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CHAPTER I 

1 Introduction 
 
 

1.1 Preterm birth definition and prevalence  
 
Preterm birth is defined as delivery before 37 weeks of gestation and affects over 15 million 

babies worldwide every year1–3.  Preterm birth prevalence varies between 5-18% worldwide4–6. 

In the United States, preterm birth affects between 10-15% of all deliveries with an average of 

10% that has remained stable between 2009 to 20194,6,7. Using gestational age, preterm birth can 

be further stratified based on gestational length with shorter duration indicating more severe 

preterm birth. According to the World Health Organization, extremely preterm birth occurs 

before 28 weeks, very preterm occurs before 32 weeks, and late preterm occurs after 32 weeks4. 

The majority of preterm births occurs after 34 weeks (>60%), while extremely and very preterm 

birth have less than 3% prevalence8. Notably, the prevalence of preterm births less than 32 weeks 

has remained stable over 2007 to 2013 in the United States9.  

 
 

1.2 Preterm birth mortality and morbidity  
 
In addition to the high prevalence, preterm birth leads to substantial infant morbidity and 

mortality. Even though the exact definition of extremely preterm birth varies, birth before 28 

weeks contributes disproportionally to infant mortality10 and, more generally, infant mortality is 

inversely related to gestational age11. Preterm births are the leading cause of infant mortality 

worldwide6,12. Despite improvements in medical interventions, infants born premature have high 

risk for morbidity. Immediately after delivery, premature infants require prolonged 

hospitalization and are at high-risk for many complications such as respiratory difficulties, 

gastrointestinal complications, or intraventricular hemorrhage12. Some of these health risks can 

persist for up to five years of age13. Risks of immediate maternal complications and decreased 

long-term wellbeing after preterm birth have also been documented, especially for cesarean-

deliveries14,15, even though they significantly decrease the odds of perinatal mortality16. 

Reflecting the increased medical care arising from immediate and long-term complications, the 

total economic burden in the United States for preterm birth was estimated to be around $26.2 

billion annually based on an Institute of Medicine review7.  
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1.3 Disparity across geography, socio-economic factors, and race  
 
The range of preterm birth prevalence is in part due to disparities between geography, socio-

economic factors, and race. In the United States, the southeastern states17 and rural settings 

compared to cities have higher prevalence of preterm birth18. The geographic patterns likely 

reflect underlying socio-demographic factors. However, disentangling the influence of these 

socio-demographic factors on preterm birth is challenging. Preterm birth prevalence, across 

multiple gestational age windows, is consistently higher in Black women compared to White 

women19. Asian and White women have the lowest rates of preterm birth (~5%), while Black 

women have twice the risk compared to White women20. Low socio-economic and educational 

status has been robustly linked to increased preterm birth risk4,21,22 in both Black and White 

women. Similarly, a neighborhood deprivation index integrating income, education, 

employment, and housing was associated with preterm birth in White and Black cohorts23. While 

socio-economic factors contribute to preterm birth, they might not, by themselves, explain the 

observed racial disparities19. For example, socio-demographic factors were not associated with 

very preterm births in Black and White women19,24. Moreover, racial disparities persisted even 

when studying women of similar socio--economic status and similar levels of obstetrical care25. 

The substantial differences in preterm birth risk by race, even after controlling for demographic 

and socio-economic factors, leaves open a role for genetic contributions to birth timing.  

 
 

1.4 Risk factors for preterm birth 
 
Many risk factors across maternal, fetal, and placental factors have been associated with preterm 

birth. Key maternal risk factors include race and demographic variables, as discussed above. 

Maternal nutritional state, as indexed by a low pre-pregnancy BMI is associated with increased 

rates of spontaneous preterm birth. Meanwhile, obesity can protect from premature delivery26. 

Pregnancy history is an important determinant of preterm birth risk. For example, a family 

history or a previous preterm birth are the top risk factors for a future preterm birth6. The 

recurrence risk varies between 15 to 50% based on the gestational age and number of previous 

deliveries27. A shorter inter-pregnancy interval less than six months also increases preterm birth 

risk28.  
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Multiple obstetric factors are associated with preterm birth risk. Although multiple 

gestations (twins, triplets, etc.) account for less than 3% of infants, they result in 15-20% of all 

preterm births, and more than half of all twins are born preterm4. During pregnancy, vaginal 

bleeding, especially when associated with placental abruption or previa29, is another risk factor 

for preterm birth. Other obstetric risk factors include poly- or oligo-hydramnios, which can occur 

due to a variety of causes, are also associated with preterm birth4,30,31. 

 Intrauterine infection and inflammation are common comorbidities that account for 25-

40% of preterm births32. Earlier preterm births tend to have higher rates of chorioamnionitis 

compared to longer gestational deliveries33. Infection of the amniotic cavity is thought to most 

commonly occur via bacterial ascension from the vagina or cervix4,32. Notably, lower genital 

tract microorganisms are rarely identified in the amniotic cavity prior to membrane rupture34. 

While specific microbial agents have been associated with preterm birth, the role of genital 

infections, such as bacterial vaginosis, for preterm birth risk remains unclear4.  

Environmental factors such as exposure to toxins have also been extensively studied. 

Tobacco use during pregnancy can double the risk for preterm birth likely due to effect on fetal 

growth35,36. Cocaine and heroin use has been implicated in higher preterm birth risk in several 

studies37,38.  Other environmental exposures including the effect of physical activity has been 

studied but their impact on preterm birth remains inconclusive4.  

 
 

1.5 Genetic basis of preterm birth  
 
As suggested by differences in prevalence by race, preterm birth risk may have a substantial 

genetic basis. Twin-based studies have estimated the heritability, the proportion of phenotypic 

variation in birth timing explained by genetic variation, to be between 30-40%3,39–41. However, 

these estimates do not identify the genes and/or genetic variants underlying variation in preterm 

birth risk. Linkage analyses identified a small number of genes associated with preterm birth, 

including SERPINB2, PAI-2, AR, and IL2RG42,43. The advent of genome-wide association studies 

(GWAS) over the past ten years has offered a more powerful approach to evaluate variation 

across the human genome for association with preterm birth. The earliest GWAS were conducted 

on small cohorts and discovered only a few associations and they failed to replicate44–46. A 

landmark study conducted on over 45,000 European women identified four genomic regions 
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associated with preterm birth that replicated in an independent cohort of >8,000 women47.  This 

study mapped genomic associations to regions near the EBF1, EEFSEC, AGTR2, and WNT4 

genes. Further functional analyses implicated a variant in WNT4 that modified estrogen receptor 

binding47. A subsequent study using a smaller cohort but incorporating familial trios identified 

72 candidate biomarker genes48. Despite the leap forward in identifying genomic regions 

associated with preterm birth, the heritability explained by these regions remains quite low 

(~1%).  

 
 

1.6 Biological mechanisms of preterm birth 
 
While preterm birth has a genetic basis, it should be understood in the context of broader 

biological mechanisms of birth timing. Preterm birth is considered a syndrome49 with one of 

many possible dysfunctional pathways that triggers a common downstream parturition pathway 

that leads to premature delivery49.  One precursor pathway includes anatomical abnormalities 

such as cervical insufficiency; other pathways include inflammation, or maternal stress6,41,49. 

Environmental risk factors, include smoking, alcohol, and low body mass index50,51, could also 

act through distinct precursor pathway and induce preterm delivery.  

Of the many pathways, only intra-uterine infection has been causally linked to 

spontaneous preterm birth52. More generally, inflammation arising from infections or comorbid 

disease is studied extensively as a distinct etiology. The collection of chemokines, cytokines, and 

uterotonic/inflammatory lipids (e.g., prostaglandins) that are activate in inflammation are thought 

to trigger parturition49. Additionally, a potential gene-by-environment interaction between 

variants in the regulatory regions of the TNF gene and bacterial vaginosis has been 

documented53.  

Another biological mechanism could involve maintenance of the decidua. The decidua 

results from morphological changes to the endometrium in preparation for pregnancy and is 

present throughout the pregnancy. Premature decidual senescence has been observed in preterm 

birth but not in women who deliver term54. Another abnormality, preterm pre-labor rupture of 

membranes, can activate clotting proteins such as thrombin. Thrombin is known to stimulate 

myometrium contractility and remodel the uterine spiral arteries and vascular under perfusion 

has been observed in placentas of one third of patients with preterm labor55. Similar 
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pathophysiological placental features have been observed in pre-eclampsia, a risk factor for 

preterm birth. The exact mechanism that leads to preterm birth and why only some women have 

decidual pathologies remain open questions.  

Finally, mechanical factors such as uterine overdistention may lead to preterm birth. For 

example, it is well known that multiple gestations (e.g., twins) are more likely to deliver preterm. 

Additionally, polyhydramnios (extra amniotic fluid) can also increase preterm birth risk. In non-

human animal models, mechanical stretching of the uterine myometrium can increase 

inflammatory molecules. Thus, abnormal uterine distention may serve as a precursor to preterm 

birth49.  

 
 

1.7 Classification of preterm birth subtypes 
 
In addition to the diverse biological pathways and numerous risk factors for preterm birth, the 

syndrome presents with substantial phenotypic heterogeneity. Preterm birth is typically stratified 

based on gestational age, and the classification is often further dichotomized into spontaneous vs. 

medically indicated preterm birth. When labor occurs spontaneously before 37 weeks of 

gestation with intact membranes it is referred to as spontaneous or idiopathic preterm birth56.  If 

fetal membranes rupture before 37 weeks but before the onset of delivery, then this is diagnosed 

as preterm prelabor rupture of membranes and is distinct from spontaneous preterm birth. All 

other deliveries where the labor is induced due to maternal or fetal health conditions are referred 

to as medically indicated preterm births6. Fewer than half of all preterm births (45%) are 

spontaneous with the remaining being medically-indicated57. Both gestational age-based, and 

clinical presentation are too imprecise to capture the various comorbidities across maternal, fetal 

and placental factors58. Some risk factors for preterm birth are comorbid maternal disease. For 

example, cervical anatomic abnormalities can substantially increase preterm birth risk 

(OR=6.9)30. Other systemic comorbidities such as mental health disorders also increase preterm 

birth risk (OR=1.8)30. In a large multi-ethnic cross-sectional study of 5,828 preterm birth, 70% of 

preterm births had at least one maternal or fetal comorbidity31. The heterogenous clinical 

presentation in addition to the diverse molecular pathways involved in preterm birth suggests 

that this disorder is better considered a syndrome rather than a disease49.  
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The phenotypic heterogeneity of preterm birth limits our ability to discover the underlying 

biological mechanisms of birth timing and identify interventions. Classification schemes based 

on maternal, fetal, and placental comorbidities for preterm birth seek to isolate distinct pathways 

of preterm birth31,58–61. For example, clustering individuals on comorbidities has identified an 

association with the insulin gene, even in a small cohort. Using hierarchical clustering on just 

1,028 women identified 120 women with familial risk factors where the insulin gene was 

significantly associated with spontaneous preterm birth59.    

 
 

1.8 EHRs capture dense phenotypes well suited for preterm birth 
 

About two decades ago, health care systems began collecting and linking patient DNA to their 

de-identified electronic health records (EHRs). Subsequently, the electronic medical records and 

genomics network (eMERGE) was formed in 200762. EHRs capture detailed phenotypic data 

generated from clinical care. Numerous studies have demonstrated the utility of this rich 

phenotyped data in uncovering novel genotype-phenotype associations using approaches like 

PheWAS63. Today, databases linking biospecimens to EHRs have exploded in number. One of 

the largest repositories is the UK Biobank64. At Vanderbilt, BioVU is a similar large-scale de-

identified electronic health record database linked to genetic data that has amassed over three 

million electronic records with 100,000+ individuals genotyped.  

EHRs present an opportunity to dissect the phenotypic heterogeneity of preterm birth on an 

unprecedented scale. Compared to traditional studies that require cohort assembly, large 

databases of EHRs contains millions of individuals from which we can retrospectively identify a 

specific cohort of interest. EHRs also accumulate phenotypic data longitudinally for each patient. 

Genetic data linked to de-identified EHRs extend our ability to study the genetic basis of 

diseases, especially for those with complex phenotypic presentations.  
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1.9 Evolutionary context of pregnancy   
 
Integrating evolutionary context with the dense phenotypic snapshot of preterm birth in modern 

populations from EHRs provides another avenue for further characterization of the complexity 

and drivers of preterm birth. Pregnancy is a defining characteristic of mammalian species. The 

central role of pregnancy and parturition to the transmission of genetic information inextricably 

link these traits to evolution. Many pregnancy-related traits are fast evolving. For example, the 

placenta is a temporary organ that serves to maintain homeostasis between the mother and the 

fetus65,66. Within mammals, the placenta has evolved independently multiple times and 

demonstrates remarkable morphological variability67–69. For humans, understanding the 

evolutionary pressures on genomic regions associated with adverse pregnancy outcomes, such as 

a preterm birth, could illuminate genetically-controlled biological pathways for further research.  

 
 

1.10 Aims of this thesis 
 
In spite of the diverse maternal, fetal, and placental pathologies that can lead to PRETERM 

BIRTH, family history and prior occurrences remain the leading clinical risk factors. 

Furthermore, despite the high heritability of preterm birth and difference in prevalence across 

individuals of different ancestry, its genetic basis remains poorly understood.  

In this dissertation, I leverage a large genetic biobank with linked de-identified EHRs to 

study the phenotypic and evolutionary heterogeneity of preterm birth. In three parts, this 

dissertation: 1) refines the definition of preterm birth based on associated comorbidities, 2) 

prioritizes genetic regions associated with preterm birth using an evolutionary perspective, and 

3) incorporates genetic and phenotypic predictors from EHRs to develop a machine learning 

algorithm to predict preterm birth. By studying the heterogeneity of preterm birth, this work has 

broad impact from informing future investigations into specific etiologies to developing tools to 

improve patient care.  

Refining the definition of preterm birth leads to precise phenotyping that can isolate 

specific etiologies. In chapter two, I developed an automated phenotyping approach using an 

unsupervised method called tensor decomposition to identify several sub-phenotypes of preterm 

birth. The benefits of this approach are two-fold: 1) precise phenotype definitions with distinct 

longitudinal and comorbid patterns and 2) the ability to be deployed on large databases of EHRs 
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to quickly increase the sample size for genome-wide association studies. High-throughput and 

effective ascertainment will advance our understanding of preterm birth biology, reveal 

comorbid patterns, and lead to targeted therapeutic strategies for different types of preterm birth. 

As a complementary approach to uncovering the phenotypic heterogeneity, in chapter 

three I leveraged an evolutionary perspective to identify different evolutionary forces that have 

shaped genomic regions associated with preterm birth. Notably, this approach uses existing 

preterm birth associations and does not require new genome-wide association studies. Preterm 

birth has significant disparities across race, but limited genomic datasets in non-European 

populations and some evolutionary forces have been shown to drive population-specific genetic 

differentiation in a number of different complex traits70. Thus, investigating the evolutionary 

dynamics of preterm birth regions can inform genetically-driven differences in population-

specific disease risk. Additionally, building evolutionary priors based on signatures of selection 

on genomic regions will enable prioritization of genomic candidates for further in vitro or in vivo 

validation. 

In chapter four, I combined comorbid factors with genetic risk for preterm birth to 

develop a predictive algorithm. This tool has the potential to support clinical decision making 

and improve maternal health. Existing tools to predict preterm birth have limited accuracy and 

are applied only in specific clinical contexts71–73. I developed a powerful machine learning 

algorithm to predict preterm birth by incorporating diverse data types from EHRs. Machine 

learning algorithms can be deployed without burdensome economic costs and generate risk 

scores relatively quickly at the point of care. These models use billing codes which are 

commonly used across different health systems, and I show that their strong performance 

generalizes across distinct health systems. This predictive algorithm is a first step at 

demonstrating the potential of predictive models using data derived from EHRs.  

In summary, this dissertation advances our knowledge of preterm birth heterogeneity and 

demonstrates the translational potential of predictive algorithms derived from genetic biobanks 

linked to EHRs. The refined definition of preterm birth and prioritized candidate genomic 

regions opens the potential for mechanistic insights into birth timing and predictive algorithms 

that model disease heterogeneity demonstrates the potential for translational clinical impact.  
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CHAPTER II 

 
 

2 Resolving the phenotypic heterogeneity of preterm birth 
 
 

2.1 Introduction 
 
Preterm birth affects approximately 10% of pregnancies and is the leading cause of infant 

mortality worldwide4,6,7,74. The precise mechanisms of birth timing remain poorly understood6,49. 

Many lines of evidence suggest a strong genetic basis for birth timing. For example, family 

history and a previous preterm birth are the strongest risk increasing factors for preterm birth4. 

Additionally, twin based studies estimate heritability up to 40% 39–41. Despite evidence for a 

strong genetic basis, genome-wide association studies (GWASs) to date have had limited success 

in identifying associated genomic regions47,48. The largest and most robust GWAS to date 

replicated only four regions associated with preterm birth47.  

For genetic and mechanistic studies, the phenotypic heterogeneity of preterm birth31,49 

can limit the power to detect distinct etiologies58,61. Preterm birth is often divided into those with 

spontaneous onset of labor or medically-indicated deliveries57,61. This dichotomy does not 

incorporate the varied clinical presentation and comorbidities that influence preterm birth risk. A 

majority of preterm birth cases present with at least one complicating maternal/fetal condition31. 

In addition to obstetric factors, chronic and systemic comorbidities such as diabetes or mental 

health disorders, also increase the risk for preterm birth30. 

A refined definition of preterm birth phenotype has the potential to identify specific 

disease mechanisms. For example, the etiology of some preterm birth cases can be narrowed 

down to cervical remodeling that is necessary for parturition75. Even in a small cohort (n~100), 

hierarchical clustering on obstetric variables identified a subset of preterm birth cases associated 

with the INS (insulin) gene59. EHRs are a powerful resource for parsing the phenotypic 

complexity of preterm birth. EHRs are a cost-effective and efficient for assembling large cohorts 

with broadly sampled disease traits across multiple timepoints. Indeed, leveraging disease traits 

from EHRs have identified novel genotype-phenotype associations63,76  and resolved the 

heterogeneity across disease domains. 
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In addition to capturing a broad array of diseases, EHRs record the trajectory of disease 

over a patient’s life. Tensor decomposition is an unsupervised method that can model ab intio 

longitudinal disease trajectories, while simultaneously decomposing a phenotype into latent 

factors based on their comorbidities. Applying tensor decomposition to EHR data for 

cardiovascular disease, Zhao, et al. demonstrated time-evolving trajectories of distinct subtypes 

associated with differential long-term survival77. EHRs are well suited to investigate phenotypic 

heterogeneity in pregnancy. During pregnancy there is heightened clinical surveillance, 

measurable endpoints, and rich documentation of the patient’s health. Moreover, a patient health 

history can affect the risk for adverse pregnancy outcomes and adverse outcomes during 

pregnancy can have long-term health consequences.  

In this study, we investigate the phenotypic heterogeneity of preterm birth in a large cohort 

of White and Black pregnancies using EHRs linked to a genomic biobank. First, we map the 

phenotypic heterogeneity by testing for diseases associated with preterm birth across the clinical 

phenome. We next apply tensor decomposition over nine years of EHR data on a cohort of only 

preterm births in both white and black women.  We identify sub-phenotypes represented by nine 

and 12 latent factors in the White and Black women, respectively. Each latent factor is described 

by their associated morbidity (phenotypic signatures) and longitudinal trajectories (temporal 

signature). We hypothesize that an individual’s relative membership in a latent factor will be 

associated with distinct genetic risk in the preterm birth cohort. To test this hypothesis, we 

regress polygenic risk scores for comorbid traits with each individual’s latent factor weights. The 

genetic risk score for body mass index (BMI), type 1, and type 2 diabetes were statistically 

significantly associated with specific latent factors.  

 
 

2.2 Results 
 
2.2.1 Pregnancy cohort characteristics 
 
We assembled a pregnancy cohort from the Vanderbilt EHR database (>3.2 million records) by 

identifying women with at least one delivery (n=22,301 White, 6,653 Black, Error! Reference 

source not found.). We ascertained the delivery type (preterm vs. not-preterm) using delivery-

specific billing codes and estimated gestational age when available (Methods). We observed a 

higher proportion of preterm birth in the White (29.0%) and Black (26.4%) cohorts compared to 
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population prevalence; this is likely due to sampling from a tertiary care health system enriched 

for preterm cases. Age at earliest recorded delivery (EHR-delivery) was similar between preterm 

and not-preterm birth cases in both White and Black cohorts (Error! Reference source not 

found.). The mean length of EHRs, defined as time between the earliest and most recent billing 

code, was longer in women with preterm birth compared to the not-preterm women in both 

White (0.27 years longer) and Black cohorts (0.68 years longer; Error! Reference source not 

found.).  

 

 
 
2.2.2 Preterm birth is associated with many traits across disease systems 
 
To build a phenome-wide map of traits associated with preterm birth, we regressed delivery type 

on each phecode, a mapping from the International Statistical Classification of Diseases and 

Related Health Problems (ICD-9) billing codes,  while adjusting for age at first EHR-delivery 

and length of EHR. Women with at least one preterm birth were cases and all others were 

controls. We considered phecodes that pass Bonferroni multiple testing correction thresholds (pblack 

< 5.2e-5, pwhite< 3.8e-5) as being associated with PRETERM BIRTH.  

Table 2.1: Demographic characteristics of pregnancy cohorts. For women with at least one delivery at the 
Vanderbilt Hospital, we ascertained their earliest delivery as (preterm vs. no preterm) using billing codes 
and estimated gestational age 
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In the Black cohort, we tested 926 phecodes of which 28 were associated with preterm 

birth (Figure 2.1A). Six out of 17 phecode disease chapters had at least one association with 

preterm birth; the pregnancy chapter had the largest number of associations (n=11; Figure 2.1B). 

Amniotic cavity abnormalities, which include oligo/poly-hydramnios, premature rupture of 

membranes, infection of amniotic membranes, or spontaneous/artificial rupture of membranes, 

had the strongest association (p=3.1e-76, OR=5.6). Other preterm birth associated phecodes 

included hypertensive disorders (preeclampsia p=8.2e-55, OR=5.3; hypertension complicating 

pregnancy, p=1.9e-26, OR=2.5), cervical incompetence (p=5.2e-26, OR=13.4), and miscarriage 

(p=2.31, OR=3.5).  

In the non-pregnancy disease chapters, the top associations with increased preterm risk 

included hypertensive traits (essential hypertension, p=2.3e-24, OR=3.4; hypertensive chronic 

kidney disease, p=3.5e-6, OR=12.5), diabetes (type 2, p=8.9e-18, OR=3.4; type 1, p=6.1e-11, 

OR=5.9), and morbid obesity (p=1.2e-7, OR=2.0). Many renal traits were also strongly 

associated with preterm birth (end stage renal disease, p=1.1e-5, OR=11.1; chronic renal failure, 

p=4.6e-6, OR=12.1; proteinuria, p=6.1e-6, OR=6.4).  

In the larger White cohort, we detected more preterm birth associated phecodes (n=55) 

compared to the Black cohort (Figure 2.1C, D). The top associations were similar across both 

cohorts. Anemia during pregnancy (p = 9.4e-6, OR=2.9), infection of the genitourinary tract 

(p=1.3E-5, OR=2.9), and rhesus isoimmunization (p=3.7e-06, OR=2.9) were associated only in 

the White cohort.  In the non-pregnancy chapters, pneumonia (p=8.8, OR=3.8), mental disorders 

during/after pregnancy (p = 1.6e-7, OR=1.8), and lupus (p= 7.3e-07, OR=3.2) were only 

associated with preterm birth in the White cohort.  
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Figure 2.1: Preterm birth is associated with multiple disease phenotypes across the clinical phenome. We 
tested for an association between preterm birth and disease phenotypes (Phecodes) in a cohort of (A) 
black (n_cases = 1,934, n_controls = 4,719) and (B) white (n_cases = 5,901, n_controls = 16,400) women 
while adjusting for age at delivery and the length of EHR. Cases included women with at least one 
preterm birth while controls included women with term or post-term deliveries. Phenotypes are organized 
by disease chapter (x-axis) with the pregnancy chapter plotted separately (B, D) and the negative log10 P-
value (y-axis). Diseases were considered associated if they passed a Bonferroni correction for number of 
traits tested (red dotted line) within each cohort (p_black < 5.2e-5, p_white< 3.8e-5) 
 
 

2.2.3 Tensor decomposition enables discovery of longitudinal sub-phenotypes 
 
The strong associations with preterm birth for distinct traits across multiple systems supports the 

syndromic nature of preterm birth and suggests that defining preterm birth as a composite of sub-

phenotypes based on similar morbidity could improve our understanding of its phenotypic 

heterogeneity. Thus, we applied tensor decomposition to identify a set of interpretable preterm 

birth sub-phenotypes with distinct phenotypic and longitudinal signatures (Figure 2.2). In the 

White and Black preterm birth cohort separately, we constructed a longitudinal disease tensor 

containing the number of phecodes occurring five years before and after the first delivery for 

each woman (Figure 2.2A). This tensor has three dimensions: phecodes, time since delivery, and 

individuals (Figure 2.2B). Next, we factorized the longitudinal disease tensor as an approximate 
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sum of rank-one tensors. Each rank-one tensor represents one latent factor derived from the outer 

product of three vectors (Figure 2.2E). Each vector for a latent factor quantifies the weight of 

elements along the phecode, time since delivery, and individual axes. For downstream analyses, 

we reorganized the weights into matrices by concatenating vectors across latent factors for each 

of the three tensor axes (Figure 2.2D).  

To select the number of latent factors to consider, we defined optimization criteria on the 

resulting factorizations with the goal of capturing similar morbidity patterns and maximizing 

interpretability. We performed multiple tensor decompositions with three to 30 latent factors and 

evaluated the ‘between factor uniqueness’ (Jaccard Index) and ‘within factor coherence (UMass) 

within the phecode dimension (Methods). After nine and 12 latent factors, the Jaccard index 

decreased while UMass generally increased for the White and Black cohorts respectively (Figure 

2.3). As expected, the sum squared error decreased with more latent factors in both cohorts 

(Figure 2.3). We selected the number of latent factors to meet the following criteria: minimize 

sum squared error, maximize factor uniqueness, and maximize within factor identity’. Therefore, 

we selected nine and twelve latent factors for the White and Black cohorts respectively.  
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Figure 2.2: Overview of tensor decomposition approach on the preterm birth cohort. A) We considered 
the cohort of women with at least one preterm birth from our EHR database. B) To capture the phenotypic 
heterogeneity of preterm birth, we derived phecodes from ICD-9 billing codes occurring up to four years 
before and after the first recorded delivery. After binning the phecode counts into one-year time intervals, 
we generated a longitudinal disease tensor with three dimensions: phecodes (x-axis), time since delivery 
(y-axis), and individuals (z-axis). C) We applied tensor decomposition on the longitudinal disease tensor 
using parallel factor analysis (PARAFAC) with constraints (Methods). Tensor decomposition was applied 
separately in the black and white preterm birth cohorts and resulted in a set of latent factors indicative of 
preterm birth subphenotypes. D) Latent factors consist of weights describing the contribution of elements 
along the phecode, time since delivery, and individual axes from the original tensor. The weights for an 
axis across all latent factors are concatenated into weight matrices and analyzed to determine: an 
individual’s relative membership in each latent factor; each latent factor’s phenotypic and longitudinal 
signatures. E) Tensor decomposition using PARFAC approximates the tensor as the outer product of 
weight vectors along each tensor dimension that are summed across an arbitrary number of R latent 
factors.  
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2.2.4 Latent factors capture distinct phenotypic and longitudinal signatures 
 
To interpret the latent factors after tensor decomposition, we derived a phenotypic signature for 

each latent factor from the phecode weight matrix for each cohort. The mean weight across each 

of the phecode chapters revealed distinct signatures for each latent factor in the White cohort 

(Figure 2.4A). To aid interpretability, we assigned a dominant comorbid axis to the factors based 

on their highest weights across the phecode chapters (Figure 2.4B). The dominant comorbid axis 

for factors one to three were in the pregnancy chapter with two and three having smaller weights 

in the endocrine and circulatory chapters. Factors four and nine had large, localized weights in 

the mental health and dermatologic chapters respectively. The remaining factors, six and eight, 

had high weights across multiple chapters reflecting multi-system comorbidity.   

We examined latent factors with higher resolution by identifying the top ten phecodes 

with the highest weights. Latent factor one captures the phecode for preterm birth and other risk 

factors such as cervical incompetence. Latent factor five has weights distributed between the 

endocrine and pregnancy chapters and captured different types of diabetes (phecode: 

250.1; 250.2, 649.1) and its related comorbidities (diabetic retinopathy, lipid disorders). 

Similarly, factor four captured related mental health phecodes (anxiety, depression, etc.) and 

tobacco and substance use disorders.  
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Figure 2.3 Determining the optimal number of latent factors. For the black and white preterm birth 
cohorts separately, we performed multiple tensor decomposition on the longitudinal disease tensor 
using three to 30 latent factors. For each decomposition, we measured the Jaccard Index, UMASS 
(Methods), and sum squared error (SSE).  
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Figure 2.4: Latent factors reveal distinct and interpretable comorbidity signatures. A) After tensor 
decomposition of the longitudinal disease tensor in the White preterm birth cohort, we analyzed the 
phecode-by-latent-factor weight matrix. For each factor (rows), we summarized its phenotypic signature 
based on the mean weight (size) in each phecode chapter (columns). The weights are normalized such that 
within each factor between zero and one for better interpretability. B) We assigned each latent factor to a 
dominant comorbid axis based on the largest phenotypic signal(s). C) For each latent factor (colors), we 
plot the weight (y-axis) for the top ten phecodes with the largest weights. All other phecodes are plotted 
in gray.  

 
In addition to the phenotypic signatures, we derived the longitudinal trajectories of 

factors from the time since delivery weight matrix. For each time interval, higher weights 

indicated a greater morbidity burden. We categorized latent factors into three longitudinal 

patterns using k-means clustering: peri-pregnancy, chronic-post-pregnancy, and acute pre-

pregnancy (Figure 2.5A). The peri-pregnancy group, consisting of factors one, three, four, five, 

six, and seven, had peak morbidity burden up to one year before delivery. The chronic post-
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pregnancy group, consisting of factors eight and nine, had sustained morbidity burden up to two 

years before and four years after delivery. The acute pre-pregnancy group with only factor two 

had a sharper peak for morbidity burden a year before delivery than the peri-pregnancy group.  

 

 
 

 

Figure 2.5: Tensor decomposition of white preterm births reveals distinct longitudinal and individual 
signatures of comorbidity. In the white preterm birth cohort, we used k-means clustering on the nine 
latent factors based on their weights for the ‘time since delivery’ axis. A, B, C) The temporal signature of 
each latent factor (colored lines) is captured by its weight (y-axis) across one-year bins before (negative 
bins) and after delivery (x-axis). All factors have high weights one year before delivery. The centroid of 
the three groups derived from kmeans clustering is overlaid as the dotted black line. We annotate the three 
groups based on their temporal pattern: peri-pregnancy, chronic post-pregnancy, and acute pre-pregnancy. 
D) We also analyzed the individual by latent factor weight matrix to quantify a woman’s (each column) 
relative membership across factors (rows). Hierarchical clustering revealed subsets of women 
(dendrogram) with distinct patterns of factor weights. Weight was normalized to a range of one to zero 
across all factors and individuals.  
 
 

2.2.5 Individuals predominantly cluster based on latent factor signatures 
 
To explore the role of each factor to different individuals, we examined the ‘individual’ weight 

matrix across factors in the White preterm birth cohort (Figure 2.5D). An individual’s weight 

represents their relative membership across the factors. The weights are normalized to the 

maximum weight in the matrix to aid interpretability. Overall, factors one, two and three, all of 

which had dominant comorbidities in the pregnancy chapter, had the highest weights across 
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individuals. A subset of individuals had high weights in multiple factors such as factor one and 

three. The remaining factors had overall lower weights, but distinct and often overlapping 

weights. Hierarchical clustering of individuals across the latent factors reveals cohort subsets 

with similar latent factor signatures. After mapping the weights into t-SNE space, individuals 

separated predominantly based on the latent factor with the highest weight (Figure 2.6A). Some 

individuals did not cluster based on their dominant latent factor suggesting a mixture of latent 

factors are associated with their preterm birth phenotype.  

Next, we tested whether an individual’s weights across latent factors are associated with 

obstetric factors such as estimated gestational age (EGA) and age at delivery. Latent factors two, 

three, five, seven and eight had associations (p<0.05) with increased EGA by up to four weeks 

for each unit increase in latent factor weight. Latent factor one (p<0.05) associated with 

decreased EGA by two weeks for each unit increased in latent factor weight. All but latent factor 

four were associated with age at delivery; only latent factor one had a decrease in age at delivery 

by 2.5 years for every unit increase in weight; other factors associated with increased age at 

delivery as high as 12.5 years for each unit increase in weight. (Figure 2.6). 
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Figure 2.6: Latent factor weights for white women with preterm birth are associated with estimated 
gestational age and age at delivery. A) After tensor decomposition using nine latent factors, we performed 
a T-SNE on the weights for each individual across latent factors. Across the first two T-SNE dimensions 
(x and y axis), each individual (each ‘x’) is colored based on the latent factor with the highest weight. B) 
We next regressed estimated gestational age at delivery or C) age at delivery with the normalized weights 
for each latent factor (y-axis) and plotted the effect size (x-axis). Latent factors that are nominally 
significant (p<0.05) or pass Bonferroni correction for multiple testing across nine latent factors are 
colored in red and gold respectively.  

 
 
2.2.6 Black preterm birth cohort exhibits similar latent factor signatures as white preterm 

cohort  
 
We performed tensor decomposition on Black women with preterm birth and identified twelve 

latent factors. The phenotype signatures across latent factors had similar patterns to the white 

preterm birth cohort (Figure 2.7). Several factors had localized weights in specific chapters 

(pregnancy: factors 1,2; genitourinary: 10,12; dermatologic; 11, mental health: 8). We compared 

the phenotype weights in the Black cohort to the White cohort and found that most factors had 

high positive correlations with a small number of factors in the other cohort (Figure 2.7D). This 
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indicated that while the exact factor to disease mapping is arbitrary in each cohort, the 

underlying morbidity signals are similar to the white preterm birth cohort. We also observed 

weaker negative correlation in the two cohorts which suggests dissimilarity in phenotype weights 

between specific pairs of factors (Figure 2.7E). Examining the top phecodes in each latent factor, 

we observed sickle cell disorder, a prevalent disorder in Black populations, accompanied with 

anemia-like traits in latent factor nine. Factor 12 also contained disorders highly prevalent in 

Black women such as polycystic ovaries and menstrual disorders.  

After k-means clustering of the longitudinal trajectories, we observed four groups that all 

exhibited high morbidity weight a year before delivery (Figure 2.7C). The peri/post-pregnancy 

group, composed of factors five, eight, and ten, had increased morbidity weight after delivery 

compared to the peri-only pregnancy group (factors one, two, four, and nine). The other two 

groups exhibited chronic morbidity weights either before and after delivery (‘chronic group’) or 

only after delivery (chronic post-pregnancy group).  
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Figure 2.7: Latent factors in a black preterm birth cohort share similar temporal and phenotype profiles 
with White preterm birth cohort.  After tensor decomposition of the longitudinal disease tensor in the 
Black cohort, we identified 12 latent factors. A) Using the phecode by latent factor weight matrix, we 
summarized the phenotypic signature of each factor (rows) by the mean weight (size of point) in each 
phecode chapter (columns). B) The spearman correlation (line thickness) of phecode weights for each 
latent factor in the white (y-axis) and black (x-axis) preterm birth cohorts. Correlations with p<0.05 are 
annotated with a star. C) We clustered temporal signature of the latent factors in the black preterm 
birthcohort as described Figure 4A. Black dashed line represents the centroid of each cluster. D) As 
described in Figure 4B, the weight of each individual in the Black preterm birth cohort (columns) for each 
latent factor (rows) demonstrates clustering of women (dendrogram).  
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Next, we examined the factor membership of individual women. Latent factors one and 

two, with dominant comorbidities in the pregnancy chapter, had high weights across a large 

proportion of the cohorts. The remaining factors had distinct subsets of women having higher 

weights, similar to the White preterm birth cohort. Black women also predominantly clustered 

according to their factor with the highest weight (Figure 2.8A). Some latent factors in the Black 

cohort were significantly associated with EGA and age at delivery (Figure 2.8B, C).  

 
 

 
Figure 2.8: Specific latent factors in black women with preterm birth are associated with estimated 
gestational age and age at delivery. We performed tensor decomposition on a black cohort of women with 
preterm birth that yielded twelve latent factors. On the weights for each individual across factors, we 
performed T-SNE and regressed EGA and age at delivery as described in Figure 2.6.  

 

2.2.7 Evaluating latent factors for association with polygenic risk of comorbidities 
 
The latent factors derived from tensor decomposition refined the preterm birth phenotype based 

on similar morbidity patterns. Therefore, we hypothesized that specific latent factors, driven by 

their phenotypic signatures, will be associated with the genetic predisposition for preterm birth 
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comorbidities. To capture the genetic predisposition of a trait, we calculated polygenic risk 

scores using variants weights from previously validated scores from the polygenic risk score 

catalog. We regressed the PRS on a latent factor weight and adjusted for genetic ancestry. Some 

traits had multiple PRSs; we corrected for multiple testing (FDR adjusted p value) over all PRS 

evaluated.   

Of all comorbid traits tested, ten had at least one nominally significant association 

(p<0.05) with a latent factor (Figure 2.9). After multiple testing correction, latent factor five that 

had an endocrine-pregnancy phenotypic signature, associated with type 1 and type 2 diabetes 

(p.adjusted < 0.05). Similarly, latent factor two with a pregnancy-endocrine phenotypic 

signature, was associated with type 2 diabetes and BMI (p.adjusted < 0.05).  

 
 

 
Figure 2.9: Latent factors are associated with polygenic risk score for some preterm birth 
comorbidities. A) For each woman with preterm birth in the White cohort, we calculated their genetic risk 
using polygenic risk scores (PRSs) for a variety of comorbidities. We tested for an association between 
each comorbidity’s PRS and the weight for a latent factor and adjusted for 15 genetic ancestry principal 
components. We repeated this test for latent factors one to nine.  B) List of comorbid PRS and their 
associated latent factor annotated based on its phenotypic signature.  C) Heatmap of the effect size (beta 
coefficient) of the association between each latent factor and each PRS trait. Positive effect size indicates 
increasing genetic risk with increasing the weight for that latent factor.  
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2.3 Discussion  
 
Leveraging a large database of de-identified EHRs linked to a genetic biobank, we refined the 

definition of preterm birth by identifying interpretable sub-phenotypes. We applied tensor 

decomposition on comorbidities across a patient’s EHR, thus incorporating longitudinal 

trajectories, to yield eight and 12 latent factors in a White and Black cohort of preterm birth 

deliveries. Each latent factor, representing a sub-phenotype, is distinguished by a temporal 

signatures five years before and after delivery and the top ten dominant comorbidities. In 

addition to these interpretable factors, each individual has assigned weights indicating latent 

factor membership. Specific latent factors were associated with key obstetric variables such as 

estimated gestational age and age at delivery. To determine if genetic risk for comorbidities is 

associated with any latent factors, we tested for associations between latent factor weight 

memberships and the genetic risk of multiple comorbidities. We discover that the genetic risk for 

BMI and diabetes are significantly associated with specific latent factors in both the White and 

Black preterm birth cohorts.  

Tensor decomposition enables the discovery of latent structure across a large number of 

commodities while simultaneously capturing longitudinal trajectories. The resulting weights of 

each latent factor can be mapped directly to specific comorbidities and time intervals. Thus, 

latent factors are highly interpretable which is a strength of tensor decomposition. Additionally, 

each individual’s factor membership enables association testing with key variables for each 

latent factor. Tensor decomposition also enables one to apply various constraints that reflect the 

task at hand. Thus, we applied an orthogonality constraint to each latent factor in the phecode 

dimension which yielded diverse phenotypic signatures. Although the number of latent factors 

was different across the Black and White cohorts, some latent factors had very similar 

phenotypic and temporal signatures.  

We tested multiple polygenic risk scores for a given comorbid trait to test for association 

with latent factors. We obtained polygenic risk scores that were validated in external cohorts 

from the polygenic risk score catalog. Due to differences in genetic background and differences 

methods for developing polygenic risk scores, polygenic risk score transferability within 

population and across populations78. Furthermore, assigning a best polygenic risk score is of 

limited value since demographic and study design factors will influence its performance for out 

of sample performance. By including multiple polygenic risk scores, we evaluate trends across 
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these variables. Our associations with BMI and diabetes remained robust across multiple 

polygenic risk scores.  

While the use of tensor decomposition is well suited with electronic health record data, 

there are a few limitations that are important to consider. Electronic records may contain errors 

in how billing codes are assigned for specific phenotypes. To mitigate this effect, we do not 

consider extremely rare codes in our cohort. Furthermore, by converting ICD-9 to phecodes, a 

many to one mapping, an individual phecode will have more support. Another limitation of 

tensor decomposition is that it is computational expensive. As the input tensor increases, 

memory requirements may preclude larger cohort from being run. We also observed that while 

many different constraints could be applied when solving for the tensor decomposition, some of 

them did not converge on solutions.  

 
 

2.4 Methods 
 
 
2.4.1 Ascertaining pregnancy cohort and delivery type from EHRs  
 
From our EHR database (>3.2 million records), we assembled a pregnancy cohort that includes 

women with at least one delivery at the Vanderbilt University Medical Center (n=35,282). For 

each woman, we identified if they had multiple pregnancies and ascertained the delivery date and 

type (preterm vs. not-preterm) using billing codes (ICD-9 or CPT) and estimated gestational age 

documented in the EHR. First, we group billing codes indicating delivery (delivery-codes) based 

on their timestamp. We combined delivery-codes into one pregnancy if they occurred within 37 

weeks of the most recent delivery-code and repeated until all delivery-codes were assigned to a 

pregnancy. We grouped EGA values in each woman’s EHR into one pregnancy if it was time 

stamped within the gestational window indicated by the most recent EGA and repeated until all 

EGA values were assigned to a pregnancy. We determined the delivery type based on the oldest 

gestational age classification in the pool of delivery-codes and EGA values (i.e. postterm > term 

> preterm). For each pregnancy, we assign the delivery date as the most recent timestamp from 

the pool of delivery-codes and EGA values. We have validated this algorithm to identify preterm 

births (PPV:>90%, Sensitivity: >90%) by chart review as reported previously79.  
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2.4.2 Testing disease traits for association with preterm birth  
 
Using self or third-party documented race in the EHR, we filtered the pregnancy cohort into 

White and Black cohorts. We defined our outcome variable as ‘preterm’ or ‘not-

preterm’. Women with at least one preterm birth were ‘preterm’ (n_black=1,934, 

n_white=5,901) and all others were ‘not-preterm’ (n_black=4,719, n_white=16,400).  Next, we 

queried disease traits across the clinical phenome using billing codes. We extracted all ICD-9 

billing codes in an individual’s EHR and translated them to pheCodes80. Phecodes remove 

unnecessary specificity and collapse ICD-9 codes into clinically relevant groups. Phecodes are 

further organized into chapters of related diseases. Previous studies have demonstrated that the 

positive predictive value of a disease increases when multiple counts of that code is required 

across the EHR80,81. Therefore, we binarized phecodes by requiring an individual to have at least 

four instances of that phecode to be considered positive. We also extracted the age at delivery 

and the length of an individual’s EHR, defined as the time elapsed between the earliest and most 

recent billing code. Finally, we regressed delivery type on each phecode while adjusting for age 

at first EHR-delivery and length of EHR. This analysis was performed separately in the black 

and white cohorts. Only phecodes with at least 100 individuals who were positive were tested for 

an association with delivery status. To correct for multiple testing, we used a Bonferroni 

correction over all phecodes tested in each cohort. ICD to phecode translation and association 

testing was performed using the PheWAS R package80.  

 
2.4.3 Creating the longitudinal disease tensor from the preterm birth cohort 
  
From the pregnancy cohort, we selected white and black women whose first delivery in the EHR 

was preterm. For each individual, we binned the number of instances of phecodes into one-year 

intervals spanning up to four years before and five years after the first EHR-documented preterm 

delivery. To reduce the size of the tensor, we excluded phecodes occurring in less than 0.5% We 

assembled a three-dimensional tensor for the white and black cohorts each with the following 

axes: phecodes, time since delivery, and individuals.   
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2.4.4 Tensor decomposition using parallel factor analysis with constraints  
 
After generating the longitudinal disease tensor, we performed tensor decomposition using 

parallel factor analysis using alternating least squares. We required the factorization to be non-

negative across all factor dimensions and orthogonal only in the phecode dimension. After fixing 

the number of latent factors (F), we used alternating least squares for decomposition until model 

fit converged (R^2≤1e-10). For a given number of latent factors, we repeated the decomposition 

twenty times with random initializations and retained the model with the highest R^2. To 

identify the optimum number of latent factors, we performed multiple tensor decompositions 

with the number of latent factors (F) ranging between three to 30. For each decomposition with F 

latent factors, we calculated the between factor uniqueness (mean Jaccard Index) and within 

factor coherence (mean UMass) on the phecode factor matrix.  

For each decomposition, we calculated the between phecode-factor independence as the 

mean Jaccard index of all pairwise factors using weights across the highest fifty phecodes. We 

also measured the within factor similarity by calculating the UMass metric. UMass82,83 measures 

the co-occurrence of similar topics, or phecodes, across a set of EHRs. We calculated the sum of 

the UMass metric across the top 50 phecodes with the highest weights to obtain a UMass metric 

per factor. To summarize within factor coherence for a given set of latent factors, we took the 

mean of the summed UMass metric. To have the Jaccard and mean UMass on the similar scales 

for comparison, we multiplied UMass metric by negative one and scaled the range between zero 

and one. Thus, higher scores indicated more average topic coherence.   

 
2.4.5 Factor weights association with estimated gestational age and age at delivery  
 
To test for association between estimated gestational age and age at delivery, we regressed the 

outcome variable on each latent factor weight. Latent factor weight was normalized within each 

factor to aid interpretability across factors. A Bonferroni adjusted p-value across all latent factors 

tested for each outcome variable is used to determine statistical significance.   

 

2.4.6 Calculating and association testing with polygenic risk scores  
 
On the cohort of White women with preterm births, we calculated a polygenic risk score for 

known comorbidities associated with preterm birth risk. For each of these traits, we downloaded 
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all validated polygenic risk scores (single nucleotide polymorphism, SNP, weights) from the 

polygenic risk score catalog (PGS)84. Many comorbid traits had multiple polygenic risk scores. 

We calculated the polygenic risk score for an individual as the sum of the number of risk alleles 

at PRS SNPs weighted by the trait-associated weight downloaded from the PGS. This analysis 

was performed using the --score function in PLINK v1.90b4s85. Pyogenic risk scores are 

standard normalized to enable interpretation of effect sizes across scores. Multiple testing across 

latent factors and number of polygenic risk scores was corrected using benjamini-hochberg 

procedure.  
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CHAPTER III 

 
 

3 Evolutionary forces shaping genomic regions associated with preterm birth1 
 
 

3.1 Introduction 
 
Understanding the evolutionary forces that shape variation in genomic regions that contribute to 

complex traits is a fundamental pursuit in biology. The availability of genome-wide association 

studies (GWASs) for many different complex human traits86,87, coupled with advances in 

measuring evidence for diverse evolutionary forces—including balancing selection88, positive 

selection89, and purifying selection5 from human population genomic variation data—present the 

opportunity to comprehensively investigate how evolution has shaped genomic regions 

associated with complex traits70,90,91. However, available approaches for quantifying specific 

evolutionary signatures are based on diverse inputs and assumptions, and they usually focus on 

one region at a time. Thus, comprehensively evaluating and comparing the diverse evolutionary 

forces that may have acted on genomic regions associated with complex traits is challenging. 

In this study, we develop a framework to test for signatures of diverse evolutionary forces on 

genomic regions associated with complex genetic traits and illustrate its potential by examining 

the evolutionary signatures of genomic regions associated with preterm birth , a major disorder 

of pregnancy. Mammalian pregnancy requires the coordination of multiple maternal and fetal 

tissues92,93 and extensive modulation of the maternal immune system so that the genetically 

distinct fetus is not immunologically rejected94. The developmental and immunological 

complexity of pregnancy, coupled with the extensive morphological diversity of placentas across 

mammals, suggest that mammalian pregnancy has been shaped by diverse evolutionary forces, 

including natural selection. In the human lineage, where pregnancy has evolved in concert with 

unique human adaptations, such as bipedality and enlarged brain size, several evolutionary 

 
 
 
 
 
1 This work has been published in LaBella & Abraham et al.262 
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hypotheses have been proposed to explain the selective impact of these unique human 

adaptations on the timing of human birth95–97.  The extensive interest in the evolution of human 

pregnancy arises from interest both in understanding the evolution of the human species and also 

the existence of disorders of pregnancy.  

One major disorder of pregnancy is preterm birth, a complex multifactorial syndrome49 

that affects 10% of pregnancies in the United States and more than 15 million pregnancies 

worldwide each year2,98. Preterm birth leads to increased infant mortality rates and significant 

short- and long-term morbidity2,4,99. Risk for preterm birth varies substantially with race, 

environment, comorbidities, and genetic factors100. Preterm birth is broadly classified into 

iatrogenic preterm birth, when it is associated with medical conditions such as preeclampsia (PE) 

or intrauterine growth restriction (IUGR), and spontaneous preterm birth (sPTB), which occurs 

in the absence of preexisting medical conditions or is initiated by preterm premature rupture of 

membranes31,57. The biological pathways contributing to sPTB remain poorly understood17, but 

diverse lines of evidence suggest that maternal genetic variation is an important 

contributor39,40,101.  

The developmental and immunological complexity of human pregnancy and its evolution 

in concert with unique human adaptations raise the hypothesis that genetic variants associated 

with birth timing and sPTB have been shaped by diverse evolutionary forces. Consistent with 

this hypothesis, several immune genes involved in pregnancy have signatures of recent purifying 

selection102 while others have signatures of balancing selection. In addition, both birth timing 

and sPTB risk vary across human populations103, which suggests that genetic variants associated 

with these traits may also exhibit population-specific differences. Variants at the progesterone 

receptor locus associated with sPTB in the East Asian population show evidence of population-

specific differentiation driven by positive and balancing selection90,104. Since progesterone has 

been extensively investigated for sPTB prevention105, these evolutionary insights may have 

important clinical implications. Although these studies have considerably advanced our 

understanding of how evolutionary forces have sculpted specific genes involved in human birth 

timing, the evolutionary forces acting on pregnancy across the human genome have not been 

systematically evaluated.  

The recent availability of sPTB-associated genomic regions from large genome-wide 

association studies47 coupled with advances in measuring evidence for diverse evolutionary 
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forces from human population genomic variation data present the opportunity to 

comprehensively investigate how evolution has shaped sPTB-associated genomic regions. To 

achieve this, we developed an approach that identifies evolutionary forces that have acted on 

genomic regions associated with a complex trait and compares them to appropriately matched 

control regions. Our approach innovates on current methods by evaluating the impact of multiple 

different evolutionary forces on trait-associated genomic regions while accounting for genomic 

architecture-based differences in the expected distribution for each of the evolutionary measures. 

By applying our approach to 215 sPTB-associated genomic regions, we find significant evidence 

for at least one evolutionary force on 120 regions, and illustrate how this evolutionary 

information can be integrated into interpretation of functional links to sPTB. Finally, we find 

enrichment for nearly all of the evolutionary metrics in sPTB-associated regions compared to the 

genomic background, and for measures of negative selection compared to the matched regions 

that take into account genomic architecture. These results suggest that a mosaic of evolutionary 

forces likely influenced human birth timing, and that evolutionary analysis can assist in 

interpreting the role of specific genomic regions in disease phenotypes. 

 
 

3.2 Accounting for genomic architecture in evolutionary measures 
 
 
In this study, we compute diverse evolutionary measures on sPTB-associated genomic regions to 

infer the action of multiple evolutionary forces (Table 3.1 Evolutionary measures computed on 

sPTB-associated genomic regions with the corresponding evolutionary signature used to infer the 

evolutionary force and the associated timescale.  GERP: Genomic evolutionary rate profiling. 

iHS: integrated haplotype score. XP-EHH: cross-population extended haplotype homozygosity 

(EHH). iES: integrated site-specific EHH. TMRCA: time to most recent common ancestor 

derived from ARGweaver.  Alignment block age was calculated using 100-way multiple 

sequence alignments to determine the oldest most recent common ancestor for each alignment 

block.). While various methods to detect signatures of evolutionary forces exist, many of them 

lack approaches for determining statistically significant observations or rely on the genome-wide 

background distribution as the null expectation to determine statistical significance (e.g., outlier-

based methods)106,107. Comparison to the genome-wide background distribution is appropriate in 

some contexts, but such outlier-based methods do not account for genomic attributes that may 
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influence both the identification of variants of interest and the expected distribution of the 

evolutionary metrics, leading to false positives. For example, attributes such as minor allele 

frequency (MAF) and linkage disequilibrium (LD) influence the power to detect both 

evolutionary signatures87,108,109 and GWAS associations86. Thus, interpretation and comparison 

of different evolutionary measures is challenging, especially when the regions under study do not 

reflect the genome-wide background. 

Here we develop an approach that derives a matched null distribution accounting for 

MAF and LD for each evolutionary measure and set of regions (Figure 3.1). We generate 5,000 

control region sets, each of which matches the trait-associated regions on these attributes 

(Methods). Then, to calculate an empirical p-value and z-score for each evolutionary measure 

and region of interest, we compare the median values of the evolutionary measure for variants in 

the sPTB-associated genomic region to the same number of variants in the corresponding 

matched control regions (Figure 3.1A, Methods). This reduces the risk for false positives relative 

to outlier-based methods and enables the comparison of individual genomic regions across 

evolutionary measures. In addition to examining selection on individual genomic regions, we can 

combine these regions into one set and test for the enrichment of evolutionary signatures on all 

significant sPTB-associated genomic regions. Such enrichment analyses can further increase 

confidence that statistically significant individual regions are not false positives but rather 

genuine signatures of evolutionary forces. 

In this section, we focus on the evaluation of the significance of evolutionary signatures 

on individual sPTB-associated regions; in a subsequent section, we extend this approach to 

evaluate whether the set of sPTB-associated regions as a whole has more evidence for different 

evolutionary forces compared to background sets. 
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To evaluate the evolutionary forces acting on individual genomic regions associated with 

sPTB, we identified all variants nominally associated with sPTB (p<10E-4) in the largest 

available GWAS47 and grouped variants into regions based on high LD (r2>0.9). It is likely that 

many of these nominally associated variants affect sPTB risk, but did not reach genome-wide 

significance due to factors limiting the statistical power of the GWAS47. Therefore, we assume 

that many of the variants with sPTB-associations below this nominal threshold contribute to the 

genetic basis of sPTB. We identified 215 independent sPTB-associated genomic regions, which 

we refer to by the lead variant (SNP or indel with the lowest p-value in that region).  

For each of the 215 sPTB-associated genomic regions, we generated control regions as 

described above. The match quality per genomic region, defined as the fraction of sPTB variants 

Table 3.1 Evolutionary measures computed on sPTB-associated genomic regions with the corresponding 
evolutionary signature used to infer the evolutionary force and the associated timescale.  GERP: Genomic 
evolutionary rate profiling. iHS: integrated haplotype score. XP-EHH: cross-population extended 
haplotype homozygosity (EHH). iES: integrated site-specific EHH. TMRCA: time to most recent 
common ancestor derived from ARGweaver.  Alignment block age was calculated using 100-way 
multiple sequence alignments to determine the oldest most recent common ancestor for each alignment 
block. 
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with a matched variant averaged across all control regions, is ≥ 99.6% for all sPTB-associated 

genomic regions. The matched null distribution aggregated from the control regions varied 

substantially between sPTB-associated genomic regions for each evolutionary measure and 

compared to the unmatched genome-wide background distribution (Figure 3.1b). The sets of 

sPTB-associated genomic regions that had statistically significant (p<0.05) median values for 

evolutionary measures based on comparison to the unmatched genome-wide distribution were 

sometimes different that those obtained based on comparison to the matched null distribution. 

We illustrate this using the FST between East Asians and Europeans (FST-EurEas) for four example 

sPTB-associated regions labeled by the variant with the lowest GWAS p-value. Regions 

rs4460133 and rs148782293 reached statistical significance for FST-EurEas only when compared to 

genome-wide or matched distribution respectively, but not both (Figure 3.1b, top row). Using 

either the genome-wide or matched distribution for comparison of FST-EurEas, sPTB-associated 

region rs3897712 reached statistical significance while rs4853012 was not statistically 

significant.  
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Figure 3.1: Accounting for minor allele frequency and linkage disequilibrium of genomic regions to 
identify loci that have experienced diverse evolutionary forces. (a) We compared evolutionary measures 
for each sPTB-associated genomic region (n=215) to ~5000 MAF and LD matched control regions. The 
sPTB-associated genomic regions each consisted of a lead variant (p<10E-4 association with sPTB) and 
variants in high LD (r2>0.9) with the lead variant. Each control region has an equal number of variants as 
the corresponding sPTB-associated genomic region and is matched for MAF and LD (‘Identify matched 
control regions’). We next obtained the values of an evolutionary measure for the variants included in the 
sPTB-associated regions and all control regions (‘Measure selection’). The median value of the 
evolutionary measure across variants in the sPTB-associated region and all control regions was used to 
derive an empirical p-value and z-score (‘Compare to matched distribution’). We repeated these steps for 
each sPTB-associated region and evolutionary measure and then functionally annotated sPTB-associated 
regions with absolute z-scores ≥ 1.5 (‘Functional annotation’). (b) Representative examples for four 
sPTB-associated regions highlight differences in the distribution of genome-wide and matched control 
regions for an evolutionary measure (FST between Europeans and East Asians). The black and colored 
distributions correspond to genome-wide and matched distributions, respectively. The colored triangle 
denotes the median FST (Eur-Eas) for the sPTB-associated region. The dashed vertical lines mark the 95th 
percentile of the genome-wide (black) and matched (colored) distributions. If this value is greater than the 
95th percentile, then it is considered significant (+); if it is lower than the 95th percentile it is considered 
not-significant (-). The four examples illustrate the importance of the choice of background in evaluating 
significance of evolutionary metrics (table to the right).   
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3.3 sPTB regions have been shaped by diverse modes of selection 
 
To gain insight into the modes of selection that have acted on sPTB-associated genomic regions, 

we focused on genomic regions with extreme evolutionary signatures by selecting the 120 sPTB-

associated regions with at least one extreme z-score (z ≥ +/- 1.5) for an evolutionary metric 

(Figure 3.2) for further analysis. The extreme z-score for each of these 120 sPTB-associated 

regions suggests that the evolutionary force of interest has likely influenced this region when 

compared to the matched control regions.  Notably, each evolutionary measure had at least one 

genomic region with an extreme observation (p<0.05). Hierarchical clustering of the 120 regions 

revealed 12 clusters of regions with similar evolutionary patterns. We manually combined the 12 

clusters based on their dominant evolutionary signatures into five major groups with the 

following general evolutionary patterns (Figure 3.2): conservation/negative selection (group A: 

clusters A1-4), excess population differentiation/local adaptation (group B: clusters B1-2), 

positive selection (group C: cluster C1), long-term balanced polymorphism/balancing selection 

(group D: clusters D1-2), and other diverse evolutionary signatures (group E: clusters E1-4).  

Previous literature on complex genetic traits110–112 and pregnancy disorders90,102,104,113 

supports the finding that multiple modes of selection have acted on sPTB-associated genomic 

regions. Unlike many of these previous studies that tested only a single mode of selection, our 

approach tested multiple modes of selection. Of the 215 genomic regions we tested, 9% had 

evidence of conservation, 5% had evidence of excess population differentiation, 4% had 

evidence of accelerated evolution, 4% had evidence of long-term balanced polymorphisms, and 

34% had evidence of other combinations. From these data we infer that negative selection, local 

adaptation, positive selection, and balancing selection have all acted on genomic regions 

associated with sPTB, highlighting the mosaic nature of the evolutionary forces that have shaped 

this trait.  
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Figure 3.2: sPTB-associated genomic regions have experienced diverse evolutionary forces. We tested 
sPTB-associated genomic regions (x-axis) for diverse types of selection (y-axis), including FST 
(population differentiation), XP-EHH (positive selection), Beta Score (balancing selection), allele age 
(time to most recent common ancestor, TMRCA, from ARGweaver), alignment block age, phyloP 
(positive/negative selection), GERP, LINSIGHT, and PhastCons (negative selection) (Table 1, Figure 1). 
The relative strength (size of colored square) and direction (color) of each evolutionary measure for each 
sPTB-associated region is summarized as a z-score calculated from that region’s matched background 
distribution. Only regions with |z| ≥ 1.5 for at least one evolutionary measure before clustering are shown. 
Statistical significance was assessed by comparing the median value of the evolutionary measure to the 
matched background distribution to derive an empirical p-value (*p>0.05). Hierarchical clustering of 
sPTB-associated genomic regions on their z-scores identifies distinct groups or clusters associated with 
different types of evolutionary forces. Specifically, we interpret regions that exhibit higher than expected 
values for PhastCons, PhyloP, LINSIGHT, and GERP to have experienced conservation and negative 
selection (Group A); regions that exhibit higher than expected pairwise FST values to have experienced 
population differentiation/local adaptation (Group B); regions that exhibit lower than expected values for 
PhyloP to have experienced acceleration/positive selection  (Group C); and regions that exhibit higher 
than expected Beta Score and older allele ages (TMRCA) to have experienced balancing selection (Group 
D). The remaining regions exhibit a variety of signatures that are not consistent with a single evolutionary 
mode (Group E). 
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In addition to differences in evolutionary measures, variants in these groups also 

exhibited differences in their functional effects, likelihood of influencing transcriptional 

regulation, frequency distribution between populations, and effects on tissue-specific gene 

expression (Figure 3.3). Given that our starting dataset was identified using GWAS, we do not 

know how these loci influence sPTB. Using the current literature to inform our evolutionary 

analyses allows us to make hypotheses about links between these genomic regions and sPTB. In 

the next section, we describe each group and give examples of their members and their potential 

connection to preterm birth and pregnancy. 
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Figure 3.3: Clusters of preterm birth regions that have experienced different types of selection vary in 
their molecular characteristics and functions. Clusters are ordered as they appear in the z-score heatmap 
(Figure 2) and colored by their major type of selection: Group A: Conservation and negative selection 
(Purple), Group B: Population differentiation/local adaptation (Blue), Group C: Acceleration and positive 
selection (Teal), Group D: Long term polymorphism/balancing selection (Teal), and Other (Green). A. 
The proportions of different types of variants (e.g., intronic, intergenic, etc.) within each cluster (x-axis) 
based on the Variant Effect Predictor (VEP) analysis. Furthermore, cluster C1 exhibits the widest variety 
of variant types and is the only cluster that contains missense variants. Most variants across most clusters 
are located in introns. B. The proportion of each RegulomeDB score (y-axis) within each cluster (x-axis). 
Most notably, preterm birth regions in three clusters (B1, A5, and D4) have variants that are likely to 
affect transcription factor binding and linked to expression of a gene target (Score=1). Almost all clusters 
contain some variants that are likely to affect transcription factor binding (Score=2). C. The derived allele 
frequency (y-axis) for all variants in each cluster (x-axis) for the African (AFR), East Asian (EAS), and 
European (EUR) populations. Population frequency of the derived allele varies within populations from 0 
to fixation. D. The total number of eQTLs (y-axis) obtained from GTEx for all variants within each 
cluster (x-axis) All clusters but one (C2 with only one variant) have at least one variant that is associated 
with the expression of one or more genes in one or more tissues. Clusters A1, A5, and D4 also have one 
or more variants associated with expression in the uterus. 
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3.4 Functional and evolutionary characteristics of sPTB associated regions 

 
 
3.4.1 Group A: Sequence conservation/negative selection 
 
Group A contained 19 genomic regions and 47 variants with higher than expected values for 

evolutionary measures of sequence conservation and alignment block age (Figure 3.2; Figure 

3.3B), suggesting that these genomic regions evolved under negative selection. The action of 

negative selection is consistent with previous studies of sPTB associated genes70. The majority of 

variants are intronic (37/47: 79%) but a considerable fraction is intergenic (8/47: 17%; Figure 

3.3).  

In this group, the sPTB-associated variant (rs6546891, OR: 1.13; adjusted p-value: 

5.4x10-5)47 is located in the 3’UTR of the gene TET3. The risk allele (G) originated in the 

human lineage and is at lowest frequency in the European population. Additionally, this variant 

is an eQTL for 76 gene/tissue pairs and associated with gene expression in reproductive tissues, 

such as expression of NAT8 in the testis. In mice, TET3 had been shown to affect epigenetic 

reprogramming, neonatal growth, and fecundity114,115. In humans, TET3 expression was detected 

in the villus cytotrophoblast cells in the first trimester as well as in maternal decidua of 

placentas116. TET3 expression has also been detected in pathological placentas117, and has also 

been linked to neurodevelopment disorders and preterm birth118. Similarly, NAT8 is involved in 

epigenetic changes during pregnancy119.  
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Figure 3.4:  Functional and evolutionary characterizations of sPTB-associated genomic regions. For each 
variant we report the protective and risk alleles from the sPTB GWAS47 the location relative to the nearest 
gene and linked variants; the alleles at this variant across the great apes and the parsimony reconstruction 
of the ancestral allele(s); hypothesized links to pregnancy outcomes or phenotypes; selected significant 
GTEx hits; and human haplotype(s) containing each variant in a haplotype map. a Group A 
(conservation): Human-specific risk allele of rs6546894 is located in the 3’ UTR of TET3. TET3 
expression is elevated in preeclamptic and small for gestational age (SGA) placentas118. rs6546894 is also 
associated with expression of MGC10955 and NAT8 in the testis (TST), brain (BRN), uterus (UTR), 
ovaries (OVR), and vagina (VGN). b Group B (population differentiation): rs222016, an intronic variant 
in gene GC, has a human-specific protective allele. GC is associated with sPTB 116 . c Group C 
(acceleration): rs1061328 is located in a PPFIA1 intron and is in LD with 156 variants. The protective 
allele is human-specific. This variant is associated with changes in expression of PPFIA1 and CTTN in 
adipose 63,108 cells (ADP), mammary tissue (MRY), the thyroid (THY), and heart (HRT). CTTN is 
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expressed the placenta 116,120. d Group D (long-term polymorphism): rs10932774 is located in a PNKD 
intron and is in LD with 27 variants. Alleles of the variant are found throughout the great apes. PNKD is 
upregulated in severely eclamptic placentas121 and ARPC2 has been associated with SGA122 . Expression 
changes associated with this variant include PNKD and ARPC2 in the brain, pituitary gland (PIT), whole 
blood (WBLD), testis, and thyroid. e Group E (other): rs8126001 is located in the 5’ UTR of OPRL1 and 
has a human-specific protective allele. The protein product of the ORPL1 gene is the nociceptin receptor, 
which is linked to contractions and the presence of  123,124 nociception in preterm uterus samples . This 
variant is associated with expression of OPRL1 and RGS19 in whole blood, the brain, aorta (AORT), 
heart, and esophagus (ESO).  
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3.4.2 Group B: Population differentiation/local adaptation 
 
Group B (clusters B1 and B2) contained variants with a higher than expected differentiation 

(FST) between pairs of human populations (Figure 3.2). There were 10 sPTB-associated genomic 

regions in this group, which contain 53 variants. The majority of variants are an eQTL in at least 

one tissue (29/52; Figure 3.3D). The derived allele frequency in cluster B1 is high in East Asian 

populations and very low in African and European populations (Figure 3.3C). We found that 3 of 

the 10 lead variants have higher risk allele frequencies in African compared to European or East 

Asian populations. This is noteworthy because the rate of preterm birth is twice as high among 

black women compared to white women in the United States6. These three variants are 

associated with expression levels of the genes SLC33A1, LOC645355, and GC, respectively. 

The six variants (labeled by the lead variant rs22016), within the sPTB-associated region 

near GC, Vitamin D Binding Protein, are of particular interest. The ancestral allele (G) of 

rs22201is found at higher frequency in African populations and is associated with increased risk 

of sPTB (European cohort, OR: 1.15; adjusted p-value 3.58x10-5; Figure 3.4B)47. This variant 

has been associated with vitamin D levels and several other disorders125,126. There is evidence 

that vitamin D levels prior to delivery are associated with sPTB127, that levels of GC in cervico-

vaginal fluid may help predict sPTB116,128, and that vitamin D deficiency may contribute to racial 

disparities in birth outcomes. For example, vitamin D deficiency is a potential risk factor for 

preeclampsia among Hispanic and African American women129. The population-specific 

differentiation associated with variant rs222016 is consistent with the differential evolution of 

the vitamin D system between populations, likely in response to different environments and 

associated changes in skin pigmentation130. Our results add to the evolutionary context of the 

link between vitamin D and pregnancy outcomes131 and suggest a role for variation in the gene 

GC in the ethnic disparities in pregnancy outcomes. 

 
3.4.3 Group C: Accelerated substitution rates/positive selection 
 
Variants in cluster C1 (group C) had lower than expected values of PhyloP. This group contained 

nine sPTB-associated genomic regions and 232 variants. The large number of linked variants is 

consistent with the accumulation of polymorphisms in regions undergoing positive selection. The 

derived alleles in this group show no obvious pattern in allele frequency between populations 

(Figure 3.3C). While most variants are intronic (218/232), there are missense variants in the 
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genes Protein Tyrosine Phosphatase Receptor Type F Polypeptide Interacting Protein Alpha 1 

(PPFIA1) and Plakophilin 1 (PKP1; Figure 3.3A). Additionally, 16 variants are likely to affect 

transcription factor binding (regulomeDB score of 1 or 2; Figure 3.3B). Consistent with this 

finding, 167/216 variants tested in GTEx are associated with expression of at least one gene in 

one tissue (Figure 3.3C).  

The lead variant associated with PPFIA1 (rs1061328) is linked to an additional 156 

variants, which are associated with the expression of a total of 2,844 tissue/gene combinations. 

Two of these genes are cortactin (CTTN) and PPFIA1, which are both involved in cell adhesion 

and migration —critical processes in the development of the placenta and implantation132,133. 

Members of the PPFIA1 liprin family have been linked to maternal-fetal signaling during 

placental development134,135, whereas CTTN is expressed in the decidual cells and spiral 

arterioles and localizes to the trophoblast cells during early pregnancy, suggesting a role for 

CTTN in cytoskeletal remodeling of the maternal-fetal interface136. There is also is evidence that 

decreased adherence of maternal and fetal membrane layers is involved in parturition137. 

Accelerated evolution has previously been detected in the birth timing-associated genes FSHR138 

and PLA2G4C. It has been hypothesized that human and/or primate-specific adaptations, such as 

bipedalism, have resulted in the accelerated evolution of birth-timing phenotypes along these 

lineages139. Accelerated evolution has also been implicated in other complex disorders—

especially those like schizophrenia140 and autism which affect the brain, another organ that is 

thought to have undergone adaptive evolution in the human lineage.  

 
3.4.4 Group D: Balanced polymorphism/balancing selection 
 
Variants in Group D generally had higher than expected values of beta score or an older than 

expected allele age, consistent with evolutionary signatures of balancing selection (Figure 3.2). 

There were nine genomic regions in group D; three had a significantly higher than expected beta 

scores (p<0.05), three have a significantly older than expected TMRCA values (p<0.05), and 

three have older TMRCA values but are not significant. The derived alleles have an average 

allele frequency across all populations of 0.44 (Figure 3.3C).  GTEx analysis supports a 

regulatory role for many of these variants—266 of 271 variants are an eQTL in at least one tissue 

(Figure 3.3D).  
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The genes associated with the variant rs10932774 (OR: 1.11, adjusted p-value 8.85x10-

547; PNKD and ARPC2) show long-term evolutionary conservation consistent with a signature of 

balancing selection and prior research suggests links to pregnancy through a variety of 

mechanisms. For example, PNKD is up-regulated in severely preeclamptic placentas121 and in 

PNKD patients pregnancy is associated with changes in the frequency or severity of PNKD 

attacks. Similarly, the Arp2/3 complex is important for early embryo development and 

preimplantation in pigs and mice141,142,  and ARPC2 transcripts are subject to RNA editing in 

placentas associated with intrauterine growth restriction/small for gestational age142. The 

identification of balancing selection acting on sPTB-associated genomic regions is consistent 

with the critical role of the immune system, which often experiences balancing selection143,144, in 

establishing and maintaining pregnancy. Overall, PNKD and ARPC2 show long-term 

evolutionary conservation consistent with a signature of balancing selection and prior research 

suggests links to pregnancy through a variety of mechanisms. The identification of balancing 

selection acting on sPTB-associated genomic regions is consistent with the critical role of the 

immune system, which often experiences balancing selection143,145, in establishing and 

maintaining pregnancy.  

 
3.4.5 Group E: Varied evolutionary signatures 
 

The final group, group E, contained the remaining genomic regions in clusters E1, E2, E3 and E4 

and was associated with a broad range of evolutionary signatures (Figure 3.2). At least one 

variant in group E had a significant p-value for every evolutionary measure (except for alignment 

block age), 39 / 73 lead variants had a significant p-value (p<0.05) for either genomic 

evolutionary rate profiling (GERP) or cross-population extended haplotype homozygosity XP-

EHH, and 23 / 33 genomic regions had high z-scores (|z|>1.5) for population-specific iHS. The 

high frequency of genomic regions with significant XP-EHH or population-specific iHS values 

suggests that population-specific evolutionary forces may be at play in this group and that that 

pregnancy phenotypes in individual populations may have experienced different mosaics of 

evolutionary forces, consistent with previous work that sPTB risk varies with genomic 

background146,147. Finally, there are 143 variants identified as eQTLs, including 16 expression 

changes for genes in the uterus (all associated with the variant rs12646130; Figure 3.4D). 
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Interestingly, this group contained variants associated with the EEFSEC, ADCY5, and WNT4 

genes, which have been previously associated with gestational duration or preterm birth148. 

The group E variant rs8126001 (effect: 0.896; adjusted p-value 4.04x10-5)47 is located in the 5’ 

UTR of the opioid related nociception receptor 1 or nociception opioid receptor (OPRL1 or 

NOP-R) gene which may be involved in myometrial contractions during delivery124. This variant 

has signatures of positive selection as detected by the integrated haplotype score (iHS) within the 

African population (Supplementary Data 2) and is associated with expression of OPRL1 in 

multiple tissues (Figure 4E). OPRL1 encodes a receptor for the endogenous peptide nociceptin 

(N/OFQ), which is derived from prenociceptin (PNOC). N/OFQ and PNOC are detected in 

human pregnant myometrial tissues47 and PNOC mRNA levels are significantly higher in human 

preterm uterine samples and can elicit myometrial relaxation in vitro123.  It is therefore likely that 

nociceptin and OPRL1 are involved in the perception of pain during delivery and the initiation of 

delivery.  

 

3.5 sPTB loci are enriched for diverse evolutionary signatures  
 
Our analyses have so far focused on evaluating the evolutionary forces acting on individual 

sPTB-associated regions. To test whether the entire set of sPTB-associated regions is enriched 

for specific evolutionary signatures, we compared the set to the genome-wide background as 

well as to matched background sets.  

To compare the number of sPTB loci with evidence for each evolutionary force to the rest 

of the genome, we computed each metric on 5,000 randomly selected regions and report the 

number of the 215 sPTB loci in the top 5th percentile for each evolutionary measure. If the 

evolutionary forces acting on the sPTB loci are similar to those on the genomic background, we 

would expect 5% (~11 / 215) to be in the top tail. Instead, out of 215 sPTB regions tested, 26 

regions on average are in the top 5th percentile across all evolutionary measures (Figure 3.5a). 

To generate confidence intervals for these estimates, we repeated this analysis 1,000 times and 

found that variation is low (S.D. ≤ 1 region). This demonstrates that, compared to genome-wide 

distribution, sPTB loci are enriched for diverse signatures of selection (Figure 3.5a). 

To compare the number of sPTB loci with extreme evolutionary signatures to the number 

expected by chance after matching on MAF and LD, we generated 215 random regions, 

compared them to their MAF and LD matched distributions, and repeated this process 1,000 
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times for each evolutionary measure. The number regions expected by chance varied from ~4 to 

11 (Figure 3.5b). For most evolutionary measures, the observed number of sPTB regions with 

extreme values was within the expected range from the random regions. However, measures of 

sequence conservation (LINSIGHT, GERP, PhastCons) and substitution rate (PhyloP) had more 

regions that were significant than expected by chance (top 5th percentile of the empirical 

distribution). Thus, sPTB regions are enriched for these evolutionary signatures compared to LD 

and MAF matched expectation (Figure 3.5b). 

 
 

 
Figure 3.5: sPTB regions are enriched for diverse evolutionary measures compared to genome-wide 
distributions and for measures of sequence conservation when accounting for MAF and LD. (a) sPTB 
regions (red) are enriched for significant evidence of nearly all evolutionary measures (black stars) 
compared to the expectation from the genome-wide background (gray). For each evolutionary measure 
(y-axis), we evaluated the number of sPTB regions with statistically significant values (p<0.05) compared 
to the genome-wide distribution of the metric based on 5,000 randomly selected regions over 1,000 
iterations. The mean number of significant regions (x-axis) is denoted by the red diamond with the 5th 
and 95th percentiles flanking. The expected number of significant regions by chance was computed from 
the binomial distribution (gray hexagons with 95% confidence intervals). (b) Accounting for MAF and 
LD revealed enrichment for evolutionary measures of sequence conservation (PhyloP, PhastCons, 
LINSIGHT, GERP) among the sPTB-associated genomic regions. In contrast to (a), the number of 
significant regions (among the 215 sPTB-associated regions) was determined based on 5,000 MAF- and 
LD-matched sets. Similarly, the expected distribution (gray boxes) was determined using 1,000 randomly 
selected region sets of the same size as the sPTB regions with matching MAF and LD values. 
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3.6 Discussion  
 
 
In this study, we developed an approach to test for signatures of diverse evolutionary forces that 

explicitly accounts for MAF and LD in trait-associated genomic regions. Our approach has 

several advantages. First, for each genomic region associated with a trait, our approach evaluates 

the region’s significance against a distribution of matched control genomic regions (rather than 

against the distribution of all trait-associated region or against a genome wide background, which 

is typical of outlier-based methods), increasing its sensitivity and specificity. Second, comparing 

evolutionary measures against a null distribution that accounts for MAF and LD further increases 

the sensitivity with which we can infer the action of evolutionary forces on sets of genomic 

regions that differ in their genome architectures. Third, because the lead SNPs assayed in a 

GWAS are often not causal variants, by testing both the lead SNPs and those in LD when 

evaluating a genomic region for evolutionary signatures, we are able to better represent the trait-

associated evolutionary signatures compared to other methods that evaluate only the lead 

variant70 or all variants, including those not associated with the trait, in a genomic window149.  

Fourth, our approach uses an empirical framework that leverages the strengths of diverse existing 

evolutionary measures and that can easily accommodate the additional of new evolutionary 

measures. Fifth, our approach tests whether evolutionary forces have acted (and to what extent) 

at two levels; at the level of each genomic region associated with a particular trait (e.g., is there 

evidence of balancing selection at a given region?), as well as at the level of the entire set of 

regions associated with the trait (e.g., is there enrichment for regions showing evidence of 

balancing selection for a given trait?). Finally, our approach can be applied to any genetically 

complex trait, not just in humans, but in any organism for which genome-wide association and 

sequencing data are available.   

Although our method can robustly detect diverse evolutionary forces and be applied 

flexibly to individual genomic regions or entire sets of genomic regions, it also has certain 

technical limitations. The genomic regions evaluated for evolutionary signatures must be 

relatively small (r2>0.9) in order to generate well-matched control regions on minor allele 

frequency and linkage disequilibrium. For regions with complex haplotype structures, this 

relatively small region may not tag the true effect-associated variant. Furthermore, since each 

genomic region has its own matched set of control regions, the computation burden increases 



   50 

with the number of trait-associated regions and the number of evolutionary measures. For each 

evolutionary measure, we must also be able to calculate its value for a large fraction of the 

control region variants. Although not all evolutionary measures can be incorporated into our 

approach, we demonstrate this approach on a large number of sPTB-associated regions across 11 

evolutionary measures.  

To illustrate our approach’s utility and power, we applied it to examine the evolutionary 

forces that have acted on genomic regions associated with sPTB, a complex disorder of global 

health concern with a substantial heritability150. We find evidence of evolutionary conservation, 

excess population differentiation, accelerated evolution, and balanced polymorphisms in sPTB-

associated genomic regions, suggesting that no single evolutionary force is responsible for 

shaping the genetic architecture of sPTB; rather, sPTB has been influenced by a diverse mosaic 

of evolutionary forces We hypothesize that the same is likely true of other complex human traits. 

While many studies have quantified the effect of selection on trait-associated regions70,90,91, there 

are few tools available to concurrently evaluate multiple evolutionary forces as we have done 

here107. Deciphering the mosaic of evolutionary forces that have acted on human traits not only 

more accurately portrays the evolutionary history of the trait, but is also likely to reveal 

important functional insights and generate new biologically relevant hypotheses. 

 
 

3.7 Methods 
 
 
3.7.1 Deriving sPTB genomic regions from GWAS summary statistics 
 
To evaluate evolutionary history of sPTB on distinct regions of the human genome, we identified 

genomic regions from the GWAS summary statistics. Using PLINK1.9b 

(pngu.mgh.harvard.edu/purcell/plink/)85, the top 10,000 variants associated with sPTB from 

Zhang et. al.  were clumped based on LD using default settings except requiring a p-value ≤ 10E-

4 for lead variants and variants in LD with lead variants104. We used this liberal p-value 

threshold to increase the number of sPTB-associated variants evaluated. Although this will 

increase the number of false positive variants associated with sPTB, we anticipate that these false 

positive variants will not have statistically significant evolutionary signals using our approach to 

detect evolutionary forces. This is because the majority of the genome is neutrally evolving and 
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our approach aims to detect deviation from this genomic background.  Additionally, it is possible 

that the lead variant (variant with the lowest p-value) could tag the true variant associated with 

sPTB within an LD block. Therefore, we defined an independent sPTB-associated genomic 

region to include the lead and LD (r2>0.9, p-value <= 10E-4) sPTB variants. This resulted in 215 

independent lead variants within an sPTB-associated genomic region. 

 
3.7.2 Creating matched control regions for sPTB-associated regions  
 
We detected evolutionary signatures at genomic regions associated with sPTB by comparing 

them to matched control sets.  Since many evolutionary measures are influenced by LD and 

allele frequencies and these also influence power in GWAS, we generated control regions 

matched for these attributes for observed sPTB-associated genomic regions. First, for each lead 

variant we identified 5,000 control variants matched on minor allele frequency (+/-5%), LD  

(r2>0.9, +/-10% number of LD buddies), gene density (+/- 500%) and distance to nearest gene 

(+/-500%) using SNPSNAP151, which derives controls variants from a quality controlled phase 3 

100 Genomes (1KG) data, with default settings for all other parameters and the hg19/GRCh37 

genome assembly. For each control variant, we randomly selected an equal number of variants in 

LD (r2>0.9) as sPTB-associated variants in LD with the corresponding lead variant. If no 

matching control variant existed, we relaxed the LD required to r2=0.6. If still no match was 

found, we treated this as a missing value. For all LD calculations, control variants and 

downstream evolutionary measure analyses, the European super-population from phase 3 1KG152 

was used after removing duplicate variants.  

 
3.7.3 Evolutionary measures  
 
To characterize the evolutionary dynamics at each sPTB-associated region, we evaluated diverse 

evolutionary measures for diverse modes of selection and allele history across each sPTB-

associated genomic region. Evolutionary measures were either calculated or pre-calculated 

values were downloaded for all control and sPTB-associated variants. Pairwise Weir and 

Cockerham’s FST values between European, East Asian, and African super populations from 

1KG were calculated using VCFTools (v0.1.14)152,153. Evolutionary measures of positive 

selection, integrated haplotype score (iHS), XP-EHH, and integrated site-specific EHH (iES), 

were calculated from the 1KG data using rehh 2.0152,154. Beta score, a measure of balancing 
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selection, was calculated using BetaScan software 152,155. Alignment block age was calculated 

using 100-way multiple sequence alignment156 to measure the age of alignment blocks defined 

by the oldest most recent common ancestor. The remaining measures were downloaded from 

publicly available sources: phyloP and phastCons 100 way alignment from UCSC genome 

browser157; LINSIGHT158; GERP 159,160; and allele age (time to most common recent ancestor 

from ARGWEAVER)89. Due to missing values, the exact number of control regions varied by 

sPTB-associated region and evolutionary measure. We first marked any control set that did not 

match at least 90% of the required variants for a given sPTB-associated region, then any sPTB-

associated region with ≥ 60% marked control regions were removed for that specific 

evolutionary measure. iHS was not included in Figure 3.2 because of large amounts of missing 

data for up to 50% of genomic regions evaluated. 

 
3.7.4 Detecting significant differences in evolutionary measures 
 
For each sPTB-associated genomic region for a specific evolutionary measure, we took the 

median value of the evolutionary measure across all variants in LD in the region and compared it 

to the distribution of median values from the corresponding MAF- and LD-matched control 

regions described above. Statistical significance for each sPTB-associated region was evaluated 

by comparing the median value of the evolutionary measure to the distribution of median values 

of the control regions. To obtain the p-value, we calculated the number of control regions with a 

median value that are equal to or greater the median value for the preterm birth region. Since 

allele age (time to most recent common ancestor (TMRCA) from ARGweaver), PhyloP, and 

alignment block age are bi-directional measures, we calculated two-tailed p-values; all other 

evolutionary measures used one-tailed p-values. To compare evolutionary measures whose 

scales differ substantially, we calculated a z-score for each region per measure. These z-scores 

were hierarchically clustered across all regions and measures. Clusters were defined by a branch 

length cutoff of seven. These clusters were then grouped and annotated by the dominant 

evolutionary measure through manual inspection to highlight the main evolutionary trend(s).  

 

3.7.5 Annotation of variants in sPTB-associated regions 
 
To understand functional differences between groups and genomic regions we collected 

annotations for variants in sPTB-associated regions from publicly available databases. Evidence 
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for regulatory function for individual variants was obtained from RegulomeDB v1.1 (accessed 

1/11/19)161. From this we extracted the following information: total promotor histone marks, 

total enhancer histone marks, total DNase 1 sensitivity, total predicted proteins bound, total 

predicted motifs changed, and regulomeDB score. Variants were identified as expression 

quantitative trait loci (eQTLs) using the Genotype-Tissue Expression (GTEx) project data 

(dbGaP Accession phs000424.v7.p2 accessed 1/15/19). Variants were mapped to GTEx 

annotations based on RefSNP (rs) number and then the GTEx annotations were used to obtain 

eQTL information. For each locus, we obtained the tissues in which the locus was an eQTL, the 

genes for which the locus affected expression (in any tissue), and the total number times the 

locus was identified as an eQTL. Functional variant effects were annotated with the Ensembl 

Variant Effect Predictor (VEP; accessed 1/17/19) based on rs number162. Variant to gene 

associations were also assessed using GREAT163. Total evidence from all sources—nearest gene, 

GTEx,VEP, regulomeDB, GREAT—was used to identify gene-variant associations. Population-

based allele frequencies were obtained from the 1KG phase3 data for the African (excluding 

related African individuals), East Asian, and European populations152.  

To infer the history of the alleles at each locus across mammals, we created a mammalian 

alignment at each locus and inferred the ancestral states. That mammalian alignment was built 

using data from the sPTB GWAS47  (risk variant identification), the UCSC Table Browser 156 (30 

way mammalian alignment), the 1KG phase 3152 data (human polymorphism data) and the Great 

Ape Genome project (great ape polymorphisms)164 which reference different builds of the human 

genome. To access data constructed across multiple builds of the human genome, we used 

Ensembl biomart release 97165 and the biomaRt R package166,167 to obtain the position of variants 

in hg38, hg19, and hg18 based on rs number168. Alignments with more than one gap position 

were discarded due to uncertainty in the alignment. All variant data were checked to ensure that 

each dataset reported polymorphisms in reference to the same strand. Parsimony reconstruction 

was conducted along a phylogenetic tree generated from the TimeTree database169. Ancestral 

state reconstruction for each allele was conducted in R using parsimony estimation in the 

phangorn package170. Five character-states were used in the ancestral state reconstruction: one 

for each base and a fifth for gap. Haplotype blocks containing the variant of interest were 

identified using Plink (v1.9b_5.2) to create blocks from the 1KG phase3 data. Binary haplotypes 
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were then generated for each of the three populations using the IMPUTE function of vcftools 

(v0.1.15.) Median joining networks171 were created using PopART172.  

 

3.7.6 Enrichment of significant evolutionary measures 
 
Considering all sPTB regions, we evaluated whether sPTB regions overall are enriched for each 

evolutionary measure compared to genome-wide and matched control distributions. First, for the 

genome-wide comparisons, we counted the number of sPTB regions in the top 5th percentile of 

genome-wide distribution generated from 5,000 random regions for a given evolutionary 

measure. We repeated this step 1,000 times and computed the mean number of regions in the top 

5th percentile of each iteration. The null expectation and statistical significance were computed 

using the Binomial distribution with a 5% success rate over 215 trials. Second, since many 

evolutionary measures are dependent on allele frequency and linkage equilibrium, we also 

compared the number of significant regions (over all sPTB regions) for an evolutionary measure 

to LD- and MAF-matched distributions as described earlier (Figure 3.1, Methods). To generate 

the null expectation for the number of significant regions, we randomly generated regions equal 

to the number of sPTB regions (n=215) and compared them to their own matched distributions. 

We repeated this for 1,000 sets of 215 random regions to generate the null distribution of the 

number of regions in the top 5th percentile for each evolutionary measure when matching for 

MAF and LD.  
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CHAPTER IV 

 
4 Machine learning prediction of preterm births using EHRs linked to genetic biobanks2  

 

4.1 Introduction 
 
Preterm birth, occurring before 37 weeks of completed gestation, affects approximately 10% of 

pregnancies globally2,4,31 and is the leading cause of infant mortality worldwide1,173. The causes 

of preterm birth are multifactorial, since different biological pathways and environmental 

exposures can trigger premature labor49. Large epidemiological studies have identified many risk 

factors, including multiple gestations4, cervical anatomic abnormalities174, and maternal age175. 

Notably, even though a history of preterm birth 27 is one of the strongest risk factors, the 

recurrence rate remains low at < 30%176,177. Additionally, maternal race is associated with risk 

for preterm birth; Black women have twice the prevalence compared to white women4,6. Preterm 

births have a heterogenous clinical presentation and cluster based on maternal, fetal, or placental 

conditions31. These obstetric and systemic comorbidities (e.g. pre-existing diabetes, 

cardiovascular disease) can also increase risk for preterm birth30,178. 

Despite our understanding of numerous risk factors, there are no accurate methods to 

predict preterm birth. Some biomarkers associate with preterm birth, but their best performance 

is limited to a subset of all cases179,180. Recently, analysis of maternal cell-free RNA has emerged 

as a promising approach181, but initial results were based on a small pregnancy cohort and 

require further validation. In silico classifiers based on demographic and clinical risk factors 

have the advantage of not requiring serology or invasive testing. However, even in large cohorts 

(>1 million individuals), demographic- and risk-factor-based models report limited 

discrimination (AUC=0.63-0.74)182–185. To date, we lack effective screening tools and 

preventative strategies for prematurity186. 

 
 
 
 
 
2 This work is a published as a preprint79. 
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EHRs are scalable, readily available, and cost-efficient for disease-risk modeling187. 

EHRs capture longitudinal data across a broad set of phenotypes with detailed temporal 

resolution. EHR data can be combined with socio-demographic factors and family medical 

history to comprehensively model disease risk188–190. EHRs are also increasingly being 

augmented by linking patient records to molecular data, such as DNA and laboratory test 

results191. Since preterm birth has a substantial heritable risk47, combining rich phenotypes with 

genetic risk may lead to better prediction. 

Machine learning models have shown promise for accurate risk stratification across a 

variety of clinical domains77,192,193. However, despite the rapid adoption of machine learning in 

translational research, a review of 107 risk prediction studies reported that most models used 

only few variables, did not consider longitudinal data, and rarely evaluated model performance 

across multiple sites194. Some medical domains have yet to incorporate machine learning 

methods. Pregnancy research is especially well poised to benefit from machine learning 

approaches188. Per standard of care during pregnancy, women are carefully monitored with 

frequent prenatal visits, medical imaging, and clinical laboratories tests. Compared to other 

clinical contexts, pregnancy and the corresponding clinical surveillance occur in a defined 

timeframe based on gestational length. Thus, EHRs are well-suited for modeling pregnancy 

complications, especially when combined with the well documented outcomes at the end of 

pregnancy.   

In this study, we combine multiple sources of data from EHRs to predict preterm birth 

using machine learning. From Vanderbilt’s EHR database (>3.2 million records) and linked 

genetic biobank (>100,000 individuals), we identified a large cohort of women (n=35,282) with 

documented deliveries. We trained models (gradient boosted decision trees) that combine 

demographic factors, clinical history, laboratory tests, and genetic risk with billing codes (ICD-9 

and CPT) to predict preterm birth.  We find models trained on only billing codes show potential 

for predicting preterm birth. Billing code based models outperform a similar model using only 

known clinical risk factors. Across a variety of clinical contexts, such as second or spontaneous 

preterm birth, our models maintain accuracy. By investigating the patterns learned by our 

models, we identify clusters with distinct preterm birth risk and comorbidity profiles.  Finally, 

we demonstrate the generalizability of our billing-code-based models on an external, 

independent cohort from the University of California, San Francisco (UCSF, n=5,978). 
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Prediction models trained at Vanderbilt maintain high accuracy in the external cohort with only a 

modest drop in performance. Our findings provide a proof-of-concept that machine learning on 

rich phenotypes in EHRs show promise for portable, accurate, and non-invasive prediction of 

preterm birth. The strong predictive performance across clinical context and preterm birth 

subtypes argues that machine learning models have the potential to add value during the 

management of pregnancy; however, further work is needed before these models can be applied 

in clinical settings. 

 

 

4.2 Results 
 
 
4.2.1 Assembling pregnancy cohort and ascertaining delivery type from Vanderbilt EHRs 
 
From the Vanderbilt EHR database (>3.2 million patients), we identified a ‘delivery cohort’ of 

35,282 women with at least one delivery in the Vanderbilt hospital system (Figure 4.1A). In 

addition to ICD and CPT billing codes, we extracted demographic data, past medical histories, 

obstetric notes, clinical labs, and genome-wide genetic data for the delivery cohort. Because 

billing codes were the most prevalent data in this cohort (n=35,282), we quantified the pairwise 

overlap between billing codes and each other data type. The largest subset included women with 

billing codes paired with demographic data (n=33,570). The smallest subset was women with 

billing codes paired with genetic data (n=905; Figure 4.1C). The mean maternal age at the first 

delivery in the delivery cohort was 27.3 years (23.0–31.0 years, 25th and 75th percentiles, Figure 

4.21A). The majority of women in the cohort self- or third-party reported as white (n=21,343), 

Black (n=6,178), or Hispanic (n=3,979). The estimated gestational age (EGA) distribution had a 

mean of 38.5 weeks (38.0 to 40.3 weeks, 25th to 75th percentile; Figure 4.1D). The rate of 

multiple gestations (e.g. twins, triplets) was (7.6%, n=1,353). Since multiple gestation 

pregnancies are more likely to deliver preterm, we developed prediction models using singleton 

pregnancies unless otherwise stated.  

To determine the delivery date and type (preterm vs. not-preterm) at scale across our 

large cohort, we developed a phenotyping algorithm using delivery-specific billing codes and 

estimated gestational age at delivery. For women with multiple pregnancies, we only considered 

the earliest delivery. We find that delivery-specific billing codes that can be used to label preterm 
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births have high concordance (PPV≥0.85, Recall ≥0.95) with EGA based delivery labels (Figure 

4.1E). Our final algorithm combined billing codes and EGA when available (n=15,041, Figure 

4.1C). To evaluate the accuracy of the ascertained delivery labels, a domain expert blinded to the 

delivery type reviewed clinical notes from 104 EHRs selected at random from the delivery 

cohort. The algorithm had high accuracy: precision (positive predictive value) of 96% and recall 

(sensitivity) of 96% using the chart reviewed label as the gold standard (Figure 4.1F).  
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Figure 4.1: Schematic overview of the assembly of the delivery cohort from EHRs (EHRs). (A) Using 
billing codes, women with at least one delivery were extracted from the EHR database (n=35,282). (B) 
Delivery date and type were ascertained using ICD-9, CPT, and/or estimated gestational age (EGA) from 
each woman’s EHR (Methods). From this cohort, 104 randomly selected EHRs were chart reviewed to 
validate the preterm birth label for the first recorded delivery. (C) Number of women in billing code 
cohort with estimated gestational age (+EGA), demographics (+Age, self- or third-party reported Race), 
clinical labs (+Labs), clinical obstetric notes (+Obstetric notes), patient clinical history (+Clinical 
History), and genetic data (+Genetics). (D) The EGA distribution at delivery (mean 38.5 weeks (red line); 
38.0-40.3 weeks, 25th and 75th percentiles). Less than 0.015% (n=49) deliveries have EGA below 20 
weeks. (E) The concordance between estimated gestational age (EGA) within three days of delivery and 
ICD-9 based delivery type for the 15,041 women with sufficient data for both. Precision and recall values 
were > 93% across labels except for preterm precision (85%).  (F) Accuracy of delivery type 
phenotyping. The phenotyping algorithm was evaluated by chart review of 104 randomly selected 
women. The approach has high precision and recall for binary classification of ‘preterm’ or ‘not-preterm’. 
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4.2.2 Boosted decision trees using billing codes identify preterm deliveries 
 
Using this richly phenotyped delivery cohort, we evaluated how well the entire clinical phenome, 

defined as billing codes (ICD-9 and CPT) before and after delivery, could identify preterm 

births. With counts of each billing code (excluding those used to ascertain delivery type), we 

trained gradient boosted decision trees195 to classify each mother’s first delivery as preterm or 

not-preterm. Boosted decisions trees are well-suited for EHR data because they require minimal 

transformation of the raw data, are robust to correlated features, and capture non-linear 

relationships196. Moreover, boosted decision trees have been successfully applied on a variety of 

clinical tasks189,197,198.   

In all evaluations, we held out 20% of the cohort as a test set and used the remaining 80% 

for training and validation (Figure 4.3A). Boosted decision tree models trained on ICD-9 and 

CPT codes accurately identified preterm births (singletons and multiple gestations) with PR-

AUC=0.86 (chance=0.22) and ROC-AUC=0.95 (Figure 4.4C, B). While the combined ICD-9 

and CPT based model achieved the best performance, models trained on either ICD-9 or CPT 

individually also performed well (PR-AUC ≥0.82; chance=0.22, ROC-AUC ≥0.93). All three 

models demonstrated good calibration with low Brier scores (≤0.092; Figure 4.4C). Thus, billing 

codes across an EHR show potential as a discriminatory feature for predicting preterm birth.  
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Figure 4.2: Distribution of maternal age at delivery and self- or third-party reported race. (A) The distribution of 
age at first delivery in EHR (mean 27.3 years; 23.0–31.0 years, 25th and 75th percentiles). (B) Counts of women 
by self- or third-party reported race (White: 21,343; Black: 6,178; Hispanic: 3,979; Asian: 1,617; Other: 409; 
Native American: 84). 
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Figure 4.3: Machine learning classifiers accurately predict preterm birth using billing codes 
present before 28 weeks of gestation. (A) Machine learning framework for training and evaluating 
all models. We train models (boosted decision trees) on 80% of each cohort to predict the delivery 
as preterm or not-preterm. EHR features used to ascertain delivery type are excluded from 
training. Performance is reported on the held-out cohort consisting of 20% of deliveries using area 
under the ROC and precision-recall curves (ROC-AUC, PR-AUC). (B) We trained models using 
billing codes (ICD-9 and CPT) present before each of the following timepoints during pregnancy: 
0, 13, and 28 weeks of gestation. These timepoints were selected to approximate gestational 
trimesters. Women who already delivered were excluded at each timepoint. To facilitate 
comparison across timepoints, we downsampled cohorts available so that the models were trained 
on a cohort with similar numbers of women (n=11,227 to 11,474). (C) The ROC-AUC increased 
from conception at 0 weeks (0.63, dark blue line) to 28 weeks of gestation (0.72, green line) 
compared to a chance (black dashed line) AUC of 0.5. (D) The model at 28 weeks of gestation 
achieved the highest PR-AUC (0.33). This is an underestimate of the possible performance; the 
accuracy improves further when all women with data available at 28 weeks are considered. 
Chance (dashed lines) represents the preterm birth prevalence in each cohort.  
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Figure 4.4: Boosted decision trees trained on EHR billing codes accurately identify preterm births. We 
trained and validated boosted decision trees on 80% of labeled pregnancies (preterm vs. non-preterm) 
from the EHR cohort (n=35,282, Fig. 1). We included both singletons and multiple gestations. We 
evaluated model performance on the held-out set using area under the ROC and precision-recall curves 
(ROC-AUC, PR-AUC) and Brier scores. EHR features used to ascertain delivery labels are excluded in 
training and evaluation of the models. (A,B) The boosted decision trees accurately classified deliveries by 
preterm birth status using only ICD-9 (green dashed line), only CPT (orange dashed line), and combined 
ICD-9 and CPT (solid purple) features present in a women’s EHR, (ROC-AUC≥0.93, PR-AUC≥0.86). 
Combining ICD-9 and CPT codes achieved the best performance. (C) The low Brier scores (≤0.092) 
indicate that the models are well calibrated. 

 

Accurate prediction of preterm birth at 28 weeks of gestation  
 
To evaluate preterm birth prediction in a clinical context, we trained a boosted decision tree 

model (Figure 4.3A) on billing codes present before each of the following timepoints: 0, 13, and 
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while comparing performance. We only considered active pregnancies at each timepoint; for 

example, a delivery at 27 weeks would not be included in the 28-week model, since the outcome 

would already be known. The ROC-AUC increased from conception (0 weeks; 0.63) to the 

highest performance at 28 weeks (0.72; Figure 4.3C). The PR-AUC (Figure 4.3D), which 

accounts for preterm birth prevalence, is highest at 28 weeks (0.33, chance=0.13). However, as 

we show in the next section, this is an underestimate of the ability to predict preterm delivery at 

28 weeks due to the down-sampling of the number of training examples. As expected, when we 
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chance=0.14;Figure 4.5). Results were similar when models were trained using billing codes 

available before different timepoints from the date of delivery (Figure 4.6).  

To test whether differences in contact with the health system between cases and controls 

were driving performance, we trained a classifier based on the total number of codes in an 

individual’s EHR before delivery to predict preterm birth. This simple classifier failed to 

discriminate between delivery types with PR-AUC and ROC-AUC only slightly higher than 

chance (PR-AUC=0.19, chance=0.19; ROC-AUC=0.56, chance=0.5,Figure 4.7). Therefore, 

cumulative disease burden or the number of contacts alone are not informative for predicting 

preterm birth. 
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Figure 4.5: Machine learning can accurately identify preterm birth including singletons and multiple gestations. 
We trained models (boosted decision trees) on 80% of the corresponding cohort to predict the earliest delivery as 
preterm or not-preterm (Methods). In contrast to the models presented in the main text (Fig. 2), these included 
singleton and multiple gestations. Billing codes (ICD-9 and CPT) present before pregnancy (0, 13, 28, and 35 
week of gestation) were used to train models. The same cohort of women (training + held-out) was used to train 
and evaluate across models but the sample size varied slightly (n = 11,843 to 10,799) since women who already 
delivered were excluded at each timepoint. (A) The ROC-AUC increased from conception at 0 weeks (0.61, dark 
blue line) to 35 weeks of gestation (0.72, orange line) compared to a chance (black line). (B) The model at 28 
weeks of gestation achieved the highest PR-AUC (0.42). Chance (dashed lines) represents the preterm birth 
prevalence in each cohort.  

 



   64 

 

 
 

 

A B

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC

Days Before Delivery (AUC)
0 days (0.93)
10 days (0.91)
90 days (0.82)
273 days (0.64)
365 days (0.63)
Chance

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PR

Days Before Delivery (AUC)
0 days (0.81)
10 days (0.71)
90 days (0.54)
273 days (0.33)
365 days (0.33)
Chance(0.19)

Figure 4.6: Preterm birth prediction increases at timepoints closer to the date of delivery at timepoints based on 
days before delivery. (A) ROC and (B) PR curves for preterm birth prediction using billing codes (ICD-9 & CPT) 
at different timepoints defined from the date of delivery in the Vanderbilt cohort. Both singletons and multiple 
gestations are included. Chance for PR-AUC represent random prediction equal to the population prevalence of 
preterm birth. Model performance improves as the prediction is made closer to delivery. All models are trained and 
evaluated on the same cohort of women (n=15,481) and the performance reported is on the held-out set (20% of 
cohort). 
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Figure 4.7: Preterm birth prediction is not driven by total number of billing codes.  
To evaluate whether the amount of contact with the healthcare system was driving the performance of our 
machine learning classifiers, we assessed the discriminatory ability of the total number of billing codes 
(ICD-9 or CPT) in a woman’s EHR to predict preterm birth. We include both singletons and multiple 
gestations. A simple classifier that used only the number of total billing codes preset at 0 days (green) and 
90 days (orange) before the first delivery in her EHR, did not predict preterm birth well:  (A) ROC-AUC 
= 0.56 and (B) PR-AUC = 0.19. The cohort consisted of the held-out set at the specified timepoints with 
3,096 women.  
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4.2.3 Integrating other EHR features does not improve model performance 
 

In addition to billing codes, EHRs capture aspects of an individual’s health through 

different types of structured and unstructured data. We tested whether incorporating additional 

features from EHRs can improve preterm birth prediction. Models were evaluated using data 

available at 28 weeks of gestation; we selected this time point as a tradeoff between being 

sufficiently early for some potential interventions and late enough for sufficient data to be 

present to enable accurate predictions using billing codes. From the EHRs, we extracted sets of 

features including demographic variables (age, race), clinical keywords from obstetric notes, 

clinical lab tests ran during the pregnancy, and predicted genetic risk (polygenic risk score for 

preterm birth). To measure the performance gain for each feature set, we compared models 

trained using: the feature set only, billing codes only, and billing codes combined with the 

feature set (Figure 4.8A). Within each feature set, the same pregnancies comprised the training 

and held-out sets for the three models. However, the number of deliveries (training + held-out 

sets) varied widely across feature sets (n=462 to 20,342) due to the differing availability of each 

feature type.  

Models using only demographic factors, clinical keywords, and genetic risk had ROC-

AUC and PR-AUC similar to chance (Figure 4.8B). Clinical labs had moderate predictive power 

with ROC-AUC of 0.63 and PR-AUC of 0.24 (Figure 4.8B). Compared to models using only 

billing codes, adding additional feature sets did not substantially improve performance (Figure 

4.8B). We note that some features sets, such as clinical labs and genetic risk, were evaluated on 

held-out sets with small numbers of deliveries (180 and 92, respectively). However, even after 

increasing the sample size by including women who may have features either before or after 

delivery, we did not observe a consistent gain in performance compared to models trained using 

only billing codes (Figure 4.9).  
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Figure 4.8: Combing demographic, clinical, and genetic features does not substantially improve preterm 
birth prediction compared to using only billing codes. (A) Framework for evaluating change in preterm 
birth prediction performance after incorporating diverse types of EHR features with billing codes (ICD-9 
and CPT codes). We used only features and billing codes occurring before 28 weeks of gestation. EHR 
features are grouped by sets of demographic factors (age and race), clinical keywords (UMLS concept 
unique identifiers from obstetric notes), clinical labs, and genetic risk (polygenic risk score for preterm 
birth). We compared three models for each feature set: 1) using only the feature set being evaluated 
(pink), 2) using only billing codes (‘Billing codes’, purple), and 3) using the feature set combined with 
billing codes (‘Both’, gray). For each feature set, we considered the subset of women who had at least 
one recorded value for the EHR feature and billing codes. All three models for a given EHR feature set 
considered the same pregnancies, but there are differences in the cohorts considered across features set 
due to differences in data availability; ntotal is the number of women (training and held-out) for each 
feature set. (B) Each of the three models (x-axis) and their ROC-AUC and PR-AUC (y-axes) are shown. 
Each of the additional EHR features performed worse than the billing codes only model and did not 
substantially improve performance when combined with the billing codes. Dotted lines represent chance 
of 0.5 for ROC-AUC and the preterm birth prevalence for PR-AUC. Even when including EHR features 
before and after delivery in this framework revealed the same pattern with no substantial improvement in 
predictive performance compared to the billing codes only model (Figure 4.9). 
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Figure 4.9: Combining EHR features with billing codes does not improve model performance. We 
evaluated how combining EHR features with billing codes could improve model performance. We used a 
similar framework as stated in Figure 3 but included billing codes and features before and after delivery 
instead of before 28 weeks of gestation. We also included multiple gestations instead of only including 
singleton pregnancies. EHR features are grouped in to sets of: demographic factors (age and race), 
clinical history (patient and familial comorbidities), clinical keywords (UMLS concept unique identifiers 
from obstetric notes), clinical labs, and genetic risk (polygenic risk score for preterm birth). We compared 
three models for each feature set: 1) using only the feature set being evaluated (pink), 2) using ICD-9 & 
CPT codes (purple), and 3) using the feature set combined with ICD-9&CPT codes (gray). For each 
feature set, we considered the subset of women who had at least one recorded value for the EHR feature 
and ICD&CPT codes. All three models for a given EHR feature set considered the same pregnancies, but 
there are differences in the cohorts considered across features set due to differences in data availability. 
Each of the three models (x-axis) and their ROC-AUC and PR-AUC (y-axes) are shown. Each of the 
additional EHR features performed worse than the billing code only model and did not substantially 
improve performance when combined with the billing codes. Of the other EHR features tested, clinical 
labs had the best predictive performance with PR-AUC of 0.37 and ROC-AUC of 0.78. Dotted lines 
represent chance of 0.5 for ROC-AUC and the preterm birth prevalence for PR-AUC. The total number of 
women (n) in each subset including the training and held-out set is given.   
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and even fewer are routinely implemented in clinical practice71. We evaluated how a prediction 

model incorporating only common risk factors associated with moderate to high risk for preterm 

birth compared to a model using billing codes, which captured a broad range of comorbidities, at 

28 weeks of gestation. We included maternal and fetal risk factors that occurred before and 

during the pregnancy and across many organ systems30,31,185,199, race182, age at delivery200–202, 

pre-gestational and gestational diabetes203, sickle cell disease204, fetal abnormalities30, pre-
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pregnancy hypertension, gestational hypertension (including pre-eclampsia or eclampsia)4,205, 

and cervical abnormalities73 (Methods).    

The billing-code-based model significantly outperformed a model trained with clinical 

risk factors at predicting preterm birth at 28 weeks of gestation (PR-AUC=0.40 vs. 0.25, ROC-

AUC=0.75 vs. 0.65; Figure 4.10B, C). The stronger performance of the billing-code-based 

classifier was true for women across the spectrum of comorbidity burden; it had higher precision 

across individuals with different numbers of risk factors. Performance peaked for individuals 

with 0 (precision=0.39) and 4+ (precision=0.46) risk factors, but we did not observe a trend 

between model performance and increasing number of clinical risk factors (Figure 4.10D). This 

suggests that machine learning approaches incorporating a comprehensive clinical phenome can 

add value to predicting preterm birth. 
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Figure 4.10: Billing-code-based model outperforms a model based on clinical risk factors. (A) We 
compared the performance of boosted decision trees trained using either billing codes (ICD-9 and CPT) 
present before 28 weeks of gestation (purple) or known clinical risk factors (gray) to predict preterm 
delivery. Clinical risk factors (Methods) included self- or third-party reported race (Black, Asian, or 
Hispanic), age at delivery (> 34 or <18 years old), non-gestational diabetes, gestational diabetes, sickle 
cell disease, presence of fetal abnormalities, pre-pregnancy BMI >35, pre-pregnancy hypertension 
(>120/80), gestational hypertension, preeclampsia, eclampsia, and cervical abnormalities. Both models 
were trained and evaluated on the same cohort of women (n = 21,099). (B) Precision-recall and (C) ROC 
curves for model using billing codes (purple line) or clinical risk factors (gray line). Preterm births are 
predicted more accurately by models using billing codes at 28 weeks of gestation (PR-AUC = 0.40, 
ROC-AUC = 0.75) than using clinical risk factors as features (PR-AUC = 0.25, ROC-AUC = 0.65). For 
the precision-recall curves chance performance is determined by the preterm birth prevalence (dashed 
black line). (D) Billing-code-based prediction model performance stratified by number of risk factors for 
an individual. The billing-code-based model detects more preterm cases and has higher precision (dark 
purple) across all numbers of risk factors compared to preterm (PTB) prevalence (light purple). (E) The 
model using billing codes also performs well at predicting the subset of spontaneous preterm births in the 
held-out set (recall = 0.48) compared to risk factors (recall = 0.35). 
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4.2.5 Machine learning models can predict spontaneous preterm births 
 
The multifactorial etiologies of preterm birth led to clinical presentations with different 

comorbidities and trajectories. Medically-indicated and idiopathic spontaneous preterm births are 

distinct in etiologies and outcomes. Identifying pregnancies that ultimately result in spontaneous 

preterm deliveries is particularly valuable, and we anticipated that spontaneous preterm birth 

would be more challenging to predict than preterm birth overall. To test this, we identified 

spontaneous preterm births in the held-out set at 28 weeks of gestation by excluding women with 

medically induced labor, a cesarean section delivery, or PPROM (Methods). We intentionally 

used a conservative phenotyping strategy that aimed to minimize false positive spontaneous 

preterm births to evaluate the model’s ability to predict spontaneous preterm births. The 

prediction model trained using billing codes up to 28 weeks of gestation classified 48% (recall) 

of all spontaneous preterm births (n=75) as preterm; this is significantly higher than the risk 

factor only model (recall = 35%; Figure 4.10E).  

 

4.2.6 Deliveries stratifies into clusters with different risk and comorbidity signatures  
 

Understanding the statistical patterns identified by machine learning models is crucial for their 

adoption into clinical practice. Unlike deep learning approaches, decision tree-based models are 

easier to interpret. We calculated feature importance as measured by SHapley Additive 

exPlanation (SHAP) scores206,207 for each delivery and feature pair in the held-out cohort for the 

model using billing codes at 28 weeks of gestation (‘Billing-code-based model’, Figure 4.10A). 

SHAP scores quantify the marginal additive contribution of each feature to the model predictions 

for each individual. Next, we performed a density-based clustering on the patient by feature 

importance matrix and visualized clusters using UMAP (Figure 4.11). This approach focuses the 

clustering on the features for each individual prioritized by the algorithm. We identified six 

clusters with 927 to 102 women. Preterm birth prevalence was the high in the clusters one to four 

(blue, pink, green, orange) indicating differential risk for preterm birth. Performance varied 

across the clusters; the yellow cluster with low preterm birth prevalence had the highest PPV 

while clusters with higher preterm birth prevalence had higher recall.  

To evaluate whether clusters had distinct phenotype profiles, we calculated the 

enrichment of demographic and clinical risk factor traits within each cluster using Fisher’s exact 
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test (Methods). These traits were extracted from structured fields in EHRs or ascertained using 

combinations of billing codes. Although these billing codes are used to train the model, the 

combination of codes used to ascertain risk factor traits are not encoded in the training data. 

White women are significantly enriched in the cluster 5 (odds ratio, OR = 1.2, p-value = 0.02, 

Fisher’s exact test, Figure 4.11E). Hispanic women also had significant positive enrichment in 

cluster four (OR = 2.5, p-value = 0.0002) and cluster 6 (OR = 1.6, p-value = 0.008) and were 

depleted (negative enrichment) in the cluster five (OR= 0.5, p-value = 4.42E-6, Figure 4.11D). 

African American and Asian women also exhibit modest enrichment in different clusters.  

We also tested for enrichment of clinical risk factors of preterm birth in the clusters. We 

observed distinct patterns of enrichment and depletion for each clinical risk factor (Figure 4.11F, 

Figure 4.12). Gestational hypertension had strong and enrichment in cluster three (OR = 26.4, p-

value = 9.0E-39). Fetal abnormalities demonstrated a similar pattern with strong enrichment in 

cluster one (OR = 8.5, p-value = 2.07E-10). Extreme age at delivery (>34 or <18 years old) was 

enriched, though weaker, (OR = 1.2 to 2.2) for all clusters except five and six. Pre-pregnancy 

BMI, pre-pregnancy hypertension, and gestational hypertension had similar patterns with the 

strongest enrichment in cluster three. The remaining clinical risk factors show similar patterns 

and are provided in Figure 4.12.  

By analyzing the feature importance values through UMAP embeddings, we identify 

interpretable clusters of individuals discovered by the machine learning model that reflect the 

complex and multi-faceted paths to preterm birth. Overall, the learned rules highlight 

relationships between clinical factors and preterm birth prevalence. For example, some risk 

factors, such as age at delivery, are enriched in all clusters with high preterm birth prevalence. 

Other factors, such as pre-pregnancy BMI and hypertension, are strongly enriched only in 

specific clusters with high preterm birth prevalence. Thus, this approach enables us to interpret 

phenotypic patterns of risk and identify subgroups among cases learned from complex EHR 

features by the prediction model.  

 

  



   72 

 

Clustering PTB prevalenceA B C

E

Cluster

Precision

Recall

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Clusters
outliers 
(n=16)

N= 168 111 299
102927

623 high PTB prevalence

UMAP 1

U
M

AP
 2

UMAP 1
U

M
AP

 2

0.1 0.2 0.2 0.3

prevalence

one delivery

White
n=1,571

African American
n=429

Asian
n=71

Hispanic
n=175

0.8 1 1.3

OR (log10 scale)

0 1 1.3

OR (log10 scale)

0.3 1 4.0

OR (log10 scale)

0.4 1 2.5

OR (log10 scale)

F

D

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

age at delivery
n=395

UMAP 1

U
M

AP
 2

prepreg BMI
n=1,046

UMAP 1

U
M

AP
 2

prepreg hypertension
n=1,047

UMAP 1

U
M

AP
 2

gest hypertension
n=111

UMAP 1

U
M

AP
 2

fetal abnormalities
n=75

UMAP 1

U
M

AP
 2

Clusters
outliers 
(n=16)

N= 168 111 299
102927

623

1

2
34

5

6

1 2 3 4 5 6

0.5 1 2.0

OR (log10 scale)

0.3 1 3.2

OR (log10 scale)

0.4 1 2.5

OR (log10 scale)

0.04 1 25.1

OR (log10 scale)

0.1 1 7.9

OR (log10 scale)

Figure 4.11: Machine-learning-based clustering of deliveries identifies sub-groups with distinct preterm 
birth prevalence, clinical features, and prediction accuracy. (A) For the model predicting preterm birth 
at 28 weeks of gestation using billing codes (ICD-9 and CPT, Figure 4.10A), we assigned deliveries 
from the held-out test set (n=2,246) to one of six clusters (colors) using density-based clustering 
(HDBSCAN) on the SHAP feature importance matrix. For visualization of the clusters, we used UMAP 
to embed the deliveries into a low dimensional space based on the matrix of feature importance values. 
Inset pie chart displays count of individuals in each cluster. (B) The preterm birth prevalence (colorbar) 
in each cluster. The algorithm discovered four clusters with high preterm birth prevalence (enclosed by 
dashed line). (C) Precision and (D) recall for preterm birth classification within each cluster. (E) The 
enrichment (odds ratios, colorbar in log10 scale) of race as derived from EHRs for each cluster (Table 
S1). (F) The enrichment (log10 odds ratio) of relevant clinical risk factors in each cluster. Risk factors 
include: age at delivery (> 34 or <18 years old), pre-pregnancy BMI (prepreg BMI), pre-pregnancy 
hypertension (prepreg hypertension), gestational hypertension (gest hypertension), and fetal 
abnormalities. We report the total number of women in the delivery cohort at high risk for each clinical 
risk factor (n). Enrichments for additional risk factors are given in Figure 4.12. 
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4.2.7 Performance varies based on clinical context and delivery history 
 

To further explore the sensitivity of the performance of our approach to clinical context and 

patient history, we evaluated how delivery type (vaginal vs. cesarean-section) and a previous 

preterm birth influence preterm birth prediction. We trained two classifiers using billing codes 

(ICD-9 and CPT) occurring before 28 weeks of gestation: one on a cohort of cesarean-section (n 

= 5,475) singleton deliveries and one on vaginal deliveries (n = 15,487). Preterm birth prediction 

accuracy was higher in the cesarean-section cohort (PR-AUC = 0.47, chance = 0.20) compared 

to the vaginal delivery cohort (PR-AUC = 0.23, chance = 0.10; Figure 4.13A). Cesarean-sections 

also had higher ROC-AUC compared to vaginal deliveries (0.75 vs. 0.68, Figure 4.14). As 

expected, the preterm birth prevalence was higher in the cesarean-section cohort.  

Women with a history of preterm birth are at significantly higher risk for a subsequent 

preterm birth than women without a previous history. Therefore, it is particularly important to 

understand the drivers of risk in this cohort. We tested if models trained on EHR data of women 

with a history of preterm birth could accurately predict the status of their next birth. We 

assembled 1,416 women with a preterm birth and a subsequent delivery in the cohort and split 

them into a training set (80%) and held-out test set (20%) to evaluate the model performance 

(Methods). For these women, 53% of the second deliveries were preterm. Due to limited 

availability of estimated gestational age data for the recurrent preterm births, which is necessary 
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Figure 4.12: Enrichment of additional clinical risk factors in pregnancy cohort clusters. We calculated enrichment 
(log10 odds ratio) of several additional clinical risk factors (each panel) for each cluster derived from the feature 
importance matrix for the model predicting preterm birth at 28 weeks of gestation (Figure 4.11, Methods). These 
risk factors are enriched in different clusters. We report the total number of women in the delivery cohort at high 
risk for each clinical risk factor (n). 
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to approximate the date of conception, we trained models using billing codes (ICD-9 and CPT) 

present before each of the following timepoints: 10, 30, and 60 days before the delivery. These 

models were all able to discriminate term from preterm deliveries better than chance (Figure 

4.13B; PR-AUCs≥0.75). The model predicting a second preterm birth as early as 60 days before 

delivery achieved the high performance with PR-AUC=0.75 (Figure 4.13B, chance=0.53) and 

ROC-AUC=0.77 (Figure 4.15). 
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Figure 4.13: Preterm birth prediction accuracy is influenced by clinical context. (A) Preterm birth 
prediction models trained and evaluated only on cesarean section (C-section) deliveries perform better 
(PR-AUC=0.47) than those trained only on vaginal delivery (PR-AUC=0.23). ROC-AUC patterns 
were similar (Fig. S8). Billing codes (ICD-9 and CPT) present before 28 weeks of gestation were used 
to train a model to distinguish preterm from non-preterm birth for either C-sections (n=5,475) or 
vaginal deliveries (n=15,487). (B) Recurrent preterm birth can be accurately predicted from billing 
codes. We trained models to predict preterm birth for a second delivery in a cohort of 1,416 high-risk 
women with a prior preterm birth documented in their EHR. Three models were trained using data 
available at 10 days, 30 days, and 60 days before the date of second delivery. Models accurately 
predict the birth type in this cohort of women with a history of preterm birth (PR-AUC≥0.75). ROC-
AUC varied from 0.82 at 10 days to 0.77 at 60 days before second delivery (Fig. S9). Expected 
performance by chance is the preterm birth prevalence in each cohort (dashed lines).  
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Figure 4.15: Models trained using billing codes can accurately predict risk of a second preterm birth. For 
women with a history of preterm birth (n=1,416, Methods), we trained models using billing codes (ICD-9 
and CPT) to predict a second preterm birth. Multiple gestations were excluded. For each model, only 
billing codes timestamped before the specified number of days before delivery are included. Models 
predicted a second preterm birth accurately with the highest and lowest ROC-AUC of 0.82 at 10 days and 
0.77 at 60 days before delivery respectively. This corresponds to the PR curves presented in Figure 4.13B. 
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Figure 4.14: Preterm birth prediction accuracy is higher for cesarean-sections compared to vaginal deliveries. 
After stratifying the delivery cohort into cesarean-sections (n=5,475) and vaginal (n=15,487) deliveries, we 
trained a model on each delivery type to predict preterm or not-preterm births. Multiple gestations were 
excluded. We trained models using billing codes (ICD-9 and CPT) present before 28 weeks of gestation. 
ROC-AUC was higher for cesarean-sections (0.75) compared to vaginal deliveries (0.68). This corresponds 
to the PR curves presented in Figure 4.13. 

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Days Before Delviery (ROC-AUC)
10 days (0.82)
30 days (0.77)
60 days (0.77)
Chance



   76 

4.2.8 Models trained at Vanderbilt accurately predict preterm birth in an independent cohort 
at UCSF 

 
To evaluate whether preterm birth prediction models trained on the Vanderbilt cohort performed 

well on EHR data from other databases, we compared their performance on the held-out 

Vanderbilt cohort (n=4,215) and an independent cohort from UCSF (n=5,978). The UCSF cohort 

was ascertained using similar rules as the Vanderbilt cohort (Methods); age and distribution of 

race are provided in Table 4.1. However, we note that the UCSF cohort has a lower preterm birth 

prevalence (6%) compared to the Vanderbilt cohort (13%).  

 

 

 

 

To facilitate the comparison, we trained models to predict preterm birth in the Vanderbilt 

cohort using only ICD-9 codes present before 28 weeks of gestation. We did not consider CPT 

codes in this analysis due to differences in the available billing code data between Vanderbilt and 

UCSF. As expected from the previous results, the model accurately predicted preterm birth in the 

held-out set from Vanderbilt (PR-AUC of 0.34, chance=0.12), but performance was slightly 

lower than using both ICD and CPT codes (Figure 4.10). The model trained at Vanderbilt also 

Table 4.1: Demographic distribution of UCSF and Vanderbilt cohorts. We identified women with preterm 
and not preterm deliveries at UCSF and Vanderiblt using similar ascertainment (Methods). For each 
woman, we predicted the earliest delivery in their EHR. We report age at delivery (Patient Age) and self- 
or third-party reported race for both cohorts. T-tests and chi-squared tests of independence were used to 
compare distributions stratified by delivery label.   
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achieved strong performance in the UCSF cohort. The classifier had a higher ROC-AUC (0.80) 

in UCSF cohort compared to the Vanderbilt cohort (0.72; Figure 4.16A) and PR-AUC of 0.31 vs 

0.34 at Vanderbilt; Figure 4.16B). The higher ROC is due to the lower prevalence of preterm 

birth in the UCSF cohort and the sensitivity of ROC-AUC to class imbalance208. Overall, these 

models show striking reproducibility across two independent cohorts.  

 

 

 
Figure 4.16: Preterm birth prediction models accurately generalize to an independent cohort. Performance 
of preterm birth prediction models trained at Vanderbilt applied to UCSF cohort. Models were trained 
using ICD-9 codes present before 28 weeks of gestation at Vanderbilt on 16,857 of women and evaluated 
on a held-out set at Vanderbilt (n=4,215, gold) and UCSF cohort (n=5,978, blue). (A) Models accurately 
predicted preterm birth at Vanderbilt (ROC-AUC=0.72) and at UCSF (ROC-AUC=0.80). The higher 
ROC-AUC at UCSF is driven by the lower prevalence of preterm birth in this cohort. (B) Models 
performed better than baseline prevalence (chance) based on the precision-recall curve at Vanderbilt (PR-
AUC=0.34) and at UCSF (PR-AUC=0.31). Note that in contrast to models presented previously this one 
was trained only on ICD-9 codes, due to the lack of CPT codes in the UCSF cohort. Feature importance 
estimates were strongly correlated between the two cohorts (Figure 4.17). Cohort demographics are given 
in Table 4.1.  
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4.2.9 Similar features are predictive across the independent cohorts 
 
The architecture of boosted decision trees enables straightforward identification of features 

(ICD-9 codes) with the largest influence on the model predictions. We used SHAP209,210 scores 

to quantify the marginal additive contribution of each feature to the model predictions for each 

individual. For each feature in the ICD-9-based model, we calculated the mean absolute SHAP 

Mean SHAP per feature

Feature rank

Top 15 features at Vanderbilt and UCSF
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Vanderbilt

UCSF

A B

Poor fetal growth

Hypertension

Hereditary hemolytic anemia

Cervical shortening

Diabetes

Hypertension Antepartum

History of PTB

Threatened premature labor

Known fetal abnormality

656.53
401.9
282.9
649.73
648.03
642.03
V23.41
644.03
655.83

Screen for cervix malignancy

Pulmonary TB screen

Antenatal Screening

Diabetes screen

Antenatal Screening

Antenatal Screening

V76.2
V74.1
V28.89
V77.1
V28.81
V28.9

Pregnancy complication

Routine fetal ultrasound

Supervision of pregnancy

Supervision of pregnancy

648.93

V28.3
V22.0
V22.1

1 3 5 7 9 111315

Super. elderly mult. pregnancy

Elderly multi-gravid complication

V23.82
659.63

0.00 0.05 0.10 0.15 0.20 0.25
UCSF SHAP value

0.00

0.05

0.10

0.15

0.20

0.25

Va
nd

er
bi

lt 
SH

AP
 v

al
ue

pearson R: 0.93
p-value: <2.2e-308

Pregnancy 
Screening

Risk Factors

High-risk

Figure 4.17: Preterm birth model feature importance is similar in an external cohort. A preterm birth 
prediction model trained at Vanderbilt was applied to an external UCSF cohort. Models were trained 
using ICD-9 codes present before 28 weeks of gestation at Vanderbilt on 16,857 of women and evaluated 
on a held-out set at Vanderbilt (n=4,215, gold) and UCSF cohort (n=5,978, blue). These models 
performed similarly (Figure 4.16). (A) Feature importance was estimated by the mean absolute SHapley 
Additive exPlanation (SHAP) value per feature in each individual in each cohort (x and y-axes). The 
feature importance estimates have a high positive correlation between cohorts (Pearson r=0.93, p<2.2e-
308, two-tailed). (B) The top 15 features with the highest mean absolute SHAP score in the Vanderbilt 
cohort (gold square) or UCSF cohort (blue circle). The majority of the features were shared across cohorts 
and capture known risk factors (fetal abnormalities, history of preterm birth, etc.), pregnancy screening 
visits, and supervision of high-risk pregnancies. 
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values across all women in the held-out set. The mean absolute SHAP value for each feature was 

highly correlated (spearman R=0.93, p-value < 2.2E-308) between the held-out Vanderbilt set 

and the UCSF cohort (Figure 4.17A). The top 15 features ranked based on the mean absolute 

SHAP value captured known risk factors (fetal abnormalities, history of preterm birth, etc.), 

pregnancy screening and supervision of high-risk pregnancies (Figure 4.17B). Ten of the top 15 

features were shared across both cohorts. This suggests that the model’s discovered combination 

of phenotypes, including expected risk factors, and the corresponding weights assigned by the 

machine learning model are generalizable across cohorts.  

 

 
4.3 Discussion 

 
 
Preterm birth is a major health challenge affecting ~10% of pregnancies2,4,6 and lead to 

significant morbidity and mortality211,212. Predicting preterm birth risk could inform clinical 

management, but no accurate classification strategies are routinely implemented186. Here, we 

take a step toward addressing this need by demonstrating the potential for machine learning on 

dense phenotyping from EHRs to predict preterm birth in challenging clinical contexts (e.g., 

spontaneous and recurrent preterm births). However, we emphasize that more work is needed 

before these approaches are ready for the clinic. Compared to other data types in the EHRs, 

models using billing codes alone had the highest prediction accuracy and outperformed those 

using clinical risk factors. Demonstrating the potential broad applicability of our approach, the 

model accuracy was similar in an external independent cohort. Combinations of many known 

risk factors and patterns of care drove prediction; this suggests that the algorithm builds on 

existing knowledge. Thus, we conclude that machine learning based on EHR data has the 

potential to predict preterm birth accurately across multiple healthcare systems.    

Decision tree-based models are robust to correlated features, can identify complex non-

linear combinations, and remain transparent for interpretation after training. In addition to these 

advantages, decision tree-based models have demonstrated strong performance in various 

clinical prediction tasks213–215. Pregnancy is a clinical context with close monitoring and well 

defined end-points that may similarly benefit from machine learning approaches, yet few studies 
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have applied decision tree based machine learning models to large pregnancy cohorts with rich 

clinical data216.  

Our approach has several distinct advantages compared to published preterm birth 

prediction models. First, our models have robust performance. Previous models using risk factors 

(diabetes, hypertension, sickle cell disease, history of preterm birth) to predict preterm birth, 

despite having cohorts up to two million women185, have reported ROC-AUCs between 0.69 and 

0.74182–184. Our models obtain a ROC-AUC of 0.75 and PR-AUC of 0.40 using data available at 

28 weeks of gestation even after excluding multiple gestations. Furthermore, given the 

unbalanced classification problem (preterm births are less common than non-preterm), we report 

high PR-AUCs in addition to high ROC-AUCs. A recent deep learning model trained using word 

embeddings from EHRs achieved a high performance (ROC-AUC = 0.83216). This model was 

evaluated over a stratified high-risk cohort consisting of birth before 28 weeks of gestation. We 

did not stratify preterm births by severity since more than 85% of preterm births occur after 32 

weeks of gestation217, however, this is an important topic for future work.  Our models achieve 

comparable performance with the benefit of easier interpretability, which is an advantage over 

deep learning approaches, and we discuss this further below.  

Second, our models use readily available data throughout pregnancy that do not require 

invasive sampling. While some studies have also obtained high ROC-AUCs (e.g., 0.81-0.88), 

they used serum biomarkers across small cohorts181 or acute obstetric changes within days of 

delivery180. The potential to enable cost-effective and broad application is illustrated by our 

evaluation of the classifiers on EHR data from UCSF; however, substantial further work is 

needed to move from this proof-of-concept analysis to clinic-ready models. Furthermore, the rich 

characterization of the phenome provided by EHRs leveraged by our approach could also 

complement more invasive biochemical assays.  

Third, the gradient boosted decision trees we implement are easier to interpret than 

‘black-box’ deep learning models that cannot easily identify features driving predictions. 

Transparency is an important, if not necessary, characteristic of machine/artificial learning 

models deployed in clinical practice218,219, and it can facilitate discovery of insights and 

hypotheses to motivate future work. We reveal the patterns learned by our model by clustering 

deliveries using feature importance profiles. The enrichment for known risk factors in clusters 

with high preterm birth prevalence establishes confidence in our machine-learning based 
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prediction models. In addition, we can quantify the strength of enrichment and combination of 

risk factors across clusters with distinct comorbid patterns. Since preterm birth is a heterogenous 

phenotype49, and stratifying pregnancies based on clinical features may be critical to uncovering 

the biological basis of labor31,58,61, the learned rules from our model offer a possible method for 

sub-phenotyping.   

Finally, our approach generalizes across hospital systems. We demonstrate that billing-

code-based models trained at Vanderbilt achieve similar accuracy in an independent cohort from 

UCSF. The generalizability of machine learning models can be constrained by the sampling of 

the training data. Thus, the accurate prediction in an independent dataset from an external 

institution points to several inherent strengths of the approach. First, successful replication 

indicates the models’ ability to learn predictive signals despite regional variation in assigning 

billing codes to an EHR. Second, the large cohorts used to train and evaluate models at 

Vanderbilt and USCF guard against potential weakness of EHRs, such as miscoding or omission 

of key data points. These errors are unavoidable in EHRs220, but the large cohort used to train our 

models mitigates these errors and enables the high accuracy in the UCSF dataset, even with its 

different demographics. Additionally, idiosyncratic patterns of patient care at the institution used 

to develop the algorithm, which would be present in the Vanderbilt training and held-out sets, are 

unlikely to be present in the external UCSF cohort and inflate the out-of-sample accuracy. Third, 

the top features driving model performance are shared across institutions and reflect 

combinations of known risk factors and patterns of care. This aids interpretability of the 

underlying algorithm and likely reflects underlying pathophysiology that is innate to preterm 

birth.   

We see several avenues for further improving our algorithm. First, some of the top 

features reflected routine obstetric care for high-risk pregnancies. Thus, the learning problem 

could be engineered to force the algorithm to discover new unappreciated risk factors. Second, 

we were surprised that the addition of features beyond billing codes, such as lab values, concepts 

extracted from clinical notes, and genetic information did not significantly improve performance. 

In some cases, any redundant information already captured by the billing codes would not 

improve the model’s accuracy; this is likely true for clinical notes. However, other sources, like 

currently available genetic data and polygenic risk scores, may not effectively capture underlying 

etiologies of preterm birth. Thus, these sources may not add more discriminatory power due to 
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limitations in current data. Indeed, the largest published genome-wide study for preterm birth 

only explains a very small fraction of the heritability47, and a polygenic risk score derived from it 

was not predictive in our cohort. Further sub-phenotyping of preterm birth will not only aid in 

prediction, but also understanding its multifactorial etiology and developing personalized 

treatment strategies. More explicit modeling of the temporal dependence between EHR features 

may further increase performance. Finally, while we evaluated the ability of our classifiers to 

discriminate preterm births, further studies evaluating the calibration of these models are 

necessary to better risk stratify of pregnancies. 

The strong predictive performance of our models suggests that they have the potential to 

be clinically useful. Compared to a machine learning model trained using only known risk 

factors, the billing-code-based classifier incorporated a broad set of clinical features and 

predicted preterm birth with higher accuracy. Furthermore, the superior performance was not 

driven by the number of risk factors or the total burden of billing codes. These results indicate 

the algorithm is not simply identifying less healthy individuals or those with greater healthcare 

usage. The models also accurately predicted many preterm births in challenging and important 

clinical contexts such as spontaneous and recurrent preterm birth. Spontaneous preterm births are 

common4,6,56, and unlike iatrogenic deliveries, they are more difficult to predict because they are 

driven by unknown multifactorial etiologies6,186. Similarly, since a prior history of preterm birth 

is one of the strongest risk factors221, distinguishing pregnancies most at risk for recurrent 

preterm birth has potential to provide clinical value.  

However, we emphasize that additional work is needed before this approach is ready for 

clinical application. Though it has strong performance, a more comprehensive evaluation of the 

algorithm against current clinical practice is needed to determine how early and how much 

improvement in standard of care this approach could provide222. Furthermore, while our cohorts 

include diverse individuals and the algorithm generalizes well, the approach must be evaluated to 

ensure that it does not introduce of amplify biases against specific groups or types of preterm 

birth223. In addition, we anticipate further gains in the clinical value of this approach as more 

modalities of data becomes incorporated in the EHR224 and diverse populations become 

available. Addressing these questions and taking other necessary steps toward clinical utility will 

require the close collaboration of diverse experts from basic, clinical, social, and implementation 

sciences. 
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Our results provide a proof-of-concept that machine learning algorithms can use the dense 

phenotype information collected during pregnancy in EHRs to predict preterm birth. The 

prediction accuracy across clinical contexts and compared to existing risk factors suggests such 

modeling strategies can be clinically useful. We are optimistic that with the increasingly 

widespread adoption of, improvement in tools for extracting meaningful data from them, and 

integration of complementary molecular data, machine learning approaches can improve the 

clinical management of preterm birth.  

 
4.4 Methods 

 
 
4.4.1 Ascertaining delivery type and date for Vanderbilt cohort  
 
We identified women with at least one delivery (n=35,282, ‘delivery-cohort’) at Vanderbilt 

Hospital based on the presence of delivery-specific billing codes (ICD-9/10 and CPT) or 

estimated gestational age (EGA) documented in the EHR. Combining delivery specific ICD-9/10 

(‘delivery-ICDs’), CPT (‘delivery-CPTs’), and EGA data, we developed an algorithm to label 

each delivery as preterm or not preterm. Women with multiple gestations (e.g. twins, triplets) 

were identified using ICD and CPT codes and exclude for singleton-based analyses. See 

Supplementary Materials and Methods for exact codes. 

We demarcate multiple deliveries by grouping delivery-ICDs in intervals of 37 weeks 

starting with the most recent delivery-ICD. This step is repeated until all delivery-ICDs in a 

patient’s EHR are assigned to a pregnancy. We chose 37-week intervals to maximally 

discriminate between pregnancies. For each delivery, we assign a list of labels (preterm, term, or 

postterm) ascertained using the delivery-ICDs. EGA values, extracted from structured fields 

across clinical notes, were mapped to multiple pregnancies using the same procedure. For 

women with multiple EGA recorded in their EHR, the most recent EGA value determined the 

time interval to group preceding EGA values. Based on the most recent EGA value for each 

pregnancy, we assigned labels to each delivery (EGA <37 weeks: preterm; ≥37 and <42 weeks: 

term, ≥42 weeks: postterm). After pooling delivery labels based on delivery-ICDs and EGA, we 

assigned a consensus delivery label by selecting the oldest gestational age-based classification 

(i.e. postterm > term > preterm). By incorporating both billing code and EGA based delivery 
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label and selecting the oldest gestational classification, we expect this to increase the accuracy of 

this algorithm, which we evaluate by chart-review (described in detail below).  

Since CPT codes do not encode delivery type, we combined the delivery-CPTs with 

timestamps of delivery-ICDs and EGAs to approximate the date of delivery. Delivery-CPTs 

were grouped into multiple pregnancies as described above. The most recent timestamp from 

delivery-CPTs, delivery-ICDs, and EGA values was used as the approximate delivery date for a 

given pregnancy.  

 

4.4.2 Validating delivery type based on chart review  
 

To validate the delivery type ascertained from billing codes and EGA, we used chart-reviewed 

labels as the gold standard. For 104 randomly selected EHRs from the delivery cohort, we 

extracted the date and gestational age at delivery from clinical notes. For earliest delivery 

recorded in the EHR, we assigned a chart-review based label according to the gestational age at 

delivery (<37 weeks: preterm; 37 and 42 weeks: term, ≥42 weeks: post term). The 

precision/positive predictive value for the ascertained delivery type as a binary variable 

(‘preterm’ or ‘not-preterm’) was calculated using the chart reviewed label as the gold standard. 

To compare the ascertainment strategy to a simpler phenotyping algorithm, we compared the 

concordance of the label derived from delivery-ICDs to one based on the gestational age within 

three days of delivery. This simpler phenotyping approach resulted in a lower PPV (85%) and 

recall (93%; Figure 4.1) compared to the billing-code-based ascertainment strategy. 

 

4.4.3 Training and evaluating gradient boosted decision trees to predict preterm birth  
 

All models for predicting preterm birth used boosted decision trees as implemented in XGBoost 

v0.82195. Unless stated otherwise, we trained models to predict the earliest delivery in a woman’s 

EHR as preterm or not-preterm. The delivery cohort was randomly split into training (80%) and 

held-out (20%) sets with equal proportion of preterm cases. For prediction tasks, we used only 

ICD-9 and excluded ICD-10 codes to avoid potential confounding effects. The total count of 

billing codes within a specified time frame was used as features to train our models; if a woman 

never had a billing code in her EHR, we encoded these as ‘0’. For all models we excluded ICD-

9, CPT codes, and EGA used to ascertain delivery type and date. On the training set, we use tree 
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of Parzen estimators as implemented in hyperopt v0.1.1225 to optimize hyperparameters by 

maximizing the mean average precision. The best set of hyperparameters was selected after 

1,000 trials using 3-fold cross-validation over the training set (80:20 split with equal proportion 

of preterm cases). We evaluated the performance of all models on the held-out set using Scikit-

learn v0.20.2226. All performance metrics reported are on the held-out set. For precision-recall 

curves, we define baseline chance for each model as the prevalence of preterm cases. To ensure 

no data leaks were present in our training protocol, we trained and evaluated a model using a 

randomly generated dataset (n=1,000 samples) with a 22% preterm prevalence. As expected, this 

model did not do better than chance (AUC=0.50, PR-AUC=0.22, data not show). All trained 

models with their optimized hyperparameters are provided at https://github.com/abraham-

abin13/ptb_predict_ml.  

 

4.4.4 Predicting preterm birth at different weeks of gestation 
 
As a first step, we evaluated whether billing codes could discriminate between delivery types. 

Models were trained to predict preterm birth using the total counts of each ICD-9, CPT, or ICD-9 

and CPT code across a woman’s EHR. We excluded any codes used to ascertain delivery type or 

date. All three models were trained and evaluated on the same cohort of women who had at least 

one ICD-9 and CPT code (Figure 4.4).    

Next, we evaluated machine learning models at 0, 13, 28, and 35 weeks of gestation by 

training using only features present before each timepoint. For the subset of women in our 

delivery cohort with EGA, we calculated the date of conception by subtracting EGA (recorded 

within three days of delivery) from the date of delivery. Next, we trained models using ICD-9 

and CPT codes timestamped before different gestational timepoints with only singleton (Figure 

4.3) or including multiple gestations (Figure 4.5). The same cohort of women was used to train 

and evaluate across models. The sample size varied slightly (n = 11,843 to 10,799) since women 

who already delivered were excluded at each timepoint.  

In addition to evaluating models based on the date of conception, we trained models at 

different timepoints before the date of delivery (Figure 4.6) using the same cohort of women by 

requiring every individual in this cohort had to have at least one ICD-9 or CPT code before each 

timepoint. Evaluating models before the date of delivery increased the sample size (n=15,481) 

compared to a prospective conception-based design (n=12,410) and yielded similar results.   
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4.4.5 Evaluating predictive potential of demographic, clinical, and genetic features from EHRs  
 
In addition to billing codes, we extracted structured and unstructured features from the EHRs 

(Figure 4.8A). We evaluated models using features present before 28 weeks of gestations (Figure 

4.8) and features present before or after delivery (Figure 4.9). Structured data included self or 

third-party reported race (Figure 4.1E), age at delivery, past medical and family history (92 

features), and clinical labs. For training models, we only included clinical labs obtained during 

the first pregnancy and excluded values greater than four standard deviations from the mean. To 

capture the trajectory of each clinical lab’s values across pregnancy we trained models using the 

mean, median, minimum, and maximum lab measurement. For unstructured clinical text in 

obstetric and nursing clinical notes, we applied CLAMP227 to extract UMLS (Unified Medical 

Language System) concepts unique identifiers (CUIs and included those with positive assertions 

with > 0.5% frequency across all EHRs). When training preterm birth prediction models, we 

one-hot encoded categorical features. No transformations were applied to the continuous 

features.  

A subset of women (n=905) was genotyped on the Illumina MEGAEX platform. We 

applied standard GWAS quality control steps228 using PLINK v1.90b4s85. We calculated a 

polygenic risk score for each white woman with genotype data based on the largest available 

preterm birth GWAS 47 using PRSice-2229,230. We assumed an additive model and summed the 

number of risk alleles at single nucleotide polymorphisms (SNPs) weighted by their strength of 

association with preterm birth (effect size). PRSice determined the optimum number of SNPs by 

testing the polygenic risk score for association with preterm birth in our delivery-cohort at 

different GWAS p-value thresholds. We included date of birth and five genetic principal 

components to control for ancestry. Our final polygenic risk score used 356 preterm birth 

associated SNPs (GWAS p-value < 0.00025).  

Using the structured and unstructured data derived from the EHR, we evaluated whether 

adding EHR features to billing codes could improve preterm birth prediction. Since the number 

of women varied across EHR feature, we created subsets of the delivery cohort for each EHR 

feature. Each subset included women with at least one recorded value for the EHR feature and 

billing codes. Then we trained three models as described above for each subset: 1) using only the 

EHR feature being evaluated, 2) using ICD-9 & CPT codes, and 3) using the EHR feature with 
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ICD-9 & CPT codes. Thus, all three models for a given EHR feature were trained and evaluated 

on the same cohort of deliveries (Figure 4.8). 

  

4.4.6 Predicting preterm birth using billing codes and clinical risk factors at 28 weeks of 
gestation 

 

We compared the performance of a model trained using billing codes (ICD-9 and CPT) present 

before 28 weeks of gestation with a model trained using clinical risk factors to predict preterm 

delivery (Figure 4.10). Both models were trained and evaluated on the same cohort of women (n 

= 21,099). We selected well-established obstetric risk factors that included maternal and fetal 

factors across organ systems, occurred before and during pregnancy, and had moderate to high 

risk for preterm birth 30,31,185,199. For each individual, risk factors were encoded as high-risk or 

low-risk binary values. Risk factors such as non-gestational diabetes status203, gestational 

diabetes203, gestational hypertension, pre-eclampsia or eclampsia4,205, fetal abnormalities30, 

cervical abnormalities73, and sickle cell disease204 status was defined based on at least one 

corresponding ICD-9 code occurring before the date of delivery. The remaining factors, such as 

race (Black, Asian, or Hispanic was encoded as higher risk)182, age at delivery (> 34 or <18 years 

old)200–202, pre-pregnancy BMI ≥ 35, and pre-pregnancy hypertension (>120/80)4,205, were 

extracted from structured fields in EHR. Pre-pregnancy value was defined as the most recent 

measurement occurring before nine months of the delivery date.  

 

4.4.7 Density based clustering on feature importance values 
 
To better understand the decision making process of our machine learning models, we calculated 

feature importance value for the model predicting preterm birth at 28 weeks of gestation. We 

used SHapley Additive exPlanation values (SHAP)206,207,210 to determine the marginal additive 

contribution of each feature for each individual. First, we calculated a matrix of SHAP values of 

features by individuals from the held-out cohort. Since the shape of this matrix was too large to 

perform the density based clustering, we created an embedding using 30 UMAP components 

with default parameters as implemented in UMAPv0.3.8231. Next, we performed a density based 

hierarchical clustering using HDBSCANv0.8.26 232. We used default parameters 

(metric=Euclidean) and tried a range of values for two hyperparameters: minimum number of 
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individuals in each cluster (‘min_clust_size) and threshold for determining outlier individuals 

who do not belong to a cluster (‘min_samples’). After tuning these two hyperparameters, we 

selected the clustering model with the highest density based cluster validity score 232, which 

measures the within and between cluster density connectedness. We find a min_clust_size = 110 

and min_samples = 10 had the highest density based cluster validity (DBCV) score with 6 

distinct clusters with one cluster for outliers (Figure 4.18). A minority of women (n=16) were not 

assigned to a cluster (‘outliers’).  To visualize the cluster assignments, we performed UMAP on 

the feature importance matrix with default settings and two UMAP components and colored each 

individual by their cluster membership. Finally, we calculated the preterm birth prevalence and 

accuracy within each cluster.  
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Figure 4.18: Density based cluster validity score across hyper-parameters space for HDBSCAN clustering 
of deliveries by feature importance. To identify the optimum number of clusters using HDBSCAN on the 
billing-code-based model at 28 weeks gestation in the held-out set, we explored two hyperparameters: 
minimum number of individuals in each cluster (‘min_clust_size, y-axis) and threshold for determining 
outlier individuals who do not belong to a cluster (‘min_samples’, x-axis). The left heatmap represents 
cluster validity measured with the density-based cluster validity (DBCV) score with higher DBCV 
(darker blue) scores indicating more distinct clusters. The right heatmap displays the number of clusters 
(ligher blue == higher number of clusters) for the pair of hyperparameters. Cells outlined in red have the 
highest values within their column. Note, number of clusters includes a cluster for outliers. 

 
 

4.4.8 Comorbidity enrichment within clusters 
 
We tested for enrichment of clinical risk factors within each cluster by using a Fisher Exact test 

as implemented in Scipy233. For each risk factor, we constructed a contingency table based on a 

given cluster membership and being high risk for the risk factor. We report enrichment as the 

odds ratio with colorbar in log10 scale of the odds ratio. For sickle cell disease, one cluster did 

not have any cases of sickle cell disease.   
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4.4.9 Evaluating model performance on spontaneous preterm births, by delivery type, and 
recurrent preterm birth  

 
We compared how models trained used billing codes (ICD-9 & CPT) performed in different 

clinical contexts. First, we evaluated the accuracy of predicting spontaneous preterm birth using 

models trained to predict all types of preterm births. From all preterm cases in the held-out set, 

we excluded women who met any of the following criteria to create a cohort of spontaneous 

preterm births: medically induced labor, delivery by cesarean section, or preterm premature 

rupture of membranes. The ICD-9 and CPT codes used to identify exclusion criteria are provided 

in Supplementary Materials and Methods. We calculated recall/sensitivity as the number of 

predicted spontaneous preterm births out of all spontaneous preterm births in the held-out set. 

We used the same approach to quantify performance of models trained using clinical risk factors 

(Figure 4.10).  

We trained models to predict preterm birth among cesarean sections and vaginal 

deliveries separately using billing codes (ICD-9 & CPT) as features. Deliveries were labeled as 

cesarean sections or vaginal deliveries if they had at least one relevant billing code (ICD-9 or 

CPT) occurring within ten days of the date of first delivery in EHR. Billing codes used to 

determine delivery type are provided in Supplementary Materials and Methods. Deliveries with 

billing codes for both cesarean and vaginal deliveries were excluded. We trained separate models 

to predict cesarean and vaginal deliveries (Figure 4.13). 

We evaluated how well models using billing codes could predict recurrent preterm birth. 

From our delivery cohort, we retained women whose first delivery in the EHR was preterm and a 

second delivery for which we ascertained the type (preterm vs. not-preterm) as described above 

for the first delivery. We trained models using billing codes (ICD-9 & CPT) at timepoints before 

the date of delivery because the majority of this cohort did not have reliable EGA at the second 

delivery. As described earlier, separate models were trained using billing codes timestamped 

before timepoint being evaluated (Figure 4.13, Figure 4.15). 

  

4.4.10 Preterm birth prediction in independent UCSF cohort  
 
We evaluated how well models trained at Vanderbilt using billing codes would replicate in an 

external cohort assembled at UCSF. Only the first delivery in the EHR was used for prediction. 
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Women with twins or multiple gestations, identified using billing codes (Supplementary 

Materials and Methods), were excluded. Delivery type (preterm vs. not preterm) was assigned 

based on the presence of ICD-10 codes. Term (or not-preterm) deliveries were determined by the 

presence of an ICD-10 code beginning with the characters “O80”, specifying an encounter for 

full-term delivery. Preterm deliveries were determined by both the absence of ICD-10 codes 

beginning with “O80” and the presence of codes beginning with “O60.1”, the family of codes for 

preterm labor with preterm delivery. We trained models using ICD-9 codes present before 28 

weeks of gestation on the Vanderbilt cohort to predict preterm birth. CPT codes were not used 

since they were not available from the UCSF EHR system. The 28-week model was evaluated on 

the Vanderbilt held-out set and the independent UCSF cohort.   

 

4.4.11 Feature interpretation from boosted decision tree models  
 
To determine feature importance, we used SHapley Additive exPlanation values (SHAP)207,209,210 

to determine the marginal additive contribution of each feature. For the held-out Vanderbilt 

cohort and the UCSF cohort, a SHAP value was calculated for each feature per individual. 

Feature importance was summarized by taking the mean of the absolute value of SHAP scores 

across individuals. The top fifteen features based on the mean absolute SHAP value in either the 

Vanderbilt or UCSF cohorts values are reported. To compare how feature importance varies at 

Vanderbilt and UCSF, we computed the Pearson correlation of the mean absolute SHAP values.  
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CHAPTER V 

 
 

5 Conclusions and Future Directions 
 
 

5.1 Summary 
 
This dissertation advances our understanding of the phenotypic, genetic, and evolutionary 

heterogeneity of preterm birth. Using dense and longitudinal data extracted from EHRs, I used 

unsupervised methods to identify distinct sub-phenotypes of preterm birth. I then applied tensor 

decomposition and identified latent factors, representative of sub-phenotypes, in a large cohort of 

Black and White women with preterm or term delivery. Further downstream analyses on these 

latent factors revealed a subset of women with increased polygenic burden for comorbidities 

known to increase preterm birth risk. Next, I employed an evolutionary perspective to 

demonstrate how genomic regions associated with preterm birth have been shaped by a diverse 

set of evolutionary forces. The evolutionary analysis highlighted preterm birth genomic regions 

that did not meet genome-wide significance and are high-priority candidates for future studies. 

For the final aim, I combined both genetic and non-genetic features extracted from EHRs to 

create a robust machine learning predictor of preterm birth. This model was rigorously evaluated 

across clinical contexts and validated in an external cohort. This work serves as a proof-of-

concept that machine learning models derived from EHRs can assist in medical management and 

improve maternal health. In the following sections, I describe key conclusions and future 

directions.   

 
 

5.2 Unsupervised sub-phenotyping of heterogenous traits like preterm birth can accelerate 
GWAS discoveries 

 
5.2.1 Genome-wide association studies have had limited success in preterm birth  
 
Genome-wide association studies (GWAS) have had tremendous success expanding the map of 

genotype to phenotype relationships across many traits. Large genetic databases, such as the UK 

Biobank, have accelerated the number of genome-wide association studies by providing 

unprecedented access to large cohorts across a broad spectrum of phenotypes. However, this 
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success has not been universal across all disease traits. Many diseases, including preterm birth, 

are heterogenous with varied clinical presentations, associated comorbidities, and multifactorial 

etiologies. Isolating specific mechanisms in a heterogenous cohort is challenging and so far only 

a few genomic regions have been robustly associated with preterm birth47.  

 

5.2.2 Phenotyping algorithms can efficiently scale to generate large cohorts for genome-wide 
association studies of preterm birth 

 

One approach to studying heterogenous traits is to subset cases based on a specific disease 

feature. The inherent challenge in creating subsets of a heterogenous disease is lower statistical 

power as a result of having smaller sample sizes. For example, the largest genome-wide 

association study of tens of thousands of European women with preterm birth included only 

spontaneous deliveries.  Nevertheless, the cohort size of this study pales in comparison to other 

well-studied traits where the sample size numbers in the millions. For preterm birth, linking of 

de-identified EHRs to genetic biobanks enables rapid ascertainment of cases and controls for 

genome-wide association studies. As an example of a phenotyping algorithm derived from 

EHRs234,235, in chapter four, I developed an algorithm to identify deliveries using multiple billing 

codes and estimated gestational age. Validation by chart review demonstrated the high accuracy 

to ascertain preterm birth cases and controls. Although the accuracy will have to be re-evaluated 

in new biobanks, one advantage of this phenotyping algorithm is its portability to new health 

systems. Even for uncommon traits such as spontaneous preterm birth, aggregating cases across 

multiple large genetic biobanks, which themselves have hundreds of thousands of individuals, 

can quickly assemble a large cohort for genome-wide association studies.  

 

5.2.3 Unsupervised phenotyping can identify unbiased sub-phenotypes with potentially distinct 
etiologies  

 
Unlike validating phenotyping algorithms using domain specific knowledge as markers for 

ascertainment, unsupervised phenotyping approaches do not require labeled examples of cases 

and controls. Unsupervised approaches identify complex associations between key factors and 

can quantify them as redefined latent variables. In chapter two I used one type of unsupervised 

algorithm called tensor decomposition to identify multiple latent sub-phenotypes of preterm 

birth. Each latent sub-phenotype was distinguished based on its comorbidity pattern and 
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longitudinal disease trajectory. Using the weight assigned to each individual with preterm birth, I 

showed that the genetic risk for comorbidities are associated with specific sub-phenotypes. A 

strength of unsupervised approach is the unbiased modeling of high-dimensional datasets. For 

heterogenous traits, determining the specific disease feature to use to subset individuals is not 

always obvious. For preterm birth, multiple classification schemes have been proposed and no 

universal definition exists for stratifying by gestational length. Furthermore, a majority of 

preterm births present with multiple comorbidities31 and some increase the risk of prematurity30. 

Thus, analytical approaches such as tensor decomposition are well suited for refining the 

phenotypic heterogeneity of preterm birth. For future analyses, other variations of tensor 

decomposition can be applied to similar datasets optimized for specific types of discoveries. 

More generally, other unsupervised approaches, including machine learning methods such as 

autoencoders, should be applied. It is possible that each approach may uncover distinct patterns. 

Additionally, the flexibility of machine learning based models will enable combining diverse 

data types from EHRs such as clinical labs, medications, and more extensive family and personal 

histories.  

 

 

5.3 Evolutionary analyses can lead to insights for disease risk and prioritize candidate regions 
for functional analyses 

 
5.3.1 Incorporating a holistic evolutionary perspective can yield population specific functional 

insights 
 
Understanding the human genome, genetic variation, and the genetic basis of diseases requires 

studying how the genome evolves. Across many traits, robust evidence of strong directional 

selection has been reported. However, the effect of other types of selection (balancing selection), 

evolutionary history across different time scales (recent vs. ancient), and how these different 

modes have jointly acted on the trait associated genomic regions remains poorly understood. In 

the context of preterm birth, a recent study incorporating multiple measures of positive selection 

examined the progesterone receptor locus. This locus has experienced recent positive selection in 

east Asians but remained highly polymorphic in European women. Investigating the conserved 

variants in this region uncovered associations with spontaneous preterm birth in a cohort of 

African American women90. This study demonstrates that incorporating an evolutionary 
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perspective can lead to new insights for observed disparities in preterm birth risk across 

populations.  

 
5.3.2 Evolutionary forces prioritize genomic candidates associated with preterm birth for 

further investigation 
 
Using the largest genome-wide association study, I demonstrated in chapter three that diverse 

evolutionary forces have acted on regions associated with preterm birth. These include signatures 

of excess population differentiation, accelerated evolution, and balanced polymorphism. For 

many of the genomic regions we investigated, the association with preterm birth only reached 

nominal significance. However, many of these regions had been shaped by evolutionary forces 

suggestive of functional importance and, when combined with lines of molecular evidence, our 

results suggest that these genomic regions should evaluated using model organisms to determine 

any functional consequences. Additionally, evolutionary analyses are efficient compared to large 

scale genome-wide association studies. There are practical, technical, and economical costs to 

conducting large scale genome-wide association studies. Evolutionary analyses use existing 

databases of human variation and methods to detect specific pattern of natural selection. Thus, 

these analyses can be applied to summary statistics from any genome-wide association study 

relatively quickly.  

 

5.3.3 Future evolutionary analyses should incorporate effect sizes and cross-trait correlations 
 
There are several future directions for improving the evolutionary analyses for detecting multiple 

modes of selection from summary statistics of genome-wide association studies. A recurring 

challenge for genome-wide association studies is properly correcting for population structure. 

This concern is especially salient as larger studies are conducted on combined cohorts across 

biobanks. Evidence for selection on height based on effect sizes derived from summary statistics 

have been shown to be inflated due to population stratification236,237. Since the evolutionary 

analyses I performed do not use effect sizes, this approach is likely unaffected by biases from 

population stratification. Nevertheless, effect sizes at individual variants may provide another 

important variable to incorporate into polygenic models of selection. Thus, new methods to 

correct for population stratification induced inflation in effect sizes will be required before 

incorporating effect sizes into polygenic models of selection.   
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Another key direction for improving evolutionary analyses is incorporating cross-trait 

correlations. The rapid success and increase in the number of genome-wide association studies 

has expanded the number of unique traits mapped to their associated genomic regions. Studies of 

evolutionary forces on traits tend to focus on a single trait of interest. However, there is evidence 

of complex evolutionary dynamics such as trade-offs94,96,238 or antagonistic selection239. New 

statistical frameworks are being developed to detect multi-trait evolutionary effects240. Further 

development of methods that incorporate phenotypic correlations will expand our understanding 

of how natural selection shapes the human genome.  

 
 

5.4 Machine learning can improve pregnancy outcomes but requires rigorous validation in 
diverse populations   

 
5.4.1 Machine learning applications in pregnancy lags behind other clinical domains 
 
The progress and the pace of machine learning, and more generally artificial intelligence, 

approaches to biomedical settings has been remarkable. Early success in machine learning was 

driven by advances in image processing and computer vision. Thus, clinical domains such as a 

pathology, cardiology, and dermatology that rely heavily on medical imaging have made 

substantial progress in applying machine learning to predictive tasks218,241. Obstetrics has 

remained slower to adopt machine learning approaches188. In pregnancy, patients are frequently 

monitored and those at high-risk for adverse outcomes receive even more clinical surveillance. 

Additionally, many outcomes in pregnancy are well defined and can be mapped to common 

gestational length timeframe.   

As a proof-of-concept, I demonstrated how integrating diverse data types from EHRs 

coupled with genetic data can predict preterm birth in chapter four. I evaluated the performance 

of this model with different datatypes, clinical contexts, and external datasets. The robust 

performance of the prediction models can be improved even more with larger datasets and more 

powerful machine learning models. While EHRs combined with machine learning models holds 

potential for improving maternal health242, future studies should rigorously evaluate models for 

clinical utility and incorporate diverse datasets while developing approaches to mitigate societal 

biases.  
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5.4.2 The measure of a model: evaluating utility is necessary for clinical adoption 
 
When evaluating how well a model performs, the area under the receiver operating curve (ROC) 

is commonly used, in part because it concisely quantifies a model’s discriminative ability. In 

many clinical settings, the target we aim to predict or diagnose is uncommon, if not rare. 

Machine learning approaches can report a skewed accuracy by performing well on the majority 

class, but poorly on the rarer, minority class. Thus, using measures of accuracy beyond the ROC 

analysis is critical. In chapter four, I evaluated the preterm birth prediction model using both 

ROC and precision-recall curves, which take into account the disease prevalence208,243. Future 

models can be optimized to quantify disease risk. In addition to a binary prediction, quantifying 

disease risk can complement a clinician’s expertise and aid in decision making244. Effective risk 

stratification will require accurate predicted risk probabilities that are evaluated using multiple 

calibration metrics245.  

Metrics evaluating model performance on training and validation datasets do not directly 

measure whether a model will be clinically useful, an endpoint that is critical for the ultimate 

implementation of these tools222.  Measuring clinical utility must take use a holistic perspective 

that considers the many facets of health care delivery222. For example, is the model output 

informative in selecting effective clinical interventions? Additionally, the risks and benefits of 

each intervention to the patient must also be considered. Cost, treatment duration, and adherence 

are also important factors that shape patient outcomes. Early studies of machine learning 

applications used historical data from EHRs. The promising findings from these retrospective 

studies must be followed up with prospective studies246,247 that evaluate both reproducibility and 

clinical utility. Guidelines for such prospective trials, including randomized control trials, are 

now being considered248 and will likely evolve as this technology is adopted into clinical 

practice.   

Prospective trials highlight the importance of developing models that are robust across 

time246,249. After a model has been validated, it can be deployed relatively quickly into a hospital 

environment. In addition to an already dynamic healthcare system reacting to societal, economic, 

and political changes, integrating a predictive model will also modify the baseline characteristics 

of the patient populations. Better risk reducing therapies (e.g., lipid lowering agents) will 

improve outcomes and prioritize new risk factors for clinical intervention. Thus, machine 

learning models must have built-in systems to adapt as the original data it was trained on become 
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outdated 218,241,250. Careful development and rigorous validation will enable machine learning 

systems to realize the vision of precision medicine251  

For preterm birth prediction, future studies should use a prospective study design with 

multiple endpoints and clinician feedback. Predictive models should output both binary 

predictions as well as quantify risk for preterm birth in real time during a pregnancy. Machine 

learning models should also aim to generate personalized screening guidelines for women 

according to the past medical history and genetic risk. Likewise, although there are only limited 

interventions for preterm birth, machine learning approaches may be able to predict which 

women could benefit the most for existing therapies.   

  

5.4.3 Future machine learning models must identify and mitigate societal biases 
   
While developing accurate and reproducible machine learning models, identifying and mitigating 

model bias remains challenging223,246,252. Almost all machine learning models require large 

datasets to learn from. Since generating new datasets are time consuming and expensive, many 

models rely on existing datasets from large electronic health record databases. However, these 

databases have ingrained in themselves many of the biases in society223,253. For example, hospital 

mortality algorithms have varying accuracy by ethnicity254. Even more apparent are models 

classifying skin lesions as benign or malignant that underperform in individuals with darker skin 

tones255,256. Missing data are another feature that can impact model performance. Since 

interventions are not uniform across patients and rely on specific indications, the act of 

performing an intervention (such as a laboratory test) maybe more informative than the result of 

that intervention257. 

Reducing bias in artificial intelligence models will require multiple approaches257. To 

generate equitable models that serve all individuals regardless of socio-demographic factors, the 

datasets used to train models should be generated and curated thoughtfully. Existing standards 

such as the PROBAST tool can aid in risk of bias assessment258. Another approach leverages the 

strengths of artificial intelligence to intentionally design algorithms that reduce existing 

disparities253. Unsupervised models that do not require potentially biased labels can identify 

structure within datasets born out of implicit biases in clinical practice. For example, greater 

documentation of anxiety and pain was found more often in white patients compared to non-
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white patients259. Additionally, transfer learning paradigms can leverage multi-ethnic cohorts to 

reduce health care disparities260.  

In the context of preterm birth, machine learning models should incorporate socio-

economic and demographic factors in model development. We should simultaneously develop 

new tools to detect and quantify bias in predictive models. Disparity aware models can use 

different endpoints to illuminate and mitigate existing bias253. EHRs also provide an opportunity 

to redefine healthy ranges along clinically relevant dimensions such as race. For pregnancy, we 

could define a growth-adjusted gestational age combining fetal and maternal pregnancy data that 

incorporate race and socio-economic factors. Including diverse datasets from different 

geographic locations and identifying unique and shared features in each dataset is another way to 

illuminate differences and leverage them to improve predictive models.  
 
 
5.4.4 Conclusion 
 

Discovering successful treatments for preterm birth will depend on our understanding of the 

biological mechanisms underlying birth timing. While broad principles and key molecular 

pathways of birth timing have been identified261, the precise mechanisms are unknown and 

predicting preterm birth remains challenging. In this work, I took a multi-disciplinary approach 

to examining the phenotypic and genetic heterogeneity of preterm birth. The results of this 

approach have identified subtypes of preterm birth, prioritized genomic regions for further study, 

and demonstrated a proof-of-concept of a predictive algorithm using EHRs and genetic data. The 

complementarity of these different approaches demonstrates the potential for translating 

biological and genetic discoveries to improve patient care. As genomic and electronic health 

record databases grow, the tools and methods developed in this work will become even more 

powerful for understanding the phenotypic and genetic heterogeneity of preterm birth.   
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