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CHAPTER 1

Introduction

1.1 Optical Biosensors

Biosensors are devices used to detect the presence or concentration of a biological analyte,

or to monitor continuous biochemical reactions. A biosensor combines a biorecognition el-

ement with a physicochemical transducer, sometimes a data analyzer and a reader. Biosen-

sors, along with the bioassays and biochemical assays, provide the information crucial to

medical diagnostics, infectious disease screening, food safety inspection, security checks

and environmental monitoring, and play an increasingly important role in the modern soci-

ety. The overall biosensors market is projected to grow from 21.2 billion USD in 2019 to

31.5 billion by 2024 at a compound annual growth rate of 8.3%.[1]

Based on the signal transduction methods, biosensors can be categorized as optical,

electrical, electrochemical, thermometric, piezoelectric, magnetic and micromechanical.[2]

Optical biosensors represent one of the most common type of biosensors and promise to

be the most widely used biosensor in the future. Compared to other sensing technologies,

optical sensing is more direct, non-invasive, and very robust against environmental inter-

ference.

Optical sensing is performed by monitoring the interaction of light with the analyte

and biorecognition element. Based on whether or not labels are used, optical sensing

could be further classified into label-based and label-free sensing. Common label-based

sensing protocols include (1) colorimetric labeling, (2) fluorescent labeling, (3) chemilu-

minescent labeling, and (4) nanoparticle labeling.[3] Labeling helps biosensors transform

a non-directly readable signal into a directly observable signal and signal magnification is

1



also commonly associated with the transformation. Label-based sensing could detect trace

amounts of analyte with the help of highly sensitive photon detectors. The systems can

have high signal to noise ratios even with inexpensive instrumentation. One of the clas-

sic examples of label-based sensing protocols is Enzyme Linked Immunosorbent Assay

(ELISA), a plate-based assay technique which is widely used by hospitals and biomedical

industries and is designed for detecting and quantifying biomolecular species such as pep-

tides, proteins, antibodies, and hormones [4]. In ELISAs, antigens are immobilized to a

solid support, and then a combination of target antibodies and enzymes are introduced to

the system.In this mixture, target antibodies bind with the enzymes and both retain their

individual functionalities. After the specific binding of the labeled antibodies with the

immobilized antigens and the removal of unbound antibody-enzyme pairs, the remaining

bound antibody-enzyme pairs are detected by the formation of a colored compound gener-

ated by an enzyme catalyzed reaction.[5] The enzymes used for the assay are referred to as

enzyme probes. Horseradish peroxidase (HRP) and alkaline phosphatase (AP) are the most

common enzyme probes in ELISAs. There are several formats used for ELISAs, and they

can be classified into four categories, shown in Figure 1.1, which include direct ELISA, in-

direct ELISA, sandwich ELISA and competitive ELISA. Detailed procedures and working

principles of ELISAs can be found in ref [6].

Though widely used in test centers, label-based biosensing suffers major limitations.

Firstly, the preparation steps, including labeling, rinsing and washing, are time-consuming

and low-yield; they may take hours or even days based on specific tests. Secondly, labeling

introduces non-native signals which interfere with the antibody- antigen or other protein

interactions. Thirdly, it is generally unsuitable for in-situ observation given the need to

introduce enzymes and substrate into the testing system. Instead of relying on labels for

signal transduction, label-free sensing utilizes molecular biophysical properties, such as

refractive index, to monitor molecular presence or activity. The elimination of the label-

ing process significantly eases the burden of sample preparation and reduces the signal
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Figure 1.1: Overview of four basic ELISA methods: (a) direct ELISA, (b) indirect ELISA,
(c) sandwiched ELISA and (d) competitive ELISA. Adapted with permission from Ref 
[7], Copyright (2020) American Chemical Society.

interference. Label-free methods feature short testing times, easy or no preparation, di-

rect information regarding the bioanalyte, and have been used to track molecular events in 

real-time.

Among label-free sensing methods, surface plasmon resonance (SPR) is one of the most 

widely used. Since the first application of SPR phenomenon for sensing in the 1980s, this

method has made great strides both in terms of instrumentation development and applica-

tions. The first commercial SPR-based biosensor instrument was launched by Pharmacia

Biosensor AB, which was later renamed Biacore. Nowadays, multiple manufacturers make 

their own SPR instruments, and the SPR systems have become a central tool for character-

izing and quantifying biomolecular interactions.[2, 8]

SPR sensors work by monitoring properties of a surface plasmon resonance when the
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sensor is exposed to target molecules. A surface plasmon resonance is a charge-density

oscillation that exists at the interface of two media with dielectric constants (ε) of opposite

signs, for instance, a metal (ε < 0) and a dielectric (ε > 0), as shown in Figure 1.2a.

The charge density wave is associated with an electromagnetic wave, the electric field of

which reaches its maxima at the interface and decays evanescently into both media. The

SPR is commonly excited by TM polarized light in an attenuated total reflection (ATR)

configuration with the help of prism couplers in the Kretschmann geometry. When the

propagation constant of the evanescent field matches that of the surface plasmon wave (Eq

1.1), the energy of the light will be coupled into the SPR mode.

2π

λ
n p sin(θ) = β sp (Eq 1.1)

where λ is the incident wavelength, np is the prism refractive index, θ is the incident angle

and βsp is the propagation constant of the surface plasmon wave. When target molecules

bind to the SPR sensor, the propagation constant of the surface plasmon wave changes.

As Eq 1.1 shows, both incident wavelength and incident angle can be tuned to match

the resonance condition, and the most commonly used SPR set-up is the one that measures

angles, known as angular SPR.[10] A schematic illustration of the typical angular SPR

sensor is shown in Figure 1.2 b, and typical spectra of the angular SPR are plotted in

Figure 1.2 c.

Owing to the resonant photon-surface plasmon polariton coupling condition (Eq 1.1)

and the multimode nature of the surface plasmon polariton excitation[11], SPR sensors

provide a low detection limit (DL), generally lower than 10−5 refractive index unit (RIU)

or down to nanomole per litre concentration (nM), which can be further reduced by mea-

suring the phase shift of the SPR with a more sophisticated configuration.[12] However,

SPR sensors suffer from low sensitivity for small molecules (<500Da) and do not satisfy

4



Figure 1.2: The illustration of surface plasmon resonance working principle. (a) Light
coupled into surface plasmon wave. (b) The Kretschmann geometry for coupling light
into SPR sensor. (c) The reflectance spectra of an angular SPR sensor before (black) and
after (orange) target molecule capture. Figure (b) is adapted from Ref [9] under a Creative
Commons Attribution 4.0 International License, Copyright 2016 Qingling Ouyang et al.

the current trends of biotechnology moving towards small sizes, striving for the manipula-

tion on the nanoscale level, size-based selectivity and selective chemical and biochemical

nano-architectures. [13, 14] Moreover, SPR instruments are generally expensive, requir-

ing trained personnel and stable laboratory conditions, which limit the environments where

SPR sensors can be deployed.

To achieve high sensitivity, fast testing speed and accurate results, while maintaining

relatively low cost, nanomaterial based optical biosensors are recently drawing increased
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attention. Nanomaterials have the intrinsic advantage of large specific surface area and

great tunability in physical and chemical properties. These features could be utilized to

enhance the analyte-sensor interaction, aid signal transduction and filter out interference

from the environment. In order of increasing dimension, these materials include nanopar-

ticles, nanowires and thin films. Gold nanoparticles (GNP) are one of the most important

0D nanomaterials for biosensing. Depending on their size, shape, degree of aggregation

and nature of the protecting organic shells on their surface, GNPs support localized surface

plasmon resonances throughout the visible and near-infrared regions, which give rise to

distinct absorption and scattering profiles. Because of this unique optical property, AuNPs

have been extensively explored as sensing probes for a wide range of analytes/targets, such

as heavy metallic cations, nucleic acids and proteins.[15] For 1D nanomaterials, a signifi-

cant number of studies have used nanowires, for example silicon or metal oxide nanowires,

as field effect transistors for sensing. [16–18]. There are also examples of nanowires being

used as waveguides or resonators, which show enhanced performance.[13, 19, 20] How-

ever, most of the nanowires are used for electronic based biosensors, not in the scope of op-

tical biosensors. Similarly, many applications of two-dimensional material-based sensors,

including graphene and MoS2, are employed for electrical or electrochemical sensing.[21]

In the thin film realm, porous nanomaterials have shown great promise for optical sensing

applications. Among porous nanomaterials, porous silicon (PSi) thin films have been stud-

ied extensively for biosensing.[22] PSi advantages include: extremely high internal surface

area (> 500 m2g–1), offering a tremendous number of binding sites for hosting biological

molecules and interactions; unique and tunable photonic properties, allowing for sensitive

and reliable signal transduction; well-established surface chemistries; and relatively sim-

ple and cost-effective fabrication. These make PSi a superior alternative to other planar

photonic biosensors for many applications. Various PSi structures have been demonstrated

for biosensing, including PSi interferometers, double layers, Bragg stacks, microcavites,

rugate filters, waveguides and ring resonators. The detection limits for PSi biosensors are
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typically in the nM to µM range, although lower detection limits have been reported in a

few cases.[23, 24]

1.2 Point of care biosensing

In the early days of diagnosis , doctors diagnosed patients based on observation and experi-

ence, as very few test assays were available, and even those were of prohibitively high cost

at the time. With the emergence of automated technology and large hospitals, centralized

clinical test labs started to run large quantity of tests at low unit cost.[25] However, sending

samples to central labs to test might take days or weeks to get results, which may delay

treatment or even lead to the spread of infections.

Over the past few decades, medical testing has seen significant changes. Not only has

the centralized lab of a hospital developed the capability to deliver the results faster and

with greater accuracy than ever before, but a new kind of test has emerged, which could be

performed in a wide variety of locations: in your home, in the healthcare practitioner’s of-

fice, in the emergency department, in an infectious disease containment unit, in ambulances

etc. Such tests are referred to as point-of-care (POC) tests, “home tests” or “self-tests”.

The implementation of POC testing has led to a substantial saving in cost and increased

efficiency in various settings. POC tests implemented in a hospital setting can significantly

reduce the length of stay of a patient in the emergency department. For example, one study

reported a more than 25% reduction in the duration patients presenting chest pains stayed

in the emergency department when POC testing was used instead of central laboratory

testing.[26] POC tests also enable real time health monitoring.

The most widely used point-of-care tests are blood glucose monitoring and home preg-

nancy tests. Common POC tests used in clinics include hemoglobin A1c, electrolytes or

basic metabolic panels, HIV and influenza tests.[27] Except for glucose monitoring, most
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of these test are paper based, designed only for qualitative diagnosis. Also, the sensitivities

and specificities of some platforms are not high enough, therefore, central lab tests are still

needed following the initial point of care tests. Moreover, the number of tests available are

limited.

For the above reasons, POC testing and POC sensors have become a hot research area

in recent years. Many research groups have continued the usage of paper as a sensing

platform, because it is a readily accessible and inexpensive material and it has natural

“filters” and “pipelines” that could help solution handling.[28] Augmented with the color

readers, paper based lateral flow assay nowadays can give both qualitative and quantita-

tive information.[29] Apart from paper-based POC sensors, nanomaterial based biosen-

sors also show promise for POC applications, for example, porous silicon (PSi) based

biosensors. Owing to its tunable optical properties, PSi could be used to make label-

free biosensors with relatively high sensitivity. Because of the easy fabrication and lift-off

technology, PSi membranes could be made as cheap as paper. Another emerging tech-

nology which has started to be incorporated into POC sensor systems is the smartphone.

The high-quality camera, the controllable and bright LED flash light, the superb comput-

ing power, convenient applications (APPs, programs running on smartphones) and inter-

net connectivity make smartphones a very attractive platform to integrate with biosensing

systems. Smartphone based microscopes,[30, 31] spectrometers,[32, 33] fluorimeters,[34]

SPR sensors[35, 36] and ELISA readers[37] have been reported. These close to lab-grade

tools could very beneficial for POC testing.
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1.3 Porous silicon

1.3.1 PSi Formation and Fabrication

Porous silicon (PSi) was first discovered in Bell Laboratories in the mid-1950s, while re-

searchers were electrochemically etching silicon wafers for use in the microelectronics

industry.[38] 40 years later, the interest in PSi was reignited after its visible photolumines-

cence was discovered.[39] More recently, over the past two decades, PSi gained renewed

attention to biosensing and drug delivery applications due to its large specific surface area,

controllable pore size and morphology, versatile surface chemistry, and biocompatibilty.

Figure 1.3: Schematic of a two - electrode electrochemical cell used to make porous silicon. 
The etching cell is filled with HF based solution. Silicon is the anode, also known as the 
working electrode. The platinum spiral immersed in HF is the cathode/ counter-electrode. 

One of the major advantages of PSi over other materials is its ease of fabrication; the 

most common way to fabricate PSi films is electrochemical etching. Figure 1.3 shows 

a typical small etching cell in a two-electrode configuration. The etching cell was filled

with hydrofluoric acid (HF) based solution. A small piece of crystalline silicon (<100> 

direction) was diced, attached to aluminum plate, and fixed to the bottom of the cell as 

the working electrode (Anode). A platinum wire was spiraled and immersed in the HF
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solution, serving as the counter electrode (cathode). A current source controlled by the

computerized etching program was connected to the corresponding electrodes. Anodiza-

tion is often carried out in the dark to avoid photocurrent-induced variability in the etching

process.

When current passes through the anode, silicon is oxidized to +4 state, forming SiF2−
6

ions, and is removed from the substrate. In the cathode, protons (H+) gained the electrons

and are reduced to H2 (g): as a result, gas bubbles surrounding the platinum spiral can be

clearly seen.

The pore formation can be controlled by multiple chemical and electronic parameters.

On the wafer side, the factors include doping type and impurity level (concentration). Gen-

erally, n-type silicon can form larger pores, whereas p-type wafers can form pores with

better uniformity. On the electrolyte side, low concentration of HF induces larger pores

even at lower current density, while high concentration of HF generates smaller pores at

low current density; wafers in high HF concentration can also withstand higher current

densities.[40] When HF concentration is lower than 10%, direct electropolishing is ob-

served without porous silicon formation. In this thesis, we use a 15% of ethanolic HF

concentration (actual concentration varies between 14.4% - 15.3%) to do the electrochemi-

cal etching. Under this condition, larger current density results in a larger pore size, higher

porosity and faster etching rate. For given etching rate (fixed current density), the layer

thickness of PSi is determined solely by the etching time.

1.3.2 PSi vertical photonic structures

a) Thin film interferometer

The most common PSi sensing structure is a single layer of PSi, also referred to as PSi

thin film interferometer. Figure 1.4(a) exhibits an scanning electron microscope (SEM) im-
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Figure 1.4: (a) The cross-sectional SEM image of a PSi thin film interferometer, and (b) its
simulated reflectance spectrum in wavelength space ranging from 450 nm to 900 nm. (c)
The reflectance spectrum in inverse wavelength space with the two dashed lines indicating
the free spectral range (FSR), and (d) the FFT of the fringes in spectrum (c) giving the 2nL
peak.

age of a PSi single layer. Under normal incident light, the reflectance spectrum (reflection

vs wavenumber) of the single layer features a sinusoid shaped signal, exhibiting Fabry-

Perot fringes, which are formed due to the interference of the light reflected from the top

and the bottom surface of the PSi film. The phase difference of the two waves is 2π

λ
·2nL.

Maxima are observed when

2π

λ
·2nL = m (2π), or λ =

2nL
m

(Eq 1.2)

where λ is the wavelength of incident light, n is the effective refractive index (RI) of the
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thin film, L is the film thickness, m is an integer, and the product nL, is referred to as

effective optical thickness (EOT).

In the sensing process, biomolecules will infiltrate into the PSi pores. A change of RI

of the single layer will cause an apparent spectral shift of the Fabry-Perot fringes. This

shift could be determined by monitoring the position of a certain reflectance fringe peak,

and the shift could be then used to quantify molecular infiltration and binding. However,

if the shift is comparable to the distance between two peaks (free spectral range, shown in

Figure 1.4(c) ), the direct peak shift method will cause confusion. The fast Fourier trans-

form (FFT) is the classic way to measure spectral shifts. Taking an FFT of the reflectance

data as a function of the wavenumber produces a peak centered at 2nL (shown in Figure 1.4

(d)). By comparing the EOT before and after molecule infiltration, a blueshift (spectrum

shift to shorter wavelength direction) or redshift (spectrum shift to longer wavelength di-

rection) can be immediately resolved. Recently, Barillaro et al. reported a data processing

method for PSi single layers, termed interferogram average over wavelength (IAW), and

demonstrated orders of magnitude improvement in biosensing detection limit.[24] This pa-

per gathered lots of attention from the PSi community, but few people have successfully

transferred the methods to other biosensing schemes, despite using the same interferometer

structure. Also, since the contribution of every wavelength was taken into consideration

by the algorithm, and integrated as an absolute value to achieve the final result, both the

blueshift and redshift of a spectrum will give positive results, so a stable surface chemistry

is required to avoid confusing blueshifts with redshifts.

b) PSi double-layer structures

As shown in Figure 1.5(a), another common type of PSi structure is double-layer. It

can be etched by switching the current density in the middle of electrochemical etching.

Intuitively, double-layer structures are vertical cascades of two PSi single layers of different

refractive indices. The PSi double layer reflectance spectrum (shown in figure 1.5(b)) can
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Figure 1.5: (a) The cross-sectional SEM image of a PSi double-layer thin film and (b) its
simulated reflectance spectrum in wavelength space ranging from 450 nm to 900 nm. (c)
FFT of a reflectance spectrum. (d) The angular reflectance spectrum of a double-layer thin
film acting as a waveguide.

reveal the refractive index change of both of the porous silicon layers after biomolecule

infiltration. From this information, the number of biomolecules in the pores of each of

the two layers can be separately estimated. By taking the FFT of the normal incidence

reflectance spectrum of the PSi double-layer structure, three peaks can be revealed (shown

in Figure 1.5(c)). The first two correspond to the EOT of the two individual PSi layers,

and the third peak is the sum of the EOT of the first two layers. Such structures have been

demonstrated to separate biomolecules based on size,[41] and have the potential to serve

as the building blocks for the machine learning based sensor arrays discussed in Chapter 5.

If the top layer has a higher refractive index than the bottom layer, the double-layer PSi
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can function as a simple waveguide. With the assistance of a prism or integrated grating,

when the wave vector of the incident light matches the coupling condition of the waveguide,

most of the light is confined inside the high index waveguide layer due to the total internal

reflection occurring at the interfaces of air/ waveguide and waveguide/ cladding layer (low

index PSi layer). A resulting sharp dip can be seen in the reflectance spectrum as shown in

Figure 1.5(d).[42, 43]

c) PSi Bragg stack

If two layers of PSi with high and low porosity, respectively, are repeated to form an

alternating stack, a Bragg stack can be formed when the two layers have the same EOT.

Despite its wide use for many optical applications, such as a component of filters, there are

few examples of Bragg stacks being used as biosensors. PSi Bragg stacks may potentially

be used as filters for POC applications however, particularly if the index difference (∆n)

of the two layers is small, which decreases the bandwidth of the Bragg stack central peak.

When (∆n) is small, the Bragg stack becomes a narrow band Bragg stack (NBBS), and

the reflectance spectrum resembles the Rugate filter, a photonic structure of sinusoidally

varying RI. Both NBBS and rugate filters have been used for biosensing. [44, 45]

d) PSi Microcavity

Another photonic structure closely related to the Bragg stack is the microcavity. Mi-

crocavities can be seen either as two Bragg stacks sandwiching a cavity, or an imperfection

inside the perfect periodic Bragg stack structure. The reflectance spectrum of the micro-

cavity features a sharp resonance dip in the center of a broadband high reflectance region,

which corresponds to the defect mode inside the photonic bandgap. In the structure, light

is strongly confined in the central cavity and the resonance position is extremely sensitive

to the EOT of the center layer. The reflectance spectrum shows the resonance change when

there is a RI variation in the cavity or in other layers. This characteristic makes the micro-
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cavity a natural antifouling biosensor. Any binding on top of the PSi layer will have little

effect on the position of the resonance dip. One major challenge with using microcavities

for sensing is restricted mass transportation. High-quality PSi microcavities require many

periods of alternating high and low porosity films. Both the thickness and small pores lay-

ers will have a major impact on diffusion. Therefore, microcavity-based PSi biosensors are

commonly used for small biomolecule sensing.[46, 47]

1.4 Overview of the Dissertation

This work focuses on three aspects of utilizing PSi biosensors for point of care applications

–building cost-effective portable platforms, incorporating environmentally stable biorecep-

tors and designing new-concept biosensing systems.

Chapter 2 details the working principles and operating procedures of the systems

(tools) used for PSi materials characterization and PSi devices measurement (signal ac-

quisition).

Chapter 3 presents a smartphone based PSi biosensor that uses a smartphone camera

as the detector and smartphone LED as the light source. The sensor detects the biomolecule

attachment through monitoring PSi structural color changes.

Chapter 4 examines the ways to include a more robust bioreceptor, peptides, to the PSi

matrix in order to achieve biosensing in harsh conditions.

Chapter 5 uses machine learning techniques to explore the possibility of differentiating

biomolecules through their interactions with PSi films.

Chapter 6 provides a concluding summary and future research opportunities that will

further improve the PSi-based sensing technologies demonstrated in this work. Overall,

the development of cost-effective portable platforms, robust bioreceptors and new-concept
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biosensing systems is significant progress towards cost-effective, long shelf-time, and reli-

able POC sensing technologies based on PSi.
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CHAPTER 2

Characterization and measurement

2.1 Introduction

Refractive index and layer thickness are key optical properties of layered photonic struc-

tures, while pore size and pore morphology dictate how biomolecules interact with the

physical PSi matrix. To quantify these properties, scanning electron microscope (SEM),

atomic Force Microscopy (AFM), reflectance spectrometry and ellipsometry can be used.

The working principles of SEM and operating procedures for PSi chip characterization

are detailed in the first part of the chapter. After device fabrication and characterization,

spectrometry methods are performed to measure the optical properties of the devices. A

grating based spectrometer, prism coupling system and fiber coupling system can be used

for experimental measurements. The working principles of reflectance spectrometer and

operating procedures for PSi device measurements are detailed in the second part of this

chapter.

2.2 Scanning electron microscopy

Due to diffraction, the smallest feature resolvable by a typical optical microscope is ap-

proximately equal to half the wavelength of incident light. As the pore diameters of the PSi

used in this thesis are between 10-100 nm, optical microscopes are not suitable for resolv-

ing the pores and thus SEM imaging is used. SEM is a microscope that produces images of

a sample surface based on the information obtained by scanning the surface with a focused

beam of electrons. As high energy electrons have an extremely short wavelength (for ex-

ample, 30 keV electron beam has a wavelength of 7 pm), the Abbe limit is no longer the
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Figure 2.1: (a) The cut-away view of a SEM. (b)Photo of a Zeiss merlin SEM used to
characterize the nanomaterials and devices.

ultimate restriction. The general architecture of an SEM consists of an electron gun, several

electromagnetic lenses (condenser lens, objective lens), electron detectors (secondary elec-

tron detector, in-lens detector and back scattering electron detector), a sample chamber, a

control system and a software interface for interaction. Figure 2.1 presents (a) the cut-away

view of the internal structure of an SEM and (b) a photo of Zeiss Merlin SEM used in this

thesis.

In a typical SEM, an electron beam is emitted from an electron gun either thermally

or through the repulsion of a strong electric field (or a combination of both). After going

through multi-stage acceleration and deflection by the electromagnetic lenses, the beam is

finally focused on the sample surface. When the primary electron beam of high energy

hits the sample, the electrons undergo repeated random scattering and absorption, and sec-
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Figure 2.2: The top view of PSi fabricated using a current density of 70 mA·cm−2 in 15%
HF for 100 sec, using (a) in-lens mode and (b) HE-SE2 mode. (c) The cross-sectional 
view of sample fabricated in the same condition.

ondary electrons are generated within a teardrop-shaped volume of the specimen known as 

the interaction volume. Higher energy electrons have a shorter wavelength, but a deeper 

penetration depth and a larger interaction volume, while lower energy electrons have a 

longer wavelength, but a smaller interaction volume. Therefore, voltage selection is crucial 

for producing images of the desired resolution. For the Zeiss Merlin SEM in Fig 2.1 (b), 

the best resolution at 200V is 2 nm; this reduces to 0.6 nm at 30 kV according to the man-

ufacturer’s specifications. [48] Among all information generated from the electron-sample 

interaction, signals from the secondary electrons are the most important for imaging. Based 

on the generation mechanism, secondary electrons (SE) can be further classified as SE1-

SE4. The SE1 are generated by the primary electron beam interaction with the sample; 

SE2 are generated by interaction between the sample and the high energy back-scattering 

electrons (BSE); SE3 are the result of BSE colliding with the chamber and column compo-

nents of the SEM; and SE4 are generated by primary electrons interaction with apertures 

and other SEM column components, which are independent of the sample characteristics.

[49]

Different detectors are used to capture electrons of different types. The Everhart-

Thornley (E-T) detector is the most frequently used device for the detection of SE. The 

electrons it collects include SE1-SE4.The wide range of SE has been recognized as a limit-
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ing factor in SEM resolution because the dominant SE2 and SE3 are delocalized electrons

that were generated from the region far from the primary electron beam. In contrast, in-lens

(or through the lens) collects mostly SE1 electrons, which makes it more sensitive to the

surface and higher resolution. Figure 2.2 (a) and (b) are images collected in in-lens and

HE-SE2 (E-T detector) modes respectively. Figure 2.2(c) shows a cross-sectional SEM

image of a PSi film, which can be used to estimate the film thickness. The PSi sample must

be cleaved with a diamond scribe to enable imaging of the cross-section.

2.3 Reflectance spectrometry

Figure 2.3: An optical reflectance spectrometric measurement system, consists of a light
source, an optical stage, a spectrometer, a power supply and a software interface.

A fiber optic spectrometric system was used for reflectance measurements. The system

consists of a light source, an optical stage, a spectrometer connected by an optical fiber, a

power supply for light source and a laptop for collecting the digital signal. The light beam

generated by the light source transmits through the fiber and illuminates the sample on the

stage. The light reflected back is collected by the fiber and transmitted to the spectrometer.

Inside the spectrometer, the light is diffracted by a grating, projected onto a CCD array
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and transformed to a digital signal. Finally, the signal is sent to the computer and the

spectrum is displayed. The spectrometer used in this thesis is Ocean Optics USB4000,

which features a dynamic range of 200 to 1100 nm and an optical resolution of 0.1 to 10

nm. The spectrometer can be used for both single spectrum measurement and real time

spectral monitoring. A simple method to measure the refractive index is to use SEM to

measure the thickness of a single layer and use the FFT of the reflectance spectrum to

obtain the optical path length.
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CHAPTER 3

Smartphone biosensors

Notes to readers : Much of the chapter was adapted with permission from two of my

previous publications:

1. Tengfei Cao, Yiliang Zhao, Sharon M. Weiss, ”A smartphone compatible colorimet-

ric biosensing system based on porous silicon,” Proc. SPIE 10077, Nanoscale Imaging,

Sensing, and Actuation for Biomedical Applications XIV, 1007713 (22 February 2017);

https://doi.org/10.1117/12.2250659 [50]

2. Tengfei Cao, Yiliang Zhao, Crystal A Nattoo, Rabeb Layouni, and Sharon M Weiss. A

smartphone biosensor based on analysing structural colour of porous silicon. Analyst, 144

(13) : 3942–3948, 2019. https://doi.org/10.1039/C9AN00022D[51]

3.1 Introduction

Low-cost point of care (POC) diagnostic biosensors have drawn great attention from the

research community, for their broad impact on diagnostics in low-resource regions and

the convenience of at home health monitoring.[52] It is also reported that POC biosensor

deployment is beneficial to clinics and reduces the processing time and financial cost to

patients. Most types of current POC biosensors are paper-based, the results of which are

displayed by the presence of certain lines or colors comparing to the control sample (or

standard chart). Relative to other platform, paper-based biosensors are generally simple,

affordable and easy to use. These factors are largely attribute to the fact 1) that paper is

a readily accessible and low-cost material; 2) paper has been widely used in analytical

chemistry as the carrier for the chemical assays, and many surface functionalization have

been developed; 3) paper is inherently good at handling fluids, and it could be used both
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as a filter and a pipeline (forms of channels).[28] However, most paper-based systems are

of low precision, and they are designed to be qualitative or semi-quantitative. Even though

some paper-based biosensors, augmented with digital readers, could give both qualitative

and quantitative information, the rough surface and large non-uniform pores of the low-

cost paper platform are the ultimate limiting factors for the precision of the biosensor.

Another widely applied POC biosensor is electrochemical glucose sensor, which works

by monitoring the enzyme-catalysed glucose oxidation.[53] Because of the importance of

blood glucose monitoring, the glucose sensor is and one of the most popular and established

POC systems. However, as the system is designed for glucose monitoring, it’s of single

functionality and hard to transfer to other analytes.

Recently, the low-cost, easy-to-fabricate and versatile material PSi has shown promise

for POC applications. However, whilst PSi mainly serves as a transducer, the light source,

spectrometer and data processing units are needed for the entire sensing process. Nowa-

days, the spectrometer can be very small in size, but it is very costly to obtain precision

high enough for sensing. Moreover, a relatively stable light source is heavy and bulky. An

emerging technology that has the potential to transform the field is smartphone.[54] Smart-

phone features high resolution cameras, superb computational power, a bright LED light

and high speed internet connection, which could all be repurposed for biosensing. More

importantly, smartphones are widely available. It’s reported that there are areas where peo-

ple do not have access to clean water, but have access to smartphones.[55]

Even before the term “smartphone” gained its prevailing popularity, camera-enabled

mobile phones had already been demonstrated capable of capturing images from the eye-

piece of a standard microscope and wirelessly transmitting the images for subsequent

analysis.[58, 59] The first fully integrated and portable mobile phone microscopy system

was built by Breslauer et al.[30] As shown in Figure 3.1(a) the system attached a minia-

turized microscope lens system to the cell phone and demonstrated its potential for clinical
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Figure 3.1: Smartphone biosensors reported in recent years. (a) A smartphone microscope 
equipped with lenses, filters and LEDs, capable of fluorescence imaging. Inset is 
fluorescent image (right) of the beads (left), with scale bar of 10 µm, adapted from Ref 
[30] under the terms of the Creative Commons Attribution License, Copyright 2009 
Breslauer et al. (b) An optofluidic fluorescent imaging cytometer. The inset shows its 
performance compared to an analogous desktop system, adapted with permission from Ref 
[56], Copyright (2011) American Chemical Society. (c) A Smartphone-based 
fluorescence microscope (left), its back view (top right) and the fluorescent image 
captured (left) of the beads (right), adapted with permission from Ref [57], Copyright 
(2011) American Chemical Society. (d) A smart-phone angular SPR sensor. Inset shows 
image measured under red illumination (left), and a region of interest (ROI) used for 
evaluation, under red and green illuminations (center and right, respectively).Adapted 
with permission from Ref [36], Copyright 2012 WILEY-VCH Verlag GmbH & Co. 
KGaA, Weinheim.
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use by imaging P. falciparum-infected and sickle red blood cells in bright field and M.

tuberculosis-infected sputum samples in fluorescence with LED excitation, where the sys-

tem resolution (estimated to be ∼ 1.2 µm) suffices to detect blood cell and microorganism

morphology in all cases. Shortly after, Tseng et al. reported a lens-free microscope based

on incoherent in-line holography.[31] The system successfully reconstructs the microscope

images of micro-particles, blood cells and waterborne parasite from the hologram with a

spatial resolution of 2.2 µm for each color pixel. Later, a cell phone based optofluidic

fluorescent imaging cytometry was demonstrated (Figure 3.1(b)).[56] The cytometer mea-

sures the white blood cells in human blood samples by counting them in the cell-phone

camera recorded fluorescent movies, which show decent performance compared to the

commercially available hematology analyzer. The resolution for the fluorescent images

is about 2 µm. In addition, a portable fluorescent microscope of subwavelength resolution

is reported.[57] With the help of fluorescent nanoparticles, the system has been applied

to detect the human cytomegaloviruses with a molecular size of ∼ 200 nm and shows the

capability to resolve small nanoparticle with size down to 100nm. (Figure 3.1(c))

Alongside microscopy, the smartphone has also been extensively adopted for spectrom-

etry, which is one of the most important technologies for bio-quantification. Based on

angle-resolved surface plasma resonance (SPR), Preechaburana et al reported a smartphone

SPR sensor showing comparable performance with compact SPR system, which measures

a refractive index change down to 2× 10−6 RIU (Figure 3.1(d)).[36] Gallegos et al re-

ported a label-free biosensor, which measures the resonant wavelength value of a photonic

crystal with a 12 pm accuracy.[32] The biosensor has been modified with Protein A for

detecting porcine immunoglobulin G (IgG), which exhibits a detection limit of 4.25 nM.

Recently, the same group has developed a multimode smartphone biosensing analyzer,[60]

which combines the functionalities of transmission, reflection, and intensity spectral mea-

surements. The analyser is capable of achieving comparable limits of detection to the result

obtained by the conventional laboratory microplate reader.
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Even though there are existing detectors for paper-based diagnostics, the needs for sim-

ple and easy detection tools has not been fully realized. However, paper colorimetric

biosensors have also been transformed by smartphone integration By correlating the hue

value of smartphone images to the tested pH value on the standard chart, Chang demon-

strated the possibility of using smartphone to read pH paper.[61] With the help of addi-

tional optical accessories, Erickson Group developed: a smartphone pH reader for sweat

and saliva, which could be used to monitor the body condition to prevent the risk of dehy-

dration and to improve performance during physical activity;[62] a cholesterol sensor that

could measure a cholesterol range of 140 mg · dl−1 to 400 mg · dl−1 within an accuracy

of 1.8%;[63] a vitamin D sensor using gold nanoparticle based immunoassay to accurately

measure physiological levels of 25-hydroxyvitamin D with accuracy better than 15 nM and

a precision of 10 nM;[64] and a lateral flow assay for iron and vitamin A deficiency.[65]

Most of the reported smartphone-based systems exhibit low cost, great portability, and

adequate sensitivity for POC testing, sometimes even comparable to conventional desktop

devices.[34, 35, 37, 66, 67] However, an evaluation of the system compatibility with various

kinds of smartphone, the cost of the entire process and reliability needs careful investigation

for real application.[59]

In this chapter, we will present a smartphone based porous silicon optical biosensor,

from the working principle and proof-of-concept system, to the prototype and the possible

improvements.

3.2 Working principle of structural color-based biosensor

Most label-free optical biosensors operate based on detecting spectral shift induced by a re-

fractive index change that takes place upon the capture of chemical or biological molecules

onto the biorecognition elements.[50] Generally, the spectral shift is measured by spec-
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Figure 3.2: Reflectance spectra of a PSi rugate filter before (blue dashed line, SB) and
after (red dotted line, SR) adding biomolecules. The reflectance spectrum redshifts after
molecular binding in the pores. The transmission spectrum of a commercial bandpass
filters (solid brown line corresponding to the secondary y-axis) is overlaid to indicate which
portion of the reflectance spectrum reaches the detector.

trometers or spectrophotometers. Alternatively, the spectral shift could also be tracked by

monitoring the change of reflectance intensity at a fixed wavelength, illustrated in Figure

3.2: the blue dashed line is the reflectance spectrum of the transducer (SB) and red dotted

line is the spectrum (SR) after the biomolecule is attached. Observing at wavelength λ0,

the SR has a lower reflectivity compared to the SB, which indicates less reflected light at

wavelength λ0 would be detected after the molecular binding. To resolve the change, a

narrow bandpass filter, whose transmission spectrum is shown as the brown curve in Fig-

ure 3.2, was used to extract the light intensity around λ0. Since the reflectivity of SR is

lower than SB within the high transmittance wavelength region of the filter, the filtered

reflected beam from SR will have a lower intensity compared to SB. Accordingly, with the
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right combination of the properties of the sample and the filter, the wavelength shift in re-

flectance spectra can be correlated with the change in light intensity. The discussion here is

based on the assumption of uniform incoming light intensity and uniform detector spectral

sensitivity across the entire spectral range. However, for narrow bandwidth filters with near

zero transmission outside the designed bandpass region, the discussion is still valid even

with imperfect light sources and detectors provided that the incoming light spectrum and

detector spectral sensitivity curve do not undergo sharp changes within the transmission

window.

3.3 Proof of concept system of structural color-based biosensor

Figure 3.3: Proof-of-concept colorimetric biosensing system. Left—optical micro-
scope with attached camera used for imaging and the schematic illustrations. Top
right—commercial bandpass filter with the FWHM = 10 nm. Bottom right—PSi sam-
ple. The red circular region inside the black circle is the isolated region of the PSi NBBS
filter used for detection. The surrounding white region is where PSi has been scratched
away to facilitate sample positioning.

A proof of concept system of the PSi biosensor was built on an optical microscope equipped
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with white light source and digital camera. (Shown in Figure 3.3) A commercial bandpass

filter with a peak wavelength of 610 nm and full-width-at-half-maximum (FWHM) of 10

nm is inserted in front of the light source to limit the range of wavelengths incident on the

PSi sample and facilitate the measurement of the intensity of reflected light from the PSi

sample. The white light was emitted from the lamp, filtered by the red filter, reflected the

PSi sample and finally received by the digital camera. The intensity of the reflected light

can be extracted directly from the camera images. Digital images can be represented by

an associated set of RGB values, which have monotonic correlation with the light inten-

sity detected by the red, green, and blue sensors of the camera. Therefore, the intensity of

reflected light by the sample can be obtained by analyzing the RGB values of an image.

Only the R value is considered in this study because most of the light that the camera cap-

tures is in the red region due to the selected bandpass region of the commercial filter. The

microstructure of the PSi sample used here is a narrow band-width Bragg stack (NBBS),

which is composed of alternating quarter wavelength dielectric stacks of high and low re-

fractive indices. The PSi NBBS were prepared by anodic electrochemical etching of p type

silicon wafers in 15% hydrofluoric acid. The samples were prepared in a Teflon etch cell

with a 2 cm2 etching area. A platinum spiral was immersed in the etching solution as the

counter-electrode and an aluminum sheet was attached to the back of the silicon wafer to

serve as the backside contact. The PSi NBBS was fabricated by applying alternating cur-

rent densities (52 mA ·cm−2 and 60 mA ·cm−2) to form alternating PSi layers with different

refractive indices. These particular etching conditions were selected to create NBBS with

peak reflectance outside the bandpass of the commercial filter such that a steep slope in

the reflectance spectrum occurred within the bandpass to enable large intensity changes for

small spectral shifts. After etching, the samples were rinsed with methanol and dried in a

stream of nitrogen, before annealing in a furnace at 1000 ◦C for 20 s.

The reflectance spectra were measured by an Ocean Optics USB-4000 spectrometer

with a wavelength range over 400-900 nm. The PSi samples were fixed on the glass slides
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for positioning purpose. Images of PSi samples were captured by the camera on a micro-

scope.

Figure 3.4: Reflectance spectra (solid lines) and corresponding camera images (insets) of
PSi NBBS after infiltration with various concentrations of glucose. The reflectance spectra
redshift upon exposure to increasing glucose concentrations. The transmission spectrum
of the commercial filter (dashed line) is also shown to indicate which region (highlighted
by the white colored region on the graph) of the reflectance spectra can be detected by the
camera.

For initial demonstration of the sensing system, a PSi NBBS sample centered around

∼ 590 nm with a FWHM of 20nm was rinsed in a series of glucose solutions with different

concentrations (concentration 1-7: 0 g · L−1, 40 g · L−1, 80 g · L−1, 120 g · L−1, 160 g ·

L−1, 200 g · L−1, 240 g · L−1). Before measurement under the microscope, the sample was

dried in nitrogen. (A single sample exposed to increasing concentration of glucose). To

determine the refractive index sensitivity of the NBBS filter, PSi samples were immersed

in glucose solutions with concentrations 0 g · L−1, 20 g · L−1, 40 g · L−1, 60 g · L−1, 80 g ·

L−1, and 100 g · L−1, and then measured with the Ocean Optics spectrometer. In addition,

a series of dilute glucose solution (0 g · L−1, 1 g · L−1, 2 g · L−1, 3 g · L−1, 4 g · L−1, 5
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g · L−1, 6 g · L−1) was dropped onto a PSi NBBS filter centered at 616nm with a FWHM

of 20 nm (a single sample exposed to increasing concentration of glucoses). After drying

the sample under nitrogen gas, reflectance spectra were measured with the Ocean Optics

spectrometer and images were taken using the microscope.

The results of the glucose sensing experiment are shown in Figure 3.4. Images taken

with the microscope setup appear alongside the reflectance spectra measured by the spec-

trometer. The transmission window for the microscope setup is overlaid and appears as the

brighter region. The peak positions of the spectra were determined to be 589 nm, 592 nm,

598 nm, 604 nm, 611 nm, 626 nm and 640 nm for glucose solutions with concentrations

1-7, respectively. The R values of the corresponding images are 127, 130, 171, 215, 225,

154 and 143. When the reflectance peak is at a shorter wavelength compared to the center

of the transmission spectrum of the bandpass filter, a redshift of the spectrum corresponds

to increasing brightness of the microscope images. At the higher concentrations when the

reflectance peak is at longer wavelengths compared to the center of transmission window,

further redshifts of the spectrum lead to decreasing brightness of the microscope images.

Hence, while reflectance spectra clearly distinguish between PSi samples exposed to a large

range of glucose concentrations, it would be more challenging to uniquely determine the

concentration of analyte solution from image analysis alone over similarly large concentra-

tion ranges (Two spectra on different sides of the filter transmittance curve might have the

same R values). Nevertheless, the dynamic range of analyte concentration represented by

glucose concentrations 1-5 (i.e., 0—160 g · L−1) that yield distinct R values is sufficient

for many practical sensing applications.

As shown in Figure 3.5 (a, b), increasing the concentration of glucose solutions over

a smaller concentration range (0- 6 g· L−1) leads to a series of small redshifts of the re-

flectance spectrum for the PSi NBBS and almost imperceptible color changes in the camera

images. To improve the accuracy of the R value determination from the images, contribu-
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Figure 3.5: (a) Reflectance spectra of the PSi NBBS filter after infiltration with different
glucose concentrations between 0- 6 g· L−1. (b) Corresponding camera images for three
selected PSi NBBS filters. (c) Color distribution showing the number of pixels containing a
given R value for each of the PSi NBBS filters shown in (a). Extreme R-values (not shown)
are filtered out during image processing, as described in the main text. (d) Correlation
between R-value of camera image and peak reflectance wavelength of the PSi NBBS filter.
A linear fit is shown.

tions to the R value from the unavoidable dust and bright spot on the images need to be

filtered out. Accordingly, a simple image processing set was carried out on the color distri-

bution diagram shown in Figure 3.5 (c). Only R values whose magnitudes ranging from 5%

to 95% were considered as valid data. As dust generally has a low brightness (relatively

small R value) and bright spots have large R values (i.e., close to 255, i.e. saturation),

the color distribution method can effectively filter these factors out without affecting the

integrity of the analysis. Figure 3.5(d) correlates the peaks of the reflectance spectra (in

Figure 3.5a) with the R values extracted from the corresponding camera images (three of
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them shown in Figure 3.5b). A linear relationship was found between the R value and

peak reflectance wavelength. The smallest resolvable spectral shift determined from this

fit is approximately 0.25 nm. The refractive index sensitivity of the PSi NBBS filter is 310

nm· RIU−1, as measured with the spectrometer, which corresponds to a detection limit of

7×10−4 RIU for the colorimetric sensing system.

3.4 Smartphone biosensor prototype

Figure 3.6: Smartphone biosensing system. (a) Photograph showing smartphone situated
in 3D printed box. (b) Schematic illustration in a cut-away view showing, from top to
bottom, the smartphone with red bandpass filter inserted in front of the smartphone LED
flash, the top of the 3D printed box, the PSiM positioned below the smartphone camera,
and the bottom of the 3D printed box.

Similar to the proof-of-concept system, we present a smartphone biosensor prototype that

requires only a bandpass filter and a 3D printed box, (shown in Figure 3.6) and leverages

the advantages of the high surface area sensor material, porous silicon, for the test chip. The

biosensing system works by detecting the structural color change of a porous silicon mi-

crocavity (PSiM) that results when target molecules are captured in the pores of the PSiM.
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This sensing approach is different from traditional colorimetric approaches that require, for

example, an enzymatic reaction, fluorescent species, or nanoparticle aggregation to cause

a color change. By using the built-in LED flash of a smartphone as the light source and

the smartphone camera as the photon detector, a suitably designed label-free porous silicon

sensor can operate without a benchtop measurement system. Moreover, a porous silicon

smartphone sensor does not require external lenses or gratings. Here, we demonstrate that

a label-free PSiM smartphone sensing system can operate with an equivalent accuracy of

0.33 nm and an estimated detection limit of 500 nM based on a biotin-streptavidin assay.

We note that the spectrometer measurements reported in the paper are necessary only for

characterizing the intrinsic properties of the system, and are not necessary for quantifying

molecular detection events. Calibration between the light intensity and concentration of

target molecules is the only prerequisite for quantitative detection applications.

3.4.1 Materials and methods

Materials

All chemicals were analytical grade and used without further purification. Single side pol-

ished, boron doped p-type silicon wafers (< 100 > , 0.01–0.02 Ω · cm, 500–550µm) were

purchased from Pure Wafer, WRS Materials Company. N-Hydroxysuccinicmide (NHS)

and 10-Undecenoic acid were purchased from Alfa Aesar. N-(3-Dimethylaminopropyl)-

N’-ethylcarbodiimide hydrochloride (EDC), EZ-Link Amine-PEG2-Biotin, sulfo-NHS-biotin,

streptavidin and ethanol were all purchased from Thermo Fisher Scientific. Hydrofluoric

acid (HF) was purchased from Acros Organics. Deionized (DI) water (∼ 15 MΩ · cm) was

used as a solvent for all experiments except where noted otherwise.

Reflectance spectra measurements

Ocean Optics USB-4000 spectrometer was used for reflectance measurements over a sam-

ple area of approximately 1 mm2 and wavelength range of 400 – 900 nm. Spectral shifts
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to longer wavelengths (i.e., redshift) indicate that molecules have attached to the surface of

the pores in the PSiMs while spectral shifts to shorter wavelengths (i.e., blueshift) indicate

that material has been removed from the PSiMs.

Smartphone colorimetric measurements

An iPhone SE was used to carry out quantitative measurements of the colour of the PSiMs.

Broadband white light was emitted from the smartphone LED and transmitted through a

Thorlabs bandpass filter (centre wavelength λ0 ∼ 610 nm; full-width-at-half-maximum

(FWHM) = 10 nm; see Figure 3.7c) before reflecting off the porous silicon sample. The

reflected light was collected by the smartphone camera. We note that it should be possible

to replace the Thorlabs bandpass filter with a free-standing porous silicon bandpass filter,

if desired. To achieve a more uniform illumination, we attached a piece of white paper to

the phone in front of the LED to diffuse the light, and we also added a small piece of black

tape on the back side of the filter fixture to block the brightest spot of light emitted from

the LED.

A custom 3D printed box was fabricated and used to hold the smartphone, filter, and

PSiM in fixed positions during all measurements. A camera app was used to control the fo-

cus, flash, zoom, ISO, speed, exposure value and white balance of the smartphone camera.

Videos clips of approximately 1 min were recorded instead of taking individual pictures for

better accuracy and reproducibility. The videos were uploaded to a desktop computer, and

a MatLab code was used to convert the videos into arrays of time sequenced intensity val-

ues. Each video was treated as a series of RGB images, and the data comprising one RGB

image was exported to three matrices in MatLab that contain the intensities measured by

the red (R), green (G), and blue (B) pixels, respectively, in the camera imaging sensor. In

this work, we only use the R-values in our calculations because the bandpass filter restricts

the incident light to red wavelengths. Detailed procedures for the smartphone measure-

ments are provided in appendix A.1. We anticipate that the computations carried out on
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Figure 3.7: SEM images of PSiM in (a) top view and (b) cross-sectional view. (c) The
normalized spectral intensity of the smartphone LED light after passing through the band-
pass filter (shown in the inset), which is centered at 606.5 nm in this work. (d) Typical
reflectance spectra of PSiM. The blue and red curves are the reflectance spectra before and
after adding biomolecules, respectively. The red shaded region indicates the position of the
filter. A photograph of a PSiM sample is shown in the inset.

the desktop computer in this work could also be carried out directly on the phone using an

appropriately designed app or through a cloud computing approach.

Fabrication and surface modification of PSiMs

PSiMs were prepared by anodic etching of p-type silicon wafers in 15% HF in ethanol.

Note that HF is an extremely dangerous chemical and should be handled with the utmost

caution. First, a sacrificial layer was etched with a current density of 70 mA· cm−2 for 100

s and then dissolved in 1 M NaOH solution. The sample was then thoroughly cleaned with

ethanol and DI water. Next, alternating current densities of 80 mA · cm−2 for 3.1 s and 60

mA· cm−2 for 3.2 s were applied in the following manner to form the optical microcavity

structure: (HL)7(HH)(LH)7, where H and L designate the higher and lower current density,

respectively, and the layers are designed to have an optical thickness corresponding to one
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quarter of the resonance wavelength. Following anodization, freshly prepared PSiMs were

modified by thermal hydrosilylation. 10-Undecenoic acid was added to a Schlenk flask

and underwent three freeze-pump-thaw cycles in order to remove oxygen. Prior to the

reaction, the sample was dipped into 2.5% HF solution for 90 seconds to remove the native

oxide. The sample was then transferred to the Schlenk flask under a constant nitrogen flow.

The flask was then immersed in an oil bath at 120°C and the reaction proceeded over 5

hours. Finally, the sample was rinsed thoroughly with tetrahydrofuran, dichloromethane

and ethanol, and dried under a nitrogen stream.

APTES measurement for sensor benchmarking

To benchmark the performance of the PSiM-smartphone sensing system, we carried out an

experiment to determine the relationship between spectral changes measured by an Ocean

Optics spectrometer and colour changes measured by the smartphone camera (as described

in the next section). A stepwise change in the refractive index of the PSiM was achieved

by multiple exposures of the sample to a 0.1% (vv) solution of APTES in ethanol. For

each exposure, 100 µL of the APTES solution was drop cast on the PSiM and incubated

for 30 s, followed by gentle blowing with nitrogen gas to remove excess solution from the

surface. The PSiM was measured with the spectrometer after each APTES exposure to

quantify the spectral shift. The PSiM was then measured three times by the smartphone to

quantify the colour change. APTES is a commonly used chemical for surface modification,

which is known to form multilayer structures.[56] APTES attachment can therefore lead to

large spectral shifts of the PSiM, which is necessary for the benchmarking of the sensor

performance. We note that other molecules could have also been used and would have

resulted in the same correlation between spectrometer and smartphone measurements for

the given PSiM.

Biotin—streptavidin sensing

To achieve biotin functionalization, the hydrosilanized PSiM was first soaked in 1 mL 0.1
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M NHS aqueous solution followed by 1 mL 0.4 M EDC. The reaction proceeded in a dark

environment and gentle shaking was applied every 5 min. After 30 min, the sample was

cleaned in DI water and rinsed in ethanol for 15 min. Next, the sample was soaked in 1

mg· mL−1 amine-PEG-Biotin solution for 30 min. Finally, an 80 µL aliquot of 0.5µm

streptavidin mixed with 10 µL of ethanol was pipetted onto the PSiM sample and incu-

bated for 60 min. The ethanol is added to reduce the surface tension between the water

and hydrosilanized surface. The sample was then cleaned with DI water and ethanol three

times, soaked in ethanol for 5 min and gently blown dry under nitrogen gas. After each

step in the sensing experiment, the PSiM was measured with both the spectrometer and

smartphone. The PSiM was subsequently exposed to 1 µm, 2 µm and 4 µm concentrations

of streptavidin in water following the same procedures. We note that the magnitude of the

change in the spectral and intensity responses of the PSiM sensor are dependent on the in-

cubation time of the target molecule. Based on prior work,[68] we anticipate a measurable

signal change could be achieved after a few minutes of exposure to the streptavidin solu-

tion; however, the magnitude of the signal change would be much less than what we report

here for a 60 min exposure and would therefore also affect the limit of detection. To verify

that there is no non-specific attachment of streptavidin on the PSiM, a control experiment

was carried out. A 80 µL volume of 1µm sulfo-NHS-Biotin (1 mM) blocked streptavidin

solution mixed with 10 µL ethanol was drop cast onto a biotinylated sample, incubated for

60 min, then rinsed with water and ethanol three times, and blown dry with nitrogen before

measurement.

3.4.2 Results and discussion

Porous silicon microcavity characterization

Scanning electron microscopy (SEM) images of a PSiM are shown in Figure 3.7 (a, b).

Based on image analysis, the estimated average pore size, porosity, and thickness of the
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porous silicon layers fabricated with the higher current density are ∼60 nm, 82%, and 120

nm, respectively. The estimated average pore size, porosity, and thickness of the porous

silicon layers fabricated with the lower current density are ∼40 nm, 75%, and 97 nm,

respectively. A reflectance spectrum of the microcavity is shown in Figure 3.7(d). The

resonance wavelength is near 600 nm and the peak of the high reflectance band on the

long wavelength side of the resonance is near 630 nm. The refractive index sensitivity of

the PSiM is determined to be near 350 nm/RIU as detailed in the appendix A.2. In this

work, the most important design criterion is having a sharp spectral feature near the centre

wavelength of the bandpass filter, as discussed in the next subsection.

Basic principle of smartphone biosensor

The smartphone is able to facilitate label-free optical biosensing with porous silicon by de-

tecting the structural colour change of a PSiM upon a specific bio-recognition event. When

molecules attach to the pore walls, the effective refractive index of the porous silicon in-

creases and results in a redshift of the reflectance spectrum, as illustrated in Figure 3.7(d)

for a PSiM. The rectangular shaded region represents the approximate spectral bandwidth

of light that reaches the smartphone camera due to the presence of the bandpass filter.

When molecules are added to the PSiM, the resulting spectral shift leads to a change in the

integrated intensity of light measured by the smartphone camera. In Figure 3.7(d), with the

bandpass filter designed to overlap with the long wavelength edge of the resonance of the

PSiM, the addition of molecules leads to a decrease in the intensity of light measured by

the smartphone since the intensity of reflected light at each wavelength within the measure-

ment window decreases with molecular attachment. The steeper the reflectance spectrum

is within the measurement window, the larger the change in light intensity measured by the

smartphone camera will be for a given reflectance spectrum shift (i.e., given refractive index

change of the PSiM due to molecular infiltration). Hence, other PSi thin film designs, such

as edge filters, may lead to improved sensing performance compared to the PSiM. Never-

theless, in this work, the PSiM provides a convenient platform to compare smartphone and
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spectrometer measurements while yielding good detection sensitivity. A comparison curve

can be established that directly relates changes in spectral properties typically measured

by a spectrometer with light intensity measured by the smartphone camera. This correla-

tion is only necessary to benchmark the sensitivity of the smartphone detection platform in

comparison to a traditional spectrometer. We note that the dynamic range of measurement

using the smartphone detection platform, which is directly related to the maximum number

or concentration of molecules that can be quantified by the smartphone detection platform,

is limited by the wavelength range over which there is a monotonic change in reflectance

intensity.

Engineering challenges with smartphonePSiM biosensor

There are several engineering challenges when assembling the system in the box that must

be overcome to realize a robust biosensor that may be suitable for POC diagnostic appli-

cations. Although we only introduce the engineering challenges here, we believe sufficient

process development would enable mitigation of the negative consequences of the current

challenges.

First, the light emitted from the smartphone LED does not have uniform spatial inten-

sity. Most of the light is concentrated in the center of the emission region, which can lead

to saturation of the smartphone image sensors. As a simple approach to improve the illu-

mination uniformity, we attached a piece of white paper to the outside of the smartphone

LED to diffuse the emitted light, and we also used a piece of black scotch tape to block

the region of highest intensity emitted light, as discussed in the smartphone measurements.

More sophisticated light management approaches would be necessary to achieve a highly

uniform intensity of incident light on the PSiM sample.

A second challenge is the nonuniformity of the porous silicon sample itself. Slight dif-

ferences in the local thicknesses of the porous silicon layers comprising the PSiM lead to

changes in the measured reflectance spectrum across the sample. For example, the micro-
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cavity resonance wavelength, and likewise the high reflectance peak position, can vary by

as much as 10 nm when different spots on the same PSiM sample are measured. More-

over, sample to sample variation in the shape and position of the reflectance band edge

would introduce error into the quantification of the sensing measurements. Optimizing the

electrochemical fabrication conditions, including control of the temperature and humidity

conditions and electrode design, can lead to significantly improved porous silicon unifor-

mity. Together, the nonuniform illumination and nonuniformity of the porous silicon can

lead to significant changes in the measured light intensity by the smartphone camera when

there is any change in the smartphone position with respect to the PSiM sample position.

Figure A.3 in the appendix shows a typical smartphone camera image of the PSiM and the

associated R-value contour map of the image, revealing that the R-value varies significantly

across the PSiM.

Accordingly, a third engineering challenge is mechanical vibrations that cause displace-

ment between the positions of the smartphone and PSiM sample, which lead to unwanted

changes in measured light intensity that are not related to molecular binding. An improved

3D printed box design could enable the smartphone and PSiM sample to be fixed more

robustly in place.

Moreover, in the current implementation of the PSiM-smartphone biosensor, the PSiM

sample is removed from the 3D printed box each time a new molecule is exposed to the

sample. The measured intensity variation caused by removing and reloading the sample

is shown in appendix A.4. In future designs, improved methods of fluidic handling could

eliminate the need to remove the sample from the box. In the present work, to mitigate

error arising from smartphone-PSiM relative displacement, the area enclosed by a constant

R-value contour curve is chosen to represent the effective light intensity value measured by

the smartphone. This R ≥ R0 criterion, where R0 = 30 in this work, automatically defines

the boundaries of the analytical region under consideration and enables the best resilience
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to mechanical vibration. The effective light intensity is calculated by summing the R values

of the pixels within the area enclosed by the R = 30 contour curve. An average effective

light intensity value is reported for each 1 min video measurement based on the average

value calculated from approximately 500 images from the video. After each smartphone

measurement of the PSiM, a bare silicon sample is measured as a control sample to account

for any changes in the smartphone LED intensity over time. The average effective light

intensity of the sample under test is normalized with respect to the average effective light

intensity of the control sample, and is denoted as the relative intensity. In future work, the

control sample could be measured at the same time as the test sample by imaging a region

that contains both the PSiM and an unetched region of bare silicon.

Smartphone biosensor benchmarking with APTES infiltration

Figure 3.8: (a) Reflectance spectra of PSiM after adding 0.1% APTES solutions, as mea-
sured by a spectrometer. (b) Smartphone-spectrometer comparison curve that relates the
longer wavelength peak position of the PSiM measured by the spectrometer and the relative
intensity of light measured by the smartphone. The black diamonds are the experimental
data points, the red bars show the ±3σ value from the smartphone measurements, and the
blue curve is a linear fit to the black data points. Inset shows the structural formula of
APTES.

To benchmark the performance of the smartphone biosensor with a traditional spectrom-

eter, a PSiM was exposed to 0.1% APTES in ethanol and subsequently blown dry and
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measured by both the smartphone and spectrometer. As shown in Figure 3.8(a), the re-

flectance spectrum measured by the spectrometer redshifts after each successive exposure

to the APTES solution that infiltrates the pores of the PSiM. Correspondingly, the relative

intensity measured by the smartphone decreases when the spectrum redshifts due to the

relative spectral positions of the bandpass filter and resonance. Figure 3.8(b) shows the

correlation between the peak wavelength measured by the spectrometer (i.e., the peak on

the longer wavelength side of the microcavity resonance) and the relative intensity mea-

sured by the smartphone. A linear curve is used to fit the data with R2 = 0.999. The error

bars in the relative intensity measurements represent ±3σ , where σ is the standard devia-

tion of the three relative intensity measurements taken for each APTES infiltration (details

provided in A.1 in appendix). The root-mean-square deviation (RMSD) of the data points

from the linear fit is used to estimate the accuracy of the PSiM-smartphone sensor. As

detailed in A.5 in appendix, the RMSD = 0.11 nm, and we consider the equivalent accu-

racy of the smartphone measurements to be three times the RMSD (i.e., 0.33 nm). The

Bland-Altman analysis shown in appendix Figure A.5, provides further confirmation of the

agreement between the smartphone and spectrometer measurements. Therefore, based on

the measurements and analysis, we suggest that the PSi-smartphone sensor system could

distinguish a relative intensity change that is equivalent to a microcavity spectral shift of

0.33 nm.

Biotin—Streptavidin sensing

To evaluate the biosensing performance of the PSiM-smartphone system, a biotin-streptavidin

sensing assay was carried out. For this experiment, only the smartphone is required, but

spectrometer measurements were also taken to provide further insights. Figure 3.9 shows

the relative intensity of light measured by the smartphone as different concentrations of

streptavidin molecules were exposed to the biotinylated PSiM. As expected, the relative

intensity decreases with increasing streptavidin concentration. We note that the change in
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Figure 3.9: Relative intensity measured by smartphone when different concentrations of
streptavidin are exposed to a biotin-functionalized PSiM. The detection limit is near 500
nM. Error bars represent ±3σ .

relative intensity with respect to the streptavidin concentration is not linear across the data

set because the measurements span a nonlinear region of the slope of the microcavity res-

onance that is probed through the bandpass filter. Figure A.6 in appendix, which shows

the peak wavelength shift measured by the spectrometer as a function of streptavidin con-

centration, does suggest that the PSiM is being measured within the linear regime of a

dose-response curve. Moreover, Figure A.6 reveals that there is minor instability of the

surface functionalization of the PSiM that manifests as a slight blueshift in the spectrum

when the sample is exposed to a 0 nM concentration of streptavidin (i.e., no streptavidin

molecules and only solvent exposed to the sample). The biotin-streptavidin assay was re-

peated on three additional PSiM samples to confirm the general trend of the relative inten-

sity measured by the smartphone upon exposure to the different streptavidin concentrations
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(appendix Figure A.7). In all cases, the relative light intensity measured by the smartphone

when the PSiM is exposed to 500 nM streptavidin is statistically different from the initial

relative light intensity value measured before exposure to any streptavidin solutions (solid

line shown in Figure 3.9 and Figure A.7). Therefore, a detection limit near 500 nM for the

streptavidin molecules is estimated for the PSiM-smartphone biosensor. In order to verify

that streptavidin molecules are captured selectively by biotin receptor molecules attached to

the PSiM, a control experiment was carried out in which sulfo-NHS-biotin blocked strepta-

vidin molecules were exposed to an amine-PEG-biotinylated PSiM, as described in Section

2. A blueshift was measured by the spectrometer, which we again attribute to instability of

the PSiM surface modification. This result suggests that biotin-streptavidin binding occurs

specifically and, moreover, improvement in the robustness of the surface chemistry may al-

low even larger changes in relatively intensity to be measured when a given concentration

of streptavidin is exposed to a biotin-functionalized PSiM.

3.4.3 Conclusions

A PSi-based smartphone biosensor is demonstrated as a new sensing platform that lever-

ages the convenience of a smartphone and the high internal active sensing surface area of

a PSi film. Structural colour changes of the PSi film that result from molecules infiltrating

the pores are converted to a relative intensity value by analysing the red pixel values read

out from the smartphone camera image sensor. When benchmarked against a commercial

spectrometer, the PSiM smartphone system exhibits an accuracy equivalent to 0.33 nm.

Specific detection of streptavidin molecules was demonstrated with an estimated detection

limit of 500 nM. As the PSiM biosensor supports a variety of surface functionalizations,

the PSiM smartphone system could be used as a platform for the detection of a multitude

of chemical and biomolecular species including DNA, small proteins, and toxins using,

for example, DNA, antibody, or aptamer probes. By addressing some of the current engi-
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neering challenges and by integrating a simpler fluidic handling approach, the PSi-based

smartphone biosensor has the potential for application as a POC diagnostic tool, which

could be particularly useful in low-resource environments.

3.5 Possible improvements

A solid box or housing can provide the support for the sensing platform and shield for

the ambient light. However, it is inconvenient to carry a box several times larger than

the smartphone itself. One way to replace the box is to do the background subtraction

and calibration in real time. A recent paper proposed a biosensor using the principle of

lock-in amplifier, a method which has been widely used in the field of electronics and

the usability of which has also been demonstrated in smartphone sensing systems.[69] We

find it might be useful to include the techniques to the PSi smartphone biosensors as well.

As for using multi-color channels of the smartphone cameras, Ryckman et al reported

a hyperchromatic structural color-based colorimetric sensor recently, which explored the

interplay between the structural color filter design and the choice of illuminant.[70] The

paper demonstrated a minimum resolvable difference of 0.1nm (with naked eye as detector)

under the illumination of three monochromatic lasers, which is 30 times lower than single-

wavelength sensors. We note that the enhancement was not unique to the laser systems,

and the combination of porous silicon filters and smartphone LED could also be used to

achieve the same enhancement.
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CHAPTER 4

Peptide-based biosensing

Notes to readers : Part of the chapter was adapted with permission from my previous

publication :

Tengfei Cao, Rabeb Layouni, Matthew B. Coppock, Paul E. Laibinis, Sharon M. Weiss,

”Use of peptide capture agents in porous silicon biosensors,” Proc. SPIE 11258, Frontiers

in Biological Detection: From Nanosensors to Systems XII, 112580L (21 February 2020);

https://doi.org/10.1117/12.2552932[71]

4.1 Introduction

Biorecognition elements (bioreceptors) are at the heart of the modern biosensors. Biorecog-

nition elements specifically recognize the analyte and separate the target molecules (signal)

from the complex analyte solution through physical adsorption, chemical binding or catal-

ysis. The most widely used receptors for biorecognition are the enzymes and antibodies,

which are served as the biorecognition elements for catalytic biosensors and affinity biosen-

sors, respectively.[72] Since the first introduction as the glucose biosensor by Clark and

Lyon in 1962, enzymes-based biosensors have developed rapidly.[73] The enzyme’s recog-

nition is realized by (1) converting the analyte into a sensor-detectable product; (2) serving

as the catalysis for a reaction that can be inhibited or activated by the analyte. Generally,

enzymes that are capable of recognizing analytes are efficient biocatalysts, such as redox

enzyme, peroxidase and urease. Despite great success, the development of enzyme-based

sensors also faces several challenges. For instance, searching for a new highly efficient and

active enzyme is difficult and costly.[74] Most enzymes-based biosensors suffer from poor

stability, and require critical operation temperature and pH conditions. The first antibody-
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based biosensor (immunobiosensor) was reported in 1970s.[75] Antibody biosensors rec-

ognize analyte through specific binding of antibody and antigen. For antibody biosensors,

monoclonal antibodies (MAb) are the current golden standard. MAb has a high affinity

and an excellent selectivity.[76] But the poor in-vitro adaptability, manufacturability, and

stability for transportation and storage greatly restrict its applications, especially for the

point of care (POC) applications.[77] To address some of these challenges, mAb alterna-

tive technologies have been developed such as DNA (RNA) aptamers,[78] single domain

antibodies,[79] post-modified antibodies[80] and peptide nucleic acids (PNAs).[81] How-

ever, none of these technologies have yet fulfilled all of the necessary reagent requirements

for fieldable sensors. Peptides, the short chain of amino acids and the building blocks of

protein, has emerged as a promising antibody alternative for POC testing in recent years.

Although, they are much smaller in size compared to the MAb, the peptides (or their deriva-

tives) can show comparable affinity and selectivity for certain targets. Like protein antibod-

ies, the peptides have the advantage of mature screening protocols, diverse structures and

large chemical versatility. Beyond protein antibodies, the peptides have the technologies for

on-demand selection and synthesis, great thermal stability, and good adaptability to various

platforms through chemical modifications.[76] Besides the function as the bioreceptor, pep-

tide sequences have also been demonstrated to show selective affinity to the semiconductor

surfaces, one of the major transducer materials for biosensors.[82, 83] In this chapter, we

start with the basics of the peptide, the amino acid monomers, the common preparation and

selection methods, and then review the techniques and relevant works to peptide biosens-

ing. In the main text, we will report the experiments on the peptide based biosensing being

done in our lab and future plans involving the robustness and affinity of the peptide captur-

ing agents, the diffusion and binding kinetics of associated target molecules to the peptide

functionalized surface compared to nanostructured surfaces with other functionalization.

We believe that understanding the nano-bio interface with peptide-functionalization in PSi

can provide critical insights that could be applied to other types of nanostructured surfaces
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Table 4.1: The 20 kinds of naturally occurred amino acids—the names, three- letter/ 
one-letter abbreviations and chemical structures.

and could enable improved performance across multiple sensing technologies.

4.2 Basics of peptide

Peptide is the short chain of amino acids, which is closely related to protein. There are 20

kinds of naturally- occurring amino acids, listed in Table 4. 1. The general structure of the

amino acid (AA) is the amine and the carboxylic acid groups attaching to the same carbon

with a side chain (R group) and a hydrogen atom. In terms of electronic structures, Lys,

Arg and His are positively charged; Asp and Glu are negatively charged; Ser, Thr, Cys,

Tyr, Asn and Gln are polar; Gly, Ala, Val, Leu, Ile, Met, Phe, Trp and Pro are nonpolar.

When the amine of one AA reacts with the carboxyl group of the other AA, a peptide bond

is formed. The peptide bond is so stable that it has a room temperature half-life time of

350 to 600 years.[84] Connected by the peptide bond, 20 kinds of amino acids can form

infinite number of peptides. Peptides are distinguished from proteins based on the number

of isomers, and generally the chains that have 50 or fewer amino acids are referred to
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as peptides, but the classification is not absolute. Peptides have significant applications in

molecular biology.[85, 86] They allow the creation of peptide antibodies in animals without

the need for purifying the protein of interest. It can act as the probe to reveal the peptide-

protein interactions and it also has the potential to treat disease including cancer.

4.3 Peptide preparation

In the natural environment, peptide is synthesized in the ribosome via genetic transla-

tion, a process that ribosomes link AAs together in the order specified by messenger RNA

(mRNA) molecules.[87] In the messenger RNA sequence, three nucleic acids (one codon)

corresponding to one AA. 64 codons map to the 20 amino acids and the start/stop codon.

The degeneracy gives the synthesis tolerance to the gene mutation. In the laboratory, the

most well-known method for short chain peptides synthesis is solid-phase peptide synthesis

(SPPS).[88] As for peptide selection and screening, display technologies are the most com-

mon methods, where phages and bacteria are used to produce libraries of peptides.[89, 90]

Phages and bacteria, carrying the mutated genes, can generate a great diversity of peptides

categories in the process.

4.3.1 Solid-phase peptide synthesis

SPPS allows the rapid assembly of a peptide chain through successive reactions of amino

acid derivatives on the insoluble porous support, which consists of small, polymeric resin

beads functionalized with reactive groups (such as amine or hydroxyl groups) that link

to the initial peptide chain. Since the peptide remains covalently attached to the support

throughout the synthesis, excessive reagents and side products can be removed by washing

and filtration. Compared to the solution-phase synthesis, SPPS avoids the comparatively

time-consuming isolation of the product peptide from solution after each reaction step. The

procedure of the SPPS is listed as follows. (Schematic is shown in Figure 4.1)
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Figure 4.1: The procedure of solid phase peptide synthesis flow. The red dots are the resin 
beads. The green ‘PG’ stands for the protecting group. R1 and R2 are the R groups of the 
amino acids.

First, the -NH2, ammine group (or -COOH, carboxy group) modified resin beads are 

dispersed on a solid-state porous support. N terminal protected AAs are introduced to 

the resin, and the peptide bonds are formed between the resin beads and the AAs after 

the condensation reaction. Then deprotection is applied and a new ammine termination is 

formed at the end of the peptides. The next step is to introduce a new AA unit and repeat 

the coupling and deprotection steps until all the desired AAs are integrated. Finally, the 

crude peptide is cleaved from the solid support while all protecting groups are removed 

simultaneously using a reagent strong acid, like trifluoroacetic acid or a n ucleophile. The 

crude peptides can be further purified b y u sing r eversed-phase h igh p erformance liquid 

chromatography (HPLC).

4.3.2 Phage display

Though a known peptide sequence can be precisely synthesized by SPPS, a much greater
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Figure 4.2: Schematic diagram of affinity selection. Steps are detailed in the text. The
figure is adapted with permission from Ref [91], Copyright 2019 Wiley-VCH Verlag GmbH
& Co. KGaA, Weinheim

52



diversity of peptides library is needed to find the peptides that binds to specific protein,

small molecules or inorganic surface. The generation and multiplication process of these

libraries are called a display. First reported by George Smith in 1985, Phage display is a

2018 Nobel Prize winning technology for peptide selection.[91] Phage display is a process

that starts with inserting foreign DNA fragments into the DNA of a bacteriophage—a virus

that infects bacteria. That gene of the foreign DNA is then expressed and displayed on

the surface of the phage (coat protein).[92] Researchers can use these protein-displaying

phages to screen for peptides that have high affinity to certain proteins, DNA sequences,

and small organic or inorganic molecules, or even specific surfaces. Bio panning (affin-

ity selection) with phage display peptide library is the most popular method for peptide

selection. As shown in Figure 4.2, the affinity selection contains the following steps.[91]

Step 1, target molecule (also called selector) is immobilized onto a solid surface, such

as polystyrene petri dish or microplate well. Step 2, many foreign genetic sequences are

inserted into a bacteriophage library in the form of fusions with the bacteriophage coat pro-

tein. Alongside with other phage genes expression, these genes expressed and displayed on

the surface of the viral particle. The phages whose displayed peptides bind the immobilized

selector are captured. Step 3, the phages whose displayed peptides bind do not bind or have

poor affinity to the selectors are washed away. Step 4, the bounded phage is eluted from

the microtiter plate and (Step 5) amplified by infection of suitable bacterial hosts. The new

phage constitutes an enriched mixture, containing considerably less irrelevant phages (i.e.

non-binding) than were present in the initial mixture. The bind-wash-elute-amplify steps

were repeated until the purification of the desired peptide reached the acceptable level. The

common phages used for display include fd filamentous phage, M-13, T4, T7, and λ phage.

4.3.3 Bacteria display

Similar to phage display, bacteria and yeast display are also important technologies for
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Figure 4.3: The antibody development time table of common production methods.
Reproduced from Ref [93] under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike-3.0 License, Copyright Dimitra N. Stratis-Cullum et al. Li-
censee IntechOpen.

peptides discovery. It is reported that peptides, identified and affinity selected by using

bacterial display, were remarkably similar to the best affinity matured using phage display

and exhibited comparable dissociation constants.[76] Fast screening of bacterial-displayed

peptide libraries is enabled by using cytometry enabled optimization method, like fluo-

rescence activated cell-sorting (FACS) and/or magnetic activated cell sorting. Comparing

other antibody preparing techniques (the comparison chart is shown in Figure 4.3), bacte-

ria display also features the shortest developing time.[93] Bacterial display thus provides

a new quantitative tool for the discovery and evolutionary optimization of protein-specific

peptide ligands.
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4.4 Peptide as the bioreceptors

As mentioned in the introduction, the protein-based antibody-antigen assay is the current

standard approach to detect the biomolecules and bio interactions for affinity biosensors.

However, the environmental stability issue and the long developing period significantly

boost the cost and reduce the convenience. On the other hand, peptides share the same

chemical building blocks and bonding with proteins, while having much better stability

and thus are an ideal substitute for protein as the biorecognition element. Over the years,

peptide-based molecular biosensors have been developed for convenient and fast detec-

tion of various analytes including proteins,[94] DNA,[95] metallic ions[96] and toxins.[97]

Generally, peptide binding does not generate directly observable signals, and transducers

are needed to transform the binding events to measurable quantities, like color change,

spectra shift, light emission, potential change or direct current, etc.[98] The most common

way to achieve the transduction is to attach the peptides with signal makers, i.e. labelling.

There are only a limited number of label-free peptide sensors being reported.

Fluorescent labelling is the most widely used technique for peptide-based biosensors.[99]

Spectral properties of the fluorophores used for peptide labelling are highly sensitive to the

surrounding environment. The mechanisms for signal transduction include fluorescent res-

onance energy transfer (FRET), excimers and probe-quench pair or simply structure change

induced light enhancement.[100] The FRET peptide biosensors are made of a sequence of

peptides used for specific binding and a light emitting donor-acceptor pair. Upon recogni-

tion, the target analyte binds to the peptides and changes the distance between the donor and

acceptor, thus affecting the energy transfer from between the two. For example, Joshi et al

reported a peptide Hg2+ ions sensor based on FRET. In the system, peptide-Hg2+ binding

shortens the distance between tryptophan (donor) and dansyl fluorophore (acceptor) and

increases the energy transfer, resulting in higher fluorescent emission intensity.[101] The

FRET process could also be induced by protease cleavage of peptides as reported by Kaman
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et al.[102] Excimer based biosensors are made of a sequence of specific peptides and two

identical fluorophores linked to each end of the sequence. Based on the observation that

flexible and dynamic short peptides become rigid when conjugated with macromolecular

targets, which could segregate two pyrene moieties and inhibit excimer formation, Plaxco

et al have produced the peptide beacons based biosensor directed against both anti-HIV

antibodies and the retroviral transactive response (TAR) RNA hairpin[103]. The analyte

binding could lead to 2-fold decreases in excimer emission and achieve nanomolar level de-

tection limit. Compared to FRET, probe-quencher pair is usually based on static quenching

where molecules form non-fluorescent complexes in the ground state but stay fluorescent at

the excited state. For example, Qing et al reported a graphene oxide (GO) based fluorescent

biosensor that employs the probe-quencher pair strategy[104]. In the ground state, binding

of fluorescein isothiocyanate (FITC)-labeled octreotide (FOC) to GO results in significant

fluorescence quenching of FITC. But upon specific binding of the anti-octreotide (AOC),

FOC is released from the GO surface and recovers the fluorescence. A detection limit of

the AOC can reach 2ng/mL based on the above principle.

Labelling has helped the peptide sensing achieve low detection limits and high sensi-

tivity, but label-free biosensing is generally more favorable, considering the ease of sample

preparation and nature- environment molecular interactions. With the PSi rugate filter as

the transducer, Gooding et al reported a label-free peptide sensor by tracking the optical

spectral shift of the PSi reflectance spectra, which could detect the protease down to 37

nM.[105] Sam et al reported a electrochemical heavy metal ion sensor based on peptides

modified porous silicon surface[106]. Combining the high affinity and good stability of

peptides and the easy preparation and low cost of the label-free method, more work should

be done in this promising field.
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4.5 Peptide for surface modification

Surface modification is the crucial step for analyte binding. A stable transducer surface is

a necessary condition for the reliable signal and the subsequent success of sensing. Surface

modification protects the transducer surface and provides the chemical bonds for further

receptor binding. Pristine PSi is very unstable, and it dissolves slowly even in water or pH

neutral buffer. A natural way to passivate the PSi surface is oxidation, which changes the

Si-H and Si-Si bond to Si-O bond. The methods for oxidation include thermal oxidation,

ozone plasma and chemical methods (hydrogen peroxide oxidation). Oxidized PSi shows

improved resistance to aqueous corrosion. Higher degree of oxidation offers better protec-

tion, but leads to poorer optical properties and lower refractive index of the PSi. Moreover,

oxidized PSi is still vulnerable to basic solutions. Another way to passivate the PSi is ther-

mal carbonization, which adds Si-C to the PSi that can withstand the basic solutions, but

the carbon lowers the intensity of the reflection and degrades the optical performance as

well. After oxidation or thermal carbonization, a secondary modification is still needed to

create the bonds for organic molecules. Silanization, for example, adds ammine group to

the surface, but the process is either too time consuming or unstable. Based on the fact that

short peptides that can specifically recognize inorganic materials, Gergely et al reported

a new method to functionalize the PSi with peptide.[83] Peptides with specific affinity to

the PSi surface is screened via phage display and then labelled with biotin. The peptide

functionalized PSi can achieve a lowest detection limit (LOD) up to 21 times lower than

the LOD obtained with the silanized devices.

4.6 Peptide attachment through click chemistry

To construct a peptide-based biosensor, the most important step of the experiment is to

attach peptide-based capture agents on the PSi surface. Three methods illustrated in Fig-

ure 4.4 have been taken into consideration. (1) Incubating silane functionalized capture
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Figure 4.4: Three possible methods for binding peptides: (a) The silane functionalized
peptides binding to PSi surface. (b) Direct peptide synthesis on PSi. (c) Peptide conjugation
through azide-alkyne cycloaddition-based click chemistry.

molecules with silicon substrate. (2) Direct peptide synthesis on PSi. (3) Azide-alkyne

cycloaddition-based click chemistry. To determine the best functionalization protocol, bi-

otin/peptide streptavidin model is used. Silane (APTES) biotin capture protocol has been

demonstrated in our group,[107] but the silane modified surface has a poor resistance to wa-

ter corrosion.[108] The instability of APTES-PSi will shadow the signal of peptide-analyte

binding and complicate the stability study of the peptides. Direct peptide synthesis on PSi

seems promising due to good stability. However, additional efforts to sort are needed in

the process which adds to complexity. So, click chemistry is utilized to attach biotin and

the streptavidin binding peptide (SBP) to the PSi samples,[71] and the unique azide-alkyne

reaction allows alkyne modified PSi surface to incorporate most peptide sequences without

side reactions. The SBP was provided by our collaborators at Army Research Laboratory
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(ARL).

4.6.1 PSi structure preparation and hydrosilylation

PSi microcavities are fabricated through anodic etching of p-type silicon wafers in a so-

lution of 15% ethanoic HF solution (as specified earlier). Note that HF is an extremely

dangerous chemical and should always be handled with the utmost caution. To ensure

there is no narrowing of the pore opening at the top surface of the wafer,[24] an etching

current density of 70 mA·cm−2 is applied to the wafer for 100s to serve as a sacrificial layer

and it is then dissolved in 1 M NaOH solution and rinsed with ethanol and DI water. Next,

the PSi microcavity is etched using a pair of alternating current densities of 80 mA·cm−2

(H) for 3.1 s and 60 mA·cm−2 (L) for 3.2 s, arranged in the order of (HL)7(H)2(LH)7.

The freshly etched PSi microcavity is then modified with a 10-carbon straight-line alkyne,

1,8-nonadiyne, through thermal hydrosilylation. Before hydrosilylation, as-purchased 1,8-

nonadiyne is purified by liquid chromatography to remove the oxides. Silica powder is

used as the stationary phase and hexane is used as the mobile phase. Following purifica-

tion, the nonadiyne solution undergoes three freeze-pump-thaw cycles to remove oxygen.

PSi sample is dipped into 2.5% HF solution for 90 s to remove native oxide before dipping

into the nonadiyne solution, and then washed with DI water and ethanol, and dried with

nitrogen gas. Following the cleaning process, the PSi sample is immediately placed in a

Schlenk flask with the degassed 1,8-nonadiyne. The hydrosilylation reaction lasts over 3 h

in an oil bath at the temperature around 155 ◦C. The PSi sample is removed from the flask,

rinsed thoroughly with dichloromethane (DCM) and ethanol, and then dried under a nitro-

gen stream. FTIR spectroscopy measurements are carried out to confirm alkyne presence

on the PSi surface.
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4.6.2 Bioreceptor immobilization through click chemistry

Copper (I)-catalyzed Click chemistry was performed to attach the azide-modified biotin

and SBP to the alkyne-modified PSi surface. Freshly prepared sodium ascorbate (20 mM

in water) was added to copper (II) sulfate pentahydrate (0.40 mM in water) in a volume ratio

of 1:1. The reduced copper solution was then mixed with the bioreceptor solution (azide-

modified biotin 8.67 mM, in ethanol/water 1:1 or azide-modified SBP, AWRHPQGG 6

mM, in ethanol/water 1:1) in a volume ratio of 2:3. Then 25 µL solution of the mixture

was drop-cast on the PSi and stored in sealed dark environment with liquid ethanol and

water sprayed inside to mitigate evaporation of solvents. Different reaction times for this

click reaction were evaluated at room temperature: 6, 12, 24, and 48 h. After reaction, the

samples were rinsed with anhydrous ethanol and DI water, and soaked in 0.5 mM HCl for

30 min to remove residual copper in the pores. The samples were then cleaned with DI

water and anhydrous ethanol, and dried under a stream of nitrogen gas. FTIR spectroscopy

measurements are carried out to confirm the attachment of the bioreceptors.

4.6.3 Streptavidin sensing experiment

The functionality of SBP and biotin was evaluated through exposing the functionalized PSi

samples to streptavidin molecules for various reaction times. A 20 µL of 5 µM streptavidin

was drop cast onto each of three SBP-modified PSi samples and incubated for 1, 2, and 17

h, respectively, at room temperature. In addition, a 20 µL volume of 5 µM streptavidin

was drop cast on a nonadiyne-modified PSi microcavity (without peptide), as a control ex-

periment and a 20 µL volume of 5 µM streptavidin was drop cast on a biotin-modified PSi

microcavity to compare the performance of the SBP with biotin; the streptavidin molecules

were exposed to each of these samples for 1 h. Following the specified incubation time in

streptavidin, all PSi samples were washed thoroughly with DI water, dried under a stream of

nitrogen, and measured with both optical reflectance spectrometry and FTIR spectroscopy.
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4.6.4 PSi microcavity characterization and functionalization confirmation

Figure 4.5: (a) Cross-sectional SEM image of porous silicon microcavity. (b) Reflectance
spectrum of PSi microcavity with a resonance wavelength near 660 nm. (Inset) Top-view
SEM image of PSi.

Figure 4.5 (a) shows the cross-sectional SEM image of a PSi microcavity. The top

and bottom Bragg stacks consist of the alternating higher and lower porosity layers sand-

wiching the higher porosity thicker middle cavity layer, as can be seen in the image. The

inset of Figure 4.5(b) displays the top-view of PSi sample (SEM image). Calculated from

the image analysis, the PSi formed by applying higher and lower current densities during

electrochemical etching have average pore diameters of around 60 nm (82% porosity) and

40 nm (75% porosity), respectively. The total thickness of the PSi microcavity is approx-

imately 3.3 µm. Figure 4.5(b) is a typical reflectance spectrum of a PSi microcavity, and

the center resonance wavelength locates near 665 nm.

The 1,8 nanodyine (ND) functionalization is confirmed by FTIR spectra as shown in

Figure 4.6. The top black curve is the spectrum taken after etching. The peaks near 900

cm−1 and 2100 cm−1 indicate the Si-H bonds. The middle blue curve is taken after hy-

drosilylation. The tiny peak near 900 cm−1 and the absence of the peak near 900 cm−1

indicate a good alkyne coverage on top of the PSi surface. The green curve is the spec-

trum taken after the click chemistry. The binding of SBP is validated by decrease of the
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Figure 4.6: The FTIR spectra of PSi microcavity at different stages of the experiment,
i.e. as-anodized, after nonadiyne modification (ND), after the click reaction with azide-
functionalized streptavidin-binding peptide (ND-Azide-Peptide), and after the capture of
streptavidin molecules (ND-Streptavidin). Notable bonds are indicated with the dashed
lines.

peak intensity at 3300cm−1, which relates to the consumption of alkyne groups during the

click reaction. And the amide bands near 1650 cm−1 and 1540 cm−1 are also consistent

with the peptide structure. The binding of the SBP could also be confirmed by the redshift

of the reflectance spectrum as shown in Figure 4.7(a). Following a 1 h exposure of the

SBP functionalized PSi microcavity to 5 µM streptavidin solution, there is an increase in

the intensity of the FTIR peaks near 1650 cm−1-1680 cm−1 and 1540 cm−1 (Figure 4.6),

confirming the streptavidin attachment. Reflectance measurements (Figure 4.7(a)) show a

microcavity resonance redshift of 12.9 nm after exposure of the functionalized PSi sample

to streptavidin, which is also consistent with capture of streptavidin molecules in the PSi.

We note that there is no spectral shifts after exposing a nonadiyne-modified PSi micro-
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cavity (control sample, without peptide modification) to the streptavidin molecules. This

supports the specificity of the SBP capture agents.

Figure 4.7: The reflectance spectra of (a) PSi microcavity after attachment of nonadiyne,
streptavidin-binding peptide (24 h attachment), and streptavidin molecules (1 h attachment,
5µM) and (b) PSi microcavity after attachment of nonadiyne, biotin (24 h attachment), and
streptavidin molecules (1 hour attachment, 5µM).

To compare the performance of the SBP as a capture agent for streptavidin molecules

on PSi with the more commonly used biotin bioreceptor, reflectance measurements on us-

ing biotin as bioreceptor are taken after azide-terminated biotin molecules are attached

to an alkyne-terminated PSi microcavity, and after streptavidin molecules are exposed to

the biotin-modified PSi microcavity. Comparison of Figure 4.7(a) and (b) shows that the

PSi microcavity resonance redshifts by a larger magnitude after biotin attachment (19.6

nm) than after peptide attachment (8.2 nm). This larger magnitude redshift suggests that

more biotin molecules are present on the PSi surface compared to SBP. Note that biotin

(MW: 244.3 gmol) is smaller than SBP (MW: 1061.2 gmol). A redshift of 11.7 nm is mea-

sured following the 1 h exposure of the biotin-functionalized PSi to streptavidin molecules.

The resonance shifts measured after streptavidin capture in the biotin-functionalized and

peptide-functionalized PSi microcavities do not differ significantly. This is despite the

higher binding affinity of biotin, which is most likely indicative of the experiment being

carried out in a dilute regime where the reaction is diffusion-limited.
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4.6.5 Optimization of click reaction time and streptavidin incubation time

Figure 4.8: Alkyne-modified PSi microcavity resonance wavelength shifts after attaching
azide-modified streptavidin-binding peptides with different click reaction times.

To optimize the reaction time for the copper-catalyzed click reaction protocol, different

reaction times of the alkyne-modified PSi in the solution containing azide-modified SBP,

copper (II) sulphate pentahydrate, and sodium ascorbate are evaluated at room temperature.

Following each designated reaction duration (6—48 h), the post-reaction sample cleaning

protocol described in Section 4.6.4 is carried out and then reflectance measurements are

performed. Figure 4.8 suggests that the click reaction is completed after 12 h; the measured

resonance shift is nearly the same after 12 h and 24 h, and therefore the number of peptide

molecules added to the PSi surface is nearly the same during a reaction window of 12– 24

hours. For shorter reaction times, there is a notably smaller resonance shift suggesting the

PSi surface is not saturated with the peptide molecules. The slight decrease in wavelength

shift observed after the 48 h click reaction may be attributed to the corrosion of the PSi

matrix during the extended incubation in aqueous solution.[109, 110]

To optimize the reaction time for streptavidin binding, three different incubation times
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Figure 4.9: The redshifts of resonance wavelength of peptide-functionalized PSi micro-
cavity after sample incubation in streptavidin (5 µM) for different time durations. The 
dashed line is shown as a visual guide.

for streptavidin molecules in peptide-modified PSi microcavities are e valuated: 1, 2, and 

17 h. Figure 4.9 shows that increasing the streptavidin incubation time from 1 to 2 h more 

than doubles the magnitude of the resonance wavelength shift. However, no additional 

redshift is measured after overnight streptavidin incubation (17 h), suggesting that 2 h is 

a sufficient i ncubation d uration t o e nable c apture o f t he s treptavidin m olecules a t most 

available binding sites. The slight decrease in resonance wavelength observed after the 

17 h incubation may be due to PSi corrosion during the extended exposure to aqueous 

solution.[109, 110] These results for streptavidin incubation time in PSi are consistent with 

prior work that showed a 2 h incubation is appropriate for streptavidin capture in closed-

ended PSi, while 30 min is sufficient when streptavidin molecules are exposed to the open-

ended PSi membranes.[111]

4.6.6 Summary on streptavidin binding peptide attachment

In summary, the feasibility of using peptide-based capture agents as an alternative to anti-

bodies and nucleic acid-based bioreceptors for PSi biosensors was demonstrated. Azide-
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modified SBP capture agents are attached to alkyne-modified PSi microcavities via copper(I)-

catalyzed azide alkyne cycloaddition (CuAAC), as verified by FTIR and optical reflectance

measurements. The click reaction must proceed over a duration between 12 – 24 h to

maximize coverage of the peptide capture agents in the PSi without introducing deleteri-

ous effects due to corrosion of the PSi matrix. FTIR and optical reflectance measurements

also verified the successful capture of streptavidin target molecules; a 2 h streptavidin in-

cubation time is sufficient to saturate most available binding sites. Under a given set of

conditions evaluated (5 µM streptavidin in water, 1 h incubation), the SBP enabled nearly

the same number of streptavidin molecules to be captured as the biotin bioreceptors. We

believe the protocols developed for the attachment of azide-modified SBP capture agents

in PSi is directly scalable to other azide-modified capture agents.

4.7 Chikungunya virus E2 protein detection

Chikungunya is an infection caused by the chikungunya virus (CHIKV) which is passed

to humans by mosquitoes. The feature of the disease is a sudden onset of fever 2-4 days

after exposure, frequently accompanied by joint pain. [112] The fever typically lasts 2-7

days, while the associated joint pains usually last weeks or months, but sometimes years.

Although natural infection only occurs in tropical regions, CHIKV is of interest to global

public health due its high infectivity when aerosolized, ease of large-scale production, sta-

bility under a wide range of environmental conditions, and large, cyclic epidemics. More-

over, CHIKV is an RNA virus which mutates rapidly, and the transmittance pathway may

shift as a result of cumulative changes under environmental constrains.[113, 114] While

severe joint pain is the most distinguishing feature of chikungunya fever, diagnosis re-

mains difficult because the symptoms of chikungunya fever are shared by many pathogens,

including dengue fever. [115] Typical CHIKV protein detection assays target IgM and

IgG anti-CHIKV antibodies, however those antibodies only present 3–10 days after host
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infection.[116, 117] While the PCR techniques can provide earlier diagnosis, it takes hours

or a day to multiply the RNA of the virus. [118] There is an antibody assay reported, but

the poor stability of antibody makes antibody biosensor production costly and unfeasible

for POC test. [119] Recently, our collaborators reported a novel discovery and maturation

strategy for the development of thermally stable peptide-based capture receptors.[76] Re-

combinant peptides against the unglycosylated E2 protein of CHIKV were developed and

showed comparable performance with the E2 antibody, while maintaining high thermal

stability.[120] To make the peptides available for POC diagnostics, we explored ways to

incorporate CHIKV E2 binding peptides (CBP) to PSi platforms. In the following sections

(and appendix B), we will report the PSi setups that have been examined.

4.7.1 Peptides on PSi chip

a) Experiment

The PSi microcavities were fabricated and functionalized following the procedures de-

tailed in section 4.6.1. Copper (I)-catalyzed click chemistry was performed to attach the

CHIKV E2 binding peptide (CBP, including the peptide sequences of WIYYI, YWHWS

and IYLRY) to the ND-modified PSi surface. The procedures for the click reaction are

detailed in section 4.6.2. After reaction, the samples were rinsed with DMSO, followed by

anhydrous ethanol and DI water, and soaked in 0.5 mM HCl for 30 min to remove resid-

ual copper in the PSi pores. The samples were then cleaned with DI water and anhydrous

ethanol, and dried under a stream of nitrogen. The functionality of CBP was evaluated

through exposing the functionalized PSi sample to CHIKV E2 protein. A 20 µL solution

of 1 µM E2 was drop cast onto CHIKV E2 binding peptide-modified PSi samples and incu-

bated for 2 h, at room temperature. Following the incubation, the PSi samples were washed

thoroughly with DI water, dried under a stream of nitrogen, and measured with reflectance

spectrometry. Subsequently, 20 µL solution of 5 µM E2 was additionally drop cast on
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the PSi sample and incubated for 2 h at room temperature. Following the incubation, the

PSi samples were washed thoroughly with DI water, dried under a stream of nitrogen, and

measured again.

Figure 4.10: Reflectance spectra taken after nonadiyne modification, click chemistry, and
E2 protein exposures.

b) Result and analysis

As shown in the Fig 4.10, after clicking the peptide IYLRY to the alkyne modified PSi

surface, a redshift of 3.7 nm is shown. This indicates the successful binding of the CBP.

However, after 1 µM CHIKV E2 incubation for 2h, only a small redshift of less than 0.4 nm

is observed in the reflectance spectra. To examine if this is in the low concentration regime,

a 5µM CHIKV E2 solution is added to the same PSi chip, another 0.4nm is shown. Then

the same procedure was repeated on the PSi microcavities with different CBPs, WIYYI

(4mM), YWHWS (7mM). Similar spectral shift (4-6nm) were observed after clicking the

peptides with the PSi surface, but no significant spectral shifts are shown upon the CHIKV

E2 incubation.

After examining the CHIKV E2 incubation process, we noticed the CBP modified PSi

surface displayed a strong hydrophobicity with a water contact angle around 112 ◦, which
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effectively prevent the water penetration and E2 protein diffusion. To reduce the surface

tension, methanol and tween 20 solution were added to the CHIKV E2 solution separately.

It turns out high concentration of methanol could denature the E2 protein, while low con-

centration methanol is not enough to reduce the surface tension. For another experiment,

0.1% tween 20 was added to the E2 solution and 0.1% tween 20 and equal amount of wa-

ter (equals to volume of E2 solution) were used as the control. After 2h incubation and

wash with abundant water, a spectral redshift of 20 nm was observed for both samples. It

indicates the nonspecific binding of the tween 20 (MW∼1228 Da) has either blocked the

interaction of the CBP and E2 protein, or shadowed the spectral shift from CBP and E2

protein.

To overcome the hydrophobicity challenge, incubation of the E2 protein was performed

in a pressure-controlled chamber.

4.7.2 Vacuum method

a) Experiment

The PSi microcavities were fabricated and functionalized following the procedures detailed

in section 4.6.1. Once the peptide presence on PSi was demonstrated, we tested it with E2

protein for CHIKV infection detection. CBP YWHWS was attached to nonadiyne modified

porous silicon microcavity samples through copper-catalyzed click chemistry as detailed in

section 4.7.1a. After that, one sample was put into the bottom of a 25 mL filtering flask

sealed with a rubber stopper. The setup was pumped into vacuum (air pressure <10 torr).

A 50 µL solution of 1 µM of E2 in water was carefully dropped cast on top of the PSi

microcavity surface using a syringe with a 6-inch-long needle. The vacuum was released

slowly till it reached the atmosphere pressure. And the sample was then incubated for 2h.

Another sample was treated with the similar procedure but incubated in a solution of 50

µL solution of 1 µM chicken albumin solution instead as a control experiment.
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b) Result and analysis

Figure 4.11: (a) Reflectance spectra taken after nonadiyne modification, click chemistry,
and E2 protein exposure. (b) Reflectance spectra taken after nonadiyne modification, click
chemistry, and chicken ovalbumin protein exposure.

Reflectance spectra in Figure 4.11(a) show a red shift following the peptide attachment

by 5 nm. For the sample exposed to E2, the reflectance spectrum redshifts by 1.6 nm.

This indicates the successful capture of the target by the peptides on the PSiM surface.

On the other hand, as shown in figure 4.11(b), the reflectance spectra for sample exposed

to chicken albumin showed no shift, which suggests that no chicken albumin is attached

to the surface and the CBP-E2 binding is specific. Though the vacuum condition gets the

water solution penetrating through the hydrophobic barrier, the process is not ideal for

POC application. Therefore, several different approaches were investigated to enable E2

detection using a more straightforward and scalable approach, including flow cells and PSi

membranes, dual functionalization, and azide surface modification. Unfortunately, none of

these approaches, which are detailed in Appendix B, proved to be more effective than the

vacuum infiltration approach. Ongoing studies continue to investigate alternative solutions.
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4.8 Summary

The attachment and activity of peptide-based capture agents were demonstrated on a PSi

platform. A copper-catalyzed click chemistry protocol for attaching azide-modified pep-

tides was first developed on alkyne-modified PSi using a well-characterized SBP. This ap-

proach was then applied to attach peptide capture agents for the detection of the CHIKV

E2 surface protein. Specific detection of the E2 protein was demonstrated using a vacuum-

assisted infiltration process to overcome the highly hydrophobic nature of the PSi surface

after peptide functionalization. Ongoing studies are investigating alternative strategies for

detecting E2 in a more straightforward manner, including the use of a less hydrophobic

azide-modified surface to attach alkyne-modified peptide-based capture agents.
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CHAPTER 5

Machine learning and biosensing

5.1 Introduction

Machine learning (ML) is a fast developing discipline which uses statistical approaches

to build or train models from data without the need to set up explicit mathematical equa-

tions or physical formulas.[121] Driven by today’s vast data volume and widely available

powerful data processing capability, ML related techniques have boomed at an unprece-

dented pace and have drawn the attention of researchers from almost all scientific fields,

including not only computer sciences, but also health sciences, life sciences, material sci-

ences, environmental sciences, psychology, finance and insurance.[122] Machine learning

techniques can reveal hidden structures in big data and have the potential to replace or

enrich analytical methods in many fields of scientific research. One such area is sensing

and biosensing, which has become ubiquitous in modern systems in our society, and state-

of-the-art technologies lead to massive amounts of data of various natures. Take photonic

biosensors for example, the data obtained during sensing might be a spectrum (1D), a se-

ries of time dependent spectra (2D), a series of time dependent spectral maps (3D) or even

hyperspectral videos. Moreover, dealing with biological systems or even in vivo exper-

iments adds additional challenges owing to the variability of biological samples. In this

case, precise analytical methods are too complicated to model the data, and ML become

a necessity. In recent years, a number of ML methods have been employed in the field

of biosensing; typical data analysis covers both exploratory techniques such as principal

component analysis (PCA) and cluster analysis for discrimination, as well as supervised

techniques such as linear discriminant analysis (LDA), decision trees, random forests, par-

tial least squares discriminant analysis (PLSDA) and support vector machines (SVM) for
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classification. [123, 124]

As discussed in previous chapters, peptides have the potential to replace protein anti-

bodies as a future bioreceptor with lower cost and better stability. However, developing

peptides still requires a considerable amount of effort and the stability of long-time storage

is yet under scrutiny. Moreover, transducer surface modification, a necessary step prior

to bioreceptor binding, takes additional time and requires strict reaction condition control.

For instance, the hydrosilylation of freshly etched PSi takes > 12 hours, and oxygen free

environment is mandatory throughout the reaction; [125] 10-undecenoic acid modified PSi

surface needs thoroughly ethanol rinse before drying in order to avoid PSi cracking; [126]

and APTES silanization reaction depends heavily on the environment moisture. [127] As a

result, a biosensor without receptor would be of great convenience, low cost and good stor-

age stability. There are also occasions where no specifically binding receptor is available

or the analyte is not known a priori.

The current solution for the receptor-free sensing is broadband optical spectroscopy,

which uses broadband optical source to probe the analytes near the surface of the trans-

ducer. The output spectra contain multiple features, which need to be deconvolved with

known analytes in the environment in order to ascertain the concentrations.[22] Because of

the complexity of the environment, those spectra have inherently great variation and uncer-

tainty. Therefore, it is challenging for spectroscopic biosensor to achieve high specificity

and sensitivity, or even accurate recognition. The underlying physics of the spectroscopic

methods include Raman scattering, Fourier transform infrared spectroscopy, X-ray photon

spectroscopy etc., which differentiate the molecules by monitoring the intrinsic property of

chemical bond vibrations, rotations or atomic level energy transitions. These spectroscopic

methods have been proven to be effective when dealing with simple small molecules that

have few signature groups, but the similarity (the chance of two kinds of biomolecules

share the same groups) and the complexity of the spectra increase as the molecular weight
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of biomolecules increases. On the other hand, the difference of molecular size, the charge

mass ratio and the diffusivity of biomolecules when passing through media become more

prominent with increasing of molecular weight. We propose a method that can differenti-

ate biomolecules by tracking their interactions with predesigned PSi structures of various

physicochemical properties. When a solution of biomolecules flows through the porous

material, the molecules can be adsorbed onto the pore surface or trapped into the pores,

which leads to change in the optical reflectance signal (Figure 5.1 (a), (b)). The adsorption

and trapping of biomolecules are governed by their properties (size, isoelectric point etc.),

the PSi structures (pore sizes and layer thicknesses, surface modifications, etc.) and the

physicochemical condition of the solution (pH, flow rate, salt concentration). For given

PSi array and solution condition, the optical reflectance signals reflect the properties of the

biomolecules, and therefore have the potential to serve as the signatures of the biomolecules

for identification purpose. As shown in the Fig. 6 of Ref [111] [Zhao et al, Nanoscale Res.

Lett 395 (2016)], different biomolecules displayed different diffusion characteristics un-

der the same flow conditions, and the same biomolecules behaved differently in different

flow conditions if their sizes were comparable to those of the pores. By varying the struc-

tures of the PSi array and the solution conditions, the optimal combinations for separating

biomolecules could be found—leading to the most unique optical signals when interacting

with different biomolecules. To extract the molecules’ signatures, machine learning meth-

ods can be employed. In the following sections, two possible schemes for biomolecule

diffusion monitoring will be discussed and prospective machine learning methods will be

laid out.

5.2 The flow cell scheme

As detailed in Chapter 1, porous silicon is an ideal material for biosensing and has been

intensively studied in the past decades for its extremely large internal specific surface area,
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Figure 5.1: (a) Biomolecules, passing through a single layer of PSi, are trapped by (1) 
Coulomb force, (2) Van der Waals force, or (3) pore branches. (b) The reflectance 
spectrum of a PSi microcavity. (c) The reflectance spectrum of a single layer of PSi. (d) 
The response of a PSi structure, obtained by tracking the spectral shift over time.

tunable optical properties and low fabrication cost. However, the application of PSi as 

biosensors to detect large biomolecules with slow diffusivity is challenged by an associ-

ated long response time due to hindered analyte diffusion in the low porosity PSi structures. 

Multiple flow cell studies have been carried out both on open-ended and close end PSi struc-

tures, and found that open-ended flow-through cell is more efficient for mass transportation.

[68, 111] Most of the studies on biomolecule transportation are restricted to the saturation

time estimation, maximum adsorption and assay stability. In fact, the transportation dy-

namics provide valuable information to differentiate between different molecule species,

enabling classification or recognition by carefully comparing the diffusion kinetics. Based
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on that, we designed a double layer structure that could be potentially used to differentiate

biomolecules.

Figure 5.2: (a) Biomolecules diffused into a two-layer PSi. (b) The FFT of a two-layer PSi
reflectance spectrum.

As mentioned in chapter 1, the single layer of PSi has a reflectance spectrum of a si-

nusoidal curve in the wavenumber space. When transformed by the FFT, the dominant

peak indicates the EOT of the layer (peak position equals twice of EOT). By monitoring

the EOT over time, the biomolecules’ diffusion behaviors could be tracked. Figure 5.1

(d) displays the sensorgram of the biomolecules’ diffusion, from which the maximum ad-

sorption and the saturation time can be readily extracted. By simple derivation, the half

saturation time and the adsorption rate at half saturation could be calculated. To increase

the number of features that could enable more effective pattern recognition, we considered

a two-layer PSi structure as shown in Figure 5.2(a): the additional layer of different pore

size will provide more insight on the size of the biomolecules. We anticipate the smaller

pores will have more effect on large molecules, as it is clear small pores will block the

biomolecules that are larger than the pores. Even the biomolecules that are small enough to

avoid being blocked, a smaller pore will still confine the biomolecules into a closer distance

to the pore walls and change Coulomb force-based adsorption as well as the van der Waals

interaction. The resulting changes in adsorption characteristics will manifest as changes
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in the reflectance signals. In the two-layer design, the reflectance spectrum contains three

major frequencies and displays three distinct peaks in optical path length space.(As shown

in Figure 5.2(b)) Ideally, the 2n1 L1and 2n2 L2 are independent indicators of the molecular

adsorption in layer 1 and 2. By applying a FFT to the spectrum, 2n1 L1and 2n2 L2 can be

separated. To avoid the possible overlaps between two peaks, we set n2 L2 = 2n1 L1, so that

the FFT peaks could have the largest separation for fixed 2n1 L1 + 2n2 L2. By tracking the

two peaks over time, two independent sensorgrams could be drawn, and both the maximum

adsorption and the saturation time can be obtained for each layer, and these features will

be used in further analysis. The methods for analysis will be detailed in section 5.4.

Figure 5.3: Reflectance spectrum of (a) a two-layer porous silicon structure on substrate in
air (n=1.00); (b) a two-layer porous silicon flow through cell in water (n=1.33).

Figure 5.3 (a) and (b) show the experimental reflectance spectra of a two-layer PSi

structure in air and a two-layer PSi flow-through cell in water. To explore the cause of

dramatic signal reduction, transfer matrix method-based simulation was used. The result is

displayed in Figure 5.4 (b), where the flow-over signal amplitude is about 4 time stronger

than the flow-through signal. Therefore, the above two-single layers design may work well

for flow-over scheme, where the substrate of the silicon has a high refractive index contrast

to the sensing layer leading to high reflection and better signal to noise ratio. However,

when flow-through scheme is used, the silicon substrate is replaced with water, a material

has similar index to PSi. The signal extraction becomes a challenge. To solve that, rugate
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Figure 5.4: The comparison of two-single layers vs two-rugate filters. Top: (a) The re-
fractive index profile and (b) simulated reflectance spectra of a two-layer optical structure
in flow-through and flow-over settings. Bottom: (c) The refractive index profile and (d)
simulated reflectance spectra of a two-rugate filter structure in flow-through and flow-over
settings.

filter is used to replace the single layer in the later design. Unlike the single layer, the

reflectance spectra of rugate filter show little dependence on the refractive index of the

substrate (as shown in Figure5.4 (c),(d)). Two-rugate filters design exhibits more than 20

times improvement in signal to noise ratio when flow through scheme is used. Though

the pore size varies inside the rugate filter, the change is relatively small and the diffusion

physics of the rugate filter approximates the single layer.
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5.3 Sensor arrays

Other than stacking the two single layers (or Rugate filters) together to form vertical two-

layer structure, assembling different sensing units into arrays offers an alternative way of

getting higher dimensional data for pattern recognition-based sensing. Several papers have

been reported using sensor arrays for recognizing chemicals or proteins. As this approach

resembles the working mechanism of the mammalian olfactory system, such sensors are

also referred to as optoelectronic nose.[128] For example, by using a 4×4 sensing array

filled with different catalysts and dyes, Lin et al. reported a sensor that can differentiate

Triacetone triperoxide (TATP), an acute explosive, from H2O2, acetone and bleach.[129]

By using five different kinds of gold nanoparticles decorated green fluorescent protein sens-

ing array, Rotello et al. reported a sensor that can identify five different kinds of proteins

and even provide information on the protein concentrations.[130] However, we note the

works reported earlier all use proteins or complicated assays as a sensing mechanism. To

fulfill the objective of bioreceptors-free sensing, we propose a sensor array with PSi regions

of different properties, aiming to use distinctive diffusion patterns to replace the patterns

exhibited during chemical reactions.

The working principle is illustrated in Figure 5.5, assuming the biomolecule is smaller

than the pore diameters of PSi. When the biomolecules diffuse into the four different media,

four different diffusion characteristic curves are exhibited in Figure 5.5(b). After incubation

for time t0, the sensor array was taken out of the solution and the spectral shifts of the four

PSi region are measured as ∆λ1, ∆λ2, ∆λ3, and ∆λ4, respectively. For a given t0, X = [∆λ1,

∆λ2, ∆λ3, ∆λ4] could be used as a characteristic vector to represent the biomolecules of a

certain species at a certain concentration. The characteristic vectors are then collected and

analyzed by machine learning methods, which will be discussed in the next section.
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Figure 5.5: (a) The schematic illustration of a sensor array consisting of four different
PSi regions with different pore sizes. (b) The conceptual saturation curves of a specific
biomolecule diffusing into four different PSi regions. Assume the experiment stops at t0,
and the spectral shifts of the four regions are ∆λ1, ∆λ2, ∆λ3, and ∆λ4, respectively.

5.4 Machine learning methods

Machine learning has been widely used to process high dimensional data for classifica-

tion and regression. The most common methods include principal component analysis

(PCA) for unsupervised learning, autoencoders for semi-supervised learning, and k-nearest

neighbor, linear discriminant analysis (LDA), Partial Least Squares Discriminant Analysis

(PLSDA) and support vector machine (SVM) for supervised learning. In the following sec-

tions, we will introduce the prospective machine learning methods that could be used for

biomolecule recognition.

5.4.1 Principal component analysis

Principal component analysis is probably the oldest and the most well-known method in the

domain of machine learning. The main idea of the PCA is to reduce the dimensionality of a

data set with a large number of interrelated variables, while retaining as much variation as
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Figure 5.6: (a) An example of principal component analysis applied on gene expression
data set. (b) The variance of the principal components when PCA is applied to all 8,534
genes with expression levels for all samples. Adapted with permission from Ref [131],
Copyright 1969, Nature Publishing Group.

possible. [131] This reduction is achieved by constructing a series of orthogonal directions

(bases) which maximize variance, and projecting the data onto the directions representing

the largest variations (shown in Figure 5.6) Those newly constructed vectors are called the

principal components, and the first few elements of the vectors retain most of the variation

present in all of the original variables. PCA reveals the internal correlation of a data set by

showing how the data in the set varies: a dimension of large variance indicates that samples

vary significantly across this dimension, while a dimension of small variance indicates the

samples are less distinguishable across this dimension. Often, classification among the first

few principle components is enough to account for the variation of the whole dataset. The

percentage of the variance represented by each dimension is also relevant. Typically, a

number of dimensions are kept that capture a high proportion of the total variance across

all dimensions (usually 95%).

Because the PCA concentrates the variations to the first few principle components, the

plot of the data projected onto the first few principle components data are generally more
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intuitive given their reduced dimensionality. For example, in Lin’s paper Colorimetric

sensor array for detection of triacetone triperoxide vapor, the PCA processed data is much

clearer than the high dimensional RGB color array.[129]

5.4.2 K-nearest-neighbor method

KNN method is one of the simple and most fundamental classification methods and should

be one of the first choices for a classification study when there is little or no prior knowledge

about the distribution of the data. KNN is a non-parametric learning algorithm, which does

not train any model, but simply uses a database, in which the data points are separated into

several classes to predict the category of a new sample point.

Figure 5.7: The procedure of performing KNN on classification. (a) Calculating the dis-
tance. (b) Finding nearest neighbors and voting for labels. The figures were generated 
based on Ref [132].

In KNN, the training examples are vectors in a multidimensional feature space, each 

with a class label. The training phase of the algorithm consists only of storing the feature

vectors and class labels of the training samples and the output for the classification which 

is the class membership. The membership of the new sample point is generally decided by
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a “popular vote”. The general steps for KNN are shown in Figure 5.7, which include calcu-

lating distance, finding nearest neighbors and voting for labels. For continuous variables, a

common distance metric to use is Euclidean distance, whereas for discrete variables, met-

rics like Hamming distance can be used. The number of neighbors –K is a hyper-parameter

decided while model building. No optimal K has been found that suits all kinds of datasets:

a smaller K will have low bias but high variance, which is more susceptible to noise; while

a larger K results in a smoother decision boundary which means lower variance but higher

bias, and larger K also increases computationally complexity.

KNN works better with low dimension feature space, as an increase in dimensional-

ity may lead to overfitting. To avoid overfitting, the sample population needs to grow

exponentially. This problem is known as the Curse of Dimensionality. To address this is-

sue, PCA could be used to preprocess the data and reduce dimensionality before KNN is

applied.[132]

5.4.3 Linear discriminant analysis

LDA works like PCA, both methods reducing the dimensionality by constructing a new

set of orthogonal dimensions consisting of linear combinations of the original space, but

instead of finding the maximum variation, LDA tries to separate the known group as clearly

as possible for the purpose of classification, which involves maximizing the inter-class dif-

ference and minimizing the intra-class variation.[133] Figure 5.8 is a schematic illustration

of the LDA method. Due to this optimization, LDA generally shows better capability of

differentiating the analyte among different classes than PCA. Compared to other methods,

LDA has clear analytical expressions and the only tunable parameter is the threshold of

selection, which make the model easy to justify.

83



Figure 5.8: Illustrations of LDA for two classes. One searches for a direction w such that 
both the inter-class difference, here the between the class means projected onto this 
direction (µ1 and µ2) is large, and the intra-class variation (σ 1 and σ 2) is small. Reprinted, 
with permission, from Ref [133].Copyright 2009, IEEE

5.4.4 Support vector machines

SVM is an optimization-based discriminative classification method, which separate differ-

ent classes by finding hyperplanes that maximize margins between t hem. The points near 

the decision boundaries are called support vectors, which are valued more than the points 

far from boundaries. Consequently, the classifier i s called support vector m achines. For

SVM, the raw data are usually first transformed by the kernel functions, which maps the 

inputs into a high-dimensional feature space. Based on the choice of kernel, SVM can

perform both linear and nonlinear classifications.

Besides the kernel function, there are two important tuning factors for SVM—the reg-
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ularization parameter (C parameter) and the Gamma parameter. The C parameter balances

the tolerance of misclassification and the size of margins. For a larger C value, the op-

timization will choose a smaller-margin hyperplane if that hyperplane gets more training

points classified correctly. On the contrary, a smaller C value optimizer tends to find a

larger margin separating hyperplane, but at the price of misclassifying more points. The

Gamma parameter controls the influence of the training dataset. High gamma value weighs

support vectors and the points near the boundaries more, while low gamma value can reach

the data points that are far away from the boundaries.

Compared to other methods, SVM is highly stable and does not require a large sample

population. Because only support vectors are important, a lot of points are actually ignored

in the calculation. However, the drawback is that SVM does not have analytical solutions,

therefore the kernel functions, C and Gamma parameters need to be carefully selected and

well justified.

5.4.5 Autoencoders

Figure 5.9: The schematic of an autoencoder, made up of an encoder and a decoder.

Autoencoders are simple neural architectures, which employ the special artificial neu-
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ral network (ANN) structure for the task of data compression, noise reduction and feature

extraction. The autoencoders are structured to have the input and output layer of the same

format, with the training goal to minimize the discrepancy between the two, while maintain-

ing an intermediate layer of low dimension.[134] As shown in Figure 5.9, an autoencoder

is generally made up of two parts –an encoder that compresses the high dimensional input

data into a low dimensional representation and a decoder that reconstructs the original input

from the low dimensional data extracted by the encoder. Once the ANN is properly trained,

the encoder part becomes a powerful automatic feature extractor, and the output layer of

the encoder is called latent space, which contains the features extracted. Autoencoders

are closely related to PCA: if the activation function used within the autoencoder is linear

within each layer, the latent variables present in the latent space directly correspond to the

principal components from PCA. Generally, the activation function used in autoencoders

are non-linear, commonly used examples are Rectified Linear Unit (ReLU) and sigmoid.

Like PCA, autoencoders can be used to preprocess the training data and reduce the

complexity of the later learning steps. Because the autoencoders are trained to predict their

own inputs, it is often referred to as semi-supervised learning. However, the training goal

can be modified and included supervised targets, which makes the system very versatile.

5.5 Experiments

5.5.1 The sensor array schemes

The above sections have covered the two diffusion-based sensing constructions and the

possible machine learning methods to be used for data analysis. Due to the relatively

simple fabrication process and short data collection time, the sensor array scheme will be

pursued first.

The sensor arrays has been fabricated with masking and wet etching, and photos of
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the results are shown in the Fig 5.10. The whole wafer was first deposited with the S1813

photoresist (PR) before wet etching. Only the area to be etched (one of the four squares) are

exposed to the UV light and the PR of that region was removed with the RF 319 developer.

Then a single current (70mA· cm−2) is applied across the entire wafer in a 15% HF solution

(50% HF and Ethanol, v:v=3:7) to etch a PSi single layer. After etch, the PR was removed

via acetone rinse and the wafer was cleaned in DI water and IPA thoroughly. The above

process was repeated 3 more times with different current densities (50mA· cm−2, 60mA·

cm−2 and 80mA· cm−2) applied. After removing the final PR, the wafer was incubated in

acetone overnight to prevent the possible pore blocking. The as-fabricated devices were

cut into small units and oxidized in 500 ◦C in air for 5 min.

For the process of protein infiltration, the fabricated devices were exposed to two kinds

of protein, chicken ovalbumin (COA) and bovine serum albumin (BSA) of various concen-

trations (0.25mg· mL−1, 0.5mg· mL−1, 1mg· mL−1 and 2mg· mL−1) at pH = 4 for 2h. The

data were collected using an Ocean Optics spectrometer to measure optical reflectance,

and then processed using PCA in the standard python machine learning library—Scikit-

learn.[135] The experimental results after PCA analysis are exhibited in Figure 5.11. The

PCA results demonstrated the clear separation of the trend lines for the different concen-

trations of the two proteins. This preliminary experiment suggests that it is feasible to dis-

tinguish two proteins with different molecular weight and similar isoelectric point (BSA,

MW = 66.5 kDa, pI = 4.8 and chicken ovalbumin, MW = 45 kDa, pI = 4.5) by exposing

the proteins to PSi films with different pore diameters. This result matches the expectations

since the diffusion properties of proteins depend in part on the size relationship between

the protein and the PSi pore diameter.

No conclusions can be drawn related to the degree to which the proteins can be quan-

tified based on this work other than to note that there is a general monotonic trend that is

observed in the data with changing concentration. Multiple repeat experiments correspond-
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ing to the conditions for each data point would have to be taken to establish the level of

variation between identical experiments, which could then be compared to the separation

between data points corresponding to different concentrations.

As we noticed that PSi pieces inside the solution was not portable or scalable, flow-

over cells were employed. An ethanol and water (v:v=1:1) mixture was pumped through

first to wet the channel, followed by buffer solution to saturate the PSi channel and sta-

bilize the baseline of the signal. Finally, the analyte solutions was pumped through at a

rate of 1µL·min−1. The exemplary results are displayed in Fig 5.12 and more repeats are

summarized in Table 5.1. From the results, we could conclude that the different analytes of

different concentrations show relatively stable diffusion patterns, which lays the foundation

for later molecular classification.

Table 5.1: More repeats of the flow-cell experiments with different combinations of 
analytes, concentrations and PSi pore sizes. The values are the spectral shifts (in 
nanometers) at 2-hour time point. Large pores are etched with a current density of 70 mA· 
cm−2, and smaller pores are etched with a current density of 50 mA· cm−2.

5.5.2 Fabrication of double rugate filter PSi structure for future experiments

As detailed in section 5.2, the vertical two-rugate filters w ill h ave b etter s ignal t o noise

ratio compared to simple PSi double layer when being measured in solution. A double-

rugate filters PSi structure was fabricated in 15% HF using the etching recipe shown in the
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Table 5.2: The etching recipe for fabricating a double-rugate filters PSi structure using 15%
HF.

table 5.2. A sacrificial layer was added as it will be necessary for future application of the

double rugate filter PSi structure in flow-through membranes.[24] Figure 5.13 shows (a) a

cross sectional SEM image of the double-rugate filter PSi structure, (b) and its reflectance

spectrum. The experiments using this structure will be carried out later, leveraging its clear

physical advantages and strong flowing dynamics, which we predict will lead to a better

classification precision.

5.6 Conclusion

In summary, we introduced the motivation of developing a bioreceptors-free biosensing

system and outlined the potential working principles. Two mechanisms to achieve biorecog-

nition were proposed: one using a sensor array and the other utilizing a multilayer PSi stack.

A variety of machine learning methods that could be used for sensor data analysis were dis-

cussed, and the preliminary results using a sensor array to differentiate two proteins were

shown. Finally, the experiments to identify the links between the sensor responses and

biomolecule-PSi nanostructure interactions using a multi-variable system were proposed.
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Figure 5.10: (a) The image of the fabricated PSi sensor arrays on a 4-inch wafer. (b) The
single unit of the PSi sensor array consisting of four PSi regions with different pore sizes.

Figure 5.11: Application of principal component analysis to distinguish and quantify four
different concentrations of BSA and chicken ovalbumin (COA). The different protein solu-
tions (pH = 4) were each exposed to PSi films with four different average pore diameters,
and the reflectance of the PSi films was measured before and after 2-hour protein infiltra-
tion.
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Figure 5.12: The exemplary results of a flow cell experiment. Two dashed lines are sepa-
rated by a time interval of 2h.

Figure 5.13: (a) A cross sectional SEM image of the double-rugate filter PSi structure, and
(b) its reflectance spectrum.
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CHAPTER 6

Conclusions and future research opportunities

6.1 Summary

In summary, three aspects of the PSi POC biosensors have been explored. By combining

PSi with smartphone, peptides and machine learning respectively, I demonstrated a cost-

effective portable biosensor, explored several different ways to incorporate peptides to a

porous silicon matrix, and built the concept of a bioreceptor-free biorecognition system.

Chapter 1 served as an introduction to the concepts, ideas and devices of optical

biosensing and point of care diagnosis. PSi, which is the material this thesis focuses on, and

the common devices fabricated out of PSi were also introduced, which served as a back-

bone for developing all of the applications and devices covered in the following chapters

of the dissertation.

Chapter 2 detailed the working principles and operating procedures of (1) SEM, which

was used for the PSi pore size, porosity, and layer thickness determinations; (2) reflectance

spectrometer, which was a common tool for optical signal acquisition.

Chapter 3 presented a smartphone based PSi biosensor that combined the advantages

of both the smartphone and PSi, achieving a low cost system whilst retaining decent perfor-

mance metrics. The sensor links PSi structural color changes to biomolecule attachment,

and monitors the change through smartphone camera. It is a promising platform for real-

world POC applications.

Chapter 4 examined various methods to include peptides, a robust alternative to pro-

tein bioreceptors, to the PSi matrix to achieve biosensing in harsh conditions. A successful
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approach was developed, namely using ND modification to achieve the necessary alkyne

termination on the PSi surface to enable azide-modified peptide capture agents to be at-

tached through click chemistry. This approach was demonstrated to add SBP to PSi for

the successful capture of streptavidin molecules at a sensitivity similar to that when biotin

molecules are used to capture streptavidin. The same functionalization approach was used

to click azide-functionalized peptide capture agents to a alkyne-modified PSi for the detec-

tion of the CHIKV E2 surface protein. Due to the hydrophobicity of the surface, infiltra-

tion of E2 was carried out in a pressure-controlled chamber. Measurements demonstrated

successful capture of E2 using this approach while control experiments with a non-target

protein showed no signal change. Ongoing efforts are investigating alternative approaches

to reduce the hydrophobicity of the surface.

Chapter 5 delved into the conceptual development of a bioreceptor-free biorecognition

system. The chapter first introduced the motivation why bioreceptors-free systems are

attractive and outlined the potential working principles of such a system. Two schemes

were proposed, one being a sensor array, the other using the multilayer PSi stack, and a

collection of machine learning methods that could be potentially useful for analysis were

introduced. Next, preliminary results using a sensor array to differentiate two proteins were

shown, and the experiment based on a multi-variable system was planned.

6.2 Future Research Opportunities

Chapter 3, 4, 5 addressed the POC biosensing from different perspectives. It would be

interesting to combine the technologies together, for example, with a smartphone biosensor

using peptides as the bioreceptor or a biorecognition element-free system using smartphone

as the detector. The ubiquitous nature of the smartphone and the robust nature of the peptide

(or biorecognition element-free system) will make the POC sensor accessible to people

around the world in all kinds of settings.
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Notes to readers : The appendix was reproduced with permission from my previous

publication :

A smartphone biosensor based on analysing structural colour of porous silicon. Analyst,

144 (13) : 3942–3948, 2019.[51]

A.1 Smartphone measurement procedures

Figure A.1: Test procedure of the smartphone biosensor. The left side is done manually 
and the right side could be fully automated.

Figure A.1 provides an overview of the procedures used for the smartphone measurements. 

First, the control sample, a bare piece of silicon, is placed inside the 3D printed box in 

the designated position below the smartphone camera. The smartphone manual camera 

app is then turned on, the LED flash is set to 100%, and the settings for the camera focus, 

zoom, ISO, speed, exposure value, and white balance are adjusted to ensure that the image 

is not saturated. These settings are then fixed throughout the m easurements. A  video is 

then initiated with the control sample under the camera and recording continues for about 

3 minutes until the light source is stabilized and the intensity fluctuations are significantly
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reduced. Next, the control sample is removed and the PSiM sample is inserted into the

platform, and a short video of approximately 1 min duration is taken. Then the PSiM

sample is removed, the control sample is placed back into the 3D printed box, and a short

video of approximately 1 min duration is taken to be used for normalizing the intensity data

from the PSiM sample. The PSiM and control samples are iteratively measured a total of

three times to evaluate the stability and repeatability of the system.

In order to obtain and process the data from the smartphone, the videos are uploaded

to a computer and read by a MATLAB code that turns each video into a series of RGB

images (24 frames per second). Each frame comprises three matrices containing R, G, and

B intensity values, respectively, for all the pixel locations. The R values of pixels with R ≥

30 are summed together as S for each frame of the video with the exception of a few frames

at the beginning and end of the video. Then, an average S value for each video (Ssample

and Scontrol for the PSiM and control sample, respectively) is determined by calculating

the average S value for approximately 500 frames whose S value falls within the 30th-70th

percentile of all values within the 1-minute video. The relative intensity measured by the

smartphone is calculated by taking the ratio of Ssample and Scontrol, as given in Eq A.1.

The standard deviation σ is calculated based on consideration of the three independent

measurements of Ssample and Scontrol taken for each PSiM preparation condition (e.g.,

each APTES exposure or each streptavidin concentration), as given in Eq A.2.

relative intensity:

r =
Ssample

Scontrol
(Eq A.1)

standard deviation:

σ =

√√√√1
3

3

∑
n=1

(ri − r̄)2 (Eq A.2)
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where

r̄ =
1
3
(r1 + r2 + r3)

A.2 Bulk refractive index spectral sensitivity of PSiM

Figure A.2: Shifts of PSiM reflectance (measured at peak wavelength on long 
wavelength side of resonance) after adding different concentrations of glucose solution, 
as measured by a spectrometer. A linear fit is shown (blue line).

Figure A.2 shows a linear relationship between the spectral shifts of the PSiM measured by 

the spectrometer after adding different concentrations of glucose solution (0 – 50 g·L−1). 

The refractive indices of the glucose solutions with different concentrations are determined

based on data reported in [136].A linear fit to the data suggests that the RIU sensitivity of 

the PSiM is approximately 350 nm·RIU−1.

A.3 Smartphone image and data processing

A.4 Stability of the PSiM-smartphone biosensor system

In order to assess the stability and reproducibility of the PSiM-smartphone biosensor sys-
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Figure A.3: (a) R value contour map of a PSiM sample extracted from one frame of a video
recorded by the smartphone sensing platform. (b) Image of PSiM sample (i.e., video frame)
corresponding to the R value contour map shown in (a). The sharp interface between the
red and black regions of the image that leads to a strong gradient in the contour map is
due to the presence of the black tape that blocks a portion of the emitted light from the
smartphone LED.

tem, three repeat measurements were taken for each experimental condition of the PSiM.

Each measurement comprised a 1 min video of the PSiM followed by a 1 min video of

the control sample. The PSiM and control samples were removed and then reinserted into

the 3D printed box holding the smartphone between each set of measurements. Figure

S4 shows the S value as a function of time during each of the three videos for the PSiM

(“measure”) and control bare silicon (“control”) samples. We note that the time duration

for removing and reinserting the samples is very short compared to the time duration for

which the sample is measured. Good stability and reproducibility is demonstrated as the

samples are taken in and out of the box. The percent intensity changes between measure

1 and measure 2, measure 2 and measure 3, and measure 3 and measure 1 are all less than
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Figure A.4: Smartphone measured intensity as a function of time for three independent
measurements of a PSiM and control bare silicon sample. Good stability of the system is
demonstrated when samples are removed and subsequently reinserted into the 3D printed
box holding the smartphone.

0.1%.

A.5 Root mean square deviation and Bland-Altman analysis

Root-mean-square deviation:

σ =

√
1
n

n

∑
n=1

(λi − λ̂ )2 (Eq A.3)

In Eq A.3, λ is the peak wavelength of the PSiM on the long wavelength side of the res-

onance as calculated from the linear fit in Fig 3.9(b), and λi is the peak wavelength mea-

sured by the spectrometer. Three independent measurements are taken after each APTES

exposure to the PSiM, and 21 total values (i.e., n =21) are considered in the calculation.A

Bland-Altman plot was generated by transforming the relative intensities measured by the
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Figure A.5: Bland-Altman plot of smartphone and spectrometer measurements of PSiM
exposed to APTES (data shown in Figure 3.9). The dotted lines enclosing the yellow
region represent the 95% confidence interval for the peak value difference.

smartphone to peak wavelengths using the linear fit in Fig 3.9 (b), and then these values are

compared to the peak wavelengths measured by the spectrometer.

A.6 Spectrometer measurements of streptavidin attachment

A.7 Streptavidin sensing with separate PSiM samples
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Figure A.6: (a) Spectrometer measurement of the reflectance spectrum of the PSiM before
adding streptavidin (blue curve) and the smartphone light transmitted through filter (red
shaded area). Note that the relative position of the reflectance spectrum and bandpass of
the filter may be slightly different for the smartphone measurement. (b) Spectral shift
of PSiM after adding different concentrations of streptavidin molecules, as measured by
a spectrometer with reference to the reflectance peak on the long wavelength side of the
microcavity resonance. With a concentration of 0 µM (i.e., no streptavidin molecules and
only solvent exposed to the sample), there is a slight blueshift of the spectrum, suggesting
minor instability of the PSiM surface functionalization during the experiment. The data
suggest a linear relationship between the PSiM response and streptavidin concentration
exposed to the PSiM in the reported concentration range.
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Figure A.7: Streptavidin sensing experiment carried out on three separate PSiM samples.
The measurements show the same trend in the relative intensity changes for different con-
centrations of streptavidin solutions exposed to the different samples. Error bars represent
± 3σ for the three smartphone relative intensity measurements taken after each PSiM is
exposed to a given concentration of streptavidin molecules. Differences in the measured
relative intensity values between the different PSiM samples is explained by the different
initial microcavity resonance positions with respect to the bandpass of the filter used in
the smartphone sensing system. The thickness of the solid line at the top of each graph
represents the 3σ value of the relative intensity of the PSiM measured before streptavidin
infiltration. For all three PSiM samples, a streptavidin concentration of 500 nM can be
clearly distinguished (insets).
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B.1 Flow cell experiment

B.1.1 Experiment

To facilitate the mass transportation, flow-through membrane has been reported in our

group.[111] The process reported needs oxidation of PSi to prevent the corrosion from

the basic photoresist developer solution. However, hydrosilylation require Si-H terminated

PSi surface. We tried to remove the oxidation layer from the PSi membrane using 2.5% HF,

but the stress generated during the solvent evaporation shattered the film. Here, we used a

different process for PSi membrane preparation and surface modification. It is worth noting

that the ND modification and the peptides are stable enough to withstand the corrosion of

HF, so we lifted off the functionalized PSi film and transferred it to the silicon with open-

ings, and then attach the PDMS flow channel to the Si piece. The detailed procedures are

listed as following.

The silicon pieces with 1mm×1mm square holes were rinsed in NaOH (1 M), cleaned

with water, and dried under nitrogen stream. Then oxidized in the 800 ◦C oven for 30

min; and treated with oxygen plasma for 20 sec together with PDMS microchannel. The

PDMS microchannels were then glued to the silicon pieces with the help of liquid PDMS

and incubated in 120 ◦C oven for 4 h. A representative example is shown in Figure B.1

a(1).

The PSi microcavities were fabricated and functionalized following the procedures de-

tailed in section 4.6.1. The functionalized silicon wafer was cut into pieces of 1.8 × 1.8

cm squares. Copper(I)-catalyzed click reaction is then performed to attach the CBP to the

ND-modified PSi squares. The procedures for the click reaction are detailed in section

4.6.2. After click reaction, the samples were rinsed with DMSO, followed by anhydrous

ethanol and DI water, and soaked in 0.5 mM HCl for 30 min to remove residual copper in

the pores. The samples were then cleaned with DI water and anhydrous ethanol, and dried
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Figure B.1: (a) (1). The silicon with open holes and PDMS in the back. (2). PSi film
transferred on top of the silicon chip with holes. (3). The back-view of the flow through
membrane cell. (4). The microscope image of the PSi membrane. (15×) (b) A typical
reflectance spectrum obtained during the solution pumping through the flow cell. (c) The
spectral shift vs time plot during the flow-through experiment.

under a stream of nitrogen. FTIR spectroscopy measurements are carried out to confirm

the attachment of the CBP.

After the peptide binding, the PSi square was attached to the etching cell. 15% ethanolic

HF solution was added to the etching cell. (HF is an extremely dangerous chemical and

should always be handled with the utmost caution.) A current density of 300 mA·cm−2

was applied for 10 s, followed by 150 mA·cm−2, 2 s for 5 times. After cleaning the HF
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waste, the detached film was transferred to a beaker filled with clean water. The silicon

pieces with holes and PDMS backside were used to pick the functionalized PSi up and dry

in air. A typical device at this step was shown in Fig B.1 a(2). The half-cell was then treated

with O2 plasma (with the PSi film covered), and attached to the top PDMS flow channel

with the help of liquid PDMS. (The backside-view image is shown in Figure B.1 a(3)).

We noted only one side of the PSi membrane has surface functionalization, so the flow

through experiment was run in a weak acidic condition (pH = 4.3) to prevent PSi corro-

sion. A solution of ethanol and water of 1:1 volume ratio was first pumped through the

flow-through channel at a rate of 1µL/min to wet the membrane and check for leakage.

Followed by a solution of pH = 4.3 solution flushing through the channel (1µL/min) to get

the system to base line. When the system was fully stabilized, 1 µM CHIKV E2 protein

was pumped through the flow cell at a rate of 1µL/min for 60 min, then slowed down to

0.5µL/min for the purpose of saving analytes. After the E2 injection, a solution of pH= 4.3

solution was injected to the flow cell (at the rate of 1µL/min) to wash off the unbounded

molecules.

B.1.2 Result and analysis

Fig B.1(b) shows a typical spectrum during the flow cell experiment. The cavity position

(center dip of the spectrum) was used to monitor the flow through process. As shown in

Figure B.1 (c), after the water injection, the spectra underwent a blueshift and gradually sta-

bilized. (Because ethanol has a higher refractive index than water) When 1 µM of E2 was

pumped into the flow cell, a gradual redshifting was observed in the sensorgram. When the

system reached equilibrium, a total redshift of 0.2nm was observed. After that, a gradual

blueshifting is observed, and the baseline drifting may be attributed to the PSi corrosion.

(E2 binding may change the local charge distribution of the PSi)
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Though the E2 binding is observed in the flow cell experiment, the success (samples

kept intact during the process) rate is low. During the flow cell fabrication, the stress control

of film played an important role. Figure B.1 a(4) shows the microscope image of a flow

through membrane, which shattered when the top PDMS was attached.

B.2 PSi surface dual functionalization

To get water passing through the hydrophobic ND modified PSi, a hydrophilic undecanoic

acid modified layer was added underneath. As discussed in 1.3.2(b), the PSi double-layer

structures could give distinguishable signals from both layers through FFT. The detailed

sample preparation steps are listed as follows.

A PSi single layer was fabricated through anodic etching of p-type silicon wafers in a

solution of 15% ethanoic HF solution (as specified earlier). To ensure there is no narrowing

of the pore opening at the top surface of wafer, an etching current density of 70 mA · cm−2

is applied to the wafer for 100 s serve as a sacrificial layer and it is then dissolved in

1 M NaOH and rinsed with ethanol and DI water. Next, the PSi single layer is etched

using a current density of 80 mA·cm−2 (H) for 100 sec. The freshly etched PSi single

layer is then modified with 1,8-nonadiyne, through thermal hydrosilylation. The detailed

steps are stated in in section 4.6.1. After ND modification, the PSi was cut into pieces

of 1.8 × 1.8 cm squares, then attached to the etching cell. 15% ethanolic HF solution

was added to the etching cell. A current density of 60 mA· cm−2 is applied for 50 sec.

A second hydrosilylation with UA was performed to create a flow with a hydrophobicity

gradient. The procedures for UA hydrosilylation are detailed in section 3.4.1. After the

functionalization, the CBP was clicked to PSi sample similar to the procedure detailed in

4.6.2. The as-etched PSi piece was then cleaned with ethanol and water and dry under
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the nitrogen stream. The samples were then exposed to 1 µM of E2 in water for 2h, but

the contact angle was still around 100 ◦ demonstrated the strong hydrophobicity of the PSi

surface and no significant spectral shifts are observed.

B.3 Surface modification with hydrosilylation

Another approach to overcoming the challenges of the hydrophobic nature of the alkyne-

modified PSi surface is to create a more hydrophilic surface. Unlike the alkyne modified

surface, azide terminated surface exhibited slightly better hydrophilicity with a contact

angle of 75 ◦ with water, compared the 115 ◦ water contact angle with ND surface. Thus,

alkyne terminated peptides clicking with azide terminated PSi was carried out. Before the

reaction, the stability of the azide terminated PSi were examined by incubating the samples

in water.

Figure B.2: The FTIR spectra of the PSi Sample of 4 µm, 2 µm, 1 µm after hydrosilylation
reaction.
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Figure B.3: The FTIR Spectra of 2 µm-thick PSi samples modified by single, double and
triple rounds of hydrosilylation.

The azide modified surface was prepared by hydrosilylation reaction. The FTIR were

taken after the reactions, as shown in Figure B.2. All three curves show sharp dip around

2100 cm−1 indicating the presence of azide. Because different layer thickness will form

different fringe pattern in the spectrum, it’s hard to get the FTIR spectral curves calibrated.

To get a better azide coverage, multiple reactions were also explored. Figure B.3 exhibits

the FTIR Spectra of 2 µm-thick PSi samples modified by single, double and triple rounds of

reactions. It clearly shows multiple rounds of hydrosilylation increase the azide coverage.

4 µm -thick and 1 µm -thick sample displayed the same trend.

After azide modification, the PSi samples are incubated in DI water 2h each time for

2-3 times. Figure B.4 recorded the refractive index changes of the PSi for the first two 2h

incubations. As shown in the chart, thinner PSi samples and multiple exposures provide the

PSi sample with a better protection. However, the improvement start to shrink as we com-

pare 1 µm-thick PSi with double and triple rounds of hydrosilylation, or 1 µm-thick and 3
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Figure B.4: Refractive index changes of azide modified 4 µm, 2 µm, 1 µm PSi samples,
after first 2h and second 2h DI water rinse.

µm-thick PSi samples with both triple- hydrosilylation. Therefore, the material loss cannot

be completely prevented with decreasing PSi thickness or increasing number of hydrosi-

lylation. We attributed this “intrinsic” loss to the unavoidable oxidation occurred during

the hydrosilylation process. Though still facing stability issues, we performed a prelimi-

nary test on 1 µM azide terminated samples for CHIKV E2 protein sensing. Considering

the potential pores shrinking caused by the azide terminated compound attachment, KOH

were used to enlarge the pores. Freshly etched PSi were rinsed in 1.5 mM ethanoic KOH

(Ethanol: DI water =5:1 v/v) for 5min, immediately followed by a thorough cleaning before

hydrosilylation. The sensing results are shown in Figure B.5. Comparatively, the sample

with enlarged pores showed a large shift of 3.9 nm when exposing peptide modified surface
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to 2 µM E2, which may indicate more E2 protein capture. The shift is larger than 1.7 nm

- the one obtained from vacuum infiltration method. However, to confirm the result, more

repeats and control experiments are needed.

Figure B.5: The results of CHIKV E2 protein sensing using 1 µm-thick PSi sample with
KOH enlarged pores (purple) and normal pores (yellow).
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