting

χ(0) = +∞ and

χ(λ ) = min{χ(t) | t ∈ supp(λ )}, where 0 6= λ ∈ ZT.

One can check that χ(λ µ) > χ(λ )+ χ(µ) for all λ ,µ ∈ ZT . Moreover, if T is free abelian, the group ring ZT

has no zero divisor. It follows that χ(λ µ) = χ(λ )+ χ(µ) in this case [6].

For every T -module A, the centralizer C(A) of A is defined to be

C(A) = {λ ∈ ZT | λ ·a = a,∀a ∈ A}.

If A is a left (right) T -module then we write A∗ for the right (resp. left) T -module with T -action given by at = t−1a

(resp. ta = at−1).

We say a T -module A is tame if A is finitely generated as a T -module and there is a finite subset Λ ⊂C(A)∪C(A∗)

such that for every non-trivial character χ : ZT → R there is λ ∈ Λ with χ(λ ) > 0. Comparing this definition to

Lemma III.3.1, the tameness condition gives a finite collection F satisfying the hypothesis of Lemma III.3.1. Bieri

and Strebel then prove that

Theorem III.3.2 (Bieri, Strebel [6, Theorem 5.1]). Let G be a finitely generated group and let A ⊳G be a normal

subgroup such that both A and T = G/A are abelian. Then G is finitely presented if and only if A is tame as a

T -module.

For our purpose, let us sketch the proof of the “if” part of this theorem, more precisely

Theorem III.3.3 (Bieri, Strebel [6, Theorem 3.1]). If T is a finitely generated abelian group and A is a tame T -module,

then every extension of A by T is finitely presented.

To prove Theorem III.3.3, we have to introduce some preliminary concepts in order to provide a reasonable sketch.

We first define ordered and semi-ordered words. Let F be the free group freely generated by T = {t1, . . . , tk}. Let

F̄ ⊂ F denote the subset of all ordered words of F , i.e.

F̄ = {t
m1
1 t

m2
2 . . . t

mk

k | m1, . . . ,mk ∈ Z}.

If w ∈ F , we write w̄ as the unique word from F̄ representing w modulo the derived subgroup F ′. In addition, a word

w ∈ F is said to be semi-ordered if it is of the form

w = t
m1

σ(1)t
m2

σ(2) . . . t
mk

σ(k)
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where σ is a permutation of the symbols {1, . . . ,k}.

Let θ : F →Rk be the homomorphism given by

θ (ti) = (δi1, . . . ,δik),

for 1 6 i 6 k. For every w ∈ F define the trace Trw ⊂ Rn as follows: if

w = s1s2 . . . sm, where s j ∈ T ∪T
−1,

is freely reduced, then

Tr(w) = {θ (s1 . . . s j) | j = 0,1, . . . ,m},

The trace is the literal trace of the path of θ (w) in Rn . Next, we define a sequence of auxiliary groups. Let A be

a finite set and choose an assignment picking an element ai j ∈ A for every pair of integers (i, j) with 1 6 i < j 6 k.

For every r ∈ R+∪{+∞}, let Hr be the group generated by the set A ∪T with the following defining relations.

[ti, t j] = ai j, for 1 6 i < j 6 k, (III.1)

[a,bu] = 1, for a,b ∈ A ,u ∈ F̄ with ‖θ (u)‖< r. (III.2)

We have some useful properties for the group Hr

Proposition III.3.4. If r ∈ R+, then

(a) (Bieri, Strebel [6, Lemma 3.2]) aw̄ = aw for every a ∈ A and every w ∈ F with Tr(w)⊂ Br.

(b) (Bieri, Strebel [6, Lemma 3.4a]) For u,v ∈ F such that

Tr(u)⊂ Br,Tr(v)⊂ Br,‖θ (uv)‖< r.

Then [a,buv] and [a,buv] are conjugate in Hr for every a,b ∈ A .

(c) (Bieri, Strebel [6, Lemma 3.4b]) Assume r > 2k. Let u,v be semi-order words in F such that

‖θ (u)‖6
r

2k
,‖θ (v)‖6 r+

1

2k
,‖θ (uv)‖< r

are satisfied. Then [a,buv] and [a,buv] are conjugate in Hr for every a,b ∈ A .

For r = ∞, H∞ is metabelian and it is an extension of a free abelian group by another free abelian group. In fact,
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by the definition of H∞ and Proposition III.3.4 (a), we have [au,bv] = 1 for any u,v ∈ F,a,b ∈ A and au is of infinite

order. Then 〈〈A 〉〉H∞ is free abelian of infinite rank with basis {au | a ∈ A ,u ∈ F̄} (See in Section V.2). It is also

worth noting that 〈〈A 〉〉H∞ is a free module with basis A over the group ring of H∞/〈〈A 〉〉, which is generated by the

image of T and is abelian since we includes all commutators [ti, t j ] in A . Each ti is of infinite order. It follows that

H∞/〈〈A 〉〉 is also free abelian. But let us emphasize this: H∞ is infinitely related, which can be shown by computing

its second homology.

Now back to the proof of Theorem III.3.3. We first claim that the problem can be reduced to the case when T is

a free abelian group. Let π : G → T be the epimorphism and T1 6 T be a complement of the torsion subgroup of T .

Then G1 = π−1(T1) has finite index in G and G1 is an extension of an abelian group by a finitely generated free abelian

group. G is finitely presented if and only if G1 is finitely presented. Moreover, if A is a tame T -module, then A is also

a tame T1-module [6, Proposition 2.5]. Therefore, the statement of Theorem III.3.3 is true for G if and only if it is true

for G1.

Now we assume that T is a free abelian group of rank k, A is a tame T -module, and G is an extension of A by T .

Denote π : G ։ T to be the epimorphism such that A ∼= kerπ .

Let T = {t1, . . . , tk} be a subset of G such that {π(t1), . . . ,π(tk)} forms a basis of T and A be a finite subset of

A containing all commutators ai j = [ti, t j ] for 1 6 i < j 6 k and generating A as a T -module. We write ŵ ∈ T for the

image of w ∈ F under π .

Since A is a tame T -module. Then there is a finite subset Λ ⊂ C(A)∪C(A∗) with the property that for every

character χ : T →R, there exists λ ∈ Λ such that χ(λ )> 0. Recall that F := F(T ) and F̄ is the set of ordered words

of F . For every r ∈ (0,+∞], we define the group Gr to be given by generators A ∪T and defining relations

[ti, t j] = ai j, for 1 6 i < j 6 k, (III.3)

[a,bu] = 1, for a,b ∈ A ,u ∈ F̄ with ‖θ (u)‖< r, (III.4)

∏
u∈F̄

(aλ (û))u = a, for a ∈ A ,λ ∈ Λ∩C(A), (III.5)

∏
u∈F̄

(aλ (û))u−1
= a, for a ∈ A ,λ ∈ Λ∩C(A∗). (III.6)

In relations (III.5) and (III.6), we regard λ as a finite supported function from T to Z. Hence λ (û) is just the value of

λ at û.

Gr is finitely presented if r 6= ∞. If r = ∞, although the current presentation for G∞ is not finite, it is metabelian

once we realize G∞ is a factor group of H∞. For each λ ∈ Λ, θ (supp(λ )) is a finite subset of Rk, denoted by Lλ . Let

F = {Lλ | λ ∈ Λ}. As previous discussion, there is a one-to-one correspondence between each character χ : T → R

and a linear functional 〈vχ , ·〉. Therefore if A is tame, F is a collection of finite sets which satisfies assumptions of
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Lemma III.3.1.

Let

C = inf
u∈Sn−1

max
λ∈Λ

min
y∈Lλ

{〈u,y〉},D = max
λ∈Λ

min
y∈Lλ

{‖y‖}.

In addition, let R = 2k max{D,D2/2C}. We have the following lemma

Lemma III.3.5 (Bieri, Strebel [6, Lemma 3.5]). For r ∈ [R,∞)∪{∞} we have Gr
∼= GR. In particular, G∞ is finitely

presented.

Since relations (III.3)-(III.6) hold in G, then G is a factor group of G∞. The epimorphism ϕ : G∞ → G is induced

by the identity map on A ∪T . By the fact that the normal subgroup of a finitely generated metabelian group is normal

closure of a finite set [19], G is finitely presented. Thus we finished the proof of Theorem III.3.3.

In summary, given a tame T -module A, any extension of A by T is always a factor group of G∞. G∞ is finitely

presented and the defining relations are given by (III.3)-(III.6) for any fixed positive real number r > R.
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Chapter IV

The Membership Problem for a Submodule over a Polynomial Ring

IV.1 Preliminaries on Module Theory

In the chapter, we will investigate the membership problem of a submodule over a polynomial ring. Before we embark

into the membership problem itself, let us first give a formal definition of a module over a ring and discuss some basic

notions of modules.

Let R be a ring with 1, not necessary a polynomial ring. Let left R-module M over R consists of a abelian group

(M,+) and an operation (or an action) · : R×M → M such that for all r,s ∈ R,x,y ∈ M, we have:

(i) r · (x+ y) = rx+ ry;

(ii) (r+ s) · x = r · x+ r · y;

(iii) (rs) · x = r · (s · x);

(iv) 1 · x = x.

It generalizes the notion of a vector space over a field. The operation · is called a scalar multiplication, and is

usually written in juxtaposition, i.e., as rx instead of r · x, for simplification. A right R-module is defined in a similar

fashion and a bimodule is a module that is a left module and a right module such that the two multiplications are

compatible. In this thesis, we only consider left R-modules. Thus we will write all the multiplication on the left. A

submodule of an R-module M is a nonempty subset that is closed under addition and scalar multiplication.

A subset { f1, f2, . . . , fl} of a R-module M is called a generating set if every f ∈ M is the linear combination of

them, i,e, there exists α1,α2, . . . ,αl ∈ R such that

f = α1 f1 +α2 f2 + · · ·+αl fl .

A set of elements { f1, f2, . . . , fl} of a module M is called independent if no nontrivial linear combination is zero,

that is,

If α1 f1 +α2 f2 + · · ·+αl fl = 0, then αi = 0, for i = 1,2, . . . , l.

A basis is an independent generating set.
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One immediate example for a R-module is Rm. The addition and scalar multiplication on Rm are the following,

respectively:

(a1,a2, . . . ,am)+ (b1,b2, . . . ,bm) = (a1 + b1,a2 + b2, . . . ,am + bm),

r(a1,a2, . . . ,am) = (ra1,ra2, . . . ,ram).

The module Rm is called a free R-module of rank m. The canonical basis of Rm is {e1,e2, . . . ,em} where ei =

(0, . . . ,1, . . . ,0) with all but the i-th entry is 0.

A submodule of the free module R1 is an ideal in the ring R.

Given a free R-module M of finite rank and a submodule S generated by a finite set { f1, f2, . . . , fl}, the membership

of a submodule S we are considering in this thesis is the following

Problem IV.1.1. Given an element f in M, decide whether f in S, i.e., if there exists elements α1,α2, . . . ,αl such that

f = α1 f1 +α2 f2 + · · ·+αl fl .

A homomorphism ϕ : M → N of R-modules is a map which is compatible with the laws of composition:

ϕ( f + f ′) = ϕ( f )+ϕ( f ′),ϕ(r f ) = rϕ( f )

for all f , f ′ ∈ M,r ∈ R. A bijective homomorphism is called an isomorphism.

Last we define the concept of quotient modules. Let R be a ring, and let S be a submodule of an R-module M. The

quotient M/S is the additive group of cosets f̄ = f + S. And the scalar multiplication is defined by

r f̄ = r f .

Thus M/S is made an R-module.

The membership problem Problem IV.1.1 can be regarded as the word problem of the quotient M/S.

IV.2 A Well-order on a Polynomial Ring

From now on we only consider the case R := Z[x1, . . . ,xk] to be a polynomial ring over Z. Given a free R-module

M with basis elements e1, . . . ,em, a term in M is a product of an integer, a monomial in R, and an element from the

basis. A typical term looks like aµei, where a ∈ Z,µ is a monomial in R. Let T be the set of all terms in M. In

addition, we will call µei a module monomial in the module M, denoted by U the set of module monomials of M.

The set of monomials in the polynomial ring R in the usual sense will be denoted by X . For a term g ∈ T , we denote
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C(g),M(g) to be the coefficient, and monomial part of g respectively. An element in M is a finite sum of terms. From

now on, we only consider reduced elements in M, in the sense that no terms are sharing the same module monomial.

We also denote supp( f ) to be the set of module monomials with non-zero coefficients. In what follows, we will use

“monomial” for both module monomials in U and monomials in X .

Our first goal is to put a well-order on T . Recall that a binary relation on a set X is a subset of X ×X , that is, it

is a set of ordered pair (x1,x2) where x1,x2 ∈ X . A binary relation R is a partial order if it is relexsive, antisymmetric

and transitive. That is, for all x,y and z in X , it must satisfy:

(1) (x,x) ∈ R (reflexivity);

(2) if (x,y),(y,x) ∈ R, then x = y (antisymmetry);

(3) if (x,y),(y,z) ∈ R, then (x,z) ∈ R (transitivity).

It is common to use the notion a 6 b instead of (a,b) ∈ R when dealing with partial order. A partial order 6 is a

total order if it is connex, i.e. for all x,y ∈ X , x 6 y or y 6 x. Thus any two elements in X are comparable under 6. A

well-order on a set X is a total order on X with the property that every non-empty subset of X has a least element in

this ordering where the least element of a subset S is the element y ∈ S such that y 6 x for all x ∈ S.

To construct such an order, we have to put well-orders on Z,X and {e1, . . . ,em} separately. Then we will construct

the lexicographical order based on all of them.

On Z, we define an order ≺Z as following

0 ≺Z 1 ≺Z 2 ≺Z · · · ≺Z −1 ≺Z −2 ≺Z . . . .

Under this order, all negative numbers are larger than any positive number. Let a,b ∈ Z where a ≺Z b, then there

exists unique q,r such that a = qb+ r,0 < r < |b|. Note that r ≺Z a whether a is positive or negative, thus we can

“reduce” any number to its remainder by dividing a fix number b. One useful remark is that since the remainder is

always positive, this “dividing-b-reduction” can only be applied finitely many times. It is not hard to see that ≺Z on Z

is a well-order.

For monomials in R, we use the degree lexicographical order (also called shortlex or graded lexicographical order)

≺R which is defined with respect to the convention x1 ≻ x2 ≻ ·· · ≻ xk, i.e. for µ1 = x
n1
1 x

n2
2 . . .x

nk

k ,µ2 = x
m1
1 x

m2
2 . . .x

mk

k

µ1 ≺R µ2 if
k

∑
i=1

|ni|<
k

∑
i=1

|mi| or
k

∑
i=1

|ni|=
k

∑
i=1

|mi|,µ1 ≺lex µ2,
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where ≺lex is the usual lexicographical order which is defined in the following way

x
n1
1 x

n2
2 . . .x

nk

k
≺lex x

m1
1 x

m2
2 . . .x

mk

k
if ni < mi for the first i where ni and mi differ.

≺R on X in fact is a well-oder while ≺lex might not be (See in [2]).

Finally we fix an order e1 ≻ e2 ≻ ·· · ≻ es. We now set ≺ on T to be the lexicographical order based on X ≻

{e1, . . . ,em} ≻ Z. For instance,

7x2
1x2e2 ≺ 5x3

1e1,3x3
1x5

2e2 ≺ 3x3
1x6

3e2,2x5
1x2

3e3 ≺ 4x5
1x2

3e3.

It is not hard to verify that ≺ is a well-order on T .

With the well-order ≺, we are able to compare any two terms. Consequently, for an element f ∈ M we can define

the leading monomial LM( f ) of f to be the largest monomial among supp( f ). For example,

LM(x7
1e1 + 3x3

1x4
2e2) = x7

1e1,LM(x3
2e1 +(x5

2x2
3 + x3

2x5
4)e2 + x5

2x2
3e3) = x3

2x5
4e2.

Next, we define the leading coefficient of f to be the coefficient of the leading monomial, denoted by LC( f ). Then the

leading term of f can be defined as

LT ( f ) := LC( f ) ·LM( f ).

We then extend ≺ to M. For g, f ∈ M, we define g ≺ f inductively as follows

g ≺ f if LT (g)≺ LT ( f ) or LT (g) = LT ( f ),g−LT (g)≺ f −LT ( f ).

Since ≺ on T is a well-order, then so is ≺ on M.

Note that ≺ is compatible with multiplication by elements from X i.e., if g ≺ h, then µg ≺ µ f , µ ∈ X .

One remark on ≺ is that it is Noetherian on U as well as X , the set of module monomials in M, i.e., there is no

infinite descending chain of module monomials. However, the statement is not true for ≺ on T . Because we have

an infinite descending chain for negative numbers. This issue can be avoided by what we will introduce in the next

section: the polynomial reduction.

IV.3 Gröbner Basis

Now let us define the key ingredient for the application of Gröbner bases: polynomial reduction.

For two monomials µe and µ ′e′ from U , we say µe | µ ′e′ if µ | µ ′ and e = e′. Let F = { f1, . . . , fl} be a finite

subset of M and S be the submodule generated by F . Given g,h ∈ M, we define the polynomial reduction g →F h as
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follows: if there exists f ∈ F and a term g0 ∈ T of g such that LM( f ) | M(g0),LC( f ) ≺C(g0), then

g =
qM(g0)

LM( f )
f + h,

where C(g0) = qLC( f )+ r, q,r are unique integers such that 0 < r < |LC( f )|. Note that the coefficient of g0 in h is r.

For g−→F h, read “g reduces to h modulo F”. If there’s no such f and g0, then we say that g is irreducible modulo

F .

Note that we naturally have h ≺ g if g −→F h. We claim that −→F is Noetherian, i.e., there is no infinite reduction

sequence. First, note that we turn the coefficient of M(g0) of h to a positive number after a reduction, then there are

only finitely many possible reductions that can be applied to the term containing the monomial M(g0). Thus if we

assume that g0 is the largest term that can be reduced in g modulo F , then after finitely many reductions, the monomial

of the largest term that can be reduced is strictly less than the original one. Since ≺ is Noetherian for monomials, we

only have a reduction of finite length for any given g ∈ M.

Let −→∗
F be the reflexive and transitive closure of −→F . Then for each g ∈ M, there exists h ∈ M such that

g −→∗
F h and h is irreducible modulo F . We call h to be a reduced form of g modulo F . Unfortunately, the reduced

form of an element in M may not be unique. In fact, at each step of reduction, we may have multiple choices of f ∈ F

that can be applied to this reduction. This yields our motivation for defining Gröbner basis: a generating set F such

that every element in M has a unique reduced form modulo F . In theoretical computer science, this property is called

Church-Rosser property (See in [8]).

We denote g ≡S h if g−h ∈ S. ≡S defines an equivalence relation on M. We let the R(g) to be the least element in

its equivalence class with respect to ≺. It is well-defined since ≺ is a well-order.

Definition IV.3.1. Let M be a free R-module of finite rank, and S be a submodule of M. A finite generating set F of S

is called a Gröbner basis if g →∗
F R(g) for all g ∈ M.

Remark. R is a Noetherian ring hence M is a Noetherian module. Thus any submodule of M is finitely generated.

The Gröbner basis is a finite generating set but is not always a basis. The next theorem shows that the Gröbner

basis always exists, while not all submodule has a basis.

Theorem IV.3.2 ([34, Proposition 10.6.3]). For any submodule of a free module of finite rank over R = Z[x1, . . . ,xk],

there exists a Gröbner basis.

Proof. We consider a submodule S in the free R-module M, where M is of finite rank. Let Su = {g∈ S|LM(g) = u},u∈

U and Lu = {LC(g) | g ∈ Su}. It is not hard to see that Lu is an ideal in Z. Thus it is generated by the smallest element

in this ideal with respect to ≺. We denote by hu the element such that LC(hu) generates Lu since Z is a principle ideal

domain. Note that the leading coefficient of hu is always positive, since, by our definition of ≺, negative numbers are
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larger than positive numbers. For our purpose, we denoted it cu and hence LT (hu) = cuu. Let P be the set of all such

hu which generates S over Z whenever hu can be defined (since Su might be empty) and L be the set of leading terms

of elements of P. That is, L = {cuu | cu 6= 0}.

Then we claim that there is a finite subset F of L such that L = X F := {x f | x ∈ X , f ∈ F}. Suppose no such F

exists. We choose cuu in L with the smallest cu. By definition, cxu | cu for all x ∈X by our choice of cuu. Thus cxu = cu

for all x ∈ X . Let f1 = cuu,V1 = {x f1 | x ∈ X }. It follows that V1 ⊂ L. Suppose that f1, f2, . . . , fn are defined and

Vr = {x fi | x ∈ X , i = 1,2, . . . ,r}. By our assumption, Vn ( L. We choose cuu outside Vn with the minimal coefficient

and let fn+1 = cuu and Vn+1 =Vn∪{x fn+1 | x ∈X }. By induction, we construct an infinite ascending chain of subsets

of L that are closed under multiplication by an element from X , i.e.,

V1 (V2 ( · · ·(Vn ( . . . ,

where X Vi =Vi for all i. Each of Vi generates a distinct submodule of the free R-module M. It is a contradiction since

M is Noetherian.

Now we have a finite set F that X F = L. We take a finite set F̄ of P such that the set of leading terms of elements

in F̄ is F . We claim that F̄ is a Gröbner basis. Let g ∈ M and assume that g −→∗
F̄

h and h is irreducible modulo F̄ .

If h 6= R(g), then 0 6= h−R(g) ∈ S. Let u = LM(h−R(g)). We have that cu | LC(h−NF(g)). It follows that there

exists an element f ∈ F̄ such that cuu = LT (x f ) for some x ∈ X and h can be reduced by f , contradicting to the

irreducibility of h. Thus the theorem is proved.

Remark. By our definition, the Gröbner basis is not unique since adding any element f ∈ S to a Gröbner basis results

another Gröbner basis. Our construction in the proof of Theorem IV.3.2 has a nice property that for any g ∈ S there

exists f ∈ F̄ such that g −→ f g′ where LM(g′) is strictly less than LM(g) with respect to ≺. In fact, every Gröbner

basis satisfies this property. Suppose not, then there exists u ∈ U such that there is no element f ∈ F̄ satisfying the

following conditions:

(1) LM( f ) | u,

(2) the ideal generated by LC( f ) is Lu.

Let g ∈ Su such that LC(g) = cu. Then the term cuu in g is irreducible by any f ∈ F̄ . A contradiction, since R(g) = 0.

IV.4 Division Algorithm

For an element g ∈ M, g can be written as a finite sum of distinct terms, i.e

g = c1u1 + c2u2 + · · ·+ cdud,
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where ci ∈ Z,ui ∈ U and u1 ≻ u2 ≻ ·· · ≻ ud . We define the length of g to be |g| := ∑d
i=1 |ci|. It is not hard to show

that | · | has following properties: for all c ∈ Z and f ,g ∈ M

(1) |c f |= |c|| f |,

(2) | f g|6 | f ||g|,

(3) | f + g|6 | f |+ |g|.

And if the leading monomial of g is x
n1
1 x

n2
2 . . .x

nk

k ei, we define deg(g) = ∑k
i=1 ni. One immediate observation is that

if g ≺ h then deg(g)6 deg(h).

Let F = { f1, . . . , fl} be a Gröbner basis for a submodule S and g = c1u1+ · · ·+cdud ∈ S such that deg(g)6 n, |g|6

p. Since g ∈ S, then g −→∗
F 0. Thus there exists a finite sequence of reductions

g = g0 −→F g1 −→F g2 −→F g3 −→F · · · −→F gr = 0.

At each step, if we always choose to cancel the leading term of gi using the polynomial reduction (this is always

possible since g can be reduced to 0), we may assume that LM(g0) ≻ LM(g1) ≻ LM(g2) ≻ ·· · ≻ LM(gr) = 0. Thus

the number of steps of reduction is bounded by the number of monomials less or equal to LM(g). Recall that m is the

rank of the free module, then

r 6 |{u ∈ U | u ≺ LM(g)}|6 mGk(n),

where Gk(n) is the growth function of a free commutative monoid with a free generating set of size k (See [33, Example

3.7.1]). It is well-known that Gk(n) is a polynomial of degree k. In fact,

Gk(n) =

(
n+ k

k

)
.

At the jth step of our reduction, we have

g j = g j−1 − a jµ j fi j
,

where a j ∈Z,µ j ∈X ,16 i j 6 l and LT (g j−1)= LT (a jµi fi j
). Then |a j|6 LC(g j−1)6 |g j−1|. Let C =max{| f1|, | f2|, . . . , | fl |}.

We also observe that

|g j|6 |g j−1|+ |a j|| fi j
|6 |g j−1|+C|a j|. (IV.1)

Additionally, we have |a1|6 |g0|= p, and

|a j|6 LC(g j−1)6 |g j−1|. (IV.2)
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Combine (IV.1) and (IV.2) inductively,

|a j|6 |g j−1|6 |g j−2|+C|a j−1|6 |g j−2|(1+C)6 · · ·6 p(1+C) j−1, j > 1.

Adding all the steps up, we have

g =
r

∑
j=1

a jµ j fi j
=

l

∑
i=1

αi fi,αi ∈ R.

Note that

l

∑
i=1

|αi|=
r

∑
j=1

|a j|6 p(1+(1+C)+ (1+C)2+ · · ·+(1+C)r−1)6
p((1+C)mGk(n)− 1)

C
.

In general, one important consequence of the algorithm above is the following

Corollary IV.4.1 (Division). Let M be a free module over a polynomial ring R = Z[x1, . . . ,xk]. Let F = { f1, . . . , fl}

be a Gröbner basis for a submodule S. Then there exists a constant K such that for every g ∈ M,deg(g) 6 n, |g|6 p

one can write

g =
l

∑
i=1

αi fi + r

with αi ∈ R,r = R(g) and

deg(αi fi)≺ deg(g),1 6 i 6 l,
l

∑
i=1

|αi|6 pKnk

.

Remark. This provides an algorithm to solve the membership problem for submodules of a finitely generated free

module over polynomial rings with integral coefficients. Given g, f1, . . . , fl , to decide if g lies in the submodule S

generated by f1, . . . , fl we first find a Gröbner basis for S. The algorithm which finds Gröbner bases can be found in

[34]. Once we have Gröbner bases in hand, we can compute the R(g) since g ∈ S if and only if R(g) = 0.

Let T be the free abelian group of rank k with basis t1, . . . , tk. We can regard the group ring ZT as a factor ring of

Z[t1, t
−1
1 . . . , tk, t

−1
k ] i.e

ZT ∼= Z[t1, t
−1
1 . . . , tk, t

−1
k ]/〈t1t−1

1 − 1, . . . , tkt−1
k − 1〉.

Then a submodule generated by a finite set F over ZT can be identified as a submodule generated by F ∪{t1t−1
1 −

1, . . . , tkt−1
k − 1} over Z[t1, t

−1
1 . . . , tk, t

−1
k ].

Therefore we have a similar result for group rings.

Corollary IV.4.2. Let M be a free module over ZT where T is the free abelian group of rank k. Let S be a submodule of

M. Then there exists a finite generating set F = { f1, . . . , fl} and a constant K such that for g∈ S with deg(g)6 n, |g|6 p
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there exist α1, . . . ,αl ∈ ZT such that

g = α1 f1 + · · ·+αl fl ,deg(αi fi)6 deg(g),
l

∑
i=1

|αi|6 pKn2k

.

Remark. deg(g) and |g| for element g ∈ ZT are inherited from Z[t1, t
−1
1 . . . , tk, t

−1
k

].

Corollary IV.4.2 estimates an upper bound for the complexity of the membership problem of a submodule over

a group ring ZT . As we will later see, it carries to an upper bound for the Dehn function of a finitely presented

metabelian group.
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Chapter V

Dehn Functions of Finitely Presented Metabelian Groups

V.1 Reduction Step

Given a finitely presented metabelian group G with the short exact sequence

1 A G T 1 .

such that A,T are abelian. In addition, we suppose that the torsion-free rank of T is minimized over all such short

exact sequence of G where both the normal subgroup and the quotient group are abelian. The torsion-free rank of such

T is denoted by rk(G). Since G is finitely presented, in particular, it is finitely generated. Then T is a finitely generated

abelian group, and A is finitely generated as a T -module (See in [19]).

The main goal of this chapter is to prove the following.

Theorem V.1.1. Let G be a finitely presented metabelian group. Let rk(G) = k, i.e., k is the minimal torsion-free rank

of an abelian group T such that there exists an abelian normal subgroup A in G satisfying G/A ∼= T .

Then the Dehn function of G is asymptotically bounded above by

(1) n2 if k = 0;

(2) 2n2k
if k > 0.

We can apply the same technique as in Section III.3 to reduce the problem to a simpler case. Denote π : G ։ T to

be the epimorphism such that A ∼= kerπ . Let T1 6 T be the complement of the torsion subgroup of T . G1 = π−1(T1)

has finite index in G then G1 is quasi-isometric to G. It follows that δG = δG1
due to Theorem II.1.1. Therefore an

upper bound of δG1
is also an upper bound for δG.

Next, we show that rk(G) = rk(G1). If G1 can be written as an extension of two abelian groups A2 and T2, where

the torsion-free rank of T2 is strictly less than k, consider the following commutative diagram

1 G1 G G/G1 1

1 T2 T2 ×G/G1 G/G1 1

i

π f i

i

,

where f (g,h) := (π(g),h),g ∈ G1,h ∈ G/G1. By the snake lemma, there exists an exact sequence

kerπ = A2 ker f ker i = 1 cokerπ = 1 coker f cokeri = 1.

32



It follows that ker f is abelian and f is surjective. Then G can be represented as an extension of ker f by T2 ×G/G1

where the torsion-free rank is of T2 ×G/G1 strictly less than k. This contradicts the minimality of k. Therefore k is

preserved when passing to G1.

Thus from now on, we shall assume that T is a free abelian group of rank k and G is an extension of a tame

T -module A by the free abelian group T . Also, let us assume that k > 0, since if k = 0, G has an finitely generated

abelian subgroup of finite rank, which is not interesting to us.

Let T = {t1, . . . , tk} ⊂ G such that {π(t1), . . . ,π(tk)} forms a basis for T and A be a finite subset of G such that

it contains all commutators ai j = [ti, t j] for 1 6 i < j 6 k and generates the T -module A. Then A ∪T is a finite

generating set for the group G.

By Theorem III.3.2, since G is finitely presented, A is a tame T -module. Then there is a finite subset Λ ⊂C(A)∪

C(A∗) such that for each character χ : T →R, there exists λ ∈ Λ such that χ(λ )> 0. Let F be the free group generated

by T and F̄ be the set of all ordered words in F (See Section III.3). Same as previous section, we let θ : F → Rk be

the homomorphism given by

θ (ti) = (δi1, . . . .δik),1 6 i 6 k.

If w ∈ F we shall write w̄ for the unique word in F̄ representing w modulo F ′. In addition, we denote w̃ ∈ T for the

image of w ∈ F under π .

Then we are able to define a sequence of groups Gr as what we did in Section III.3, but for our purpose, we will

need a larger R. Let

R = 2k max{D2/2C,D,D2/(4kC− 4)},

where C,D are as defined before Lemma III.3.5. Since R > 2k max{D,D2/C}, GR
∼= G∞, and in particular, G is a

factor group of the finitely presented group G∞. Then we can list all defining relations of G∞ here:

[ti, t j] = ai j, for 1 6 i < j 6 k, (V.1)

[a,bu] = 1, for a,b ∈ A ,u ∈ F̄ with ‖θ (u)‖< R, (V.2)

∏
u∈F̄

(aλ (û))u = a, for a ∈ A ,λ ∈ Λ∩C(A), (V.3)

∏
u∈F̄

(aλ (û))u−1
= a, for a ∈ A ,λ ∈ Λ∩C(A∗). (V.4)

To simplify our notation, we will write relations (V.1) and (V.2) as R1 and relations (V.3) and (V.4) as R2.

Denote the epimorphism ϕ : G∞ → G induced by the identity map on A ∪T . Note that ϕ induces an isomorphism

on G∞/A∞
∼= T . Therefore kerϕ 6 A∞ is abelian where A∞ := 〈〈A 〉〉G∞ ⊳ G∞. Let kerϕ = 〈〈R3〉〉G∞ , where R3 is a

finite set.

33



Thus we obtain a finite presentation for G,

G = 〈A ∪T | R1 ∪R2 ∪R3〉. (V.5)

With (V.5), we have the following proposition:

Proposition V.1.2. If rk(G)> 0, then δG(n)4 2n2k
.

Proposition V.1.2 will be proved in Section V.5.

Proof of Theorem V.1.1. If k = 0, G has a finite index abelian subgroup. Therefore δG 4 n2 by Theorem II.1.1 and

Theorem II.4.2.

If k > 0, the result follows directly from Proposition V.1.2 by passing the problem to a finite index subgroup.

V.2 The Ordered Form of Elements

For convenience, we assume that |A |= m and denote A = {a1, . . . ,am}.

To understand the module structure in G, we have to go back to the group H∞ corresponding to G. As in Sec-

tion III.3, H∞ has a presentation as follows,

H∞ = 〈A ∪T | [ti, t j] = ai j,1 6 i < j 6 k, [a,bu] = 1,a,b ∈ A ,u ∈ F(T )〉.

G is an epimorphic image of H∞, where the epimorphism is induced by the identity map on the set A ∪T . Let M

be the free T -module with basis A . We will show that 〈〈A 〉〉H∞ is isomorphic to M.

Note that we only consider words that are fully reduced in F(A ∪T ), the free group generated by A ∪T . Since

each group element in 〈〈A 〉〉H∞ can be also regarded as an element in the T -module M. Different words in the group

might represent the same element in the module. For example, a
t1
1 a

t1
2 and a

t1
2 a

t1
2 both represent t1a1 + t1a2 in M. We

now pick the canonical element among all words represents the same element in M. This canonical element, which

we will call the ordered form of an element in 〈〈A 〉〉H∞ , is defined in the following way.

Definition V.2.1. Let F̄ be the set of ordered exponent words in F(T ) (See in Section III.3) and ≺ be the well-order

defined in Section IV.2. Let f be an element in 〈〈A 〉〉H∞ , then the ordered form OF( f ) is of the form a
µ1
1 a

µ2
2 . . .a

µm
m

such that

(1) µi ∈ZT for 16 i6m, and each µi is of the form µi =∑
n j

j=1 ci jui j such that ci j ∈Z,ui j ∈ F̄ and ui1 ≻ ui2 ≻ ·· · ≻ uini
;

(2) f =H∞ OF( f ),

To check the definition is well-defined we have to show that the existence and uniqueness of the ordered form.
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To show the existence, let us construct the explicit algorithm that rewrites a word w ∈ 〈〈A 〉〉H∞ to a word of the

ordered form.

Let π : H∞ → T be the canonical quotient map. For g ∈ 〈〈A 〉〉H∞ , we have π(g) = 0. It follows that the sum of

exponents of each ti is 0.

Let us start with a word w = u1b1u2b2 . . .usbsus+1 ∈ 〈〈A 〉〉H∞ where ui ∈ F(T ),bi ∈ A ±1. Here u1,us+1 could

be empty. Then

w = b
u−1

1
1 b

(u1u2)
−1

2 . . .b
(u1u2...us)

−1

s u1u2 . . .us+1.

The equality holds in the free group generated by A ∪T . Note that u1 . . .us+1 is a word in F . It also has the property

that the sum of exponents of each ti is 0. We then write this word in the product of conjugates of {[ti, t j ]
±1, i < j}

algorithmically in the following fashion: assume we already write u1 . . .us+1 as w1w2, where w1 is a product of

conjugates of {[ti, t j ]
±1, i < j} and w2 is a word in F such that the sum of exponents of each ti is 0. Let ti be the letter

with the smallest indices among all letters in w2. Then w2 can be written as w′
2tε

i w′′
2 ,ε =±1 where w′

2 does not contain

any t±1
i . Then

w′
2tε

i w′′
2 = [tε

i , t
ε1
j1
]
(w′

2t
−ε1
j1

)−1

[tε
i , t

ε2
j2
]
(w′

2t
−ε1
j1

t
−ε2
j2

)−1

. . . [tε
i , t

εl
jl
]tε

i w′
2w′′

2 ,

where w′
2 = t

εl
jl
. . . tε1

j1
. Since the sum of exponent of ti is 0, by repeating this process we can gather all ti to the left

and hence they will be canceled eventually. We end up with a word w3w4 where w3 is a product of conjugates of

{[ti, t j]
±1, i < j} and w4 is a word in F such that the sum of exponents of each ti is 0 and of the length strictly less than

w2. Thus by repeating this algorithm, we are able to write g as a product of conjugates of {[ti, t j]
±1, i < j} in a unique

way. Now we just apply relations like [ti, t j] = ai j to replace all the commutators by their corresponding letters in A .

Since g can be written as a product of conjugates of elements in A , applying commutator relations like [a,bu],a,b∈

A ,u ∈ F , we are able to commute those conjugates and hence gather all conjugates which share the same base. In

addition, combining the fact au = aū from Proposition III.3.4 (a), we can write g in the ordered form of the following

type

g = a
µ1

1 a
µ2

2 . . .aµm
m ,

where µi ∈ ZT and terms of µi are written in the order from the high to low with respect to ≺ which we define in

Section IV.2. The result is a word satisfying all conditions of Definition V.2.1. Therefore the existence of the ordered

form is shown.

The uniqueness of the ordered form can be justified by the fact that the set of words in the ordered form is

isomorphic to the free T -module M. The isomorphism is given by the canonical map a
µ1
1 a

µ2
2 . . .a

µm
m 7→ µ1a1 + µ2a2 +

· · ·+ µmam.

For w in 〈〈A 〉〉G∞ (or 〈〈A 〉〉G), we define the ordered form by lifting w to H∞, that is, as the ordered form of ι(w)
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where ι : G∞ → H∞ (resp. G → H∞) is the combinatorial map induced by identity on A ∪T . Note that by the way we

define the ordered form, the ordered form of each word is unique. The ordered forms distinguish different elements in

the T -module 〈〈A 〉〉H∞ . In fact, two elements in 〈〈A 〉〉H∞ are equal in H∞ if and only if they have the same ordered

form. One remark is that two words which are equal in G or G∞ may have different ordered forms, for example, a1

and ∏u∈F̄(a
λ (û))u, λ ∈C(A).

Recall that G = 〈A ∪T | R1 ∪R2 ∪R3〉. Note that both R2 and R3 are contained in the normal closure of A .

From now on we write all relators from R2 ∪R3 in their ordered form.

V.3 Main Lemmas

Before we embark on the proof of Proposition V.1.2, we shall establish some preliminary lemmas.

Now consider an arbitrary factor group H of G∞ equipped with the presentation

H = 〈A ∪T | R1 ∪R2 ∪R〉 (V.6)

where R is a finite subset in G∞. Then H ∼= G∞/〈〈R〉〉G∞ . Note that if R = R3, H = G, if R = /0, H = G∞ which are

two major examples we concern. We have following lemmas for H.

Lemma V.3.1. Let H be a factor group of G∞ equipped with presentation (V.6) and w be a word in (T ∪T −1)∗ such

that |w|= n, then

w =H w̄

p

∏
i=1

b
ui
i

where p 6 n2,bi ∈ A ±1,ui ∈ F,Tr(θ (ui))⊂ Bn. In addition, the cost of converting LHS to RHS is bounded by n2.

Proof. Since w̄ = t
mi
1 . . . t

mk

k for some m1, . . . ,mk ∈ Z such that ∑k
i=1 |mi| 6 n, to move each letter in w to the desired

place, it will cost at most n commutators of the form [ti, t j],1 6 i < j 6 k. By the discussion in Section II.3 and

Section II.4, in total, we need at most n2 such commutators. That is,

w = w̄

p

∏
i=1

[ti1 , ti2 ]
εiu

′
i , where u′i ∈ F, p 6 n2,1 6 i1 < i2 6 k,εi ∈ {±1}.

Moreover, since the length of w is bounded by n, Tr(θ (u′i))6 n.

By applying relations in {ai j = [ai,a j] | 1 6 i < j 6 n} p times we immediately have

w =H w̄

p

∏
i=1

b
ui
i ,Tr(θ (ui))6 n.

The cost of relations is bounded by p 6 n2.
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In particular, for w ∈ F such that π(w) = 1, it costs at most n2 relations in H to convert it to a product of conjugates

of elements in A .

Lemma V.3.2. Let H be a factor group of G∞ equipped with presentation (V.6) then there exists a constant K only

depends on R1 ∪R2 such that

Area([a,bu])6 Kn,∀a,b ∈ A ,‖θ (u)‖< n.

Proof. Let F = {θ (supp(λ )) | λ ∈ Λ} then F is a finite colletction of finite sets. By the choice of Λ, F satisfies the

assumptions of Lemma III.3.1.

By Lemma III.3.1, each x ∈ Br+ε(r) can be taken from Br by F for r > R. Recall that R is defined to be

max{D,D2/2C,D2/(4kC− 4)} and ε(r) = C −D2/2r , where C,D are purely determined by Λ hence R1 ∪R2 as

we stated in Lemma III.3.5.

According to our choice of R, we note that ε(r)> ε(2kD2/(4kC−4)) = 1
2k

for r > R. Let K1 be the constant which

is large enough such that f (n)6 Kn
1 for n 6 R, and K2 be the constant

K2 := max
λ∈Λ

{∑
u∈F̄

|λ (u)|}+ 2.

Since each λ has finite support, K2 is well-defined. Now let K := max{K1,K
2k
2 }.

Suppose for n > R, Area([a,bu])6 Kn,∀a,b ∈A ,‖θ (u)‖< n. We then prove our lemma by induction. Let us first

consider the case r = n+ 1
2k

. Fix some v ∈ F̄ satisfying ‖θ (v)‖< r. Since ε(n) > 1
2k

, B
n+ 1

2k
can be taken from Bn by

F . Then there is λ ∈ Λ with θ (supp(λ v̂))⊂ Bn by the definition of “taken from”.

Therefore we have two cases depending on λ ∈C(A) or C(A∗). Firstly assume that λ ∈Λ∩C(A). Then by applying

the commutator formula [x,yz] = [x,y]x
−1zx[x,z], we obtain

[a,bv] =G [a,∏
u∈F̄

(bλ (û))uv] = ∏
u∈F̄

[a,bλ (û)uv]h(u),

where the h(u)’s are certain elements in H which need not concern us. Note that in the first equality above, we apply

relations in (V.3) twice to replace b by ∏u∈F̄ bλ (y)u. Since supp(λ )⊂ B̄D we have ‖θ (u)‖< D < n
2k
. Additionally, we

have ‖θ (v)‖ < n+ 1
2k

and ‖θ (uv)‖ < n. It meets all assumptions of Proposition III.3.4 (c). Note that H is a factor

group of Hn which we defined in Section III.3. Then [a,bλ (û)uv] is conjugate in H to [a,bλ (û)uv], the area of which is

bounded by |λ (ū)|Kn. It follows that

Area([a,bv])6 2+ ∑
u∈F̄

Area([a,bλ (û)uv])6 2+ ∑
u∈F̄

|λ (û)|Kn
6 K2Kn.
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Repeating this process 2k times, we obtain that

Area([a,bv])6 K2k
2 Kn

6 Kn+1, for v ∈ F̄ ,‖θ (v)‖< n+ 1.

If λ ∈ Λ∩C(A∗), the only different is that

[a,bv] = [av−1
,b]v

−1
= [∏

u∈F̄

(aλ (û))uv−1
,b]v

−1
.

Similarly we obtain that

Area([a,bv])6 K2k
2 Kn

6 Kn+1.

Furthermore, Lemma V.3.2 allows us to estimate the cost to commute two conjugates of elements in A . Since the

normal closure of A in H is abelian, this lemma provides a tool to estimate the cost of converting words in 〈〈A 〉〉H , in

particular, in G. Also Lemma V.3.2 reveals how much metabelianness costs in a finitely presented metabelian group.

We will discuss this topic further in Section VI.1.

Lemma V.3.3. Let H be a factor group of G∞ equipped with presentation (V.6) and K be the same constant in

Lemma V.3.2. Then in H we have

Area(aua−ū)6 (2K)n,∀a ∈ A ,u ∈ F,Tr(u)⊂ Bn

Proof. We prove it by an induction on n. Suppose for i 6 n, the result holds. Then for the case n+1, we write u= u′t±1
s

then Tr(u)⊂ Bn+1,Tr(u′)⊂ Bn.

au = au′t±1
s = (aū′)t±1

s ν1,

where Area(ν1)6 (2K)n by our inductive assumption. Write ū′ = t
m1
1 . . . t

mk

k , we claim that

ū′t±1
s = u

m

∏
j=1

c
α j

j where c j ∈ {[ts, tl ]
±1 | 1 6 s < l 6 k},α j ∈ F̄,m =

k

∑
i=s+1

|mi|6 n.

We need to be really careful here. Let us first consider the case that the exponent of ts is 1. We assume s < k, otherwise
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it is trivial. Note that if mk > 0

t
mk

k
ts = t

mk−1

k
tstk[ts, tk]

−1 = t
mk−2

k
tst

2
k [ts, tk]

−tk [ts, tk]
−1

= t
mk−3

k
tst

3
k [ts, tk]

−t2
k [ts, tk]

−tk [ts, tk]
−1

...

= tst
mk

k [ts, tk]
−t

mk−1

k . . . [ts, tk]
−tk [ts, tk]

−1.

If mk < 0, we have

t
mk

k ts = t
mk+1
k tst

−1
k [ts, tk]

ts = t
mk+2
k tst

−2
k [ts, tk]

tst
−1
k [ts, tk]

ts

= t
mk+3
k tst

−3
k [ts, tk]

tst
−2
k [ts, tk]

tst
−1
k [ts, tk]

t−1
s

...

= tst
mk

k [ts, tk]
tst

mk+1

k . . . [ts, tk]
tst

−1
k [ts, tk]

ts .

Repeating this process, we then prove the claim for the case that the exponent of ts is 1.

On the other hand, if the exponent of ts is −1, then similarly, consider if mk > 0

t
mk

k t−1
s = t

mk−1

k t−1
s tk[ts, tk]

tk = t
mk−2

k t−1
s t2

k [ts, tk]
t2
k [ts, tk]

ts

= t
mk−3

k t−1
s t3

k [ts, tk]
t3
k [ts, tk]

t2
k [ts, tk]

tk

...

= t−1
s t

mk

k [ts, tk]
t
mk−1

k . . . [ts, tk]
t2
k [ts, tk]

tk ,

and if mk < 0

t
mk

k t−1
s = t

mk+1
k t−1

s t−1
k [ts, tk]

−1 = t
mk+2
k t−1

s t−2
k [ts, tk]

−t−1
k [ts, tk]

−1

= t
mk+3
k t−1

s t−3
k [ts, tk]

−t−2
k [ts, tk]

−t−1
k [ts, tk]

−1

...

= t−1
s t

mk

k [ts, tk]
−t

mk+1

k . . . [ts, tk]
−t−1

k [ts, tk]
−1.

Again by repeating this process, the claim is proved. Thus by induction on k, we can move ts to the desired place.
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Now we have

au = aū′t±1
s ν1 = (

m

∏
j=1

c
α j

j )−1aū(
m

∏
j=1

c
α j

j )ν1.

Apply relations from {ai j = [ai,a j] | 1 6 i < j 6 n} 2m times, we have that

au = (
m

∏
j=1

d
α j

j )−1aū(
m

∏
j=1

d
α j

j )ν2ν1

where d j ∈ A ±1 and Area(ν2)6 2m by our disccusion.

Next we need to commute aū and d
α j

j for j = 1, . . . ,m to the left and estimate the cost. Note that [aū,d
α j

j ] is

conjugate to [a,d
α j(ū)

−1

j ]. From the computation above, α j is either a tail of ū or a tail of ū multiplied by t±1
s . Therefore

(ū)−1, α j , α j(ū)
−1 satisfy the assumption of Proposition III.3.4 (b). Thus [a,d

α j(ū)
−1

j ] is conjugate to [a,d
α ju

−1

j ]. Since

‖θ (α ju−1)‖6 n+ 1, the area of [a,d
α ju

−1

j ], by Lemma V.3.2, is bounded by Kn+1.

Applying [a,d
α ju

−1

j ] to au and d
α j

j for j = 1, . . . ,m, we can commute all d
α j

j to the left such that it cancels with

d
−α j

j . Then we finally have

au = aūν3ν2ν1,

where

Area(ν3)6 mKn+1

In total, the cost of converting au to aū is bounded by

Area(ν3ν2ν1)6 Area(ν3)+Area(ν2)+Area(ν1)6 (2K)n + 2m+mKn+1
6 (2K)n+1.

Note that we use the fact that m 6 n and we can choose K ≫ 1.

Lemma V.3.3 provides a method for us to “organize” the exponent of a conjugate. In particular, combining all three

lemmas introduced this section (Lemma V.3.1, Lemma V.3.2 and Lemma V.3.3), we are able to convert any word in

〈〈A 〉〉H to its ordered form. This forms the foundation of converting the word problem in group G to the membership

problem of a submodule in the free T -module generated by A .

V.4 The T -module in Metabelian Groups

As we shown in Section V.2, 〈〈A 〉〉H∞ is a free T -module with the basis A , where T acts on 〈〈A 〉〉H∞ by conjugation.

Let A = {a1, . . . ,am}. For each element g ∈ 〈〈A 〉〉H∞ , it can be written in its ordered form, i.e.

g =
m

∏
i=1

a
λ1
1 a

λ2
2 . . .aλm

m ∈ ZT.

40



For λi, we always write its terms from high to low with respect to the order ≺. Then g can also be regarded as an

element (λ1, . . . ,λm) in the free T -module with basis a1, . . . ,am. From now on, we treat an element in 〈〈A 〉〉H∞ as an

element in group H∞ as well as an element in the free T -module.

Let us first state the relation of operations between the group language and module language:

Group Module

(∏m
i=1 a

λi
i )(∏

m
i=1 a

λ ′
i

i ) =H∞ ∏m
i=1 a

λi+λ ′
i

i (λ1, . . . ,λm)+ (λ ′
1, . . . ,λ

′
m) = (λ1 +λ ′

1, . . . ,λm +λ ′
m)

(∏m
i=1 a

λi
i )

c =H∞ ∏m
i=1 a

cλi
i c(λ1, . . . ,λm) = (cλ1, . . . ,cλm)

(∏m
i=1 a

λi
i )

t =H∞ ∏m
i=1 a

tλi
i t(λ1, . . . ,λm) = (tλ1, . . . , tλm)

Table V.1: Operations in groups and modules

where c ∈ C, t ∈ T .

Let X be a subset of 〈〈A 〉〉H∞ . Then the normal closure of X in group H∞ coincides with the submodule

generated by X over ZT . One direction is trivial, since by the table we have above, elements that lie in the submodule

are obtained by the group operations and conjugations. Conversely, let g ∈ 〈〈A 〉〉H∞ then if h ∈ ZT , gh can be

obtained by finitely many scalar products and module operations and if h ∈ 〈〈A 〉〉H∞ , then gh = g. The general case

is a combination of those two cases. Thus gh must lie in the submodule generated by g. On the contrary, the subgroup

generated by X coincides with the submodule generated by X over Z.

Again we consider an arbitrary factor group H of G∞ with the finite presentation

H = 〈A ∪T | R1 ∪R2 ∪R〉

where R is a finite subset of G∞. Then H ∼= G∞/〈〈R〉〉. We now estimate the cost of relations in group H to make

each of the module operations above. Note that notations like deg(λ ) and |λ | for element g ∈ ZT are inherited from

the polynomial ring Z[t1, t
−1
1 . . . , tk, t

−1
k ] (See in Section IV.4).

In the following lemma, K is the same constant appeared in Lemma V.3.2, which only depends on R1 ∪R2.

Lemma V.4.1. Let H be a factor group of G∞ equipped with presentation (V.6) then we have

(a) Let

f =
m

∏
i=1

a
λi
i ,g =

m

∏
i=1

a
λ ′

i
i ,

and we denote P = max{|λi|, |λ
′
i | | i = 1, . . . ,m}, Q = max{deg(λi),deg(λ ′

i ) | i = 1, . . . ,m}. Then the cost of

relations in H of converting

f g =H

m

∏
i=1

a
λi+λ ′

i
i

is at most m2P2K2Q where the right hand side is written in its ordered form.
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(b) Let

f =
m

∏
i=1

a
λi
i ,

denote P = max{|λi| | i = 1, . . . ,m}, Q = max{deg(λi) | i = 1, . . . ,m}. For c ∈ Z the cost of relations in H of

converting f c to ∏m
i=1 a

cλi
i is at most (|c|− 1)(m)2P2K2Q where the right hand side is written in its ordered form.

(c) Let

f =
m

∏
i=1

a
λi
i ,

denote P = max{|λi| | i = 1, . . . ,m}, Q = max{deg(λi) | i = 1, . . . ,m}. For t ∈ T the cost of relations in H of

converting

(
m

∏
i=1

a
λi
i )t =H

m

∏
i=1

a
tλi
i ,

is bounded by (mP)(2K)k(Q+deg t).

Proof. (a) First we consider a simpler case when g = a
λ ′

1
1 . Then it is essential to estimate the cost of converting LHS

to RHS of

(
m

∏
i=1

a
λi
i )a

λ ′
1

1 =H (a
µ1
1 )(aλ2

2 . . .aλm
m ),µ1 = λ1 +λ ′

1. (V.7)

In order to commute a
λ ′

1
1 with aλm

m , . . . ,aλ2
2 , we apply Lemma V.3.2 (m− 1)-times. Each step costs at most PK2Q

since deg(λi +λ ′
1)6 2Q, |λi|, |λ

′
1|6 P. Therefore, the cost of

(
m

∏
i=1

a
λi
i )a

λ ′
1

1 = (aλ1
1 a

λ ′
1

1 )(aλ2
2 . . .aλm

m )

is bounded by (m− 1)P2K2Q. When it comes to the last step, i.e.,

a
λ1
1 a

λ ′
1

1 = a
µ1
1 ,

the only thing we need to do is move each term au
1u ∈ F to its position corresponding to ≺. We in fact sort all

conjugates au
1 in order. Note that those conjugates in a

λ1
1 and a

λ ′
1

1 are already in order, respectively. Thus we only

need to insert each au
1 of a

λ ′
1

1 into terms of a
λ1
1 . Again from Lemma V.3.2, the cost is bounded by P2K2Q.

Therefore, the cost of (V.7) is bounded by mP2K2Q.

In general, if g=∏m
i=1 a

λ ′
i

i . By repeating previous process m times, we get an upper bound m2P2K2Q. We complete

the proof.

(b) It follows by applying (a) |c|− 1 times.
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(c) Conjugating t to each term of at′

1 , t ′ ∈ T , cost zero relations. Then we basically estimate the cost of the following

equatioin

at′t
1 = at′t

1 .

By the result of Lemma V.3.3, since Tr(t ′t) ⊂ B(degt+deg t′), then the cost is bounded by (2K)(degt+deg t′). Notice

deg(t ′)6 Q, then the total cost is at most

(mP)(2K)(degt+deg t′)
6 (mP)(2K)(Q+deg t).

Here we use the fact Tr(t)⊂ Bdeg(t) since we order elements in ZT degree lexicographically.

Recall that G∞ is a factor group of H∞ as G is a factor group of G∞. Denote the epimorphism from H∞ to G∞

induced by identity on generating set as ψ , and then we have the following homomorphism chain:

H∞ G∞ G.
ψ ϕ

Thus kerψ = 〈〈R2〉〉H∞ ,ker(ϕ ◦ψ) = 〈〈R2 ∪R3〉〉H∞ . They are all normal subgroups in H∞ as well as submodules in

〈〈A 〉〉H∞ . H∞ contains a free module structure while each of G and G∞ contain a factor module of it. Eventually we

will convert the word problem to a membership problem of a submodule in 〈〈A 〉〉H∞ .

V.5 Proof of Proposition V.1.2

Now we are ready to prove Proposition V.1.2. It is enough to show that for any given word w = 1 of length n, w can be

written as a product of at most Cn2k
conjugates of relators for some constant C. Since G is a factor group of H∞, w =G 1

if and only if w∈ ker(ϕ ◦ψ)= 〈〈R2∪R3〉〉H∞ . Note that 〈〈R2∪R3〉〉H∞ ⊂〈〈A 〉〉H∞ . Recall that 〈〈A 〉〉H∞ has a natural

module structure: it is a free T -module with basis a1, . . . ,am. By previous discussion, 〈〈R2 ∪R3〉〉H∞ coincides the

submodule generated by R2∪R3 over ZT . Let R4 = { f1, f2, . . . , fl} be the Gröbner basis of the submodule generated

by R2 ∪R3. We then add R4 to our presentation (V.5), and in addition we assume that all relators of Ri, i = 2,3,4 are

written in their ordered form. Note that R2 ∪R3 and R4 generates the same submodule in 〈〈A 〉〉H∞ . It implies that

〈〈R2 ∪R3〉〉H∞ = 〈〈R4〉〉H∞ . We obtained an alternating presentation of G as

G = 〈A ∪T | R1 ∪R2 ∪R3 ∪R4〉. (V.8)

Although R4 is equivalent to R2 ∪R3, it is convenient to keep R2, R3 in our presentation since all the estimation we

have done previously are based on R2 ∪R3.
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Note that G is a factor group of G∞ and with the given presentation Lemma V.3.1, Lemma V.3.2, Lemma V.3.3 and

Lemma V.4.1 all hold for G.

Since Dehn function is a quasi-isometric invariant then it enough for us to prove Proposition V.1.2 using the

presentation (V.8).

Proof of Proposition V.1.2. We start with a word w ∈ G such that |w|= n,w =G 1. WLOG we may assume

w = u1b1u2b2 . . .usbsus+1

where ui ∈ F = F(T ),bi ∈ A ±1 and s+∑s+1
i=1 |ui| = n. Let vi = (u1 . . .ui)

−1 for i = 1, . . . ,s and ν = u1u2 . . .us+1.

Then we have

w = w1 := b
v1
1 b

v2
2 . . .bvs

s ν.

The equality holds in the free group generated by A ∪T thus the cost of relations converting w to w1 is 0. Since

s+∑s+1
i=1 |ui|= n, in particular, we have that s 6 n. Moreover |vi|= ∑i

j=1 |u j|6 n hence Tr(θ (vi))⊂ Bn, i = 1,2, . . . ,n.

Next since w1 =G 1, π(w1) = π(vs+1) = 1. By Lemma V.3.1,

ν =
s′

∏
i=s+1

b
vi
i

where s′− s 6 |ν|2 6 n2, bi ∈ A ±1, and Tr(θ (vi))⊂ Bn, i = s+1, . . . ,s′. By Lemma V.3.1, the cost of converting ν to

the right hand side is bounded by |ν|2 6 n2.

Thus we let

w2 :=
s′

∏
i=1

b
vi
i ,s

′
6 n2 + n,Tr(θ (vi))⊂ Bn, i = 1, . . . ,s′.

And the cost of converting w2 to w1 is bounded by n2.

Next, note that all vi’s are words in F . With the help of Lemma V.3.3, we are able to organize vi to its image in F̄ .

More precisely, we let

w3 :=
s′

∏
i=1

b
v̄i
i ,s

′
6 n2 + n,‖θ (v̄i)‖ 6 n.

Also followed by Lemma V.3.3, w2 =G w3. Let us estimate the cost of converting w2 to w3. To transform w2 to w3,

we need apply Lemma V.3.3 to each b
vi
i once. Since Area(bvi

i b
−v̄i
i ) 6 (2K)n which provided by Tr(θ (vi))⊂ Bn, each

transformation costs (2K)n relations. We have in total s′ 6 n+ n2 many conjugates to convert therefore the cost is

bounded by (n2 + n)(2K)n.
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Now let w4 be the ordered form of w3, which in fact is also the ordered form of w, i.e.

w3 =G w4 :=
m

∏
i=1

a
µi

i

where µi are ordered under ≺. By the discussion in Section V.2, we obtain the ordered form just by rearranging

all conjugates of A ±1. Note that because ‖θ (v̄i)‖ 6 n for all i, it cost at most K2n relations to commute any two

consecutive conjugates b
v̄i
i and b

v̄ j

j by Lemma V.3.2. To sort s′ conjugates we need commute s′2 times. Therefore the

number of relations need to commute w3 to w4 is bounded above that s′2K2n 6 (n2 + n)2K2n.

The only thing remains is to compute the area of w4. Recall that w4 can be regarded as an element in a free

T -module generated by a1, . . . ,am. w4 =G 1 implies that either w4 =H∞ 1 or it lies in the submodule generated by

R4 = { f1, f2, . . . , fl} which is the Gröbner basis of the submodule generated by R2 ∪R3. If w =H∞ 1 then µi = /0 for

all i = 1, . . . ,m. In this case Area(w4) = 0. Thus

Area(w) 6 n2 +(n2 + n)(2K)n +(n2 + n)2K2n.

We are done with this case.

Now let us consider the case w ∈ 〈〈R4〉〉H∞ \{1}. Let K be a constant large enough to satisfy both Corollary IV.4.2

and Lemma V.3.2. As an element in the T -module, degw4 6 n since ‖θ (v̄i)‖ 6 n for all i. Also recall that for an

element α ∈ ZT , |α| is defined to be the l1-norm of it regarded as a finite suppported function from T to Z. Thus |w4|

represents the number of conjugates in w4 which is s′. Then by Corollary IV.4.2 we have

w4 =H∞

l

∏
i=1

f
αi
i , fi = a

µi1
1 a

µi2
2 . . .aµim

m ∈ R4,deg( f
αi
i )6 n,

l

∑
i=1

|αi|6 s′Kn2k

6 (n2 + n)Kn2k

.

where µi = ∑l
j=1 α jµ ji in ZT . Note that f

αi
i is the product consisting of exactly |αi| many relators. In conclusion we

have

Area(
l

∏
i=1

f
αi
i )6

l

∑
i=1

|αi|6 (n2 + n)Kn2k

.

Last, let us estimate the cost of converting ∏l
i=1 f

αi
i to w4. This process consists of two different steps: 1. converting

all f
αi
i ’s to their ordered form; 2. adding the l terms of ordered f

αi
i .

To transform f
αi
i to its ordered form, we write

αi = ∑
u∈suppαi

αi(u)u.

45



Let us denote P = maxl
i=1 | fi|,Q = maxl

i=1 deg( fi). Then

f
αi
i = f

∑u∈suppαi
αi(u)u

i = ∏
suppαi

f
αi(u)u
i = ∏

suppαi

fi,u = a
µ ′

i1
1 a

µ ′
i2

2 . . .a
µ ′

im
m = OF( fi), (V.9)

where fi,u is the ordered form of f
αi(u)u
i and u′i j =αiµi j hence OF( fi) is the ordered form of f

αi
i . The first two equalities

above hold in the free group F(A ∪T ) thus the cost is 0. In the third equality, applying Lemma V.4.1 (b) and (c),

the cost of converting f
αi(u)u
i to fi,u is bounded by m| fi|(2K)k(deg fi+degu)+(|αi(u)|−1)m2| fi|

2K2(deg fi+degu). Here we

first conjugate u to fi then add |αi(u)| terms of f u
i . Because degu 6 degαi,∑u∈suppαi

|αi(u)| = |αi|, |suppαi| 6 |αi|.

Consequently the cost of the third equality of (V.9) is bounded by

∑
u∈suppαi

(m| fi|(2K)k(deg fi+degu)+(|αi(u)|− 1)m2| fi|
2K2(deg fi+degu))

6 ∑
u∈suppαi

(m| fi|(2K)k(deg fi+degαi)+(|αi(u)|− 1)m2| fi|
2K2(deg fi+degαi))

= |suppαi|m| fi|(2K)k(deg fi+degαi)+ ∑
u∈suppαi

(|αi(u)|− 1)m2| fi|
2K2(deg fi+degαi)

= |suppαi|m| fi|(2K)k(deg fi+degαi)+(|αi|− |suppαi|)m
2| fi|

2K2(deg fi+degαi)

6 |αi|m| fi|(2K)k(deg fi+degαi)+ |αi|m
2| fi|

2K2(deg fi+degαi)

= |αi|(m| fi|(2K)k(deg fi+degαi)+m2| fi|
2K2(deg fi+degαi))

6 |αi|(mP(2K)kn +m2P2K2n).

The last inequality is obtained by the condition deg( f
αi
i )6 n, i.e deg fi + degαi 6 n.

The forth equality of (V.9) is adding all fi,u’s up. Since

deg fi,u 6 deg f
αi
i 6 n, | fi,u|6 |αi(u)|| fi|6 |αi|| fi|6 |αi|P,

by Lemma V.4.1 (a), the cost of adding |suppαi| terms of fi,u is bounded by (|suppαi|− 1)m2(|αi|P)
2K2n. Here we

use the fact that the size of the addition of any step is bounded by | f αi
i |. Therefore the total number of relations we

need to convert each f
αi
i to its order form f ′i is bounded by

|αi|(mP(2K)kn +m2P2K2n)+ (|suppαi|− 1)m2(|αi|P)
2K2n

6 |αi|(mP(2K)kn +(1+ |αi|
2)m2P2K2n).
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In general, the cost of converting all f
αi
i ’s to their order forms is bounded by

l

∑
i=1

|αi|(mP(2K)kn +(1+ |αi|
2)m2P2K2n)

=(mP(2K)kn +m2P2K2n)(
l

∑
i

|αi|)+m2P2K2n
l

∑
i=1

(|αi|
3)

6(mP(2K)kn +m2P2K2n)(n2 + n)Kn2k

+m2P2K2n(n2 + n)3K3n2k

.

The next step, as described above, is to add all OF( fi) up. We have that |OF( fi)| 6 |αi|| fi| and degOF( fi) 6 n

for all i = 1,2, . . . , l. Moreover, the size of any partial product ∑l′

i=1 OF( fi),1 6 l′ 6 l is controlled by the following

inequalities:

|
l′

∑
i=1

OF( fi)|6
l′

∑
i=1

|αi|| fi|6 P
l′

∑
i=1

|αi|6 P(n2 + n)Kn2k

,deg(
l′

∑
i=1

αi fi)6 n.

This is similar to add fi,u’s. By Lemma V.4.1 (a), the cost of the (|l|− 1) additions is bounded by

(l − 1)m2(P(n2 + n)Kn2k

)2K2n
6 (l − 1)m2(n2 + n)2P2K2n2k+2n.

Now we need to verify the process of those steps above indeed result w4. This is provided by the fact µi =∑l
j=1 α jµ ji =

∑l
j=1 µ ′

i j and eventually following Lemma V.4.1 we have

l

∏
i=1

f
αi
i =

l

∏
i=1

f ′i =
l

∏
i=1

(a
µ ′

i1
1 a

µ ′
i2

2 . . .a
µ ′

im
m ) =

m

∏
j=1

a
∑l

j=1 µ ′
i j

j = a
µ1

1 a
µ2

2 . . .aµm
m = w4.

By our estimation, the cost of the first equality is bounded by (mP(2K)kn +m2P2K2n)(n2 + n)Kn2k
+m2P2Q2n(n2 +

n)3K3n2k
and the cost of the third equality is bounded by (l − 1)m2(n2 + n)2P2K2n2k+2n. Other equalities hold in the

free group hence no cost. Therefore

Area(w4) =(n2 + n)Kn2k

+(mP(2K)kn +m2P2K2n)(n2 + n)Kn2k

+m2P2K2n(n2 + n)3K3n2k

+(l− 1)m2(n2 + n)2P2K2n2k+2n.

Now we choose a constant C > K large enough such that

(n2 + n)Kn2k

+(mP(2K)kn +m2P2K2n)(n2 + n)Kn2k

+m2P2K2n(n2 + n)3K3n2k

+(l− 1)m2(n2 + n)2P2K2n2k+2n

6Cn2k
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It is clear that such C exists, for example we can choose C to be 4m2P2QK. Note that P,Q only depends on f1, f2, . . . , fl ,

hence R4, and so does K. Therefore C is independent of w.

In conclusion, we start with w =G 1 of length at most n. By converting it four times, we end up with a word w4, of

which area is bounded by Cn2k
. Thus

w w1 w2 w3 w4.
0 6n2 6(n+n2)(2K)n 6(n+n2)2K2n

Summing up all the cost from w1 to w4 and with the fact C > K, we conclude that the area of w is bounded above

by

Area(w) 6Cn2k

+(n+ n2)2C2n +(n+ n2)(2C)n + n2.

This completes the proof.
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Chapter VI

Relative Dehn Functions of Finitely Generated Metabelian Groups

VI.1 The Cost of Metabelianness

Metabelian groups are groups satisfying the identity [[x,y], [z,w]]. The metabelianness is provided by all relations of

this form. In this chapter, we want to first estimate the area of an arbitrary metabelian relation, that is, a relation of

the form [[x,y], [z,w]], for a finitely presented metabelian group. This estimation gives us, what we call, the cost of

metabelianness. Then we will “forget” the cost of metabelianness, i.e., we introduce the relative presentation in which

all such relations have no cost. Also we shall note that all finitely generated metabelian group is relatively finitely

presentable. Therefore we can extend Theorem V.1.1, modified for relative presentation, to all finitely generated

metabelian group. Finally, we will estimate the relative Dehn function for some examples and prove the last piece of

Theorem A.

First, we state an important consequence of Lemma V.3.2.

Theorem VI.1.1. The metabelianness of a finitely presented matabelian group G costs at most exponentially many

relations with respect to the length of the word, i.e. there exists a constant C such that

Area([[x,y], [z,w]]) 6C ·2|[[x,y],[z,w]]|,∀x,y,z,w ∈ G.

Proof. Consider a finitely presented group G with a short exact sequence

1 → A →֒ G ։ T → 1,

where A,T are abelian groups. Let A be a generating set of A and T be a set in G such that their image in T generates

T .

Let rk(G) = k, the minimal torsion-free rank of an abelian group T such that there exists an abelian normal

subgroup A in G satisfying G/A ∼= T . The projection of G onto T is denoted by π : G → T .

If k = 0, G has a finitely generated abelian subgroup of finite index. Then the result follows immediately.

If k > 0, we first consider the case that T is free abelian. let T = {t1, . . . , tk} ⊂ G such that {π(t1), . . . ,π(tk)}

forms a basis for T and A be a finite subset of G such that it contains all commutators ai j = [ti, t j ] for 1 6 i < j 6 k

and generates the T -module A. Then A ∪T is a finite generating set for the group G. Recall that G has a finite

presentation as follows

G = 〈a1,a2, . . . ,am, t1, t2, . . . , tk | R1 ∪R2 ∪R3 ∪R4〉,
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where

R1 = {[ti, t j ] = ai j | 1 6 i < j 6 k};

R2 = {[a,bu] = 1 | a,b ∈ A ,u ∈ F̄ ,‖θ (u)‖< R};

R3 = {∏
u∈F̄

(aλ (û))u = a | a ∈ A ,λ ∈ Λ∩C(A)}∪{∏
u∈F̄

(aλ (û))u−1
= a | a ∈ A ,λ ∈ Λ∩C(A∗)};

and R4 is the finite set generating kerϕ . All the notations are the same as in Section V.1.

By Lemma V.3.2, we have that there exists a constant C1 such that

Area [a,bu]6C1 ·2
|[a,bu]|,a,b ∈ A ,u ∈ F(T ).

Now let x,y,z,w be elements in G and n = |[[x,y], [z,w]]|. We use two commutator identities [a,bc] = [a,c][a,b]c

and [ab,c] = [a,c]b[b,c] to decompose [x,y] and [z,w] into products of [a,b]u where a,b∈A ∪A −1∪T ∪T −1,u∈ G.

There are three cases to be considered.

1. If a,b ∈ A ∪A −1, [a,b]u =G 1 and the cost for converting [a,b]u to 1 is 1.

2. If a,b ∈ T ∪T −1, we have two cases. If a,b ∈ {ti, t
−1
i } for some i, [a,b]u =G 1 with no cost. If a ∈ {ti, t

−1
i }

and b ∈ {t j, t
−1
j } where i 6= j, [a,b]u = cεu′ , where c ∈ A ∪A −1,ε ∈ {±1}, |u′|6 |u|+ 1. This is due to cases

like [t−1
i , t j] = [ti, t j]

−t−1
i . The cost of converting [a,b]u to cεu′ is 1.

3. If a ∈A ∪A −1,b ∈T ∪T −1 (or b ∈A ∪A −1,a ∈T ∪T −1), then [a,b] =G aab (resp. [a,b] = ba−1
b ). Thus

[a,b]u =G auabu (resp. [a,b]u = ba−1ubu). The cost of converting is 0.

It follows that [x,y] =G ∏l
i=1 b

εiui
i , where l 6 2|x||y|,bi ∈A ,εi ∈ {±1},ui ∈ G, |ui|6 |x|+ |y|. The cost of convert-

ing [x,y] to ∏l
i=1 b

εiui
i is bounded by |x||y|.

Let u be a word in G, we claim that u = w1w2 ∏
p
i=1 c

vi
i where w1 ∈ F(A ),w2 ∈ F(T ),ci ∈ A ∪A −1,vi ∈ F(T ).

The claim can be proved by always choosing to commute the left most pair of ta where t ∈ T ∪T −1,a ∈ A ∪A −1.

Then for an element a ∈ A , we have

au =F(A ∪T ) aw1w2 ∏
p
i=1 c

vi
i =G aw2 ,w1 ∈ F(A ),w2 ∈ F(T ).

Note that |w2| < |u|. Similar to Lemma V.3.3, there exists a constant C2 such that the cost of the second equality in

terms of relations is bounded C2 ·2
|u|.
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Therefore [x,y] =G ∏l
i=1 b

εiu
′
i

i , where l 6 2|x||y|,bi ∈ A ,εi ∈ {±1},u′i ∈ F(T ). The cost is bounded by 2n2C22n.

Consequently, [[x,y], [z,w]] can be write as a product of at most 8n2 conjugates of elements in A at a cost of at most

8n2C22n. Last, converting this product to 1 costs at most (8n2)2C12n by Lemma V.3.2. The theorem is proved in this

case.

If T is not free abelian, we suppose that T = {t1, t2, . . . , tk, tk+1, tk+2, . . . , ts} such that the set T0 := {π(tk+1),π(tk+2), . . . ,π(ts)}

generates a finite abelian group and {π(t1),π(t2), . . . ,π(tk)} generates Zk. Then we can write down a presentation of

G as following:

G = 〈a1,a2, . . . ,am, t1, t2, . . . , ts | R1 ∪R2 ∪R3 ∪R4〉,

where

R1 = {[ti, t j ] = ai j, t
nl

l = al | 1 6 i < j 6 s,k+ 1 6 l 6 s};

R2 = {[a,bu] = 1 | a,b ∈ A ,u ∈ F̄ ,‖θ (u)‖< R};

R3 = {∏
u∈F̄

(aλ (û))u = a | a ∈ A ,λ ∈ Λ∩C(A)}∪{∏
u∈F̄

(aλ (û))u−1

= a | a ∈ A ,λ ∈ Λ∩C(A∗)};

and R4 is the finite set generating kerϕ . Note that θ : F̄ →Rk kills all tl , l > k. The rest of the proof is the same as the

case when T is free abelian.

VI.2 The Relative Dehn Functions of Metabelian Groups

Recall that a set of groups form a variety if it is closed under subgroups, epimorphic images, and unrestricted direct

products. The set of metabelian groups naturally form a variety, denoted by S2, since metabelian groups satisfy the

identity [[x,y], [z,w]] = 1. Inside a variety, we can talk about relative free groups and relative presentations. Firstly, a

metabelian group Mk is free of rank k if it satisfies the following universal property: every metabelian group generated

by k elements is an epimorphic image of Mk. It is not hard to show that Mk
∼= F(k)/F(k)′′, where F(k) is a free group

of rank k (in the variety of all groups).

Next, we shall discuss the relative presentations. Recall that the usual presentation of G consists of a free group

F and a normal subgroup N such that G ∼= F/N. For relative presentations, we shall replace the free group with

the relative free group. Now let G be a metabelian group generated by k elements, then there exists a epimorphism

ϕ : Mk → G, where Mk is generated by X = {x1,x2, . . . ,xk}. We immediately have that G ∼= Mk/kerϕ . Note that kerϕ

is a normal subgroup of Mk, then it is a normal closure of a finite set. We let R = {r1,r2, . . . ,rm} to be the finite set

whose normal closure is the kernel of ϕ . Therefore we obtain a relative presentation of G is the variety of metabelian
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groups

G = 〈x1,x2, . . . ,xk | r1,r2, . . . ,rm〉S2
.

The notation 〈·〉S2
is used to indicate that the presentation is relative to the variety of metabelian groups S2. Here, the

subscript two stands for the derived length two. We denote by P the relative presentation 〈X | R〉S2
. Note that if G

is finitely presented, then the finite presentation in the usual sense is also a relative presentation, with some possible

redundant relations.

Let us give an example of relation presentation of a metabelian group which is not finitely presented in the variety

of all groups. H∞, the group we introduce in Section III.3, is a free metabelian group of rank k. It has two different

relative presentations depending on how many generators we choose.

H∞ = 〈t1, t2, . . . , tk〉S2
= 〈ai j, t1, t2, . . . , tk | ai j = [ti, t j],1 6 i < j 6 k〉S2

.

Back to a finitely generated metabelian group G with the finite relative presentation 〈X | R〉S2
. Let w be a word in

G such that w =G 1. Then w lies in the normal closure of R. Thus w can be written as

w =Mk

l

∏
i=1

r
fi
i where ri ∈ R∪R−1, fi ∈ Mk.

The smallest possible l is called the relative area of w, denoted by ÃreaP(w). The difference between the area and the

relative area is that we take the equality in different ambient groups, one in free groups and the other in free metabelian

groups. Consequently, the Dehn function relative to the variety of metabelian groups with respect to the presentation

P is defined as

δ̃P(n) = sup{ÃreaP(w) | |w|X 6 n}.

Here | · |X is the word length in alphabet X . Similar to usual Dehn functions, the relative Dehn functions are also

independent of the choice of finite presentations up to equivalence, i.e.

Proposition VI.2.1 ([15]). Let P and Q be finite relative presentations of the finitely generated metabelian group G.

Then

δ̃P ≈ δ̃Q.

Therefore it is valid to denote the relative Dehn function of a finitely generated metabelian group G by δ̃G. One

remark is that every finitely generated metabelian group is finite presentable relative to the variety of metabelian

groups. Thus the relative Dehn function can be defined for all finitely generated metabelian groups. Another remark

is, unlike Dehn functions, it does not make sense to talk about if the relative Dehn function is a quasi-isometric
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invariant. Since groups that quasi-isometric to a finitely generated metabelian group may not even be metabelian. For

example, A5 ≀Z and Z60 ≀Z are quasi-isometric while the former is not metabelian.

But the relative Dehn function still inherit some nice properties from the Dehn function: one of which is that it is

preserved under taking a finite index subgroup.

Proposition VI.2.2. Let G be a finitely generated metabelian group and H is a finite index subgroup of G. Then H is

finitely generated and metabelian and the relative Dehn function of G and H are equal up to equivalence.

Proof. Since H is a finite index subgroup of a finitely generated metabelian group, it is finitely generated and metabelian.

Let 〈X | R〉S2
be a finite relative presentation of H, where X = {x1,x2, . . . ,xn}. Then we have a finite relative

presentation of G as following:

G = 〈X ∪Y | R0 ∪R1 ∪R2〉S2
,

where

Y = {y1,y2, . . . ,ym};

R0 = R;

R1 = {yiy j = y f (i, j)wi, j ,y
−1
i = yg(i)ui},wi, j,ui ∈ (X ∪X−1)∗

f :{1,2, . . . ,m}×{1,2, . . . ,m}→ {1,2, . . . ,m},g : {1,2, . . . ,m}→ {1,2, . . . ,m};

R2 = {xlyi = y jvi, j},vl,i ∈ (X ∪X−1)∗.

We claim that there exists a constant L such that for every word w =G 1, there exists a word w′ such that w′ = w,w′ ∈

(X ∪X−1)∗ and |w′|6 L|w|. Moreover, it costs at most |w| relations from R1 ∪R2 to convert w to w′.

If the claim is true, then we have that

ÃreaG(w)6 ÃreaH(w
′)+ |w|.

It immediately implies that

δ̃G(n)6 δ̃H(Ln)+ n.

Thus

δ̃G(n)4 δ̃H(n).

And the other direction δ̃H(n)4 δ̃G(n) is obvious since wH = 1 implies wG = 1.

To prove the claim, we let L = max{|wi, j|, |ui|, |vl,i| | 1 6 i, j 6 m,1 6 l 6 n}. Let w be a word such that w =G 1.
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WLOG, we assume that w has the following form:

w =F(X∪Y ) a1b1a2b2 . . .akbkak+1,ai ∈ (X ∪X−1)∗,bi ∈ (Y ∪Y−1)∗,

where only a1,ak+1 might be empty word. For bk, using relations in R1 we have that

bk = yh(k)b
′
k,h(k) ∈ {1,2, . . . ,m},bk ∈ (X ∪X−1)∗,

and |b′k|6 L|bk|. Thus,

w = a1b1a2b2 . . .akyh(k)b
′
kak+1,

while the cost of converting is bounded by |bk| and all relations are from R1.

Next we commute yh(k) with ak using relations from R2.

akyh(k) = yh(k)a
′
k,a

′
k ∈ (X ∪X−1)∗,

and |a′k|6 L|ak|. Substituting it in, we get

w = a1b1a2b2 . . .yh(k)a
′
kb′kak+1,

while the cost of converting is bounded by |ak| and all relations are from R2.

Therefore, repeating the above process, we eventually have

w = yh(1)a
′
1b′1a′2b′2 . . .a

′
kb′kak+1.

Since w = 1, thus yh(1) is actually an empty word. Consequently, we have

w = a′1b′1a′2b′2 . . .a
′
kb′kak+1 ∈ (X ∪X−1)∗,

and the length of the left-hand side is controlled by

|a′1b′1a′2b′2 . . .a
′
kb′kak+1|6

k

∑
i=1

L(|ai|+ |bi|)+ |ak+1|6 L|w|.

The cost of relations is bounded by ∑k
i=1(|ai|+ |bi|)6 |w| while all relations are from R1∪R2. The claim is proved.

Let us consider one classic example: the Baumslag-Solitar group BS(1,2). The relative presentation is the same as
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the usual presentation BS(1,2) = 〈a, t | at = a2〉S2
. But one can prove that the relative Dehn function of BS(1,2) is n

instead of the usual Dehn function 2n [15]. In general, it is difficult to compute the relative Dehn function of a finitely

generated metabelian group. We will list some known examples in Section VI.4.

So what is the connection between the relative Dehn function and Dehn function? On the surface, in the relative

presentation, we make all metabelian relations cost 0, which should result in a significant reduce in the cost in Lemmas

like Lemma V.3.2, Lemma V.4.1. In the next section, we will estimate how much cost we reduce by introducing the

relative presentation.

VI.3 Connections Between Dehn Functions and Relative Dehn Functions

The goal of the section is to prove the following theorem:

Theorem VI.3.1. Let G be a finitely presented metabelian group. Then

δ̃G(n)4 δG(n)4 max{δ̃ 3
G(n

3),2n}.

Before we prove the theorem, we have to introduce the third ”Dehn function“ in this thesis: the Dehn function of

a finitely generated module (another definition can be found in [15]). Let R be the group ring ZT where T is a free

abelian group with basis {t1, t2, . . . , tk} and A is a finitely generated R-module generated by m elements. Let M be a

free R-module of rank m. Suppose a basis of M is {a1,a2, . . . ,am}. Then there exists a submodule S of M, generated

by { f1, f2, . . . , fl}, such that A ∼= M/S.

For an element f = µ1a1 + µ2a2 + · · ·+ µmam in M, we define its length, denoted by ‖ f‖, to be the following:

‖ f‖=
l

∑
i=1

|µi|+ reach( f ),

where reach( f ) is the minimal length over the lengths of close loops that starts at 1 and passes through all points in

∪l
i=1 supp µi in the Cayley graph of T . Another way to think of this length ‖ · ‖ is that it is the minimal length of

a group word among words that are rearranges of all conjugates of elements in A in a
µ1

1 a
µ2

2 . . .a
µm
m . For example,

suppose m = k = 1, we have

‖(tn
1 + tn−1

1 + · · ·+ t1 + 1)a1‖= (n+ 1)+ 2n= 3n+ 1,

because the minimal length of a loop passing {1, t, t2, . . . , tn} is 2n. Note that a
tn
1+tn−1

1 +···+t1+1

1 = t−n
1 a1t1a1 . . .a1t1a1 is

a group word of length 3n+ 1 in the alphabet {a1}∪{t1}.
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Then for every element f in S, there exists α1,α2, . . . ,αl ∈ R such that

f = α1 f1 +α2 f2 + · · ·+αl fl .

We denote by ÂreaA( f ) the minimal possible ∑l
i=1 |αi|. Then the Dehn function of the R-module A is defined to be

δ̂A(n) = max{ÂreaA( f ) | ‖ f‖6 n}.

As expected, the Dehn function of a module is also independent from the choice of the finite presentation [15].

Remark. Now we have three different types of Dehn functions in this thesis: the Dehn function, the relative Dehn

function and the Dehn function of a module. They are similar and we distinguish them by the notation. We denote by

δG(n),Area(w) the Dehn function of G and the area of a word w; δ̃G(n), Ãrea(w) the relative Dehn function and the

relative area of a word w, δ̂A(n), Ârea( f ) the Dehn function of the module A and the area of a module element f .

Let k = rk(G) be the minimal torsion-free rank of an abelian group T such that there exists an abelian normal

subgroup A in G satisfying G/A ∼= T .

First, if k > 0 we notice that the problem can be reduced in the same way as Proposition V.1.2 does. Because for

a finitely presented metabelian group G there exists a subgroup G0 of finite index such that G0 is an extension of an

abelian group by a free abelian group of rank k. Most importantly, by Corollary II.1.3 and Proposition VI.2.2, their

Dehn functions are equivalent as well as their relative Dehn functions. Therefore from now on, we assume that G is

an extension of an abelian group A by a free abelian group T . The projection of G onto T is denoted by π : G → T .

Let T = {t1, . . . , tk} ⊂ G such that {π(t1), . . . ,π(tk)} forms a basis for T and A be a finite subset of G such that

it contains all commutators ai j = [ti, t j] for 1 6 i < j 6 k and generates the T -module A. Then A ∪T is a finite

generating set for the group G.

Recall that G has a finite presentation as follows

G = 〈a1,a2, . . . ,am, t1, t2, . . . , tk | R1 ∪R2 ∪R3 ∪R4〉,
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where

R1 = {[ti, t j ] = ai j | 1 6 i < j 6 k};

R2 = {[a,bu] = 1 | a,b ∈ A ,u ∈ F̄ ,‖θ (u)‖< R};

R3 = {∏
u∈F̄

(aλ (û))u = a | a ∈ A ,λ ∈ Λ∩C(A)}∪{∏
u∈F̄

(aλ (û))u−1
= a | a ∈ A ,λ ∈ Λ∩C(A∗)};

and R4 is the finite set that generates kerϕ as a normal subgroup. All the notations are the same as in Section V.5.

Since we are dealing with relative Dehn function, we can reduce amount of redundant relations in R2. We set

R ′
2 = {[a,b] = 1, [a,bt ] = 1 | a,b ∈ A , t ∈ T }. Then we have

Lemma VI.3.2. R ′
2 generates all commutative relations [a,bu] = 1,a,b ∈ A ,u ∈ F(T ) in the presentation relative

to the variety of metabelian groups. Moreover, the relative area of [a,bu] is bounded by 4|u|− 3.

Proof. Suppose the result is proved for |u| 6 n, i.e., [a,bu] = 1 can be written as a product of conjugates of words in

R ′
2 and metabelian relations. For metabelian relations, we mean those relations make commutators commute to each

other. Note that the relative area of any metabelian relations is 0.

Now for that case |u|= n+ 1, let u = vt, |v|= n, t ∈ {t1, t2, . . . , tk}. By metabelian relations, we have that

1 = [a−1at ,b−tbu].

Since a−1at = [a, t] and b−tbu = [b,v]t . Then by inductive assumption, we are able to use relations like [a,bw] = 1

when a,b ∈ A , |w|6 n. In particular, [a,bv] = 1.

And notice that

1 = [a−1at ,b−tbu] = a−ta︸︷︷︸
commute

b−ubt a−1at

︸ ︷︷ ︸
commute

b−tbu

= aa−tb−u

︸ ︷︷ ︸
commute

btat

︸︷︷︸
commute

a−1b−tbu

= ab−ua−tat bta−1

︸ ︷︷ ︸
commute

b−tbu

= ab−ua−1bu.

This shows that [a,bu] can be generated by R ′
2 and metabelian relations. Let us count the cost. In the computation
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above we use [a,bv] = 1 once (notice that [at ,bu] = [a,bv]t ), [a,at ] = 1 twice, [a,b]= 1 once, and [a,bt ] once. Therefore,

Ãrea([a,bu])6 Ãrea([a,bv])+ 4 6 4(|v|+ 1)− 3= 4(n+ 1)− 3.

This completes the proof.

The lemma allows us to replace R2 by R ′
2 in the relative presentation. And we immediately get the relative version

of Lemma V.3.2.

Lemma VI.3.3. Let u be a reduced word in F(T ) and ū be the unique word in T representing u in the form of

t
m1
1 t

m2
2 . . . t

mk

k . Then we have

Ãrea(a−uaū)6 4|u|2 + 2|u|.

Proof. The only difference of this proof to the proof of Lemma V.3.2 is that now it only costs 4|u|− 3 to commute

conjugates of elements in A every time.

Thus in the relative sense, we save a lot of cost due to the fact we assume metabelianness is free of charge.

Our solution for the membership problem of a submodule has a better control for the degree of αi fi than for

∑l
i=1 |αi|, resulting enormous upper bound for the area. When we consider α1,α2, . . . ,αl that minimizes ∑l

i=1 |αi|,

one trade-off is that we lose control of the degree of αi, sort of. The following lemma shows that in this case even

though the degree of αi cannot be linearly controlled just by deg f but can still be linearly controlled by both deg f and

∑l
i=1 |αi|.

Lemma VI.3.4. There exists a constantC such that for every f ∈ S where S is a T -submodule generated by { f1, f2, . . . , fl},

assume that there exists α1,α2, . . . ,αl ∈ ZT such that

f = α1 f1 +α2 f2 + · · ·+αl fl ,

and ∑l
i=1 |αi| is minimized, then degαi fi 6 deg f +C ∑l

i=1 |αi| for all i.

Proof. We denote by ∆( f ) the difference in the degree of the highest term and lowest term. Let

C := max{∆( f1),∆( f2), . . . ,∆( fl)}.

In addition we let s = ∑l
i=1 |αi|.

We rewrite the sum α1 f1 +α2 f2 + · · ·+αl fl to the form

f = u1 fi1 + u2 fi2 + · · ·+ us fis ,
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where i j ∈ {1,2, . . . , l} and u j is an element in ∪l
i=1 suppαi

, such that deg(u j fi j
)> deg(u j+1 fi j+1

) for j = 1,2, . . . ,s−1.

Let gn be the partial sum gn = ∑n
j=1 u j fi j

. Assume that deg(u1 fi1) > deg f , otherwise there is nothing to prove.

Every term of degree greater than deg f will be cancelled. Since we assume that deg(u j fi j
) > deg(u j+1 fi j+1

), then

deggn > deggn+1 when deggn > deg f . We claim that deggn+1 > degg1 −Cn whenever deggn > deg f . If the claim

is not true, let n0 be least number such that

deg(
n0

∑
j=1

u j fi j
)> deg(u1 fi1)−C(n0 − 1),deg(

n0+1

∑
j=1

u j fi j
)6 deg(u1 fi1)−Cn0.

Note that ∆(u j fi j
) 6 C for all j = 1,2, . . . ,s. The least degree among terms in gn0

is greater than deg(un0
fin0

)−

C. Since deg(gn0
) > deg(gn0+1), then deg(un0+1 fn0+1) = deg(gn) > deg(u1 fi1)−C(n0 − 1). Moreover, because

deg(un0
fn0

) > deg(un0+1 fn0+1), the least degree among terms in gn0
is greater than deg(u1 fi1)−Cn0. Therefore if

gn0+1 6= 0, the least degree among terms in gn0+1 is also greater than deg(u1 fi1)−Cn0. It follows that gn0+1 = 0. We

have

f =
s

∑
j=n0+2

u j fi j
.

It is a contradiction to the minimality of s = ∑l
i=1 |αi|.

Let n1 be the largest number that deggn1
> deg f . By the claim, we have that deggn1+1 > deg(g1)−Cn1. Straight

from the definition of n1, deggn1+1 6 deg f . Combining those two inequalities, we finally have

deg f > deg(g1)−Cn1.

Since n1 < s = ∑l
i=1 |αi| and degg1 = maxi{degαi fi}, the lemma is proved.

Next, we focus on the T -module A. It is not hard to see that A is the quotient of the free T -module generated by

A by the submodule generated by R3 ∪R4. We then replace R3 ∪R4 by the Gröbner basis R ′
3 = { f1, f2, . . . , fl} for

the same submodule. Therefore we finally have the relative presentation of G we want:

G = 〈a1,a2, . . . ,am, t1, t2, . . . , tk | R1 ∪R
′
2 ∪R

′
3〉S2

.

We let M be the free T -module generated by A and S be the submodule generated by R ′
3 over T . So that A ∼=M/S.

Then we have a connection between the relative Dehn function of G and the Dehn function of the submodule S.

Lemma VI.3.5. Let G be a finitely generated metabelian group and A is defined as above, then

δ̂A(n)4 δ̃G(n)4 max{δ̂ 3
A(n

3),n6}.
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Proof. Now let w be a word of length n such that w =G 1. We then estimate the cost of converting it to the ordered

form. The process is exactly the same as in the proof of Proposition V.1.2. We replace the cost by the cost in relative

presentation by Lemma VI.3.2 and Lemma VI.3.3. It is not hard to compute that it costs at most n2 +(4n− 3)(n2+

n)+(4n−3)2(n2 +n)2 to convert w to its ordered form w′ := ∏m
i=1 a

µi

i where ∑n
i=1 |µi|6 n2,deg µi 6 n and |w′|6 2n3.

Since w′ lies in the normal subgroup generated by R ′
3, then there exists α1,α2, . . . ,αl such that

w′ =
l

∏
i=1

f
αi
i ,

l

∑
i=1

|αi|6 δ̂A(2n3).

The relative area of the left hand side is less than ∑l
i=1 |αi|. Then we just repeat the same process of the proof of

Proposition V.1.2, and compute the cost of adding f
αi
i up to w′. By Lemma VI.3.4, deg(αi fi)6 n+Cδ̂A(2n3) for ev-

ery i and some constant C. It follows that, by Lemma VI.3.3, conjugating αi to fi costs at most |αi|| fi|(4deg2(αi fi)+

2deg(αi fi)). Last, we rearrange ∑l
i=1 |αi|| fi| terms whose degree are at most n+Cδ̂A(2n3), which costs at most

max{δ̂ 3
A(n

3),n2δ̂A(n
3)} up to equivalence. Thus the relative area of w′ is asymptotically bounded by max{δ̂ 3

A(n
3),n2δ̂A(n

3)}

up to equivalence. And hence the relative area of w is bounded by max{δ 3
A(n

3),n6}. Thus the right inequality is proved.

For the left inequality in the statement, let ∏m
i=1 a

µi

i be a word of ordered form such that it realizes δA(n). The

length of the word, by definition, is bounded by n. We claim that the relative area of ∏m
i=1 a

µi

i is greater than δA(n). If

not, by the definition of the relative area, we have that

m

∏
i=1

a
µi

i =
s

∏
j=i

r
hi
i ,ri ∈ R

′±1
1 ∪R

′±
2 ∪R

′±
3 ,hi ∈ Mm+k,

where s = Area(∏m
i=1 a

µi

i ) < δS(n). If we only keep all relations from R ′
3 and combine the same relations together,

we will get ∏l
i=1 f

αi
i and ∑l

i=1 |αi|6 s < δA(n). Since canceling relations like [ti, t j] = ai j, [a,b
t ] = 1 and commuting

f
h j

i ’s do not change the value of left hand side as an element in free T -module generated by basis {a1,a2, . . . ,am}.

Therefore we eventually get

m

∑
i=1

µiai =
l

∑
j=1

α j f j ,
l

∑
i=1

|αi|< δA(n).

It leads to a contradiction.

We have

Theorem VI.3.6. Let G be a finitely generated metabelian group. Let k = rk(G), the minimal torsion-free rank of an

abelian group T such that there exists an abelian normal subgroup A in G satisfying G/A ∼= T .

Then the relative Dehn function of G is asymptotically bounded above by

(1) n2 if k = 0;
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(2) 2n2k
if k > 0.

Proof. Let G be a finitely generated metabelian group. If k = 0, G has a finitely generated abelian subgroup of finite

index. Then the relative Dehn function is asymptotically bounded by n2 by Theorem II.4.2.

If k > 0, similarly, we can reduce the case to that G is an extension of a module A by a free abelian group T

such that the torsion-free rank of T is k. Then a word w =G 1 with |w| 6 n can be converted to its ordered form

w′ := ∏m
i=1 a

µi

i where |w|6 2n3,deg(w)6 n,∑m
i=1 |µi|6 n2. Then by Corollary IV.4.2, there exists a word w′′ such that

w′ =G w′′,Area(w′′)6 2n2k
. The theorem follows immediately.

Finally, we have all the ingredients to prove Theorem VI.3.1.

Proof of Theorem VI.3.1. The left inequality is obvious since the finite presentation of G is also the relative finite

presentation of G.

If k = 0, G has a finitely generated abelian subgroup of finite index. The result follows immediately.

If k > 0, let w be a word of length n and w =G 1. Then there exists α1,α2, . . . ,αl

w =
l

∏
i=1

f
αi
i ,

l

∑
i=1

|αi|6 δ̂A(2n3),degαi 6 n+Cδ̂A(2n3). (VI.1)

According to the proof of Proposition V.1.2, adding the left hand side of (VI.1) costs at most max{δ̂ 3
A(2n3),2n} up to

equivalence. All other steps of converting cost at most exponential with respect to n. Then by the left inequality in

Lemma VI.3.5, Area(w) 6 max{δ̃ 3
G(n

3),2n}. Therefore the theorem is proved.

VI.4 Estimate the Relative Dehn Function

Computing the relative Dehn function is harder than computing the Dehn function. Many techniques no longer useful

for the relative case. For the variety of metabelian groups, fortunately, the structure of groups in it is not complicated.

The key is to understand the natural module structure of a finitely generated metabelian group.

First, let us list some known results for relative Dehn functions, they are computed by Fuh in her thesis. Note that

most of them only give the upper bound of the relative Dehn function.

Theorem VI.4.1 (Fuh [15]). (1) The realative Dehn function of a wreath product of two finitely generated abelian

groups is polynomially bounded.

(2) The Baumslag-Solitar group BS(1,2) has linear Dehn function.

(3) Let G = B̃S(n,m) = 〈a, t | (an)t = am〉S2
where m > 2,m = n+ 1. Then δ̃G(n)4 n3.

With the technique we developed, we can improve [15, Theorem E] to the following.
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Proposition VI.4.2. Let T be a finitely generated abelian group and let A be a finitely generated T -module. Form the

semidirect product

G = A⋊T.

Then δG(n)4 max{n3, δ̂ 3
A(n

2)}.

Proof. It is not hard to reduce the problem to the case when T is free abelian. Thus we just assume that T is a

finitely generated free abelian group. Suppose T = {t1, t2, . . . , tk} is a basis of T and A = {a1,a2, . . . ,am} generates

the module A over ZT . Let M be the free T -module generated by A and S be a submodule of M generated by

f1, f2, . . . , fl , where fi = ∑m
j=1 αi,ia j for 1 6 i 6 k,αi, j ∈ ZT . Then we can write down a presentation of G as follows

G = 〈a1,a2, . . . ,am, t1, t2, . . . , tm | [ti, t j] = 1(1 6 i < j 6 k),

[ai,a
w
j ] = 1(1 6 i < j 6 m,w ∈ ZT ),

m

∏
j=1

a
αi, j

j = 1(1 6 i 6 l)〉.

Then, by the same discussion as in Section VI.3, we have a finite relative presentation of G:

G = 〈a1,a2, . . . ,am, t1, t2, . . . , tm | [ti, t j ] = 1(1 6 i < j 6 k),

[ai,a j] = 1, [ai,a
ts
j ] = 1(1 6 i < j 6 m,1 6 s 6 k),

m

∏
j=1

a
αi, j

j = 1(1 6 i 6 l)〉S2
.

Now let w =G 1 and |w| 6 n. Since in this case all ti, t j commutes, it is much easier than the general case. Following

the same process as in the proof of Proposition V.1.2, w can be convert to its ordered form a
µ1
1 a

µ2
2 . . .a

µm
m , where

deg(µi)< n,∑m
i=1 |µi|6 n. The cost is bounded by n3. Notice that the length of a

µ1

1 a
µ2

2 . . .a
µm
m is bounded by n2. Then

there exists α1,α2, . . . ,αl ∈ ZT such that

a
µ1
1 a

µ2
2 . . .aµm

m =
l

∏
i=1

f
αi
i ,

l

∑
i=1

|αi|6 δ̂A(n
2).

The rest of the proof is the same as the proof of Lemma VI.3.5, since it is just a special case of Lemma VI.3.5.

Now let us estimate the relative Dehn function from above for some concrete examples.

To begin with, we consider the metabelianized Baumslag-Solitar group

B̃S(n,m) = 〈a, t | (an)t = am〉S2
.

The normal subgroup generated by a is a Z〈t〉-module. In this case, i.e., when the module is over the Laurent polyno-

mial of one variable and is generated by one variable, the Dehn function of the module is well-studied. The following
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theorem from Davis and Olshanskiy [12] shows that the Dehn function of a 〈t〉-module is a polynomial.

Theorem VI.4.3 (Davis, Olshanskiy [12, Theorem 8.6]). Let M = 〈a〉 is the free module of rank one over the group

ring Z〈t〉. Let f = h(t)a where h(x) is a polynomial of the form dnxn + dn−1xn−1 + · · ·+ d0. Then the Dehn function

of the 〈t〉-module M/〈 f 〉 is a polynomial. Furthermore, the degree of this polynomial is exactly one plus the maximal

multiplicity of a (complex) root of h(x) having modulus one.

Thus we have

Proposition VI.4.4. The metabelianized Baumslag-Solitar group B̃S(n,m) = 〈a, t | (an)t = am〉S2
has at most cubic

relative Dehn function when n 6= m and has at most quartic relative Dehn function when n = m.

Proof. We follow the same process as in Lemma VI.3.5. Note that in this case we have |A | = |T | = 1, which

simplifies the process a lot. Give a word w =G 1 of length l. It is not hard to check that converting w to OF(w) costs

at most (4l − 3)l2. Suppose OF(w) = aµ , where |µ | 6 l,deg µ 6 l. We can conjugate w by t l such that µ only have

positive powers of t. Thus we assume that |µ |6 l,deg µ 6 2l. Further, the length of µ is bounded by l by definition.

In this case, the module A is isomorphic to M/S where M is a free T -module with basis a and S is its submodule

generated by {(nt −m)a}. Consider the polynomial ring R = Z[t, t−1] and its ideal I = 〈nt −m, tt−1 − 1〉. We have

that A ∼= R/I. The Gröbner basis of I is {tt−1 − 1,nt −m,mt−1 − n}. If we regard µ as an element in I, it can only be

reduced by nt−m since it only has positive power of t. It follows that there exists a polynomial ν , which only consists

of the power of t, such that

µ = (nt −m)ν.

This equality also holds in the polynomial ring Z[t]. When n 6= m, the Dehn function of 〈t〉-module ZT/〈nt −m〉 is

linear, by Theorem VI.4.3. Thus there exists C such that |ν|6C‖µ‖+C. We have that

aµ =G (amt−n)ν .

The area of the right hand side is at most Cl +C. Converting the right hand side to its ordered form costs at most

(4l − 3)((m+ n)(Cl+C))2 since the degree is less than l and we have (m+ n)(Cl+C) many conjugates to rearrange.

Thus the upper bound of Ãrea(w) is at most l3 up to equivalence when n 6= m.

When n = m, the Dehn function of 〈t〉-module ZT/〈nt −m〉 is quadratic. Following the same process, we have

that the upper bound of Ãrea(w) is at most l4 up to equivalence when n 6= m. This finishes the proof.

For the case n = 1, the group B̃S(1,n)∼= BS(1,n) is finitely presented. Following from Theorem VI.3.1, the Dehn

function of BS(1,n) is at most exponential.
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One special case Fuh [15, Theorem 6.1] concerned is when m > 2,m = n+ 1. In this case, we have that a =

[an, t]. Since a itself is a commutator, it follows that the relative area of words like [atk
,a] is at most 4 instead of

linearly depending on k. Therefore we can improve the result in [15, Theorem 6.1] by the following corollary of

Proposition VI.4.4.

Corollary VI.4.5. The metabelianized Baumslag-Solitar group B̃S(n,m) = 〈a, t | (an)t = am〉S2
,m > 2,m = n+1 has

at most quadratic relative Dehn function.

The lamplighter groups are another interesting class of infinite presented metabelian groups with a simple module

structure. We have

Proposition VI.4.6. The lamplighter groups have at most cubic relative Dehn function.

Proof. Consider the lamplighter group Lm with the standard presentation.

Lm = 〈a, t | am = 1, [a,atn

] = 1,n ∈ N〉.

By Lemma VI.3.3, we have a finite relative presentation as the following

Lm = 〈a, t | am = 1, [a,at ] = 1〉S2
.

The rest of the proof is the same as the proof of Proposition VI.4.4. The only difference is that the submodule is

generated by {m}.

This slightly improves the estimation in [15, Theorem B2].

VI.5 Relative Dehn Function of the Lamplighter Group L2

In Section VI.3 and Section VI.4, we estimate the relative Dehn function for various groups using the Dehn function of

the canonical modules in those groups. Though this method works for any finitely generated group, the upper bound

and lower bound given by this technique are usually different. Thus to compute the precise relative Dehn function (up

to equivalence) of a finitely generated metabelian group, we need a better method to estimate, which usually means

that we lose some universality. In this section, the technique we show, even though is very interesting, only works for

the lamplighter group L2.

The goal of this section is to prove the following propostition.

Proposition VI.5.1. The lamplighter groups L2 has linear relative Dehn function.

Proof. The linear lower bound is given by Theorem VI.4.3.
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We choose the following relative presentation of L2:

L2 = 〈a, t | a2 = 1, [a,at ] = 1〉S2
.

For the upper bound, consider a word w ∈ L2 that represents the identity. Thus w has the form

w = tn1atn2an3 . . . tn2katn2k+1 , where n2,n3, . . . ,n2k 6= 0.

Suppose the length of w is n, combining the fact that w = 1, we have

2k+
2k+1

∑
i=1

|ni|= n,
2k+1

∑
i=1

ni = 0.

Inserting tt−1 or t−1t, we can rewrite w as the following form:

w = at−n1
at−(n1+n2) . . .at−(n1+n2+···+n2k) .

Thus w represents an element in ⊕i∈ZZ2, where the ati
is the generator of the i-th copy of Z2. Since w = 1, then every

element in the set {−n1,−(n1 +n2), . . . ,−(n1 +n2 + · · ·+n2k)} occurs even many times in the sequence −n1,−(n1+

n2), . . . ,−(n1 +n2+ · · ·+n2k). Our goal is to gather the conjugates of a of the same exponents together at a linear cost

with respect to n.

Since a−1 = a, we notice that

ats

atl

= (aatl−s

)ts

= [a, t l−s]t
s

, l,s ∈ Z.

Thus any consecutive pair of two conjugates of a is a commutator. It follows that any such pair commutes with any

other pair of this form without any cost inside the variety of metabelian groups.

For convenience, let mi = ∑2k
i=1−ni. We now turn the problem of estimating the relative area of w to a problem of

cancelling numbers in a sequence and estimate the cost. Consider a sequence of number

m1,m2, . . . ,m2k.

The goal is to cancel all the pairs of the same value. We have three operations allowed:

(i) Cancel two consecutive numbers without any cost.

(ii) Commute a pair of consecutive numbers with another pair of consecutive numbers next to it without any cost.

(iii) Commute two consecutive numbers c,d with a cost of |c− d|.
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Applying all three operations to the original sequence many times, the result might seems chaotic. To analyze

the process, for a sequence of numbers, we define the ι(mi) be the position of mi in the sequence. At the beginning,

ι(mi) = i. Then we define σ(mi,m j) = |ι(mi)− ι(m j)| mod 2. So σ(mi,m j) = 0 if mi and m j are even positions apart

and σ(mi,m j) = 1 if mi and m j are odd positions apart. We notice that

(a) operations from (i) and (ii) do not change σ(mi,m j);

(b) if m j is next to m j, applying the operation (iii) to commute mi and m j will change all values of σ(mi,ml),σ(m j,ml)

for l 6= i, j.

From the above observation, we have that

(1) if σ(mi,m j) = 0 and i < j, m j can be moved to the position next to mi just using operations from (ii).

(2) if σ(mi,m j) = 0, i < j and mi = m j, then mi and m j can be cancelled using just operations from (i) and (ii).

(3) for mi,m j,ml such that mi = m j, σ(mi,m j) = 1,σ(mi,ml) = 0, we can cancel mi,m j with the cost of |mi −ml |.

(1) can be achieved by commuting two consecutive pairs of numbers. (2) is a direct consequence of (1). Let us show

how to achieve (3). By (1), we can move ml next to mi. Then by using operation (ii), the pair miml (or mlmi) can

be moved to the position next to m j, resulting the form of mimlm j or m jmlmi. Finally, we commute mi and m j using

operation (iii) at a cost of |mi −m j| and cancel mim j.

Now we are ready to estimate the cost to cancel the sequence m1,m2, . . . ,m2k to the empty sequence. By (2),

we can assume that we have already cancelled all the pairs mi,m j where σ(mi,m j) = 0 using operations (i) and (ii).

This step costs nothing and does not change any σ(mi,m j) for mi,m j remaining in the resulting sequence. Let the

remaining elements after cancellations be mi(1),mi(2), . . . ,mi(4s) for some 2s 6 k and i(1) < i(2) < · · · < i(4s). The

remaining sequence satisfies the following properties:

(a) σ(mi(s),mi(l)) = i(s)− i(l) mod 2,

(b) if mi(s) = mi(l) then σ(mi(s),mi(l)) = 1,

(c) σ(mi(s),mi(l)) = σ(mi(s′),mi(l′)) for mi(s) = mi(s′),mi(l) = mi(l′).

Here the property (a) is true because in the original sequence ι(mi(s)) = i(s) and we only use operation (i) and (ii)

which do not change σ(mi(s),mi(l)). (b) and (c) follow from the definition of σ and the remaining sequence.
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Figure VI.1: the corresponding graph of the sequence 2,3,5,3,5,8,2,8

We define the weighted graph Γ0 associated with mi(1),mi(2), . . . ,mi(2s)) where the vertex set is {mi(1),mi(2), . . . ,mi(4s)}

and there is an edge with weight |mi(s)−mi(l)| connects mi(s),mi(l) if σ(mi(s),i(l)) = 0. Note that this graph is invariant

under operations (ii) and may have multi-edge.

By (3), we are allowed to cancel mi(s),mi(l) at a cost of |mi(s) −mi( j)| for some mi( j) that σ(mi(s),mi( j)) = 0.

After the cancellation, since we use operation (iii) once, σ(mi( j),mi( j′)) change to 0 for some mi(k′) that mi( j) = mi( j′).

Therefore we can then cancel mi( j),mi( j′) without any cost. In summary, we have

(4) for mi(s) 6= mi( j) that σ(mi(s),mi( j)) = 0, we can cancel a pair of number mi(s) and a pair of number mi( j) at a cost

of |mi(s)−mi( j)| where σ(mi,m j) remains the same for numbers that have not been cancelled.

(4) will delete an edge of (mi(s),mi( j)) in the graph. If no edges connecting mi(s) and mi( j), we delete the two vertices

mi(s),mi( j). The cost is the weight of that edge. Let C be a cancellation of Γ0 where C consists of an ordered sequence

of edges in Γ0, where we cancel the edge by the order of the sequence. Thus the total cost of a cancellation C to the

empty graph is just a sum of the weight of edges in C . Every cancellation can be associated with a path pC where the

path passes through the sequence of edges in C in the same order.

Now we delete edges in the following way. We first delete one edge (mi(1),mi(2)) since σ(mi(1),mi(2)) = 0. We let

the resulted graph to be Γ1.

Figure VI.2: two different cancellations C ,C ′ and their corresponding pC , pC ′ . The total cost of C is 3 and the total

cost of C ′ is 8.
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Inductively, Γi+1 is obtained by deleting an edge (mi(s),mi( j)) where i, j are the smallest numbers remained in Γi.

Γs will be an empty graph since every time we delete four numbers in the sequence.

Let us estimate the cost from Γ0 to Γs. Since every time we cancel pairs of numbers based on the order of the

original sequence m1,m2, . . . ,m2k (always cancel the first two numbers remained). The cost is bounded by

2k−1

∑
i=1

|mi+1 −mi|=
2k

∑
i=2

|ni|< n.

Let inequality can also be realized by the following interpretation: the sequence mi(1),mi(2), . . . ,mi(4s) defines a path p

in Γ0 (since σ(mi(i),mi( j+1)) = 0) that p( j) = mi( j), the weight of the path p is bounded by n by the definition of mi. p

happens to be the path associated with this cancellation. It follows that the cost of the cancellation is bounded by the

total weight of p. Thus the total cost is bounded by n.

By Lemma VI.3.2, the total cost of converting

atm1
atm2 . . .atm2k

to 0 is bounded by 4n− 3. We finish the proof.

VI.6 Relative Dehn Functions and Subgroup Distortions

So far for all the examples considered in [15] and Section VI.4, only the upper bounds of their relative Dehn functions

are estimated. Similar to the case of the Dehn function, it is genuinely much harder to estimate the lower bound. In this

section, we will connect the relative Dehn function of a finitely generated metabelian group to the subgroup distortions

in a wreath product of two free abelian groups. This connection provides a new method to estimate the lower bound

for the relative Dehn function and yields a sequence of examples of finitely generated metabelian groups with relative

Dehn function larger that nk for arbitrary k ∈ N. And finally, we will finish the proof of the last piece of Theorem A

and Theorem C.

Let G be a finitely generated group with a finite generating set X and H be a a subgroup of G with finite generating

set Y . The distortion function of H in G is

∆G
H(n) = sup{|w|Y | w ∈ H, |w|X 6 n}.

We consider a slightly different equivalence relation for distortion functions. For non-decreasing functions f and g on

N, we say that f � g if there exists a constant C such that f (n)6Cg(Cn). Hence we say that two functions f and g are

equivalent, written f ≍ g, if f � g and g � f . As expected, the distortion function is independent of the choice of the
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finite generating set under this equivalence relation. The reason we consider ≍ rather than ≈ is that if the subgroup

is infinite then the distortion function is at least linear. We say a subgroup is undistorted if the distortion function is

equivalent to the linear function.

For example, the subgroup 〈a〉 in the Baumslag-Solitar group 〈a, t | at = a〉 is exponentially distorted since atn
=

a2n
. And it not hard to check that infinite subgroups of a finitely generated abelian group are undistorted.

Let A and T be free abelian groups with bases {a1,a2, . . . ,am} and {t1, t2, . . . , tk} respectively. Consider the wreath

product W := A ≀ T . The base group B := 〈〈A〉〉 is a T -module. For a finite subset X = { f1, f2, . . . , fl} of B, let H

be the subgroup of W generated by X ∪{t1, t2, . . . , tk} and G be the group W/〈〈X 〉〉. We denote by π : W ։ T the

canonical quotient map.

Theorem VI.6.1. Let W,H,G be groups defined as above, then

∆W
H (n)4 δ̃ k

G(n)+ nk, δ̃G(n)4 max{n3,(∆W
H (n2))3}.

In particular, if k = 1,

∆W
H (n)4 δ̃G(n).

Proof. First we show the following lemma.

Lemma VI.6.2. Let M be the T -module B/〈〈X 〉〉. Then δ̂M(n)4 ∆W
H (n)4 δ̂ k

M(n)+ nk.

Proof. Let g ∈ H. Note that g can be written as g0t, by adding t := π(g) to the end, where g0 ∈ B, t ∈ T . Since

|π(t)|T 6 |g|W 6 n, |g0|W 6 2|g|W . Thus, we have

|g|H = |g0t|H 6 |g0|H + |t|H 6 |g|W + |g0|H .

Assume that the ordered form of OF(g0) is a
µ1

1 a
µ2

2 . . .a
µm
m , let us estimate |g0|H . First note that deg µi 6 |g|W for all i.

Let α1,α2, . . . ,αl be elements in ZT such that g0 = f
α1
1 f

α2
2 . . . f

αl

l and ∑l
i=1 |αi| is minimized. By Theorem 3.4 in [12],

|g0|H =
l

∑
i=1

|αi|+ reach(g0),

where reach(g0) is the length of the shortest loop starting at 0 in the Cayley graph of T that passing through all points

in the set ∪l
i=1 suppαi. By Lemma VI.3.4, for all i, deg(αi) 6 |g|W +C ∑l

i=1 |αi| for some constant C. It follows that

∪l
i=1 suppαi lies in Ball B0(|g|W +C ∑l

i=1 |αi|) of radius |g|W +C ∑l
i=1 |αi| centered at 0 in the Cayley graph of T .
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Since there exists a path of length (2(|g|W +C ∑l
i=1 |αi|)+1)k passing through all the points in B0(|g|W +C ∑l

i=1 |αi|),

reach(g0)6 (2(|g|W +C
l

∑
i=1

|αi|)+ 1)k.

Therefore, we have
l

∑
i=1

|αi|6 |g|H 6 |g|W +
l

∑
i=1

|αi|+ 2k(|g|W +C
l

∑
i=1

|αi|)
k.

Since ∑l
i=1 |αi|= ÂreaM(g0) by definition and ‖g0‖6 2|g|W , we have the following estimation:

Ârea(2|g|W )6 |g|H 6 |g|W + Ârea(2|g|W )+ 2k(|g|W +CÂrea(2|g|W ))k.

By Lemma VI.3.5, we have

∆W
H (n)4 δ̃ k

G(n)+ nk.

Last, by Proposition VI.4.2,

δ̃G(n)4 max{n3,(∆W
H (n2))3}.

Theorem VI.6.1 connects the subgroup distortion function and the relative Dehn function, as it provides a way to

estimate the relative Dehn function from the bottom. One special case is that both A and T are free abelian group

of rank 1. Davis and Olshanskiy [12] show that subgroups in W = 〈a〉 ≀ 〈t〉 have polynomial distortion functions and

moreover for each l ∈ Z, a subgroup of the form Hl := 〈[. . . , [a, t], t], . . . , t], t〉, where the commutator is (l −1)-fold, is

isomorphic to Z ≀Z with nl distortion. It follows immediately that

Corollary VI.6.3. Let W = 〈a〉 ≀ 〈t〉 be the wreath product of two infinite cyclic group. For each l ∈ N let wl =

[. . . , [a, t], t], . . . , t] be the (l − 1)-fold commutator. Finally let Hl =W/〈〈wl〉〉. Then we have

δ̃Hl
< nl.

Let us consider the case when the rank of T is 1, that is, when k = 1. The distortion functions in this case have

been study extensively.

Theorem VI.6.4 (Davis, Olshanskiy, [12, Theorem 1.2]). Let A be a finitely generated abelian group.
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(1) For any finitely generated infinite subgroup H 6 A ≀Z there exists l ∈N such that the distortion of H in A ≀Z is

δ A≀Z
H (n)≍ nl .

(2) If A is finite, then l = 1, that is, all subgroup are undistorted.

(3) If A is infinite, then for every l ∈N there is a 2-generated subnormal subgroup H of A ≀Z having distortion function

∆
A≀Z
H (n)≍ nl .

It follows that

Theorem VI.6.5. Let G be a finitely generated metabelian group such that rk(G) = 1. Then the relative Dehn function

of G is polynomially bounded. If in addition G is finitely presented, the Dehn function of G is asymptotically bounded

above by the exponential function.

Proof. By passing to a finite index subgroup, we can assume that there exists a short exact sequence

1 → A → G → Z→ 1,

where A is abelian.

We denote by T = 〈t〉 the Z in the short exact sequence. Since every short exact sequence 1 → A → G → Z→ 1

splits, G is isomorphic to the semidirect product A⋊T .

Note that A is a normal subgroup of G, then it is finitely generated as a T -module. Thus, there exists a free

T -module M of rank m and a submodule S = 〈 f1, f2, . . . , fl〉 such that A ∼= M/S. We have that

G ∼= (M/S)⋊T ∼= (M ⋊T)/〈〈 f1, f2, . . . , fl〉〉.

Let Ā be a free abelian group of rank m and W := Ā ≀T be the wreath product of Ā and T . Then there is an isomorphism

ϕ : M⋊T →W . We have

G ∼=W/〈〈ϕ( f1),ϕ( f2), . . . ,ϕ( fl)〉〉.

Let H be the subgroup in W generated by {ϕ( f1),ϕ( f2), . . . ,ϕ( fl), t}. By Theorem VI.6.1, we have that

δ̃G(n)4 max{n3,(∆W
H (n2))3}.

By Theorem VI.6.4, ∆W
H (n) is a polynomial. Therefore the relative Dehn funcion δ̃G(n) of G is polynomially bounded.
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We are done for the relative Dehn function case.

If G is finitely presented, by Theorem VI.3.1, if the relative Dehn function is polynomially bounded, δG(n) is

bounded above by the exponential function.

This theorem gives the exponential upper bound of Dehn functions for many examples we introduced in Sec-

tion III.2, including the metabelian Baumslag-Solitar groups and Zn ⋊φ Z where φ ∈ GL(n,Z). And it is also the final

piece of Theorem A and Theorem C for the case rk(G) = 1.
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Chapter VII

Embedding Problems

VII.1 Motivations

Another interesting topic for finitely generated metabelian groups is the embedding problem. It is well-known that

every recursively generated group can be embedded into a finitely presented group [20]. If we restrict to a variety

of group V , we can ask if a recursively generated group in V can be embedded into a finitely presented group (in

the absolute sense) from V . It turns out the only non-trivial positive result so far is when V = S2, the variety of

metabelian groups.

Theorem VII.1.1 (Baumslag [4]). A finitely generated metabelian group embeds into a finitely presented metabelian

group.

Recall that

Theorem VII.1.2 (Birget, Olshanskii, Rips, Sapir [7]). The word problem of a finitely generated group G is in NP if

and only if G embeds into a finitely presented group with polynomial Dehn function.

It is known that any finitely generated metabelian group can be represented by matrices over finite products of fields

(See in [31], [23], [36]). It follows that the word problem for any finitely generated metabelian group is in LSAPCE ,

in particular in NP. Therefore a finitely generated metabelian group can be embedded into a finitely presented group

with polynomial Dehn function.

Many results show that, in some cases, a finitely generated metabelian group embeds into a finitely presented

metabelian group with polynomial Dehn function. For example, the metabelian Baumslag-Solitar groups embed into

finitely presented metabelian groups with quadratic Dehn function [13], and embed quasi-isometrically into finitely

presented metabelian groups with cubic Dehn function [1], and the lamplighter groups embed into finitely presented

metabelian group with at most quartic [21].

G. N. Arzhantseva and D. Osin asked the following question [1].

Problem VII.1.3. Is any finitely generated metabelian group embedded into a finitely presented metabelian group

with polynomial Dehn functions?

The Dehn functions of finitely presented metabelian groups constructed in Theorem VII.1.1 are mostly unknown.

M. Kassabov and T. R. Riley computed the Dehn function of Γ = 〈a,s, t | [at ,a] = 1,as = at+1, [s, t] = 1〉, which is

the group contains a free metabelian group of rank 1 (it is Z) in Baumslag’s construction. But, for example, the

Dehn function of finitely presented groups in [3] contains free metabelian groups of rank other than 1 are unknown.
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We answer this question by computing the Dehn functions for a wilder class of finitely presented metabelian groups

Baumslag’s constructed.

Theorem VII.1.4. Every wreath product of a free abelian group of finite rank with a finitely generated abelian group

can be embedded into a metabelian group with exponential Dehn function.

The theorem will be proved in the next section. One immediate consequence of this theorem is the following.

Corollary VII.1.5. A free metabelian group of finite rank embeds into a finitely presented metabelian group with

exponential Dehn function.

The question if such groups can be embedded into a finitely presented metabelian group with polynomial Dehn

function remains, even in the case of Z ≀Z. We shall discuss Problem VII.1.3 in Section VIII.2.

VII.2 Embeddings of Wreath Product of Abelian Groups

The class of examples we investigate in this section was introduced by Baumslag in 1973 [4]. Let A be a free abelian

group of finite rank freely generated by {a1,a2, . . . ,ar}. Furthermore let T be a finitely generated abelian group

with basis {t1, t2, . . . , tk, . . . , tl}, where t1, . . . , tk are of infinite order and tk+1, . . . , tl are respectively of finite order

mk+1, . . . ,ml . Finally let F = { f1, f2, . . . , fk} be a set of element fi from ZT , where each fi is of the form

fi = 1+ ci,1ti + ci,2t2
i + · · ·+ ci,di−1t

di−1
i + t

di
i ,di > 1,ci, j ∈ Z.

Now let us define a group WF corresponds to F . The generating set is the following

X = {a1,a2, . . . ,ar, t1, t2, . . . , tl ,u1, . . . ,uk},

where r,k, l are the same integers as above.

The defining relations of WF are of four kinds. First we have the power relations

t
mi
i = 1, i = k+ 1, . . . , l.
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Next we have the commutativity relations





[ui,u j] = 1, 1 6 i, j 6 k;

[ti, t j] = 1, 1 6 i, j 6 l;

[ti,u j] = 1, 1 6 i 6 l,1 6 j 6 k;

[ai,a j] = 1, 1 6 i, j 6 r.

Thirdly we have the commutativity relations for the conjugates of the generators ai:

[au
i ,a

w
j ] = 1,1 6 i, j 6 r,

where u,w ∈ {t
α1
1 t

α2
2 . . . t

αl

l | 0 6 αi 6 di for i = 1, . . . ,k,0 6 αi < mi for i = k + 1, . . . , l}. Finally we have relations

defining the action of u j on ai:

a
u j

i = a
f j

i ,1 6 i 6 r,1 6 j 6 k.

It is not hard to show that WF is metabelian [4]. Moreover, Baumslag showed the following:

Proposition VII.2.1 (Baumslag [4]). Given a free abelian group A of finite rank and a finite generated abelian group

T , there exists F such that A ≀T →֒WF .

In particular, if r = k = l and we let fi = 1+ ti for all i, WF contains a copy of the free metabelian group of rank r.

We claim that

Proposition VII.2.2. If k > 0, WF has exponential Dehn function.

Note that when i = j = k = 1, f1 = 1+ t1, WF is the Baumslag group Γ = 〈a,s, t | [a,at ] = 1, [s, t] = 1,as = aat〉.

The exponential Dehn function of this special case is proved in [21].

We need a few lemmas before we prove Proposition VII.2.2. First, let us denote the abelian groups generated by

{t1, t2, . . . .tl} and {u1,u2, . . . ,uk} by T and U respectively.

Lemma VII.2.3. Let M be a free (U ×T )-module with basis e1, . . . ,er. Let S be the submodule of M generated by

{(ui − fi)e j | 1 6 i 6 k,1 6 j 6 r}. If h = h1e1 + h2e2 + · · ·+ hrer ∈ S such that hi ∈ ZT for all i. Then h = 0.

Proof. If k = 1, then h ∈ S means there exists α1,α2, . . . ,αr ∈ Z(U ×T ) such that

h = α1(u1 − f1)e1 +α2(u1 − f1)e2 + · · ·+αr(u1 − f1)er.

Since h = h1e1 + h2e2 + · · ·+ hrer, then hi = αi(u1 − f1). Note that hi ∈ ZT . It follows that αi(u1 − f1) does not have
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any term involves u1. Suppose αi 6= 0 for some i. Because f1 ∈ ZT , degu1
(αiu1)> degu1

(αi f1). Thus αi(u1 − f1) has

at least one term contains u1, that leads to a contradiction.

If the statement of k = n has been proved, for k = n+ 1, we have

h =
r

∑
i=1

n+1

∑
j=1

αi, j(u j − f j)ei.

We choose an integer N large enough such that uN
1 αi, j does not have any negative power of u1 for all i, j. Then

uN
1 h =

r

∑
i=1

n+1

∑
j=1

f N
1 αi, j(u j − f j)ei =:

r

∑
i=1

n+1

∑
j=1

βi, j(u j − f j)ei,

where βi, j = uN
1 αi, j. We regard βi, j(u1) as a polynomial of u1. Replacing u1 by f1, we have

f N
1 h =

r

∑
i=1

n+1

∑
j=2

βi, j( fi)(u j − f j)ei.

Note that f N
1 hi ∈ ZT for i = 1, . . . ,r, then by the inductive assumption, f N

1 hi = 0 for all i. Since f1 = 1+ c1,1t1 +

c1,2t2
1 + · · ·+ ci,d1−1t

d1−1
1 + t

d1
1 and t1 has infinite order, then f1 is not a zero divisor in Z(U ×T ). Thus hi = 0 for all i.

Therefore h = 0. The induction finishes the proof.

It follows that if a
h1
1 a

h2
2 . . .ahr

r =WF
1 such that hi ∈ ZT for all i, then hi = 0 as an element in Z(U ×T ) for every i.

To convert it to 1, we only need those metabelian relations to commute all the conjugates of ai’s. By Theorem VI.1.1,

it will cost at most exponentially many relations with respect to the length of the word to kill the word.

Next, let w =WF
1 and consider the minimal van Kampen diagram ∆ over WF . There are two types of relations

contain ui: (1) commutative relations [ui,u j] = 1, [ui, ts] = 1, j 6= i,1 6 s 6 l; (2) action relations a
ui
j = a

fi
j ,1 6 j 6 r.

Those cells, in the van Kampen diagram, form a ui-band.

Figure VII.1: an example of a u1-bands

We have some properties for ui-bands in a van Kampen diagram over WF .

Lemma VII.2.4. (i) The top (or bottom) path of a ui-band is a word w that all ts,u j for s, j 6= i are in the same

orientation, i.e. the exponents of each letter ts,u j’s are either all 1 or all −1. In particular,

w =WF
a

h1
1 a

h2
2 . . .ahr

r t
α1
1 . . . t

αl

l u
β1
1 . . .u

βk

k ,
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where hi ∈ Z(U ×T ), sgn(αi) = sgn(β j) for all i, j, and αs (or β j) is equal to the number of times of ts (resp. u j)

appears in w for s, j 6= i.

(ii) ui-bands do not intersect each other. In particular, a ui-band does not self-intersect.

(iii) If i 6= j, a ui-band intersects a u j-band at most one time.

Proof. (i) By the definition of a ui, all letters ts,u j,s, j 6= i of the top (or bottom) path must share the same direction.

The second half of the statement can be proved basically the same way as we did for the ordered form (See ??).

(ii) Because there is no ui on the top or the bottom path of a ui-band, two ui-bands cannot intersect each other.

(iii) If i 6= j and a ui-band intersects a u j-band. Since the van Kampen diagram is a planer graph, by comparing the

orientation, it is impossible for a ui-band to intersect a u j-band twice (or more).

Last, we have

Lemma VII.2.5. Let f (t) = td + cd−1td−1 + · · ·+ c1t + 1 ∈ Z[t],ci ∈ Z,d > 0. Then there exists α > 1 such that

|( f (t))n|> αn for all n.

Proof. We denote that ( f (t))n = ∑nd
i=0 cn,it

i.

Consider the corresponding holomorphic function g(z) = zd + c1,d−1z1,d−1 + · · ·+ c1,1z+ 1. If ∃z0, |z0| = 1 such

that |g(z0)|> 1, we have

|g(z0)|
n = |(g(z0))

n|= |
nd

∑
i=0

cn,iz
i
0|6

nd

∑
i=0

|cn,i |= | f n|.

Then we are done.

Now suppose |g(z)|6 1 for all |z|= 1. Then by Cauchy’s integral formula we have

1 = g(0) =
1

2π i

∫

|z|=1

g(z)

z
dz.

Take modulus on both sides:

1 = |
1

2π i

∫

|z|=1

g(z)

z
dz|6

1

2π

∫ 2π

θ=0
|g(eiθ )|dθ 6 1.

Therefore |g(z)|= 1 for |z|= 1 almost everywhere. Let z = eiθ . We have

g(eiθ ) = (
d

∑
j=0

c1, j cos(iθ ))+ i(
d

∑
j=0

c1, j sin( jθ )).

Then

(
d

∑
j=0

c1, j cos(iθ ))2 +(
d

∑
j=0

c1, j sin( jθ ))2 =
d

∑
h=0

c2
1, j + 2 ∑

j<k

c1, jc1,k cos((k− j)θ ) = 1,
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holds for all θ . But cos((k− j)θ ) is a polynomial with respect to cosθ , i.e. cos((k− j)θ ) = Tk− j(cosθ ), where Tm(x)

is the m-th Chebyshev polynomial. The leading term of Tm(x) is 2m−1xm. Thus

d

∑
h=0

c2
1, j + 2 ∑

j<k

c1, jc1,kTk− j(cosθ ) = 1,∀θ .

Note the leading term of the left-hand side is 2d−1 cosd θ . That leads a contradiction since the equation above has at

most d solutions for cosθ .

Proof of Proposition VII.2.2. First, we show that the lower bound is exponential. Consider the word w = [a
un

1
1 ,a1]. w

is of length 2n+ 4 and w =WF
1. Let ∆ be a minimal Van-Kampen diagram with boundary label w. By comparing

the orientation, u1-bands starting at the top left of ∆ will end at either bottom left or top right. By Lemma VII.2.4,

u1-bands do not intersect each other, then we can suppose at least half of the u1-bands starting at the top left end at the

top right. See in Figure 4, the shaded areas are u1-bands.

Figure VII.2: u1-bands in ∆

We first claim that there are no cells containing ts,u j,s, j > 1 on each u1-band. We denote the top and bottom path

of the i-th u1-band from the top by γ top
i and γbot

i , where i = 1,2, . . . ,m, m > n
2
. Assuming a ui-band intersect one of the

u1-band, again by Lemma VII.2.4 (ii), (iii), it can neither intersect a u1-band twice nor intersect itself. Thus it has to

end all the way to the boundary of ∆. A contradiction.

Then if there exists a cell containing ts for s > 1 in the top most u1-band, then by Lemma VII.2.4 (i), γ
top
1 is a word

a
h1
1 a

h2
2 . . .ahr

r t
α1
1 . . . t

αl

l . Thus γ
top
1 and a1 form a cycle γ . We have

a
h1+1
1 a

h2
2 . . .ahr

r t
α1
1 . . . t

αl

l = 1,αi 6= 0.

78



It leads to a contradiction since the image of the left hand side in U ×T is not trivial. And by definition of a u1-band,

if γ
top
i does not have any ts,s > 1, neither does γbot

i . Next consider two consecutive u1-bands. If γbot
i does not have ts,

then by the same argument, neither does γ
top
i+1. Therefore the claim is true.

Denote the words of γ
top
i and γbot

i by w
top
i and wbot

i respectively. Such words only consist of ai’s and t1. Note that

wbot
i = w

top
i+1 for i = 1, . . . ,m− 1. Since wbot

1 = a
− f1
1 , by the same discussion above, w

top
i = a

− f i−1
1

1 ,wbot
i = a

− f i
1

1 (See

in Figure 4). Next we focus on the number of a1 in each wbot
i , which is at least | f i

1|. By Lemma VII.2.5, there exists

α > 1 such that | f i
1|> α i. Therefore, the number of a1 in w

top
m is at least αm−1. Since m > n

2
, the number of cells in the

m-th u1-band is at least α [ n
2 ]. Thus the area of [a

un
1

1 ,a1] is at least α [ n
2 ]. It follows that the lower bound is exponential.

For the upper bound, as Theorem VI.1.1 suggests, all we need is to consider how to solve the membership problem

of the submodule S where S is generated by {(ui− fi)e j | 1 6 i 6 k,1 6 j 6 r}. Suppose w = 1 with |w|6 n, the w has

a ordered form as

w =WF
a

g1
1 a

g2
2 . . .agr

r ,gi ∈ Z(U ×T ).

And the cost of converting w to its ordered form is exponential with respect to n as we showed in Section V.4. Also

note that deg(gi), |gi| 6 n for all i. WLOG, we assume that the all exponents of ui’s are positive. The corresponding

module element of w is

g1e1 + g2e2 + · · ·+ grer.

For each term t
α1
1 t

α2
2 . . . t

αl

l u
β1
1 u

β2
2 . . .u

βk

k , αi ∈Z,βi > 0, we replace ui by ui− fi+ fi. Then we convert t
α1
1 t

α2
2 . . . t

αl

l u
β1
1 u

β2
2 . . .u

βk

k

to a form
k

∑
i=1

ηi(ui − fi)+ τ,ηi ∈ Z(U ×T),τ ∈ ZT.

If |α1|+ · · ·+ |αl |+ |β1|+ · · ·+ |βk|< n, then deg(ηi),deg(τ)<Dn, |ηi|, |τ|<Dn, where D=max{d1, . . . ,dk, | f1|, . . . , | fk|}.

Therefore, replacing ui by ui − fi + fi in every term of w, we have

g1e1 + g2e2 + · · ·+ grer =
r

∑
i=1

k

∑
i=1

µi, j(u j − f j)ei +ρ ,µi, j ∈ Z(U ×T ),ρ ∈ ZT.

Since w = 1, then ρ lies in the submodule S. By Lemma VII.2.3, ρ = 0. Also note that deg(µi, j),deg(ρ) <

Dn, |µi, j|, |ρ | < nDn. It follows from Lemma V.4.1 that all module computations in the process cost exponentially

many relations with respect to n. And it also cost at exponentially many relations to convert ρ to 0. Therefore

w =WF

r

∏
i=1

k

∏
j=1

a
µi, j(u j− f j)
i ,

and the cost of converting is exponential with respect to n. And the area of the right hand side is bounded by ∑i, j |µi, j|6

rknDn. The upper bound is exponential.
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Theorem VII.1.4 follows immediately from Proposition VII.2.2.

Proof. Let A be a free abelian group of finite rank and T be a finitely generated abelian group. If the torsion-free rank

of T is greater than 0, by Proposition VII.2.2, A ≀ T embeds into WF , which has exponential Dehn function. If the

torsion-free rank is 0, A ≀T can be first embedded into A ≀ (T ×Z). Then the problem is reduced to the first case.
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Chapter VIII

Further Discussions

VIII.1 Tight upper bound for Dehn functions of metabelian groups

The upper bound we obtained in this thesis is slightly bigger than the exponential function for the case rk(G) > 1

while all known examples are bounded by the exponential function. The answer to the following question remains

unknown.

Problem VIII.1.1. Is the (relative) Dehn function of any finitely presented metabelian group bounded above by the

exponential function?

In this thesis, we analyze the contribution of two different parts to the Dehn function of a finitely presented

metabelian group: the metabelian part and the module structure part. We show that the metabelian part will never

exceed the exponential cost. Furthermore, we prove in Lemma VI.3.5 and Theorem VI.3.1 that the Dehn function of

the module structure gives a lower bound of the Dehn function of the group. So if there exists a finitely presented

metabelian group with super-exponential Dehn function, it must contains a module structure with super-exponential

Dehn function. It means that there exists a membership problem of a submodule over a group ring of the free abelian

group such that its complexity (measured in the Dehn function of the factor module) is larger than exponential.

The first obstruction for us is the existence of such a membership problem. There is already a lot of study of

the polynomial ideal membership problem, which is a special case for the membership problem over modules. For

example, Mayr and Meyer showed that the lower space bound of a general polynomial ideal membership problem

is exponential [26], though in their work the input of the problem including the generating set of the ideal, which is

different from the problem we concern.. Other results can be found several surveys, such as [25], [27]. But it remains

unknown whether there exists an integral coefficient polynomial ideal such that the time complexity of its membership

problem is harder than exponential.

The second obstruction comes from the finitely-presentedness. Recall that a finitely generated metabelian group is

finitely presented if and only if the module structure is tame [6]. Thus even if we manage to find a complicated enough

membership problem in some submodule, it may not give us a finitely presented metabelian group unless the module

is tame.

Our estimation in Section IV.4 might not be tight at all. For example, when we compute the relative Dehn function

of the metabelianized Baumslag-Solitar groups we solve the membership problem of the module structure in linear

time (See in Section VI.4), while the division algorithm in Section IV.4 suggests an exponential upper bound. But it is

still possible to find a more efficient algorithm to solve the membership problem of a submodule and hence we find a
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better upper bound for the Dehn function of a finitely presented metabelian group.

However, there might be an alternative way to give an affirmative answer to Problem VIII.1.1. Yves Cornulier

suggests that the technique in [11] can be used to show that the Dehn function of split finitely metabelian groups

are either polynomially or exponential bounded. If this is true, combining results from [6] and [35], every finitely

presented metabelian group has either a polynomial or exponential Dehn function. But so far, their technique cannot

be applied to the Baumslag’s group Γ, even though it has been proved that Γ has exponential Dehn function [21].

VIII.2 Embeddings of finitely generated metabelian groups

In Chapter VII, we show that some wreath products of abelian groups embeds into finitely presented metabelian groups

with exponential Dehn function. It can be asked if those groups cannot be embedded into finitely generated metabelian

groups with polynomial Dehn function. For example, it is not known even for the case Z ≀Z while it embeds into a

finitely presentation metabelian group with exponential Dehn function (the Baumslag’s group Γ) and embeds into a

finitely presented group with quadratic Dehn function (the Thompson group F).

If we want to give a negative answer to Problem VII.1.3, we have to prove that there exists a finitely generated

metabelian group that cannot be embedded into a finitely presented metabelian group with polynomial Dehn function.

One possible way to prove such a thing is that construct a finitely generated metabelian group with a module structure

that has exponential time complexity for its membership problem. Thus any finitely presented metabelian group

it embeds into might inherit the module structure with exponential time complexity, and consequently has at least

exponential Dehn function.
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